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Preface

This volume contains the papers accepted for presentation at the 6th Interna-
tional Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI 2005), which was held January 17–19, 2005 in Paris, France.

VMCAI provides a forum for researchers from the communities of verifica-
tion, model checking, and abstract interpretation, facilitating interaction, cross-
fertilization, and advancement of hybrid methods that combine the three areas.
With the growing need for formal methods to reason about complex, infinite-
state, and embedded systems, such hybrid methods are bound to be of great
importance.

VMCAI 2005 received 92 submissions. Each paper was carefully reviewed,
being judged according to scientific quality, originality, and relevance to the
symposium topics. Following online discussions, the program committee met in
Paris, France, at the École Normale Supérieure on October 30, 2004, and selected
27 papers.

In addition to the contributed papers, this volume includes contributions by
outstanding invited speakers:

– Patrick Cousot (École Normale Supérieure, Paris), Proving Program Invari-
ance and Termination by Parametric Abstraction, Lagrangian Relaxation
and Semidefinite Programming ;

– C.A.R. Hoare (Microsoft Research, Cambridge), The Verifying Compiler, a
Grand Challenge for Computing Research;

– Amir Pnueli (New York University and Weizmann Institute of Science), Ab-
straction for Liveness.

The VMCAI 2005 program included an invited tutorial by Sriram K. Raja-
mani (Microsoft Research, Redmond) on Model Checking, Abstraction and Sym-
bolic Execution for Software.

VMCAI 2005 was followed by workshops on Automatic Tools for Verifica-
tion, Abstract Interpretation of Object-Oriented Languages, and Numerical &
Symbolic Abstract Domains.

On behalf of the Program Committee, the Program Chair would like to thank
the authors of the submitted papers, and the external referees, who provided
timely and significant reviews. We owe special thanks to Jacques Beigbeder
from the École Normale Supérieure for managing the submission site and the
developers of CyberChair for the use of their software.

VMCAI 2005 was held in cooperation with the Association for Computing
Machinery (ACM) and the European Association for Programming Languages
and Systems (EAPLS).

November 2004 Radhia Cousot
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Hanne Riis Nielson Technical University of Denmark, Denmark
Shmuel Sagiv TelAviv University, Israel
Bernhard Steffen Universität Dortmund, Germany
Reinhard Wilhelm Universität des Saarlandes, Germany

Steering Committee
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Thomas W. Reps University of Wisconsin-Madison, USA
Andreas Podelski Max-Planck-Institut für Informatik, Germany
David A. Schmidt Kansas State University, USA
Lenore Zuck University of Illinois at Chicago, USA

Organizing Committee

General Chair Radhia Cousot, CNRS/École Polytechnique
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Proving Program Invariance and Termination by
Parametric Abstraction, Lagrangian Relaxation

and Semidefinite Programming

Patrick Cousot

École Normale Supérieure
45 rue d’Ulm, 75230 Paris cedex 05 (France)

Patrick.Cousot@ens.fr

www.di.ens.fr/~cousot

Abstract. In order to verify semialgebraic programs, we automatize
the Floyd/Naur/Hoare proof method. The main task is to automatically
infer valid invariants and rank functions.
First we express the program semantics in polynomial form. Then the
unknown rank function and invariants are abstracted in parametric form.
The implication in the Floyd/Naur/Hoare verification conditions is han-
dled by abstraction into numerical constraints by Lagrangian relaxation.
The remaining universal quantification is handled by semidefinite pro-
gramming relaxation. Finally the parameters are computed using semidef-
inite programming solvers.
This new approach exploits the recent progress in the numerical resolu-
tion of linear or bilinear matrix inequalities by semidefinite programming
using efficient polynomial primal/dual interior point methods generaliz-
ing those well-known in linear programming to convex optimization.
The framework is applied to invariance and termination proof of sequen-
tial, nondeterministic, concurrent, and fair parallel imperative polyno-
mial programs and can easily be extended to other safety and liveness
properties.

Keywords: Bilinear matrix inequality (BMI), Convex optimization, In-
variance, Lagrangian relaxation, Linear matrix inequality (LMI), Live-
ness, Parametric abstraction, Polynomial optimization, Proof, Rank func-
tion, Safety, S-procedure, Semidefinite programming, Termination pre-
condition, Termination. Program verification.

1 Introduction

Program verification is based on reasonings by induction (e.g. on program steps)
which involves the discovery of unknown inductive arguments (e.g. rank func-
tions, invariants) satisfying universally quantified verification conditions. For
static analysis the discovery of the inductive arguments must be automated,
which consists in solving the constraints provided by the verification conditions.
Several methods have been considered: recurrence/difference equation resolu-
tion; iteration, possibly with convergence acceleration; or direct methods (such

R. Cousot (Ed.): VMCAI 2005, LNCS 3385, pp. 1–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Patrick Cousot

as elimination). All these methods involve some form of simplification of the
constraints by abstraction.

In this paper, we explore parametric abstraction and direct resolution by
Lagrangian relaxation into semidefinite programming. This is applied to termi-
nation (a typical liveness property) of semialgebraic programs. The extension to
invariance (a typical safety property) is sketched.

The automatic determination of loop invariant/rank function can be sum-
marized as follows:

1. Establish the relational semantics of the loop body (Sec. 2) (may be strength-
ened with correctness preconditions (Sec. 2.2), abstract invariants (Sec. 2.3),
and/or simplified by relational abstraction (Sec. 2.4));

2. Set up the termination/invariance verification conditions (Sec. 3);
3. Choose a parametric abstraction (Sec. 4). The resolution of the abstract

logical verification conditions by first-order quantifier elimination can be
considered, but is very often too costly (Sec. 5);

4. Abstract further the abstract logical verification conditions into numerical
constraints (Sec. 8) by Lagrangian relaxation (Sec. 6) obtaining Linear Ma-
trix Inequalities for termination (Sec. 6.2) or Bilinear Matrix Inequalities for
invariance (Sec. 12);

5. Solve the numerical constraints (Sec. 9) by semidefinite programming (Sec.
7);

After a series of examples (Sec. 10), we consider more complex language features
including disjunctions in the loop test and conditionals in the loop body (Sec.
11.1), nested loops (Sec. 11.2), nondeterminism and concurrency (Sec. 11.3),
bounded weakly fair parallelism (Sec. 11.4), and semi-algebraic/polynomial pro-
grams, for which a further relaxation into a sum of squares is applied (Sec. 11.5).
The case of invariance is illustrated in Sec. 12. Potential problems with solvers
are discussed in Sec. 13, before concluding (Sec. 14).

2 Relational Semantics of Programs

2.1 Semialgebraic Programs

We consider numerical iterative programs while B do C od where B is a
boolean condition and C is an imperative command (assignment, test or loop)
on the global program variables. We assume that the operational semantics of
the loop is given for an iteration as:

�B;C�(x0, x) =
N∧

k=1

σk(x0, x) ≥ 0 (1)

where x0 is the line vector of values of the n program variables before an iteration,
x is the line vector of values of the n program variables after this iteration and
the relationship between x0 and x during a single iteration is expressed as a
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conjunction of N real valued positivity constraints with σk ∈ Rn × Rn −→
R, k = 1, . . . , N 1. Algorithmically interesting particular cases are when the
constraints σk ≥ 0 can be expressed as linear constraints, quadratic forms and
polynomial positivity. Equalities σk(x0, x) = 0 have to be written as σk(x0, x) ≥
0 ∧ −σk(x0, x) ≥ 0.

Example 1 (Factorial). The program below computes the greatest factorial less
than or equal to a given N, if any. The operational semantics of the loop body
can be defined by the following constraints:

n := 0;

f := 1;

while (f <= N) do

n := n + 1;

f := n * f

od

−f0 + N0 ≥ 0
n0 ≥ 0

f0 − 1 ≥ 0
−n0 + n− 1 = 0
−f0.n + f = 0
−N0 + N = 0

All constraints are linear but f − n.f0 = 0 which is quadratic (of the form
[x0 x]A[x0 x]� + 2[x0 x] q + r ≥ 0, where A is symmetric, q is a column vector, r
is a constant, and � is transposition), and can be written as follows:

[n0 f0 N0 n f N ]

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 − 1

2 0 0
0 0 0 0 0 0
0 − 1

2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
n0

f0

N0

n
f
N

⎤⎥⎥⎥⎥⎥⎥⎦+ 2[n0f0N0nfN ]

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0
1
2
0

⎤⎥⎥⎥⎥⎥⎥⎦+ 0 = 0,

or equivalently as [x0 x 1]M [x0 x 1]� ≥ 0 where M is symmetric, that is:

[n0 f0 N0 n f N 1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 − 1

2 0 0 0
0 0 0 0 0 0 0
0 − 1

2 0 0 0 0 0
0 0 0 0 0 0 1

2
0 0 0 0 0 0 0
0 0 0 0 1

2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n0

f0

N0

n
f
N
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 .

��

2.2 Establishing Necessary Correctness Preconditions

Iterated Forward/Backward Static Analysis. Program verification may
be unsuccessful when the program execution may fail under some circumstances
1 Any Boolean constraint on numerical variables can be written in that form using

an appropriate numerical encoding of the boolean values and embedding of the
numerical values into R.
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(e.g. non termination, run-time errors). As part of the correctness proof, it is
therefore mandatory to establish correctness preconditions excluding such mis-
behaviors. Such a necessary termination and absence of runtime errors precon-
dition can be discovered automatically by an iterated forward/backward static
analysis [7, 12].

Discovering a Termination Precondition by the Auxiliary Termination
Counter Method. Termination requirements can be incorporated into the
iterated forward/backward static analysis in the form of an auxiliary termination
counter k which is strictly decremented in the loop and is asserted to be zero
on loop exit. For relational analyzes, this strengthens the necessary termination
precondition.

Example 2. The following example is from [3]. The analyzer uses the polyhedral
abstract domain [14] implemented using the New Polka library [20].

while (x <> y) do

x := x - 1;

y := y + 1

od

{x>=y}

while (x <> y) do

{x>=y+2}

x := x - 1;

{x>=y+1}

y := y + 1

{x>=y}

od

{x=y}

{x=y+2k,x>=y}

while (x <> y) do

{x=y+2k,x>=y+2}

k := k - 1;

x := x - 1;

y := y + 1

{x=y+2k,x>=y}

od

{x=y,k=0}

assume (k = 0)

Program Iterated forward/backward
static analysis

Iterated forward/backward static
analysis with termination counter.

The use of the auxiliary termination counter allows the iterated forward/back-
ward polyhedral analysis to discover the necessary termination condition that
the initial difference between the two variables should be even. ��

2.3 Strengthening the Relational Semantics

Proofs can be made easier by strengthening the relational semantics through
incorporation of known facts about the program runtime behavior. For example
an invariant may be needed, in addition to a termination precondition, to prove
termination. Such a loop invariant can be determined automatically by a forward
static analysis [8] assuming the initial termination precondition.

Example 3 (Ex. 2 continued). A forward polyhedral analysis [14] yields linear
invariants:
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assume (x=y+2*k) & (x>=y);

while (x <> y) do

k := k - 1;

x := x - 1;

y := y + 1

od

assume (x=y+2*k) & (x>=y);

{x=y+2k,x>=y}

{loop invariant: x=y+2k}

while (x <> y) do

{x=y+2k}

k := k - 1;

x := x - 1;

y := y + 1

{x=y+2k}

od

{k=0,x=y}

Program Forward polyhedral analysis. ��

2.4 Abstracting the Relational Semantics

Program verification may be made easier when the big-step operational seman-
tics of the loop body (1) is simplified e.g. through abstraction. To get such
a simplified but sound semantics, one can use any relational abstraction. The
technique consists in using auxiliary initial variables to denote the values of the
program variables at the beginning of the loop iteration (whence satisfying the
loop invariant and the loop condition). The invariant at the end of the loop body
is then a sound approximation of the relational semantics (1) of the loop body2.
The polyhedral abstraction [14] will be particularly useful to derive automati-
cally an approximate linear semantics.

Example 4 (Ex. 3 continued). Handling the operator <> (different) by case anal-
ysis, we get3:

assume (x=y+2*k)&(x>=y);

{x=y+2k,x>=y}

assume (x < y);

empty(6)

assume (x0=x)&(y0=y)&(k0=k);

k := k - 1;

x := x - 1;

y := y + 1

empty(6)

assume (x=y+2*k)&(x>=y);

{x=y+2k,1>=0,x>=y}

assume (x > y);

{x=y+2k,1>=0,x>=y+1}

assume (x0=x)&(y0=y)&(k0=k);

k := k - 1;

x := x - 1;

y := y + 1

{x+2=y+2k0,y=y0+1,x+1=x0,x=y+2k,x+1>=y} ��

3 Verification Condition Setup

3.1 Floyd/Naur/Hoare Invariance Proof Method

Given a loop precondition P (x) ≥ 0 which holds before loop entry, the invariance
proof method [16, 19, 25] consists in proving that the invariant I(x) ≥ 0 is initial
2 The technique was first used in the context of static analysis for context-sensitive

interprocedural analysis to compute summaries of recursive procedures [9].
3 empty(6) denotes the empty polyhedron in 6 variables, that is unreachability ⊥.
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(that is to say holds on loop entry) and inductive (i.e. remains true after each
loop iteration):

∀x ∈ Rn : (P (x) ≥ 0) ⇒ (I(x) ≥ 0), (2)

∀x0, x ∈ Rn : (I(x0) ≥ 0 ∧
N∧

k=1

σk(x0, x) ≥ 0) ⇒ (I(x) ≥ 0) . (3)

3.2 Floyd Rank Function Termination Proof Method

Floyd’s method [16] for proving loop termination consists in discovering a rank
function r ∈ Rn −→ W of the values of the program variables into a well-
founded set 〈W, �〉 which is strictly decreasing at each iteration of the loop.
If the nondeterminism is bounded, one can choose 〈W, �〉 = 〈N, ≤〉. In what
follows, we will often use real valued rank functions r which are nonnegative on
loop body entry and strictly decrease at each iteration by a positive quantity
bounded from below4. In such a case, and up to an isomorphism, the rank
function r can be embedded into N.

In general a loop terminates for some initial values of the variables only,
satisfying some loop termination precondition P (x) ≥ 0 so that the strict decre-
mentation can be requested for states reachable from this initial condition only,
as characterized by an invariant I(x) ≥ 0 in the sense of [16, 19, 25].

Floyd’s verification conditions [16] for proving loop termination become:

∃r ∈ Rn −→ R, ∃δ ∈ R:
∀x0 ∈ Rn : (I(x0) ≥ 0) ⇒ (r(x0) ≥ 0), (4)

∀x0, x ∈ Rn : (I(x0) ≥ 0 ∧
N∧

k=1

σk(x0, x) ≥ 0) ⇒ (r(x0) − r(x) − δ ≥ 0), (5)

δ > 0 . (6)

Remark 1. We can also choose δ = 1 but it is sometimes more flexible to let its
value be computed by the solver (see later Rem. 4). ��

Remark 2. As proved in [11, Sec. 9, p. 290], the above choice of I and r not
depending upon initial states is incomplete so that, more generally, we may have
to use I(x, x′) and r(x, x′) where x ∈ Rn denotes the initial value of the variables
before loop entry and x′ ∈ Rn their current value that is x0 at the beginning of
an iteration of the loop body and x at the end of that same iteration. ��

4 Parametric Abstraction

Fixing the form of the unknown invariant I(x) in (2) and (3) or of the rank func-
tion r in (4) and (5) in terms of p unknown parameters a ∈ Rp to be determined
by the analysis is an abstraction [10]. An example is the affine abstraction [21].
4 To avoid the Zeno phenomenon, that is, a strict decrease by 1, 1

2
, 1

4
, 1

8
, . . . , which

could be infinite.
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More generally, a function f(x) can be abstracted in the form fa(x) where
a is a line vector of unknown parameters and x is the line vector of values
of the loop variables5. For example, the linear case is fa(x) = a.x� and the
affine case is fa(x) = a.(x 1)�. A quadratic choice would be fa(x) = x.a.x� or
fa(x) = (x 1).a.(x 1)� where a is a symmetric matrix of unknown parameters.

After parametric abstraction, it remains to compute the parameters a by
solving the verification constraints. For example, the termination verification
conditions (4), (5), and (6) become:

∃a ∈ Rp : ∃δ ∈ R :
∀x0 ∈ Rn : (I(x0) ≥ 0) ⇒ (ra(x0) ≥ 0), (7)

∀x0, x ∈ Rn : (I(x0) ≥ 0 ∧
N∧

k=1

σk(x0, x) ≥ 0) ⇒ (ra(x0) − ra(x) − δ ≥ 0), (8)

δ > 0 . (9)

The resolution of these termination constraints in the case of linear programs
and rank functions has been explored by [6], using a reduction of the constraints
based on the construction of polars, intersection and projection of polyhedral
cones (with limitations, such as that the loop test contains no disjunction and
the body contains no test).

5 Solving the Abstract Verification Conditions
by First-Order Quantifier Elimination

The Tarski-Seidenberg decision procedure for the first-order theory of real closed
fields by quantifier elimination can be used to solve (7), (8), and (9) since it trans-
forms a formula Q1x1 : . . . Qnxn : F (x1, . . . , xn) (where the Qi are first-order
quantifiers ∀, ∃ and F is a logical combination of polynomial equations and in-
equalities in the variables x1, . . . , xn) into an equivalent quantifier free formula.
However Tarski’s method cannot be bound by any tower of exponentials. The
cylindrical algebraic decomposition method by Collins [5] has a worst-case time-
complexity for real quantifier elimination which is “only” doubly exponential in
the number of quantifier blocks. It is implemented in Mathematica r© but can-
not be expected to scale up to large problems. So we rely on another abstraction
method described below.

5 The sets of constraints fa(x) ≥ 0 for all a may not be a Moore family for the
pointwise ordering, in which case a concretization function γ may be used [13].
For simplicity we make no distinction between the representation of the constraint
fa(x) ≥ 0 and its value γ(fa(x) ≥ 0) = {x ∈ Rn | fa(x) ≥ 0}. In consequence, the
use of a concretization function will remain implicit.
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6 Abstraction of the Verification Conditions
into Numerical Constraints by Lagrangian Relaxation

6.1 The Lagrangian Relaxation Method

Let V be a finite dimensional linear vector space, N > 0 and ∀k ∈ [0, N ] : σk ∈
V −→ R (not necessarily linear). Let R+ = {x ≥ 0 | x ∈ R}. To prove:

∀x ∈ V :

(
N∧

k=1

σk(x) ≥ 0

)
⇒ (σ0(x) ≥ 0), (10)

the Lagrangian relaxation consists in proving that:

∃λ ∈ [1, N ] −→ R+ : ∀x ∈ V : σ0(x) −
N∑

k=1

λkσk(x) ≥ 0, (11)

where the λk are called Lagrange coefficients. The interest of Lagrangian relax-
ation is that the implication ⇒ and conjunction

∧
in (10) are eliminated in

(11).
The approach is obviously sound, since the hypothesis

∧N
k=1 σk(x) ≥ 0 in

(10) and the positivity of the Lagrange coefficients λ ∈ [1, N ] −→ R+ implies
the positivity of

∑N
k=1 λkσk(x). Hence, by the antecedent of (10) and transitivity,

σ0(x) ≥ 0 holds in the consequent of (10).
Observe that equality constraints can be handled in the same way by request-

ing the corresponding Lagrange coefficients to be reals (as opposed to nonnega-
tive reals for inequality constraints). Indeed for equality constraints σk(x) = 0,
we can use (11) for both σk(x) ≥ 0 and −σk(x) ≥ 0 with respective coefficients
λk ≥ 0 and λ′

k ≥ 0 so that the terms λkσk(x)+λ′
k(−σk(x)) can be grouped into

a single term (λk − λ′
k)σk(x) with no sign restriction on λk − λ′

k. Since any real
is equal to the difference of some nonnegative reals, we can equivalently use a
single term λ′′

kσk(x) with λ′′
k ∈ R.

Lagrangian relaxation is in general incomplete (that is (10) �⇒ (11), also
called lossy). However it is complete (also called lossless)) in the linear case
(by the affine Farkas’ lemma) and the linear case with at most two quadratic
constraints (by Yakubovitch’s S-procedure [33, Th. 1]).

6.2 Lagrangian Relaxation of Floyd Termination Verification
Conditions on Rank Functions

Relaxing Floyd’s parametric verification conditions (7), (8), and (9), we get:

∃a ∈ Rp : ∃δ ∈ R : ∃μ ∈ R+ : ∃λ ∈ [0, N ] −→ R+ :
∀x0 ∈ Rn : ra(x0) − μ.I(x0) ≥ 0, (12)

∀x0, x ∈ Rn : ra(x0) − ra(x) − δ − λ0.I(x0) −
N∑

k=1

λk.σk(x0, x) ≥ 0, (13)

δ > 0 . (14)
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In [29], the constraints σk(x, x′) ≥ 0 are assumed to be linear in which case
the Lagrange coefficients can be eliminated by hand. Then the problem reduces
to linear programming (with limitations, such as that the loop test contains no
disjunction, the loop body contains no tests and the method cannot identify the
cases when the loop does not terminate). We can use semidefinite programming
to overcome the linearity limitation.

7 Semidefinite Programming

The semidefinite programming optimization problem is to find a solution to the
constraints: {

∃x ∈ Rm : M(x) � 0

Minimizing c�x

where c ∈ Rm is a given real vector, the linear matrix inequality (LMI) [2]
M(x) � 0 is of the form:

M(x) = M0 +
m∑

k=1

xk.Mk

with symmetric matrices (Mk = Mk
�), and positive semidefiniteness is defined

as:

M(x) � 0 Δ= ∀X ∈ RN : XM(x)X� ≥ 0 .

The semidefinite programming feasibility problem consists in finding a solution
to the constraints M(x) � 0. A feasibility problem can be converted into the
optimization program min{−y ∈ R |

∧N
i=1 Mi(x) − y � 0}.

8 LMI Constraint Setup for Termination

For programs which invariant and operational semantics (1) can be expressed in
the form:

I(x0) ∧ �B;C�(x0, x) =
N∧

k=1

(x0 x 1)Mk(x0 x 1)� ≥ 0, (15)

the constraints (12), (13), and (14) become LMIs (in the unknown a, μ, δ and
the λk, k = 1, . . . , N by parametric abstraction (Sec. 4) of ra in the form ra(x) =
(x 1)R(x 1)� where R is a real (n + 1) × (n + 1)-symmetric matrix of unknown
parameters).

The conjunction of LMIs M1(x) � 0∧ . . .∧Mk(x) � 0 can be expressed as a
single LMI diag(M1(x), . . . ,Mk(x)) � 0 where diag(M1(x), . . . ,Mk(x)) denotes
the block-diagonal matrix with M1(x), . . . ,Mk(x) on its diagonal.

These LMIs can then be solved by semidefinite programming.
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Example 5. To show this, we prove the linear termination of the linear example
program below, considered as in general semidefinite form (so that the general-
ization to (15) is immediate). The semantics of the loop body can be determined
by a forward symbolic analysis of the loop body assuming the loop invariant (here
the loop condition) and by naming the values of the variables at the beginning
of the loop body6:

while (x >= 1) & (y >= 1) do

x := x - y

od

assume (x0 > 0) & (y0 > 0);

{y0>=1,x0>=1}

assume (x = x0) & (y = y0);

{y0=y,x0=x,y0>=1,x0>=1}

x := x - y

{y0=y,x0=x+y,y0>=1,x0>=1}

Program Semantics of the loop body.

The constraints σk(x0, x) are encoded as (x0 x 1)Mk(x0 x 1)� . For the above
example, we have:

Mk(:,:,1) =

0 0 0 0 1/2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1/2 0 0 0 -1

Mk(:,:,2) =

0 0 0 0 0

0 0 0 0 1/2

0 0 0 0 0

0 0 0 0 0

0 1/2 0 0 -1

Mk(:,:,3) =

0 0 0 0 1/2

0 0 0 0 0

0 0 0 0 -1/2

0 0 0 0 -1/2

1/2 0- 1/2 -1/2 0

Mk(:,:,4) =

0 0 0 0 0

0 0 0 0 -1/2

0 0 0 0 0

0 0 0 0 1/2

0 -1/2 0 1/2 0

that is in symbolic form:

x0 − 1 ≥ 0 (x0 y0 x y 1)Mk(:, :, 1)(x0 y0 x y 1)� ≥ 0

y0 − 1 ≥ 0 (x0 y0 x y 1)Mk(:, :, 2)(x0 y0 x y 1)� ≥ 0

x0 − x− y = 0 (x0 y0 x y 1)Mk(:, :, 3)(x0 y0 x y 1)� = 0

−y0 + y = 0 (x0 y0 x y 1)Mk(:, :, 4)(x0 y0 x y 1)� = 0 .

The termination constraints (12), (13), and (14) now become the following
LMIs7:
6 As considered in Sec. 2.4, which is different from Rem. 2 where the values of variables

were remembered before loop entry.
7 Notice that if (x 1)A(x 1)� ≥ 0 for all x, this is the same as (y t)A(y t)� ≥ 0 for all y

and all t �= 0 (multiply the original inequality by t2 and call xt = y). Since the latter
inequality holds true for all x and all t �= 0, by continuity it holds true for all x, t,
that is, the original inequality is equivalent to positive semidefiniteness of A (thanks
Arkadi Nemirovski for this argument).
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M0-l0(1,1)*Mk(:,:,1)-

l0(2,1)*Mk(:,:,2)-l0(3,1)*Mk(:,:,3)-l0(4,1)*Mk(:,:,4)>=0

M0-M_0-delta-

l(1,1)*Mk(:,:,1)-l(2,1)*Mk(:,:,2)-l(3,1)*Mk(:,:,3)-l(4,1)*Mk(:,:,4)>=0

where >= is semidefinite positiveness � in LMI constraints, the l0(i,j) and
l(i,j) are the Lagrange coefficients which are requested to be nonnegative for
inequality constraints:

l0(1,1)>=0 l0(2,1)>=0 l(1,1)>=0 l(2,1)>=0

(where >= is the real comparison for elementwise constraints), the rank function

r(x) = (x 1).R.(x 1)� appears in M0 =

⎡⎣R1:n,1:n 0n×n R1:n,n+1

0n×n 0n×n 0n×1

Rn+1,1:n 01×n Rn+1,n+1

⎤⎦ such that

∀x : r(x0) = (x0 x 1).M0.(x0 x 1)� and in M 0 =
[

0n×n 0n×n+1

0n+1×n R

]
such that

∀x0 : r(x) = (x0 x 1).M 0.(x0 x 1)� and delta =
[
02n×2n 02n×1

01×2n δ

]
so that ∀x0, x :

(x0 x 1).delta.(x0 x 1)� = δ. ��

Remark 3. An affine (linear by abuse of language) rank function ra(x) = a.(x 1)�

where x ∈ Rn and a ∈ Rn can be enforced by choosing R =
[

0n,n (a
2 )�1:n

(a
2 )1:n an:n

]
. ��

9 Solving the Termination LMI Constraints

Following the extension of the interior point method for linear programming
to convex cones [27], numerous solvers have been developed for semidefinite
programming such as bnb8 [23], DSDP4 [1], lmilab [17], PenBMI9 [22], Sdplr
[4], Sdpt3 [32], SeDuMi [31], with common interfaces under Matlab r© such as
Yalmip [23].

