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Preface

The 4th International Conference on Security in Communication Networks 2004
(SCN 2004) was held at the “Diocese Hall” of the Archdiocese of Amalfi-Cava de’
Tirreni and the “Armorial Bearings Hall” of the Archbishop Palace in Amalfi,
Italy, on September 8–10, 2004. Previous conferences also took place in Amalfi
in 1996, 1999 and 2002.

The conference aimed at bringing together researchers in the fields of cryp-
tography and security in communication networks to foster cooperation and the
exchange of ideas.

The main topics included all technical aspects of data security, including:
anonymity, authentication, block ciphers, complexity-based cryptography, crypt-
analysis, digital signatures, distributed cryptography, hash functions, identifica-
tion, implementations, key distribution, privacy, public key encryption, threshold
cryptography, and zero knowledge.

The Program Committee, consisting of 21 members, considered 79 papers
and selected 26 for presentation; one of them was withdrawn by the authors.
These papers were selected on the basis of originality, quality and relevance to
cryptography and security in communication networks.

Due to the high number of submissions, paper selection was a difficult and
challenging task, and many good submissions had to be rejected. Each submis-
sion was refereed by at least three reviewers and some had four reports or more.
We are very grateful to all the program committee members, who devoted much
effort and valuable time to read and select the papers. In addition, we gratefully
acknowledge the help of colleagues who reviewed submissions in their areas of
expertise. They are all listed on page VII and we apologize for any inadvertent
omissions.

These proceedings include the revised versions of the 26 accepted papers
and the abstract of the invited talk by Bart Preneel (ECRYPT: the Cryptographic
Research Challenges for the Next Decade).

Following the example of the previous editions of SCN, we encouraged authors
to submit their contributions in electronic format. We handled the submissions
with CyberChair (http://www.CyberChair.org) a free Web-based paper submis-
sion and reviewing system.

Finally, we would like to thank all the authors who submitted their papers
for making this conference possible, the Program Committee members, as well
as all the conference participants.

September 2004 C. Blundo
S. Cimato
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Carlo Blundo Università di Salerno, Italy (Chair)
Christian Cachin IBM Research, Switzerland
Ran Canetti IBM Research, USA
Xiaotie Deng City University, Hong Kong, China
Alfredo De Santis Università di Salerno, Italy
Yvo Desmedt University College London, UK
Giovanni Di Crescenzo Telcordia Technology, USA
Rosario Gennaro IBM Research, USA
Eyal Kushilevitz Technion, Israel
Tanja Lange University of Bochum, Germany
Ueli Maurer ETH Zurich, Switzerland
Eiji Okamoto Tsukuba University, Japan
Rafail Ostrovsky UCLA, USA
Giuseppe Persiano Università di Salerno, Italy
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ECRYPT: The Cryptographic Research
Challenges for the Next Decade

B. Preneel

Katholieke Univ. Leuven, Dept. Electrical Engineering-ESAT,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

bart.preneel@esat.kuleuven.ac.be

Abstract. In the past thirty years, cryptology has evolved from a se-
cret art to a modern science. Weaker algorithms and algorithms with
short keys are disappearing, political controls of cryptography have been
reduced, and secure cryptography is becoming more and more a commod-
ity. Moreover, implementations are being becoming more secure as well.
This progress may lead to the belief that the cryptography problem is
“solved.” However, this article discusses some of the challenging problems
ahead in the area of cryptographic algorithms and protocols. We also
explain how the ECRYPT Network of Excellence (www.ecrypt.eu.org)
tries to address some of the challenges by bringing together 250 Eu-
ropean researchers in the area of cryptology and the related area of
watermarking.

1 Introduction

While cryptology is getting increasingly important in the information society,
it is also becoming less and less visible. Cryptology has been integrated into
smart cards for financial transactions, web browsers, operating systems, mobile
phones and electronic identity cards. This success can be explained by several
factors: first, there is a clear need for cryptographic solutions, second adequate
algorithms and protocols have been developed, and third the decreasing cost of
computation makes it inexpensive to implement symmetric and even asymmetric
cryptology. For outsiders, who have limited understanding of the complexity of
the field, the widespread deployment of cryptology may give the impression
that there a no important problems left in cryptography. We have cryptographic
algorithms and protocols available that can be called as a “black box” by security
engineers to solve some standard problems and the security and performance of
these implementations is improving.

Consequently, one may believe that research efforts in security should be fo-
cused exclusively on building trust infrastructures and integrating security into
applications. This (incorrect) impression is strengthened by the (correct) obser-
vation that security systems fail usually due to other reasons than cryptographic
flaws (such as incorrect specifications or implementations, bad management,
viruses, social engineering attacks. . . ) [2].

C. Blundo and S. Cimato (Eds.): SCN 2004, LNCS 3352, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 B. Preneel

A second (but incorrect) conclusion that one may draw from these obser-
vations is that research discipline cryptology has ran out of practical problem,
and hence researchers now work on purely theoretical problems such as general
multi-party computation, exotic protocols and on the question whether or not
one-way functions exist. Any cryptographic protocol (encryption, authentica-
tion, key establishment, e-payment, e-voting, . . . ) can be described as a multi-
party computation, and generic but highly inefficient solutions to this problem
are known since the late 1980s [5, 12, 25]. An interesting challenge is to make
these protocols more efficient, either in the general case or for concrete prob-
lems (such as group signatures or e-voting) for example by introducing stronger
cryptographic assumptions. The most fundamental assumption is the existence
of one-way functions: while our intuition seems to suggest that it is very easy to
design a function that is “easy” to compute but “hard” to invert, so far the best
theoretical result can prove that there exist functions that are twice as hard to
invert as to compute [27]; it is clear that such functions would be completely
useless to practical cryptology. This is quite remarkable, since one-way functions
are a cornerstone of cryptology.

Section 2 presents an overview of the challenges that remain in both practical
and theoretical cryptography. Since the area of cryptology is rather broad, the
emphasis will be on symmetric cryptology by summarizing the status after recent
attacks on block ciphers, stream ciphers and hash functions. We briefly address
some research issues in asymmetric cryptology, but due to lack of space we do not
provide details on areas such as protocols, secure implementation, watermarking,
and perceptual hashing. Next we attempt to explain the problems problems that
arise in the standardization of cryptographic algorithms and protocols. Section 3
explains how the ECRYPT project intends to address some of these research
challenges. Some concluding remarks are presented in Sect. 4.

2 Research Challenges in Cryptology

2.1 State of the Art

Most of the applications are covered by the block ciphers triple-DES [19] and
AES [20]; DES, which was widely used until the late 1990s, is being replaced
quickly (NIST has announced in July 2004 that it will withdraw support for the
DES algorithm since its strength is no longer sufficient to adequately protect
Federal government information). In addition 3rd generation mobile networks
(3GPP) use KASUMI [1] and Bluetooth uses SAFER+ [8]. While military en-
vironments still use proprietary stream ciphers, RC4 [24] is widely deployed
in the commercial world (e.g., SSL/TLS, WEP); GSM uses the stream ciphers
A5/1 and A5/2 [7, 42] and Bluetooth uses E0 [8]. The most popular hash func-
tions are MD5 [37], which was broken in August 2004 [43], SHA-1 [23] and
in some applications RIPEMD-160 [17] and MDC-2 (see [35]). For MAC algo-
rithms, HMAC and several variants of CBC-MAC are widely used. In the area
of public-key cryptology, RSA [38] is clearly the most popular algorithm, both for
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public key encryption and for digital signatures. For digital signatures, DSA,
ECDSA (Elliptic Curve DSA) and variants of these are also successful. For public
key encryption, ElGamal and some elliptic curve variants can also be found
in applications. For key establishment several variants of authenticated Diffie-
Hellman are widely deployed. For entity authentication, there is a limited use
of zero-knowledge protocols, o.a. in the pay-TV world and in Novell networks.
It is not feasible within the scope of this article to discuss in detail all the
cryptographic algorithms and protocols included in standards such as SSL/TLS,
IPsec/IKE, SSH, S/MIME, PGP, GSM, 3GPP, WEP, WPA, RSN, Bluetooth,
EMV, Global Platform, . . . It is clear that this could be a useful exercise to
assess the impact of developments in cryptology.

2.2 Challenges

In this section we discuss the research challenges from a generic perspective.
Even if we have currently a large toolbox of cryptographic algorithms and pro-
tocols, this may not be adequate for the next years due to several reasons. A first
issue is the changing environment and threat models in which cryptology will
be deployed: we are evolving towards ambient intelligence, pervasive networking
or ubiquitous computing, which have completely new characteristics. A second
element is the gradual erosion of the computational difficulty of the mathemat-
ical problems on which cryptology is based; this erosion is created in part by
developments in computation (progress in electronics and in the future in optical
and maybe even quantum computing) and in part by progress in cryptanalytic
algorithms. A final element is the requirements of new applications and crypto-
graphic implementations, including the lack of physical security in devices.

In order to structure these new requirements, the areas in which further re-
search is needed can be organized according to three parameters: cost (hardware,
memory, power), performance (throughput, latency) and security level. Ideally
one would like to achieve a high security level and a high performance at a low
cost, but this is not feasible. In practice one has to focus on at least one crite-
rion; depending on the choice, one obtains different solutions. Within this choice,
there may still exist trade-offs between the remaining two parameters.

Low Cost and/or Low Power: this can be achieved by giving up high per-
formance or high security; this approach is essential to allow for integration of
cryptography in even the tiniest devices (e.g., ambient intelligence). Design goals
could be the implementation of a stream cipher that offers a reasonable security
level (say 80 bits) with uses less than 1000 gates.

High Performance: this is required for highly efficient solutions for appli-
cations such as bus encryption, hard disk encryption, encryption in Terabit
networks. If cryptography presents too large an overhead/cost, it will not be
deployed, or it will be switched off. In this context, it is important to note that
while Moore’s ‘law’ predicts that in 2018, the computational power for the same
cost will have increased with a factor of about 100, Gilder’s ‘law’ predicts that
the speed of LANs and storage devices will increase with a factor of 10 000. This
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shows that parallelism will become increasingly important in cryptographic op-
erations, but also demonstrates the need for high performance designs.

High Security: some application areas require cryptographic algorithms and
protocols that can offer a higher confidence and assurance level than the state of
the art. E.g., for e-voting, we need secure and robust protocols that survive even
if a subset of the players are faulty or corrupt and that provide long-term secu-
rity; for e-health and national security we need cryptographic algorithms which
provide guaranteed protection for 50 years or more. As an example, information
on our DNA has implications on the DNA of our children and grandchildren,
hence this is information that may need to be protected for a very long time.

These requirements guide the approaches taken by the research teams in the
ECRYPT project (cf. Sect. 3).

2.3 Symmetric Cryptology

In this section we comment on the challenges in the area of block ciphers, stream
ciphers and cryptographic hash functions; we omit MAC algorithms for two
reasons: they are mostly derived from other block ciphers and hash functions,
and highly efficient constructions based on universal hash functions are known
(even if they are not yet widely used).

Block Ciphers. The area of block ciphers has always been very particular in
cryptology due to the availability of widely supported standards. The impact
of the publication of the Data Encryption Standard (DES) in 1977 by the US
NIST [33] (at that time called NBS) on both practice and research is hard to
overestimate. DES was obtained after an open competition, in which IBM pro-
vided the winning entry; the final design was performed by IBM in cooperation
with NSA. After some initial controversy, DES became widely used, first in the
financial sector and later on in a broad range of applications.

In the 1990s it became clear that the key length of DES (56 bits) was no longer
adequate (see for example Wiener [44]); moreover, the block length of 64 bits
will also be too short in the next decade, which means that triple-DES (which
is also rather slow) is not an adequate replacement. Therefore NIST launched
a call for a successor in 1997. After an open competition with 22 entries, NIST
selected the Belgian Rijndael algorithm (designed by J. Daemen and V. Rijmen)
as the winner in October 2000. The AES standard FIPS 197 (Federal Information
Processing Standard) was published in December 2001 [20]; it is a 128-bit block
cipher with a key of 128, 192 and 256 bits. AES is mandatory for sensitive but
unclassified data. In 2003, the US government announced that AES can also be
used for classified information up to the secret level, while AES with key lengths
of 192 and 256 bits can be used for top secret information. In software, AES is
more than twice as fast as DES, and thus significantly faster than triple-DES.

In 2004, AES has been included in more than thousand products, and as of
August 2004, 171 AES product certifications have been performed by NIST. AES
is being adopted very quickly as a standard in other environments (IETF, ISO,
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IEEE, 3GPP, . . . ), with the exception of the financial sector, which is finalizing
its slow migration from DES to triple-DES.

While there was a broad consensus on the choice by NIST, there were also
some critical comments on the algebraic structure present in the AES. This
structure allows for an elegant description and efficient implementations both in
hardware and software (8-bit and 32-bit machines), but may also induce weak-
nesses. For example, it was shown by Courtois and Pieprzyk [11] that the al-
gebraic structure in the AES S-box leads to simple quadratic equations. The
authors of [11] claim that it may be possible to solve these equations faster than
an exhaustive key search. See also more recent work on algorithms [3, 13] to
solve quadratic equations. Murphy and Robshaw have shown that the simple
overall structure leads to an embedding in larger block cipher BES [31], which
has certain weaknesses; however, these weaknesses do not seem to apply to AES.
Finally, several authors have shown that the algebraic structure leads to equiv-
alent descriptions of the AES.

In conclusion, more than two years after the announcement of these proper-
ties, none of these attacks seems to pose a realistic threat to the security of AES.
It is clear that in view of the importance of the AES, more research is needed
to increase our understanding of this algorithm. On the other hand, in the past
15 years the cryptographic community has built up some extensive design ex-
pertise for block ciphers; even if it would turn out that a less elegant (and less
mathematical) design is more desirable, it would not be too difficult to modify
the design accordingly.

Stream Ciphers. In contrast to block ciphers, the area of stream cipher has
been characterized by many proprietary algorithms and a lack of standards. The
first generation of stream ciphers (1920s–1950s) used mechanical and electrome-
chanical designs based on rotors. Subsequently, electronic designs were developed
using Linear Feedback Shift Registers (LFSRs); an extensive mathematical the-
ory has been created to analyze these stream ciphers. In the last 15 years a new
generation of software-oriented stream ciphers has been proposed, which uses
word lengths between 8 and 32 bits and runs efficiently on modern processors.

Designing a secure stream cipher should in principle be easier than design-
ing a block cipher, since a stream cipher has an internal state that cannot be
influenced by the opponent (there is no equivalent of a chosen plaintext attack).
However, stream cipher designers aim for a significantly better performance than
a block cipher in OFB (Output FeedBack) or CTR (CounTeR) mode, which is
a natural benchmark. As a consequence, output bits are produced after a few
operations, which implies that mixing may be less thorough as desirable. In ad-
dition, new attack models are being introduced which exploit the fact that the
output stream needs to be restarted or re-synchronized at regular intervals using
an Initialization Vector (IV). A chosen IV attack gives an opponent some control
over the initialization of the internal state.

The rich algebraic algebraic structure of LFSRs has resulted in a large number
of attack strategies: linear attacks, algebraic attacks, correlation attacks, divide
and conquer attacks, . . . As a consequence, some researchers are convinced
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that LFSRs should be eliminated altogether from the design of a stream cipher.
As an alternative, one could consider the T-functions proposed by Klimov and
Shamir [29]; these functions provide an efficient implementation of a single-cycle
non-linear iteration on 2n bits.

Software-oriented stream ciphers have been analyzed using an ad-hoc ap-
proach, that use a broad variety of techniques. The NESSIE project [32], which
organized an open competition to develop standard proposals for cryptographic
algorithms, concluded that none of the submitted stream ciphers satisfied the
security criteria. In most cases, the attacks found were so-called distinguishing
attacks with a very high data complexity, which may not represent a realistic
threat on applications. However, the NESSIE project asked for a very high secu-
rity margin, and the submitters initially believed that they could provide this.
The motivation was to obtain a sufficient security margin for long-term secu-
rity. More research is needed to evaluate to which extent we need to reduce the
security requirements to obtain the expected performance benefit from stream
ciphers.

In order for stream ciphers to be useful in practice, they may also need
efficient resynchronization procedures, and an optional mode for authenticated
encryption. There is clearly a need for standardized stream ciphers that offer
either a very low cost (in terms of gate count or power) or that are highly
efficient in software. ECRYPT intends to this

Hash Functions. The area of hash functions has been characterized by a large
number of broken schemes in their 25-year history (see [34, 35] for an overview).
In practice however, only a limited number of schemes are widely used: MD5
and SHA-1, and to a limited extent RIPEMD-160 and MDC-2.

MD4 was proposed by Rivest in 1990 and broken by Dobbertin in 1996 [16].
MD5 was proposed one year later as a strengthened version of MD4. However,
it was discredited by attacks by den Boer and Bosselaers in 1992 [15] and Dob-
bertin in 1996 [18]; the last attack led RSA Security to withdraw its support for
new applications. These attacks showed serious weaknesses of the compression
function of MD5, but they did not provide collisions for the complete function.
In the mean time, brute force collision attacks on MD5 – which require 264 oper-
ations only – are also within reach. In spite of these development, MD5 remained
widely used in a broad range of applications until today. In August 2004, four
researchers (X. Wang, D. Feng, X. Lai, and H. Yu) announced that they had
found collisions for MD5 [43]; their attack requires only 15 minutes on a normal
laptop.

The Secure Hash Algorithm, was proposed by NIST [21] in 1993; SHA has
a 160-bit hash result. After one year, NIST discovered a certificational weak-
ness in SHA; apparently collisions could be found in less than 280 operations.
Consequently a new release of the standard was published. The new algorithm
is called SHA-1 [22], which prompted some researchers to rename the original
SHA as SHA-0 (this has created some confusion).

After work by Chabaud and Joux in 1998 [10], Biham and Chen in 2004 [6],
Joux, Carribault, Jalby and Lemuet presented a collision for SHA in August
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2004 [28]; their attack requires 251 compression function computations. Wang
et al. [43] claim an improved attack that requires only 240 compression function
computations; however, this attack has not yet been implemented.

Biham and Chen have also investigated the extension of their attacks to SHA-
1 [6]. The current status is that they can find collisions for 43 (out of 80) rounds
of SHA-1; they also show that finding collisions for up to 53 (out of 80) rounds
of SHA-1 is faster than a brute force collision attack, which requires 280 steps of
the compression function.

The implications of the new cryptanalytic techniques discovered in 2004 on
SHA-1 and on RIPEMD-160 are still under study. At this time it is too early to
make a reliable assessment, but there does not seem to be an immediate threat
to either hash function; however, brute force attacks on these hash functions
– requiring 280 compression function evaluations – may become within reach
within 10-15 years.

In 2004, Hawkes and Rose [26] have presented some critical observations on
the security of SHA-256 (with a 256-bit result). While it is probably too early to
draw firm conclusions, it seems now plausible that finding collisions for SHA-256
could take less than 2128 evaluations of the compression function, but it may still
be out of reach for the next 20 years or more.

For the time being, there is still a lack of understanding of the security of
hash function designs. Most practical constructions build on the original ideas
of MD4 (32-bit arithmetic and logical operations); we have learned in the last
decade that these designs are probably less secure than anticipated. The next
generation standards SHA-256 through SHA-512 [23] offers better security levels
based on similar principles. However, they are also significantly slower than SHA-
1 (about 2-6 times) and it may be that some of the new attack techniques can
be extended to these designs.

2.4 Asymmetric Cryptology

The research challenges in asymmetric cryptology are certainly not smaller. The
first results in security reductions focused on asymmetric cryptology; in this
line of research, one attempts to prove that the security of a cryptographic
primitive or protocol can be reduced to an assumption on the difficulty of a
mathematical problem (such as extracting modular roots, factoring the product
of two large primes or solving the discrete logarithm problem in a specific group).
Research concentrates on finding efficient and meaningful reductions, on reducing
assumptions used in the proof (such as the ‘random oracle model’ [4, 9]), on
establishing relations between assumptions, and on finding primitives with better
and/or more complex security properties. It should also be pointed out that the
security of most asymmetric primitives depends on a small set of problems from
algebraic number theory; any breakthrough in solving some of these problems
could have dramatic consequences. This shows that there is a need for new
asymmetric algorithms that depend on new problems.

Cryptology also needs to take into account the ever increasing speed of elec-
tronic computers; typically this can be addressed by an adequate upgrade path
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for key lengths at the cost of a decreased performance and increased key sizes.
However, we should also consider the emergence of new computer models such
as optical computers and even quantum computers. Shamir, Tromer, and others
have shown that optical computers could bring significant progress in factoring
large integers [30, 39]. Shor has proved in 1994 [40] that if a large quantum com-
puter could be built, factoring and discrete logarithms in ZZp would be easy;
his results have also been extended to elliptic curve groups. After slow initial
progress, in 1992 a 7-bit quantum computer has been demonstrated [41], which
managed to factor 15 (note that the technology used in this approach is not scal-
able). Experts are divided on the question whether sufficiently powerful quantum
computers can be built in the next 15-20 years. Nevertheless, this provides an
additional motivation to develop asymmetric algorithms that are resistant to
quantum computers.

Research on new asymmetric algorithms is progressing slowly; many pro-
posals have a very short lifetime. Candidate systems that are still being studied
include algorithms based on the following techniques: large error-correcting codes
(e.g., McEliece and variants), multivariate polynomial equations (HFE and vari-
ants), lattices (NTRU), number field systems and braid groups. So far it seems
very hard to match both the performance and the security of the most popular
algorithms.

2.5 Standards

It is well understood that standards are essential for interoperability and econ-
omy of scale. Establishing high quality standards is very difficult, particular in
areas which are evolving quickly such as information technology. For crypto-
graphic standards, another dimension needs to be added: the standard does not
only need to be competitive, it also needs to offer an adequate security level.
Several cryptographic standards had to be revised after publication and even
deployment because serious security problems were identified. If an adequate
security evaluation has been performed, the standard brings some security guar-
antees as an additional benefit. On the other hand, security standards imply
the risks of a single target of attack and of a lack of diversity. There are several
standardization bodies in the area of cryptographic algorithms and protocols;
the main players include ISO/IEC JTC1/SC27, ISO/TC68, IETF (with limited
coordination between the many working groups), NIST, ANSI, IEEE, ETSI,
3GPP, Bluetooth SIG, RSA Labs (PKCS). To quote A.S. Tanenbaum: “The
nice thing about standards is there’s so many to choose from.”

Problems with security standards are not only created by the technical diffi-
culty of developing cryptographic algorithms and protocols as discussed above.
Often, there is no time or expertise for an in-depth security analysis. Mecha-
nisms are sometimes selected based on vested interests or ‘negotiated’, rather
than chosen based on merit. In the past there has also be significant political
pressure to include on crippled algorithms or protocols. It may also be that
commercial considerations result in the introduction in the standard of a weak
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solution, while at the same time one sells a proprietary high-security solution at
a premium price.

Even if a standard is adequate when it is published, progress in research may
make it obsolete or insecure. Many standardization bodies do not have efficient
maintenance procedures to respond efficiently to such developments. Once a
standard has been widely deployed, upgrading it brings significant costs, hence
the typical pattern is that upgrades of algorithms and protocols take a very long
time; moreover backward compatibility with older insecure solutions may open
avenues for attacks. Examples of algorithms that have been widely deployed
beyond their useful lifetime include DES and MD5.

3 The ECRYPT Project

ECRYPT is a Network of Excellence funded under the 6th Framework Pro-
gramme in the thematic area Information Society Technologies (IST); ECRYPT
is one of the projects that contribute to the development of a global depend-
ability and security framework. ECRYPT has started on February 1, 2004 and
is funded for four years. The total estimated cost of the project is about 8.4
MEURO, of which 5.6 MEURO is funded by the European Commission.

ECRYPT has 32 partners from 14 countries; 7 are large companies, and 2
are small ones; the remaining 23 are universities or research institutions. The
ECRYPT partners are: Katholieke Universiteit Leuven (B), Coördinator, École Nor-
male Supérieure, Paris (F), Ruhr-Universität Bochum (D), Royal Holloway, University
of London (UK), BRICS, University of Aarhus (DK), University of Salerno (I), In-
stitut National de Recherche en Informatique et en Automatique (F), University of
Bristol (UK), Gemplus SA (F), France Telecom R&D (F), IBM Research GmbH (CH),
Technical University Eindhoven (NL), Université Catholique de Louvain (B), Univer-
sität Duisburg-Essen (D), Technical University of Denmark (DK), University of Bergen
(N), Lund University (S), Institute for Applied Information Processing and Communi-
cations (A), Institute of Mathematics of the Polish Academy of Sciences (P), Cryptolog
International SAS (F), Vodafone Group Services Ltd (UK), Ericsson AB (S), Axalto
SA (F), MasterCard Europe sprl (B), Edizone GmbH (D), Fraunhofer Gesellschaft
zur Förderung der angewandten Forschung e.V. (D), Otto-von-Guericke University
Magdeburg (D), Centre National de la Recherche Scientifique (F), University of Vigo
(S), National Inter-University Consortium for Telecommunications (I), University of
Geneva (CH), Aristotle University of Thessaloniki (GR).

3.1 Objectives

The main objective of ECRYPT is to ensure a durable integration of European
research in both academia and industry and to maintain and strengthen the
European excellence in these areas. In order to reach this goal, the ECRYPT
partners propose to integrate their research capabilities within five virtual labs
focused on the following five core research areas: symmetric key algorithms, pub-
lic key algorithms, protocols, implementation, and watermarking (cf. Sect. 3.3).
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The integration activities include joint workshops, exchange of researchers
and students, development of common tools and benchmarks and a website
(http://www.ecrypt.eu.org) and forum which will be a focal point for the net-
work and the wider cryptographic community. Each virtual lab organizes one
formal open workshop per year; in the first project year, there have been open
workshops on multi-party protocols, stream ciphers, provable security, and spe-
cial purpose hardware (for cryptanalysis). In addition there are a number of ‘ad
hoc’ internal research meetings. The ECRYPT website will contain a number of
web resources on stream ciphers, AES hardware implementations, side-channel
attacks,. . . A joint infrastructure is being developed which includes tools for
the evaluation of cryptographic algorithms, a benchmarking environment for
cryptographic hardware and software, infrastructure for side channel analysis
measurements and tools, and tools for benchmarking watermarking schemes. It
is important to note that ECRYPT has set aside a substantial budget to sponsor
research visits and of non-ECRYPT researchers.

Spreading activities include a training program, a substantial contribution
towards standardization bodies and an active publication policy. Each year sev-
eral summer schools will be organized of at least one week, jointly between two
virtual labs. The topic for the first schools are elliptic curve cryptology, crypt-
analysis (both symmetric and asymmetric), unconditionally secure protocols and
multimedia security. ECRYPT intends to improve the interaction between the
research community, standardization bodies and the users of cryptology (gov-
ernment, industry, end users). The goal is to make sure that the new develop-
ments are integrated into applications and benefit the end-users. ECRYPT will
also publish an annual list of recommended algorithms, protocols and parame-
ter sizes for symmetric and asymmetric algorithms (including digital signature
suites, encryption algorithms, . . . ).

3.2 Organization

The highest authority within ECRYPT is the General Assembly, in which each
partner has one vote. The General Assembly decides on all strategic matters, in-
cluding budget allocation. The project is run by the Ecrypt Management Com-
mittee (EMC) that meets on a quarterly basis. The EMC consists of the five
virtual lab leaders, the chairman of the strategic committee and two additional
members in charge of IPR issues and standardization. The EMC is chaired by
the project manager, who is in charge of the day to day management; he is sup-
ported by the project administrator. The strategic committee consists of highly
experienced people from industry and academia; it provides guidance and feed-
back on the long-term approach taken by the research network. The virtual labs
are organized in smaller working groups. A typical working group consists of 5
to 15 people; one or two people are in charge for the directions of the working
group. Working groups can be reorganized on a yearly basis depending on the
research needs.



ECRYPT: The Cryptographic Research Challenges for the Next Decade 11

3.3 Research Goals of the Virtual Labs

The activities of the ECRYPT Network of Excellence are organized into five
virtual laboratories established as follows:

1. Symmetric techniques virtual lab (STVL);
2. Asymmetric techniques virtual lab (AZTEC);
3. Protocols virtual lab (PROVILAB);
4. Secure and efficient implementations virtual lab (VAMPIRE); and
5. Watermarking and perceptual hashing virtual lab (WAVILA).

Each virtual lab intends to promote and facilitate cryptographic research on
a pan-European level.

STVL. This virtual lab covers the design and analysis of symmetric cryptosys-
tems. Three particular areas of research have been identified within the scope of
the STVL, corresponding to three working groups. The first target for the efforts
of the STVL is the development of secure and efficient stream ciphers; a task
that will require considerable input from industry and academia alike. A second
target for the STVL is a coordinated cryptanalytic assessment of the Advanced
Encryption Standard (AES). A third virtual lab of STVL focuses on strategic
research; in the next years, one of the items that will be to addressed is the
development of lightweight cryptographic primitives as a fundamental building
block for ambient intelligence.

AZTEC. The focus of AZTEC is the design and analysis of asymmetric cryp-
tographic techniques. Four main areas of study have been identified. First, it
is important to study, compare and propose mechanisms for provable security,
to improve and better understand the security of asymmetric schemes. A sec-
ond target for the AZTEC efforts is to develop alternatives to the RSA scheme,
with particular attention to lightweight solutions. In the Internet era, many new
applications are emerging for which asymmetric primitives with some specific
properties are required; this forms the topic of the third working group. Finally,
since it is clear that no unconditionally secure asymmetric cryptography can ex-
ist, the fourth area of AZTEC is the study of the hardness of the computational
problems that are used as underlying assumptions in asymmetric cryptology.

PROVILAB. This virtual lab is concerned with cryptographic protocols, where
two or more agents interact in order to reach some common goal; this can be to
establish a secure network connection, to realize a payment transaction securely,
or to carry out a secure auction or voting protocol over a network. A large body
of theoretical research on protocols already exists, but our basic knowledge is
still far from complete. Furthermore, analyzing the security of concrete protocols
is notoriously difficult, and several solutions proposed and sometimes even used
in practice have later turned out to be insecure. The first objective of PROVI-
LAB is therefore to construct practically useful protocols for a wide range of
applications with well understood and provable security. The second is to ex-
pand our basic knowledge, for instance in the area of unconditional security, i.e.,
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protocols that remain secure, no matter the resources invested in breaking them.
PROVILAB has three working groups, that focus on two-party protocols and
secure point-to-point connections, practical multi-party protocols with provable
security, and on unconditionally secure protocols.

VAMPIRE. The VAMPIRE lab has a dual role in ECRYPT. On the one hand,
it studies new techniques that are related to efficient and secure implementation.
On the other hand, VAMPIRE provides a bridge between the research and the
user community. In concrete terms, the technical goals of the VAMPIRE lab for
the duration of ECRYPT can be summarized as follows: development of novel
efficient implementation techniques in hardware and software; development of a
solid understanding of existing and new side channel attacks and efficient coun-
termeasures; researching and understanding of cryptanalytical hardware and its
impact on cryptographic parameters. There are also non-technical objectives.
VAMPIRE intends to stimulate the interesting interplay of secure algorithms
and secure implementations; it also hopes to foster cooperation between strong
engineering groups and pure crypto groups. Also, it is a major goal to bridge
the existing gap between the research community and engineers in industry who
need to apply implementation techniques. Another important objective is to
assist the researchers in the other (more theoretical) Virtual Labs in under-
standing the requirements and meeting the needs of applied cryptography. The
four working groups of VAMPIRE focus on software implementation, hardware
implementation, side-channel attacks, and strategic research.

WAVILA. The watermarking and perceptual hashing virtual lab (WAVILA)
intends to broaden the scope of ECRYPT beyond the classical cryptographic
techniques into the domain embedded signalling and fuzzy signatures. These
two techniques have recently been proposed as important ingredients in digital
rights management (DRM) systems, but they have never fully been analyzed
with respect to security and usage (protocols), comparable to the standard of
cryptography. It is the goal of WAVILA to build tools and techniques for as-
sessing the security aspects of watermarking and perceptual hashing, to design
advanced algorithms with a well-defined security level, to design protocols, both
stand-alone as well as integrated in cryptographic protocols, and to develop
methods and techniques for efficient and secure implementations. The overall
and broader goal is to bring watermarking and perceptual hashing to such a
level that they can be successfully be integrated into future DRM systems.

4 Conclusion

In this article, we have provided some arguments to support our claim that the
cryptographic problem is not solved at all. Both at the practical and at the
theoretical level, there are some very interesting problems and challenges that
need to be addressed. We are convinced that the coordinated approach towards
these research problems that is being developed in the Network of Excellence
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ECRYPT will bring significant benefits. By strengthening the cooperation be-
tween researchers both in industry and academia and by stimulating interdisci-
plinary research in the broad area of cryptology and watermarking, substantial
progress can be made towards solving the security problems we will face in the
next decade.
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Abstract. The Computational Diffie-Hellman problem and its deci-
sional variant are at the heart of many cryptographic applications. Yet,
their exact computational power and their relationship to the Discrete
Logarithm problem and the Decision Diffie-Hellman problem (DDH) is
not fully understood in all settings. In order to extend the current un-
derstanding of the problem we introduce a new decision problem that
we call the Jacobi Discrete Logarithm problem. We argue that this is a
natural problem and we analyze it in groups in which Decision Diffie-
Hellman (DDH) is believed to be intractable. In short, the JDL problem
is to return the Jacobi symbol of the exponent x in gx. We show that
JDL is random self-reducible and that it lies in between the Computa-
tional Diffie-Hellman (CDH) problem and DDH. Our analysis involves
the notion of a powering oracle. Maurer and Wolf showed that a squaring
oracle that returns gu2

on input gu is actually equivalent to a DH oracle.
It is weaker in the sense that it can be posed as a specialized DH oracle
that need only respond correctly when u = v. In this paper we extend the
study of the relationships between Diffie-Hellman and oracles for prob-
lems which manipulate or give partial information about the index of
their input. We do so by presenting a reduction that shows that a pow-
ering oracle that responds with gua

mod p when given gu mod p for an
unknown a that is poly-logarithmic in p, is equivalent to DH. Technically,
our reduction utilizes the inverse of a particular type of Vandermonde
matrix. This inverse matrix has recursively defined entries. Implications
for large values of a are also given.

Keywords: Diffie-Hellman (DH), Computational Diffie-Hellman, Deci-
sion Diffie-Hellman, Discrete-Log, Public Key Cryptography, Oracles,
Black-Box Reductions, JDL, LDL.

1 Introduction

The Diffie-Hellman key exchange [DH76] paved the way for public key cryptog-
raphy, and is based on the presumed intractability of the Computational Diffie-
Hellman problem. A multitude of cryptosystems and protocols depend on the
security of DH and its decision version. The ElGamal public key cryptosystem
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[ElG85] was the first discrete-log based cryptosystem and its semantic security
is based on the security of DDH. Also, an efficient cryptosystem which is secure
against chosen ciphertext attacks was proven secure under DDH [CS98]. In ad-
dition, many key exchange protocols [MvOV99] as well as numerous deployed
protocols like IPSEC and SSL designs rely on DH.

The results in this paper are motivated by the following. In typical applica-
tions a cyclic group is chosen for which it is believed that solving the Discrete
Logarithm (DL) problem is intractable, and then algorithms based on the DH or
DDH problems are used within the group. The security therefore rests entirely
on the intractability of these problems and so a full understanding of them is
mandatory.

One approach to investigate the power of DH is by comparing it to the
Discrete Logarithm (or index finding) problem. Much progress has been made
in showing the equivalence between the DL problem and the CDH problem
[Bo88, Ma94, MW96]. Among other things, these developments show that DH
is equivalent to DL whenever Euler’s totient function applied to the order of G
results in a smooth number. The key idea behind these results is that a DH oracle
allows exponents to be multiplied, and thus enables modular exponentiation to
be computed in the exponent via a square-and-multiply algorithm. This paves
the way for utilizing the Pohlig-Hellman [PH78] algorithm in the exponent.

Other progress has been made by investigating the relationship between the
DH oracle and oracles for related problems. It has been shown that the Diffie-
Hellman problem is random self-reducible. Hence, it has been shown that given
an oracle that solves DH with non-negligible probability, an algorithm exists
that solves DH with overwhelming probability. Randomized algorithms which
succeed with overwhelming probability will be dubbed “perfect”, though clearly
they are not strictly perfect since for a randomly chosen input such an oracle fails
to give the correct answer with non-zero probability. Thus, the resulting perfect
algorithm is called PerfectDH (for Perfect-Diffie-Hellman). Another approach
to investigating the security of Diffie-Hellman using oracles is to analyze the
hardness of computing individual bits of the DH secret vs. computing the entire
DH secret. In [BV96] it was shown that an oracle that computes the O(

√
log p)

uppermost (or lower-most) bits of the DH secret can be used to compute all
of the bits of the Diffie-Hellman secret. A third oracle result is the work of
[MW96, MW98] where the notion of a squaring DH oracle was given. A squaring
DH oracle, like a DH oracle, takes as input a value (gu, gv) chosen uniformly at
random. However, unlike a DH oracle, on a successful call it returns guv only
when u = v. The squaring oracle therefore succeeds on far fewer inputs. It was
shown that this oracle is random self-reducible and is poly-time equivalent to
a DH oracle. The solution is based on the observation that g(u+v)2 divided by
gu

2
and then divided by gv

2
yields g2uv. By taking the square root, the Diffie-

Hellman key guv is obtained.
This paper attempts to extend our understanding of CDH and DDH by

presenting a problem that gives partial information about the index. We call
it the “Jacobi Discrete Logarithm problem” (which is investigated in groups in
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which Decision Diffie-Hellman is believed to be intractable). On input gu the
partial information oracle returns the Jacobi character of the index u with non-
negligible advantage over guessing. It is shown that this new decision problem
resides between CDH and DDH.

In the case that the order of g is a prime q this is the “Legendre Discrete
Logarithm problem.” Since the Legendre is computed using Euler’s criterion,
evaluating the Legendre in the exponent amounts to “powering” the exponent
(the “power” in this case is (q − 1)/2). This paper is therefore geared towards
the study of powering oracles.

We then investigate the notion of powering the exponent using small powers.
A reduction is given that shows that an oracle that takes gu as input and that
answers with gu

a

with non-negligible probability is equivalent to a DH oracle.
Here a is “an unknown constant” such that 1 < a ∈ ZZ. The novelty here is a
reduction that uses a class of matrices with recursively defined entries. We also
discuss oacles as above that answer with a large power.

We note that in an independent earlier work, Kiltz extended the notion of
a squaring oracle [Ki01] and showed (among other things) that CDH is compu-
tationally equivalent to P-DH. Here P-DH is the problem of computing gP (a,b)

given ga and gb where P is a non-linear polynomial in a and b. This work is re-
lated to our powering oracle results, though technically the works take somewhat
different paths.

2 Definitions

Denote by L(a/p) the Legendre symbol of a with respect to the prime p. Denote
by J(a/n) the Jacobi symbol of a with respect to the odd integer n. The notation
ordp(g) is used to denote the order of element g ∈ ZZp. When working in ZZp, the
notation logg(y) denotes x such that y = gx mod p. The notation Pr[E] is used
to denote the probability that event E occurs.

The computational Diffie-Hellman problem will now be reviewed. Let p be
prime, let g ∈ ZZp be an element having order q, and let G be the group generated
by g. The value τ = (p, q) encodes the group parameters. Finally, let IG(·) denote
an instance generator. An instance generator for G is a randomized algorithm
that when given an integer n (in unary), runs in polynomial time in n and
outputs some random index τ and a generator g of Gτ . Observe that for each
n, the instance generator induces a distribution on the set of indices τ . Let
G = {Gτ} be a group family. For one of the reductions a slightly different group
parameter will be needed. Let τ ′ contain the information in τ but also include
the “certified” group order, i.e. the factorization of q. The following definition of
Computational Diffie-Hellman (CDH) is from [Bon98].

Definition 1. A CDH algorithm A for G is a probabilistic polynomial time (in
|τ |) algorithm satisfying, for some fixed α > 0 and sufficiently large n:

Pr[A(τ, g, ga, gb) = gab] >
1
nα
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where g is a generator of Gτ . The probability is over the random choice of <τ, g>
according to the distribution induced by IG(n), the random choice of a, b in the
range [1, |Gτ |] and the random bits used by A. The group family G satisfies the
CDH assumption if there is no CDH algorithm for G.

Let PerfectDH(τ, g, ga, gb) be the same as A above except that it succeeds
with a probability that is overwhelming in α. The Decision Diffie-Hellman prob-
lem is as follows.

Definition 2. A DDH algorithm A for G is a probabilistic poly-time algorithm
satisfying, for some fixed α > 0 and sufficiently large n:

|Pr[A(τ, g, ga, gb, gab) = true]− Pr[A(τ, g, ga, gb, gc) = true]| > 1/nα

where g is a generator of Gτ . The probability is over the random choice of <τ, g>
according to the distribution induced by IG(n), the random choice of a, b, c in
the range [1, |Gτ |], and the random bits used by A. The group family G satisfies
the DDH assumption if there is no DDH algorithm for G.

The perfect DDH problem is the same as A above except that it succeeds
with a probablity that is overwhelming in α. It was shown in Proposition 1 of
[St96] (see also [NR97]) that DDH and perfect DDH are equivalent in prime
order subgroups. An excellent overview of the Decision Diffie-Hellman problem
was given in [Bon98]. Elliptic curve groups where DDH is easy and CDH is still
believed to be hard were recently shown in [JN01].

3 The Jacobi Discrete Logarithm Problem

In this section a new computational problem is introduced called the Jacobi
Discrete Logarithm (JDL) problem. The following is the formal definition of the
Jacobi-Discrete-Log (JDL) problem. It is in the same vein as Section 2.

Definition 3. A JDL algorithm A for G is a probabilistic poly-time algorithm
satisfying, for some fixed α > 0 and sufficiently large n:

Pr[A(τ, g, ga) = J(a/q)] > 1/2 + 1/nα

where g is a generator of Gτ . The probability is over the random choice of <τ, g>
according to the distribution induced by IG(n), the random choice of a in the
range [1, |Gτ |], and the random bits used by A. The group family G satisfies the
JDL assumption if there is no JDL algorithm for G.

The Perfect Jacobi-Discrete-Log (Perfect-JDL) problem is to do the same as
the above, but must succeed with overwhelming probability.

Clearly, when the order q of g is prime, the problem becomes that of comput-
ing the Legendre of the exponent (i.e., L(a/q)). By Euler’s Criterion, L(a/q) =
a

q−1
2 mod q. Taking a = (q − 1)/2 we see that the investigation of this problem

is a natural extension to studying the aforementioned powering oracles.
For the remainder of this section n will be used to denote the order of g.

Hence, n = ordp(g) = pt11 pt22 ... ptm
m . The smallest prime is p1, the next smallest

prime is p2, etc.
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4 The JDL Assumption Implies the Perfect-CDH
Assumption

The fact that the JDL assumption implies the Perfect-CDH assumption is not
hard to see. The reduction algorithm uses an oracle that solves Perfect-CDH to
compute Euler’s Criterion (the Legendre symbol) in the exponent.

Observe that if we can compute J(x/pi) for 1 ≤ i ≤ m where y = gx mod p,
then we can compute J(x/n) in the standard fashion.

J(x/n) =
∏m

i=1 L(x/pi)ti

Consider the following algorithm which assumes the existence of an oracle
Perfect-CDH which solves the Perfect Computational Diffie-Hellman problem.
Here y = gx mod p. The algorithm outputs gx

a

mod p where a ≥ 0. Let a >> b
denote the bit shift right operation, i.e., the operation of throwing away the b
least significant bits of a. For example, 0110 >> 1 = 011.

EXPSQMUL(τ, q, y, a):
1. let L = �log2(a)�
2. set SQ[0] = y
3. for i = 0 to L− 1 do:
4. choose r, r1, r2 ∈R ZZq

5. t = Perfect-CDH(τ, gr, SQ[i]rr1 , SQ[i]rr2)
6. SQ[i + 1] = t(rr1r2)

−1
mod p

7. let t = g and s = a
8. for i = 0 to L− 1 do:
9. if (s mod 2) equals 1 then
10. choose r, r1, r2 ∈R ZZq

11. t = Perfect-CDH(τ, gr, trr1 , SQ[i]rr2)
12. t = t(rr1r2)

−1
mod p

13. s = s >> 1
14. output t and halt

A(τ, g, y):
1. set α = 1
2. for i = 1 to m do:
3. if ti is odd then
4. compute w = n/pi
5. compute gi = gw mod p

6. compute y′ = yw mod p, and let y′ = gx
′

i mod p
7. compute b = EXPSQMUL(τ, pi, y′, (pi − 1)/2)
8. if b �= gi then set α = −α
9. output α and halt

Step 7 is computed using the Perfect-CDH oracle to compute x′(pi−1)/2 in
the exponent in a square-and-multiply fashion.
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Theorem 1. If all calls to Perfect-CDH succeed then A(τ, g, y) = 1 iff
L(x/n) = 1.

Proof. Assume that every call to Perfect-CDH succeeds. Clearly A computes the
Jacobi symbol in the standard fashion. Consider the operation of A when ti is
odd for prime pi. If it can be shown that b = gi iff L(x/pi) = 1 then we will be
done. Note that b = gi ⇒ x′(pi−1)/2 ≡ 1 mod pi since gi was raised to w in step 5.
But, x′(pi−1)/2 ≡ 1 mod pi ⇒ x(pi−1)/2 ≡ 1 mod pi, since x ≡ x′ mod pi. Finally,
from Euler’s Criterion it follows that x(pi−1)/2 ≡ 1 mod pi ⇒ L(x/pi) = 1.
To prove the converse, namely that L(x/pi) = 1 ⇒ b = gi, the contrapositive
will be proven. In other words, it will be shown that b �= gi ⇒ L(x/pi) = −1.
Clearly, b �= gi implies that x′(pi−1)/2 is not congruent to 1 modulo pi. But
the order of x′(pi−1)/2 mod pi is clearly 2 hence, x′(pi−1)/2 ≡ −1 mod pi. But,
x′(pi−1)/2 ≡ −1 mod pi ⇒ x(pi−1)/2 ≡ −1 mod pi since x = x′ mod pi. From
Euler’s Criterion it follows that x(pi−1)/2 ≡ −1 mod pi ⇒ L(x/pi) = −1. ��

Theorem 2. With probability greater than 1/2 + 1/nα2
2 , A(τ, g, y) = J(x/n).

Proof. It may be assumed that if one or more calls to Perfect-CDH fails then
A outputs the wrong answer. Clearly, the worst-case is when all prime powers
dividing n have a power of unity, since this is the case that requires the most in-
vocations of Perfect-CDH. In this case algorithm A makes at most k = �log2(n)�
calls to Perfect-CDH. Let γ1 denote the probability that Perfect-CDH succeeds
on a random input. Hence, γ1 is overwhelming. It follows that A succeeds with
probability at least γ1

k. It can be shown that this quantity is at least 1/2+1/nα2
2

for fixed α2 and sufficiently large n2. ��

5 The Perfect-JDL Assumption Implies the JDL
Assumption

It is trivial to prove that the JDL assumption implies the Perfect-JDL assump-
tion. In this section the other direction will be proven. The basic idea is to
randomize the problem instance by exponentiating to a random value while tak-
ing into account the Jacobi symbol of this random vlaue. Let JDLAlg be an
oracle solving the JDL problem. Now, consider the following algorithm.

A(τ, g, y):
1. if

√
n ∈ ZZ output “1” and halt

2. for � = 1 to L do
3. choose r� ∈R ZZn

4. compute x� = JDLAlg(τ, g, yr� mod p) and store J(r�/n) ∗ x� in list ω
5. output the majority answer in list ω and halt

Denote by property 1 the well known fact that J(ab/n) = J(a/n)J(b/n).

Theorem 3. With overwhelming probability, A(τ, g, y) = 1 iff J(x/n) = 1.
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Proof. If
√
n ∈ ZZ then the Jacobi symbol of all exponents for g is unity. Hence,

step 1 always outputs the correct answer when it halts. It follows from prop-
erty 1 that J(logg(yr�)/n) = J(r�/n)J(logg(y)/n). By multiplying both sides by
J(r�/n) it follows that J(logg(y)/n) = J(r�/n)J(logg(yr�)/n) for � = 1, 2, ..., L.
Therefore, J(r�/n) ∗ x� is the Jacobi of logg(y) with fixed probability s1 in it-
eration � where s1 ≥ 1/2 + 1/n1

α1 (ineq. [1]) for some fixed α1 and sufficiently
large n1. Observe that the loop in steps 2 through 4 constitutes a series of L
Bernoulli trials. Theorem 1 (Chernoff Bound - see Appendix B) therefore ap-
plies. Let μ = s1L (eq. [2]) and take L/2 = (1 − δ)μ (eq. [3]). Here the ran-
dom variable X is a count of the number of successful trials. It follows that
Pr[X < L/2] < e−(s1Lδ2)/2 ≤ e−((1/2+1/n1

α1 )Lδ2)/2. By combining inequality [1]
with equalities [2] and [3] it follows that δ ≥ 2/(nα1

1 + 2). From this it can be
shown that Pr[X < L/2] < 2−L/(n1

2α1+2n1
α1 ). By taking L = (n1

2α1 +2n1
α1)n1

the theorem is proved. ��

An open problem is whether or not CDH and JDL are equivalent and whether
or not JDL and DDH are equivalent. The relationship between JDL and the bit
hardness of DH is also interesting.

6 The DDH Assumption Implies the Perfect-JDL
Assumption

We say that the group DDH assumption implies the Perfect-JDL assumption
since solving DDH is intractable only if solving Perfect-JDL is intractable1.

Observe that if 2 | t1, t2, ..., tm then the Jacobi symbol of all elements in
ZZn with respect to n is unity. A straightforward application of PerfectJDL will
therefore not always suffice to distinguish DDH triples from random triples. It is
not hard to see that as long as one of the ti is odd, J(x/n) = 1 with probability
1/2 for a randomly chosen x. Now, observe that n must be devoid of small prime
factors, otherwise DDH triples can be distinguished based on residuosity (e.g.,
if 2 | n then DDH is broken based on testing for quadratic residuosity which can
be done in poly-time). Hence, this implication applies to subgroups in which n
is odd and free of small prime factors (in many cases the group where DDH is
used is a prime order subgroup for a large prime).

Assume that an oracle PerfectJDL exists that solves the Perfect-JDL prob-
lem. Consider the following algorithm A which makes calls to PerfectJDL. It will
be shown that A solves the DDH problem. Since PerfectJDL exists iff an algo-
rithm solving JDL exists this proof will show that the DDH assumption implies
the JDL assumption. We remark that the reduction can be easily extended to
handle an order which is unknown. The problem instances can be transformed
into triples that are statistically indistinguishable from DDH triples/random 3-

1 Here we adopt the language of “one assumption implies another assumption,” as in
[Bon98].
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tuples (see [Bon98] for this as well as the randomization technique that we use).
Let X = gx, Y = gy, and Z = gz.

A(τ, g,X, Y, Z):
1. choose r, u1, u2, v ∈R ZZn

2. construct the triplet (x′, y′, z′) = (Xrvgru1 , Y rgru2 , ZrvY ru1Xrvu2gru1u2)
3. compute s1 = PerfectJDL(τ, gr, x′), s2 = PerfectJDL(τ, gr, y′), and

s3 = PerfectJDL(τ, gr, z′)
4. if s3 = s1 ∗ s2 then output true else output false

Theorem 4. If ∃ an algorithm PerfectJDL solving Perfect-JDL then A breaks
DDH.

The above theorem can be seen from the following. The randomization of
the problem instance has the following propertyies. If the input 3-tuple is a DH
triple the (x′, y′, z′) is a DH triple. If the input 3-tuple is not a DH triple then
(x′, y′, z′) is statisticallly indistinguishable from a random 3-tuple.

With overwhelming probability all three calls to A will succeed. So, when the
input tuple is not a DH triple it will be “caught” with probability close to 1/2.
This detection will arise when s3 �= s1 ∗ s2. When the input tuple is a DH triple
then with overwhelming probability s3 = s1 ∗ s2.

Since the DDH assumption holds iff the PerfectDDH assumption holds, it
follows that any algorithm solving the JDL problem can be used as an oracle
to solve PerfectDDH. It has therefore been shown that the JDL problem lies in
between CDH and DDH. The potential equivalence of JDL and DDH is left as
an open problem.

7 Powering Oracles

In this section we give a reduction that shows that a powering oracle that re-
sponds with gu

a

mod p when given gu mod p for an unknown a that is poly-
logarithmic in p is equivalent to DH. It is a special case of the prior independent
work of [Ki01]. Our approach involves the use of a special type of Vandermonde
matrix. The reduction explicitly utilizes the factorized inverse of this type of
Vandermonde matrix, an inverse matrix that has recursively defined entries. We
also consider the case of unknown a and a that is very large.

Let p be a large prime and let g be an element with order q. For the moment
we will consider the case that q is prime. The following is a formal definition of
a powering oracle.

Definition 4. A PoweringDHa algorithm A for G is a probabilistic polynomial
time (in |τ |) algorithm satisfying, for some fixed a > 1, α > 0, and sufficiently
large n:

Pr[A(τ, g, gu) = gu
a

] >
1
nα
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where g is a generator of Gτ and a is poly-logarithmic in p. The probability
is over the random choice of <τ, g> according to the distribution induced by
IG(n), the random choice of u in the range [1, |Gτ |] and the random bits used
by A. The group family G satisfies the PoweringDHa assumption if there is no
PoweringDHa algorithm for G.

The oracle PerfectDHa is the same as PoweringDHa except that it suc-
ceeds with a probability that is overwhelming in α. It was shown by Maurer
and Wolf that PoweringDH2 exists iff PerfectDH2 exists. The following are
a few simple facts. The problem of computing s = gu

a

given (τ, g, gu) when a
is known is random self-reducible. To see this, consider the following algorithm
M(·). First, M chooses r ∈R ZZq. M then computes t = PoweringDHa(τ, g, yr).
Finally, M outputs tr

−a

and halts. It is easy to see that a perfect powering
oracle for a exists provided a powering oracle for a exists that succeeds with
non-negligible probability.

A powering oracle for a can be implemented given a perfect DH oracle. To see
this, note that the DH oracle can be used to implement a square and multiply
algorithm in the exponent. For example, to implement a powering oracle with
a = 5, the value

PerfectDH(τ, g, PerfectDH(τ, g, PerfectDH(τ, g, y, y),
P erfectDH(τ, g, y, y)), y)

is computed, where y = gu.
We will now motivate the general solution to the problem of showing that

PoweringDH ⇔ DH by considering powering oracles for a = 3, 4. Observe that
(x+1)3 = x3 +3x2 +3x+1. From this equation it is clear that if we have access
to a cubing oracle, we can isolate the 3x2 term. Since q is prime, 3 has an inverse
mod q. So, x2 can be isolated. The goal is therefore to utilize the cubing oracle
to implement a squaring oracle.

PerfectDH2(τ, g, y):
1. compute t = PerfectDH3(τ, g, yg mod p)
2. compute t = t/(y3g) mod p
3. compute t = t/PerfectDH3(τ, g, y) mod p

4. compute t = t3
−1

mod p
5. output t and halt

Since given a squaring oracle, we can implement a Diffie-Hellman oracle, the
above algorithm proves that given a cubing oracle we can break Diffie-Hellman.
Now consider a = 4. Again, the goal is to implement a squaring oracle given
PerfectDH4. The solution is based on the expansions (x + 1)4 = x4 + 4x3 +
6x2+4x+1 and (x−1)4 = x4−4x3+6x2−4x+1. Observe that (x+1)4+(x−1)4 =
2x4 + 12x2 + 2.
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PoweringDH2(τ, g, y):
1. compute t = PerfectDH4(τ, g, yg mod p)PerfectDH4(τ, g, y/g mod p) mod p
2. compute t = t/(PerfectDH4(τ, g, y))2 mod p
3. compute t = t/g2 mod p
4. output a twelfth root of t and halt

Given these two reductions it is only natural to ask whether or not there is
a general reduction for a > 2. This is in fact the case, as will be shown in the
sequel.

7.1 Inverse of the Vandermonde Matrix

In order to show that the reduction holds for larger values of a the form of the
inverse of a specific class of Vandermonde Matrices will be explored. Recall that
the following is an a+ 1 by a+ 1 square matrix D(a+ 1) called a Vandermonde
Matrix. ∣∣∣∣∣∣∣∣∣

1 t1 t21 · · · ta1
1 t2 t22 · · · ta2
...

...
...

. . .
...

1 ta+1 t2a+1 · · · taa+1

∣∣∣∣∣∣∣∣∣
It is well known from Linear Algebra that the Determinant of the Vander-

monde Matrix is non-zero if all the ti’s are different [Ga59, Me01] and hence that
it is non-singular. The inverse therefore exists, is unique, and can be found effi-
ciently via Gauss-Jordan. Given the inverse, the solution to the matrix equation
D(n)−→x = b can be easily solved by matrix multiplication since D(n)−1D(n)−→x =
−→x = D(n)−1b. However, in this paper we will only be concerned with n by n
Vandermonde Matrices M(n) whose (i, j) entry is ij−1.

[M(n)]i,j = ij−1 (1)

For example, the value [M(4)]3,2 equals 3 and the entire matrix for M(4) is
given below. ∣∣∣∣∣∣∣∣

1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64

∣∣∣∣∣∣∣∣
The reduction algorithm given in the sequel requires the use of the inverse

of such matrices. However, rather than having the reduction algorithm perform
Gaussian Elimination as a procedural step and rather than relying on the fact
that the matrix corresponds to an interpolation operation, we have opted to
utilize a recent elegant method. In [BBM02] it was shown how to factor M(n)−1

into two matrices in which only the rightmost matrix has recursively defined
entries.
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[M(n)]−1 =
1

(n− 1)!
V (n) V (n) = T (n)U(n)

Here U(n) has recursively defined entries. Thus, the authors give a recurrence
describing each entry in M(n)−1. Appendix A summarizes this approach. It also
shows, by fiat, that all of the entries in V (n) are integers for all n.

7.2 DH-Powering Equivalence When the Order is Prime

The goal in this section is to implement an algorithm that has access to a perfect
powering oracle, and that outputs gx

2
on input y = gx. It is assumed that q

is prime and that a is known where 2 < a ∈ ZZ. These assumptions will be
relaxed in the next section. Using the Binomial Theorem and the inverse of
M(n) the general reduction can be given for a > 2. Recall that the Binomial
Theorem states that for a positive integer n, (x + b)n =

∑n
k=0

(
n
k

)
xkbn−k. The

reduction uses PerfectDHa(·, ·, ·) as an oracle in an algorithm that computes
PoweringDH2(·, ·, ·).

The key idea behind the reduction is the following. The powering oracle is
used to compute (x + 1)a, (x + 2)a,..., (x + a)a in the exponent. For instance,
g(x+3)a

= PerfectDHa(τ, g, yg3 mod p). Using the Binomial Theorem the form
of each of these binomial expansions can be found. For each power of x we can
define a new variable that is the power of x times the corresponding binomial
coefficient. It is then clear that under the new variables, the coefficients that
remain form M(a + 1).

PoweringDH2(τ, g, y):
1. set z = g and I = 1
2. for j = 1 to a + 1 do:
3. V (a + 1)a−1,j =

∑a+1
k=1 T (a + 1)a−1,kU(a + 1)k,j

4. bj = PerfectDHa(τ, g, yz mod p)
5. I = Ib

V (a+1)a−1,j

j mod p

6. z = zg mod p

7. compute r = a!a(a−1)
2 mod q

8. compute s = r−1 mod q using the Extended Euclidean Algorithm
9. output Is mod p and halt

Theorem 5. If a > 2 and all calls to PerfectDHa succeed then PoweringDH2
outputs gx

2
.

Proof. The resulting values V (a+1)a−1,j for j = 1, 2, ..., a+1 computed in step
3 are equal to the row in V (a+1) which is third from the bottom. The loop over
step 5 which computes I effectively multiplies a 1×(a+1) matrix by an (a+1)×1
matrix, which yields a single value in the exponent of g in I. The difference is
that the elements in V (a+1)a−1,j are in ZZq and the elements b1, b2, ..., ba+1 are in
ZZp. By performing exponentiation, matrix operations are effectively performed
in ZZq. Using the Binomial Theorem and the fact that [M(n)]−1 = 1

(n−1)!V (n) it
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can be shown that resulting value in the exponent of g in I is a!
(
a
2

)
x2. Since it

was assumed that the order q of g is prime, an inverse s of r = a!
(
a
2

)
mod q exists

and is unique. Hence, step 8 can be efficiently computed and correctly computes
the inverse of r. Since Is is output it follows that when all calls to PerfectDHa

succeed the resulting output value is gx
2
. ��

It is straightforward to compose PoweringDH2 with Maurer and Wolf’s
squaring algorithm to yield the stated DH result. A small numerical example of
the above reduction is given in the next subsection to illustrate this algorithm.

7.3 Small Example of the Reduction

It is instructive to analyze an example for V (n). The following is an example of
V (n) where n = 4. It is straightforward to verify that ( 1

3!V (4))M(4) = I.

V (4) =

∣∣∣∣∣∣∣∣
1 −3 2 −1
0 3 −6 2
0 0 3 −3
0 0 0 1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

7 −2 1 0
−4 7 −4 1

2 −5 4 −1
−1 3 −3 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
24 −36 24 −6

−26 57 −42 11
9 −24 21 −6

−1 3 −3 1

∣∣∣∣∣∣∣∣ (2)

An example will go a long way to illustrate how and why the algorithm works.
Suppose we are given a cubing oracle. We would like to show how to use this
oracle to implement a squaring DH oracle, and hence an oracle solving compu-
tational DH. The loop over step 3 performs the following matrix multiplication.

∣∣0 3 −6 2
∣∣
∣∣∣∣∣∣∣∣

7 −2 1 0
−4 7 −4 1

2 −5 4 −1
−1 3 −3 1

∣∣∣∣∣∣∣∣ =
∣∣−26 57 −42 11

∣∣ (3)

The algorithm then computes I as shown below.

I = g3!3x2
= g3!(3

2)x2
= b−26

1 b572 b−42
3 b114 mod p (4)

This is effectively the following matrix multiplication in the exponent.

∣∣−26 57 −42 11
∣∣
∣∣∣∣∣∣∣∣
(x + 1)3

(x + 2)3

(x + 3)3

(x + 4)3

∣∣∣∣∣∣∣∣ = 18x2 (5)
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7.4 Performance of the Reduction Algorithm

Theorem 6. If a is poly-logarithmic in p then PoweringDH2 halts in time
polynomial in log p using a + 1 oracle calls to PerfectDHa.

Proof. Computing V (a+1)a−1,j in step 3 requires a+1 multiplications. The loop
over step 3 therefore constitutes O(a2) operations. Since a = log

O(1)
2 p, it follows

that this step constitutes a total of logO(1)
2 p operations. The loop over steps 4

through 6 requires a + 1 calls to PerfectDHa requries a polynomial number of
operations in log p. Since a is poly-logarithmic in p, computing a! mod q in step
7 requires a poly-logarithmic number of multiplications modulo q. From this it
is not hard to see that the running time is as claimed. ��

The correct termination of the algorithm is based on the fact that the proba-
bility that PerfectDHa succeeds is γ(α) which is overwhelming in some the secu-
rity parameter α (typically the size of the modulus p) and only fails with negligi-
ble probability. Since PoweringDH2 makes a+1 calls to the oracle PerfectDHa

it holds that since further a + 1 ≤ p(α) where p(α) is a polynomial in α then
PoweringDH2 succeeds with non-negligible probability.

7.5 Generalizations

Note that if a is not known, a value for a for which PerfectDHa succeeds with
non-negligible probability can be determined. To see this note that we can invoke
the oracle with a randomly chosen index (exponent) x with x known. The values
a = 2, 3, 4, ... and so on can be tested. It is not hard to see that this process runs
in time polynomial in log p. If a = 2, then Maurer and Wolf’s algorithm for a
squaring oracle is performed. Otherwise, our reduction is performed.

Now we will consider the same problem as in the previous section, but gen-
eralize it to allow the order of g to be composite. The value q will still be used
to denote the order of g, but in this case q may be composite. Provided that
gcd(w, q) is not too large an algorithm can be used to compute gx

2
mod p. Care

must be taken now since the existence of unique inverses modulo the composite
q is not guaranteed. Recall that the value ga!x2 = ga!(a

2)x2
mod p is readily ob-

tained. By computing the rth root where r = a!
(
a
2

)
mod q, the answer is found.

The work of Scott Lindhurst can be used to analyze the cases in which we can
efficiently compute the rth root mod p [SL97]. The following is Proposition 8
from his thesis.

Proposition 1. Given a cyclic group G and a degree r = O(log2 |G|), we can
compute rth roots in G deterministically (assuming we are given an rth power
residue) using O(log2 |G| log log |G|) group operations.

7.6 Equivalence to DH When the Power Is Large

Consider an oracle that on input gx mod p returns gx
q−a

mod p with overwhelm-
ing probability. Here a > 1 and the order of g is the prime q where q divides p−1
evenly. When a is polylogarithmic in p this oracle is equivalent to Diffie-Hellman.
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To see this, observe that by applying the oracle twice in succession the value
gx

(q−a)2

= gx
q2−2aq+a2

is computed with overwhelming probability. Suppose that
x generates ZZq. Then since q2− 2aq+ a2 divided by q− 1 results in a remainder

of a2−2a+1 it follows that gx
(q−a)2

= gx
(a−1)2

. This yields a powering oracle for
a small exponent, which in this case is (a− 1)2, and this has been shown to be
equivalent to Diffie-Hellman. Suppose that x does not generate ZZq. To handle
this issue it is possible to first randomize x using r to enable xr mod q to be a
generator of ZZq with non-negligible probability. This randomization factor can

be removed in the final result by computing (g(rx)(a−1)2

)r
−(a−1)2

.
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A Inverse of M(n)

We are interested in solving the matrix equation M(n)−→x = b once and for all
by obtaining the solution for each element in M(n)−1 for all n. Having such a
solution is advantageous since it removes the need to do elimination for each n.
Fortunately, one such solution which is recursive in nature was pointed out in
[BBM02]. We summarize these findings below.

[M(n)]−1 =
1

(n− 1)!
V (n) (6)

The above relationship was shown, and it was noted that all of the entries in
V (n) are in ZZ. However, a clever direct way to build it (which our application
may benefit from) will be given explicitly here. The authors give the following
factorization of V (n),

V (n) = T (n)U(n) (7)

where T (n) is upper-triangular. The matrix U(n) is given by the following
inhomogeneous recursion relation.

[U(n)]i,j = [U(n− 1)]i−1,j−1 − [U(n− 1)]i−1,j + [W (n)]i,j (8)

If i − 1 = 0 then [U(n − 1)]i−1,j−1 = [U(n − 1)]i−1,j = 0. If j − 1 = 0 then
[U(n − 1)]i−1,j−1 = 0. Finally, if j = n then [U(n − 1)]i−1,j = 0. The following
are the initial values for the recursion relation.

U(1) =
∣∣1 ∣∣ (9)

U(2) =
∣∣∣∣ 1 0
−1 1

∣∣∣∣ (10)



Relationships Between Diffie-Hellman and “Index Oracles” 31

The matrix W (n) is given by the following equations when n > 2,

[W (n)]1,j = (−1)j
(n− 1)!

(n− j)!(j − 1)!
+

j∑
k=1

(−1)k+j(k + 1)n−1n!
(n− j + k)!(j − k)!

(11)

[W (n)]2,j = (−1)j
(n− 1)!

(n− j)!(j − 1)!
(12)

[W (n)]i,j = 0 for i > 2 (13)

The matrices T (1), T (2), ..., T (5) were given along with an explanation of
their general form. Below we give the closed form of each entry in T (n). The
closed form equation for [T (n)]i,j utilizes Stirling numbers of the first kind. We

adopt the notation
[
n
k

]
of [GKP] to represent these numbers.

[T (n)]i,j =

⎧⎪⎪⎨⎪⎪⎩
0 if i > j
(−1)n−1 i=1, j=n

(−1)j−i

(
n− j + i− 1

n− j

)[
n− 1

n− j + i− 1

]
otherwise

(14)

Table 1. Stirling numbers of the first kind

n

[
n
0

] [
n
1

] [
n
2

] [
n
3

] [
n
4

] [
n
5

] [
n
6

]
0 1
1 0 1
2 0 1 1
3 0 2 3 1
4 0 6 11 6 1
5 0 24 50 35 10 1
6 0 120 274 225 85 15 1

Theorem 7. All of the entries in V (n) are integers.

Proof. From (7) it follows that we need only show that all of the entries in
T (n) and all of the entries in U(n) are integers. It is well known that binomial
coefficients are contained in ZZ. It follows that every entry in T (n) is an integer
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due to (14). It remains to consider U(n). Since n− j = n− 1− (j − 1) it follows
that (12) can be rewritten as,

[W (n)]2,j = (−1)j
(
n− 1
j − 1

)
(15)

Therefore, [W (n)]2,j ∈ ZZ. Note that this also shows that the term on the left
of (11) is always an integer. Finally, observe that in (11),

(−1)k+j(k + 1)n−1n!
(n− j + k)!(j − k)!

= (−1)k+j(k + 1)n−1
(

n

j − k

)
(16)

which is clearly always an integer. ��

The solution to M(n)−→x = b is therefore given by −→x = 1
(n−1)!V (n)b where

V (n) has integer entries.

B Review of Chernoff Bounds

When n independent trials are conducted such that each trial results in success
with fixed probability p, the trials are called Bernoulli trials. When the prob-
ability of success is pi in each trial for 1 ≤ i ≤ n the trails are called Poisson
trials. The following theorem is due to Chernoff.

Theorem 8. Let X1, X2, ..., Xn be independent Poisson trials such that, for 1 ≤
i ≤ n, Pr[Xi = 1] = pi, where 0 < pi < 1. Then, for X =

∑n
i=1 Xi, μ = E[X] =∑n

i=1 pi, and 0 < δ ≤ 1,

Pr[X < (1− δ)μ] < e−(μδ2)/2.
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45 rue d’Ulm, 75230 Paris Cedex 05, France

{duong.hieu.phan, david.pointcheval}@ens.fr

Abstract. In this paper, we revisit the security notions for public-key
encryption, and namely indistinguishability. We indeed achieve the sur-
prising result that no decryption query before receiving the challenge
ciphertext can be replaced by queries (whatever the number is) after
having received the challenge, and vice-versa. This remark leads to a
stricter and more complex hierarchy for security notions in the public-
key setting: the (i, j)-IND level, in which an adversary can ask at most i
(j resp.) queries before (after resp.) receiving the challenge. Excepted the
trivial implications, all the other relations are strict gaps, with no polyno-
mial reduction (under the assumption that IND-CCA2 secure encryption
schemes exist.) Similarly, we define different levels for non-malleability
(denoted (i, j)-NM.)

1 Introduction

Relations between security notions for public-key encryption scheme have been
deeply studied, namely in the recent papers of Bellare et al. [2] and of Bellare
and Sahai [4]. These papers are based on the seminal works of Goldwasser and
Micali [8] which defined the notions of polynomial security, or indistinguishability
denoted IND; Noar and Yung [12] and Rackoff and Simon [15], which introduced
stronger scenarios of attacks, and Dolev, Dwork and Noar [5, 6] which proposed
a stronger security notion: the non-malleability.

It is now clear that the security notions (indistinguishability and non-malle-
ability) have to be studied under specific attacks: the basic scenario in the public-
key setting in the chosen-plaintext attacks (CPA), but more interesting situations
are captured by the chosen-ciphertext attacks. Chosen-ciphertext attacks have
been split in two families, for historical reasons explained below, the non-adaptive
ones (denoted CCA1) and the adaptive ones (denoted CCA2.) In both cases, the
adversary has access to a decryption oracle. In the former case, this access is lim-
ited until the challenge ciphertext is known, while the latter case allows an un-
limited access (with the natural restriction not to ask the challenge ciphertext.)

In this paper, we consider more concrete cases by introducing the (i, j)-IND
security level, in which an adversary can ask at most i (j resp.) queries be-
fore (after resp.) receiving the challenge ciphertext. The reason for such a more

C. Blundo and S. Cimato (Eds.): SCN 2004, LNCS 3352, pp. 33–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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precise notation, than just IND-CCA1 thus captured by (poly(·), 0)-IND and IND-
CCA2 captured by (poly(·),poly(·))-IND, is that we can prove that no decryption
query before receiving the challenge can be replaced by queries (whatever the
number is) after having received the challenge, and vice-versa. Indeed, excepted
the trivial implications, all the other relations between the (i, j)-IND security
levels are strict gaps, with no polynomial reduction (under the basic assumption
that IND-CCA2 secure encryption schemes exist.)

As an application, we introduce a new kind of attack, we call the post-
challenge chosen-ciphertext attack, denoted CCAO2 (for chosen-ciphertext at-
tacks in the 2nd stage only.) This new scenario completes the above picture with
the (0,poly(·))-IND security notion. Furthermore, from a practical point of view,
it models very realistic situations since it limits the control the adversary may
have on the “a priori” distribution of the plaintexts, but it also encompasses
situations where the adversary starts the attack when it becomes aware of the
importance of a specific ciphertext (after the latter is generated and sent.)

Even if it seems clear that the CCA1 security model has been introduced
because the authors [12] failed at achieving the CCA2 level [15], it is still studied,
and considered as a goal to be achieved. However, it seems more realistic to
consider scenarios where the adversary has not so much control on the challenge
plaintexts: they could just be chosen right after having received the identity
and the public-key of the target decryptor. Therefore, the messages m0 and m1
should be chosen before having access to any oracle.

1.1 Related Work

In the early 80s, people formally defined the security notions for cryptographic
primitives (namely, for signature [10, 11], and for encryption [8] with the notions
of polynomial security, or indistinguishability denoted IND.) While these notions
did not evolve so much for signatures since adaptive chosen-message attacks
were introduced, stronger notions appeared later for encryption, namely after
the zero-knowledge concept [9].

Indistinguishability was indeed defined in the basic scenario only, where the ad-
versary has just access to the public information, and can thus encrypt any plain-
text of its choice, hence the name of chosen-plaintext attacks (denoted CPA.) Naor
and Yung [12] introduced the notion of chosen-ciphertext attacks. However, their
solution based on non-interactive zero-knowledge proofs of membership, without
the recent non-malleable NIZK or simulation-soundness [16] notions. Therefore,
they could not simulate correctly the decryption oracle after the adversary had
received the challenge ciphertext. As a consequence, they restricted the chosen-
ciphertext attacks tobenon-adaptive,in the sense that thedecryptionqueries could
not depend on the challenge ciphertext (a.k.a. lunchtime attacks, denoted CCA1.)
Rackoff and Simon [15] extended this notion, with an unlimited access to the de-
cryption oracle (excepted on the challenge ciphertext), denoted CCA2, and pro-
vided a candidate granted the non-interactive zero-knowledge proofs of knowledge.

The above improvements were about the attack model, but then also ap-
peared a relaxed goal for the adversary: the non-malleability [5, 6].In [2], Bel-
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lare et al. provided comparisons between all the resulting security notions, but
just between the large classes IND/NM combined with CPA, CCA1 or CCA2.

1.2 Contributions

Adaptive chosen-ciphertext attacks (CCA2) are clearly the strongest scenario in
the framework of the complexity theory, using perfect oracles and polynomial
reductions, or even exact reductions. However, this notion can be considered as
a very strong notion. In the real life, which motivated the exact/concrete secu-
rity [3, 1, 13] (vs. asymptotic or polynomial framework), the adversary may be
limited in the number of queries it can ask to the decryption oracle, and then the
scheme can be designed to resist such a specified number of queries. Therefore,
it’s worth considering the exact/concrete security notions. We thus introduce
two classes of security notions: (i, j)-IND and (i, j)-NM, or even more precisely
(t, i, j)-IND and (t, i, j)-NM secure schemes, which resist (in the indistinguisha-
bility sense or non-malleability sense) to adversaries which can make exactly i
(j resp.) decryption queries before (after resp.) receiving the challenge within
time t.

First, we consider the relations inside each class of security. At a first glance,
one could think that a query in the second stage is much more important than a
query in the first stage (since then, queries may depend on the challenge cipher-
text, and this would justify the consideration of CCA1 and CCA2 only in chosen-
ciphertext scenarios.) Surprisingly, we show that no query before receiving the
challenge can be replaced by queries (whatever the number is) after having re-
ceived the challenge, and vice-versa: a query before, helps to correctly choose the
messages m0 and m1.) This remark leads to a strict and more complex hierarchy
for security notions in the public-key setting: excepted the trivial implications,
all the other relations are strict gaps, with no polynomial reduction.

As an illustration, we introduce post-challenge chosen-ciphertext attacks (de-
noted CCAO2.) In this scenario, the adversary has access to the decryption or-
acle, but after the challenge ciphertext is known only. From the above result,
we show that any security notion (IND or NM) under these attacks (CCA1 and
CCAO2) are independent. Furthermore, we show that CCA1 + CCAO2 does not
necessarily yield CCA2.

2 Security Model

Let us review the main security notions for public-key encryption, but also more
theoretical notions, which will be useful for exhibiting gaps, such as the pseudo-
random function families.

2.1 Public-Key Encryption

A public-key encryption scheme π is defined by the three following algorithms:

– The key generation algorithm G.On input 1k, wherek is the security parameter,
the algorithm G produces a pair (pk, sk) of matching public and private keys.
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– The encryption algorithm E . Given a message m (in the space of plaintexts
M) and a public key pk, Epk(m) produces a ciphertext c (in the space of
ciphertexts C) of m. This algorithm may be probabilistic (involving random
coins r ∈ R) it is then denoted Epk(m; r).

– The decryption algorithm D. Given a ciphertext c ∈ C and the secret key sk,
Dsk(c) gives back the plaintext m ∈M.

2.2 Security Notions

As already noted, the fundamental security notions are the indistinguishability
and the non-malleability.

Definition 1 (Indistinguishability). Let π = (G, E ,D) be an encryption
scheme. Let us consider a two-stage probabilistic adversary A = (A1,A2) whose
running time is bounded by t. We define the advantage of A against the indis-
tinguishability of π as follows:

Advind
π (A) def=

∣∣∣∣2× Pr
b,r

[
(pk, sk) ← G(1k), (m0,m1, s) ← A1(pk),

c = Epk(mb, r), b′ = A2(m0,m1, s, c) : b′ = b

]
− 1

∣∣∣∣ .
We insist above on that A1 outputs two messages m0 and m1 such that |m0| =
|m1|. As usual, we define by Advind

π (t) the maximum advantage over all the ad-
versaries A whose running time is bounded by t. Then we say that π is (t, ε)-IND
secure if Advind

π (t) is less than ε.

Definition 2 (Non-malleability). Let π = (G, E ,D) be an encryption scheme.
Let us consider a two-stage probabilistic adversary A = (A1,A2) whose running
time is bounded by t. We define the advantage of A against the non-malleability
of π by:

Advnm
π (A) def= Succnm

π (A)− Succnm,$
π (A),

where the two successes use the same probability distribution, for a distribution
of plaintexts M and a binary relation R, generated by

(pk, sk) ← G(1k), (M, s) ← A1(pk);
m, m̃←M ; c← Epk(m, r); (R, y) ← A2(M, s, c);x← Dsk(y)

and

Succnm
π (A) def= Pr[y �= c ∧ x �= ⊥ ∧ R(x,m)]

Succnm,$
π (A) def= Pr[y �= c ∧ x �= ⊥ ∧ R(x, m̃)].

We also define by Advnm
π (t) the maximum advantage over all the adversaries A

whose running time is bounded by t. Then we say that π is (t, ε)-NM secure if
Advnm

π (t) is bounded by ε.
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This definition models the above intuition about non-malleability (the ad-
versary cannot output a second ciphertext so that the corresponding plaintexts
are meaningfully related.) This is a particular case of the general definition used
in [2, 4], and denoted CNM(k), in which the adversary could output a vector of
ciphertexts (y1, . . . , yk) of the plaintexts (x1, . . . , xk) and a relation R so that
R(x1, . . . , xk,m) holds more often than R(x1, . . . , xk, m̃). A discussion is pro-
vided in Section 3.3.

2.3 Attack Models

For a public-key encryption, the adversary has access, as anybody, to the en-
cryption key. It can thus encrypt any plaintext of its choice. Hence the basic
attack is called “Chosen Plaintext Attack”, or in short CPA. But the adversary
may also have access to more information, and namely some decryptions. This
is modeled by an access to the decryption oracle.

Definition 3 (Lunchtime Attacks). An adversary is called a non-adaptive
chosen-ciphertext adversary, (or a lunchtime adversary, denoted by CCA1-ad-
versary) if it can access the oracle before the challenge ciphertext is known only.

Definition 4 (Adaptive Attacks). An adversary is called an adaptive chosen-
ciphertext adversary (denoted by CCA2-adversary) if it can access the oracle
whenever it wants, that is before and after the challenge ciphertext is known,
with the sole restriction not to use it on the challenge itself.

These two attack models are the classical ones, but for historical reasons.
For more generality, we introduce a more precise definition with a (i, j)-CCA
adversary which can ask at most i queries (resp. j queries) before the challenge
ciphertext is known (after resp.)

Definition 5 (Chosen-Ciphertext Attack). An adversary is called an (i, j)
chosen-ciphertext adversary (denoted by (i, j)-CCA adversary) if it can access
the oracle, up to i times before the challenge ciphertext is known, and up to j
times after, still with the restriction not to use it on the challenge itself.
Notation. An encryption scheme π = (G, E ,D) is said to be (t, ε)-XXX-YYY
secure if for any YYY-adversary A against the security XXX within running
time t, where XXX can be either IND or NM, and YYY can be either CPA, CCA1,
CCA2, or (i, j)-CCA, the advantage of A is bounded by ε. In the latter case, in
short, we say that π is (t, ε, i, j)-IND secure (resp. (t, ε, i, j)-NM secure) if for
any (i, j)-CCA adversary A whose running time is bounded by t, Advind

π (A) ≤ ε
(resp. Advnm

π (A) ≤ ε.)

2.4 Trapdoor One-Way Permutations

Some constructions below will need the existence of a trapdoor one-way per-
mutation. Informally, for such a permutation which can be inverted granted the
trapdoor, it should be hard to invert without the latter:
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Definition 6 (One-Way Permutation). Let f : {0, 1}� → {0, 1}� be a permu-
tation, and let us consider the adversary A against the one-wayness. We define
the success probability of A for inverting f by: Succow

f (A) def= Prx[A(f(x)) = x].
As above, we also denote by Succow

f (t) the maximal success over all the adver-
saries whose running time is bounded by t. Therefore, we say that f is (t, ε)-OW
if Succow

f (t) is bounded by ε.

2.5 Pseudo-Random Functions

The notion of pseudo-random functions [7] requires that any adversary, accessing
an oracle Ob, which is either a truly random function F (in case b = 0) or a
random instance FK in the family F = (FK) (in case b = 1), cannot guess the
actual bit b. The advantage of such an adversary is defined by:

Definition 7 (Pseudo-Random Functions).

Advprf
F (A) = 2× Pr

b,F,K
[O0 = F,O1 = FK ,AOb = b]− 1.

We also denote by Advprf
F (t, n) the maximal advantage over all the adversaries

whose running time is bounded by t, which makes less than n queries to the
oracle. Finally, we say that a family F is a (ε, t, n)-PRF if Advprf

F (t, n) is bounded
by ε.

3 Concrete Security

In this section, we show some non-intuitive gaps in the (i, j)-IND class: a de-
cryption query in the first stage cannot be postponed to the second stage, and
reversely. As a consequence, we are interested by a possible comparison of the
importance of queries in the first stage and in the second stage. In the following,
we formally prove that allowing one more query in the first stage gives a differ-
ent strength to an adversary than allowing it as many queries as it wants in the
second stage. We do the same for an additional query in the second stage, which
cannot be compared with even many queries in the first stage.

3.1 Preliminaries

To this aim, we need a new intractability problem, which can hopefully be re-
lated to a classical PRF one. Furthermore, we denote below by PRP the analo-
gous notion as PRF, when the functions are permutations. Similarly, we denote
by Advprp

G (A) the advantage with which an adversary can distinguish a permuta-
tion, randomly drawn from the pseudo-random permutation family, and a truly
random permutation. Note that the inverse is not available (i.e., we do not con-
sider the super pseudo-randomness.)

Definition 8. For any function (or permutation) G and any two-stage adver-
sary A = (A1,A2), we denote by Succm,n

G (A) the success probability for A2(v, s)
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to output Gn(v), for a given random value v, and a working tape s transmitted by
A1, when A1 was limited to m queries to G, and A2 is limited to n− 1 queries.

Succm,n
G (A) = Pr[v R←M; s← AG

1 : AG
2 (v, s) = Gn(v)].

As before, we denote by Succm,n
G (t) the maximal success probability over all

the adversaries whose running time is bounded by t.

Proposition 9. For any function/permutation G randomly drawn from a pseu-
do-random function/permutation family G into a set of cardinality larger than
{0, 1}�, we have:

Succm,n
G (t) ≤ Advprf

G (m + 2n− 1, t) +
mn + 1

2�
.

Proof. We prove that for any adversary A against the above “one-more evalua-
tion”, we can design a PRF-adversary B such that Succm,n

G (A) ≤ Advprf
G (B). Our

adversary B simulates A’s view as follows: whenever A queries G, B asks the
same query to Ob and forwards the answer to A (at most m + n − 1 queries.)
Eventually, A outputs x. B successively queries the oracle Ob to get y = On

b (v).
If x = y, B outputs its guess b′ = 1, otherwise B outputs b′ = 0.

– when b = 1, B actually accesses in fact G and therefore y = On
b (v) = Gn(v),

whenever A outputs the correct value Gn(v). B always wins the game when
A wins. Since b′ = 1 means x = y:

Advprf
G (B | b = 1) = 2 Pr[x = y | b = 1]− 1 = 2Succm,n

G (A)− 1.

– when b = 1, the value y = On
b (v) that B computes is perfectly random and

independent of the view of A unless A1 has asked one of the values Oi
b(v)

(for 0 ≤ i < n) to the oracle. We therefore have

Advprp
G (B | b = 0) = 2 Pr[x = y | b = 0]− 1 ≤ 2×

(
mn

2�
+

1
2�

)
− 1.

Combining the two cases, with a random bit b, we get the result. ��

The following simple proposition will be used several times in the future.

Definition 10. Let π = (G, E ,D) be a public-key encryption scheme. Let f be a
permutation onto M modeled by the two oracles f and f−1. We define the new
encryption scheme π(f) = (G(f), E(f),D(f)) by

M(f) = M R(f) = R C(f) = C

Algorithm G(f)(1k) Algorithm E(f)
pk(f)(m, r) Algorithm D(f)

sk(f)(c)

(pk, sk) ← G(1k) pk||f ||f−1 def= pk(f) sk def= sk(f)

pk(f) ← pk||f ||f−1 return Epk(f(m), r) return f−1(Dsk(c))
sk(f) ← sk
return (pk(f), sk(f))
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Proposition 11. For any encryption scheme π = (G, E ,D) and for any permu-
tation f (so that f and f−1 are efficient), π and π(f) have a similar indistin-
guishability level whatever the kind of attack:

Advind-yyy
π (t) ≤ Advind-yyy

π(f) (t+ 2Tf + qdTf−1) ≤ Advind-yyy
π (t+ (2 + qd)(Tf + Tf−1)),

where Tf (and Tf−1 resp.) is an upper-bound of the time required to evaluate f
(and f−1 resp.)

Proof. We first prove that if π(f) is secure then π is secure too. We insist here
that both f and f−1 are efficiently computable and are included in the public
key. Let us consider an adversary A = (A1,A2) against π, we build an adversary
B = (B1,B2) against π(f): whenever A makes a decryption query c to the oracle
Dsk, B makes the same query to the decryption oracle D(f)

sk(f) . B receives the
answer m and forwards f(m) to A. When A1 outputs two candidates m0 and
m1, B1 computes f−1(m0) and f−1(m1). Finally, when A outputs its guess b′, B
forwards this value. It is clear that the advantage of B is exactly the advantage
of A, while its running time needs extra time for two evaluations of f and qd
evaluations of f−1, where qd is the number of decryption queries:

Advind-yyy
π (t) ≤ Advind-yyy

π(f) (t + 2Tf + qdTf−1).

Since π = π(f)(f−1), and both f and f−1 are public and efficient, one easily
concludes. ��

3.2 Each Query Is Important

In this section, we show that each query, before receiving the challenge or after
having received it, has its own role. This means that no query before receiving
the challenge can be replaced by queries (whatever the number is) after having
received the challenge, and vice-versa.

Theorem 12. Under the assumption that IND-CCA2 secure encryption schemes
exist, for any pair of integers (m,n), there is an encryption scheme that is
(m,N)-IND secure and (M,n)-IND secure, but not (m + 1, n + 1)-IND secure,
whatever M and N are.

Proof. We first assume that there exists an IND-CCA2 secure encryption scheme
π = (G, E ,D), which is thus (i, j)-IND for any pair (i, j). We also need a trapdoor
one-way permutation f onto M. The encryption scheme π(f) is therefore IND-
CCA2 secure, when the trapdoor for computing f−1 is included in the public
key. We modify π(f) into a new encryption scheme π′ = (G′, E ′,D′) which is
not (m + 1, n + 1)-IND secure anymore, but still both (m,N)-IND secure and
(M,n)-IND secure. Note that a main difference comes from the fact that the
trapdoor for f−1 is now in the private key only. The scheme π′ = (G′, E ′,D′)
works as follows:
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– We denote by IM a specific element of M and we note pM = f−1(IM ).
– We fix two families, a pseudo-random function family F = {FK : K ∈
{0, 1}k} and a pseudo-random permutation family G = {GK : K ∈ {0, 1}k},
from the set C into C. We furthermore assume that the cardinality of C is
larger than 2�.
For sake of simplicity, we use the same key sets, domain and range sets for
F and G, but this is not necessary.

Then, the intuition behind the construction is that m+1 decryption queries in
the first stage will help to determine a specific plaintext μ. It has the specificity
that, in the second stage, it will be possible to check after n + 1 decryption
queries whether a given ciphertext actually encrypts μ or not.

Algorithm G′(1k) Algorithm E ′
pk′(μ, r)

(pk, sk) ← G(1k) pk||f ||IM ||m||n def= pk′

IM
R←M,Kf ,Kg

R← {0, 1}k ϕ← f(μ)
pk′ ← pk||f ||IM ||m||n return 0||Epk(ϕ, r)||ε
sk′ ← sk||f−1||Kf ||Kg

return (pk′, sk′)

Algorithm D′
sk′(b||c||z)

sk||f−1||Kf ||Kg
def= sk′

1. if (b = 0 ∧ z = ε) return f−1(Dsk(c))
2. if (b = 1 ∧ z = ε) return FKf

(c)
3. if (b = 2 ∧ z = ε) return GKg

(c)
4. if (b = 1 ∧ z = Fn

Kf
(c) ∧ D(c) = Gm

Kg
(IM )) return f−1(Gm

Kg
(IM ))

otherwise, return ⊥

In the above scheme, μ = f−1(Gm
Kg

(IM )) is the crucial plaintext the adversary
should send as a challenge, because with a ciphertext 0‖c‖ε of this plaintext μ,
and the knowledge of Fn

Kf
(c), one can derive a second ciphertext of μ (and thus

break both the non-malleability and the IND-CCA2 security level), using the
fourth case in the decryption oracle.

Lemma 13. π′ is not (m + 1, n + 1)-IND secure.

Proof. The following (m+1, n+1)-IND adversary A = (A1,A2) can successfully
attack π′:

– In the first stage, A1 asks 2||IM ||ε to D′
sk′ and gets GKg

(IM ). Then for
i = 1 to m − 1, A1 asks 2||Gi

Kg
(IM )||ε to D′

sk′ and finally gets Gm
Kg

(IM ),
after m decryption queries. It then computes by itself c = Epk(Gm

Kg
(IM ), r)

(since pk is part of pk′) and asks 0||c||ε to D′
sk′ to get m0 = f−1(Gm

Kg
(IM )).

It randomly chooses a second different candidate m1 �= m0, and outputs
(m0,m1), after exactly m + 1 decryption queries.
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– In the second stage, A2 receives the challenge ciphertext y = 0||c�||ε, where
c� = E(mb, r). A2 asks 1||c�||ε to D′

sk′ and gets FKf
(c�). Then, for i = 1

to n − 1, the adversary asks 1||F i
Kf

(c�)||ε and finally gets Fn
Kf

(c�) after n

decryption queries. As a last query, it asks 1||c�||Fn
Kf

(c�) to D′
sk′ . If the

answer is m0, the adversary returns 0, otherwise (in which case the answer
is ⊥), the adversary returns 1.

It is easy to see that the value returned by the adversary is always equal to b. ��

Lemma 14. π′ is (m,N)-IND secure: for t′ ≤ t + 2Tf and qd ≤ m + N ,

Adv(m,N)-ind
π′ (t) ≤ Advind-cca2

π (t′ + qdTf + 2Tf−1)

+2×
(

Succow
f (t′) + (m + 2)× Advprp

G (2m− 1, t′)
+Advprp

G (qd, t′) + Advprf
F (qd, t′) + (m + 2)× 2−�

)
.

Proof. Since π is IND-CCA2 secure, it is also the case for π(f). We then prove
that an (m,N)-IND adversary A against π′ can be used by an adversary B to
break the IND-CCA2 security level of π(f) with a similar advantage.

Before presenting this adversary, let us claim the following proposition, which
proof is straightforward.

Proposition 15. Providing FKf
, GKg , f , f−1 and the decryption oracle D(f)

sk(f)

of π(f), one can perfectly simulate the decryption D′
sk′ of π′.

Game G0: In this game, our adversary B is provided the decryption oracle
D′

sk′ . It is thus not a π(f) adversary yet. Anyway, it can easily simulate the
view of the adversary A, granted the oracle access to D′

sk′ . When A1 outputs
the candidates (m0,m1), B1 forwards them, as its own output. On the challenge
ciphertext c, B2 runs A2(0||c||ε). When A2 outputs its guess b′ for the bit b
involved in the challenge, B2 forwards it as its own guess. We denote by S0 the
event b′ = b. We clearly have: Pr[S0] = Pr[B = b] = Pr[A = b].

Game G1: We modify a little bit B1, so that it aborts if a bad case occurs.
We define gm = Gm

Kg
(IM ). When A1 outputs (m0,m1), B1 computes by itself

f0 = f(m0) and f1 = f(m1). If gm is one of f0 or f1, or appears in a decryption
query of the form 1‖c‖z (i.e., gm = D(c), see case 4), then B aborts the game,
outputting a random guess, otherwise, it continues as in the previous game. We
denote by EventGM the above bad event that f0 = gm, f1 = gm or gm appears
in a decryption query: |Pr[S1]− Pr[S0]| ≤ Pr[EventGM].

Let us evaluate the probability of this event. To this aim, we consider two
situations, since A1 is allowed to ask at most m decryption queries:

– A1 asks m queries of the form 2‖c‖ε, which are answered by GKg (c) (see case
3.) Then B1 does not use any query to f−1 to simulate the answers of the
decryption queries of A1. We can thus build an invertor for f : we give every
private information to B, except the trapdoor for inverting f . When event
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EventGM happens, B has inverted f on the random element gm (since IM is
random and GKg

is a public permutation, and thus Gm
Kg

) without making
any query to f−1. Indeed, using the private informations, one can compute
gm, and then one can check which one of m0 or m1 is the pre-image of gm
by f .

– A1 asks at most than m−1 queries of the form 2‖c‖ε. Event EventGM means
that gm is one of f0 or f1, or appears in a decryption query of the form 1‖c‖z.
This time, we can build an adversary against the PRP property of the family
G: we give every private information to B, except Kg, but an oracle access
to GKg . When event EventGM happens, gm is one of f0 or f1, or appears in
a decryption query of the form 1‖c‖z (note that gm = D(c), which can be
computed since now B knows sk.) By randomly outputting f0, f1 or D(c)
from one of the m decryption queries of the form 1‖c‖z, after at most m− 1
queries to GKg

, with probability of 1/(m + 2), we get gm = Gm
Kg

(IM ), for a
random input IM .

Regrouping these two cases, we have:

Pr[EventGM] ≤ Succow
f (t + 2Tf ) + (m + 2)× Succ0,m

GKg
(t + 2Tf )

≤ Succow
f (t + 2Tf ) + (m + 2)× Advprp

G (2m− 1, t + 2Tf ) +
m + 2

2�
.

Game G2: In this game, we still exclude event EventGM, and thus B does not
need to check gm, and thus to compute it either. B is no longer provided with
D′

sk′ , but D(f)
sk(f) only. By the Proposition 15, B can use this decryption oracle

D(f)
sk(f) to perfectly simulate D′

sk′ , thanks to the access to FKf
, GKg

, f and f−1.
The only situation that B cannot simulate is when A2 asks for 1||c||z because B
cannot ask the decryption oracle on its challenge c. Fortunately, in such a case,
B can safely answer ⊥ (since we excluded event EventGM): Pr[S2] = Pr[S1].

Game G3: In this game, we replace the permutation GKg
by a truly random

permutation. Whenever B needs to use GKg
(for simulating decryptions), it uses

G: |Pr[S3]− Pr[S2]| ≤ Advprp
G (qd, t + 2× Tf ).

Game G4: We now replace the function FKf
by a truly random function F .

Whenever B needs to use FKf
, it uses F :

|Pr[S4]− Pr[S3]| ≤ Advprp
G (qd, t + 2× Tf ).

In this last game, with an access to f and f−1, B is an actual IND-CCA2 adversary
against π(f). Since A is an (m,N)-IND adversary against π′, qd ≤ m+N , hence
the result. ��

Lemma 16. π′ is (M,n)-IND secure:

Adv(M,n)-ind
π′ (t) ≤ Advind-cca2

π′ (t + (M + n)Tf + 2Tf−1)

+n×
(

2Advprf
F (M + 2n− 1, t) + (Mn2 + n + M)× 2−�

+Advprf
F (M + n, t) + Advprp

G (M + n, t)

)
.
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Proof. As above, we start from an (M,n)-ind adversary A against π′. We prove
that Adv(M,n)-ind

π′ (A) is small by exhibiting an IND-CCA2 adversary B against
π(f) with a similar advantage.

Game G0: In this first game, as above, B is provided with D′
sk′ , and plays

exactly the same way:

Pr[S0] = Pr[B = b] = Pr[A = b].

Game G1: We provide B with D(f)
sk(f) instead of D′

sk′ , together with oracle
access to FKf

, GKg , but also the trapdoor to compute f−1. By the Proposi-
tion 15, B can use this decryption oracle to perfectly simulate D′

sk′ , excepted
on a query 1‖c‖z, where c is the challenge ciphertext for B. Fortunately, in this
case, B can safely output ⊥. Indeed, it would be a mistake only if z = Fn

Kf
(c).

Note that c is not known to A1, and thus such a case can appear in the first
stage only by chance (less than M/2�.) If this happens in the second stage, by
randomly outputting a z from a 1‖c‖z decryption query, one would break the
PRF property of F with probability of 1/n, since one would output Fn

Kf
(c) after

only n − 1 queries (since this critical decryption query is one of the n possible
queries of A2.)

|Pr[S1]−Pr[S0]| ≤
M

2�
+n·SuccM,n

FKf
(t) ≤ n×Advprf

F (M+2n−1, t)+
Mn2 + n + M

2�
.

Game G2: In this game, we replace the function FKf
by a truly random

function F . Similarly, we replace the permutation GKg
by a truly random per-

mutation G. With the same argument as in the proof of the Lemma 14, in the
games G3 and G4, we have:

|Pr[S2]− Pr[S1]| ≤ Advprf
F (qd, t) + Advprp

G (qd, t).

In this last game, B is an actual IND-CCA2 adversary against π(f), hence the
result. ��

From the Lemmas 13, 14 and 16, one completes the proof of the Theorem 12.
��

3.3 Discussion About Non-malleability

We now briefly discuss on the general notion of non-malleability (denoted by
CNM(k)) in which the adversary finally outputs a ciphertext vector of size k,
instead of a single ciphertext. In [4], Bellare and Sahai introduced the notion of
parallel attacks, denoted PA (or more precisely PA(k) by us), where the adversary
can ask a ciphertext vector of size k to the decryption oracle just after the last
normal single decryption query (derived in three ways, as usual, with PA0, PA1
and PA2, according to the access of the decryption oracle for single ciphertext
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queries.) They proved that IND-PAX is equivalent to CNM(k)-CCAX, where CCA0
is indeed CPA. Their result can be translated within our formalism under the
following theorem, which proof can be found in the full version [14].

Theorem 17. The two notions (m,n)-IND-PA(k) and (m,n)-CNM(k) are equiv-
alent. In other words, for any encryption scheme π = (G, E ,D):

1
2
× Adv(m,n)-ind-pa(k)

π (t) ≤ Adv(m,n)-ind-cnm(k)

π (t) ≤ Adv(m,n)-ind-pa(k)

π (t + TR),

where TR is an upper-bound on the time to evaluate the relation R.
Granted the following identifications,

(m,n)-IND-PA(1) = (m,n + 1)-IND (m,n)-CNM(1) = (m,n)-NM,

one gets (m,n + 1)-IND = (m,n)-NM.

4 A New Attack Model: CCAO2

Definition 18 (Post-Challenge Attacks). An adversary is called a post-
challenge chosen-ciphertext adversary (denoted by CCAO2-adversary) if it can
access the oracle after the challenge ciphertext is known only still with the re-
striction not to use it on the challenge itself.

Given this new attack model of post-challenge chosen-ciphertext adversaries,
combined with the classical goals, one gets the two security notions: IND-CCAO2
and NM-CCAO2. These notions are independent with the previous ones, excepted
the trivial implications. First, it is clear that for any XXX, XXX-CCA2 implies
both XXX-CCA1 and XXX-CCAO2. But from the above result, we show that the
opposite is not true. In fact, we clearly have the following corollaries:

Corollary 19. IND-CCAO2 and IND-CCA1 are independent notions. In other
words, under the assumption that IND-CCA2 secure encryption schemes exist,
there is a scheme which is IND-CCA1 secure but not IND-CCAO2 secure and,
there is a scheme that is IND-CCAO2 secure but not IND-CCA1 secure.

Corollary 20. IND-CCA1 and IND-CCAO2 do not imply, even together, IND-
CCA2. In other words, under the assumption that IND-CCA2 secure encryption
schemes exist, there is a scheme which is both IND-CCA1 secure and IND-CCAO2
secure but not IND-CCA2 secure.

Another Discussion. Since parallel attacks [4] do not give more power to a
CCAO2 adversary, we still have equivalence between the two notions of IND
and NM under this new kind of attack, as shown in [2] under CCA2.
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Abstract. Oblivious transfer (OT) is a cryptographic primitive of cen-
tral importance, in particular in two- and multi-party computation. There
exist various protocols for different variants of OT, but any such realiza-
tion from scratch can be broken in principle by at least one of the two
involved parties if she has sufficient computing power—and the same
even holds when the parties are connected by a quantum channel. We
show that, on the other hand, if noise—which is inherently present in
any physical communication channel—is taken into account, then OT
can be realized in an unconditionally secure way for both parties, i.e.,
even against dishonest players with unlimited computing power. We give
the exact condition under which a general noisy channel allows for realiz-
ing OT and show that only “trivial” channels, for which OT is obviously
impossible to achieve, have to be excluded. Moreover, our realization of
OT is efficient: For a security parameter α > 0—an upper bound on the
probability that the protocol fails in any way—the required number of
uses of the noisy channel is of order O(log(1/α)2+ε) for any ε > 0.

1 Introduction and Motivation

Cryptographic security can either stem from the fact that an adversary’s infor-
mation about the data of interest is zero (or limited), or that these data are
difficult to access from her information. The second type of security is based

� Supported by Canada’s NSERC and Québec’s FQRNT.
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on the hardness of certain computational problems and depends on assump-
tions on the adversary such as her computing power. Unfortunately, there do
not exist proven lower bounds on the complexity of solving particular problems
that are directly useful in a cryptographic context. The first type of security is
called information-theoretic security. It can be realized under specific assump-
tions—such as bounds on an adversary’s memory space [17], [12]—, or from no
assumptions at all, in which case this type of security is also called unconditional.
Clearly, this is the most desirable type of security—but it has its price and can
generally not be generated from scratch; this is true for encryption, where its
price is a secret key of a certain length [20], as well as for so-called two- or
multi-party computation. Examples of two-party tasks that can be shown impos-
sible from scratch in an unconditionally secure way with respect to both parties
simultaneously are the computation of the OR function or bit commitment.

A primitive of particular importance in the context of secure two-party com-
putation is oblivious transfer (OT) due to its universality: From information-
theoretically secure OT, any two-party computation can be realized in an uncon-
ditionally secure way. OT or, more precisely, chosen one-out-of-two bit OT [13],
is the following primitive involving a sender A and a receiver B: A sends two
bits b0 and b1, B inputs a choice bit c and receives bc, but remains ignorant
about b1−c. The sender A, on the other hand, does not learn c. This variant of
OT was shown equivalent—given that a small but non-zero failure probability
can be accepted—to the original, so-called Rabin OT [19] in [6]; Rabin OT in
fact corresponds to a binary erasure channel with erasure probability 1/2.

It is, therefore, a natural question whether OT can as well be realized from
other noisy communication channels between the parties. In fact, also in differ-
ent contexts, such as encryption, noisy channels have proven useful as simple
information-theoretic primitives [18] allowing for achieving tasks such as (al-
most) perfectly secret message transmission [10], [24]. In [7], it was shown that
any non-trivial binary-symmetric channel (BSC) allows for realizing OT in poly-
nomial time, and in [8] a more efficient construction was given and later shown
to work as well for any non-trivial BSC in [15], [21].

In the present paper, we generalize this result to arbitrary discrete memoryless
channels (DMCs)—characterized by a conditional probability distribution PY |X .
More precisely, we first define triviality : Intuitively speaking, a channel PY |X is
trivial if, after removal of all input symbols whose output distribution can be gen-
erated by combining other input symbols, the channel is a parallel composition
of capacity-zero channels. The main result of our paper then states that any non-
trivial channel, and only those channels, allow for—efficiently—realizing OT.