Example 6 (Ex. 5 continued). Choosing δ = 1 and a linear rank function as in
Rem. 3, we can solve the LMI constraints of Ex. 5 using various solvers under
Yalmip:

r(x,y) = +4.x +2.y -3 bnb

r(x,y) = +5.268942e+02.x +4.956309e+02.y -5.270981e+02 CSDP-4.9

r(x,y) = +2.040148e+07.x +2.222757e+07.y +9.096450e+06 DSDP4-4.7

r(x,y) = +2.767658e+11.x +2.265404e+11.y -1.311440e+11 lmilab

r(x,y) = +4.031146e+03.x +3.903684e+03.y +1.401577e+03 lmilab10

r(x,y) = +1.042725e+00.x +4.890035e-01.y +1.975391e-01 Sdplr-1.01

r(x,y) = +9.888097e+01.x +1.343247e+02.y -1.725408e+02 Sdpt3-3.02

r(x,y) = +1.291131e+00.x +4.498515e-01.y -1.316373e+00 SeDuMi-1.05

8 For integer semidefinite programming.
9 To solve bilinear matrix inequalities.
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Since different solvers use different resolution strategies, each one may provide a
different solution. Moreover, since there are infinitely many different rank func-
tions (e.g. just multiply by or add a positive constant), the solution may not be
the one a human being would naturally think of. Indeed, in the above example,
any r(x, y) = ax + by + c with a ≥ 1, b ≥ 0 and a+ b + c ≥ 0 will do. ��
Remark 4. It is also possible to let δ be an unknown parameter with the con-
straint δ > 0 as in (14). In this case, looking for a linear rank function with bnb,
we get r(x,y) = +2.x -2 and δ = 8.193079e-01. ��
Remark 5. It is possible to check a rank function by fixing R as well as δ and
then by checking for the feasibility of the constraints (12), (13), and (14), which
returns the Lagrange coefficients. For example to check r(x,y) = +1.x, we use R
= [[0,0,1/2]; [0,0,0]; [1/2,0,0]] and δ = 1 while performing the feasibility
check with bnb. ��

10 Examples

The examples illustrate different kind of ranking functions.

10.1 Examples of Linear Termination of a Linear Loop

Example 7. Choosing δ = 1 and a linear rank function for the näıve Euclidean
division:

assume (y >= 1);

q := 0; r := x;

while (y <= r) do

r := r - y;

q := q + 1

od

y − 1 ≥ 0
q − 1 ≥ 0

r ≥ 0

−q0 + q − 1 = 0
−x0 + x = 0
−y0 + y = 0

−r0 + y + r = 0

The linear semantics of the loop body (with polyhedral invariant) is provided
on the right. Solving the corresponding termination constraints with bnb, we
automatically get the ranking function r’(x,y,q,r) = -2.y +2.q +6.r, which
is certainly less intuitive than Floyd’s proposal r′(x, y, q, r) = x− q [16] but has
the advantage not to depend upon the nonlinear loop invariant x = r + qy. ��
Example 8 (Ex. 4 continued). For the example Ex. 4 from [3] considered in Sec.
2.2, where the difference <> was handled as a disjunction and one case was shown
to be impossible, we get:

assume (x=y+2*k) & (x>=y);

while (x <> y) do

k := k - 1;

x := x - 1;

y := y + 1

od

x− y + 1 ≥ 0
−2k0 + x− y + 2 = 0

−y0 + y − 1 = 0
−x0 + x + 1 = 0
x− y − 2k = 0

10 With a feasibility radius of ρ = 1.0e4, constraining the solution x to lie in the ball
x�x < ρ2 where ρ > 0.
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With bnb, the proposed rank function is r(x,y,k) = +4.k, proving that the
necessary termination precondition automatically determined by the auxiliary
termination counter method of Sec. 2.2 is also sufficient. ��

10.2 Example of Quadratic Termination of a Linear Loop

Example 9. Let us consider the program below which oddly simulates for i =
n downto 1 do for j = n downto 1 do skip end end. The termination pre-
condition has been automatically determined by iterated forward/backward poly-
hedral analysis. The loop invariant has been automatically determined by a for-
ward polyhedral analysis, assuming the termination precondition. The analysis
of the loop body involves a partitioning according to the test (j > 0), as later
explained in Sec. 11.1. For each case, the polyhedral approximation of the se-
mantics of the loop body (where initially (n0 = n) & (i0 = i) & (j0 = j))
is given on the right:

assume (n >= 0);

i := n; j := n;

while (i <> 0) do

assume ((j>=0) & (i>=0) &

(n>=i) & (n>=j));

if (j > 0) then

j := j - 1

else

j := n; i := i - 1

fi

od

Case (j0 > 0):

n− i ≥ 0
i− 1 ≥ 0

j ≥ 0
n− j − 1 ≥ 0

−j0 + j + 1 = 0
−i0 + i = 0

−n0 + n = 0

Case (j0 ≤ 0):

i ≥ 0
−i+ j − 1 ≥ 0

−n0 + j = 0
j0 = 0

−i0 + i + 1 = 0
−n+ j = 0

Choosing δ = 1 and a quadratic rank function, the resolution of the LMI con-
straints given in next Sec. 11.1 by Sdplr-1.01 (with feasibility radius of 1.0e+3)
yield the solution:
r(n,i,j) = +7.024176e-04.n^2 +4.394909e-05.n.i -2.809222e-03.n.j...

+1.533829e-02.n +1.569773e-03.i^2 +7.077127e-05.i.j ...

+3.093629e+01.i -7.021870e-04.j^2 +9.940151e-01.j ...

+4.237694e+00 .

Successive values of r(n, i, j) dur-
ing program execution are plotted
above for n = 10 on loop entry.
They strictly decrease along the
inclined plane.

Nested loops are better han-
dled by induction on the nesting
level, as shown in Sec. 11.2.

��

10.3 Example of Linear Termination of a Quadratic Loop

Example 10. The following program computes the least factorial strictly greater
than a given integer N:
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n := 0; f := 1;

while (f <= N) do

n := n + 1; f := n * f

od

−f0 + N0 ≥ 0
n0 ≥ 0

f0 − 1 ≥ 0

−n0 + n− 1 = 0
−f0.n + f = 0
−N0 + N = 0

The non-linear semantics of the loop body (with polyhedral invariant) is provided
on the right. It has only one quadratic constraint, a case when the Lagrangian
relaxation is complete. The ranking function found by SeDuMi-1.05 (with fea-
sibility radius of 1.0e+3) is r(n,f,N) = -9.993455e-01.n +4.346533e-04.f
+2.689218e+02.N +8.744670e+02. ��

11 Extension to More Complex Language Features

11.1 Disjunctions in the Loop Test
and Conditionals in the Loop Body

Disjunctions in the loop test and/or conditionals within the loop body can be
analyzed by partitioning along the values of the boolean expressions [10, Sec.
10.2]. Equivalently, a case analysis of the boolean expressions yields an opera-
tional semantics of the loop body of the form:

�B;C�(x, x′) =
M∨

j=1

Nj∧
k=1

σjk(x, x′) ≥ 0 . (16)

Whichever alternative is chosen, the rank function must strictly decrease while
remaining nonnegative. Hence, we just have to consider the conjunction of all
terminating constraints for each of the possible alternatives. We have already
seen Ex. 9. Here is another one.
Example 11. For the program below:

while (x < y) do

if (i >= 0) then

x := x+i+1

else

y := y+i

fi

od

Case (x0 < y0):

−x0 + y0 − 1 ≥ 0
i0 ≥ 0

−i0 − x0 + x− 1 = 0
−y0 + y = 0
−i0 + i = 0

Case (x0 ≥ y0):

−x0 + y0 − 1 ≥ 0
−i0 − 1 ≥ 0

−i0 − y0 + y = 0
−x0 + x = 0
−i0 + i = 0

the cases are listed on the right11. The termination constraints are given below
(the P(j).Mk(:,:,k) corresponding to the k-th constraint in the j-th case, the
corresponding Lagrange coefficients being l0(j).v(k,j) for the nonnegativity
and l(j).v(k,j) for decrementation by at least δ = 1. The matrices M0 and M 0
encapsulate the matrix R of the ranking function r(x) = (x 1).R.(x 1)� while
(x 1).delta.(x 1) = δ as explained in Sec. 8):
11 Since the alternatives are considered on loop entry, a backward analysis may in

general have to be used if some variable involved in a test of the loop body is
modified in the body before that test.
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M0-l0(1).v(1,1)*P(1).Mk(:,:,1)-l0(1).v(2,1)*P(1).Mk(:,:,2)-...

l0(1).v(3,1)*P(1).Mk(:,:,3)-l0(1).v(4,1)*P(1).Mk(:,:,4)-...

l0(1).v(5,1)*P(1).Mk(:,:,5) >= 0

M0-M_0-delta-l(1).v(1,1)*P(1).Mk(:,:,1)-l(1).v(2,1)*P(1).Mk(:,:,2)-...

l(1).v(3,1)*P(1).Mk(:,:,3)-l(1).v(4,1)*P(1).Mk(:,:,4)-...

l(1).v(5,1)*P(1).Mk(:,:,5) >= 0

l0(1).v(1,1) >= 0

l0(1).v(2,1) >= 0

l(1).v(1,1) >= 0

l(1).v(2,1) >= 0

M0-l0(2).v(1,1)*P(2).Mk(:,:,1)-l0(2).v(2,1)*P(2).Mk(:,:,2)-...

l0(2).v(3,1)*P(2).Mk(:,:,3)-l0(2).v(4,1)*P(2).Mk(:,:,4)-...

l0(2).v(5,1)*P(2).Mk(:,:,5) >= 0

M0-M_0-delta-l(2).v(1,1)*P(2).Mk(:,:,1)-l(2).v(2,1)*P(2).Mk(:,:,2)-...

l(2).v(3,1)*P(2).Mk(:,:,3)-l(2).v(4,1)*P(2).Mk(:,:,4)-...

l(2).v(5,1)*P(2).Mk(:,:,5) >= 0

l0(2).v(1,1) >= 0

l0(2).v(2,1) >= 0

l(2).v(1,1) >= 0

l(2).v(2,1) >= 0

Solving these LMI and elementwise constraints with bnb, we get r(i,x,y) =
-4.x +4.y, that is essentially y− x, which corresponds to the intuition. ��

11.2 Nested Loops

In the case of nested loops, the loops are handled one at a time, starting from
the inner ones.

Example 12 (Manna’s original bubble sort). For the bubble sort example below
(taken literally from [24, p. 191]), the necessary termination precondition N ≥ 0 is
automatically determined by the iterated forward/backward method of Sec. 2.2.
A further automatic forward reachability analysis starting from this termination
precondition yields loop invariants:

assume (N >= 0);

n := N;

i := n;

loop invariant: {N=n,i>=0,n>=i}

while (i <> 0 ) do

j := 0;

loop invariant: {N=n,j>=0,i>=j,i>=1,N>=i}

while (j <> i) do

j := j + 1

od;

i := i - 1

od

The result of this global analysis is used to determine the semantics of the
inner loop body as given by its forward analysis:
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assume ((N=n) & (j>=0) & (i>=j) & (i>=1) & (N>=i));

assume (j <> i);

assume ((N0=N) & (n0=n) & (i0=i) & (j0=j));

j := j + 1

{j=j0+1,i=i0,N=n0,N=N0,N=n,j>=1,N>=i,j<=i}

The termination of the inner loop is then proved by solving the correspond-
ing termination constraints as shown in Sec. 8. The bnb solver yields the rank
function r(N,n,i,j) = +2.n +4.i -4.j -4.

Next, the semantics of the outer loop body is given by its forward polyhedral
analysis:

assume ((N=n) & (i>=0) & (n>=i));

assume (i <> 0 );

assume ((N0=N) & (n0=n) & (i0=i) & (j0=j));

j := 0;

while (j <> i) do

j := j + 1

od;

i := i - 1

{i+1=j,i+1=i0,N=n0,N=N0,N=n,N>=i+1,i>=0}

The termination of the outer loop is then proved by solving the corresponding
termination constraints as shown in Sec. 8. With bnb, we get the rank function
r(N,n,i,j) = +2.n +4.i -3. ��

In case the program graph is irreducible, the program has to be considered as
a whole, with different ranking functions attached to cutpoints (the choice of
which may not be unique).

11.3 Nondeterminism and Concurrency

Nondeterministic semantics are similar to (16) in Sec. 11.1. Nondeterminism can
be used to handle concurrency by nondeterministic interleaving.

Example 13. The following concurrent program (where atomic actions are square
bracketed) does terminate without any fairness hypothesis. If one process is never
activated then the other process will terminate and so the remaining one will
then be activated.

[|

while [x+2 < y] do

[x := x + 1]

od

||

while [x+2 < y] do

[y := y - 1]

od

|]

while (x+2 < y) do

if (??) then

x := x + 1

else if (??) then

y := y - 1

else

x := x + 1;

y := y - 1

fi fi

od
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By nondeterministic interleaving, the program is equivalent to the nondeter-
ministic one on its right. The conditionals in the loop body can be handled as
explained in Sec. 11.1. An even simpler solution is to consider an abstract inter-
pretation of the semantics of the loop body through a polyhedral approximation
(the resulting constraints are given on the right):

assume (x+2 < y);

assume ((x0 = x) & (y0 = y));

if (??) then

x := x + 1

else if (??) then

y := y - 1

else

x := x + 1;

y := y - 1

fi fi

{y+1>=y0,x<=x0+1,x+y0>=y+x0+1,x0+3<=y0}

−y0 + y + 1 ≥ 0
x0 − x + 1 ≥ 0

−x0 + y0 + x− y − 1 ≥ 0
−x0 + y0 − 3 ≥ 0

Establishing the termination constraints as explained in Sec. 8, and solving with
bnb, we get the following termination function r(x,y) = -4.x +4.y -9. ��

11.4 Bounded Weakly Fair Parallelism

One way of handling fair parallelism is to consider nondeterministic interleaving
with a scheduler to ensure bounded weak fairness.

Example 14. The following weakly fair parallel program (where atomic actions
are bracketed):

[[ while [(x > 0) | (y > 0) do

x := x - 1]

od

|| while [(x > 0) | (y > 0) do

y := y - 1]

od ]]

does not terminate when x and y are initially positive and any one of the pro-
cesses is never activated. Because of the bounded fairness hypothesis, the parallel
program is semantically equivalent to the following nondeterministic program:

assume (m >= 1);

t := ?;

assume (0 <= t & t <= 1);

s := ?;

assume ((1 <= s) & (s <= m));

while ((x > 0) | (y > 0)) do

if (t = 1) then

x := x - 1

else

y := y - 1

fi;

if (s = 1) then

if (t = 1) then

t := 0

else

t := 1

fi;

s := ?;

assume ((1 <= s) & (s <= m))

else

s := s - 1

fi

od

The nondeterministic program incorporates an explicit scheduler of the two par-
allel processes where the turn t indicates which process is running and s indicates
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the number of atomic steps remaining to run before activating another process.
The nondeterminism is bounded by m which ensures the existence of an integer-
valued rank function. Notice however that, as found in practice, although the
nondeterminism is known to be bounded, it is not known of how much (m can
take any positive integer value, including very large ones). The theoretical no-
tion of weak fairness corresponds to the case when m → ∞ that is unbounded
nondeterminism, which may require ordinal-valued rank functions. In practice
one can use lexicographic orderings on N.

A forward analysis of the program determines the loop invariant {t<=1,s<=m,
s>=1,t>=0}. The disjunction in the loop test is handled by partitioning, see Sec.
11.1. There are two cases for the loop test (x > 0), or (y > 0). In each case,
the loop body is partitioned according to the value of s which, according to the
invariant determined by the forward polyhedral analysis is either (s = 1) or (s
> 1). The case (x > 0 ∧ s > 1) is illustrated below (empty(10) stands for ⊥,
that is unreachability):

assume (t <= 1) & (s <= m) & (s >= 1) & (t >= 0);

assume (x > 0);

assume (s = 1);

assume ((x0 =x) & (y0 = y) & (t0 = t) & (s0 = s) & (m0 = m));

if (t = 1) then x := x - 1 else y := y - 1 fi;

if (s = 1) then

if (t = 1) then

t := 0

else

t := 1

fi;

s := ?;

assume ((1 <= s) & (s <= m))

{empty(10)}

else

s := s - 1

fi

{m=m0,s+1=s0,t=t0,t+y0=y+1,t+x=x0,s+1<=m,t<=1,t>=0,t+x>=1,s>=1}

The other three forward analyses are similar and yield the following affine
operational semantics for each of the alternatives:

x > 0 ∧ s > 1 {m=m0,s+1=s0,t=t0,t+y0=y+1,t+x=x0,s+1<=m,t<=1,t>=0,t<=y,s>=1}
x > 0 ∧ s = 1 {m=m0,s+1=s0,t=t0,t+y0=y+1,t+x=x0,s+1<=m,t<=1,t>=0,t<=y,s>=1}
y > 0 ∧ s > 1 {m=m0,s+1=s0,t=t0,t+y0=y+1,t+x=x0,s+1<=m,t<=1,t>=0,t<=y,s>=1}
y > 0 ∧ s = 1 {m=m0,s0=1,t+t0=1,t+y=y0,t+x0=x+1,t<=1,s<=m,s>=1,t>=0,t+y>=1}

The LMI termination constraints can then be established, as explained in Sec.
11.1. Solving with SeDuMi-1.05 (with a feasibility radius of 1.0e+4), we get the
quadratic rank function:

r(x,y,m,s,t) = +8.078228e-06.x^2 +8.889797e-10.x.y +2.061102e-10.x.m

+2.360326e-11.x.s +2.763786e-09.x.t +9.998548e-01.x +9.770849e-07.y^2

+7.219411e-07.y.m -1.091400e-07.y.s -2.098975e-06.y.t +6.158628e+02.y



Proving Program Invariance and Termination 19

+4.044804e-06.m^2 -2.266154e-08.m.s +1.794800e-06.m.t +4.524134e-04.m

+7.994478e-06.s^2 -1.899723e-08.s.t -3.197335e-05.s +2.450149e-06.t^2

+3.556544e-04.t +9.696939e+03 .
��

11.5 Semi-algebraic/Polynomial Programs

The termination constraints (12), (13), and (14) for semi-algebraic/polynomial
programs lead to polynomial inequalities. A necessary condition for ∀x : p(x) ≥ 0
is that the degree m = 2d of p be even. A sufficient condition for nonnegativity
of p(x) is that p(x) ≥ q(x) where q(x) is a sum of squares (SOS) of other
polynomials q(x) =

∑
i r

2
i (x) for some ri(x) ∈ R[x] of degree d [26]. However the

condition is not necessary.
The Gram matrix method [28] consists in fixing a priori the form of the base

polynomials ri(x) in the sum of squares and in assuming that q(x) = z(x)�Qz(x)

where z(x) is the vector of N =
(
n + d

d

)
monomials of the monomial basis Bd,n

in any total monomial order (for example z(x) == [1, x1, . . ., xn, x2
1, x1x2,

. . ., xd
n]) and Q is a symmetric positive definite matrix of reals. Since Q �

0, Q has a Cholesky decomposition L which is an upper triangular matrix L
such that Q=L�L. It follows that q(x) = z(x)�Qz(x) = z(x)�L�Lz(x) =
(Lz(x))�Lz(x) = [Li,: · z(x)]�[Li,: · z(x)] =

∑
i(Li,: · z(x))2 (where · is the vector

dot product x · y =
∑

i xiyi), proving that q(x) is a sum of squares.
Finally, z(x)�z(x) contains all monomials in x appearing in p(x) and so

∀x : p(x) − q(x) ≥ 0 can be expressed in the form ∀x : z(x)�Mz(x) ≥ 0 where
M is a square symmetric matrix depending upon the coefficients of p(x) and
the unknowns in Q. By letting X be z(x), the problem can be relaxed into the
feasibility of ∀X : X�MX which can be expressed as a semidefinite problem. If
the problem is feasible, then the solution provides the value of Q whence a proof
that p(x) is positive.

The method is implemented by sostool [30] under Matlab r©.

Example 15 (Logistic map). The deterministic logistic map f(x) = ax(1 − x)
with bifurcation parameter a such that 0 ≤ a < 1 has a sink at 0 and every ini-
tial condition between 0 and 1 is attracted to this sink. So the following program
(where z > 0 is implemented as z ≥ ε with a small ε) terminates.

eps = 1.0e-10;

while (0<=a) & (a<=1-eps)

& (eps<=x) & (x<=1) do

x := a*x*(1-x)

od

The Matlab r© program below establishes the termination conditions with La-
grangian relaxation (12), (13), and (14):

�
�
�
�
�
�
�
�
�

���

� �
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pvar a x0 x1 c0 d0 e0 l1 l2 l3 l4 l5 m1 m2 m3 m4 m5;

eps=1.0e-10;

iv = [a;x0;x1];

uv = [c0;d0;l1;l2;l3;l4;l5;m1;m2; m3;m4;m5];

pb = sosprogram(iv,uv);

pb = sosineq(pb,l1); pb = sosineq(pb,l2);

pb = sosineq(pb,l3); pb = sosineq(pb,l4);

pb = sosineq(pb,c0*x0+d0-l1*a-l2*(1-eps-a)-l3*(x0-eps)-l4*(1-x0)...

-l5*(x1-a*x0*(1-x0)));

pb = sosineq(pb,m1); pb = sosineq(pb,m2);

pb = sosineq(pb,m3); pb = sosineq(pb,m4);

pb = sosineq(pb,c0*x0-c0*x1-eps^2-m1*a-m2*(1-eps-a)-m3*(x0-eps)...

-m4*(1-x0)-m5*(x1-a*x0*(1-x0)));

spb = sossolve(pb);

c = sosgetsol(spb,c0); d = sosgetsol(spb,d0);

disp(sprintf(’r(x) = %i.x + %i’, double(c),double(d)));

These polynomial constraints are relaxed by sostools v2.00 into a semidefinite
program which is then solved by SeDuMi-1.05. The result is:

r(x) = 1.222356e-13.x + 1.406392e+00 . ��

12 Invariance

In the same way, loop invariants can be generated automatically by parametric
abstraction (Sec. 4) and resolution of the Lagrangian relaxation (Sec. 6.1) of
Floyd’s invariance verification conditions (2) and (3). We get:

∃a ∈ Rp : ∃μ ∈ R+ : ∃λ ∈ [0, N ] −→ R+ :

∀x ∈ Rn : Ia(x) − μ.P (x) ≥ 0, (17)

∀x0, x ∈ Rn : Ia(x) − λ0.Ia(x0) −
N∑

k=1

λk.σk(x0, x) ≥ 0 . (18)

There is an additional difficulty however since the appearance of the paramet-
ric abstraction of the invariant on the left of the implication in (3) yields, by
Lagrangian relaxation, to the term λ0.Ia(x0) in (18), which is bilinear in λ0

and a. For programs which operational semantics has the form �B;C�(x0, x) =∧N
k=1(x0 x 1)Mk(x0 x 1)� ≥ 0, constraint (18) is a bilinear matrix inequality

(BMI), which can be solved by BMI solvers, which first appeared only recently,
such as PenBMI [22] and bmibnb [23]. Contrary to iterative methods (at least
when the ascending chain condition is satisfied), the invariant need not be the
strongest one.

Example 16. This is illustrated by the following example from [14] where the
invariant is obtained by forward polyhedral analysis:
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i := 2;

j := 0;

while (??) do

{j>=0,i>=2j+2}

if (??) then

i := i + 4

else

i := i + 2;

j := j + 1

fi

od;

clear all; yalmip(’clear’);

[iv,v] = variables(’i’,’j’);

p = parameters(’a’,’b’,’c’, ’m’, ’l’);

F = set(a*2+c>=0);

F = F + set(sos(a*(i+4)+b*j-m*(a*i+b*j+c)));

F = F + set(m>=0);

F = F + set(sos(a*(i+2)+b*(j+1)+c-l*(a*i+b*j+c)));

F = F + set(l>=0);

sol = solvesos(F,[],sdpsettings(’solver’,’penbmi’),p);

disp(sprintf(’%+g*i %+g*j %+g >= 0’,double(a),...

double(b),double(c)));

Solving the given constraints with Yalmip yields the solution:

+2.14678e-12*i -3.12793e-10*j +0.486712 >= 0,

which is not the strongest possible one. However, satisfiability is easily checked
by setting a = 1, b = −2 and c = −2. ��
However one can imagine other methods to discover the parameters (e.g. random
interpretation [18]). Then a proof of invariance can be given by semidefinite
programming relaxation.

In program verification, the assertions to be proved yields additional con-
straints which can be useful in the resolution.
Example 17 (Ex. 7 continued). In the Euclidean division of Ex. 7 from [16], we
have to prove the postcondition (x=qy+r)&(r<y). For a parametric invariant
I=a*x+b*q*y+c*r, the constraints are the following:
clear all; yalmip(’clear’);

[iv,v] = variables(’x’,’y’,’q’,’r’);

p = parameters(’a’,’b’,’c’,’m1’,’m2’,’m3’,’m4’,’m5’,’m6’,’l0’,’l1’,...

’l2’,’l3’,’l4’,’l5’,’l6’,’n1’,’n2’);

I0=a*x0+b*q0*y0+c*r0; I=a*x+b*q*y+c*r;

F = set(sos(I0-m1*(y0-1)-m2*q0-m3*(r0-x0)));

F = F + set(m1>=0);

F = F + set(sos(I-l0*I0-l1*(y0-1)-l2*(r0-y0)-l3*(r-r0+y0)-l4*(q-q0-1)...

-l5*(x-x0)-l6*(y-y0)));

F = F + set(l0>=0) + set(l1>=0) + set(l2>=0);

P=x-q*y-r;

F = F + set(sos(P-n1*I-n2*(r-y+1)));

F = F + set(n2>=0);

[sol,m,B] = solvesos(F,m1,sdpsettings(’solver’,’penbmi’),p)

disp(sprintf(’%+g*x %+g*q*y %+g*r >= 0’,double(a),double(b),double(c)));

Solving with Yalmip, we get:
+2.11831e-05*x -2.11831e-05*q*y -2.11831e-05*r >= 0 .

Then, in the other direction (where I0, I, P are respectively replaced by -I0,
-I, -P), we get the loop invariant:

+0.000167275*x -0.000167275*q*y -0.000167275*r >= 0 .
By normalization of the coefficients and antisymmetry, the total correctness
proof is finished. ��
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13 Potential Problems with Solvers

13.1 Constraint Resolution Failure

The resolution of the termination constraints will definitely fail when the pro-
gram does not terminate. The same way, the invariance constraints may be infea-
sible. However, infeasibility of the constraints does not mean “non termination”
or “non invariance” but simply failure. First the parametric abstraction of Sec.
4 may be too coarse (so that e.g. a quadratic or even polynomial invariant/rank
function may have to be considered instead of a linear one). Second, the solver
may have failed (e.g. due to numerical difficulties when handling equalities) but
may succeed with some help (e.g. by adding a shift [23]).

13.2 Numerical Computations

LMI/BMI solvers perform numerical computations with rounding errors, shifts,
etc. It follows that the parameters of the parametric abstraction are subject
to numerical errors and so the logical rigor of the proof may be questionable.
Obviously the use of integer solvers or the concordant conclusions of several
different solvers will be conclusive, at least from an experimental point of view,
anyway more rigorous than mere tests.

Obviously, the hard point is to discover a candidate for the rank function or
invariant and it is much less difficult, when it is known, to re-check for satisfaction
(e.g. by static analysis or a proof assistant).

14 Conclusion

The resolution of systems of fixpoint (in)equations involving linear, semidefi-
nite, and even polynomial numerical constraints by parametric abstraction and
Lagrangian relaxation appears promising thanks to the spectacular progress in
semidefinite programming and LMI/BMI solvers this last decade.

The approach seems naturally useful for termination since one is essentially
interested in the existence of a rank function, even if it looks “unnatural”. This
is true of all inevitability/liveness properties for which generalization presents
no fundamental problem.

The situation looks different for invariance since unnatural solutions may look
less acceptable in the context of static analysis. However, the situation is different
for correctness proofs, where the nature of the invariants has no importance
provided the proof can be done. A difficulty is nevertheless to establish the form
of the parametric abstraction, since the most general form would be costly at
higher degrees.

To conclude, beyond numerical programs, parametric abstraction remains to
be explored in other non-numerical contexts, such as symbolic computations.
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Abstract. We present a method for generating linear invariants for
large systems. The method performs forward propagation in an abstract
domain consisting of arbitrary polyhedra of a predefined fixed shape.
The basic operations on the domain like abstraction, intersection, join
and inclusion tests are all posed as linear optimization queries, which can
be solved efficiently by existing LP solvers. The number and dimension-
ality of the LP queries are polynomial in the program dimensionality,
size and the number of target invariants. The method generalizes sim-
ilar analyses in the interval, octagon, and octahedra domains, without
resorting to polyhedral manipulations. We demonstrate the performance
of our method on some benchmark programs.

1 Introduction

Static analysis is one of the central challenges in computer science, and increas-
ingly, in other disciplines such as computational biology. Static analysis seeks to
discover invariant relationships between the variables of a system that hold on
every execution of the system. In computer science, knowledge of these relation-
ships is invaluable for verification and optimization of systems; in computational
biology this knowledge may lead to better understanding of the system’s dynam-
ics.

Linear invariant generation, the discovery of linear relationships between vari-
ables, has a long history, starting with Karr [9], and cast in the general framework
of abstract interpretation by Cousot and Cousot [6]. The most general form of
linear invariant generation is polyhedral analysis. The analysis is performed in
the abstract domain of all the linear inequalities over all the system variables [7].
Although impressive results have been achieved in this domain, its applicability
is severely limited by its worst-case exponential time and space complexity. This
has led to the investigation of more restricted domains which seek to trade off
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some precision against tractability. The interval domain consists of inequalities
of the form a ≤ xi ≤ b. This was first studied by Cousot and Cousot [5]. Miné et
al. consider the abstract domain of inequalities of the form xi − xj ≤ c, known
as Difference-Bound Matrices [12], and more generally, inequalities of the form
±xi ±xj ≤ c, known as the Octagon abstract domain [13]. The domain has been
applied to large programs with impressive results [3]. More recently, Clarisó et al.
generalized octagons to octahedra, inequalities of the form a1x1 + . . . anxn ≤ c,
where each ai is either ±1 or 0, and applied it to the verification of timing delays
in asynchronous circuits [4].

In this paper, we show that an efficient forward propagation-based analysis
can be performed in an abstract domain that lies between the interval domain
of Cousot&Cousot [5], and the general polyhedra [7]. Our proposed domain can
contain any inequality of the form a1x1 + . . . anxn + c ≥ 0. It requires the
coefficients a1, . . . , an for all inequalities in the abstract domain to be fixed in
advance, and thus is less general than polyhedra. Since a1, . . . , an can be user
specified, our domain neatly subsumes the body of work described above. We
show that all such analyses can be conducted in worst-case polynomial time in
the program size and the domain size.

The rest of the paper is organized as follows: Section 2 reviews the basic
theory of polyhedra, linear programming, system models and abstract interpre-
tation. In Section 3, we describe our abstract domain, followed by the analysis
algorithm and strategies on abstract domain construction. Section 4 discusses
the complexity of our algorithm, and presents the results of applying it to several
benchmark programs.

2 Preliminaries

We recall some standard results on polyhedra, followed by a brief description
of system models and abstract interpretation. Throughout the paper, x1, . . . , xn

denote real-valued variables, a, b with subscripts denote constant reals and c, d
denote unknown coefficients. Similarly A,B denote real matrices, while Ai rep-
resents the ith row of the matrix A. We let a, . . . ,z denote vectors. A vector
is also a n× 1 column-matrix for n ≥ 0. The relation a ≤ b is used to denote
ai ≤ bi for all i = 1 . . . n.

2.1 Polyhedra

Definition 1 (Linear Assertions) A linear inequality is an expression of the
form a1x1 + · · · + anxn + b �� 0, and �� ∈ {≥, =}. A linear assertion is a finite
conjunction of linear inequalities. The assertion

ϕ :

⎡⎢⎣ a11x1 + . . . + a1nxn + b1 ≥ 0 ∧
... . . .

...
...

...
am1x1 + . . . + amnxn + bm ≥ 0

⎤⎥⎦
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can concisely be written in matrix form as Ax+b ≥ 0, where x and b are n and
m-dimensional vectors, respectively. The set of points in Rn satisfying a linear
assertion is called a polyhedron. Polyhedra can be represented implicitly by a
linear assertion, also known as the constraint representation, or explicitly by a
set of vertices and rays, also known as the generator representation [15]. In this
paper we assume that linear assertions do not contain any strict inequalities.

The linear consequences of a linear assertion ϕ, that is, the linear inequalities
that are implied by ϕ, can be deduced using Farkas Lemma [15]:

Theorem 1 (Farkas Lemma). Consider the linear assertion

ϕ : Ax + b ≥ 0

over real-valued variables x. If ϕ is satisfiable, then it implies the linear inequality
ctx + d ≥ 0 iff there exists λ ≥ 0 such that

Atλ = c and btλ ≤ d.

Furthermore, ϕ is unsatisfiable iff there exists λ ≥ 0 such that

Atλ = 0 and btλ ≤ −1.

The main engine behind our analysis is a Linear Programming (LP) solver.
We shall describe the theory of linear programming briefly.

Definition 2 (Linear Programming) An instance of the linear programming
(LP) problem consists of a linear assertion ϕ and a linear expression f : btx,
called the objective function. The goal is to determine the solution of ϕ for which
f is minimal. An LP problem can have one of three results: (1) an optimal solu-
tion; (2) ϕ has solutions, but none is optimal with respect to f (f is unbounded
in ϕ); (3) ϕ has no solutions.

In principle, an LP problem can be solved by computing the generators of the
polyhedron corresponding to ϕ. If the polyhedron is empty, i.e., it has no gen-
erators, then there are no solutions. If the polyhedron has a ray along which
the objective function f decreases, then f is unbounded. Also, it has been
demonstrated that an optimal solution (if it exists) is realized at a vertex of
the polyhedron. The optimal solution can be found by evaluating f at each of
the vertices. Enumerating all the generators is very inefficient because the num-
ber of generators is worst-case exponential in the number of constraints. The
popular simplex algorithm, although worst-case exponential in theory, is very
fast over most problems in practice. Our method scales by taking advantage of
this fact. Interior point methods like the Karmarkar’s algorithm can solve linear
programs in polynomial time. In practice, we shall use simplex for our linear
programming needs because of its free availability and its numerical stability.
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2.2 Transition Systems and Invariants

As computational model, we use transition systems [11]. For ease of exposition we
assume that the transition systems are linear, as defined below. Any transition
can be linearized by omitting all nonlinear constructs from the initial condition
and transition relations.

Definition 3 (Linear Transition Systems) A linear transition system S :
〈L, T , 	0, Θ〉 over a set of variables V consists of

– L: a set of locations;
– T : a set of transitions, where each transition τ : 〈	i, 	j , ρτ 〉 consists of a pre-

location 	i, a post-location 	j , and a transition relation ρτ that is a linear
assertion over V ∪ V ′, where V denotes the values of the variables in the
current state, and V ′ their values in the next state;

– 	0 ∈ L: the initial location;
– Θ: a linear assertion over V specifying the initial condition.

A run of a linear transition system is a sequence of pairs (l0, s0), (l1, s1),
(l2, s2), . . . with li ∈ L and si a valuation of V , also called a state, such that

– Initiation: l0 = 	0, and s0 |= Θ
– Consecution: for all i ≥ 0 there exists a transition τ : 〈p, q, ρτ 〉 such that
li = p, li+1 = q, and (si, si+1) |= ρτ .

A state s is reachable at location l if (l, s) appears in some run.

Henceforth, we shall assume that transitions are limited to guarded assign-
ments of the form ξ ∧ x′ = Ax + b, where the guard ξ is a linear assertion over
V , and A, b are matrices. This form is common in transition systems derived
from programs. However, the results easily extend to the general case too.

Example 1. Following is a transition system over V = {x, y} with one location
and two transitions that update the variables x and y atomically:

L : {l0}

T : {τ1, τ2} with
{
τ1 :
〈
l0, l0,

[
x′ = x + 2y ∧ y′ = 1 − y

]〉
τ2 :
〈
l0, l0,

[
x′ = x + 1 ∧ y′ = y + 2

]〉
	0 : l0
Θ : (x = 0 ∧ y = 0)

A given linear assertion ψ is a linear invariant of a linear transition system
(LTS) at a location 	 iff it is satisfied by every state reaching 	. An assertion
map maps each location of a LTS to a linear assertion. An assertion map η is
an invariant map if η(	) is an invariant at 	, for each 	 ∈ L. In order to prove a
given assertion map invariant, we use the theory of inductive assertions [11].

Definition 4 (Inductive Assertion Maps) An assertion map η is inductive
iff it satisfies the following conditions:
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Initiation: Θ |= η(	0),
Consecution: For each transition τ : 〈	i, 	j , ρτ 〉, η(	i) ∧ ρτ |= η(	j)′.

It can be proven by mathematical induction that any inductive assertion map
is also an invariant map. It is well known that the converse need not be true in
general. The standard technique for proving an assertion invariant is to find an
inductive assertion that strengthens it. For example, the assertion x + y ≥ 0 is
an inductive assertion for the LTS in Example 1.

2.3 Propagation-Based Analysis

Forward propagation consists of a symbolic simulation of the program to com-
pute an assertion representing the reachable state space. Starting with the initial
condition, the assertion is iteratively weakened by adding states that are reach-
able in one step, as computed by the post operator, post(τ, ϕ) : ∃V0 . (ϕ(V0) ∧
ρτ (V0, V )) until no more states can be added. This procedure can be described
as the computation of a fixed point of the second order function (predicate trans-
former)

F(X) = Θ ∨X ∨
∨

τ∈T
post(τ,X)

starting from F(false). The least fixed point describes exactly the reachable
state space.

This approach has two problems: (1) the sequence F(false),F2(false), . . .
may not converge in a finite number of steps, and (2) we may not be able to
detect convergence, because the inclusion Fn+1(false) ⊆ Fn(false) may be un-
decidable. These problems were addressed by the abstract interpretation frame-
work formalized by Cousot and Cousot [6], and specialized for linear relations
by Cousot and Halbwachs [7].

The abstract interpretation framework performs the forward propagation in
a simpler, abstract domain, in which the detection of convergence is decidable.
Also the resulting fixed point, when translated back, is guaranteed to be a fixed
point (though not necessarily a least fixed point) of the concrete predicate trans-
former. The problem of finite convergence was addressed by the introduction of
a widening operator that guarantees termination in a finite number of steps.

The application of abstract interpretation requires the definition of an ab-
stract domain ΣA, equipped with a partial order ≤A, an abstraction function
α : 2Σ �→ ΣA that maps sets of states into elements in the abstract domain,
and a concretization function γ : ΣA �→ 2Σ . The functions α and γ must form
a Galois connection, that is they must satisfy α(S) ≤A a iff S ⊆ γ(a) for all
S ⊆ Σ and a ∈ ΣA.

Forward propagation can now be performed in the abstract domain by com-
puting the fixed point of

FA(X) = ΘA �X �
⊔

τ∈T
postA(τ,X) .
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If the operations � and postA satisfy γ(a1)∨γ(a2) ⊆ γ(a1�a2), and post(τ, γ(a))
⊆ γ(postA(a)), and the abstract element ΘA satisfiesΘ ⊆ γ(ΘA), then γ(lfp(FA))
is guaranteed to be a fixed point of F.

Polyhedra are a very popular abstract domain. Checking for inclusion is
decidable, and effective widening operators have been designed. However, ma-
nipulating large polyhedra remains computationally expensive and hence, this
analysis does not scale very well in practice.

Note. Throughout the rest of the paper, instead of the traditional ⊆ relation, we
shall use the models relation (|=) between formulas as the order on the concrete
domain.

3 Invariant Generation Algorithm

3.1 Abstract Domain

Our abstract domain consists of polyhedra of a fixed shape for a given set of
variables x of cardinality n. The shape is fixed by an m×n template constraint
matrix (TCM) T . If T is nonempty, i.e, m > 0, the abstract domain ΣT contains
m-dimensional vectors c. Each entry ci may be real-valued, or a special-valued
entry drawn from the set {∞, −∞}. A vector c in the abstract domain ΣT

represents the set of states described by the set of constraints Tx+c ≥ 0. If the
TCM T is empty, that is m = 0, the abstract domain ΣT is forced to contain
two elements c� and c⊥, representing the entire state space and the empty state
space, respectively.

Definition 5 (Concretization function) The concretization function γT is
defined by

γT (c) ≡

⎧⎪⎨⎪⎩
false if ∃ci = −∞ or c = c⊥,

true if c = c�,∧
i s.t. ci �=∞(Tix + ci ≥ 0) otherwise .

The value ci = ∞ drops the ith constraint from the concrete assertion, and the
value ci = −∞ makes the concrete assertion false. We assume that the standard
ordering ≤ on the reals has been extended such that −∞ ≤ x ≤ ∞ for all x ∈ R.

Example 2. Consider the template constraint matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0

−1 0
0 1
0 −1

−1 1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎦
representing the

template assertions

⎡⎢⎢⎢⎢⎢⎢⎣
x + c1 ≥ 0

−x + c2 ≥ 0
y + c3 ≥ 0

− y + c4 ≥ 0
−x + y + c5 ≥ 0
x − y + c6 ≥ 0

⎤⎥⎥⎥⎥⎥⎥⎦
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Fig. 1. Polyhedra (a), (b) and (c) are concretizations of the elements in the abstract
domain ΣA of Example 2, whereas (d) is not.

The concretization of the abstract element c : 〈∞, 2, 3,∞, 5, 1〉 is the assertion

γT (c) :
[
−x + 2 ≥ 0 ∧ y + 3 ≥ 0 ∧ −x + y + 5 ≥ 0 ∧ x− y + 1 ≥ 0

]
.

Figure 1 shows three polyhedra that are concretizations of elements in ΣT , and
one that is not.

Definition 6 (Abstract domain pre-order) Let a, b ∈ ΣT ,

a � b iff γT (a) |= γT (b).

Also a ∼	 b iff a � b and b � a. We set ⊥ = 〈−∞, . . . ,−∞〉 and � =
〈∞, . . . ,∞〉, and for T empty, ⊥ = c⊥ and � = c�. Note that γT (⊥) = false
and γT (�) = true.

The abstraction function αT maps sets of states into vectors c in ΣT . Since
we restrict ourselves to linear transition systems, we may assume that sets of
states can be described by linear assertions ϕ : Ax+ b ≥ 0. Ideally, the value of
αT (ϕ) should be the vector c that represents the smallest polyhedron with shape
determined by T , that subsumes ϕ. Thus, αT should compute a �-minimal c
such that

Ax + b ≥ 0 |= Tx + c ≥ 0.

To begin with, if ϕ is unsatisfiable, we set c = ⊥.
If ϕ is satisfiable, we use linear programming to determine a suitable c.

Consider each half space of the form Tix + ci ≥ 0. We wish to ensure that

Ax + b ≥ 0 |= Tix + ci ≥ 0.

Applying Farkas Lemma, we obtain,

Ax + b ≥ 0 |= Tix + ci ≥ 0 iff (∃ λ ≥ 0) Atλ = Ti ∧ btλ ≤ ci.

To find the smallest ci that satisfies the requirements above, we solve the LP
problem

Ψ : λ ≥ 0 ∧ Atλ = Ti with objective function btλ .
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If Ψ has a solution u, ci is set to u. If Ψ has no solutions, ci is set to ∞. The
third case, where ci is unbounded, does not occur if Ax + b ≥ 0 is satisfiable.

Claim. For satisfiable ϕ, then ci cannot be unbounded in Ψ .

Proof. If ci were unbounded, then appealing to the soundness of Farkas Lemma
leads us to the conclusion that Ax + b ≥ 0 |= Tix + ci ≥ 0 for all ci ≤ u, for
some constant u. If ϕ were satisfiable, then some point x0 satisfies it. Therefore,
(x = x0) |= ϕ |= Tix + ci ≥ 0. Setting ci to any value strictly less than Tix0

and u, yields −1 ≥ 0 and hence, a contradiction.

Example 3. Consider the assertion

ϕ :

⎛⎜⎜⎝
1 0
0 1

−1 1
1 −1

⎞⎟⎟⎠
︸ ︷︷ ︸

A

(
x
y

)
+

⎛⎜⎜⎝
0
0
1
1

⎞⎟⎟⎠
︸ ︷︷ ︸

b

≥ 0 .

The abstraction αT (ϕ) mapping ϕ into the abstract domain of Example 2 is
computed by solving six LP problems. For example, c2 is computed by solving

(
1 0 − 1 1
0 1 1 −1

)
︸ ︷︷ ︸

At

⎛⎜⎜⎝
λ1

λ2

λ3

λ4

⎞⎟⎟⎠
︸ ︷︷ ︸

λ

=
(
−1

0

)
︸ ︷︷ ︸

T2

with objective function λ3 + λ4 .

The problem has no solutions, yielding the value ∞ for c2. The value for c6 is
computed by solving the same problem, replacing T2 : (−1 0)t by T6 : (1 −1)t.
This problem yields an optimal solution c6 = 1. Solving all the six problems
produces αT (ϕ) = 〈0,∞, 0,∞, 1, 1〉.

Definition 7 (Abstraction function) Let ϕ be the linear assertion Ax+b ≥
0. Given a nonempty TCM T , the function αT assigns to ϕ the value c =
〈c1, . . . , cm〉, such that

ci =

⎧⎪⎪⎨⎪⎪⎩
−∞ if ϕ is unsatisfiable,
min. btλ, s .t . λ ≥ 0 ∧ Atλ = Ti︸ ︷︷ ︸

Ψi

if Ψi is feasible ,

∞ if Ψi is infeasible .

For an empty TCM T , we set αT (ϕ) = c⊥ if ϕ is unsatisfiable, and αT (ϕ) = c�
otherwise.

Lemma 1 (Abstraction Lemma). The functions αT and γT form a Galois
connection, that is, (1) for all linear assertions ϕ and abstract elements a ∈ ΣA,
αT (ϕ) � a iff ϕ |= γT (a). (2) Furthermore, for nonempty T , if ϕ |= γT (a) then
αT (ϕ) ≤ a. That is, αT (ϕ) is minimal with respect to the standard order ≤ on
vectors.
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Proof. For empty TCM T , both parts follow easily from Definitions 5, 6, and 7.
For the remainder, assume T is nonempty.

(1) (⇒) Assume αT (ϕ) � a. If ϕ is unsatisfiable, then trivially, ϕ |= γT (a).
Otherwise, let αT (ϕ) = c. By Def. 7 and the soundness of Farkas Lemma, ϕ |=
Tix+ ci ≥ 0, for each ci �= ∞. Therefore, ϕ |= γT (c). By Def. 6 and by assuming
c � a, we obtain ϕ |= γT (c) |= γT (a).

(⇐) Assume ϕ |= γT (a). If ϕ is unsatisfiable, αT (ϕ) = ⊥ and hence trivially
αT (ϕ) � a. Otherwise let αT (ϕ) = c. By Def 5, ϕ |=

∧
ai �=∞(Tix + ai ≥ 0),

and hence for arbitrary i such that ai �= ∞, ϕ |= Tix + ai ≥ 0. By Def 7 and
the completeness of Farkas Lemma, both ci and ai belong to the (nonempty)
feasible set of the linear program generated for the implication ϕ |= Tix+ci ≥ 0.
Therefore, by optimality of ci, ci ≤ ai, and hence, Tix + ci ≥ 0 |= Tix + ai ≥ 0.
and hence by Def 6, c � a. In fact, we have also established that c ≤ a.

(2) This follows directly from the second part of (1).

The abstract domain ΣT is redundant. It contains multiple elements that
map to the same concrete element. We eliminate this redundancy by choosing a
canonical element cmin for each equivalence class [c] of the relation ∼	.

Example 4. Consider the abstract domain from Example 2. The elements a1 =
〈1, 1, 1, 1, 2, 2〉, a2 = 〈1, 1, 1, 1, 3, 3〉, and a3 : 〈1, 1, 1, 1,∞,∞〉 all map to the
rectangle described by −1 ≤ x, y ≤ 1 ∧ −2 ≤ x − y ≤ 2, and thus a1 ∼	
a2 ∼	 a3. The reason is that the last two constraints, on x − y, are redundant
in all these elements. In fact any abstract element 〈1, 1, 1, 1, x, y〉, x ≥ 2, y ≥ 2
belongs to the same equivalence class.

Definition 8 (Canonical element) Let ΣT be an abstract domain with or-
dering �. Given an equivalence class [c] of ∼	, its canonical element, denoted
can(c) is defined as can(c) = αT (γT (c)).

We need to show that can(c) belongs to the equivalence class of c, and also
that the canonical element is unique.

Claim. (1) can(c) ∼	 c, (2) for any a, such that a ∼	 c, can(c) ≤ a, (3) can(c)
is unique, i.e., if a ∼ c, then can(c) = can(a).

Proof. This follows directly from Lemma 1.

Example 5. For the abstract domain of Example 2, 〈1, 1, 1, 1, 2, 2〉 is the canon-
ical element for the equivalence class represented by

[〈1, 1, 1, 1, 2, 2〉] = {〈1, 1, 1, 1, x, y〉 | x, y ≥ 2}

Computation of the greatest lower bound of two canonical elements in ΣT for
nonempty T consists of taking the entrywise minimum and canonizing the result.

Definition 9 (Intersection) Let a, b be two canonical elements of ΣT . For
T nonempty, a � b = can(〈min(a1, b1), . . . ,min(am, bm)〉, where min(x, y)
is defined as the minimum under the ≤ relation. For T empty we define the
intersection operation on the elements � and ⊥ in the standard fashion.
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The following example shows that 〈min(a1, b1), . . . ,min(am, bm)〉 is not nec-
essarily a canonical element.

Example 6 (Failure of Canonicity). Consider the abstract domain ΣT with tem-
plate constraint matrix T = (1 − 1)t, representing the template assertions
x+ c1 ≥ 0 and −x+ c2 ≥ 0. The entrywise minimum of the elements 〈1, 2〉, and
〈5,−2〉 is 〈1,−2〉. Verify that γT (〈1,−2〉) = false , and hence can(〈1,−2〉) = ⊥.

Claim. Let m = a1 � a2. Then (1) m � a{1,2} and (2) for any b � a{1,2}, it
follows that b � m

Proof. If T is empty, a1 = ⊥, or a2 = ⊥, both parts hold immediately.
(1) If m = ⊥ then the first part holds immediately. If m �= ⊥, then we

show that γT (m) |= γT (a1). Since m = can(min(a1,a2)), for each row i, mi ≤
min(a1i, a2i). If a1i �= ∞, then mi �= ∞. Therefore, γT (m) |= Tix + mi ≥ 0 |=
Tix + a1i ≥ 0. Thus, γT (m) |= γT (a1), leading to m � a1. Similarly, m � a2.

(2) Let b � a{1,2} and a{1,2} �= ⊥. For each i, such that a1i �= ∞, γT (b) |=
Tix + a1i ≥ 0. Similarly, if a2i �= ∞, then γT (b) |= Tix + a2i ≥ 0. Therefore, for
each mi �= ∞, there are four cases to consider depending on a1i �= ∞, a2i �= ∞.
In either case, γT (b) |= Tix+min(a1i, a2i) ≥ 0. Therefore b � min(a1,a2) � m.

Computation of the lowest upper bound of two canonical elements consists of
taking the entrywise maximum, and is guaranteed to result in a canonical ele-
ment.

Definition 10 (Union) Let a, b be two canonical elements of ΣT . For T
nonempty, a � b = 〈max(a1, b1), . . . ,max(am, bm)〉 For T empty the union is
the usual result for � and ⊥.

Claim. Let m = a1 � a2. Then (1) a{1,2} � m; (2) if for some b, a{1,2} � b,
it follows that m � b; and (3) m is canonical

Proof. Proofs for parts (1), (2) are similar to the proof for intersection. For part
(3), assume otherwise. Then there exists a vector b ∼ m, and some position j
such that bj < mj . Assume w.l.o.g., that a1j ≤ a2j = mj . Let a2

′ be the vector
a2 with a2j replaced by bj. It follows immediately, that a2

′ � a2. γT (a2) |=
γT (m) |= Tjx + bj ≥ 0, therefore a2 � a2

′, and consequently, a2 ∼ a2
′. Thus

a2 fails to be canonical in this case, contradicting our assumptions.

Claim. Let a, b be two canonical elements. Then a � b iff for each i, ai ≤ bi.

Proof. This follows directly from the two claims above, using the fact that a � b
iff a�b ∼	 b, along with the property that if two canonical forms are equivalent
then they are identical.