Main Result. Let two players A and B be connected by a non-trivial channel
PY |X . Then, for any α > 0, there exists a protocol for unconditionally secure
OT from A to B with failure probability at most α, where the number of uses of
the channel is of order O(log(1/α)2+ε) for any ε > 0. Trivial channels, on the
other hand, do not allow for realizing OT in an unconditional way.
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In [22], the problem of realizing bit commitment from discrete channels was
studied. They showed that string commitment with positive rate can be achieved,
i.e., the length of the committed string divided by the number of channel uses
is bounded from below by a strictly positive constant. They have extended their
notion of commitment capacity to OT capacity [23]. In this context, they inde-
pendently used the same notion of non-triviality of discrete channels.

The rest of this paper is organized as follows. In Section 2, we briefly review
some notions, facts, and constructions from coding theory and information-
theoretic cryptography. Section 3 introduces the notion of non-triviality of a
discrete memoryless channel. In particular, we prove a property of non-trivial
channels that is crucial for the construction of the OT protocol, which is pre-
sented in Section 4.

2 Preliminaries

2.1 Coding Theory

We briefly review some basic facts from coding theory. For a more detailed
discussion, we refer to, for instance, [16].

A binary error-correction code with code-word length or size n, dimension
k, and minimal distance d is a subset of cardinality 2k of {0, 1}n—the code
words—such that for any two elements v, w of this set dH(v, w) ≥ d holds,
where dH denotes the Hamming distance between two bit strings. Of particular
importance is the special case of linear codes, where the subset of code words is
in fact a k-dimensional linear subspace of {0, 1}n. In this case, the code is called a
[n, k, d]-code and can be represented by a k×n matrix G, the generating matrix,
or, alternatively, by the n× (n− k) parity-check matrix H.

In our protocol presented in Section 4, we use a special class of linear codes,
so-called concatenated codes [14]. Such codes allow for correcting an asymptot-
ically optimal number of errors: For any ϕ > 0 there exists ρ > 1 such that for
all1 R < 1− h(ϕ)—the latter expression is the capacity of a BSC with bit error
probability ϕ—and sufficiently large N there exists a linear code with length N
and dimension at least RN , failing to correct ϕN uniformly distributed errors
only with probability at most ρ(R−1+h(ϕ))N .

The idea of concatenated codes is as follows. A straight-forward Las Ve-
gas construction algorithm combines a power-of-two (N = 2n) size [N, (1 −
α)N,αN −1] Extended Reed-Solomon (outer) code over the field F2n to a rather
good (inner) code of size n selected at random among all linear codes [n, κn, δn]
of appropriate dimension κn. The resulting concatenated code has parameters
[Nn, (1−α)κNn, αδNn] and is able to efficiently correct up to nearly δNn errors
on average if they are uniformly distributed (because only very few errors will be
uncorrected by the inner code). The error correction procedure uses a brute-force
search for the nearest codeword on the inner code and the Berlekamp-Massey

1 Here, h(x) = −(x log x + (1 − x) log(1 − x)) is the binary entropy function. All
logarithms are binary.
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algorithm for the outer Extended Reed-Solomon code. Both of these algorithms
run in polynomial-time with respect to the global code size Nn.

In our protocols, the information transmitted will not be a codeword but
only a syndrome syn(w) = HTw—the noisy versions of the information bits
are already known to the receiver. From this syndrome, the decoding algorithm
allows for recovering w, given its noisy version.

2.2 Privacy Amplification

Privacy amplification is a general technique for distribution uniformizing or—in
a cryptographic context—concentrating an adversary’s uncertainty. Privacy am-
plification was first proposed in the context of quantum key agreement for the
special case of deterministic side information [2] and later in general [1]. On the
other hand, the effect of additional side information, in our case the syndrome
the receiver learns, was studied in [5]. Roughly speaking, the number of bits by
which the resulting almost secret string will be shorter corresponds to the length
of this side information.

For the following, we can restrict ourselves to the special case where one party
knows a noisy version—independently bit by bit—of an original string. This case
is simpler than the general case since one can deal with typical sequences and
almost-uniform distributions.

Let V be a uniformly distributed n-bit string and let W be generated by
independently sending each bit over a BSC with error probability ϕ. Let, fur-
thermore, syn : {0, 1}n → {0, 1}t be a linear function and G be a random
variable corresponding to the random choice, according to the uniform distribu-
tion, of a function from a 2-universal class of functions [9] {0, 1}n → {0, 1}s (for
instance, G can be a random linear function mapping n bits to s bits). Then we
have, except with exponentially (in n) small probability,

H(G(V ) | syn(V ) = syn(v),W,G) ≥ s− 2−Ω(h(ϕ)n−t−s) .

3 Trivial Versus Non-trivial Discrete Memoryless
Channels

As a first step towards deriving our main result, we prove a property of non-trivial
channels. Intuitively, we show the existence of two particular input symbols of
such a channel to which the sender can restrict herself in the OT protocol. A
crucial point hereby is that, roughly speaking, she can be forced to use only
these two symbols—since her failure to do so will be detected by the receiver.

Definition 1. Let PY |X be a DMC. We call an input symbol x ∈ X redundant
if its output distribution PY |X=x can be written as a linear combination of the
other output distributions as follows:

PY |X=x =
∑

x′∈X\{x}
μx′PY |X=x′

with μx′ ∈ [0, 1].
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Definition 2. We call a channel PY |X trivial if there exist, after removal of all
redundant input symbols, partitions of the (remaining) ranges X of X and Y of
Y , X = X1 ∪ · · · ∪ Xn, Y = Y1 ∪ · · · ∪ Yn, and channels PYi|Xi

, where the ranges
of Xi and Yi are Xi and Yi, respectively, such that

PY |X=x(y) =
{
PYi|Xi=x(y) if x ∈ Xi, y ∈ Yi ,
0 if x ∈ Xi, y ∈ Yj , i �= j

holds and such that the capacity of the channel PYi|Xi
is 0 for all i.

The mentioned well-known result that unconditionally secure OT is impos-
sible to realize by noiseless communication immediately carries over to trivial
channels. In Section 4 we will show that, on the other hand, any other channel
does allow for realizing OT. Non-triviality is, therefore, a necessary and sufficient
condition for a channel to allow for achieving OT in an unconditionally secure
way with respect to both parties. We first give an alternative characterization
of non-triviality of a channel.

Theorem 1. Let PY |X be a non-trivial channel. Then there exist x1, x2 ∈ X
with the following properties.

1. PY |X=x1 �= PY |X=x2 .
2. There exists y ∈ Y such that PY |X=x1(y) > 0 and PY |X=x2(y) > 0.
3. Let, for λ, μi ∈ [0, 1],

λPY |X=x1 + (1− λ)PY |X=x2 =
∑
i

μiPY |X=xi
.

Then μi > 0 implies that PY |X=xi
= τPY |X=x1 + (1 − τ)PY |X=x2 holds for

some τ ∈ [0, 1].

Remark 1. Intuitively speaking, Theorem 1 states that there are two particular
input symbols x1, x2 ∈ X of the channel with the following properties. If a
sender is supposed to use only these two symbols as channel inputs (with certain
probabilities or frequencies, say p and 1 − p, respectively), then the receiver
can—if the channel is used a large number N of times—detect whenever the
sender fails to do so if the latter cheats Ω(

√
N) times. The only exception is the

use of input symbols x �∈ {x1, x2} whose output distribution over Y is a convex
linear combination of the output distributions of x1 and x2, i.e., if

PY |X=x = τPY |X=x1 + (1− τ)PY |X=x2

holds for some τ ∈ [0, 1]. In our context—where the sender tries to maximize the
information he has about the resulting output—, this is, however, not a problem
because using x leaves him with less information than if he had used x1 with
probability β and x2 with probability 1− β, and then forgot what he sent.



52 C. Crépeau, K. Morozov, and S. Wolf

Proof. Because of the non-triviality of the channel, there exist two non-redundant
input symbols x1 and x′

2 and y ∈ Y such that PY |X=x1 �= PY |X=x′
2
, PY |X=x1(y) >

0, and PY |X=x′
2
(y) > 0 hold.

Let us now interpret PY |X=x, for any x ∈ X , as a point in R|Y|−1, where the
different coordinates correspond to the probabilities PY |X=x(y) (which sum up
to 1). In the following, we will consider the convex hull of the set of points

{PY |X=x |x ∈ X} ⊆ R|Y|−1 . (1)

We call PY |X=x0 a spanning point of the convex hull if the convex hull of
{PY |X=x |x ∈ X \ {x0}} is strictly smaller than the one of (1).

Since the spanning points of the hull correspond to non-redundant inputs,
we can conclude that there exist two spanning points PY |X=x1 and PY |X=x′

2

of the convex hull such that there exists y ∈ Y with PY |X=x1(y) > 0 and
PY |X=x′

2
(y) > 0.

Let us now look at the connections between PY |X=x1 and all other points
PY |X=x, x ∈ X , and let vx be the unity vector parallel to the vector in R|Y|−1

connecting PY |X=x1 and PY |X=x. In a similar way as for points, we define convex
linear combinations and the convex hull for these vectors. Let {vx |x ∈ A}, where
A ⊆ X , be the set of spanning vectors.

We will first argue that there exists x2 ∈ A with PY |X=x2(y) > 0, and
secondly, that the representation of any linear combination of x1 and x2 as
a linear combination of all points PY |X=x is unique—modulo points that are
themselves linear combinations of x1 and x2.

Assume that for all x ∈ A, we have PY |X=x(y) = 0. Then the same is true
also for all distributions in the convex hull of these points. On the other hand,
the connection between x1 and x′

2 has a non-empty intersection with this convex
hull by definition of A. Since every distribution in this intersection is a convex
linear combination of PY |X=x1 and PY |X=x′

2
—both non-zero in y— there exists

a point x2 in A with PY |X=x2(y) > 0.
By construction, x1 and x2 have now the following properties. First, they

satisfy PY |X=x1 > 0 and PY |X=x2 > 0. Second, any convex linear combination
of P1 = PY |X=x1 and P2 = PY |X=x2 cannot be represented as a convex linear
combination involving points PY |X=x not lying on the line connecting P1 and
P2; this would contradict the fact that P2 is a spanning point of the connections
of P1 to all other points P ; indeed, the line from P1 to P2 could in this case be
represented as a linear combination of the lines connecting P1 with the external
points occurring in the linear combination. This observation concludes the proof.

��

4 A Protocol for Efficient Oblivious Transfer from Any
Non-trivial Channel

In this section we describe a protocol for OT based on an arbitrary non-trivial
DMC and give, hence, a proof of our main result stated above. Our protocol is an
adaptation of the protocol from [8] for the general case (where, at the same time,



Efficient Unconditional Oblivious Transfer from Almost Any Noisy Channel 53

we reduce the required number of channel uses from cubic to, roughly, quadratic
order in log(1/α)). We develop the protocol in three steps. In Section 4.1, the
original channel is used to obtain a binary-symmetric erasure channel with error;
in Section 4.2, this is transfered into a weak form of OT vulnerable to active
attacks by the sender A; in Section 4.3, finally, we derive the final protocol
avoiding these attacks by statistical analysis by the receiver.

4.1 Binary-Symmetric Erasure Channel with Error from Any
Non-trivial Channel

From a non-trivial channel PY |X , we first construct a binary erasure channel with
error. We encode the bits to be transmitted over the DMC as pairs of two fixed
distinct input symbols x1, x2 ∈ X chosen according to Theorem 1: “0” is encoded
as x1x2 and “1” as x2x1. When this is repeated many times, B gets the sent
bits with different error rates, depending on the actual output symbols received.
We will have B make a decision on 0 or 1 only when he receives certain specific
pairs—otherwise, he will decide on erasure Δ. More precisely, B will accept only
the pairs which give him the best estimate of what has been sent; we will call
these the most informative pairs. Note that there might even be output symbols
y which allow for deciding with certainty whether x1 or x2 has been sent. Note,
however, that the choice of x1 and x2 guarantees that there exist pairs which
are not conclusive with certainty. The crucial point is that there are at least two
different levels of conclusiveness, and it is the difference between the two that
will be used in the protocol. In the following, we will call the pairs providing B
with the best a posteriori probabilities good pairs and denote them by y1y2 and
y2y1, respectively.

Let Y ′ be the set of y with PY |X=x1(y) > 0 or PY |X=x2(y) > 0. Formally, the
most informative pair (y1, y2) is the pair (y, y) ∈ Y ′ × Y ′, y �= y, that achieves
the following minimum:

ϕ = min
(y,y)∈Y′×Y′

PY |X=x1(y)PY |X=x2(y)
PY |X=x1(y)PY |X=x2(y) + PY |X=x1(y)PY |X=x2(y)

. (2)

Note that (2) is symmetric with respect to x1 and x2. The resulting channel is,
hence, a binary-symmetric erasure channel (BSEC), i.e., a binary-input channel
with some erasure probability and a certain bit-error probability.

Protocol 1. PY |X → BSEC(r)

1. A sends x1x2 if r = 0 and x2x1 if r = 1.

2. B returns

⎧⎪⎨⎪⎩
0 if y1y2 is received,
1 if y2y1 is received,
Δ if any other pair is received.

4.2 Passively Secure OT

The BSEC obtained above is not a Rabin OT: B might get some information
even when deciding on Δ, and there are bit errors. We now describe a protocol,
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based on the obtained BSEC, for realizing OT under the assumption that A
behaves correctly.

In the “weak OT” protocol, A sends 2n random bits r1, r2, . . . , r2n to B using
BSEC. B should receive roughly 2pgn of them as good pairs and 2(1−pg)n “bad”
ones, where pg denotes the probability that B decides on either 0 or 1, but not
Δ, in an execution of BSEC given that A is honest, i.e.,

pg = (PY |X=x1(y1)PY |X=x2(y2) + PY |X=x2(y1)PY |X=x1(y2))/2 .

B then forms two sets I0 and I1 of size n if pg > 1/2 and, otherwise, size
n′ = (pg − γ)n, γ > 0. By the index sets I0 and I1, B defines two bit-strings r′

I0
,

r′
I1

such that r′
Ic

should contain only good pairs.
Let now ϕ be the bit error probability of the BSEC. The players now es-

tablish a code—according to the discussion in Section 2.1—which exactly allows
for correcting (except with small probability) all errors of a set consisting only
of good pairs. More precisely, the errors are corrected by having A send the
syndromes of the two words syn(rI0) and syn(rI1). Using r′

Ic
and syn(rIc

), B
can recover rIc except with small probability. On the other hand, this correction
information is not sufficient to find out both words rIc and rI1−c as long as the
dimension of the code does not exceed (1− h(ϕ))n′.

Finally, a linear privacy amplification function is used to extract one bit
per string, such that one of the two bits may be recovered, but not both. This
function is the scalar product (we denote it as ”�”) with a random n′-bit string
m. (Note that string OT instead of bit OT could be obtained using hashing to
a string as the privacy-amplification function.)

Protocol 2. BSEC→ ÔT(b0, b1)(c)

1. A picks 2n random bits ri, i = 1, . . . , 2n, and sends them to B as BSEC(ri);
B receives r′

i.
2. B picks and sends two disjoint sets I0, I1, |I0| = |I1| = n′, such that r′

i �= Δ
holds for all i ∈ Ic.

3. A and B agree on a parity-check matrix H of a concatenated code C with
parameters [n′, k = (1− h(ϕ))n′, d] correcting ψϕn′ errors, ψ > 1.

4. (a) A computes and sends s0 = syn(rI0) and s1 = syn(rI1),
(b) picks and sends a random n′-bit word m, and
(c) computes and sends b̂0 = b0 ⊕ (m� rI0) and b̂1 = b1 ⊕ (m� rI1).

5. (a) B recovers rIc
using r′

Ic
, sc and the decoding algorithm of C and

(b) computes and returns b̂c ⊕ (m� rIc
).

Let us discuss why B is unable to cheat in the weak OT protocol. In fact, the
chosen code is such that complete error correction is possible only if B collects
all the good pairs into one of the two sets. Suppose first that pg > 1/2 holds.
Then there exists a constant fraction of bad bits the error rate of which is at
least ϕ′ > ϕ, where ϕ′ is the error rate of the second most informative pairs.
Assume for simplicity that the fraction of the second most informative bits is
1− pg, which is the worst case (from A’s viewpoint). A dishonest B is not able
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to put more than pgn good bits in at least one of the sets I0 and I1. The bits of
this set do not contain more than ((1− h(ϕ))pg + (1− h(ϕ′))(1− pg))n bits of
Shannon information about the original string with high probability. Therefore,
at least (h(ϕ)pg + h(ϕ′)(1 − pg))n parity-check bits are needed to correct all
the errors in each set with high probability; however, syn(rI0), syn(rI1) each
contain (h(ϕ)+ δ)n bits only. Thus, at least one of the two words rI0 , rI1 will be
undetermined by at least n(h(ϕ′)−h(ϕ))(1−pg) bits. From the results sketched
in Section 2.2, one can conclude that after privacy amplification, B only has
an exponentially small amount of information about the corresponding bit. The
case of pg ≤ 1/2 can be treated in a similar way.

Unfortunately, the weak OT protocol is not secure against cheating by A with
the objective of figuring out B’s choice bit c. For instance, A can send incorrect
pairs: x1x1 or x2x2 instead of x1x2 and x2x1, hereby increasing the probability
that it is received as a bad pair (i.e., r′

i = Δ) by B. Alternatively, A can use any
other input symbols but x1 and x2 (we call them forbidden input symbols) whose
support intersects with those of x1 and x2. Finally, she can send an incorrect
syndrome at Step 4.

In the first and second active attacks, incorrect pairs are more likely to end
up in the “bad” set, thus indicating to A which one of I0 and I1 is more likely to
be the “good” and the “bad” set, respectively, and hence what B’s choice is. In
the third attack, if A renders only one of the syndromes incorrect, then B will
abort or not, depending on which bit he is trying to get.

4.3 The Complete OT Protocol

The main idea is now, as in [8], to avoid cheating by A by repeating the weak
OT protocol many times in such a way that A has to cheat in a substantial
fraction of all executions of BSEC (namely, in more than the square root of the
total number of executions) in order to gain useful information. This, however,
can be detected by B when he analyzes his output statistically.

More precisely, Protocol ÔT is repeated �n1+ε� times, 0 < ε < 1; thus, we
apply BSEC 2�n2+ε� times in total. In order to cheat, A will have to send at
least �n1+ε� wrong pairs (i.e., she forms the pair incorrectly or uses forbidden
symbols) in these executions. This will, however, lead to a detectable bias in the
output distribution (with probability almost 1). If, on the other hand, A uses
less than �n1+ε� incorrect pairs, she finds out nothing about c. Similarly, if A

sends wrong syndromes in the protocol for ÔT she will, each time, be detected
by B with probability 1/2. If she uses n1+ε such faulty syndromes it is, hence,
only with exponentially small probability that B will not detect her cheating.

Let nε =
[
n1+ε

]
, where [·] means rounding up to the next odd integer, and

n′
ε = n · nε. The instances are combined by requesting bl,0 ⊕ bl,1 = b0 ⊕ b1 for

1 ≤ l ≤ nε. Let

b0,0 =
nε⊕
l=1

bl,0 and b0,1 =
nε⊕
l=1

bl,1 .
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Then we get
nε⊕
l=1

bl,cl
= b0,z for z =

nε⊕
l=1

cl .

Thus, in order to find out which of b0,0 or b0,1 B is trying to receive, A must
find out all the cl.

Let ψ > 1. An extra index l is added to each variable of the lth iteration
of ÔT. Let us denote by ql,i ∈ Y ′ the ith output symbol (1 ≤ i ≤ 4n′

ε) and as
rl,i ∈ {0, 1} the ith output bit (1 ≤ i ≤ 2n′

ε) received by B in the lth iteration
of ÔT. Let

δ = min
y∈Y, x∈X\{x1,x2}

∣∣∣∣PY |X=x1(y) + PY |X=x2(y)
2

− PY |X=x(y)
∣∣∣∣ .

Roughly speaking, δ is the closest the sender can get to “the middle point”
between the distributions PY |X=x1 and PY |X=x2 using forbidden symbols (except
the symbols lying on the line between x1 and x2, as discussed in Section 3).

Protocol 3. ÔT → OT

1. A picks nε random bits b1,0, b2,0, . . . bnε,0 and sets bl,1 = b0 ⊕ b1 ⊕ bl,0 for
1 ≤ l ≤ nε.

2. B picks nε random bits c1, c2, . . . , cnε
.

3. Repeat for l = 1, . . . , nε

(a) A runs ÔT(bl,0, bl,1)(cl) with B who gets b′
l,

(b) if dH(rl,Il,cl
, r′

l,Il,cl
) > ψϕn′ then B aborts.

4. if for some j, 1 ≤ j ≤ |Y ′| − 1:∣∣∣#{l, i|ql,i = yj} − 2n′
ε

(
PY |X=x1(yj) + PY |X=x2(yj)

)∣∣∣ > δ

2(|X | − 2)
nε ,

then B aborts else if

#{l, i | rl,i = y1y2 or rl,i = y2y1} < 2pgn′
ε −

2pg − 1
4

nε ,

then B aborts else B computes and sends c′ = c⊕
(

nε⊕
l=1

cl

)
.

5. A computes and sends b̂0 = b0 ⊕
(

nε⊕
l=1

bl,c′

)
and b̂1 = b1 ⊕

(
nε⊕
l=1

bl,1−c′

)
to

B.

6. B computes and returns b̂c ⊕
(

nε⊕
l=1

b′
l

)
.

The test in Step 3 of the protocol is to decide whether the syndrome sent by
A was valid: If the decoded word has Hamming distance larger than ψϕn′ to the
received string, then the syndrome was wrong.
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We briefly argue that the tests of Step 4 achieve their goals. Let y ∈ Y and

z
(y)
i,j =

{
0 if ql,i �= y

1 if ql,i = y.

When A sends only x1 and x2, we have for all y that

E

⎡⎣ nε∑
i=1

4n∑
j=1

z
(y)
i,j

⎤⎦ = 4n′
ε

PY =y|X=x1 + PY =y|X=x2

2

holds, i.e., B expects to see the “middle distribution” between PY |X=x1 and
PY |X=x2 for all y. Because of Theorem 1 and the choice of x1 and x2, A cannot
simulate this “middle point” using the forbidden symbols. Therefore, all she
can do is send other symbols in order to get as close as possible to the target
distribution, however, she cannot get closer than δ.

For the second test of Step 4 the idea is that the receiver calculates the overall
number of accepted symbols y1y2 and y2y1:

wi,j =

{
1 if rl,i = y1y2 or rl,i = y2y1,

0 otherwise.

Then,

E

⎡⎣ nε∑
i=1

2n∑
j=1

wi,j

⎤⎦ = 2pgn′
ε

holds, where pg is, as above, the probability to receive a good pair given that
x1x2 or x1x2 was sent. If the actual number of good pairs received is too low, A
must have used the incorrect pairs x1x1 or x2x2; hence, the receiver aborts.

Theorem 2 follows from Bernstein’s law of large numbers. Note, hereby, that
nε = [n1+ε] >

√
n′
ε =

√
n · nε.

Theorem 2. There exist constants ρ1 < 1, ρ2 < 1 such that when A does not
use the forbidden symbols then

Prob

⎡⎣ nε∑
i=1

4n∑
j=1

∣∣∣z(y)
i,j − 2n′

ε

(
PY |X=x1(yj) + PY |X=x2(yj)

)∣∣∣ > δ

2(|X | − 2)
nε

⎤⎦ < ρn1

holds, whereas, when she cheats nε times,

Prob

⎡⎣ nε∑
i=1

4n∑
j=1

∣∣∣z(y)
i,j − 2n′

ε

(
PY |X=x1(yj) + PY |X=x2(yj)

)∣∣∣ < δ

2(|X | − 2)
nε

⎤⎦ < ρn1

holds; if A does not use incorrect pairs, then we have

Prob

⎡⎣ nε∑
i=1

2n∑
j=1

wi,j < 2pgn′
ε −

2pg − 1
4

nε

⎤⎦ < ρn2 ,
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whereas, when she cheats nε times,

Prob

⎡⎣ nε∑
i=1

2n∑
j=1

wi,j > 2pgn′
ε −

2pg − 1
4

nε

⎤⎦ < ρn2 .

Finally, if A is honest, then the probability that more than ψϕn′ transmission
errors occur is exponentially small. Thus, an honest A is unlikely to fail the test
of Step 3, while a dishonest A who deliberately sends a wrong syndrome will be
detected with probability 1/2 if B picks this syndrome.

This concludes the analysis of the protocol, and, hence, the proof of our main
result.

5 Concluding Remarks

All computationally secure cryptography is based on assumptions on a possi-
ble adversary, and, hence, threatened by any progress in algorithm design and
computer engineering. Functionalities of central importance such as encryption,
authentication, or multi-party computation cannot, however, be realized in an
unconditionally secure way without any given information-theoretic primitive to
start from. In the case of oblivious transfer—as for encryption—, however, this
initial primitive can be as simple as noise, which is an inherent property of any
physical communication channel. More precisely, we have shown that OT can be
realized in an unconditionally secure way from almost any discrete memoryless
noisy channel. This result should be seen in the context of a number of recent
results with the common objective to realize cryptographic functionalities in an
unconditional way from simple primitives or weak assumptions.

A non-asymptotic analysis of the presented protocol — the concrete values
of failure probability depending on the number of channel uses — is out of scope
of this paper. Some non-asymptotic results for the particular case of BSC can
be found in [15].

We propose as open problems to realize string OT with non-zero rate in the
sense of [22]. A useful result in this context might be a generic reduction of
string OT to bit OT based on privacy amplification [4]. Another open problem
is to realize OT from more general channels, such as channels with memory,
or to give a complete characterization with respect to the use of general unfair
channels [11].
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7. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions. In: Proc. 29th Annual Symposium on the Foundations of Computer
Science. IEEE (1988) 42–52.
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Abstract. We present a realization of the transitive signature scheme based on 
the algebraic properties of bilinear group pairs. The scheme is proven secure, 
i.e. transitively unforgeable under adaptive chosen message attack, assuming 
hardness of the computational co-Diffie-Hellman problem in bilinear group 
pairs and the security of the underlying standard signature scheme under known 
message attack. Our scheme mostly conforms to previously designed schemes 
of Micali-Rivest and Bellare-Neven in structure; yet there are two 
contributions: firstly, we take advantage of bilinear group pairs which were 
previously used by Boneh, Lynn, and Shacham to build short signature 
schemes. Secondly, we show that a slight modification in previous definitions 
of the transitive signature relaxes the security requirement for the underlying 
standard signature from being secure under chosen message attack to being 
secure under known message attack; thus shorter and more efficient signatures 
can be chosen for the underlying standard signature. These two facts eventually 
yield to short transitive signatures with respect to both node and edge signature 
size. 

1   Introduction 

The concept of signature schemes with algebraic properties, later called homomorphic 
[12] or algebraic [11] signatures, was first introduced by Rivest in a series of talks 
[18]. These schemes allow an arbitrary entity to forge signatures on certain messages. 
Rivest mentioned that algebraic properties must not always be considered as a 
security threat for cryptosystems. For example, the multiplicative property of RSA 
function can be advantageous in certain applications. He also presented two design 
instances of such signature schemes: the prefix aggregation signature scheme and the 
transitive signature scheme. 

A transitive signature is a scheme for signing vertices and edges of a dynamically 
growing, transitively closed graph. Transitive closure is the property of including any 
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edge if there is a path between two vertices of the two ends of the edge. Depending on 
the graph, the transitive signature can be directed or undirected. The problem of 
finding a directed transitive signature is still a challenging open problem. Therefore, 
the term “transitive signature” is now being used in literature in case of “undirected 
transitive signature”. We will also use this notation through the paper. 

A transitive signature has the property that everyone can forge a valid signature on 
the edge AC of a graph, knowing the signatures of two edges AB and BC. This 
everyone does not need to have knowledge of the secret key at all. He/She just knows 
the public information. Since the graph itself is transitively closed, this property 
cannot be counted as a deficiency in security. Furthermore, Rivest showed that this 
property can “provide efficiency for prover and verifier” in comparison with the use 
of standard signatures [18]. One obvious advantage is that by using a transitive 
signature, one must sign only O(n) edges of a graph with size n in case of O(n2) 
standard signings [15]. 

To achieve another advantage, a transitive signature must have the property that 
the composed signature on the edge AC should be indistinguishable from the signature 
that could have been produced by the original signer on it. This allows the receiver of 
the signatures to reveal no extra information when presenting the composed signature 
on the edge AC to a third person. A distinguishable composed signature at least bears 
the information that some other node B is between nodes A and C. 

Micali and Rivest introduced the first provably secure (undirected) transitive 
signature scheme in [15]. Their scheme’s security is based on the infeasibility of 
solving the discrete logarithm problem. Later, Bellare and Neven introduced new 
schemes whose security proofs were based on the hardness of factoring and on the 
security of RSA under one-more-inversion [2]. More new schemes based on gap 
Diffie-Hellman groups also appear in the recent full version of their paper (See [3]). 

The security of many recently designed cryptosystems is based on hardness of the 
computational Diffie-Hellman and co-Diffie-Hellman problems in the so called Gap-
Diffie-Hellman (GDH) groups. A GDH group is a group in which decision Diffie-
Hellman (DDH) problem is easy, while computational Diffie-Hellman (CDH) 
problem is hard to solve. Signature schemes with provable security, both in random 
oracle and in standard model, are designed by Boneh et al. (See [7] and [8].) using 
bilinear maps in GDH groups. Also many other encryption schemes, signatures (plain, 
blind, proxy, ring, undeniable, group ...), key agreement protocols (plain, 
authenticated, group ...), access control, etc. have been constructed based on bilinear 
maps (See [1] and [14]). 

A bilinear map (See [6] for introduction.), also called pairing, is a mapping 
between groups in a way that is “consistent with the group structure of its arguments” 
[8]. In simple words, it is a mapping that has the linearity property with respect to 
both its arguments, i.e. there exists three operations , • , and ∗  such that for every g, 
h, x, and y we have 

( ) ( ) ( )xhexgexhge ,,, ∗=  and ( ) ( ) ( )ygexgeyxge ,,, ∗=• . 

This property yields to some useful algebraic properties. Joux and Nguyen showed 
that an efficiently-computable bilinear map e provides a polynomial time algorithm 
for solving the decision co-Diffie-Hellman problem [13]. 

In this paper, we construct a transitive signature from bilinear maps and prove it 
secure under conventional security assumptions of such maps. 
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Our Contributions: The main valuable property of our design of the transitive 
signature scheme is that the signature size on a graph is shorter than those of 
previously designed transitive signatures. Short transitive signatures are useful to 
shorten the total graph signature size, and this will be vital especially when the size of 
the graph itself grows too big. It is also apparent that this occurs in many applications 
where it is needed to transmit a big graph, as graphs themselves are used to simplify 
understanding large amounts of information. 

Our transitive signature is shorter than previous ones in two ways. Firstly, since 
we use bilinear group pairs to sign edges of a graph in our design as Boneh et al. did 
to design short signatures, all the discussions on how short the signature could be are 
still applicable here for edge signatures. For the detailed information, refer to the 
original paper [7]. Secondly, we propose a slightly modified new definition for 
transitive signatures, which relaxes the choice of the underlying signature scheme, 
making it more efficient in sense of signing and verification cost as well as signature 
length than many conventional signatures. This fact makes the signature on the nodes 
of the graph shorter and more efficient. We achieve this by showing that the security 
requirement for the underlying standard signature in our design is just being secure 
under known message attack, rather than adaptive ([3], [15]) or non-adaptive [19] 
chosen message attack for other schemes. Since both edge and node signature size are 
made shorter than previous schemes, eventually a very short transitive signature on 
the whole graph is resulted in! 

Organization of the Paper: Section 2 is allotted to notations and definitions: In 2.1 
we fix the notations we will use through the paper; 2.2 fetches the definitions of the 
transitive signature schemes and their security. In 2.3 we define the bilinear maps, 
bilinear group pairs, and their security assumptions. Finally in Section 3 a transitive 
signature is built using bilinear maps and also proven secure. The concluding 
remarks, acknowledgements, and references are followed then as usual. 

2   Notations and Definitions 

A review of notations and definitions used in the paper follows. We will give a 
mixture of the definitions of transitive signatures presented in [15], [2], and [16], 
which are all fundamentally the same. Then we will go through bilinear maps and 
define bilinear group pairs, as in [8]. 

2.1   Notations 

All graphs in this paper are undirected. We will use small letters such as i, j, k for the 
nodes and a concatenation of two small letters (which are the two endpoints of an 
edge) such as ij, jk for the (undirected) edges of the graph. We will use  for all 
signatures on both nodes and edges. The signature on a node i is shown as i and a 
signature on an edge ij is shown as ij. The expression  

Ss
R

←  
means that a member s is randomly chosen from set S. The italic letter Z represents 
the set of integer numbers and hence 

pZ  and ∗
pZ  
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are used for the additive and multiplicative groups modulo p. We also show the group 
operation with two operands g and h by g · h or simply by gh (as in multiplicative 
groups), and by g / h we mean the group operation done with the first operand and 
inverse of the second one (also, as in multiplicative groups). 

2.2   Transitive Signature Schemes 

Since, as formerly said, transitive signatures are schemes to authenticate transitively 
closed graphs. We first review the definition of transitive closure property in graphs. 

Transitive Closure of a Graph [15]: Transitive closure of a graph G = (V, E) is the 
graph G* = (V, E*), such that (i,j) is an edge of G* if and only if there is a path from i 
to j in G. If G = G*, then we say that the graph G is transitively closed. 

Standard Signature Scheme [10]: As a well-known definition, a standard signature 
scheme is a tuple of three algorithms SS = (SKeyGen, SSig, Sverify) for key 
generation, signing and verifying. A pair of public and secret keys are generated as 
(SPK, SSK)  SKeyGen(1k) and the signature is generated as   SSign(SSK, m) for 
a message m and verified valid as true  SVerify(SPK, m, ). The signature is said 
to be secure against known message attack if no polynomial time adversary can forge 
a valid signature on a new message, knowing a list of message-signature pairs for 
some random messages, except with negligible probability in the security parameter k. 
Here, new message means a message not in the list the adversary is provided with. 
We denote the probability that adversary F' succeeds in forging a new message-
signature pair for the standard signature SS through a known message attack by 

( )kAdv kmauf
FSS

−
′, . 

We also call the maximum advantage among all adversaries, polynomial time in k, 
the insecurity function of the standard signature SS through a known message attack 
and denote it by 

( )kInSec kmauf
SS

− . 

SS is called secure under known message attack if and only if this function decreases 
faster than any polynomial in k. 

Transitive Signature Scheme ([16] and [2]): An (undirected) transitive signature 
scheme, which utilizes a standard signature scheme SS = (SKeyGen, SSign, SVerify), 
is a tuple of six algorithms TS = (KeyGen, NCert, ESign, VCert, EVerify, Comp) such 
that: 

• The algorithm KeyGen is the probabilistic key generation algorithm. It takes as 
input 1k, where k is the security parameter, and calculates a pair (PK, SK) 
consisting of a master public key and a matching secret key. It also calculates a 
matching key pair (SPK, SSK) for the standard signature using SKeyGen algorithm. 
At last, it outputs the pair ( (PK, SK) , (SPK, SSK) ). 

• The node certification algorithm NCert, can be stateful, randomized, or both. It 
takes as input the master secret key SK, the standard signature secret key SSK, and 
a node number n, and produces a node name i and a pair (pki, ski) consisting of a 
public key (label) and a matching secret key (label) for node i. It then produces a 
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signature i using SSign algorithm with signing key SSK and some message related 
to i and pki. The algorithm finally outputs (i, (pki, ski), i). 

• The edge signing algorithm ESign, which could be stateful, randomized, or both, 
takes as input the master secret key SK, two nodes i and j, and the corresponding 
secret keys of the nodes ski and skj, and either computes a value called an original 
signature on edge ij, namely ij, or fails. 

• The deterministic certificate verification algorithm VCert, takes as input the 
standard public key SPK and the node certificate (i, pki, i), checks the validity of 
the node certificate using algorithm SVerify with verification key SPK and returns 
the validity as a Boolean value. 

• The deterministic edge verification algorithm EVerify, taking the master public key 
PK, two node public keys pki and pkj, and a candidate signature ij as input, returns 
a Boolean value representing the validity of ij as a signature of edge ij relative to 
the public keys. 

• The deterministic composition algorithm Comp, given as input the master public 
key PK, three node public keys pki, pkj and pkk, and two signatures ij and jk on 
nodes ij and jk, either returns a value ik as a signature on node ik or fails. 

This definition resembles the definitions of [15] and [2] in structure. We also used 
the ideas of [16]. The paradigm of node certification is used for the public node keys 
to be brought to others authenticated. By verifying the node certificate to be valid, one 
can obtain an authenticated message from the original signer saying: “Public key of 
node i is pki.” To prove that an edge is in the signed graph, one has to present an 
integrated signature of an edge containing the certificates of its endpoints plus the 
edge signature and verification of the integrated signature involves verifying both 
parts. This issue seems to be uncovered in the definition of [16]; therefore we use a 
mixed definition of [2] and [16], which follows. 

It is worth to mention the modification we made in previous definitions. Here, in 
our definition, we omitted the input i to the node certification algorithm and let the 
algorithm to choose the node name itself. We later show that by choosing i randomly, 
the relaxation in the security requirement for SS can be achieved. Besides, we know 
that the algorithm NCert is run when the original signer wants to add a new node to 
the signed graph or wants to recall a certificate. In such a time, there is no difference 
for the signer what the node name will be. Therefore our modification does not 
deprive the signer of an important capability, while providing the advantage of short 
node signatures. 

Correctness of Transitive Signature Schemes [2]: As any signature scheme, an 
original signature is required to be valid with respect to its relative public keys. 
Furthermore the composition algorithm is required to always produce a valid 
signature, given as input two valid signatures, either original or composed ones. 

Privacy of Transitive Signature Schemes: As stated before, to provide privacy, a 
valid composed signature must be indistinguishable from a valid original signature on 
the same edge, which could have been produced by the master signer [15]. This 
allows using composed signatures as the original ones. In transitive signature schemes 
whose ESign algorithm is deterministic, being indistinguishable reduces to being the 
same. This means that the composed signature must be equal to the original signature 
which could have been produced by the master signer. 
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Security of Transitive Signature Schemes ([15], [2], and [16]): A transitive 
signature scheme TS is called transitively unforgeable under adaptive chosen message 
attack if the advantage in attacking the scheme is negligible for any adversary F 
whose running time is polynomial in the security parameter k. The advantage of the 
best adversary is also known as insecurity function and is denoted by 

( )kInSec acmatu
TS

− . 

The advantage of F in its attack on TS is the function defined as 

( ) ( )[ ]1Pr ,, == −− kExpkAdv acmatu
FTS

acmatu
FTS , 

where the probability is taken over all the random choices made in experiment. 
Associated to every transitive signature TS = (KeyGen, NCert, ESign, VCert, 

Verify, Comp), adversary F, and security parameter k is an experiment, denoted 

( )kExp acmatu
FTS

−
, , 

that returns 1 if and only if F is successful in its attack on the scheme and 0 otherwise. 
The experiment begins by running KeyGen on input 1k to get key pair (PK, SK). It 
then runs F, providing this adversary with input PK and oracle access to the function 
ESign(SK, ·, ·, ski, skj), i.e. it can ask to add any new edge ij of its choice to the graph 
and have the signature ij on it. Besides, F has a certain kind of limited oracle access 
to function NCert(SK, SSK, ·) such that it cannot have access to the part of algorithm 
output representing the node secret key, i.e. it can query the oracle on any node 
number n and have only the node name i, the public node key pki and the node 
signature i. In other words, the adversary can ask to add any new node to the graph 
and have the certificate (i, pki, i) on it. Eventually, F will output i', pk'i', j', pk'j' and 
values 'i', 'j', and 'i'j'. Let E be the set of all edges such that F made oracle query to 
ESign(SK, ·, ·, ski, skj), and let V be the set of all nodes which are endpoints of edges 
in E. We say that F wins if 

VCert(i', pk'i', 'i') = true, 
VCert(i', pk'i', 'i') = true, 

EVerify(PK, pk'i', pk'j', 'i'j') = true, 

and yet the edge i'j' is not in the transitive closure of the graph G = (V, E). The 
experiment returns 1 if F wins and 0 otherwise. 

2.3   GDH Groups, Bilinear Maps and Bilinear Group Pairs 

Let us first review the formal definitions and notations of the well-known Diffie-
Hellman problems. Resembling [7], we use the following notations: G1 and G2 are 
two (multiplicative) cyclic groups of prime order p, with respective generators of g1 
and g2. By  we mean an isomorphism from G2 to G1 with (g2) = g1. The definitions 
are simplified versions of those in [7]. 

Computational co-Diffie-Hellman (co-CDH) on (G1, G2): Given g2, g2
a in G2 and h 

in G1, compute ha in G1. 
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Decision co-Diffie-Hellman (co-DDH) on (G1, G2): Given g2, g2
a in G2 and h, hb in 

G1, decide whether a = b or not. When a = b we call (g2, g2
a, h, hb) a (valid) co-Diffie-

Hellman tuple. 

When G1 = G2 these problems reduce to standard CDH and DDH problems. The 
advantage of an algorithm A in solving the co-CDH problem on (G1, G2) is defined as 
the probability that A solves the problem correctly given a random instance of the 
problem specified by a randomly chosen pair for a and h. The probability is taken 
over the coin tosses of A and the random choices of a and h. We show this probability 
by 

CDHco
AAdv − . 

The maximum advantage among all polynomial time algorithms solving co-CDH 
problem is also called insecurity of co-CDH and is denoted by InSecco-CDH. Co-CDH 
is called hard if and only if its insecurity is negligible. 

Co-GDH Group Pair: The group pair (G1, G2) is called a Gap co-Diffie-Hellman 
group pair if it satisfies the following properties: 

1. The group operation on both groups and the map  can be computed in one time 
unit. 

2. The co-DDH problem on (G1, G2) can be solved in one time unit. 
3. The co-CDH problem is hard on (G1, G2). 

In the above definition, if G1 = G2, then G1 is said to be a GDH group. 

Bilinear Maps: A function e: G1 × G2  GT, where |G1| = |G2| = |GT|, is bilinear if 
it satisfies the two properties: 

1. For every u in G1 and every v in G2, and all integers a and b, e(ua, vb) = e(u,v)ab. 
2. e is non-degenerate, i.e. e(g1,g2)  1. 

Bilinear Group Pair: Two order-p groups (G1, G2) are called a bilinear group pair if 
they satisfy the following properties: 

1. The group operation on both groups and the map  can be computed in one time 
unit. 

2. A group GT of order p and a bilinear map e: G1 × G2  GT exist and e is 
computable in one time unit. 

3. The co-CDH is hard on (G1, G2). 

Joux and Nguyen [13] showed that an efficiently computable bilinear map e 
provides an algorithm for solving the co-DDH problem as follows:  

( ) ( )22 ,,mod gheghepba ba =⇔= . 

As a consequence, if two groups are a bilinear group pair, then they are also a co-
GDH group pair. The converse is probably not true [7]. 
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3   A Transitive Signature on Bilinear Group Pairs (BGPTS) 

We present a transitive signature scheme, based on the BLS signature ideas, that 
works in bilinear group pairs. We assume that we have a standard signature scheme 
SS = (SKeyGen, SSign, SVerify), whose message space is the set of all strings made 
by concatenating a member of the definite set of all node names with a member of the 
group G1. We construct the transitive signature scheme, using this standard signature 
and a bilinear group pair (G1, G2). At last, we prove our transitive signature scheme 
transitively secure under chosen message attack. 

Let the bilinear group pair generator GBGP as a randomized polynomial time 
algorithm that on input 1k, where k is the security parameter, generates a bilinear 
group pair (G1, G2), where |G1| = |G2| = p(k) and the insecurity of the co-CDH 
problem on (G1, G2) is the amount InSecco-CDH(k). It is obvious that for the group pair 
to be a bilinear one, this function must decrease faster than any polynomial in k. The 
formal description of the transitive signature BGPTS follows: 

• The key generation algorithm KeyGen, takes an input 1k, runs GBGP on this value, 
and obtains the bilinear group pair (G1, G2). It then picks a random member of Zp(k), 
namely SK, and computes PK  g2

SK. The algorithm also runs SKeyGen on input 
1k to obtain a key pair (SPK, SSK) for the standard signature. At last, the algorithm 
outputs the group pair (G1, G2), the master key pair (PK, SK), and the standard key 
pair (SPK, SSK). 

• The node certifications algorithm NCert maintains state NodeList, where NodeList 
is a list containing the set of all so-far queried nodes, their secret and public node 
keys (labels), and their signatures. On input SK, SSK, and node number n, the 
algorithm checks if n is on the list. If so, it outputs the corresponding node name, 
secret node key, and public node key and the corresponding node signature from 
NodeList. Otherwise, it picks a random member of the set of all node names, 
namely i, and also picks a random member of G1, namely ski. The algorithm then 
computes pki  ski

SK and runs SSign on inputs SSK and the message i || pki and 
obtains i. The algorithm then outputs the node name i and the pair (pki, ski) as the 
matching public and secret node keys followed by the node signature i. 

• The edge signing algorithm Esign takes as input ski and skj and simply outputs 

jiij sksk←σ . 

• The certificate verification algorithm VCert, on input (i, pki, i), runs SVerify and 
outputs SVerify(SPK, i || pki , i). 

• The verification algorithm EVerify, takes as input PK, pki, pkj, and a candidate 
signature ij and verifies that 

( )jiij pkpkPKg ,,,2 σ  

is a (valid) co-Diffie-Hellman tuple. If so, it returns true; if not, returns false. 
• The composition algorithm Comp, given as input ij and jk, computes and outputs 

the value ik  ij · jk. 

Note that, sometimes, it is needed to have ij, and sometimes ji to compose 
signatures correctly. Yet since they are inverses of each other and inversion in the 
multiplicative group G1 can be made in polynomial time, the transformations ij  ji 
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are both feasible. Therefore, these transformations are omitted from the descriptions 
of the algorithms. 

Eliminating State: As proposed in [2], state NodeList can be eliminated through 
using a pseudorandom function. The master secret key could include a key K to 
specify an instance FK from a pseudorandom function family F. Then the signer does 
not need to save anything. He/She just uses FK(i) for all the coins needed for the node 
name and the node keys. 

Correctness: It is easy to see that any original signature ij produced by the master 
signer leads to a true output by the verification algorithm. On the other hand, any 
composed signature of two valid (original or composed) signatures leads to the same 
output in verification. The proof is up to the reader! 

Privacy: The ESign algorithm of BGPTS scheme is deterministic. As the composed 
signature in BGPTS scheme is the same as the signature that could have been 
produced by the master signer, the privacy property requirement for the signature 
scheme is met. 

Security: As an intuition, it is worth to see that a verifier of a signature ij faces a co-
DDH problem instance in a bilinear group pair, which is assumed to be easy. On the 
other side is a forger of the signature. If it wants to forge a signature on an edge, one 
of whose endpoints is not certified so far, it faces the problem of forging a valid 
signature for the standard signature scheme, which is infeasible by the assumption of 
the standard signature’s security. Otherwise, it faces the problem of forging a 
signature on an edge whose endpoints are both certified by the master signer. In this 
case, it knows three arguments out of four of a tuple, namely g2, PK, and pki / pkj, and 
it wants to compute ij so as the tuple be a valid Diffie-Hellman tuple. This is, 
obviously, a co-CDH problem instance in a bilinear group pair, which is assumed to 
be infeasible. The following theorem states that the BGPTS is transitively secure 
assuming that underlying primitives are flawless. Our method for proving the security 
of BGPTS is partly similar to Coron’s method for proving that of FDH scheme in [9]. 

Security Theorem: The BGPTS scheme described above is transitively unforgeable 
under adaptive chosen message attack, assuming that GBGP produces a bilinear group 
pair and standard signature scheme SS is unforgeable under known message attack. 
More precisely, if the most advantageous adversary asks a maximum of q' queries 
from the node certification oracle and a maximum of q queries from the edge signing 
oracle in attacking BGPTS, we have 

( ) ( ) ( ) ( )kInSeckInSeckInSecq acmatu
BGPTS

kmauf
SS

CDHco −−− ≥+⋅⋅1exp , 

where k is the security parameter of the transitive signature input to the key 
generation algorithm. Furthermore, if we denote the running time of SSign and Esign 
algorithms by tSSign and tESign and that of the best adversaries attacking BGPTS, SS, 
and co-CDH by tBGPTS, tSS, and tco-CDH, we have 

( ) ( ) ( ) ( )( ) ( ){
( ) ( )( ) ( )}.

,max
3

3

ktqkpOqkt

ktqkpOqqktkt

ESignSS

SSignCDHcoBGPTS

⋅−⋅′−

⋅′−⋅+′−≥ −
 

Proof Sketch: We will prove the security by reduction as follows. Given any 
polynomial time forger F for BGPTS asking at most q queries from the edge signing 
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oracle, We will show how to use F to construct two algorithms: An algorithm A to 
solve the co-CDH problem in (G1, G2) and a forger F' breaking the underlying 
standard signature SS through a known message attack, such that 

( ) ( ) ( ) ( )kAdvkAdvkAdvq acmatu
FBGPTS

kmauf
FSS

CDHco
A

−−
′

− =+⋅ ,,α , 

( ) .

1
1

1

1
 where

1
q

q

q
q

⋅

+
−

= +α  

We must show that (q) is bounded by a polynomial in q, and hence the 
coefficient  (q) grows polynomially in q, however the advantage of A in solving co-
CDH decreases faster than any polynomial in k. This means that controlling k, we can 
keep the advantage of the adversary attacking BGPTS sufficiently low. 

Note that we have  

,

1
1

1

1
lim

1
e

q

qq
=

+
−

+∞→

 

therefore (q) can be bounded linearly in q, i.e. (q) = O(q). 
Since there could be more efficient ways to construct algorithms A and F', the 

equation 

( ) ( ) ( ) ( )kInSeckInSeckInSecq acmatu
BGPTS

kmauf
SS

CDHco −−− ≥+⋅⋅1exp  

is proven for large q. 
The full description of how the two algorithms A and F' are constructed comes in 

the full proof of the security theorem in the appendix. We just mention that in the 
proof, techniques of proving security in [2], [7], and [9] are mixed together. 

As in [2], we show that signatures for BGPTS can be forged in only two ways: 
either there is the forgery that “recycles node certificates from previously issued 
signatures”, or there is the forgery that “includes at least one new node certificate”. 
We will show that the former type of forgery leads us to solve a certain co-CDH 
problem with a certain probability of success, while a forgery of the latter type can be 
easily transformed to an attack on SS: the new node certificate is a valid forgery for 
SS, as it contains a standard node signature that was not produced by the original 
signer before. 

In simulating NCert algorithm, when algorithm A is answering oracle queries 
made by F, we use the technique of [7]. We simply embed the h argument of our co-
CDH instance in some simulated node public keys, while choosing other simulated 
node public keys randomly. We call the former type of nodes h-node and the latter 
non-h-node. Then, similar to [7] again, A can answer F’s ESign oracle queries only 
when the edge endpoints are nodes of a type, and succeeds in solving the co-CDH 
instance it has only when the edge endpoints of the forgey provided by F are nodes of 
different types. 

To get the best success probability in our attack, we use the technique of [9]. We 
just embed the h argument in simulated node public keys with a certain probability p0, 
and choose other simulated node public keys randomly with probability 1 – p0. This 
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leads us to maximize A’s success probability and hence optimize the security by 
carefully selecting p0 with respect to q. The function (q) is originally an optimized 
version of a function of two arguments q and p0 minimized with respect to p0. 

As a time domain analysis, since both tSS and tco-CDH grow faster than any 
polynomial in k, assuming the standard signature secure and the co-CDH problem 
hard, the time complexity for the best adversary attacking BGPTS also grows faster 
than any polynomial in k, for the reason that other subtractive terms in the time 
complexity equation above are polynomial in k. 

We refer the reader to the appendix of this paper for the full description of the 
proof. 

Eliminating Node Certification via Hashing: As stated comprehensively in [2], 
node certification brings us the disadvantages of “increasing the signature size as well 
as the computational cost for signing and verifying”. Resembling [2], we can 
eliminate node certificates by specifying the public key of the node i via the output of 
a hash function by 

( )iHpki i ←||  

and then setting 
SK

ii pksk 1← . 

This provides an “implicit authentication” [2] of node public keys, i.e. there is no 
need for the original signer to certify nodes anymore. As a consequence, the node 
certification algorithm collapses to node key generation and the certificate verification 
algorithm will no more exist. This means that there will be no further need for the 
standard signature to sign node public keys and verifying them. Fully-described 
changes in BGPTS are routine and similar to [2] and therefore are omitted here. It is 
just worth to state that the security of the new scheme relies on the hardness of the co-
CDH problem in bilinear group pairs, in the so called random oracle model (ROM). 
In this model, hash functions are viewed as random functions (See [4] and [5] for 
further on ROM.). 

4   Conclusions 

We have constructed a short transitive signature scheme from bilinear maps whose 
security is proven under reasonable assumptions, such as hardness of the 
computational Diffie-Hellman problem and existence of secure standard signatures. 
Shortness of an edge signature is due to the fact of using bilinear group pairs with 
small representations and that of a node signature is due to the fact of using signatures 
which are required to be secure only under known message attack. These two, 
eventually, yield to a very short signature on the whole graph, which is very probable 
to have a big size in everyday applications. This fact, finally, results in a lower 
amount of communication traffic load. 
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Appendix: Proof of Security Theorem 

Suppose we are given a feasible forger F for BGPTS. We will show how to use F to 
construct an algorithm A to solve the co-CDH problem in (G1, G2) and a forger F' 
breaking the underlying standard signature SS through a known message attack, such 
that 

( ) ( ) ( ) ( )kAdvkAdvkAdvq acmatu
FBGPTS

kmauf
FSS

CDHco
A

−−
′

− =+⋅ ,,α , 

where q is the number of ESign queries F makes during its attack on BGPTS and 

( ) .

1
1

1

1
1 q

q

q
q

⋅

+
−

= +α  

Note that for every q we have  
( ) qqq 42 ≤< α . 

Hence, the forger’s advantage grows linearly in q, but it descends faster than any 
polynomial in k. Therefore is proven the security of BGPTS. 

Algorithm A performs as follows: given g2, u = g2
a in G2 and h in G1 as input, it 

computes ha in G1. It maintains state State in which it saves the data it will need later 
through the algorithm run, such as queries made by F and A’s corresponding answers. 
Using this state A can simply answer repeated queries by repeated answers and just 
calculate answers to new queries. It first generates a fresh key pair (SPK, SSK) for SS 
using the algorithm SKeyGen. Then It computes v = (u), which will be used later. 
Note that since  is assumed to be an isomorphism, we have: 

( ) ( ) ( ) aaa ggguv 122 ==== ψψψ . 

Then the algorithm A runs F on input PK = u · g2
r = g2

a+r, where r is chosen 
randomly from Zp by algorithm A. Now F will start its ESign(SK, ·, ·, ski, skj) and 
NCert(SK, SSK, ·) oracle queries. As A does not know SK it cannot answer the queries 
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by simply running the ESign and NCert algorithms. Therefore it will simulate these 
two algorithms as follows. 

On an NCert(SK, SSK, ·) query for adding a new node n and certifying it, 
algorithm A first chooses a random node name i from the set of all node names and a 
random bi from Zp. Then it produces a random coin }1,0{∈ic , where ci = 0 with 

probability p0 and ci = 1 with probability 1 – p0. The value p0 is a fixed probability 
chosen to get a better reduction (idea from [9]) and will be determined later in this 
paper. If ci = 0 it sets ib

i ghpk 1⋅← . Otherwise it sets ib
i gpk 1← . At last it answers to 

the query by outputting three values representing the name i, the public key pki and 
the certification signature i = SSign(SSK, i || pki) of the corresponding node. It also 
saves the values i, bi, and ci for the node n by updating its state State. Note that since 
bi is random, both ibgh 1⋅  and ibg1

 are randomly distributed over G1 and are 

indistinguishable for the algorithm F from each other and from a real public node key 
which could have been produced by a real signer. Therefore the simulation is flawless 
and also F has no idea what ci could be for a node i. 

Before we describe how to simulate answers to ESign queries, we introduce a 
notation we will use in the description. We simply call a node i an “h-node” if ci = 0 
and call it a “non-h-node” otherwise. We also assume that when the algorithm F 
queries its ESign oracle on the edge ij it has already queried its NCert oracle on nodes 
named i and j for their certificate. This assumption can be justified since any node 
name i and the corresponding node keys are chosen independently. Moreover the edge 
signature is also independent of any single node key. As a result, if at least one of the 
nodes is not queried before for its certificate, the answer to the ESign query will be 
just a random value independent of other things F knows and will be of no use for it. 

On an ESign(SK, ·, ·, ski, skj) query for signing the edge ij of the graph, Algorithm 
A looks in State to recognize one the two possible cases bellow: 

1. If i and j are nodes of a type, i.e. both are non-h-nodes or both are h-nodes, then A 

simply answers the query as ( ) ji bbr
ij gv

−
⋅= 1σ . 

2. If one of i and j is an h-node and the other one is a non-h-node, then A reports 
failure and terminates. 

Note that in the first case we have: 

( ) ( ) ( ) rabbbbrabbr
ij

jijiji ggggv
+−−−

=⋅=⋅= 1111σ  and ji bb

ji gpkpk
−= 1 . 

Hence the tuple (g2, PK = g2
a+r, pki / pkj, ij) is a valid co-Diffie-Hellman tuple and ij 

is a valid signature for edge ij. Therefore the simulation works properly. 
Finally F will output a forgery including i', pk'i', j', pk'j' and values 'i', 'j', and 'i'j'. 

A will use this output to solve the co-GDH problem, assuming that F manages to win, 
i.e. manages to forge valid signatures. More precisely, let E is the set of all edges such 
that F made an ESign oracle query on, and let V be the set of all nodes which are 
endpoints of edges in E. Winning for F means that: 

1: VCert(i', pk'i', 'i') = true, 
2: VCert(i', pk'i', 'i') = true, 

3: EVerify(PK, pk'i', pk'j', 'i'j') = true, 
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and yet 4: the edge i'j' is not in the transitive closure of the graph G = (V, E). 

We call these statements 1, 2, 3, and 4, respectively. The statement 3 
specifically means that (g2, PK = g2

a+r, pk'i' / pk'j', 'i'j') is a valid co-Diffie-Hellman 
tuple, i.e. 

( ) ra
jiji kpkp +
′′′′ ′′=′σ . 

Algorithm A now checks that if the node public keys returned by F match those it 
produced itself or not, i.e. it checks the statements 5 introduced bellow: 

5: pk'i' = pki' and pk'j' = pkj'. 

If 5 is not true Algorithm A reports failure and terminates. Otherwise, it checks 
State to find out if i' and j' are nodes of a type. If so, A reports failure and terminates. 
Otherwise, there are two possibilities: 
1. i' is an h-node and j' is a non-h-node. In this case, as we have: 

( ) rabb
ji

ji ggh
+

′′
′′⋅=′ 11σ . 

So A simply computes and outputs ha as: 
( )( )bbbrr

ji
a vghh ji ⋅⋅′= ′′ −

′′ 1σ . 

2. i' is a non-h-node and j' is an h-node. In this case, as we have: 

( ) rabb
ji

ji ghg
+

′′
′′ ⋅=′ 11σ . 

So A simply computes and outputs ha as: 
( )( ) ( )ji

rbbbra hvgh ji

′′
− ′⋅⋅= ′′ σ1 . 

For calculating the success probability of the algorithm A, we observe that it 
succeeds whenever it does not report failure. First, if F asks q queries from its oracle 
ESign, algorithm A can answer all the q queries with probability [p0

2 + (1- p0)
2]q. This 

is true for the reason that, in each query, two nodes i and j are both h-nodes with 
probability p0

2 and are both non-h-nodes with probability (1- p0)
2. Secondly, F will 

succeed in case that the nodes i' and j' are of two different types. The probability that 
this occurs is 2 p0 (1- p0). In these calculations we used the fact that simulation is 
correct, i.e. h-nodes and non-h-nodes are indistinguishable. 

Finally, by defining (q, p0) = 2 p0 (1- p0) [p0
2 + (1- p0)

2]q, we can calculate the 
advantage of algorithm A with respect to the advantage of algorithm F as follows: 
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Algorithm F' is given SPK as input and a list of random messages and 
corresponding signatures. It will perform a known message attack on SS using F as a 
subroutine. Its goal is to eventually output a message-signature pair, where the 
signature is a valid signature for the message with respect to SPK and yet the message 
was not on the message-signature list provided for the adversary. 

The algorithm F' first runs the algorithm KeyGen of the transitive signature to 
obtain a pair of keys (PK, SK). It then runs F on input PK and answers the queries of 
F to the oracles ESign(SK, ·, ·, ski, skj) and NCert(SK, SSK, ·) as follows: 

On an NCert(SK, SSK, ·) query n, F' first chooses the n-th entry in the message-
signature pair list. It then parses the corresponding message as i || pki. Afterwards, it 
computes ski as 

SK
ii pksk 1← . 

It also sets the corresponding signature as i. Note that as messages in the message-
signature pair list are randomly chosen, both i and pki are random and hence is ski. 
Therefore, the simulation works correctly. Moreover, the probability that the node 
name is repeated in the list is a small constant value and we do not take it into 
account. The reason is that the size of the set of all node names is constant and 
independent of the security parameter k. 

On an ESign(SK, ·, ·, ski, skj) query on edge ij, assuming that F has previously 
queried the two certificates on both nodes, F' looks i and j up in the message-
signature pair list and finds the corresponding public and secret node keys. Now, 
since F' knows SK, ski, and skj, it simply runs the ESign algorithm of the transitive 
signature scheme and provides the output ij as the answer to the query. 

Eventually, F outputs a forgery including i', pk'i', j', pk'j' and values 'i', 'j', and 
'i'j'. Assuming that F wins, i.e. the statements 1, 2, 3, and 4 are all true, F' checks 

that if the node public keys returned by F match those it produced itself or not, i.e. it 
checks the statements 5. If 5 is true Algorithm F' reports failure and terminates. 
Otherwise, at least one of pk'i',  pk'j' was not certificated by F' before. In other words, 
at least one of i' || pk'i' and j' || pk'j' is not a message in the message-signature pair list. 
Therefore, at least one of the signatures 'i' and 'j' must be a forgery, and is obviously 
a valid one because 1 and 2 are both true. Hence, all F' has to do is to test whether 
the string i' || pk'i' is not a message in the list and output (i' || pk'i' , 'i') as a new 
message-signature pair representing forgery if so, or output (j' || pk'j' , 'j') otherwise. 

Algorithm F' succeeds whenever all the statements 1, 2, 3, and 4 are true, but 
5 is not true. This fact yields to the calculation bellow: 
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By eliminating the repeating term in the two calculations we did for the success 
probability of A and F', we will simply reach the equation: 
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To optimize the security, we must maximize the function (q, p0) by properly 
selecting p0 with respect to a given q. Let’s rewrite (q, p0) as: 
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Defining p1 = 2 p0 (1-p0) we have 

( ) ( )qpppq 111 1, −=β . 

The above function is maximized as below: 
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Now (q) is defined and computed as 
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which is the result we were seeking. 
The running time of A equals that of F plus one exponentiation and one SSig 

algorithm run for every NCert query plus one exponentiation for every ESign query, 
i.e. 

( ) ( ) ( )( ) ( )( ) ( )( )kpOqktkpOqktkt SSignFA
33 ⋅++⋅′+= , 

for that there are at most q' NCert queries and at most q ESign queries and modular 
exponentiation time complexity is cubic in group size. 

The running time of F' equals that of F plus one exponentiation for every NCert 
query plus one ESign algorithm run for every ESign query, i.e. 

( ) ( ) ( )( ) ( )ktqkpOqktkt ESignFF ⋅+⋅′+=′
3 , 

for that there are at most q' NCert queries and at most q ESign queries. 
Since there could be more efficient ways to construct algorithms A and F', the 

claimed equation for the time complexity is proven. 
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Abstract. We propose a new group signature scheme that simultane-
ously provides the following two properties : (1) the membership author-
ity is able to add a user but not to identify an actual signer, while the
tracing authority is able to identify the actual signer but not to add a
user, (2) for further decentralization, these two authorities are respec-
tively distributed among multiple entities in a manner efficient enough
for practical applications. Previous group signature schemes have only
offered one or the other of these two properties. Further, we formalize
the security properties

1 Introduction

A group signature scheme, first proposed by Chaum and van Heyst [8] and
followed by [7, 6, 1, 2], allows a group member who has registered with the group
to sign messages on behalf of a group without revealing his own identity. One
notable feature of the group signature scheme is the existence of an authority that
can identify this actual signer. In recent group signature schemes, this authority,
known as a group manager, also had the ability to add a user to a group. Such
centralization of power in a single entity, however, was considered undesirable.

To solve this problem, Kilian and Petrank proposed in [11] to separate these
roles into a membership manager, who would add new members to a group, and
a tracing manager, who would identify actual signers. Many similar separate-
role group signature schemes [6, 1] followed. We believe that it is even more
preferable if the capabilities of the membership manager and the tracing manager
can be efficiently distributed, respectively. In this sense, the schemes in [6, 1]
do not meet our goal, as the secret keys used by the membership manager in
these schemes are based on RSA. Namely, in case the RSA-based scheme is
used, authorities should collaboratively generate an RSA modulus in a setup
process with its prime factors kept secret to all the authorities, which would
not be efficiently computable. Moreover, in a process of member addition, it
would take large computation for distributed membership managers every time
a new user is added. By way of contrast, in the scheme proposed in [2, 12], the
secret key for adding a new member is a discrete logarithm of a public key.
Therefore the approach of [2, 12] seems promising because distribution could be
efficiently executed by using the method proposed in [15]. Unfortunately, the
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group signature scheme as is presented in [2] does not achieve separation of
the membership manager and the tracing manager since, in the scheme in [2], a
resulting group signature contains the value which is the output of a deterministic
function. Then, those who knows all membership certificates can identify the
actual signer of the group signature from the value even if they do not know secret
information for tracing. Thus, the scheme in [2] does not achieve separation of
authorities. As to [12], the proposed scheme turns out to be insecure 1. Therefore,
none of the scheme suites for separation and distribution of the authorities, and
the scheme that achieves separation of the above two authorities and distribution
of both capabilities is desired.

In this paper, we give a first group signature scheme that achieves both sep-
aration and efficient distribution of the membership manager and the tracing
manager. In our scheme, the membership manager uses the Nyberg-Rueppel
signature scheme [13] to provide a group member with the ability to create a
group signature, and the tracing manager uses the ElGamal cryptosystem to
trace the actual signer. Both of these primitives are well-suited to distributed
computations, and authority-distribution on our scheme carried out efficiently.
Moreover, in our proposed scheme, a signer creates a perfectly hiding commit-
ment of a membership certificate instead of a deterministic function in [2]. This
prevents the membership manager from identifying the signer from the signature,
thus separation is achieved. The price we pay for simultaneously achieving sepa-
ration and distribution is the increase in signature length and in computational
costs, which is about 4.5 times larger than that of [2].

In this paper, we also formalize the conditions required for security in the
group signature scheme in which authorities are both initially separated. The
security definitions proposed in Bellare et al. [4] only apply to the case in which
all duties of group management are performed by a single manager, and that
manager is assumed to be honest. In contrast to this, we formalize our security
definition in such a way that (1) neither the tracing manager nor any other
entity can add a new member, (2) neither the membership manager nor any
other entity can trace an actual signer, and (3) these two managers cannot, even
in collusion, create a group signature that would appear to be traceable to an
individual group manager. The security of our proposed scheme can be proved
in the random oracle and generic model.

2 The Model

In this section, we present a model of our group signature scheme and its security
definitions. Note that no previous work has specified security definitions for the
case in which a membership manager and a tracing manager act independently
of one another.
1 In [12], finding (r, x, y) ∈ ZP × Z2

q satisfying ryrhxfy = 1 mod P is claimed to be
difficult, where P = pq and hq = yq = fq = 1 mod P . However, rq := r mod q = 1
holds since y = h = f = 1 mod q and finding rp ∈ Z∗

p such that rpyrq hxfy = 1 mod p
is clearly easy. Hence, from r mod p = rp and r mod q = 1, we have desired (r, x, y).
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2.1 Model of Group Signature Schemes

Our model contains three main entity types: a membership manager (MM), a
tracing manager (TM), and group members. The MM is able to add a new
member to his group by using a secret key which he generates. More specifically,
when a user applies for membership, the MM will conduct a joining procedure
together with that user. In completing this procedure, the user will obtain the
information which will be required to create a group signature. Such information
can only be provided by the MM since the secret key of MM is required to
generate it. The MM will subsequently publish these information issued to users.
These information would be required for the TM to identify the actual signer of
a group signature. The TM is able to identify the actual signer of a given group
signature by using a secret generated by himself.

The following is the formalization of our group signature scheme model.

Definition 1. A group signature scheme GS consists of the following six algo-
rithms, (KEYGEN-M, KEYGEN-T, JOIN, SIGN, VERIFY, TRACE):

– A probabilistic key generation algorithm for the MM , KEYGEN-M(1k) →
(mpk,msk), where mpk is the membership public key, msk is the member-
ship secret key, and mpk includes domain parameters.

– A probabilistic key generation algorithm for TM , KEYGEN-T(1k,mpk) →
(tpk, tsk), where tpk is the tracing public key, and tsk is the tracing secret
key.

– An interactive member registration protocol for the MM and a user U , JOIN
= 〈JOIN-MM(U,mpk,L,msk), JOIN-U(U,mpk,L)〉 → (L, (certU , skU )). The
MM outputs a list of all group members L = {〈U, certU 〉}U . Here, we assume
that a tuple 〈U, certU 〉 in L can be confirmed to have been generated by U .
The public output of U is a membership certificate certU , and the secret
output of U is a group signing key skU corresponding to certU .

– A probabilistic signature generation algorithm for a user U ,
SIGN(mpk, tpk, certU , skU ,m) → gs, which outputs a group signature gs on
a message m.

– A deterministic signature verification algorithm for any verifier,
VERIFY(mpk, tpk,m, gs) returns either 1 or 0. We say that a group signature
gs on m is valid if VERIFY(mpk, tpk,m, gs) = 1.

– A deterministic signer tracing algorithm for the TM , TRACE (mpk, tpk,
tsk, m, gs, L) → (U, proof ), where proof assures the validity of the result U .
If the algorithm cannot find the actual signer in L, the algorithm outputs ⊥.

Let us next define the correctness of a group signature scheme. Informally,
a group signature scheme is correct if a group signature generated by a group
member is valid and the actual signer is identified by the tracing algorithm.

Definition 2. (correctness) A group signature scheme GS = (KEYGEN-M,
KEYGEN-T, JOIN, SIGN, VERIFY, TRACE) is correct if, for all (mpk,msk) gen-
erated by KEYGEN-M, all (tpk, tsk) generated by KEYGEN-T, all (certU , skU )
generated by JOIN, all m ∈ {0, 1}∗, and L, the following properties holds:
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1. VERIFY(mpk, tpk,m,SIGN(mpk, tpk, certU , skU ,m)) = 1
2. TRACE(mpk, tpk, tsk,m, SIGN(mpk, tpk, certU , skU ,m),L) = (U, proof )

2.2 Security Definitions

In this section, we describe the security definitions of a group signature scheme
that includes separation of authorities. We define one security notion for each
type of entities in the model. With respect to the MM , we require that no one
except the MM is able to successfully add a new member to the group. With
respect to the TM , we require that no one except the TM is able to successfully
identify the actual signer of a signature. With respect to the members, we require
that no one except each member is able to successfully create a signature which
will be linked to his identity when opened by the TM . These requirements,
which is later defined specifically, clarifies the separation of the MM and the
TM . We call security properties corresponding the above requirements MM -
invulnerability, TM -invulnerability, member-invulnerability, respectively.

MM-Invulnerability. MM -invulnerability is the property that no colluding
subset of the group members, even colluding with the TM , can create a new
signature such that the TM can, in any way, prove that the signer of a signature
is not in the member list L. Since a creation of a signature whose signer does
not belong to L implies adding a new member, MM -invulnerability implies that
only the MM can play the role of the MM . To define MM -invulnerability, we
introduce an adversary A who attempts to break the group signature scheme in
terms of MM -invulnerability. Adversary A is allowed to collude the TM and all
group members. Formally, MM -invulnerability is defined as follows.

Definition 3. (MM-invulnerability) Let GS be a group signature scheme, and
let A be an algorithm that has access to an oracle and returns 0/1. We consider
the following experiment:

Experiment ExpMM
GS,A(k)

(mpk,msk) ← KEYGEN-M(1k)
(tpk,State) ← A(generate,mpk)
Cont ← true
While Cont = true do

(L, (Cont,State)) ← 〈JOIN-MM(U,mpk, tpk,L,msk),A(join,State)〉
EndWhile
(m, gs) ← A(forge,State)
If VERIFY(mpk, tpk,m, gs) = 0 then return 0
If TRACE(mpk, tpk, tsk,m, gs,L) = ⊥ then return 1 EndIf
Return 0

The MM-invulnerability advantage is defined as

AdvMM
GS,A(k) = Pr[ExpMM

GS,A(k) = 1]

A group signature scheme GS is MM-invulnerable if for all probabilistic,
polynomial-time machines A, the advantage AdvMM

GS,A(k) is negligible.
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TM-Invulnerability. TM -invulnerability is the property that, given a message
and a group signature, no colluding subset of the group members, even colluding
with the MM , can identify the signer of the signature unless the TM opens that
very signature. TM -invulnerability implies that only the TM can play the role
of the TM . To define TM -invulnerability, we introduce an adversary A who
attempts to break a group signature scheme in terms of TM -invulnerability.
Adversary A is allowed to collude the MM and the all group members. A can
also add a new member to the group using the colluding MM . Formally, TM -
invulnerability is defined as follows.

Definition 4. (TM-invulnerability) Let GS = (KEYGEN-M, KEYGEN-T, JOIN,
SIGN, VERIFY, TRACE)be a group signature scheme, let b ∈ {0, 1}, and let A
be an algorithm that has access an oracle and returns a bit b′. We consider the
following experiment:

Experiment ExpTM-b
GS,A(k)

(mpk,State) ← A(generate)
(tpk, tsk) ← KEYGEN-T(1k,mpk)
If (tpk, tsk) = ⊥ then return 0 EndIf
(State, (cert0, sk0), (cert1, sk1),m)←ATRACE(mpk,tpk,tsk,·,·,·)(choose,State, tpk)
gs← SIGN(mpk, tpk, certb, skb,m)
b′ ← ATRACE(mpk, tpk, tsk,·,·,·)(guess,State, gs)
If A did not query its oracle with (m, gs) in the guess stage then return b′

EndIf
Return 0

The TM -invulnerability advantage is defined as

AdvTM
GS,A(k) = Pr[ExpTM-1

GS,A(k) = 1]− Pr[ExpTM-0
GS,A(k) = 1]

A group signature scheme GS is TM-invulnerable if for all probabilistic,
polynomial-time machines A, the advantage AdvTM

GS,A(k) is negligible in k.

Member-Invulnerability. Member-invulnerability is the property that no col-
luding subset of the group members, even colluding both the MM and the TM ,
can create a group signature which is traceable to any non-colluding member.
Since to create a group signature of which the member’s identity is identified
is only allowed for this member, member-invulnerability implies that only each
member can play the role of this member. To define member-invulnerability, We
introduce an adversary A who attempts to break the group signature scheme
in terms of member-invulnerability. Adversary A is allowed to collude with
the MM , the TM , and any subset of the group members. Formally, member-
invulnerability is defined as follows.

Definition 5. (member-invulnerability) Let GS = (KEYGEN-M, KEYGEN-T,
JOIN, SIGN, VERIFY, TRACE)be a group signature scheme, and let A be an al-
gorithm that has access two oracles and returns 0/1. We consider the following
experiment:
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Experiment Expmember
GS,A (k)

(mpk, tpk,State) ← A(generate)
(State, (skU , certU )) ← 〈A(join,State), JOIN-U(U,mpk, tpk,L)〉
If certU = ⊥ then return 0 EndIf
(m, gs,L) ← ASIGN(mpk,tpk,certU ,skU ,·)(forge,State)
L ← L ∪ {(U, certU )}
If VERIFY(mpk, tpk,m, gs) = 0 then return 0
If TRACE(mpk, tpk, tsk,m, gs,L) = certU and m was not queried by A
to the signing oracle SIGN then return 1
Else return 0
EndIf

The member-invulnerability advantage is defined as

Advmember
GS,A (k) = Pr[Expmember

GS,A (k) = 1]

A group signature scheme GS is member-invulnerable if for all probabilistic,
polynomial-time machines A, the advantage Advmember

GS,A (k) is negligible.

Separation of the roles of the managers. From MM -invulnerability and TM -
invulnerability, we can see that the TM cannot have the ability to add a new
member and that the MM cannot have the ability to identify the signer of
a signature. Hence, these definitions imply the complete separation of roles of
the TM and the MM . With member-invulnerability, other required notions of
security for group signatures are satisfied also. Note that the schemes proposed
in [2] do not satisfy the notion of TM -invulnerability.

Relation to the previous definitions. Our definition of TM -invulnerability roughly
corresponds to the full-anonymity [4]. If the TM and the MM are unified, the
sum of MM -invulnerability and member-invulnerability roughly corresponds to
full-traceability [4]. As in the case of [2, 10], we are considering the case where
the group manager(s) are dishonest and new members are allowed to join the
group.

3 Building Blocks

The proposed scheme uses signatures of knowledge [7], a verifiable encryption
[17], and the Nyberg-Rueppel signatures [13].

Signature of knowledge. A signature of knowledge is a transformation of corre-
sponding special honest-verifier zero-knowledge interactive proof by using Fiat-
Shamir heuristics [9]. A signature of knowledge is denoted by SPK[α1, . . . , αm :
f(α1, . . . , αm) = 0], where α1, . . . , αm is secret information for a prover, and
f(α1, . . . , αm) = 0 is an equation that α1, . . . , αm satisfy. A prover can show a
verifier that he knows variables α1, . . . , αm such that f(α1, . . . , αm) = 0 holds.
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The proposed scheme uses two types of signatures of knowledge as building
blocks. One is a signature of knowledge of representations denoted by

SPK

[
α1, . . . , αu :

(
y1 =

∏
j∈J1

g
αe1j

j

)
∧ · · · ∧

(
yn =

∏
j∈Jn

g
αenj

j

)]
(m),

where the indices eij ∈ {1, . . . , u} correspond to the secrets α1, . . . , αu and the
elements of Ji are indices corresponding to the base elements g1, . . . , gl. The
other is a signature of knowledge for a range denoted by

SPK[α, β : E = gαhβ ∧ α ∈ [0, b]].

The underlying protocol of this signature of knowledge relies on the interac-
tive proof that a committed value is in an interval [14]. The scheme proposed in
[14] can be constructed only based on the discrete logarithm (DL) problem. In
this scheme, a verifier of the signature of knowledge convinces that α ∈ [−b, 2b],
and only when α ∈ [0, b], the verifier gains no knowledge about α.

There are some more efficient scheme such as [5] in which an RSA modulus is
used to make a signature size smaller. It is sufficient to use the scheme in [5] as
a proof of the range if authorities are distributed only in the member addition.
If distributing authorities require an efficient setup, the DL-based scheme such
as [14] is suitable. In this paper, we adopt the scheme for an efficient setup by
the distributing authorities.

Verifiable Encryption. A verifiable encryption scheme is an encryption scheme
in which a verifier can confirm that a ciphertext C is an encryption of a value
such that c = gx. In our scheme, we use a variant of verifiable encryption that
uses perfectly hiding commitment c′ = gxhy instead of c = gx.

Nyberg-Rueppel Signatures. Originally, the Nyberg-Rueppel signature was pro-
posed as a variant of the ElGamal signature scheme with message recovery. In
our scheme, we use a variant of the Nyberg-Rueppel signature called a modified
Nyberg-Rueppel signature in [3] which removes the property of message recovery.
The modified Nyberg-Rueppel signature is existentially unforgeable under the
chosen message attack (EUF-CMA) in the random oracle and generic model [3].

4 A New Group Signature Scheme

In this section, we give a new group signature scheme that achieves complete
separation of the membership manager and the tracing manager. Moreover,
the authority of each manager is easily distributed by applying the distributed
computation. Our scheme satisfies MM -invulnerability, TM -invulnerability and
member-invulnerability defined in Section 2.2 in the random oracle and generic
model.
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4.1 Basic Idea

At first, the MM generates domain parameters (p, q, P, g, h, f,G,H,H). Then,
the MM and the TM generate their public-key/secret-key pairs by executing
KEYGEN-M and KEYGEN-T respectively. Their secret keys are discrete logarithm
of their public keys. A membership certificate 〈rU , ξU 〉 that the MM issues
to a member U is the Nyberg-Rueppel signature on the message IU given by
U during the JOIN protocol. The group signing key σU for a member U is a
discrete logarithm of IU with respect to g. In SIGN procedure, a member U first
generates an ElGamal ciphertext of a part of its membership certificate rU with
the tracing public key of the TM . Next, the member U generates a signature of
knowledge [7], which proves that (1) the knowledge of a membership certificate
〈rU , ξU 〉 and a group signing key σU , (2) the knowledge of plaintext r′

U of the
ElGamal ciphertext (g′, e′), and (3) the fact that the rU and r′

U are the same.
The TM identifies the signer of a group signature by decrypting the membership
certificate of the signer rU from the ElGamal ciphertext (g′, e′) in the signature.

Roughly, to make the correct signature, a member U needs to prove the
knowledge of σU , which is possible only by the valid member. This implies
member-invulnerability. For an adversary to generate a signature that is not
linked to any existing member, the adversary needs to knows a new membership
certificate, which means forging of the Nyberg-Rueppel signature. This implies
MM -invulnerability. In the SIGN procedure, a user creates an ElGamal cipher-
text of rU and the proof that he correctly computes the ciphertext, which is
IND-CCA2 secure assuming random oracle and generic model [16]. Hence, break-
ing TM-invulnerability which is equivalent to guessing rU will break IND-CCA2
security of the encryption.

4.2 Construction

We now present the complete construction of the proposed group signature
scheme GS = (KEYGEN-M, KEYGEN-T, JOIN, SIGN, VERIFY, TRACE)as in
the following. Let SPK[α1, . . . , αm : f(α1, . . . , αm) = 0] denote a signature of
knowledge that proves the knowledge of α1, . . . , αm satisfying f(α1, . . . , αm) = 0.

KEYGEN-M. The membership manager MM first randomly chooses sufficiently
large primes p, q, P such that q|p−1 and p|P −1. Let Gq be an order q subgroup
of Z∗

p , and let Gp be an order p subgroup of Z∗
P . The MM chooses g, h, f ∈ Gq

and G,H ∈ Gp such that neither non-trivial (α1, α2, α3) satisfying gα1hα2fα3 =
1 (mod p) nor non-trivial (β1, β2) satisfying Gβ1Hβ2 = 1 (mod P ) are not
known. The MM initializes a member list L to ∅. Let k be a security parameter.
Let H : {0, 1}∗ → {0, 1}k be a collision-resistant hash function. Then, the MM
publishes PK = (p, q, P, g, h, f,G,H,H) as domain parameters.

Next, the MM randomly selects υ ∈U Zq and computes y = hυ mod p. The
MM publishes y as a membership public key and stores υ as a membership
secret key.
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KEYGEN-T. The tracing manager TM randomly selects ε ∈U Zq and computes
e = gε mod p. The TM publishes e as a tracing public key and stores ε as a
tracing secret key.

JOIN. A user U runs the following protocol with the membership manager MM
to join the group.

1. User U randomly chooses σU ∈U Zq and computes IU = gσU mod p. U
generates the signature of knowledge spkU = SPK[σ̃U : IU = gσ̃U mod p]
which assures that U knows a discrete logarithm of IU to the base g. U
also computes the digital signature SU on the message IU‖spkU . U sends
(IU , spkU , SU ) to the membership manager MM .

2. The MM checks the validity of spkU and SU . If both are valid, the MM
randomly selects ρ ∈U Zq and computes rU := IUh

ρ mod p and ξU := ρ −
rUυ mod q. The MM sends (rU , ξU ) as a membership certificate to U .

3. U checks whether (rU , ξU ) sent by the MM satisfies rU = yrU gσUhξU and
rU ∈ [0, p − 1]. If it holds, U stores 〈rU , ξU 〉 as his membership certificate,
and securely stores σU as a group signing key.

4. M adds 〈IU , spkU , rU , ξU , SU 〉 to the member list L.

SIGN. A member U creates a group signature on a message m as follows.
First, a member U chooses a random number τ ∈U Zq and computes (g′, e′)

:= (gτ , rU−1eτ ) mod p, which is an ElGamal encryption of rU with respect to
the tracing public key of the TM . Next, U computes the signature of knowledge:

SPK[r̃U , ξ̃U , σ̃U , τ̃ : g′ = gτ̃ mod p ∧ e′ = r̃−1
U eτ̃ mod p ∧

r̃U = yr̃U gσ̃Uhξ̃U mod p ∧ r̃U ∈ [0, p− 1]](m).

This signature of knowledge can be constructed from two components, a perfectly
hiding commitments of rU and a signature of knowledge: The commitments are
computed as h′ := yrU fω mod p and J := GrUHa mod P , where ω ∈U Zq and
a ∈U Zp are chosen uniformly and randomly, and the signature of knowledge is

SPK[r̃U , ξ̃U , σ̃U , τ̃ , ω̃, ã : g′ = gτ̃ mod p ∧ e′ = r̃−1
U eτ̃ mod p ∧

h′ = yr̃U f ω̃ mod p ∧ J = Gr̃UH ã mod P ∧ (1)

e′h′ = f ω̃g−σ̃Uh−ξ̃U eτ̃ mod p ∧ r̃U ∈ [0, p− 1]](m).

This signature of knowledge can be computed as in the following:

1. For 1 ≤ j ≤ k, generate random numbers φ2j−1 ∈U [0, p − 1], and sets
φ2j := φ2j−1 − p. If rU + φ2j−1 �∈ [0, p− 1] and rU + φ2j ∈ [0, p− 1], replace
φ2j−1 with φ2j to be rU + φ2j−1 ∈ [0, p− 1]. Also, choose ψ2j−1, ψ2j ∈U Zq,
η2j−1, η2j ∈U Zp randomly. For 1 ≤ j ≤ k, compute Vj := yφ2j−1fψ2j−1‖
yφ2jfψ2j‖ Gφ2j−1Hη2j−1 ‖Gφ2jHη2j .

2. Choose t1, t2, t3, t4, t5 ∈ Zq randomly, and compute T1 := yt1f t2 mod p,
T2 := f t2g−t3h−t4et5 mod p , and T3 := gt5 mod p.
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3. For 1 ≤ j ≤ k, select γj ∈U Zq and uj ∈U Zp. Set ej := eγj mod p. Then,
compute gj := gγj mod p and Jj := GejHuj mod P for 1 ≤ j ≤ k.

4. Generate

c := H(g‖h‖f‖G‖H‖y‖e‖V1‖ · · · ‖Vk‖T1‖T2‖T3‖g1‖ · · · ‖gk‖J1‖ · · · ‖Jk‖m).

5. For 1 ≤ j ≤ k,
– If c[j] = 0, set v6j−5 := φ2j−1, v6j−4 := φ2j , v6j−3 := ψ2j−1, v6j−2 :=

ψ2j , v6j−1 := η2j−1, v6j := η2j , s1 := t1 mod q, s2 := t2 mod q, s3 :=
t3 mod q, s4 := t4 mod q, s5 := t5 mod q, wj := γj mod q, zj := uj mod
p.

– If c[j] = 1, set v6j−5 := rU+φ2j−1, v6j−4 := yφ2jfψ2j , v6j−3 := ω+ψ2j−1,
v6j−2 := ψ0 ∈U Zq, v6j−1 := a + η2j−1, v6j := Gφ2jHη2j , s1 := t1 −
rU mod q, s2 := t2−ω mod q, s3 := t3−σU mod q, s4 := t4− ξU mod q,
s5 := t5 − τ mod q, wj := γj − τ mod q, zj := uj − aejrU

−1 mod p
6. The resulting signature of knowledge is SPKgs = (c, v1, v2, v3, v4, v5, v6,

. . . , v6k−5, v6k−4, v6k−3, v6k−2, v6k−1, v6k, s1, s2, s3, s4, s5, w1, . . . , wk, z1,

. . . , zk).

Finally, U outputs gs = (g′, e′, h′, J, SPKgs) as a group signature on m.

VERIFY. A verifier V verifies a group signature gs on a message m by checking
the validity of the signature of knowledge involved in gs.

For gs = (g′, e′, h′, J, c, SPKgs), V first checks if v6j−5 ∈ [0, p− 1] holds at
j ∈ [1, k] such that c[j] = 1. If it holds, V checks

c = H(g‖h‖f‖G‖H‖y‖e‖V ′
1‖ · · · ‖V ′

k‖T ′
1‖T ′

2‖T ′
3‖g′

1‖ · · · ‖g′
k‖J ′

1‖ · · · ‖J ′
k‖m),

where

V ′
j =

{
yv6j−5fv6j−3‖yv6j−4fv6j−2‖Gv6j−5Hv6j−1‖Gv6j−4Hv6j c[j] = 0
yv6j−5fv6j−3/h′‖v6j−4‖Gv6j−5Hv6j−1/J‖v6j c[j] = 1

T ′
1 = h′cys1fs2 , T ′

2 = (e′h′)cfs2g−s3h−s4es5 , T ′
3 = g′cgs5

g′
j = g′c[j]gwj mod p

J ′
j =

{
Gē′

jHzj mod P c[j] = 0
J ē′

jHzj mod P c[j] = 1 (where ē′
j := e′c[j]ewj mod p)

V accepts gs if and only if the all above equations are satisfied.

TRACE. For an accused group signature gs on m, the tracing manager TM
decrypts (g′, e′) with his tracing secret key by r̄ := g′ε/e′ mod p. In addition, the
TM computes a signature of knowledge SPK[ε̃ : g′ε̃ = r̄−1e′] to prove that he
surely used his secret key for decryption.

The TM finds the tuple 〈IU , spkU , rU , ξU , SU 〉 from the member list L such
that rU = r̄ holds. The TM concludes that the member U corresponding to
rU = r̄ is the actual signer of gs.
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4.3 Distributed Construction

In the group signature scheme shown in the previous subsection, both the mem-
bership secret key and the tracing secret key are discrete logarithms of corre-
sponding public keys. Such secret keys can be easily distributed among multiple
entities by using the technique proposed by Pedersen in [15].

More specifically, the membership secret key υ can be distributed into n
elements υ1, . . . , υn satisfying υ = υ1 + · · ·+ υn for the distributed membership
managers MM1, · · · ,MMn. In the JOIN protocol, each membership manager
MMi computes rU = IUh

t and ξi = ki − rUυi, where t and ki is a distributedly
generated random number satisfying t = hΣki . The user U obtains a membership
certificate (rU , ξU ) by computing ξU = ξ1 + · · ·+ ξn.

Similarly, the tracing secret key ε can be distributed into ε1, . . . , εn satisfying
ε = ε1 + · · · + εn for the distributed tracing managers TM1, · · · , TMn. In the
TRACE algorithm, each tracing manager TMi computes g′

i = g′εi mod p, and an
entire decryption can be executed by computing r̄ = (

∏
g′
i)/e

′ mod p.

4.4 Efficiency Analysis

We analyze the efficiency of the proposed scheme. For simplicity, we estimate a
basic construction shown in Section 4.2. The signature length is estimated by
|P |+ (5k + 3)|p|+ (3k + 5)|q| bit. If we take |P | = |p| = 1024 and |q| = 160, the
signature length is about 110 KB, which is 4.5 times larger than that of [2]. The
computational cost of our scheme is also 4.5 times larger than that of [2]. As
mentioned in Section 3, we use an DL-based proof of a range due to the efficient
setup by the distributing authorities. If we adopt the proof of a range in [5], the
signature size becomes 26.2 KB, which is almost as large as that of [2].

5 Security Considerations

First of all, we prove that the group signature which a signer creates really serves
as a signature of knowledge of Equation (1) in the random oracle model. We do
prove it by showing that the underlying interactive protocol is honest-verifier
zero-knowledge proof of knowledge.

Theorem 1. The underlying interactive protocol of the proposed group signature
scheme is an honest-verifier zero-knowledge proof of knowledge of a membership
certificate, corresponding signing key and the random number used for encryption
of ElGamal ciphertext, where the common input is a set of domain parameter
PK, a membership public key, a tracing public key, and ElGamal ciphertext
(g′, e′).

Proof. Since the proof of this theorem is straight-forward, we omit the proof.

Next, we prove the entire security of the proposed group signature scheme.
We can obtain the following theorem.

Theorem 2. The proposed group signature scheme GS is MM -invulnerable in
the random oracle and generic model.
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Proof. We show that if there exists an attacker A that breaks MM - invulnera-
bility of the group signature scheme, then there exists an attacker A′ that breaks
the EUF-CMA of the modified Nyberg-Rueppel signature in the random oracle
and generic model. The following is the description of A′:

1. Key generation of the target modified Nyberg-Rueppel signature scheme is
the same as KEYGEN-M procedure of the proposed group signature scheme.

2. When A asks a joining oracle to join the group by giving gσU , A′ asks its
signing oracle to sign on gσU . Then A′ sends the answer of the oracle to A,
which is the membership certificate.

3. Suppose A generated a group signature, that is linked, by TRACE procedure,
to membership certificate that A′ has never sent to A. Then, A plays a role
of a knowledge extractor, namely, rewinds A and chooses another random
oracle to extract the membership certificate (r̄U , ξ̄U ) and the signing key
σ̄U . This is possible from Theorem 1. (r̄U , ξ̄U ) is a modified Nyberg-Rueppel
signature on a message σ̄U .

It is shown in [3] that the modified Nyberg-Rueppel signature is EUF-CMA
in the random oracle and generic model. Thus, the proposed scheme is TM -
invulnerable in the random oracle and generic model. �

Theorem 3. The proposed group signature scheme GS is TM -invulnerable in
the random oracle and generic model.

Proof. By construction the group signature generated by SIGN includes an ElGa-
mal encryption of rU with a random number τ , and the signature of knowledge
of τ . This encryption-and-signature pair is regarded as a signed ElGamal en-
cryption [16]. Now we can show that if there exists an attacker A that breaks
TM -invulnerability of the group signature scheme, then there exists an attacker
A′ that breaks IND-CCA2 of the above signed ElGamal encryption. The follow-
ing is the description of A′

1. Key generation of the target cryptosystem is the same as KEYGEN-T proce-
dure of the proposed group signature scheme.

2. When A asks a tracing oracle to open a signature gs, A′ picks up the signed
ElGamal encryption part and throws it to its decryption oracle. Then A′

sends the result to A.
3. When A chooses a pair of a membership certificate and a signing key,

(r0, ξ0, σ0) and (r1, ξ1, σ1), A′ chooses r0 and r1 as target plaintexts.
4. When A′ was given a ciphertext as a challenge, A′ generates a group signa-

ture that includes this challenge ciphertext by choosing appropriate random
oracle. Then A′ gives it to A as a challenge.

5. When A gives the answer b ∈ {0, 1}, A′ answers b.

It is shown in [16] that the signed ElGamal encryption is IND-CCA2 secure
in the random oracle and generic model. Therefore, GS is TM -invulnerable in
the random oracle and generic model. �
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Theorem 4. The proposed group signature scheme GS is member-invulnerable
if the discrete logarithm problem is hard in the random oracle model.

Proof. It is easy to see from Theorem 1 that each of group signatures includes
a signature of knowledge of σU .

Now we can show that if there exists an attacker A that breaks member-
invulnerability of the group signature scheme, then there exists an attacker A′

that solves discrete logarithm problem. The following is the description of A′

1. When A′ is given the instance (g, I) as a problem, A′ chooses h = ga for
randomly chosen a.

2. When A asks a joining oracle to join the group, A′ first generates a simulated
signature of knowledge of discrete logarithm of g, I by choosing a random
oracle. Next, sends I and this signature of knowledge. Finally, A′ obtains
the membership certificate (rU , ξU ).

3. When A asks a signing oracle to sign a message m, A′ generates an ElGamal
encryption of rU and generates a simulated signature of knowledge of a
membership certificate, a group signing key, and a random number used for
the encryption by choosing a random oracle. Then A′ sends these generated
data to A.

4. Suppose A generated a group signature, that is linked, by TRACE procedure,
to a membership certificate rU . Then, A′ rewinds A and chooses another
random oracle to extract a membership certificate and a signing key. This is
possible from Theorem 1. We denote the extracted data (rU , ξ̄U , σ̄U ).

5. If ξ̄U = ξU , then gσ̄U = I, which means a success of the attack.
If ξ̄U �= ξU , then ga(ξU −ξ̄U )+σ̄U = I, which also means a successful attack. �

6 Conclusions

We have proposed a new practical group signature scheme with separate and dis-
tributed authorities. Our scheme can separate the membership manager and the
tracing manager without invading each capability. Moreover, since our scheme
is constructed from primitives based on the discrete logarithm problem, our
scheme is well suited for distributed authorities. We have also formalized secu-
rity definitions that describe the complete separation of the capabilities of the
two managers and members. We have given the proofs that our scheme is secure
under these security definitions.
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Abstract. The area of Threshold Cryptography investigates the de-
sign and analysis of protocols that distribute, in wired networks, crypto-
graphic actions usually performed by a single party into multi-party vari-
ants, where the original action is successfully performed only if at least
a certain threshold of the participants are available and not corrupted.
As of today, several examples of threshold cryptographic protocols (e.g.,
signatures, public-key cryptosystems, zero-knowledge protocols, etc.) are
being investigated in the Cryptography literature.

We note that the impact of the Threshold Cryptography paradigm
is of even greater importance to study the security of other types of
communication networks, such as Mobile Ad Hoc Networks, where the
existence and availability of trusted authorities is severely limited by
intrinsic network features, and problems such as avoiding a “single point
of failure”, or, more generally, “service availability”, become crucial.

In this paper we formalize, investigate and present satisfactory so-
lutions for the general problem of Threshold Cryptography in Mobile
Ad Hoc Networks. Although we restrict our study to the cryptographic
operation of digital signatures schemes, our definitional approaches can
be extended to most other cryptographic actions studied in Threshold
Cryptography.

1 Introduction

Threshold Cryptography. The area of Threshold Cryptography (starting
with [2, 7, 21]) is today receiving a significant amount of attention by the Cryp-
tography literature. In general terms, the threshold cryptography paradigm sug-
gests to divide a cryptographic action, such as the generation and management
of a secret key or computation using secret keys, among several parties, in such
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a way to prevent a small number of participants and at the same time allow a
larger number of participants to perform the action. A system modified accord-
ing to the threshold cryptography paradigm enjoys both resiliency with respect
to crashes of some of the system components, and tolerance with respect to
faulty or malicious behavior of some of the components. For the construction
of threshold cryptography schemes, the problem of distributed key generation,
that is, generating a shared public key and individual shares as secret keys, is
often crucial.

Most popular examples of cryptographic protocols that are being investi-
gated in the literature include digital signatures, public-key cryptosystems, zero-
knowledge protocols, etc. An old survey of research on threshold cryptography
can be found in [9]. Threshold digital signatures, for instance, satisfy the follow-
ing properties: at least t + 1 parties are able to generate a signature on a given
message; at most t parties are not able to generate a signature on a given message,
even after having seen several signatures of adaptively chosen messages; finally,
any t < n/2 parties (where n is the total number of parties) cannot prevent
the remaining honest parties to generate a threshold signature. Threshold signa-
tures have been constructed under various hardness assumptions: the hardness
of problems related to Discrete Logarithms (see, e.g. [17, 15, 12]); the hardness
of inverting the RSA cryptosystem (see, e.g. [7, 8, 13, 5, 16, 14]); the hardness
of inverting the RSA cryptosystem with special moduli (see, e.g. [21, 1]); the
hardness of solving the Computational Diffie Hellman problem (see, e.g. [2, 4]);
the hardness of Factoring (see, e.g. [18]). Several of these papers also study the
problem of distributed key generation.

Mobile Ad Hoc Networks. The impact of the threshold cryptography
paradigm is of even greater importance when studying the security of other
types of communication networks, such as Mobile Ad Hoc Networks (MANETs),
that are typically formed by nodes having no pre-established trust or author-
ity relationship. Furthermore, nodes may have significant constraints in all their
resources: computation ability, energy, bandwidth and memory. In these net-
works, even point-to-point connection needs to be carefully modeled because of
the limited radio range and mobility of nodes.

Security in MANETs is a large research area (see, e.g., [22]). Most of the re-
search focus on basic issues such as guaranteeing secure routing among any two
parties, but also on several other problems that already assume secure routing is
in place. Consider, for instance, two basic problems in securing MANETs. The
first is avoiding the so-called “single point of failure”; specifically, avoiding that
crucial system events are carried out under the responsibility of a single node.
The second problem is that of “service availability”; that is, guaranteeing that
clients of a certain service are always guaranteed to find enough server resources.
For both problems (and others), the threshold cryptography paradigm can pro-
vide solutions of fundamental help. We are not aware of a formal treatment of
threshold cryptography paradigms for the security of MANETs.

This Paper. We start a comprehensive study of the general Threshold Cryptog-
raphy problem in MANETs. We specifically restrict our attention to threshold



Threshold Cryptography in Mobile Ad Hoc Networks 93

signatures, as these seem to be the most studied as well as among the most
relevant primitives needed for practical cryptographic application. We start by
presenting a formal definition of Threshold Signatures in MANETs. We note
that the intrinsic features of the latter demand stringent constraints on the se-
curity requirements for such schemes. We then conclude that (almost) none of
the known protocols in the literature realizes the proposed notion. The only ex-
ception is represented by a combination of the distributed key generation from
[20] and the signature scheme from [4], which, when properly combined, already
almost achieve all security and efficiency properties required by our formal defi-
nition of threshold signatures in MANETs. We present two solutions and obtain
them through some crucial modifications and proper combinations of these two
protocols. The first resulting protocol is certainly one of the simplest protocols
for Threshold Cryptography in wired networks as well, and is of interest inde-
pendently from MANETs. The second resulting protocol improves the latency
of the first at the cost of increasing communication and computation in corre-
spondence to significant mobile activity from parties. Simulation results on the
improved success rate of obtaining valid signatures when using ad hoc groups
(rather than fixed ones) are described in [10]. Although we restrict our study to
the cryptographic operation of digital signatures schemes, our definitional ap-
proaches can be extended to other cryptographic actions such as cryptosystems
and zero-knowledge proofs.

We remark that we do not claim to fully secure MANETs, but just to solve a
security subproblem and that our solutions provide a component that can be very
useful for other tasks. General security solutions for MANETs are quite complex.
For instance, our threshold cryptography protocols use an underlying secure rout-
ing protocol. Protocols of the latter type typically assume the existence of a public-
key infrastructure or pre-shared secret keys. Therefore, if our protocol is used as a
subcomponent of a protocol for the secure creation of a distributed certification au-
thority, then one may create a chicken and egg problem. Indeed, our protocols even
significantly limit this problem in this particular application as they assume only
a limited use of secure routing; specifically, our protocols can be divided into two
phases: distributed key generation and signature generation phase; and only the
former, which is executed only once at the beginning, requires the secure routing
assumption.

2 Definitions

We recall notions and definitions for ordinary and threshold signatures in wired
networks and then introduce definitions for threshold signatures in MANETs.

2.1 Threshold Signatures in Wired Networks

Informally, a digital signature scheme is a method allowing a party A to append
a signature tag to a message such that any other party can verify the tag as a
valid signature by A, and another party C cannot produce a tag for a different
message that can be verified as a valid signature from A. In (t, n)-threshold
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signatures in a wired network, which we now recall in more detail, we require
that up to t servers are not able to generate a signature for a client but at least
t + 1 are.

Setup and Mechanics. The parties involved in a threshold digital signature
scheme are a dealer, denoted as D, several servers, denoted as S1, S2, . . . , Sn,
and a client, denoted as C. Although in general network connectivity among all
parties is allowed, it is specifically required that both the dealer and the client
are connected to all servers, and that each pair of servers is also connected.
(In some schemes, the dealer’s action can be replaced by a protocol run by the
servers only.) There are two main phases in a threshold signature scheme: a
key-generation phase and a signature phase. In the former phase all servers and
possibly a dealer exchange messages and, at the end of the phase, each server
holds some private information (e.g., the share of some secret signing key). In
the latter phase, all servers interact with a client, and, at the end of the phase,
the client obtains a message m and a signature sig for m, and can check if sig
is a valid signature of m.

Security Requirements. Let t, n denote positive integers and k be a security
parameter (given in unary). If we denote by Πkg the key generation protocol and
by Πsgn the signature protocol, an execution of a threshold signature scheme, de-
noted as Π ≡ (Πkg, Πsgn), consists of one execution of protocol Πkg and poly-
nomially (in k) many executions of protocol Πsgn. A secure threshold signature
scheme Π ≡ (Πkg, Πsgn) has to satisfy the following basic requirements: correct-
ness (client C accepts the threshold signature produced by honest parties S1, . . . ,
Sn); unforgeability (an adversary corrupting at most t servers Si’s, after seeing
several (message,signature) pairs for adaptively chosen messages, can produce a
signature accepted by client C for a new message only with negligible (in k) prob-
ability); robustness (any adversary corrupting up to t parties can prevent the re-
maining parties to generate a valid signature only with negligible (in k) probabil-
ity). We will not consider in this paper the less basic requirements of proactive and
adaptive security.

Efficiency Requirements. In addition to the above security requirements,
great importance in the design of threshold signature schemes has been given
to the efficiency requirements of non-interactive partial signature generation,
verification and reconstruction and distributed key generation.

2.2 Threshold Signatures in Mobile Ad Hoc Networks

In threshold signatures for MANETs we would like any client to be able to make
at any time an ad hoc selection of a subset T of servers from which to request a
threshold signature, and a threshold parameter. Given this selection, a regular
(t, n)-threshold signature should be sent from the servers in T to the client,
where n = |T | and t are the size and threshold parameter chosen by the client.

Setup: Parties, Connectivity. Let k be a security parameter (described in
unary). We consider a mobile ad hoc network with n parties P1, . . . , Pn, where



Threshold Cryptography in Mobile Ad Hoc Networks 95

each party can act as server by running a server algorithm S or as client by run-
ning a client algorithm C. MANETs put severe constraints on the connectivity
among parties and, in general, network connectivity among all parties cannot
be guaranteed. Because of the wireless nature of the parties’ devices, it is not
guaranteed that all parties are in the radio range of a given party; in addition,
the shape of a radio range of a given party can differ according to the location,
time, device power, and device energy. We will model the connectivity among
the parties with a connectivity graph G, with the understanding that each node
in G is associated with a different party, and an edge between any two nodes
implies connectivity between the two associated parties (for simplicity, we will
only consider the case of bidirectional connectivity). In addition, graph G can
vary in time according to party mobility or unavailability, due to factors such
as geographical changes, power disruption or low battery. These events trigger
changes in graph G modeled as failure and creation of nodes and edges; there-
fore the structure of graph G varies according to such changes (for notational
simplicity we omit a time-dependent subscript in the notations related to G and
we assume without loss of generality that n is an upper bound on the number
of parties). Each party is assumed to know which nodes are her neighbor, but
is not required to have additional knowledge about graph G. In some limited
cases, however, we will also make the assumption that a secure routing protocol
exists and therefore each party is implicitly aware of identities of all nodes in G.
Following the approach in wired networks, we make the simplifying assumption
that any two parties connected in G can communicate through private channels
(this is without loss of generality as the two parties can run, for instance, a key
agreement protocol before any other protocol).

Threshold Signature Mechanics and Protocols. Consider graph G = (V,E)
denoting the connections between n parties. At any time, a client C ∈ V may
request a signature of some message from the other parties in V . Since C may
not be connected to all other parties, an adversary may always choose to corrupt
or move some of C’s neighbors; as a consequence, C can choose the threshold
parameter equal to a number t such that τ ≤ t < n(C)/2, where τ is the
maximum number of parties that C expects to be either corrupted or unavailable,
and n(C) is the number of neighbors of C. Therefore, C transfers her signature
request to � parties (for simplicity, we will assume wlog that all these � parties are
chosen among her n(C) neighbors) by sending the threshold t < �/2, the message
M , and the identities of the parties i1, . . . , i�. At this point these parties need
to run a t-out-of-� threshold signature to sign M . More formally, as for wired
networks, we consider two main phases: a key-generation phase and a signature
phase. In the former phase some or all servers run a key-generation protocol Πkg.
In protocol Πkg each party uses as input some common parameters Param and
a different random string; the output of the protocol is a string ski for each
party Pi, for i = 1, . . . , n. Protocol Πsgn is run by a party acting as a client
and a subset T of his choice among his neighbors that will act as servers in this
protocol execution. In the rest of the protocol, the client uses as input parameters
Param, subset T and a message M of his choice, and each server Pi in T uses
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as inputs parameters Param and string ski; the output of the protocol is a pair
sig, out for the client, where sig is supposed to be a (t, |T |)-threshold signature
of m and out ∈ { yes, no } denotes whether sig is a valid signature of m. We
stress the ad-hoc selections in protocol Πsgn; that is, at each execution C can
arbitrarily choose message M , the subset of servers T , the size � of T , and the
threshold t. Finally, we note that the execution of any such protocol takes time
at most polynomial in a common security parameter k, described in unary.

Adversarial Model. In threshold signatures for wired networks, the connec-
tivity graph G = (V,E) is a complete graph; in other words, any two parties are
connected. Therefore, if the adversary is assumed to be able to corrupt up to
τ parties, then the only requirement necessary to guarantee security is that the
number n of parties is at least 2τ + 1; that is, |V (G)| ≥ 2τ + 1. In MANETs,
however, the connectivity graph is arbitrary and might not contain several edges.
In addition to the requirement n ≥ 2τ +1, it is necessary that for each execution
of a (t, |T |)-threshold signature protocol, the number of parties acting as servers
is at least 2τ +1. Since the servers are chosen only among neighbors of the client
requesting the signature, this condition is rephrased by saying that at any time,
a (honest) node starting a signature request has at least 2τ + 1 neighbors in G,
where we do not necessarily require that τ remains the same during the entire
lifetime of the system. We note that in the model a meaningful client’s choice
of servers can only be among its neighbors. (Assume, instead, that a client C
chooses a server S that is 2 hops away; then C cannot trust any message by S as
it may be arbitrarily changed or even not forwarded by the intermediate server
that is a neighbor of C.)

Basic Requirements. If we denote by Πkg the key generation protocol and
by Πsgn the signature protocol, an execution of a threshold signature scheme,
denoted as Π ≡ (Πkg, Πsgn), consists of one execution of protocol Πkg and poly-
nomially (in k) many executions of protocol Πsgn. A secure threshold signature
scheme Π ≡ (Πkg, Πsgn) in a mobile ad hoc network has to satisfy the following
requirements:

Correctness. If P1, . . . , Pn honestly run all executions of protocols Πkg and Πsgn,
then with probability 1 at the end of each execution of protocol Πsgn, the party
acting as client in that execution returns out = yes.

Unforgeability. Let A be a probabilistic polynomial time algorithm, called the
adversary, and consider the following probabilistic experiment. First, A chooses
τ indices i1, . . . , iτ ∈ {1, . . . , n}, and then protocol Πkg is run with A playing
as Si1 , . . . , Siτ ; let sk1, . . . , skn be its output. Then, the following is repeated
until A returns some string outA and stops: A chooses a node c in G acting
as a client, � new indices j1, . . . , j� ∈ {1, . . . , n} among c’s neighbor, a new
threshold ti < �/2 and a new message mi. Then the protocol Πsgn is run on
input parameters Param, message mi, threshold ti and the subset of strings
{ski : i ∈ Ti }, where Ti = {j1, . . . , j�}, and A plays as as each player in
{Pi1 , . . . , Piτ }∩{c, Pj1 , . . . , Pj�

}. This execution of protocol Πsgn returns strings
sigi, outi. The experiment is successful if outA = (c′; j′

1, . . . , j
′
�; t

′;m′; sig′), where
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τ ≤ t′ < �/2, sig′ is a valid (t′, �)-threshold signature of message m′ from parties
in subset T ′ = {Pj1 , . . . , Pj�

}, and (c′ �= ci) ∨ (T ′ �= Ti) ∨ (t′ �= ti) ∨ (m′ �= mi)
for all ci, Ti, ti,mi previously queried by A. We require that for any such A, the
above experiment is successful only with probability negligible in the security
parameter k.

Robustness. Let A be a probabilistic polynomial time algorithm, called the adver-
sary, that chooses τ indices i1, . . . , iτ ∈ {1, . . . , n}. In the execution of protocol
Πkg, A plays as Pi1 , . . . , Piτ , and in the execution of each protocol Πsgn A plays
as Pi1 , . . . , Piτ , and possibly another party as a client. Then, for any such A, the
probability that the correctness requirement does not hold is negligible in the
security parameter k.

Additional Security Requirements. Although we will not consider proac-
tive and adaptive security in MANETs, we note that we can define appropriate
notions for both.

Efficiency Requirements. In MANETs we do not rely on a single dealer and
therefore the efficiency requirement of distributed key generation (as defined for
wired networks) is necessary. Potential security problems in the routing of mes-
sages through the connectivity graph make the requirements of non-interactive
partial signature generation and verification and non-interactive signature recon-
struction (as defined for wired networks) especially desirable. In addition, it is
desirable to minimize the communication latency of a protocol (which we define
as the number of sequential send or forward steps that it takes for the protocol
to complete.)

3 Threshold Signatures in Mobile Ad Hoc Networks

We start by presenting two main tools that we will use in our constructions: a
modification of the distributed key generation scheme in [20] and a modification
of the signature scheme in [4]. Then we show how to combine them to achieve
threshold signature schemes for mobile ad-hoc networks.

3.1 Tools and Subprotocols

Number Theoretic Definitions. Our construction assumes the hardness of
the Computational Diffie-Hellman problem on ‘so-called’ gap-DH groups, based
on bilinear maps over elliptic curves. Specifically, consider two groups G1, G2 of
prime order q and a bilinear map e : G1×G1 → G2 between them, that satisfies
the following properties:

1. Computable: given g, h ∈ G1 there is a polynomial time algorithms to com-
pute e(g, h) ∈ G2.

2. Bilinear: for any integers x, y ∈ [1, q] we have e(gx, gy) = e(g, g)xy

3. Non-degenerate: if g is a generator of G1 then e(g, g) is a generator of G2.
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Here, the size of G1, G2 is determined by the security parameter. Such bilinear
maps were used in [3] to construct an identity-based public-key cryptosystem
and recently to construct other primitives in several other papers. In particular,
in [4], the authors construct a very efficient signature scheme, which we describe
later, as it will be a component of our scheme. We recall the definition of two
well-known computational problems.

Definition 1. CDH Problem: Given a tuple (< G >, g, ga, gb), compute gc,
where c = abmod q and < G > denotes the description of group G.

Definition 2. DDH Problem: Given a tuple (< G >, g, ga, gb, gc), decide
whether c = abmod q. (If so, we say that (g, ga, gb, gc) is a G-DH tuple.)

We define Gap-DH groups as groups where the CDH problem is believed to
be hard with respect to any probabilistic polynomial algorithm and the DDH
problem can be efficiently solved.

A Scheme to Generate a Partial Signature. We describe a scheme that is
used by each party while running one execution of a threshold signature subpro-
tocol. This scheme is a slight modification of the signature scheme in [4], that
satisfies correctness, unforgeability and robustness (over wired networks) under
the assumption that the hash function H is a random oracle and the group G
used is a gap-DH group. The modification consists in the fact that, while in the
original scheme in [4], the exponentiation of the message is computed over the
hash of the message, here we hash the concatenation of the message and various
other parameters; specifically, the threshold parameter, the group size and the
indices associated with the parties taking part in this execution of a threshold
signature protocol. (The modification is crucial in the sense that if only the mes-
sage were hashed, then an attack violating the unforgeability property would
be possible.) We still inherit the very attractive property of the scheme in [4]
of having the shortest known signature length (for currently accepted security
parameters).

Let G be a gap-DH group of prime order q, and let H : {0, 1}∗ → G be a
full-domain hash function. By G = (V,E) we denote the connection graph over
the n parties; by T = {i1, . . . , i�}, T ⊆ V we denote the subset of parties that is
requested by a client C to provide a threshold signature for message M and by
t < �/2 we denote the positive integer denoting the threshold requested by C. We
can now define a scheme (S,V) to generate a partial signature, as follows. (Here,
S generates a partial signature and V verifies that it was generated correctly.)

– S: on input r ∈ Zq, message M ∈ {0, 1}∗, threshold t, integer �, client index
c and subset T = {i1, . . . , i�} of V , do the following: set m′ =M | t | � | i1, . . . ,
i� |c, m = H(m′) and σ = mr; return: sig = σ.

– V: on input g, v ∈ G, message M ∈ {0, 1}∗, threshold t, integer �, client
index c, subset T = {i1, . . . , i�} of V , and received signature sig = σ, do
the following: compute m = H(M | t | � | i1, . . . , i� |c), check that (g, v,m,
σ) is a G-DH tuple. If so, return: 1 else return: 0. If no signature sig is
received then return: 0.
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We note that the last line of V’s algorithm deals with the possibility of a
signature not reaching the client due to mobility or crashes of any of the two
parties. It is not hard to see that even after our modifications, we can still use
the proof techniques in [4] to prove the correctness and security properties of
this scheme.

A First Distributed Key Generation Protocol. We now present a modified
version of the key generation protocol in [20]. Two are the necessary modifica-
tions. First, the group G used in the protocol is a gap-DH group, as the private
keys returned by the protocol need to be used for the above partial signature
generation algorithms S,V. We note that since we are using a multiplicative
notation, this will not affect the protocol description. A second modification is
necessary as at the end of the protocol in [20] (and similarly in all its applica-
tions) a single group key is published. In our scenario, instead, no public key
is published as both the threshold parameter and the set of parties that will
later generate a threshold signature will be chosen later by a client in an ad hoc
manner. Precisely, the protocol in [20] can be divided into three main phases.
In the first phase, each party randomly chooses a secret and shares it using the
verifiable threshold scheme in [11]. In the second phase, a subset of qualified
parties is distributely determined by eliminating all parties that did not perform
a correct sharing of their secret, and each party obtains a share by summing
the contributions from all parties that have not been eliminated. In the third
phase, a joint public key is determined. This latter phase is not necessary in
our construction. This is because the first two phases are sufficient to define an
implicit public key for any desired subset of parties. We now give a more formal
description.

Let G be a gap-DH group of prime order q; we assume that all operations
are done over G unless otherwise indicated. Also, we assume that there are n
participants and that any two of them are reachable if connected through edges
of graph G = (V,E). (In other words, the routing of messages over G is reliable.
We also assume for simplicity that G always remains connected.) We define a
key distribution protocol MPed as follows (first, we define a protocol where all
parties are assumed to be static and then discuss the simple extension to the
mobile setting).

– Input: threshold t, integer n
– Each party Pi randomly chooses ai0, . . . , ait ∈ Zq, defines polynomial pi(x) =

ai0+ai1x+· · ·+aitx
t (where the operations are performed over Zq), computes

sij = pi(j) mod q for j = 1, . . . , n, and computes Aik = gaik for k = 0, . . . , t.
Each Pi sends Aik, for k = 0, . . . , t, to all parties and sij secretly to partici-
pant Pj .

– Each party Pj verifies the shares received from other parties by checking
that, for i = 1, . . . , n, gsij = Ai0A

j
i1A

j2

i2 · · ·A
jt

it . For any index i for which
the check fails, Pj broadcasts a complaint against Pi. If more than t parties
complain against Pi, then Pi is disqualified. Otherwise, Pi reveals share sij
for each complaining party Pj . If any of the revealed shares fails the above
equation, Pi is disqualified.
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– Let QUAL be the set of parties that have not been disqualified.
– Each party Pi returns (as a private output): (QUAL; {sij : j ∈ QUAL}).

The potential mobility of the parties does not significantly affect this pro-
tocol. If an edge in G becomes unavailable, then the secure routing protocol will
take care of a different connection between the incident parties (we ruled out the
fact that there may be no different connection; but, note that if this is the case,
the isolated party or parties have no hope to be part of set QUAL anyway). If
a node becomes unavailable, then again this node has no hope to be in QUAL
and this fact is advertised to all other parties. If an edge is added, this change
to G is only relevant to how the routing protocol works (whose details we don’t
deal with). If a node u is added to G, then u runs the steps of a generic party
Pi in the above protocol and she is eventually added to QUAL (if she does not
cause at least t complaints).

In the single-group version of this protocol, all parties would also return
the value gpk = Πi∈QUALAi0 as a group public key, which defines the value
gsk =

∑
i∈QUAL ai0 as a shared group secret key. Our protocol defines a public

key for each subgroup in QUAL and therefore techniques similar to observations
in [15] are essential to prove the unforgeability of our signature scheme. We also
note that this subprotocol is constructed assuming the existence of a secure
routing protocol as a building block.

A Second Distributed Key Generation Protocol. We will use another
modified version of the key generation protocol in [20]. In addition to the two
modifications given in the previously described protocol, we add one more mod-
ification. Specifically, instead of broadcasting her own information to all other
parties, each party will send it only to all parties that are at most some small
(i.e., constant) number of hops away. This is sufficient to define an implicit public
key for any subset of servers that are later requested to run a threshold signature
protocol, as each client will request a signature only from servers that are one
hop away from her. The resulting protocol could be seen as a ‘bounded’ version
of the previously described protocol. We now give a more formal description.

Let G be a gap-DH group of prime order q; as before, we assume that there
are n participants and that any two of them are reachable through edges of graph
G = (V,E); that is, the routing of messages over G is reliable, and, for simplicity,
G always remains connected. We denote by N(i, x) the set of nodes in G that are
reachable from party Pi by a path of at most x edges. In this protocol, we also
require that each party Pi mantains a connectivity table for N(i, 2). We define
a key distribution protocol BMPed (for Bounded MPed) as follows (again, first
assuming that the parties are static and then discussing the extension to the
general case of mobile parties).

1. Input: threshold t, integer n

2. Each party Pi randomly chooses ai0, . . . , ait ∈ Zq, defines polynomial pi(x) =
ai0+ai1x+· · ·+aitx

t (where the operations are performed over Zq), computes
sij = pi(j) mod q for j = 1, . . . , n, and computes Aik = gaik for k = 0, . . . , t.
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Each Pi sends Aik, for k = 0, . . . , t, to all parties in N(i, 2) and sij secretly
to each participant Pj in N(i, 2).

3. Each party Pj verifies the shares received from other parties by checking that,
for i = 1, . . . , n, gsij = Ai0A

j
i1A

j2

i2 · · ·A
jt

it . For any index i for which the check
fails, Pj sends a complaint against Pi to all parties in N(j, 4). If any party Pj

at ≤ 2 hops away from Pi obtains more than t different complaints against
Pi, then Pj broadcasts to all parties evidence to disqualify Pi. Otherwise,
Pi reveals share sij to all parties in N(i, 6) for each complaining party Pj .
If any of the revealed shares fails the above equation, evidence that Pi is
disqualified is broadcast to all parties.

4. Let QUAL be the set of parties that have not been disqualified.
5. Each party Pi returns (as a private output): (QUAL; {sij : j ∈ QUAL ∩

N(i, 2)}).

The potential mobility of the parties affects BMPed more than the previous
protocol MPed. This is because we require that each party Pi has to mantain
information sent in steps 2 and 3 above from parties in QUAL ∩ N(i, 2), and
when a party Pj moves, sets N(i, 2) for i ∈ N(j, 2), may change. Again, we
deal with updates by considering additions and deletions of edges or nodes. We
do not discuss how the connectivity information is updated as there are many
standard non-cryptographic ways to do this, but assume that such a technique is
known to the parties. Now, if an edge (i, j) in G becomes unavailable, then all the
connectivity information in N(a, 2), for a ∈ N(i, 2)∪N(j, 2) is updated; similarly,
if a node i in G becomes unavailable, then all the connectivity information in
N(a, 2), for a ∈ N(i, 2), is updated.

Now, assume edge (i, j) is added. First of all, the connectivity information
in N(a, 2), for a ∈ N(i, 1) ∪ N(j, 1), is updated. Then, each Pb, for b ∈ {i, j}
sends Abk, for k = 0, . . . , t, to all new parties in N(b, 2) and sij secretly to each
participant Pj in N(b, 2); and similarly all new parties in N(b, 2) send their A·,k
values to Pb. Finally, set QUAL ∩ N(c, 2) is updated as in step 2 above for all
c ∈ N(i, 2) ∩N(j, 2).

Now, assume that participant Pi is added. Again, all the connectivity infor-
mation in N(a, 2), for a ∈ N(i, 2), is updated. Similarly as before, Pi sends Aik,
for k = 0, . . . , t, to each party in N(i, 2) and sij secretly to each party Pj in
N(i, 2); analogously, all parties in N(i, 2) send their A·,k values to Pi. Finally,
set QUAL ∩N(c, 2) is updated as in step 2 above for all c ∈ N(i, 2).

We note that this subprotocol is constructed assuming as a building block the
existence of a routing protocol that securely connects each party to any party
at a constant number of hops away.

3.2 The Two Threshold Signature Schemes

Recall that graph G = (V,E) denotes the connections between n parties, and, at
any time, client C ∈ V may request a threshold signature of some message M
from her � neighbors Pi1 , . . . , Pi� , by choosing a threshold parameter t such that
τ ≤ t < �/2, and sending t, M , C’s index and the indices i1, . . . , i� to them. At
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this point these parties need to run a t-out-of-� threshold signature to sign M .
Therefore we solve the problem of designing a threshold signature scheme for
MANETs by designing a threshold signature scheme with the following proper-
ties: the private keys of the servers are generated in a distributed manner (that is,
without help from a central authority or dealer); after the key generation phase,
any subset of � parties is able to compute a threshold signature for any arbitrary
value t of the threshold such that t < �/2; the partial signature generation and
verification algorithms, as well as the signature reconstruction algorithm require
minimal interaction, as they are non-interactive; finally, in our second protocol
we even significantly decrease the latency in the key generation protocol.

Given the large amount of threshold signature schemes in the cryptographic
literature, we tried to come up with a solution that has as minimal as possible
extensions to some known protocols. By inspecting all schemes in the litera-
ture, we see that only some schemes satisfy some (and certainly not all) of the
mentioned properties. The combination of known schemes that is the closest to
our desired solution is obtained by careful modifications of the short signature
scheme in [4] and of the distributed key generation scheme in [20]. Specifically,
we can obtain a threshold signature scheme for MANETs by properly combin-
ing the partial signature scheme and any of the two distributed key generation
schemes described in the previous subsection, as follows. We first run several in-
dependent copies of the distributed key generation scheme, one for each possible
value that the threshold can later assume. Then, upon a request from a client
specifying the message to be signed, the threshold and the subset of parties that
will generate the threshold signature, we use the described partial signature and
verification algorithms on input the various data from the client’s request. The
input to the partial signing algorithm depends on which parties are requested
to participate from the client. The reconstruction of the signature (specifically,
the computation of the Lagrange multipliers) depends on which threshold and
which set of parties just generated partial signatures for the client. We now give
a more formal description of our two protocols.

Our First Protocol. By (S,V) we denote the signing and verification algorithm
and by MPed we denote the distributed key generation scheme defined in Sec-
tion 3.1. We define protocol MTSig = Π = (Πkg, Πsgn) as follows. (Subprotocol
Πkg is step 1 and subprotocol Πsgn is step 2.)

1. For t = τ, . . . , �n/2�, parties P1, . . . , Pn run an independent execution of
protocol MPed on input threshold t and integer n;
by At,i,k, for k = 0, . . . , t, we denote the values broadcast to all parties from
Pi during the execution t of protocol MPed
by (QUALt; {sti,j : j ∈ QUALt}) we denote the output of party Pj at the
end of execution t of protocol MPed

2. For each client C’s request (M ; t; �; i1, . . . , i�; c),
for j = 1, . . . , �,

party Pij sets yt,j =
∑l

a=1 s
t
ij ,a

party Pij runs algorithm S on input (yt,j ,M, t, �, i1, . . . , i�; c)
party Pij sends S’s output σij to client C
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party C sets v = At,i1,0 · · ·At,i�,0
party C runs algorithm V on input (g, v,M, t, �, i1, . . . , i�, c, σij )
party C halts if this execution returns: 0.

party C computes signature σ = σ
Lt,1
i1

· · ·σLt,�

i�
, where Lt,1, . . . , Lt,� are the

Lagrange multipliers associated with set {Pi1 , . . . , Pi�} and threshold t.
party C returns out = yes.

We obtain the following

Theorem 1. The protocol MTSig is a threshold signature scheme for mobile ad
hoc networks, where: 1) the correctness property holds assuming the existence of
a routing protocol that remains secure in the key distribution phase of MTSig;
2) the unforgeability and the robustness properties hold with the additional
assumptions that H is a random oracle and G is a gap-DH group; 3) the latency
of the protocol is O(d), where d is the max diameter of graph G during the key
distribution phase of MTSig.

Our Second Protocol. We can define a protocol BMTSig as almost identical
to protocol MTSig, the only difference being in that BMTSig runs the key
distribution protocol BMPed wherever protocol MTSig runs protocol MPed.
We obtain the following

Theorem 2. The protocol BMTSig is a threshold signature scheme for mobile
ad hoc networks, where: 1) the correctness property holds assuming the exis-
tence of a routing protocol that remains secure in the key distribution phase
of BMTSig; 2) the unforgeability and the robustness properties hold with the
additional assumptions that H is a random oracle and G is a gap-DH group; 3)
the latency of the protocol is O(1).

Remarks. Both proofs cannot be included for lack of space. We note that in
both protocols the choice of t from party C should, in practice, depend on
the expected number of parties corrupted by the adversary, on the number of
expected failures during the execution of the protocol, and on the number of
neighbors of C.
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Abstract. The concept of Designated Verifier Signatures (DVS) was
introduced by Jakobsson, Sako and Impagliazzo at Eurocrypt’96. These
signatures are intended to a specific verifier, who is the only one able to
check their validity. In this context, we formalize the notion of privacy
of signer’s identity which captures the strong designated verifier prop-
erty investigated in their paper. We propose a variant of the pairing-
based DVS scheme introduced at Asiacrypt’03 by Steinfeld, Bull, Wang
and Pieprzyk. Contrary to their proposal, our new scheme can be used
with any admissible bilinear map, especially with the low cost pairings
and achieves the new anonymity property (in the random oracle model).
Moreover, the unforgeability is tightly related to the Gap-Bilinear Diffie-
Hellman assumption, in the random oracle model and the signature
length is around 75 % smaller than the original proposal.

Keywords: Designated verifier signatures, Privacy of signer’s identity,
Bilinear Diffie-Hellman problems, Exact security, Tight reduction

1 Introduction

Recently, Steinfeld, Bull, Wang and Pieprzyk [17] proposed a designated verifier
signature scheme based on pairings. In this article, we propose three techniques
which significantly improve this protocol. First of all, a novel use of a hash func-
tion in a context of digital signatures permits to rehabilitate the low cost pair-
ing, namely the discrete exponentiation, which has been turned down because it
suffers from some unavoidable drawbacks as a bilinear map. The efficiency is in-
creased by a factor of 3.5 to 16, and the signature length is around 75 % smaller
than the original proposal. Secondly, we formally define a notion of anonymity
of signers, and, randomizing the signatures makes our scheme achieve this prop-
erty. As a side effect, its unforgeability is tightly related to the Gap Bilinear
Diffie-Hellman assumption. Finally, the proofs of security rely on a new use of a
Decisional Bilinear Diffie-Hellman oracle in the simulation of a random oracle.
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Related Work. The self-authenticating property of digital signatures can be
suitable for some applications such as dissemination of official announcements,
but it is sometimes undesirable in personally or commercially sensitive appli-
cations. Therefore it may be preferable to put some restrictions on this prop-
erty to prevent potential misuses of signatures. To address this concern, several
techniques that allow users to generate a signature with anonymity have been
developed over the years. The concept of Designated Verifier Signatures (DVS)
was introduced by Jakobsson, Sako and Impagliazzo at Eurocrypt’96 [10] and
independently by Chaum in the patent [7], under the name of private signa-
tures. They are intended to a specific and unique designated verifier, who is the
only one able to check their validity. This verifier cannot convince another party
that the signature is actually valid, essentially because he can also perform this
signature by himself. This means, in particular, that DVS do not provide the
main property of ordinary digital signatures, namely non-repudiation. As ex-
plained in [10], in some cases, it may be desirable that DVS provide an even
stronger notion of privacy: given a DVS and two potential signing public keys,
it is computationally infeasible for an eavesdropper to determine under which of
the two corresponding secret keys the signature was performed. Following [10],
we call strong designated verifier signatures, the DVS schemes that achieve this
property.

In [14], Rivest, Shamir and Tauman introduced the ring signatures (see also
[6]). By setting the size of the ring to two members, these signatures provide DVS.
Many ring signatures have been proposed but they do not achieve the strong des-
ignated verifier property. Recently, in [15], Saeednia, Kremer and Markowitch
proposed very efficient DVS with signatures à la Schnorr. They proved the ex-
istential unforgeability of their scheme under a no-message attack and argued
that their scheme performs the strong designated verifier property (this prop-
erty is defined in terms of simultability). But lacking a good security model, they
could not prove that their scheme achieves these security notions under adaptive
chosen-message attack. In [19], Susilo, Zhang and Mu proposed an identity-based
strong DVS which is a pairing-based variant of [15] and whose security is inves-
tigated in the same model. In [17], Steinfeld, Bull, Wang and Pieprzyk proposed
a formalization of Universal DVS (UDVS). These are ordinary digital signatures
with the additional functionality that any holder of a signature is able to con-
vert it into a DVS specified to any designated verifier of his choice. Moreover
they showed that bilinear maps allow an elegant construction of a UDVS scheme
(DVSBM). A similar construction has been proposed independently by the au-
thors in [11]. At PKC’04 [18], Steinfeld, Wang and Pieprzyk proposed a slightly
stronger security model, which allows the attacker, while mounting a chosen-
message attack, to query the verification of any couple message/signature of its
choice. In their article they give three new DVS constructions based on Schnorr
and RSA signatures.

Our Contributions. In this paper, we formalize the notion of privacy of
signer’s identity which captures the strong designated verifier property. For
public-key encryption, Bellare, Boldyreva, Desai and Pointcheval defined, in [1],
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an additional security requirement which includes the notion that an attacker
cannot determine under which key an encryption was performed: it is the idea
of key-privacy. Our formalization follows this notion. Steinfeld et al. proposed at
Asiacrypt’03 [17] an interesting and promising scheme based on pairing, which
however suffers from a lack of efficiency (compared to [15]’s scheme for instance).
Moreover their scheme is not secure with low cost pairings.

We revise it such that, at equal security guarantees, we obtain the most
efficient UDVS scheme, and instantiated with the discrete exponentiation we
obtain the most efficient DVS protocol in practice (cf. Section 4.2), but loose the
universal property. The first modification which consists in a novel use of hash
function in the asymmetric signature setting makes it possible to shorten the
signatures and allows the scheme to be used with any admissible bilinear map.
Short signatures are useful for low-bandwidth devices and environments where
a person is asked to manually type in the signature. By using this technique,
for a security level of 280 bit operations, the signature length is 271 bits and
does not depend on the size of the ground field. The second trick consists in
making the signature generation not deterministic. With this randomization we
can draw a scheme which achieves privacy of signer’s identity under an adaptive
chosen-message attack in the random oracle model [3]. As in [8], it also makes the
unforgeability of the modified scheme tightly related to the underlying problem,
in the random oracle model. We introduce a new use of a Decisional Bilinear
Diffie-Hellman oracle in the security proofs to maintain a random oracle list. We
obtain a very tight link between the security of the scheme and the Gap Bilinear
Diffie-Hellman assumption, with a quadratic time reduction.

In the rest of the paper, we recall the definition of DVS, then we formalize the
new anonymity requirement for DVS. In section 4, we present our new scheme
with a precise security treatment. In appendix, we discuss the security of some
other schemes.

2 Definition and Security Assumptions for Designated
Verifier Signatures

In this section, we state the definition of DVS schemes induced by Steinfeld et
al.’s formalization.

Definition 1 (Designated Verifier Signature Scheme). Given an integer
k, a (weak) designated verifier signature scheme DVS with security parameter k
is defined by the following:

– a common parameter generation algorithm DVS.Setup: it is a probabilistic
algorithm which takes k as input. The outputs are the public parameters;

– a signer key generation algorithm DVS.SKeyGen: it is a probabilistic algorithm
which takes the public parameters as input and outputs a pair of signing keys
(pkA, skA);

– a verifier key generation algorithm DVS.VKeyGen: it is a probabilistic algo-
rithm which takes the public parameters as inputs, and outputs a pair of
verifying keys (pkB, skB);
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– a designated verifier signing algorithm DVS.Sign: it takes a message m, a
signing secret key skA, a verifying public key pkB and the public parameters
as inputs . The output σ is a B-designated verifier signature of m. This
algorithm can be either probabilistic or deterministic;

– a designated verifying algorithm DVS.Verify: it is a deterministic algorithm
which takes a bit string σ, a message m, a signing public key pkA, a veri-
fying secret key skB and the public parameters as inputs, and tests whether
σ is a valid B-designated verifier signature of m with respect to the keys
(pkA, skA,pkB, skB).

Moreover, a designated verifier signature scheme must satisfy the following
properties (formally defined in [18] and discussed below):

1. correctness: a properly formed B-designated verifier signature must be ac-
cepted by the verifying algorithm;

2. unforgeability: given a pair of signing keys (pkA, skA) and a pair of verifying
keys (pkB, skB), it is computationally infeasible, without the knowledge of
the secret key skA or skB, to produce a valid B-designated verifier signature;

3. source hiding: given a message m and a B-designated verifier signature σ
of this message, it is (unconditionally) infeasible to determine who from the
original signer or the designated verifier performed this signature, even if
one knows all secrets;

For digital signatures, the widely accepted notion of security was defined
by Goldwasser, Micali and Rivest in [9] as existential forgery against adaptive
chosen-message attack (EF-CMA). For a DVS scheme, the security model pro-
posed in [17] and [18] (under the designation ST-DV-UF) is similar, with the
notable difference that, while mounting a chosen-message attack, we allow the
attacker to query a verifying oracle on any couple message/signature of its choice.
As usual, in the adversary answer, there is the natural restriction that the re-
turned message/signature has not been obtained from the signing oracle (for
more details, we refer the reader to [17] and [18]). In order to be consistent with
the classical security model for usual signatures, also for DVS we denote this
security point by EF-CMA.

In their formalization of UDVS [17] [18], Steinfeld et al. defined the Non-
Transferability Privacy property to prevent a designated-verifier from using a
DVS to produce evidence which convinces a third-party that this DVS was ac-
tually computed by the signer. However, their notion is computational, and we
believe that the identity of the signer should be unconditionally protected (i.e.
DVS should provide information theoretical anonymity), as in ring signatures
(where this security requirement is called source hiding).

Finally, even with this unconditional ambiguity, anyone can check that there
are only two potential signers for a DVS. If signatures are captured on the
line before reaching the verifier, an eavesdropper will be convinced that the
designated verifier did not produce the signature. Therefore, in [10], Jakobsson
et al. suggested a stronger notion of anonymity:
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Definition 2 (Strong Designated Verifier Signature Scheme). Given an
integer k, a strong designated verifier signature scheme DVS with security param-
eter k is a designated verifier signature scheme with security parameter k, which
satisfies the following additional property (formally defined in the next section):

4. privacy of signer’s identity: given a message m and a B-designated verifier sig-
nature σ of this message, it is computationally infeasible, without the knowl-
edge of the secret key of B or the one of the signer, to determine which pair
of signing keys was used to generate σ.

3 Anonymity of DVS

3.1 Formal Definition

In this section, we define formally the privacy of signer’s identity under a chosen
message attack (PSI-CMA). We consider a PSI-CMA-adversary A in the random
oracle model, which runs in two stages: in the find stage, it takes two signing
public keys pkA0 and pkA1 and a verifying public key pkB, and outputs a
message m� together with some state information I�. In the guess stage, it gets
a challenge B-designated verifier signature σ� formed by signing the message
m� at random under one of the two keys and the information I�, and must say
which key was chosen. The adversary has access to the random oracle(s) H, to
the signing oracles ΣA0,B , ΣA1,B and to the verifying oracle ΥB , and is allowed
to invoke them on any message with the restriction of not querying (m�, σ�)
from the verifying oracle in the second stage.

Definition 3 (Privacy of Signer’s Identity). Let k be an integer and DVS a
designated verifier signature scheme with security parameter k. We consider the
following random experiment, for r ∈ {0, 1}:

Experiment Exppsi-cma−r
DVS,A (k)

params R←− DVS.Setup(k)
(pkA0 , skA0)

R←− DVS.SKeyGen(params)
(pkA1 , skA1)

R←− DVS.SKeyGen(params)
(pkB, skB) R←− DVS.VKeyGen(params)
(m�, I�) ← AΣA0,B ,ΣA1,B ,ΥB ,H(find,pkB,pkA0 ,pkA1)
σ� ← DVS.Sign(params,m�, skAr ,pkB)
d← AΣA0,B ,ΣA1,B ,ΥB ,H(guess,m�, I�, σ�,pkB,pkA0 ,pkA1)
Return d

We define the advantage of the adversary A, via

Advpsi−cma
DVS,A (k) =

∣∣∣Pr
[
Exppsi−cma−1

DVS,A (k) = 1
]
− Pr

[
Exppsi−cma−0

DVS,A (k) = 1
]∣∣∣ .

Let t ∈ N and ε ∈ [0, 1]. The scheme DVS is said to be (k, t, ε)-PSI-CMA se-
cure, if the function Advpsi−cma

DVS,A (k) is smaller than ε for any PSI-CMA-adversary
A running in time complexity less than t.
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3.2 Semantically Secure Encryption Implies Anonymity

In [10], Jakobsson et al. suggested that “in order to make protocols strong desig-
nated verifier, transcripts can be probabilistically encrypted using the public key
of the intended verifier”. This is not sufficient in general (for instance a plaintext
El Gamal encryption does not protect the anonymity of the signers). However,
in this paragraph, we prove that using an additional IND-CCA2 public-key en-
cryption layer is actually sufficient to make any DVS scheme strong.

Basically, being able to distinguish two potential signing keys in the signature
scheme will give an advantage to distinguish two potential encrypted messages.

Let k be an integer, let DVS be a (weak)-designated verifier signature scheme
with security parameter k and let Π be any IND-CCA2 encryption scheme. We
define a designated verifier signature DVSΠ as follows: the generation of a DVSΠ

signature of a message m is done by encrypting a DVS signature σ of m under
the designated verifier public key. Its verification is performed by first decrypting
the signature, then verifying it with the DVS.Verify algorithm.

Proposition 1. Let k be an integer, let DVS be a (weak)-designated verifier sig-
nature scheme with security parameter k, and let Π be an IND-CCA2 encryption
scheme with security parameter k. Then DVSΠ is a strong designated verifier
signature scheme. More precisely, for any PSI-CMA adversary A with security
parameter k which takes advantage Advpsi−cma

DVSΠ ,A against DVSΠ within time t, mak-
ing qH, qΣ and qΥ queries to the random oracle(s), the signing oracle and the
verifying oracle respectively, there exists an IND-CCA2 adversary A′ against Π,
making qH queries to the random oracle(s), and qΥ queries to the decrypting
oracle, within time t, which has the same advantage as A.

Proof (sketch). A general study of the security notions and attacks for encryption
schemes was conducted in [2]. We refer the reader to this paper for the definition
of IND-CCA2 encryption.

We construct the algorithm A′ as follows:

– A′ is fed with a public key EpkB for Π and chooses two pairs of signing
keys (skA0 ,pkA0) (skA1 ,pkA1) and a pair of verifying keys (skB,pkB).

– A is fed with EpkB, pkB, pkA0 and pkA1 .
– In both stages, for any signing query from A, A′ answers using the secret

key of either A0 or A1. For any verifying query from A, A′ answers using
the secret key DpkB of B and the decryption oracle.

– Eventually, in the find stage, A outputs a message m ∈ {0, 1}∗.
– A′ computes two pre-signatures σ0 and σ1 using the DVS.Sign algorithm

of the message m, and queries these signatures to the IND-CCA2 challenger
which answers with an encryption of σb where b ∈R {0, 1}.

– A′ gives this challenge to A as the answer to the PSI-CMA challenge. The
only verification query that A′ cannot answer is the one A is not allowed to
ask.

– Finally A outputs a bit b′ in the guess stage.
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By definition of A, b′ = b with probability Advpsi−cma
DVSΠ ,A and A′ distin-

guishes the two messages σ0 and σ1 encrypted by Π with the same advantage
Advind−cca

Π,A′ = Advpsi−cma
DVSΠ ,A . This concludes the proof.

4 The New Scheme : DVSBMH

4.1 Bilinear Maps and Underlying Problems

In this section, we recall some definitions concerning bilinear maps.

Definition 4 (Admissible Bilinear Map [4]). Let (G0,+), (G1,+) and
(H,×) be three groups of the same prime order q and let P0 and P1 be two
generators of G0 and G1 (respectively). An admissible bilinear map is a map
e : G0 ×G1 −→ H satisfying the following properties:

– bilinear: e(aQ, bR) = e(Q,R)ab for all (Q,R) ∈ G0 ×G1 and all (a, b) ∈ Z
2;

– non-degenerate: e(P0, P1) �= 1;
– computable: there exists an efficient algorithm to compute e.

Definition 5 (Prime-Order-BDH-Parameter-Generator [4]). A prime-
order-BDH-parameter-generator is a probabilistic algorithm that takes a secu-
rity parameter k as input and outputs a 7-tuple (q, P0,G0, P1,G1,H, e) satis-
fying the following conditions: q is a prime with 2k < q < 2k+1, the groups
G0,G1 and H are of order q, P0 and P1 generates G0 and G1 (respectively), and
e : G0×G1 −→ H is an admissible bilinear map. A prime-order-BDH-parameter-
generator Gen is said to be symmetric if P0 = P1 and G0 = G1 for any 7-tuple
(q, P0,G0, P1,G1,H, e) output by Gen.

Let (G0,+), (G1,+) and (H,×) be three groups of the same large prime or-
der q, P0 and P1 be two generators of G0 and G1 (respectively), and let
e : G0 ×G1 −→ H be an admissible bilinear map. For most of the applications of
pairings in cryptography, it is necessary to know an efficient way to compute an
isomorphism ϕ : G0  G1. Contrary to Weil or Tate pairings, this is not true for
the discrete exponentiation e : 〈P0〉 × (Z/qZ,+) −→ 〈P0〉, (P, x) !−→ xP where
the map 〈P0〉 −→ Z/qZ is the discrete logarithm.

At PKC’01, Okamoto and Pointcheval proposed a new class of computational
problems, called gap problems [13]. Essentially, a gap problem is a dual to invert-
ing and decisional problems. More precisely, this problem is to solve an inverting
problem with the help of an oracle for a decisional problem. Following this idea,
we state the following problems (where G0 and G1 have not a symmetric role):

Computational Bilinear Diffie-Hellman (CBDH): let a, b and c be three
integers. Given aP0, bP0, cP1, compute e(P0, P1)abc.
Decisional Bilinear Diffie-Hellman (DBDH): let a, b, c and d be four
integers. Given aP0, bP0, cP1 and e(P0, P1)d, decide whether d = abc mod q.
Gap-Bilinear Diffie-Hellman (GBDH): let a, b and c be three integers.
Given aP0, bP0, cP1, compute e(P0, P1)abc with the help of a DBDH Oracle.
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Definition 6 (CBDH and GBDH Assumption). Let Gen be a prime-order-
BDH-parameter-generator. Let D be an adversary that takes as input a 7-tuple
(q, P0,G0, P1,G1,H, e) generated by Gen and (X,Y, Z) ∈ G

2
0 ×G1. He returns

an element of h ∈ H. We consider the following random experiments, where k
is a security parameter and ODBDH is a DBDH oracle:

Experiment Expcbdh
Gen,D(k) Experiment Expgbdh

Gen,D(k)

(q, P0,G0, P1,G1,H, e) R←− Gen(k) (q, P0,G0, P1,G1,H, e) R←− Gen(k)
setup← (q, P0,G0, P1,G1,H, e) setup← (q, P0,G0, P1,G1,H, e)
x

R←− [[1, q − 1]], X ← xP0 x
R←− [[1, q − 1]], X ← xP0

y
R←− [[1, q − 1]], Y ← yP0 y

R←− [[1, q − 1]], Y ← yP0

z
R←− [[1, q − 1]], Z ← zP1 z

R←− [[1, q − 1]], Z ← zP1
h← D(setup, X, Y, Z) h← DODBDH (setup, X, Y, Z)
Return 1 if h = e(P0, P1)xyz, Return 1 if h = e(P0, P1)xyz,
0 otherwise 0 otherwise

We define the success of D in solving the CBDH and the GBDH problems via

Succcbdh
Gen,D(k)=Pr[Expcbdh

Gen,D(k)=1] and Succgbdh
Gen,D(k)=Pr[Expgbdh

Gen,D(k)=1]

Let t be an integer and ε a real in [0, 1]. Gen is said to be (k, t, ε)-CBDH-secure
(resp. (k, t, ε)-GBDH-secure) if no adversary D running in time t has success
Succcbdh

Gen,D(k) ≥ ε (resp. Succgbdh
Gen,D(k) ≥ ε).

Notations : we denote by TExp−G the time complexity for evaluating exponen-
tiation in a group G and TO the time complexity of the oracle O.

4.2 Description of the New Scheme DVSBMH

The scheme DVSBM, proposed at Asiacrypt’03 by Steinfeld et al. [17] is a pairing-
based DVS. The signature generation is deterministic, therefore this scheme can
certainly not achieve the PSI-CMA security point. The authors required that the
isomorphism between G0 and G1 is known and efficiently computable. In fact,
DVSBM is trivially not secure if we use the discrete exponentiation.

We introduce a variant of DVSBM which is more efficient, achieves the prop-
erty of privacy of signer’s identity and whose security is proven even if we use
the discrete exponentiation. For industrial purposes, where efficiency prevails
over exact security, the choice of the parameters is oriented by the underlying
algorithmic problems without consideration of the reduction cost in the security
proof (we call it industrial security). Considering the best algorithms to solve
GBDH in both settings, the scheme with the discrete exponentiation will be
prefered in practice, whereas the scheme with the Weil or Tate pairing has a
tighter security reduction.

In DVSBM, the verification of signatures consists only in checking an equality
between two quantities which can be computed independently by the signer and
the verifier, it is actually sufficient to check the equality of some hash values of
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these quantities. This first remark, which seems to have been overlooked in [17],
makes it possible to shorten the signature considerably and to use the discrete
exponentiation to instantiate the protocol.

Our second trick aims at randomizing the signature. We prove that this is
sufficient to obtain the anonymity of signers. Moreover, the security of the signa-
ture is tightly related to the GBDH and this random salt ensures the anonymity
of signers. Using these tricks, we define DVSBMH.

Description of DVSBMH

Setup Let k be a security parameter. Let Gen be a prime-order-BDH-
parameter-generator, f1, f2, fr : N → N be three functions. We denote
k1 = f1(k), k2 = f2(k) and nr = fr(k). Let (q, P0,G0, P1,G1,H, e) be
a 7-tuple generated by Gen(k1). Let [{0, 1}∗ × {0, 1}nr −→ G1] be a
hash function family, and h be a random member of this family. Let
[H −→ {0, 1}k2 ] be a hash function family, and g be a random member
of this family.

SKeyGen a ∈ [[1, q − 1]] is the secret key, PA = aP0 is the public one
VKeyGen b ∈ [[1, q − 1]] is the secret key, PB = bP0 is the public one

Sign Given a message m, the secret key a of the signer, the public key
PB of the designated verifier, compute H = h(m, r) for some random
string r of length nr and s = g(e(PB , aH)) and the signature is σ =
(r, s).

Verify Given a pair (m, (s, r)), the signer’s public key PA, and the
verifier’s secret key b, the algorithm accepts the signature if and only if
s = g(e(PA, bh(m, r))).

In practice, for a security requirement of 280 operations (i.e. k = 80), we
use the values k1 = k2 = 160 and nr = 111 which are derived from the security
proofs (cf. [12]). The correctness and source hiding properties of DVSBMH are
straightforward. In general, the new scheme does not satisfy the universal prop-
erty from [17] any more, because the security of BLS signatures [5] relies on the
existence of an efficiently computable isomorphism from G0 to G1.

4.3 Security of DVSBMH When G0 = G1

Here we formally investigate the security of the version of DVSBMH for which
we know an algorithm to compute the isomorphism between G0 and G1 in the
random oracle model (i.e. we replace the hash functions h and g by random
oracles H and G). For simplicity, we assume G0 = G1 = G. In practice such a
setting can be obtained with, for instance, the Weil or Tate pairing. In this case
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our new scheme can be extended to a UDVS scheme related to the randomized
BLS signatures [5, 8]. This is an important consideration because we prove that
the unforgeability is tightly related to the GBDH problem, therefore this scheme
offers the best exact security of all DVS protocols. Moreover, it achieves the
privacy of signer’s identity under the CBDH assumption (with the random salt
but without the g hash function, the anonymity would have been related to
DBDH, an easier problem). These results are described in the following theorems.

Theorem 1 (Unforgeability of DVSBMH). Let Gen be a symmetric prime-
order-BDH-parameter-generator, let f1, f2, fr : N → N be three functions and
let DVSBMH be the associated DVS scheme. For any EF-CMA-adversary A, in
the random oracle model, against DVSBMH, with security parameter k which
has success ε = Succef−cma

DVSBMH,A(k), running time t, and makes qH and qG queries
to the random oracles, qΣ queries to the signing oracles and qΥ queries to the
verifying oracle, there exists an adversary D for GBDH which has advantage
ε′ = Succgbdh

Gen,D(k) running in time t′ ∈ N such that⎧⎪⎪⎨⎪⎪⎩
ε′ ≥ ε− (qH + qΣ)qΣ

2nr
− (1 + qΥ )

(
qG
2k1

+
1

2k2

)
t′ ≤ t +(qH + qΣ) (TExp−G + O(1)) + qΣ (TExp−H + O(1))

+(qΥ + 1) (TDBDH + O(1))

where k1 = f1(k), k2 = f2(k) and nr = fr(k).

Proof. The proof is a straightforward modification of the proof of [17] using the
additional technique in [8]. Due to the lack of space, we have not written it down.

Theorem 2 (Anonymity of DVSBMH). Let Gen be a symmetric prime-
order-BDH-parameter-generator, let f1, f2, fr : N → N be three functions and
let DVSBMH be the associated DVS scheme. For any PSI-CMA-adversary A, in
the random oracle model, against DVSBMH, with security parameter k which has
advantage ε = Advpsi−cma

DVSBMH,A(k), running time t, and makes qH and qG queries
to the random oracles, qΣ queries to the signing oracles and qΥ queries to the
verifying oracle, there exists an adversary D for CBDH which has advantage
ε′ = Succcbdh

Gen,D(k) running in time t′ ∈ N such that⎧⎨⎩ ε′ ≥ ε

2qG
− (qH + qΣ + 1)(qΣ + 1)

2nrqG
− qΥ

2k2qG
− qGqΥ

2k1qG
t′ ≤ t + (qH + qΣ)(TExp−G + O(1)) + (qΣ + qΥ )(TExp−H + O(1))

where k1 = f1(k), k2 = f2(k) and nr = fr(k).

Proof. Due to lack of space, the proof will be given in the full version of the
paper [12].

4.4 Security of the General Scheme

It is not necessary, thanks to our construction, to know explicitely an isomor-
phism between G0 and G1 to achieve a secure scheme. In this general case, we
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have a leak in terms of exact security compared to the previous case. In fact, we
obtain a very tight link between the success probability of the adversary and the
success in solving the GBDH problem but the reduction is quadratic time. When
we use the discrete exponentiation as the underlying pairing (and so without the
isomorphism), we get the best industrial security. We provide here the proof of
the unforgeability, with the use of a decisional oracle to maintain the random
oracle lists. The proof of the anonymity follows the same lines.

Theorem 3 (Unforgeability of DVSBMH). Let Gen be a prime-order-BDH-
parameter-generator, let f1, f2, fr : N → N be three functions and let DVSBMH
be the associated DVS scheme. For any EF-CMA-adversary A, in the random
oracle model, against DVSBMH, with security parameter k which has success
ε = Succef−cma

DVSBMH,A, running time t, and makes qH and qG queries to the random
oracles, qΣ queries to the signing oracles and qΥ queries to the verifying oracle,
there exists an adversary D for GBDH which has success ε′ = Succgbdh

Gen,D(k)
running in time t′ ∈ N such that⎧⎪⎨⎪⎩

ε′ ≥ ε− qΣ(qH + qΣ + 1)
2nr

− (qG + qΣ + 1)(qΣ + qΥ + 1)
2k1

− (qΥ + 1)(qΣ + 1)
2k2

t′ ≤ t +(qH + 2qΣ + 1) (TExp−G1 + O(1))
+(qG + qΣ + 1)(qG + qΣ + qΥ ) (TDDH + O(1)) ,

where k1 = f1(k), k2 = f2(k) and nr = fr(k).

Proof. The method of our proof is inspired by Shoup [16]: we define a sequence
of games of modified attacks starting from the actual adversary. Let k be a
security parameter, let (q, P0,G0, P1,G1,H, e) be a 7-tuple generated by Gen(k1)
and (R1, R2, R3) be a random instance of the GBDH problem.

Game0 We consider an EF-CMA-adversaryA with success ε = Succef−cma
DVSBMH,A(k),

within time t. The key generation algorithms are run and produce two pairs
of keys (skA,pkA) and (skB,pkB). The adversary A is fed with pkA and
pkB and, querying the random oracles H and G, the signing oracle ΣA,B

and the verifying oracle ΥA,B , it outputs a (m�, (r�, s�)) pair.
We denote by qH, qG , qΣ and qΥ the numbers of queries from the random
oracles H and G, from the signing oracle ΣA,B and from the verifying oracle
ΥA,B . The only requirement is that the output signature (r�, s�) has not been
obtained from the signing oracle. When the adversary outputs its forgery, it
can be checked whether it is actually valid or not. In any Gamej , we denote
by Forgej the event DVSBMH.Verify(m�, (r�, s�), skB,pkA) = 1.
By definition, we have Pr[Forge0] = Succef−cma

DVSBMH,A(k).
Game1 We modify the simulation by replacing pkA by R1 and pkB by R2.

The distribution of (pkA,pkB) is unchanged since (R1, R2, R3) is a random
instance of the GBDH problem. Therefore we have Pr[Forge1] = Pr[Forge0].

Game2 In this game, we simulate the random oracle H. For any fresh query
(m, r) ∈ {0, 1}∗ × {0, 1}nr to the oracle H, we pick u ∈ [[1, q − 1]] at random
and compute Q = uR3. We store (m, r, u,Q) in the H-List and return Q
as the answer to the oracle call. In the random oracle model, this game is
clearly identical to the previous one. Hence, Pr[Forge2] = Pr[Forge1].
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Game3 We simulate the random oracle G by maintaining an appropriate G-List.
For any query s̃ ∈ H,
– we check whether the G-List contains a triple (s̃,⊥, s). If it does, we

output s as the answer to the oracle call,
– else, we browse the G-List and check for all triples (⊥, u, s) whether

(pkA,pkB, uP1, s̃) is a valid Bilinear Diffie-Hellman quadruple. If it does,
we give s as the answer,

– otherwise we pick at random s ∈ {0, 1}k2 , record (s̃,⊥, s) in the G-List,
and output s as the answer to the oracle call.

We have Pr[Forge3] = Pr[Forge2].
Game4 We now simulate the signing oracle: for any m, whose signature is

queried, we pick at random three elements r ∈ {0, 1}nr , s ∈ {0, 1}k2 ,
u ∈ [[1, q − 1]], and compute Q = uP1.
– If the H-List includes a quadruple (m, r, ?, ?) we abort the simulation,

else we store (m, r, u,Q) in the H-List,
– we browse the G-List and check for all triples (s̃,⊥, ?) (resp. (⊥, v, ?))

whether (pkA,pkB, uP1, s̃) is a valid Bilinear Diffie-Hellman quadruple
(resp. wether u = v). If it does, we abort the simulation,

– otherwise, we record (⊥, u, s) in the G-List, and output (r, s).
Since there are at most qH +qΣ +1 messages queried to the random oracle H
and qG +qΣ +1 messages queried to the random oracle G, the new simulation
aborts with probability at most (qH + qΣ + 1) · 2−nr + (qG + qΣ + 1) · 2−k1 .
Otherwise, this new oracle perfectly simulates the signature. Summing up
for all signing queries, we obtain

|Pr[Forge4]− Pr[Forge3]| ≤
(

(qH + qΣ + 1)
2nr

+
(qG + qΣ + 1)

2k1

)
qΣ

Game5 In this game, we make the verifying oracle reject all couples mes-
sage/signature (m, (r, s)) such that s has not been obtained from G. As in
Game5 of the previous proof, we get |Pr[Forge5]− Pr[Forge4]| ≤ (qΥ +1)2−k2 .

Game6 In this game, we finally simulate the verifying oracle. For any couple mes-
sage/signature (m, (r, s)), whose verification is queried, we check whether the
H-List includes a quadruple (m, r, ?, ?). If it does not, we reject the signature.
Therefore the H-List includes a quadruple (m, r, u,Q), and we browse the G-
List: if it includes a triple (s̃,⊥, s), we accept the signature if and only if
(pkA,pkB, Q, s̃) is a valid Bilinear Diffie-Hellman quadruple; else the G-List
includes a triple (⊥, v, s) and we accept the signature if and only if u = v.
As in Game6 of the previous proof, we get

|Pr[Forge6]− Pr[Forge5]| ≤
(qG + qΣ + 1)(qΥ + 1)

2k1
+

qΣ(qΥ + 1)
2k2

.

When the game Game6 terminates, outputting a valid message/signature
(m�, (r�, s�)) pair, by definition of existential forgery, the H-List includes a
quadruple (m�, r�, u�, Q�) with Q� = u�R3.

By the simulation (pkA,pkB, Q�, s̃�) is a valid Bilinear Diffie-Hellman
quadruple, and therefore z = (s̃�)(u

�)−1
gives the solution to the GBDH problem

instance (R1, R2, R3), and we obtained the claimed bounds.
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Theorem 4 (Anonymity of DVSBMH). Let Gen be a prime-order-BDH-
parameter-generator, let f1, f2, fr : N → N be three functions and let DVSBMH
be the associated DVS scheme. For any PSI-CMA-adversary A, in the random
oracle model, against DVSBMH, with security parameter k which has advantage
ε = Advpsi−cma

DVSBMH,A(k), running time t, and makes qH and qG queries to the ran-
dom oracles, qΣ queries to the signing oracles and qΥ queries to the verifying ora-
cle, there exists an adversary D for GBDH which has success ε′ = Succgbdh

Gen,D(k)
running in time t′ ∈ N such that⎧⎪⎨⎪⎩

ε′ ≥ ε

2
− qΣ(qH+qΣ + 1)

2nr
− (qG +qΣ + 1)

2k1
(qΣ + qΥ + 1)− (qΥ + 1)(qΣ + 1)

2k2

t′ ≤ t +(qH + 2qΣ + 1) (TExp−G1 + O(1))
+(qG + qΣ + 1)(qG + qΣ + qΥ ) (TDDH + O(1)) ,

where k1 = f1(k), k2 = f2(k) and nr = fr(k).

5 Conclusion

We designed an efficient construction for strong DVS based on any bilinear map
(which is a variant of DVSBM from [17]), and clarified the property of anonymity
of the signers. Unlike Steinfeld et al., our construction can be instantiated with
the discrete exponentiation. In this case, the unforgeability and the privacy of
signer’s identity are related to the Gap Diffie-Hellman problem, since the discrete
logarithm in G1 is easy. This new scheme offers the best performance in terms
of computational cost and signature length. The DVSBMH scheme built on the
discrete exponentiation is closely bound to a Diffie-Hellman session key exchange.
The general relationship between session key exchange and DVS seems to be an
interesting topic for further research.

Ackowledgements. We express our gratitude to Jacques Traoré, Pascal Paillier
and Éric Reyssat for their helpful comments. Many thanks to Pierre and Laura
for correcting some misprints and our broken english.
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A Review of Other Schemes

A.1 Privacy of Signer’s Identity of SchDVS1, SchDVS2 and RSADVS

In [18], Steinfeld et al. proposed three Universal DVS schemes SchUDVS1,
SchUDVS2 and RSAUDVS. We refer the reader to [18], for the description of
these schemes. The DVS schemes induced by SchUDVS2 and RSAUDVS do not
satisfy the PSI-CMA security property. Indeed, the designated verifier secret key
is not involved in the verifying algorithm. However it is easy to see that SchDVS1,
the DVS scheme induced by SchUDVS1, fulfills this property assuming the diffi-
culty of the Decision Diffie-Hellman (DDH) problem:

Theorem 5 (Anonymity of SchDVS1). Let A be a PSI-CMA-adversary, in
the random oracle model, against the SchDVS1 scheme, with security parameter
k. Assume that A has advantage ε = Advpsi−cma

SchDVS1,A(k), running time t, and
makes qH, qΣ, qΥ queries to the hash function H, to the signing oracles and
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to the verifying oracle (respectively). Then there exist ε′ ∈ [0, 1] and t′ ∈ N

verifying {
ε′ ≥ ε

2
− qΥ + qHqΣ + 1

2k
t′ ≤ t + (qΣ + qΥ )(3TExp−G + O(1))

such that the DDH problem can be solved with probability ε′, within time t′.

Proof. Due to lack of space, the proof will be given in the full version of the
paper [12].

A.2 Security of Saeednia, Kremer and Markowitch’s Scheme
(SKM)

The unforgeability of the DVS scheme in [15] is only considered under a no-
message attack which is not acceptable in terms of security requirements. By
using the technique introduced in the proof of Theorem 3, we can prove the
unforgeability of SKM’s scheme against a chosen message attack:

Theorem 6 (Unforgeability of SKM Signatures). Let A be an EF-CMA-
adversary against SKM’s scheme with security parameter k, in the random oracle
model, which produces an existential forgery with probability ε = Succef−cma

SKM,A(k),
within time t, making qH, qΣ and qΥ queries to the hash oracle, to the signing
oracle and to the verifying oracle. Then there exist ε′ ∈ [0, 1] and t′ ∈ N verifying{

ε′ ≥ ε− (qH + qΣ)qΣ + qΥ
2k

,

t′ ≤ t+(qΣ+qΥ ) (2TExp−G+O(1))+(qH+qΣ)(qH+qΣ+qΥ ) (TDDH + O(1)) ,

such that the Gap Diffie-Hellman (GDH) problem can be solved with probability
ε′, within time t′.

Theorem 7 (Anonymity of SKM Signatures). Let A be a PSI-CMA-
adversary, in the random oracle model, against SKM’s scheme, with security
parameter k. Assume that A has advantage ε = Advpsi−cma

SKM,A(k), running time t,
and makes qH, qΣ, qΥ queries to the hash function H, to the signing oracles and
to the verifying oracle. Then there exist ε′ ∈ [0, 1] and t′ ∈ N verifying{

ε′ ≥ ε

2
− (qH + qΣ)qΣ + qΥ

2k
t′ ≤ t+(qΣ+qΥ ) (2TExp−G+O(1))+(qH+qΣ)(qH+qΣ+qΥ ) (TDDH+O(1))

such that GDH can be solved with probability ε′, within time t′.

Proofs. They are straightfoward adaptations of the proof of Theorem 3. Due to
lack of space, they will be omitted.
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Abstract. A group signature scheme allows members of a group to
anonymously sign messages. To counter misuse, the anonymity can be
revoked by the so-called group manager.

This paper contributes two results to the area of group signatures.
First, we improve the state-of-the-art scheme by Ateniese et al. by an
order of magnitude. Our new scheme satisfies the recent security defini-
tion by Bellare et al. Second, and of a more theoretical nature, we study
the Bellare et al. definitions and show that their notion of full-anonymity
may require stronger assumptions than what is needed to achieve a re-
laxed but reasonable notion of anonymity.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [11], allow a member to
anonymously sign on behalf of the group. More precisely, distinguishing whether
or not two group-signatures originated by the same or by different group mem-
bers is infeasible to everyone but the group manager. A number of group sig-
nature schemes are proposed in the literature [11, 10, 9, 1, 3, 6, 4, 2, 5, 8]. Many of
them also allow members to join and leave the group at arbitrary times [3, 6, 21].

Group signatures have many applications in the space of privacy protection.
The most prominent one is probably in trusted computing, where a computing
device is required to authenticate as proper (i.e., secure) device, i.e., that it
has obtained attestation by some third party. To protect privacy of the device’s
user, this authentication should not allow identification of the device. In fact,
the protocol standardized by the Trusted Computing Group to achieve this [20]
basically uses the Ateniese et al. group signature scheme [1] but without its
anonymity revocation feature.

In this paper, we present a new practical group signature scheme that is
related to the Ateniese et al. scheme [1]. We prove that it satisfies a strong
security definition very similar to [4]. Security is proved in the random oracle
model under the strong RSA assumption and a DDH assumption.
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Our scheme is considerably faster than the state of the art scheme in [1].
Moreover, in our scheme the protocol to join the group only takes two rounds.
The prospective member sends a join request to the group manager. The group
manager sends a certificate back to the member.

The scheme supports dynamically joining new members to the group without
changing the public key. Furthermore, it is possible to revoke a secret key such
that it can no longer be used to sign messages. Revocation of a membership does
require the public key to be modified. However, the modification is of constant
size and allows group members in good standing to update their secret keys
easily. To accomplish this goal we use methods similar to those of [6] and [21].
Their schemes are not as efficient as our scheme.

We present a modification of our scheme that with only a small loss of effi-
ciency also allows us to make a full revocation, i.e., reveal all signatures signed
with a revoked key. This scheme does not satisfy the [4] definition of security
though. The problem is that given a private signature key it is possible to de-
termine which signatures belong to the member in question.

As a separate theoretical contribution we show that the existence of one-
way functions and NIZK arguments can be used to construct a group signature
scheme. Again, we obtain a scheme that does not satisfy the [4] definition because
a member’s secret key does make it possible to identify signatures made by this
member. We propose how to define security of group signature schemes when
compromise of members’ secret keys does matter.

We prove that the [4] definition implies IND-CCA2 secure public key bit-
encryption. The existence of one-way functions and NIZK arguments does to
our knowledge not entail the existence of public key encryption. Therefore, it
seems that to satisfy [4] one must use stronger security assumptions than what
is needed for just making a group signature scheme.

State of the Art. The current state of the art group signature scheme is due
to Ateniese et al. [1]. While being reasonably efficient, this scheme does not
support certificate revocation. An extension by Ateniese, Song and Tsudik [3]
implements the full revocation mentioned before, i.e., all bad signatures by the
revoked member are revealed. Unfortunately, this scheme is rather inefficient.
Camenisch and Lysyanskaya [6] and Tsudik and Xu [21] propose schemes with
dynamic revocation. This means that after a certificate has been revoked the
member cannot any longer make signatures. Both schemes are less efficient than
[1]. [21] is more efficient than [6], but relies on a trusted third party to generate
some of the data, and need to update the key both when members join and leave
the group. [6] can easily be modified to only updating the verification key when
memberships are revoked.

All the schemes mentioned here include in their assumptions the strong RSA
assumption and the random oracle model. Ateniese and de Medeiros [2] suggest
a scheme that does not rely on knowledge of the factorization of the modulus,
but this scheme is much less efficient than [1]. [4] suggest a scheme based on
any trapdoor permutation and without the random oracle model. This scheme
is only a proof of concept; it is very inefficient.
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Concurrent with our work, Boneh, Boyen, and Shacham [5] as well as Ca-
menisch and Lysyanskaya [8] presented groups signatures schemes based on bi-
linear maps. While these schemes are more efficient, they are based on new and
alternative number theoretic assumptions.

2 Definitions

A group signature scheme involves three types of parties: members, non-members
and a group manager. It further consists of five algorithms KeyGen, Join, Sign,
Verify, Open, and Revoke. The key generation algorithm produces (vk, gmsk) ←
KeyGen() as output, where vk is a public verification key and gmsk is the group
managers secret key. If the group of members is fixed, we may assume that the algo-
rithmalso outputs avectorsk of secret keys tobe used by themembers. If,however,
the group ofmembers is dynamic, KeyGendoesnot output secret keys for themem-
bers. Instead the Join protocol can be used to let non-members join the group. As a
result of this protocol, a new member obtains a secret key ski, while the group man-
ager obtains some information Yi related to the new member that he includes into
his secretkey gmsk.To signamessagem themember runsσ ← Sign(ski,m).Tover-
ify a signature σ on message m one computes Verify(vk,m, σ). Furthermore, given
a signatureσ onm, the groupmanager can identify the originatingmember by com-
puting Open(gmsk,m, σ), which outputs the identity of the member who created
the signature. Finally,using theRevoke algorithm (vk, gmsk) ← Revoke(gmsk, Yi),
the group manager can exclude the member relating to Yi from the group.

Bellare, Micciancio, and Warinschi [4] propose two properties, full-traceability
and full-anonymity, that capture the security requirements of group signatures.
These definition assume that the key generation is run by a trusted party and do
not consider members joining or leaving the group after the key generation [4].

Full-Traceability. The short description of full-traceability is that without a
member’s secret key it must be infeasible to create a valid signature that frames
this member. This must hold even if the group manager’s secret key and an
arbitrary number of the members’ secret keys are exposed.

Formally, we say that the group signature scheme has full-traceability if the
expectation of the following experiment is negligible.

Expf−trace
A (k) :
(vk, gmsk, sk) ← KeyGen(k)
(m,σ) ← ASign(sk·,·),Corrupt(·)(vk, gmsk)
If Verify(vk,m, σ) = 1, i = Open(gmsk,m, σ) ∈ [k], i was not queried
Corrupt(·) and (i,m) was not queried to Sign(sk·, ·) then return 1
If Verify(vk,m, σ) = 1 and i = Open(gmsk,m, σ) /∈ [k] then return 1
Else return 0

Here Corrupt(·) is an oracle that on query i ∈ [k] returns ski.

[4] argue that full-traceability implies what is meant by the more informal
notions of unforgeability, no-framing, traceability, and coalition resistance as
defined, e.g., in [1].
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Full-Anonymity. We want to avoid that signatures can be linked to group mem-
bers or other signatures. For this purpose, we define full-anonymity as the notion
that an adversary cannot distinguish signatures from two different members.
This must hold even when we give the secret keys to the adversary. In other
words, even if a member’s key is exposed, then it is still not possible for the
adversary to see whether this member signed some messages in the past, neither
is it possible to see if any future messages are signed by this member.

Expf−anon
A (b, k) :
(vk, gmsk, sk) ← KeyGen(k)
(i0, i1,m) ← AOpen(gmsk,·,·)(vk, sk);σ ← Sign(skib

,m)
d ← AOpen(gmsk,·,·)(σ)
If A did not query m,σ return d, else return 0

We say the group signature scheme has full-anonymity if
Pr[Expf−anon

A (1, k) = 1] - Pr[Expf−anon
A (0, k) = 1] is negligible.

[4] argue that full-anonymity entails what is meant by the more informal
notions of anonymity and unlinkability.

Anonymity. The [4] model is strict in its anonymity requirements. It demands
that even if a member’s secret key is exposed it must still be impossible to tell
which signatures are made by the member in question. This is a good definition
of security in a threat model where parties may be corrupted adaptively but can
erase data. The schemes in [1] and [6] have this strong anonymity property as
does our new scheme with Join and Revoke.

In other threat models, this may be aiming too high. Consider for instance
a static adversary, then the key is exposed before any messages are signed or it
is never exposed. Or consider an adaptive adversary where parties cannot erase
data, in this case full-anonymity does not buy us more security. We therefore
define a weaker type of anonymity that is satisfied if both the group manager’s
secret key and the member’s secret key are not exposed. We note that for instance
the scheme in [11, 2, 21] satisfy only this weaker property. One positive effect
of not requiring full-anonymity is that potentially it makes it possible for the
member to claim a signature she made, i.e., prove that she signed a particular
signature, without having to store specific data such as randomness, etc., used
to generate the signature. This latter property is called claiming in [16].

Expanon
A (b, k) :
(vk, gmsk, sk) ← KeyGen(k)
(i0, i1,m) ← AOpen(gmsk,·,·),Sign(sk·,·),Corrupt(·)(vk);σ ← Sign(skib

,m)
d ← AOpen(gmsk,·,·),Sign(sk·,·)(σ)1

If A did not query m,σ to Open and did not query i0, i1 to Corrupt(·) then
return d, else return 0

1 We do not allow A to corrupt member’s in the second phase. This is simply because
we WLOG may assume that it corrupts all other members than i0 and i1 before
getting the challenge signature.
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We say the group signature scheme is anonymous if Pr[Expanon
A (1, k) = 1] -

Pr[Expanon
A (0, k) = 1] is negligible.

As Bellare et al. [4], we can argue that anonymity implies the informal notions
of anonymity and unlinkability mentioned in the introduction.

3 Preliminaries

Protocols to Prove Knowledge of and Relations Among Discrete Logarithms. In
our scheme we will use various protocols to prove knowledge of and relations
among discrete logarithms. To describe these protocols, we use notation intro-
duced by Camenisch and Stadler [10] for various proofs of knowledge of discrete
logarithms and proofs of the validity of statements about discrete logarithms.
For instance, PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ (u ≤ α ≤ v)} denotes a
“zero-knowledge Proof of Knowledge of integers α, β, and γ such that y = gαhβ

and ỹ = g̃αh̃γ holds, where u ≤ α ≤ v,” where y, g, h, ỹ, g̃, and h̃ are elements of
some groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention is that Greek
letters denote the quantities the knowledge of which is being proved, while all
other parameters are known to the verifier. Using this notation, a proof protocol
can be described by just pointing out its aim while hiding all details.

In the random oracle model, such protocols can be turned into signature
schemes using the Fiat-Shamir heuristic [12, 19]. We use the notation SPK{(α) :
y = gα}(m) to denote a signature obtained in this way.

The Camenisch-Lysyanskaya Signature Scheme. The group signature scheme
is based on the Camenisch-Lysyanskaya (CL) signature scheme [7, 18]. Unlike
most signature schemes, this one is particularly suited for our purposes as it
allows for efficient protocols to prove knowledge of a signature and to retrieve
signatures on secret messages efficiently using discrete logarithm based proofs of
knowledge [7, 18]. We recall the signature scheme here.

Key generation. On input 1k, choose an RSA modulus n = pq, p = 2p′ + 1,
q = 2q′ + 1 as a product of safe primes. Choose, uniformly at random,
g1, . . . , gL, h, a ∈ QRn. Output the public key (n, g1, . . . , gL, h, a) and the
secret key p. Let �n be the length of n.

Message space. Let �m be a parameter. The message space is the set
{(m1, . . . , mL) : mi ∈ ±{0, 1}�m}.

Signing algorithm. On input m1, . . . , mL , choose a random prime number e of
length �e > �m +2, and a random number r of length �r = �n + �m + �s, where
�s is a security parameter. Compute the value y such that ye ≡ agm1

1 . . . gmL

L hr

(mod n). The signature on the message (m1, . . . , mL) consists of (e, y, r).
Verification algorithm. To verify that the tuple (e, y, r) is a signature on message

(m1, . . . ,mL), check that ye ≡ agm1
1 . . . gmL

L hr (mod n), and check that 2�e >
e > 2�e−1.

Theorem 1 ([7]). The signature scheme is secure against adaptive chosen mes-
sage attacks [14] under the strong RSA assumption.
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Remarks. The original scheme considered messages in the interval [0, 2�m − 1] .
Here, however, we allow messages from [−2�m +1, 2�m−1]. The only consequence
of this is that we need to require that �e > �m + 2 holds instead of �e > �m + 1.

Further note that a signature can be randomized: It is clear that if ye =
agmhr mod n, then we also have (yh)e = agmhr+e mod n. Thus the signature
scheme is not strong but it is secure against chosen message attack.

The CL-signature scheme makes it possible to sign a committed message. One
party computes the commitment gmhr′

mod n, where r′ ∈R Zn such that m is
statistically hidden. This party also proves knowledge of m, r′. The signer now
picks e as a random �e = �2-bit prime, and picks r′′ ∈ ZEi

. He then computes y
so ye = agmhr′+r′′

and returns (y, e, r′′). Now the party has a signature on m
without the signer having any knowledge about which message was signed.

We note that careful analysis of the signature scheme’s security proof shows
that in fact the requirement of Camenisch and Lysyanskaya that �r = �n+�m+�s

holds can be relaxed to �r = �e, by picking r ∈R Ze. However, if the goal is to sign
a commitment message that shall be kept secret from the signer, one requires a
larger r, for instance r ∈R Zn.

4 The Basic Group Signature Scheme

The Ideas Underlying Our Group Signature Scheme. We base our group signa-
ture scheme on two groups. One group is QRn, where n is an RSA modulus
chosen as a safe-prime product. The other group is of order Q in Z

∗
P , where

Q|P − 1.
Each member receives a CL-signature (yi, ei, ri) on a message xi. As part of a

group signature they will prove knowledge of such a CL-signature. Since outsiders
cannot forge CL-signatures this ensures that the signer is member of the group.
As the group manager must be able to open signatures and identify the signer
we include in the group signature also an encryption of Yi = Gxi mod P . The
signer proves knowledge of xi and that it is the same xi that she knows a CL-
signature on. The group manager knowing the secret key can decrypt and identify
the signer. Because the group manager does not know xi we avoid members
being framed by malicious group managers. The group manager simply cannot
compute the discrete logarithm xi, and therefore not make a group signature
pointing to the member.

In Figure 1 we present the actual protocol. Following the model of [4], it
assumes that the key generation algorithm is run by a trusted third party. We
later extend this scheme to include dynamic join and revocation such that this
third party is not required.

The parameters of our schemes are as follows. We use �s as a bit-length such
that for any integer a when we pick r as a |a| + �s-bit random number then
a + r and r are statistically indistinguishable. �c is the length of the output of
the hash-function. �e is a number large enough that we can assign all members
different numbers and make the Ei’s prime.

It must be the case that �c +�e +�s +1 < �Q and �Q +�c +�s +1 < �E < �n/2.
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A suggestion for parameters is �n = 2049, �P = 1600, �E = 404, �Q = 282,
�c = 160, �e = �s = 60. This choice should ensure that factoring an �n bit
number is about as hard as computing discrete logarithms in a subgroups of size
2�Q modulo an �P -bit prime [17].

Theorem 2. The basic group signature scheme has full-traceability and full-
anonymity.

The proof of Theorem 2 can be found in the full paper.

5 Join and Revoke

Flexible Join. It may be impractical to set up the signature scheme with all
members in advance. Often groups are dynamic and we may have members
joining after the public keys have been generated. The recent schemes [1, 6, 21]
support members joining at arbitrary points in time. The schemes [6, 21] require
that the public key be updated when a new member joins. However, they can
easily be modified to the more attractive solution where the public key does not
need to be updated when a member joins.

Our scheme supports members joining throughout the protocol. The idea is
that the member generates Yi = Gxi mod P herself, so only she knows the
discrete logarithm xi. Jointly the group manager and the member generate
agxihri mod n, where ri is so large that xi is statistically hidden. Then she
gives it to the group manager who generates (yi, ei) and give them to the mem-
ber. Here we use that the CL-signature scheme is secure against adaptive chosen
message attack such that members cannot forge signatures and thereby falsely
join themselves.

Revocation. On occasions, it may be necessary to revoke a member’s secret key.
Since signatures are anonymous, the standard approach of using certificate revo-
cation lists cannot be used. Following [6] we suggest using roots of some element
w to implement revocation. A signature contains an argument of knowledge of
a pair (wi, Ei) such that w = wEi

i mod n. If we want to revoke a membership
we update the public key to contain w ← wi. Now this member may no longer
prove knowledge of a root of w and thus she cannot sign messages any more.2

When changing the public key we need to communicate to the remaining mem-
bers how they should update their secret keys. In our scheme, we do this by pub-
lishing ei corresponding to the revoked member. Members in good standing may
use this to obtain a root of the new w through a simple computation. This means
that the change in the public key is of constant size, and old members may update
their secret keys by downloading only a constant amount of public information.

The protocol is described in Figure 2.

2 A member with a revoked key can still sign messages under the old verification key
and claim that they were signed when this key was valid. Whether such an attack
makes sense depends on the application of the group signature scheme and is beyond
the scope of the paper. One obvious solution is of course to add a time-stamp.
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Basic Group Signature Scheme

KeyGen(k): Choose an �n-bit RSA modulus n = pq as a product of two safe
primes p = 2p′ + 1, q = 2q′ + 1. Select at random a, g, h ∈ QRn.
Select at random �Q-bit and �P -bit primes Q, P such that Q|P − 1. Let F be an
element of order Q in Z

∗
P . Choose at random XG, XH ∈ ZQ and set

G = F XG mod P, H = F XH mod P .
Select at random x1, . . . , xk ∈ ZQ and select also at random r1, . . . , rk ∈ Zn.
Choose different random �e-bit numbers e1, . . . , ek such that
E1 = 2�E + e1, . . . , Ek = 2�E + ek are primes. Compute y1, . . . , yk such that
yE1
1 = agx1hr1 mod n, . . . , yEk

k = agxkhrk mod n.
Public key: vk = (n, a, g, h, Q, P, F, G, H).
Group managers private key:
gmsk = (vk, XG, Y1 = Gx1 mod P, . . . , Yk = Gxk mod P ).
Member i’s private key: ski = (vk, xi, yi, ei, ri).

Sign(ski, m): Select at random r ∈ {0, 1}�n/2 and R ∈ ZQ. Set u = hryi mod n,
U1 = F R mod P , U2 = GR+xi = GRYi mod P , and U3 = HR+ei mod P .a

Compute the (sub-)signature

SPK{(ξ, ρ, ε, τ) : a = u2�E +εg−ξhρ mod n ∧ U1 = F τ mod P ∧
U2 = Gτ+ξ mod P ∧ U3 = Hτ+ε mod P ∧

ε ∈ {−2�e+�c+�s , +2�e+�c+�s} ∧ ξ ∈ {−2�Q+�c+�s , 2�Q+�c+�s}}(m) ,

i.e., choose rx ∈ {0, 1}�Q+�c+�s , rr ∈ {0, 1}�n/2+�c+�s , re ∈ {0, 1}�e+�c+�s , and
RR ∈ ZQ and compute

v = ureg−rxhrr mod n, V1 = F RR mod P,

V2 = GRR+rx mod P, V3 = HRR+re mod P .

Compute a challenge c = hash(vk, u, v, U1, U2, U3, V1, V2, V3, m) and set
zx = rx + cxi, zr = rr + c(−ri − rEi), ze = rr + cei, and ZR = RR + cR mod Q.
Signature: σ = (c, u, U1, U2, U3, zx, zr, ze, ZR).

Verify(vk, m, σ): Check that ze ∈ {0, 1}�e+�c+�s and zx ∈ {0, 1}�Q+�c+�s . Compute

v = a−cg−zxhzr uc2�E +ze mod n, V1 = U−c
1 F ZR mod P,

V2 = U−c
2 GZR+zx mod P, V3 = U−c

3 HZR+ze mod P

and verify that c = hash(vk, u, v, U1, U2, U3, V1, V2, V3, m)
Open(gmsk, m, σ): Verify that the signature is valid.

Using XG decrypt (U
P −1

Q

1 mod P, U
P −1

Q

2 mod P ) to get G
P −1

Q
xi mod P and

return i.
a Without knowledge of the factorization of n, hr mod n for r ∈R {0, 1}�n/2 is

indistinguishable from a random element in QRn [13]. Therefore, u does not
reveal yi to outsiders.

Fig. 1. The Basic Group Signature Scheme
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Join and Revoke

KeyGen(): Run KeyGen(0) of the basic scheme. Choose also at random
w ∈ QRn and include it in vk. Prove that g ∈ 〈h〉 by running PK{(α) : g = hα}
using binary challenges. Set gmsk = (vk, p, q, XG) where n = pq.

Join: The member selects at random xi ← ZQ and computes Yi = Gxi mod P .
She also forms a commitment to xi, gxihr′

i mod n with ri ∈R Zn and proves
knowledge of xi, r

′
i fitting the above. She sends Yi, g

xihr′
i mod n and the proof

to the group manager.
The group manager selects ei ∈ {0, 1}�e such that Ei = 2�E + ei is prime. He
computes wi = wE−1

i mod n. He selects at random r′′
i ∈ Ze and sets

yi = (agxihr′
i+r′′

i )E−1
i mod n. He sends wi, yi, Ei, r

′′
i back to the new member.

Her secret key is ski = (vk, wi, xi, ri = r′
i + r′′

i , yi, ei).
Sign(vk, ski, m): Select at random r ∈ {0, 1}�n/2 and R ∈ ZQ. Set

u = hryiwi mod n, U1 = F R mod P , U2 = GR+xi mod P , and
U3 = HR+ei mod P . Compute the (sub-)signature

SPK{(ξ, ρ, ε, τ) : aw = u2�E +εg−ξhρ mod n ∧ U1 = F τ mod P ∧
U2 = Gτ+ξ mod P ∧ U3 = Hτ+ε mod P ∧

ε ∈ {−2�e+�c+�s , +2�e+�c+�s} ∧ ξ ∈ {−2�Q+�c+�s , 2�Q+�c+�s}}(m) ,

i.e., choose rx ∈ {0, 1}�Q+�c+�s , rr ∈ {0, 1}�n/2+�c+�s , re ∈ {0, 1}�e+�c+�s , and
RR ∈ ZQ and compute

v = ureg−rxhrr mod n, V1 = F RR mod P,

V2 = GRR+rx mod P, V3 = HRR+re mod P.

Compute a challenge c = hash(vk, u, v, U1, U2, U3, V1, V2, V3, m) and
zx = rx + cxi, zr = rr + c(−ri − rEi), ze = re + cei, ZR = RR + cR mod Q.
Signature: σ = (c, u, U1, U2, U3, zx, zr, ze, ZR).

Verify(vk, m, σ): Check that ze ∈ {0, 1}�e+�c+�s and zx ∈ {0, 1}�Q+�c+�s . Compute

v = (aw)−cg−zxhzr uc2�E +ze mod n, V1 = U−c
1 F ZR mod P,

V2 = U−c
2 GZR+zx mod P, V3 = U−c

3 HZR+ze mod P

and verify that c = hash(vk, u, v, U1, U2, U3, V1, V2, V3, m)
OpenProof(gmsk, i, m, σ): This is the same as in the basic scheme.
Revoke(gmsk, i): Publish Ei. Replace in vk the element w with wi.

Any member in good standing may update her secret key skj as follows. She
selects α, β such that αEi + βEj = 1. Then she computes the new
wj ← wβEi

i w
αEj

j mod n.

Fig. 2. Protocol for Dynamic Join and Revoke

Performance. We now discuss the performance of our group signature with
join and revoke and compare it to the ACJT scheme [1] and it’s extension to
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revocation by Camenisch and Lysyanskaya [7]. To compute a group-signature,
one needs to do six exponentiations modulo P with exponents from ZQ, one
exponentiation modulo n with an exponent of length �n/2, and one multi-base
exponentiation with one exponent of length �n/2 + �c + �s and two of length at
most �Q + �s + �c. In a good implementation, the computation of the multi-base
exponentiation takes about 10 percent more time than a single exponentiation
with an exponent of length �n/2 + �c + �s.

The verification of a signature requires three two-base exponentiations mod-
ulo P and one multi-base exponentiation modulo n. As one of the exponents
of the two-base exponentiations modulo P is rather small (�c bits), these three
take roughly the same time as three ordinary exponentiations modulo P . Con-
cerning the multi-base exponentiation modulo n, the same statements as for the
multi-base exponentiation modulo n in the signature generation holds.

Let us compare this with the [1] group signature scheme. In order to achieve
the same security as in our scheme, the modulus n used there needs to be about
3200 bits. The reason is that in their scheme, the group manager is given a
value Bi = axia0 mod n by a member, where xi is the member’s secret. As the
group manager knows the factorization of n, he has an advantage when trying
to compute discrete logarithms modulo n and hence to compute xi.

Now, the computation of a signature in the ACJT scheme takes four expo-
nentiations modulo n with exponents about the size of n2 and three multi-base
exponentiations with exponents the size of about n3. Assuming that all the
exponentiations in the ACJT and our scheme were carried out with the same
modulus (which is quite a bit in favor of the ACJT scheme), our scheme is about
20 times more efficient.) Moreover, our scheme also provides revocation which
the ACJT scheme does not. The extension of the ACJT to revocation proposed
by Camenisch and Lysyanskaya requires about four multi-base base exponenti-
ation with a 2048-bit modulus and exponents, in which case our scheme is more
than 26 times more efficient.

Finally we note that the ACJT scheme requires that the member are assured
that the modulus n is a safe prime product while in our scheme it is sufficient
that they are convinced that g ∈ 〈h〉. The latter can be achieved much more
efficiently than the former.

Separating the Membership Management and the Anonymity Revocation Capa-
bility. There may be cases where we want to separate the process of granting
(and revoking) membership and the process of revoking anonymity of signatures.
A simple modification to our scheme allows for this.

The idea is that n is generated by the membership manager who can produce
the needed CL signatures that we use in our scheme. On the other hand we let the
anonymity revocation manager generate G,H. The membership manager then
registers Gxi mod P and Hei mod P with the anonymity revocation managers.

Now, if the member that wants to sign a message picks r and rr large enough
(for instance from {0, 1}�n+�s), then in the group QRn everything is statistically
hidden. Furthermore in Z

∗
P everything is encrypted. Therefore, the membership

manager can no longer see who signs a particular message. However, the mem-
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bership manager needs to prove that yi, g, wi ∈ 〈h〉, otherwise the side-classes
might leak information. We refer to the full paper for the details of this,

6 Full Revocation

Revocation Revisited. The current method of revocation does not allow us to
revoke signatures valid under an old key. It would be highly impractical to de-
mand that all members re-sign messages when the public key is updated. In-
stead, we would prefer a solution parallel to that of certificate revocation lists
that allow us to publish information that marks signatures signed by the now
distrusted member. Nevertheless, of course we still want to preserve the privacy
of all other members so we cannot simply reveal the group manager’s secret
key.

We propose an addition that solves this problem. The idea is to pick a random
element si ∈ ZQ when the member joins. The member can now form FR mod
P and FRsi mod P and include them in a group signature. According to the
DDH assumption this will just look like two random elements. However, if the
group manager releases si, then all signatures suddenly become clearly marked
as belonging to said member.

We do need to force the member to use si, otherwise the member could create
group signatures that could not be full-revoked. Therefore, we include a random
element f ∈ QRn in the public key and give the member a CL-signature on the
form (yi, Ei, ri), where yEi

i = afsigxihri mod n. The member will form U4, V4
as U4 = FRsi mod P and V4 = F ds mod P , when making the signature and
argues correctness of this together with an argument that si is included in the
CL-signature that she knows.

The protocol is described in Figure 3.

Security. A member’s secret key contains si. Therefore, if the secret key is ex-
posed it is easy to link the member with the signatures she has made. We can
therefore not hope to have full anonymity but must settle for anonymity.

In theory, it is possible to construct a signature scheme that supports
full revocation and full-anonymity. One idea could be that the group man-
ager selects elements Ai, Bi with Bi = AXi

i mod P and signs these elements.
Then the member must produce in addition to the standard signature a pair
(AR

i mod P,BRXi
i mod P ) and prove in zero-knowledge that it has been prop-

erly formed. Once the group manager wants to make a full revocation he pub-
lishes Xi. However, the member’s secret key does not include Xi so expo-
sure of this key does not reveal which messages she has signed. This method
is not very efficient though. It is an open problem to come up with an effi-
cient group signature scheme that has full-anonymity and supports full revoca-
tion.

On the flip side we note that it may be seen as a positive thing that the
member’s signing key reveals which messages she signed. In [16]’s notion of
traceable signatures it is a requirement that the member should be able to claim
his signature. When the member’s secret key links him to her signatures then this
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Group Signature with Full Revocation

KeyGen(): As in the basic scheme except we now also include a random element
f from QRn in the public key, as well as w ∈R QRn.

Join: The Join protocol remains the same except now the member chooses a
random element si ∈ ZQ and gets yi = (afsigxihr′

i+r′′
i )E−1

i mod n, while the
group manager learns si.

Sign(vk, ski, m): Choose randomizers as in the Join and Revoke scheme and set
u = hryiwi mod n, U1 = F R mod P , U2 = GR+xi mod P , U3 = HR+ei mod P ,
and U4 = Usi

1 mod P .
Compute the (sub-)signature

SPK{(ψ, ξ, ρ, ε, τ) : aw = u2�E +εf−ψg−ξhρ mod n ∧ U1 = F τ mod P ∧
U2 = Gτ+ξ mod P ∧ U3 = Hτ+ε mod P ∧ U4 = Uψ

1 mod P ∧
ε ∈ {−2�e+�c+�s , +2�e+�c+�s} ∧ ψ, ξ ∈ {−2�Q+�c+�s , 2�Q+�c+�s}}(m) ,

i.e., choose rs ∈ {0, 1}�Q+�c+�s , rx ∈ {0, 1}�Q+�c+�s , rr ∈ {0, 1}�n/2+�c+�s ,
re ∈ {0, 1}�e+�c+�s , and RR ∈ ZQ and compute

v = uref−rsg−rxhrr mod n, V1 = F RR mod P,

V2 = GRR+rx mod P, V3 = HRR+re mod P, V4 = Urs
1 mod P,

Compute a challenge c = hash(vk, u, v, U1, U2, U3, V1, V2, V3, m) and
zs = rs + csi, zx = rx + cxi, zr = rr + c(−ri − rEi), ze = re + cei,
ZR = RR + cR mod Q.
Signature: σ = (c, u, U1, U2, U3, U4, zs, zr, zx, ze, ZR).

Verify(vk, m, σ): Check that ze ∈ {0, 1}�e+�c+�s and zs, zx ∈ {0, 1}�Q+�c+�s .
Compute

v = (aw)−cf−zsg−zxhzr uc2�E +ze mod n, V1 = U−c
1 F ZR mod P,

V2 = U−c
2 GZR+zx mod P, V3 = U−c

3 HZR+ze mod P, V4 = U−c
4 Uzs

1 mod P

and verify that c = hash(vk, u, v, U1, U2, U3, U4, V1, V2, V3, V4, m)
Open(gmsk, m, σ): The opening protocol remains the same.
Revoke(gmsk, i): The revocation protocol remains the same.
FullRevoke(gmsk, i): Look up si and publish it on the certificate revocation list.

Execute Revoke(gmsk, i).
Since si is now public anybody may check in old signatures whether

U
P −1

Q

4 = U
P −1

Q
si

1 mod P and therefore whether the signatures have been formed
by the fully revoked member.

Fig. 3. Group Signature with Full Revocation

can be done easily without her having to store old randomness used in specific
signatures that she might later want to claim.
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7 Separating Full-Anonymity and Anonymity

Full-Anonymity Implies IND-CCA2 Public Key Bit-Encryption. To appreciate
the strength of the [4] definition of security of a group signature scheme, we note
that full-anonymity implies CCA2 secure public key bit-encryption.

Theorem 3. If a group signature scheme satisfying full-anonymity exists, then
an IND-CCA2 public key cryptosystem for encrypting bits exists.

We refer to the full paper for the proof.
[2] speculate whether it is possible to construct a group signature scheme

based only on one-way functions. Following [15] we believe it is not possible
to construct public key encryption from one-way functions, and therefore not
possible to construct a group signature scheme from one-way functions that
satisfies the security definition of [4].

Group Signature from One-Way Function and NIZK Argument. From the full
paper we get the following theorem.

Theorem 4. If one-way functions and non-interactive zero-knowledge argu-
ments exist for some suitable language, then group signature schemes with full-
traceability and anonymity exist.

We do not know of any construction of public key encryption from one-
way functions and non-interactive zero-knowledge arguments. Theorems 3 and
4 therefore indicate that a group signature scheme having full-anonymity may
require stronger assumptions than what is needed to obtain anonymity.

The scheme in the full paper can easily be extended to a traceable signa-
ture scheme [16]. Theorems 3 and 4 can then be seen as indications that group
signatures require stronger assumptions than traceable signature schemes.
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Abstract. The only known blind signature scheme that is secure in the
standard model [19] is based on general results about multi-party com-
putation, and thus it is extremely inefficient. The main result of this
paper is the first provably secure blind signature scheme which is also ef-
ficient. We develop our construction as follows. In the first step, which is
a significant result on its own, we devise and prove the security of a new
variant for the Cramer-Shoup-Fischlin signature scheme. We are able to
show that for generating signatures, instead of using randomly chosen
prime exponents one can securely use randomly chosen odd integer ex-
ponents which significantly simplifies the signature generating process.
We obtain our blind signing function as a secure and efficient two-party
computation that cleverly exploits its algebraic properties and those of
the Paillier encryption scheme. The security of the resulting signing pro-
tocol relies on the Strong RSA assumption and the hardness of decisional
composite residuosity; we stress that it does not rely on the existence of
random oracles.

1 Introduction

Provable Security: Standard Versus the Random Oracle Model. Prov-
able security is the defining paradigm of modern cryptography. Here, complex
cryptographic constructs are designed starting from simpler ones, and the secu-
rity of the former is proved exhibiting a reduction to the security of the latter.
Although security proved this way is not unconditional, the guarantees that are
obtained in this framework (known as the “standard model”) typically rely only
on a few widely studied and accepted assumptions.
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The random oracle [2] model is a popular alternative to the above paradigm.
Here, protocols are designed and proved secure under the additional assumption
that publicly available functions that are chosen truly at random exist,1 and
concrete implementations are obtained by replacing the random oracles with
cryptographic hash functions (such as SHA-1).

Although existence of random oracles enables very efficient cryptographic
solutions for a large number of problems (digital encryption and signing, iden-
tification protocols etc.), in general, security proofs in this model are not sound
with respect to the standard model: there exist constructions of various cryp-
tographic schemes [5, 22, 17, 1] provably secure in the random oracle model, but
for which no instantiation of the random oracle yields a secure scheme in the
standard model. As a consequence, a central line of research in modern cryptog-
raphy is designing efficient schemes provably secure in the standard model. We
address this issue in the context of blind signature schemes.

Blind Signatures. Since their introduction [6], blind signature schemes have
been used in numerous applications, most prominently in anonymous voting
schemes and anonymous e-cash.

Informally, blind signature schemes allow a user to obtain signatures from
an authority on any document, in such a way that the authority learns nothing
about the message that is being signed. A bit more formal, a signer S with public
key pk and secret secret key sk, interacts with user U having as private input
m. At the end of the interaction, the user obtains a signature σ on m. Two
seemingly contradictory properties must be satisfied. The first property, termed
blindness, requires that after interacting with various users, the signer S is not
able to link a valid message-signature pair (m,σ) obtained by some user, with
the protocol session during which σ was created. The second security property,
termed unforgeability, requires that it be impossible for any malicious user that
engages in k runs of the protocol with the signer, to obtain strictly more than
k valid message-signature pairs. These security notions were formalized in [19]
building on previous work [24, 26].

In contrast with the random oracle model where several very efficient schemes
are already known [24, 25], in the standard model only one such scheme has been
designed [19]. The construction is based on general results regarding two-party
computation and is thus extremely inefficient. In fact the authors themselves
present their construction as an existence result.

Our Results. Our main result is the design of an efficient blind signature scheme,
provably secure in the standard model. The idea of the construction is similar to
the one of [19]: consider the signing function Sig(·, ·) of a signature scheme prov-
ably secure in the standard model, with input arguments a secret signing key sk
and a message m. The output of the function is a signature σ on m which can
later be verified using the public key pk associated to sk. We obtain a secure blind

1 These random oracles can only be accessed in a black-box way, by providing an input
and obtaining the corresponding output.
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signature protocol by providing a secure two-party computation of this signing
function in which the signer provides as input its secret key sk and the user pro-
vides the message m to be signed. In our implementation only the user learns
the outcome of the computation, i.e., learns a signature σ = Sig(sk,m), and the
signer learns nothing. Security of the resulting protocol is implied by standard
properties of secure two-party computation: because S learns nothing about the
message that it signed the protocol satisfies the blindness condition. Since after
each interaction the user only learns a signature on a message of his choice, and
nothing else, our blind signature scheme is also unforgeable.2

We start with a more efficient and provably secure variant of the Cramer-
Shoup signature scheme proposed by Fischlin [15]. Still, due to efficiency reasons,
we do not implement this scheme directly; one of its essential ingredients is the
use of a randomly chosen prime exponent each time a signature is created. In
order to avoid this step, which seems to be a difficult and time consuming task,
we further modify the Cramer-Shoup-Fischlin scheme by replacing the randomly
chosen prime exponents with randomly chosen odd integers. An interesting re-
sult on its own, we show that the resulting scheme(mCSF) remains secure. We
note that the same modification can be applied to the original Cramer-Shoup
signature scheme, leading to a scheme which does not involve prime number
generation. Next, we show how to implement the signing algorithm of the mCSF
signature scheme as a secure two-party computation as discussed above. Effi-
ciency is achieved by exploiting in a crucial way the algebraic properties of the
mCSF signature scheme and those of Paillier’s encryption scheme.

We prove the security of our scheme in a slightly weaker sense than the one
captured by the the model of [19]. There, the setting that is considered involves
an adversary interacting with the the honest party via multiple, possibly inter-
leaved executions of the protocol. In contrast, we prove security of our scheme
in a setting the signer executes the protocol sequentially only. The reason for
this is that our proof of unforgeability requires rewinding of the user which, in
the case of interleaved sessions, typically leads to an exponential blow-up of the
reduction. This is similar to what Dwork et al. observed for rewinding w.r.t. to
proving zero-knowledge for arbitrary proof systems [13]. We note that in fact,
similar restrictions need to be applied to the scheme of Juels et al. [19], a point
which until today has been overlooked. We postpone for the full version of the
paper a discussion on the techniques that could potentially be used to achieve
security of the protocol in such a concurrent setting.

The rest of the paper is organized as follows. In §2 we present some back-
ground on ingredients that go into our construction. §3 contains formal defini-
tions of security for blind signatures. We then introduce and prove secure the
mCSF signature scheme, §4. Finally we present a two party protocol computing
the signing function of this scheme and prove that the resulting blind signature
scheme is indeed secure.

2 A secure two-party computation is also used by Mackenzie and Reiter in [21] for
generating DSA signatures. The problem they address is different and it does not
seem possible to extend their solution to achieve blind signing.
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2 Preliminaries

Statistically Hiding Commitment Schemes. A building block, fundamen-
tal for our scheme, is a statistically hiding commitment scheme with an efficient
statistical zero-knowledge proof of knowledge of the committed value. Consider
a domain X. A commitment scheme to elements in X is given by a family
{Comit}n∈N, where Comitn : X×{0, 1}r(n) → {0, 1}l(n); here r(n) represents the
number of random coins used to commit, and l(n) is the bit-length of such a com-
mitment. The security requirement that we need is that the scheme is statistically
hiding, i.e., for any x0, x1 ∈ X, the distribution ensembles {Comit(x0, U(r(n))}n

and {Comit(x1, U(r(n))}n are statistically indistinguishable, where U(r(n)) de-
notes the random variable of choosing an integer uniformly from {0, 1}r(n). We
are using essentially the scheme of [16, 10]: if G is a group of unknown order
(for example Zn with n an RSA modulus with unknown factorization,) and g
and h are random group elements then Comit(x) is defined by gxhr, where r is
randomly chosen from a big enough domain.

Paillier Encryption. Our protocol also makes use of the Paillier encryption
scheme. Following [23], the algorithms defining the scheme, i.e., (K,E,D) are as
follows. For a security parameter k, the key generation K algorithm picks two
primes p and q of of bit-length k, sets n to be the product of the two primes and
h := n + 1. The public key is (h, n), and the secret key is d = lcm(p − 1, q − 1).
A message m ∈ [0, n− 1] is encrypted by choosing u ∈R Zn2 and computing the
ciphertext c := hmun mod n2. Given the secret key d, the clear-text m̂ can be
obtain from the cipher-text c as m̂ := m̃d−1 mod n with m̃ := ( (cd mod n2)−1

n ).
We will use the homomorphic properties of the Paillier encryption: if c1 and

c2 are the encryptions of m1 and m2 respectively, then cr
1 is the encryption of

m1r and c1c2 is the encryption of m1 + m2 mod n.

Efficient Proof Protocols. A Σ-protocol [8] is a protocol between a prover
and a verifier, running on some common input y. Additionally, the prover has
some additional input x. Such protocols are three move protocols: in the first
move the prover sends the verifier a “commitment” message t, in the second
move the verifier sends the prover a random “challenge” message c, and in the
third move the prover sends the verifier a “response” message s.

Such a protocol is special honest verifier zero knowledge if there exists a sim-
ulator that, on input (y, c), outputs (t, s) such that the distribution of the triple
(t, c, s) is is indistinguishable from that of an actual conversation, conditioned
on the event that the verifier’s challenge is c. This property implies (ordinary)
honest verifier zero knowledge, and also allows the protocol to be easily and effi-
ciently transformed into one satisfying much stronger notions of zero knowledge
(e.g., using techniques in [9]).

Such a protocol is said to satisfy the special soundness condition with respect
to a property P if it is computationally infeasible to find two valid conversations
(t, c, s) and (t, c′, s′), with c �= c′, unless the input y satisfies P . Via standard
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rewinding arguments, this notion of soundness implies the more general notion
of computational soundness.

We use notation introduced by Camenisch and Stadler [4] for the various zero-
knowledge proofs of knowledge of discrete logarithms and proofs of the validity
of statements about discrete logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ y = ±gαhγ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that
y = gαhβ, y = ±gαhβ, and u ≤ α ≤ v holds,” where y, g, h, y, g, and h are
elements of some groups G = 〈g〉 = 〈h〉 and G = 〈g〉 = 〈h〉. The convention is
that the elements listed in the round brackets denote quantities the knowledge
of which is being proved (and are in general not known to the verifier), while all
other parameters are known to the verifier. To make this distinction easier, we
use Greek letters to denote the quantities the knowledge of which is proved, and
non-Greek letters for all quantities.

Smoothness of Integers. Our proofs use several number theoretical facts re-
lated to the smoothness of randomly chosen integers. We will denote

Ψ (x, y)=# {0 < n ≤ x : n1 ≤ y} , Ψ (x, y, z)=# {0 < n ≤ x : n1 ≤ y, n2 ≤ z} .

where n1 and n2 are the first and the second biggest prime factors of n. Various
bounds on these quantities are known from the existing literature (see for exam-
ple [12, 11, 20, 18]) and these bounds are further used to derive concrete bounds
on the probability that certain randomly chosen integers are (semi-)smooth.

3 Formal Model for Blind Signatures

In this section we recall the formal definition and the standard security notion
for blind signature schemes introduced in [19].
Syntax. A blind signature scheme BS = (Kg,Signer,User,Vf) is given by:

– the probabilistic key generation algorithm Kg takes as input security pa-
rameters params and outputs a pair (pk, sk) of public-secret keys; we write
(pk, sk) ∈R Kg(params) for the process of running the key generation algo-
rithm with fresh coins;

– Signer and User are two interactive probabilistic Turing machines that run
in polynomial time. Each machine has a read-only input tape, a write-only
output tape, a read/write work tape, and a read-only random tape. The ma-
chines communicate using a read-only and a write-only tape. Both machines
have a common input that consists of a public key pk produced by the key
generation algorithm. As private inputs, the Signer machine has the secret
key sk corresponding to pk, and the User machine has a message m to be
signed. The two parties interact, and, at the end of the interaction the ex-
pected local output is as follows. The Signer outputs one of the two messages
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completed, not-completed, and the User outputs either fail or a signature σ
on m.

We write σ ∈R [User(pk,m),Signer(pk, sk)] for the process of producing
signature σ on message m.

– the deterministic Vf verification algorithm takes as input the public key pk,
a message m and a candidate signature σ and outputs 0/1, i.e., it either
rejects or accepts.
It is required that for all (pk, sk) that have non-zero probability of being

output by Kg, and all messages m, if σ ∈R [Signer(sk),User(m)] then
Vf(pk, (m,σ)) = 1. The essential security properties for blind signatures, de-
fined in [19] are unforgeability and blindness:

Unforgeability and Strong Unforgeability. Unforgeability is defined via an
experiment parameterized by a security parameter k. The experiment involves
an adversarial user user U and is as follows: First a public/secret key pair for the
signer is generated by running the key generation algorithm (pk, sk) ∈R Kg(k).
Then, U engages in polynomially many runs of the protocol with the signer,
interleaved at its own choosing. Finally U outputs a list of message-signature
pairs ((m1, σ1), (m2, σ2), ..., (ml, σl)) with mi �= mj . Let s be the number of runs
successfully completed by the signer. We define the advantage of U by

Advunforg
BS,U (k) = Pr [ (∀1 ≤ i ≤ l, Vf(pk, (mi, σi)) = 1) ∧ (s < l) ]

and say that blind signature scheme BS is unforgeable if Advunforg
BS,U (·) is neg-

ligible for any adversary U. If (mi, σi) �= (mj , σj) instead of mi �= mj holds for
message-signature pairs output by the adversary, the blind signature scheme is
said to be strongly unforgeable3.