3.2 Analysis Algorithm

Traditionally forward propagation is performed entirely in the abstract domain
until convergence, and the resulting fixed point is concretized. Our analysis al-
gorithm performs the analysis in multiple abstract domains: one domain per
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program location. This allows for tailoring the template constraint matrix to
the assertions that are likely to hold at that location. It also complicates the
presentation of the post operation.

Let Ψ : 〈L, T , 	0, Θ〉 be an LTS over a set of variables V . Let each location
	 ∈ L be associated with an abstract domain Σ� parameterized by the template
constraint matrix T�, with k� template rows. The objective is to construct an
abstract invariant map η that maps each location 	 ∈ L to a (canonical) element
in the abstract domain Σ�.

We construct this invariant map by forward propagation as follows. The
starting point is the map η0 that assigns to the initial location, 	0, the abstract
value of the initial condition, that is η0(	0) = α�0(Θ), and the element ⊥ to all
other locations.

Example 7. Consider the LTS from Example 1. The associated domain of the
single location 	0 has template constraint matrix⎛⎜⎜⎝

1 0
−1 0

1 1
1 −1

⎞⎟⎟⎠ representing the
template assertions

⎡⎢⎢⎣
x + c1 ≥ 0

−x + c2 ≥ 0
x + y + c3 ≥ 0
x − y + c4 ≥ 0

⎤⎥⎥⎦
Using this template, the initial condition, Θ : x = 0 ∧ y = 0 is abstracted to
η0(	0) = 〈0, 0, 0, 0〉.

The postcondition operator for a transition leading from location 	i to lo-
cation 	j computes the element c in Σ�j that represents the states that can be
reached from states represented by the current value of η at 	i. More formally,

Definition 11 (Postcondition operator) Given τ : 〈	i, 	j, ρτ 〉, then

post(η(	i), τ) =

{
⊥ η(	i) = ⊥
αj(γi(η(	i) ∧ ρτ )) otherwise

where αj is the abstraction function for Σ�j and γi is the concretization function
of Σ�i .

Let T�i and T�j be the template constraint matrices for locations 	i and 	j ,
respectively. Let ρτ be ξ ∧ x′ = Ax + b. If post(η(	i), τ) = c, we require that

(T�ix + η(	i) ≥ 0) ∧ ξ ∧ x′ = Ax + b |= T�jx
′ + c ≥ 0, equivalently ,

(T�ix + η(	i) ≥ 0) ∧ ξ |= (T�jA)x + (T�j b + c)

In practice, we precompute the TCM T ′ = T�jA for each transition. We then
abstract the assertion γj(η(	i)) ∧ ξ using this TCM. Care should be taken to
subtract T�j b from the result of the abstraction. This yields the post-condition
at location 	j w.r.t. transition τ . Note that this technique is also applied to self-
looping transitions. Therefore, labeling each location with a different template
complicates our presentation but not the complexity of the procedure.



36 Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna

Example 8. Consider the map η0(	0) = 〈0, 0, 0, 0〉 from Example 7 and the tran-
sition τ1 =

〈
	0, 	0,

[
x′ = x + 2y ∧ y′ = 1 − y

]〉
. For this transition, ξ = true,

A =
(

1 2
0 −1

)
and b =

(
0
1

)
We compute T ′ = TA and a = Tb for performing the abstraction. Abstracting
γT (η(	0)) ≡ (x = y = 0), w.r.t T ′ yields the result 〈0, 0, 0, 0〉. Subtracting a from
this yields, 〈0, 0,−1, 1〉, which is the required post-condition.

Using the postcondition the map at step i > 0 is updated in the standard
fashion, as follows:

ηi+1(	n) = ηi(	n) �

⎛⎝ ⊔
τ :〈�m,�n,ρ〉

post(ηi(	m), τ)

⎞⎠
This process does not necessarily terminate. Termination can be ensured by

a form of widening that is a natural generalization of widening in the interval
and octagon domain. At each location we limit the number of updates to each
parameter to a fixed number. If that number is exceeded for a particular pa-
rameter, we impoverish the abstract domain at that location by removing the
corresponding constraint from the TCM. Clearly this guarantees termination,
since for each TCM the number of constraints is finite.

Remark. The reason that we remove the constraint from the TCM, rather than
set the parameter to ∞, is that the latter may lead to infinite ascending chains.
The problem, as pointed out by Miné [13, 12], is that when a parameter ci is
set to ∞, subsequent canonization may set ci back to a finite value, effectively
bringing back the corresponding constraint.

Example 9. Figure 2 shows the results of applying the algorithm to the LTS
in Example 1. The maximum number of updates to any template constraint
expression is set to 3. The Figure shows that only three constraints survive,
corresponding to the invariants x ≥ 0 ∧ x + 2y ≥ 0 ∧ x + y ≥ 0.

Instead of directly removing a constraint from the TCM if the number of
updates has exceeded the threshold, a more elegant solution is to use a Local
Widening operator, similar to the widening-upto operator introduced in [8]. Let
T�,ix + ci ≥ 0 be one of the template constraints at location 	, such that the
number of updates to ci has exceeded the set threshold. Let τ be an incoming
transition at location 	. The local value of ci w.r.t τ is obtained by computing
the minimum ci for which ρτ |= T�,ix

′ + ci ≥ 0 holds. Assuming that τ can
be executed for some state, the corresponding LP problem either shows optimal
solution bi,τ , or is infeasible, in which case the local value is set to ∞. As a
result, if bi is the maximum among all the local values of all the transitions τ
with target location 	, the assertion T�,ix + bi ≥ 0 is a local invariant at 	, and
ci can be set to bi instead of ∞. Thus, the local widening operator computes the
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Iteration num.
Template 1 2 3 4 5 6 7

y + c1 0 0 2 4 6 x x
−y + c2 0 3 5 7 x x x
x + c3 0 0 0 0 0 0 0
−x + c4 0 1 8 x x x x

x− y + c5 0 2 3 4 x x x
x + y + c6 0 0 0 0 0 0 0
−x− y + c7 0 4 8 x x x x
y − x + c8 0 0 9 16 x x x
x + 2y + c9 0 0 0 0 0 0 0
−x− 2y + c10 0 7 12 17 x x x
x + 3y + c11 0 0 0 0 1 ∞ ∞
−x− 3y + c12 0 10 17 24 x x x

Fig. 2. A run of the invariant generation algorithm.

local value of an expression instead of dropping the expression. In this case the
computed value is frozen, and further updates to it are disallowed.

Example 10. Consider the template expression −x + c ≥ 0 and the transition
τ : x ≤ 3 ∧ x′ = x+ 2. The local value of c w.r.t. τ is 5, since τ |= −x′ + 5 ≥ 0.

3.3 Template Formation

The algorithm presented so far has assumed the presence of a template con-
straint matrix for every location. In this section we propose some strategies for
constructing these templates.

A first source of expressions is the description of the transition system itself:
expressions in the initial condition and transition guards are likely to be invari-
ants for some constant values. A second source are expressions present in target
properties. A third source are expressions of a certain form such as intervals,
xi ≤ c, xi ≥ c, which are often useful in applications involving array bounds and
pointer safety, or octagons, ±xi ±xj + c ≥ 0 for each pair of variables [13]. How-
ever, these expressions, albeit good candidates, cannot be the only expressions.
The reason is that they seldom are inductive by themselves: they need support.

Example 11. Consider the LTS from Example 1 and the assertion x ≥ 0. Al-
though Example 9 showed that x ≥ 0 is an invariant, it is not preserved by the
transition τ1 : x′ = x+ 2y, y′ = 1− y. However, x+ 2y ≥ 0∧ x ≥ 0 is inductive.
We call x + 2y ≥ 0 the support expression for x ≥ 0.

Definition 12 (Support vector) Given a coefficient vector a and a transition
τ : 〈	i, 	j, ξ ∧ x′ = Ax + b〉, the coefficient vector (Ata)t is called the support
vector for a with respect to τ .
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Type Original Support
TCM Template expression TCM Template expression

bound 1 0 x + c1 ≥ 0 1 2 x + 2y + c2 ≥ 0
bound −1 0 −x + c3 ≥ 0 −1 −2 −x − 2y + c4 ≥ 0
bound 0 1 y + c5 ≥ 0 0 −1 − y + c6 ≥ 0
octagon 1 1 x + y + c7 ≥ 0 1 1 x + y + c7 ≥ 0
octagon 1 −1 x − y + c8 ≥ 0 1 3 x + 3y + c9 ≥ 0
octagon −1 1 −x + y + c10 ≥ 0 −1 −3 −x − 3y + c11 ≥ 0
octagon −1 −1 −x − y + c12 ≥ 0 −1 −1 −x − y + c12 ≥ 0

Fig. 3. Support vectors for bound and octagon expressions.

Example 12. The support vector for the vector 〈1,−1〉 corresponding with x−y
from Example 7, under the update x′ = x+ 2y, y′ = 1 − y is 〈1, 3〉 correspond-
ing with x + 3y. The table in Figure 3 shows the support vectors and their
corresponding template expressions for the interval and octagon expressions in
Example 9 with respect to τ1. Every vector is its own support with respect to
transition τ2. In this case, the table is closed under computing support vectors.

Support vectors are computed for each location. Given template constraint
matrices T�i and T�j and a transition τ : 〈	i, 	j, ρτ 〉, then a support vector for
location 	j with respect to τ is computed from a row of T�j and ρτ and added
as a row to T�i . Note the similarity to computing weakest preconditions.

4 Performance

Complexity. The complexity of our algorithm is polynomial in the size of the
program and the size of the template constraint matrix. Consider a transition
system with n variables, |L| locations and |T | transitions, and assume that each
location is labeled with an m × n template constraint matrix. Let k be the
maximum number of updates allowed to the abstract invariant map. Then the
number of post-condition computations is bounded by (k+1)m|L||T |. Each post-
condition computation requires m LP queries, one for each row in the template
constraint matrix, and thus the total number of LP queries is O(km2|L||T |).

In practice, the number of updates to reach convergence is much less than
(k + 1)m|L||T |. In addition, the number of LP queries can be reduced further
by skipping post-condition computations for transitions whose prelocation as-
sertions did not change.

Practial Performance. We have implemented our algorithm and applied it to
several benchmark programs. The results are shown in Figure 4. Our implemen-
tation is based on the GNU Linear programming kit, which uses the simplex
algorithm for linear programming [10]. The library uses floating point arithmetic.
Soundness is maintained by careful rounding, and checking the obtained invari-
ants using the exact arithmetic implemented in the polyhedral library PPL [1].
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Program Template Statistics

name | L | | T | #t #s t(sec) tlp(sec) # lps #avg. #dim.

Mcc91 (3) 1 2 11 0 0.05 0.01 227 1.5 15 (20)
trainHPR97(3) 4 12 58 3 0.1 0.02 673 0.9 18(25)
berkeley(4) 1 3 63 16 0.23 0.11 1,632 1.36 64(96)
dragon(5) 1 12 129 157 3.94 2.38 11,426 3.23 202 (298)
heapsort(5) 1 4 33 24 0.34 0.13 1,751 2.45 75(90)

efm(6) 1 5 506 461 7.65 2.36 10,872 0.69 359(981)
lifo(7) 1 10 85 79 1.87 0.91 5,401 3.37 141 (174)
cars-midpt(7) 1 2 101 324 3.72 2.21 4,641 6.23 154(329)
barber(8) 1 12 128 0 1.97 0.83 9,210 1.96 124(141)
swim-pool(9) 1 6 104 0 0.56 0.27 2,710 2.11 97(118)

ttp(9) 4 20 3,555 127 62.8 40.9 61,263 4.41 574(1032)
req-grant(11) 1 8 221 18 2.96 1.41 8,635 2.10 241(255)
consprot(12) 2 14 533 40 4.88 2.00 12,487 1.83 266(286)

csm(13) 1 8 313 73 9.65 5.21 14,890 3.69 380(414)
c-pJava(16) 1 14 453 93 35.16 15.19 33,288 5.00 433(567)
consprod(18) 1 14 529 96 38.72 19.43 35,797 5.17 468(663)

incdec(32) 1 28 961 267 287.54 110.27 103,841 6.57 877(1294)
mesh2x2(32) 1 32 438 0 43.9 17.5 52,622 4.53 390(506)
bigjava(44) 1 37 864 376 331.98 117.68 122,643 5.25 1018 (1280)
mesh3x2(52) 1 54 1133 0 432.85 192.15 216,600 6.70 930(1241)

Fig. 4. Experimental results for benchmark examples. All timings were measured on
an Intel Xeon processor running linux 2.4, with 2Gb RAM.

The benchmark programs were taken from the related work, mostly from
the fast project [2]. Many of these programs (eg., berkeley, dragon, ttp
and csm) are models of bus and network protocols. Other programs, including
bigjava, c-pJava and heapsort, were obtained by abstracting java programs.
Some programs are academic examples from the Petri net literature (eg., swim-
pool, efm, meshixj). These programs, ranging in size from 4 to 52 variables,
exhibit complex behaviours and require non-trivial invariants for their correct-
ness proofs. Figure 4 shows for each program the number of variables (next to
the name in parentheses), the number of locations (|L|) and transitions (|T |).

The templates for these programs were obtained in two ways: they were
generated from user-defined patterns or automatically derived from the initial
condition and the transition guards. An example of a user-defined pattern is: “%i
+ 2 * %j + 3 * %k ”. It generates all constraints of the form xi + 2xj + 3xk +
bijk ≥ 0, for all combinations (xi, xj , xk) of system variables. In many cases the
patterns were suggested by the target property. For instance the target property
x ≤ K for some variable x and constant K, suggests the patterns -%i, -%i -%j
and so on. The columns “#t” and “#s” in Figure 4 show the number of template
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constraints considered initially, and the number of support constraints generated
for these initial constraints, respectively. Thus the total number of constraints is
the sum of these two values. For each program, the maximum number of updates
to each constraint was set to 3.

The statistics part in Figure 4 shows the performance of our algorithm in
terms of computation time and number of LP queries solved. The first two
columns (t(sec) and tlp) show the total time needed to reach convergence and
the time spent by the LP solver, respectively. The last three columns show the
number of LP instances solved, the average number of simplex iterations for
each LP call, and the the maximum (and average between parentheses) dimen-
sionality of each LP problem. The memory used ranged from KBs for the smaller
examples to 50 MB for bigjava and 67MB for mesh3x2.

Invariants. The invariants obtained for the benchmark programs were of mixed
quality. On one hand, the pattern-generated constraints produced invariants that
were able to prove the target properties for most examples including the csm
and bigjava. On the other hand, we were unable to prove the desired properties
for examples like incdec and consprod. In general, like with polyhedra, our
technique fails in cases where non-convex and non-linear invariants are required.
For all programs the propagation converged within 10 iterations, which is much
faster than the theoretical maximum.

5 Conclusions

In this paper, we have demonstrated an efficient algorithm for computing invari-
ants by applying abstract interpretation on a domain that is less powerful than
that of polyhedra but more general than related domains like intervals, octagons
and the very recent octahedra. In theory, we have thus generalized the previous
results and appealed to the complexity of linear programming to show that all
of these analyses can be performed in polynomial time. In practice, we have ex-
ploited the power of LP solvers to provide time and space-efficient alternatives
to polyhedra. We have shown through our benchmark examples that our method
is scalable to large examples and has the potential of scaling to even larger ex-
amples through a wiser choice of templates. Our support assertion generation
greatly improves the ability of our algorithm to infer non-trivial invariants, and
exploits the fact that we can support arbitrary coefficients in our assertions.

Future extensions to this work need to consider many issues both theoret-
ical and practical. The analysis can be performed on non-canonical elements.
This can greatly simplify the post-condition computation but complicate inclu-
sion checks. Preprocessing LP calls using an equality simplifier could reduce the
dimensionality of each call. Possible extensions include the use of semi-definite
programming to extend the method to non-linear systems and non-linear tem-
plates. The work of Parillo et al. gives us a direct extension of Farkas Lemma
for the non-linear case [14].
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Abstract. We present a new numerical abstract domain. This domain
automatically detects and proves bounds on the values of program vari-
ables. For that purpose, it relates variable values to a clock counter.
More precisely, it bounds these values with the i-th iterate of the func-
tion [X �→ α×X+β] applied on M , where i denotes the clock counter and
the floating-point numbers α, β, and M are discovered by the analysis.
Such properties are especially useful to analyze loops in which a variable
is iteratively assigned with a barycentric mean of the values that were
associated with the same variable at some previous iterations. Because
of rounding errors, the computation of this barycenter may diverge when
the loop is iterated forever. Our domain provides a bound that depends
on the execution time of the program.

Keywords: Abstract Interpretation, static analysis, numerical domains.

1 Introduction

A critical synchronous real-time system (as found in automotive, aeronautic,
and aerospace applications) usually consists in iterating a huge loop. Because
practical systems do not run forever, a bound on the maximum iteration number
of this loop can be provided by the end-user or discovered automatically. The full
certification of such a software may require relating variable values to the number
of iterations of the main loop. It is especially true when using floating-point
numbers. Some computations that are stable when carried out in the real field,
may diverge because of the rounding errors. Rounding errors are accumulated at
each iteration of the loop. When expressions are linear and when the evaluation
of expressions does not overflow, the rounding errors at each loop iteration are
usually proportional to the value of the variables. Thus the overall contribution
of rounding errors can be obtained by iterating a function of the form [X �→
α × X + β]. Then by using the maximum number of iterations we can infer
bounds on the values that would normally have diverged in the case of an infinite
computation.

We propose a new numerical abstract domain that associates with each vari-
able the corresponding coefficients α and β and the starting value M . This
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V ∈ V, I ∈ I
E := I | V | I × V + E
P := V = E | skip | tick | if (V ≥ 0) {P} else {P} | while (V ≥ 0) {P} | P ; P

Fig. 1. Syntax.

framework was fully implemented in OCaml [7] and plugged into an existing
analyzer [1, 2]. We use this analyzer for certifying a family of critical embedded
softwares, programs ranging from 70,000 to 379,000 lines of C.
Outline. In Sect. 2, we present the syntax and semantics of our language. In
Sect. 3, we describe a generic abstraction for this language. In Sect. 4, we define
a numerical abstract predomain that relates arithmetic-geometric constraints
with sets of real numbers. In Sect. 5, we enrich an existing analysis so that it
can deal with arithmetic-geometric constraints. In Sect. 6, we refine our analysis
to deal with more complex examples. In Sect. 7, we report the impact of the
arithmetic-geometric progression domain on the analysis results.

2 Language

We analyze a subset of C without dynamic memory allocation nor side-effect.
Moreover, the use of pointer operations is restricted to call-by reference. For the
sake of simplicity, we introduce an intermediate language to describe programs
that are interpreted between the concrete and an abstract level. Data structures
have been translated by using a finite set of abstract cells (see [2, Sect. 6.1]).
Non-deterministic branching over-approximates all the memory accesses (array
accesses, pointer dereferencing) that are not fully statically resolved. Further-
more, floating-point expressions have been conservatively approximated by lin-
ear forms with real interval coefficients. These linear forms include both the
rounding errors and some expression approximations (see [9]). We also suppose
that the occurrence of runtime errors (such as floating-point overflows) can be
described by interval constraints on the memory state.

Let V be a finite set of variables. Let clock �∈ V be an extra variable which
is associated with the clock counter. The clock counter is explicitly incremented
when a command tick is executed. The system stops when the clock counter
overflows a maximum value which is defined by the end-user. We denote by I
the set of all real number intervals (including R itself). We define inductively
the syntax of programs in Fig. 1. We denote by E the set of expressions E. We
describe the semantics of these programs in a denotational way. An environment
(ρ ∈ V∪{clock} → R) denotes a memory state. It maps each variable, including
the clock variable, to a real number. We denote by Env the set of all environ-
ments. The semantics of an expression E is a function (|E|) ∈ Env → I mapping
each environment to an interval. Given a maximum value mc for the clock, the
semantics of a program P is a function �P �mc ∈ Env → ℘(Env) mapping each
environment ρ to the set of the environments that can be reached when applying
the program P starting from the environment ρ. Returning a set of environments
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(|I |)(ρ) = I , (|V |)(ρ) = {ρ(V )}
(|I × V + E|)(ρ) = {b× ρ(V ) + a | a ∈ (|E|)(ρ), b ∈ I}
�V = E�mc(ρ) = {ρ[V �→ x] | x ∈ (|E|)(ρ)}
�skip�mc(ρ) = {ρ}

�tick�mc(ρ) =

{
{ρ[clock �→ ρ(clock) + 1]} if ρ(clock) < mc

∅ otherwise

�if (V ≥ 0) {P1} else {P2}�mc(ρ) =

{
�P1�mc(ρ) if ρ(V ) ≥ 0

�P2�mc(ρ) otherwise

�while (V ≥ 0) {P}�mc(ρ) = {ρ′ ∈ Inv | ρ′(V ) < 0}
where Inv = lfp

(
X �→ {ρ} ∪

(⋃
{�P �mc(ρ

′) | ρ′ ∈ X, ρ′(V ) ≥ 0}
))

�P1; P2�mc(ρ) =
⋃
{�P2�mc(ρ

′) | ρ′ ∈ �P1�mc(ρ)}

Fig. 2. Concrete semantics.

allows the description of both non-determinism and program halting (when the
clock has reached its maximum value). The functions (| |) and � �mc are defined
by induction on the syntax of programs in Fig. 2. Loop semantics requires the
computation of a loop invariant, which is the set of all environments that can be
reached just before the guard of this loop is tested. This invariant is well-defined
as the least fixpoint of a ∪-complete endomorphism1 f ∈ ℘(Env) → ℘(Env).
Nevertheless, such a fixpoint is usually not computable, so we give a decidable
approximate semantics in the next section.

We describe two toy examples.

Example 1. The first example iterates the computation of a barycentric mean:
at each loop iteration, a variable is updated with a barycentric mean among its
current value and two previous values.

V = R; B1 = R; B2 = R; X = 0; Y = 0; Z = 0;
while (V ≥ 0) {
V = R; B1 = R; B2 = R;
if (B1 ≥ 0) {Z = Y ; Y = X} else {skip};
if (B2 ≥ 0) {
X = I; Y = I; Z = I}

else {
X = IX ×X + IY × Y + IZ × Z + Iε};

tick}
where I ∈ I, εi > 0 for any i ∈ {X ;Y ;Z; 0}, 0 < α < 0.5,

IX = [1 − 2 × α− εX ; 1 − 2 × α + εX ], IY = [α− εY ;α + εY ],
IZ = [α− εZ ;α + εZ ], and Iε = [−ε0; ε0].

More precisely, initialization values range in the interval I. The parameter α is a
coefficient of the barycentric mean. The parameters εX , εY , and εZ encode the
rounding errors relative respectively to the variables X , Y , and Z in the compu-
tation of the barycentric mean. The parameter ε0 encodes the absolute rounding
1 In fact, we only use the monotonicity of f .
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error. The three variables X , Y , and Z allow the recursion (X is associated with
the current value, Y is associated with the last selected value and Z is associated
with the previous selected value) and the three variables V , B1, and B2 allow
non-deterministic boolean control. The variable V allows stopping the loop iter-
ation. The variable B1 allows the selection of a recursive value which consists in
shifting the variables X , Y , and Z. The variable B2 allows the choice between
a reinitialization or an iteration step: a reinitialization step consists in assigning
the variables X , Y , and Z with some random values in the interval I, whereas
an iteration step consists in updating the variable X with the barycentric mean
between its current value and the last two selected values. Because of round-
ing errors, the value associated with the variable X cannot be bounded without
considering the clock. Therefore, we can prove that this value is bounded by
[X �→ ((1+εX +εY +εZ)×X)+ε0](mc)(MI), where MI is the least upper bound
of the set {|x| | x ∈ I}. This bound can be discovered using the arithmetic-
geometric domain presented in this paper. It is worth noting that the domains
that deal with digital stream processing [6] do not help because the value of the
variable Y is not necessarily the previous value of the variable X : such domains
can only approximate relations of the form on = f(on−1, ..., on−p, in−1, ..., in−q)
where (in) is the input stream and (on) is the output stream.

Example 2. The second example iterates a loop where a floating point is first
divided by a coefficient α > 0 and then multiplied by the coefficient α.

V = R; B1 = R; B2 = R; X = 0;
while (V ≥ 0) {
V = R; B1 = R; B2 = R;
if (B1 ≥ 0) {X = I1; } else {skip};
X = [ 1

α − ε1; 1
α + ε1] ×X + [−ε2; ε2];

if (B2 ≥ 0) {X = I2} else {skip};
X = [α− ε3;α + ε3] ×X + [−ε4; ε4];
tick}

where εi > 0, for any i ∈ {1; 2; 3; 4}, α > 0, and I1, I2 ∈ I.
More precisely, initialization values range in the intervals I1 and I2. The

parameter α is a coefficient of the example. The parameters ε1 and ε3 encode
relative rounding errors and the parameters ε2 and ε4 encode absolute rounding
errors. The variable X contains the value that is divided and multiplied. The
three variables V , B1, and B2 allow boolean control. The variable V allows
stopping the loop iteration. The variable B1 allows the reinitialization of the
variable X before the division, the variable B2 allows its reinitialization before
the multiplication. Because of rounding errors, the value associated with the
variable X cannot be bounded without considering the clock. Therefore, we
can prove that this value is bounded by [X �→ (1 + a) × X + b](mc)(MI) where
a = α × ε1 + 1

α × ε3 + ε1 × ε3 and b = ε2 × (α + ε3) + ε4, and MI is the least
upper bound of the set {|x| | x ∈ I1 ∪A} with A = { y

ε1+ 1
α

| y ∈ I2}. This bound
can be discovered using the arithmetic-geometric domain.
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3 Underlying Domain

We use the Abstract Interpretation framework [3–5] to derive a generic approx-
imate semantics. An abstract domain Env
 is a set of properties about memory
states. Each abstract property is related to the set of the environments which
satisfy it via a concretization map γ. An operator � allows the gathering of
information about different control flow paths. The primitives assign, guard,
and tick are sound counterparts to concrete assignments, guards, and clock
ticks. To effectively compute an approximation of concrete fixpoints, we intro-
duce an iteration basis ⊥, a widening operator �, and a narrowing operator �.
Several abstract domains collaborate and use simple constraints to refine each
other. We introduce two domains of simple constraints. The domain of interval
V ∪ {clock} → I and the domain of absolute value ordering ℘(V2). The inter-
val constraints encoded by a map ρ
 ∈ V ∪ {clock} → I are satisfied by the
environment set γI(ρ
) = {ρ ∈ Env | ρ(X) ∈ ρ
(X), ∀X ∈ V ∪ {clock}}. The
constraints encoded by a subset R ⊆ V2 are satisfied by the environment set
γabs(R) =

⋂
(X,Y )∈R{ρ ∈ Env | |ρ(X)| ≤ |ρ(Y )|}. The primitives range and

abs capture simple constraints about the values that are associated with vari-
ables by weakening the abstract elements of Env
. These constraints are useful
in refining the arithmetic-geometric progression domain. Conversely, a primi-
tive reduce uses the range constraints that have been computed by the other
domains in order to refine the underlying domain.