Blindness. We define blindness via an experiment involving an adversarial
signer S. The experiment is parameterized by a bit b and security parameter
k. It starts out by generating public/secret keys (pk, sk) by running the key
generation algorithm on the security parameter. Then, the adversary outputs
a pair of messages (m0,m1) lexicographically ordered. In the next stage of the
experiment S engages in two (possibly correlated and interleaved) runs with two
honest users, with inputs mb and mb̄, respectively. If both users obtain valid
signatures, on their respective message, S is also given these two signatures; oth-
erwise there is no extra input to S; in either case, S is required to output a bit
d. We define the advantage of S by:

Advblind
BS,S (k) = 2 · Pr [ b = d ]− 1

and say that BS satisfies the blindness property, if for all polynomial time ad-
versaries S, the function Advblind

BS,S (·) is negligible (in the security parameter)
for any polynomial time adversary S.

3 This distinction which is analogous to the case of standard signature schemes, was
not explicitly made in [19]. We note that for the main application of blind signatures,
i.e., electronic cash, unforgeability (rather than strong unforgeability) suffices.
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4 A Modification of the Cramer-Shoup-Fischlin
Signature Scheme

In this section we introduce the mCSF signature scheme. Recall that the original
scheme [15] is parameterized by two security parameters k (the length of the
RSA moduli) and l (the length of the hash function outputs), with l < k, and
is strongly unforgeable under chosen message attack, assuming that the strong
RSA assumption holds.

Before we provide our modified scheme, we discuss our motivation for the
modifications. If we wanted to use the plain Cramer-Shoup-Fischlin signature
scheme as a basis for our blind signatures scheme, we would have to implement
the generation of a random prime exponent as a two party protocol. This would
be quite costly and thus not result in an efficient blind signature scheme. How-
ever, jointly generating a random integer can be done very efficiently, using a
suitable commitment scheme. From our analysis on smooth numbers, it turns
out that one can indeed replace the random prime exponents by random suffi-
ciently large integers. That is, if one considers a random interval I of size 2l′ of
integers of size at least 2ul, one finds that the probability that all integer in the
interval have a prime factor that is bigger than 2l′ is overwhelming for suitably
large u (and suitable l′). In fact, these prime factors will be unique: Assume the
contrary, i.e., let e0 = pk0 and e1 = pk1, with p being a common factor larger
than 2l′ . Now e0 − e1 = p(k0 − k1). As p > 2l′ , it follows that not both e0 and
e1 can lie in I and hence any (prime) factor p > 2l′ of an element in I is unique.

Considering the security proof of the Cramer-Shoup-Fischlin scheme, one
finds that it requires the exponents to have a unique prime factor that is bigger
than the outputs of the hash function. So, if we set l′ to be bigger than the
output length l of the hash function used, we can indeed replace the random
primes by random integers from the interval I. However, it turns out that this
required to choose rather large integers. Fortunately, we can do better: A closer
inspection of the signature scheme’s security proof shows that it is sufficient that
(1) every integer in the interval has a unique prime factor larger than 2l′ and (2)
that the integers the signer uses to sign have either a prime factor larger than
2l or two prime factors larger than 2l′ with 2l′ > l. This facts allow us to choose
much smaller integers. We will give a detailed concrete treatment of the security
of the resulting scheme in the full version of this paper.

We are now ready to describe our modification of the Cramer-Shoup-Fischlin
signature scheme. Apart from using random integer exponents instead of prime
ones, we operate two further modifications. The reason for both of them is purely
technical. The first one takes care of the problem of when doing proofs of knowl-
edge modulo an RSA modulus that is safe-prime product. That is, we introduce
an extra squaring in the verification equations which will allow us later in the
blind signature generation protocol to square the “blinded message” to cast it
into the group of squares modulo n. The second one is splitting the signing
algorithm in two stages: To sign message m, the algorithm first outputs some
random data and then, in the second stage, outputs the remaining part of the
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signature on m, deterministically determined by the message and the output of
the first stage. This modification will allow us to reduce the security of our blind
signature scheme to the security of the mCSF scheme.

The mCSF Signature Scheme. The scheme uses parameters k, l, l′, and u
where l/2 ≤ l′ < l and u is a real number. The parameters l′, and u are as
above. The parameter k denotes here the bit-length of the prime factor of the
RSA modulus, l is the bit-length of the output of a public, collision resistant
hash function H() : {0, 1}∗ → {0, 1}l. Also, let t be the maximal number of
messages to be signed.

The parameters l′ and u strictly depend on l and can be chosen such that
the discussed above smoothness probabilities are sufficiently small. Also, we note
that for practical purposes it is possible to choose u based on concrete bounds.
We will show how to derive these bounds in the full version of our paper.

The algorithms defining the mCSF signature scheme are the following:

- The key generation algorithm KGen generates two random safe primes p =
2p′ + 1 and q = 2q′ + 1 of bit-length k and sets N := pq. It also draws
at random x, h1, h2 ∈ QRN and a random integer f0 ∈R]0, 2lu−l′ [ and sets
f := 2l′f0 + 1. Then, it chooses a public collision-resistant hash function H().
The public key is (N,h1, h2, x,H(), f, l′), and the corresponding secret key is
φ = (p− 1)(q − 1) = 4p′q′.

- Signing a message m is done as follows. Pick a random l-bit string a and
a random odd number e from the interval [f, f + 2l′ [ and output it. This
completes the first stage of the signing process. Then, on a further request
(not necessarily executed immediately afterwards) compute y such that ye =
(xha

1h
(a+H(m) mod 2l

2 )2. The signature on m is σ = (e, a, y).
- A signature (e, a, y) on message m is valid if e is odd and the following two

relations are valid

f ≤ e < f + 2l′ and ye = (xha
1h

(a+H(m) mod 2l)
2 )2 . (1)

Security Analysis. The security of the mCSF signature scheme is captured by
the following theorem:

Theorem 41. Let H() be a collision-resistant hash function, let l > l′ ≥ l/2
and u be such that Ψ

(
2lu, 2l′

)
2−lu+l′ and Ψ

(
2lu, 2l, 2l′

)
2−lu+4l′/5 are negligi-

ble. Then mCSF is strongly unforgeable under adaptive chosen message attack
provided that the strong RSA assumption holds.

Moreover, the signature scheme is secure under the more general attack,
where the adversary is allowed to query for pairs (e, a) and then, at some later
point, ask for signatures on a hash of a message w.r.t. some of these pairs (but
only once per pair).

We postpone the proof for the full version of this paper.
Notice that if we are interested in signing only short messages, we do not

need to assume a collision resistant hash functions.
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Two issues are raised in comparing the original scheme to our modified ver-
sion. On the one hand, our scheme has a more efficient signing algorithm: the
prevailing cost for signing in the original scheme is to find the prime exponent e.
In our scheme the signer just needs to choose a random number which, for the
computation of y, the signer can further reduce it modulo φ(n). On the other
hand, our verification protocol is less efficient, as the verifier has to perform a
computation with an exponent e that is much larger in our case (and the verifier
cannot reduce it modulo φ(n)).

5 Our Blind Signature Protocol

In this section we give the construction of our blind signature scheme. As we
have anticipated, its signing protocol is a two-party computation of the signing
function of the mCSF signature scheme, while the verification algorithms is the
same. The two parties, henceforth a user U and a signer S, provide as private
inputs to the signing protocol a message m and a secret key φ, respectively,
and jointly compute an mCSF signature σ = (a, e, y) on m. The properties of
the joint computation are such that S learns absolutely no information (in a
strong, information-theoretic sense), and the user U learns the signature σ, but
no information on φ (in a computational sense.)

We start by discussing the main ideas behind our construction. Recall that
given the public key (N,h1, h2, x,H(), f, l′), the signer, which has the corre-
sponding secret key φ, and the user, having some private input m, need to
compute values (e, a, y) such that ye ≡ (xha

1h
(a+H(m) mod 2l

2 )2 (mod N). This is
done as follows.

First the parties jointly generate a random e and a in such a way that only
U learns their values. For this, U first commits to random shares for e and a
(via a statistically hiding commitment scheme), and sends these commitments
to the signer. The signer replies with his own shares, allowing U to compute the
resulting e and a as sum of the corresponding shares. At this point, U computes
the value xha

1h
(a+H(m) mod 2l)
2 by himself, blinds it using a mechanism similar

to the one in Chaum’s RSA-based blind signature scheme [7], and sends the
resulting value to the signer.

The signer and the user together compute the value ê = eē + rφ, which is
statistically independent from e and thus reveals no information about e to the
signer. At this point the signer can compute an eē-th root modulo N of the
blinded message which he then returns to the user. Finally, the user eliminates
the blinding factor and obtains (e, a, y), a signature on m. A key element of
our protocol are efficient zero-knowledge proofs that all messages of the user
follow the protocol as outlined above. We note that the signer does not need to
prove that it behaves according to the protocol: the signer can only cheat in the
computation of the last message it sends which will result in an invalid signature
therefore the user will note cheating here. We now proceed with the detailed
description of our scheme.
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Key Generation. The key generation algorithm Kg takes as input four security
parameters k, k′, l, l′ (k, l, l′ are as in Theorem 41 and k′ ≈ 100 is a parameter
that controls the statistical blindness of e) and is as follows:

Algorithm Kg(k, k′, l, l′):

1. Select keys for the Paillier encryption scheme, i.e., pick two primes p, q >
2(lu+2k+k′+1)/2; set n := pq, h := (1 + n), d := lcm(p− 1, q− 1)

2. Choose u > 1 as described in §4.
3. Select keys for the mCSF signature scheme, i.e., pick two safe prime p and q

of bit-length k, set N := pq, and φ := (p− 1)(q − 1).
4. Pick H() at random from a collision resistant hash function family with an

output size of l bits;
5. Select a random f0 from the interval ]0, 2lu−l′ [; set f := 2l′f0 + 1;
6. Select random x, h1, h2, h3 ∈R QRN .
7. Select v ∈R Z

∗
n and set c := hφvn mod n2.

8. Select auxiliary keys for the proof-protocols, i.e., pick two safe prime p, q of
bit-length k, set n := pq. Select two generators g and h of QRn.

9. Set the public key of S to (N,h1, h2, h3, x, f, n, h, g, n, c, h, k, k′, l, l′, u), set
the secret key of S to (φ, d).

We imagine that this key generation algorithm is either run by a trusted
third party which then hands over the secret key to the signer or, alternatively,
the signer runs the key generation by itself, and then proves to a trusted party
that it had followed the protocol. Specifically, it needs to prove that 1) the
moduli N and n are indeed products of safe-primes, 2) that h1, h2 ∈ 〈h3〉 and
g ∈ 〈h〉, and 3) that c is a Paillier encryption of φ(N). Proving these statements
can be done via standard protocols: Showing that N and n are products of
two safe prime can be done as in Camenisch and Michels [3]. In order to prove
that h1, h2 ∈ 〈h3〉, it is sufficient to show that the hi’s are squares [14] and to
check that gcd(h3± 1, N) = 1. Similarly, one can show that g ∈ 〈h〉. Finally, the
statement that c is an encryption of φ can be proved, given an auxiliary modulus
n̂ that is the product of two safe primes of bit-size k and two generators ĝ and ĥ
of QRn̂ such that the signer does not knows the factorization of n̂ or an integer û
such that ĥ = ĝû. (Such parameters could be generated either by a trusted third
party, or by the party verifying the proof). Because this proof is less known,
we give its details in the sequel: The signer chooses v1, v2 ∈R [1, � n̂

4 �], computes
Φ := ĝφĥv1 and P := ĝp−1ĥv2 , sends Φ and P to the verifier and runs the protocol

Proof 0 = PK{(α, β, γ, δ, ξ1, . . . , ξ4) : Φ = ±ĝαĥξ1 ∧ P = ±ĝβ ĥξ2 ∧

Φ = ±P γ ĥξ3 ∧ ĝN

ĝP
= ±(ĝP )γ ĥξ4 ∧ c = hαδn (mod n2) ∧ 1 ≤ β ≤ N−2}

with the verifier. (See Theorem 51 for an analysis of this protocol.) The signer
could prove these statements just once to the certification authority (or to
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U(m, params) S((φ, d), params)

eU ∈R {0, 1}l′−1 eS ∈R {0, 1}l′−1

aU ∈R {0, 1}l, aS ∈R {0, 1}l

e′ ∈R {0, 1}2k+k′−1, r ∈R {0, 1}lu+k′

u0, u1, u2 ∈R [1, � n
4 	]

EU := geU hu0 , AU := gaU hu1

M := gH(m)hu2

AU , EU , M,Proof 1�
eS , aS�

e := 2
(
(eU + eS) mod 2l′−1)+f

e := 2e′ + 1

u3, u4, u5, u9 ∈R [1, � n
4 	]

E := gehu3 , R := grhu9

Ē := gehu4 , Ẽ := geehu5

u ∈R Z
∗
n

c̄ := crheeun mod n2

c̄, E, R, Ē, Ẽ,Proof 2�
b ∈R [1, �N

4 	]
a := aU + aS mod 2l

m̃ := (hbe
3 xha

1h
(a+H(m) mod 2l)
2 )e

u6, u7, u8 ∈R [1, � n
4 	]

A := gahu6 , B := gbhu7

Ã := g(a+H(m) mod 2l)hu8

m̃, A, B, Ã,Proof 3�
ê := (( (c̄d mod n2)−1

n )d−1 mod n) mod φ

ỹ := m̃2/ê (mod N)
ỹ�

y := ỹh−2b
3 (mod N)

ye ?= (xha
1h

(a+H(m) mod 2l)
2 )2

Output (e, a, y)

Fig. 1. A two-party protocol for producing mCSF signatures. The signer does not learn
any information about the signed message. Here, the common parameters params are
((N, h1, h2, h3, x, f, n, h, g, n, c, h, k, k′, l, l′, u))
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some other representative trusted by the users in this respect) or to each user
individually.

Blind Signing Protocol. We give the details of the blind signature protocol
in Figure 1. The protocol is as follows:

The user U sends to the signer S commitments EU , AU , and M to random
values eU and aU and to H(m), respectively, and proves to the signer that she
knows how to open these commitments by running the interactive protocol

Proof 1 = PK{(α, β, γ, δ, ε, �) : EU = ±gαhβ ∧ M = ±gγhδ ∧ AU = ±gεh�}

with the signer. If the proof succeeds, the signer S responds with random values
aS and eS with which U to computes e and a. Thus both parties are assured
that a and e are chosen randomly but S does not learn anything more about a
and e.

Next, the two parties compute (an encryption c̄ of) ê = eē + rφ(N) from
the encryption c of φ(N): U picks random blinding factors ē and r, computes
c̄ := crheeun mod n2, and sends c̄ to S. By means of the auxiliary commitments
E, Ē, and Ẽ and the Σ-protocol

Proof 2 = PK{(α, β, γ, δ, ε, ξ1, . . . , ξ8) :
E

gf
= ±(g2)αhξ1 ∧

E

E2
Ug(2eS+f) = ±(g2l′

)ξ2hξ3 ∧ Ē/g = ±(g2)βhξ4 ∧ Ẽ = ±gγhξ6 ∧

Ẽ/E = ±(E2)βhξ5 ∧ R = ±gδhξ8 ∧ c̄ = cδhγξn
7 (mod n2) ∧

α ∈ {0, 1}l′−1 ∧ β ∈ {0, 1}2k+k′−1 ∧ δ ∈ {0, 1}lu+k′}

U convinces S that c̄ was correctly computed, that r and ē have the required
length, that e was computed as 2(eU + eS mod 2l′−1) + f , and that ē is odd
(cf. Theorem 51). It is not hard to show that ee+ rφ(N) is statistically indepen-
dent of e.

Next, U computes the “blinded message” m̃ = (hbe
3 xha

1h
(a+H(m) mod 2l)
2 )e,

where b is the randomly chosen blinding factor, and sends m̃ to S. Using the
auxiliary commitments A, B, and M and the Σ-protocol

Proof 3 = PK{(α, β, γ, δ, ε, μ, ϕ, ρ, ω, ν, κ, ξ1, . . . , ξ11) : A = ±gαhξ1 ∧
B = ±gβhξ2 ∧ Ã = ±gγhξ3 ∧ Ẽ = ±gδhξ4 ∧ Ē = ±gεhξ5 ∧

M = ±gμhξ6 ∧ m̃ = ±hϕ
3 xεhσ

1hρ
2 ∧ 1 = ±Aε(

1
g
)σ(

1
h
)ξ7 ∧

1 = ±Bδ(
1
g
)ϕ(

1
h
)ξ8 ∧ 1 = ±Ãε(

1
g
)ρ(

1
h
)ξ9 ∧ AU = ±gωhξ12 ∧

A

AUgaS
= ±(g2l

)νhξ10 ∧ Ã

MA
= ±(g2l

)κhξ11 ∧ α, μ, γ ∈ {0, 1}l}

she convinces S that m̃ is correctly formed, that a is computed as aU +aS mod 2l,
and that H(m) ∈ {0, 1}l (cf. Theorem 54).
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Next, the signer decrypts c̄ to obtain ê(≡ eē+rφ(N) (mod φ(N))), calculates
ỹ := m̃2/ê, and sends ỹ to U . It is immediate that

ỹ = (hbe
3 xha

1h
(a+H(m) mod 2l)
2 )2e/(ee+rφ(N)) = h2b

3 (xha
1h

(a+H(m) mod 2l)
2 )2/e).

Finally, U removes the blinding factor by computing y := ỹh−2b
3 and thereby

obtains the signature (e, a, y) on m.

5.1 Security of the Scheme for Sequential Sessions

Proving security of our protocol requires analyzing the Σ-subprotocols. Their
security is captured by Theorems 51, 52, 53, and 54 whose proofs are postponed
for the full version of this paper.

Theorem 51. Under the strong RSA assumption and provided that N is a prod-
uct of two primes, Proof 0 constitutes a statistical zero-knowledge argument that
c is an encryption of φ(N).

Theorem 52. Under the strong RSA assumption Proof 1 constitutes a statisti-
cal zero-knowledge proof of knowledge of the integers committed to by EU , AU ,
and M . Also, the proof is witness indistinguishable w.r.t. the integers committed
to by EU , AU , and M .

The proof of this theorem follows from the explanations in §2 and the fact
the commitments EU , AU , and M are statistically hiding.

Theorem 53. Under the strong RSA assumption and provided that c encrypts
a value μ such that 0 ≤ μ ≤ 22k, Proof 2 constitutes a statistical zero-knowledge
argument that

1. c̄ is an encryption of the integer eē+rμ, where r is an integer in {0, 1}lu+k′
.

2. e = 2
(
(eU +eS) mod 2l′−1

)
+f and ē is odd, where e is the integer committed

by E, ē is the one committed by Ē, and eU is the integer committed by EU .

Moreover, the protocol is witness indistinguishable w.r.t. all ē, e, and r such that
eē + rμ equals the value encrypted in c̄.

Theorem 54. Under the strong RSA assumption Proof 3 constitutes a statisti-
cal zero-knowledge argument that

m̃ = ±hbẽ
3 (xha

1h
(a+ṁ mod 2l)
2 )e , a = aU + aS mod 2l , and ẽ = eē (2)

holds, where a is the integer committed to by A, aU is the integer committed
to by AU , e the integer committed to by E, ē the integer committed to by Ē, ẽ
the integer committed to by Ẽ, and ṁ the integer committed to by M . Also, the
protocol is witness indistinguishable w.r.t. all a, aU , b, e, ē, ẽ, and ṁ such that
the Equations (2) hold.

Our main results is the following theorem.
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Theorem 55. Under the strong RSA and the decisional n-residuosity assump-
tions the blind signature scheme depicted in Figure 5 is blind and strongly un-
forgeable under an adaptive chosen message attack, if executed sequentially poly-
nomially many times.
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Minimalist Cryptography for
Low-Cost RFID Tags
(Extended Abstract)
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Abstract. A radio-frequency identification (RFID) tag is a small, inex-
pensive microchip that emits an identifier in response to a query from a
nearby reader. The price of these tags promises to drop to the range of
$0.05 per unit in the next several years, offering a viable and powerful
replacement for barcodes.

The challenge in providing security for low-cost RFID tags is that
they are computationally weak devices, unable to perform even basic
symmetric-key cryptographic operations. Security researchers often there-
fore assume that good privacy protection in RFID tags is unattainable.
In this paper, we explore a notion of minimalist cryptography suitable
for RFID tags. We consider the type of security obtainable in RFID
devices with a small amount of rewritable memory, but very limited
computing capability. Our aim is to show that standard cryptography
is not necessary as a starting point for improving security of very weak
RFID devices. Our contribution is twofold:
1. We propose a new security model for authentication and privacy

in RFID tags. This model takes into account the natural computa-
tional limitations and the likely attack scenarios for RFID tags in
real-world settings. It represents a useful divergence from standard
cryptographic security modeling, and thus a new basis for practical
formalization of minimal security requirements for low-cost RFID-
tag security.

2. We describe a protocol that provably achieves the properties of au-
thentication and privacy in RFID tags in our proposed model, and
in a good practical sense. It involves no computationally intensive
cryptographic operations, and relatively little storage.

Keywords: authentication, privacy, pseudonyms, RFID tags.

1 Introduction

A passive radio-frequency identification (RFID) tag is a microchip capable of
transmitting a static identifier or serial number for a short distance. It is typi-
cally activated by a query from a nearby reader, which also transmits power for
the operation of the tag. Several varieties of RFID tag are already familiar in
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daily life. Examples include the small plaques mounted on car windshields for
the purpose of automated toll payment and the proximity cards used to control
physical access to buildings. More expensive RFID tags can execute advanced
cryptographic and other functions, but we concern ourselves in this paper with
the inexpensive variety geared to serve as a next-generation successor to bar-
codes.

The cost of rudimentary RFID tags promises to drop to roughly $0.05/unit
in the next several years [23], while tags as small as 0.4mm × 0.4mm, and
thin enough to be embedded in paper are already commercially available [27].
Such improvements in cost and size augur a rapid proliferation of RFID tags
into many areas of use. Indeed, Wal-Mart has issued a directive to its top one-
hundred suppliers requiring deployment of RFID at the pallet level [5], while
The Gillette Company has recently placed an order for half a billion tags for use
in supply-chain and retail environments [6]. A goal of researchers in RFID tag
development is to see them serve ubiquitously as a replacement for barcodes. This
change promises more flexible and intelligent handling of consumer goods and
devices. Here are just a few enticing possibilities: Microwave ovens that can read
the tags on packages and cook food without explicit instructions, refrigerators
that can recognize expired and depleted foodstuffs, and closets that can inventory
their contents (and perform a Web search for custom fashion advice). Towards
this end, for example, researchers have recently designed RFID-based systems
to monitor medication compliance in the elderly [8].

The impending ubiquity of RFID tags, however, also poses a potentially
widespread threat to consumer privacy [17]. If RFID tags are easily readable,
then tagged items will be subject to indiscriminate physical tracking, as will
their owners and bearers. Researchers have recognized this problem for some
time [13, 24], and have yet to propose a truly satisfactory remedy. The issue has
also seen recent attention in the popular press, whose negative coverage has vexed
a number of potential RFID users, such as the clothing retailer Benetton [4, 25].
Corporate privacy is similarly problematic, as RFID tags can facilitate corporate
espionage by revealing information about the operation of supply chains.

Auto-ID Labs and EPC Global (together formerly known as the Auto-ID
Center) have been leading institutions in the development and standardization of
RFID tags. Their initial RFID-chip designs are geared toward general corporate
and consumer use. To permit inexpensive manufacture, they carry only the most
basic functionality, emitting a static, 96-to-256-bit identifier on receiving a reader
query [23]. Auto-ID Center chip designs seek to enforce privacy by permitting
an RFID tag to be “killed,” i.e., rendered permanently inoperable on receiving
a short, specially designated key [24]. Other design proposals propose a pair of
complementary “sleep” and “wake” commands that allow a chip to be rendered
inoperable on a temporary basis. Thus, for example, a supermarket might deploy
RFID tags to facilitate tracking of shipments and monitoring of shelf stocks.
To protect the privacy of customers, checkout clerks might “kill” the tags of
purchased goods. Alternatively, to permit tag use in the home, a consumer might
furnish a secret “sleep” key at the time of checkout. This key could be used to
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put tags to sleep when the consumer leaves the supermarket, and to reawaken
them for later use.

There are many environments, however, in which simple measures like use
of “kill” or “sleep” commands are unworkable or undesirable for privacy en-
forcement. Consumers may wish RFID tags in their possession to remain active,
or may simply find it inconvenient to manage their wake/sleep patterns. Busi-
nesses may have concerns about unauthorized monitoring of tags before they
are “killed.” We enumerate a few examples here of important uses and privacy
concerns for which “kill” or “sleep” commands are unsatisfactory:

– Access Delegation: A consumer may wish certain tags in her possession to
be permanently active so as to enable reading by other parties. For example,
a consumer might wish to use RFID tags for effortless physical access con-
trol,1 for theft-protection of belongings, for wireless cash and fidelity cards,
and so forth. New and clever consumer applications are already beginning to
emerge. For example, a Prada store in New York City tracks the RFID tags
of items held by customers in order to display related accessories on nearby
screens [2]. Function creep promises to result in many more uses unimagined
or unimaginable today.

– Consumer Use: As mentioned above, RFID readers may eventually be
inexpensive enough and RFID tags prevalent enough to make a range of
smart appliances practical in the home. In the shorter term, there are other
consumer benefits, like the ability of consumers to return RFID-tags items
to shops without the need for a receipt.

– Industrial Espionage: Industrial espionage is a likely concern prior to the
“killing” of tags. This is true, for example, in a retail environment, where a
competitor capable of reading tags in shops or warehouses may gather busi-
ness intelligence regarding the turnover rate of stocks, the shopping patterns
of customers, and so forth.

– Banknote Tracking: If tags are embedded in banknotes, then they must
be permanently accessible to law enforcement agencies. One straightforward
approach to enforcing privacy would be to distribute banknotes in a “sleep”
state, and to assign a “waking” key to law enforcement. This is problematic
in that to awaken banknote tags, a law enforcement reader must transmit
the key, rendering it easily vulnerable to capture. Keys cannot be assigned
on a fixed per-banknote basis, because in that case a banknote would have to
emit a unique identifier in order to enable law enforcement to determine the
correct key for that banknote. Thus a given awakening key would potentially
have to be associated with a wide batch of banknotes, in which case one
would expect privacy to be swiftly and broadly compromised.

RFID tags that promiscuously emit static serial numbers pose another serious
problem, namely that of authentication. Such tags may be easily cloned by an

1 Smartcards with RF-enabled chips are in fact in use for this purpose today, but
generally only function in very close proximity to readers.
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attacker that has read access: The attacker need merely read the RFID tags of
passersby to harvest their identifiers for later re-use. This is highly problematic
for a number of the current and projected uses of RFID tags, most notably
physical access to buildings via passive RFID tokens, and inventory tracking
(especially with an eye to protection against counterfeiting). Privacy protection
and the problem of authentication are thus intimately related, a fact highlighted
by our investigations in this paper.

Projections on the likely resources in several years of RFID tags with cost
in the vicinity of $0.05 include several hundred bits of memory and several
thousand logical gates [22], of which a considerable fraction will be required for
basic tag functions. Such RFID tags may be expected to perform some basic
computational operations, but not conventional cryptographic ones. At best,
they may include security functions involving static keys, such as keyed reads
and keyed writes, i.e., essentially just PIN-controlled data accesses.
Remark: One might take the view that Moore’s law will ensure greater process-
ing power on tags in the coming years, and thus that cryptographic functionality
will eventually be available in five-cent tags. There is a competing phenomenon,
though: Users of low-end RFID tags are more concerned to see prices drop and
RFID tags become more widespread than to see functionality increase. This
means that cryptography in basic tags may be some time in coming.

1.1 Our Work: Minimalist Cryptography

Our goal in this paper is to elaborate for RFID tags a notion of minimalist
cryptography. We first seek to characterize common adversarial capabilities in
the special security environment that RFID tags present. As a complementary
endeavor, we investigate security designs and key management involving severely
restricted computing resources. Our main goal is to show that standard crypto-
graphic functionality is not needed to achieve stronger security in RFID tags.

To begin with, we present a security model for an adversary that we consider
representative of real-world attack scenarios for RFID. This is an important new
contribution of our work. As we show, despite the limited capabilities of RFID
tags, RFID systems offer the security architect a special advantage. Like normal
users, adversaries in an RFID-system are physically constrained: They must have
physical proximity to RFID tags in order to read (and therefore attack) them.
Such adversaries are necessarily weaker than in a traditional cryptographic set-
ting. They also have more complex restrictions on their palette of attacks. The
model we propose aims to capture these distinct adversarial characteristics. This
model may not be perfect, but it aims to undercut some of the standard cryp-
tographic assumptions that may not be appropriate for real-world deployments.

A fortunate feature of our security model is the fact that it is possible to
design protocols without reliance on traditional cryptographic primitives. This
turns out to be essential in the setting we consider. As explained above, low-cost
RFID tags in particular are incapable of performing the most basic cryptographic
operations – even those involving symmetric-key primitives. Such RFID tags
cannot in fact withstand strong adversarial attacks of the kind usually considered
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in cryptographic security models, where an adversary has general “oracle” access,
i.e., a largely unrestricted ability to interact with devices.

We show how privacy and authentication may be considerably improved in
low-cost RFID tags with only a small enhancement of their capabilities. We
propose a scheme that may be implemented in RFID tags with just several
hundred bits of memory and read/write enablement, that is, in tags roughly
comparable to the $0.05-per-unit tags anticipated in the near future. We refer
to our basic scheme as pseudonym throttling.

Pseudonym throttling is conceptually simple approach to RFID-tag authenti-
cation in which an RFID tag stores a short list of random identifiers or pseudonyms
(known by authorized verifiers to be equivalent). Each time the tag is queried,
it emits the next pseudonym in the list, cycling to the beginning when the list
is exhausted. Combined with this feature is the physical imposition of a low
query-response rate in the tag. By using hardware-based delays, tags may be
made to emit identifiers at a relatively low prescribed rate. (Indeed, delay-based
throttling has already seen practical demonstration: Alien Technologies incor-
porates a throttling mechanism into its current generation of inexpensive RFID
tags to prevent guessing of “kill” codes, i.e., the PINs used to disable tags in
retail environments [21].)

Alternatively, in higher-end RFID tags that permit user involvement, a user
might need to press a button to initiate reading of the tag: This would constitute
a different form of throttling. Given the presence of a throttling mechanism, an
attacker can only track an RFID tag with a high likelihood of success if she has
access to it for a long, continuous period of time, or at many different times. In
the latter case, the ability of the attacker to link pseudonyms is still limited, as
the tag continually changes appearance.

Pseudonym throttling is simple and practical, but has a shortcoming: The
small storage capacity of RFID tags permits only a small list of pseudonyms, and
hence only limited privacy protection. Our full protocol allows pseudonyms in an
RFID tag to be refreshed by authorized verifiers. In consequence, an additional
feature required of our scheme is authentication between tags and verifiers. This
is a useful contribution of our work, and interrelated with our exploration of
privacy. Given its range of security features, our full pseudonym-throttling pro-
tocol necessarily involves multiple flows, and is thus more complex than mere
identifier emission. Adhering to the design principle of minimalist cryptogra-
phy, our protocol involves operations no more computationally intensive than
rudimentary memory management, string comparisons, and a basic XOR. To
achieve privacy, we propose a special scheme involving composition of one-time
pads across protocol sessions.

We emphasize that writeable memory of the type needed for our full-blown
protocol may or may not ultimately be more expensive than the logic required
to perform standard cryptographic operations. Our main goal here is to demon-
strate how a different allocation of resources – namely a shift in favor of mem-
ory rather than computation – can subserve important security goals in a new
way. This is particularly true as resource costs change on a regular basis. Given
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emerging breakthroughs in non-organic storage media, re-writeable memory may
ultimately prove inexpensive [16].

There is also some practical offshoot of our work with more immediate poten-
tial. We describe reduced-functionality variants of our basic pseudonym scheme
that require virtually no supplementation of existing tag resources. These simple
variants help offer security against the real-world threat of passive eavesdrop-
ping. Although the effective read distance of RFID tags is fairly short, the readers
themselves broadcast tag identifiers for long distances – indeed, up to as much
as a kilometer. Our techniques help address this problem.

1.2 Related Work on RFID

Researchers have from the outset recognized the possibility of privacy threats
from physical tracking in the deployment of RFID tags [24]. A number of recent
papers have proposed ways of addressing the problem. Juels and Pappu [13] con-
sider a purported plan by the European Central Bank to embed RFID tags in
Euro banknotes [1]. They propose a privacy-protecting scheme in which RFID
tags carry ciphertexts on the serial numbers of banknotes. These ciphertexts are
subject to re-encryption by computational devices in shops, thereby rendering
multiple appearances of a given RFID tag unlinkable. The Juels/Pappu scheme,
however, assumes a single verifying entity – namely a law-enforcement organi-
zation – and is not obviously extensible to the multi-verifier systems likely in
commercial and consumer environments. A scheme of Golle, Jakobsson, Juels,
and Syverson [11] builds on this idea with a primitive known as universal encryp-
tion, essentially a special extension of the El Gamal cryptosystem [9] in which
re-encryption is possible without knowledge of public keys. It has the practical
drawback, though, of requiring an infrastructure of agents capable of performing
public-key-based re-encryption for privacy protection of RFID tags.

Weis, Sarma, Rivest, and Engels [28] also propose a collection of privacy-
enforcement ideas for RFID tags in general environments. One scheme involves
the use of a hash function to protect the key used for read-access to the tag.
Another includes use of a pseudo-random number generator to protect tag iden-
tities. As they note, it is unclear how and when adequate pseudo-random number
generators can be deployed on inexpensive RFID tags.

Juels, Rivest, and Szydlo [14] describe a privacy-protection tool they call
a “blocker” tag. This is an RFID tag that can obstruct reading of tag identi-
fiers within a certain numerical range by simulating the presence of RFID tags
bearing all identifiers in that range. This is accomplished through non-standard
interaction with the anti-collision protocols employed in tag-reading prtoocols
[15, 23]. So as not to serve as a purely disruptive mechanism, the blocker may
be accompanied by a form of privacy “zoning,” in which only the reading of
a certain subset of identifiers is disrupted. This permits tags to be transpar-
ently readable by businesses and yet shielded from scrutinty when they reach
the hands of consumers. In follow-up work, Juels and Brainard [12] describe the
notion of “soft blocking,” an approach to blocking that provides weaker security
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guarantees, but simpler tags and more flexible policy, e.g., the possibility of an
“opt-in” regime for consumers.

While a practical and attractive proposal for businesses and consumers alike,
the “blocker” tag and its variants have limited applicability. For example, this
approach does not address the problem of industrial espionage: In most portions
of the supply chain, it is impractical to block tags, because they must be readable
for industrial use. In contrast, the privacy protection of our proposal functions
under general conditions, and requires no special action on the part of the user.
Our proposal has a slightly different aim than the blocker, however: It permits
reading of a tag by an authorized verifier, while the blocker prohibits reading
categorically within the limits of its policy.

In recent work, Molnar and Wagner [19] explore the issue of RFID privacy
in detail in the special and imminently important context of libraries. Their
work includes several proposals, including concealment of transmissions on the
(more easily tapped) reader-to-tag channel, and also pseudonym-based privacy
techniques akin to variants of our proposal here.

Fishkin, Roy, and Jiang have performed intriguing preliminary experiments
on a physical mechanism for RFID privacy in which a tag monitors the signal-to-
noise ratio of reader queries to approximate the physical proximity of the reader
[7]. In their work, physical proximity can serve as a metric for trust.

A rather different, complementary perspective on privacy for RFID tags is
that of Garfinkel [10], who elaborates a policy for consumer privacy-protection in
the form of a proposed “RFID Bill of Rights.” Proposed there are: The right of
the consumer to know what items possess RFID tags and the right to have tags
removed or deactivated upon purchase of these items, the right of the consumer
to access of the data associated with an RFID tag, the right to access of services
without mandatory use of RFID tags, and finally the right to know to when,
where, and why the data in RFID tags is used.

The problem of security modeling for RFID-tag systems may be viewed as
similar in flavor to that for ad-hoc wireless networks. This is true both in terms
of the restricted power of participating devices and in terms of the rapid changes
in their physical and therefore logical relationships. There is little formal work
on security modeling particular to the special characteristics of ad-hoc networks,
although it is an emerging area of interest. Of particular note is the “resurrecting
duckling” idea of Stajano and Anderson [26], who consider secure authentication
between devices in ad-hoc networks. As we do here, they examine the way that
physical proximity may be treated as an element in security modeling.

1.3 Organization

In section 2, we outline our security model for privacy and authentication in
RFID tags. We describe our scheme for RFID-tag privacy in section 3. In sec-
tion 4, we discuss practical deployment issues and introduce some reduced-
functionality variants of our scheme with potential for short-term, real-world
application. We conclude in section 5 with some discussion of future research di-
rections. Space limitations require the omission of formal modelling details and
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security proofs, as well as PRNG-based extensions from this extended abstract.
These essential details may be found in a full version of the paper, available at
www.ari-juels.com.

2 A Security Model for RFID Tags

Given the very basic functionality of RFID tags, it is natural to consider an
adversary in an RFID-tag system whose capabilities are quite limited. In most
cryptographic security definitions, as for IND-CCA security on public-key encryp-
tion schemes [3], an adversary is presumed to be able to experiment extensively
with elements of the system in the course of mounting an attack. In particular,
the adversary is regarded as capable of submitting a large number of “oracle”
queries, that is, exploratory inputs to the cryptographic operations composing
the system. (In asymptotic analyses, the number of such oracle queries is polyno-
mially bounded in the security parameters for the system; in concrete analyses,
the bound on queries aims to reflect the limits of current computing ability, and
may be on the order of, say, 280 for local computation. Smaller bounds, e.g., 230

may be imposed for practical modeling where interaction with, e.g., an actual
signing or decrypting party is involved.)

In modeling an RFID system, it is natural to treat both tags and tag-verifiers
as oracles. Given the limited computing ability of tags, however, a practical
system cannot feasibly withstand an adversary that can submit a large number
of arbitrarily ordered queries to all oracles in the system. Moreover, a high degree
of adversarial power would not accurately reflect the physical characteristics of
an RFID-tag system. Both readers and tags operate only at short range, and tags
may in many cases be highly mobile. Thus, the collection of “oracles” available
to an adversary at a given time is likely to be small in practice.

We seek to model the limitations on adversarial power in an RFID-tag system
by the following key assumption: An adversary may only interact with a given
tag on a limited basis before that tag is able in turn to interact in a protected
manner with a valid verifier. We refer to this protected interaction as a refresh.
In particular, a refresh is a privacy and integrity-protected session between a
verifier and tag in which the verifier may update keying data in the tag. A
refresh models the use of a tag with a legitimate reader outside the range of
the adversary. In our security model, we impose two restrictions on adversarial
interaction with tags between refreshes:

Limited Successive Tag Queries: We assume that an adversary may inter-
act with targeted RFID tags only a relatively small number of times in rapid
succession prior to a refresh. This restriction would follow naturally from use
of the throttling mechanism that we propose. Suppose, for example, that an
RFID tag only permits reading once every several seconds. Given that an RFID-
tag typically has a read range of at most a few meters, a rogue reader would
have difficulty in harvesting more than, say, one or two pseudonyms from most
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passersby; tags might easily store half-a-dozen or so pseudonyms, however.2 An
attacker bringing a reader into a monitored environment like a shop or warehouse
might similarly face difficulties in attempting prolonged intelligence gathering.

We rely on this assumption to enforce privacy protection in our scheme.

Limited Interleaving: We assume a restriction on the ability of an adversary
to mount man-in-the-middle attacks between tags and legitimate readers. This
assumption reflects the following adversarial constraints in real-world scenarios:

– Stationary attacker: A sophisticated adversary has the potential to mount a
full-blown man-in-the-middle attack. Such an adversary might, for example,
maintain a physical presence in proximity to a legitimate reader and alter,
eavesdrop on, or inject messages to and from tags. There are two comple-
mentary impediments to such an attacker, one innate to many RFID-tag
environments, another part of our proposal in this paper:
1. Mobility of tags: In many cases, it is operationally inconvenient for an

adversary to interact for an extended period of time with tags in the
vicinity of legitimate readers. For example, if a reader were stationed
so as to regulate physical access to a building or to permit automated
checkout at a supermarket, then the mobility of users (and consequently
of tags) would help ensure only a limited number of protocol flows for
attack by the adversary.

2. Throttling: Part of our proposal in this paper, throttling helps restrict
the number of successive adversarial queries. It may be thought of as a
defensive measure exercised by stationary or lightly mobile tags against a
persistent attacker. (In a sense, throttling boosts or simulates the natural
security properties of mobile tags.) Moreover, in the face of a passive
attack, a reader can help implement its own throttling policy by, e.g.,
refusing to initiate sessions with a particular tag in rapid succession.3

– Mobile attacker: An attacker might scan RFID tags and then use harvested
information to interact with readers. Such an attacker, however, has only
a limited ability to perform a man-in-the-middle attack, since this requires
shuttling back and forth between tags and legitimate readers. (Indeed, our
proposed scheme achieves secure authentication against an attacker of this
kind irrespective of the amount of interleaving.)

2 Other throttling schemes are possible of course. For example, a tag might permit the
reading of two pseudonyms a few seconds apart (in case of an initial read failure),
but restrict access to others for a number of minutes. This would render attack even
more difficult. Care is required to minimize the risk of denial-of-service attacks. We
do not explore the issue of delay scheduling in detail here.

3 A more sophisticated adversary might make use of two communicating devices: One
simulating a valid tag near a reader, and another simulating a reader near a valid
tag. This type of adversary can straightforwardly perform a full man-in-the-middle
attack on any type of RF system that does not involve explicit user participation.
Even a system employing sophisticated cryptography cannot defend against such an
attack.
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We rely on the assumption of limited interleaving to help enforce both privacy
and authentication properties in our proposed protocol.

We reiterate that our assumptions do not characterize the strongest possible
type of adversary. One can easily envisage a sophisticated adversary violating
these assumptions to a greater or lesser degree – particularly if targeting a sin-
gle or small number of RFID tags or individuals. Our goal in this paper is to
achieve good, practical security by defending against a broad, real-world class of
attacks. Viewed another way, we try to minimize security vulnerabilities in this
constrained environment, but do not expect to eliminate them.

Due to space limitations, we are forced to relegate formal security definitions
and proofs for our proposed protocol to the full version of this paper.

Remark: Our model does not explicitly capture one important feature of RFID
systems. While tags may be feasibly read at only a short distance, it is possible
to eavesdrop on readers from a considerably larger distance, as they are powered
broadcast devices. Thus, a passive attacker can in principle harvest reader-to-
tag data more easily than tag-to-reader data. Our model does characterize this
situation if it is assumed that an adversary eavesdrops only intermittently – or,
more realistically, that tags are read by different readers at different times, and
therefore not always near readers monitored by the adversary. More importantly,
in the protocol we propose here, an eavesdropper on reader-to-tag transmissions
does not receive tag identifiers. Therefore, such an eavesdropper has no way of
determining which data correspond to which tags.

3 Our Proposed Scheme

As explained above, our proposed protocol relies upon rotation by a tag through
multiple pseudonyms, which we denote by α1, α2, . . . , αk. These pseudonyms,
however, do not themselves serve as the sole means of authentication for tags.
If a tag authenticated itself to a verifier merely by releasing a key αi, then an
adversary could clone a tag very simply as follows. The adversary would query
the target tag, obtaining αi; the adversary would then separately interact with
the verifier, using the key αi to simulate a valid tag. Indeed, this is precisely the
type of cloning attack to which standard RFID tags with static identifiers are
vulnerable, e.g., current EPC designs [23]. Any single-flow protocol is necessarily
vulnerable to such an attack.

To prevent this type of attack in our protocol, a tag only authenticates to a
verifier after the verifier has itself authenticated to the tag. The verifier authen-
ticates to a tag by releasing a key βi; this key βi is unique to a given pseudonym
αi. Once the verifier has authenticated to the tag, the tag authenticates itself to
the verifier by releasing an authentication key γi. Like βi, this authentication key
γi is unique to an identifier αi. Briefly stated, we propose a kind of challenge-
response protocol, but one that is carefully interwoven with pseudonym rotation.

In order to maintain the integrity of a tag over an extended period of time
and in the face of multiple probing attacks by an adversary, we take the approach
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in our protocol of having the verifier update the {αi}, {βi}, and {γi} values in
an RFID tag after successful mutual authentication between tag and verifier.
This introduces a new problem, however: An adversary can eavesdrop on or
tamper with the secrets used in this update process. Our strategy for addressing
this problem is to update values using one-time pads that have been transmitted
across multiple authentication protocols. Thus an adversary that only eavesdrops
periodically is unlikely to learn the updated {αi}, {βi}, and {γi} values.

Updating tag values in this way provides integrity protection as an important
side-benefit. An adversary without knowledge of the one-time pads used during
a update cannot, for instance, mount a swapping attack by substituting keys
from one compromised tag into another tag.

3.1 One-Time Pads in Our Scheme

The one-time pad is, of course, a simple, classical form of encryption. (See, e.g.,
[18] for discussion.) We briefly recall the underlying idea. If two parties share
a secret one-time pad δ, namely a random bitstring of length l, then one party
may transmit an l-bit message M secretly to the other via the ciphertext M ⊕ δ,
where⊕ denotes the XOR operation. It is well known that this form of encryption
provides information-theoretic secrecy.

In our scheme, the verifier transmits one-time padding data that the tag uses
to update its shared {αi}, {βi}, and {γi} values. Provided that an eavesdropper
does not obtain the padding data, she achieves no knowledge of the updated tag
values. Although this procedure does not explicitly involve encryption by means
of one-time pads, it is equivalent to encryption. We may think of the pads as
keys used to “encrypt” and thereby update the {αi}, {βi}, and {γi} values.

Additionally, we introduce a special twist into our use of the one-time pad.
Our scheme involves composition of one-time pads across multiple verifier-tag
sessions. This has the effect of retaining secrecy in the face of partial adversarial
eavesdropping (or tampering). Suppose, for instance, that pads from two differ-
ent verifier-tag sessions are XORed with a given tag value κ in order to update
it. Then even if the adversary intecepts the pad used in one session, it may be
seen that she will learn no information about the updated value of κ.

Application of a one-time pad requires only the lightweight computational
process of XORing. Like encryption based on the one-time pad, updating tag
values via one-time padding also provides information-theoretic security. While
this latter property renders security proofs for our system somewhat simpler, it is
not a motivation for our choice. Indeed, one-time padding results in less commu-
nications efficiency than that achievable with standard cryptographic encryption
tools like block or stream ciphers. The problem, as we have already explained, is
that standard cryptographic primitives require more computational power than
is available in a low-cost RFID tag. This is the real motivation behind our use
of one-time pads.

As explained above, we employ a strategy of updating tag values using pads
from multiple authentication sessions. Let κ be some value stored in a tag, i.e.,
κ ∈ {αi}

⋃
{βi}

⋃
{γi}. Let m parameterize the resistance of the protocol to
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adversarial eavesdropping. For every value κ, we maintain in the tag a vector
Δκ = {δ(1)

κ , δ
(2)
κ , . . . , δ

(m)
κ } of one-time pads. The pad δ

(1)
κ , which we refer to as

the live pad, is used to update the tag value κ. In particular, to update κ, the
tag computes κ← κ⊕ δ

(1)
κ .

Prior to update of κ, the pads in Δκ are updated with new padding material
received from the verifier. Let Δ̃κ = {δ̃(1)

κ , δ̃
(2)
κ , . . . , δ̃

(m)
κ } be a vector of newly

generated one-time pads received from the verifier in our protocol. The vector
Δκ is updated as follows. The live pad δ

(1)
κ is discarded – as it has already been

used to update κ. The indices of all other pads in Δ are then shifted downward,
i.e., in increasing index order, we set δ

(i)
κ = δ

(i+1)
κ for 1 ≤ i ≤ n − 1. We set

δ
(m)
κ = 0l, i.e., we fill the last, missing element in the vector with a ‘0’ bitstring.

(Alternatively, it is possible to rotate the discarded, previously live pad to the
last position in the vector.4) Finally, we “overlay” the newly received vector Δ̃κ

on the existing vector Δκ, by performing an element-wise XOR. That is, we let
δ
(i)
κ = δ

(i)
κ ⊕ δ̃

(i)
κ .

As a result of these manipulations, the vector Δκ consists of a set of m one-
time pads with decreasing levels of backward secrecy. After the completion of
a session, the live pad δ

(1)
κ , for instance, consists of the XOR of independent

pads from the previous m successfully completed sessions. At the other end of
the spectrum, the value δ

(m)
κ is constituted of only a single pad, namely the one

just transmitted in the most recent session. This is why we update κ using the
strongest pad in Δκ, namely the live one, and then strengthen and “promote”
the other pads in Δκ by overlaying a vector of newly transmitted ones.

This approach provides information-theoretic security guarantees. In particu-
lar, an adversary that has knowledge of only m−1 of the last m pad-transmissions
from the verifier has no knowledge at all about δ

(1)
κ . Thus, when the live pad is

employed to update κ, such an adversary learns no information whatever about
the new value of κ.

The drawback to this approach is that the transmission cost to maintain
pads is lm bits per session. In other words, the communications costs in our
protocol are linear in the length of individual tag values and in the number of
consecutive authentication sessions relative to which we wish to achieve security
against the adversary. Given that there are 3k tag values, this translates into
a total cost of 3klm. This cost is less than ideal, but still permits a range of
practical parameterizations, as we discuss below in section 4.

We use the notation update(Δκ, Δ̃κ) to denote the function that updates Δκ

and “overlays” it with Δ̃κ. We let pad(κ,Δκ) denote the update of κ using the
live pad δ

(1)
κ – again, the one with the strongest backward security. For brevity

of notation, we let ABC denote the set of values {αi}
⋃
{βi}

⋃
{γi}. We let

ΔABC denote padding vectors for all values κ in the set ABC.

4 This option is probably easier to implement. It also has the (slight) advantage of not
causing a newly initialized tag to discard one of its original, secret values.
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3.2 The Protocol

As above, let k be a parameter denoting the number of pseudonyms stored
in a given tag and let m denote the number of authentication sessions over
which one-time pads are constructed; in other words, the higher the value of
m, the stronger the eavesdropping-resistance of the system. For visual clarity
in our protocol figure, we omit variable ranges and tag subscripts on variables
for keys. The variables i and j, however, always span the ranges {1, 2, . . . , k}
and {1, 2, . . . ,m} respectively. We use ∈R here and elsewhere to denote uniform
random selection. In case of a message-delivery failure, we assume the input of a
special symbol ⊥ (leading to protocol termination). We assume initialization of
all entities by a trusted party, who generates a key set ABC for every tag and
distributes this to both the tag and the verifier. All counters are initialized at 0.
Details of our protocol are provided in Figure 1.

Again, we present formal modelling and proofs only in the full version of this
paper.

Tag Verifier

d ← (c mod k) + 1
c ← c + 1

α′ ← αd
α′

−→ if α′ = αi for some Tx then
tag ← x
β′ ← βi

γ ← γi

mark αi as invalid for Tx

else
output(“reject”) and abort

β′
←−

if β′ �= βd then
output(“reject”) and abort

γ′ ← γd
γ′

−→
if γ′ �= γ or γ′ =⊥ then

output(“reject”) and abort
Δ̃ABC ∈R {{0, 1}l}3km

Δ̃ABC←−
output(tag, “accept”)

{update(Δκ, Δ̃κ)}κ∈ABC {update(Δκ, Δ̃κ)}κ∈ABC

{κ ← pad(κ, Δκ)}κ∈ABC {κ ← pad(κ, Δκ)}κ∈ABC

Fig. 1. Full RFID-tag authentication protocol
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Remarks: We assume no collisions among tag identifiers here – a property that
can be enforced during tag initialization and updates with only a very slight
skew from a uniform random distribution over identifiers.

4 Some Practical Variants

The full-blown scheme we have proposed is practical for very low-cost tags only
with the use of small security parameters. There are several ways, however, to
reduce its functionality while still retaining important properties.

To begin with, in real-world deployments, the moderate security afforded by
relatively short keys {βi} and perhaps also short {γi} keys would be acceptable
in many cases. For example, if βi and γi keys are a mere twenty bits each,
then an adversary would have roughly a one-in-a-million chance of defeating
the authentication protocol in a single try. Tag pseudonyms, i.e., the {αi} keys,
must be considerably longer to permit unique identification of tags and to avoid
pseudonym collisions. We believe that 100-bit α values would suffice for this
purpose in most environments. (It should be noted, however, that if a pseudonym
collision occurs in the naming of a new tag, then different pseudonyms may
be selected by the verifier. Such a naming strategy would probably permit a
reduction in the lengths of αi tags to around 80 bits.) In any event, large values
of m or k are unlikely to be practical. Indeed, m = 0 (no updates via refresh) or
1 and k = 4 or 5 might be a reasonable choice for a real-world system.

A range of truncated versions of the protocol itself is also interesting. One
example is a scheme that excludes the fourth flow from our protocol. In other
words, the ABC values in the tag may remain the same throughout its lifetime. A
much reduced variant might involve only the first flow in our protocol. This would
mean that a tag merely cycles through a static set of pseudonyms, preferably
with the benefit of throttling. This approach offers better privacy assurances than
a system using static identifiers, but does not protect against cloning. (Such a
degenerate case of our protocol also does not meet our security definitions unless
the process of tag refresh in our model is replaced with elimination of a tag from
the system.) Simple approaches like this might be especially attractive as a low-
cost way of realizing privacy protection for RFID-enabled banknotes, weaker
in some respects but involving much less overhead than the scheme proposed
in [13]. Another, similarly useful truncation is one in which multiple identifiers
{αi} are stored in a tag, but only a single key β and single key γ for common
use with all identifiers.

These and kindred approaches have the advantage of backward compatibil-
ity with existing RFID systems employing just a static identifier or challenge-
response. In other words, a reader does not have to have awareness of the fact
than an identifier is in fact a pseudonym: Only the verifying application on the
back-end needs to. Such systems would merely have to include some application-
level support for linkage of pseudonyms, but would not necessarily require any
software or firmware adjustments at the level of the reader.
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Another interesting, restricted case is that involving just one identifier, but
with the challenge-response and pseudonym replacement protocols intact. This
limited variant would be useful for cases in which consumers are borrowing
RFID-tagged books from libraries or renting RFID-tagged videos. Use of a sin-
gle pseudonym like this would not prevent physical tracking. But authenticated
rotation of the pseudonym would help prevent the bigger problem of passersby
being scanned to determine what books or videos they are carrying via “hotlist-
ing.” Given plans by the San Francisco public library to implant RFID tags in
books, and the resistance of civil libertarians in reaction to the USA Patriot Act
[20], solutions like ours and those proposed recently by Molnar and Wagner [19]
seem very attractive.

5 Conclusion: Further Research

RFID security modeling is a line of research that deserves further attention. We
feel that the model proposed here captures a range of the special characteristics of
RFID-tag environments in an effective way. It is especially important as a way of
showing how to reduce reliance on standard cryptographic security modelling in
situations where it might not be entirely appropriate. We hope that our model
will benefit from refinement as real-world experience with RFID-tag systems
evolves, and as it becomes possible to draw on analogous experience and results
from the field of ad-hoc networking.
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Abstract. Chameleon signatures were introduced by Krawczyk and Ra-
bin, being non-interactive signature schemes that provide non-transfer-
ability. However, that first construction employs a chameleon hash that
suffers from a key exposure problem: The non-transferability property
requires willingness of the recipient in consequentially exposing a secret
key, and therefore invalidating all signatures issued to the same recipi-
ent’s public key. To address this key-revocation issue, and its attending
problems of key redistribution, storage of state information, and greater
need for interaction, an identity-based scheme was proposed in [1], while
a fully key-exposure free construction, based on the elliptic curves with
pairings, appeared later in [7].

Herein we provide several constructions of exposure-free chameleon
hash functions based on different cryptographic assumptions, such as
the RSA and the discrete logarithm assumptions. One of the schemes is
a novel construction that relies on a single trapdoor and therefore may
potentially be realized over a large set of cryptographic groups (where
the discrete logarithm is hard).

Keywords: Digital signatures, undeniable signatures, collision-resistant
hashing, trapdoor commitments, chameleon signatures, chameleon hash-
ing.

1 Introduction

A chameleon hash function is a trapdoor collision-resistant hash function: With-
out knowledge of the trapdoor information, a chameleon hash function has the
same characteristics of any cryptographic hash function, such as pre-image and
collision-resistance; however, collisions and second pre-images can be easily com-
puted once the trapdoor is known.

An interesting application of chameleon hashing is to obtain non-transferable
signature algorithms known as chameleon signatures.
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1.1 Chameleon Signatures

Chameleon signatures, introduced in [12], are signature schemes based on the
hash-and-sign paradigm. To authenticate a message m, a signer computes its di-
gest value h using a chameleon hash function, and then signs h using an arbitrary
signing algorithm of the signer’s choice.

In applications, users include the description of a particular chameleon hash
as part of their public keys, attesting their knowledge of the corresponding trap-
doors. In this scenario, a signer who wished to provide a recipient with a non-
transferable signature could hash the message to be signed with the chameleon
hash function of the recipient, signing the resulting digest value. While the re-
cipient is able to verify the signature as correct, a third party would only be able
to ascertain that some message was signed (by the signer to the recipient). The
third party would be aware that the signing value could have been re-used by
the recipient to authenticate any message of choice, since the signature is a func-
tion of the hash value h alone and not of the original message, and because the
recipient can easily find collisions for the hash value h. Therefore, a third party
would not be willing to accept a proposed message content from the recipient in
the absence of further evidence.

To determine the original message content one depends on a secondary signer
affirmation or, if the signer is uncooperative, on the dispute settlement method
described next.

Settlement of Disputes. In case of disputes, it is easy to ascertain whether
or not a proposed message content is indeed the original one committed by
the signer. A judge would summon both signer and recipient. If the signer can
produce a different message that is authenticated by the same signing value of
the proposed message, the contested signature is considered invalid. Remember
that such a collision proves that the recipient has put forth a forged signature
at some point in time, as nobody apart from the recipient has more than a
negligible probability of successfully finding a second message that produces the
same signing value.

The dispute-settling procedure described above shows that chameleon signa-
tures provide non-repudiation, as well as non-transferability. Unlike undeniable
signatures (introduced in [6]), which similarly provide both of these features,
chameleon signatures require no interaction between the signer and recipient for
the purpose of issuing a signature. This great improvement in communication
complexity comes at a mild disadvantage that, as mentioned above, chameleon
signatures leak the information that a user signed something for a specific recip-
ient, a characteristic not shared with undeniable signatures.

Applications of Chameleon Signatures. The non-transferability property
is convenient in many scenarios in which the signer has a legitimate interest
in controlling subsequent disclosures of the signed information. One application
suggested in [1] is private auctions. In this context, the signer is an auction bid-
der, and does not wish to have its signed bid value published before the auction
closing time and/or unless it wins the bidding. If the bid is leaked by the auc-
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tioneer, a second bidder (who does not trust the auctioneer) cannot ascertain the
validity of the claimed bid without first contacting the original bidder. Another
application that has been widely proposed for both undeniable and chameleon
signatures is secure software distribution, resistant to bootlegging. Here a soft-
ware vendor would distribute multiple binaries implementing the same function-
ality, making it difficult to recognize between bona-fide versions and potentially
virotic ones. To protect legitimate users, the software vendor issues recipient-
specific signatures on a particular binary. If later the user were to post the
signed binary in a file-sharing network, others downloading the software would
do so at their own risk – the presence of the non-transferable signature would
not confer authenticity onto the posted binary.

1.2 The Key Exposure Problem

The first construction of a chameleon signature [12] employed for hash function
the Chaum-Pedersen trapdoor commitment. More precisely, a potential recipi-
ent chooses and publishes a regular discrete logarithm-based public key y = gx,
where g is the generator of a cyclic group G and x is the secret key. Later, a user
who wishes to sign message m can compute the chameleon hash value h = ymgr,
where r is an auxiliary integer chosen uniformly at random by the signer. Here it
is understood that m is a short binary message that has value smaller than the
order of the group G when interpreted as the binary expansion of a non-negative
integer. However, to extend the scheme to arbitrary length messages, it is suffi-
cient to first hash the long message using a regular, cryptographic hash function.

Notice that if the recipient forges the signature, and two pairs (m, r) and
(m′, r′) become known to the signer (during a dispute), the signer can recover
the secret key x of the recipient from h = gmyr = gm

′
yr

′
, giving x = m′−m

r−r′ .
This is a highly undesirable outcome from the recipient’s viewpoint, as it in-

validates all signatures ever issued to the associated public key y. A third-party
is therefore more likely to believe claims made by the recipient about presenting
an original (non-forged) signature, knowing that such forgery would negatively
affect the recipient. In fact, the deterrent effect of key exposure on forgeries
threatens the claims of non-transferability provided by the scheme. Therefore,
to support non-transferability in any practical sense, we believe chameleon sig-
natures schemes should necessarily rely on key-exposure free chameleon hash
function, described next.

Previous Work on Key Exposure Freeness. The problem of key exposure
was partly addressed in [1], where it is shown how to build identity-based chame-
leon hash functions. The advantage of using the identity-based primitives is that
applications could direct the use of transaction-specific chameleon hashes: The
public key associated to a transaction-specific hash function is computed by the
signer from specially formatted strings that describe the transaction, and which
include the signer and recipient information as well as some nonce or time-stamp.
In that paper, these strings were called customized identities. Later, if the recip-
ient wishes to forge the signature, it suffices for him to communicate with the
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trusted authority (of the identity-based scheme) to recover the trapdoor infor-
mation associated with the transaction-specific public key. It is understood that
the trusted authority will only provide the trapdoor information to the recipi-
ent designated in the formatted string. Notice that the trapdoor recovery is an
optional step, the trapdoor information being necessary only when the recipient
wishes to deviate from the basic protocol by finding hash collisions and re-using
signing tokens. This extra interaction adds less communication complexity than
key revocation and key update in a classical public key infrastructure, but may
still be too burdensome in certain applications, and therefore offering only a
partial answer to the key exposure problem.

In [7], Chen et al. provide a specific construction of a key-exposure free
chameleon hash function, working in the setting of Gap groups with bilinear
pairings. While that certainly constitutes the first full construction of a key-
exposure free chameleon hash, it does not settle the question of whether con-
structions exist that are either based on other cryptographic assumptions, or of
more efficient schemes, for instance of comparable performance to the original
chameleon hash function in [12].

Our Contribution. In this paper we show that key-exposure-free solutions exist
whose security depends on non-pairing-based assumptions, such as the security
of the RSA signature scheme. In fact, we show that the construction of [1] already
enjoys the key-exposure-freeness property when used in a PKI setting instead of
as the proposed identity-based application.

In all of the constructions, the public key is divided into two components, one
permanent and the other ephemeral. Except for the scheme in section §4, all require
a double-trapdoor context, and the components of the public key is made to corre-
spond to each of the trapdoors. Non-transferability is supported through eventual
compromise of the ephemeral component of the public key only. We also show that
this technique can be applied broadly whenever a double-trapdoor is available.

More surprisingly, we have a novel construction of a key-exposure free chame-
leon hash function that does not rely on a double-trapdoor mechanism (section
§4). To the best of our knowledge this is a novel result, of independent interest.

Organization of the Paper. In the following section, we provide the precise
definition of key-exposure free chameleon hashes, and present several require-
ments that such hashes should satisfy for efficient application to a chameleon
signature scheme. We follow that with a section that shows how chameleon
hashes satisfying different subsets of these security requirements correspond to
trapdoor commitment schemes satisfying different properties. Sections §4 and §5
present constructions of key-exposure free chameleon hashes based on single, and
double trapdoors, respectively, and are followed by a few concluding remarks.

2 Definition and Requirements

A key-exposure free chameleon hash function is defined by a set of efficient
algorithms:
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Key Generation. accepts as input a security parameter κ in unary form, and
outputs a pair (SK,PK). It is a probabilistic algorithm, denoted as:

KeyGen : 1κ −→ (SK,PK)

Hash. accepts as input a public key PK, a label L, a message m and an auxiliary
random parameter r and outputs a bitstring h of fixed length τ .

Hash : (PK,L,m, r) −→ C ∈ {0, 1}τ

Universal Forge. accepts as input the secret key SK associate to public key
PK, a label L, a message m, and auxiliary parameter r, and computes a second
message m′ and random parameter r′ such that Hash(PK,L,m, r) = C =
Hash(PK,L,m′, r′).

UForge(SK,L,m, r) −→ (m′, r′), such that

Hash(PK,L,m, r) = C = Hash(PK,L,m′, r′)

Instance Forge. accepts as input a tuple (PK,L,m, r,m′, r′) of a public key, a
label, and two pairs of a message and auxiliary random parameter, where C =
Hash(PK,L,m, r) = Hash(PK,L,m′, r′), and computes another collision pair
(m′′, r′′) that also satisfies C = Hash(PK,L,m′′, r′′).

IForge(PK,L,m, r,m′, r′) −→ (m′′, r′′), such that

Hash(PK,L,m, r) = C = Hash(PK,L,m′, r′) = Hash(PK,L,m′′, r′′)

The security requirements of a chameleon hash include:1

Collision-Resistance: There is no efficient algorithm that given only PK, L, m
and r, (but not the secret key SK) can find a second pair m′, r′ such that C =
Hash(PK,L,m, r) = Hash(PK,L,m′, r′) with more than negligible probability
over the choices of PK, L, m and r.

Semantic Security: The chameleon hash value C does not reveal anything about
the possible message m that was hashed. In formal terms, let H[X] denote the
entropy of a random variable X, and H[X|Y ] the entropy of the variable X given
the value of a random function Y of X. Semantic security is the statement that
the conditional entropy H[m|C] of the message given its chameleon hash value
C equals the total entropy H[m] of the message space.

1 We adopt information-theoretic formulations of semantic security and message hid-
ing properties because these lead to simpler proofs. Moreover, information-theoretic
security (with respect to semantic security and message hiding) is indeed achieved
by all constructions of chameleon hashing schemes currently in the literature as well
the ones proposed in this paper.
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Message hiding: Assume the recipient has computed a collision using the uni-
versal forgery algorithm, i.e., a second pair (m′, r′) s.t. Hash(PK,L,m, r) =
C = Hash(PK,L,m′, r′), where (m, r) was the original value signed. Then
the signer, upon seeing the claimed values (m′, r′), can successfully contest this
invalid claim by releasing a third pair (m′′, r′′), without having to reveal the
original signed message. Moreover, the entropy of the original value (m, r) is
unchanged by the revelation of the pairs (m′, r′), (m′′, r′′), and any further col-
lisions: H[(m, r)|C, (m′, r′), (m′′, r′′)] = H[(m, r)|C].

Key Exposure Freeness: If a recipient with public key PK has never computed
a collision under label L, then given C =Hash(PK,L,m, r) there is no effi-
cient algorithm that can find a collision (a second pair m′, r′ mapping to the
same digest C). This must remain true even if the adversary has oracle ac-
cess to UForge(SK, ·, ·, ·) and is allowed polynomially many queries on triples
(Li,mi, ri) of his choice, except that Li is not allowed to equal the challenge
label L.

Remark: Notice that when a chameleon hash with key-exposure freeness is em-
ployed within a chameleon signature then any label L must be explicitly com-
mitted to the signature along with the identity of the recipient and a description
of the hashes (see [12]).

3 Previous Work on Trapdoor Commitments

Trapdoor commitment schemes were introduced as early as 1988, with the work
of Brassard et al. [4]. Trapdoor commitment schemes are closely related to cha-
meleon hashes. Yet the two notions are not truly equivalent. The reason is
that chameleon hashes, intended for use in combination with signature schemes,
require extra properties that are not enjoyed by every trapdoor commitment
scheme. Indeed, in reviewing the literature in trapdoor commitments, we have
identified at least four categories of commitments, which have all different de-
grees of suitability for use as a chameleon hashing scheme. The first category,
what we called “stateful” trapdoor commitment schemes, cannot be used at all
as chameleon hashes.

Stateful Trapdoor Commitments: These refer to trapdoor commitments which
have the property that the knowledge of the trapdoor by itself is not sufficient to
enable the computation of alternate de-commitments. In fact, it is necessary that
the committing party know the trapdoor, execute a variant commitment algo-
rithm that produces the commitment plus some auxiliary information, and save
that auxiliary information (state) for later use in the alternate de-commitment
algorithm. One example of such constructions are simulation-sound trapdoor
commitments, see [13].

Such trapdoor commitment schemes cannot be used as chameleon hashes. In
the chameleon hashing setting it is required that the recipient be able to find
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collisions (alternate de-commitments) from the digest value and the trapdoor
information alone. All chameleon hashes must be stateless trapdoor commitment
schemes.

Key Exposing Commitments: The chameleon hashing algorithm of Krawczyk
and Rabin suffered from the key exposure problem, which limits its application
in the chameleon hashing setting. It corresponds to the well-known Pedersen
commitment scheme [17]. Another example of a trapdoor commitment that suf-
fer from the key exposure problem is given by several constructions in Marc
Fischlin’s thesis [10], including one based on factoring, originally introduced
in [8] (without reference to trapdoors). Another construction is provided by
Shamir and Kalai [20] in relation to online/offline signatures (notion introduced
by Even, Goldreich, and Micali [9]). In short, a signature on a chameleon hash is
computed offline and then a signature on a new message is derived by comput-
ing a collision of the hash (online phase). Although very efficient, their original
chameleon hash scheme, based on factoring, also suffers from the key exposure
problem. This implies, in particular, that the online phase of their mechanism
can actually be performed only once.

Non-Perfect-Hiding Commitments: These schemes are key exposure free, but
they do not allow the execution of the instance forge algorithm IForge. In other
words, they do not permit adjudication without the original valid signature
being disclosed at some stage. These schemes might be interesting in a variety of
application scenarios for which key exposure is not acceptable due to high cost
of key-redistribution, but where the privacy of the message signed is no longer
important at the time the matter comes for adjudication. In the following section
we describe one original scheme of this type.

Message-Hiding and Key-Exposure-Free Commitments: This lead to the most
flexible and suitable application as chameleon hashes. The first claim of con-
struction of such a scheme is included in [7], where a pairings-based algorithm
is given. However, the property is actually present (though not recognized as
such) in the scheme in [1], based on a well-known RSA commitment scheme,
first described in [15]. Therefore the use of pairings is not needed to obtain key-
exposure-free schemes. In the following we explain how the RSA commitment
scheme can be used to provide both guarantees, and we also present two new
constructions. The first is based on a trapdoor commitment scheme [5] based on
the Paillier’s cryptosystem [16]. The second requires pairings, and is based on
the trapdoor scheme described in [11]. Its security is dependent on the so-called
Strong Diffie-Hellman assumption.

The crucial feature enjoyed by the commitment schemes in this category is
that they are all double-trapdoor. One of the trapdoors is the secret key (used in
the algorithm UForge to find collisions) and the other is some trapdoor function
of the label used in the IForge.
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4 Key Exposure Freeness Without Message Hiding

In this section we describe a trapdoor commitment scheme that can be seen as a
chameleon hash providing key exposure freeness but no perfect message hiding.
Unlike other schemes, it has the unique and appealing feature of relying on a
single trapdoor.

The scheme is related to a twin Nyberg-Rueppel signature, introduced in [14].
The key generation is similar to that of other discrete logarithm-based schemes.
Notice that while we describe the scheme in the finite field setting, the scheme
may potentially be instantiated in other groups where the DL is hard.

Key Generation: The scheme specifies a safe prime p of bitlength κ. This
means that p = 2q + 1, where q is also prime, and a generator g of the subgroup
of quadratic residues Qp of Z∗

p, i.e, g has order q. The recipient chooses as secret
key x at random in [1, q − 1], and his public key is computed as (g, y = gx). Let
H be a collision-resistant hash function, mapping arbitrary-length bitstrings to
strings of fixed length τ : H : {0, 1}∗ → {0, 1}τ .

The Hash Scheme: To commit to a message m, it is sufficient to choose ran-
dom values (r, s) ∈ Zq × Zq, and compute:

e = H(m, r); andHash(m, r, s) = r − (yegs mod p) mod q.

Collision Finding: Let C denote the output of the chameleon hash on input
the triple (m, r, s). A collision (m′, r′, s′) can be found by computing (m′, r′, s′)
such that:

e′ = H(m′, r′); and C = r′ − (ye
′
gs

′
mod p) mod q.

First, the recipient chooses a random message m′, a random value k′ ∈ [1, q−1],
and computes r′ = C+(gk

′
modp)modq, e′ = H(m′, r′), and s′ = k′−e′xmodq.

Notice that indeed:

r′ − (ye
′
gs

′
mod p) mod q = C + (gk

′
mod p)− (gxe

′
gs

′
mod p) mod q) = C.

Key Exposure Freeness and Collision-Resistance: The security of the
scheme depends on whether twice signing a message (without redundancy), using
the above variant of Nyberg-Rueppel, is secure. This was proven in appendix A
to [14], where the concept of twinning signature schemes is considered. The only
difference from the scheme above is that we have substituted e = H(m, r) for r
in the exponent of y. The only modification to the proof, which is formally the
same, is that the probability of collisions is changed from finding collisions in the
whole ring Zq to finding them over the image of H(·). Therefore, provided that
this hash is collision-resistant, the conclusion of security is unchanged. Notice
that we do not need to model the function H(·) as a random oracle. Instead,
the proof of security for the twin Nyberg-Rueppel works in the generic model of
computation.
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Semantic Security: Notice that when the committing party computes the
value C, it can choose s completely independently of m and r. Since g is an
element of order q, the term gs uniformly covers the whole subgroup of quadratic
residues, independently of the value ryH(m,r). The result follows. More formally,
from the commitment equation, for each random r and message m, there is a one-
to-one correspondence between the commitment C and the value s. This implies
that the conditional probability μ(m, r|C) equals μ(m, r|s). But the latter value
is simply μ(m, r) since s is chosen independently of m and r.

Now, consider the definition of conditional entropy:

H[m, r|C] = −
∑

m,r∈{0,1}τ ×Zq

∑
C∈Zq

μ(m, r, C) log(μ(m, r|C)).

The internal summation becomes
∑

C∈Zq
μ(m, r, C) log(μ(m, r)), which equals

μ(m, r) log(μ(m, r)). Therefore,

H[m, r|C] = −
∑

m,r∈{0,1}τ ×Zq

μ(m, r) log(μ(m, r)) = H[m, r].

Notice that the proof is automatic once shown that the probability of the mes-
sage conditioned on the commitment value is really equal to the unconditioned
probability. In the remaining schemes we describe here, our proofs of semantic
security will be shortened to only show the equality between conditioned and
unconditioned probabilities.

Remark: We have defined the above scheme using the short version of the
Nyberg-Rueppel signature, for convenience of reference to the twin signatures
work [14]. It is also possible to define a trapdoor commitment scheme using the
long form, as:

e = H(m, r); andHash(m, r, s) = ryegs mod p.

5 Key Exposure Freeness with Message Hiding

In this section we provide some examples of chameleon hash with key exposure
freeness. Any stateless trapdoor commitment with two trapdoors may be ade-
quate, but the schemes below are based on common assumptions and well-known
constructions.

We stress that these candidate functions are not new but are rather well-
known and have been proposed as trapdoor commitments by others. We are
showing that, unlike other trapdoor commitment schemes, they can be easily
adapted and transformed in chameleon hashes that provide simultaneously key
exposure freeness and message hiding.
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5.1 Scheme Based on RSA and Factoring

The scheme below is based on a well-known trapdoor commitment and has two
trapdoors, the factors of an RSA modulus and roots of elements in the RSA
ring. This fact has been exploited in [1] to build an identity-based chameleon
hash and was independently noticed by Gennaro in [11], where the basic scheme
is also extended to allow for several trapdoors and applied to the construction
of concurrently non-malleable proofs of knowledge.

Key Generation: Let τ and κ be security parameters. As before, let H be a
collision-resistant hash function mapping strings of arbitrary length to strings
of fixed length τ . Let n = pq with the two prime numbers p and q in the set
{2κ−1, . . . , 2κ − 1}. A random prime integer e is computed s.t. e > 2τ , and such
that it is relatively prime to the order φ(n) = (p− 1)(q− 1) of the multiplicative
residues modulo n. The secret key d is computed such that ed ≡ 1 mod φ(n).

The recipient’s public key is (n, e) and his secret key is (p, q, d).

The Hash Scheme: Let S be the string uniquely identifying the recipient and
let L be a label. Let C : {0, 1}∗ → {0, · · · , 22κ−1} be a secure hash-and-encode
scheme, mapping arbitrary bit-strings to integers less than n. In general, such
schemes are probabilistic, requiring an auxiliary random string. For instance,
the EMSA-PKCS encoding, defined in [19], requires a random (or pseudo-ran-
dom) salt at least 64 bits long, while the EMSA-PSS encoding, defined in [2, 18],
can take an auxiliary random string of bit-length equal to τ , the output length
of the cryptographic hash function H. Our notation will not make the random
parameter explicit, as the nature of the encoding (i.e., deterministic or non-
deterministic) is immaterial to the following discussion as long as the encoding
scheme is uniquely invertible, i.e., the output of the encode function can be
decoded to recover the hash value.

Given J = C(L) in Zn, the secret trapdoor is extracted as B = Jd mod n,
i.e., a secure RSA signature on L.

The Hash(·) algorithm is:

Hash(L,m, r) = JH(m)re mod n, where J = C(L)

Collision Finding: To compute a collision (m′, r′), the recipient would chose
a random message m′ and consider the following equation:

JH(m)re = JH(m′)r′e,

and solve it for r′ modulo n, that is:

r′ = rBH(m)−H(m′) mod n.

Collision-Resistance and Key Exposure Freeness: Exposing a collision
allows anybody to extract the secret key B associated to the value J = C(L).
Indeed,
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JH(m)re = JH(m′)r′e =⇒ r′/r = BH(m)−H(m′).

Clearly, the absolute value of Δ = H(m)−H(m′) is smaller than 2τ and given
that e is a prime integer larger than 2τ , it follows that gcd(Δ, v) = 1. Using the
extended Euclidean algorithm for the GCD, one computes α and β such that
αΔ + βv = 1. B can now be extracted:

B = (r′/r)αJβ .

As B is a secure RSA signature on L, and computing collisions is equivalent
to breaking this signature scheme, we conclude that finding collisions is hard
without knowledge of the trapdoor. Finally, notice that since revealing collisions
is equivalent to computing signatures, the scheme is safe from key exposure as
the EMSA-PSS RSA signature scheme is resistant against active attacks.

Semantic Security: For each message m, the value C =Hash(L,m, r) is
uniquely determined by the value r, and vice-versa. Therefore, the conditional
probability μ(m|C) equals that of μ(m|r), which equals μ(m), as m and r are
independent variables. The semantic security follows – see the example in the
previous section for details.

Message Hiding: Let C be the commitment value. It is sufficient to show
that, once a collision is revealed, a person who does not know the trapdoor can
compute a de-commitment to C under any message m′′ of her choice. From the
above proof of the collision-resistance property we see that the revelation of a
collision (m, r), (m′, r′) discloses the trapdoor information B = C(L)d. In order
to find another collision, it is sufficient to choose m′′ and set r′′ = rBH(m)−H(m′).

Remark: This RSA-based scheme is a multi-trapdoor scheme in the sense of
Gennaro [11], as the second trapdoor is multiply instantiated – in other words,
there is one trapdoor per label. Instead of relying on the Strong RSA assumption
as the scheme described in [11], the version described above relies on the security
of the EMSA-PSS RSA signature.

5.2 Scheme Based on RSA[n,n] and Factoring

In [16], Paillier proved that, for each h ∈ Z∗
n2 of order a non-zero multiple of n,

the function Fh that maps elements in (Zn,Z∗
n) to elements in Z∗

n2 , defined as:

Fh : (a, b) −→ habn mod n2,

is a trapdoor permutation.
In [5], a trapdoor commitment scheme was introduced that is based on the

Paillier trapdoor permutation. The authors of [5] suggest to use their trapdoor
commitment to build a chameleon signature. However, if used directly as they
described (i.e., a standard signature over a trapdoor commitment), the problem
of key exposure would arise. We simply observe that their trapdoor commitment
has actually two trapdoors and can be easily extended to support labels as
described below.
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Key Generation: Let n = pq with p and q large primes. Let H(·) be a cryp-
tographic hash function that maps elements of arbitrary length to element of a
subset of Z∗

n2 . The public key of the scheme is n, while the private key is (p, q).

The Hash Scheme: Given a message m ∈ Zn, and a label L, compute h =
H(L). Next, generate randomly the pair (r1, r2) ∈ (Zn,Z∗

n), and compute ([5]):

C = Hash(L,m, r1, r2) = (1 + mn)hr1rn2 mod n2.

To extend the scheme to commit arbitrary length messages, it is sufficient to
employ a cryptographic hash function with codomain in Zn.

Collision-Finding and Collision-Resistance: Let C be a commitment with
respect to label L, where h = H(L). From here to compute a collision under a
second message m′, the recipient finds C ′ = C(1 −m′n) mod n2 and computes
its inverse under the trapdoor permutation Fh:

F−1
h (C ′) = (a, b), with a ∈ Zn and b ∈ Z∗

n.

The new de-commitment is (m′, r′
1 = a, r′

2 = b). Without knowledge of the
trapdoor, computing this collision is equivalent to breaking the RSA[n, n] as-
sumption, as shown in [5].

Key Exposure Freeness: Suppose a party can compute a collision under label
L, i.e., values (m, r1, r2,m

′, r′
1, r

′
2) such that

(1 + mn)hr1rn2 = (1 + m′n)hr′
1(r′

2)
n,

where h = H(L). It follows that (see full argument in [5]) the one can recover
values a and b such that

H(L) = h = (1 + an)bn, (1)

i.e., the party can compute the Paillier signature (a, b) on the “message” L. This
is not feasible, since the Paillier signature is resistant against existential forgeries
under active attacks in the random oracle model, by reduction to the RSA[n,n]
assumption.

Semantic Security: The semantic security of this commitment scheme has
been shown in [5].

Message Hiding: Assuming a collision (m′, r′
1, r

′
2) has been revealed to the

committing party, she has learned a Paillier signature (a, b) on the value L. To
obtain a collision, she computes the value δ = a−1 mod n, chooses an arbitrary
message m′′, and computes r′′

1 = r′
1 + δ(m′ − m′′) (as an integer) and r′′

2 =
r′
2 + δ(m′′−m′) modn. One may readily verify that (m′′, r′′

1 , r
′′
2 ) commits to the

same value as (m′, r′
1, r

′
2).



On the Key Exposure Problem in Chameleon Hashes 177

Remark: Note that when computing the collision, the new value r′
1 may fall out-

side the interval [1, n−1]. This is not a problem, as there is no requirement that
collisions look like plausible initial commitments. In a chameleon hashing scheme
the goal is just to prove that the trapdoor-owner has revealed a collision. If it is
required that derived collisions look like plausible commitments, the scheme can
be “fixed” by redefining the interval where r1 is chosen to be much larger than
[1, n− 1].

5.3 Scheme Based on SDH and DL

Gennaro in [11] proposes a new trapdoor commitment scheme based on the
Strong Diffie-Hellman (SDH) assumption introduced by Boneh and Boyen [3].
Informally, the �-SDH assumption says that if G is a cyclic gap-DDH group of
prime order q and g is a generator of such a group, then an attacker that sees
G, g, gx, . . ., gx

�

, for an x ∈ Zq, should not be able to compute h and e such
that hx+e = g.

We show here that such a trapdoor commitment scheme can support labels
and that collisions cannot be used to compute the master trapdoor.

Key Generation: Let G = 〈g〉 be a gap-DDH group of order q and let x ∈ Zq.
The public key of the recipient is h = gx. Let H(·) be a cryptographic hash
function that maps elements of arbitrary length to elements of Zq.

The Hash Scheme: Let e = H(L), where L is the label. Given a message m,
select a random r ∈ Zq and compute ([11]):

Hash(L,m, r) = gH(m)(geh)r.

Let F denote the output of the chameleon hash divided by gH(m). To verify
that the hash was computed correctly, one can check whether (gr, hge, F ) is a
Diffie-Hellman triple. Remember that Gap groups have efficient algorithms to
decide the Diffie-Hellman problem.

Collision Finding, Collision-Resistance, and Key Exposure Freeness:
Following [11], given a pair (m, gr), it is efficient to find a collision (m′, gr

′
) if x

is known by setting:
gr

′
= grg[(H(m)−H(m′))/(x+e)]. (2)

Conversely, exposing a collision (m, gr) and (m′, gr
′
) allows anybody to efficiently

compute g1/(x+e) (which, in general, is a hard computational problem under the
SDH assumption). To obtain key exposure freeness, one needs the result that
even if several values fi = g1/(x+ei) are known, it is difficult computing other
values fj under different ej – i.e., under different labels Lj . As remarked in [11],
this result has been proved in [3], where the values fi are shown to be “weak
signatures.” Moreover, since the knowledge of x permits computing such values
efficiently, it is clear that deriving x from collisions is infeasible.
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Semantic Security and Message Hiding: From the discussion above, it is
clear that with the trapdoor information, exactly one collision can be computed
under each message m′, proving the semantic security of the scheme. It remains
to be shown that collisions, and the consequent exposure of the value fe =
g1/(x+e), permit finding other collisions under the same label. It is sufficient to
observe that the collision-finding equation (2) does not require knowledge of x,
but only of the value fe.

6 Conclusions and Open Problems

In this paper we outline a formal security model for chameleon hash functions,
including precise specifications of the message-hiding and key-exposure freeness
properties. We conclude that single-trapdoor commitment schemes are not suf-
ficient for the construction of chameleon hashes – instead a double-trapdoor
mechanism is required. Here an interesting question poses itself: The double-
trapdoor mechanism can either be used to construct an identity-based chameleon
hash scheme (in the sense of [1]) or a key-exposure free one, but not both. Are
there efficient schemes that are simultaneously identity-based and key-exposure
free, perhaps based on a construction with multiple (more than two) consecutive
trapdoors?

Our results include three constructions of schemes satisfying the full security
model, two based on RSA, as well as a construction based on pairings. This sig-
nificantly augments the family of chameleon hashes satisfying both key-exposure
freeness and message hiding, of which only one example was previously known
([7]), based on pairings. We have also provided an example of trapdoor commit-
ment that provides key-exposure freeness, but not message hiding – and that
relies on a single trapdoor, the first such construction to our knowledge.

Acknowledgments. We are grateful to Rosario Gennaro and David Molnar for
their insightful comments. This work was partly funded by a NSF grant.
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Abstract. We introduce and define the notion of identity-based zero-
knowledge, concentrating on the non-interactive setting. In this setting,
our notion allows any prover to widely disseminate a proof of a state-
ment while protecting the prover from plagiarism in the following sense:
although proofs are transferable (i.e., publicly verifiable), they are also
bound to the identity of the prover in a way which is recognizable to any
verifier. Furthermore, an adversary is unable to change this identity (i.e.,
to claim the proof as his own, or to otherwise change the authorship),
unless he could have proved the statement on his own.

While we view the primary contribution of this work as a formal
definition of the above notion, we also explore the relation of this notion
to that of non-malleable (non-interactive) zero-knowledge. On the one
hand, we show that these two notions are incomparable: that is, there
are proof systems which are non-malleable but not identity-based, and
vice versa. On the other hand, we show that a proof system of either
type essentially implies a proof system of the other type.

1 Introduction

One of the motivations behind the introduction of the fundamental notion of
zero-knowledge (ZK) proof systems by Goldwasser, Micali, and Rackoff [9] was
to allow a prover to convince a verifier about the validity of a theorem without
enabling the verifier to later convince someone else [2]. When viewing ZK proofs
in this way, one sees that a primary concern of such proofs is to prevent pla-
giarism; in other words, the prover wishes to prevent the verifier from learning
some valuable information from the proof and later claiming the proof as his
own (without properly referencing the original prover).

We remark that the above concerns are handled, to some extent, by ZK proofs
in the interactive setting. Here, we have a prover P and a (possibly malicious)
verifier V who will (at some later point) try to convince a second verifier V ′. Since
the transcript of the interaction between P and V can be simulated, by definition
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of zero-knowledge, a copy of the proof transcript will not be convincing to V ′.
Additionally, if V and V ′ interact after completion of the interaction between P
and V , the zero-knowledge property implies that V gains no advantage in trying
to convince V ′.

Of course, the concern remains that V might interact with V ′ while interact-
ing with P (i.e., act as man-in-the-middle). A related concern, in the public-key
setting, was considered by Jakobsson, Sako, and Impagliazzo [10] (see also the
related work by Cramer and Damg̊ard [5]) who introduce proofs meant to con-
vince only a single, designated verifier. Note that such a notion, if extended to the
non-interactive setting, would fundamentally limit the widespread dissemination
of proofs; on the other hand, frequently one would like to disseminate proofs as
widely as possible (e.g., to announce results to the scientific community).

Indeed, non-interactive ZK (NIZK) proof systems introduced by Blum, Feld-
man, and Micali [3] paradoxically allow (in the presence of a common-random
string available to all parties) the widespread dissemination of zero-knowledge
proofs. However, although NIZK proofs “hide” the witness to the truth of the
theorem, NIZK proofs do not seem to offer any guarantees against plagiarism.
That is, if P gives a non-interactive proof π to V , this proof is still convincing
when V transfers it to V ′. Note that, here, V ’s interaction with V ′ does not need
to be simultaneous with his interaction with P , since π can be copied and stored
until needed. Indeed, one advantage of NIZK proofs is that they are transferable
and can be passed from verifier to verifier yet still remain a convincing proof of
the theorem claimed. However, NIZK proofs are not bound in any way to the
original discoverer of the proof. That is, once a prover gives a convincing NIZK
proof to the first verifier, the verifier can claim that proof as his own!

Ideally, one would like to retain the ability to disseminate proofs as widely
as possible while maintaining clear (and unalterable) information about who
actually created the proof. To protect the original prover P , some mechanism
needs to be developed which ensures that (1) if the proof is passed from verifier
to verifier it remains a convincing proof; yet (2) if the proof is simply copied, V ′

will recognize that P was the one who actually composed the proof. Furthermore,
(3) any adversary V ′ should be unable to modify the proof to make it appear as
though he (V ′) actually composed the proof.

Toward this end, we formally define the notion of identity-based proof sys-
tems which satisfy the security requirements implied by the discussion above.
We also show a simple and provably-secure construction of an identity-based
scheme achieving the stated requirements, starting from any non-malleable zero-
knowledge scheme [7]. In our construction, we do not rely on public-key infras-
tructure.

1.1 Related Work

The notion informally outlined above is related to the notion of non-malleability
as introduced by Dolev, Dwork, and Naor [7]. Yet, these two notions are techni-
cally very different and non-malleability does not automatically imply security
in the sense esdescribed above. Specifically, we note that although Dolev, et al.
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discuss a way to simplify the construction of non-malleable cryptosystems when
identities are present, they do not formally define the idea of “binding” or “link-
ing” an identity with a proof. One can also see that a non-malleable NIZK proof
system does not achieve the security desired in our setting; in particular, the def-
inition of non-malleability does not protect against copying (something we are
explicitly concerned with here), and known non-malleable NIZK proof systems
[7, 16, 6] do not consider the notion of having the prover’s identity associated
with the proof. Furthermore, an identity-based proof system (as defined below)
is not necessarily non-malleable.

We show, however, an underlying connection between (non-interactive) non-
malleable and identity-based proof systems: our construction of an identity-based
proof system uses any non-malleable proof system as a building block, and we
show how any identity-based system can be used to construct a non-malleable
scheme without much additional complexity.

Since the original version of this manuscript was written, an improved con-
struction of (interactive) non-malleable zero-knowledge has been proposed [1].
See also the work of [11, 15] which, inter alia, construct identity-based zero-
knowledge proofs for identities of logarithmic length which are fixed a priori
(note, however, that neither of these works formally define the notion of identity-
based zero knowledge). Also related to this work is recent work of Pass [14] which
is concerned with the transferability of NIZK proofs, but is not explicitly con-
cerned with associating proofs with identities. We remark also that NIZK proof
systems in the universally composable (UC) framework [4] incorporate identities
to some extent (as a consequence of the definition of the UC framework), but
not quite the way we do so here. For one thing, in the UC framework there is
no notion of “transferability” of NIZK proofs (indeed, such proofs inherently
cannot be transfered in the UC framework), and there is no direct requirement
that identities be “extractable” from proofs. Nevertheless, known constructions
of NIZK proofs in the UC framework do achieve our definition.

The complementary notion of identity-based interactive proof systems is also
of interest. Although the notion seems not to have been considered explicitly in
the early work on non-malleability [7] (and no formal definition of such a notion
has previously appeared), the techniques given there may be adapted to yield
identity-based proof systems in the interactive setting. Our results below, show-
ing that identity-based proof systems can be used to construct non-malleable
proof systems, extend to the interactive setting as well. In particular, the meth-
ods of Theorem 2 show that the existence of an r-round identity-based (in-
teractive) proof system implies the existence of an r-round non-malleable proof
system, indicating that the complexity of identity-based systems is not any lower
than non-malleable ones.

2 Definitions

We begin with the standard definition of (adaptive) NIZK proof systems, with
one additional feature: The prover algorithm P takes as one of its inputs a
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string id representing an identity. The verification algorithm V, on input a proof
π, outputs both a bit denoting acceptance/rejection of the proof as well as a
string id indicating which party it believes was the one who generated the proof.
The intention is that the identity information id is embedded in π by the prover
(in some way) such that it can be extracted efficiently by the verifier V. The
following definition deals simply with the correctness of this process; however,
this embedding of the id will be crucial when we define security for an identity-
based scheme further below.

Definition 1. Π = (p, q,P,V,S = (S1,S2)) is an NIZK proof system with
extractable identity for language L with witness relation R if p, q are polynomial
(with q(k) = ω(log k)) and P,V, and S are ppt algorithms such that:

1. (Completeness): For all x ∈ L, all w such that (x,w) ∈ R, all σ ∈
{0, 1}p(|x|), and all id ∈ {0, 1}q(|x|), we have V(x,P(x,w, id, σ), σ)1 = true
(where V(·, ·, ·)1 represents the first component of V’s output).

2. (Extractable Identities): For all x ∈ L, all w such that (x,w) ∈ R, all
σ ∈ {0, 1}p(|x|), and all id ∈ {0, 1}q(|x|), we have V(x,P(x,w, id, σ), σ)2 = id.

3. (Soundness): For all unbounded algorithms P ′, if σ ∈ {0, 1}p(|x|) is chosen
randomly, the probability that P ′(σ) outputs (x, π) such that V(x, π, σ)1 =
true and x /∈ L is negligible.

4. (Zero-Knowledge): For all x ∈ L, all w such that (x,w) ∈ R, and all id ∈
{0, 1}q(|x|), the following distributions are computationally indistinguishable
(where k

def= p(|x|)):{
σ ← {0, 1}k;π ← P(x,w, id, σ) : (σ, π)

}
{
(σ, s) ← S1(1k);π ← S2(x, id, s) : (σ, π)

}
.

We remark that our results extend to a stronger (robust) notion of Non-
Interactive Zero-knoweldge, considered in [6], where σ is identical in the real
interaction and in the simulation1.

We further remark that the above definition says nothing about a prover
who chooses to use some arbitrary identity (i.e., as opposed to their own iden-
tity) when constructing a proof. Indeed, this cannot be prevented without the
additional assumption of some infrastructure who “binds” physical entities to
identities.

Following [8, 6], we extend the above definition to allow for simulation of any
polynomial number of proofs:

Definition 2. Π = (p, q,P,V,S) is an unbounded NIZK proof system with
extractable identity for language L with witness relation R if Π is an NIZK
proof system with extractable identity and for all ppt A, we have that:

1 That is, the two experiemnts are as follows: First, generate (σ, s) ← S1(1k), where
we require the distribution on σ to be uniform, and them we require that the
following two distributions are indistinguishable:{π ← P(x, w, id, σ) : (σ, π)} and
{π ← S2(x, id, s) : (σ, π)}.
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∣∣∣

is negligible; where:

ExptA,Π(k) :
σ ← {0, 1}k
return AP(·,·,·,σ)(σ)

ExptSA,Π(k) :
(σ, s) ← S1(1k)
return AS′(·,·,·,s)(σ)

and S ′(x,w, id, s) def= S2(x, id, s) (we assume, above, that if x,w, id is a query of
A, then (x,w) ∈ R; note that this can be verified easily).

We now turn to the definition of security (as sketched in the Introduction)
for this setting. Informally, we want to ensure that an adversary cannot take
a proof π given by a prover P(x,w, id, σ) and convert it to a proof π′ (for
the same theorem) such that V(x, π′, σ)1 = true, yet V(x, π′, σ)2 �= id. In fact,
our definition is even stronger as it rules out the possibility of an adversary
claiming any proof with respect to a “new” identity unless (informally) the
adversary could have proved such a statement on its own. More specifically,
anything the adversary can prove with respect to a new identifier after seeing
any (polynomial) number of proofs π1, . . . , π� given by provers with (possibly)
multiple identities (adaptively chosen by the adversary), could have been proved
by the adversary without seeing these proofs.2 Our definition is based on that of
[6], who present definitions in the context of non-malleable NIZK. However, we
stress (as pointed out previously) that non-malleable and identity-based proof
systems are incomparable, in the sense that a proof system satisfying one need
not satisfy the other. We make this explicit in Lemmas 1 and 2, below.

Definition 3. Let Π = (p, q,P,V,S) be an unbounded NIZK proof system with
extractable identity for language L with witness relation RL. We say that Π is
an identity-based NIZK proof system for L if there exists an extractor Ext such
that, for all ppt adversaries A and all poly-time relations R, the following is
negligible: ∣∣∣Pr[ExptIDS

A,R,Π(k)]− Pr[ExptID′
A,R,Π(k)]

∣∣∣ ,
where:

ExptIDS
A,R,Π(k) :

(σ, s) ← S1(1k)
(x, π, aux) ← AS2(·,·,s)(σ)
Let I be the list of identities queried by A
return true iff
V(x, π, σ)1 = true and
V(x, π, σ)2 /∈ I and
R(x, aux) = 1

ExptID′
A,R,Π(k) :

(x,w, aux) ← ExtA(1k)
return true iff

(x,w) ∈ RL and
R(x, aux) = 1

(we assume, above, that if x, id is a query of A, then x ∈ L).

2 When we say that x “could have been proved by the adversary”, we mean that an
actual witness w for x can be extracted from the adversary (see Definition 3).
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We remark that the above definition actually corresponds to an NIZK proof
of knowledge (in the sense that Ext “extracts” a witness from A). It is possible
to relax the definition (and our constructions) for the case of NIZK proofs but
we omit the details here.

The next two lemmas indicate that identity-based schemes and non-malleable
schemes are incomparable. For self-containment, we include in Appendix A a
definition of non-malleable NIZK proof systems (adapted from [6]).

Lemma 1. Assuming the existence of trapdoor permutations and3 dense cryp-
tosystems, there exists a proof system Π which is a non-malleable NIZK proof
system yet is not an identity-based NIZK proof system.

Proof (sketch). Consider, for example, the non-malleable schemes given in [6].
In these schemes, there is no notion of prover identities at all, and thus no
connection whatsoever between a proof and the identity of the prover.

Lemma 2. Assuming the existence of trapdoor permutations and dense cryp-
tosystems, there exists a proof system Π which is an identity-based NIZK proof
system yet is not a non-malleable NIZK proof system.

Proof (sketch). An identity-based NIZK proof system only prevents an adversary
from modifying an existing proof to yield a proof which is not associated with
any of the legitimate provers, yet it may be possible for an adversary to modify
an existing proof to yield a proof of a different statement (but in the name of
the original prover). In particular, consider the construction Π of an identity-
based proof system given in Section 3. Define proof system Π ′ in which a prover
appends an extra bit to the end of every proof which is ignored by the verifier.
Since flipping the final bit of a valid proof yields a new valid proof, clearly the
scheme is not non-malleable. Yet it is not difficult to show that Π ′ remains an
identity-based proof system

3 An Identity-Based Proof System

We construct an identity-based NIZK proof system Π starting from any non-
malleable NIZK proof system Π̃ = (p̃, P̃, Ṽ, S̃) for languages in NP. We make
the additional assumption that Π̃ has uniquely applicable proofs (see [16]). This
means that, for all x, x′π, σ with x �= x′, if Ṽ(x, π, σ) = true then we must have
Ṽ(x′, π, σ) = false. Known techniques for constructing non-malleable NIZK proof
systems [16, 6] give proof systems which have uniquely applicable proofs.

3 The assumption of dense cryptosystems is needed only for the definitions as cur-
rently presented. By relaxing the definitions to consider proofs rather than proofs of
knowledge (see the remark following Def. 3) we can, following [6–Footnote 6], base
our results on the assumption of trapdoor permutations alone.



186 J. Katz, R. Ostrovsky, and M.O. Rabin

The intuition behind our construction4 of proof system Π for language L ∈
NP is as follows: an identity-based proof of the theorem x ∈ L using identity
id will consist of a proof (under Π̃) of the theorem that either x ∈ L or (a
portion of) the common random string specifies a commitment to id. A formal
description follows:

– Common Random String. Let k
def= |x|. Define p(k) def= p̃(6k2 +2k)+6k2.

The random string σ ∈ {0, 1}p(k) is parsed as σ1 ◦σ2, with |σ1| = 6k2. String
σ1 is parsed as r1, c1, . . . , rk, ck where |ri| = |ci| = 3k, for all i. Pair (ri, ci)
will be viewed as a bit commitment as follows [12]: let G : {0, 1}k → {0, 1}3k
be a pseudorandom generator. If ci = G(y) for some y, then (ri, ci) represents
a 0. If ci ⊕ ri = G(y) for some y, then (ri, ci) represents a 1. Note that with
all but negligible probability over random choice of ri, ci, the pair will not
represent a valid commitment to any value.

– Prover Strategy. Any q(k) = poly(k) is possible; for simplicity, we set
q(k) def= k. Define language L̃ ∈ NP as consisting of tuples (x, id), with
|x| = k and |σ1| = 6k2, such that at least one of the following is true:
1. x ∈ L

2. σ1 is a commitment (see above) to the k-bit string id.
(Note that L̃ depends on a fixed value of σ1. Thus, technically, we should
write L̃σ1 ; however, we suppress σ1 in the notation.) Algorithm P(x,w, id, σ),
where id ∈ {0, 1}k, is defined as follows: First, σ is parsed as σ1 ◦ σ2. P sets
x̃ := (x, id) and runs P̃(x̃, w, σ2), where P̃ is the proof system for language
L̃. Let π̃ be the output of P̃. The output of P is then π := (id, π̃).

– Verifier Strategy. V(x, (id, π̃), σ) runs as follows: First, σ is parsed as σ1 ◦ σ2.
The verifier sets x̃ := (x, id) and outputs (Ṽ(x̃, π̃, σ2), id).

– Simulation. We define (S1,S2) as follows: S1(1k) chooses σ1 ∈ {0, 1}6k
2

at
random and then runs S̃1(1k) to generate (σ2, s). The output of S1 is (σ, s),
where σ = σ1 ◦ σ2. Algorithm S2(x, id, s) sets x̃ := (x, id), and runs S̃2(x̃, s)
to obtain output π̃. Finally, S2 sets π := (id, π̃) and outputs π.

The security offered by this construction is described by the following theorem:

Theorem 1. If Π̃ is a non-malleable NIZK proof system (with uniquely appli-
cable proofs) for L̃, then Π is an identity-based NIZK proof system for L.

Using [6], we immediately obtain the following corollary:

Corollary 1. Assuming the existence of trapdoor permutations and dense cryp-
tosystems, there exists an identity-based NIZK proof system for any L ∈ NP .

We now prove the theorem.

4 In fact, a simpler construction is possible. Informally, to prove x ∈ L we first con-
struct the language L′ def= {(id, x) | x ∈ L} and then give a non-malleable proof that
(id, x) ∈ L′. We omit the details and a proof of security for this construction.
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Proof. One-way functions are sufficient for the construction given above; fur-
thermore, the fact that Π̃ is an NIZK proof system for languages outside BPP
implies that one-way functions exist (assuming NP �= BPP) [13]. We first show
that Π is an NIZK proof system with extractable identity (cf. Definition 1).
Completeness and identity extraction are trivial. Soundness of Π follows from
the soundness of Π̃ and the observation that, with all but negligible probability
over randomly chosen σ = σ1 ◦σ2, the string σ1 cannot be interpreted as a com-
mitment to any string id. Zero-knowledge will follow from the stronger property
proved below.

To show that Π is unbounded, consider an arbitrary ppt adversary A (cf. Def-
inition 2). Define Ã as follows: on input σ2, adversary Ã generates σ1 ∈ {0, 1}6k

2

at random and runs A(σ1 ◦ σ2). When A submits query (x,w, id), algorithm Ã
sets x̃ := (x, id) and submits query (x̃, w) to its oracle. Upon receiving π̃ in
response, Ã returns to A the value (id, π̃). Finally, Ã’s final output is whatever
A outputs. Note that:

Pr[ExptA,Π(k) = 1] = Pr[ExptÃ,Π̃(k) = 1]

and
Pr[ExptSA,Π(k) = 1] = Pr[ExptS̃

Ã,Π̃
(k) = 1].

Thus, if Π̃ is an unbounded NIZK proof system (cf. Definition 5), Π is an
unbounded, identifiable NIZK proof system.

We now prove that Π is an identity-based NIZK proof system. Let A be a ppt
adversary, and let R be a poly-time relation. Define Ã as follows: on input σ2,
adversary Ã generates σ1 ∈ {0, 1}6k

2
at random and runs A(σ), where σ = σ1◦σ2.

When A submits query x, id to its oracle for S2, algorithm Ã sets x̃ := (x, id)
and submits query x̃ to its oracle for S̃2. Upon receiving π̃ in response, Ã returns
to A the response (id, π̃). When A outputs (xf , πf = (idf , π̃f ), aux), algorithm Ã
checks whether idf appears in the list of identities queried by A. If it does not,
Ã outputs (x̃f = (xf , idf ), π̃f , aux); otherwise, Ã outputs ⊥.