Definition 1 (Generic abstraction). An abstraction is defined by a tuple
(Env
, γ,�,assign,guard,tick,⊥,�,�,range,abs,reduce) such that:

1. Env
 is a set of properties;
2. γ ∈ Env
 → ℘(Env) is a concretization map;
3. ∀a, b ∈ Env
, γ(a) ∪ γ(b) ⊆ γ(a � b);
4. ∀a ∈ Env
, X ∈ V , E ∈ E , ρ ∈ γ(a), �X = E�mc(ρ) ⊆ γ(assign(X = E, a));
5. ∀a ∈ Env
, X ∈ V ∪ {clock}, I ∈ I,

{ρ ∈ γ(a) | ρ(X) ∈ I} ⊆ γ(guard(X, I, a));
6. ∀a ∈ Env
, {ρ[clock �→ ρ(clock) + 1] | ρ ∈ γ(a)} ⊆ γ(tick(a));
7. ∀a ∈ Env
, ρ
 ∈ (V ∪ {clock} → I), γ(a) ∩ γI(ρ
) ⊆ γ(reduce(ρ
, a));
8. � is a widening operator such that: ∀a, b ∈ Env
, γ(a) ∪ γ(b) ⊆ γ(a�b);

and ∀k ∈ N, ρ1, ..., ρk ∈ (V ∪ {clock} → I), (ai) ∈ (Env
)N, the se-
quence

(
a�

i

)
defined by a�

0 = r(a0) and a�
n+1 = r(a�

n �an+1) with r = [X �→
reduce(ρk, X)] ◦ ... ◦ [X �→ reduce(ρ1, X)], is ultimately stationary;

9. � is a narrowing operator such that: ∀a, b ∈ Env
, γ(a) ∩ γ(b) ⊆ γ(a�b);
and ∀k ∈ N, ρ1, ..., ρk ∈ (V ∪ {clock} → I), (ai) ∈ (Env
)N, the sequence(
a�

i

)
defined by a�

0 = r(a0) and a�
n+1 = r(a�

n �an+1), with r = [X �→
reduce(ρk, X)] ◦ ... ◦ [X �→ reduce(ρ1, X)], is ultimately stationary;

10. ∀a ∈ Env
, γ(a) ⊆ γI(range(a)) and γ(a) ⊆ γabs(abs(a)).

Least fixpoint approximation is performed in two steps [4]: we first com-
pute an approximation using the widening operator; then we refine it using the
narrowing operator. More formally, let f be a monotonic map in ℘(Env) →
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℘(Env) and (f 
 ∈ Env
 → Env
) be an abstract counterpart of f satisfying
∀a ∈ Env
, (f ◦ γ)(a) ⊆ (γ ◦ f 
)(a). It is worth noting that the abstract coun-
terpart f 
 is usually not monotonic with respect to the partial order �
 that is
defined by a �
 b ⇐⇒ γ(a) ⊆ γ(b). The abstract upward iteration (C�

n ) of f 
 is
defined by C�

0 = ⊥ and C�
n+1 = C�

n �f 
(C�
n ). The sequence (C�

n ) is ultimately
stationary and we denote its limit by C�

ω . Then the abstract downward iteration
(D�

n ) of f 
 is defined by D�
0 = C�

ω and D�
n+1 = D�

n �f 
(D�
n ). The sequence

(D�
n ) is ultimately stationary and we denote its limit by D�

ω . We define2 lfp
(f 
)
by the limit D�

ω of the abstract downward iteration of f 
. We introduce some
lemmas in order to prove that lfp(f) ⊆ γ(D�

ω ):

Lemma 1. We have f(γ(C�
ω )) ⊆ γ(C�

ω ).

Proof. Since C�
ω is the limit of the upward-iteration, we have C�

ω = C�
ω �f 
(C�

ω ).
By Def. 1.(8) of the widening, we obtain that γ(f 
(C�

ω )) ⊆ γ(C�
ω ). By soundness

of f 
, we also have f(γ(C�
ω )) ⊆ γ(f 
(C�

ω )). So f(γ(C�
ω )) ⊆ γ(C�

ω ). �

Lemma 2. For all a ∈ ℘(Env) and x ∈ Env
, we have:

a ⊆ γ(x) =⇒ a ∩ f(a) ⊆ γ(x�f 
(x)).

Proof. Let a ∈ ℘(Env) and x ∈ Env
 such that a ⊆ γ(x). Since f is monotonic,
we have f(a) ⊆ f(γ(x)). Then by soundness of f 
, we have f(γ(x)) ⊆ γ(f 
(x)).
Thus f(a) ⊆ γ(f 
(x)). So a ∩ f(a) ⊆ γ(x) ∩ γ(f 
(x)). By Def. 1.(9), we have
γ(x) ∩ γ(f 
(x)) ⊆ γ(x�f 
(x)). We conclude that a ∩ f(a) ⊆ γ(x�f 
(x)). �

Lemma 3. For all a ∈ ℘(Env), we have:

f(a) ⊆ a =⇒ f(f(a) ∩ a) ⊆ f(a) ∩ a.

Proof. Let a ∈ ℘(Env) such that f(a) ⊆ a. We have f(a) ∩ a = f(a). Since f is
monotonic, we have f(f(a)) ⊆ f(a). We conclude that f(f(a)∩ a) ⊆ f(a)∩ a.�

Lemma 4 (transfinite kleenean iteration). For all a ∈ ℘(Env), we have:

f(a) ⊆ a =⇒ lfp(f) ⊆ a.

Theorem 1. We have lfp(f) ⊆ γ(D�
ω ).

Proof. We introduce the sequence (un) that is defined by u0 = γ(C�
ω ) and

un+1 = un ∩ f(un) for any n ∈ N. We can prove by induction that ∀n ∈ N,
we have:

1. un ⊆ γ(D�
n );

2. f(un) ⊆ un.

– When n = 0: by definition, we have u0 = γ(C�
ω ) = γ(D�

0 ) and thanks to
Lemma 1, we have f(u0) ⊆ u0.

2 lfp�(f �) is an approximation of the concrete least fixpoint; it may not be a least
fixpoint of the abstract counterpart f � which is not supposed to be monotonic.
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�V = E��
mc(a) = assign(V = E, a)

�skip��
mc(a) = a

�tick��
mc(a) = guard(clock, [0; mc], tick(a))

�if (V ≥ 0) {P1} else {P2}��
mc(a) = a1 � a2,

where

{
a1 = �P1�

�
mc(guard(V, [0; +∞[, a))

a2 = �P2�
�
mc(guard(V, ]−∞; 0[, a))

�while (V ≥ 0) {P}��
mc(a) = guard(V, ]−∞; 0[, Inv�),

where Inv� = lfp�
(
X �→ a � �P ��

mc(guard(V, [0; +∞[, X))
)

�P1; P2�
�
mc(a) = �P2�

�
mc(�P1�

�
mc(a))

Fig. 3. Abstract semantics.

– We now suppose there exists n ∈ N such that un ⊆ D�
n and f(un) ⊆ un.

1. We have un+1 = un ∩ f(un) and un ⊆ γ(D�
n ). By Lemma 2, we have

un+1 ⊆ γ(D�
n �f 
(D�

n )). By definition of D�
n+1, we obtain that un+1 ⊆

γ(D�
n+1).

2. We have f(un+1) = f(un ∩ f(un)) and f(un) ⊆ un. By Lemma 3, we
obtain that f(un+1) ⊆ un+1.

Then let n ∈ N be a natural such that D�
ω = D�

n . We have un ⊆ γ(D�
ω ) and

f(un) ⊆ un. By lemma 4, we have lfp(f) ⊆ γ(D�
ω ). �

The abstract semantics of a program is given by a function (� �

mc ∈ Env
 →

Env
) in Fig. 3. Its soundness can be proved by induction on the syntax:

Theorem 2. For any program P , environment ρ, abstract element a, and max-
imum clock value mc, we have:

ρ ∈ γ(a) =⇒ �P �mc(ρ) ⊆ γ
(
�P �


mc(a)
)
.

4 Arithmetic-Geometric Progressions

4.1 Affine Transformations

We introduce, as follows, the family of the affine transformations (f [a, b]) that
is indexed by two non-negative real parameters a and b:

f [a, b] :

{
R+ → R+

X �→ a×X + b

Lemma 5. Let a1, a2, b1, b2, X1, X2 be non-negative real numbers in R+.
If a1 ≤ a2, b1 ≤ b2, and X1 ≤ X2, then f [a1, b1](X1) ≤ f [a2, b2](X2).
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4.2 Arithmetic-Geometric Progression in the Real Field

We introduce the predomain DR of all the 5-tuples of non-negative real num-
bers. The predomain DR is ordered by the product order �DR

. Intuitively3, an
element (M,a, b, a′, b′) of this predomain encodes an arithmetic-geometric pro-
gression. The real M is a bound on the initial value of the progression. The
affine transformation f [a′, b′] over-approximates the composition of all the affine
transformations that can be applied to a value between two consecutive clock
ticks. Finally, the affine transformation f [a, b] over-approximates the composi-
tion of all the affine transformations that have been applied to a value since the
last clock tick.

Thus, given a clock value vc ∈ N, we can define the concretization γvcDR
(d) of

such a tuple d = (M,a, b, a′, b′) ∈ DR by the set of all the elements X ∈ R such
that |X | ≤ f [a, b]

(
(f [a′, b′])(vc) (M)

)
. We now define some primitives to handle

the elements of DR:

1. The join operator �DR
applies the maximum function component-wise. The

soundness of the operator �DR
is established by Thm. 3, as follows:

Theorem 3. For any vc ∈ N,

γvcDR
(d1) ∪ γvcDR

(d2) ⊆ γvcDR
(d1 �DR

d2).

Proof. By Lem. 5. �

2. The primitive affineDR
computes a linear combination among some elements

of DR. Let n ∈ N∗ be a positive natural4, let (di) = (Mi, ai, bi, a
′
i, b

′
i) ∈ Dn

R

be a family of elements in DR, let (αi) ∈ (R \ {0})n be a family of real
coefficients that are all distinct from 0, and let β ∈ R be a real coef-
ficient. We define the element affineDR

((αi, di), β) ∈ DR by (g(Mi), a∞ ×
α′, g(bi), a′∞, g(b′i)) where:
– a∞ = max{|ai| | 1 ≤ i ≤ n}, a′∞ = max{|a′i| | 1 ≤ i ≤ n},
– α′ =

∑
1≤i≤n

|αi| and

– the function g : Rn → R maps each family (xi) of n real numbers into
the real number defined by

∑
1≤i≤n

|αi×xi|
α′ + |β|.

The soundness of the primitive affineDR
is established by Thm. 4, as follows:

Theorem 4. Let vc ∈ N be a natural and (Xi) ∈ Rn be a non-empty family
of reals such that for any i such that 1 ≤ i ≤ n, we have Xi ∈ γvcDR

(di). Then
we have: ⎛⎝ ∑

1≤i≤n

αi ×Xi + β

⎞⎠ ∈ γvcDR

(
affineDR

((αi, di), β)
)
.

3 In Sect. 6 we forget this intuition to get a more expressive domain.
4 The approximation of affine constants has an ad-hoc handling (Cf. Sect. 5.3).
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Proof. By Lemma 5, by replacing αi with α′×αi

α′ , by expanding f [a, b](vc),
and by applying the triangular inequality. �

3. The primitive tickDR
∈ DR → DR simulates clock ticks. It maps any element

d = (M,a, b, a′, b′) ∈ DR into the element (M, 1, 0,max(a, a′),max(b, b′)) ∈
DR. Thus, just after the clock tick, the arithmetic-geometric progression that
has been applied since the last clock tick is the identity. The progression
between two clock ticks is chosen by applying the worst case among the
progression between the last two clock ticks, and the progression between
any other two consecutive clock ticks. The soundness of this operator is
established by Thm. 5 as follows:
Theorem 5 (clock tick). Let vc ∈ N be a natural. Then we have:

γvcDR
(d) ⊆ γvc+1

DR
(tickDR

(d))

Proof. By Lemma 5. �
For the sake of accuracy, we get a more precise definition of the primitive
tickDR

in Sect. 6, by forgetting the intuitive meaning of the elements of DR.

4. The primitive rangeDR
∈ (DR × {[a; b] | a, b ∈ N, a ≤ b}) → I associates

an element of DR and an interval for the clock counter with an interval
range: we define rangeDR

((M,a, b, a′, b′), [mvc;Mvc]) by [−l; l] where l =
max(umclock

, uMclock
) and for any vc ∈ N,

uvc =

{
a× (M + vc× b′) + b if a′ = 1,

a×
(
a′

vc ×
(
M − b′

1−a′

)
+ b′

1−a′

)
+ b otherwise.

The soundness of the primitive rangeDR
is established in Thm. 6 as follows:

Theorem 6. For any vc ∈ N such that mvc ≤ vc ≤ Mvc, we have:

γvcDR
(d) ⊆ rangeDR

(d, [mvc;Mvc]).

Proof. By studying the sign of (un+1 − un), for any n ∈ N. �

4.3 Representable Real Numbers

Until now, we have only used real numbers. In order to implement numerical
abstract domains, we use a finite subset F of real numbers (such as the floating-
point numbers) that contains the set of numbers {0, 1} and that is closed under
negation. The set F is obtained by enriching the set F with two extra elements
+∞ and −∞ that respectively describe the reals that are greater (resp. smaller)
than the greatest (resp. smallest) element of F. We denote the set {x ∈ F | x ≥ 0}
by F+ and the set F+∪{+∞} by F

+
. The result of a computation on elements of

F may be not in F. So we suppose that we are given a function � � ∈ R → F such
that �x� ≥ x, for any x ∈ R and such that �x� ≤ 0, for any x ≤ 0. The domain F
is related to ℘(R) via the concretization γ

F
that maps any representable number

e into the set of the reals r ∈ R such that |r| < e, moreover we set γ
F
(+∞) = R

and γ
F
(−∞) = ∅.
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4.4 Representable Arithmetic-Geometric Constraints

We introduce the predomain DF as the set of the 5-tuples (M,a, b, a′, b′) ∈(
F

+
)5

. The order �DF
, the concretizations γvcDF

(for any vc ∈ N), the join
operator �DF

, and the clock tick primitive tickDF
are respectively defined as

restrictions of the order �DR
, the concretizations γvcDR

, the join operator �DR
,

and the primitive tickDR
.

We now update the definition of the linear combination primitive affineDF

and of the reduction primitive rangeDF
:

1. The primitive affineDF
maps each pair ((αi, di), β) where (αi) ∈ Rn (where

n ∈ N∗ is a positive natural), (di) = ((Mi, ai, bi, a
′
i, b

′
i)) ∈ Dn

F
, and β ∈ R to

the element:
(g(Mi), �a∞ × α′

M� , g(bi), a′∞, g(b′i))

where:
– a∞ = max{|ai| | 1 ≤ i ≤ n}, a′∞ = max{|a′i| | 1 ≤ i ≤ n},
– sn : Rn → F

+
is defined by s0(()) = 0 and sn+1((ai)1≤i≤n+1) =

�sn((ai)1≤i≤n) + �an+1��.
– α′

m = −sn((−|αi|)1≤i≤n), α′
M = sn((|αi|)1≤i≤n),

– g : Rn → F
+

maps each family (xi) of real numbers into the real number
that is defined by

min
(

max ({|xi| | 1 ≤ i ≤ n}) ,
⌈
sn

(
�|αi| × |xi|�

α′
m

)
+ |β|

⌉)
.

Theorem 7. For any clock value vc ∈ N, we have:⎧⎨⎩ ∑
1≤i≤n

αi ×Xi + β

∣∣∣∣∣∣ Xi ∈ γvcDF
(di)

⎫⎬⎭ ⊆ γvcDF

(
affineDF

((αi, di), β)
)
.

Proof. By Lemma 5 and Thm. 4. �

Remark 1. We define g as the minimum of two sound results. In the real
field, the second one is more precise. However, it may become less precise
when computing with rounding errors.

2. The interval rangeDF
((M,a, b, a′, b′), [mvc;Mvc]) is given by [−l; l] where:

– l = max(umvc
, uMvc

);
– uvc = ��a× vvc� + b�;

– vvc =

{
�M + �vc× b′�� if a′ = 1,⌈
c+1 + c+2

⌉
otherwise;

–

{
exp−

0 = 1, exp−
2×n = −�exp−

n ×(− exp−
n )� ,

exp−
2×n+1 = −��exp−

n ×(− exp−
n )� × a′� ;

–

{
exp+

0 = 1, exp+
2×n = �exp+

n × exp+
n � ,

exp+
2×n+1 = ��exp+

n × exp+
n � × a′� ;
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– c+1 =

{⌈
exp+

vc ×
⌈
M − c−2

⌉⌉
if M ≥ c−2⌈

exp−
vc ×

⌈
M − c−2

⌉⌉
otherwise;

– c−2 = −
⌈

−b′
�1−a′�

⌉
and c+2 =

⌈
−b′

�a′−1�

⌉
.

Theorem 8. For any clock value vc ∈ [mvc;Mvc], we have:

γvcDF
(d) ⊆ rangeDF

(d, vc).

Proof. Because ∀vc ∈ N, exp−
vc ≤ a′vc ≤ exp+

vc, c
+
1 ≥ a′vc×

(
M − b′

1−a′

)
and

c−2 ≤ b′
1−a′ ≤ c+2 , and by applying Thm. 6. �

Remark 2. In the implementation, we use memoization to avoid computing
the same exponential twice.

4.5 Tuning the Extrapolation Strategy

Although F is height-bounded, we introduce some extrapolation operators in or-
der to accelerate the convergence of abstract iterations. A widening step consists
in applying an extensive map to each unstable components of the 5-tuples. In
order to let constraints stabilize, we only widen a component when it has been
unstable a given number of times since its last widening. For that purpose, we as-
sociate each representable number in F with a natural that denotes the number of
times it has been unstable without being widened. We suppose that we are given
a natural parameter n and an extensive function f over F. We first define the
widening �n

f of two annotated representable numbers (x1, n1), (x2, n2) ∈ F × N
by:

(x1, n1)�n
f (x2, n2) =

⎧⎪⎨⎪⎩
(x1, n1) if x1 ≥ x2

(x2, n1 + 1) if x1 < x2 and n1 < n

(f(x2), 0) otherwise.

A narrowing step refines an arithmetic-geometric constraint with another one if
the last one is smaller component-wise (so that we are sure that this refinement
does not locally lose accuracy). To avoid too long decreasing sequences, we count
the number of times such a refinement has been applied with each constraint.
Thus we associate each constraint with an extra counter.

We then introduce the predomain DL
F

=
(

F
+ × N

)5

× N of annotated con-
straints. The function annotate maps each element d = (M,a, b, a′, b′) ∈ DF to
the annotated element that is defined by (((M, 0), (a, 0), (b, 0), (a′, 0), (b′, 0)), 0) ∈
DL

F
, where all counters are initialized with the value 0. Conversely the function

remove maps each element (((M,nM ), (a, na), (b, nb), (a′, na′), (b′, nb′)), n) ∈ DL
F

to the annotation-free element (M,a, b, a′, b′) ∈ DF. We can define the preorder
�DL

F

by a �DL
F

b ⇐⇒ remove(a) �DF
remove(b). The monotonic concretization

γDL
F

is defined as the composition γDF
◦ remove.

Extrapolation operators store information about the history of the extrapola-
tion process into the counters of their left argument, whereas the other primitives
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reset these counters: we define the union a �DL
F

b by annotate((remove(a)) �DF

(remove(b))), the affine combination affineDL
F

((αi, di), β) by the abstract element
annotate(affineDF

((αi, remove(di)), β)), the abstract clock tick primitive tickDL
F

by the map annotate◦tickDF
◦remove, and the interval constraints rangeDL

F

(d, I)
by the interval map rangeDF

(remove(d), I).
We define extrapolation operators. Let fa, fb, and fM be extensive functions

over the set F; let na, nb, nM , and n be some naturals. The functions fa, fb, and
fM and the naturals na, nb, nM , and n are left as parameters of our extrapolation
strategy. The widening ((M1, a1, b1, a

′
1, b

′
1), n1)�DL

F

((M2, a2, b2, a
′
2, b

′
2), n2) is de-

fined by ((M1�nM

fM
M2, a1�na

fa
a2, b1�nb

fb
b2, a

′
1�na

fa
a′2, b

′
1�nb

fb
b′2), 0). The narrowing

(t1, n1)�DL
F

(t2, n2) is then defined by (t2, n1 + 1) in the case when n1 < n and
(t2, n2) �DL

F

(t1, n1), and by (t1, n1) otherwise.

5 Refining an Existing Abstraction

We now show how we can extend an existing abstraction defined as in Def. 1 so
that it can also deal with arithmetic-geometric constraints.

5.1 Domain Extension

Let (Env

0, γ0,�0,assign0,guard0,tick0,⊥0,�0,�0,range0,abs0,reduce0)

be an abstraction which is called the underlying domain. We build the abstrac-
tion Env
 as the Cartesian product Env


0×(V → DL
F
∪{�}). The element � �∈ DL

F

denotes the absence of constraint. The concretization γ : Env
 → ℘(Env) maps
each pair (e, f) to the following set of environments:

γ0(e) ∩
{
ρ ∈ Env

∣∣∣ ∀X ∈ V such that f(X) �= �, ρ(X) ∈ γ
ρ(clock)

DL
F

(f(X))
}
.

Moreover, abstract iterations start with the element ⊥ = (⊥0, [X �→ �]).

5.2 Refinement Operators

The underlying domain and the arithmetic-geometric domain refine each other
when the computation of an abstract primitive requires it. We introduce here
some operators that describe these refinement steps.

The operator r← uses the arithmetic-geometric constraints to refine the un-
derlying domain. Given an abstract element (e, f) ∈ Env
 and a subset V ⊆ V
of variables, we define r←((e, f), V ) by (reduce0(g, e), f) where g(X) is given
by: {

rangeDL
F

(f(X),range0(e)(clock)) if X ∈ V and f(X) �= �,
R otherwise.

Conversely, we use the underlying domain to build new arithmetic-geometric
constraints or to refine existing arithmetic-geometric constraints. Let X ∈ V
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be a variable, let a, b ∈ F+ be two non negative real parameters, and let
e ∈ Env


0 be an abstract element of the underlying domain. The variable X
can soundly be associated with the arithmetic-geometric constraint ge(X, (a, b)),
where ge(X, (a, b)) is given by:{

annotate
((⌈

max(0,�l−b�)
a

⌉
, a, b, 1, 0

))
if a �= 0,

annotate ((a, b, 1, 0, l)) otherwise,

where l ∈ F is the least upper bound (in F) of the set {|x| | x ∈ range0(e)(X)}.
We now define the operator r→ which refines arithmetic-geometric constraints

over a set of variables by weakening the range constraints that can be extracted
from the underlying domain. Given an abstract element (e, f) ∈ Env
, a subset
A ⊆ V , and a map Γ ∈ A → F+×F+, we define r→((e, f), A, Γ ) by (e, f ′) where
f ′(X) is defined by:{

ge(X,Γ (X)) if X ∈ A and either f(X) = �, or ge(X,Γ (X)) �DL
F

f(X),
f(X) otherwise.

5.3 Primitives

Binary operators are all defined in the same way. Let � be an operator in
{�,�,�} and let (e1, f1), (e2, f2) be two abstract elements of Env
. Before ap-
plying a binary operator, we refine arithmetic-geometric constraints so that both
arguments constrain the same set of variables: we set for any i ∈ {1, 2}, (e′i, f

′
i) =

(r→((ei, fi), V3−i\Vi, Γ3−i)), where for any i ∈ {1; 2}, Vi = {X | fi(X) �= �} and
Γi(X) = (a, b) when fi(X) matches (M,a, b, a′, b′). We then apply � component-
wise: we set e′′ = e′1�0e

′
2; we set f ′′(X) = f ′

1(X)�DL
F

f ′
2(X) for any X ∈ V1∪V2;

we set f ′′(X) = � for any X ∈ V \ (V1 ∪ V2). After applying a binary operator,
we use the arithmetic-geometric constraints to refine the underlying domain: we
define (e1, f1) � (e2, f2) by r←((e′′, f ′′),V).

We use a heuristics to drive the abstraction of assignments. This heuristics
weakens the precondition to simplify the assigned expression: it takes some vari-
able ranges, some arithmetic-geometric constraints and an expression; it replaces
in the expression some variables with their range. The choice of the variables
that are replaced is left as a parameter of the abstraction. Thus, the heuristics
heu ∈ ((V ∪{clock} → I)× (V → DL

F
∪{�}))×E → ((R \ {0}×V)∗×R) maps

each pair ((ρ
, f), E) to a pair ((αi, Vi)1≤i≤n, β) that satisfies:

γ((|E|)) ⊆

⎧⎪⎨⎪⎩β +
∑

1≤i≤n

αi × ρ(Vi)

∣∣∣∣∣∣∣
∀ρ ∈ Env such that:
∀X ∈ V , ρ(X) ∈ ρ
(X) ∩ γ

ρ(clock)

DL
F

(f(X))
and ρ(clock) ∈ ρ
(clock)

⎫⎪⎬⎪⎭ .

Let (e, f) ∈ Env
 be an abstract element. We consider several cases when ab-
stracting an assignment X = E:
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1. When computing an assignment X = Y with Y ∈ V , we associate the
variable X with any constraint about Y . Thus we set:

assign(X = Y, (e, f)) = (assign0(X = Y, e), f [X �→ f(Y )]);

2. When computing an assignment X = E where E �∈ V such that the pair
heu((range0(e), f), E) matches ((), β), we remove any arithmetic-geometric
constraints about X . Thus we set:

assign(X = E, (e, f)) = (assign0(X = E, e), f [X �→ �]);

3. Otherwise, we denote by ((αi, Vi)1≤i≤n, β) = heu((range0(e), f), E) the ap-
proximation of E by the heuristics. Before the assignment, we use the un-
derlying domain to refine information about the variables (Vi) that occur in
the simplified expression. When such a variable is tied with no arithmetic-
geometric constraint, we build one with arbitrary coefficients for the affine
transformations. We also refine existing constraints without modifying the
coefficients of the affine transformations. Thus we define the element (e′, f ′)
by r→((e, f), {Vi | 1 ≤ i ≤ n}, Γ ) where for any i ∈ N such that 1 ≤
i ≤ n, we have Γ (Vi) = (1, 0) if f(Vi) = � (missing constraints) and
Γ (Vi) = (a, b) if f(Vi) = (M,a, b, a′, b′) (existing constraints). Then we ap-
ply the assignment component-wise: we define (e′′, f ′′) by (assign0(X =
E, e′), f [X �→ affineDL

F

((αi, f
′(Vi)), β)]). At last, we refine the underlying

domain by the new computed constraint: we set assign(X = E, (e, f)) =
r←((e′′, f ′′), {X}).
The abstraction of a clock tick tick(e, f) is defined component-wise by

(tick0(e), f ′) where f ′(X) = tickDL
F

(f(X)) if f(X) �= � and f ′(X) = � other-
wise. We do not deal directly with guards in the arithmetic-geometric domain.
Nevertheless, if after applying a guard, we can prove in the underlying domain
that the absolute value that is associated with a variable is less than the absolute
value that is associated with another variable, we use this information to refine
arithmetic-geometric constraints. So we define the primitive rabs that refines
arithmetic-geometric constraints, according to absolute value constraints. Given
a relation R ⊆ V2 and a map f ∈ V → DL

F
∪ {�}, the map rabs(R, f) ∈ V →

DL
F
∪ {�} associates any variable X with a minimal element (for �DL

F

) of the
set ({f(X)} ∪ {f(Y ) | (X,Y ) ∈ R}) \ {�} if this set is not empty, or with the
element � otherwise. Then the abstract element guard(X, I, (a, f)) is defined
by (guard0(X, I, a), rabs(abs0(guard0(X, I, a)), f)).