Furthermore, define relation R̃ as follows: R̃(x̃ = (x, id), aux) = 1 if and only
if R(x, aux) = 1.

We claim that:

Pr[ExptIDS
A,R,Π(k)] = Pr[ExptNMS̃

Ã,R̃,Π̃
(k)]. (1)

To see this, first note that the simulation (in ExptNM) provided by Ã for A is
perfect. Thus, the distribution on the values (xf , πf = (idf , π̃f ), aux, σ) in the

two experiments is identical. Furthermore, note that (as above, we let x̃f
def=

(xf , idf )):

V(xf , πf , σ)1 = true Ṽ(x̃f , π̃f , σ1) = true
V(xf , πf , σ)2 /∈ I ⇐⇒ π̃f /∈ Q

R(xf , aux) = 1 R̃(x̃f , aux) = 1
,
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where I is the list of identities queried by A and Q is the list of proofs which Ã
received from oracle S̃2 (here, we use the property that Π̃ has uniquely applicable
proofs). This completes the proof of the claim.

Let Ẽxt be the extractor for proof system Π̃ guaranteed by Definition 6. We
now specify extractor Ext. Algorithm ExtA(1k) first chooses σ1 ∈ {0, 1}6k

2
at

random and fixes it for the remainder of its execution; note that this defines L̃.
Next, Ext runs Ẽxt(1k), responding to the oracle calls of Ẽxt as follows: when
Ẽxt submits σ2 to its oracle for Ã, Ext submits σ1 ◦ σ2 to its oracle for A.
When A queries x, id, algorithm Ext responds by first setting x̃ := (x, id) and
sending query x̃ to Ẽxt. When Ẽxt responds with π̃, algorithm Ext responds to
A with π = (id, π̃). Ultimately, when A generates its final output (xa, πa =
(ida, π̃a), auxa), algorithm Ext gives (x̃a = (xa, ida), π̃a, auxa) to Ẽxt. When Ẽxt
outputs (x̃f = (xf , idf ), w̃, auxf ), algorithm Ext outputs (xf , w̃, auxf ).

Note that, in the simulation above, Ext perfectly simulates oracle Ã for Ẽxt
(where Ã is defined as before). Furthermore, note that if w̃ is a witness to x̃f ∈ L̃
then, with all but negligible probability, w̃ is also a witness to xf ∈ L. This is
so because, with all but negligible probability, string σ1 is not a well-defined
commitment to any string id. Therefore, the following is negligible:∣∣∣Pr[ExptID′

A,R,Π(k)]− Pr[ExptNM′
Ã,R̃,Π̃

(k)]
∣∣∣ . (2)

Equations (1) and (2) complete the proof that Π is identity-based.

4 From Identity-Based Schemes to Non-malleability

In this section, we further study the relation between identity-based NIZK proof
systems and non-malleable NIZK proof systems. Section 3 shows how to con-
struct an identity-based proof system based on any non-malleable proof system.
Yet, since the definition of identity-based proof systems seems weaker than the
definition of non-malleable proof systems, one may wonder whether more effi-
cient constructions of identity-based proof systems are possible. Our results in-
dicate that, in some sense, this is not possible. More formally, we show that any
identity-based NIZK proof system can be converted to a non-malleable NIZK
proof system with minimal additional overhead. Below, we consider the non-
interactive case; however, our results extend to the interactive setting as well.
In particular, one can show (using a construction much like the one given be-
low) that any identity-based, interactive ZK proof system can be converted to
a non-malleable, interactive ZK proof system without any increase in round-
complexity.

We begin with an identity-based NIZK proof system Π̃ = (p̃, q̃, P̃, Ṽ, S̃) in
which q(k) = ω(log k). We make the additional assumption that Π̃ has uniquely-
applicable proofs [16] (the construction given in Section 3 satisfies this assump-
tion). In non-malleable proof system Π which we construct, a proof that x ∈ L
will consist of the following: (1) a verification key VK for a one-time signature
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scheme, (2) a proof π̃, in proof system Π̃ and using id = VK, that x ∈ L, and
(3) a signature τ on π̃, using the secret key SK which corresponds to VK. A
complete description of the protocol follows:

– Common Random String. Let |x| = k and define p(k) def= p̃(k). Thus, the
random string σ used by Π to prove statements of length k will have the
same length as that used by Π̃.

– Prover Strategy. We use a one-time signature scheme secure against ex-
istential forgery: algorithm KeyGen(1k) generates signing/verification keys
(SK,VK). We assume for simplicity that VK output by KeyGen(1k) has length
q̃(k) (recall the definition requires q̃(k) = ω(log k)). Algorithm P(x,w, σ)
first runs KeyGen(1k) to generate (SK,VK). Then, P runs P̃(x,w,VK, σ) to
give proof π̃. Finally, P signs π̃ (using SK) to obtain signature τ . The output
is π = (VK, π̃, τ).

– Verifier Strategy. V(x, (VK, π̃, τ), σ) runs as follows: if τ is not a valid
signature of π̃ under VK or Ṽ(x, π̃, σ)2 �= VK, output false. Otherwise, output
Ṽ(x, π̃, σ)1.

– Simulation. S1(1k) simply outputs the result σ, s of running S̃1(1k). To
simulate a proof, S2(x, s) runs KeyGen(1k) to obtain (SK,VK), and then
runs S̃2(x,VK, s) to obtain π̃. Finally, S2 signs π̃ using SK, giving signature
τ . The output is π = (VK, π̃, τ).

The security of this construction is given by the following theorem:

Theorem 2. If Π̃ is an identity-based NIZK proof system (with q(k) = ω(log k)
and uniquely applicable proofs) for L, then Π is a non-malleable NIZK proof
system for L.

Proof. One-way functions are sufficient for the construction above; furthermore,
the fact that Π̃ is an NIZK proof system for languages outside BPP implies that
one-way functions exist (assuming NP �= BPP) [13]. Completeness, soundness,
and (unbounded) zero-knowledge of Π follow from the fact that Π̃ satisfies
Definitions 1 and 2. Therefore, we focus on proving that Π satisfies Definition 6.

Let A be a ppt adversary and R be a poly-time relation (cf. Definition 6).
Define Ã as follows: on input σ, adversary Ã simply runs A(σ). When A submits
query x to its oracle for S2, algorithm Ã runs algorithm KeyGen(1k) to obtain
(SK,VK), and submits query x,VK to its oracle for S̃2. Upon receiving π̃ in
response, Ã generates signature τ for π̃ using SK, and returns to A the proof π =
(VK, π̃, τ). When A outputs (xf , πf = (VKf , π̃f , τf ), aux), algorithm Ã checks
that πf is a valid proof for x and that πf was not one of the proofs which Ã gave
to A. If both conditions are satisfied, Ã outputs (xf , π̃f , ãux = (aux,VKf , τf ));
otherwise, Ã outputs ⊥.

We claim that the following is negligible:∣∣∣Pr[ExptNMS
A,R,Π(k)]− Pr[ExptIDS̃

Ã,R,Π̃
(k)

∣∣∣ . (3)
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To see this, note that the simulation provided by Ã for A is perfect. Thus, the
distribution on (xf , πf , aux) in the two experiments is identical. Assuming πf
is a valid proof for xf and that πf was not one of the proofs given to A, there
are two possibilities: either VKf is equal to one of the verification keys which Ã
already used or not. The probability of the first possibility is negligible, by the
security of the one-time signature scheme. On the other hand, when the second
possibility occurs, we have:

V(xf , πf , σ) = true
πf /∈ Q

⇐⇒ Ṽ(xf , π̃f , σ)1 = true
Ṽ(xf , π̃f , σ)2 /∈ I

,

where Q is the list of proofs received by A and I is the list of verification keys
used by Ã. This completes the proof of the claim.

Let Ẽxt be the extractor for proof system Π̃ guaranteed by Definition 3. Define
Ext(1k) which runs Ẽxt(1k), responding to the oracle calls of Ẽxt as follows: when
Ẽxt submits σ to its oracle for Ã, this query is forwarded by Ext to its oracle for
A. When A queries x, algorithm Ext runs KeyGen to obtain keys (SK,VK) and
submits query x,VK to Ẽxt. When Ẽxt responds with π̃, algorithm Ext generates
signature τ on π̃ using SK, and returns π = (VK, π̃, τ) to A. When A generates
its final output (xa, πa = (VKa, π̃a, τa), auxa), algorithm Ext gives (xa, π̃a, auxa)
to Ẽxt. Finally, when Ẽxt outputs (xf , wf , auxf ), algorithm Ext outputs the same.
It is clear that:

Pr[ExptNM′
A,R,Π(k)] = Pr[ExptID′

Ã,R,Π̃
(k)]. (4)

Equations (3) and (4) complete the proof that Π is non-malleable.
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A Definitions for Non-malleable NIZK

For completeness, we include relevant definitions from [6].

Definition 4. ([6–Def. 1]) Π = (p,P,V,S = (S1,S2)) is a single-theorem
NIZK proof system for a language L with witness relation R if p is polynomial
and P,V, and S are ppt algorithms such that:

1. (Completeness): For all x ∈ L and all w such that (x,w) ∈ R, for all
σ ∈ {0, 1}p(|x|), we have V(x,P(x,w, σ), σ) = true.

2. (Soundness): For all unbounded algorithms P ′, if σ ∈ {0, 1}p(|x|) is chosen
randomly, the probability that P ′(σ) outputs (x, π) such that V(x, π, σ) = true
and x /∈ L is negligible.

3. (Zero-knowledge): For all x ∈ L and all w such that R(x,w) = true,
the following distributions are computationally indistinguishable (where k

def=
p(|x|)): {

σ ← {0, 1}k;π ← P(x,w, σ) : (σ, π)
}

and {
(σ, s) ← S1(1k);π ← S2(x, s) : (σ, π)

}
.

Definition 5. ([6–Def. 2]) Π = (p,P,V,S) is an unbounded NIZK proof sys-
tem for language L if Π is a single-theorem NIZK proof system for L and for
all ppt algorithms A, we have that |Pr[ExptA,Π(k) = 1] − Pr[ExptSA,Π(k) = 1]|
is negligible; where:
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ExptA,Π(k) :
σ ← {0, 1}k
return AP(·,·,σ)(σ)

ExptSA,Π(k) :
(σ, s) ← S1(1k)
return AS′(·,·,s)(σ)

where S ′(x,w, s) def= S2(x, s) (we assume, above, that if x,w is a query of A,
then (x,w) ∈ R).

Definition 6. ([6–Def. 5]) Let Π = (p,P,V,S) be an unbounded NIZK proof
system for language L with witness relation RL. We say that Π is a non-
malleable NIZK proof system for L if there exists an extractor Ext such that,
for all ppt adversaries A and all poly-time relations R, the difference

|Pr[ExptNMS
A,R,Π(k)]− Pr[ExptNM′

A,R,Π(k)]|

is negligible, where:

ExptNMS
A,R,Π(k) :

(σ, s) ← S1(1k)
(x, π, aux) ← AS2(·,s)(σ)
Let Q be the list of proofs returned by S2
return true iff
V(x, π, σ) = true and
π /∈ Q and
R(x, aux) = 1

ExptNM′
A,R,Π(k) :

(x,w, aux) ← ExtA(1k)
return true iff

(x,w) ∈ RL and
R(x, aux) = 1

(we assume, above, that if x is a query of A then x ∈ L).
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2 INRIA Rhône-Alpes, 655 Avenue de l’Europe, 38334 Saint Ismier CEDEX, France

claude.castelluccia@inrialpes.fr

Abstract. A multicast communication source often needs to securely
verify which multicast group members have received a message, but veri-
fication of individually signed acknowledgments from each member would
impose a significant computation and communication cost. As pointed
out by Nicolosi and Mazieres [NM04], such cost is minimized if the in-
termediate nodes along the multicast distribution tree aggregate the in-
dividual signatures generated by the multicast receivers into a single
multisignature.
While the solution of [NM04], based on a multisignature scheme of
Boldyreva [Bol03], relied on so-called “Gap Diffie-Hellman” groups, we
propose a solution using a multisignature scheme which is secure un-
der just the discrete logarithm assumption. However, unlike the previ-
ously known discrete-log based multisignature scheme of Micali et al.
[MOR01a], our multisignature scheme is robust, which allows for an ef-
ficient multisignature generation even in the presence of (possibly mali-
cious) node and communication failures.

1 Introduction

Multicast (or one-to-many) communication is widespread in a variety of settings.
Popular examples include IP Multicast, p2p content sharing, digital cable TV
transmission, mobile ad hoc networks and application-layer replication proto-
cols. Multicast security has been the subject of much attention in the research
literature. Most of the relevant work has been in the context of key management,
multicast/broadcast encryption and efficient content authentication. One of the
related issues that has not been sufficiently considered is the problem of secure
(authenticated) acknowledgments. After sending out a multicast message, the
source is often interested in establishing which group members have received the
message.

In this paper we propose several new techniques for efficient authentication
of acknowledgments generated in response to a multicast message. We are inter-
ested in schemes which are efficient, scalable, robust with respect to failures and
malicious participants, and provably secure under long-standing cryptographic
assumptions like the hardness of computing discrete logarithms.
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Importance of Multicast Acknowledgment Aggregation. We assume that the pack-
ets are sent from the source to the members along a delivery tree. This tree is
rooted at the source and the members are represented as leaves and, possibly,
also as intermediate nodes. The delivery tree is no necessarily binary, i.e., a node
can have more than two children. This model is general enough to cover the stan-
dard client-server and peer-to-peer multicast flavors. In the former, the group
members are the leaves, whereas, in the latter, intermediate nodes can also be
group members. However, for the sake of simplicity in the presentation, we will
assume that the group members are leaves of a binary multicast tree rooted at
the source.

After multicasting a message M to the group, the source needs to make sure
that all members have received it. One simple solution is to ask each member to
send an authenticated acknowledgment back to the source. However, this solu-
tion is not scalable as it results in the acknowledgment implosion problem, i.e.
the individual acknowledgments take up too much bandwidth, which in many
application will be a scarce resource. While the computational cost of verify-
ing the individual acknowledgments can be sped up by various batch signature
verification techniques, such techniques do not address the need to save the
communication resources as well.

Prior Art: Acknowledgment Aggregation Using Multisignatures Based on GDH
Groups. Nicolosi and Mazieres [NM04] recently proposed to reduce the compu-
tation and the communication costs associated with acknowledgment verification
by aggregating the acknowledgments using a multisignaturescheme of Boldyreva
[Bol03]. A multisignature scheme is a generalization of the standard notion of
a signature to messages signed by groups of users. It was formally defined only
recently by Micali et al. in [MOR01a],1 a long time after the (less formal) in-
troduction of this concept by Itakura and Nakamura [IN83], and after several
such schemes were proposed and a few were shown to have serious security vul-
nerabilities. In a multisignature scheme s is called a multisignature on message
M issued by a group of players G if (s,M) passes certain verification equation
involving the set of all public keys in group G. If the multisignature scheme
is secure, this happens only (except for negligible probability) if all players in
group G indeed signed M .2

It is easy to illustrate multisignatures using the multisignature scheme of
Boldyreva [Bol03], which is a generalization of a regular signature scheme pro-
posed by Boneh et al. [BLS01]. Assuming that an element g is a generator of such
a group, in a BLS signature the user’s private key is x, the public key is a group
element y = gx, the signature on a (hashed) message M is s = Mx, and signa-
ture verification consists of checking that (g, y,M, s) is a Diffie-Hellman tuple.
Boldyreva’s multisignature scheme generalizes the BLS signatures by defining

1 A full version of this paper is available as [MOR01b].
2 Thus multisignatures, referred to as “accountable subgroup multisignatures” by Mi-

cali et al., are a special case of so-called “aggregate signatures” [BGLS03] which
enable aggregation of signatures by multiple signers on possibly different messages.
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string s as a multisignature on M issued by a group of players G if (g, y,M, s)
is a DDH tuple for y =

∏
i∈G yi. Note that if each si is a BLS signature issued

by player i on M , then s =
∏

i∈G si is a multisignature on M issued by players
in G. Both schemes are secure in the Random Oracle Model under the so-called
“Gap Diffie-Hellman” (GDH) group assumption, which requires that even if it
is easy to decide whether a tuple of four group elements (g, y, z, w) is a Diffie-
Hellman tuple, i.e. whether DLg(y) = DLz(w), still computing a DH function
Fx(z) = (z)x on a random group element z is intractable without the knowledge
of x. GDH is assumed to hold for certain elliptic curve groups with Weil pairings,
where decisional Diffie-Hellman can be efficiently computed via the pairing, but
where computational Diffie-Hellman still appears to be hard [Jou02, Gag02].

Since the aggregation of BLS signatures into a multisignature does not require
participation of the signers, this multisignature scheme enables robust aggrega-
tion of acknowledgments by the intermediate nodes on the multicast delivery tree:
Each intermediate node can verify, given the (combined) public keys of the nodes
below him, whether the (aggregated) acknowledgments he receives are correct,
and then aggregate them further for the node above. Together with an aggrega-
tion of the valid multisignatures he receives, each node also passes up identities of
members involved in this multisignature. In this way the source receives the final
multisignature and the identities of members whose signatures are aggregated in
it. Note that the scheme uses constant bandwidth on every link, and that the cost
of the multisignature verification is the same as the verification of a standard BLS
signature. Furthermore, this solution implicitly provides traceability by allowing
the source to eventually identify the malicious participants who send bogus ac-
knowledgments.

Our Contribution: A Robust DL-Based Multisignature and Acknowledgment Ag-
gregation. While efficient and robust, the above scheme is based on relatively
new cryptographic assumption of GDH. In this paper we show that a robust
multisignature scheme, and thus a robust acknowledgment aggregation, can be
done securely based (in ROM) on a more standard cryptographic assumption of
hardness of discrete logarithm. Our solution is an improvement on the DL-based
multisignature scheme proposed by Micali et al. [MOR01a]. Just as the multisig-
nature of [MOR01a], our scheme is a variant of the Schnorr’s signature scheme
[Sch89], provably secure (in ROM) under the discrete logarithm assumption.
However, by tying together the individual players’ commitments in Schnorr sig-
natures with Merkle tree hashes [Mer89], our multisignature scheme has a novel
property of robustness, because it enables the group of signers to efficiently gen-
erate a multisignature even in the presence of (some number of) communication
failures between the participating players and/or malicious behavior on the part
of (some of) the players. By contrast, the multisignature scheme of [MOR01a]
would have to be restarted from scratch in the case of a single communication
or node fault during a multisignature generation protocol.

Our robust multisignature scheme is provably secure only for a limited num-
ber of faults t. Specifically, if q is the size of the multiplicative group this discrete-
log scheme is instantiated with and n is the maximum number of players allowed
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to participate in the multisignature generation protocol, then our scheme is se-
cure as long as quantity St,n/q is negligible, where St,n is a sum of consecutive
combinations, St,n =

(
n
0

)
+
(
n
1

)
+ . . .+

(
n
t

)
. Although we do not see any attack on

our scheme for larger values of n and t, our proof of security does not extend be-
yond these limitations, and an existence of a discrete-log multisignature scheme
which is robust (without having to re-start the generation protocol) against any
number of faults remains an open problem. However, we note that our scheme
works for parameters like (q, n, t) = (21024, 210, 100), which should be useful in
practice. Furthermore, note that the if the number of faults t crosses the above
limit the multisignature protocol fails and needs to be restarted for the remain-
ing players, hence the above bounds really limit only the robustness property,
and not security.

The robustness property we introduce to Schnorr-based multisignatures comes
either at no extra communication cost, or at a modest communication cost in-
crease, depending on the communication medium connecting the players. In the
case when the players communicate in a ring as in [MOR01b], the total com-
munication cost grows from O(n) group elements to O(n log n). If the players
communicate via a reliable broadcast medium, as in [MOR01a], then the commu-
nication costs do not change. Finally, if the players communicate via a multicast
tree, as is the case in our application of multisignatures to multicast acknowl-
edgement aggregation, the total communication cost is O(n + t(logn)2) group
elements, where t is the number of faults. This is the communication setting in
which we will describe our multisignature scheme, but the scheme is applicable
to the other settings as well.

When we apply our multisignatures to multicast acknowledgement aggrega-
tion, the comparison of the resulting scheme to that of Nicolosi and Mazieres
[NM04] is as follows. Assuming that the source shares symmetric keys with the
receivers, if no malicious node faults occur then our scheme can run in an “op-
timistic” mode which provides an all-or-nothing verification of aggregated ac-
knowledgments and matches the communication cost of the scheme of Nicolosi
and Mazieres, i.e. it takes one round of communication and total bandwidth of
O(n) group elements, where n is the size of the multicast group. Moreover, our
scheme has a smaller computational overhead because we avoid the pairing oper-
ations used in the GDH-based scheme of [NM04]. In the case of malicious node
faults, our robustness mechanisms kick in and the scheme takes three commu-
nication rounds, and the total bandwidth grows to O(n + t(logn)2) bandwidth
where t is the number of faults, whereas the scheme of [NM04] takes only one
round and the total bandwidth remains O(n). Our scheme is therefore most ap-
plicable when the number of malicious faults and link failures is moderate, which
we believe is the case for many applications.

Limitations of Current Multisignature Schemes. We point out that the mul-
tisignature scheme we propose continues to suffer from the problem identified by
Micali et al., a problem which is shared by both the scheme of Micali et al. and
by the scheme of Boldyreva. Namely, none of these schemes, including ours, is
known to be secure without special requirements on the generation of the par-
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ticipants’ public keys. Micali et al. list a number of such possible requirements
on the key-generation process (see esp. [MOR01b]), which apply equally to the
scheme of Micali et al., Boldyreva, and ours, but we will mention here only two.

The first requirement under which all three schemes are provably secure is
the assumption that all certificate authorities who certify the participants’ pub-
lic keys are first of all honest, and second, that they verify a zero-knowledge
proof of knowledge of the private key when certifying some user’s private key.
As pointed out in [MOR01a], this requirement makes delegation problematic,
disallows self-delegation completely, and is probably sensible only when all cer-
tificates are signed by very few completely trusted entities. The second possible
requirement is that all participants generate and certify their public keys in a
special distributed protocol. While this requirement avoids trusted third parties
completely, it is applicable only to small groups, and is unsuitable for general
public key infrastructure.

Moreover, unlike in the scheme of Boldyreva but like in the scheme of Micali
et al., we will require that the players involved in the multisignature generation
protocol take as input the set G of players (potentially) participating in this
protocol.

However, while these limitations remain a serious problem for general applica-
tions of multisignatures, they do not influence the application of multisignatures
to multicast acknowledgement aggregation. In this application we can assume
not only that all participants’ keys are certified by a single trusted certification
authority, but we can in fact simply give everyone’s private key to this author-
ity. Therefore in the subsequent sections we choose to present our multisignature
scheme assuming a single trusted certification authority. Similarly, in the mul-
ticast acknowledgement aggregation application it can be safely assumed that
the intended set of recipients G who would participate in the multisignature
generation can be known to each of the participants.

Paper Organization: In the next section we describe the proposed multisigna-
ture scheme. In section 3 we describe its optimized variant suited to multicast
acknowledgement aggregation. Finally, in section 4 we sketch the security proof
for our scheme.

2 A Robust Discrete-Log Based Multisignature Scheme

2.1 Computational Setting and Initialization

We propose a multisignature scheme based on an extension of the Schnorr sig-
nature scheme [Sch89]. We assume common parameters (p, q, g) where p, q are
large primes and g is an element of order q in Z

∗
p. As in the Schnorr signature

scheme we assume a hash function h : {0, 1}∗ → Zq, which we will model as
a random oracle. All equations involving multiplication or exponentiation are
meant modulo p.

As mentioned in the introduction, we will assume a single trusted Certifi-
cation Authority who signs all participants’ public keys. We will describe our
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multisignature scheme using the application to acknowledgment aggregation as
a context. Namely, we assume that the group of players who are potential partic-
ipants in the multisignature generation are multicast group members, and that
they are logically organized in a binary tree, with the group members repre-
sented as the leaves of the delivery tree, the intermediary tree nodes occupied
by the multicast delivery network, and the multicast source S at the root. We
note, however, that the scheme is generally applicable, in which case the tree
data structure needs to be computed by the participating players, and both the
intermediary nodes and the “source” node will be just special functions played
by the players to whom the data structure assigns these roles.

N0 N1

N00

N010

N011

r010=g^v010

N01 r01=r010*r011

(r01,c01)

(r010,c010)

(r00,c00)

r0=r00*r01

(r0,c0)

N000

N001

(r1,c1)

c01=h(r010,r011,c010,c011)

r011=g^v011
c011=h(r011)

(r011,c011)

c010 =h(r010)

c0=h(r00,r01,c00,c01)

c=h(M,G,r0,r1,c0,c1)
Source

Fig. 1. Computation of the Merkle Tree

We denote the left and right children of S as N0 and N1. More generally,
the left and right children of Ni are defined as Ni0 and Ni1 (see Figure 1 for
example). Each member Ni randomly selects its secret key xi ∈ [0, q−1] and sets
its public key yi = gxi . As discussed in the introduction, under the assumption
of a single trusted CA, the proof of security requires that during the registration
of the public key yi a player must pass a zero knowledge proof of possession
of the discrete logarithm xi = DLg(yi).3 When our scheme is used for efficient
acknowledgment aggregation, the trusted source can either check each player’s
ZK proof, or, to support the “optimistic” mode of the protocol operation, the
source simply picks Ni’s secret xi himself and shares it with the player.

3 If no trusted CA’s can be assumed, to assuage the problem of concurrent composition
of such proofs, our multisignature scheme would have to generate all public keys
simultaneously, in a distributed protocol proposed by [MOR01a].
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We assume that each node Ni knows the public keys of all members (tree
leaves) in the subtree rooted at Ni. Each node can also aggregate the keys
of all the members in his subtree. The aggregated public key yi is computed as
yi = yi0∗yi1, where yi0, yi1 are (possibly aggregated) public keys of Ni’s children.

2.2 Overview of the Scheme

In the original Schnorr signature the signature on message M under key y = gx

is generated by taking one-time “commitment” r = gv for random v ∈ [0, q− 1],
computing the challenge c = h(m, r), and issuing a response z = v + cx mod q.
The signature is then a pair (r, z) s.t. gz = ryc mod p and c = h(m, r). Micali
et al., aggregate such signatures, i.e. pairs (ri, zi) produced by members of some
group G, by running a 3-stage protocol: In the first phase everyone broadcasts
its ri = gvi , all players combine r =

∏
i∈G ri, compute c = h(m, r), each player

broadcasts zi = vi+cxi and (c, z) where z =
∑

i∈G zi is a Schnorr multisignature
for group G, with y =

∏
i∈G yi as a verification key.4

However, this solution is not robust in the face of node and link failures during
the computation of the multisignature. For example, if any node first sends a
commitment ri but fails to send a valid response zi, the multisignature has to be
recomputed from scratch. To alleviate this problem, instead of hashing a simple
product of all ri’s as above, we compute the challenge c via a Merkle Tree-like
[Mer89] aggregation of the ri values.5 Because a Merkle Tree is a commitment
to all the ri’s, the resulting challenge c is meaningful for all subsets of ri’s that
were used to create it. Therefore the challenge can be used for a multisignature
involving those and only those players that respond to it with proper zi’s. We
note that the Merkle tree we construct is not exactly standard because we fold
into it the intermediary values ri, which allows for a more efficient handling of
network or malicious faults occurring in the protocol. The exact computation of
the Merkle Tree is illustrated in Figure 1.

2.3 The Multisignature Generation Protocol

Our multisignature generation protocol has 3 stages. Each player always stores all
the information passing through it. As in the scheme of Micali et al. [MOR01a],
for the sake of provable security we forbid the players to participate in more than
one instance of this protocol at a time. Moreover, as in the scheme of Micali et
al., we also require that each participant is informed about the (potential, in our
case) set of participants G willing to sign the same message M .

4 In the fuller version [MOR01b] of their work the authors show that the same scheme
works also without broadcast, for example if the players communicate in a ring-like
fashion. However, that version of the protocol is similarly not robust.

5 We note that Micali et al. use a Merkle Tree in the key generation protocol, but they
use it to enable provable security in the absence of a trusted CA, while we use it in
the multisignature generation protocol instead, to enable its robustness.
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Stage 1: Each member Ni that receives M randomly selects vi ∈ [0, q − 1] and
sends to its parent the commitment ri = gvi and the partial challenge ci = h(ri).
A node Nj that receives two commitments and partial challenges {rj0, cj0} and
{rj1, cj1} from its two children, Nj0 and Nj1, stores these values, generates its
own commitment and partial challenge rj = rj0∗rj1 and cj = h(rj0, rj1, cj0, cj1).
It then forwards {rj , cj} to its parent, as illustrated in Figure 1. Each Ni also
passes up the identities of nodes in Ni’s subtree which participated in the proto-
col. If some node Nj on the tree does not send correct values to its parent, the
parent assigns rj = 1 and cj = 0.

Stage 2: When the source receives the two tuples {r0, c0} and {r1, c1} from
its two children N0 and N1, it computes r = r0 ∗ r1 and the challenge c =
h(M,G, r0, r1, c0, c1). It then sends (c, r1, c1) to N0 and (c, r0, c0) to N1. N0
then sends (c, r1, c1, r01, c01) to N00 and (c, r1, c1, r00, c00) to N01 and so on.
Figure 2 shows an example of how the challenge c is propagated from the source
to the members.

N0

N01

Source S

N011

N010

(c,r1,c1)

(c,r1,c1, r00,c00)

(c,r1,c1,r00,c00,r010,c010)

(c,r0,c0)

(c,r1,c1,r01,c01)

(c,r1,c1,r00,c00,r011,c011)

Fig. 2. Transmission of the challenge value c

As a result of this process, each member Nj receives the challenge c and the
values copathj = {(ri, ci)} on its co-path to the root c of the Merkle tree. Ev-
ery Nj can then reconstruct values pathj = {(ri, ci)} that lie on its path to the
root, and verify that c is correct. We denote this operation as checking if c =
hMHT (M,G, rj , copathj). For example, N011 receives values c and copath011 =
{(r010, c010), (r00, c00), (r1, c1)}. The verification if c = hMHT (M,G, r011,
copath011) consists of recomputing r01 = r010 ∗ r011 and c01 = h(r010, r011, c010,
c011), r0 = r00 ∗ r01 and c0 = h(r00, r01, c00, c01), and checking if c = h(M,G, r0,
r1, c0, c1).
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N0

N01

Source S

z010=v010+c*x101

z0=z00+z01

z00

z1

z01=z010+z011

z=z0+z1

N010

N011

z011=v011+c*x011

g^z ?= r * Y^c

Fig. 3. Default propogation of the responses zi

Stage 3: If the challenge c verifies, each signer Ni sends back its response zi =
vi + c∗xi mod q. An intermediary node Nj that receives values zj0 and zj1 from
its two children verifies each of them by checking that gzj0 = rj0 ∗ (yj0)c and
gzj1 = rj1∗(yj1)c. If the equations verify, Nj forwards to its parent the aggregated
value zj = zj0 + zj1 mod q, and so on until the aggregated z = z0 + z1 value
reaches the source, as illustrated in Figure 3.

If one of the signatures is incorrect (let’s say zj1), Nj sets zj to zj0 instead
of zj0 + zj1, and sends (zj , rj0, rj1, cj0, cj1) to its parent. The parent, let’s say
Nk such that j = k1, can perform two checks: (1) Nk can check if gzj = rj/rj1 ∗
(yj/yj1)c; and (2) Nk can check if h(rj0, rj1, cj0, cj1) is equal to cj given to Nk

by Nj in stage 1 of the protocol.
In general, each intermediary node Nj passes up a setMj of pairs (ri, copathi)

where each ri is a (possibly accumulated) value corresponding to players which
have not delivered a valid zi response, either due to communication failure or a
malicious fault. Each node Nk upon receiving these messages first performs the
following tests for both its branches b = 0 and b = 1:

1. Nk sets r′
kb = rkb/(

∏
i∈Mkb

ri) and y′
kb = ykb/(

∏
i∈Mkb

yi) and checks if
gzkb = r′

kb ∗ (y′
kb)

c.
2. Nk checks if c = hMHT (M,G, ri, copathi) for each i ∈Mkb.

If everything verifies, Nk passes up zk = zk0 + zk1 and Mk = Mk0 ∪Mk1. In
case of a failure in branch b, Nk passes up only the correct values, i.e. zk = zkb̄,
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N0

Source S

z010=v010+c*x101

z1

z00

z010 z011 incorrect!

z011= %$&^$%

N01

N010

N011

z01=z010

z0=z00+z01
 r01?=h(r010,r011,c010,c011) 

c*01=h(r010,r011,c010,c011) 
c0 ?= h(r00,r010,r011,c00,c*01)

z01,{r010,r011,c010,c011}

z0,{c00,r00,{r010,r011,c010,c011}}

Fig. 4. Propagation of responses zi in case of faults

and passes up the set of the missing values as Mk = Mkb̄ ∪ {(rkb, copathkb)}. If
both branches fail, Nk passes up just Mk = {(rk, copathk)}.

Figure 4 illustrated this step when one of the member’s signature is in-
correct. In this example, N01 detects that the signature generated by N011
is incorrect because gz011 �= r011 ∗ yc011. N01 then sets z01 to z010 and for-
wards the message {z01, r010, r011, c010, c011} to its parent N0. N0 then computes
c∗
01 = h(r010, r011c010, c011). If c∗

01 is equal to the value committed by N01 in the
first stage of the protocol, then N0 can verify if the signature z01 is correct by
checking whether gz01 = r01/r011 ∗ (y01/y011)c.

2.4 Multisignature Verification

We call σ a multisignature on message M issued by the group G \M if

σ = [z, (r0, r1, c0, c1),M, { (ri, copathi)}i∈M]

such that:

gz =
(

r∏
i∈M ri

)
∗

⎛⎝ ∏
i∈G\M

yi

⎞⎠c

where

c = h(M,G, r0, r1, c0, c1)
r = r0 ∗ r1

and moreover:
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1. c = hMHT (M,G, ri, copathi) for each i ∈ M, and all the co-paths contain
values (r0, r1, c0, c1) in the appropriate places

2. |G| ≤ nmax, and the number of individual participants (implicitly) specified
by the missing set M is smaller or equal to tmax

Importantly, the criterion in point 2 above limits the number of the missing
individual participants represented by the M set, and not the size of that set,
i.e. the number of (possibly aggregated) ri values supplied in { (ri, copathi)}i∈M.

The values nmax, tmax are set so quantity Stmax,nmax
/q is negligible, e.g. less

than 2−80, where St,n =
(
n
0

)
+

(
n
1

)
+ . . . +

(
n
t

)
.

3 A “MultiMAC” Variant of the Multisignature Scheme

If acknowledgment non-repudiation is not required, the multicast source can
have a copy of each participant’s private key, in which case our aggregation
scheme can be called “multiMAC” rather than a multisignature. Moreover, while
the basic scheme described above requires three stages of communication, its
MultiMAC variant can run in an “optimistic” fashion, which requires only one
communication stage if none of the intermediary nodes acts maliciously. Since
this is very likely to be the common case of operation, the communication cost of
the resulting solution matches the cost of the scheme of Nicolosi and Mazieres.

In this variant, each member has a unique secret key xi shared with the
source. We assume that each such key is agreed upon or distributed at the
time when the member joins the source’s multicast group. Knowing all such
keys, the source can add them all up and obtain the aggregated key for any
group G of players, xG =

∑
i∈G xi. When a member Ni receives a message M

from the source, it replies by sending the acknowledgment acki = mxi , where
m = h(M), to its parent Nk, which, in turn, multiplies the acknowledgments of
its children and sends the resulting aggregated message acki = acki0 ∗ acki1 to
its parent. The parent also passes up the identities of players that participated
in the acknowledgment in his subtree. If most members usually do participate,
the parent can instead attach a vector identifying all subtree members who do
not participate. When the source computes the final aggregated acknowledgment
ack = ack0 ∗ ack1 and combines the sets of participating members sets into one
set G, it can verify if all these members indeed acknowledge receipt of M by
checking whether ack = h(M)xG .

Note that this “optimized” protocol by itself is secure but not robust against
malicious faults. It is, however, robust against non-malicious communication
faults. Note also that to save memory, the source could pick all the members’
keys as xk = h(s, k) where s is the source’s short secret. In this way the source
would not have to store all the secrets keys since it can easily retrieve each of
them.

The optimization allows the source to verify the aggregated acknowledgment
in one stage. However, this solution is not robust since, if the aggregated acknowl-
edgment is invalid, the source is unable to identify the malicious member(s). We
therefore propose to combine the two schemes by piggybacking the commitment
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of the basic scheme with the authenticators of the second scheme. As a result,
the source can verify – in one stage – the aggregated acknowledgment. If this
acknowledgment is incorrect, Stage 2 and Stage 3 of the basic scheme can be
executed to trace the malicious nodes and robustly compute the desired mul-
tisignature.

4 Security Analysis of the New Multisignature Scheme

We briefly recall the definition of security for a multisignature scheme given by
Micali et al. [MOR01a]. The adversary A can corrupt any group member at any
time, and he conducts a chosen message and subgroup attack, i.e. he specifies the
message M and the subgroup of players G which participate in the multisignature
generation protocol, and then gets to participate in the multisignature generation
protocol involving group G and message M .

Definition 1. ([MOR01a]) We say that a multisignature scheme is secure if
every efficient adversary A which stages a chosen message and subgroup attack
against the multisignature scheme has at best negligible chance of outputting
triple (M,G, σ) s.t. (1) σ is a valid multisignature on M issued by the group G,
and (2) there exists an uncorrupted player Ni∗ in G who has never been asked
by A to participate in a multisignature protocol on M .

The multisignature scheme resulting from the addition of the optimistic “mul-
tiMAC” protocol as explained in section 3, is similar enough to the basic scheme
of section 2 that its security proof follows very simply from the security proof
for the basic multisignature scheme, given below.

Theorem 1. The multisignature scheme described in Section 2 is secure in the
Random Oracle Model under the Discrete Logarithm assumption.

Proof. The proof goes by exhibiting a simulator S which, with sizable proba-
bility, converts a successful attack algorithm A against our new multisignature
scheme into an algorithm that computes discrete logarithms. The simulation of
this scheme is very similar to the simulation of the Schnorr signature scheme,
although it is less efficient, and hence the exact security of our scheme is not op-
timal. However, a similar degradation, although for a different reason, is suffered
by the exact security of the multisignature scheme of [MOR01a]. The simulator’s
goal is to compute, on input a random y in Z

∗
p a discrete logarithm x = DLg(y).

Without loss of generality we can assume that the adversary forges a multisig-
nature issued by players G = {1, . . . , n}, all of whose members are corrupted
except of player Nn, on some message M which Nn is never ask to sign. (This
assumption does not hold if the adversary is adaptive, but the same proof holds
there too, except that the simulator has to guess the identity of an uncorrupted
player against whom the forgery claim is made.) The simulator assigns yn = y
as the public key of Nn, while it picks the private keys xi of all the other players
at random.
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Since S knows the private data of all uncorrupted players except for Nn, the
only thing that the simulator needs to simulate are Nn’s responses. This is done
similarly as in the Pointcheval and Stern’s proof [PS96] of security of Schnorr
signatures, except that as in the security proof [MOR01b] of the Schnorr-based
multisignature scheme of Micali et al., the simulator will need to rewind the
adversary in this simulation. Namely, when Nn is asked to participate in the
multisignature generation on message M , S picks c and zn at random in Zq,
outputs value rn = gzny−c

n , and then embeds c in the answer to one of the A’s
queries (M, r0, r1, c0, c1) to the h oracle. If this is not the c that comes down to
Nn in the second stage of the protocol together with some co-path copathn such
that c = hMHT (M,G, rn, copathn), then S cannot proceed and the simulation
has to wind back to right after Nn outputs his commitment rn. (Note that
the Merkle Tree hashing does not help us here in any obvious way because the
adversary can still try any number of values r1, . . . , rn−1 he likes, form them
together with rn into many different Merkle Tree hash constructions, and pick
any of the resulting c values.) If qh is the maximal number of hash queries made
by A, this trial and error procedure will eventually succeed in expected number of
at most qh repeats,6 which will slow the Schnorr-like simulation of this signature
process by only a polynomial factor. (We crucially use here the assumption that
the players do not participate in two multisignature protocol instances at the
same time.) When S is finally lucky and the right c comes down to Nn, the
simulator outputs its prepared answer zn.

Thus the simulation proceeds slowly but surely, and A eventually creates a
valid multisignature involving Nn with non-negligible probability. Similarly as
in the “forking lemma” proof of [PS96], we can argue that with high enough
probability it is the case that if A uses some values (M,G, (r0, r1, c0, c1)) in
this forgery, then A has a high enough probability of forging a message using
the same tuple of values, where the probability is taken over all the remaining
randomness used by the simulator in answering A’s oracle queries, including the
randomness c used in answering the very query c = h(M,G, r0, r1, c0, c1). Thus,
following the “forking lemma” technique, the simulator re-runs the adversary
A from the point of this query on, each time using fresh randomness and thus
answering this query with a fresh random value c. In any successful round of
such rewinding, the simulator gets a forgery which consists of:

1. set M such that the number of individual participants implicitly specified
by this set is no more than tmax

(For simplicity, we will use M here to describe this set of participants; Note
that then M⊆ G and n �∈ M.)

2. a set of pairs {(ri, copathi)}i∈M s.t. for every i ∈ M we have c = hMHT

(M,G, ri, copathi), and all the co-paths copathi contain values that match
value (r0, r1, c0, c1) above

3. value z s.t. gz = r/rM ∗ (ynȳ/yM)c, where r = r0 ∗ r1, rM =
∏

i∈M ri,
ȳ =

∏
i∈G\{n} yi, and yM =

∏
i∈M yi

6 Thanks to the Merkle Tree hashing, this bound can be improved to qh/n.
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Note that if there are n members in G then there can be at most n values
ri which the adversary can “open” in item (2) above, unless A finds a collision
in the hash function, but that can happen only with negligible probability in
ROM.

Let’s denote v = DL(r) where r = r0 ∗ r1, vi = DL(ri) for i = 1, .., n,
xn = DL(yn), and x̄ =

∑
i∈G\{n} xi. Then the condition in item (3) translates

into a linear equation on n + 2 unknowns v, v1, . . . , vn, xn:

z = v −
∑
i∈M

vi + c(xn + x̄−
∑
i∈M

xi) mod q (1)

For every successful round of such re-run of A, the simulator gets another
equation of type (1). Once the simulator gets n + 2 of such equations then with
an overwhelming probability it can can solve for xn (and thus answer its DLP
challenge). This is because for every choice of membership in the set M, there
is at most one c which can make the new equation linearly dependent on the
previous ones. Thus the number of c’s which can possibly make the new equation
dependent on the previous ones is at most St,n. Since c is chosen at random,
if St,n & q and n is polynomial in the security parameter then the probability
that any of the n + 2 equations is linearly dependent on the previous ones is
negligible.

The necessity of rewinding A creates a polynomial factor blow-up in the
running time of the simulation. However, it is not substantially worse then the
blow-up encountered in the security argument for the regular Schnorr signature
scheme, because the expected number of simulation rewindings that leads to a
single successful forgery is the same as in Schnorr signatures, and since we need
n + 2 successes, our simulation running time will only grow by the additional
factor of n + 2.
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Abstract. We present the notion of an mKEM, which is a Key Encap-
sulation Mechanism (KEM) which takes multiple public keys as input.
This has applications where one wishes to encrypt a single large doc-
ument to a set of multiple recipients, as when one sends an encrypted
email to more than one person. We present a security definition and show
that the naive approach to implementing an mKEM is secure under this
definition. We then go on to present a more efficient construction of an
mKEM, which is secure in the random oracle model.

1 Introduction

Public key cryptography has been traditionally concerned with two parties com-
municating. In the traditional scenario one party, Alice, wishes to communicate
securely with one other party, Bob. Alice obtains Bob’s authentic public key and
then encrypts the data she wishes to send to Bob. Bob, knowing the associated
private key, is able to decrypt the ciphertext to obtain Alice’s message. Since
public key algorithms are very slow, if Alice wishes to send a large amount of
data she first encrypts a per message symmetric “session key” to Bob using Bob’s
public key algorithm and then encrypts the actual data using a fast symmetric
cipher keyed by the session key. Such a combination of public key and symmetric
techniques is called a hybrid encryption algorithm.

This hybrid technique has been strengthened in recent years with the use of
the KEM-DEM philosophy, see [4] and [5]. In this approach to hybrid encryption
one defines a symmetric data encapsulation mechanism (DEM) which takes a
key K and a message M and computes

C ← DEMK(M).

Given knowledge of K one can also recover M via

M ← DEM−1
K (C).

To transport the key K to the recipient of the ciphertext the sender uses a
key encapsulation mechanism (KEM). This is an algorithm which takes as input
a public key pk and outputs a session key K plus an encapsulation E of this
session key under the public key,

(K,E) ← KEM(pk).

C. Blundo and S. Cimato (Eds.): SCN 2004, LNCS 3352, pp. 208–219, 2005.
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Notice, that the session key is not used as input to the KEM. The recipient
recovers the key K using his private key sk via the decapsulation mechanism

K ← KEM−1(E, sk).

The full ciphertext of the message M is then given by

E‖C.

The use of the KEM-DEM philosophy allows the different components of a hybrid
encryption scheme to be designed in isolation, leading to a simpler analysis and
hopefully more efficient schemes.

However, as soon as one moves away from the traditional two-party setting
problems occur. Suppose Alice now wishes to send a large file to two parties
(say Bob and Charlie), for example she may wish to encrypt an email to Bob
and Charlie, or encrypt a file on her system such that either Bob or Charlie can
decrypt it. ¿From one’s own experience one notices that very few emails are sent
to a single recipient, hence such a one-to-many model is clearly of importance.

A number of possible solutions exist to this problem. All of which have dis-
advantages. In the first naive solution one simply encrypts the data twice, once
for Bob and once for Charlie, using their respective public key schemes. This
is clearly wasteful especially if the data to be encrypted is large. A more effi-
cient solution would be to encrypt the data once with a symmetric encryption
key K and then encrypt this key under Bob and Charlie’s public keys, i.e. the
ciphertext would look like

EpkB
(K)‖EpkC

(K)‖EK(M).

Whilst this is probably sufficient for two users, this can become very expensive
for a large number of users.

In addition it is unclear what security definition one is using for such a
scheme. The work of Bellare, Boldyreva and Micali [2] looks at the security of
encryption schemes in the presence of many users but did not consider the fact
that a “ciphertext” could correspond to different users. In their definition the
above hybrid encryption to two parties would be considered as two encryptions,
whereas we wish to treat it as a single encryption.

The use of the KEM-DEM philosophy in such a situation is also not applica-
ble. After all the KEM produces the session key, hence application of a KEM for
two users would result in two different session keys. What is required is a KEM
like construction which takes as input n public keys and outputs a session key
and an encapsulation of that session key under each of the input public keys.
We would like such a multiple KEM (or mKEM) which is more efficient than
the above concatenation of public key encryptions of a session key.

In this paper we propose such mKEMs and propose a security definition for
them. We show that the above naive concatenation method is secure, in the
standard model, under this definition, although inefficient. We then present a
public key mKEM based on the Diffie–Hellman problem which is more efficient
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than repeated encryption of a session key using an analogous traditional public
key system, yet is still secure in the random oracle model under the proposed
security definition.

2 Notation

We let v ← u for variables v and u to denote assignment. For a set S we let
v ← S denote the variable v being assigned the set S and v

R← S to denote v
being assigned an element of the set S chosen uniformly at random.

If A is a, possibly probabilistic, algorithm then v ← A denotes v being as-
signed the output of algorithm A with the probability distribution induced by
A’s input and internal random choices. If we wish to make explicit precisely what
value r is used as the randomness in a probabilistic algorithm A(x) with input
x we write A(x; r).

A function f is said to be negligible if for all polynomials p there exists a
constant Np such that f(x) ≤ 1

p(x) for all x ≥ Np.

3 Security of a KEM

A KEM (key encapsulation mechanism) is a public key scheme which allows a
sender to generate an encryption of a random session key, and allows the holder
of the correct private key to recover the session key from the ciphertext. We let
D denote a set of domain parameters which could consist of only the security
parameter k written in unary 1k, or could consist of a public group and generator
as in ElGamal systems.

More formally we define a KEM [4] is a triple of algorithms:

– GKEM (D) which is a probabilistic key generation algorithm. On input of D

this algorithm outputs a public/private key pair (pk, sk).
– EKEM (pk) which is a probabilistic encapsulation algorithm. On input of a

public key pk this algorithm outputs an encapsulated key-pair (K,C), where
K ∈ K is the session key and C is an encapsulation of the key K under the
public key pk. In other words C is a ciphertext of the message K. We assume
that the space K of all keys output by E are of some fixed length.

– DKEM (C, sk) which is a decapsulation algorithm. This takes as input an
encapsulation C and a private key sk and outputs a key K or a special
symbol ⊥ representing the case where C is an invalid encapsulation with
respect to the private key sk.

For such a scheme to be useful we require that it is complete in the following
sense,

Pr ((pk, sk) ← GKEM (D), (K,C) ← EKEM (pk) : K = DKEM (C, sk)) = 1.

Security of a KEM is defined in the following way. We assume an adversary A
which runs in two stages. In the first stage it is allowed to produce encapsulations
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and (depending on the precise security definition we require) it may be allowed
access to a decapsulation oracle on encapsulations of its choosing. At the end of
this stage it returns some state information.

In the second stage it is provided with a challenge encapsulation C∗, its state
information from the first stage plus two keys K0 and K1. The adversaries goal
in the second stage is to decide which key Kb is encapsulated by C. In this second
stage it may also have access to an decapsulation oracle, but if it does it is not
allowed to request the decapsulation of the challenge C∗.

Consider the following game played with such an adversary:

(pk, sk) ← GKEM (D).
s← A1(pk).
b

R← {0, 1}.
(Kb, C

∗) ← EKEM (pk).
K1−b

R← K.
b′ ← A2(C∗, {K0,K1}, s).
Output whether b = b′.

The adversary is said to win the game if b = b′. The advantage of an adversary
is defined to be

AdvA = |Pr(b = b′)− 1/2|.
If the maximum advantage over all possible adversaries A is a negligible function
of the security parameter k then we say that the KEM is IND-xxx secure, where
xxx denotes what access A is allowed to a decapsulation oracle. If A is not
allowed any access to such an oracle then we say the scheme is IND-CPA secure,
if it is only allowed access during stage one then we say the scheme is IND-CCA1
secure and if it is allowed access in both stages (subject to the earlier restriction
on requesting the decapsulation of C∗) then we say the scheme is IND-CCA2
secure.

A KEM needs to be used with a DEM (data encapsulation mechanism) to pro-
vide a hybrid encryption algorithm. A DEM is a symmetric encryption algorithm
which takes a symmetric key k and a message (resp. ciphertext) and provides the
corresponding ciphertext (resp. message). Security definitions can be provided
for such DEMs, which are independent of the security definition of the associated
KEM. In [4] Cramer and Shoup show that a combined KEM-DEM encryption
scheme is secure in the standard IND-CCA2 sense (for a public key encryption
scheme) if the DEM is secure and the KEM is secure in the IND-CCA2 sense
above. Hence, the goal is to define KEM’s which are IND-CCA2 secure.

4 Review of Dent’s Construction

In this section we recap on some prior work on classical KEM’s, in particular a
construction of a secure KEM given a public key encryption algorithm which is
secure in the sense of OW-CPA [3].

We first turn our attention to probabilistic public key encryption schemes.
We formally define these as a triple of algorithms:
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– G(D) which is a probabilistic key generation algorithm. On input of D, the do-
main parameters, this algorithm outputs a public/private key pair (pk, sk).

– E(m, pk) which is a probabilistic public key encryption algorithm. On input
of a public key pk and a message m ∈M this algorithm output a ciphertext
c, it makes use of a random value drawn from a space R.

– D(c, sk) which is a decryption algorithm. This takes as input a ciphertext
c and a private key sk and outputs the associated message m or a special
symbol ⊥ representing the case where c is an invalid ciphertext with respect
to the private key sk.

For such a scheme to be useful we require that it is sound in the following sense,

Pr
(
(pk, sk) ← G(D),m R←M, c← E(m, pk) : m = D(c, sk)

)
= 1.

We also require that the scheme is truly probabilistic in that the proportion of
values of r, used as input into E(m, pk; r), that encrypt a given message to a
given ciphertext is negligible as a function of the security parameter.

We shall require the security notion of OW-CPA for public key schemes,
which we recap on now. We assume an adversary A which takes a challenge
ciphertext c∗ and a public key and is asked to produce the associated plaintext.
The scheme said to be OW-CPA secure if no adversary exists which wins the
following game with probability greater than a negligible function of the security
parameter k.

(pk, sk) ← G(D).

m
R←M.

c∗ ← E(m, pk).
m′ ← A(pk, c∗).
Output whether m = m′.

The adversary is not given access to any decryption oracles, but is clearly allowed
to encrypt arbitrary messages of its choice since it has access to pk.

Dent [3] proposes a KEM, derived from a OW-CPA probabilistic public key
algorithm (G, E ,D), a hash function H with codomain R (the space of random-
ness used by algorithm E) and a key derivation function KDF with domain M.
Dent’s scheme is described as follows:

GKEM (D): GKEM = G.

EKEM (pk):
m

R←M.
r ← H(m).
C ← E(m, pk; r).
K ← KDF (m).
Output (K,C).

DKEM (C, sk):
m← D(C, sk).
If m =⊥ then output ⊥ and halt.
r ← H(m).
Check that C = E(m, pk; r),

if not output ⊥ and halt.
K ← KDF (m).
Output K.
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One then has the following result, when one models the functions H and KDF
as random oracles,

Theorem 1 (Dent [3]). If (G, E ,D) is a OW-CPA probabilistic public key en-
cryption algorithm then in the random oracle model the KEM

(GKEM , EKEM ,DKEM )

derived from (G, E ,D) is secure in the sense of IND-CCA2.

5 mKEMs

We now extend the notion of KEM to deal with the case where one wants to
encrypt a large amount of data to multiple people, say n people. In such a sit-
uation it makes sense to apply the DEM once and so one requires a mechanism
which creates the symmetric key for the DEM and an encapsulation which en-
capsulates the key to many parties at once. We call such a system an mKEM
for “multiple KEM”.

Note, a trivial solution would be to generate a session key K for the DEM
and then encrypt this to the various intended receivers by encrypting using
an IND-CCA2 public key encryption algorithm. This would produce n distinct
ciphertexts c1, . . . , cn, each encrypting K for n different users. We would then
define the key encapsulation as

C = c1‖c2‖ · · · ‖cn.

Our goal however is to do this in a more efficient manner, where one measures
efficiency either in terms of computing resources or in terms of length of the
resulting encapsulation C.

Note, in the above trivial system one would need to specify which ciphertext
component ci corresponded to which user ui. Hence, the ciphertext should actu-
ally contain some information specifying which ciphertext corresponds to which
user, i.e. we need to have something like

C = u1‖c1‖u2‖c2 · · · ‖un‖cn.

In our future discussion we shall drop this explicit reference to which users
which component corresponds to. Instead we shall pass the list of recipients to
the decryption function as an optional additional parameter.

Just as for a KEM, we define an mKEM formally as a triple of algorithms,
(GmKEM , EmKEM ,DmKEM ), by adapting the earlier definition, we have

– GmKEM (D) which is a probabilistic key generation algorithm. On input of
D, the domain parameters, this algorithm outputs a public/private key pair
(pk, sk).

– EmKEM (P) which is a probabilistic encapsulation algorithm. On input of a
set of public key P = {pk1, . . . , pkn} this algorithm outputs an encapsulated
key-pair (K,C), where K ∈ K is the session key and C is an encapsulation
of the key K under the public keys {pk1, . . . , pkn}.
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– DmKEM (C, sk,P) which is a decapsulation algorithm. This takes as input an
encapsulation C and a private key sk, plus optionally the set of all recipients
P, and outputs a key K or a special symbol ⊥ representing the case where
C is an invalid encapsulation with respect to the private key sk.

Completeness is now defined as follows.

Pr

⎛⎝ (pki, ski) ← GmKEM (D)∀i ∈ {1, . . . , n}
(K,C) ← EmKEM ({pk1, . . . , pkn}),
j

R← {1, . . . , n} : K = DmKEM (C, skj)

⎞⎠ = 1.

Security of an mKEM is defined in a similar manner to a KEM via the following
game.

(pki, ski) ← GmKEM (D)∀i ∈ {1, . . . , n}.
P ′ ← {pk1, . . . , pkn}
{s,P} ← A1(P ′), where P ⊆ P ′ and m = #P ≤ n.
b

R← {0, 1}.
(Kb, C

∗) ← EmKEM (P).
K1−b

R← K.
b′ ← A2(C∗, {K0,K1}, s).
Output whether b = b′.

Notice in stage one the adversary picks a set P of public keys on which it wants
to be challenged. Unlike the case of security models for multisignatures we do
not allow the adversary to generate their own keys to be challenged on, after
all if we allowed the adversary to generate its own public keys to be challenged
on it could simply remember the corresponding private keys and decapsulate
honestly.

One needs to be careful about the oracle access to the decapsulation oracle.
To see why consider our earlier trivial mKEM with two parties, the challenge is
given by

C∗ = c1‖c2.
However, using a traditional CCA2 definition of security an adversary could
produce the encapsulation

C = c1

and ask the decapsulation oracle to return the associated private key. Since
C �= C∗ this is a valid oracle query, which would result in the adversary breaking
the system. However, we feel such an oracle query is too lenient for our purposes.
We therefore restrict decapsulation oracle queries in the second stage to be only
allowed if the resulting key is different from the key encapsulated by C∗. Such
a restricted oracle access is used in other works to deal with the public key
encryption algorithms which suffer from benign malleability, see for example [5].

We say an mKEM is (m,n)-IND-CCA2 secure, for an integers n and m with
m ≤ n, if the advantage of the adversary winning the above game is negligible as
a function of the security parameter. We assume the adversary is allowed access
to decapsulation oracle queries in both stages, subject to the above restriction
on C∗.
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6 Constructions of mKEMs

We start this section by giving a generic construction which mirrors the naive
construction of the introduction. Then we go on to provide a more efficient
construction based on the ElGamal encryption function.

6.1 A Generic Construction

We let (G, E ,D) denote a public key encryption algorithm which is IND-CCA2
secure, and let KDF denote a key derivation function with domain M.

We define a KEM from (G, E ,D) as follows, where M is the message space
of E and R is the space of randomness used by E ,

GmKEM (D):
(sk, pk) ← G(D).
Output (pk, sk).

EmKEM ({pk1, . . . , pkn}):
m

R←M.
ri

R← R for all i.
ci ← E(m, pki; ri) for all i.
K ← KDF (m).
C ← (c1, . . . , cn).
Output (K,C).

DmKEM (C, ski):
Parse C as (c1, . . . , cn).
m← D(ci, ski).
If m =⊥ then output ⊥ and halt.
K ← KDF (m).
Output K.

Theorem 2. If (G, E ,D) is IND-CCA2 secure as a public key encryption scheme
and n grows as a polynomial function of the security parameter then the mKEM
(GmKEM , EmKEM ,DmKEM ) is (m,n)-IND-CCA2 for all m ≤ n.

Proof. Since (G, E ,D) is IND-CCA2 secure as a public key encryption algorithm
it is secure in the multi-user setting described in [2].

We recap on the security definition from [2]. The adversary is given n public
keys pk1, . . . , pkn and is given access to a left-right oracle OLR which on input
of {{m0,m1}, pki} will output the encryption of mb under pki for some fixed
hidden bit b. The adversary is given access to a decryption oracle OD for all
the public keys pki, subject to the constraint it is not allowed to ask for the
decryption of the result of a call to the left-right oracle OLR.

We assume an adversary A against the mKEM (GmKEM , EmKEM ,DmKEM )
and show how one can use this to produce an adversary B against (G, E ,D) in
the above multi-user setting. Thus we will derive a contradiction.

Algorithm B takes as input the n public keys P ′ = {pk1, . . . , pkn}. These
are then passed into algorithm A1. We answer the decapsulation oracle queries
of A1 using the decryption provided to B in an obvious way, i.e. on input of
C = (c1, . . . , cn) with respect to some public key pki we execute

m← OD(ci, pki).
If m =⊥ then output ⊥ and halt.
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K ← KDF (m).
Output K.

Algorithm A1 eventually will terminate and will return a list of public keys

P = {pki1 , . . . , pkim} ⊆ P
′,

and a state s.
Algorithm B then computes two random messages m0,m1 ∈M and computes

K0 = KDF (m0) and K1 = KDF (m1). Then using the left-right oracles it
computes

C∗ = (ci1 , . . . , cim)

where
cij = OLR({m0,m1}, pkij ).

One then executes A2(C∗, {K0,K1}, s). The decapsulation oracle queries of A2

are answered as above on noting that any oracle query allowed in the game being
played by A2 will be able to be answered by the oracle provided to B.

Finally A2 will respond with its guess b′ as to the hidden bit b, we let this bit
b′ be the output of B. If A2 answers correctly then algorithm B will also answer
correctly.

We note that the KDF function used need have very weak properties in the above
construction. Namely, it maps a uniform distribution on its input space into a
uniform distribution on its output space. There is no requirement on it being
one-way or anything else. This should be constrasted with the construction in
the next section where we require that the KDF is modelled as a random oracle.

6.2 An Efficient ElGamal Based mKEM

We now present an efficient mKEM based on the ElGamal encryption algorithm
for a group G of prime order q ≈ 2k with generator g. We let D = {q, g,G}
denote the domain parameters of the scheme, ElGamal is then given by the
triple of algorithms:

G(D):
sk

R← F
∗
q .

pk← gsk.
Output (pk, sk).

E(m, pk; r):
c1 ← gr.
c2 ← m · pkr.
Output (c1, c2).

D((c1, c2), sk):
m = c2/c

sk
1 .

Output m.

This is OW-CPA secure assuming the Diffie–Hellman problem for the group
G is hard. Hence, the KEM derived from ElGamal by Dent’s construction, is
IND-CCA2 secure.

We now derive an mKEM from ElGamal by letting the key generation func-
tion be as in standard ElGamal. We then define encapsulation and decapsulation
via
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EmKEM ({pk1, . . . , pkn}):
m

R← G.
r ← H(m).
c0 ← gr.
ci ← m · pkri for i = 1, . . . , n.
K ← KDF (m).
C ← (c0, c1, . . . , cn).
Output (K,C).

DmKEM (C, ski):
Parse C as (c0, c1, . . . , cn).
m← ci/c

ski
0 .

r ← H(m).
If c0 �= gr the output ⊥ and halt.
K ← KDF (m).
Output K.

Theorem 3. If n grows as a polynomial function of the security parameter k
and the Diffie–Hellman problem in G is hard then, in the random oracle model
the above mKEM is secure, for n users, in the sense of (m,n)-IND-CCA2 for
mKEMs for all m ≤ n.

Proof. We let (GKEM , EKEM ,DKEM ) denote the ordinary KEM derived from
the ElGamal system via Dent’s transform for OW-CPA probabilistic public key
algorithms. It is known, by Theorem 1, that in the random oracle model the
scheme (GKEM , EKEM ,DKEM ) is secure in the IND-CCA2 sense assuming the
Diffie–Hellman problem is hard.

We let (GmKEM , EmKEM ,DmKEM ) denote our mKEM. We shall assume we
have an IND-CCA2 adversary A against this scheme in the random oracle model
which works against n public keys. We shall show how to use A to create an
adversary B against (GKEM , EKEM ,DKEM ). Since such an adversary is assumed,
in the random oracle model, not to exist we can then conclude that A could not
exist either.

We first describe algorithm B1(pk). Let pk1 = pk denote the public key input
into algorithm B1. We first generate some extra public keys via, ki

R← F
∗
q and

pki = pk · gki , for i = 2, 3, . . . , n. We now pass the set P ′ = {pk1, . . . , pkn} into
A1. We then obtain a subset P ⊆ P ′ and a state s′. We shall discuss how to
answer all decapsulation oracle queries of A1 later. We let s denote the state

s = {(k2, pk2), . . . , (kn, pkn),P, s′}

and return s as the output of B1(pk).
Algorithm B2 takes as input two keys K0 and K1, the state information s and

an encapsulation C∗ of one of the keys Kb ∈ {K0,K1} from the algorithm EKEM

with respect to the public key pk. We first need to create a valid encapsulation
C∗
m of the key Kb with respect to the algorithm EmKEM and the set of keys
P = {pki1 , . . . , pkim}. We have

C∗ = (c∗
0, c

∗
1) = (gr,m · pkr),

with Kb = KDF (m) and r = H(m), whereas

C∗
m = (c∗

0, c
∗
1, . . . , c

∗
m) = (gr,m · pkr

i1
, . . . ,m · pkr

im
).
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Hence, we set c∗
0 = c∗

0 and for j = 1, . . . ,m

c∗
j = c∗

1 · c∗
0
kij

= m · pkr · grkij = m ·
(
pk · gkij

)r

= m · pkr
ij
,

where we let k1 = 0.
Having constructed C∗

m we can now pass C∗
m, {K0,K1} and s′ to algorithm

A2. If A is a successful adversary against the mKEM then we will obtain with
non-negligible probability a bit b′ such that Kb = Kb′ . Hence, by returning this
bit b′ as our output from the algorithm B2 we obtain an algorithm B which with
non-negligible probability will break the security of the (GKEM , EKEM ,DKEM )
in the IND-CCA2 sense.

All that remains is to show how to answer the decapsulation oracle queries
of algorithm A. Recall we have a decapsulation oracle OKEM for the scheme
(GKEM , EKEM ,DKEM ) which will respond with respect to the key pk on all
requests C except one is not allow to query it with C = C∗. The decapsulation
queries of A must be answered correctly unless the query Cm corresponds to the
key Kb.

Suppose we are given the, possibly invalid, encapsulation

Cm = (c0, c1, . . . , cm) = (gr,m · pkr1i1 , . . . ,m · pkrm
im

)

and we are asked to decapsulate it with respect to the public key pkij . This
should result in the key K = KDF (m) if and only if r = H(m) and rj = r.

We first form the encapsulation (c0, c1) with respect to the scheme KEM, via
setting c0 = c0 and

c1 = cij · c
−kij

0

= m · pkrj

ij
· g−rkij

= m · pkrj · g(rj−r)kij

= m · pkr if rj = r.

Note since we are not allowed to query A’s decapsulation oracle with any encap-
sulation which corresponds to Kb we must have m �= m.

The oracle O will not respond if c0 = c∗
0 and c1 = c∗

1. Such a situation would
mean that O returns Kb, i.e. the encapsulation Cm is an encapsulation of Kb

with respect to pkij , and such a query is invalid under the security model for
mKEMs.

We can, therefore, assume that either c0 �= c∗
0 or c1 �= c∗

1. In either case the
oracle O will compute

m′ = m · pkrj · g(rj−r)kij · c−sk
0 = m ·

(
pkgkij

)rj−r

.
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For the oracle O to return K = KDF (m′) we must have r = H(m′). In which
case (c0, c1) is a (possibly badly formed) ciphertext for the KEM which never-
the-less passes the validity check and Cm is a (possibly badly formed) ciphertext
for the mKEM which also passes the validity check of the mKEM. Hence, As
oracle should return K, unless K = Kb in which case we have found a collision
in KDF since

KDF (m) = KDF (m′).

Such a collision will only occur with negligible probability since KDF is modelled
as a random oracle.

7 Efficiency Comparison

We first compare our ElGamal based mKEM for n users against naive concate-
nation of n ElGamal ciphertexts together. We let EG(n) denote a IND-CCA2
version of ElGamal (such as EC-IES/DH-IES [1]) applied n-times to encrypt a
session key. We let EGKEM (n) denote the ElGamal based mKEM described in
Section 6.2 applied to n public keys. We compare the number of group exponen-
tiations performed in the following table:

EGKEM (n) EG(n)
Encapsulation n + 1 2n + 2
Decapsulation 2 1

Hence we see that our method is more efficient than simply concatenating n-
ElGamal ciphertexts together. In addition our method only requires the trans-
mission of n + 1 group elements as opposed to 2n group elements for the naive
method.
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Abstract. This paper proposes a new public key authenticated encryp-
tion (signcryption) scheme based on the hardness of q-Diffie-Hellman
problems in Gap Diffie-Hellman groups. This new scheme is quite effi-
cient: the signcryption operation has almost the same cost as an El Gamal
encryption while the reverse operation only requires one pairing evalua-
tion and three exponentiations. The scheme’s chosen-ciphertext security
is shown to be related to the hardness of the q-Diffie-Hellman Inversion
(q−DHI) problem in the random oracle model while its unforgeability is
proved under the q-Strong Diffie-Hellman assumption (q-SDH). It also
provides detachable signatures that are unlinkable to the original anony-
mous ciphertext. We also show that most of the sender’s workload can
be computed offline. Our construction is based on a signature scheme
independently studied by Boneh-Boyen and Zhang et al. in 2004.

Keywords: signcryption, bilinear maps, provable security.

1 Introduction

Public key encryption and digital signatures are primitives that aim at achieving
very different purposes. The former has to yield communication privacy while
the latter is used for authentication and non-repudiation of sensitive data. How-
ever, in many cryptographic applications, such as secure e-mail or secure channel
establishment protocols, these requirements need to be simultaneously fulfilled.
To achieve them in the asymmetric setting, the concept of public key authen-
ticated encryption, or ’signcryption’, was introduced by Zheng in 1997 ([30]).
This kind of primitive aims to efficiently perform encryption and signature in
a single logical step in order to obtain confidentiality, integrity, authentication
and non-repudiation. We recall that the basic encrypt-then-sign composition is
generally insecure (except for some particular constructions such as [1] or [15] or
if, as in [2], we consider a relaxed security notion for this kind of composition)
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against chosen-ciphertext attacks as well as the encrypt-and-sign approach. The
drawback of most of the latter solutions is to expand the final ciphertext size
and increase the sender and receiver’s computing time. Zheng’s original discrete
logarithm based signcryption proposal ([30]) was only proven secure in 2002 ([3])
by Baek et al. who described a formal security model in a multi-user setting. In
[27], Steinfeld and Zheng proposed another scheme for which the unforgeability
of ciphertexts relies on the intractability of the integer factoring problem but
they provided no proof of chosen-ciphertext security.

The previously cited schemes have the shortcoming not to offer easy non-
repudiation of ciphertexts: a recipient cannot convince a third party that a
plaintext actually emanates from its sender. A method was proposed in ([4])
to overcome this limitation but it was shown ([26]) to leak information on
the plaintext as other schemes described in [19] and [28]. This weakness can
easily be fixed by slightly modifying the schemes but no strong guarantee of
unforgeability can be obtained since only loose reductions from computational
problems to a ciphertext forger currently exist. Formal security notions were
considered in [1] where general composition methods for asymmetric encryp-
tion and digital signatures together are analyzed but these security models
do not consider that, in a multi-user setting, an adversary can be an insider
as stressed in [2]: a chosen-ciphertext attacker can learn some user’s private
key and threaten the confidentiality of messages previously signcrypted by that
user.

Another CCA2-secure discrete logarithm based signcryption scheme was de-
scribed in [26] but no proof of unforgeability was given for it. An RSA-based
scheme was described by Malone-Lee and Mao ([20]) who provided proofs for
unforgeability under chosen-message attacks and chosen-ciphertext security but
they only considered the security in a two-user setting rather than the more real-
istic multi-user setting. Furthermore, the security of that scheme is only loosely
related to the RSA assumption. However, none of the aforementioned schemes
is provably secure against insider attacks: in some of them, an attacker learn-
ing some user’s private key can recover all the messages previously sent by that
user.

An et al. ([2]) presented an approach consisting in performing signature and
encryption in parallel: a plaintext is first transformed into a commitment/de-
commitment pair (c, d) in such a way that c reveals no information about m
while the pair (c, d) allows recovering m. The signer can then jointly sign c and
encrypt d in parallel using appropriate encryption and signature schemes. The
de-signcryption operation is also achieved by the recipient in a parallel fashion:
the signature on c is verified while the decryption reveals d and the pair (c, d)
is finally used to recover the plaintext. This approach was further investigated
by Pieprzyk and Pointcheval ([25]) who proposed to use a commitment scheme
based on a (2, 2)-Shamir secret sharing of an appropriately salted plaintext: the
first resulting share s1, which does not individually reveal any information on
m, is used as a commitment and is signed while the second share s2 is encrypted
as a de-commitment. That method also provides a construction allowing to in-
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tegrate any one-way encryption system (such as the basic RSA) with a weakly
secure signature (a non-universally forgeable signatures) into a CCA2-secure and
existentially unforgeable scheme.

Dodis et al. ([11]) recently proposed other possibly parallel signcryption
techniques, one of which which can be viewed as a generalization of existing
probabilistic paddings such as OAEP, OAEP+ or PSS-R. They showed that
their constructions allow optimal exact security as well as compatibility with
PKCS standards and has other interesting properties. In fact, the latter schemes
might be the most practical ones among all solutions based on trapdoor func-
tions.

In a discrete logarithm context, Libert and Quisquater recently proposed
a solution based on bilinear maps and the properties of Gap Diffie-Hellman
groups. This scheme was shown to satisfy strong security notions (namely, no-
tions of chosen-ciphertext security and ’ciphertext strong unforgeability’ even
against insider attacks that were introduced in [2] where the multi-user set-
ting was considered for the first time) and to provide anonymous ciphertexts
(i.e. a ciphertext contains no information identifying its originator nor its re-
cipient) as well as a notion called ’invisibility’ (that informally captures the
fact that an actual ciphertext for a given recipient’s public key and a chosen
sender’s private key is indistinguishable from a random element of the cipher-
text space). Unfortunately, the latter Diffie-Hellman based scheme, that was
obtained from Boneh et al.’s short signature ([9]) in a randomized version, only
spares one elliptic curve scalar multiplication on the receiver’s side as well as a
160-bit bandwidth overhead in the ciphertext size when compared to a sequen-
tial composition of the BLS signature with a CCA2-secure El Gamal encryp-
tion.

The present paper aims at proposing a more efficient Diffie-Hellman based
signcryption solution that satisfies the same strong security requirements: the
scheme that is described here has essentially the same cost as a mere El Gamal
encryption on the sender’side while only one pairing evaluation and three expo-
nentiation are required for the simultaneous decryption/verification tasks. This
is a real efficiency improvement: the signcryption operation is roughly 33% faster
while the de-signcryption algorithm is almost twice more efficient than in Lib-
ert and Quisquater’s original scheme. The price to pay for such improvements is
that our scheme’s security relies on stronger assumption than the one depicted in
[18]: the chosen-ciphertext security is proved under the q-Diffie-Hellman Inver-
sion assumption already considered in [6], [7] and [29] while the scheme’s strong
unforgeability relies on the q-Strong Diffie-Hellman assumption introduced by
Boneh and Boyen ([6]).

Before starting with describing our scheme, we have to recall the properties
of the bilinear maps that are needed to achieve our purposes. We then discuss
about formal security models for signcrytpion and we then give a description
of our scheme before discussing about its efficiency and we finally give security
proofs in the random oracle model.
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2 Preliminaries

2.1 Bilinear Maps

Let k be a security parameter and p be a k-bit prime number. Let us consider
groups G1 and G2 of the same prime order p. For our purposes, we need a bilinear
map e : G1 ×G1 → G2 satisfying the following properties:

1. Bilinearity: ∀ u, v ∈ G1, ∀ a, b ∈ Z
∗
p, we have e(ua, vb) = e(u, v)ab

2. Non-degeneracy: ∀ u ∈ G1, e(u, v) = 1 for all v ∈ G1 iff u = 1G1

3. Computability: ∀ u, v ∈ G1, e(u, v) can be efficiently computed

Such admissible bilinear maps can be instantiated by modifications ([8]) of the
Weil or the Tate pairing over elliptic curves or abelian varieties. We now first
recall some problems that provided underlying assumptions for many previously
proposed pairing based cryptosystems and we also recall what are the q-Diffie-
Hellman and q-Strong Diffie-Hellman problems.

Definition 1. Given groups G1 and G2 of prime order p, a bilinear map e :
G1 ×G1 → G2 and a generator g of G1,

- The Computational Diffie-Hellman problem (CDH) in G1 is, given
(g, ga, gb) for unknown a, b ∈ Z

∗
p, to compute gab ∈ G1.

- The Decision Diffie-Hellman problem (DDH) is, to decide whether ab ≡
c (mod p) given (g, ga, ga, gc) for unknown a, b, c ∈ Z

∗
p. Tuples of the form

(g, ga, ga, gab) are called ”Diffie-Hellman tuples”. In our notations, we will
sometimes write gc = DHg(ga, gb).

- The Gap Diffie-Hellman problem (GDH) is to solve an instance (g, ga, gb)
of the CDH problem with the help of a DDH oracle deciding whether given
tuples (g, ga

′
, gb

′
, gc

′
) satisfy c′ ≡ a′b′ (mod p) or not.

- The q-Diffie-Hellman Inversion problem (q-DHI) consists of, given a
tuple (g, gx, g(x2), . . . , g(xq)) ∈ G

q+1
1 , computing g1/x ∈ G1.

- The q-Strong Diffie-Hellman problem (q-SDH) consists of, given a tuple
(g, gx, g(x2), . . . , g(xq)), coming up with a pair (c, g1/(x+c)) ∈ Zp ×G1.

As shown in [16], the DDH problem is easy in any group where bilinear map-
pings of the above form can be efficiently computed. These groups are called
Gap Diffie-Hellman groups according to the terminology of [24].

The q-Diffie-Hellman inversion problem was introduced in [21]. It was also
used in [29] where it was shown to be equivalent to the (q + 1)-exponent prob-
lem (namely, finding g(xq+1) given (g, gx, g(x2), . . . , g(xq))). The relaxed q-Strong
Diffie Hellman assumption (i.e. the hardness of the q-Strong Diffie-Hellman prob-
lem) was introduced in [6] where it was used to prove the security of a new
signature scheme in the standard model.
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3 Security Notions for Signcryption Schemes

We recall the two usual security notions: the security against chosen ciphertext
attacks and the unforgeability against chosen-message attacks. In the former, we
consider a multi-user security model as already done in [2],[3],[11],[25] and [10] to
let the adversary obtain ciphertexts created with the attacked private key under
arbitrary public keys. We also consider the ”inside attackers” that are allowed
to choose the private key under which the challenge is signcrypted: for confi-
dentiality purposes, we require the owner of a private key to be unable to find
any information on a ciphertext created with that key without knowing which
random coins were used to produce that ciphertext. This further allows us to
show that an attacker stealing a private key does not threaten the confidentiality
of messages previously signcrypted using that private key.

Definition 2. We say that a signcryption scheme is secure against chosen
ciphertext attacks (we call this security notion IND-SC-CCA) if no proba-
bilistic polynomial time (PPT) adversary has a non-negligible advantage in the
following game:

1. The challenger CH generates a private/public key pair (skU , pkU ). skU is
kept secret while pkU is given to the adversary A.

2. A performs a first series of queries of the following kinds:
- Signcryption queries: A produces a message m ∈ M and an arbitrary

public key pkR (which may differ from pkU ) and requires the result
Signcrypt(m, skU , pkR) of the signcryption oracle.

- De-signcryption queries: A produces a ciphertext σ and requires the result
of De-signcryt(σ, skU ) which consists of a signed plaintext together with
a sender’s public key if the obtained signed plaintext is valid for the
recovered sender’s public key and the ⊥ symbol otherwise (indicating that
the ciphertext was not properly formed).

These queries can be asked adaptively: each query may depend on the answers
to previous ones.

3. A produces two equal length-plaintexts m0, m1 ∈ M and an arbitrary pri-
vate key skS. CH flips a coin b R← {0, 1} to compute a signcryption σ =
Signcrypt(mb, skS , pkU ) of mb with the sender’s private key skS under the
attacked public key pkU . σ is sent to A as a challenge.

4. A performs new queries as in step 2. It may not ask the de-signcryption of
the challenge σ with the private key skU of the attacked receiver.

5. At the end of the game, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined to be Advind-cca(A) := 2× Pr[b′ = b]− 1.

A lot of provably unforgeable signcryption schemes ([2],[3],[11],[15],[25], etc.)
provide non-repudiation with respect to the whole ciphertext. As noticed in
[10], in many contexts, it is sufficient to only consider the non-repudiation with
respect to the signature embedded in the ciphertext. Even though we still doubt
on whether non-repudiation with respect to entire ciphertexts is a relevant or
useful security notion, for applications that would be requiring it, we will show
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to turn our scheme into a ciphertext-existentially unforgeable one at the cost of
increasing the size of the detachable signatures by a factor of 3 (but without any
other loss of efficiency). The notion of unforgeability w.r.t. embedded signature,
that was introduced for the first time in [10], is recalled below.

Definition 3. We say that a signcryption scheme is said to be existentially
signature-unforgeable against chosen-message attacks (ESUF-SC-CMA) if no
PPT adversary has a non-negligible advantage against a challenger CH in the
following game:

1. CH generates a key pair (skU , pkU ) and pkU is given to the forger F .
2. F adaptively performs queries to the same oracles as in definition 2.
3. F eventually produces a ciphertext σ and a key pair (skR, pkR) and wins if

the result of De-signcrypt(σ, skR) is a triple (m, s, pkU ) such that the pair
(m, s) is valid for the public key pkU and no query to the signcryption oracle
involving the message m and some receiver’s public key pk′

R resulted in a
ciphertext σ′ for which the output of De-signcrypt(σ′, sk′

R) is (m, s, pkU ).

As stressed by [10], considering non-repudiation only w.r.t. signatures is use-
ful for schemes providing detachable signatures that should be unlinkable to the
ciphertext they were conveyed in: anyone seeing a valid message-signature pair
can use his/her private key to encrypt it into a valid signcryption under his/her
public key. A notion complementary to the latter was called ciphertext authen-
tication and means that a receiver is always convinced that a ciphertext was
(jointly) signed and encrypted by the same person. We refer to [10] for a formal
definition of this notion that is omitted here and that our scheme can be shown
to satisfy.

4 The Scheme

The protocol makes use of a semantically secure1 symmetric cryptosystem and
relies on a signature scheme independently proposed by Zhang et al. ([29]) and
Boneh and Boyen ([6]). In the latter papers, this scheme was shown to efficiently
produce 160 bits long signatures without requiring the use of a special hash
function mapping messages to be signed onto an elliptic curve subgroup (unlike
the original BLS short signature proposed in [9]). In [6], it was also shown that
this scheme has a tight security reduction w.r.t. the q-strong Diffie-Hellman
problem in the random oracle model (Zhang et al. gave in [29] a reduction w.r.t.
the (q + 1)-exponent problem but their reduction is loose as mentioned in [6]).

The protocol depicted on figure 1 makes use of such a (masked) signature as
an El Gamal like ephemeral key as well as a checksum showing that a message
was properly encrypted in chosen-ciphertext security concerns: the sender first

1 Actually, an adversary against such a symmetric cipher is required to be unable to
decide which one of two messages of its choice matches a challenge ciphertext without
having access to encryption or decryption oracles. This is a very weak requirement.
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computes an exponent r = γ/(h1(bm||m)+xS) ∈ Z
∗
p where γ is randomly chosen

from Z
∗
p, m ∈ {0, 1}∗ is the message to signcrypt and bm is a message-dependent

bit computed as a pseudo-random function of m and the private key xs according
to Katz and Wang’s proof technique ([17]) (that aims at achieving tight security
reductions without random salts). This exponent r is then used to compute an
ephemeral Diffie-Hellman key gr as in the El Gamal cryptosystem ([12]) and
to scramble the secret γ using a hash value of Y r

R, where YR is the recipient’s
public key, while a digest of γ is used to encrypt the message m together with
the sender’s public key.

The use of a masked signature as a ”one-time” Diffie-Hellman key allows to
spare one exponentiation (actually an elliptic curve scalar multiplication) w.r.t.
a sequential signature/encryption composition.

When computing the second component of the ciphertext, the recipient’s
public key and the first component (which is an embedded signature as well as
a Diffie-Hellman ephemeral key) are hashed together with the ”one-time” Diffie-
Hellman key Y r

R in order for the security proof to work.
In order to convince a third party that a recovered message m emanates

from the sender S, the receiver reveals σ, the message m and the associated
bit bm and the third party can run the regular signature verficication algorithm
as done in step 3 of the de-signcryption algorithm. The scheme then provides
detachable signatures that cannot be linked to their original ciphertext: the sig-
nature is masked by a randomly chosen factor γ and anyone observing a valid
message-signature pair can use his/her private key to built a signcryption of
that message-signature pair under his/her public key. The scheme thus provides
ciphertext unlinkability in the sense of Boyen ([10]) in a very simple manner.

As Boyen’s identity based scheme, the present one is obviously not existen-
tially ciphertext-unforgeable in the sense of [18] (because of its inherent cipher-
text unlinkability property) but we believe that it is actually useless to consider
ciphertext non-repudiation (that appears as being antagonist to the useful notion
of ciphertext unlinkability and thus might even be undesirable) rather the mere
signature non-repudiation: an adversary should not be rewarded for achieving the
trivial task of using a valid signature and a randomly chosen x′

R as a recipient’s
private key to output a claimed forged ciphertext under the public key Y ′

R = gx
′
R .

Efficiency Discussions. As mentioned above, the scheme is quite efficient since,
beside a modular inversion and a symmetric encryption, the sender only com-
putes two exponentiations. The receiver’s workload is dominated by one pairing
computation (as e(g, g) can be computed once-and-for-all and cached in mem-
ory) and three exponentiation. From both the sender and the receiver’s side the
protocol is much more efficient than Libert and Quisquater’s scheme ([18]).

Interestingly, unlike what appears at first glance, the two exponentiations
that are the bulk of the sender’s workload can be computed offline (i.e. before the
message to be sent is known). Indeed, in an offline phase, the sender can already
pick a random r R← Z

∗
p, compute c1 = gr and ω = Y r

R, store them in memory
and then, once the message m is known, compute γ = r(h1(bm||m)+xS) mod p,
c2 = γ ⊕ h2(c1, YR, ω) ∈ {0, 1}k and c3 = Eh3(γ)(m||YS). In this case, care must
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Common-Keygen: given security parameters k, λ, this algorithm outputs a
prime number p such that 2k−1 < p < 2k, the description of two groups G1

and G2 such that |G1| = |G2| = p and the bitlength � of G1’s elements is
polynomial in k, a generator g ∈ G1 , a bilinear map e : G1 × G1 → G2,
and hash functions h1 : {0, 1}∗ → Zp, h2 : G

3
1 → {0, 1}k and h3 : {0, 1}k →

{0, 1}λ as well as an pseudo-random function h′ : {0, 1}∗ → {0, 1}. The
algorithm also chooses a semantically secure symmetric encryption scheme
(E , D) of keylength λ. The common key is then

I = {p, G1, G2, g, e, h1, h3, h3, h
′, n, E , D, λ}

where n denotes the size of plaintexts.
Keygen: each user picks xu

R← Z
∗
p and computes Yu = gxu ∈ G1 obtains a

public/private key pair (pku, sku) = (Yu, xu).

Signcrypt: given a message m ∈ {0, 1}n, the recipient’s public key YR and her
private key xS , the sender does the following:

1. pick γ R← Z
∗
p and compute r = γ

h1(bm||m)+xS
mod p where bm =

h′(xS , m) ∈ {0, 1} is a message-dependent bit.

2. Compute c1 = gr ∈ G1, c2 = γ ⊕ h2(c1, YR, Y r
R) ∈ {0, 1}k and then

c3 = Eκ(m||YS) ∈ {0, 1}n+� where κ = h3(γ) ∈ {0, 1}λ

The ciphertext is

C = 〈bm, c1, c2, c3〉 = 〈bm, gr, γ ⊕ h2(gr, YR, Y r
R), Eh3(γ)(m||YS)〉

De-signcrypt: given a ciphertext C = 〈b, c1, c2, c3〉 ∈ {0, 1}× G1 ×{0, 1}n+k+�,
the recipient runs the following process:

1. compute γ = c2 ⊕ h2(c1, YR, cxR
1 ) ∈ {0, 1}k. Return ⊥ if γ �∈ Z

∗
p.

2. Compute (m||YS) = Dκ(c3) ∈ {0, 1}n+� with κ = h3(γ) ∈ {0, 1}λ.
3. Compute σ = cγ−1

1 and accept the message if and only if

e(σ, YSgh1(b||m)) = e(g, g). (1)

Fig. 1. The q-DH signcryption scheme

be taken not to re-use the same r to sign and encrypt distinct messages because
this would expose the private key but this is not a problem since all signatures
obtained through the Fiat-Shamir heuristic ([13]) have this feature.

As an observation of independent interest, we note that a similar technique
can increase the online efficiency of Boneh and Boyen’s short signature ([6]) that
is proven secure in the standard model. Indeed recall that, in this scheme, each
user has a key pair PK = (X = gx, Y = gy), SK = (x, y) and a signature on
a message m ∈ Z

∗
p, given by a pair (r, σ) = (r, g1/(m+x+yr)) ∈ Z

∗
p × G1, can be

verified by checking that e(σ,XY rgm) = e(g, g). In an offline phase, the signer
can pick a random μ R← Z

∗
p, compute σ = gμ ∈ G1, store it in memory together
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with μ and, once the message is known, compute r = y−1(μ−1 −m− x) mod p.
The cost of the online phase can thus be reduced to a simple modular operation
(since y−1 can be computed once and for all at the key setup while μ−1 is also
pre-computed in the offline stage) and the overall cost of a signature generation
remains unchanged.

Again, care must be taken not to re-use the same μ to sign distinct messages
because this would reveal the signer’s private key (although it does not prevent
the signer to use the same random r to sign distinct messages in the usual signing
procedure). For both schemes, in the absence of reliable pseudo-random gener-
ators, we may choose random powers as digests of the message and the signer’s
public/private key pair according to a technique suggested in [23].

Short Detachable Signatures. The version of the scheme depicted in figure 1
is only instantiable with modified Weil or Tate pairings obtained from distortion
maps (and thus requires the use of supersingular curves). As a result, if we use
the same curves as in [8], the scheme cannot allow detachable signatures shorter
than 512 bits2.

If shorter signatures are needed (by using ordinary curves such as those de-
scribed in [22] as suggested in [9]), it is possible to modify the scheme so that it
can be instantiated with pairings e : G1×G2 → GT over distinct cyclic subgroups
among which only G1’s elements have short representations. In this case, public
keys are elements of G2 and the first part of the ciphertext must be computed
as c1 = gr2, where g2 is a generator of G2, in such a way that, upon decryption,
the receiver can detach a short signature by computing σ = ψ(c1)γ

−1 ∈ G1 (the
description of a group isomorphism ψ : G2 → G1 must then be a part of the
common public parameters and is not only needed in the security proof). The
price to pay consists of more expensive exponentiations since operations in G2
are usually less efficient than in G1.

The security proofs presented in the next section are easily adaptable to
provide a validation on the security of the aforementioned modification of the
scheme.

5 Security Proofs for q-DH Signcryption

The present section gives proofs in the random oracle model of chosen-ciphertext
security and of existential signature unforgeability.

Theorem 1. In the random oracle model, if an adversary A has a non-negligible
advantage ε in breaking the IND-SC-CCA security of the scheme when runnning
in a time τ , asking qhi

queries to random oracles hi (for i = 1, 2, 3), qsc signcryp-
tion queries and qdsc de-signcryption queries, then there exists a PPT algorithm
B to solve the q-Diffie-Hellman Inversion problem for q = qsc + 1 with an ad-
vantage

2 We recall that supersingular curves in characteristic 3 are not recommended for
applications requiring short signatures as explained in [9]
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ε′ > ε− qdsc
(qh3

2k
+

1
2λ

+
1
2k

)
− qh3

2λ

when running in a time τ ′ < τ + O(q2τe) + 2qh2τp where τe is the cost of an
exponentiation in G1 and τp denotes the time for a bilinear map evaluation.

Proof. We show how B can use A as a subroutine to solve a random given
instance (g, gx, g(x2), . . . , g(xq)) of the (q+1)-exponent problem problem. We can
assume w.l.o.g. that qsc = q−1 since, otherwise, B can issue dummy signcryption
queries for itself. In a preparation phase, B uses its input to compute a generator
h ∈ G1 and a public key X = hx such that it knows q−1 pairs (wi, h

1/(wi+x)) for
wi

R← Z
∗
p as in the proof technique of [6]. To do so, B picks w1, . . . , wq−1

R← Z
∗
p,

expands the polynomial f(z) =
∏q−1

i=0 (z + wi) =
∑q−1

i=0 ciz
i. A generator h ∈ G1

and the public key X are then obtained as

h =
q−1∏
i=0

(gx
i

)ci = gf(x) and X =
q∏

i=1

(gx
i

)ci−1 = gxf(x) = hx

(as in the proof of lemma 1 in [6]). As in [6], the pairs (wi, h
1/(wi+x)) are obtained

by expanding fi(z) = f(z)/(z + wi) =
∑q−2

i=0 diz
i and computing

hi =
q−2∏
j=0

(gx
j

)dj = gfi(x) = gf(x)/(z+wi) = h1/(z+wi)

for i = 1, . . . , q − 1.
The adversary A is then initialized with the generator h and on the public key

X. It starts probing the oracles it is given access to. These oracles are simulated
by B as explained below. The queries to the h2 oracle need to be simulated using
two lists L2, L′

2 that are initially empty.

- h′ queries on an input (αi,mi) ∈ Z
∗
p × {0, 1}∗: B first checks if X = hαi . In

this case, we are done and B can easily compute g1/x. Otherwise, it responds
with a random bit bmi

R← {0, 1}.
- h1 queries: these queries are indexed by a counter t that is initially set to 1.

When a pair (d,m) ∈ {0, 1}× {0, 1}∗ is submitted in a h1 query for the first
time, B checks whether d equals the bit bm (which is set at the first time
the message m is submitted in a h1(.) query). If d = bm, B returns wt and
increments t (in such a way that B is able to create a valid signature on m).
Otherwise, B returns a random c R← Z

∗
p and updates L1.

- h2 queries on triples (y1,i, y2,i, y3,i) ∈ G
3

1 : B checks if (h, y1,i, y2,i, y3,i) is a
valid Diffie-Hellman tuple by two pairing evaluations. If it is, B checks if L′

2
contains an entry of the form (y1,i, y2,i, ., τi) for some τi ∈ {0, 1}k. In this
case, τi is returned and an entry (y1,i, y2,i, y3,i, τi, 1) is added in L2. If no
entry of the form (y1,i, y2,i, ., τi) is found in L′

2, B returns a string τi
R← {0, 1}k

and inserts (y1,i, y2,i, y3,i, τi, 1) in L2. If (h, y1,i, y2,i, y3,i) is not a DH tuple,
the entry (y1,i, y2,i, y3,i, τi, 0) is added in L2. At most 2qh2 pairings must be
computed overall.
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- h3 queries: are answered by picking a random element from {0, 1}λ.

- Signcryption queries on a plaintext m, for an arbitrary receiver’s key Y :
we assume that m was previously submitted in a h1 and that the message-
dependent bit bm was previously defined. Since h1(bm,m) was (or will be)
defined to be wj for some j ∈ {1, . . . , t}, B knows that the previously com-
puted hj = h1/(wj+x) appears as a valid signature on m from A’s view. So, it
computes c1 = hγ

j ∈ G1 for a γ R← Z
∗
p, obtains κ = h3(γ) ∈ {0, 1}λ through

h3-simulation and computes c3 = Eκ(m||X) ∈ {0, 1}n+�. It then checks if L2
contains an entry (c1, Y, y3, τ, 1) (indicating that y3 = DHh(c1, Y )). If this
entry exists, B returns C = 〈bm, c1, c2, c3〉 with c2 = γ ⊕ τ ∈ {0, 1}k. Oth-
erwise it returns C = 〈bm, c1, c2, c3〉 for a random c2

R← {0, 1}k and inserts
(c1, Y, ., γ ⊕ c2) in the special list L′

2.

- De-signcryption queries: when A submits a ciphertext C = 〈b, c1, c2, c3〉, B
checks whether L2 contains the unique entry (c1, X, Y, τ, 1) for some Y ∈ G1
and τ ∈ {0, 1}k (indicating that Y = DHh(c1, X)). If it does not, C is
declared as being ill-formed. Otherwise, B obtains γ = c2 ⊕ τ ∈ {0, 1}k,
κ = h3(γ) (C is rejected if h3 was not queried on γ) and finally (m||XS) =
Dκ(c3) ∈ {0, 1}n+� (C is also rejected if XS is not a G1 element). Finally,
B extracts σ = cγ

−1

1 and returns the plaintext m ∈ {0, 1}n and the associ-
ated signature c1 together with the sender’s public key XS if the verfication
equation (1) holds.

After the find stage, A outputs messages m0,m1 and a sender’s private key
xS ∈ Z

∗
p. At this moment, B chooses a random a R← Z

∗
p and computes c∗

1 =
hx+a ∈ G1 as c∗

1 = Xha. It also expands the polynomial f ′(z) = f(z)(z + a) =∑q
j=0 fiz

i ∈ Zp[x] and returns the challenge C∗ = 〈c∗
1, c

∗
2, c

∗
3〉, where c∗

2
R← {0, 1}k

and c∗
3 = Eκ(mb||gxS ) ∈ {0, 1}n+� for a random bit b R← {0, 1} and a random

string κ R← {0, 1}λ. Clearly, if (E ,D) is semantically secure and κ does not hit
the output of a h3 query (the probability for this to occur is at most qh3/2

λ), A’s
view is independent from the bit b unless the hash value h2(c∗

1, X,DHh(c∗
1, X))

is asked during the simulation. Such an event, that we call AskH2, is easily
detected by the h2 simulator and is very likely to happen3: one can easily show
that in a real attack, Pr[AskH2] is at least ε if A’s advantage in definition 2 is ε.
Furthermore, as long as A is provided with a consistent view, Pr[AskH2] is the
same in the simulation as in the real world.

Queries made by A in the second stage are handled as above and, as already
argued, the h2 simulator must detect the AskH2 event with high probability. At
this moment, B obtains Z = DHh(c∗

1, X) = h(x+a)x = gf(x)(x+a)x. Since we
have f(z)(z + a)z = zf ′(z) =

∑q
j=0 fjz

j+1 and, since Z =
∏q

j=0(g
xj+1

)fj , B can
compute

3 In fact, the challenge C∗ can be computed after the preparation phase (i.e. before
A enters in the find stage) without any modification of the probability space. The
event AskH2 is then detected even if it occurs in the find stage.
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g(xq+1) = [Z
q−1∏
j=0

(gx
j+1

)−fj ]1/fq ∈ G1

which is the solution to the (q + 1)-exponent problem. At that moment, we are
done since the latter is known to be equivalent to the q-Diffie-Hellman Inversion
problem (as explained in [21] and [7]).

From a computational point of view, B’s running time is dominated by q +
2 multi-exponentiations with q elements that reach an overall cost of O(q2)
exponentiations. Computing f(z) also involves a cost in O(q2) while computing
each fi(z) also implies O(q) modular multiplications just like the computation
of the product f(z)(z + a). When handling h2 queries, B also has to compute
2qh2 pairings.

The bound on B’s advantage derives from the fact that it only provides A
with an incoherent view when a rejected ciphertext subsequently appears as
valid (because of ’bad’ values taken by oracles for inputs on which they were not
defined at the moment of the query). The probability of such an event is less
than qdsc(qh3/2

k + 1/2λ + 1/2k). �

Theorem 2. In the random oracle model, if an ESUF-SC-CMA adversary F
has a non-negligible advantage ε in the game of definition 3 when running in
a time τ , making qhi

queries to oracles hi (i = 1, 2, 3), qdsc de-signcryption
queries and qsc signcryption queries, then there exists an algorithm B that solves
the q-strong Diffie-Hellman problem with a probability

ε′ >
1
2

(
ε− qdsc

(qh3

2k
+

1
2λ

+
1
2k

))
− 1

2k
− 1

2λ

within a time τ ′ < τ +O(q2τe)+2qh2τp where τe is the cost of an exponentiation
in G1 and τp denotes the time for a bilinear map evaluation.

Proof. We build a simulator B that behaves almost exactly as in the previous
proof. The generator h ∈ G1, that is given to the forger F as a part of the
output of the common key generation algorithm, is generated as in the proof of
theorem 1 so that the simulator B knows q−1 pairs (wi, h

1/(1+x)) (where x ∈ Z
∗
p

is the unknown element that implicitly defines its input g, gx, g(x2), . . . , g(xq)).
By doing so, B is always able to answer signcryption queries that are handled,
as all other oracle queries, exactly as in the proof of theorem 1.

Eventually, the forger F halts and outputs a forged signature embedded
into a signcrypted message C∗ = (b∗, c∗

1, c
∗
2, c

∗
3) and an arbitrary recipient’s

key pair (x∗
R, Y

∗
R = gx

∗
R) that allows B recovering the fake message-signature

pair (m∗, σ∗ = h1/(h1(b∗||m∗)+x)) embedded into C∗. With a probability 1/2,
b∗ differs from the message-dependent bit bm∗ (that indicates how a message
the message m∗ should be signed with the private key corresponding to X in
the underlying signature scheme and that is independent from F ’s view) and
B can extract a solution to the q-Strong Diffie-Hellman problem as follows: if
F is successful, B recovers a valid message-signature pair for the sender’s pub-
lic key X by computing γ∗ = c2 ⊕ h2(c∗

1, Y
∗
R, c∗

1
x∗

R), (m∗||X) = Dh3γ∗(c∗
3) and
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σ∗ = c∗
1
γ∗−1

. A q-Strong Diffie-Hellman pair 〈h∗
1, g

∗〉 can then be extracted by
expanding f(z)/(z + h∗

1) into

γ−1

z + h∗
1

+
q−2∑
i=0

γiz
i,

where h∗
1 = h1(b∗,m∗) ∈ Zp, and computing g∗ = [σ∗ ∏q−2

i=0 (g(xi))−γi ]1/γ−1 .
A lower bound on the simulator’s probability to obtain it is thus one half of

the advantage of the simulator of the previous proof decreased by the (negligible)
probability for F to produced a valid encryption of the fake signature without
asking the appropriate h2 and h3 values during the simulation (in that case, B
is unable extract a q-Strong Diffie-Hellman pair). �

The ciphertext authentication property can be proven in the same way as
its signature unforgeability and the proof, as well as the proof of ciphertext
anonymity, is also omitted here because of space limitation.

For applications that would require the ciphertext unforgeability, adapting
the scheme is straightforward: the first part of the ciphertext must be c1 =
g1/(h1(m||γ||YR)+xS) where γ ∈ Z

∗
p is encrypted in the component c2 and YR is

the receiver’s public key. As a consequence, γ and YR become a part of the
detached signature and the sender of a message is not only committed to the
plaintext’s content but he/she is also responsible for having sent it to the owner
of the key YR. Moreover, the ciphertext unlinkability property is also lost.

6 Conclusion

We presented an efficient signcryption scheme based on discrete logarithm related
assumptions and we proved its security in the random oracle model. The scheme
was shown to have a great online efficiency (similarly to the basic El Gamal
cryptosystem but unlike a Fujisaki-Okamoto/El Gamal encryption scheme).

As an observation of independent interest, we extended our method to achieve
this online efficiency to the Boneh-Boyen short signature ([6]).
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Abstract. Visual cryptography schemes allow the encoding of a secret
image into shares, in the form of transparencies, which are distributed
to the participants. The shares are such that only qualified subsets of
participants can visually recover the secret image by superimposing the
transparencies.

In this paper we study colored visual cryptography schemes. Most of
previous work on colored visual cryptography allows the superposition of
pixels having the same color assuming that the resulting pixel still has the
same color. This is not what happens in reality since when superimposing
two pixels of the same color one gets a darker version of that color, which
effectively is a different color. Superimposing many pixels of the same
color might result in a so dark version of the color that the resulting
pixel might be not distinguishable from a black pixel.

Thus we propose a model where the reconstruction has to guarantee
that the reconstructed secret pixel has the same color of the original one
and not a darker version of it. We give a construction of c-color (k, n)-
threshold visual cryptography schemes. Since we have to guarantee the
reconstruction of the exact original color, in many cases our schemes
have a bigger pixel expansion than previous ones. However, for the case
of k = n, we get a smaller pixel expansion when compared with schemes
that to do not guarantee the exact reconstruction of the original color.
We also prove that, in the model introduced in this paper, our schemes
for k = n have optimal pixel expansion.

1 Introduction

A visual cryptography scheme (vcs for short) for a set P of n participants is
a method to encode a secret image into n shadow images in the form of trans-
parencies, called shares, where each participant in P receives one share. Certain
subsets of participants, called qualified sets, can “visually” recover the secret
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image, but other subsets of participants, called forbidden sets, have no infor-
mation on the secret image. A “visual” recovery for a set X ⊆ P consists of
superimposing the shares (transparencies) given to the participants in X. The
participants in a qualified set X will be able to see the secret image without
any knowledge of cryptography and without performing any cryptographic com-
putation. Forbidden sets of participants will have no information on the secret
image.

This cryptographic paradigm was introduced by Naor and Shamir [12]. They
analyzed the case of (k, n)-threshold vcs in which a black and white (b&w for
short) secret image is visible if and only if any k transparencies are stacked
together. It should be noted that “white” is actually the transparent color.

In order to implement a visual cryptography scheme, each pixel of the se-
cret image is subdivided into a certain number m of subpixels. Hence, there is
a loss of resolution proportional to m. The pixel expansion m is the most im-
portant measure of the goodness of a scheme. Obviously, schemes with a smaller
pixel expansion are better. Optimal schemes are those that have the minimum
pixel expansion. Another important measure for the goodness of a scheme is the
contrast, which is a measure of the quality of the reconstructed image; roughly
speaking, the contrast tells us how much the reconstructed image differs from
the original one.

Most of the work done focused on b&w vcs, where the secret image to be
shared is composed of b&w pixels. There is a quite large body of literature on
b&w visual cryptography (see for example [2, 3, 4, 6, 8, 9, 12]). Naor and Shamir in
their seminal paper [12] provide a construction of b&w (k, k)-threshold schemes
with perfect reconstruction of black pixels whose pixel expansion is 2k−1. We
will use such schemes as building blocks in order to construct our colored vcs.

In this paper we are concerned with colored visual cryptography, where the
secret image is made up with a certain number c of colors. The b&w visual cryp-
tography paradigm is based on the fact that superimposing pixels the resulting
color is black if anyone of the superimposed pixels is black and white if all the
superimposed pixels are white. To be more precise each pixel can be seen as a
filter that stops some of the original light. The original light is perceived by the
human eye as white. A black pixel blocks all the light so that the result is black
(no light left), while a white (transparent) pixel does not stop any light leav-
ing unchanged the original color. When we deal with colors something similar
happens. The difference is that while black and white are the extreme cases (all
or no light blocked), other colors partially block some light. As we discuss more
formally in Section 2, this means that when superimposing pixels which are not
white, the resulting color becomes darker. The only color that does not alter the
original light is white. For this reason we call white the identity color. For the
opposite reason we call black the annihilator color.

Taking into account the real law of color superposition into colored schemes
seems to be quite a challenge and, as far as we know, only a few papers do
actually use it [11, 1, 10]. The problem is that superimposing two colors one gets
a third color that might not even be in the original palette of colors. The papers
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that use a model where different colors can be superimposed solve the above
cited problem by considering only restricted sets of colors which enjoy the nice
property of being closed with respect to the superposition operation. For example
the set of colors consisting of white, black, red, green and blue and the set of
colors consisting of white, black, red, green, blue, cyan, yellow and magenta are
closed with respect to the color superposition.

Many other papers use a model where the annihilator color is used to cover up
the result of a color superposition that would give a color that is not in the orig-
inal palette of colors. This can be done either by requiring the special property
that superimposing pixels with different colors one gets black [13], or by ensur-
ing that we have at least one black pixel in the superposition (e.g. [14, 7]). The
artificial property used in [13] can be simulated by subdividing each pixel into
c subpixels. However this simulation not only implies a bigger pixel expansion
but also a diminishment of the contrast because when a pixel is reconstructed
with the right color, its size is actually 1/c of the normal pixel size.

Previous Work. The papers [13, 5, 14, 7] use a model that is very close to our
own. The difference is that those paper allow pixels of the same color to be
superimposed (assuming that the resulting color is still the same one).

Verheul and Van Tilborg [13] provided c-color (k, n)-threshold schemes; the
pixel expansion is not given as a closed formula. In [5] constructions of c-color
(2, n)-threshold and (n, n)-threshold schemes are provided and they both im-
prove on [13].

The schemes of [13, 5] require the special property that superimposing two
pixels of different colors one gets black, which can be implemented paying a
loss of resultion of a factor equal to c. In [14, 7] such a special property is not
required because the schemes provided in those papers never superimpose pixels
with different colors; hence the extra factor of c in the pixel expansion is avoided.

Yang and Laih [14] provide new constructions for c-color (k, n)-threshold
schemes which use as building blocks schemes for the b&w model. The schemes
improve on the pixel expansion of those of [13, 5].

In [7] a tight lower bound on the pixel expansion of c-color (n, n)-threshold
schemes has been provided. Such a lower bound is:

m ≥
{
c · 2n−1 − 1, if n is even
c · 2n−1 − c + 1, if n is odd

(1)

It turns out that the (n, n)-threshold schemes of [14] are optimal since they
match the above lower bound. In [7] a construction of (contrast-optimal) c-color
(k, n)-threshold scheme is also given and the resulting pixel expansion improves
in some cases the one of [14].

In [7] a construction of c-color (2, n)-threshold scheme is provided. The pixel
expansion of such a construction improves on the other c-color (2, n)-threshold
schemes. Unfortunately, a closed formula for the pixel expansion is not given.

The above cited papers are the ones that use a model which is the one closest
to the model considered in this paper. Other work on colored visual cryptography
is provided in [11, 1, 10].
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This paper. All the papers discussed above use the black color to cover up un-
desired colors in the reconstructed image; however the model of [13, 14, 5, 7]
requires that the superposition of pixels of the same color results in that same
color. This property is not real, because the result is a darker version of the
original color.

In this paper we consider a model where when superimposing pixels we can
only superimpose black pixels, white pixels and at most 1 pixel of a given color.
Thus we consider the identity and annihilator color as special colors. Clearly
using this constraint the reconstruction of a color is perfect, in the sense that it
gives the exact original color and not a darker version of it.

Using the above model we build c-color (k, n)-threshold schemes whose pixel
expansion is m = c

(
n
k

)
2k−2.

Clearly our schemes are not comparable with the previous ones, since the
model used is different. Our model requires an extra property so it is not sur-
prising that our pixel expansion is, in general, worst than the corresponding
schemes in the previous models. What it is surprising, however, is that for the
case of k = n, our c-color (n, n)-threshold schemes achieve a better pixel expan-
sion. However, it should be noted that we use also the white color as a special
color.

Finally, we also provide a proof of optimality, with respect to the pixel ex-
pansion, of the c-color (n, n)-threshold scheme.

This paper is organized as follows. Section 2 contains some observation about
the real properties of color superposition which justify the model used in this pa-
per. In Section 3 we provide a formal definition of the model. Then, in Section 4,
we provide the construction of c-color (k, n)-threshold schemes. In Section 5 we
provide a proof of optimality, with respect to the pixel expansion, of the c-color
(n, n)-threshold scheme. Finally Section 6 contains some concluding remarks and
directions for future work.

2 Light and Colors

Roughly speaking, light is a flux of photons, with each photon having a particular
energy (frequency). The energy of a photon corresponds to the color we see when
that photon hits our eyes. The intensity of the light depends on the number of
photons. A white light is a flux of photons of all possible visible frequencies (all
colors).

A filter (or the surface of an object) of a particular color C absorbs all of
the frequencies except the ones that “make up” color C, so that, when looking
at the light through the filter (or reflected by the surface of the object), we see
color C.

Combining the fundamental colors, which are red, green and blue, and varying
their intensity, it is possible to obtain any other color. So, for our purposes, a color
C can be represented by a triple (x, y, z), where x, y and z denote the amount
of red, green and blue, respectively, that color C consists of. Each component of
the triple can be considered as a a filter absorbing red, green and blue photons,
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respectively; the amount of light left is described by an integer in the range
[0, L]. With this setting, we can produce (L + 1)3 different colors, which, for L
sufficiently large, are enough to approximate all colors that the human eye is
able to distinguish. Typically, for computers, we have L = 255; for simplicity we
will use L = 100.

The color (0, 0, 0), which we will denote with •, is the black color: indeed
all filters are 0 meaning that there is no light left. The color (100, 100, 100),
which we will denote with ◦ is white (transparent) because no light is ab-
sorbed by the filters. The colors red, green and blue are represented, respec-
tively, by (100, 0, 0), (0, 100, 0) and (0, 0, 100); we will refer to these colors also
as R, G and B, respectively. The colors yellow, magenta and cyan are repre-
sented, respectively, by (100, 100, 0), (100, 0, 100) and (0, 100, 100); we will refer
to these colors also as Y, M and C, respectively. The color (50, 0, 0) is also a
red, because that is the only component present, but it is darker since some
red light is absorbed. The higher is the value of the component the lighter is
the color. If all components are equal, i.e. (x, x, x), then the resulting color
is a gray whose intensity depends on x: the smaller is x, the darker is the
gray.

Let C1 = (x1, y1, z1) and C2 = (x2, y2, z2) be two colors and assume that two
pixels of color C1 and of color C2 are printed on two different transparencies.
Superimposing the transparencies, one on the top of the other, the resulting
color can be expressed (approximately) as:

add(C1, C2) =
(
int

(x1x2

L

)
, int

(y1y2

L

)
, int

(z1z2

L

))
, (2)

where the int function approximates its argument to the nearest integer. Op-
erator add defines the “color superposition”. The add operation can naturally
be extended to any number of colors. The add operation is commutative and
thus the order in which we superpose the colors is irrelevant. Color ◦ is the
“identity” color, in the sense that for any color C we have that add(C, ◦) = C,
while color • is the “annihilator” color, in the sense that for any color C we have
that add(C, •) = •. As expected, it results that add(Y, M) = R, add(R, G) = Y,
add(Y, M, C) = •. Other examples of the result of color superposition are the fol-
lowing: add((80, 80, 80), (80, 80, 80)) = (64, 64, 64), add((63, 40, 65), (50, 92, 31))=
(31, 37, 20).

Hence superimposing two pixels of the same color one gets a different color.
For example consider color (90, 0, 0), which is an almost full intensity red. If
we superimpose two pixels with such a color we get a pixel of color (81, 0, 0).
If we superimpose 5 pixels all with color (90, 0, 0) the resulting pixel has color
(59, 0, 0). The difference between (90, 0, 0) and (59, 0, 0) is quite evident to the
human eye. Clearly the more pixels we superimpose the darker the result will
be and thus the recognition of the color might become problematic. Figure 1
illustrates this situation: on the left it is shown a pixel with color (78, 78, 78), a
light gray, then the result of superimposing pixels with that color is shown. On
the far right of the figure it is shown the result of superimposing 16 such pixels;
the resulting pixel is hardly distinguishable from black.
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Fig. 1. Example of darkening in color superposition. The original color is a light gray
(78, 78, 78)

This problem is even more evident if the original color is not very intense as
the resulting superposition gets close to black very quickly. For example super-
imposing 5 pixels of color (50, 0, 0), which is an half-red, one gets (3, 0, 0) which
is hardly distinguishable from black by the human eye.

Hence in this paper we focus on a model that avoids superimposing pixels
with the same color.

3 The Model

A secret image, consisting of colored pixels, has to be shared among a set
P = {1, . . . , n} of participants. A trusted party, which is called the dealer and
is not a participant, knows the secret image. The dealer has to distribute shares
to the n participants in the form of printed transparencies. The subsets of P
consisting of at least k participants are called qualified sets. Participants in a
qualified subset have to be able to “visually” recover the secret image, by stack-
ing together their shares (transparencies) and holding the stacked set of trans-
parencies to the light. All other subsets, that is, those which have less than k
participants, are called forbidden sets. Participants in a forbidden set must be
not able to get any information on the secret image from their shares, neither
by stacking together the transparencies nor by any other computation. Schemes
where the forbidden and qualified sets are defined as above are called (k, n)-
threshold schemes. Sometimes more general access structures are used, however
in this paper we are concerned only with (k, n)-threshold schemes.

From now on we concentrate on how to deal with just one pixel of the image.
In order to share the whole image it is enough to repeat the sharing process for
each pixel of the image.

Each secret pixel is divided into m subpixels. This implies a loss of resolution:
the pixels of the reconstructed image will be m times bigger compared to the
ones of the original image. A share is a “version” of the secret pixel consisting
of a particular assignment of colors to the m subpixels.

Each pixel, either in the original image or in the shares, has one of c colors
which we denote by {1, 2, . . . , c}. We augment the set of colors with the “annihi-
lator” color black, which we denote with the symbol •, and with the “identity”
(transparent) color white, which we denote with the symbol ◦.

We remark that we still have only c colors in the original image; the added
black and white colors are needed to cover up the noise introduced in the recon-
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structed image in order to not reveal information to forbidden sets of partici-
pants.

Superimposing two pixels one gets a pixel of a color which depends on the
color of the superimposed pixels. The add operator, defined in Equation (2),
gives the superposition color.

The add operator is easily extended to (column) vectors of colors for which it
returns the result of superimposing all the pixels of the vector. We also extend
it to matrices: given a matrix M the add(M) is the (row) vector with elements
in {•, ◦, 1, 2, ..., c} obtained by letting the ith entry be the add of the ith column
of M . We also use a generalized Hamming weight wi(Ψ) for a vector of colors Ψ ,
which gives the number of colors in Ψ that are equal to color i. Notice that w•(Ψ)
returns the number of components equal to the special • color (and similarly for
◦).

Given a matrix M and a set X of natural numbers, which represent partic-
ipants, we denote by M |X the matrix consisting of only the rows of M corre-
sponding to the integers in X, if they exists in M . For example, assuming that M
has at least 6 rows, if X = {2, 3, 6}, then M |X is the submatrix of M consisting
of the second, the third and the sixth row of M .

Next we provide the definition of a colored visual cryptography scheme.

Definition 1. Consider a set of c colors {1, 2, . . . , c} and let h and � be integers
such that 0 ≤ � < h ≤ m. A c-color (k, n)-threshold visual cryptography scheme
for a set of n participants, consists of c collections (multisets) of n×m matrices
C0, ..., Cc−1, whose elements are in the set {◦, •, 1, 2, . . . , c}, satisfying:

1. Given a qualified set X, |X| = k, for any M ∈ Ci, it holds that wi(add(M |X))
≥ h and wj(add(M |X)) ≤ � for any j �= i.

2. Given a forbidden set X, |X| < k, the c collections of |X| ×m matrices, Di,
i = 0, 1, ..., c− 1, consisting of M |X for each M ∈ Ci, are equal.

3. For any column Ψ in any base matrix we have that w•(Ψ) + w◦(Ψ) = n− 1.

To share a secret pixel of color i, the dealer randomly chooses one of the
matrices in Ci and distributes row j to participant j. Thus, the chosen matrix
defines the m subpixels in each of the n transparencies.

Since matrices in Ci are used to share pixels of color i we say that i is the
primary color for Ci, while any other color j �= i is a secondary color for Ci.

Property 1 of Definition 1 is called the contrast property because it guarantees
that the secret image will be visible for a qualified set of participants. Property
2 is called the security property because it guarantees that a forbidden set of
participants has no information on the secret image. Property 3 guarantees that
the reconstruction of the secret pixel gives the exact same color as the original
secret pixel.

Notice that the contrast property guarantees the reconstruction only for qual-
ified sets X whose cardinality is exactly k and not for qualified sets of cardinality
greater than k. This is without loss of generality since a qualified set of partici-
pants consisting of more than k members can anyway reconstruct the image by
simply using only k shares and leaving out the remaining ones.
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Finally we remark that, although the definition of a vcs is almost identical
to that given in [13] and used also in other papers, the definition differs in that
it allows also the use of the identity color ◦, beside the annihilator color •, and
more fundamentally it differs because of the underlying rule the regulates the
result of color superposition. In particular while in previous models it is assumed
that superimposing pixels with the same color one gets that color, in our model
the superposition of pixels with the same color gives a darker version of the
original color. As we have discussed in Section 2, this is what happens in reality.

Base matrices. Given a matrix B we denote by C(B) the set of matrices obtained
by permuting in all possible ways the columns of B. In most schemes, the c
collections Ci are obtained by fixing c matrices Bi and letting Ci = C(Bi).
The matrices Bi are called the “base matrices”. Base matrices constitute an
efficient representation of the scheme. Indeed, the dealer has to store only the
base matrices and in order to randomly choose a matrix from C(Bi) he has to
randomly choose a permutation of the columns of the base matrix Bi.

Notice that the security property for a base matrices scheme is equivalent to:
Given a forbidden set X, the matrices Bi|X, for i = 0, 1, . . . , c− 1 are the same
up to a permutation of the columns.

4 Construction of c-Color (k, n)-Threshold Schemes

The construction uses as a building block a b&w (k− 1, k− 1)-threshold scheme
with perfect reconstruction of black pixels. A scheme with perfect reconstruction
of black pixels is a scheme where a black secret pixel is reconstructed with all
subpixels black. We remark that for the case of k = 2 one would need a (1, 1)-
threshold b&w scheme which, for obvious reasons, is not a scheme. For the scope
of the next construction, we let S•

1 = [•] and S◦
1 = [◦] be the base matrices of a

(1, 1)-threshold scheme.

Construction 1 Fix k and n, 2 ≤ k ≤ n. Let S◦
k−1 and S•

k−1 be the basis
matrices of a (k− 1, k− 1)-threshold scheme with perfect reconstruction of black
pixels and let m′ be the pixel expansion of such a scheme. Denote the rows of
S◦
k−1 and S•

k−1 with wi and bi, respectively:

S◦
k−1 =

⎡⎢⎢⎢⎢⎣
w1
w2
...
...

wk−1

⎤⎥⎥⎥⎥⎦ , S•
k−1 =

⎡⎢⎢⎢⎢⎣
b1
b2
...
...

bk−1

⎤⎥⎥⎥⎥⎦ .

Let Fk,n(i, Sφ
k−1), where i ∈ {1, 2, ..., c} and φ ∈ {◦, •} be the n ×

(
n
k

)
m′

matrix constructed by
(
n
k

)
submatrices, called “blocks”, with dimension n ×m′

each consisting of the following rows: n − k (“black”) rows of m′ elements •;
each block differs from the others in the choice of the n − k “black” rows; The
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remaining k rows are filled with one row of elements equal to i followed in order
by the k − 1 rows of Sφ

k−1.
Base matrix for color i, for i ∈ {1, 2, ..., c}, is given by:

Bi = Fk,n(1, S•
k−1) + . . . + Fk,n(i− 1, S•

k−1) + Fk,n(i, S◦
k−1) +

Fk,n(i + 1, S•
k−1) + . . . + Fk,n(c, S•

k−1).

Some examples will clarify the above construction. Let us start with the case
k = n for which the construction becomes very simple: The matrix Fn,n(i, S◦

k−1)
is simply given by the first row consisting of all i’s and the remaining rows are
given by S◦

k−1, and similarly for Fn,n(j, S•
k−1).

For example consider k = n = 4 and S◦
k−1 and S•

k−1 given by the Naor and
Shamir (4, 4)-threshold scheme [12], that is

S◦
k−1 =

⎡⎢⎢⎣
◦ ◦ ◦ • ◦ • • •
◦ ◦ • ◦ • ◦ • •
◦ • ◦ ◦ • • ◦ •
◦ • • • ◦ ◦ ◦ •

⎤⎥⎥⎦ S•
k−1 =

⎡⎢⎢⎣
◦ ◦ ◦ • ◦ • • •
◦ ◦ • ◦ • ◦ • •
◦ • ◦ ◦ • • ◦ •
• ◦ ◦ ◦ • • • ◦

⎤⎥⎥⎦
The following are the base matrices of a 3-color (5, 5)-threshold scheme (the
vertical bars identify the F matrices) obtained with Construction 1.

B1 =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
◦ ◦ ◦ • ◦ • • • ◦ ◦ ◦ • ◦ • • • ◦ ◦ ◦ • ◦ • • •
◦ ◦ • ◦ • ◦ • • ◦ ◦ • ◦ • ◦ • • ◦ ◦ • ◦ • ◦ • •
◦ • ◦ ◦ • • ◦ • ◦ • ◦ ◦ • • ◦ • ◦ • ◦ ◦ • • ◦ •
◦ • • • ◦ ◦ ◦ • • ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦ • • • ◦

⎤⎥⎥⎥⎥⎦

B2 =

⎡⎢⎢⎢⎢⎣
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
◦ ◦ ◦ • ◦ • • • ◦ ◦ ◦ • ◦ • • • ◦ ◦ ◦ • ◦ • • •
◦ ◦ • ◦ • ◦ • • ◦ ◦ • ◦ • ◦ • • ◦ ◦ • ◦ • ◦ • •
◦ • ◦ ◦ • • ◦ • ◦ • ◦ ◦ • • ◦ • ◦ • ◦ ◦ • • ◦ •
◦ • • • ◦ ◦ ◦ • • ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦ • • • ◦

⎤⎥⎥⎥⎥⎦

B3 =

⎡⎢⎢⎢⎢⎣
3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
◦ ◦ ◦ • ◦ • • • ◦ ◦ ◦ • ◦ • • • ◦ ◦ ◦ • ◦ • • •
◦ ◦ • ◦ • ◦ • • ◦ ◦ • ◦ • ◦ • • ◦ ◦ • ◦ • ◦ • •
◦ • ◦ ◦ • • ◦ • ◦ • ◦ ◦ • • ◦ • ◦ • ◦ ◦ • • ◦ •
◦ • • • ◦ ◦ ◦ • • ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦ • • • ◦

⎤⎥⎥⎥⎥⎦
The case of k = n is particularly easy to understand because we only have 1

block and we don’t have to add any “black” row. So let us now consider another
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example. Let k = 3 and n = 4 and once again consider the matrices S◦
k−1 and

S•
k−1 given by the Naor and Shamir (2, 2)-threshold scheme [12], that is

S◦
2 =

[
◦ •
◦ •

]
, S•

2 =
[
◦ •
• ◦

]
.

In this case the F matrices will have
(
n
k

)
= 4 blocks, since we have to place 1

black row in each of 4 possible positions. Hence we have:

F3,4(i, S◦
2 ) =

⎡⎢⎢⎣
i i i i i i • •
◦ • ◦ • • • i i
◦ • • • ◦ • ◦ •
• • ◦ • ◦ • ◦ •

⎤⎥⎥⎦ , F3,4(i, S•
2 ) =

⎡⎢⎢⎣
i i i i i i • •
◦ • ◦ • • • i i
• ◦ • • ◦ • ◦ •
• • • ◦ • ◦ • ◦

⎤⎥⎥⎦ .

The vertical bars identify the 4 blocks. As can be seen each block is given by 1
black row, and the remaining rows filled, in this order, by one row of i’s and the
rows of S◦

2 (or S•
2 ), from the first to the last. Using the above F matrices we can

build the following 3-color (3, 4)-threshold scheme.

B1 =

⎡⎢⎢⎣
1 1 1 1 1 1 • • 2 2 2 2 2 2 • • 3 3 3 3 3 3 • •
◦ • ◦ • • • 1 1 ◦ • ◦ • • • 2 2 ◦ • ◦ • • • 3 3
◦ • • • ◦ • ◦ • • ◦ • • ◦ • ◦ • • ◦ • • ◦ • ◦ •
• • ◦ • ◦ • ◦ • • • • ◦ • ◦ • ◦ • • • ◦ • ◦ • ◦

⎤⎥⎥⎦ ,

B2 =

⎡⎢⎢⎣
2 2 2 2 2 2 • • 1 1 1 1 1 1 • • 3 3 3 3 3 3 • •
◦ • ◦ • • • 2 2 ◦ • ◦ • • • 1 1 ◦ • ◦ • • • 3 3
◦ • • • ◦ • ◦ • • ◦ • • ◦ • ◦ • • ◦ • • ◦ • ◦ •
• • ◦ • ◦ • ◦ • • • • ◦ • ◦ • ◦ • • • ◦ • ◦ • ◦

⎤⎥⎥⎦ ,

B3 =

⎡⎢⎢⎣
3 3 3 3 3 3 • • 1 1 1 1 1 1 • • 2 2 2 2 2 2 • •
◦ • ◦ • • • 3 3 ◦ • ◦ • • • 1 1 ◦ • ◦ • • • 2 2
◦ • • • ◦ • ◦ • • ◦ • • ◦ • ◦ • • ◦ • • ◦ • ◦ •
• • ◦ • ◦ • ◦ • • • • ◦ • ◦ • ◦ • • • ◦ • ◦ • ◦

⎤⎥⎥⎦ .

We give another example for k = 3, n = 5. Using again the S◦
2 and S•

2 seen
before, we have that

F3,5(i, S◦
2 ) =

⎡⎢⎢⎢⎢⎣
i i i i i i • • i i i i • • i i • • • •
◦ • ◦ • • • i i ◦ • • • i i • • i i • •
◦ • • • ◦ • ◦ • • • ◦ • ◦ • • • • • i i
• • ◦ • ◦ • ◦ • • • • • • • ◦ • ◦ • ◦ •
• • • • • • • • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ •

⎤⎥⎥⎥⎥⎦ .

Next we prove that the construction described above is correct.

Lemma 1. Construction 1 builds a c-color (k, n)-threshold vcs, with pixel ex-
pansion m = c

(
n
k

)
2k−2, where m′ is the pixel expansion of the black and white

scheme used as building block, and � = 0, h ≥ 1.
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Proof. We start by proving the security property. We observe the following: Each
base matrix consists of several blocks, and by construction there is one similar
block per each color (either primary or secondary) with the only difference that
for the primary color the block is made up from rows coming from S◦

k−1, while
for each secondary color the block is made up from rows coming from S•

k−1.
Hence the security property of the new scheme follows directly from the security
property of the (k − 1, k − 1)-threshold scheme given by the matrices S◦

k−1 and
S•
k−1.

Now consider the contrast property. For a qualified set of participants each
block for a secondary color contains either a row with all blacks, or it contains
all the k − 1 rows of S•

k−1. Recalling that the matrix S•
k−1 provides a perfect

reconstruction of the black pixels, in both of the above cases we have that a
secondary color is always superimposed to a black pixel. This implies that � = 0.
For the primary color there will be at least one block that restricted to the qual-
ified set of participants will consists of one row with the primary color and the
remaining k − 1 rows given by S◦

k−1. Hence at least one pixel will be superim-
posed to all white pixels, and thus at least 1 pixel will be of the primary color
(the exact number depends on the black and white scheme that one uses as a
building block). Thus we have h ≥ 1.

Finally the pixel expansion is easily computed observing that the number of
blocks in each F matrix is

(
n
k

)
and the width of each block is the same as the

pixel expansion m′ of the b&w scheme used as building block. Since there is one
F matrix per each color, the pixel expansion is m = c

(
n
k

)
m′.

The best, with respect to the pixel expansion, b&w (k, k)-threshold scheme
with perfect reconstruction of black pixels is the scheme provided in [12]. Hence
to build our c-color (k, n)-threshold schemes we use the b&w (k − 1, k − 1)-
threshold scheme by Naor and Shamir whose pixel expansion is m′ = 2k−2.
Hence Construction 1 gives a (k, n)-threshold scheme with pixel expansion m =
c
(
n
k

)
2k−2.

The pixel expansion of our schemes is in general worst than that of previous
schemes. This is not surprising since our model requires an extra property. How-
ever in the case of k = n we also achieve an improvement, with respect to the
pixel expansion, over previous schemes. The pixel expansion of our c-color (n, n)-
threshold schemes is c2n−2. This is a factor of 2 better than the lower bound (1).
Hence it is a factor of 2 better than the optimal c-color (n, n)-threshold schemes
of [14, 7]. However, in our model, we use also white as a special color.

5 Optimal Pixel Expansion for k = n

In this section we give the sketch of a proof that in the model considered in
this paper the c-color (n, n)-threshold scheme of Construction 1 is optimal with
respect to the pixel expansion. The proof is similar to that used to prove that
the Naor and Shamir b&w (n, n)-threshold scheme has optimal pixel expansion,
because it basically argues that such a scheme must be used as a building block
in our model.
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Remember that each column of the base matrices is composed of 1 colored
pixel and n − 1 black and white white pixels. Fix a color i and consider base
matrix Bi. Since base matrix Bi reconstructs color i there must be at least one
column consisting of 1 pixel of color i and n − 1 white pixels. Without loss of
generality, assume that the color is placed on the first row.

In order to satisfy the security property for forbidden sets consisting of n− 1
participants, it is necessary that any other base matrix Bj , with j �= i, has all
the columns that have i on the first row and exactly n − 2 white pixels, while
the remaining one have to be black (indeed if the exact same column appears
in all base matrix then it is useless and can be deleted). This implies that base
matrix Bi must contain all the

(
n
1

)
columns which have a secondary color on the

first row and in the remaining positions have n− 2 white and 1 black. But then
reiterating this reasoning we have that base matrix Bi must contain all the

(
n
2

)
columns that have i on the first row and in the remaining positions have n− 3
white and 2 black, and that it must contain all the

(
n
3

)
columns with have j in

the first row and in the remaining positions have n− 4 white and 3 blacks, and
so on.

Hence it follows that base matrix Bi must have at least 2n−2 columns con-
sisting of one row with the primary color i and the remaining columns which
contains all the columns with an even number of black pixels and for each sec-
ondary j color at least 2n−2 columns consisting of one row with the secondary
color j and the remaining columns which contains all the columns with an odd
number of black pixels.

Hence base matrix Bi must have at least c2n−2 columns and thus we have
the following lemma.

Lemma 2. The pixel expansion of a c-color (n, n)-threshold scheme is lower
bounded by c2n−2.

6 Discussion and Conclusions

Observation 1. Although Construction 1 requires the b&w scheme used as a
building block to have a perfect reconstruction of black pixels, the construction
still works with other b&w schemes, but the resulting colored scheme will have
� > 0. As remarked in [13], the recognition of the reconstructed color is easier
for schemes with � = 0.

Observation 2. We can provide schemes for general access structures by using
the same technique used for b&w schemes [2]. Such a technique builds schemes
for general access structures starting from a (k, k)-threshold scheme. For each
qualified set in the access structure we use a c-color (k, k)-threshold scheme,
where k is the cardinality of the qualified set and we fill the remaining n − k
row with black. We then build the base matrices by simply concatenating the
matrices described above for each qualified set.

Observation 3. We can transform a known scheme that uses the model of [13],
such as the schemes of [13, 14, 5, 7] into a new scheme for the model introduced
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in this paper. Such a transformation has to eliminate the superposition of pixels
with the same color. An easy way to this is to substitute each column of a
base matrix that contains a certain number p of pixels of a given color i with
p columns each of which substitutes the p pixels of color i with p − 1 pixels of
color ◦ and one pixel of color i, choosing the one pixel of color i in each of the
p possible positions. Such a transformation, however, is in general not efficient
in terms of pixel expansion, and yields schemes with pixel expansion worst than
the one of the schemes provided in Section 4.

Conclusions. In this paper we have considered a new model for colored visual
cryptography. Compared with previously used models our model requires an
extra property, namely, that the reconstruction of the secret pixel must preserve
the original color. We have provided a construction for c-color (k, n)-threshold
scheme, for any number of color c, and for any value of k, n, with 2 ≤ k ≤ n.

We prove that our c-color (n, n)-threshold schemes are optimal in our model.
It remains open the problem of finding the optimal schemes for k < n.

The model considered in this paper stems from the observation that super-
imposing pixels of the same color one gets a darker version of that color, and
thus, especially when superimposing many pixels, the reconstructed color can
get very close, and thus indistinguishable, from the black color, which is usually
used to make the scheme secure and is always present in the reconstruction. In a
more general model one can consider the real properties of color superposition.
As far as we know very few papers have tried this approach [11, 1, 10] and in all
cases the schemes work for restricted sets of colors. An interesting direction of
research would be to provide schemes that better exploit the real properties of
color superposition.

Acknowledgments. The second author would like to thank Dr. Davide Stelitano
for several discussions about the properties of light and colors which allowed us
to understand the color superposition operation. We also thank Dr. Gianluca
Caputo for several useful discussions.
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Abstract. Span programs provide a linear algebraic model of computa-
tion. Monotone span programs (MSP) correspond to linear secret sharing
schemes. This paper studies the properties of monotone span programs
related to their size. Using the results of van Dijk (connecting codes and
MSPs) and a construction for a dual monotone span program proposed
by Cramer and Fehr we prove a non-trivial upper bound for the size
of monotone span programs. By combining the concept of critical fami-
lies with the dual monotone span program construction of Cramer and
Fehr we improve the known lower bound with a constant factor, showing
that the lower bound for the size of monotone span programs should
be approximately twice as large. Finally, we extend the result of van
Dijk showing that for any MSP there exists a dual MSP such that the
corresponding codes are dual.

1 Introduction

Motivation and Related Work. Span programs have been introduced in 1993
by Karchmer and Wigderson in [14] as a linear algebraic model of computation.
A span program for a Boolean function is presented as a matrix over a field
with rows labelled by literals of the variables, and the size of the program is the
number of the rows. The span program accepts an assignment if and only if the
all-ones row is a linear combination of the rows whose labels are consistent with
the assignment. A span program is monotone if only positive literals are used as
labels of the rows.

One main motivation to study span programs is that lower bounds for their
size imply lower bounds for formula size and other interesting complexity mea-
sures including branching program size. The class of functions computable by
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polynomial size span programs over GF (2) is equivalent to the class of functions
computable by polynomial size parity branching programs [7, 14]. Span programs
over other fields are related to other logspace classes [1, 7, 14].

Monotone span programs (MSPs) are also closely related to the cryptographic
primitive secret sharing schemes. The concept of secret sharing was introduced
by Shamir [18] as a tool to protect a secret simultaneously from exposure and
from being lost. It allows a so called dealer to share the secret among a set of
entities, usually called players, in such a way that only certain specified subsets
of the players are able to reconstruct the secret while smaller subsets have no
information about it. Monotone span programs are equivalent to a subclass of
secret sharing schemes called linear secret sharing schemes (LSSSs). The size of
MSPs measures the amount of information that has to be given to the partic-
ipants in LSSSs. Lower bounds on MSPs imply lower bounds on the length of
the shares in LSSSs.

In cryptographic multi-party protocols a general question is to find a “good
measure”, so that “often” the protocols are polynomially efficient in the number
of players. Let complexity mean the total number of rounds, bits exchanged, local
computations performed, etc. The best measure known for the efficiency of an
SSS protocol is the Monotone Span Program Complexity [8] (which is the size of
the MSP) and it coincides with the complexity in terms of linear secret sharing
schemes over finite fields. Thus the question of estimating the MSP complexity
(i.e. the size of the MSP) is a central question in several areas.

In a series of works [3, 5, 11] a lower bound for the size of an MSP has
been proven. Later, Gal [12] proved that the MSP size is in the worst case
superpolynomially (in the number of players) lower bounded. In addition it was
proven in [4] that the size of MSPs over two fields with different characteristics
is incomparable.

Our Results. We focus on studying the properties of MSPs related to their
size. Using the results of van Dijk [10] (connecting codes and MSPs) and a
construction for dual MSPs proposed by Cramer and Fehr [9] we prove a non-
trivial upper bound for the size of MSPs. This result was announced in part in
[16]. On the other hand using the same approach as in [3, 11] (critical families)
together with the dual MSP construction of Cramer and Fehr [9] we improve
the known lower bound with a constant factor; we show that the lower bound
for the size of an MSP should be approximately twice as large. The rank of the
matrix has been used a number of times to prove lower bounds on various types
of complexity. In particular it has been used for the size of monotone formulas
and monotone span programs [13]. We show that the nullity (the dimension of
the kernel) of the matrix also should be taken into account when estimating the
size of MSPs, since the nullity is linked to the rank of the matrix used in the
dual MSP. Next we extend the result of van Dijk [10] showing that for any MSP
M there exists a dual MSP M⊥ such that the corresponding codes C and C⊥

are dual.
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Organization. In the next section we recall some definitions and notations that
will be used later in the paper. In the first part of Sect. 3 we give some known
properties of MSPs, then we describe our results: we modify the dual MSP
construction of Cramer and Fehr and present an upper bound for the size of
MSP in terms of the number of minimal and maximal sets in the access structure
computed by the MSP. In Sect. 4 we first present definitions and known results
related to the approach developed in [3, 11, 12]; then we improve the known lower
bound for the size of an MSP.

2 Preliminaries

Let us denote the players in a Secret Sharing Scheme by Pi, 1 ≤ i ≤ n, the set of
all players by P = {P1, . . . , Pn} and the set of all subsets of P (i.e., the power set
of P) by P (P). We call the groups which are allowed to reconstruct the secret
qualified and the groups which should not be able to obtain any information
about the secret forbidden. The set of qualified groups is denoted by Γ (Γ ⊆
P (P)) and the set of forbidden groups by Δ (Δ ⊆ P (P)). The set Γ is called
monotone increasing if for any set A in Γ any set containing A is also in Γ.
Similarly, Δ is called monotone decreasing, if for each set B in Δ each subset
of B is also in Δ. A monotone increasing set Γ can be efficiently described by
the set Γ− consisting of the minimal elements in Γ , i.e., the elements in Γ for
which no proper subset is also in Γ. Similarly, the set Δ+ consists of the maximal
elements (sets) in Δ, i.e., the elements in Δ for which no proper superset is also
in Δ. The tuple (Γ,Δ) is called an access structure if Γ ∩Δ = ∅. It is obvious
that (Γ−, Δ+) generates (Γ,Δ). If the union of Γ and Δ is equal to P (P) (so
Γ is equal to Δc, the complement of Δ), then we say that the access structure
(Γ,Δ) is complete and we denote it just by Γ. Throughout the paper we will
consider connected access structures, i.e., the access structures in which every
player is in at least one minimal set. For a complete access structure the dual
access structure could be defined as follows. The dual access structure Γ⊥ of
an access structure Γ , defined on P, is the collection of sets A ⊆ P such that
P \A = Ac /∈ Γ .

In most of the works (e.g. [3, 5, 11, 14]) the connection between MSPs and
monotone Boolean functions has been exploit. Here we will show that there is
one-to-one correspondence between complete access structures and monotone
Boolean functions. Associate with every player Pi a Boolean variable xi. Then
with any set A ⊆ P we associate a variable xA = (x1, . . . , xn) by fixing xi = 1
if and only if Pi ∈ A; xA is sometimes called the characteristic vector of A.
Now a one-to-one mapping between f and Γ is defined in the following way:
f(xA) = 1 if and only if A ∈ Γ . A minterm of a monotone function is a minimal
set of its variables with the property that the value of the function is 1 on any
input that assigns 1 to each variable in the set, no matter what the values of the
other variables are. Using the mapping between access structures and monotone
functions, it is easy to see that minterms correspond to minimal sets. A maxterm
of a monotone function is a minimal set of its variables with the property that
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the value of the function is 0 on any input that assigns 0 to each variable in the
set, no matter what the values of the other variables are. Recall the one-to-one
mapping between f and Γ . With this mapping in mind it is not difficult to verify
that maxterms are equivalent to maximal sets. Let f(x1, . . . , xn) be a monotone
Boolean function. Let f∗(x1, . . . , xn) = f(x1, . . . , xn), sometimes f∗ is called
the dual function of f . In fact the minterms of f∗ are exactly the maxterms
of f . Using again the one-to-one mapping between f and Γ it follows that if
access structure Γ corresponds to a monotone function f , then the function f∗

corresponds to the dual access structure Γ⊥.
An SSS is linear if the dealer uses only linear operations to share (reconstruct)

the secret amongst the participants. Each linear SSS (LSSS) can be viewed as
derived from a monotone span program computing its access structure [8]. On
the other hand, each monotone span program gives rise to an LSSS. Hence, one
can identify an LSSS with its underlying monotone span program. Such an MSP
always exists, because MSPs can compute any monotone access structure (see
[2, 11, 14]). An important parameter of the MSP is its size, which turns out to
be also the size of the corresponding LSSS (the sum of all shares).

Let us describe some of the tools we will employ. An m × d matrix M over
a field F defines a map from F

d to F
m by taking a vector v ∈ F

d to the vector
Mv ∈ F

m. Associated with an m×d matrix M (or a linear map) are two natural
subspaces, one in F

m and the other in F
d. They are defined as follows. The kernel

of M (denoted by ker(M)) is the set of vectors u ∈ F
d, such that Mu = 0. The

image of M (denoted by im(M)) is the set of vectors v ∈ F
m such that v = Mu

for some u ∈ F
d. The dimension of the image of M is called the rank of M , and

the dimension of the kernel of M is called its nullity. A central result of linear
algebra, called the rank and nullity theorem states that the dimensions of these
two spaces add up to d, the number of columns in M . It is well known that the
column rank of a matrix M (being the maximal size of a linearly independent
set of columns of M) is equal to the row rank of M (which is the maximal size
of an independent set of rows). The space generated by the rows of a matrix M
will sometimes be denoted by span(M).

For an arbitrary matrix M over a field F, with m rows labelled by 1, . . . ,m
and for an arbitrary non-empty subset A of {1, . . . ,m}, let MA denote the matrix
obtained by keeping only those rows i with i ∈ A. In the sequel vi will denote a
vector but vi stands for the i-th coordinate of the vector v. With the standard in-
ner product 〈v,w〉 we write v ⊥ w, when 〈v,w〉 = 0. For an F-linear subspace V
of F

d, V⊥ denotes the collection of elements of F
d, that are orthogonal to all of V

(the orthogonal complement). It is again an F-linear subspace. For all subspaces
V of F

d we have V = (V⊥)⊥. Other standard relations are (im(MT ))⊥ = ker(M)
or im(MT ) = (ker(M))⊥, as well as 〈v,MTw〉 = 〈Mv,w〉.

Let F be a finite field and let the set of secrets be K = F
p0 , with p0 = 1.

Associate with each player Pi (1 ≤ i ≤ n) a positive integer pi such that the
sets of possible shares for player Pi, is a linear subspace Si = F

pi . Denote by
p =

∑n
i=1 pi and by N = p0 + p, then the sharing space S = S1 × · · · × Sn = F

p

and K × S = F
N .
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Definition 1. [10] Consider the vector v ∈ F
N . The coordinates in v, which

belong to player Pi are collected in a sub-vector denoted by vi and the coordinates
that correspond to the secret, i.e., to the dealer D are collected in a sub-vector
denoted by v0 or in other words v = (v0,v1, . . . ,vn) where vi ∈ F

pi . The p-
support of a vector v, denoted by supp(v), is defined as the set of coordinates i,
0 ≤ i ≤ n for which vi �= 0, i.e., supp(v) = {i : vi �= 0}.
Now we give a formal definition of a Monotone Span Program.

Definition 2. [14] A Monotone Span Program (MSP)M is a quadruple (F,M,
ε, ψ), where F is a finite field, M is a matrix (with m rows and d ≤ m columns)
over F, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective function and ε is a fixed
non-zero vector, called target vector, e.g., the column vector (1, 0, . . . , 0)T ∈ F

d.
The size of M is the number m of rows and is denoted as size(M).

As ψ labels each row with an integer i from {1, . . . ,m} that corresponds to
player Pψ(i), we can think of each player as being the “owner” of one or more
rows. Also consider a “function” ϕ from [P1, . . . , Pn] to {1, . . . ,m} which gives
for every player Pi the set of rows owned by him (denoted by ϕ(Pi)). In some
sense ϕ is the “inverse” of ψ. For any set of players B ⊆ P consider the matrix
consisting of rows these players own in M , i.e. Mϕ(B). As it is common, we
shall shorten the notation Mϕ(B) to just MB . The reader should be aware of the
difference between MB for B ⊆ P and for B ⊆ {1, . . . ,m}.

An MSP is said to compute a (complete) access structure Γ when ε ∈ im(MT
A )

if and only if A is a member of Γ . We say that A is accepted by M if and only
if A ∈ Γ , otherwise we say A is rejected by M. In other words, the players
in A can reconstruct the secret precisely if the rows they own contain in their
linear span the target vector of M, and otherwise they get no information about
the secret. There exists a so-called recombination vector λ such that MT

Aλ = ε
hence 〈λ,MA(s,ρ)T 〉 = 〈MT

Aλ, (s,ρ)T 〉 = 〈ε, (s,ρ)T 〉 = s for any secret s and
any random vector ρ. It is easy to check that the vector ε /∈ im(MT

B ) if and
only if there exists a vector k ∈ F

d such that MBk = 0 and k1 = 1. Technically
these properties mean that when we consider the restricted matrix MA for some
subset A of P, the first column is linearly dependent on the other columns if
and only if A /∈ Γ .

Note 1. [3, 11] It is well known that the number d of columns in an MSP M
can be increased without changing the access structure computed by it. The
space generated by the 2-nd up to the d-th column of M does not contain even
a non-zero multiple of the first column. Without changing the access structure
that is computed, we can always replace the 2-nd up to the d-th column of M
by any set of vectors that generates the same space.

3 On Upper Bounds for the Size of MSPs

We will start with some known properties of MSPs. Cramer and Fehr [9] proposed
a method to construct the dual MSP (i.e. the MSP computing the dual access
structure Γ⊥) starting from the MSP computing a given access structure Γ .
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Lemma 1. [9] Let an MSP M = (F,M, ε, ψ) compute Γ . Denote by λ a solu-
tion of the equation MTλ = ε and let b1,b2, . . . ,b� denote an arbitrary gen-
erating set of ker(MT ), (l = nullity(MT )). Then M⊥ = (F,M⊥, ε∗, ψ) is an
MSP computing Γ⊥, where M⊥ = [λ,b1,b2, . . . ,b�] and ε∗ is the column vector
(1, 0, . . . , 0)T ∈ F

�+1.

Note 2. Let us define the d× (�+1) matrix E to be a zero matrix except for the
entry in the upper left corner which is 1, or in other words E = ε(ε∗)T . Then
it follows from the construction proposed in Lemma 1 that the matrices M and
M⊥ satisfy the following equation MTM⊥ = E.

In his Ph.D. thesis van Dijk [10] investigates the more general setting when more
than one secret (e.g. s1, . . . , sp0 ∈ F) should be shared with an access structure.
Note that this approach allows consideration of incomplete access structures.
Van Dijk proposed a method (using the generalized vector space construction)
to build matrices which have the properties equivalent to the MSP. Recall that
we consider only the case p0 = 1, i.e. s ∈ F. It is worth to note that because of
[10–Lemma 3.4.14] when we share only one secret (i.e. p0 = 1), the generalized
vector space construction that computes (Γ,Δ) coincides with the generalized
vector space construction that computes Note that this is exactly the case for
an MSP, where we consider only one secret and a complete access structure.

Definition 3. ([10–Definition 3.2.2]) Let Γ− = {X1, . . . , Xr}. Then the set of
vectors C = {ci ∈ F

m : 1 ≤ i ≤ r} is said to be suitable for the access structure
Γ if C satisfies the following properties called g(Γ ) respectively d−(Δ).

– supP (ci) = Xi for 1 ≤ i ≤ r;
– For any vector (μ1, . . . , μr) in F

r, such that
∑r

i=1 μi �= 0, there exists a set
X ∈ Γ = Δc satisfying X ⊆ supP (

∑r
i=1 μici).

In the next theorem van Dijk provides an important link between a parity check
matrix of a code generated as a span of suitable vectors and the MSP matrix.

Theorem 1. ([10–Theorem 3.2.5, Theorem 3.2.6]) Let Γ− = {X1, . . . , Xr}.
Consider a set of vectors C = {ci : 1 ≤ i ≤ r}. Let H be a parity check matrix of
the code generated by the linear span of the vectors (1, ci), 1 ≤ i ≤ r and let H be
of the form H = (ε | H ′) (This can be assumed without loss of generality). Then
the MSP with the matrix M defined by MT = H ′ computes the access structure
Γ if and only if the set of vectors C is suitable for Γ .

There is a tight connection between an access structure and its dual. It turns
out that the codes generated by the corresponding sets of suitable vectors are
orthogonal.

Theorem 2. ([10–Theorem 3.5.4]) Let Γ− = {X1, . . . , Xr} be an access struc-
ture and (Γ⊥)− = {Z1, . . . , Zt} be its dual. Then there exists a suitable set
C = {ci : 1 ≤ i ≤ r} for Γ if and only if there exists a suitable set C⊥ = {hj :
1 ≤ j ≤ t} for Γ⊥.
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Suppose there exists a suitable set C for Γ and a suitable set C⊥ for Γ⊥. Let C∗

be the code defined by the linear span of vectors {(1, ci) : 1 ≤ i ≤ r} and let C⊥

be the code defined by the linear span of vectors of {(1,hj) : 1 ≤ j ≤ t}. Then
the codes C∗ and C⊥ are orthogonal to each other.

Note that C∗ and C⊥ are not necessarily each other’s dual. Now we point out that
the suitable set of vectors are in fact the solutions λ of the equation MTλ = ε
or in other words the suitable set of vectors consists of recombination vectors.

Lemma 2. Let Γ− = {X1, . . . , Xr} be the access structure computed by MSP
M. Also let λi ∈ F

m be the recombination vector that corresponds to Xi. Then
the set of vectors C = {λi : 1 ≤ i ≤ r} defines a suitable set of vectors for the
complete access structure Γ .

Recall that Cramer and Fehr [9] proposed a method to construct the dual MSP
(i.e., the MSP computing the dual access structure Γ⊥) starting from the MSP
computing the given access structure Γ (see Lemma 1). Now we will slightly
modify their construction.

Lemma 3. Let MSP M = (F,M, ε, ψ) compute access structure Γ . Let Γ− =
{X1, . . . , Xr} be the set of minimal sets in Γ . For each Xi denote the corre-
sponding recombination vector by λi ∈ F

m, so MTλi = ε and supP (λi) = Xi.
Then there exists an MSP M⊥ = (F,M⊥, ε∗, ψ) computing Γ⊥, where M⊥ =
[λ1,λ1 − λ2, . . . ,λ1 − λr] and ε∗ is a column vector (1, 0, . . . , 0)T of suitable
length.

Proof. We will follow the proof of Cramer and Fehr with some minor changes.
Note that for any Xi there may be several recombination vectors λi; we pick one
of them and denote it by λi. Note also that the vectors λ1 − λ2, . . . ,λ1 − λr

from ker(MT ) may not generate the full kernel space.
If Ac /∈ Γ , then there exists a vector k such that MAck = 0 and k1 = 1.

Define λ∗ = MAk, or equivalently define λ∗∗ = Mk. Note again that λ∗∗
A = λ∗

and λ∗∗
Ac = 0. Then (M⊥

A )Tλ∗ = (M⊥)Tλ∗∗ = (M⊥)T (Mk) = ((M⊥)TM)k =
(MTM⊥)Tk = ε∗, thus A ∈ Γ⊥.

On the other hand, if Ac ∈ Γ , then there exists a vector λ̃ such that MT λ̃ = ε
and supP (λ̃) ⊆ Ac, i.e. λ̃A = 0. Note that we can even choose λ̃ to be in the
linear span of the vectors λ1,λ2, . . . ,λr. Now by the definition of M⊥, it follows
that there exists a vector k such that k1 = 1 and M⊥k = λ̃, i.e. M⊥

A k = 0, thus
A ∈ Δ⊥ which concludes the proof. ��

Thus Lemma 3 improves the construction of Cramer and Fehr (see Lemma 1)
showing that a matrix with fewer columns suffices. Recall that r = |Γ−| and
t = |Δ+|. Let

r̄ = dim span{λi; 1 ≤ i ≤ r}. (1)

Analogously define t̄ for the dual MSP M⊥. Note that r̄ ≤ r and t̄ ≤ t. Com-
bining Lemma 3 and Note 1 yields a construction of an MSP with particular
properties.
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Lemma 4. Let Γ be a connected access structure and let Γ⊥ be its dual. Then
there exist MSPs such that M⊥ has size m × r and M has size m × t, where r
is defined by (1).

Lemma 5. Let Γ be a connected access structure and let Γ⊥ be its dual. Then
there exists an MSP program computing Γ with size:

m = r̄ + t̄− 1.

and such that the matrix M⊥ has size m× r̄ and matrix M has size m× t̄.

Proof. Let H = (ε | MT ) and H⊥ = (ε | − (M⊥)T ). We prove (see Lemma 2)
that the vectors (1,−λi) generate the code C since they are a suitable set of
vectors. From the construction of the dual MSP (see Lemma 3) it follows that
the generator matrix M can be rewritten as G = (ε | − (M⊥)T ). But the last
observation implies that these matrices are the same, i.e. G = H⊥ holds. It is
now straightforward to obtain the equality r + t = m + 1. Finally, note that
because of Lemma 4 we have for M and M⊥ that M⊥ has size m × r and M
has size m× t. ��
Now we are ready to state the main result in this section.

Theorem 3. Let Γ be a connected access structure and let Γ⊥ be its dual. Let
|Γ−| = r and |(Γ⊥)−| = t. Then for any field F, there exists a monotone span
program M computing Γ with size satisfying the following upper bound:

size(M) ≤ r + t− 1.

Proof. From Lemma 5 and the obvious facts that r̄ ≤ r and t̄ ≤ t we obtain that
m ≤ r + t− 1. ��

Note 3. By Definition (Γ⊥)− = {Z1, . . . , Zt} implies that Δ+ = {Y1, . . . , Yt},
with Zj = Y c

j . In other words the size of an MSP is limited from above by the
sum of the number of minimal and the number of maximal sets minus one.

We will provide an alternative proof of Lemma 5 using van Dijk’s approach.
Recall that the matrix G is the generator matrix of the code C∗, generated by
the suitable set of vectors (1, ci), 1 ≤ i ≤ r. The matrix H is the parity check
matrix of the code C∗; it is of the form H = (ε | MT ). Analogously we have the
matrix G⊥ as a generator matrix of the code C⊥, generated by a suitable set of
vectors (1,hj), 1 ≤ j ≤ t. The matrix H⊥ is a parity check matrix for the code
C⊥, is of the form H⊥ = (ε | (M⊥)T ). Here we will use MSP M⊥ with target
vector −ε. If we summarize the results from Theorems 1 and 2 we have:

GHT = HGT = 0
G⊥(H⊥)T = H⊥(G⊥)T = 0
G(G⊥)T = G⊥GT = 0

As we pointed out the codes C∗ and C⊥ are not necessarily each other’s dual,
i.e. H⊥HT = H(H⊥)T �= 0. Thus our goal now is to prove that for any MSP M
there exists an MSP M⊥ such that C∗ and C⊥ are dual, i.e. C∗ = C.
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Lemma 6. Denote the linear span of the rows of matrices G and H⊥ by span(G)
respectively span(H⊥). There are matrices G and H⊥ such that span(G) =
span(H⊥).

Proof. As van Dijk proved in Theorem 2, span(G) ⊆ span(H⊥) (since G(G⊥)T =
G⊥GT = 0). Note that these equations also mean that vectors (1, ci); 1 ≤ i ≤ r
and (1,hj); 1 ≤ j ≤ t are orthogonal. Thus the matrices have the following form:

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,h1)
(1,h2)

...
(1, h̃1)
(1, h̃2)

...
(0,h

1
)

(0,h
2
)

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
H⊥ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1, c1)
(1, c1)

...
(1, c̃1)
(1, c̃2)

...
(0, c1)
(0, c2)

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
MT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1

h2 − h1

h3 − h1

...
h̃1 − h1

h̃2 − h1

...
h

1

h
2

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(M⊥)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2 − c1

c3 − c1

...
c̃1 − c1

c̃2 − c1

...
c1

c2

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The matrix H consists of the row vectors (1,hj) and probably other vectors

of the form (1, h̃j) and/or (0,h
j
) and all of them are orthogonal to (1, ci). Anal-

ogously, the matrix H⊥ consists of the row vectors (1, ci) and probably other
vectors of the form (1, c̃i) and/or (0, ci) and all of them are orthogonal to (1,hj).
First, note that in the matrix E defined in Note 2 the entry in the upper left
corner could be any non-zero number. Now this entry is −1 since we choose the
target vector in M⊥ to be −ε. Consider the equation (M⊥)TM = MTM⊥ = E

from Note 2. This equation implies that the vectors h1, hj−h1, h̃j−h1 and h
j

are orthogonal to the vectors c1, ci−c1, c̃i−c1 and ci, except that 〈h1, c1〉 = −1
should hold. Now using the orthogonality relations between the vectors (1, ci)
and the vectors (1,hj), (1, h̃j), (0,h

j
) and also between (1,hj) and (1, ci), (1, c̃i),

(0, ci) we obtain:

〈hj
, c̃i〉 = 0, 〈ci, h̃j〉 = 0, 〈hj

, ci〉 = 0, 〈h̃j, c̃i〉 = −1.

Thus, we have

〈(0,hj
), (1, c̃i)〉 = 0, 〈(0,hj

), (0, ci)〉 = 0,

〈(1, h̃j), (1, c̃i)〉 = 0, 〈(1, h̃j), (0, ci)〉 = 0.

Hence H is orthogonal to H⊥, i.e. H(H⊥)T = H⊥HT = 0 holds. But, now it
immediately follows that span(G) ⊇ span(H⊥). Hence span(H⊥) = span(G),
which completes the proof. ��
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Define

r̃ = dim span{(1, ci); 1 ≤ i ≤ r}, (2)
t̃ = dim span{(1,hj); 1 ≤ j ≤ t}.

Now we are in position to prove the following result.

Lemma 7. Let Γ be a connected access structure and let Γ⊥ be its dual. Then
there exists an MSP program computing Γ of size m satisfying:

m = r̃ + t̃− 1.

and such that the matrix M⊥ has size m× r̃ and the matrix M has size m× t̃.

Proof. We have that G is an r̃ × (m + 1) matrix, since r̃ is the dimension of
the code C. It also follows that r̃ ≤ r. On the other hand H is a parity check
matrix of code C. Hence H is an (m + 1 − r̃) × (m + 1) matrix, and thus M is
an m× (m + 1− r̃) matrix, since H = (ε | MT ).

Analogously we have that G⊥ is a t̃× (m+1) matrix, since t̃ is the dimension
of the code C⊥. Also it follows that t̃ ≤ t. On the other hand H⊥ is a parity
check matrix of the code C⊥. Hence H⊥ is an (m + 1 − t̃) × (m + 1) matrix,
and thus M⊥ is an m × (m + 1 − t̃) matrix, since H⊥ = (ε | (M⊥)T ). Note
that M and M⊥ have the same size m. As a consequence of Lemma 6, i.e. from
span(G) = span(H⊥) the following equality holds: r̃ + t̃ = m + 1. ��
Recall that the vectors λi form a suitable set of vectors. Note that Lemma 7
actually restates Lemma 5.

Corollary 1. Let M be an MSP program computing Γ , and M⊥ be an MSP
computing the dual access structure Γ⊥. Let the code C⊥ have the parity check
matrix H⊥ = (ε | (M⊥)T ) and the code C have the parity check matrix H =
(ε | MT ). Then for any MSP M there is an MSP M⊥ such that C and C⊥ are
dual.

4 On Lower Bounds for the Size of MSPs

In earlier works [3, 5, 11, 12] a lower bound for the size of an MSP has been
proven. As we pointed out the problem of estimating the size of an MSP is related
to many problems in complexity theory such as (symmetric) branching programs,
(undirected) contact schemes, formula size as well as with the complexity of some
distributed protocols in cryptography.

That is why it should not surprise the reader that the notation in this section
differs from the original author’s notation. The idea used in [3, 11, 5, 12] is to show
that if the size of a span program (i.e., the number of rows in the matrix) is too
small, and the program accepts all the minimal sets of the access structure then
it must also accept an input that does not contain a minimal set. The latter
means that the program does not compute the access structure, since any input
accepted by the MSP should contain at least one minimal set.

Beimel et al. [3] introduced a notion of a critical family, which we will redefine
as the notion of critical set of minimal sets.
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Definition 4. Let Γ− = {X1, . . . , Xr} be the set of minimal sets in the access
structure Γ . Let H ⊆ Γ− be a subset of the set of minimal sets. We say that a
subset H ⊆ Γ− is a critical set of minimal sets for Γ−, if every Xi ∈ H contains
a set Bi ⊆ Xi, |Bi| ≥ 2, such that the following two conditions are satisfied.

B1. The set Bi uniquely determines Xi in the set H. That is, no other set in H
contains Bi.

B2. For any subset Y ⊆ Bi, the set SY = ∪Xj∈H,Xj∩Y 	=∅(Xj\Y ) does not contain
any member of Γ−.

Note that Condition B2 requires that SY does not contain any minimal set of
Γ , not just a minimal set from H. We can rewrite the set SY also as

SY = ∪Xj∈H,Xj∩Y 	=∅(Xj ∩ Y c) = (∪Xj∈H,Xj∩Y 	=∅Xj) ∩ Y c

= (∪Xj∈H,Xj∩Y 	=∅Xj) \ Y.

Thus we can restate B2 as follows:
B2′ : For any subset Y ⊆ Bi, there is no member of Γ− which is contained in
the set S′

Y = ∪Xj∈H,Xj∩Y 	=∅Xj and is a subset of Y c.

Theorem 4. [3, 11, 5, 12] Let Γ be an access structure, and let H be a critical
set of minimal sets for Γ . Then for every field F, the size of any monotone span
program M computing Γ

size(M) ≥ |H|.

Proof. [sketch]
Let M be the matrix of a monotone span program computing Γ , and let m

be the number of rows of M . Any minimal set of H is accepted by the program.
By definition, this means that, for every X ∈ H, there is some recombination
vector λX ∈ F

m such that MTλX = ε, where λX has nonzero coordinates only
at rows labelled by variables from X. For any given X there may be several such
vectors, we pick one of them and denote it by λX .

Since λX is taken from F
m, the number of linearly independent vectors among

the vectors λX for X ∈ H is a lower bound for m, i.e., for the size of the span
program computing Γ . Thus the following lemma concludes the proof. ��

Lemma 8. [3] Let Γ be an access structure, and let H be a critical set of min-
imal sets for Γ . Then the recombination vectors λX for X ∈ H are linearly
independent.

Gal [12] derives a superpolynomial (in the number of players) worst case asymp-
totic lower bound for the size of MSPs, showing that there are access structures
Γ , with suitable critical sets of minimal sets H. In [17] the authors argued that
there are cases in which asymptotically the number of columns and the number
of rows (the size of MSP) are identical. Beimel et al. observe also that sizes of a
MSP and its dual MSP are equal.
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Theorem 5. [3, 11] For every field F, size(M) = size(M⊥).

Note that size(M) ≥ max(|H|, |H⊥|) ≥ |H|+|H⊥|
2 . Now we are ready to prove the

main theorem of this section, the improvement of the bound of Beimel et al. [3]
(see Theorem 4).

Theorem 6. Let Γ be an access structure and Γ⊥ be its dual, let H be a critical
set of minimal sets for Γ and let H⊥ be a critical set of minimal sets for Γ⊥.
Then for any field F, the size of any monotone span program M computing Γ is
bounded from below by the sum of the sizes of both critical minimal sets minus
one, i.e.,

size(M) ≥ |H|+ |H⊥| − 1.

Proof. Let M be the matrix of a monotone span program computing the access
structure Γ , and let m be the number of rows of M . Let Γ− = {X1, . . . , Xr} be
a set of minimal sets in the access structure Γ and let Δ+ = {Y1, . . . , Yt} be a
set of maximal sets in Δ = Γ c.

For each minimal set Xi consider the corresponding recombination vector
λi ∈ F

m, so MTλi = ε and supP (λi) = Xi. Recall that the recombination
vector λi corresponds to the vectors λX in the original proof of Beimel et al.
[3] (see Theorem 4). For any Xi there may be several such vectors; in that
case we pick one of them and denote it by λi. From the proof of Beimel et al.
(see Lemma 8) it follows that for any critical set of minimal sets H of Γ− the
corresponding recombination vectors λ are linearly independent. Now consider
the vectors λ1 −λi for i = 2, . . . , r. It is easy to see that all these vectors are in
the kernel of the transposed matrix MT , i.e. in ker(MT ). Therefore for any H
we have nullity(MT ) ≥ |H| − 1.

For each maximal set Yi consider a vector k ∈ F
d such that MYi

k = 0 and
k1 = 1. For any given Yi there may be several such vectors, again we pick one
of them. Define λ̃i = Mk. Note that supP (λ̃i) = Y c

i ∈ (Γ⊥)−. From the proof

of Lemma 1 as well as from the proof of Lemma 3 we have that (M⊥)T λ̃i = ε∗.
Hence we have the same correspondence between recombination vectors λ̃i and
sets Y c

i ∈ (Γ⊥)− as we have for recombination vectors λi and sets Xi ∈ Γ−.
Applying again the result of Beimel et al. Lemma 8 but for the dual access
structure Γ⊥ we obtain that for any critical set of minimal sets H⊥ of (Γ⊥)− the
corresponding recombination vectors λ̃i are linearly independent. Now note that
by construction the vectors λ̃i are in the image of the matrix M , i.e. λ̃i ∈ im(M).
Hence rank(M) ≥ |H⊥|. On the other hand since the row rank is equal to column
rank we have rank(MT ) = rank(M) ≥ |H⊥|.

The last step is to apply the rank and nullity theorem for the transposed
matrix MT :

m = rank(MT ) + nullity(MT ) ≥ |H⊥|+ |H| − 1,

which completes the proof. ��
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Note that the worst case superpolynomial asymptotic estimation for the size
of MSPs due to Gal [12] does not change because of this relation.

Revisiting the proof of Theorem 6 we notice that nullity(MT ) = r̄ − 1 and
rank(MT ) = t̄. Hence we have actually three different proofs of the fact that
m = rank(MT ) + nullity(MT ) = r̄ + t̄ − 1 (see also Lemma 5 and Lemma 7).
Now observe that |H| ≤ r̄ and |H⊥| ≤ t̄ give the lower bound (Theorem 6)
and that r̄ ≤ r and t̄ ≤ t give the upper bound (Theorem 3). Note that the
lower bound is achieved if there exist critical minimal and maximal sets with
exactly (the maximum possible number) r̄ and t̄ elements. However, how one
can efficiently build an MSP computing Γ with the smallest size remains still an
open question.

5 Conclusions

In this paper we have shown an upper and improve the lower bound for the size
of monotone span programs. Next we extend the result of van Dijk showing that
for any MSP there exists a dual MSP such that the corresponding codes are
dual.
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Abstract. Until now no distributed discrete-logarithm key generation
(DKG) protocol is known to be universally composable. We extend Feld-
man’s verifiable secret sharing scheme to construct such a protocol. Our
result holds for static adversaries corrupting a minority of the parties
under the Decision Diffie-Hellman assumption in a weak common ran-
dom string model in which the simulator does not choose the common
random string.

Our protocol is optimistic. If all parties behave honestly, each party
computes O(3.5k) exponentiations, and otherwise each party computes
O(k2) exponentiations, where k is the number of parties. In previous
constructions each party always computes Ω(k2) exponentiations.

1 Introduction

The ability of a group of parties to jointly generate a public key for which
the secret key is shared is a cornerstone of threshold cryptography. Without
a method to do this securely the parties must resort to a preliminary phase
in which a trusted key generating party is present. In some applications no
natural trusted party exists, e.g. electronic voting. When a discrete-logarithm
based cryptographic primitive is used, distributed key generation often amounts
to generating a public key y = gx for which the corresponding secret key x is
secretly and verifiably shared among the parties. Following Gennaro et al. [14]
we call a protocol that does this securely a DKG protocol.

1.1 Previous Work

The problem of constructing a DKG protocol was first investigated by Pedersen
[25]. His basic building block was a new non-interactive verifiable secret sharing
scheme [24] based on ideas of Feldman [8]. Pedersen DKG has been used as a
subprotocol in numerous constructions in the literature, but it has never been
verified that Pedersen DKG composes correctly in general. Indeed, Gennaro et
al. [14] pointed out that the Pedersen DKG may generate a public key which is
biased by the adversary. They also gave a new modified protocol and gave a more
careful analysis. Adaptively secure protocols for DKG where given by Canetti et
al. [6] and Jarecki and Lysyanskaya [21]. Independently, Frankel, MacKenzie and
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Yung gave key generation protocols secure against adaptive adversaries in several
papers [9, 10, 11, 12]. They also considered threshold variants of RSA. Recently,
Gennaro et al. [13] investigated the security of the original Pedersen DKG, i.e.
how the adversary can benefit from biasing the public key. They show that under
certain circumstances the adversary gains very little from this additional power.

Canetti [5] and independently Pfitzmann and Waidner [26], proposed security
frameworks for reactive processes. We use the former framework, i.e. the Uni-
versally Composable security framework (UC-security). Both frameworks have
composition theorems, and are based on older definitional work. The initial ideal-
model based definitional approach for secure function evaluation is informally
proposed by Goldreich, Micali, and Wigderson in [17]. The first formalizations
appear in Goldwasser and Levin [18], Micali and Rogaway [23], and Beaver [3].
Canetti [4] presents the first definition of security that is preserved under com-
position. See [4, 5] for an excellent background on these definitions.

1.2 Contribution

We give a protocol that securely realizes the ideal DKG functionality in a univer-
sally composable way under the Decision Diffie-Hellman assumption. Thus, our
protocol can be plugged as a subprotocol in any setting where a DKG protocol
is needed. Our result holds in a very weak common random string model in that
the simulator does not choose the common random string.

Let k be the number of parties. Our protocol is optimistic and each party
computes only O(3.5k) exponentiations if all parties behave honestly and O(k2)
otherwise. In previous constructions each party computes Ω(k2) exponentiations.

Pedersen commitments [25] are not used at any point in our protocol. We
think it is particularly nice to see that Feldman’s original ideas can be used
directly.

We note that in work independent of ours, Abe and Fehr [1] have announced
an adaptively UC-secure DKG protocol. Each party computes Ω(k2) exponen-
tiations in their protocol, and the security rests on the DDH-assumption.

1.3 Universally Composable Security

Throughout this paper we employ the universally composable security framework
(UC-framework) of Canetti [5]. Our result does not depend on technicalities of
any particular flavor, but to avoid any ambiguity we review in Appendix A the
precise definitions we use. The idea of UC-security is to define security such that
if a protocol π “securely realizes” a functionality F , then π can be plugged in
as a subprotocol in any setting where a functionality F is needed. Thus, the
model allows modular analysis of the security of protocols, and guarantees that
the security properties of a protocol is preserved regardless of where it is used.

The framework is formalized by defining a real model in which the protocol
π executes, and an ideal model which essentially contains the functionality F
the protocol should realize. The protocol π is said to securely realize F if for
each adversary A in the real model there exists an ideal adversary S in the ideal
model such that no environment Z can distinguish between executions in the
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real and ideal models. A hybrid model is a real model where the protocol π is
given access to additional functionalities F ′. The protocol π′′, where each call
to F ′ is replaced by an invokation of a protocol π′ is called the composition of
π and π′. The UC-composition theorem says that π′′ securely realizes F if π
securely realizes F in the F ′-hybrid model and π′ securely realizes F ′.

1.4 Notation

Throughout, M1, . . . ,Mk denote the participating parties, which are modeled as
interactive Turing machines. We abuse notation and use Mj to denote both the
machines themselves and their identity. We writeMk/2 to denote the set of static
polynomial time non-uniform Turing machines that can corrupt a minority of
the parties.

We use the term “randomly” instead of “uniformly and independently at
random”. We assume that Gq is a group of prime order q with generator g for
which the Decision Diffie-Hellman Assumption holds, e.g. a subgroup Gq of prime
order q of Z

∗
p for some p = κq+1. We take log p = n to be our security parameter,

and assume that computing an exponentiation in Gq takes time corresponding
to computing at least n multiplications in Gq. This allows us to express the
complexity of our procotol in terms of the number of exponentiations computed.

Assumption 1 (Decision Diffie-Hellman). Let e1, e2, e3 ∈ Zq be randomly
chosen. The (non-uniform) Decision Diffie-Hellman assumption for Gq states
that for all polynomial time non-uniform Turing machines A, ∀c > 0, ∃n0, such
that for n > n0:

|Pr[A(ge1 , ge2 , ge3) = 1]− Pr[A(ge1 , ge2 , ge1e2) = 1]| < 1
nc .

We use CI to denote the ideal communication model. It routes authenticated
messages between the parties, the ideal adversary, and the functionalities. The
first component of a list handed to CI is the identity of the receiver. The ad-
versary decides when CI delivers messages. The notion of a bulletin board is
intuitively clear.

Functionality 1 (Bulletin Board (cf. [28])). The ideal bulletin board func-
tionality, FBB, running with parties M1, . . . ,Mk and ideal adversary S.

1. FBB holds a database indexed on integers. Initialize a counter c = 0.
2. On receiving (Mi, Write,mi), mi ∈ {0, 1}∗, from CI , store (Mi,mi) under c

in the database, hand (S, Write, c,Mi,mi) to CI , and set c← c + 1.
3. Upon receiving (Mj , Read, c) from CI check if a tuple (Mi,mi) is stored in the

database under c. If so hand ((S,Mj , Read, c,Mi,m), (Mj , Read, c,Mi,mi))
to CI . If not, hand ((S,Mj , NoRead, c), (Mj , NoRead, c)) to CI .

Goldwasser and Lindell [19] show that authenticated broadcast can be securely
realized with respect to blocking Mk/2-adversaries. On the other hand Lindell,
Lysyanskaya and Rabin [22] show that composable authenticated broadcast can
not be realized for non-blocking MB-adversaries if B > k/3. A non-blocking
adversary is an adversary that never delays the delivery of messages to honest
parties indefinitely. The following lemma follows straightforwardly from [19].
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Lemma 1. There exists a protocol πBB that securely realizes FBB with respect
to blocking Mk/2-adversaries.

In many constructions the parties are assumed to be able to communicate
secretly with each other. In the UC-framework this was modeled by Canetti [5].
Below we give a slightly modified variant, better suited for our setting.

Functionality 2 (Multiple Message Transmission). The ideal multiple
message transmission, FMMT, with parties M1, . . . ,Mk and ideal adversary S.

1. In the first activation expect to receive a value (Receiver) from some party
Mj . Then hand ((S, Receiver,Mj), {(Mi, Receiver,Mj)}ki=1) to CI .

2. Upon receiving (Mj , Send,Mi,mj) from CI , hand
((S,Mj , Send,Mi, |mj |), (Mi,Mj ,mj)) to CI .

From Claim 16 in Canetti [5] and the fact that the Cramer-Shoup cryptosystem
[7] is chosen ciphertext secure in the sense of Rackoff and Simon [27] under the
Decision Diffie-Hellman assumption in Gq, the lemma below follows.

Lemma 2. There exists a protocol πMMT that securely realizes FMMT under the
Decision Diffie-Hellman assumption in Gq.

A common assumption used in the construction of protocols is the existence
of a common random string (CRS). A common reference string is different from
a CRS in that it may have additional structure, or be generated together with
a trapdoor which allows easy simulation. Previous DKG-protocols require the
existence of a common reference string g, h ∈ Gq such that the simulator knows
logg h. When this is not the case the protocols can not be simulated. We make
no such assumptions. Our simulator is not allowed to choose the CRS. Thus,
our CRS can truly be a random string defined by a physical experiment.

Functionality 3 (Common Random String (CRS)). The ideal common
random string, FCRS, running with parties M1, . . . ,Mk and ideal adversary S
simply chooses h1, h2, h3 ∈ Gq randomly and hands
((S, CRS, h1, h2, h3), {(Mj , CRS, h1, h2, h3)}kj=1) to CI .

2 Distributed Key Generation

The functionality below captures the notion defined by Gennaro et al. [14], but
in the language of the UC-framework. A public key y = gx is generated and
given to all parties. Each party also receives a share sj of the secret key x.

Functionality 4 (Distributed Key Generation (DKG)). The ideal Dis-
tributed Key Generation over Gq, FDKG, running with generators M1, . . . ,Mk,
and ideal adversary S proceeds as follows. Let t = �k/2− 1�.

1. Wait for (CorruptShares, {j, sj}j∈IM
) from S, where IM is the set of indices

of corrupted parties.



Universally Composable DKG with Linear Number of Exponentiations 267

2. Choose aι ∈ Zq randomly under the restriction a(j) = sj for j ∈ IM , where
a(z) =

∑t
ι=0 aιz

ι. Then define sj = a(j) for j �∈ IM , and set y = ga0 .
3. Hand ((S, PublicKey, y), {(PublicKey, y, sj)}kj=1) to CI .

Note that the adversary chooses the shares handed to corrupted parties.
Recall the verifiable secret sharing scheme of Feldman [8]. A dealer shares

a secret a0 ∈ Zq by choosing aι ∈ Zq randomly and forming a polynomial
a(z) =

∑t
ι=0 aιz

ι of degree t. Then it publishes αι = gaι and hands a share
sj = a(j) to the j:th party. This allows the receiver of a share sj to verify
its correctness by checking that gsj =

∏t
ι=0 α

jι

ι . If a share is not correct the
receiver complains and forces the dealer to publish a correct share. To recover
the secret the receivers simply publish their shares. This allows anybody to find
a set of correct shares and Lagrange interpolate the secret. The distribution step
of Feldman’s protocol gives a way to share the secret key x corresponding to a
public key α0 = gx.

Next we give an informal description of our protocol. The parties are parti-
tioned into three sets and each set is assigned a random generator hf ∈ Gq. Each
party runs a copy of Feldman’s protocol, but using its set’s generator. Instead of
verifying each individual dealer’s shares and public information, they are com-
bined within each set of parties. This allows efficient verification. The basic idea
behind this trick was taken from Gennaro et al. [15]. If some party is malicious,
the efficient way of verifying shares is abandoned and individual verifications are
performed. From this each party Mj computes a combined share sj , the sum
of all correct shares it received. Then each party publishes βj = gsj . Note that
this time all parties use the common generator g. Then the parties verify the
correctness of the βj ’s and construct a joint key y = gx, for which x is the secret
to which the combined shares sj correspond. If the verification fails each party
is essentially required to prove that its βj is correct. This allows all parties to
agree on a set of correct βj from which the joint key can be constructed.

Let {Ω1, Ω2, Ω3} be a partition of {1, . . . , k} such that ||Ωf | − |Ωf ′ || ≤ 1 for
f �= f ′. Define f(j) to be the value of f such that j ∈ Ωf . All parties always
verify that their input is contained in Gq or Zq as expected by the protocol.

Protocol 1 (Distributed Key Generation (DKG)). Let t = �k/2−1�. The
Distributed Key Generation protocol with generators M1, . . . ,Mk.

Preliminary Phase
1. Hand (Receiver) to FMMT.
2. Wait for (Receiver,Ml) for l = 1, . . . , k from FMMT.
3. Wait for (CRS, h1, h2, h3) from FCRS.

Key Generation Phase
4. Define f by j ∈ Ωf . Choose aj,ι ∈ Zq randomly, and define aj(z) =∑t

ι=0 aj,ιz
ι, αj,ι = h

aj,ι

f , and sj,l = aj(l). Hand (Send,Ml, Share, sj,l) to
FMMT for l �= j and (Write, PublicElements, {αj,ι}tι=0) to FBB.

5. Wait until (Ml, PublicElements, {αl,ι}tι=0) appears on FBB and a message
(Ml, Share, sl,j) is received from FMMT for l �= j. Choose a random n-subset
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Aj ⊂ {0, . . . , t} (if t < n then Aj = [k]), compute θj,f,ι =
∏

l∈Ωf
αl,ι for

f = 1, 2, 3 and ι ∈ Aj . Then hand (Write, Products, {θj,f,ι}ι∈Aj ,f∈{1,2,3})
to FBB.

6. Wait until (Ml, Products, {θl,f,ι}ι∈Al,f∈{1,2,3}) appears on FBB for l �= j.
Then verify that θl,f,ι = θl′,f,ι for ι ∈ Al ∩ Al′ . If not go to Step 12. If so
define θf,ι = θl,f,ι for any l such that ι ∈ Al.

7. Verify that h

∑
l∈Ωf

sl,j

f =
∏t

ι=0 θ
jι

f,ι, for f = 1, 2, 3. If so, hand
(Write, Complaints, ∅) to FBB. Otherwise, go to Step 12.

8. Wait until (Ml, Complaints, Δl) appears on FBB for l �= j. If all Δl = ∅ set
I1 = {1, . . . , k}. Otherwise, go to Step 13.

9. Define sj =
∑

l∈I1
sl,j and set βj = gsj . Then hand

(Write, ConstructPublicKey, βj) to FBB.
10. Wait until (Ml, ConstructPublicKey, βl) appears on FBB for l ∈ I1. Verify

that βj =
∏t+1

i=1 β
∏

l�=i
l−j
l−i

i . If so set I2 = {1, . . . , t + 1}. If not, go to Step 15.

11. Define y =
∏

i∈I2
β

∏
l�=i

l
l−i

i and output (PublicKey, y, sj).

Handle Cheating with the sl,i and αl,ι.
12. Verify for l = 1, . . . , k that h

sl,j

f(l) =
∏t

ι=0 α
jι

l,ι. Let Δj be the set of indices l

for which inequality holds. Then hand (Write, Complaints, Δj) to FBB.
13. Wait until (Ml, Complaints, Δl) appears on FBB for l �= j. Let Γj = {l | j ∈

Δl}. Then hand (Write, Refutes, {sj,l}l∈Γj
) to FBB.

14. Wait until (Ml, Refutes, {sl,i}i∈Γl
) appears on FBB for l �= j and replace old

values of sl,j with the new. Let I1 be the set of l such that h
sl,i

f(l) =
∏t

ι=0 α
iι

l,ι

for all i such that (l, i) ∈ [k]× {j} ∪
⋃k

i′=1(Δi′ × {i′}). Then go to Step 9.

Handle Cheating with the βl.
15. Set cf,j,0 =

∑
l∈Ωf ∩I1

sl,j and choose cf,j,ι ∈ Zq for ι > 0 randomly. Define

cf,j(z) =
∑t

ι=0 cf,j,ιz
ι, γj,ι = gc1,j,ι+c2,j,ι+c3,j,ι , δf,j,ι = h

cf,j,ι

f , and ζf,j,l =
cf,j(l). Then hand (Send,Ml, Share2, (ζ1,j,l, ζ2,j,l, ζ3,j,l)) to FMMT for l ∈ I1
and hand (Write, PublicElements2, {γj,ι, δ1,j,ι, δ2,j,ι, δ3,j,ι}tι=1) to FBB.

16. Wait for (Ml, PublicElements2, {γl,ι, δ1,j,ι, δ2,j,ι, δ3,j,ι}tι=1) on FBB for l ∈
I1. Set γl,0 = βl and δf,l,0 =

∏
i∈Ωf ∩I1

αi,ι. Verify gζ1,l,j+ζ2,l,j+ζ3,l,j =∏t
ι=0 γ

jι

l,ι and h
ζf,l,j

f =
∏t

ι=0 δ
jι

f,l,ι. Let Δ′
j be the set of indices for which

the verification fails. Then hand (Write, Complaints2, Δ′
j) to FBB.

17. Wait until (Ml, Complaints2, Δ′
l) appears on FBB for l ∈ I1. Let Γ ′

j = {l |
j ∈ Δ′

l}. Then hand (Write, Refutes2, {ζ1,j,l, ζ2,j,l, ζ3,j,l}l∈Γ ′
j
) to FBB.

18. Wait until (Ml, Refutes2, {ζ1,j,l, ζ2,j,l, ζ3,j,l}i∈Γl
) appears on FBB for l ∈ I1

and replace the old values of ζf,l,j with the new. Let I2 be the lexico-
graphically first set of l such that gζ1,l,i+ζ2,l,i+ζ3,l,i =

∏t
ι=0 γ

iι

l,ι and hζf,l,i =∏t
ι=0 δ

iι

f,l,ι for all i such that (l, i) ∈ I1×{j}∪
⋃k

i′=1(Δ
′
i′ ×{i′}). Then go to

Step 11.

All shares corresponding to a partition Ωf are verified together. One can also
consider verifying smaller sets together if some cheating is expected. Then if
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cheating is detected, fewer shares have to be verified individually. This changes
the security analysis only slightly.

Remark 1. Theoretically, it suffices that each party chooses an e(n)-subset in
Step 5, where e(n) is a function such that e(n)/ log n = Ω(1).

Theorem 1. The protocol π above securely realizes FDKG with respect to Mk/2-
adversaries in the (FBB,FMMT,FCRS)-hybrid model under the DDH-assumption.

If all parties behave honestly, each party computes O(3.5k) exponentiations
in Gq. In the worst case each party computes O(k2) exponentiations.

Corollary 1. If π is composed with πMMT, the result holds in the (FBB,FCRS)-
hybrid model. If also composed with πBB the result holds in the FCRS-hybrid
model for blocking adversaries.

Some intuition behind the construction and for the proof of Theorem 1 fol-
lows. Since the adversary could potentially generate the shares it distributes
after receiving shares from all honest parties, it can choose the shares it dis-
tributes such that the combined shares sj of corrupted parties take on certain
values. This is why we must allow the ideal adversary to do this in the DKG
functionality as well (the distribution of y is unbiased).

Already after the public elements αj,ι are published the simulator can extract
the secrets of corrupt parties, compute the resulting final combined shares, and
feed them to the ideal functionality. To simulate honest dummy parties, the ideal
adversary generates in the second step public elements βj that appear correct
to the corrupt parties, but they are carefully chosen such that the public key
y output by a protocol execution is identical to the public key output by the
ideal functionality. This implies that the αj,ι and βj are inconsistent. This fact
must be hidden from the adversary and environment such that the latter can
not distinguish a simulation from a real execution. This must hold despite that
the environment knows all shares sj at the end of an execution.

The use of three independent generators h1, h2 and h3 in the first phase
ensures that no adversary or environment can check if the final shares sj cor-
respond to the public elements αl,ι. The adversary is essentially given a tuple
(h1, h2, h

e1
1 , he2

2 , (1− b)e3 + b(e1 + e2), where h1, h2 ∈ Gq and e1, e2, e3 ∈ Zq are
random, and must guess b. This problem is related to the DDH-problem as fol-
lows. Consider a tuple (h1, u, v, w), where (u, v, w) = (he1

1 , he2
1 , h

be1e2+(1−b)e3
1 ).

This is a DDH-tuple if b = 1. Define h2 = u = he1
1 , U = hσ

1/v = hσ−e2
1 ,

V = w = h
(1−b)e3+be2
2 , and W = σ for a random σ. Then (h1, h2, U, V,W ) is a

tuple of the first type and b = 1 precisely when (u, v, w) is a DDH-triple. In fact
we have translated an instance of the DDH-problem to an instance of a problem
that the adversary and environment must solve to distinguish a simulation from
a real execution of our protocol.

Although the UC-framework allows it, we have not used any trapdoor for the
common random string in the simulation. In fact the common random string
is not even chosen by the simulator. Thus, we feel that our use of the common
random string is very mild.
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Proof (Theorem 1 and Corollary 1). It is easy to verify the complexity claim in
the non-optimistic case by counting.

The optimistic case is not as obvious. In Step 4 we invoke a corollary in Sec-
tion 8.5 in Aho, Hopcroft, and Ullman [2] which says that kth degree polynomial
over Zq can be evaluated in k points using at most k log2 k arithmetic operations
(i.e. +, −, ×, /) in Zq. Thus, this step is performed in time corresponding to
compute k exponentiations.

In Step 5 each party computes n products, each having k factors. This cor-
responds to computing k exponentiations.

In Step 7 the exponents jι are computed iteratively using the recursion jι =
j · jι−1. The cost is at most k multiplications, and ignored. Similarly the cost
of the multiplication of the exponentiated elements is ignored. Thus, the cost of
this step is k/2 exponentiations, since this is how many ordinary exponentiations
are performed.

In Step 10 and Step 11 k ordinary exponentiations are computed, but we
must also consider how to compute the exponents in these products. We note
that the products are almost factorial (here it is in fact necessary to have I2 =
{1, . . . , t+1}), i.e.

∏
l 	=i(l−i) = (1−i)(2−i)·. . .·((i−1)−i)((i+1)−i)·. . .·(t+1−i).

We compute all factorials 1!, 2!, 3!, . . . , (t+1)! in Zq and their inverses. Then each
of our exponents can be formed using only 4 multiplications. Thus, all exponents
can be computed using at most O(k) multiplications, and the total cost of the
two steps corresponds to k exponentiations.

In total each party computes O(3.5k) exponentiations.
We construct an ideal adversary S that runs any hybrid adversary A as a

blackbox. Then we show that if S does not imply that the protocol is secure,
the DDH-assumption is broken.

The Ideal Adversary S. Let IM be the set of indices of generators corrupted
by A. The ideal adversary S corrupts the dummy generators M j for j ∈ IM .
The ideal adversary is best described by starting with a copy of the original
hybrid ITM-graph (V,E) = Z ′(H(A, ππ(FBB,FMMT,FCRS)

)) where Z is replaced
by a machine Z ′ that we define below. The adversary S simulates all machines
in V except those in A′, and the corrupted machines Mj for j ∈ IM under A′:s
control.

Simulation of Links (Z,A), (Z,Mj) for j ∈ IM . S simulates Z ′ and M j for
j ∈ IM , such that it appears as if Z and A, and Z and Mj for j ∈ IM are linked
directly.

1. When Z ′ receives m from A, m is written to Z, by S. When S receives m
from Z, m is written to A by Z ′. This is equivalent to that Z and A are
linked directly.

2. When Z ′ receives m from Mj for j ∈ IM , m is written to Z by M j . When
M j , j ∈ IM , receives m from Z, m is written to Mj by Z ′. This is equivalent
to that Z and Mj are linked directly for j ∈ IM .

Extraction from a Corrupt Generator. Note that since the last t generators Mj

which distributes their shares sj,l may be corrupted, the adversary can choose
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sj,l for j ∈ IM such that sj =
∑

l∈I1
sl,j takes on any values of its choice. The

ideal adversary S must somehow extract the sj for j ∈ IM and then hand them
to FDKG to ensure that the shares sj for j = 1, . . . , k that eventually ends up at
the environment are consistent with the output public key y.

When the last (Write, Complaints, Δj) message before executing Step 9 ap-
pears on FBB for j = 1, . . . , k, interrupt the simulation of FBB.

There are two cases. If there were no complaints, we claim that h

∑
l∈Ωf

sl,j

f =∏t
ι=0(

∏
l∈Ωf

αl,ι)j
ι

is satisfied for j �∈ IM and f = 1, 2, 3. We argue that θf,ι =∏
l∈Ωf

αl,ι. This is clearly the case if for each ι = 0, . . . , t there exists an honest
party Mj such that ι ∈ Aj . Thus, the probability of failure is bounded by
Pr[∃ι ∈ [0, t],∀j �∈ IM : ι �∈ Aj ] ≤

∑t+1
ι=0 Pr[∀j �∈ IM : ι �∈ Aj ], where we used

the union bound. From independence follows that the latter quantity equals
(t + 1) Pr[ι �∈ Aj ]t+1 (for some arbitrary ι ∈ {1, . . . , t + 1} and j �∈ IM ). By
construction Pr[ι �∈ Aj ] = (1 − n

k−n ), which implies that the probability of
failure is bounded by (t + 1)(1 − n

k−n )k/2 ≤ (t + 1)e−n/2, which is negligible.
Thus, with overwhelming probability, θf,ι =

∏
l∈Ωf

αl,ι. This implies that we

can Lagrange interpolate bf,i =
∑

l∈Ωf
(
∑t+1

j=1 sl,j
∏

l 	=j
i−l
j−l ) =

∑
l∈Ωf

sl,i for
f = 1, 2, 3 and compute si = b1,i+b2,i+b3,i for i ∈ IM . If there were complaints,
we have for l ∈ I1 and j �∈ IM that h

sl,j

f(l) =
∏t

ι=0 α
jι

l,ι. This implies that the
equation above holds for the new values of sl,j and we can Lagrange interpolate
si =

∑3
f=1

∑
l∈Ωf ∩I1

sl,i similarly to the above. To summarize, S can always
extract sj for j ∈ IM before deciding on βj values.

The ideal adversary S hands (CorruptShares, {j, sj}j∈IM
) to FDKG. FDKG

then returns (PublicKey, y). Below we describe the computations performed by
S before the simulation of FBB continues.

Simulation of an Honest Generator. The next problem facing the ideal adversary
S is how to simulate the honest generators Mj for j �∈ IM such that the corrupt
generators Mj for j ∈ IM output the same public key y as that output by the
dummy generators M j for j �∈ IM . The latter generators are beyond S’s control
and simply forwards the output from FDKG. Intuitively, S must “lie” at some
point, since it is already committed to a public key by the public αj,ι elements
on FBB. The “lie” must be carefully constructed such that the adversary can
not identify it, and it must be constructed not knowing logg y.

First it computes β′
j = gsj for j ∈ IM and sets β′

0 = y and I ′
M = IM ∪ {0}.

These are the β′
j for j ∈ IM that should later be published by the corrupted

generators if they behave honestly. Then S computes β′
j =

∏
i∈I′

M
(β′

i)
∏

l�=i
j−l
i−l ,

for j �∈ IM , and replace βj with β′
j in the simulation of the honest generators Mj

for j �∈ IM . The construction ensures that β′
j =

∏t+1
i=1(β

′
i)

∏
l�=i

l−j
l−i . The simulated

honest parties Mj for j �∈ IM are instructed not to complain if βi = β′
i for

i �∈ IM .
However, it may be the case that β′

i �= βi for i ∈ IM , in which case the
honest generators must also simulate the handling cheating with the βi. This is
done using the same technique as above. S chooses ζf,j,l randomly for l ∈ IM
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and sets ζf,j,l = 1 for j �∈ IM . Then it replaces the original values of γj,l and

δf,j,l for j �∈ IM by γj,l =
∏

i∈I′
M

γ

∏
i′ �=i

l−i′
i−i′

j,i and δf,j,l =
∏

i∈I′
M

δ

∏
i′ �=i

l−i′
i−i′

f,j,i . This

ensures that gζ1,l,j+ζ2,l,j+ζ3,l,j =
∏t

ι=0 γ
jι

l,ι and h
ζf,l,j

f =
∏t

ι=0 δ
jι

f,l,ι, for j ∈ IM .
The simulated honest generators are instructed to not complain despite that
the above equations does not hold for their values of ζj,l, when j, l �∈ IM . This
implies that no ζf,j,l for any j �∈ IM is ever published. Regardless if βj for j ∈ IM

are correct or not we have y =
∏

i∈I2
β

∏
l�=i

l
l−i

i where y is the value output by
FDKG. At this point the simulation of FBB is continued.

Reaching a Contradiction. Suppose that S does not imply the security
of the protocol. Then there exists a hybrid adversary A′ = A(SBB,SMMT,SCRS),
an environment Z with auxiliary input z = {zn}, a constant c > 0 and an
infinite index set N ⊂ N such that for n ∈ N : |Pr[Zz(I(S, πFDKG)) = 1] −
Pr[Zz(H(A′, π(πFBB

1 ,π
FMMT
2 ,π

FCRS
3 ))) = 1]| ≥ 1

nc , where S runs A′ as a black-box
as described above, i.e. S = S(A′).

Defining the Distinguisher. We are now ready to define a distinguisher D that
contradicts the DDH assumption. D is confronted with the following test. An
oracle first chooses e1, e2, e3 ∈ Zq and a bit b ∈ {0, 1} randomly and defines
(u, v, w) = (he1

1 , he2
1 , h

be1e2+(1−b)e3
1 ). Then D is given (u, v, w) and must guess b.

There exists j �= i such that i, j �∈ IM and f(i) �= f(j). Without loss we
assume that 1, 2 �∈ IM and f(1) = 1 and f(2) = 2.

D does the following. It sets h2 = u, and generates a random h3. Then it
simulates all machines and ideal functionalities as described above, except that

1. The simulation of M1 and M2 is special and depends on (u, v, w).
S chooses sj,l randomly and defines ωj,l = h

sj,l

j for j = 1, 2 and l ∈ IM .
Then it chooses σ randomly in Zq and sets ω1,0 = hσ

1/v and ω2,0 = w.
Then it computes s(1,2),l = s1,l + s2,l for l ∈ IM and sets s(1,2),0 = σ. This
allows the definition of s(1,2),l =

∑
i∈I′

M
s(1,2),i

∏
j 	=i

l−i
j−i , for l �∈ IM . Set

s1,l = logh1
ω1,l and s2,l = logh2

ω2,l for l �∈ IM (inclusive l = 0). These
values are not known by S, but we can still consider the equation system
(sj,l)l∈I′

M
= (lι)l∈I′

M ,ι∈[0,t](aj,ι)ι∈[0,t]. Denote by (dl,ι)l∈I′
M ,ι∈[0,t] the inverse

of (lι)l∈I′
M ,ι∈[0,t]. Then aj,ι =

∑
l∈I′

M
dl,ιsj,l, for j = 1, 2.

D sets αj,ι =
∏

l∈I′
M

ω
dl,ι

j,l . Then the simulation is carried through as de-
scribed above, except that Mj for j �∈ IM replace s1,j + s2,j in the sum
sj =

∑
l∈I1

sl,j by s(1,2),j (recall that S does not even know s1,j or s2,j).
2. In the simulation of FDKG, D instructs it to use the values sj extracted from

corrupt generators, and the values sj generated by S in the simulation.

Concluding the Proof. If (u, v, w) is a DDH-triple, then s1,l = logh1
ω1,0 = σ −

e2 and s2,l = logh2
ω2,0 = e2. Thus, s1,l + s2,l = s(1,2),l, which gives sj =∑

l∈I1
sl,j . This implies that the distribution of the output of D is identical to

the distribution of Zz(H(A′, π(πFBB
1 ,π

FMMT
2 ,π

FCRS
3 ))), since all inputs to A during
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the simulation are identically distributed to the corresponding inputs in a real
execution.

If on the other hand (u, v, w) is not a DDH-triple, then s1,l = logh1
ω1,0 =

σ − e2 and s2,l = logh2
ω2,0 = e3, which implies that s1,l + s2,l is independently

distributed from s(1,2),l for l �∈ IM . Since the former is used in the construction
of αj,ι for j = 1, 2 and the latter is used to compute sj , βj and thereby y are
independently distributed from αj,ι. This is precisely the situation in the ideal
model. Thus, the distribution of D in this case is identical to the distribution of
Zz(I(S, πFDKG)).

This implies that the DDH-assumption is broken (Definition 1), and the
theorem is true. The corollary follows from Lemma 2 and Lemma 1 by use of
the composition theorem of the UC-framework (Theorem 2 in Appendix A).
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A Review of the UC-Security Framework

In this section we give a short review of the universally composable security
framework of Canetti [5]. This framework is very general, quite complex, and
hard to describe both accurately and concisely. We have chosen to use a slightly
simplified approach. For a general in depth discussion, intuition, and more details
we refer the reader to Canetti [5]. Note that we consider only static adversaries.

Following Goldwasser, Micali and Rackoff [20] we define the parties to be
interactive Turing machines, and denote the set of interactive Turing machines
by ITM.
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Canetti assumes the existence of an “operating system” that handles the cre-
ation of subprotocols. This is necessary to handle protocols with a large number
of possible trees of calls to subprotocols, but for our purposes we may assume
that all subprotocols are instantiated already at the start of the protocol.

Canetti models an asynchronous communication network, where the adver-
sary has the power to delete, modify, and insert any messages of his choice. To
do this he is forced to give details for exactly what the adversary is allowed
to do. This becomes quite complex in the hybrid model. We instead factor out
all aspects of the communication network into a separate concrete “communica-
tion model”-machine. The real, ideal, and hybrid models are then defined solely
on how certain machines are linked. The adversary is defined as any ITM, and
how the adversary can interact with other machines follows implicitly from the
definitions of the real and ideal communication models.

Since each protocol or subprotocol communicate through its own copy of
the “communication model”, and all protocols are instantiated at the start of
the protocol we need not bother with session ID:s. Such ID:s would clearly be
needed if our protocols would be rewritten in the more general original security
framework, but it is notationally convenient to avoid them.

We also assume that we may connect any pair of machines by a “link”. Such
a link is more or less equivalent to the notion of a link as defined by Goldreich
[16]. Thus, the following is meaningful.

Definition 1. An ITM-graph is a set V = {P1, . . . , Pt} ⊂ ITM with a set of
links E such that (V,E) is a connected graph, and no Pi is linked to any machine
outside V . Let ITMG be the set of ITM-graphs.

During the execution of an ITM-graph, at most one party is active. An active
party may deactivate itself and activate any of its neighbors, or it may halt, in
which case the execution of the ITM-graph halts.

The real communication model models an asynchronous communication net-
work, in which the adversary can read, delete, modify, and insert any message
of its choice.

Definition 2. A real communication model C is a machine with a link lPi
, to

Pi for i = 1, . . . , k, and a link lA to a real adversary A, defined as follows.

1. If m is read on ls, where s ∈ {P1, . . . , Pk}, then (s,m) is written on lA and
A is activated.

2. If (r,m) is read on lA, where r ∈ {P1, . . . , Pk}, then m is written on lr, and
r is activated.

The ideal communication model below captures that the adversary may de-
cide if and when to deliver a message from an ideal functionality to a party, but
it can not read the contents of the communication.

Definition 3. An ideal communication model CI is a machine with a link lPi ,
to Pi for i = 1, . . . , k, and links lF , and lS to an ideal functionality F and an
ideal adversary S respectively. Its program is defined as follows.
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1. If a message m is read on ls, where s ∈ {P1, . . . , Pk}, then (s,m) is written
on lF and F is activated.

2. If a message (s,m) written on lF is returned unaltered1, m is written on ls.
If not, any string read from lF is interpreted as a list ((r1,m1), . . . , (rt,mt)),
where ri ∈ {S, P1, . . . , Pk}. For each mi a random string τi ∈ {0, 1}n is
chosen, and (ri,mi) is stored under τi. Then ((r1, |m1|, τ1), . . . , (rt, |mt|, τt)),
where |mi| is the bit-length of mi, is written to lS and S is activated.

3. Any string read from lS is interpreted as a pair (b, τ), where b ∈ {0, 1} and τ
is an arbitrary string. If b = 1 and (ri,mi) is stored in the database under the
index τ , mi is written on lri

and ri is activated. Otherwise (S, τ) is written
to lF and F is activated.

An adversary can normally corrupt some subset of the parties in a protocol.
A dummy party is a machine that given two links writes any message from one of
the links on the other. There may be many copies of the dummy party. We write
P for dummy parties. The ideal model below captures the setup one wishes to
realize, i.e. the environment may interact with the ideal functionality F , except
that the adversary S has controls the communication.

Definition 4. The ideal model is defined to be a map I : ITM2 × ITM
∗ →

ITMG, where I : (F ,S, P 1, . . . , P k) !→ (V,E) is given by:
V = {CI ,F ,S, P1, . . . , Pk} and E = {(S, CI), (CI ,F)} ∪

⋃k
i=1{(Pi, CI)}.

If π = (P 1, . . . , P k), we write I(S, πF ) instead of I(F ,S, P 1, . . . , P k) to ease
notation. The real model is supposed to capture the properties of the real world.
The parties may interact over the real communication model.

Definition 5. The real model is defined to be a map R : ITM∗ → ITMG,
where R : (A, P1, . . . , Pk) !→ (V,E) is given by: V = {C,A, P1, . . . , Pk} and
E = {(A, C)} ∪

⋃k
i=1{(Pi, C)}.

Let (V,E) = I(F ,S, P 1, . . . , P k). Then we write Z(I(F ,S, P 1, . . . , P k)) for
the ITM-graph (V ′, E′) defined by V ′ = V ∪ {Z}, and E′ = E ∪ {(Z,S)} ∪⋃k

i=1{(Z, P i)}. We use the corresponding notation in the real model case.
A hybrid model is a mix between a number of ideal and real models, and

captures the execution of a real world protocol with access to some ideal func-
tionalities. It is also a tool to modularize security proofs. It may be viewed as if
we “glue” a number of ideal and real models onto an original real model.

Definition 6. Suppose that we are given (V,E) = R(A, π), π = (P1, . . . , Pk).
Let (Vj , Ej) = I(Sj , πFj

j ), πj = (P j,1, . . . , P j,k) for j = 1, . . . , t, and (Vj , Ej) =
R(Sj , πj), πj = (Pj,1, . . . , Pj,k) for j = t + 1, . . . , s.

We denote by H(A(S1,...,St), π(πF1
1 ,...,π

Ft
t ,πt+1,...,πs)) the hybrid model defined

as the ITM-graph (V ′, E′), where V ′ = V ∪
⋃t

j=1 Vj and

E′ = E ∪
⋃t

j=1 Ej ∪
⋃k

i=1

(
{(Si,A)} ∪

⋃t
j=1{(Pi, P j,i)}

)
1 This special rule simplifies security proofs.
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Similarly as above we write Z(H(A(S1,...,St), π(πF1
1 ,...,π

Ft
t ,πt+1,...,πs))) to denote

the ITM-graph (V ′′, E′′) defined by V ′′ = V ′ ∪ {Z}, and E′′ = E′ ∪ {(Z,A)} ∪⋃k
i=1{(Z, Pi)}.
Note that all real subprotocols πj , for j = t + 1, . . . , s, above may be in-

tegrated into the original real protocol π. Thus a hybrid model with no ideal
functionalities involved is equivalent to a real model, except that it may use
several communication models.

The concept of hybrid models is generalized in the natural way, e.g. we write

H(A(AS11
1 ,A

S21
2 ), π(π

πF
11

1 ,π
πF
21

2 )) for a hybrid model for a real protocol that executes
two subprotocols, where each subprotocol has access to a separate copy of the
ideal functionality F . Some care needs to be taken when defining the adversary
for such models. If an adversary corrupts a party, it automatically corrupts all
its sub-parties that are involved in subprotocols2.

We also write Zz to denote that Z takes auxiliary input z, and always assume
that in any execution of such an ITM-graph, Z is activated first.

The following definition is somewhat sloppy in that we have not defined the
notion of M-adversaries rigorously, but it is a class of adversaries.

Definition 7 (Secure Realization). Let F be an ideal functionality. Let π =
(P1, . . . , Pk), and let πj = (P j,i, . . . , P j,i) be the corresponding dummy parties
for Fj, for j = 1, . . . , t.

Then π(πF1
1 ,...,π

Ft
t ) realizes πF securely with regards to M-adversaries if for

all M-adversaries A(S1,...,St) with auxiliary input z = {zn}, ∃S ∈ ITM such that
∀c > 0, ∃n0, such that ∀n > n0:
|Pr[Zz(I(S, πF )) = 1]− Pr[Zz(H(A(S1,...,St), π(πF1

1 ,...,π
Ft
t ))) = 1]| < 1

nc .

Since the dummy parties are of no real importance we also say that π realizes
F in the (F1, . . . ,Ft)-hybrid model.

Canetti [5] proves a powerful composition theorem that can handle polyno-
mially many instances of a constant number of ideal functionalities, but we only
need the following weaker special case.

Theorem 2 (Composition Theorem). Suppose that π(π̃F1
1 ,...,π̃

Ft
t ) securely re-

alizes π̃F , and that π
(π̃Fi1

i1 ,...,π̃
Fiti
iti

)
i securely realizes π̃Fi

i , for i = 1, . . . , l, with
regards to M-adversaries.

Then π(π
(π̃

F11
11 ,...,π̃

F1t1
1t1

)

1 ,...,π
(π̃

Fl1
l1 ,...,π̃

Fltl
ltl

)

l ,π̃
Fl+1
l+1 ,...,π̃

Ft
t ) securely realizes π̃F with

regards to M-adversaries.

2 The most general definition allows some violations of this rule.
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Abstract. We use the theory of Witt vectors to develop an algebraic
approach for studying the NTRU primitive with q parameter equal to a
power of two. This results in a system of nonlinear algebraic equations
over F2 having many symmetries, which is reminiscent of the approach of
Courtois, Murphy, Pieprzyk, Robshaw and others for studying the struc-
ture of block ciphers such as the AES. We study whether this approach to
NTRU provides any immediate security threat and conclude that under
the most favourable assumptions, the method is of asymptotic interest
but is completely impractical at current or likely future parameter sizes.