In order not to break the extrapolation process, we never refine arithmetic-
geometric constraints after applying an extrapolation operator. Thus we define
reduce(ρ
, (e, f)) by (reduce0(ρ
, e), f). Moreover, the domain DL

F
cannot help

in comparing the absolute value of variables, so we set abs(e, f) = abs0(e).
Nevertheless, the domain DL

F
can refine variable range: we set range(e, f)(X)

by range0(e)(X) ∩ rangeDL
F

(f(X),range0(e)(clock)).

Theorem 9. (Env
, γ,�,assign,guard,tick,⊥,�,�,range,abs,reduce)
is an abstraction.
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Proof. We sketch the proof of Th. 9: all soundness requirements come from
the soundness of both the underlying domain and the arithmetic-geometric pre-
domain. During an extrapolation iteration (ascending or descending), the set
of arithmetic-geometric constraints (i.e., the set of the variables that are not
mapped into �) is ultimately stationary (since the number of constraints is in-
creasing, whereas V is finite); then each arithmetic-geometric constraint sequence
is ultimately stationary; once the information that refines the underlying domain
is fixed, the underlying domain termination criteria in Def. 1.(8-9) apply. �

6 Dealing with Buffers

The definition of the primitive tickDF
in Sect. 4.4 implicitly supposes that the

affine transformations that must be captured are fully computed between two
clock ticks. For instance, Ex. 2 can be analyzed accurately because the multipli-
cation and the division are computed in the same loop iteration. We first slightly
modify Ex. 2 so that this atomicity assumption is not satisfied. Then we refine
the primitive tickDF

to handle more complex cases precisely.

6.1 Motivating Example

Example 3. This example iterates a loop where a floating point is first divided
by a coefficient α > 2 and then multiplied by the coefficient α. Unlike Ex. 2, the
division and the multiplication are not computed in the same iteration of the
loop. At each iteration, the current value of X is multiplied by α and the result
is stored in a buffer (denoted by the variable buffer). The next value for X
is obtained by dividing the value that was in the buffer at the beginning of the
iteration (while the current value of X is stored in a temporary variable tmp).
For the sake of simplicity, we have removed reinitialization branches.

V = R; X = I; tmp = 0; buffer = I;
while (V ≥ 0) {
V = R;
tmp = X ;
X = [ 1

α − ε1; 1
α + ε1] × buffer + [−ε2; ε2];

buffer = [α− ε3;α + ε3] × tmp + [−ε4; ε4];
tick}

where 0 < εi < 1, for any i ∈ {1; 2; 3; 4}, α > 2, and I ∈ I.
Moreover, initialization values range in the intervals I. The parameter α is

a coefficient in the example. The parameters ε1 and ε3 encode relative round-
ing errors, and the parameters ε2 and ε4 encode absolute rounding errors. The
variable V allows stopping the loop iteration.

At the first abstract iteration, before the first clock tick, the variable buffer
is associated with the 5-tuple (M1, a1, b1, 1, 0) where MI is the least upper bound
of the set {|x| | x ∈ I}, a1 = �α + ε3� and b1 = �ε4�. After the first clock tick,
it is associated with (M1, 1, 0, a1, b1). At the second abstract iteration, before



The Arithmetic-Geometric Progression Abstract Domain 57

the clock tick, the variable X is associated with the 5-tuple (M1, a2, b2, a1, b1)
where a2 =

⌈
1
α + ε1

⌉
and b2 = �ε2�. After the second clock tick, the variable

X is associated with the 5-tuple (M1, 1, 0, a1,max(b1, b2)). We notice that the
arithmetic-geometric domain cannot help in bounding the range of the variable
X because of the computation of the exponential (since we have a1 > 2). All
information has been lost when computing the first clock tick in the abstract.

6.2 Refining the Domain

To refine the domain, we have to decide at each clock tick which affine computa-
tions are finished. For that purpose, we introduce two parameters βm, βM ∈ F+

very close to 1 and such that βm < 1 < βM . We then consider that an affine
transformation [X �→ a ×X + b] denotes a finished computation if and only if
βm < a < βM . In fact, in the case when a > βM the arithmetic-geometric pro-
gression domain will provide useless range and in the case when a < βm the inter-
val domain can provide accurate range by using widening and narrowing. Thus,
we redefine the element tickDF

(M,a, b, a′, b′) by (M,a, 0, a′,max{b, b′}) in the
case when both a �∈ [βm;βM ] and a′ ≥ 1, and by (M, 1, 0,max{a, a′},max{b, b′})
otherwise. This definition still satisfies Thm. 5.

In Ex. 3, after the first clock tick and provided that a1 < βm, the vari-
able buffer is now associated with (M1, a1, 0, 1, b1). At the second abstract
iteration, before the clock tick the variable X is associated with the 5-tuple
(M1, a3, b3, 1, b1) where a3 = ��α + ε3� × a1� and b3 = ε3. Then after the sec-
ond clock tick and provided that a3 < βM , the variable X is associated with
(M1, 1, 0, a3,max(b1, b3)). This constraint is stable and allows the computation
of an accurate range for the variable X .

7 Benchmarks

We tested our framework with three programs of a same family of critical embed-
ded software written in C. For each program we tested the astrée [2] analyzer
with the classical domains (intervals [4], octagons [8], decision trees, and ex-
panded digital filter domains [6]) and without/with the new arithmetic-geometric
domain. For each of these analyses, we report in Fig. 4 the analyzed program size,
the number of global variables, the number of arithmetic-geometric constraints
that are captured by the analysis, the analysis time, the number of iterations
for the main loop, and the number of warnings (in polyvariant function calls).
These results have been obtained on a amd Opteron 248, with 8 Gb of RAM.
In two of the three programs, the arithmetic-geometric progression domain solve
all the remaining false alarms which gives a proof of absence of run-time errors.

8 Conclusion

We have proposed a new numerical domain which relates the value of each vari-
able to a clock counter. It approximates each value by an expression of the form
[X �→ α×X + β](n)(M), where (M,α, β) are discovered automatically and n is
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lines of C 70,000 216,000 379,000

global variables 13,400 7,500 9,000

ari-geo progressions disabled enabled disabled enabled disabled enabled

ari-geo constraints 257 458 634

iterations 53 47 228 64 238 67

average time per iteration 1mn30s 1mn47s 5mn40s 6mn07s 10mn17s 11mn35s

analysis time 1h20mn 1h24mn 21h32mn 6h33mn 40h58mn 12h55mn

warnings 24 0 80 1 189 0

Fig. 4. Some statistics.

the maximum value of the clock counter. This approximation is proved correct
and allows us to bound the value of some floating-point variables by using the
program execution time. These bounds cannot be discovered either by ignoring
the clock counter or by just bounding the difference between variable values and
the clock value (c.f. [1]). Our framework allows the full certification of huge criti-
cal embedded softwares. The accuracy gain significantly reduces the exploration
space which leads to an analysis speed-up in some of our examples.
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8. A. Miné. The octagon abstract domain. In Proc. WCRE’01(AST’01), IEEE, 2001.
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Abstract. In this article, we introduce a simple formal semantics for
floating-point numbers with errors which is expressive enough to be for-
mally compared to the other methods. Next, we define formal semantics
for interval, stochastic, automatic differentiation and error series meth-
ods. This enables us to formally compare the properties calculated in
each semantics to our reference, simple semantics. Most of these meth-
ods having been developed to verify numerical intensive codes, we also
discuss their adequacy to the formal validation of softwares and to static
analysis. Finally, this study is completed by experimental results.

1 Introduction

Interval computations, stochastic arithmetics, automatic differentiation, etc.:
much work is currently done to estimate and to improve the numerical accu-
racy of programs. Beside the verification of numerical intensive codes, which is
the historical applicative domain of these methods, a new problematic is growing
that concerns the formal validation of the accuracy of numerical calculations in
critical embedded systems.

Despite the large amount of work in this area, few comparative studies have
been carried out. This is partly due to the fact that the numerical properties
calculated by different methods are difficult to relate. For example, how to com-
pare results coming from interval arithmetics to the ones obtained by automatic
differentiation?

This article attempts to clarify the links between the most commonly used
methods among the above-mentioned ones. First, we introduce a simple formal
semantics for floating-point numbers with errors which is expressive enough to be
formally compared to the other methods. This semantics is a special instance of a
familly of semantics introduced recently [22]. Next, we define formal semantics for
interval, stochastic, automatic differentiation and error series methods which are
usually expressed in other, less semantical, settings. This enables us to compare
the properties calculated by each semantics to our reference semantics and to
oversee how different methods could be coupled to obtain more accurate results.

Most of these methods having been developed to verify numerical intensive
codes, we discuss their adequacy to the formal validation of critical systems.

R. Cousot (Ed.): VMCAI 2005, LNCS 3385, pp. 59–77, 2005.
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From our point of view, a method is well suited for the validation of embedded
applications if it enables the user to detect errors in an application that uses
standard, non-instrumented, floating-point numbers, once embedded. In addi-
tion, we discuss the adequacy of the different semantics to static analysis. We
complete our study by conducting some experiments. The methods described in
this article are applied to simple examples, to show their ability and limits to
detect numerical errors in C codes.

We limit our study to the semantics dealing with numerical precision. This
excludes other interesting related works that also contribute to the validation
of the numerical accuracy of softwares, like formal proof techniques of numer-
ical properties over the floating-point numbers (e.g. [5, 10, 19]), or constraints
solvers over the floating-point numbers which are used for structural test case
generation [24]. It also excludes alternative arithmetics enabling to improve the
accuracy of the float operations like multiple precision arithmetics [18, 29] or
exact arithmetics [28]. These alternative arithmetics are more accurate than the
standard floating-point arithmetics but they do not provide information on the
precision of the results.

This article is organized as follows. Section 2 briefly presents some aspects of
the IEEE 754 Standard. In Section 3, we introduce a simple semantics attaching
to each floating-point number an error term measuring the distance to the exact
real number which has been approximated. Next, this semantics is compared to
other semantics, based on interval arithmetics (Section 4), stochastic arithmetics
(Section 5), automatic differentiation (Section 6) and error series (Section 7). In
Section 8, we discuss the adequacy of each method to static analysis and finally,
in Section 9, we present experimental results illustrating how the techniques
described in this article work on simple examples. Section 10 concludes.

2 Floating-Point Numbers

The IEEE 754 Standard specifies the representation of floating-point numbers as
well as the behavior of the elementary operations [2, 11]. It is now implemented in
almost all modern processors and, consequently, it provides a precise semantics,
used as a basis in this article, for the basic operations occurring in high-level
programming languages. A floating-point number x in base β is defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1 (1)

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the mantissa with digits
0 ≤ di < β 1, 0 ≤ i ≤ p− 1, p is the precision and e is the exponent, emin ≤ e ≤
emax. The IEEE Standard 754 specifies a few values for p, emin and emax. For
example, simple precision numbers are defined by β = 2, p = 23, emin = −126
and emax = +127. the standard also defines special values like NAN (not a
number) or ±∞. In this article, the notation F indifferently refers to the set
of simple or double precision numbers, since our assumptions conform to both
types. R denotes the set of real numbers.
1 d0 �= 0 but for denormalized numbers.
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The standard defines four rounding modes for elementary operations between
floating-point numbers. These modes are towards −∞, towards +∞, towards
zero and to the nearest. We write them ◦−∞, ◦+∞, ◦0 and ◦∼ respectively. Let
↑◦ : R → F be the function which returns the roundoff of a real number following
the rounding mode ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼}. ↑◦ is fully specified by the norm. The
standard specifies the behavior of the elementary operations ♦ ∈ {+, −, ×, ÷}
between floating-point numbers by

f1 ♦F,◦ f2 = ↑◦ (f1 ♦R f2) (2)

In this article, we also use the function ↓◦: R → R which returns the roundoff
error. We have ↓◦ (r) = r− ↑◦ (r).

Many reasons may lead to an important loss of accuracy in a float compu-
tation. For example, a catastrophic cancellation arises when subtracting close
approximate numbers x and y [11]. An absorption arises when adding two num-
ber of different magnitude x " y; in this case x +F y = y with x �= 0.

The error due to the roundoff of an initial datum or resulting from the round-
off of the result of an operation is called a first order error. When errors are mul-
tiplied together, we obtain higher order errors. For example (x+ εx)× (y+ εy) =
xy + xεy + yεx + εxεy. Here, xεy + yεx is the new first order error and εxεy is a
second order error.

The errors arising during a float computation can be estimated in different
ways. Let gR : R → R be a function of the reals and gF : F → F its
implementation in the floating-point numbers. The forward error estimates, for a
given input x the distance d(gR(x), gF(x)). The backward error B(x) determines
whether the approximated solution gF(x) is the exact solution to a problem
close to the original one [8]: B(x) = inf

{
d(x, y) : y = g−1

R
(gF(x)

}
. Most of the

existing automatic methods (and all the methods used in this article) compute
forward errors.

3 Global Error

In this section, we introduce the semantics [[.]]E which is used as a reference in
the rest of this article. [[.]]E computes the floating-point number resulting from a
calculation on a IEEE 754 compliant computer as well as the error arising during
the execution. In other words, this semantics calculates the forward error, as
defined in Section 2, between the exact result of a problem in the reals and the
approximated solution returned by a program. To calculate the exact errors, [[.]]E
uses real numbers and, consequently, it remains a theoretical tool. This semantics
corresponds to the semantics SL0

introduced in [22].
Formally, in [[.]]E, a value v is denoted by a two-dimensional vector v =

fεf + eεe. f ∈ F denotes the float used by the machine and e ∈ R denotes
the exact error attached to f . εf and εe are formal variables used to identify
the float and error components of v. For example, in simple precision, using the
functions ↑◦ and ↓◦ introduced in Section 2, the real number 1

3 is represented



62 Matthieu Martel

x1 = f1εf + e1εe and x2 = f2εf + e2εe (3)

x1 + x2 =↑◦ (f1 + f2)εf + [e1 + e2+ ↓◦ (f1 + f2)] εe (4)

x1 − x2 =↑◦ (f1 − f2)εf + [e1 − e2+ ↓◦ (f1 − f2)] εe (5)

x1 × x2 =↑◦ (f1 × f2)εf + [e1f2 + e2f1 + e1e2+ ↓◦ (f1 × f2)] εe (6)

1

x1
=↑◦

(
1

f

)
εf +

⎡⎣↓◦ ( 1

f

)
+
∑
n≥1

(−1)n en

fn+1

⎤⎦ εe (7)

Fig. 1. The semantics [[.]]E .

by the value v =↑◦ (1
3 )εf+ ↓◦ (1

3 )εe = 0.333333εf + (1
3 − 0.333333)εe. The

semantics interprets a constant d as follows:

[[d]]E =↑◦ (d)εf+ ↓◦ (d)εe (8)

The semantics of elementary operations is defined in Figure 1, the operands
x1 and x2 being given in Equation (3). Equations (4−6) are immediate. For
Equation (7), recall that 1

1+x =
∑

n≥0(−1)nxn for all x such that −1 ≤ x ≤ 1.
We have:

1

f + e
=

1

f
× 1

1 + e
f

=
1

f
×
∑
n≥0

(−1)n en

fn

The power series development is valid for −1 ≤ e
f ≤ 1 or, equivalently, while

|e| ≤ |f |, i.e. as long as the error is less than the float in absolute value. The
semantics of the square root function is obtained like for division but the other
elementary functions (e.g. the trigonometric ones) are more difficult to han-
dle, due to the fact that the IEEE 754 Standard does not specify how they
are rounded. [[.]]E calculates the floating-point numbers returned by a program
and the exact difference between the float and real results, as outlined by the
following proposition.

Proposition 1 Let a be an arithmetic expression. Then if [[a]]E = fεf + eεe

then [[a]]F = f and [[a]]R = f + e.

By relating [[.]]E to the semantics [[.]]R of real numbers and to the semantics [[.]]F
of floating-point numbers, Proposition 1 provides a correctness criterion for [[.]]E.

[[.]]E is well suited for the formal validation of critical systems because it ex-
actly gives the floating-point numbers f used by the non-instrumented embedded
code running on a IEEE 754 compliant computer as well as the error e arising
when f is used instead of the exact value f +e. However, this semantics remains
a theoretical tool since it uses real numbers and the function ↓◦ which cannot
be exactly calculated by a computer in general. In the next sections, we use it as
a reference in the study of other, approximate, semantics. We will compare the
other methods in their ability to estimates the quantities f and e that define the
values fεf +eεe of [[.]]E. The link between [[.]]E and the other methods is summed
up by propositions 2, 3, 4 and 5.
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4 Intervals

The classical semantics of intervals [[.]]I aims at bounding the real result of a
calculation by a lower and an upper float value [27]. Obviously, the semantics of
a constant d is

[[d]]I = [↑−∞ (d), ↑+∞ (d)] (9)

Similarly, let x1 = [x1, x1] and x2 = [x2, x2] be two float intervals, let ♦ be an
elementary operation, and let i = [i, i] be the interval with real bounds defined
by i = x1♦x2. [[x1♦x2]]I is defined by:

[[x1♦x2]]I = [↑−∞ (i), ↑+∞ (i)] (10)

Basically, an interval computation bounds a real number by two floating-point
numbers, the maximal float smaller or equal to the real and the minimal float
greater or equal the real. In other terms, using the formalism of Section 3, an
interval computation approximates from below and from above the sum f + e
corresponding to the float f and to the exact error e calculated by [[.]]E. This is
summed up in the following proposition.

Proposition 2 Let a be an arithmetic expression such that [[a]]E = fεf + eεe

and [[a]]I = [x, x]. Then we have [[f + e]]I ⊆ [x, x].

Note that if the interval bounds are expressed with the same precision as in the
original program, as in the semantics defined by equations (9) and (10), then
the result [x, x] output by the interval method bounds both the float result f
and the real result f + e. Otherwise, if the interval bounds are expressed with
a greater precision than in the non-instrumented code then the interval method
bounds the real result f + e but not necessary the float result f . In this latter
case, the method does not enable one to predict how a program behaves when
using standard floating-point numbers.

Because [[.]]I always adds the error terms to the floating-point numbers, an
interval computation does not distinguish two different kinds of errors:

1. Sensivity errors, due to the fact that a small variation of the inputs may
yield a large variation of the outputs, even with real numbers.

2. Numerical errors, due to the fact that a float calculation may diverge from
a real calculation.

For example, numerical errors arise in the following program which uses simple
precision floating-point numbers:

float x=1.0;

float y=1.0e-8;

for(int i=0;i<1e8;i++) { x=x-y; }

The value 10−8 being subtracted 108 times to 1, the exact result in the
reals is xR = 0. But 10−8 is less than the least significant digit of the float 1.0
and, consequently, an absorption occurs: 1.0 − 10−8 = 1.0 in the floating-point
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numbers. So, at the end of the iteration xF = 1.0. The interval semantics defined
by equations (9) and (10) returns an interval xI ⊇ [0, 1], indicating that the
exact result is between 0 and 1. In [[.]]E, xE = 1.0εf − 1.0εe which means that
the float value of x is 1 and that the exact forward error on x is −1.

As illustrated by our example, [[.]]I provides less information than the seman-
tics of global errors because no distinction is made between the float and er-
ror terms. Nevertheless, when the interval resulting from a calculation is small,
we may conclude that the error term also is small. In this case, an interval
method can validate a calculation. In addition, intervals can be used to im-
plement the theoretical semantics [[.]]E, yielding a new semantics [[.]]EI. A value
v = fεf + [x, x]εe of [[.]]EI is made of a float f and an interval of error [x, x].
The elementary operations are defined by the rules of Figure 1, in which the
computations on error terms are carried out in [[.]]I.

Examples of interval arithmetic libraries are Boost [6] and MPFI [30], the
latter being based on the multiple precision library MPFR [18]. Implementations
of multiple precision interval libraries are compared in [17].

5 Stochastic Arithmetics

Stochastic arithmetics consists of running a few times the same program, the
roundoff errors being, at each run, randomly propagated. The common digits
of the results of all the executions are assumed exact [9, 31]. The stochastic
arithmetic semantics [[.]]S, introduces the random roundoff function ↑? : F → F
defined by:

↑? (d) =

{
either ↑−∞ (d)
or ↑+∞ (d)

with probability
1

2
(11)

In stochastic arithmetics, the n executions of a program are usually carried out
synchronously, to cope with control flow problems, like ensuring that all the
executions take the same branches. So, a stochastic value is a n-tuple containing
the n values assigned to a number. A constant d is interpreted by:

[[d]]S = (↑? (d), . . . , ↑? (d)) (12)

and, for any elementary operation ♦, we have:

[[x ♦ x′]]S = (↑? (x1♦x′1), . . . , ↑? (xn♦x′n)) (13)

[[.]]S uses the fact that roundoff errors usually cancel each other. This enables the
user to obtain less pessimistic results than, e.g., with interval arithmetics. More
precisely, the mean x of the result x = (x1, . . . , xn) of the n runs approximates
the real result xR of the calculation. Let C(x, xR) denote the number of digits
common to x and xR. Using Student’s test, the method makes it possible to
compute C(x, xR) with probability P [9].

Proposition 3 Let a be an expression such that [[a]]S = (x1, . . . , xn) and [[a]]E =
fεf +eεe. Then, with probability P , x and f +e have C(x, f +e) common digits,

where C(x, f + e) = log10

(√
n|x|

στP

)
and σ2 = 1

n−1

∑n
i=1 (xi − x)2.
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For n = 3 and P = 0.95, τP = 4, 303. However, Proposition 3 is based on
the hypothesis that the roundoff errors are uniform and independent, the latter
meaning that the errors arising at each step of a calculation are not correlated
with each other. This is not always the case, mainly for loops. For example, in
the program of Section 4, the same roundoff error is made at each iteration.
In addition, Proposition 3 assumes that higher order errors are negligible with
respect to the first order errors. In Section 6, we introduce an example for which
this assumption does not hold.

Because [[.]]S approximates, with probability P , the exact result of a program
p in the reals, it does not enable the user to ensure that no precision loss arises in
the non-instrumented execution of p which uses standard floating-point numbers.
However, even if this method is mainly taylored to detect stability problems in
the algorithms used in a program, it can assert the validity of a floating-point
calculation when (1) C(x, xR) is high and (2) x is close to the float result f .

An issue to improve a stochastic arithmetics for validation would be to define
a new semantics [[.]]ES based on [[.]]E. In this new semantics, the exact error terms
of [[.]]E would be computed in [[.]]S. A value v = fεf + eεe of [[.]]ES would be made
of a float f and an error e which would be a stochastic number of [[.]]S. However,
the hypotheses and the correctness proofs of [[.]]S must be revisited. The CADNA
library implements stochastic arithmetics [7].

6 Automatic Differentiation

In this section we introduce a simple semantics performing an automatic differ-
entiation of programs. More elaborated techniques are described in the references
mentioned later on. In automatic differentiation [3, 15], one considers that a pro-
gram p calculates a function g of the data for which we are going to evaluate, at
the same time as g, the numerical values of the derivatives. If d1, . . . , dn denote
the data used in p, then the program computes the results v1, . . . , vm such that:⎛⎜⎝ v1

...
vm

⎞⎟⎠ =

⎛⎜⎝ g1(d1, . . . , dn)
...

gm(d1, . . . , dn)

⎞⎟⎠ (14)

v1, . . . , vm are the final results of the program, at the end of the execution.
For each 1 ≤ i ≤ m, vi is a function gi of the data d1, . . . , dn. Automatic
differentiation aims at numerically calculating, in addition to the terms vi, the
partial derivatives ∂gi

∂dj
(d1, . . . , dn) for all 1 ≤ j ≤ n. By determining whether

a slight modification of the initial value dj implies a large modification of the
result vi, the partial derivative ∂gi

∂dj
(d1, . . . , dn) indicates the sensitivity of vi to

the variations of dj . If ∂gi

∂dj
(d1, . . . , dn) ≈ 0, vi is not much sensitive to a variation

of dj . If ∂gi

∂dj
(d1, . . . , dn) > 1 then the error on dj is magnified in vi by a factor

approximately equal to ∂gi

∂dj
(d1, . . . , dn).

The most intuitive way to calculate the derivatives is to achieve a linear
approximation of order one by means of the well-known formula: g′(x) ≈
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v1 = (f1, δ1, . . . , δn) and v2 = (f2, η1, . . . , ηn) (15)

[[v1 + v2]]D = (f1 + f2, δ1 + η1, δ2 + η2, . . . , δn + ηn) (16)

[[v1 − v2]]D = (f1 − f2, δ1 − η1, δ2 − η2, . . . , δn − ηn) (17)

[[v1 × v2]]D = (f1 × f2, f1η1 + f2δ1, f1η2 + f2δ2, . . . , f1ηn + f2δn) (18)

[[
v1

v2
]]D =

(
f1

f2
,
f2δ1 − f1η1

f2
2

,
f2δ2 − f1η2

f2
2

, . . . ,
f2δn − f1ηn

f2
2

)
(19)

Fig. 2. The semantics [[.]]D for automatic differentiation.

g(x+Δx)−g(x)
Δx . However this method yields imprecise results, due to the fact

that Δx is usually small. Instead, automatic derivation techniques calculate
the derivatives by composing elementary functions, according to the chain rule:
(f ◦ g)′(x) =

[
f(g(x))

]′ = g′(x)× f ′(g(x)). Each function gi is viewed as a chain
of elementary functions such as additions, products, trigonometric functions, etc.
The derivatives ∂gi

∂dj
(d0, . . . , dn) are calculated by the chain rule.