1 Introduction

NTRU [7] is a public key encryption scheme whose security is based on a poly-
nomial factorisation problem in the ring Zq[X](XN − 1). It is an interesting
system to study for a number of reasons. Firstly, it does not depend on the
traditional hard problems, such as factoring or discrete logarithms, on which
other practical public key schemes are based. Indeed the best known heuris-
tic attack is that of finding a short vector in a lattice, which appears to be a
very hard problem. Furthermore, schemes based on factoring or discrete loga-
rithms can be broken in the quantum setting using Shor’s algorithm [16]. Cur-
rently, there is no quantum algorithm which significantly improves the classi-
cal approach to breaking NTRU. Secondly, the basic arithmetic operations in
NTRU are particularly simple making it suitable for use in constrained envi-
ronments where traditional public key schemes have difficulty. Thirdly, it ap-
pears unique amongst the practical public key encryption schemes in that there
is a possibility of mounting attacks based on the property of imperfect de-
cryption [8], which has led to interesting developments in the area of provable
security.
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Algebraic attacks on block and stream ciphers have been of considerable
interest in the research literature over the last few years. Starting with the XL
and FXL algorithms of Courtois, Klimov, Patarin and Shamir [3], a number of
papers has appeared studying applications of the XL algorithm to the security
of block and stream ciphers, see for example [4, 5, 12]. These algebraic attacks
work by reducing the determination of the secret key in a cryptographic system
to the solution of an overdetermined system of quadratic equations over a small
finite field. Then using the technique of linearisation, this nonlinear system is
mapped into a large system of linear equations. The resulting linear system is
then solved and the key is recovered. There is some controversy over the precise
practicality of these algebraic attacks in various situations. For example, it is
not known whether the XL algorithm runs in subexponential time for systems
that are only slightly overdetermined.

In this paper we reduce the problem of recovering an NTRU private key to an
overdetermined system of quadratic equations over F2. Experimentally we find
that these systems of equations tend to have a single solution, which is encourag-
ing since from the prior literature on the XL algorithm, it appears that XL has
a better chance of success if there is a unique solution. This leads us to perform
numerical experiments (in small dimension) testing the applicability of the XL
algorithm to the system of nonlinear equations derived from NTRU problem in-
stances. These experiments reveal that from a practical perspective, the method
is unlikely to be successful at current or likely future parameter sizes.

The paper is organised as follows: In Section 2 we briefly describe the NTRU
encryption algorithm so as to fix notation. Then in Section 3 we recall the basic
theory of Witt vectors and use it to reduce the problem of determining the
NTRU private key to that of solving an overdetermined system of quadratic
equations. In Section 4 we report on our numerical experiments applying the
XL algorithm to the resulting system of equations. Finally in Section 5 we give
some conclusions of our work.

We end this introduction by noting that the technique based on Witt vectors
introduced in this paper applies to many cryptosystems other than the NTRU
cryptosystem. The isomorphism Z2m ∼= Wm(F2) implies that virtually any cryp-
tosystem based on arithmetic modulo 2m (together with logical operations and
rotations) can be analysed using Witt vectors. This remark applies to symmet-
ric key cryptosystems that could not previously be algebraically analysed due
to their use of arithmetic modulo 2m, for example to RC5 [13], RC6 [14] and
IDEA [10].

2 The NTRU Cryptosystem

2.1 Notation

We denote the ring of integers by Z and the integers modulo q by Zq, which we
shall assume are represented by elements in the interval (−�q/2�, �q/2�]. For N
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a positive integer, we identify the set Z
N (respectively Z

N
q ) with the ring of

polynomials

P (N) =
Z[X]

(XN − 1)
, respectively Pq(N) =

Zq[X]
(XN − 1)

,

via the natural association f = (f0, f1, . . . , fN−1) =
∑N−1

i=0 fiX
i. Note that the

modulus q is not necessarily prime, hence Zq is not in general a field.
Two polynomials f, g ∈ P (N) are multiplied by the cyclic convolution prod-

uct, since we are working modulo XN − 1, an operation that we denote by # to
distinguish it from ordinary multiplication · in Z or Z[X]. Let h = f # g. Then
for each 0 ≤ k < N , the kth-coefficient hk of h is given by

hk = (f # g)k =
k∑

i=0

figk−i +
N−1∑
i=k+1

fign+k−i =
∑

i+j≡k mod N

fi · gj .

This is the ordinary polynomial product reduced modulo XN − 1, so it is both
commutative and associative. The symmetric representation of Zq, i.e. reducing
in the interval (−�q/2�, �q/2�], implies that the product of two polynomials with
coefficients of small absolute value will again be a polynomial with small coef-
ficients. We write P �

q (N) for the multiplicative group of units in Pq(N) and we
denote the inverse polynomial of f ∈ P �

q (N) by f−1
q .

We also need a “small” element p of P (N) that is relatively prime to q, by
which we mean that p and q generate the unit ideal in P (N). Typically one
chooses p to be 2, 3 or 2 + X. In this paper we concentrate on the case p =
2 + X, since that is the choice made in the NTRU challenges [2]. However, our
methodology applies to other values of p. Reduction of a polynomial in P (N)
modulo 2+X proceeds by rewriting each integer coefficient n = 2a+b as (−X)a+
b and then iterating. It is easily seen that reduction modulo 2 +X always leads
to a polynomial with coefficients in {0, 1}.

We denote the quotient ring P (N)/(p) by Pp(N), we let P �
p (N) be the mul-

tiplicative group of units in Pp(N), and we write f−1
p for the inverse polynomial

of f ∈ P �
p (N).

2.2 The NTRU Primitive

We sketch the NTRU cryptosystem as developed in [7]. The public parame-
ters consist of values for (N, p, q) as above. The value of q is chosen to lie be-
tween N/2 and N and may be chosen to aid computation. For example for the
“recommended” security parameter N = 251 for “standard security” one could
choose q = 128 or q = 127 so as to aid in reduction modulo q.

Other required parameters are various integers d which are used to define
several families of binary polynomials of Pq(N) as follows: The notation L(d) is
used to denote the set of polynomials in Pq(N), with d coefficients equal to 1
and all other coefficients set to zero. These sets are used to define three sets of
polynomials Lf , Lg and Lr. The standard [1] contains two common choices for
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these sets. In this paper we focus on the following choice; the other case can be
dealt with in a similar (but slightly more complicated) manner.

We first define the sets Lf = {1 + p # F : F ∈ L(df )}, Lg = L(dg) and
Lr = L(dr), for certain integer parameters df , dg and dr. Notice that with the
above choice of f ∈ Lf , we have f−1

p = 1.
A public key encryption algorithm consists of three subprocedures: A key

generation algorithm, an encryption algorithm and a decryption algorithm. For
the convenience of the reader, we describe these three procedures in Appendix A.
We do not describe these procedures for NTRU here since, for the purposes of this
article, it suffices to know that a private key is generated by choosing random f ∈
Lf and g ∈ Lg and computing f−1

q ∈ P �
q (N) and f−1

p ∈ P �
p (N), which for our

choice of Lf equals 1. Then the private key consists of the pair (f, f−1
p ) and the

public key is the polynomial h defined by the formula

h ≡ p # f−1
q # g (mod q).

Breaking an NTRU key is the problem of recovering f from a given h.
The traditional way to try to break an NTRU public key, in the sense of

recovering the private key, is to embed the NTRU problem into a lattice as a
shortest (or closest) vector problem and use lattice reduction techniques to try
and recover the private key. Whilst lattice reduction algorithms themselves run
in polynomial time, this method is unlikely to work for large key sizes since the
resulting reduced lattice basis only approximates the shortest lattice vector to
within an exponential factor.

Lattice based attacks are currently the best known heuristic attacks against
NTRU. The best known deterministic attack is based on a meet-in-the-middle
strategy, see [9, 17]. It has complexity roughly

1√
N

(
N/2
df/2

)
. (1)

It is highly advisable to choose N to be a prime. Firstly, this tends to max-
imise the probability that the private key has an inverse modulo p and q. More
importantly, the use of composite N leads to so called composite attacks on
NTRU [6], which can significantly reduce the time needed to recover the pri-
vate key. It is also important to choose N sufficiently large. Parameter sets
with N = 107 have been broken via lattice techniques in a few hours of com-
puter time [11]. Depending on the desired level of security, recommended choices
for N (see [1]) include 167, 251, 347 or 503.

3 Reduction to Algebraic Equations over F2

In this section we show how the NTRU problem for q = 2n leads in a natural way
to a system of nonlinear equations over F2. Since q = 2n, we can apply a lifting
strategy by considering the equality f # h ≡ p # g (mod 2m) for intermediate
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values 0 < m ≤ n and equate the bits of the coefficients of both sides. In par-
ticular, for m = 2 (i.e. working modulo 4) we obtain a highly structured system
of N quadratic equations in N binary variables. The most elegant approach to
this analysis is based on the theory of Witt vectors over F2.

3.1 Witt Vectors over F2

We briefly set the Witt vector notation needed to analyse NTRU. For the con-
venience of readers who are not familiar with the construction of the ring of
Witt vectors, we have sketched the basic theory in Appendix B. For the general
theory of Witt vectors, we refer the reader to [15–Section II.6].

The ring of Witt vectors of length m, denoted Wm(F2), is the set F
m
2 of

m-tuples, but with special addition and multiplication laws so that the map

W∗ : Wm(F2) −→ Z2m

[a0, . . . , am−1] !−→
m−1∑
i=0

ai2i (mod 2m)
(2)

is an isomorphism of rings. The precise construction of the map W∗ and the
ring operations on Wm(F2) are described in Appendix B, but as an example, we
write them down for m = 2:

[a0, a1] + [b0, b1] = [a0 + b0, a0b0 + a1 + b1]
[a0, a1] · [b0, b1] = [a0b0, a0b1 + b0a1]

3.2 Generating Algebraic Equations over F2 for NTRU

The isomorphism between the ring of Witt vectors Wm(F2) of length m and
the ring Z2m transforms NTRU private key recovery into the problem of solving
a system of nonlinear equations over F2. To see why this is true, consider the
fundamental relation

f # h ≡ p # g (mod 2m) (3)

for some m ≤ n. Applying the inverse of the map W∗ to the coefficients of the
polynomials, we obtain the same equation in the ring Wm(F2)[X]/(XN − 1), i.e.
in the ring of polynomials modulo XN − 1 whose coefficients are in the ring of
Witt vectors of length m.

To ease notation, for any element e ∈ Wm(F2)[X]/(XN − 1), we will denote
the coefficients of e in Wm(F2) by e0, . . . , eN−1, i.e. e =

∑
eiXi. Comparing

the coefficients in equation (3) gives rise to mN equations over F2, since each
coefficient of each Xk is a vector of length m over F2. Explicitly, equating the
coefficients of Xk on the two sides of (3) leads to the formula∑

i+j≡k (mod N)

fi hj =
∑

i+j≡k (mod N)

pi gj in the ring Wm(F2). (4)

To illustrate this approach, we explicitly compute these equations for our
choice of parameter sets Lf and Lg and modulus p = 2 + X. Recall that we
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have set Lf = {1 + p # F : F ∈ L(df )} and Lg = L(dg). Since p = 2 + X and
since g =

∑
giX

i has binary coefficients, we conclude that

p # g ≡
N−1∑
k=0

RkX
k (mod 2m) with Rk = [gk−1, gk, 0, . . . , 0] ∈Wm(F2).

(5)
(As usual, indices are taken modulo N .) Similarly, writing F =

∑
FiX

i ∈ F2[X],
we have

f ≡ 1 + (2 + X) # F ≡
N−1∑
i=0

fiXi (mod 2m)

with fi ∈Wm(F2) given by

fi =

{
[1 + FN−1, F0 + FN−1, F0FN−1, 0, . . . , 0] if i = 0,
[Fi−1, Fi, 0, . . . , 0] if 1 ≤ i < N .

Write h ≡
∑

hiX
i with hi = [hi,0, hi,1, . . . , hi,m−1]. Then

f # h ≡
N−1∑
k=0

LkX
i with Lk =

∑
i+j≡k (mod N)

fi hj . (6)

Note that with the notation in (5) and (6), the fundamental relation (4) says
that L = R. We will exploit this fact by equating the first two coordinates of L
and R.

The initial Witt ring operation functions are S0(a,b) = a0+b0 and P0(a,b) =
a0b0 (see Table 4 in Appendix B), so we find that

gk−1 = Rk,0 = Lk,0 =
∑

i+j≡k (mod N)

fi,0 hj,0 = hk,0 +
∑

i+j≡k (mod N)

Fi−1 hj,0.

Replacing k by k + 1, this gives a formula

gk = hk+1,0 +
∑

i+j≡k+1 (mod N)

Fi−1 hj,0 (7)

expressing gk as an F2-linear combination of the Fi. Similarly, using the four
Witt ring operation functions from Appendix B Table 4,

S0 = a0 + b0, S1 = a0b0 + a1 + b1, P0 = a0b0, P1 = a0b1 + b0a1,
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we compute

gk = Rk,1 = Lk,1

=
∑
i<s

i+j≡k (mod N)
s+t≡k (mod N)

fi,0hj,0fs,0ht,0 +
∑

i+j≡k (mod N)

(fi,0 hj,1 + fi,1 hj,0)

=
∑
i<s

i+j≡k (mod N)
s+t≡k (mod N)

Fi−1Fs−1hj,0ht,0 + hk,0

∑
s+t≡k (mod N)

Fs−1ht,0

+
∑

i+j≡k (mod N)

(Fi−1 hj,1 + Fi hj,0) + hk,1 . (8)

Notice that (8) expresses gk as an F2-quadratic combination of the Fi.
Equating the two formulae (7) and (8) for gk, we arrive at a system of

N quadratic equations over F2 in the N variables F0, F1, . . . , FN−1. We fur-
ther observe that the resulting system of quadratic equations has a high degree
of symmetry. Indeed, there are two sets of indices S and T such that each equa-
tion Lk,1 − gk = 0 can be written as∑

i<j
i,j∈Sk

FiFj +
∑
i∈Tk

Fi + hk,0

∑
i∈Sk

Fi = hk+1,0 + hk,1 , (9)

with

Sk = {i + k (mod N) | i ∈ S} and Tk = {i + k (mod N) | i ∈ T}.

Example 1. We give an example with m = 2 illustrating the nice structure of
the system of quadratic equations. We let N = 17, q = 27, df = 6 and dg = 5,
and for the private key we take

f = 1 + p # F

= 1 + (2 + X) # (X14 + X11 + X6 + X5 + X4 + X)

= X15 + 2X14 + X12 + 2X11 + X7 + 3X6 + 3X5 + 2X4 + X2 + 2X + 1 ,

g = X15 + X13 + X12 + X7 + 1 .

The corresponding public key is

h = 105X16 + 45X15 + 32X14 + 119X13 + 53X12 + 89X11 + 67X10 + 3X9

+ 86X8 + 52X7 + 56X6 + 69X5 + 101X4 + 81X3 + 52X2 + 6X + 29 .

Given h, we can easily compute the index sets S and T and the constant terms
of the quadratic equations (9); we obtain

S = {0, 1, 3, 4, 5, 6, 7, 11, 12, 13, 16} ,
T = {3, 6, 7, 8, 15} ,

[hk+1,0 + hk,1]0≤k<N = [0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] .
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In this case, the system of equations (9) has only one solution, namely that given
by the coefficients of F = X14 + X11 + X6 + X5 + X4 + X.

3.3 Additional Equations

As we have seen, the results of Section 3.2 with m = 2 can be used to derive N
inhomogeneous quadratic equations over F2 in the N variables F0, . . . , FN−1.
However, due to our choice of parameters, we know that exactly df of the values
of the Fi are equal to one and the rest are zero. This immediately gives us an
extra linear equation

N−1∑
i=0

Fi ≡ df (mod 2).

We can similarly make use of the second least significant bit of df to obtain a
quadratic relation on the Fi. Precisely, if we write df ≡ df,0 + 2df,1 (mod 4)
with df,0, df,1 ∈ {0, 1}, then∑

i<j

FiFj ≡ df,1 (mod 2).

Using other bits of df will result in similar equations, but unfortunately they
are no longer quadratic, but instead will have higher degree.

Thus using the results of Section 3.2 with m = 2, we obtain N +2 inhomoge-
neous quadratic equations over F2 in the N variables F0, . . . , FN−1. The study of
such systems of equations has already received much attention in cryptography,
see for example [3, 4, 5, 12], via the XL algorithm. In the next section we consider
how the XL algorithm may be applied to analyse our system of equations.

4 Experiments with the XL Algorithm

We have conducted extensive experiments with small values of N and found that
the system of N + 2 quadratic equations corresponding to m = 2 almost always
has a unique solution, namely the target private key F . Very rarely we found
that the system of equations had more than one solution, but even then there
was only one solution with the correct Hamming weight df .

Thus the formulae derived in Sections 3.2 and 3.3 generally give us a (slightly)
overdetermined system of multivariate polynomial equations (of degree 2) whose
solution is the desired private key. Such systems of equations might lend them-
selves to XL-type techniques as described in [3, 4, 5, 12]. We note that in general,
solving such systems is NP-hard. However, this is a worst case analysis, and as
a practical matter we are more interested in the average case difficulty of our
more special problem.

In the paper [3], Courtois, Klimov, Patarin and Shamir propose an algorithm
called XL to solve overdetermined systems of multivariate polynomial equations
over a finite field. We restrict attention to equations of degree at most two.
In this case, the equations defining the system are multiplied by monomials of
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degree less than D − 2 to produce equations of degree at most D. This results in
a much larger number of equations, albeit of much higher degree. Note since we
are working in characteristic 2, the degree of the monomial equals the number of
variables occurring in the monomial. The monomials of degree greater than one
in this enlarged system are then replaced by “dummy variables”, a technique
called linearisation. The resulting linear system is solved, and one hopes that
the original system is solved at the same time. Note that the method only works
if the resulting system of linear equations has rank approximately equal to the
number of linearised variables.

The arguments of [4], where multivariate quadratic equations over F2 are
studied, imply that if the number of equations ne is roughly equal to the number
of variables nv, then the XL algorithm runs in exponential time. The authors
of [4] conjecture that the XL method runs in polynomial time when ne = O(n2

v),
and that it does not run in polynomial time when ne/n

2
v → 0. However, for

systems where the number of equations is slightly larger than the number of
variables, the authors in [3] leave as an open question whether the XL algorithm
might in fact run in subexponential time.

In our situation with m = 2, we derived N + 2 quadratic equations in N
variables. Since N + 2 is only slightly larger than N , it is not clear that we
obtain any advantage. This led us to conduct the following experiments and to
analyse the XL algorithm as applied to the specific set of N + 2 inhomogeneous
equations in N unknowns described in Sections 3.2 and 3.3.

After linearisation, we obtain

α = (N + 2)
D−2∑
j=0

(
N

j

)

linear equations in at most β =
∑D

k=1

(
N
k

)
variables. We let γ denote the number

of linearly independent equations, i.e. γ is the rank of the matrix associated to
the system of linear equations, and we set

μ =
γ

α
= proportion of the linear equations that are independent.

The XL algorithm will succeed if β = γ (or at least if β ≈ γ), i.e. if α · μ ≈ β. A
straightforward analysis (cf. [4]) implies that we need to choose

D � N√
μ(N + 1)

.

In such a situation, the complexity of actually solving the resulting linear system
is O(β2.3) using sparse linear algebra techniques.

4.1 (# of Variables) ≈ (# of Independent Equations)

We are assuming that we have more linear equations than variables. In this
section we assume that the number of independent equations γ is approximately
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equal to the number of variables β, since if this does not happen, then we are
unlikely to be successful. In other words, we study the situation when

λ =
γ

β
≈ 1.

If λ = 1, then the system has a unique solution, but in general this will not be
the case. If λ < 1, then the system of equations does not uniquely determine the
value of the variables. Instead, it determines a vector subspace Vλ of solutions
whose dimension is

dim(Vλ) = (# of variables)− (# of indep. equations) = β − γ = β(1− λ).

The XL algorithm thus reduces the original problem to that of performing an
exhaustive search through the vectors in the space Vλ, where

#Vλ = 2dim(Vλ) = 2β(1−λ). (10)

Remark 1. If there is a meet-in-the-middle search, the exponent in (10) should be
divided by 2. We also note that in small numerical examples, we often found that
back substitution yielded parts of the desired solution even when the solution
space was large. See Remark 2 below.

Table 4.1 gives, for various values of N and df , the smallest value of D
such that α > β. In other words, assuming that λ ≈ 1.0, the table gives the
smallest value of D such that the XL method has a chance of recovering the
secret key. The table also gives the associated value of β, the resulting O(β2.3)
linear system complexity, the comparable complexity value (1) for the meet-in-
the-middle attack of [9, 17], and the value of λ necessary to make the search space
complexity 2β(1−λ) from (10) equal to the linear system complexity O(β2.3). In
other words, the value of λ in the last column is the solution to β2.3 = 2β(1−λ)

and represents the proportion of linear equations that need to be independent
in order to make the complexity of finding the solution space Vλ approximately
the same as the complexity of searching through the solution space. (But see
Remark 2 which suggests that somewhat smaller values of λ may still be useful.)

Assuming λ = 1, then Table 4.1 shows that eventually the algebraic XL-based
approach is more efficient than the previously best known deterministic attack.
This is still true if we only have λ ≈ 1, but the last column of the table suggests
that the difference 1− λ needs to be extremely small. In other words, we need
an extremely high proportion of the equations to be independent in order to
succeed. We further note that, even under the most favourable (and unlikely)
assumption that λ = 1, the data in Table 4.1 shows that the advantage of the
XL-based approach only occurs for N > 1000, which is considerably larger than
any value used in practise [1, 2, 7].

4.2 Experimental Evaluation of λ

The validity of the runtime estimates derived in Section 4.1, especially as given
in Table 4.1, depends on the assumption that λ is very close to 1 when we choose
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Table 1. Complexity Comparison

N df D β β2.3 1√
N

(
N/2
df /2

)
β2.3 = 2β(1−λ)

200 68 14 ≈ 1022 ≈ 1049 ≈ 1026 λ ≈ 1 − 10−20

400 134 20 ≈ 1034 ≈ 1077 ≈ 1053 λ ≈ 1 − 10−32

600 200 25 ≈ 1045 ≈ 10102 ≈ 1081 λ ≈ 1 − 10−42

800 268 28 ≈ 1052 ≈ 10119 ≈ 10108 λ ≈ 1 − 10−49

1000 334 32 ≈ 1061 ≈ 10139 ≈ 10136 λ ≈ 1 − 10−58

1200 400 35 ≈ 1068 ≈ 10156 ≈ 10163 λ ≈ 1 − 10−65

1400 468 37 ≈ 1074 ≈ 10169 ≈ 10191 λ ≈ 1 − 10−71

Table 2. Experimental values of λ

N D dim λmin λmax λ

11 3 561 0.96 1.00 0.99
13 3 1092 0.92 1.00 0.97
17 4 9401 0.91 1.00 0.99
19 4 16663 0.87 1.00 0.97
23 4 44551 0.95 0.96 0.95

a value for D for which α > β. In order to investigate this assumption, we carried
out the following experiments.

For various small values of N and various values of df and dg, we generated
NTRU keys and formed the set of N+2 inhomogeneous quadratic equations in N
variables described in Section 3. We applied XL linearisation with increasing
values of D until we obtained a value of D that made α > β. We then computed
the rank γ of the resulting matrix and the ratio λ = γ/β of independent equations
to variables. Unfortunately, the size of the matrices grew very rapidly, so were
were only able to perform experiments with small values of N .

For each value of N , we generated 10 keys. Table 4.2 gives the results of our
experiments. The table lists the minimum, maximum, and mean values of λ over
the 10 experiments, as well as the value of D required and the column dimension
of the eventual linear system, i.e. the number of columns in the matrix.

Remark 2. Although often we were unable to obtain a system of full rank, it
is an interesting experimental observation that in most cases we were able to
recover a significant proportion of the underlying NTRU private key using back
substitution. In other words, although we expect to have to search the entire
space of solutions to find the NTRU private key, it happened that many of the
coefficients of the private key were already determined. We do not know to what
extent this is an artifact of our use of small values of N and to what extent
it might continue to hold for cryptographically interesting values of N . In any
case, it is a topic that merits further study.

We also considered a variant of the XL algorithm called FXL. In FXL, one
fixes the value of some of the the variables and then applies the XL algorithm to
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Table 3. Experimental λ values using FXL

N D c λmin λmax λ ⊥
11 3 385 0.99 1.00 0.99 0.2
13 3 793 0.99 1.00 0.99 0.1
17 3 2516 0.80 0.95 0.93 0.9
19 4 12615 0.92 1.00 0.99 0.2
23 4 35442 1.00 1.00 1.00 0.1

the remaining variables. (This may be compared with the zero-forcing technique
of May [11].) The effect of FXL is to reduce the number of variables whilst
maintaining the number of equations. Thus not only does the resulting system of
linear equations have smaller dimension, but one might also expect the value of λ
to be larger. We experimented with this variant by fixing one or two variables.
Note that there are two cases, since either the fixed variables have been guessed
correctly, or they have been guessed incorrectly.

Table 4.2 gives the results of our experiments fixing one of the private key
variables. We give the values of λmin, λmax and λ for the cases that the guessed
fixed value was correct. For the final column of Table 4.2, labelled ⊥, we per-
formed experiments in which the guessed fixed value was incorrect. The listed
value gives the proportion of such experiments for which the resulting matrix was
consistent, i.e. gave a solution. Thus the value in column ⊥ represents the prob-
ability that one would not be able to tell that an incorrect guess had been made
for the fixed coordinate. In each row of Table 4.2, we performed 10 experiments
with the correct guess and 10 experiments with the incorrect guess.

We conducted a similar set of experiments in which we fixed (guessed) the
value of two of the variables. However, the results were worse than when fixing
one variable. Hence it appears that fixing variables does not lead to an improve-
ment for our problem, at least for the small size of N considered here.

5 Conclusion

We have shown how the NTRU primitive can be reformulated, using Witt vec-
tors, into a system of overdetermined nonlinear (quadratic) equations over F2.
We have thus introduced the tool of Witt vectors into the field of cryptographic
analysis. We have studied how one can attempt to solve this nonlinear system by
reducing it to a much larger system of linear equations using the XL algorithm.
We note that the analysis of the XL algorithm is itself quite controversial and
that its effectiveness is not well understood. We performed experiments using
equations generated from the NTRU primitive with small parameters and found
that the rank of the eventual XL linear system is a good, but not a perfect,
indicator of success.

If the XL algorithm behaves as claimed by its inventors and if it turns out
either that the resulting linear systems have very close to full rank or that
almost full rank is not actually necessary for success, then the approach described
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in this paper provides the asymptotic best known deterministic attack against
NTRU. However, even under the most favourable assumptions, our method is
less efficient than known methods at the largest current recommended parameter
values. We have found no evidence to support the assertion that XL performs
as claimed by its inventors, nor evidence to refute their claims. Further research
on the applicability and efficiency of the XL algorithm is thus warranted, as is
further research on the other questions raised in this paper.
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A NTRU Key Creation, Encryption and Decryption

In this appendix we briefly recall the key generation algorithm, encryption al-
gorithm and decryption algorithm for the NTRU public key cryptosystem. We
follow the notation of Section 2.1. For a more detailed description of NTRU,
see [1, 7].

Key Creation.
The generation of public/private keys proceeds as follows:
1. Choose random f ∈ Lf and g ∈ Lg.
2. Compute f−1

q ∈ P �
q (N) and f−1

p ∈ P �
p (N).

3. If one of these inverses does not exist, choose a new f . Otherwise f serves
as the secret key.

4. Publish the polynomial h ≡ p # f−1
q # g (mod q) as the public key.

Note that for the above parameter choices we have f−1
p = 1, so we do not

have to compute this value. Other versions of the NTRU algorithm may
have fp �= 1.

Encryption.
NTRU encryption is probabilistic, in the sense that encrypting the same
message twice will result in different ciphertexts. To encrypt a plaintext M,
which we consider as given by a polynomial in Pp(N), we perform the fol-
lowing two steps.
1. Choose random r ∈ Lr.
2. Compute e = Eh(M; r) = r # h +M (mod q).

Decryption.
Given a ciphertext e and a private key (f, f−1

p ), decryption proceeds as
follows:
Step 1. First we compute p # r # g +M # f as an element of Pq(N) via,

a ≡ e # f ≡ r # p # f−1
q # g # f +M # f ≡ p # r # g +M # f (mod q).

Step 2. Under suitable assumptions, it is (usually) the case that the value
of a from Step 1 is exactly equal to p # r # g +M # f in P (N). We then
switch to reduction modulo p and compute

a # f−1
p ≡ p # r # g # f−1

p +M # f # f−1
p ≡M # f # f−1

p ≡M (mod p).

and recover the plaintextM∈ Pp(N). Note that for the above parameter
choices this calculation simplifies to a ≡M (mod p), since f−1

p = 1.

In this paper we have simply considered the structure of the NTRU keys them-
selves.

B The Ring of Witt Vectors over F2

In this appendix we briefly recall the construction of the ring of Witt vec-
tors Wm(F2) of length m. The ring Wm(F2) is isomorphic to the ring of integers
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modulo 2m, but it has the useful property that the ring operations are described
purely in terms of polynomials. For the general theory of Witt vectors, we refer
the reader to [15–Section II.6].

A Witt vector of length m is simply an element of F
m
2 , i.e. a vector consisting

of m components in F2. To turn this set into a ring, we need to define an addition
law and a multiplication law. These operations are defined by the requirement
that the map

W∗ : Wm(F2) −→ Z2m

[a0, . . . , am−1] !−→
m−1∑
i=0

ai2i (mod 2m)
(11)

is a ring isomorphism.
Clearly, the operations in Wm(F2) will be more complicated than component-

wise addition and multiplication, since we need to take carry bits into account.
We thus have to find functions (multivariate polynomials)

S0, . . . , Sm−1, P0, . . . , Pm−1 ∈ F2[X0, . . . , Xm−1]

such that for all Witt vectors a = [a0, . . . , am−1] and b = [b0, . . . , bm−1], we have

W∗([S0(a,b), . . . , Sm−1(a,b)]) ≡W∗(a) + W∗(b) (mod 2m),
W∗([P0(a,b), . . . , Pm−1(a,b)]) ≡W∗(a) ·W∗(b) (mod 2m).

The easiest way to compute the functions S0, . . . , Sm−1 and P0, . . . , Pm−1
is to use Witt polynomials. The ith Witt polynomial Wi ∈ Z[X0, . . . , Xi] is
defined by

Wi(X0, . . . , Xi) = X2i

0 + 2X2i−1

1 + · · ·+ 2iXi . (12)

One then proves [15] that there are unique polynomials

ϕ0, . . . , ϕm−1, ψ0, . . . , ψm−1 ∈ Z[X0, . . . , Xm−1, Y0, . . . , Ym−1]

with the property that for all 0 ≤ i < m,

Wi(ϕ0, . . . , ϕi) = Wi(X0, . . . , Xi) + Wi(Y0, . . . , Yi),
Wi(ψ0, . . . , ψi) = Wi(X0, . . . , Xi) ·Wi(Y0, . . . , Yi).

(13)

Table 4. The first few Witt addition and multiplication polynomials

S0(a,b) = a0 + b0

S1(a,b) = a0b0 + a1 + b1

S2(a,b) = a0b0a1 + a0b0b1 + a1b1 + a2 + b2

S3(a,b) = a0b0a1a2 + a0b0a1b2 + a0b0b1a2 + a0b0b1b2

+ a1b1a2 + a1b1b2 + a2b2 + a3 + b3

P0(a,b) = a0b0

P1(a,b) = a0b1 + b0a1

P2(a,b) = a0b0a1b1 + a0b2 + b0a2 + a1b1

P3(a,b) = a0b0a1b1a2 + a0b0a1b1b2 + a0b0a1b1 + a0b0a2b2

+ a0a1b1b2 + a0b3 + b0a1b1a2 + b0a3 + a1b2 + b1a2
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The polynomials Si for addition and Pi for multiplication may then be recovered
as Si = ϕi mod 2 and Pi = ψi mod 2. The first few addition and multiplication
polynomials are listed in Table 4.

Example 2. Let m = 4 and consider the Witt vectors a = [1, 0, 1, 1] and b =
[1, 1, 1, 0]. Then we have W∗(a) ≡ 13 (mod 16) and W∗(b) ≡ 7 (mod 16),
so W∗(a)+W∗(b) ≡ 4 (mod 16) and W∗(a) ·W∗(b) ≡ 11 (mod 16). Computing
the functions S0, . . . , S3 and P0, . . . , P3, we indeed obtain

[S0(a,b), . . . , S3(a,b)] = [0, 0, 1, 0] with W∗([0, 0, 1, 0]) = 4, and
[P0(a,b), . . . , P3(a,b)] = [1, 1, 0, 1] with W∗([1, 1, 0, 1]) = 11.
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Abstract. In this paper, we study the new class step-wise Triangular
Schemes (STS) of public key cryptosystems (PKC) based on multivar-
iate quadratic polynomials. In these schemes, we have m the number of
equations, n the number of variables, L the number of steps/layers, r
the number of equations/variables per step, and q the size of the un-
derlying field. We present two attacks on the STS class by exploiting
the chain of the kernels of the private key polynomials. The first at-
tack is an inversion attack which computes the message/signature for
given ciphertext/message in O(mn3Lqr +n2Lrqr), the second is a struc-
tural attack which recovers an equivalent version of the secret key in
O(mn3Lqr +mn4) operations. Since the legitimate user has workload qr

for decrypting/computing a signature, the attacks presented in this paper
are very efficient. As an application, we show that two special instances
of STS, namely RSE(2)PKC and RSSE(2)PKC, recently proposed by
Kasahara and Sakai, are insecure.

1 Introduction

1.1 PKC Schemes Based on Multivariate Quadratic Equations

In the last two decades, several public key cryptoschemes (PKC) have been
proposed which use Multivariate Quadratic equations (MQ) over a finite field
F. A typical multivariate PKC public key P has the structure S ◦ P ′ ◦ T . Here,
S ∈ GLn(F) and T ∈ GLm(F) represent two linear transformations over the
finite field F. The system P ′ of m central equations in n variables of degree
2 is constructed with a trapdoor in order to speed up the decryption process.
The secret key of the system consists of the triple (S,P ′, T ). Depending on the
structure of P ′, these schemes can be divided into several classes: e.g., the initial
polynomial substitution scheme from Fell and Diffie [8], C∗ schemes [17], HFE-
like schemes [19, 6] or unbalanced oil-vinegar schemes [14]. All of them rely on the
fact that theMQ-problem, i.e., finding a solution x ∈ F

n for a given system P is
computationally difficult, namely NP-complete (cf [9–p. 251] and [20–App.] for
a detailed proof). Also decomposing P into T,P ′, S — called the Isomorphism
of Polynomials Problem — is considered to be a hard problem if S,P ′, T do not
have a special structure [21].

C. Blundo and S. Cimato (Eds.): SCN 2004, LNCS 3352, pp. 294–309, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this paper, we concentrate on a special sub-class of MQ-schemes, namely
schemes which have a triangular structure for their central equations P ′ — tri-
angular schemes for short. This idea is due to Shamir [22] who developed such
schemes (Birational Permutations) over large finite rings. To guard against spe-
cial types of attacks, he removed some initial equations. Goubin et al. specialised
the approach from [22] to the case of small finite fields, denoted TPM schemes
(Triangle Plus Minus, [10]). They add to Shamir’s construction some equations
in the last step (“Plus” modification) and fall in a similar class as the scheme
described in this paper (cf Fig. 2).
We now consider a further generalisation of the Birational Permutation and TPM
family. These schemes are called STS (step-wise triangular schemes), which differ
from the TPM class by allowing a “step” of more than one variable/equation
in the triangular structure (cf Fig. 1 for regular STS). The step-width (number

Step 1

⎧⎪⎨
⎪⎩

y′
1 = p′

1 (x′
1, . . . , x

′
r)

... with x′
i ∈F

y′
r = p′

r (x′
1, . . . , x

′
r)

...

Step l

⎧⎪⎨
⎪⎩

y′
(l−1)r+1 = p′

(l−1)r+1 (x′
1, . . . , x

′
r, . . . , x′

(l−1)r+1, . . . , x
′
lr)

...
y′

lr = p′
lr (x′

1, . . . , x
′
r, . . . , x′

(l−1)r+1, . . . , x
′
lr)

...

Step L

⎧⎪⎨
⎪⎩

y′
(L−1)r+1 =p′

(L−1)r+1 (x′
1, . . . , x

′
r, . . . , x′

(l−1)r+1, . . . , x
′
lr, . . . , x′

n−r+1, . . . , xn)
...

y′
Lr = p′

Lr (x′
1, . . . , x

′
r, . . . , x′

(l−1)r+1, . . . , x
′
lr, . . . , x′

n−r+1, . . . , xn)

Fig. 1. Central Equations p′
i in a Regular STS Scheme

of new variables) and the step-height (number of new equations) is controlled
by the parameter r. For Birational Permutations and TPM, the parameter r is
fixed to 1. Therefore, they are a special case of STS (cf Sect. 1.2). The main
part of this paper consists of the description of two very efficient attacks on STS
schemes. They break STS in O(mn3Lqr +mn4) and O(mn3Lqr +n2Lrqr) — for
m the number of equations, n the number of variables, L the number of layers,
q the size of the ground field F, and r the step-width/step-hight. The attacks
are mainly based on the fact that the kernels of the private central polynomials
p′
i form a descending chain of subspaces (cf Sect. 2.1). As the recently proposed

schemes RSE(2)PKC and RSSE(2)PKC by Kasahara and Sakai belong to the
STS family (cf Sect. 3), both schemes are covered by these attacks and thus
highly insecure. As an application of the attacks described in this paper, we
broke the challenge for RSE(2)PKC (cf Sect. 3.2).
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1.2 Step-Wise Triangular Systems

A step-wise triangular scheme is defined over a finite field F with q := |F| ele-
ments and prime characteristic char(F). Over this field, we define multivariate
quadratic polynomials

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
∑

1≤j≤n

βi,jxj + αi , (1)

for 1 ≤ i ≤ m and αi, βi,j , γi,j,k ∈ F (constant, linear, and quadratic terms).
These polynomials form the public key as a system of equations P :=(p1, . . . , pm).
The plaintext x ∈ F

n is transformed to the ciphertext y ∈ F
m as

yi := pi(x1, . . . , xn) with 1 ≤ i ≤ m .

The decryption, i.e., the inversion of this mapping, uses a trapdoor (cf Fig. 2).
This trapdoor consists of two linear transformations S ∈ GLn(F), T ∈ GLm(F)
and central equations as outlined in Fig. 1. The public equations P are con-
structed as a composition of P := T ◦ P ′ ◦ S where P ′ has a special triangular
structure (cf Fig. 1). The two linear transformations may be seen as invertible
matrices, we hence have S ∈ F

n×n and T ∈ F
m×m, respectively. In our de-

scription, we always use a prime (′) for denoting the secret central part of the
system.

input x

�
x = (x1, . . . , xn)

�
private: S

x′

�
private: P ′

y′

�
private: T

output y �

public:
P = (p1, . . . , pn)

Fig. 2. MQ-trapdoor (S, P ′, T ) in STS

Let r1, . . . , rL be L integers such that r1 + · · ·+ rL = n, the number of variables,
and m1, . . . ,mL ∈ N such that m1 + · · · + mL = m, the number of equations.
Here L ∈ N denotes the number of layers or steps in the scheme, rl represents
the number of new variables (step-width) and ml the number of equations (step-
height), both in step l for 1 ≤ l ≤ L. In a general step-wise Triangular Scheme
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(gSTS), the ml private quadratic polynomials of each layer l, contain only the
variables x′

k with k ≤
∑l

j=1 rj , i.e., only the variables defined in all previous
steps plus rl new ones. The overall shape of the private polynomials leads to the
name step-wise Triangular Scheme (STS).

When not mentioned otherwise, we concentrate on regular STS schemes (rSTS
or STS for short) in this paper. For regular STS schemes we set r1 = · · · = rN =
m1 = · · · = mL, which we denote by r. Moreover, L = m/r and m = n. Note that
the attacks we propose are also valid for the general STS schemes (cf Sect. 4.1).
The structure of a regular STS has been outlined in fig. 1 and 2.

As we see in Fig. 1, there are exactly r new variables in an rSTS for each
layer. This way one can compute an x for a given vector y with qr attempts in
each step. But as the legitimate user has a workload growing exponentially in r,
this value has to be small in order to obtain a scheme of practical interest. The
parameter r plays an important role for the complexity of our attack.

In order to decrypt a given ciphertext y, we need to invert the following

steps: x
S→ x′ P′

→ y′ T→ y. While S, T are bijections and also easy to invert,
this is not so obvious for the central equations P ′. In particular, these central
equations may not form a bijection. Adding redundancy to the original message
x or transmitting some additional redundancy, e.g., in form of its hash-value
h := H(x) where H(·) denotes a cryptographically secure hash function (e.g.,
see [18]), allows to pick the correct message x for a given input y. For a signature
scheme, we do not need this redundancy as it is enough to obtain one x ∈ F

n

such that P(x) = y for a given y; in most cases, this will be the hash of a longer
message. As this point is not important for our attack, we refer to [19, 12] for a
broader discussion of this problem.

Remark: As already pointed out in the introduction, the Birational Permuta-
tion Schemes of Shamir are regular STS schemes with r = 1. However, they are
not defined over a (small) finite field but over a (large) finite ring. The TPM
class of Goubin and Courtois coincides with STS for the parameters r1 = u,
mL = v, m1 = · · · = mL−1 = r2 = · · · = rL = 1, i.e., we remove u ∈ N initial
layers, add v ∈ N polynomials in the last step, and have exactly one new variable
at all intermediate levels. As STS, this class is not defined over a ring but over
a field.

Shamir’s scheme was broken shortly after its publication in [2, 23, 3]. The TPM
scheme of Goubin and Courtois has been broken in the paper that proposed it
[10]. In fact, the aim of their construction was to show that Moh’s TTM con-
struction is weak. While we dwell on the basic ideas of the above attacks, it is
necessary to extend them as they are not directly applicable to STS. In partic-
ular, Kasahara and Sakai conclude (cf [13–Sect. 4.3.III] and [12–Sect. 4.1.III])
that their constructions are secure against all known attacks — in particular,
mentioning [10]. Although this observation is true, we will show in Sect. 2 that
it is possible to generalise these attacks in a way that STS and consequently
RSE(2)PKC and RSSE(2)PKC are covered by them, too.
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1.3 Organisation

This paper is organised as follows: after this introduction, we move on to a
cryptanalysis of regular STS schemes, showing both an inversion and a struc-
tural attack in Sect. 2. The following section deals with special instances like
RSE(2)PKC and RSSE(2)PKC. In Sect. 4, we generalise STS. This paper con-
cludes with Sect. 5.

2 Cryptanalysis

We now present two different types of attacks on STS. In the inversion attack (cf
Sect. 2.3), we recover for given ciphertext y the corresponding message x. In the
structural attack (cf Sect. 2.4), we build a linear equivalent version of the private
key, denoted (S̃, P̃ ′, T̃ ). Using (S̃, P̃ ′, T̃ ), the attacker is in the same position as
the legitimate user for deciphering a given message y or forging a signature on
it. For both attacks, we first need some observations on kernels.

2.1 Chain of Kernels

Let pi be a public key polynomial. For characteristic �= 2, we can uniquely express
its homogeneous quadratic parts in a symmetric matrix Pi ∈ F

n×n. We show
this with a toy-example with three variables:⎛⎝γ1,1

γ1,2
2

γ1,3
2γ1,2

2 γ2,2
γ2,3
2γ1,3

2
γ2,3
2 γ3,3

⎞⎠ ,

where the γi,j represent the quadratic coefficients of xixj from the public poly-
nomials as defined in (1). So, instead of evaluating the quadratic parts of pi by
the vector x, we may also perform xPix

t as matrix-vector multiplications (here
t denotes transposition). As division by 2 is not defined for characteristic 2, we
use the form Pi := Li + Lt

i for lower triangular matrices Li instead to obtain
unique symmetric matrices. This way, we loose the quadratic coefficients γi,i of
the public polynomials. However, in characteristic 2, these quadratic terms are
linear and we can therefore ignore them. To the knowledge of the authors, the
above observation has been initially reported in [14] and is there credited to Don
Coppersmith.

The private key polynomials p′
i may also be represented in the above matrix

form. Following the notation outlined in the previous section, we denote the
corresponding matrices P ′

i . Obviously, the rank of each such matrix depends on
its layer l. The matrices P ′

i have a rank of rl in each layer l for 1 ≤ l ≤ L and
we have

ker′
l = {a′ ∈ F

n| a′
1 = . . . = a′

rl = 0}
as common kernels of the matrices P ′

i for (l − 1)r < i ≤ lr. As these kernels
are hidden by the linear transformation S, we also mark them with a prime ′.
Moreover, we denote by a′

i ∈ F for 1 ≤ i ≤ n the coefficients of the vectors
a′ ∈ F

n.



Efficient Cryptanalysis of RSE(2)PKC and RSSE(2)PKC 299

We now study the effect of the linear transformation S, i.e., the change of vari-
ables. As we have p̂i := p′

i ◦S and x′ = S(x), we obtain P̂i := SP ′
iS

t in terms of
the corresponding matrices. As S is invertible, we have Rank(P̂i) = Rank(P ′

i )
and

kerl = {a′S−1 | a′ ∈ F
n ∧ a′

1 = . . . = a′
rl = 0} (2)

for the kernels of P̂i for (l − 1)r < i ≤ lr and an unknown matrix S. Moreover,

ker′
L ⊂ . . . ⊂ ker′

1 and consequently kerL ⊂ . . . ⊂ ker1 .

With the notation T = (τi,j)1≤i,j≤m, each individual public key matrix Pi can
be expressed by

Pi =
m∑
j=1

τi,j [SP ′
iS

t] =
m∑
j=1

τi,jP̂i .

The problem of finding the transformation T−1 and thus T has therefore been
reduced to finding a linear combination of the public key (in matrix notation)
which has a specific rank. In the following two subsections, we describe two
algorithms which can be used for this purpose.

2.2 Recovering the Transformation T

Attacking the High-Rank Side. We start with an attack on the high-rank
side (cf the algorithm in Fig. 3). The overall idea of this algorithm is to exploit
the step-structure of STS. To do so, we observe that a correct random guess of a
row-vector in T−1 will lead to a condition on the rank of the linear combination of
the corresponding public key equations — expressed in matrix notation. More
formally and also to verify the correctness of this algorithm, we consider the
vector spaces

Jl := {b′T−1 | b′ ∈ F
m ∧ b′

lr+1 = . . . = b′
m = 0} for 1 ≤ l ≤ L . (3)

Obviously, they form a descending chain of subspaces and each of them has
dimension m − lr. Therefore, when picking a random element v ∈R Jl+1, we
have a probability of q−r that the expression v ∈ Jl holds. In addition, we have
two efficient methods (matrixCheck or polynomialCheck, respectively) to check
whether v ∈ Jl or v /∈ Jl. First, we concentrate on matrixCheck:

matrixCheck(P1, . . . , Pm, v, l) returns true iff Rank(
m∑
i=1

viPi) ≤ lr .

For the sake of the argument, we look at the problem in the T−1-space, i.e.,
after the linear transformation T−1 has been applied. Using the notation from
(3), we consider vectors b′ instead of v. Hence we have

M :=
m∑
i=1

b′
iP̂i =

rl∑
i=1

b′
i

(
SP ′

iS
t
)

= S

(
rl∑
i=1

b′
iP

′
i

)
St .
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Observing the step-wise structure of the private key polynomials p′
i we conclude

that the Rank(M) ≤ lr. This yields the result.
The expected running time of the algorithm from Fig. 3 is therefore bounded
by O(mn3Lqr): by picking at most cmqr vectors for each layer (c being a small
constant, e.g., 10), we can compute the vector spaces J1, . . . , JL with very high
probability. Checking the matrix condition costs an additional factor of n3 as
we are processing matrices from F

n×n. In comparison, the running time of the
other steps of the algorithm are negligible.

procedure highRankAttack(P)
Input: P: system of public equations
Output: T̃ : an equivalent copy of the transformation T
Pi ← computeMatrix(pi); JL ← F

m

for l ← L − 1 downto 1 do
Jl ← {0}
repeat

v ∈R Jl+1

if matrixCheck(P1, . . . , Pm, v, l) ∨ polynomialCheck(p1, . . . , pm, v, l) then
Jl∪ ← {v}

until Dimension(Jl)
?= lr

J̃ ← Jl+1 ∩ Jl

for i ← 1 to r do
RowVector(T̂ , lr + i) ← BasisVector(J̃ , i)

endfor
return T̃ ← T̂ −1

endproc

Fig. 3. High-Rank Algorithm for Computing the Transformation T̃ for a Given System
of Equations

In characteristic 2 we may apply Dickson’s theorem instead to check directly for
a given polynomial if it may be reduced to a form with less variables (procedure
polynomialCheck). Unfortunately, the proof is a bit lengthy, we therefore refer
to [16–Sec. 15.2, Thm. 4] for both the theorem and its proof. An algorithmic
version of it can be found in [4–Sec. 3.2]. The time complexity of this algorithm
is there estimated to be O(n3). Therefore, the overall complexity of the above
algorithm remains the same: O(mn3Lqr).

Remark: In both cases, we will not be able to recover the original transformation
T but the inverse of a linear equivalent copy of it, denoted T̂ for the inverse and
T̃ for the linear equivalent of T . In fact, we will recover versions of T in which
the rows of T̃ are linear combinations of the rows of T within the same layer.

Attacking the Low-Rank Side. Instead of obtaining an equivalent copy of the
transformation T directly, we can also exploit the fact that the kernels Ki := keri
(cf (2)) form a descending chain — starting with the large kernel ker1. This



Efficient Cryptanalysis of RSE(2)PKC and RSSE(2)PKC 301

algorithm (cf Fig. 4) is a little more subtle as it makes use of two different
observations. The first one is that the kernels keri form a descending chain.

procedure lowRankAttack(P)
Input: P: system of public equations
Output: T̃ : an equivalent copy of the transformation T
Pi ← computeMatrix(pi); K0 ← F

n; J0 ← {0}
for l ← L downto 1 do

repeat
w ∈R Kl−1

Jl ← SolutionSpace(
∑m

i=1 vi(wPi) = 0) for an unknown v ∈ F
m

until Dimension(Jl)
?= lr.

J̃ ← Jl ∩ Jl−1

for i ← 1 to r do
t̂ ← BasisVector(J̃ , i); RowVector(T̂ , lr + i) ← t̂; P̂(l−1)r+i ← ∑m

j=1 t̂jPj

Kl ← Kernel(Plr)
endfor
return T̃ ← T̂ −1

endproc

Fig. 4. Low-Rank Algorithm for Computing the Transformation T̃ for a Given System
of Equations

Therefore, setting ker0 := F
n, the statement w ∈ kerl is true with probability q−r

for all w ∈R kerl−1 and 1 ≤ l ≤ L. Second, the linear equation
∑m

i=1 vi(wPi) = 0
has qlr solutions for unknown v ∈ F

m if and only if the vector w is in the kernel
kerl. With J̃ := Jl∩Jl−1 where Jl−1 denotes the complement of the vector space
Jl−1, we obtain dimension r for J̃ which yields r new linearly independent rows
of the matrix T−1. The algorithm will therefore terminate with a correct solution
T̃ after O(Ln3qr) steps on average. Thus it outperforms the algorithm from the
previous section by a factor of m. As for the previous algorithm, we will not
recover the original transformation T but an equally useful variant of it.
Remark: Specialised versions of the algorithms from fig. 3 and 4 can be found
in [10] for the case of schemes with step-width 1 of the intermediate layers.

2.3 Inversion Attack

In the previous section, we discussed two different approaches to recover a linear
transformation T̃ for given public key equations. In this section, we will use T̃
and the polynomials p̂i := T̃−1 ◦ pi to solve the problem y = P(x) for a given
vector y ∈ F

m, i.e., for the MQ-problem. We do so by computing a successive
affine approximation of x, cf Fig. 5. This algorithm exploits the fact that the
kernels Ki := keri for 1 ≤ i ≤ L have the form kerl = {a′S−1 | a′ ∈ F

n ∧ a′
1 =

. . . = a′
rl = 0}. Setting K0 := F

n we have

K̃l = Kl−1∩Kl = {a′S−1 | a′ ∈ F
n∧a′

1 = . . . = a′
(l−1)r = a′

lr+1 = . . . = a′
n = 0}
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for 1 ≤ l ≤ L. Using this observation, we can “switch on” groups of r (hidden)
variables x′ and therefore manipulate the output of the polynomials p̂i layer by
layer. This is possible although we do not know the actual value of the secret
matrix S. As the polynomial system P̂ inherits the layer structure of the original
private polynomial system P ′, the solutions form a chain of affine subspaces
x+ < Kl > — where Kl has dimension n − rl in step l. Therefore, we learn
r log2 q bits about the vector x for each level of recursion.

procedure inversionAttack(P, T̃ , K1, . . . , KL, y)
Input: P: system of public equations, T̃ : linear transformation,

K1, . . . , KL: descending chain of kernels, y: target-value
Output: X: a set of solutions for the problem y = P(x)

procedure recursivePart(x, l)
if l > L then return {x}
K̃ ← Kl−1 ∩ Kl; X ← ∅
for w ∈ K̃ do

if (p̂i(x + w) ?= ỹi : (l − 1)r < i ≤ lr) then X ∪ ← recursivePart(x + w, l)
return X

endproc

p̂i ← pi ◦ T̃ −1 : 1 ≤ i ≤ m

ỹ ← yT̃ −1; K0 ← F
n

return recursivePart(0,1)
endproc

Fig. 5. Inversion Attack for y = P(x) and Given T̃

With this inversion attack, we are now in a similar position as the legitimate user:
at each level, we have to try cqr possible vectors and to evaluate r polynomials
p̂i — each step costing O(rn2). In case the STS is not a bijection, we may need
to branch — but this is the same situation as for the legitimate user. The only
additional overhead is the computation of the complement of vector spaces and
to intersect them. Both can be done in O(n2). Assuming that P is a bijection,
one application of this inversion attack has time-complexity O(n2Lrqr).

2.4 Structural Attack

The starting point of the structural attack (cf Fig. 6) is the same as for the inver-
sion attack, namely ker1 ⊃ . . . ⊃ kerL. As we have computed the transformation
T̃ in the previous step, we are able to compute the system of equations P̂, the
corresponding matrices P̂l and therefore their kernels for each layer l : 1 ≤ l ≤ L.
Due to its internal structure, the vector space K̃ := Kl−1 ∩ Kl consists of ex-
actly r row-vectors of S̃−1. We recover them in the for loop. As soon as we have
recovered S̃, we apply it to the intermediate system of equations P̂ , yielding P̃’,
an equivalent copy of the private key polynomials.
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In terms of complexity, the second step of the structural attack is dominant:
we need to evaluate m polynomials with O(n2) quadratic terms each. As each
quadratic term has two variables, this costs O(n2) for each term. The overall
time complexity is therefore O(mn4). So depending on the value qr, either the
structural or the inversion attack has a lower asymptotic running time as the
constants are in the same range.

procedure structuralAttack(P̂, K1, . . . , KL)
Input: P̂: system of equations; K1, . . . , KL: descending chain of kernels
Output: S̃: an equivalent copy of the secret transformation S

P̃ ′: an equivalent copy of the private key polynomials
K0 ← F

n

for l ←1 to L do
K̃ ← Kl−1 ∩ Kl

RowVector(Ŝ, (l − 1)r + i) ←BasisVector(K̃, i) : 1 ≤ i ≤ r

S̃ ← Ŝ−1

p̃′
i ← p̂i ◦ S̃−1 : 1 ≤ i ≤ m

return S̃, P̃ ′

endproc

Fig. 6. Structural Attack for a Given Sequence of Kernels ker1, . . . , kerL

3 Special Instances of STS

In this section, we show that the two schemes RSE(2)PKC [13] and RSSE(2)PKC
[12], recently proposed by Kasahara and Sakai, are special instances of STS
— and will therefore fall for the attacks discussed in the previous section. In
particular, we were able to break the challenge proposed in [13–Sect. 6] using an
inversion attack (cf Sect. 2.3) in both cases.

3.1 RSSE(2)PKC

In RSSE(2)PKC, the private polynomials p′
i for 1 ≤ i ≤ r have a special form,

namely

p′
(l−1)r+i(x

′) := φl,i(x′
(l−1)r+1, . . . , x

′
lr) + ψl,i(x′

1, . . . , x
′
(l−1)r) for 1 ≤ l ≤ L ,

where φl,i and ψl,i are random quadratic polynomials over F in r and (l − 1)r
variables, respectively. In both cases, the constant part is omitted. To simplify
programming, the linear terms βxi are considered to be quadratic terms βx2

i ,
for all i ∈ {1, . . . , n}. This may be done as RSSE(2)PKC is defined over GF(2)
and we hence have x2 = x for all x ∈ GF(2).
We observe that this special construction of the private key polynomials does
not affect our attack. In particular, the maximum rank for the corresponding
matrices P ′

i stays the same, namely lr for each layer. Unfortunately, for small
values of r (in particular, 2 ≤ r ≤ 4), there is a high probability that two
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polynomials φl,i, φl,j for i �= j have the same coefficients: for r = 2, there is only
one non-linear coefficient, for r = 3, there are only 3, and for r = 4, we obtain
6. The corresponding probabilities are therefore 2−1, 2−3 and 2−6, respectively,
that the polynomials φl,i, φl,j share the same quadratic coefficients. In a linear
combination of these two polynomials, the rank of the corresponding matrix will
therefore drop by r. This change defeats the lowRank algorithm from Fig. 4 as it
only uses the matrix representation of the public key polynomials pi. That way,
it will not only find solutions of the layer l, but also for such linear combinations.
To attack RSSE(2)PKC, it is therefore advisable to use the highRank algorithm
from Fig. 3 in connection with Dickson’s theorem (cf Sect. 2.2).

3.2 RSE(2)PKC

The system RSE(2)PKC is a special case of RSSE(2)PKC: the polynomials φl,i

are required to be step-wise bijections, i.e., we have (φl,1, . . . , φl,r) : F
r
2 → F

r
2

is a bijection for all l ∈ {1, . . . , N}. This way, the whole system P becomes a
bijection and it is possible to recover the solution x step by step without any
ambiguity. As being a bijection is a rather strong requirement for a system of
multivariate polynomials, the problem described in the previous section becomes
more severe as we have far less choices for the coefficients in the quadratic terms.
Still, using the high-rank rather than the low-rank attack should overcome this
problem.
In [13–Sect. 3.2], the authors suggest r ≤ 10 for their scheme which leads to
qr = 210. Therefore, we expect all attacks from the previous section to be efficient
against these schemes.

Challenges. In [13–Sect. 6], Kasahara and Sakai propose two challenges with
the following parameters: F = GF(2), n = 100 and r = 4, 5. Using a (highly
unoptimised) Magma [1] programme, we were able to break this challenge in a
few hours on an AMD Athlon XP 2000+. For our attack, we implemented the
inversion attack against the low-rank side (cf sect. 2.2 and 2.3). As pointed out
earlier, the attack should have been more efficient using an attack against the
high-rank side in combination with Dickson’s theorem (cf Sect. 2.2). In particu-
lar, we computed the solution x for the given value y. The two solutions are (in
vector-notation, starting with x1 at the left):

– r = 4: (0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 1
1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1
1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1),

– r = 5: (1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0
0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1
0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1).

These results have been confirmed by Kasahara and Sakai [11].
Apart from the attacks presented in this paper, we also want to point out
that the generic birthday attack for signature schemes applies against the pa-
rameter choice q = 2 and n = 100. In this case, the workload becomes only
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O(250). As Kasahara and Sakai do not use special constructions as, e.g., Feistel-
Patarin-Networks [5], the generic birthday attack applies against RSE(2)PKC,
RSSE(2)PKC, and also the hybrid type construction from the following section.

3.3 Hybrid Type Construction

In [12–Sect. 4.2], Kasahara and Sakai propose a so-called “hybrid type con-
struction” to enhance the security of RSSE(2)PKC. To simplify explanation,
we restrict to the case with two branches as this is sufficient to point out its
vulnerability to the attacks described in this paper.
In this case, the private polynomials p′

i are partitioned into two sets: the polyno-
mials p′

1, . . . , p
′
m/2 are constructed as for RSSE(2)PKC (see above). However, the

construction of the other polynomials now involves a third type of polynomial,
denoted σ. For L/2 < l ≤ L and 1 ≤ i ≤ r we have:

p′
lr+i(x

′) := φl,i(x′
(l−1)r+1, . . . , x

′
lr)+ψl,i(x′

1, . . . , x
′
(l−1)r)+σlr+i(x′

1, . . . , x
′
(L/2)) .

As for φl,i and ψl,i, the polynomials σlr+i are quadratic polynomials with ran-
domly chosen coefficients and no constant term α. All of them depend on the
first L/2 variables only. Therefore, the overall structure of the private polyno-
mials p′

i in terms of the rank of their matrix representation P ′
i does not change

and the attacks of this paper are still applicable.

4 Extensions of STS and Their Vulnerabilities

4.1 General Step-Wise Triangular Systems

As outlined in Sect. 1.2, regular STS may be generalised by different step-
sizes and also different number of equations in each individual level, denoted
r1, . . . , rL ∈ N and m1, . . . ,mL ∈ N, respectively. Moreover, we may consider
these L-tuples as part of the private key; only their sums n and m are public.
However, the internal structure of the private key keeps the same, in particular,
we still obtain the chain of kernels of the private key polynomials. The only part
of the attack we have to be careful about are the values r1 and mL, i.e., the
number of variables in the first layer and the number of equations in the last
layer. If the first is too large, the attack at the low-rank side is no longer effective
while a high value of the latter may preclude the attack from the high-rank side.
Using gSTS for a signature scheme allows us r1 + m1. However, in this case
we may not allow rL & mL as this leads to a highly overdetermined system
of equations — which has only very few solutions on average. The situation is
reverse for encryption schemes. Here, we may have rL & mL but not r1 + m1.
As the system has a solution for y = P(x) by construction, a large value of mL

does not provide a problem here. Unfortunately, we are not able to find it back
if the value for r1 and consequently qr1 is too large.

Therefore, gSTS will either fall to an attack from the high-rank or from the
low-rank side. In both cases the construction is insecure. We want to point out
that gSTS is a generalisation of the Triangular Plus-Minus (TPM) construction.
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In particular, we relax the condition that there is only one new variable and one
new equation at each intermediate level (cf Sect. 1.2).

4.2 Affine Transformations

In an attempt to strengthen gSTS, we investigate the replacement of the linear
transformations S, T by affine ones, i.e., to include additional vectors vs ∈ F

n

and vt ∈ F
m.

Consider two affine transformations S ∈ AGLn(F) and T ∈ AGLm(F). Then
there exists a unique, invertible matrix MS ∈ F

n×n (resp. MT ∈ F
m×m) and an

unique vector vs ∈ F
n (resp. vt ∈ F

m) which describes the affine transformation
S (resp. T ) by S(x) = MSx + vs where x ∈ F

n is an input vector (resp. T (x) =
MTx + vt for x ∈ F

m). Moreover, we can rewrite the affine transformation S
as S(x) = (x + vs) ◦ (MSx) where x denotes the output of MSx. In addition,
we can rewrite the affine transformation T as T (x) = (MT x̂) ◦ (x + M−1

T vt),
where x̂ denotes the output of x + M−1

T vt. As MT is an invertible matrix, the
matrix M−1

T ∈ F
m×m exists and is unique. We now express the public key as a

composition of the private key

P = T ◦ P ′ ◦ S
= [(MT x̂) ◦ (x̃ + M−1

T vt)] ◦ P ′ ◦ [(x + vs) ◦ (MSx)]

where x̃ is the output of P ′ ◦ [(x′ + vs) ◦ (MSx)] and x̂ is the output of (x̃ +
M−1

T vt) ◦ P ′ ◦ [(x′ + vs) ◦ (MSx)]. We have

P = (MT x̂) ◦ [(x̃ + M−1
T vt) ◦ P ′ ◦ (x + vs)] ◦ (MSx)

= (MT x̂) ◦ P ′′ ◦ (MSx)

for some system of equations P ′′. As both (x + vs) and (x̃ + M−1
T vt) are trans-

formations of degree 1, they do not change the overall degree of P ′′, i.e., as P ′

consists of equations of degree 2 at most, so will P ′′. In addition, due to its
construction, (MS ,P ′′,MT ) forms a private key for the public key P and the
layer-structure of STS is not affected by these two operations.
Therefore, we can conclude that the use of affine instead of linear transformations
does not enhance the overall security of STS. In fact, we are able to draw a similar
conclusion for all such systems — as long as it is possible to replace the equation
P ′ by an equation of similar shape. The corresponding observation for HFE has
been made by Toli [24].

4.3 Degree Larger Than 2

In [13] and [12], Kasahara and Sakai generalise their construction to the schemes
RSE(d)PKC and RSSE(d)PKC where d ∈ N denotes the degree of the public
polynomials and d ≥ 2. In their construction, terms of all degrees 1, . . . , d appear
in the public polynomials, e.g., linear and quadratic terms in RSSE(2)PKC and
RSE(2)PKC (cf sect. 3.2 and 3.1). Therefore, we may apply the structural attack
using the degree 2 terms in RSSE(d)PKC for d > 2, consequently retrieving the
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transformations S̃ and T̃ , and then the corresponding private polynomials in the
larger degree d. Similar, we may apply the inversion attack.
This construction is therefore not more secure. In addition, it leads to a much
larger public key: the number of terms grows in O(mnd) for d > 2.

4.4 Highly Overdetermined Schemes

When the scheme has more equations than variables, i.e., for m > n, we need to
adapt the algorithm LowRankAttack (cf Section 2.2). Instead of picking one vector
in each layer,we need to considerλ :=

⌈
m
n

⌉
vectors v1, . . . , vλ ∈ F

n simultaneously.
Now we have to solve the system of equations

∑m
i=0 v

j
i (wPi) = 0 for j ∈ {1, . . . , λ}

in order to have enough information for recovering the rows of T̃ . As for the case
m ≤ n, this system of linear equations has qlr solutions if and only if all vectors
v1, . . . , vλ are in the kernel kerl. Consequently, the complexity for the LowRankAt-
tack increases exponentially with λ and is equal toO(mn3Lqλr). In practice we will
have small values forλ as highly overdetermined systems of quadratic equations are
easy to solve [4].

5 Conclusion

In this paper, we have generalised the systems TPM, RSE(2)PKC, and RSSE(2)
PKC to the step-wise triangular system (STS). In particular, we allow “steps”
which contain more than one new variable (restriction in TPM) and give the
private key polynomials p′

i more flexibility than in RSE(2)PKC or RSSE(2)PKC.
We have presented two different types of attacks against the STS schemes: an
inversion attack with complexity O(mn3Lqr + n2Lrqr) and a structural attack
with complexity O(mn3Lqr + mn4). As the value of qr has to be chosen rather
small to derive a practical scheme, we conclude that STS is broken for all prac-
tical values (TPM uses 2 here while RSE(2)PKC and RSSE(2)PKC allow 1024
as maximal value). This is a new result for the special cases RSE(2)PKC and
RSSE(2)PKC which have been considered to be secure against rank-attacks by
their inventors. In particular, we were able to compute the solutions for the
challenges proposed by Kasahara and Sakai (cf Sect. 3.2).
We have demonstrated that the existing generalisations of STS are either inse-
cure or impractical. At present, it does not seem likely that there will ever be
secure versions of STS schemes. In particular, we see no way of avoiding both the
large kernel at one end and the small kernel at the other end — leave alone the
chain of kernels — and still obtaining a scheme which may be used in practice
for either encryption or signing.
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Abstract. This paper proposes an improved approach for cryptanal-
ysis of keystream generators based on a composition of a linear finite
state machine (LFSM) and nonlinear mapping. The main feature of the
proposed approach is that it is based on identification and selection for
further processing certain suitable positions in the given sample so that
only the decimated sample elements are relevant for the attacking. In
a number of scenarios this yields a significant gain in the performance
sometimes at the expense of a longer sample required or/and the pre-
processing cost. The proposed approach employs novel methods for con-
structing the underlying overdefined system of equations relevant for the
attacks and solving the system under a set of the hypothesis. Oppositely
to the previously reported methods, the proposed ones also identify and
use certain characteristics of the LFSM state-transition matrix in order
to reduce the nonlinearity of the system. The novel construction of the
equations yields a possibility for the trade-off between the required sam-
ple, pre-processing and processing complexity of the cryptanalysis. The
pre-processing phase of the developed algorithm for cryptanalysis yields
a collection of the output bit positions which are suitable for reducing
the equations nonlinearity. The processing phase employs the output bits
from the identified collection and it includes an exhaustive search over a
subset of the secret key bits.

Keywords: stream ciphers, cryptanalysis, algebraic attacks, overdefined
systems of equations, decimation, hypotheses testing.

1 Introduction

Recently, algebraic attacks have appeared as a powerful tool for cryptanalysis
and security evaluation of certain encryption schemes and particularly stream
ciphers including the nonlinear filter based keystream generators. Some early
algebraic attacks on stream and related ciphers have been reported in [10], [11],
[1] and [3]. Very recently, a number of general powerful algebraic attacks have
been reported in [4], [5], [9] and [7].
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A general paradigm of algebraic attacks is based on establishing and process-
ing an overdefined system of the nonlinear equations. An algebraic attack can be
roughly summarized as follows: (i) Describe the secret key as a largely overde-
fined system of (low-degree) nonlinear algebraic equations; (ii) If the number
of equations exceeds the number of terms, linearise the system; i.e. treat each
term as an independent variable and solve this (huge) system of linear equa-
tions. (iii) If the first step does not yield enough equations, try to solve the
system employing other appropriate techniques (like Grobner basis, see [6], for
example).

Motivation for the Work
General powerful algebraic attacks that have been recently reported are based
on construction of the overdefined system employing (basically) only certain
characteristics of the nonlinear function. Accordingly, the performance of these
attacks strongly depend on the nonlinear part, and if this part does not have cer-
tain characteristics appropriate for cryptanalysis the attacks could become very
complex or not feasible. So, an origin for this paper was addressing the following
issue: Find a way to involve into the algebraic attack certain characteristics of
the linear part of the generator in order to obtain more powerful attacks in the
cases when the nonlinear part is heavily resistant against the reported algebraic
attacks.

Contributions of this Paper
This paper yields a novel approach for developing algebraic attacks on thememory-
less nonlinear filter based keystream generators. A novel method for constructing
and solving the overdefined systems of the binary nonlinear equations relevant for
the cryptanalysis is proposed.The proposedmethod assumes selection of a suitable
subset of possible multivariate equations and the search over a set of hypothesis.
Recall that the reported methods for construction of the overdefined systems are
mainly based only on certain characteristics of the nonlinear function. Oppositely
to the reported methods, the proposed one also identifies and employs certain char-
acteristics of the state-transitionmatrix corresponding to the linear part in order to
reduce the nonlinearity of the nonlinear equations related to algebraic attacks. The
proposed construction of the system yields a possibility for the trade-off between
the required sample, pre-processing and processing complexity of the cryptanaly-
sis. The pre-processing phase of the developed method is independent of a partic-
ular sample and it consists of three consecutive stages: Particularly note that the
first stage yields a collection of the output bit positionswhich are suitable for reduc-
ing the equations nonlinearity. The processing phase consists of two stages and it
employs the output bits from the identified collection and includes an exhaustive
search over a moderate subset of the secret key bits. Following the above frame-
work an algorithm for algebraic attack is proposed, analyzed and its advantages in
comparison with the reported ones are pointed out (see Table 1 and Table 2).

Organization of the Paper
The preliminaries including the specification of the nonlinear filter model under
consideration in this paper are given in Section 2. Underlying ideas for the novel
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approach and the framework for cryptanalysis of the nonlinear filter keystream
generators are given in Section 3. The (basic) algorithms for cryptanalysis of the
memoryless nonlinear filter generators employing algebraic attack is proposed in
Section 4 and analyzed in Section 5. The proposed approach is compared with
the relevant previously reported ones in Section 6. Finally, Section 7 yields a
concluding discussion.

2 Preliminaries

2.1 Algebraic Normal Form of a Nonlinear Boolean Function

An m-variable Boolean function f(x1, x2, ..., xm) can be considered as a multi-
variate polynomial over GF(2). This polynomial can be expressed as a sum of
products representation of all distinct r-th order products (0 ≤ r ≤ m) of the
variables as follows:

f(x1, x2, ..., xm) =
⊕

u∈GF (2m)

λu (
m∏
i=1

xui
i ) , λ ∈ GF (2) , u = (u1, u2, ..., um) .

(1)
This representation of f(·) is called the algebraic normal form (ANF) of f . The
algebraic degree of f , denoted by deg(f) or simply d, is the maximal value of
the Hamming weight of u such that λu �= 0.

2.2 Matrix Representation of a Binary Linear Finite State
Machine (LFSM)

A binary linear finite state machine (LFSM) can be described as Xt = AXt−1,
where A is the state transition matrix (over GF(2)) of the considered LFSM.
Let X0 be the column (L × 1) matrix [XL−1, ..., X0]T representing the initial
contents or initial state of the LFSM, and

Xt = [X(t)
L−1, ..., X

(t)
0 ]T , (2)

is the L-dimensional column vector over GF(2) representing the LFSM state
after t clocks, where XT denotes the transpose of the L-dimensional vector X.
Accordingly,

Xt = AXt−1 = AtX0, At =

⎡⎢⎢⎢⎢⎢⎣
A(t)

1

A(t)
2

A(t)
3
·

A(t)
L

⎤⎥⎥⎥⎥⎥⎦ , t = 1, 2, . . . , (3)

where At is the t-th power over GF(2) of the L×L state transition binary matrix
A, and each A(t)

i , i = 1, 2, ..., L, represents a 1× L matrix (a row-vector).
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Linear feedback shift register (LFSR) and linear Cellular Automaton (CA)
are particular LFSMs.

Example 1: LFSR.
An LFSR can be considered as a particular linear finite state machine described
via certain linear operators as follows. The characteristic polynomial or feedback
polynomial of the LFSR is

b(u) = 1 + b1u + . . . + bLu
L (4)

and the recursion implemented by the LFSR is then

XL+t = −b1XL+t−1 − . . .− bLXt = b1XL+t−1 + . . . + bLXt, (5)

assuming operations over GF(2).
When the LFSR feedback polynomial being given by (4), then the state

transition matrix A can be written as:

A =

⎡⎢⎢⎢⎢⎣
b1 b2 b3 ... bL
1 0 0 ... 0
0 1 0 ... .
· · · ... ·
0 ... 1 0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
A1
A2
A3
·

AL

⎤⎥⎥⎥⎥⎦ . (6)

2.3 Model of the Nonlinear Filter Keystream Generators

This paper considers a novel algebraic attack technique for cryptanalysis of a
class of keystream generators for stream ciphers known as the nonlinear filter
generators (see [8], for example). The model of the keystream generators under
cryptanalytic consideration is displayed in Fig. 1 where LFSM denotes a known
linear finite state machine with only the initial state X0 determined by the secret
key, and f(·) denotes a known nonlinear memoryless function of K arguments.

Assumption 1. In the considered model, f(·) is nonlinear function such that it
is computationally not possible to construct any multivariate relations between
the function arguments and its output with the nonlinearity degree lower than
d without employing linear combining of the basic multivariate equations.

Note that ANF of f(·) directly specifies one multivariate equation between the
function arguments and its output which has the nonlinearity order equal to the
algebraic degree of f(·), but in many cases additional multivariate equations with
a lower nonlinearity order can be specified as well. When a linear combining of
the equations is allowed, the linear combination can be with a lower degree than
the component equations, assuming that enough many equations is available for
the combining (see [5], for example).

In Fig. 1, X0 denotes the LFSM initial state, Xt and At denote the LFSM
state and LFSM state transition matrix, respectively, at a time instance t, and
let the generator output sequence be the sample available for the cryptanalysis.
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Fig. 1. Model of the keystream generators under consideration: The nonlinear filter

3 Origins, Underlying Ideas and Framework of Novel
Approach for Algebraic Attacks

3.1 Origins and Underlying Ideas

The reported algebraic attacks on the nonlinear filters are based on identification
of a nonlinear multivariate equation with the nonlinearity order d in the input
arguments of f(·) and in general case can be of higher degree in the outputs.
Note that this equation is established taking into account only the characteristics
of the nonlinear functions f(·). According to [4], when we can evaluate around(
L
d

)
different instances of the identified equation, we can establish an overdefined

system of nonlinear equations which can be solved by simple linearization and
employment of the Gaussian elimination with the complexity proportional to
2ω(log2L)d, where ω is a known constant (ω=2.7, see [5] or [7], for example). Note
that d contribute to the overall complexity in the exponential manner, and so it
should be as small as possible. In [5], a method for reducing the nonlinearity order
d of the involved equations is proposed: This method employs a pre-processing
over the set of the equations via making appropriate linear combinations of the
initial equations so that the resulting equations have reduced nonlinearity order.
The underlying idea of the approach given in this paper has the same goal, i.e.
reduction the nonlinearity order of the equations involved in the system to be
solved via linearization and Gaussian elimination, but achievement of the goal
is not based on the search for the appropriate linear combinations of the initial
equations.

The underlying ideas of the novel approach can be summarized as follows:
Reduce d of the initial multivariate equation via

– employment of a search over the set of hypotheses, and
– selection of a suitable subsequence of the nonlinear filter output sequence to

be used for establishing the overdefined system of nonlinear equations with
a reduced nonlinearity order.

The approach proposed in this paper takes into account not only the nonlinear
part but certain (suitable) characteristics of the linear part originating from the
following.
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– At each time instance t the arguments of f(·) are certain elements of the state
vector Xt = AtX0 where At is the known matrix and X0 is the unknown
initial state of LFSM.

– The LFSM initial state is considered as consisting of two suitably determined
parts: one which should be determined by an exhaustive search, and the other
which could be recovered via an appropriately designed algebraic attack,
assuming that the first part is known due to the employed hypothesis.

3.2 Framework

This section proposes a framework for developing a novel family of algorithms for
cryptanalysis of certain stream ciphers which fit to the model under consideration
in this paper.

The proposed framework includes the preprocessing steps which are indepen-
dent of particular sample elements (they should be performed only once) and
the processing steps which should be performed for the given sample.

The main goals of the preprocessing are: (i) identification of the time instances
t where certain arguments of f(·) depend only on a part of the LFSM initial
state, and (ii) establishing the working system of equations with the reduced
nonlinearity and deriving the general solutions for certain unknowns.

Taking into account only the time instances within T , i.e. positions in the
sample identified in the preprocessing, the central goals of the processing are: (i)
For the given sample elements and a particular hypothesis evaluate the general
solutions and obtain a candidate for the initial state; (ii) Recover the initial state
via evaluation of the candidates over the set of hypothesis.

Three main components of the proposed framework are the following ones:

– Sample Decimation. Selection of suitable sample elements assuming that
certain B bits of the LFSM initial state are known.

– Conditional Algebraic Attack. Mounting algebraic attack over the selected
sample elements and obtaining the 2B candidates for the initial state as a
function of the B bits considered as known.

– Hypotheses Testing. Exhaustive search over 2B hypothesis about the B bits
and recovering the initial state.

Accordingly, assuming that certain necessary conditions are fulfilled, in a
general case, the algorithm for cryptanalysis under development consists of the
following three phases.

1. Phase I.
– Suppose that certain B secret key bits (variables) will be recovered by

the exhaustive search. (This assumption is recognized as a very useful
one for developing efficient fast correlation attacks: see [11] and [2], for
example.)

– Determine a set T of time instances t where a subset of f(·) arguments
depend only on the assumed B bits.
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2. Phase II.
Mount a general form of the algebraic attack taking into account only the
time instances t ∈ T as follows:
– specification of the initial system of equations;
– construction of the working system of equations with the reduced non-

linearity employing the assumption that certain B bits are known;
– linearization of the constructed nonlinear equations;
– solving the system of equations by Gaussian algorithm, and obtaining

general solution for L−B bits as a function of the B bits considered as
known (this step is similar to the ”slow pre-computation” approach [5],
Section 4.1).

3. Phase III.
– Substitution of the selected sample elements (corresponding to the time

instances t ∈ T ) into general form of the solutions.
– Testing the hypotheses on the assumed B bits, and recovering the initial

state of LFSM.

4 Algorithm of New Algebraic Attack

Let at each time instance t, the following state elements are the arguments of
f(·): X(t)

k , k ∈ K, and K is a subset of {0, 1, ..., L− 1} with the cardinality equal
to K, and let K∗ be a subset of K. Note that:

X
(t)
k = A(t)

k X0 , k ∈ K, t = 1, 2, ... , (7)

Assumption 2. At certain time instances t ∈ T the following is valid:

– For each k ∈ K∗, K∗ ⊂ K, the row vectors A(t)
k have such forms that the

state elements X
(t)
k , k ∈ K∗, depend only on certain B elements of X0 with

indices i, i ∈ I, independent of the parameter t.

Let the cardinality of K∗ is K∗. Let |T | denotes the cardinality of T , i.e. total
number of the time instances when Assumption 2 holds. The following statement
can be directly proved: The contents of T depends on a particular LFSM, and
can be obtained by a straightforward calculation.

A L G O R I T H M I: The Decimation and Hypothesis Testing Based
Algebraic Attack

– Preprocessing
• Preprocessing I - Sample Decimation.

∗ Input: State transition matrix A, positions I of B initial state bits
known by the hypothesis, and the algorithm parameter N .
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∗ Search over the Powers of the State Transition Matrix
For each t, do the following
1. Calculate At = A ·At−1.
2. Evaluate validity of Assumption 2 for current t.
3. If Assumption 2 holds, include t into T .
4. Set t → t + 1, and if t ≤ N , go to the preprocessing Step 1;

otherwise, go to the preprocessing output.
∗ Output: Set T of the selected time instances t.

• Preprocessing II - Derivation of General Solutions.
∗ Input: Inputs of Preprocessing I and its output, set T .
∗ The System of Equations Construction:

• Assume that B-bits pattern on the initial state index positions
i, i ∈ I is known.

• Taking into account only the positions t ∈ T and particular
characteristics of LFSM states at these positions, specify the
required initial system of

(
L

K−K∗
)

nonlinear equations.
• Perform the system linearization and derive expressions for L−B

initial state bits under assumption that the B-bits are known,
obtaining the following relations:

xj =
⊕
t∈T

cjφt({xi}i∈I) , j ∈ {1, 2, ..., L}
⋂
I , (8)

where cj ∈ {0, 1} are constants determined by the sample, and
φt(·) are known polynomial functions determined by Gaussian
elimination procedure and the state transition matrix at time
instances t ∈ T .

∗ Output: The general solutions (8) of L − B bits under assumption
that B bits are known.

• Preprocessing III - Specification of a Dedicated Look-Up Table (LUT)
∗ Input: The functions φt({xi}i∈I), t ∈ T .
∗ Evaluation of LUT elements: For each of 2B different patterns of

[xi]i∈I evaluate all the functions φt({xi}i∈I), t ∈ T .
∗ Output: LUT of dimension 2B × O(2(K−K∗)log2L) where each the

rows contains precomputed values of O(2(K−K∗)log2L) ”coefficients”
φt({xi}i∈I), t ∈ T .

– Processing Phase
• Input: Outputs of the preprocessing phase, and the keystream generator

output sample.
• Processing Steps:

1. Involving the Sample into General Solutions.
Substitute the sample elements corresponding to T into the general
solutions (8).

2. Evaluation of the Solutions over the Set of Hypothesis
Evaluate the solutions (8) for all possible 2B hypothesis on the B
bits according to the following:
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(a) Select previously not considered candidate for the B bits of initial
state and employing (8) with involved sample bits, and LUT
evaluate a candidate for the remained L − B bits, obtaining a
candidate for the entire initial state, as well.

(b) Generate the nonlinear filter output sequence of length at least
equal to L.

(c) Compare the generated sequence and the corresponding segment
of the given input sample.
If the sequences under comparison are identical accept the initial
state determined by the considered hypothesis on B bits and the
recovered L − B bits as the correct one, recover the secret key
and go to the processing phase Output.
Otherwise, continue examination of the candidates.

• Output: Recovered secret key.

5 Discussion on Required Sample and Algorithm
Complexity

The complexity analysis in this section assumes that the output of function f(·)
can be computed in time O(1) (the same assumption is employed in [5]).

5.1 Arbitrary Positions of Nonlinear Filter Inputs

It is assumed that the employed LFSM is LFSR (or CA) with the primitive
characteristic polynomial.

Proposition 1. The expected sample dimension N required for Algorithm I
implementation should be greater than 2(L−B)

(
L

K−K∗
)

.

Sketch of the Proof. Algorithm I employs a system of
(

L
K−K∗

)
equations corre-

sponding to the positions of the generator output sequence where K∗ arguments
of the nonlinear function f(·) depend only on certain B bits. On the other hand
in a statistical model corresponding to a sequence of the state-transition matrix
powers, the probability that the pattern required by Assumption 2 appears is
at most equal to 2−(L−B). Accordingly, as an estimate we have the proposition
statement.

Proposition 2. The time and space complexities of the pre-processing are
max{O(2L−B+Q+(K−K∗)log2L); O(2ω(K−K∗)log2L); O(2B+2(K−K∗)log2L)} and
O(2B+(K−K∗)log2L), respectively.

Sketch of the Proof. Preprocessing consists of three consecutive phases, and the
total time complexity is the sum of three corresponding complexities, but the
maximum sum component is the dominant one. The sample decimation phase
(Preprocessing I) has time complexity O(2L−B+Q+(K−K∗)log2L) where Q < B is
a parameter which depends on the characteristics of employed LFSM and f(·).
The Gaussian elimination phase (Preprocessing II) according to [4]-[5] has the
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time complexity O(2ω(K−K∗)log2L). The dedicated look-up table specification
(Preprocessing III) has time complexity O(2B+2(K−K∗)log2L). According to the
structure of all preprocessing phases the dominant space complexity is deter-
mined by the required LUT dimension and so it is O(2B+(K−K∗)log2L).

Proposition 3. The attack processing requires:
time complexity O(2B+(K−K∗)log2L) and space complexity O(2B+(K−K∗)log2L).

Sketch of the Proof. Algorithm I structure implies that the time complexity is
sum of the time complexities of the main processing steps 1 and 2. According
to the nature of these steps, the domminat complexity corresponds to the step
2. Time complexity of the step 2 is determined by the complexities of evalua-
tion of the general solutions over 2B hypotheses where O(2(K−K∗)log2L) is time
complexity of the evaluation employing LUT for a single hypothesis. The space
complexity is determined by the space requirement for LUT.

5.2 Partially Concentrated Positions of Nonlinear Filter Inputs

Assumption 3. The considered LFSM is an LFSR with primitive characteristic
polynomial and the state-transition matrix given by (6), such that bi = 0 for
imin ≤ i ≤ imax, I = {1, 2, ..., B}, imin = B + 1, imax = L − 1, and Δ =
mmax − mmin + 1 where mmax and mmin corresponds to the largest and the
smallest values in K∗, respectively.

Proposition 4. When Assumption 3 holds, the expected cardinality of T is
given by the following:

¯|T | = N 2−(L−B−1+2Δ) ,

where N is the available sample.

Sketch of the Proof. When A is the state transition matrix of an L-length bi-
nary LFSR with a primitive characteristic polynomial, than (3) implies that the
sequence of the matrix powers At has period 2L − 1 because X0 is a constant
vector and the sequence Xt has period 2L − 1.
On the other hand we have

At = At−1A0 (9)

where A0 = A. Let
A0 = [AC(0)

1 ,AC(0)
2 , ...,AC(0)

L ]

and
At = [AC(t)

1 ,AC(t)
2 , ...,AC(t)

L ] ,

where each AC(0)
i and AC(t)

i , i = 1, 2, ..., L, is an L× 1 (column) matrix.
Let {xn} be the LFSR output sequence generated by the initial state X0 such
that X

(0)
imax

= 1 and all other X
(0)
i , 1 ≤ i ≤ L, i �= imax are equal to zero.
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Accordingly, and based on the proposition assumptions, the following can be
directly shown: Each AC(t)

i , imin ≤ i ≤ imax is equal to an L-length segment
of {xn}, and for any pair (i1, i2), imin ≤ i1 ≤ i2 ≤ imax, we have that AC(t)

i1

and AC(t)
i2

correspond to the segments with the starting point difference equal
to i2 − i1.

Finally, in the statistical model, the probability that an all-zeros pattern of
length L−B− 1 +Δ will appear in the sequence {xn} is equal to 2−(L−B−1+Δ)

and due to that always bL = 1 (see (6)) the probability that Assumption 1 holds
in a time instance t is equal to 2−(L−B−1+Δ) · 2−Δ. The above consideration
implies the proposition statement.

The structure of Algorithm I directly implies the following statements.

Proposition 5. The sample dimension N required for Algorithm I implemen-
tation when Assumption 3 holds is proportional to 2(L−B+2Δ)

(
L

K−K∗
)
.

Sketch of the Proof. Note that Algorithm I needs a sample in which the pattern
required by Assumption 2 will appear around

(
L

K−K∗
)

times, and the pattern
required is a two dimensional (L − B) × Δ one where Δ ≥ K∗. Accordingly,
Proposition 4 imply the given estimation of the required sample.

So, when the inputs of f(·) are partially concentrated, a significantly smaller
sample and pre-processing complexity are required in comparison with a general
case.

Note. Assumption 3 has no impact to the time and space processing complexi-
ties, and they are given by Proposition 3.

6 Comparison with the Previously Reported Attacks

Taking into account Propositions 1 - 3, and the results reported in [5] and [7], the
developed attack is compared with the best related ones previously published
and the summary of comparison is given in Tables 1 and 2.

For the comparison purposes the following is assumed:
- the employed LFSM is LFSR of dimension L;
- the employed nonlinear Boolean function has the degree d and K arguments
(K inputs from LFSR state assuming arbitrary positions) and d = K;
- e the parameter of the algorithms from [5] (see [5], Sect. 7.1 and 7.2) and in
order to minimize the time complexity e ≈ K(1/ω) where ω is the constant
related to the algorithm for solving a system of linear equations (ω ≈ 2.7);
- B and K∗ (see Assumption 2) are parameters of the proposed Algorithm I,
B < L, K∗ < K < L.

Also, it is assumed that the output of function f(·) can be computed in time
O(1) (the same assumption is employed in [5]).

Finally note that for simplicity, it is intentionally assumed that the both
approaches [5] and [7] have the same preprocessing complexities although the
more precise comparison is given in [7].
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Table 1. Comparison of the time complexities of the proposed and previously reported
attacks on the nonlinear filters (the processing complexity reported in [5] is corrected
according to [7])

Pre-Processing Processing
Complexity Complexity

CRYPTO’03, [5] O(2(d+e)log2L) max{O(2(d+2e)log2L);
e < d < L O(2ωelog2L)}

CRYPTO’04, [7] O(2(d+e)log2L) max{O(2(d+e)log2L+log2d+log2log2L);
O(2ωelog2L)}

proposed max{O(2L−B+Q+e∗log2L);
Algorithm I O(2ωe∗log2L); O(2B+e∗log2L)

e∗ = K − K∗ < e; O(2B+2e∗log2L)}
Q < B < L

Table 2. Comparison of the required sample and the space complexities of the proposed
and previously reported attacks on the nonlinear filters

dimension of consecutive
sample sample bit space

involved in required complexity
processing

CRYPTO’03, [5]
CRYPTO’04, [7] ∼

(
L
d

)
yes O(

(
L
d

)(
L
e

)
)

e < d < L

proposed ∼
(

L
e∗
)

Algorithm I decimated from no O(2B
(

L
e∗
)
)

e∗ = K − K∗ < e; Q < B < L ∼ 2L−B+Q
(

L
e∗
)

The following Table 3 yields a numerical illustration of the comparison given in
Table 1. We assume attacking of the nonlinear filter which involve LFSR of length
L = 70, and nonlinear function f(·) with K = 6 arguments and deg(f) = 6. The
employed value of the parameter e in the reported algorithms [5] and [7] is e = 2,
and the employed values of the parameters B and K∗ in the proposed Algorithm
I are B = 35 and K∗ = 4, assuming partially concentrated inputs with Δ = 5
(see Assumption 3 and Propositions 4 - 5, as well).



322 M.J. Mihaljević and H. Imai

Table 3. An illustrative numerical comparison of the main characteristics of the pro-
posed and previously reported attacks on the nonlinear filter, when the parameters in
Table 1 take the following values: L = 70, d = K = 6, e = 2, B = 35 and K∗ = 4

CRYPTO’03 CRYPTO’04 proposed
attack [5] [7] Algorithm I

length of
required ∼ 248 ∼ 248 ∼ 257

sample
consecutive
sample bits yes yes no

required
space

complexity O(248) O(248) O(247)
(memory)

pre-processing O(248) O(248) O(258)
complexity

attack O(260) O(254) O(247)
complexity

7 Concluding Discussion

The paper proposes novel elements for security evaluation or cryptanalysis of
certain stream ciphers which can be modeled via the nonlinear filter keystream
generator, i.e. a linear finite state machine and a nonlinear Boolean function.

The main feature of the novel approach is that it employs certain character-
istics of the generator linear part (the involved linear finite state machine) to
identify positions of the generator output sequence where certain arguments of
the nonlinear function depend only on a part of the generator initial state. As-
suming that this part of the initial state can be considered as known one, a more
suitable system of nonlinear multivariate equations can be established, and the
assumed initial state part can be recovered via the exhaustive hypothesis testing
later on.

The proposed approach consists of the following three main phases: (i) Selec-
tion of suitable sample elements assuming that certain B bits of the initial state
are known; (ii) Mounting algebraic attack over the selected sample elements and
obtaining the 2B candidates for the initial state as a function of the B bits con-
sidered as known; (iii) Exhaustive search over 2B hypothesis about the B bits
and recovering the initial state.

The characteristics of the proposed approach are compared with the relevant
previously reported techniques, and it is pointed out that in a number of sce-
narios the developed algorithm yields gains in comparison with the previously
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reported ones. (see Tables 1 and 2 for a general case, and Table 3 for a particu-
lar illustrative numerical case). Also note that the proposed approach does not
require consecutive sample elements.

The proposed attack is limited to the simple nonlinear filters, and applica-
bility of its underlying principles to the more general scenarios is an open issue.
The proposed attack does not yield benefits in all the cases, but it could provide
significant gains over the previously reported ones when: (i) a large sample is
available, (ii) the employed memoryless nonlinear function has good algebraic
immunity and when its parameter d is close to the parameter K and they have
moderate values, (iii) the inputs from LFSR to the nonlinear filter are partially
concentrated.
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Abstract. HAVAL is a cryptographic hash function proposed in 1992
by Zheng, Pieprzyk and Seberry. Its structure is quite similar to other
widely used hash functions such as MD5 and SHA-1. The specifica-
tion of HAVAL includes a security parameter: the number of passes
(that is, the number of times that a particular word of the message
is used in the computation) which can be chosen equal to 3, 4 or 5.
In this paper we cryptanalyze the compression functions of the 4-pass
and the 5-pass HAVAL using differential cryptanalysis. We show that
each of these two functions can be distinguished from a truly random
function.

1 Introduction

A hash function is a cryptographic algorithm that takes input strings of arbi-
trary (or very large) length and maps these to short fixed length output strings.
HAVAL is a cryptographic hash function proposed in 1992 by Zheng, Pieprzyk
and Seberry [18]. Its structure is quite similar to other widely used hash func-
tions such as MD5 [14] and SHA-1 [16]. It uses rotations, modular additions, and
highly non-linear boolean functions. HAVAL operates in so called passes, where
each pass consists of 32 steps. The recommended number of passes are 3, 4 and
5. Thus 3, 4 and 5 pass HAVAL would have 96, 128 and 160 steps (or rounds in
block-cipher terminology) respectively. The hash value calculated by HAVAL is
256 bits long.
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In the case of HAVAL, several articles demonstrated collisions for the reduced
2-pass variants [10, 13, 8]. Recently, an efficient algorithm constructing collisions
for the full 3-pass HAVAL has been described in [15]. The attack has a complexity
of 229 steps and requires a negligible amount of memory. However no weaknesses
in the 4 and 5-pass HAVAL have been demonstrated so far.

In this paper we show a cryptanalysis of HAVAL in the cases where the num-
ber of passes equals the maximal security values: 4 and 5. Our analysis leads to
an attack that detects the non-randomness of the 4-pass and the 5-pass HAVAL
in encryption mode. We show how to distinguish the compression function of the
4 and 5-pass HAVAL from a random permutation. For convenience, we discuss
the security of HAVAL focusing on the 4-pass version. Our discussion is easily
extended to the 5-pass version. The security of the 4 and 5-pass HAVAL in hash
mode remains an open problem.

The outline of this paper is as follows. In Section 2, we give a brief description
of the HAVAL algorithm published in [18]. In Section 3, we present our differ-
ential attack on the HAVAL compression function used in encryption mode. We
also discuss the practical implementation issues of our attack. In Section 4 we
give experimental results. We conclude in Section 5.

2 Description of the HAVAL Hash Function

In this section, we give a brief description of the HAVAL hash function, which
is sufficient to understand the concepts introduced in this paper. For a full de-
scription of HAVAL we refer to [18].

HAVAL is a hash function that is based on the well-known Davies-Meyer
construction of hash functions ([12], p. 341). The variable-length message M is
divided into 1024-bit blocks M0,M1, . . . ,Mn−1. The 256-bit hash value Vn is
then computed as follows:

V0 = IV ; Vj+1 = compress(Vj ,Mj) = E(Vj ,Mj) + Vj for 0 ≤ j < n,

where compress is the compression function, IV is a fixed initial value and E
is a block cipher. As a block cipher E, one could choose either a known block
cipher or a dedicated design. HAVAL chooses the latter option. The function E
is an iterated design that only uses simple operations on 32-bit words. The 256-
bit input Vj is loaded into 8 registers (A,B,C,D,E, F,G,H) and the 1024-bit
message block is divided into 32 words of 32 bits (X0 . . . X31).

The 8 registers are updated through a number of steps. One step of the com-
pression function is depicted in Fig. 1. The HAVAL compression function con-
sists of 96, 128 or 160 consecutive steps. Each sequence of 32 steps is grouped
together into a pass, so that we say that HAVAL is 3,4 or 5-pass. In each pass,
every word Xi is used exactly once. Every pass r has its own Boolean func-
tion fr, 32 constants Ki, and a specified order in which the 32 words Xi are
processed.
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Fig. 1. One step of the compression function of HAVAL

3 Differential Cryptanalysis of the 4-Pass HAVAL in
Encryption Mode

In this section, we will explain the HAVAL hash function in encryption mode
in Section 3.1 and will study known attacks on the reduced 2-pass and the full
3-pass HAVAL in Section 3.2. We will present a differential cryptanalysis to find
a weakness in the 4-pass HAVAL in Section 3.3 and provide solutions to the
problems in its implementation in Section 3.4.

3.1 Cryptanalysis of Hash Functions in Encryption Mode

As mentioned above, one could construct a hash function from a block cipher
using the Davies-Meyer construction. Inversely, one can construct a block cipher
which is the HAVAL compression function with Davies-Meyer chaining peeled off.
In the cipher, the message block Mj is viewed as the key, the chaining variable Vj

acts as the plaintext block and Vj+1 = E(Vj ,Mj) is the corresponding ciphertext
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block. In general, the block cipher constructed from a hash function in such a
way is called a hash function in encryption mode.

We will analyze the 4-pass HAVAL in encryption mode. Such an analysis pro-
vides a better understanding of the strength of the HAVAL compression function.
Our method can be easily extended to the 5-pass version.

Several cryptanalytic techniques ranging from differential cryptanalysis [1]
to slide attacks [2] have been applied to study the security of well-known hash
functions in encryption mode. For example, differential cryptanalysis of SHA-1
has been shown in [7]. A slide attack on SHA-1 and an attack on MD5 which
finds one high-probability differential characteristic were given in [17].

Throughout this paper we will use the notion of a “step”, as defined in the
specification of HAVAL, instead of the block-cipher notion – “round”. We will
also use the notion of a “pass”, which stands for 32 steps as explained above.

3.2 Known Attacks on the Reduced 2-Pass and the Full 3-Pass
HAVAL

In this section we review the previously known attacks which find collisions for
the reduced 2-pass and the full 3-pass HAVAL and explain why the techniques
in these attacks are not applicable to the 4-pass HAVAL.

The main idea in all the attacks of finding a collision is that the attacker
uses the simplicity of the message schedule that allows him to control over the
differences in the 8 registers. What is used is a pair of message whose difference
with Hamming weight one is in exactly one message word. The difference in the
message word is injected into registers at exactly one step in each pass.

In the attacks on the reduced 2-pass HAVAL which have two passes out of
three, the difference injections explained above happen at two steps [10, 13].
In between the two steps the difference in registers propagates. A differential
propagation is found by applying the algebraic technique which is building a
system of equations and solving it. The difference becomes zero at the last step
in the propagation which means that a collision is found. When build the system,
it is important to choose which message word have the difference. A good choice
makes it possible for the difference in the registers to propagate for the small
number of steps (e.g. 10), which allows the number of equations in the system
to be small.

In the attack on the full 3-pass HAVAL, the algebraic technique as above
is also applied [15]. The problem with this case is that the difference in the
message word is injected into registers at three steps, such as 28, 38, and 69.
The attack solves this problem by combining the algebraic technique and dif-
ferential cryptanalysis. From step 28 to 38 the algebraic technique is applied to
find an inner almost collision, which means a pair of values in registers which
differs only in the small number of bit positions and then from step 39 to 69 a
differential cryptanalysis is to find a differential propagation with a high proba-
bility, 2−29 such that the difference is zero at the last step of the propagation.
The attack indicates a weakness in the compression function against differential
cryptanalysis.
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In case of the full 4-pass HAVAL, we tried to apply the same strategy as
the case of the full 3-pass, however it was turned out to be difficult to find an
inner almost collision by applying the algebraic technique. This is due to the
fact that the different order of processing message words from the order in the
case of 3-pass makes the system of equation more difficult to solve. Even if an
inner almost collision is constructed, a differential cryptanalysis has to solve the
problem of finding a differential propagation of many steps (typically, 65) with 3
time difference injection into the registers due to the message schedule, which is
very difficult for the attacker to control over differences with a high probability.
That is because the registers which the differences are injected from the message
schedule into are not always as the attacker wants. We consider that it is easier
to analyze the cipher in encryption mode where the differences in the register
can be directly controlled than to do the cipher in hash mode where they can be
controlled only through the message schedule. This observation above leads us to
enhance differential cryptanalysis, instead of applying the algebraic technique,
to find a weakness in the cipher in encryption mode.

3.3 Differential Cryptanalysis of the 4-Pass HAVAL

The technique of differential cryptanalysis has first been described in [1]. The
aim of the approach is to find differential characteristics for the whole cipher.
In [1], a differential characteristic is defined in the following:

Definition 1. Associated with any pair of encryptions are the difference of its
two plaintexts, the differences of its ciphertexts, the differences of the inputs
of each round in the two executions and the differences of the outputs of each
round in the two executions. These differences form an n-round characteristic. A
characteristic has a probability, which is the probability that a random pair with
the chosen plaintext difference has the round and ciphertext differences specified
in the characteristic.

In differential cryptanalysis, two difference operations are often used: Δ(X,X ′) =
X ⊕X ′, Δ(X,X ′) = X −X ′. We will consider both cases in our cryptanalysis.

The strategy to perform the differential cryptanalysis can be mainly divided
into two parts: In the first part we divide the function into several consecutive
sub-functions and try to find differential characteristics with high probability for
these sub-functions. In our analysis, each sub-function will consist of several steps
in a certain pass. Hence all steps in such a sub-function will use the same non-
linear Boolean function. In the second part the differential characteristics for each
sub-function are concatenated so that they cover the whole cipher. However, it is
difficult to do the second part of the analysis when the characteristics obtained
in the first part have complicated forms. For instance, this is the case for SHA-1.
In this paper, we present a method to solve this difficulty by combining these
two parts into a single part.

The theoretical background of this method is the theory of Markov ciphers
and their connection to differential cryptanalysis introduced by Lai et al. in [11].
For an iterated cipher E with the function Y = T (X,Z) which takes the plaintext
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input as X, the subkey input as Z, we denote the conditional probability that β
is the difference ΔY (i) of the ciphertext pair after i steps of S, given that α is
the difference of the plaintext pair, by P (ΔY (i) = β|ΔX = α).

Recall that a sequence of discrete random variables v0, v1, . . . , vr is a Markov
chain if, for 0 ≤ i ≤ r,

P (vi+1 = βi+1|vi = βi, vi−1 = βi−1, . . . , v0 = β0) = P (vi+1 = βi+1|vi = βi).

A Markov chain is called homogenous if P (vi+1 = β|vi = α) is independent of i
for all α and β. A Markov cipher is defined as follows:

Definition 2. An iterated cipher with the function T is a Markov cipher if for
all choices of α and β,

P (ΔY = β|ΔX = α,X = γ)

is independent of γ when the subkey is uniformly random.

We now state the following theorem using our notation.

Theorem 1. If an r-step iterated cipher is a Markov cipher and the r step
keys are independent and uniformly random, then the sequence of differences
ΔX = ΔY (0), . . . , ΔY (r) = ΔY , is a homogenous Markov chain.

In the case of HAVAL, we denote 8 consecutive steps1 of E by T . We assume
that the cipher E, obtained by iterating T , is a Markov cipher. This allows us
to search for differentials rather than characteristics. The goal of our attack is
to find a high probability differential for the 4-pass and the 5-pass HAVAL.

Our goal is to study differential properties of the 4-pass HAVAL. We will
consider low Hamming weight differentials and their propagation: we study the
behavior of the 4-pass HAVAL compression function when we apply input differ-
entials of weight 1 and 2. At the output, we only observe output differentials of
weight 1 and 2. We will check whether these observations are in accordance with
the randomness criteria we would expect from a cryptographic hash function.

Let A be the set of all the bit strings of length 256:

A = {0, 1}256.

Let B be the subset of A where each element has Hamming weight equal to 1:

B = {Δ ∈ A|Ham(Δ) = 1}.

Let C be the subset of A where each element has Hamming weight equal to 2:

C = {Δ ∈ A|Ham(Δ) = 2}.

1 A single step of HAVAL is clearly a bad candidate for T since only one 32-bit word
changes per step and only one 32-bit word of key-material is mixed in.
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Let D be the union set of B and C:

D = B ∪ C.

Let E be a set of integers where each element is greater than 0 and is less
than or equal to the size of D:

E = {1, 2, . . . , 28 +
28 · (28 − 1)

2
}.

Using the first consecutive 8 steps in the s-th pass, we build a matrix Ms.
To do so, we first define a function g mapping D to E in the following manner.
If Δ ∈ B, let k be the position of 1 in Δ. Otherwise, let h be the high position
of 1 in Δ and let l be the low position of 1 in Δ. The function g is defined as
follows:

g(Δ) =

⎧⎪⎨⎪⎩
k − 1 Δ ∈ B

h− l − 1 +
l−1∑
i=0

(256− i) Δ ∈ C.

It is easy to see that g is bijective. The aim of the function g is to establish
an ordering for the elements of D.

Now, let’s denote the function which consists of the first consecutive 8 steps in
the s-th pass as Ts. To construct a matrix Ms, we randomly choose a (sufficiently
large) subset R of A. The cardinality of the subset R is denoted by #R = r. For
i and j in E , we define each entry a

(s)
ij in the matrix Ms as follows:

a
(s)
ij =

#{p ∈ R|g−1(j) = Δ(Ts(p), Ts(Δ(p, g−1(i))))}
r

.

The entry a
(s)
ij estimates the probability of the differential where the input dif-

ference is g−1(i) and the output difference is g−1(j). We assume that one pass of
HAVAL behaves as a 4-round Markov cipher with Ts as the round transforma-
tion2. Thus the matrix Ms is a transition matrix of the corresponding Markov
chain. Raising this matrix to the fourth power as M4

s allows us to see the prob-
abilities of 32-step differentials for the s-th pass. Calculating the composition
μ = μ4

4 ◦ μ4
3 ◦ μ4

2 ◦ μ4
1 allows us to see the differential structure of the 4-pass

HAVAL, where the function μs is defined by a matrix multiplication as μs(X)
= X ·Ms. For example, we can see high probability differentials for the whole
cipher. What is of most interest now is the highest value in the matrix M = μ(I).
This highest value corresponds to a particular low-weight differential which has
a high probability.

The approach described here has several complications with respect to a
memory-efficient and fast implementation, which we will now explain into more
detail.

2 Our experiments indicate that this assumption is reasonable. The ten best differen-
tials for 16 steps produced by experiment and the ten best differentials computed
via M2

s were at most a factor 1.28 apart. Also some variation across the different
keys has been observed.
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3.4 Implementing the Matrices Ms and Their Multiplication

We had to resolve some implementation issues for the N × N matrix Ms. The
value of N is quite large:

N = 28 +
28 · (28 − 1)

2
≈ 215,

If we implement the matrix Ms as such, the required memory size is 8·230 ≈ 8GB
when using 64-bit variables to represent each element of Ms. This is quite large
and not efficient at all. Simulations show that the matrix Ms is very sparse:
Because of the diffusion of Ts, the hamming weight of the output differences are
very likely to be more than 2 and thus most output differences will be discarded
in our approach. And those that do have a Hamming weight of at most 2 only
occur in a limited number of places in the matrix. This helps us for the efficient
implementation. The number of nonzero entries of a row in a matrix is typically
100 but we make the number a parameter, namely d, which is useful as will
be shown. For each row, we will now only store the nonzero entries, together
with the column in which this nonzero entry occurs. Furthermore, we also store
the row itself for each row. This is useful to reduce the time complexity which
will be explained later. Every non-zero a

(s)
ij in the Ms is stored as a triplet

(i, j, a(s)
ij ) in its implementation. In that case, the memory complexity is only

215 · d · (2 + 2 + 8) ≈ 5MB when using 16-bit variables to represent each row i
and column j.

In order to implement the multiplication of the two matrices Ms, we have
to implement one matrix Ms as a list of rows and the other matrix as a list of
columns. The representation of M as a list of columns can be easily obtained
from the representation as a list of rows by a straightforward and efficient trans-
position algorithm. In addition to the memory for the two lists, the memory for
the product matrix is allocated. However, we have a problem with the memory
for the product matrix after one multiplication. A theoretical estimation shows
that about 26% of the entries in the product matrix will be non-zero, which was
confirmed by our experiments. This means that the product matrix is not sparse
any more. This motivates the following idea of pruning the matrix. After the
generations or multiplications of the matrix Ms, we only keep high-value entries
in Ms, cutting the entries below a fixed low value q. To obtain a high probability
for the whole cipher, it is sufficient to obtain high probabilities after every 8
steps. This also motivates the idea of pruning. We now keep the matrix sparse
all the steps. Taking into account that the multiplications can be done on the
fly, the memory complexity of computing the matrix M for the whole cipher is
15MB.

The time complexity of generating the matrix Ms can be shown to be r · 216

computations of Ts. When we take r equal to 220 (which seems to be enough
to obtain a matrix with sufficient statistical significance), this results in a time
complexity of 236 computations of Ts. As for the multiplication of the matri-
ces, we can find a fast implementation. As mentioned above, the matrix Ms is
implemented as an array with dimension two where each element is a triplet
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(i, j, a(s)
ij ). If the matrix is sorted by the first element and afterwards by the

second element in the triplets, then it can be implemented as an array with
dimension one. Now all we have to do is the multiplication of two sorted arrays
with dimension one. In this case, the multiplication of the matrices has a time
complexity of N · d = 215 · 100 ≈ 221.6 computations, each of which is a few of
multiplications and additions of two 64-bit variables. Note that this significantly
reduces the number of computations of entries during the multiplication of the
matrices hence is much faster than straightforward implementation which has a
time complexity N2 · d2 ≈ 243.3. To compute the matrix M for the whole cipher
requires the generations of the matrix Ms 5 times and the multiplication of ma-
trices 15 times. Taking into account their time complexities and what is done
during one computation in each case, the time complexity in total is dominated
by the former, which is 238 computations of T .

4 Experimental Results

We report some experimental results which we obtained by using the techniques
described above. In our experiments, we used the reference implementation of
HAVAL available at [9] and the cut-away value q in Section 3.4 is set to be 2−12.
Since different passes use different non-linear functions, it is interesting to see
the differential structure for each of the 4 different passes. Therefore we search
for the best probability over 8 and 32 steps in the s-th pass.

Before doing that, we need some preparation. We focus on the observation
of 8 steps to see whether the experimental results are stable. That is very im-
portant: if the results were not stable yet, the error will be amplified due to the
multiplication of matrices. Our simulations convincingly showed that increasing
the number of plaintexts r to 220 is sufficient in order to obtain precise experi-
mental results.

Table 1. The best probability for 8 steps in the case of Δ(X, X ′) = X ⊕ X ′

r = 216 r = 220 r = 224

s = 1 2−5.916521 2−5.992885 2−5.996883

s = 2 2−6.947432 2−7.023257 2−7.009951

s = 3 2−6.969333 2−6.996482 2−6.992622

s = 4 2−6.594859 2−6.660011 2−6.677051

Table 1 presents a typical experimental results that we observed for the 4-
Pass HAVAL. It shows the measured probability for 8 steps for each of the
4 passes, and this for increasing samples r. As a difference function we used
Δ(X,X ′) = X ⊕X ′. Note that in the above experiment, we consider the input
difference Δin ∈ B to make it feasible in terms of time complexity to obtain the
result for r equal to 224. However, in all the following experiments we will use
the entire set D.
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Table 2. The best probability for 8 and 32 steps in the case of Δ(X, X ′) = X ⊕ X ′

8 steps 32 steps

s = 1 2−5.992885 2−26.670829

s = 2 2−7.023257 2−30.992364

s = 3 2−6.996482 2−30.908851

s = 4 2−6.660011 2−29.360996

Table 2 shows the best probability of a differential characteristic for all 4
passes (s = 1, 2, 3, 4), and this both for 8 steps and 32 steps. In these experiments
we used 220 as a value for r, and again used the difference function Δ(X,X ′) =
X ⊕X ′.

For both the 4-pass and the 5-pass HAVAL, we can now calculate the best
probability with which all the differential characteristics we consider by comput-
ing the matrix M in Section 3 in which the highest entry is the best probability.
We learn from Section 3 that it is practical to compute the matrix M because
the time complexity is 238 computations of 8 steps and the memory complexity
is 15MB.

The result is that the best probability is 2−125 for the 4-pass HAVAL and
2−168 for the 5-pass HAVAL. Each of these two probabilities is much greater than
the probability 2−256 that we would expect from a truly random hash function.
This means that both the 4-pass and the 5-pass HAVAL have a significant weak-
ness of randomness.

Taking into account that each of these our results has been obtained with a
fixed randomly chosen key, there could be an occupancy problem if our results
are affected by the choice of the key. There are two points to be stressed:

For the full 4 and 5-Pass HAVAL we fix both the input and the output dif-
ferences. Thus occupancy is not a problem there. On the other hand we gather
probabilities for the matrix M by experiment, so we could potentially experi-
ence occupancy problem, which would result in slightly higher key-dependent
probabilities.

We carried out some experiments for the 8 steps of each pass which show
that probabilities collected for the matrix M are not key-dependent and hold
on average. We encrypted 220 plaintext pairs to check that results of Table 2
for 8 steps remain the same for 5 different keys K1,K2, · · · ,K5. The following
table 3 shows the best probabilities over different keys. The table 3 shows that
results of Table 2 for 8 steps remain the same for these keys, which means the
best probabilities are not affected by the choice of the key.

Next we consider not only the probabilities and but also their pairs of input
difference and output difference to see if the differential structure of 8 steps is
affected by the choice of the key. In fact, in the case of the 2nd pass, the best
probabilities in the table 3 are achieved at exactly the same pair of input differ-
ence and output difference. In the cases of the other passes, the best probabilities
in the table 3 are achieved at several different pairs of input and output differ-
ences. Therefore we present for each pass, the probabilities over different keys
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Table 3. The best probabilities over different keys

Key 1st pass 2nd pass 3rd pass 4th pass

K1 2−5.992885 2−7.012381 2−6.972267 2−6.647129

K2 2−5.979194 2−6.977285 2−6.997537 2−6.651963

K3 2−5.974168 2−6.980409 2−7.007947 2−6.668383

K4 2−5.984237 2−6.979541 2−7.005823 2−6.676664

K5 2−5.990521 2−6.983540 2−6.972958 2−6.682163

Table 4. The high probabilities at the same pair of input difference and output
difference for each pass

Key 1st pass 2nd pass 3rd pass 4th pass

K1 2−5.992885 2−7.012381 2−6.972267 2−6.647129

K2 #2−5.997537 2−6.977285 #2−7.010606 2−6.651963

K3 2−5.974168 2−6.980409 #2−7.009896 #2−6.687684

K4 #2−5.988511 2−6.979541 2−7.005823 #2−6.686834

K5 #2−6.000352 2−6.983540 #2−7.015938 #2−6.684284

at the same pair of input and output difference in the table 4 in which each
triplet where the probability is not the best is indicated by #. Fortunately, the
probabilities for each pass are very close which means the differential structure
of 8 steps is not affected by the choice of the key.

These discussions show that our results hold on average for any key and are
not affected by the occupancy problem.

Our method contains multi-paths. This means that various trails exist that
go from one input difference to one output difference. Therefore an interest-
ing question is how many multi-paths are included into the best probability.
We carried out some experiments with 220 plaintexts and found an answer to
the question. The best probability 2−124.6 with which the input difference e160
goes to the output difference e176 includes 12 multi-paths. On the other hand, a
probability 2−125.9 with which the input difference e139 goes to the output differ-
ence e155 includes the maximum number of multi-paths observed, 42. For both
probabilities above, the input and output difference have Hamming weight 1.

Another point we need to check is which difference notion is most effective in
our attack: Δ(X,X ′) = X −X ′ or Δ(X,X ′) = X ⊕X ′. In Table 5, we present
the results for the case of the difference operation Δ(X,X ′) = X−X ′, where the
number of samples r equals 216. The table shows the best probability over 8 and
32 steps in the s-th pass for the 4-Pass HAVAL. By comparing this table with
Table 2, we can see that the difference operation Δ(X,X ′) = X ⊕ X ′ is more
effective. One of the possible reasons why this happens is that due to the non-
linear function, each step of the 4-Pass HAVAL uses XOR operation 4 to 8 times
while it uses arithmetic additions only 3 times. This makes the step function
XOR-friendly which means that differences can go though paths with paying
relatively small probabilities when using the operation. Δ(X,X ′) = X ⊕X ′.
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Table 5. The best probability for 8 and 32 steps in the case of Δ(X, X ′) = X − X ′

8 steps 32 steps

s = 1 2−6.860449 2−27.638838

s = 2 2−7.426353 2−34.011164

s = 3 2−7.642448 2−34.337646

s = 4 2−7.536476 2−30.437003

Note that these results can not be used immediately to distinguish outputs
of the 4-Pass or the 5-Pass HAVAL in hash mode from truly random outputs,
though they show a surprising property.

We explain what we have done in details and what we will be able to do for
the future research. We limited ourselves to search for all the paths where the
differences have a hamming weight less than 3 not only at input and output but
also at every 8 steps, which is a strong condition on the paths. It is surprising
to find a path with a very good probability under this limited circumstance.
This means that we found a probability which is a lower bound for the differen-
tials. It would be interesting to see how high the best probability be when the
condition is relaxed. In order to do this, a more efficient algorithm has to be
found.

We describe what would be necessary for a hash function which is secure
against our attack. One of the necessary conditions to apply our attack is that
the weight of a low-weight difference is likely to remain to be low after 8 steps.
This is the case for the 4-Pass and the 5-Pass HAVAL. For a hash function with
a good diffusion, this is not the case even after a small number of consecutive
steps. Our attack is not applicable to such a function.

5 Conclusions

We have analyzed the compression functions of the 4-pass and the 5-pass HAVAL.
Surprisingly, our result shows that the use of highly non-linear functions, which is
the main focus of the design of HAVAL, does not result in a hash function which
is significantly strong against differential cryptanalysis. With our approach, we
identified differentials with probabilities > 2−125 for the 4-pass HAVAL and
> 2−168 for the 5-pass HAVAL, which is much higher than the probability 2−256

we would expect from a random function.
It is difficult to see if and how the weakness of randomness in the compression

function can be exploited to find collisions for the HAVAL hash function. This
remains an open problem. The strategy for our attack is quite general so that we
can analyze the compression functions of other hash functions with the approach
described in this paper.
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Abstract. Unsolicited and undesirable e-mail (spam) is a growing
problem for Internet users and service providers. We present the Secure
Internet Content Selection (SICS) protocol, an efficient cryptographic
mechanism for spam-control, based on allocation of responsibility (li-
ability). With SICS, e-mail is sent with a content label, and a crypto-
graphic protocol ensures labels are authentic and penalizes falsely labeled
e-mail (spam). The protocol supports trusted senders (penalized by loss
of trust) and unknown senders (penalized financially). The recipient can
determine the compensation amount for falsely labeled e-mail (spam).
SICS is practical, with negligible overhead, gradual adoption path, and
use of existing relationships; it is also flexible and appropriate for most
scenarios, including deployment by end users and/or ISPs and support
for privacy (including encrypted e-mail) and legitimate, properly labeled
commercial e-mail. SICS improves on other crypto-based proposals for
spam controls, and complements non-cryptographic spam controls.

1 Introduction

E-mail main (and initial) use is professional and personal communication. How-
ever, e-mail is very efficient and low-cost; therefore, a growing fraction of e-mail
messages contains other types of content, mostly advertisements. Many users,
and providers, find themselves wasting substantial resources dealing with such
messages, which are often undesired. There are few conventions for identifying
advertising or other potentially undesired messages, e.g. prepending the string
‘ADV’ to the subject line, allowing mail servers and user agents to quickly discard
them. Unfortunately, most messages containing potentially-undesired content do
not contain appropriate label for the type of content; indeed, the senders often
use different evasive techniques to make it hard to distinguish between the mes-
sages and desirable professional/personal communication. We use the term spam
for messages containing potentially undesirable content, with misleading (or no)
label. Spam, and our solution (SICS), apply also to other forms of ‘push’ con-
tent such as pop-up web pages and instant messaging (where spam is sometimes
called spim), although we mention mostly e-mail. Spamming wastes considerable
machine and human resources - most notably, the recipient’s time. Indeed, spam-
ming is reducing the usefulness of e-mail as a communication mechanism these

C. Blundo and S. Cimato (Eds.): SCN 2004, LNCS 3352, pp. 337–350, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Table 1. Categorization of spam controls by use of cryptography and of trusted entity

Non-cryptographic Cryptographic
spam controls spam controls

Trust-based Unlisted recipient e-mail address Sender / domain authentication
spam controls Unique unlisted address per sender Pay to send

Senders whitelist Signing e-mail and label
Caller-ID (source identification) Secure Internet Content Selection
Senders / domain blacklist (SICS)

Spam controls Heuristic proof of (manual) work Cryptographic proof of work
without any Return address validation
Trusted entity Content-based filtering

days. Many users reduce or avoid using e-mail, most limit the distribution of
their e-mail address, and many desirable messages are lost by aggressive (human
and automated) filtering. As a result, there are many proposals and mechanisms
trying to control and prevent spam; see review in the full version [9].

We categorize spam-controls in Table 1, using two attributes: the use of
cryptography, and the use of trust. In particular, spam can be almost com-
pletely prevented by accepting only cryptographically-authenticated e-mail from
trusted senders. However, this creates three serious problems. The first problem
is migration: it is difficult to force all senders to adopt this (or any particular)
spam-control measure. The second problem is openness: an important feature of
e-mail is that it allows mail from unknown senders, so spam-controls need to al-
low also mail from untrusted senders. The third problem is efficiency: SMTP and
its server implementations are very efficient, allowing reasonably-priced servers
to handle large amounts of e-mail; this should be preserved, and cryptographic
mechanisms can pose significant processing overhead. As a result of these prob-
lems, this extereme form of spam control is impractical. In fact, most existing
spam controls avoid relying on cryptography, and many of them avoid the de-
pendency on trusted entities; see Table 1. Unforturnately, all of the previously
proposed and existing spam controls are weak, penalize (or charge) senders,
or result in loss of universality (openness). SICS uses both cryptography and
trusted (third-party) entities, however, it allows universal e-mail and penalizes
only spammers.

Our Contributions. The Secure Internet Content Selection (SICS) proposal re-
fines previous spam-control proposals using cryptography and trust (source au-
thentication, pay to send and signing labeled messages). We believe our improve-
ments address the three main concerns regarding the use of trust and cryptog-
raphy, namely migration, openness and efficiency. In particular, in Section 4 we
present a migration plan, providing value to early adopters of SICS. In Sec-
tion 5 we show how SICS can support unknown, untrusted senders, by forcing
spammers to compensate recipients and service providers (and without requiring
payments from non-spammers, as in previous proposals [10, 2, 18, 5, 6]).
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Content Selection Labels. Like some other recent spam-control proposals
[15, 2], SICS focuses on ensuring that messages contain truthful labels.

SICS extends the Platform for Internet Content Selection (PICS) W3C rec-
ommendations [12, 11], and could be used to provide improved security for PICS-
compliant applications (e.g. browsers limited to ‘non-offensive‘ content, used
mostly for children).

1.1 E-Mail Security and Threats

In order to allow secure use of e-mail, several standards and systems offer encryp-
tion and source authentication mechanisms for e-mail messages, e.g. S/MIME
[13] and PGP [19]. The S/MIME standard is implemented in many e-mail prod-
ucts, and PGP has enjoyed wide recognition and substantial number of installed
clients. However, only few e-mail users use these or other cryptographic mecha-
nisms to protect their e-mail messages.

We are especially concerned with the lack of source authentication, which
means that spoofing of the identity of the e-mail source (the sender) is trivial.
We observe that receivers do not always need to authenticate the identity of
the source of e-mail. More frequently, receivers care mostly about the properties
of the sender or of a particular message. We focus on identifying and filtering
spam - unsolicited and undesirable e-mail, including offensive content, malicious
content (e.g. virus) and/or advertising content, when not clearly labeled. We do
not consider e-mail messages that contain properly labeled advertising content
as spam.

Fig. 1. The Vicious Cycle of Spam



340 A. Herzberg

Spam is closely related to other threats to computer security, and in particular
to different forms of malicious software (‘malware’) such as viruses and Trojan
horses, and also to spoofed web sites and other online scams. As shown in Figure
1, there is a ‘vicious cycle’ in which spam plays a central role. For details, see
the full version.

2 Secure Internet Content Selection in a Nutshell

We begin by describing the basic operation of the SICS protocol, in typical
scenarios after SICS is deployed by both sender and recipient; we later discuss
advanced features, including the migration process. Internet content selection
involves at least two entities: an originator, e.g. Alice, and a recipient, Bob.
Alice sends some content or message m to Bob. To help Bob decide if and how
to use m, Alice attach to m a content label l (or rating). Before m reaches Bob, it
passes Bob’s Content Filter (CF ) agent. Bob defines to the Content Filter some
policy, specifying acceptable vs. unacceptable content labels; the content filter
should discard or retain messages with unacceptable content labels, and deliver
to Bob only messages with ‘desirable‘ content labels. The content filter CF may
also add some additional label, e.g. classifying messages based on likelihood of
being spam.

For simplicity, we assume that all parties agree on a universal mapping (‘or-
acle’) Label from messages to their ‘correct‘ content labels (extensions to multi-
ple mappings are trivial, e.g. see ‘Rating Systems‘ in PICS). However, content-
filtering agents cannot compute Label efficiently and precisely (if such an ‘ideal’
content filtering software is possible, SICS is not needed). The content filter
may use some efficient estimate of Label, such as content-based heuristics, to
confirm the content label. Therefore, the content filter may still err and pass to
Bob messages that arrive with incorrect content labels. A message m sent with
incorrect content label l �= Label(m) is called spam; message m sent with correct
label l = Label(m) is non-spam. An e-mail message is unlabeled when it does
not contain any content label (i.e., ‘legacy’ e-mail message).

To encourage correct labeling (and discourage spam), it is critical to endorse
the content label, by attaching a cryptographic content label authenticator (or
simply authenticator). We call the agent endorsing labels (e.g. for Alice) a Rat-
ing Service (RS), and denote the authenticator by ARS ; the authenticator is
the result of public key signature or shared-key Message Authentication Code
(MAC), applied by Alice’s Rating Service .

The Rating Service may generate and endorse (authenticate) the label l on
its own, or endorse (authenticate) a label received, with the message, from the
sender, possibly after some ‘sanity check’ and/or modification by the RS. The
Rating Service could be provided by the sender’s outgoing mail server, e.g. to
support labeling when the sender runs legacy e-mail software (without SICS
support). The Rating Service could also be done on the sender’s machine .

Now that we have introduced the sender (Alice or A), recipient (Bob or B),
Rating Service (RS) and Content Filter (CF ), it may be helpful to refer to
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Fig. 2. Overview of the Secure Internet Content Selection (SICS) Protocol

Figure 2, which presents an overview of the Secure Internet Content Selection
(SICS) protocol. The BL (black list) and CA (certification authority) parties
are optional; and the dashed arrows are used only when a ‘false negative’ labeled
message arrives. Further details follow.

Alice sends to the Rating Service RS the message m, the identities of Alice
and Bob (A and B), the current time t, the maximal acceptable delivery time
ttl and the content label l. Let mA denote the set of all the fields sent by Alice,
i.e. mA = {m,A,B, t, ttl, l}. If the label l or time to live ttl are absent, then the
RS adds them (e.g. using default value for l). If l is specified by Alice, then RS
may validate it.

The Rating Service RS endorses the label l by attaching to mA an authen-
ticator ARS . We use the following notation: fields (e.g. keys) belonging to a
party are denoted by the name of the party followed by dot and the name of the
field, e.g. the secret signature key s of RS is denoted by RS.s. The authentica-
tor is normally a digital signature by the private signing key RS.s of the RS,
plus an (optional) certificate signed by an entity denoted CA (for certificate au-
thority), namely: ARS = {SignRS.s(mA)[, CertRS ]}. The certificate of entity X
(X ∈ {RS,BL,CF}) is a signature by CA over the public signature-validation
key X.v of X, together with some attributes attr which CA declares hold for X,
such as the identity of X, e.g. CertRS = SignCA.s(RS.v, attr).

The RS next sends the complete e-mail message, together with the attached
authenticator, to the recipient, using the standard e-mail protocol (SMTP). The
RS may also attach to the message its public-key and/or attribute certificates,
CertRS = SignCA.s(RS.v, attr). The certificate contains the public signature-
validation key RS.v of RS, and a list of attributes attr assigned to RS by a
Certification/Attribute Authority, which we denote CA. The attributes attr de-
scribe properties that CA attributes to RS, and in particular its IP address and
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domain name, which CF can immediately validate. Other attributes provide in-
formation about the trustworthiness of RS, e.g. ‘this ISP has been spam-free for
the last year’, or provide identification information allowing CF to sue RS.

The certificate is needed when the CF does not trust RS. The certificate
should convince CF to accept the content labels endorsed by RS. Usually, this
implies financial risk to RS if it endorses (authenticates) false labels (spam),
and/or compensation to Bob and/or CF .

When Bob receives spam, he should complain and send the correct label
l∗ = Label(m) to Alice, via CF and RS.

In theory, the rating service RS could eliminate all risk of paying penalties due
to having authorized spam (false content labels), simply by (manually) inspecting
each message for validating or for assigning it a correct content label. However,
this is clearly too expensive (and very intrusive on sender’s privacy). Therefore,
the rating service RS must manage risk of inadvertently endorsing spam.

To allow the RS to manage this risk, we limit its liability and financial expo-
sure to spam messages identified as such before their time-to-live (ttl) expired.
Rating services could use different mechanisms to protect themselves from the
risk due to messages whose time-to-live is still valid. This includes (manually)
inspecting some messages, i.e. evaluating Label(m), on a random basis (which
may be expensive and intrusive), using heuristic approximation of Label(m) and
requiring sufficient deposit from the sender (Alice) for compensation in cases of
spam.

From discussions with ISPs, it appears that many of them are already using
financial penalties to extract damages from spammers, typically by shutting
down accounts (and retaining fees). Therefore, such ISPs can easily run a rating
service RS charging senders for spam.

Users can bound their liability to damages from spam originating from their
accounts, sent by some unauthorized spamming software (‘malware’ - virus, etc.),
e.g. by placing appropriate limits on the total amount of liability in outgoing
messages, enforced by their rating service RS.

When detecting a false digitally-signed label, the content filter CF may also
send this ‘proof of spam‘ complaint to one or more Black List (BL) servers
and/or Certificate Authorities (CA). The Black List servers uses this to cre-
ate lists of spamming mail servers and rating services; these lists are used to
avoid the spammers, by SICS content filters and by legacy mail servers. The
Certificate Authorities uses the ‘proof of spam’ to revoke (or not extend/issue)
certificates for non-trustworthy rating services. Both CF and BL also sign these
lists; this allows recipients to discard false ‘proofs of spam’, which may be sent
to cause confusion or waste of resources (as a ‘Denial of Service (DoS)’ attack).
The CF and BL may also attach their certificates, and if a particular con-
tent filter CF or black list BL sends false reports, then this information could
also be distributed by (other) black-list servers as a ‘proof of fault’, to further
reduce the potential for DoS attacks (these mechanisms are not shown in the
figure).
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3 Secure Content Selection: Design Criteria

We now identify the design criteria and requirements from a secure (internet)
content selection solution, roughly in order of (diminishing) importance. For lack
of space, this version only lists the criteria:

– Legacy support: no interference with ‘legacy’ (unlabeled) mail.
– Smooth migration path.
– Minimize manual user work.
– Allow use of existing mail clients, with minimal new UI, and no usage change,

including e-mail addresses, e-mail to multiple recipients, and mailing-lists.
– Allow any legitimate content (including explicit advertising and ‘potentially

offensive’ content), on the basis of the recipient-defined policy.
– Easy interoperability across providers.
– Facilitate use of e-mail security and privacy mechanisms (encryption).
– Mail received should conform to the recipient’s policy.
– Prevent ‘Framing’ of conforming participants.
– Allow filtering and rating by intermediate mail servers.
– Limit the damage due to breach of trust.
– Minimal, acceptable overhead in computation, communication, messaging or

otherwise.
– Stateless, replicable services/servers.

4 Bootstrapping SICS: Providing Value to Early
Adopters

We recommend that SICS server and client deployments would always contain
both Rating Service and Content Filter services. This allows any two SICS-
enabled parties along the path from sender to recipient, to use SICS rating and
content-filter services. In the first and second subsections, we show that even
when only a single party along the path from sender to recipient deploys SICS,
then there are significant value to this party from SICS. In the third subsection,
we explain how a SICS sender and recipient can establish trust, even in the
absence of a trusted certification authority.

4.1 Sending SICS-Enabled E-Mail to New or Legacy Recipients

We first consider the scenario where the sender, or the sender’s outgoing mail
service (usually operated by the sender’s ISP), is SICS-enabled, but the recipient
may not support SICS. Currently, e-mail clients and ISPs often receive ‘spam
complaints’ from different spam filters and e-mail recipients, containing spam
messages sent using the client’s e-mail address. However, e-mail source addresses
are easy to spoof; it is therefore difficult for the sender, and/or her ISP, to
determine whether the complaint is the result of an actual spam sent by the client
(possibly by a virus on the client’s machine), or the result of a spoofed source
address (possibly generated by a virus on another machine). This distinction is
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important, to warn the client when her computer is infected, and to penalize
clients who intentionally (or due to negligence, e.g. virus) send spam.

Similarly, SICS could be used by the recipient’s mail server, or by intermedi-
ate mail servers, to confirm ‘spam complaints‘ regarding mail sent via the mail
server. This allows the mail server to confirm, easily, the mail server from which
the spam came, more securely and conveniently than by consulting the content
of the complaint and the log files kept by the mail server (which is the current
practice). This will allow more accurate black list reporting and other penalty
mechanisms, encouraging mail servers to be more careful in preventing spam
through them.

Let us consider the case of a SICS-enabled mail server. When the SICS-
enabled mail server receives an e-mail message without a SICS label, it attaches
a SICS label as a MIME attachment (‘part’) to it before transferring it toward
the recipient. If the original message contained a multipart MIME type, the SICS
label is simply added as an additional part of the existing multipart MIME type.
Otherwise, when the original message contains only a single (MIME or ASCII)
part, then the server transforms the message into multipart MIME and includes
the original message as one part, and the SICS label as another part. The SICS
label itself consists of the following parts:

1. A simple textual message identifying this as a SICS label and recommending
the use of SICS-enabled mail reader.

2. A SICS rating for the content, based on the agreement between the server
and the server or client from whom it received the e-mail, and possibly on
the result of a content-based filter run by the server. Typically, this will be
a basic, broad indicator, e.g. ‘no advertisement‘.

3. A (possibly compressed) copy of the original message headers, allowing pre-
cise identification of the server or client responsible for it. If the server main-
tains the headers in log files, it may include an appropriate pointer instead
of a copy of the headers.

4. Hash values for the two parts above of the SICS label, and for all the other
parts in the (original) message.

5. A digital signature over the hash values, using the private signing key of the
SICS-enabled server.

6. Optionally, one or more certificates of the server, and/or links to repository
containing such certificates.

4.2 SICS Deployed by Recipient or Recipient’s Mail Server

Upon initialization, a SICS recipient generates a secret key k for a pseudo-
random function f , e.g. implemented by a block cipher such as AES. It then
uses this key, to generate pairs n, fk(n) where n is a unique identifier (counter
or random), and f is a pseudo-random function; we refer to such pairs n, fk(n)
as a SICS ticket. Then, either Bob himself or Bob’s SICS-enabled mail reader
can provide a SICS ticket to each new correspondent, typically by encoding it
as part of a special e-mail address for Bob, which this sender should use, as in
[7]. SICS-enabled senders can use n as an identifier and fk(n) as a shared key
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with which they secure initial communication with Bob, as we discuss in the
next subsection.

Legacy senders use the SICS ticket as an e-mail address for Bob. RFC822
[14] allows e-mail addresses in the form phrase < addr − spec >, where phrase
is any sequence of words, which is forwarded but ignored by the mail servers,
and addr − spec is the ‘simple‘ e-mail address, e.g. Bob@mail.org. Therefore,
SICS encodes n, fk(n) as one or two words in phrase. The length of n should
suffice to ensure uniqueness, e.g. 32 bits, and the length of fk(n) should suffice to
prevent guessing, e.g. 64 bits; with typical encoding, the length of the resulting
SICS ticket phrase is in the order of 20 characters, which seems acceptable for
efficiency and ease of use (even for manual typing).

Bob can specify how many messages, and possibly which kind of messages,
are allowed from each SICS ticket address (or class of addresses he defined); once
receiving spam from an address, it is invalidated and future messages from it
are ignored. Or, if Bob still trusts that the sender is not a spammer, and the
spam was by someone else (e.g. copied on a note from the sender to Bob), then
Bob instructs the SICS-enabled mail reader to generate new ticket n′, fk(n′) and
send it to the sender.

A SICS-enabled mail reader will normally not pass to Bob messages received
without a ticket (or an appropriate SICS-label). Bob may allow some exceptions;
in particular, Bob may want to permit incoming messages without a ticket, if the
sender address appears in Bob’s address book or if Bob earlier sent a message
to this sender; usually such ‘waiver’ will be removed upon identification of spam
from this sender. When an incoming message without a SICS label or ticket
is blocked, the SICS-enabled mail reader may respond by sending back a SICS
ticket‘ and a request to re-send the message together with the ticket (possibly
by hitting ‘reply’). This will confirm, at least, that the sender is able to receive
e-mail as well as to send e-mail, getting rid of much of the spam (using spoofed
source address). Of course, such an address may still belong to a spammer, and
Bob’s e-mail reader may be more suspicious regarding messages coming from it,
e.g. running more critical content-based filter, or restricting the number of such
messages delivered to Bob during the same day.

4.3 Establishing ‘Web of Anti-spammers’, or: Trust Without CA

In the previous two subsections, we argued that SICS may provide some (limited)
benefits even if deployed only by a single participant (sender, recipient or mail
server) along the e-mail path. In this subsection we consider the case where two
(or more) of the participants along the path have installed SICS enabled mail
agents. In Section 2, we explained the operation of SICS between a rating service
and a content filter that trusts it. We also briefly explained how the content filter
can establish trust in an unknown rating service, using a certificate stating that
this is a trustworthy non-spammer, from a trusted certification authority. In
this subsection we show two methods for the content filter to establish trust in a
rating service (or sender), without requiring a trusted certification authority. The
first method extends the technique in the previous subsection, namely the use
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of a per-sender e-mail address for the recipient, , e.g. <n, fk(n)> Bob@mail.org,
where n, fk(n) is a ticket which the content filter generates using the secret,
random key k (and the known pseudo-random function f). As before, the user
may transfer the per-sender address (containing the ticket) manually to the
sender, e.g. printed on ‘customized’ business cards. Alternatively, the content
filter may send the per-sender e-mail address in e-mail to the sender, possibly
with a request to re-send the original message with a SICS label or ticket.

When a SICS Rating Service, run by the sender or ISP, receives an e-mail
address <n, fk(n)> Bob@mail.org containing a SICS ticket, it considers k′ =
fk(n) as a shared secret key with the recipient Bob@mail.org; it then uses k′

to authenticate the messages (and SICS labels) it sends to Bob, as explained in
Section 6.

This simple mechanism allows pairs of SICS-deploying users and ISPs to
establish a ‘secure pipe’ between them, preventing spoofing of e-mail; it there-
fore allows the content filter to establish more and more trust in the rating
service’s SICS labels (as long as Bob does not authenticate spam!). In partic-
ular, the rating service RS uses k′ to authenticate a special SICS message to
Bob, containing the public signature-validation key of the rating service RS.v,
authenticated by a message authentication code MACk′′(RS.v) using key k′′

derived from k′ as in Section 6. This allows Bob to gain trust in RS.v. This
can be useful if the rating service RS, e.g. owned by Alice, starts using an-
other client, to which she transfers her private key but not the shared secret
key.

In the full version, we explain how to extend this mechanism, and create a
‘PGP-like’ web of trust [19] allowing automated, secure establishment of trust
in SICS labels between individuals, building on the existing social networks
connecting them.

5 No Free Spam

If SICS is used in countries with appropriate digital signature laws, then Bob
or CF may be able, in principle, to sue RS for damages due to spam (falsely)
endorsed with false label by RS. However, this process is usually impractical or
impossible. In this subsection, we explain how to automate the compensation for
spam to the content filter and recipient, by using guaranteed-payment authorities
and certificates.

A guaranteed-payment certificate authority (GPCA) is a special kind of CA,
which CF trusts, to make payments per an agreement between them. This im-
plies that CF could trust ratings signed by GPCA. However, if the GPCA has
to handle and sign every message, this would cause substantial processing over-
head and delay. We prefer a solution where GPCA is involved only in exceptional
situations, mainly when RS endorses falsely labeled e-mail (spam).

Therefore, we propose that GPCA is contacted only once per period by RS,
as a special kind of certificate/attribute authority. However, CF and GPCA
must first establish an agreement, allowing CF to ‘honor’ certificates signed
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by GPCA (knowing that GPCA will compensate it for spam). The agreement
identifies the following fields:

1. An identifier (‘account’) for CF , denoted CF.id, which rating services must
include explicitly in the (signed) label; this ensures that CF cannot ask for
compensation for messages not endorsed specifically for it.

2. A public signature-validation key GPCA.v of GPCA. This allows validation
of signatures by the GPCA (on certificates to rating services RS).

3. A non-negative ‘compensation amount function’ caf , whose input is the label
l sent with the email m, and the correct label Label(m); and where for every
label l holds caf(l, l) = 0.

4. A period during which this agreement holds and a maximal amount of com-
pensation by GPCA to CF for false negative ratings, over the entire period.
This allows GPCA to control its risks due to an agreement, similarly to the
use of the ttl field with messages (to control the risks of the rating service).

5. An agreement identifier agreement.ID, which RS includes in the (signed)
labels for which this agreement applies. This allows GPCA to use multiple
agreements concurrently with CF , e.g. to handle the case where one agree-
ment expires or when the maximal amount of compensation in it is reached.

The process of sending e-mail with guaranteed-payment certificates is quite
similar to the process described in Section 2, when RS attaches a certificate
from a ‘regular‘ certificate authority CA. Namely, RS attaches to the message
a certificate CertRS = SignGPCA.s(RS.v, attr). However, we have some specific
requirements from the attributes attr in the certificate. In particular, attr must
indicate the identity and/or public key of CF , i.e. CF.id and/or CF.v, a maximal
liability amount per validity period and a validity period. The rating service RS
should also include in the authenticator ARS = SignRS.s(mA), or simply in the
label l (which is part of mA), the values of CF.id and CF.v. We also assume
that labels are unique (if necessary, add a serial number), to prevent ‘double
deposits’.

In this solution, GPCA needs the ability to transfer money from RS to CF .
This may be simple, e.g. by requiring RS to deposit an amount with GPCA.
However, to support interoperability on a global scale, we need to consider the
case where there is no long-term, direct trust relationship between GPCA and
RS. We can solve this if GPCA has long-term trust relationship with some other
guaranteed payment authority GPCA′, which has trust relationship with RS.
Namely, GPCA′ makes an agreement a′ with GPCA, who uses this to make
appropriate agreement with CF . This extends efficiently, allowing an arbitrar-
ily long ‘chain of trust’ between guaranteed-payment service providers, linking
the rating service RS and the content filtering service CF . For details, see the
‘payment routing protocol’ of [8].

The guaranteed payment services allow SICS to provide another useful ser-
vice, namely monetary compensation to recipients and processors of properly
marked (commercial) e-mail messages. Some legitimate, respectable corporations
may be interested in such a mechanism, whereby they pay a small, predefined
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amount to the recipients of their advertisements and/or to the mail servers in-
volved in processing them. Moreover, guaranteed-payment services may be useful
for other payment applications, unrelated to e-mail, e.g. person to person pay-
ments and micropayments; see [8].

6 Supporting Confidential (Encrypted) Messages

There are two ways to support encrypted messages. In the first option, we use
the following property of all practical public key (and hybrid) cryptosystems: de-
cryption recovers the randomness used during encryption, i.e. DB.d(EB.e(p, r)) =
(p, r). The message m includes the public encryption key, i.e. m = EB.e(p, r)||B.e
(the RS authenticates also the public encryption key, preventing key spoofing
attacks [1]). The recipient sends the pair (p, r) in the complaint, allowing every-
body to validate the plaintext against the label. However, this option requires the
third party validating the complaint to be able to encrypt using the same scheme,
i.e. to have an implementation of the same cryptosystem. This may sometimes
be a problem, e.g. if the parties want to use a proprietary cryptosystem. Also
note that this method does not work well for shared key cryptosystems, where
(as usually) the same key encrypts many messages, since it requires exposing
the key.

The other option allows the use of arbitrary public key encryption and shared
key encryption. The sender concatenates to the ciphertext a commitment to the
plaintext using a secure commitment scheme, i.e. m = EB.e(p, r)||commitck(p),
where ck is an optional public commitment key. However, this implies that con-
fidentiality depends (also) on the confidentiality of this commitment scheme.

7 Conclusions and Discussion

The Secure Internet Content Selection (SICS) protocol, which we presented in
this paper, is a relatively simple cryptographic protocol, which may aid in con-
trolling spam, including different forms of messages sent with undesirable content
and with misleading representation and labels. The protocol meets the many de-
sign goals presented, and in particular it ‘punishes’ spammers, or more precisely
rating services that endorse messages sent with false, inaccurate or misleading
labels. This is important, as usually spammers have a financial incentive, which
they may share with seemingly-disinterested rating service, creating an incentive
to endorse spam. Recipients, by defining appropriate policies to their content fil-
ter, can define an arbitrarily large compensation for spam. In reality, we expect
that eventually most ISPs and e-mail client developers will agree on some rea-
sonable default values, e.g. based on the pricing scheme of sending postal letters
of different classes and priorities (corresponding to e-mail messages marked with
different priorities).

The biggest obstacle to the acceptance of SICS, and many other of the more
advanced spam controls, may be the fact that it requires cooperation between
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(honest) senders and recipients, and/or their mail servers. Indeed, there are many
aspects in the design, described in Section 4, which are specifically targeted to
support the gradual migration and adaptation, and provide value even to early
adopters.

Another significant obstacle may be our requirement of ‘punishing‘ spammers,
mainly by financial penalties. This may require modification to the agreements
between Internet and e-mail service providers and their customers, especially to
ensure a deposit to cover fines for possible future spamming. We believe, however,
that this process is inevitable, especially in light of the current insecurity of most
computers connected to the Internet these days. Indeed, from discussions with
some Internet connectivity providers, it turns out that many of them already
apply financial penalties to spammers, typically by closing spamming accounts
(with a financial implication).

We also believe that most users will agree to set a reasonable limit for mes-
sages sent daily, which translates into limited spamming value and limited dam-
age to the consumers as well as to spam recipients and e-mail servers carrying
the spam. In fact, we hope and believe that many users will appreciate the
value of becoming aware of a penetration to their computer, by their ISP in-
forming them of spam originating from their computer. Growing user aware-
ness may also result in development and adoption of better computing secu-
rity mechanisms. In this way, SICS may help reduce the number of insecure
computers connected to the Internet, thereby ‘breaking’ the ‘vicious cycle of
spam’ illustrated in Figure 1. Internet security may further benefit from the
message authentication and confidentiality (encryption) facilities, based on SICS
mechanisms for establishing shared secret keys between senders and recipients.
In particular, this may make it more difficult for e-mail viruses to propagate
and will help to prevent other e-mail spoofing, phishing and eavesdropping
attacks.
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Abstract. We examine the role of session identifiers (SIDs) in security
proofs for key establishment protocols. After reviewing the practical im-
portance of SIDs we use as a case study the three-party server-based
key distribution (3PKD) protocol of Bellare and Rogaway, proven secure
in 1995. We show incidentally that the partnership function used in the
existing security proof is flawed. There seems to be no way to define a
SID for the 3PKD protocol that will preserve the proof of security. A
small change to the protocol allows a natural definition for a SID and we
prove that the new protocol is secure using this SID to define partnering.

1 Introduction

An important direction in the computational complexity approach for protocol
proofs was initiated by Bellare and Rogaway in 1993 with an analysis of a simple
two party entity authentication and key exchange protocol [5]. They formally de-
fined a model of adversary capabilities with an associated definition of security,
which we refer to as the BR93 model in this paper. Since then, the BR93 model
has been further revised several times. In 1995, Bellare and Rogaway analysed a
three-party server-based key distribution (3PKD) protocol [6] using an extension
to the BR93 model, which we refer to as the BR95 model. The most recent revi-
sion to the model was proposed in 2000 by Bellare, Pointcheval and Rogaway [4],
hereafter referred to as the BPR2000 model. The proof approach by Bellare et
al. has been applied to the analysis of public key transport based protocols [9],
key agreement protocols [10, 20], password-based protocols [4, 7, 8], conference
key protocols [11, 12, 13, 14], and smart card protocols [22].

An important difference between the various models is in the way partner
oracles are defined (i.e. the definition of partnership). The BR93 model defines

� This work was partially funded by the Australian Research Council Discovery Project
Grant DP0345775.

C. Blundo and S. Cimato (Eds.): SCN 2004, LNCS 3352, pp. 351–366, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



352 K.-K.R. Choo et al.

partnership using the notion of matching conversations, where a conversation
is a sequence of messages exchanged between some instances of communicat-
ing oracles in a protocol run. Partnership in the BR95 model is defined using
the notion of a partner function, which uses the transcript (the record of all
SendClient and SendServer oracle queries) to determine the partner of an oracle.
The BPR2000 model defines partnership using the notion of session identifiers
(SIDs) and it is suggested that SIDs be the concatenation of messages exchanged
during the protocol run. We examine partnering in the BR95 model and observe
that the specific partner function defined in the proof of security for the 3PKD
protocol is flawed. Consequently, the BR95 proof is invalidated, although not
irreparably so. More interestingly, we also demonstrate that it does not seem
possible to introduce a practical definition of partnership based on SIDs in the
3PKD protocol.

In a real world setting, it is normal to assume that a host can establish several
concurrent sessions with many different parties. Sessions are specific to both the
communicating parties. In the case of key distribution protocols, sessions are
specific to both the initiator and the responder principals, where every session is
associated with a unique session key. To model the real world implementation,
the most recent definition of partnership based on SIDs in the BPR2000 model
seems most natural. SIDs enable unique identification of the individual sessions.
Without such means, communicating hosts will have difficulty determining the
associated session key for a particular session.

We consider the use of SIDs to establish partnership analogous to the use
of sockets in establishing connections between an initiating client process and
a responding server process in network service protocol architecture [23]. A
socket [18, 19] is bound to a port number so that the TCP layer can identify
the application to which that data is destined to be sent, analogous to a SID
being bound to a particular session enabling communicating principals to deter-
mine to which session messages belong. Since the initial development of sockets
in the early 1980s, the use of sockets has been prevalent in protocols such as
TCP/IP and UDP. In fact, Bellare et al. [4] recognised that SIDs are typically
found in protocols such as SSL and IPSec.

The inability to define a unique SID in the 3PKD protocol so that the com-
municating principals can uniquely distinguish messages from different sessions
leads one to question the practicality and usefulness of the protocol in a real
world setting. In our view, the design of any entity authentication and/or key
establishment protocol should incorporate a secure means of uniquely identifying
a particular communication session among the many concurrent sessions that a
communicating party may have with many different parties. One outcome of this
work is such a means of session identification.

We consider the main contributions of this paper to be:

1. the observation that session identifiers are necessary for real world use of
provably secure protocols,

2. demonstration of a flaw in the specific partner function used in the BR95
proof of security that invalidates the proof, and
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3. proposal of an improved 3PKD protocol with a proof of security using a
definition of partnership based on SIDs.

The remainder of this paper is structured as follows: Section 2 briefly ex-
plains the Bellare-Rogaway models. Section 3 describes the 3PKD protocol and
the specific partner function used in the existing proof of security for the proto-
col. It also contains a description of a 3PKD protocol run that demonstrates a
flaw in the proof due to its use of an inadequate partner function, followed by a
description of how to fix it. Section 4 demonstrates that it does not seem pos-
sible to successfully introduce a definition of partnership based on SIDs to the
3PKD protocol. We then propose improvements to the 3PKD protocol. Section 5
describes the general notion of the proof of security for the improved protocol.
Finally, Section 6 presents the conclusions.

2 Overview of the Bellare-Rogaway Model

Both the BR93 model [5] and the BPR2000 model [4] define provable security for
entity authentication and key distribution goals. In the same flavour, the BR95
model [6] specifically defines provable security for the key distribution goal. In
this section, we will focus on the BR95 and the BPR2000 definitions of security.

In all three models, the adversary A is a probabilistic machine that controls
all the communications that take place between parties by interacting with a set
of Πi

U1,U2
oracles (Πi

U1,U2
is defined to be the ith instantiation of a principal U1 in

a specific protocol run and U2 is the principal with whom U1 wishes to establish
a secret key). A also interacts with a set of Ψ j

U1,U2
oracles, where Ψ j

U1,U2
is defined

to be the jth instantiation of the server in a specific protocol run establishing a
shared secret key between U1 and U2. The predefined oracle queries are described
informally as follows.

– The SendClient(U1, U2, i,m) query allows A to send some message m of her
choice to Πi

U1,U2
at will. Πi

U1,U2
, upon receiving the query, will compute what

the protocol specification demands and return to A the response message
and/or decision. If Πi

U1,U2
has either accepted with some session key or

terminated, this will be made known to A.
– The SendServer(U1, U2, i,m) query allows A to send some message m of her

choice to some server oracle Ψ i
U1,U2

at will. The server oracle, upon receiving
the query, will compute what the protocol specification demands and return
the response to A.

– The Reveal(U1, U2, i) query allows A to expose an old session key that has
been previously accepted. Πi

U1,U2
, upon receiving this query and if it has

accepted and holds some session key, will send this session key back to A.
– The Corrupt(U1,KE) query allows A to corrupt the principal U1 at will, and

thereby learn the complete internal state of the corrupted principal. The
corrupt query also gives A the ability to overwrite the long-lived key of the
corrupted principal with any value of her choice (i.e. KE). This query can
be used to model the real world scenarios of an insider cooperating with
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the adversary or an insider who has been completely compromised by the
adversary.

– The Test(U1, U2, i) query is the only oracle query that does not correspond to
any of A’s abilities. If Πi

U1,U2
has accepted with some session key and is being

asked a Test(U1, U2, i) query, then depending on a randomly chosen bit b, A
is given either the actual session key or a session key drawn randomly from
the session key distribution. The use of the Test(U1, U2, i) query is explained
in Section 2.4. Note that Πi

U1,U2
must be fresh, as defined in Section 2.3.

The definition of security depends on the notions of partnership of oracles and
indistinguishability. In the BR95 model, partnership of oracles is defined using
a partner function whose purpose is to enable a mapping between two oracles
that should share a secret key on completion of the protocol execution. In the
BPR2000 model, partnership of oracles is defined using SIDs. The definition of
partnership is used in the definition of security to restrict the adversary’s Reveal
and Corrupt queries to oracles that are not partners of the oracle whose key the
adversary is trying to guess. To avoid confusion, we will explicitly indicate which
definition of partnership is used.

2.1 Notion of Partnership in the BR95 Model: A Partner Function

No explicit definition of partnership was given in the BR95 model since there
is no single partner function fixed for any protocol. Instead, security is defined
predicated on the existence of a suitable partner function. Before defining the
partner function, we need the notion of a transcript. A transcript T is defined
to be a sequence of communication records, where a communication record is a
combination of SendClient and SendServer queries and responses to these queries.
At the end of a protocol run, T will contain the record of the Send queries and
the responses.

Definition 1 (BR95 Partner Function). A partner function f in the BR95
model is syntactically defined to be a polynomial-time mapping between an ini-
tiator oracle and a partnering responder oracle (if such a partner exists), which
uses the transcript T to determine the partner of an oracle.

Let A and B be some initiator and responder principals, and also i and j
be some instances of A and B respectively. The notation f i

A,B(T ) = j denotes
that the partner oracle of Πi

A,B is Πj
B,A. The initial values f i

A,B(T ) = ∗ and
f j
B,A(T ) = ∗ mean that neither Πi

A,B nor Πj
B,A has a BR95 partner. Two oracles

are BR95 partners if, and only if, the specific BR95 partner function in use says
they are. The specific BR95 partner function used in the proof of security for
the 3PKD protocol will be discussed in Section 3.3.

2.2 Notion of Partnership in the BPR2000 Model: SIDs

Partnership in the BPR2000 model is given by Definition 2. It is defined using
the notion of SIDs, whose construction is by the concatenation of message flows
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in the protocol. In the BPR2000 model, an oracle who has accepted will hold
the associated session key, a SID and a partner identifier (PID). Note that any
oracle that has accepted will have at most one BPR2000 partner, if any at all. In
Section 4.1, we demonstrate that it does not seem possible to define partnership
based on SIDs for the 3PKD protocol.

Definition 2 (BPR2000 Definition of Partnership). Two oracles, Πi
A,B

and Πj
B,A, are BPR2000 partners if, and only if, both oracles have accepted the

same session key with the same SID, have agreed on the same set of principals
(i.e. the initiator and the responder of the protocol), and no other oracles besides
Πi

A,B and Πj
B,A have accepted with the same SID1.

2.3 Notion of Freshness

Definitions of security in both BR95 and BPR2000 models depend on the notion
of freshness of the oracle to whom the Test query is sent. Freshness is used to
identify the session keys about which A ought not to know anything because A
has not revealed any oracles that have accepted the key and has not corrupted
any principals knowing the key. Definition 3 describes freshness in the BR95
model, which depends on the notion of partnership in Definition 1.

Definition 3 (BR95 Definition of Freshness). Oracle Πi
A,B is fresh (or it

holds a fresh session key) at the end of execution, if, and only if, oracle Πi
A,B

has accepted with or without a partner oracle Πj
B,A, both oracle Πi

A,B and its
partner oracle Πj

B,A (if such a partner oracle exists) have not been sent a Reveal
query, and the principals A and B of oracles Πi

A,B and Πj
B,A (if such a partner

exists) have not been sent a Corrupt query.

The definition of freshness in the BPR2000 model restricts the adversary A from
sending a Corrupt query to any principal in the protocol. We adopt the BR95
version because it offers a tighter definition of freshness since for Πi

A,B to be
fresh, the adversary is not restricted from sending Corrupt queries to principals
apart from the principals of oracle Πi

A,B and its partner oracle Πj
B,A (if such a

partner exists).

2.4 Definition of Security

Security in both the BR95 and BPR2000 models is defined using the game G,
played between a malicious adversary A and a collection of Πi

Ux,Uy
oracles for

players Ux, Uy ∈ {U1, . . . , UNp} and instances i ∈ {1, . . . , Ns}. The adversary A
runs the game simulation G, whose setting is as follows.

– Stage 1: A is able to send any SendClient, SendServer, Reveal, and Corrupt
oracle queries at will in the game simulation G.

1 Although the original paper required both parties to accept with the same PID, we
have corrected this typographical error.
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– Stage 2: At some point during G, A will choose a fresh session on which
to be tested and send a Test query to the fresh oracle associated with the
test session. Note that the test session chosen must be fresh (in the sense
of Definition 3). Depending on a randomly chosen bit b, A is given either
the actual session key or a session key drawn randomly from the session key
distribution.

– Stage 3:A continues making any SendClient, SendServer, Reveal, and Corrupt
oracle queries of its choice. (In the BR95 model, this stage is omitted and
A was required to output the guess bit b′ immediately after making a Test
query. However, such a requirement is not strong enough, as discussed by
Canetti and Krawczyk [15]. They mentioned including this stage to fix the
problem, as proposed by Bellare, Petrank, Rackoff, and Rogaway in an un-
published paper.)

– Stage 4: Eventually, A terminates the game simulation and outputs a bit
b′, which is its guess of the value of b.

Success of A in G is measured in terms of A’s advantage in distinguishing
whether A receives the real key or a random value. A wins if, after asking a
Test(U1, U2, i) query, where Πi

U1,U2
is fresh and has accepted, A’s guess bit b′

equals the bit b selected during the Test(U1, U2, i) query. Let the advantage
function of A be denoted by AdvA(k), where AdvA(k) = 2× Pr[b = b′]− 1.

The BPR2000 model defines security for both entity authentication and key
establishment goals, whilst the BR95 model defines security only for key estab-
lishment. In this paper, we are interested only in the notion of key establishment
in the BPR2000 model since the 3PKD protocol does not consider entity authen-
tication as its security goal. We require the definition of a negligible function.

Definition 4 ([1]). A function ε(k) : N → R in the security parameter k, is
called negligible if it approaches zero faster than the reciprocal of any polynomial.
That is, for every c ∈ N there is an integer kc such that ε(k) ≤ k−c for all k ≥ kc.

The definition of security for the protocol is identical in both the BR95 model
and the BPR2000 model, with the exception that different definitions of part-
nership and freshness are used in the respective models.

Definition 5 (Definition of Security [4, 6]). A protocol is secure in the BR95
model and secure under the notion of key establishment in the BPR2000 model
if both the validity and indistinguishability requirements are satisfied:

1. Validity: When the protocol is run between two oracles in the absence of a
malicious adversary, the two oracles accept the same key.

2. Indistinguishability: For all probabilistic, polynomial-time (PPT) adversaries
A, AdvA(k) is negligible.

3 A Flaw in the BR95 Proof of the 3PKD Protocol

In this section, we describe the 3PKD protocol and an execution of the protocol
run in the presence of a malicious adversary, followed by an explanation of the
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specific partner function used in the BR95 proof. Using an execution of the
protocol as a case study, we demonstrate that the specific partner function used
in the BR95 proof enables a malicious adversary to reveal a session key at one
oracle, where the same session key is considered fresh at a different, non BR95
partner oracle.

3.1 3PKD Protocol

The 3PKD protocol in Figure 1 involves three parties, a trusted server S and
two principals A and B who wish to establish communication. The security
goal of this protocol is to distribute a session key between two communication
principals (i.e. the key establishment goal), which is suitable for establishing a
secure session. Forward-secrecy and mutual authentication are not considered in
the protocol. However, concurrent executions of the protocol are possible.

In the protocol, the notation {message}Kenc
AS

denotes the encryption of some
message under the encryption key Kenc

AS and the notation [message]KMAC
AS

de-
notes the computation of MAC digest of some message under the MAC key
KMAC

AS . Kenc
AS is the encryption key shared between A and S, and KMAC

AS is the
MAC key shared between A and S. Both keys, Kenc

AS and KMAC
AS , are independent

of each other.

1. A −→ B : RA

2. B −→ S : RA, RB

3a. S −→ A : {SKAB}Kenc
AS

, [A, B, RA, {SKAB}Kenc
AS

]KMAC
AS

3b. S −→ B : {SKAB}Kenc
BS

, [A, B, RB , {SKAB}Kenc
BS

]KMAC
BS

Fig. 1. 3PKD protocol

The protocol begins by having A randomly select a k-bit challenge RA and
send it to the B with whom she desires to communicate. Upon receiving the
message RA from A, B also randomly selects a k-bit challenge RB and sends RB

together with RA as a message (RA, RB) to the server S. S, upon receiving the
message (RA, RB) from B, runs the session key generator to obtain a session key
SKAB , which has not been used before. S then encrypts SKAB with Kenc

AS and
Kenc

BS to obtain ciphertexts αA and αB , and computes the MAC digests βA and
βB of the strings (A,B,RA, {SKAB}Kenc

AS
) and (A,B,RB , {SKAB}Kenc

BS
) under

the keys KMAC
AS and KMAC

BS respectively. S then sends messages (αA,βA) and
(αB ,βB) to A and B respectively in Steps 3a and 3b of the protocol.

3.2 Execution of Protocol Run in the Presence of a Malicious
Adversary

Figure 2 depicts an example execution of the 3PKD protocol run in the presence
of a malicious adversary, which will be used to demonstrate that the specific
partner function used in the BR95 proof enables a malicious adversary to reveal
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a session key at one oracle, where the same session key is considered fresh at a
different, non partner oracle. Consequently, the BR95 proof will be shown to be
invalid.

1. A −→ B (intercepted by A) : RA

1(A). A (impersonating A) −→ B : RE

2. B −→ S (intercepted by A) : RE , RB

2(A). A (impersonating B) −→ S : RA, RB

3a. S −→ A : {SKA,B}Kenc
AS

, [A, B, RA, {SKA,B}Kenc
AS

]KMAC
AS

3b. S −→ B : {SKA,B}Kenc
BS

, [A, B, RB , {SKA,B}Kenc
BS

]KMAC
BS

Fig. 2. Execution of protocol run in the presence of a malicious adversary

An active adversary A intercepts and deletes the message RA sent by A to
B. A then sends a fabricated message RE to B impersonating A. B, upon re-
ceiving the message RE , and believing that this message originated from A, also
randomly selects a k-bit challenge RB and sends RB together with RE as a
message (RE , RB) to the server S. A then intercepts and deletes this message
(RE , RB), and sends the fabricated message (RA, RB) to S impersonating B. S,
upon receiving the message (RA, RB) from A, and believing that this message
originated from B, runs the session key generator to obtain a unique session key
SKAB , which has not been used before. S encrypts SKAB with the respective
principals’ encryption keys (i.e., Kenc

AS and Kenc
BS ) to obtain the ciphertexts αA

and αB respectively. S also computes the MAC digests (i.e., βA and βB) of the
strings (A,B,RA, {SKAB}Kenc

AS
) and (A,B,RB , {SKAB}Kenc

BS
) under the respec-

tive keys KMAC
AS and KMAC

BS . S then sends the messages (αA, βA) and (αB , βB)
to A and B respectively in Steps 3a and 3b of the protocol.

Immediately after both A and B have verified and accepted with the session
key SKAB , A sends a Reveal query to A and obtains the session key SKAB from
A. This enables the adversary A to break the protocol as shown in the following
section. Figure 3 shows the oracle queries associated with Figure 2.

3.3 The Partner Function Used in the BR95 Proof

The specific partner function used in the BR95 proof is defined in two parts,
namely the partner of the responder oracle and the partner of the initiator
oracle. Let f be the partner function defined in the BR95 proof, Πi

A,B be the
initiator oracle, and Πj

B,A be the responder oracle. Both values f i
A,B(T ) and

f j
B,A(T ) are initially set to ∗, which means that neither Πi

A,B nor Πj
B,A is BR95

partnered. The description of f is now given, where T is the transcript with
which the adversary terminates the execution of the protocol run.

BR95 Partner of the Initiator Oracle: The first two records of T associated
with queries of the oracle Πi

A,B are examined. If the first record indicates
that Πi

A,B had the role of an initiator oracle, was sent a SendClient(A,B, i, ∗)
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On query of q: Return: Append to T :
SendClient(A, B, i, ∗) RA 〈q, RA〉
SendClient(B, A, j, RE) (RE , RB) 〈q, (RE , RB)〉
SendServer(A, B, s, (RA, RB)) ((αA,i, βA,i), (αB,j , βB,j)) 〈q, ((αA,i, βA,i), (αB,j , βB,j))〉
SendClient(A, B, i, (αA,i, βA,i))AcceptA,i 〈q, AcceptA,i〉
SendClient(B, A, j, (αB,j , βB,j))AcceptB,j 〈q, AcceptB,j〉
Reveal(A, B, i) SKA,B,i

Fig. 3. Oracle queries associated with Figure 2

query and replied with RA, and the second record indicates that Πi
A,B ’s re-

ply to a SendClient(A,B, i, (αA, βA)) was the decision Accept, then T is ex-
amined to determine if some server oracle, Ψk

A,B , sent a message of the form
(αA, β

′
A) for some β′

A. If so, determine if this message was in response to a
SendServer(A,B, k, (RA, RB)) query for some RB , and if this is also true, de-
termine if there is a unique j such that an oracle Πj

B,A generated a message
(RA, RB). If such an oracle Πj

B,A is found, then set f i
A,B(T ) = j, meaning that

the BR95 partner of Πi
A,B is Πj

B,A.
Suppose that the adversary terminates the execution of the protocol run in

Figure 3 with some transcript T1. According to the BR95 partner function f ,
Πi

A,B has no BR95 partner because although there is a
SendServer(A,B, k, (RA, RB)) query for some RB , there does not exist a unique
j such that an oracle Πj

B,A generated a message (RA, RB). Hence, f i
A,B(T1) = ∗.

BR95 Partner of the Responder Oracle: The first two records of T associated
with queries of the oracle Πj

B,A are examined. If the first record indicates that
Πj

B,A had the role of a responder oracle, and was sent a SendClient(B,A, j,RA)
query, and the second record indicates that Πj

B,A accepted, then determine if
there is a unique i such that an oracle Πi

A,B generated a message RA. If such an
oracle Πi

A,B is found, then set f j
B,A(T ) = i, meaning that the BR95 partner of

Πj
B,A is Πi

A,B .
For the execution of the protocol run in Figure 3, Πj

B,A has no BR95 partner
because although Πj

B,A accepted, there does not exist a unique oracle Πi
A,B that

it generated a message RE (recall RE is fabricated by A). Hence, f j
B,A(T1) = ∗.

Hence, we have shown that the protocol state is not secure since A can reveal a
fresh non partner oracle, either Πi

A,B or Πj
B,A, and find the session key accepted

by Πj
B,A or Πi

A,B respectively. It is possible to fix the flawed partner function
used in the BR95 model, as shown below.

The only differences between the fixed definition of an initiator’s partner
and the original definition are that the server may think that the initiator and
responder roles are swapped, and that the nonce output by B on behalf of A,
R′

A, need not be identical to the nonce output by A itself, RA. The definition of
a responder’s partner has been made analogous to that of an initiator’s partner.
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Using the fixed partner function in our example execution, Πi
A,B ’s partner is

Πj
B,A and Πj

B,A’s partner is Πi
A,B .

Fixed BR95 Partner of the Initiator Oracle: The first two records of T associ-
ated with queries of the oracle Πi

A,B are examined. If the first record indicates
that Πi

A,B had the role of an initiator oracle, was sent a SendClient(A,B, i, ∗)
query and replied with RA, and the second record indicates that Πi

A,B ’s reply
to a SendClient(A,B, i, (αA, βA)) was the decision Accept, then T is examined
to determine if some server oracle, Ψk

A,B or Ψk
B,A, sent a message of the form

(αA, β
′
A) for some β′

A. If so, determine if this message was in response to a
SendServer(A,B, k, (RA, RB)) or SendServer(B,A, k, (RB , RA)) query for some
RB , and if this is also true, determine if there is a unique j such that an oracle
Πj

B,A generated a message (R′
A, RB) for any R′

A. If such an oracle Πj
B,A is found,

then set f i
A,B(T ) = j, meaning that the BR95 partner of Πi

A,B is Πj
B,A.

Fixed BR95 Partner of the Responder Oracle: The first two records of T associ-
ated with queries of the oracle Πj

B,A are examined. If the first record indicates
that Πj

B,A had the role of a responder oracle, was sent a SendClient(B,A, j,R′
A)

query and replied with (R′
A, RB), and the second record indicates that Πj

B,A’s
reply to a SendClient(B,A, j, (αB , βB)) was the decision Accept, then T is ex-
amined to determine if some server oracle, Ψk

A,B or Ψk
B,A, sent a message of the

form (αB , β′
B) for some β′

B . If so, determine if this message was in response to a
SendServer(A,B, k, (RA, RB)) or SendServer(B,A, k, (RB , RA)) query for some
RA, and if this is also true, determine if there is a unique i such that an or-
acle Πi

A,B generated a message RA. If such an oracle Πi
A,B is found, then set

f j
B,A(T ) = i, meaning that the BR95 partner of Πj

B,A is Πi
A,B .

4 A Revised Protocol

We now revisit the construction of SIDs in the BPR2000 model and demonstrate
that it does not seem possible to define partnership based on SIDs in the 3PKD
protocol. We then propose an improvement to the 3PKD protocol with a natural
candidate for the SID. Consequently, the protocol is practical in a real world
setting.

4.1 Defining SIDs in the 3PKD Protocol

Bellare, Pointcheval, and Rogaway [4] suggested that SIDs can be constructed on-
the-fly using fresh unique contributions from the communicating participants.
Uniqueness of SIDs is necessary since otherwise two parties may share a key
but not be BPR2000 partners, and hence the protocol would not be considered
secure. Within the 3PKD protocol, the only values that A and B can be sure
are unique are RA and RB . However, the integrity of only one of RA and RB is
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preserved cryptographically for each party in the protocol. Since the integrity of
a SID consisting of RA and RB is not preserved cryptographically, attacks such
as the one proposed in Section 3 are possible. An alternative would be to use an
externally generated SID, such as a counter, but the use of such a SID would be
inconvenient. Hence, it does not seem possible to use SIDs to successfully define
partnership in the 3PKD protocol.

4.2 An Improved Provably Secure 3PKD Protocol

In order for partnership to be defined using the notion of SIDs in the 3PKD
protocol, we propose an improvement to the protocol as shown in Figure 4. In
the improved 3PKD protocol, S binds both values composing the SID, RA and
RB , to the session key for each party, using the MAC digests in message flows
3a and 3b.

1. A −→ B : RA

2. B −→ S : RA, RB

3a. S −→ A : {SKAB}Kenc
AS

, [A, B, RA, RB , {SKAB}Kenc
AS

]KMAC
AS

, RB

3b. S −→ B : {SKAB}Kenc
BS

, [A, B, RA, RB , {SKAB}Kenc
BS

]KMAC
BS

Fig. 4. An improved provably secure 3PKD protocol

The primitives used in the protocol are the notions of a secure encryption
scheme [16] and a secure message authentication scheme [17]. Both notions are
now relatively standard. For the security of the underlying encryption scheme,
we consider the standard definitions of indistinguishability of encryptions (IND)
due to Goldwasser and Micali [16] and chosen-plaintext attack (CPA). For the
security of the underlying message authentication scheme, we consider the stan-
dard definition of existential unforgeability under adaptive chosen-message at-
tack (ACMA) due to Goldwasser, Micali, and Rivest [17].

Theorem 1 The improved 3PKD protocol is a secure key establishment protocol
in the sense of Definition 5 if the underlying message authentication scheme is
secure in the sense of existential unforgeability under ACMA and the underlying
encryption scheme is indistinguishable under CPA.

5 Security Proof

The proof of Theorem 1 generally follows that of Bellare and Rogaway [6], but
is adjusted to the different partnering function used. The validity of the proto-
col is straightforward to verify and we concentrate on the indistinguishability
requirement. The security is proved by finding a reduction to the security of
the underlying message authentication scheme and the underlying encryption
scheme.
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The general notion of the proof is to assume that there exists an adversary A
who can gain a non-negligible advantage in distinguishing the test key in game
G (i.e. AdvA(k) is non-negligible), and use A to break the underlying encryption
scheme or the message authentication scheme. In other words, we consider an
adversary A that breaks the security of the protocol.

Using results of Bellare, Boldyreva and Micali [2], we may allow an adversary
against an encryption scheme to obtain encryptions of the same plaintext under
different independent encryption keys. Such an adversary is termed a multiple
eavesdropper, ME . In the 3PKD protocol, the server, upon receiving a message
from the responder principal, sends out two ciphertexts derived from the encryp-
tion of the same plaintext under two independent encryption keys. Hence, we
consider a multiple eavesdropper ME who is allowed to obtain encryptions of
the same plaintext under two different independent encryption keys. The formal
definition of ME is given by Definition 6.

Definition 6 ([2, 6]). Let Ω = (K, E ,D) be an encryption scheme with security
parameter k, SE be the single eavesdropper andME be the multiple eavesdropper,
and OkA

and OkB
be two different independent encryption oracles associated with

encryption keys kA and kB. We define the advantage functions of SE and ME
to be:

AdvSE(k) = 2× Pr[SE ← OkA
; (m0,m1

R← SE); θ R← {0, 1}; γA R← OkA
(mθ)

: SE(γA) = θ]− 1

AdvME(k) = 2× Pr[ME ← OkA
,OkB

; (m0,m1
R←ME); θ R← {0, 1};

γA
R← OkA

(mθ), γB
R← OkB

(mθ) : ME(γA, γB) = θ]− 1

Lemma 1 ([2]). Suppose the advantage function of SE against the encryption
scheme is εk. Then the advantage function of ME is at most 2× εk.

As a consequence of Lemma 1, an encryption scheme secure against IND-
CPA in the single eavesdropper setting will also be secure against IND-CPA in
the multiple eavesdropper setting [2].

An overview of the proof of Theorem 1 is now provided2. The proof is divided
into two cases since the adversary A can either gain her advantage against the
protocol by forging a MAC digest with respect to some user’s MAC key or gain
her advantage against the protocol without forging a MAC digest.

5.1 Adaptive MAC Forger F
Following the approach of Bellare, Kilian and Rogaway [3], we quantify security
of the MAC scheme in terms of the probability of a successful MAC forgery
under adaptive chosen-message attack, which we denote by Pr[SuccF (k)]. For

2 A complete proof appears in the extended version, which can be downloaded from
http://sky.fit.qut.edu.au/~boydc/papers/
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the MAC scheme to be secure under chosen-message attack, Pr[SuccF (k)] must
be negligible. In other words, the MAC scheme is considered broken if a forger
F is able to produce a valid MAC forgery for a MAC key unknown to it.

The first part of the proof of security for the improved 3PKD protocol as-
sumes that the adversary A gains her advantage by forging a valid MAC digest
for a MAC key that A does not know. More precisely, we define MACforgery to be
the event that at some point in the gameA asks a SendClient(B,A, j, (αB,j , βB,j))
query to some fresh oracle Πj

B,A, such that the oracle accepts, but the MAC
value βB,j used in the query was not previously output by a fresh oracle. We
then construct an adaptive MAC forger F against the security of the message
authentication scheme using A, as shown in the following attack game, GF .

– Stage 1: F is provided permanent access to the MAC oracle Ox′ associated
with the MAC key x′ throughout GF .

– Stage 2: F runs A to produce a valid MAC forgery for the MAC key x′

that is known to neither F nor A. By examining all oracle queries made by
A, F outputs the MAC forgery.

The objective of F is to output a valid MAC forgery for a MAC message which
was not previously asked of Ox′ . It is shown in the proof that Pr[MACforgery] ≤
Np · Pr[SuccF (k)], where Np is polynomial in the security parameter, k. Hence,
Pr[MACforgery] is negligible if the message authentication scheme in use is secure.

5.2 Multiple Eavesdropper Attacker ME
The second part of the proof assumes that the adversary A gains her advantage
without forging a MAC digest. We construct another algorithm ME that uses
A against the security of the encryption scheme, whose behaviour is described
by the attack game GME shown below and in Figure 5. The objective of ME is
to correctly predict the challenge bit θ in the game simulation GME (i.e. have
θ′ = θ).

– Stage 1: ME is provided permanent access to two different encryption or-
acles OkA

and OkB
associated with encryption keys kA and kB respectively

throughout the game GME .
– Stage 2:ME chooses a pair of messages (m0,m1) of equal length and hands

them to the challenger. The challenger then chooses a random challenge bit,
θ (i.e., θ

R← {0, 1}), and returns the ciphertexts γA and γB to ME , where
γA = EkA

(mθ) and γB = EkB
(mθ).

– Stage 3: ME runs A to determine whether m0 or m1 was encrypted as
γA and γB . By examining all oracle queries made by A, ME outputs her
prediction, θ′.

We denote the probability that ME correctly guesses the challenge bit θ by
Pr[SuccME(k)], and observe that for the encryption scheme to be IND-CPA,
AdvME(k) = 2× Pr[SuccME(k)]− 1 must be negligible. It is shown in the proof
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ME

Stage 1

Stage 2

Stage 3

Stage 4

Oracle Queries

Test Query

Oracle Queries

Output guess bit b′

Access to OkA and OkB

m0, m1

γA, γB

Output θ′ A

Fig. 5. Game GME

that (AdvA(k)|MACforgery) = N2
pNs · AdvME(k), where Np and Ns are polyno-

mial in the security parameter. Hence, (AdvA(k)|MACforgery) is negligible if the
encryption scheme in use is secure.

5.3 Conclusion of Proof

The proof concludes by observing that:

AdvA(k) = (AdvA(k)|MACforgery)× Pr[MACforgery]
+ (AdvA(k)|MACforgery)× Pr[MACforgery]
≤ Pr[MACforgery] + (AdvA(k)|MACforgery)

Hence, AdvA(k) is negligible when the encryption scheme and message authenti-
cation scheme in use are secure against IND-CPA and secure against existential
forgery under ACMA respectively, and therefore the improved 3PKD protocol
is also secure.

6 Conclusion and Future Work

By making a small change to the 3PKD protocol we have allowed SIDs to be
defined in a natural way. This makes the improved protocol a more useful tool
for practical applications since we have provided a simple way to identify which
secure session key should be used on which communication channel. At the same
time we would argue that the resulting definition of partnering is more intuitive,
and consequently we believe that our proof of security is more straightforward
than the one presented by Bellare and Rogaway in their original paper.
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As a result of our findings we would recommend that all provably secure pro-
tocols should use partnering definitions based on SIDs. This situation is common
for two-party protocols [4, 10, 15]; even if a SID is not explicitly used in the secu-
rity definition, one can easily be defined from the fresh inputs of each principal.
When it comes to multi-party protocols the situation is not so clear. While pro-
tocols which use only broadcast messages [21] have a natural SID, protocols
which utilise point-to-point messages do not have this property [12, 13]. It would
be interesting to know whether the protocols without broadcast messages can
be provided with a secure means to obtain a shared SID.
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Abstract. We construct nonlinear feedback shift registers with short
cycles. Our method is to embed nonlinear feedback shift registers with
small state spaces into nonlinear feedback shift registers with large state
spaces. Algebraic analysis of our embedding indicates that detecting the
embedded ‘small’ feedback shift register in the large feedback register is
infeasible without additional information. As an application we propose
a low-cost group-identification scheme.
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1 Introduction

Cryptographic applications often use feedback-shift registers as primitives. Then,
in most cases their cycle structure is of crucial importance. The cycle structure
of the feedback-shift register is given as follows: we call a state u periodical with
respect to a feedback-shift register F if the sequence u, F (u), F ◦ F (u), . . . is
periodical. The set of periodical elements splits into disjoint subsets, the so-
called cycles, by the iterative application of F .

For linear feedback-shift registers (LFSRs) the cycle structure is well under-
stood. Using primitive feedback polynomials ensures that the state space falls
into two cycles. The first cycle consists of the single element {(0, . . . , 0)} whereas
the second cycle is the complement of the first, [6]. Furthermore, it is easy to
check whether a polynomial is primitive, although it is not a trivial task to find
one. Using LFSRs with non-primitive feedback polynomials is not very common
in practice.

In the nonlinear case, some interesting results about nonlinear feedback shift
registers (NLFSRs) with randomly chosen feedback functions exist as well: for
instance, about distributions of cycle lengths, linear complexity profiles, etc.
Moreover, Golomb showed in [2], Part III, the existence of NLFSRs with partic-
ular properties.

However, unlike in the linear case there are no simple, general criteria that
characterize the cycle structure of a given NLFSR. Therefore, in general exhaus-
tive search is the only method to compute the cycle structure. But this is not
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practically feasible, if the state space is large, which is a necessary condition
for the majority of cryptographic applications. Without exhaustive search the
determination of the cycle structure is only possible for very simple feedback
functions. Hence for randomly chosen feedback functions, although in general
there exist periodical states with short cycles, it is practically infeasible to find
them.

In this paper we shall take advantage of this fact. We create NLFSRs in which
we “embed” periodical states that have short cycle lengths. More precisely, we
start with an arbitrary feedback shift register on a small state space Km with
feedback function f0, so that we can do exhaustive search to investigate its
cycle structure. With respect to f0 we describe an embedding of Km into Kn

(n > m large) and construct a family of feedback functions on Kn in such a
way that these coincide with f0 on the embedding. Although our construction is
quite elementary, it seems to be practically infeasible to decide whether a given
feedback function has such an embedded small feedback function f0 or even to
recover f0 unless a sufficient number of elements in the embedding are available
(Sect. 3).

The plan of the paper is as follows. In the second section we describe the
embedding. Section 3 presents the cryptographic properties of our construction:
In which cases is it possible to reconstruct f0. In Section 4 we discuss a low-
cost group-identification scheme that uses our construction as the cryptographic
primitive. Finally, we give our conclusions.

2 Embedding Short Cycles into Large Nonlinear
Feedback-Shift Registers

2.1 The Embedding

Let K be a finite field and m,n integers so that m < n. To a feedback function
f0 : Km → K we associate the feedback-shift register given by F0 : Km → Km,
x := (x0, ..., xm−1) !→ (x1, ..., xm−1, f0(x)). Furthermore we denote its �-fold
by F

(�)
0 (x) := F0 ◦ F0 ◦ ... ◦ F0(x) (�-times). The paper hinges on the following

embedding of Km into Kn by f0:

ιf0,n : Km → Kn,x !→ (x, f0(x), f0 ◦ F0(x), ..., f0 ◦ F (n−m−1)
0 (x)).

Clearly, K = F2 is the case of most practical importance, but we do not
need to restrict us to this case. The following lemma on the properties of ιf0,n

is elementary but crucial for the rest of the paper.

Lemma 1. (i) For x ∈ Km let u := (u0, ..., un−1) := ιf0,n(x) ∈ ιf0,n(Km) ⊂
Kn. Then F

(j−m)
0 (x) = (uj−m, ..., uj−1) for j = m, ..., n.

(ii) For j = m, ..., n − 1 consider functions gj : Kn → K given by y !→
f0(yj−m, ..., yj−1) − yj. Then these mappings are trivial on the embedding,
that is, gj |ιf0,n(Km) ≡ 0.
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Proof. Assertion (i) follows by induction on j. For u ∈ ιf0,n(Km) there is a
unique x ∈ Km with ιf0,n(x) = u. From (i) we conclude uj = f0(uj−m, ..., uj−1)
for j > m− 1, which proves (ii).

This leads us to the central result of this paper:

Theorem 1. Let gm, ..., gn−1 be defined as in Lemma 1. Furthermore consider
a mapping f : Kn → K that is constructed from f0 as follows:

f(y) = f0(yn−m, ..., yn−1) +
n−1∑
j=m

gj(y)hj(y), (1)

where hm, ..., hn−1 : Kn → K are arbitrary mappings. (We say: “f0 is embedded
into f”.) Then the corresponding feedback-shift registers F and F0, respectively,
coincide on the embedding of Km into Kn by ιf0,n, more precisely, for all x ∈
Km it holds

F (ιf0,n(x)) = ιf0,n(F0(x)).

Proof. Let u = ιf0,n(x). Applying Lemma 1 (i) and (ii) we obtain f(ιf0,n(x)) =
f0(un−m, . . . , un−1) = f0 ◦ F (n−m)

0 (x0, . . . , xm−1) = f0 ◦ F (n−m−1)
0 (F0(x)). This

equals the right-most component of ιf0,n(F0(x)), which verifies Theorem 1.

If we identify Km with its embedding ιf0,n(Km) Theorem 1 delivers a family
of feedback shift registers on Kn that coincide with F0 on this embedding. Con-
sequently, the embedding ιf0,n maps cycles of F0 into cycles of F . More precisely,

Corollary 1. Let z0 ∈ Km so that F
(�)
0 (z0) = z0. Then the analogous property

holds for z := ιf0,n(z0) ∈ Kn with respect to F , i.e., F (�)(z) = z.

2.2 Bijective Feedback-Shift Registers

Suppose that G defines a feedback-shift register on the state space Kr with
feedback function g : Kr → K. Remind that a state x is called periodical with
respect to G, if the sequence x, G(x), G(2)(x), . . . is periodical, and that the set
of periodical elements splits into cycles.

Depending on the application it may be reasonable to choose feedback shift
registers that have no non-periodical states. As any non-periodical state is at-
tained at most once, all elements are periodical if and only if G is bijective.
For example, the feedback-shift register with feedback function g(x) := xr−1
has only #K periodical elements, namely the states where all components are
identical.

The next lemma gives criteria for feedback-shift registers to be bijective:

Lemma 2. Let G : Kr → Kr be the corresponding feedback-shift register to
g : Kr → K. Then the following holds:

(i) G is bijective if and only if the mapping t !→ g(t, c1, ..., cr−1) is a bijection
of K for all (c1, ..., cr−1) ∈ Kr−1.
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(ii) If g is of the form g(x) = x0 + s(x1, ..., xr−1) for a mapping s : Kr−1 → K,
then G is bijective. For K = F2 the converse also holds.

Proof. Assertion (i) and the first claim of (ii) are obvious. The final statement
is shown in [2], Theorem 1, 115f.

Therefore, if we want our polynomial constructed in Theorem 1 to be bijec-
tive, we may choose f0 and the hi’s as follows:

Proposition 1. Let f0 : Km → K be of the form f0(x) = x0 + s(x1, . . . , xm−1)
for a function s : Km−1 → K. Embed f0 into f : Kn → Kn as follows:

f(y) = f0(yn−m, ..., yn−1)− gm(y) +
n−1∑

j=m+1

gj(y)hj(y1, ..., yn−1).

Then the feedback-shift register F with feedback function f is bijective. Hence,
all states are periodical with respect to F .

Example 1. Let K = F2 and (m,n) = (10, 20). We constructed our large feed-
back function f : K20 → K accordingly to Proposition 1 from a small feedback
function f0 : F

m
2 → F2,x !→ x0 + x2x9 + x5, and randomly chosen mappings

(h11, ..., h19)(y1, ..., y19) = (y1, y15, y4, 1, y1, y2, y5, y12, y8) (see Appendix). This
yields

f = y1y3y10 + y4y5y12 + y1y7y14 + y2y8y15 + y4y11y15 + y5y9y16

+ y10y12y17 + y8y11y18 + y3y4 + y1y5 + y1y6 + y2y6 + y5y7 + y4y8

+ y2y9 + y8y9 + y1y10 + y1y11 + y2y11 + y5y12 + y8y12 + y4y13 + y6y13

+ y12y13 + y8y14 + y1y15 + y2y15 + y7y15 + y12y15 + y2y16 + y5y17

+ y12y18 + y8y19 + y12y19 + y0 + y1 + y4 + y5 + y9 + y14 + y15.

The feedback function f decomposes the state space F
n
2 into cycles as follows:

cycle length 1 2 15 22 69 152 301 661 875 1504 17543 72995 234189 720201
# cycles 2 1 4 1 1 1 1 1 1 1 1 1 1 1

The embedded cycles induced by f0 have length (1, 1, 15, 15, 15, 15, 301, 661).

3 Cryptographic Properties of the Embedding

In this section we assume f0 : Km → K to be a feedback function, which is
embedded into f : Kn → K as described in Theorem 1. Furthermore, denote
the corresponding bijective feedback-shift registers by F0 and F , respectively.

The goal of this section is to investigate the question: Which data suffice to
decide, whether a given feedback function has an embedded smaller feedback
function, or even to reconstruct this embedded feedback function?

We investigate different (crytographically interesting) situations. More par-
ticularly, we shall show:
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– Given only F , it seems to be hard to decide whether there is an embedded
smaller feedback function and to reconstruct it.

– Given enough embedded states z0, ...,zr, where zi ∈ ιf0,n(Km), it is easy to
compute f0.

– Given F and one embedded state z ∈ ιf0,n(Km) with large enough cycle
length, it is easy to compute f0.

– Given F and linearly transformed embedded states Tz0, ..., Tzr with secret
zi ∈ ιf0,n(Km) and secret T ∈ GLn(K), it is hard to compute f0.

These statements hold, if we make the following reasonable assumptions about f0
and f . As F should be efficiently computable, the degrees of f0 and f should be
small, about 2 and 4, respectively. But f0 should not be too sparse. Moreover, m
has to be so small that an exhaustive search over the state space Km is possible,
for example m ≈ 30.

Remark 1. Some simple general properties of our construction are:

a) To check whether a candidate for f0 is correct can be easily done, if f is
known. We only need to verify for some states in Km whether the feedback
functions coincide on the embedding ιf0,n(Km). Hence, having only a mod-
erate number of candidates for f0 one can do exhaustive search. For instance,
for K = F2 knowing m and the degree d0 of f0 one has to check 2

∑d0
i=0 (m

i )

candidates for f0. Therefore d0 ≥ 2 is a necessary condition.
b) For K = F2 given only F the probability of picking an embedded state

z ∈ ιf0,n(Km) at random is 2m−n, which is very low in our setting since in
general we choose n much larger then m. (See also Theorem 13 in [2], 128.)

3.1 Reconstruction of f0 from f

In the next two subsections we shall tackle the problem of reconstructing f0
from f with algebraic methods. The first method is straightforward, whereas
the second approach is a more sophisticated one making use of invariant theory.
Both methods use Gröbner bases and elimination techniques [5].

It turns out that the first approach is more efficient for very sparse polyno-
mials, whereas the second approach is faster if all polynomials are dense. But
both are practically infeasible for large enough m and, for instance, n = 4m (see
appendix).

A Straightforward Algebraic Approach. Consider the residue class rings
P := K[X0, ..., Xm−1]/(X

q
0 − X0, ..., X

q
m−1 − Xm−1) and analogously Q :=

K[Y0, ..., Yn−1]/(Y
q
0 − Y0, ..., Y

q
n−1 − Yn−1), where q := #K. Seen from the al-

gebraic point of view, the challenge is to decide for a given polynomial f ∈ Q
whether there exists a polynomial f0 ∈ P such that

f = f0(Yn−m, ..., Yn−1) +
n−1∑
i=m

gihi

for some hi ∈ Q, where the gi’s are determined by f0 as follows:
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gm := f0(Y0, ..., Ym−1)− Ym

gm+1 := f0(Y1, ..., Ym)− Ym+1

...

gn−1 := f0(Yn−m−1, ..., Yn−2)− Yn−1

One straightforward strategy to solve this problem is to make a similar ap-
proach as Lenstra’s Linear-Algebra Attack against polynomial-based cryptosys-
tem described by Koblitz [3], Chap. 5, §6. For this to work the following condi-
tions have to hold:

– One needs a good guess on the degrees of the gi’s and hi’s, for instance by
maxi=1,...,m−n(deg gihi) ≈ deg f . (Note that ≥ holds.)

– No monomials cancel out, i.e. for every monomial in the support of gi or hi

there has to be a monomial in the support of f that is a multiple of the first.

These conditions are likely to hold, if we assume f to be sparse. Then one is
able to guess the supports of f0 and of the hi’s by looking at the support of
f . An attacker puts up the coefficients as unknowns, computes the polynomial
combination and extracts equations by comparing coefficients with f . Solving
these equations yields f0.

Example 2. As the systems of equations in our setting are very large, in this
example we consider a simplified situation omitting f0. For K = F2 we construct
a polynomial

f = g0h0 + g1h1 = Y0Y1Y2 + Y1Y2 + Y1 + Y2

from g0 = Y0Y1+1, g1 = Y1Y2+1 and h0 = Y2, h1 = Y1. (Note that the notations
are modified in this example.) The task is now to reconstruct g0.

An attacker knows that the degree of g0 has to be at least 2, therefore he
guesses the degree of the hi’s to be 1. Hence, candidates for the support of
g0 ∈ F2[Y0, Y1] are Y0Y1, Y1 and 1. This leads to the following guess on h0’s
support: Y2, Y1 and 1. Similarly for g1 and h1, we yield {Y1Y2, Y1, Y2, 1} and
{Y0, Y1, Y2, 1}, respectively. Therefore, an attacker conjectures the support of g0
to be Y0Y1, Y0, Y1, 1, introduces unknowns γi, and puts g̃0 = γ0Y0Y1 + γ1Y0 +
γ2Y1 + γ3 and accordingly g̃0, g̃1. Additionally, he sets h̃0 = γ4Y2 + γ5Y1 + γ6
and h̃1 = γ7Y0 + γ8Y1 + γ9Y2 + γ10. Comparing coefficients of the equation
h̃0g̃0 + h̃1g̃1 = f results in the following system of quadratic equations:

γ1γ5 + γ1γ8 = 0
γ1γ6 + γ2γ8 + γ1γ9 + γ2γ9 = 1

γ2γ5 + γ1γ7 + γ2γ7 + γ3γ8 + γ1γ10 + γ3γ10 = 1
γ3γ5 + γ1γ11 = 0

γ2γ6 + γ4γ8 + γ3γ9 + γ4γ9 + γ2γ10 + γ4γ10 = 1
γ3γ6 + γ2γ11 = 0

γ4γ5 + γ3γ7 + γ4γ7 + γ3γ11 = 0
γ4γ6 + γ4γ11 = 1
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This system leads to three solutions: Y1Y2 + Y1 + 1, Y1Y2 + Y2 + 1, and Y1Y2 + 1
for g0.

To estimate success-probability of this approach we have to answer some
questions: Firstly, as mentioned before this approach only works if the above
conditions hold for the monomials. How likely are these conditions to hold in
our situation? Secondly, in contrary to Lenstra’s approach to polynomial-based
schemes, we now have to guess more supports and have to consider a system of
quadratic polynomial equations. How complex can this system be?

One crucial value is the number of unknowns one has to consider. This number
is roughly bounded by

d1∑
i=0

(
m

i

)
+ (n−m)

d2∑
i=0

(
n

i

)
,

where d1 = deg f0 and d2 = max deg hi. For instance for d1 = 2 and d2 = 1 (the
minimal possible degrees) we obtain 1 + m + m(m−1)

2 + (n −m)(n + 1), which
is a huge number, if someone wants to solve a system of nonlinear equations.
Nevertheless, this bound is not very precise, for instance in the case that all
polynomials are sparse. Moreover, the system of equations we have to consider
is in general overdetermined.

Therefore, in order to get a deeper insight in that algorithm, we made some
experiments with MAGMA. (Exact computation times are displayed in the Ap-
pendix. These computations exhibit the following:

– The number of variables grows very fast.
– The fact that the systems of equations are overdetermined helps to compute

Gröbner bases, such that we were able to compute Gröbner bases of systems
with a large number of variables.

– Also due to the overdetermination we often got only one solution for f0.
– Allowing the polynomials gi and hi to be quadratic, for K = F2 we weren’t

able to compute Gröbner bases for m greater than 5 and n = 4m.

These observations indicate that such a linear algebra approach is hopeless for
these kind of problems.

A Sophisticated Algebraic Approach by Invariant Theory. The previous
algebraic approach does not make use two facts: We do not need the exact hi’s
in order to test whether a candidate for f0 is embedded into f . We only need to
reduce the number of candidates for f0 to a manageable number. Moreover the
gi’s are constructed by shifts of the indices. Hence, the goal is to represent f in
terms of invariant theory.

Firstly, we introduce the following notations: Let us consider the mappings
as polynomials of the residue-class ring Q := K[Y0, ..., Yn−1]/I with I = (Y q

0 −
Y0, Y

q
1 −Y1, ..., Y

q
n−1−Yn−1) and q = #K. The group action of an element σ of the

symmetric group Sym(n) is defined by the algebra homomorphism ·σ : Q → Q
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given by Yi !→ Yσ(i). For t ∈ 0, ..., n− 1 we denote the shifts by t by σt, that is
σt ∈ Sym(n) with σt(i) !→ i + t (mod n).

To every polynomial f ∈ Q we associate its shift-invariant polynomial

fα :=
n−1∑
t=0

fσt ,

that is invariant under the action of {σt : t = 0, ..., n − 1}. Some obvious prop-
erties of these operations are

Lemma 3. (i) For r, s ∈ {0, ..., n− 1} it holds (fσr )σs = fσr+s( mod n) .
(ii) The mapping .α : Q → Q, f !→ fα is a vector-space homomorphism, in

particular: (f + g)α = fα + gα.
(iii) The mapping .α : Q → Q, f !→ fα does not respect the algebra structure of

Q: in general (fg)α �= fα · gα.

Let us now complete the sequence gm, ..., gn−1 defined in Lemma 1 as follows:

g0 := f0(Yn−m, ..., Yn−1)− Y0,

g1 := f0(Yn−m+1, ..., Yn−1, Y0)− Y1,

...,

gm−1 := f0(Yn−1, Y0, ..., Ym−2)− Ym−1.

Then obviously σt transfers the gi’s into each other: gσt
i = gi+t( mod n). Moreover

the construction of Theorem 1 can then described by f − Y0 =
∑n−1

i=0 gihi, if we
choose h0 = 1, h1 = ... = hm−1 = 0, and hm, ..., hn−1 as before. This gets us in
the position to formulate our next result.

Proposition 2. Let f0 be embedded into f as described in Theorem 1. Then
there exists a polynomial h ∈ Q such that

(f − Y0)α = (g0h)α.

For example, this holds for h =
∑n−1

i=0 h
σn−i

i .

Proof. Simple substitutions and reformulation yield

(f − Y0)α =

(
n−1∑
i=0

gihi

)α

=
n−1∑
r=0

n−1∑
i=0

(gihi)σr =
n−1∑
r=0

n−1∑
i=0

(gi)σr (hi)σr

=
n−1∑
r=0

n−1∑
i=0

gi+r( mod n)(hi)σr =
n−1∑
k=0

gk
∑

i+r=k( mod n)

(hi)σr

=
n−1∑
k=0

gk

(
n−1∑
i=0

(hi)σn−i

)σk

=
n−1∑
k=0

(g0h)σk = (g0h)α.

The previous proposition leads to the following algebraic approach to recon-
struct f0 from f :
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1. Compute (f − Y0)α.
2. Guess the degrees of g0 and h and put up the polynomials with the coeffi-

cients as unknowns.
3. Solve the quadratic system of equations induced by (f − Y0)α = (g0h)α.
4. From every candidate for g0 derive a candidate f ′

0 for f0, test whether f ′
0

coincides with f by applying both functions iteratively to several embedded
states ιf ′

0,n
(x) with x ∈ Km.

Like for the first algebraic approach described in Subsection 3.1, we imple-
mented this second approach in MAGMA and made experiments on a PC. These
computations exhibit the following:

– For sparse polynomials the second approach puts up systems of equations
with much more unknowns than in the first approach. The reason is that the
shift-invariants polynomials are in general dense, and therefore the second
approach does not exploit sparsity.

– For dense polynomials the second approach puts up systems of equations
with less unknowns than in the first approach. The reason is that in the
second approach only two polynomials have to be considered.

– No experiments determined if the degree of f0 was at least two.

Hence, although for dense polynomials the second approach is theoretically more
efficient than the first one, practically already in the smallest relevant case the
algorithm is infeasible.

3.2 Reconstruction of f0 from Embedded States

Given an embedded state z = ιf0,n(x) ∈ ιf0,n(Km) we get n−m linear equations
in the coefficients of f0 by considering

f0(z0, ..., zm−1) = zm

f0(z1, ..., zm) = zm+1

...

f0(zn−m−1, ..., zn−2) = zn−1.

Clearly, if the attacker is able to extract at least
∑d0

i=0

(
m
i

)
linear independent

equations in this way he can determine f0. Hence, he requires at least
∑d0

i=0 (m
i )

n−m
embedded states.

Since consecutive states do only yield one additional equation, the knowledge
of F and of exactly one embedded state z only suffices for the determination of
f0, if the cycle length of z is large enough. More precisely, if � is the length of
the cycle containing z then � has to be larger than

∑d0
i=0

(
m
i

)
.

3.3 Reconstruction from Linear-Transformed Embedded States

In this subsection we shall consider linear-transformed embedded states u0 :=
Tz0, ...,ur := Tzr with zi ∈ ιf0,n(Km), T ∈ GLn(K). We distinguish two cases:
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Case 1. The task is to compute the linear transformation T from the knowl-
edge of f0 and u0, ...,ur. Like in the previous subsection, one is able to derive
equations from a linear-transformed embedded states z = T−1u as follows:

f0(z0, ..., zm−1) = zm

f0(z1, ..., zm) = zm+1

...

f0(zn−m−1, ..., zn−2) = zn−1.

But this time we get nonlinear equations of degree deg f0 in n2 unknowns
(the entries of T−1). If n and the degree of f0 are large enough, it is very
likely that this system of equations is practically unsolvable.
The complexity can be estimated as follows: Given sufficient linear-transfor-
med embedded states the system of equations becomes so overdetermined
that it can be linearized [5]. Then Gaussian elimination solves the associated
matrix in

O

⎛⎝(
d0∑
i=0

(
n2

i

))3⎞⎠
time. For instance, for deg f0 = 2 and n = 27 we yield ≈ ((26 · 27)2)3 = 278.

Case 2. In the case that one only knows F and linear-transformed embedded
states u0, ...,ur the above approach yields a system of algebraic equations
of degree d0 + 1 in n2 +

∑d0
i=0

(
m
i

)
unknowns, where d0 is the degree of f0.

Therefore, in this case it is even more likely that this system of equations is
practically unsolvable.

4 Applications

In this section we point out some general consequences of our results. After
that, we discuss a low-cost identification scheme that uses our construction as
the cryptographic primitive. We expect further cryptographic applications.

4.1 General Consequences

The main consequence resulting from this paper is:
When using NLFSR with “random-looking” feedback function received from

a non-trusted party, one cannot be sure that nobody knows states lying in short
cycles.

Therefore in a setting where one party gets a feedback function and “random”
states from another party, the receiver has to be aware of the threat that the other
party might have constructed a feedback function with embedded short cycles.

For instance, in the case that the central component of a key generation
mechanism is an NLFSR, the knowledge of states with short cycle length might
be helpful for deceptions. A potential victim, however, is able to exclude ex-
tremely short cycle lengths by checking the cycle length of a received state to a
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particular bound. If he wants to be absolutely sure that he did not receive an
embedded state, he can even do the approach described in Section 3.2 to check
whether for this state an embedded feedback function f0 exists. But that might
be too costly if the “bad” state is hidden in a lot of “good” states.

4.2 Low-Cost Group Identification

In order to show that our construction is also a useful cryptographic primitive, we
present a low-cost non-interactive group-identification scheme for the following
situation:

We consider a large group {U0, ...,Ur} of users who need access to some device
or room. There is a key-distribution center A that equips group members with
keys. If a group member wants to have access to a device, his key is verified by a
verifier V. Furthermore, we assume the verifier to have only small memory, small
computing power, and no possibility to interact with a prover Ui or to set up an
online connection to A.

A simple example for our setting is the key management at a faculty in
the university. Some faculty members have access to the library, the photocopy
machine, the computer room or the server room. They apply for some key at
the administration, and after that their key is checked by some low-cost device
at the door or at the machine.

There are three simple solutions for this setting:

(i) One possibility is to give the verifier V a list of valid keys. Then V only
checks whether the user has one of these keys. But this requires large memory
capacities if the number of users is large.

(ii) More common in practice is to give every member the same key in order
to save memory space. But then misdeeds cannot be traced back to single
members.

(iii) A third solution is to provide the users with different “valid” keys and to
give the verifier the ability to check the validity.

The third case is typically realized by symmetric block ciphers, for instance
AES. The key distribution center provides a user Ui with the pair (xi,AESk(xi))
using a secret key k, which is also known by the verifier V so that V is able to
check the correctness of the pair. (The value xi is typically some hash value of
the identity of the user.)

However, this solution requires the verifier V to be able to compute a block ci-
pher. For instance, for the execution of AES the verifying device has to store large
tables overtaxing low-cost devices. Therefore we propose the following scheme
that realizes case (iii) with the construction introduced in this papers. The ver-
ifier only has to do a simple linear transformation and to execute an NLFSR.
The scheme works as follows:

Set Up. The key-distribution center A generates a feedback function F with an
embedded feedback function f0 (as described in Theorem 1 or more specific
in Proposition 1) and an embedded state z ∈ ιf0,n(Km) with cycle length
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� ≥ r. Moreover, A chooses a linear transformation T ∈ GLn(K) and a
randomly chosen permutation σ ∈ Sym(�).

Key Distribution. A group member Ui gets secretly his key ki := TF (σ(i))(z)
and the verifier V the secret T−1. The verifier V also gets the feedback
function f and the cycle length �, but both data need not to be kept secret.

Verification. The verifier V verifies a key ki by checking whether F (�)(T−1ki)
equals T−1ki.

Clearly, this scheme is secure against dishonest users, as follows from the
argumentation in Subsection 3.3. Even in the case that all users cooperate they
cannot reveal the secrets T or f0 and therefore are not able to construct another
state k ∈ Kn that is a valid key. The scheme, however, is not secure against
eavesdropping and cheating-verifier attacks, because the provers always use the
same keys. But this holds for almost every non-interactive scheme.

Furthermore, in contrast to block-cipher-based schemes a pure verifier-intru-
sion attack on our scheme does not suffice to reveal the secret f0, as discussed in
Subsection 3.1. An attacker also needs some valid keys, according to Subsection
3.2. Note that, because of the same reason a real verifier is in the position to
reveal the secret f0 after getting several valid keys.

Remark 2. We point out that our scheme provides a hierarchy among keys as
follows: Let z,z′ ∈ Kn with cycle length �, �′, respectively, so that � is a proper
divisor of �′. Then certainly F (�)(z) = F (�′)(z). That means Tz is a valid key
for all verifiers accepting Tz′, but not conversely. Therefore, depending on the
prime factorization of all embedded cycle lengths we are able construct keys with
different “power”.

Related Work. Summing up, our scheme provides group-identification for a
large group in a setting where only low-cost devices are available. For this set-
ting we did not find any solution in the vast literature on entity authentication
(see, for instance, [1], [4]). All other schemes needed at least a large memory, a
hashfunction, or a symmetric-key cipher.

Our scheme also differs from low-cost radio-frequency identification (RFID)
based systems because these schemes only allow low-cost sender tags, but need
powerful tag readers (see, for instance, [7]). Theoretically our scheme would work
with low-cost RFID chips only, but in practice we then need some mechanism
against eavesdropping.

5 Final Remarks

In contrast to the linear case only little is known about the cycle structure of
nonlinear feedback-shift registers (NLFSRs). In this paper we gave new results
on this topic: We constructed NLFSRs with short cycles. The technique is to
embed small NLFSRs into large NLFSRs. We showed that our embedding yield
an NLFSR that algebraic analysis cannot distinguish from a random NLFSR.
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Furthermore, we discussed the question which additional data suffice to de-
tect the embedded NLSFR. For instance this is possible with the knowledge of
embedded states. We showed that all properties of our embedding fit together
in such a way that it works as the cryptographic primitive of a low-cost group-
identification scheme.
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Appendix: Experimental Results

We made experiments to estimate the number of unknowns and the complexity of
the system of quadratic equations obtained by the algebraic approach in Section
3.1. For deg f0 = 2, deg hi = 2 and different integers m we proceed as follows:

1. Put n = 4m.
2. Choose randomly polynomials f0 ∈ F2[X0, ..., Xm−1] and hm, ..., hn−1 ∈

F2[Y0, ..., Yn−1] so that # Supp f0 = 2 and # Supphi = 1.
3. Retrieve gj from f0 and compute f = f0(Yn−m, ..., Yn−1) +

∑n−1
i=m gihi.

4. Execute the algebraic approach assuming that deg f0 and deg hi are known.

Results. In all experiments the number of solutions for f0 has been one or zero.
If we have received a solution, it was correct and we got back f0. Our average
values and computation times with MAGMA on a PC (1,4 GHz Pentium, 512
MB RAM) were:

m # Supp f Number of unknowns Number of equations Time in seconds
2 11 60 78 270
3 17 124 261 640
4 24 222 681 33,290
5 31 338 1402 > 1 day

Remark 3. We chose the polynomials f0 and hi’s artificially sparse, as for more
dense polynomials the algorithm did not terminate at all.
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