The semantics [[.]]D of Figure 2 achieves a sensitivity analysis to the data of
a program p, by automatic differentiation. For a constant di, we have

[[di]]D =
(
di, δ1 = 0, . . . , δi = 1, . . . , δn = 0

)
(20)

A numerical value v of [[.]]D is a (n+ 1)-tuple (f, δ1, . . . , δn). Intuitively, at some
stage of the execution of p, v is the result of an intermediate calculation. In other
terms, for a certain function g, the program p has calculated h1(d1, . . . , dn) such
that g((d1, . . . , dn)) = h2 ◦ h1(d1, . . . , dn) for some function h2 and the current
value v of [[.]]D represents

v = (f, δ1, . . . , δn) =

(
h1(d1, . . . , dn),

∂h1

∂d1
(d1, . . . , dn), . . . ,

∂h1

∂dn
(d1, . . . , dn)

)
(21)

Automatic differentiation can be viewed as a way to approximately calculate
the error term eεe of the semantics [[.]]E. Given a program that implements a
function g, [[.]]E calculates [[g(d1, . . . , dn)]]E = xr = frεf + erεe. In the simplest
case m = n = 1, i.e. for a program p calculating a function g of a single datum d1,
we can estimate the error term er from the numerical values g(d1) and ∂g

∂d1
(d1)

returned by [[g(d1)]]D. Let ed1 denote the initial error on the argument d1 of g.
By linear approximation, we have

xr ≈ g(d1)εf +

(
ed1 ×

∂g

∂d1
(d1)

)
εe (22)

In Equation (22), the exact error term er is approximated by ed1 × ∂g
∂d1

(d1). In
the general case, i.e. if m ≥ 1 and n ≥ 1, we have the following property.

Proposition 4 Let e1, . . . , en be the initial errors attached to data d1, . . . , dn

and let v1, . . . , vm be the results of a computation as defined in Equation (14).
If in the semantics [[.]]E, for all 1 ≤ i ≤ m, vi = [[gi(d1, . . . , dn)]]E = xiεf + eriεe
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then, in [[.]]D, vi = [[gi(d1, . . . , dn)]]D = (yi, δi,1, . . . , δi,n) such that xi = yi and
such that the error term eri on the final result vi is linearly approximated by:

eri ≈
∑

1≤j≤n

ej × δi,j (23)

The main drawback of automatic differentiation stems from the linear approx-
imation made in Equation (22), which may under-estimate the errors (or over-
estimate them, though it is usually less critical for validation). For example, let
us consider the function:

float g(float x,int n) {

y=x;

for (int i=0;i<n;i++) { y=y*x; };

return y; }

In this function, if the parameter x = fεf +eεe is such that f < 1 and f +e > 1
then, in the floating-point numbers, g(x) → 0 as n → ∞, while in the reals,
g(x) = g(f + e) → ∞ as n → ∞. In [[.]]D, the value returned by g(x, n) is
(fn+1, nfn), where the component nfn gives the sensitivity of g to the parameter
x. If f < 1 then nfn → 0 as n → ∞ and the approximation of Equation
(23) may become irrelevant. For instance, if x = 0.95εf + 0.1εe then on one
hand we have [[g(x, n)]]E → 0εf + ∞εe as n → ∞ while, on the other hand
[[g(x, n)]]D → (0, 0) as n → ∞ In this example, Equation (23) leads to the
erroneous conclusion that for x = 0.95εf + 0.1εe, ex ≈ 0.

In addition, automatic differentiation only takes care of the errors on the
initial data, neglecting the errors introduced by the operations, during the cal-
culation. For example, from Equation (4), the semantics [[.]]E of an addition is:

x1 + x2 =↑◦ (f1 + f2)εf + [e1 + e2+ ↓◦ (f1 + f2)] εe

[[.]]D makes it possible to estimate the terms e1 and e2 but neglects the error
introduced by the addition itself, namely ↓◦ (f1 + f2). Finally, the higher-order
error terms also are neglected. For example, the term e1e2 occuring in the result
of the product of Equation (6) is ignored.

Bischof et al. have recently published an overview of the implementations of
automatic differentiation libraries [3]. In certain cases, automatic differentiation
can also be used to improve the precision of a calculation, by adding correcting
terms to the floating-point numbers computed by the machine [20, 21]. In this
case, roundoff errors introduced by the elementary operations are not neglected
and one can guarantee the precision of the final result.

7 Error Series

In this section, we introduce the semantics [[.]]W of error series [13, 22]. The
semantics [[.]]E of Section 3 globally computes the difference between the float
and the real result of a calculation. However, when this error term is large, no
hint is given to the programmer concerning its source. [[.]]W is a generalization of
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r1 +�i r2
def
= ↑◦ (f1 + f2)ε +

∑
�∈L+

(ω�
1 + ω�

2)ε�+ ↓◦ (f1 + f2)ε�i (26)

r1 −�i r2
def
= ↑◦ (f1 − f2)ε +

∑
�∈L+

(ω�
1 − ω�

2)ε�+ ↓◦ (f1 − f2)ε�i (27)

r1 ×�i r2
def
=↑◦ (f1f2)ε +

∑
�1 ∈ L, �2 ∈ L

�1 · �2 �= ν

ω�1
1 ω�2

2 ε�1·�2+ ↓◦ (f1f2)ε�i (28)

(r1)
−1�i def

= ↑◦ (f−1
1 )ε− 1

f1

∑
�∈L

ω�

f1
ε� +

1

f1

∑
n≥2

(−1)n

(∑
�∈L

ω�

f1

)n

εhi+ ↓◦ (f−1
1 )ε�i

(29)

r1 ÷�i r2
def
= r1 ×�i (r2)

−1�i
(30)

Fig. 3. Elementary operations for floating-point numbers with errors.

[[.]]E in which the roundoff errors arising at any stage of a calculation are traced,
in order to detect which of them mainly contribute to the global error.

[[.]]W assumes that the control points of the program are annotated by unique
labels 	 ∈ L. A value of [[.]]W is a series

r = fε +
∑
�∈L

ω�ε� (24)

Error series generalize the values of [[.]]E. In Equation (24), f is the float ap-
proximating the value of r. f is always attached to the formal variable ε whose
index is the empty word. A term ω�ε� denotes the contribution to the global
error of the first-order error introduced by the operation labeled 	 during the
evaluation of r. ω� ∈ R is the scalar value of this error term and ε� is a formal
variable. A special label hi which corresponds to no particular control point is
used to identify the higher order errors. This comes from previous work [22]
which introduces more general semantics for error series. Error terms of order n
correspond to words of length n and the empty word ν is related to the term for
the floating-point number. The multiplication of terms of order m and n yields
a new term of order m + n denoted by a word of length m + n. In this article,
hi identifies all the words of length greater that one and the product of formal
variables is defined by Equation (25).

εu × εv =
{

εuv if length(uv) ≤ 1
εhi otherwise (25)

The elementary operations are defined in Figure 3 for r1 = f1ε1+
∑

�∈L+ ω�
1ε�

and r2 = f2ε2 +
∑

�∈L+ ω�
2ε�. L+ denotes the set L without the empty word.

In addition, the symbols f and ω are used interchangeably to denote the coeffi-
cient of the variable ε. The formal series

∑
�∈L ω

�ε� related to the result of an
operation ♦�i contains the combination of the errors on the operands plus a new
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error term ↓◦ (f1♦f2)ε�i corresponding to the error introduced by the operation
♦ occurring at point 	i. The rules for addition and subtraction are natural. The
elementary errors are added or subtracted componentwise in the formal series
and the new error due to point 	i corresponds to the roundoff of the result.

Multiplication requires more care because it introduces higher-order errors
due to the multiplication of the first-order errors. For instance, let us consider
the product at point 	3 of two data r�1

1 = (f1ε+ω�1
1 ε�1) and r�2

2 = (f2ε+ω�2
2 ε�2):

r�1
1 ×�3 r�2

2 =↑◦ (f1f2)ε + f2ω
�1
1 ε�1 + f1ω

�2
2 ε�2 + ω�1

1 ω�2
2 εhi+ ↓◦ (f1f2)ε�3 (31)

As shown in Equation (31), the floating-point number computed by this multipli-
cation is ↑◦ (f1f2). The initial first-order errors ω�1

1 ε�1 and ω�2
2 ε�2 are multiplied

by f2 and f1 respectively. ν denotes the empty word. In addition, the multiplica-
tion introduces a new first-order error ↓◦ (f1f2) which is attached to the formal
variable ε�3 in order to indicate that this error is due to the product occurring
at the control point 	3. Finally, this operation also introduces a second-order
error that we attach to the formal variable εhi. In Figure 3, Equation (28) is a
generalization of Equation (31). The term for division is obtained by means of
a power series development.

This semantics details the contribution to the global error of the first-order
error terms and globally computes the higher-order error arising during the cal-
culation. In practice, higher-order errors are often negligible. So, this semantics
allows us to determine the sources of imprecision due to first order errors while
checking that the higher-order errors are actually globally negligible. With re-
spect to the semantics [[.]]E, we have the following result.

Proposition 5 Let a be an arithmetic expression such that [[a]]E = fεf + eεe

and [[a]]W = ωε +
∑

�∈L ω�ε�. Then ω = f and
∑

�∈L ω
� = e.

Like [[.]]E, [[.]]W is not directly implementable since it uses real numbers and
the function ↓◦ : R → R. However, [[.]]W can also be approximated in the same
way than [[.]]E. The error terms can be calculated for instance with intervals or
stochastic numbers, yielding new semantics [[.]]WI and [[.]]WS.

In addition, the first order error terms of [[.]]W can be related to the partial
derivatives computed by [[.]]D. Let di be a datum identified by the control point
	 of a program p such that p computes a function g(d1, . . . , dn). Then the term
↓◦ (di)× ∂g

∂di
(d1, . . . , dn) linearly approximates the error term ω�ε� of [[.]]W. With

respect to the exact semantics [[.]]W, [[.]]D neglects the higher order error term
ωhiεhi as well as any error term ω�ε� such that 	 is not related to an initial
datum, i.e. such that 	 is related to an operation.

Higher order errors often are negligible and are, in practice, neglected by
most methods (but [[.]]W and [[.]]I). The program of Section 6 is a case in which,
for some inputs, first order errors are negligible while higher order errors are not:
If the parameter x = fε + ωεx is such that f < 1 and f + ω > 1 then, in the
floating-point numbers, g(x) → 0 as n → ∞, while in the reals, g(x + ω) → ∞
as n → ∞. The global error tends towards infinity but it can be shown that
all the first order error terms tend to 0. Since only the higher order errors are
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significant, a method neglecting them should not detect any problem in this
computation.

8 Static Analysis

Numerical computations are increasingly used in critical embedded systems like
planes or nuclear power plants. In this area, the designers used to use fixed-
point numbers for two reasons: first, the embedded processors did not have
floating-point units and, secondly, the calculations were rather simple. Nowadays,
floating-point numbers are more and more used in these systems, due to the
increasing complexity of the calculations and because floating-point units are
integrated in most processors.

Concerning numerical computations, the validation of a critical embedded
system requires at least to prove that the precision of a variable is always ac-
ceptable. Executions can be instrumented with an automatic differentiation or
a stochastic semantics. However, these methods do not enable one to have a
full covering of the possible configurations and representative data sets are spe-
cially difficult to define since very close inputs may yield very different results in
terms of precision. In addition, for the same execution path, the precision may
greatly differ, for different data sets. Static analysis addresses these problems by
enabling to validate in a single time a code for a large class of inputs usually
defined by ranges for all the parameters. In this article, we focus on validation
of floating-point calculations but most results are similar for fixed point calcula-
tions. Basically, in the latter case, the function ↓◦ must be redefined. We detail
below how the methods of sections 3 to 7 can be used for static analysis.

Many static analyzers implement an interval analysis (e.g. [4]). The main
drawback of this approach was already outlined for the dynamic semantics: as
discussed in Section 4, when an interval is large, one cannot assert that the
precision of the results is acceptable. In addition, the intervals given to a static
analyzer usually are larger than these used to simulate a single run. As a con-
sequence, a static analyzer based on [[.]]I often is too pessimistic to assert the
accuracy of a floating-point computation.

To our knowledge, no static analysis based on stochastic arithmetics as been
defined nor experimented yet. However, as suggested in [13], we can expect
interesting results from static analyses combining [[.]]S or [[.]]WS and recent work
on static analysis of probabilistic semantics [25, 26].

Automatic differentiation seems a good candidate to static analysis even if the
classical semantics [[.]]D has some limitations: some error terms are neglected and,
for the others, there is a linear approximation. A semantics [[.]]WD was recently
proposed that performs automatic differentiation behind the semantics [[.]]W of
error series [23]. In [[.]]WD, no error term is neglected but the linear approximation
remains. For loops, a static stability test based on the calculation of abstract
Lyapunov exponents [1] can be used [23]. It allows one to iterate just enough to
prove that the iterates of a function related to the body of a loop are stable.

Finally, concerning error series, a static analyzer named Fluctuat and based
on [[.]]WI has been implemented [14]. For a value fε +

∑
�∈L ω�ε�, the float f is
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abstracted by a float interval and the error terms ω� are abstracted by intervals
of multiple precision numbers. Fluctuat analyzes C programs and is currently
experimented in an industrial context, for the validation of large-size avionic
embedded softwares.

9 Experimental Results

In this section, we present some experimental results obtained using the methods
described earlier. The tools and libraries that we use for interval arithmetics,
stochastic arithmetics, automatic differentiation and error series respectively are
MPFI [30], CADNA [9], ADOL-C [16] and Fluctuat [14]. Each example, written
in C, was designed to illustrate how a certain method behaves in a particular
case (mostly to show their limitations even if they all behave well on many
other examples) but, in the following, we test all the methods for each case.
Depending on the cases, Fluctuat either is asked to unroll the loops or to work
as a static analyzer. When unrolling the loops, the tool exactly implements the
semantics [[.]]WI discussed in Section 7. Otherwise, additionnal approximations
are performed by the static analysis. The results are given in the tables of figures
4, 5, 6 and 7. In each table, the comment column contains information on how
the methods are configured and the interpretation column says what we can
conclude from the experiment, assuming that we know nothing on the program
but the result of the current method. So, if a method fails to detect a problem,
the corresponding conclusion in the interpretation column is erroneous.

Our first example is the program already introduced in Section 4 to show
how difficult it is to distinguish a purely numerical error from a sensitivity error,
mainly with an interval method. This example was inspired by the well-known
Patriot case (see, e.g. [13]) but, here, the solutions in R and F are finite.

float x = 1.0; float y = 1.0e-8;

for (int i=0;i<1e8;i++) { x = x-y; }

Our experimental results are given in Figure 4. As discussed in Section 4, the
result returned by the interval method includes the interval [0, 1] if MPFI is
asked to simulate single precision numbers. One can conclude that both the real
and float solution belong to this interval, but we cannot conclude on the nature
of the inaccuracy. If MPFI is asked to use multiple precision numbers, it outputs
a small interval around 0. We can conclude that the real solution is close to 0,
but no hint is given about the error arising in the non-instrumented code.

Concerning the other methods, CADNA computes that the real solution is
close to -0.38, which is rather imprecise. As outlined in Section 5, this probably
stems from the fact that the errors arising at each iteration are not independent,
as supposed by the method. ADOL-C returns the float result and indicates that
it is very sensitive to the value of y. The pitfall is detected by the automatic
differentiation library as one could expect, since the computed function is linear.
Finally, Fluctuat finds the exact floating-point result and states that the error
is possibly large. The error is not bounded accurately because in static analysis
mode, Fluctuat does not fully unroll the loop.
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Result Comment Interpretation

[[.]]E x=1.0εf − 1.0εe [[.]]E is the theoretical, non im-
plementable semantics.

An absorption arises at each it-
eration. The float result is 1.0
and the error w.r.t. to the real
solution exactly is −1.0.

MPFI x=[-1.244141e1,1.000000] x is initialized by mpfi init2
(x,24) to simulate the IEEE
754 Standard simple precision
mode.

The real solution as well as
the float solution belong to
the given interval. The error
may be as large as the interval
width, i.e. 11.44141.

MPFI x=[-4.11312855843084e-9,
3.28835822230294e-9]

x is initialized by mpfi init
set d to obtain a highly accu-
rate result.

The real solution is very close
to zero. There is no unstability
in this example.

CADNA x=-0.3808, cestac= 4 x and y are declared as
single st numbers.

With high probability, the real
solution is x = −0.3808 and the
first four significant digits seem
correct.

ADOL-C x = 1.0, ∂x
∂y

= −1.0e8 Since ADOL only has double
precision numbers, this test has
been carried out using adouble
numbers and y = 1.0e−22. Re-
sults have been transposed to
our example.

The float result is 1.0 but the
sensitivity to y is high. By lin-
ear approximation, the real so-
lution is 1.0 + ∂x

∂y
× Δy where

Δy is the initial error on y.

Fluctuat x=1.0εf + [−∞,-1.0e-8]εe No instrumentation of the
code. Fluctuat does not unroll
the loop (5 iterations are car-
ried out).

Fluctuat detects that there is
possibly (but not surely) a
large negative error on the re-
sult.

Fig. 4. Experimental results for the program iterating x=x-1.0e-8.

Contrarily to the first example, our second test program, taken from [13], is
an unstable numerical scheme computing the nth power un of the golden number
u1 =

√
5−1
2 ≈ 0.618034 using the property un+2 = un − un+1.

double x = 1.0; double y = 0.618034;

for (i=0;i<=100;i++) {

z=x; x=y; y=z-y; }

Our experimental results are given in Figure 5. With MPFI, y is initialized to
the small interval [0.618034, 0, 618035]. MPFI returns a large interval and we
can conclude that the scheme is unstable. When Fluctuat is initialized with
y=[0.618034, 0, 618035]εf + 0εe, which means that the initial float is an exact
value belonging to the given interval, Fluctuat states that the result belongs to
a wide interval but that the error term is small. So this computation is unstable
but it is not much perturbed by the roundoff of the operations arising in the loop.
When Fluctuat is initialized with y = 0.618034εf +[0, 0.02]εe, which means that
the initial float exactly is 0, 618034 and that a roundoff error is attached to it,
the tool detects a large sensitivity to y. Concerning the other methods, CADNA
does not detect the instability while ADOL-C does (this scheme is linear).

ADOL-C caught the numerical problems arising in the first two examples in-
volving linear calculations. However, as discussed in Section 6, automatic differ-
entiation methods may fail to detect such numerical errors, e.g. in the non-linear
calculation introduced in Section 6 and repeated below:
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Result Comment Interpretation

MPFI y=[-9.37805732496113e14,
-1.04330402763639e13]

y initialized with mpfi interv d. The real solution belong to
the given interval. The error
may be as large as the inter-
val width, i.e. approximatively
9.27e14. The computation is
unstable.

CADNA y=
-0.474119386437716e+15,
cestac=15

x, y, z have double st type. y
was initialized to the median
value of the interval.

With high probability, the real
solution is y≈-0.47e+15 and
the first fifteen significant dig-
its are correct. This computa-
tion seems stable.

ADOL-C y=-4.74119e+14,
grad(y)=-3.54225e+20

x, y, z have adouble type. y is
initialized to the median value
of the interval.

The gradient indicates that
this computation is unstable.

Fluctuat y=[-9.37805732496110e14,
-1.04330402763639e13]εf

+[-25363.4,25363.4]εe

An assertion is used to initial-
ize y to [0.618034,0.618035]εf +
0εe. Fluctuat is asked to unroll
the loop.

The results belong to a large
interval but the errors never
are greater than 25363.4. If the
initial error on y is null, the
computation is unstable but
roundoff errors are negligible.

Fluctuat y=[-1.04330402763639e13,
-1.04330402763639e13]εf

+[-9.27373e+14,
-0.00149523]εe

An assertion is used to initial-
ize y to 0.618034εf +[0,0,02]εe.
Fluctuat is asked to unroll the
loop.

This program is very sensitive
to the initial value of y.

Fig. 5. Experimental results for the computation of the nth power of the golden num-
ber.

x = 1.0; y = 0.99;

for (int i=0;i<1000;i++) { x = x*y; }

The experimental results obtained for this example are given in Figure 6. ADOL-
C numerically computes the derivative given in Section 6 and does not de-
tect the sensitivity of this code to the value of y. CADNA also indicates that
this computation does not seem to be sensitive to its input values, possibly
because the dominant error is non-linear. Using an assertion stating that ini-
tially y= 0.99εf + [0, 0.02]εe, Fluctuat states that the float computed by a non-
instrumented version of the program goes to 0 while the error with respect to
the real result is increasingly large.

We end this section with a case study taken from [22] and concerning the
validation of a class of executions of a simple numerical program implementating
Jacobi’s iterative method to solve a system of linear equations. As discussed in
Section 8, in order to validate a class of executions for this program, we aim at
showing that the errors arising during any execution performed with parameters
taken in a certain set remain acceptable. We consider the systems:

(S1) :

{
2x + y = 5

3

x + 3y = 5
2

(S2) :

{
xn+1 = 5

6
− 1

2
yn

yn+1 = 5
6
− 1

3
xn

(S3) :

{
xn+1 = [0.80, 0.85] − [0.4, 0.6]yn

yn+1 = [0.80, 0.85] − [0.30, 0.35]xn

To solve (S1) by Jacobi’s method [12], the sequence (S2) is computed. (S3)
defines a class of systems including (S2). Any system taken in the ranges given



74 Matthieu Martel

Result Comment Interpretation

[[.]]E x= 0.43e-4εf − ωεe ω is small if initially y = 0.99εf

+ ω′εe with ω′ < 0.01. ω is
large otherwise.

This computation is sensitive
to y.

MPFI x=[4.31712474106544e-5,
4.31712474106612e-5]

x and y initialized by mpfi init
set d.

The float solution is close to
the real one since the interval
width is small.

CADNA x=0.43171247410657e-4,
cestac =14

x and y are declared as double
st numbers.

With high probability, the real
solution is x ≈ 0.43e−4 and the
first fourteen significant digits
are correct.

ADOL-C x=4.31712e-5,
∂x
∂y

=0.0436073
The experiment has been car-
ried out using adouble num-
bers.

The derivative is small. This
computation seems to be not
much sensitive to y.

Fluctuat x=4.31712474106578e-
5εf+[8.22526e-
21,6.17629e-20]εe

No instrumentation of the
code. Fluctuat is asked to fully
unroll the loop.

Assuming that initially y is ex-
act, no numerical error arises in
this execution.

Fluctuat x=4.31712474106578e-
5εf+[-1.42622e-
12,20959.2]εe

An assertion states that ini-
tially y = 0.99εf +[0.0, 0.02]εe.
Fluctuat is asked to fully unroll
the loop. The tool states that
the dominant error is a higher
order error.

The sensitivity to y is detected.

Fig. 6. Experimental results for the non-linear computation of Section 6.

in (S3) is stable. The program implementing (S2) is given below. The initial
values are x0 = y0 = [2.0, 3.0].

int i; double x1,y1;

double a = [0.8,0.85]; double b = [0.4,0.6];

double c = [0.8,0.85]; double d = [0.3,0.35];

double x2 = [2.0,3.0]; double y2 = [2.0,3.0];

for(i=0;i<1000;i++) {

x1 = x2; y1 = y2;

x2 = a-b*y1; y2 = c-d*x1; }

Our results are given in Figure 7. MPFI outputs small intervals enabling to
assess the stability of the class of executions: the errors on x and y never exceed
0.26 and 0.15, respectively. Fluctuat finds intervals for x and y comparable to
these of MPFI and, additionally, states that for any execution, the errors on x
and y never exceed 2.0e-16, approximatively. For a particular execution achieved
using the median values of the intervals, CADNA and ADOL-C also claim that
the computation is stable. However, this does not enable us to conclude on the
stability of the whole class of executions. It is interesting to note that, in this test,
all the methods output comparable values: the real number output by CADNA
belongs to MPFI and Fluctuat intervals which are almost identical. The error
term of Fluctuat (≈1e-16) is in adequacy with CADNA result (cestac=15).

10 Conclusion

The validation of the numerical quality of programs is a difficult research topic.
Independently of any tool or method, that is independently of how the vali-
dation can be carried out, the properties that must be proven, i.e. what must
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Result Comment Interpretation

MPFI x=[3.53658536585365e-1,
6.16279069767442e-1],
y=[5.84302325581395e-1,
7.43902439024391e-1]

x and y initialized by mpfi
interv d.

The real solution as well as
the float solution belong to
the given intervals. The errors
never are larger than the inter-
val widths, i.e. about 0.26 for x
and 0.15 for y.

CADNA x=0.49253731343283,
cestac=15;
y=0.664925373134328,
cestac=15

a, b, c, d, x2 and y2 are initial-
ized to the median values of the
intervals using the double st
type.

The large number of common
digits indicates that the pro-
gram, executed with the chosen
parameters, is stable, with high
probability.

ADOL-C x=0.492537,
grad(x)=0.0971263,
y=0.664925,
grad(y)=0.475897

a, b, c, d, x2 and y2 are ini-
tialized to the median values of
the intervals using the adouble
type.

The gradients indicate that this
computation is stable in the
neighborhood of the chosen pa-
rameters.

Fluctuat x=[3.53658536585366e-1,
6.16279069767442e-1]εf

+[-1.58101e-16,1.58101e-16]εe

y=[5.84302325581395e-1,
7.43902439024390e-1]εf

+[-1.24724e-16,
1.24724e-16]εe

Assertions are used to initial-
ize the identifiers. Fluctuat is
asked to unroll the loop.

Fluctuat states that the errors
on x and y never are larger
than, approximatively, 1.0e−16
for any execution.

Fig. 7. Experimental results for the program implementing Jacobi’s Method.

be verified, breads many discussions. In addition to the accuracy losses intro-
duced by floating-point numbers, other sources of imprecision are introduced
by modeling, by the choice of algorithms, etc. For instance, should an unstable
numerical scheme such as the golden number example of Section 9 be considered
as acceptable? On one hand the errors introduced by floating-point numbers are
negligible and the program mimicks closely what happens in the reals. On the
other hand the sensitivity to the possibly approximative initial value is high and,
consequently, incompatible with the approximation introduced by floating-point
arithmetics.

In this article, we attempted to clarify what properties some techniques ex-
actly compute and what we can conclude from these properties about the numer-
ical quality of the tested programs. The differences can be subtle: for instance,
as discussed in sections 4 and 9, an interval method working with the same pre-
cision as the non-instrumented code does not just compute less accurately the
same properties as an interval method using a higher precision. By examining
closely what is computed by each technique, we do not provide sufficient condi-
tions for the validation of numerical codes in general, as asked in the previous
paragraph, but we clearly define which aspects of the whole validation can be
addressed by each method.

Synthetically, we can classify the arithmetics presented in this article in two
categories. First, the stochastic and multiple precision interval arithmetics are
well-suited to approximate the exact result that a program would compute in
the real numbers. These methods also perform less computations than the others
and run faster. They are adapted to improve the quality of numerical intensive
codes but give few hints on the approximations introduced by the floating-point
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arithmetics and on the sources of approximation. Second, automatic differentia-
tion and error series compute the same floating-point values as the program and,
additionnally, determine which roundoff errors will significantly modify the result
of a calculation. They are well-suited to program verification and debugging.

We believe that future work should address two kinds of problems: to improve
the dynamic semantics described in this article and to design new static analyses
based on them. Concerning the dynamic semantics, we believe that many im-
provements could result from mixed methods: [[.]]ES would treat the higher order
errors neglected by [[.]]S, [[.]]WS and [[.]]WD would be less pessimistic than [[.]]WI,
etc. Next, we believe that interesting static analyses can be derived from all the
methods presented in this article. These static analyses are of first interest to
assert the numerical quality of programs: for example, test methods have few
opportunities to detect the cancellation and absorption phenomena described in
Section 2 that concern very particular data with no influence on the control flow
of programs.
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The ideas of program verification date back to Turing and von Neumann, who
introduced the concept of an assertion as the specification of an interface be-
tween parts of a program. The idea of mechanical theorem proving dates back
to Leibniz; it has been explored in practice on modern computers by McCarthy,
Milner, and many others since. A proposal for ‘a program verifier’, combining
these two technologies, was the subject of a Doctoral dissertation by James C.
King, submitted at the Carnegie Institute of Technology in 1969.

Early attempts at automatic program verification were premature. But much
progress has been made in the last thirty five years, both in hardware capac-
ity and in the software technologies for verification. I suggest that the renewed
challenge of an automatic verifying compiler could provide a focus for inter-
action, cross-fertilisation, advancement and experimental evaluation of all the
technologies of interest in this conference.

Perhaps by concerted international effort, we may be able to meet this chal-
lenge, only fifty years after it was proposed by Jim King. We only have fifteen
years left to do it.
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Abstract. A Herbrand equality between expressions in a program is an equality
which holds relative to the Herbrand interpretation of operators. We show that
the problem of checking validity of positive Boolean combinations of Herbrand
equalities at a given program point is decidable – even in presence of disequal-
ity guards. This result vastly extends the reach of classical methods for global
value numbering which cannot deal with disjunctions and are always based on
an abstraction of conditional branching with non-deterministic choice. In order
to introduce our analysis technique in a simpler scenario we also give an alterna-
tive proof that in the classic setting, where all guards are ignored, conjunctions of
Herbrand equalities can be checked in polynomial time. As an application of our
method, we show how to derive all valid Herbrand constants in programs with
disequality guards. Finally, we present a PSPACE lower bound and show that
in presence of equality guards instead of disequality guards, it is undecidable to
check whether a given Herbrand equality holds or not.

1 Introduction

Analyses for finding definite equalities between variables or variables and expressions
in a program have been used in program optimization for a long time where this infor-
mation can be used for performing and enhancing powerful transformations like (par-
tial) redundancy elimination including loop invariant code motion [19, 21, 12], strength
reduction [22], constant propagation and branch elimination [3, 7].

Since determining whether two variables always have the same value at a pro-
gram point is an undecidable problem even without interpreting conditionals [18], anal-
yses are usually restricted to detect only a subset, i.e., a safe approximation, of all
equivalences. Analyses based on Herbrand interpretation of operators consider two val-
ues equal only if they are constructed by the same operator applications. Cocke and
Schwartz [4] presented the earliest such technique for finding equalities inside basic
blocks. Since their technique operates by assigning hash values to computations, the
detection of (Herbrand-)equivalences is often also referred to as value numbering. In
his seminal paper [11], Kildall presents a technique for global value numbering that
extends Cocke’s and Schwartz’s technique to flow graphs with loops. In contrast to a
number of algorithms focusing more on efficiency than on precision [18, 1, 3, 20, 7, 9],
Kildall’s algorithm detects all Herbrand equalities in a program. However, the repre-
sentation of equalities can be of exponential size in terms of the argument program.

R. Cousot (Ed.): VMCAI 2005, LNCS 3385, pp. 79–96, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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This deficiency is still present in the algorithm for partial redundancy elimination of
Steffen et al. [21] which employs a variant of Kildall’s algorithm using a compact rep-
resentation of Herbrand equivalences in terms of structured partition DAGs (SPDAGs).
Recently, Gulwani and Necula proposed a polynomial time variant of this algorithm
exploiting the fact that SPDAGs can be pruned, if only equalities of bounded size are
searched for [8].

The analyses based on Herbrand interpretation mentioned above ignore guards in
programs1. In this paper, we present an analysis that fully interprets besides the assign-
ments in the program also all the disequality guards with respect to Herbrand interpre-
tation. We also consider a larger class of properties: positive Boolean combinations of
Herbrand equalities. More specifically, we show that the problem of checking the valid-
ity of positive Boolean combinations of Herbrand equalities at a given program point
is decidable – even in presence of non-equality guards. (A Herbrand equality between
expressions in a program is an equality which holds relative to Herbrand interpretation
of operators; a positive Boolean combination of Herbrand equalities is a formula con-
structed from Herbrand equalities by means of disjunction and conjunction.) We also
present a PSPACE lower bound for this problem. Our analysis vastly extends the reach
of the classical value numbering methods which cannot deal with disjunctions and are
always based on an abstraction of conditional branching with non-deterministic choice.
Unlike the classical methods our analysis checks given properties instead of deriving all
valid properties of the considered class. Indeed we do not know how to derive all valid
properties in our scenario. Note, however, that an iterated application of our checking
procedure still allows us to determine all properties of bounded size. We also show how
to derive all valid Herbrand constants in programs with non-equality guards.

In order to show the decidability result, we rely on effective weakest precondition
computations using a certain lattice of assertions. While we have used the idea of ef-
fective weakest precondition computations before [13, 14, 17, 16], the type of assertions
and the kind of results exploited is quite different here. In [13, 14, 17, 16] assertions are
represented by bases of vector spaces or polynomial ideals and results from polynomial
and linear algebra are exploited. Here we use equivalence classes of certain types of
formulas as assertions and substitution-based techniques as used in automatic theorem
proving. In order to introduce our technique in a simpler scenario and as a second ap-
plication we show that in the classic setting where all guards are ignored, conjunctions
of Herbrand equalities can be checked in polynomial time. While this follows also from
the results in [8], our proof technique is different and illustrates the technique by which
we obtain the new results presented in Section 5.

The considerations of this paper belong to a line of research in which we try to
identify classes of (abstractions of) programs and analysis problems for which com-
plete analyses are possible. Here, we abstract from the equality guards – and rely on
Herbrand interpretation. There are two reasons why we must ignore equality guards.
The first reason is that we cannot hope for a complete treatment of equality guards;

1 The branch sensitive methods [3, 7, 2] based on the work of Click and Cooper [3] unify value
numbering with constant propagation and elimination of dead branches. However, the value
numbering component of these methods is based on the work of Alpern, Wegman and Zadeck
[1] which is restricted to the detection of a small fragment of Herbrand equalities only.
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c.f. Section 6, Theorem 6. The second reason is even more devastating: using Herbrand
interpretation of programs with equality guards for inferring definite equalities w.r.t. an-
other interpretation – which is what we are up to when we use Herbrand interpretation
in program analysis – is unsound. The reason is that an equality might be invalid w.r.t.
Herbrand interpretation but valid w.r.t. the “real” interpretation. Thus, it can happen
that a Herbrand interpretation based execution would not pass an equality guard while
executions based on the real semantics would do so. In this case, the Herbrand inter-
pretation based analysis would consider too few executions, making it unsound. Note
that this problem does not occur for disequality guards, because, whenever an equality
is invalid w.r.t. the “real” interpretation it is also invalid w.r.t. Herbrand interpretation.

In Section 2 we introduce Herbrand programs as an abstract model of programs
for which our analyses are complete. Moreover, we analyze the requirements a lattice
of assertions must satisfy in order to allow weakest precondition computations. In Sec-
tion 4 we introduce our technique by developing an analysis that checks conjunctions
of Herbrand equalities in Herbrand programs without disequality guards in polynomial
time. This analysis is extended in Section 5 to the analysis that checks arbitrary positive
Boolean combinations of Herbrand equalities in Herbrand programs with disequality
guards. For this analysis we can show termination but we do not have an upper bound
for its running time. In Section 6 we show that there are no effective and complete anal-
ysis procedures for Herbrand programs with equality instead of disequality guards. Also
we provide a PSPACE lower bound for the problem of checking Herbrand equalities in
Herbrand programs with disequality guards.

2 Herbrand Programs

Terms and States. Let X = {x1, . . . ,xk} be the set of variables the program operates
on. We assume that the variables take values which are constructed from variables and
constants by means of operator application. Let Ω denote a signature consisting of a set
Ω0 of constant symbols and sets Ωr, r > 0, of operator symbols of rank r. In examples,
we will omit brackets around the arguments of unary operators and often write binary
operators infix. Let TΩ be the set of all formal terms built up from Ω. For simplicity, we
assume that the set Ω0 is non-empty and that there is at least one operator. Given this,
the set TΩ is infinite. Let TΩ(X) denote the set of all terms with constants and operators
from Ω which additionally may contain occurrences of variables from X. In the present
context, we will not interpret constants and operators. Thus, a state assigning values to
the variables is conveniently modeled by a ground substitution σ : X → TΩ .

Herbrand Programs. We assume that the basic statements in a Herbrand program are
either assignments of the form xj := t, where t ∈ TΩ(X), or nondeterministic as-
signments xj :=?. While we assume that branching is non-deterministic in general,
we allow control statements that are disequality guards of the form t1 �= t2. Note
that positive Boolean combinations of disequality guards can be coded by small flow
graphs as shown in Fig. 2 for (t1 �= t′1 ∧ t2 �= t′2) ∨ t3 �= t′3. Let Stmt be the set of
assignments and disequality guards. Now, a Herbrand program is given by a control
flow graph G = (N,E, st) that consists of a set N of program points; a set of edges
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E ⊆ N × Stmt × N ; and a special entry (or start) point st ∈ N . An example of a
Herbrand program is shown in Fig. 1.

0

1

2

3

4

x1 
= x2

x1 := 2

x3 := x3 − 1

x1 := x2

x3 := x2 %x1

Fig. 1. An example Herbrand program.

t2 
= t′2

t1 
= t′1
t3 
= t′3

Fig. 2. Boolean combinations of guards.

Herbrand programs serve as an abstraction of real programs. Non-deterministic as-
signments xj :=? can be used to abstract, e.g., input statements which return unknown
values. Assignments xj := xj that have no effect on the program state can be used
as skip statements and for abstraction of guards that are not disequality guards. Our
analyses are sound and complete for Herbrand programs. They are sound for abstracted
programs in the sense that equalities found to be valid on the Herbrand program ab-
straction are also valid on the abstracted program.

Collecting Semantics. As common in flow analysis, we use the program’s collecting
semantics as primary semantic reference point. In order to prepare for the definition,
we define the transformation on sets of states, [[s]], induced by a statement s first:

[[xj := t]]S = {σ[xj �→ σ(t)] | σ ∈ S} ,
[[xj :=?]]S = {σ[xj �→ t′] | σ ∈ S, t′ ∈ TΩ} , and

[[t1 �= t2]]S = {σ ∈ S | σ(t1) �= σ(t2)} .

Here σ(t) is the term obtained from t by replacing each occurrence of a variable xi by
σ(xi) and σ[xj �→ t′] is the ground substitution that maps xj to t′ ∈ TΩ and variables
xi �= xj to σ(xi). Note that for s ≡ xj :=?, the variable xj may receive any value.

For a given set of initial states S, the collecting semantics assigns to each program
point u ∈ N the set of all those states that occur at u in some execution of the program
from a state in S. It can be characterized as the least solution of the following constraint
system, VS , on sets of states, i.e., sets of ground substitutions:

[V1] VS [st] ⊇ S

[V2] VS [v] ⊇ [[s]](VS [u]) , for each (u, s, v) ∈ E .

By abuse of notation we denote the components of the least solution of the constraint
system VS (which exists by Knaster-Tarski fixpoint theorem) by VS [v], v ∈ N . Often
if we have no knowledge about possible initial states we choose S = (X → TΩ). We
call a program point v ∈ N dynamically reachable if V(X→TΩ)[v] �= ∅ and dynamically
unreachable if V(X→TΩ)[v] = ∅.
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Validity of Equations. An equation t1 = t2 is valid for a substitution σ : X → TΩ(X)
iff σ(t1) = σ(t2); t1 = t2 is valid at a program point v from a set S of initial states
iff it is valid for all σ ∈ VS [v]. It is called valid at a program point v if it is valid
at v from (X → TΩ). These definitions are straightforwardly extended to predicate-
logical formulas over equations as atomic formulas. We write σ |= φ if φ is valid for a
substitution σ. We call two formulas φ1, φ2 equivalent (and write φ1 ⇔ φ2) if they are
valid for the same substitutions. We write φ1 ⇒ φ2 if σ |= φ1 implies σ |= φ2.

3 Weakest Preconditions

For every assignment or disequality guard s, we consider the corresponding weakest
precondition transformer [[s]]t which takes a formula φ and returns the weakest pre-
condition of φ which must hold before execution of s such that φ holds after s. This
transformation is given by the well-known rules:

[[xj := t]]tφ = φ[t/xj ] , [[xj :=?]]tφ = ∀xj . φ , and [[t1 �= t2]]t φ = (t1 = t2) ∨ φ .

Here φ[t/xj ] denotes the formula obtained from φ by substituting t for xj . The key
property which summarizes the relationship between the transformation [[s]] and the
weakest precondition transformation [[s]]t is given in the following lemma.

Lemma 1. Let S ⊆ X → TΩ be a set of ground substitutions and φ be any formula.
Then: (∀σ ∈ [[s]]S : σ |= φ) iff (∀τ ∈ S : τ |= [[s]]tφ). ��

We identify the following desirable properties of a language L of formulas to be used
for weakest precondition computations. First, it must be (semantically) closed under
[[s]]t, i.e., under substitution, universal quantification, and, if we want to handle dise-
quality guards, disjunction. More precisely, this means that L must contain formulas
equivalent to φ[t/xi], ∀xi.φ, and φ ∨ φ′, respectively, for all φ, φ′ ∈ L. Moreover, we
want the fixpoint computation for characterizing the weakest pre-conditions at every
program point to terminate. Therefore, we secondly demand that L is closed under fi-
nite conjunctions, i.e., that it contains a formula equivalent to true as well as a formula
equivalent to φ ∧ φ′ for all φ, φ′ ∈ L, and that L is compact, i.e., for every sequence
φ0, φ1, . . . of formulas,

∧
i≥0 φi ⇔

∧m
i=0 φi for some m ≥ 0.

In order to construct a lattice of properties from L we consider equivalence classes
of formulas, which, however, will always be represented by one of their members. Let
L denote the set of all equivalence classes of formulas. Then this set is partially ordered
w.r.t. “⇒” (on the representatives) and the pairwise lower bound always exists and is
given by “∧”. By compactness, all descending chains in this lattice are ultimately stable.
Therefore, not only finite but also infinite subsets X ⊆ L have a greatest lower bound.
This implies that L is a complete lattice.

Assume that we want to check whether a formula φ holds at a specific program
point vt. Then we put up the following constraint system, WP, over L:

[E1] WP[vt] ⇒ φ

[E2] WP[u] ⇒ [[s]]t(WP[v]) , for each (u, s, v) ∈ E .
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Since L is a complete lattice, a greatest solution of the constraint system exists, again by
Knaster-Tarski fixpoint theorem. This solution is denoted by WP[v], v ∈ N , as well.

Intuitively, the constraint system specifies that for each program point v ∈ N ,
WP[v] is a condition strong enough to guarantee that φ holds whenever an execu-
tion starting in v from a state s with s |= WP[v] reaches vt. Accordingly, the greatest
solution (i.e., the one with the weakest conditions) is the one looked for. We have:

Lemma 2. Suppose φ0 is a pre-condition, i.e., a formula describing initial states. Let
S0 = {σ : X → TΩ | σ |= φ0} be the corresponding set of initial states. Then:

(∀σ ∈ VS0 [vt] : σ |= φ) iff φ0 ⇒ WP[st] ,

i.e., formula φ is valid at program point vt from S0 if and only if φ0 ⇒ WP[st].

Proof. Consider a single program execution path π ∈ Stmt∗. Define the collecting
semantics [[π]]S of π relative to S by: [[ε]]S = S and [[π′s]]S = [[s]] ([[π′]]S). Ac-
cordingly, define the weakest precondition [[π]]t of φ along π by: [[ε]]t φ = φ and
[[π′s]]t φ = [[π′]]t ([[s]]t φ).
Claim 1: For every path π, set of states S and formula φ, σ |= φ for all σ ∈ [[π]]S iff
τ |= [[π]]t φ for all τ ∈ S.
For a proof of Claim 1, we proceed by induction on the length of π. Obviously, the
claim is true for π = ε. Otherwise, π = π′s for some shorter path π′ and a statement s.
Define S′ = [[π′]]S and φ′ = [[s]]t φ. By Lemma 1, σ |= φ for all σ ∈ [[s]]S′ iff σ′ |= φ′

for all σ′ ∈ S′. By inductive hypothesis for π′ and φ′, however, the latter statement
is equivalent to τ |= [[π′]]t φ′ for all τ ∈ S, Since by definition, [[s]]S′ = [[π]]S and
[[π′]]t φ′ = [[π]] φ, the assertion follows. ��
Claim 2: Let Π denote the set of paths from st to vt. Then

1. VS [vt] =
⋃
{[[π]]S | π ∈ Π};

2. WP[st] =
∧
{[[π]]t φ | π ∈ Π}.

Note that the second statement of Claim 2 is in fact well-defined as L is a complete
lattice. Claim 2 follows from Kam and Ullman’s classic MOP=MFP theorem [10] since
both the transfer functions [[s]] of the constraint system for the collecting semantics as
well as the transfer functions [[s]]t of the constraint system for the weakest precondition
distribute over union and conjunction, respectively. ��

By Claim 2(1), φ is valid at vt from S0 iff σ |= φ for all π ∈ Π , σ ∈ [[π]]S0. By
claim 1, this is the case iff τ |= [[π]]t φ for all π ∈ Π , τ ∈ S0. By Claim 2(2), this is
true iff τ |= WP[st] for all τ ∈ S0. The latter is true iff φ ⇒ WP[st]. ��

4 Conjunctions

In order to introduce our substitution-based technique in a simpler scenario, we first
consider conjunctions of equalities as language of assertions for weakest precondition
computations, i.e., the members of E = {s1 = t1 ∧ . . . ∧ sm = tm | m ≥ 0, si, ti ∈
TΩ(X)}. Clearly, conjunctions of equalities are not closed under “∨”. Hence, this as-
sertion language is not able to handle disjunctions and thus disequality guards precisely.
Therefore, we consider Herbrand programs without disequality guards in this section.
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The Lattice. As explained in Section 3 we compute with equivalence classes of asser-
tions (up to ⇔). So let E be the set of all equivalence classes of finite conjunctions of
equalities s = t, s, t ∈ TΩ(X). We call a conjunction c ∈ E satisfiable iff σ |= c for
at least one σ. Otherwise, i.e., if c is unsatisfiable, c is equivalent to false (the Boolean
value ‘false’). Thus, we write false to denote the equivalence class of unsatisfiable con-
junctions, which is the bottom value of our lattice E. The greatest value is given by the
empty conjunction which is always true and therefore also denoted by true. In preparing
the discussion how satisfiable conjunctions are represented in the analysis algorithm, we
recall the notion of most-general unifiers known from automatic theorem proving.

Most-General Unifiers. Whenever a conjunction c ∈ E is satisfiable, then there is a
most general satisfying substitution σ, i.e., σ |= c and for every other substitution τ
with τ |= c there is a substitution τ1 with τ = τ1 ◦σ. Such a substitution σ is also called
most general unifier of the equations in c [5]. Recall that most general unifiers σ can
be chosen idempotent, which means that σ = σ ◦ σ or, equivalently, that no variable xi

with σ(xi) �≡ xi occurs in the image σ(xj) of any variable xj .

Representation of Conjunctions and Compactness. We use compact representations
of trees. In particular, we assume that identical subterms are represented only once.
Therefore, we define the size of a term t as the number of distinct subtrees of t. Thus,
e.g., the size of t = a(bx1, b c) equals 5 whereas the size of t′ = a(b c, b c) equals
3. The size of a term t is also denoted by |t|. According to this definition, the size
of t[s/xi] is always less than |t| + |s|. A conjunction c is reduced iff c equals xi1 =
t1 ∧ . . . ∧ xim = tm for distinct variables xi1 , . . . ,xim such that tj �≡ xij for all j.
Let the size |c| of a finite conjunction c be the maximum of 1 and the maximal size of a
term occurring in c. We show that every finite conjunction of equalities is equivalent to
a reduced conjunction of at most the same size:

Lemma 3. Every satisfiable conjunction c is equivalent to a reduced conjunction c′

with |c′| ≤ |c|. The conjunction c′ can be constructed in polynomial time.

Proof. It is not hard to show that a reduced conjunction equivalent to c is obtained
by taking a most general unifier σ of c and returning the conjunction of equalities
xi = σ(xi) for the variables xi with xi �= σ(xi). This reduced conjunction, however,
may not satisfy the condition on sizes. The equation a(x1, b b bx1) = a(b b c,x2), for
example, has size 5. The most general unifier is the substitution σ = {x1 �→ b b c,x2 �→
b b b b b c}. The corresponding reduced equation system therefore would have size 6 –
which does not conform to the assertion of the lemma. The reason is that most general
unifiers typically are idempotent. If we drop this assumption, we may instead consider
the substitution τ = {x1 �→ b b c,x2 �→ b b bx1} – which is neither idempotent nor
a most general unifier, but yields the most general unifier after two iterations, namely,
σ = τ ◦ τ . The reduced system corresponding to τ has size 4 and therefore is small
enough. Our construction of the reduced system thus is based on the construction of a
substitution τ such that k-fold composition of τ results in the most general unifier of c.
(Recall k is the number of variables.) Let σ denote an idempotent most general unifier
of c. We introduce an equivalence relation ≡σ on the set of variables X and subterms of
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c by s1 ≡σ s2 iff σ(s1) = σ(s2). Then there is a partial ordering “≤” on the variables
X such that whenever xj ≡σ t for some subterm t �∈ X of c, then xi < xj for all
variables xi occurring in t. Moreover, for every variable xj :

– if σ(xj) ∈ X then t ∈ X for every t with xj ≡σ t.
– if σ(xj) �∈ X, then xj ≡σ t for some subterm t �∈ X of c.

Let us w.l.o.g. assume that i < j implies xi < xj . Then we define substitutions
τ1, . . . , τk by τ1 = σ, and for i > 1,

τi(xj) =
{
ti if i = j
τi−1(xj) if i �= j ,

where ti = σ(xi) if σ(xi) ∈ X. Otherwise, we choose ti = t for any t �∈ X with
xi ≡σ t. By induction on i, we then verify that τ i

i = σ. We conclude that c′ ≡∧
{xi = τk(xi) | τk(xi) �= xi} is a conjunction which is equivalent to c whose non-

variable right-hand sides all are sub-terms of right-hand sides of c. Since a most general
unifier can be constructed in polynomial (even linear) time, the assertion follows. ��

Lemma 3 allows us to use reduced conjunctions to represent all equivalence classes
of assertions except of false when we compute the greatest fixpoint of WP. The next
lemma shows us that we can perform the necessary updates during the fixpoint compu-
tation in this representation in polynomial time as well.

Lemma 4. If c ⇒ c1 where c is satisfiable and c1 is reduced, then c is equivalent to a
reduced conjunction c1 ∧ c′. In particular, c′ can be computed in polynomial time.

Proof. Let σ, σ1 denote idempotent most general unifiers of c and c1, respectively. Since
c ⇒ c1, σ = σ′ ◦ σ1 for some σ′, which can be chosen idempotent as well, where the
domains of σ1 and σ′ are disjoint. Then we simply choose c′ as the reduced conjunction
constructed from σ′ along the same lines as in Lemma 3. ��

As a corollary, we obtain:

Corollary 1. For every sequence c0 ⇐ . . . ⇐ cm of pairwise inequivalent conjunc-
tions cj , m ≤ k + 1. ��

Corollary 1 implies compactness of the language of conjunctions of equalities.

Closure Properties. It remains to consider the closure properties of E. Clearly, it is
closed under conjunctions and substitutions. For closure under universal quantification,
we find the following equivalence for a single equality of the form xi = s:

∀xj . xi = s ⇔

⎧⎨⎩
xi = s if i �= j and xj does not occur in s
true if i = j and s ≡ xj

false otherwise .

Since, by Lemma 3, satisfiable conjunctions can be written as reduced conjunctions and
∀xi . (e1 ∧ . . .∧ em) ⇔ (∀xi . e1)∧ . . .∧ (∀xi . em), conjunctions are closed under
universal quantification. Thus, in absence of disequality guards, the weakest precondi-
tion of a conjunction w.r.t. a statement always is again a conjunction – or false.
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The Algorithm. In order to check validity of a conjunction c at a program point vt,
we choose L = E, compute the greatest solution of constraint system WP by fixpoint
iteration, and check, if WP[st] is equivalent to true. The latter is equivalent to validity
of c at vt by Lemma 2. Let us estimate the running time of the fixpoint computation.
By Corollary 1, each variable in the constraint system may be updated at most k + 1
times. The application of a transformer [[s]]t as well as conjunction can be executed
in time polynomial in their inputs. In order to obtain a polynomial time algorithm for
computing the values WP[v], it therefore remains to prove that all conjunctions which
are intermediately constructed during fixpoint iteration have polynomial sizes. For this,
we recall the following two facts. First, a standard worklist algorithm for computing
the least fixpoint will perform O(n · k) evaluations of right-hand sides of constraints.
Assuming that w.l.o.g. all right-hand sides in the program have constant size, each eval-
uation of a right-hand side may increase the maximal size of an equation at most by a
constant. Since the greatest lower bound operation does not increase the maximal size,
we conclude that all equalities occurring during fixpoint iteration, are bounded in size
by O(n · k + m) if m is the size of the initial equation c. Summarizing, we obtain:

Theorem 1. Assume p is a Herbrand program without disequality guards, vt is a pro-
gram point and c is a conjunction of equalities. Then it can be decided in polynomial
time whether or not c is valid in p at vt. ��

In practice, we can stop the fixpoint iteration for WP as soon as we find the value false
at some reachable program point or change the value stored for the start point st since
this implies that WP[st] cannot be true. A worklist algorithm that integrates this test
can be seen as a demand-driven backwards search for a reason why c fails at vt.

As an example, consider the program from Section 2. Since we use conjunctions
of equalities only, we must ignore the disequality guard. The weakest pre-conditions
computed for the equality x3 = x2 % 2 at program point 3 then are shown in Figure 3.
Since the weakest pre-condition for the start node 0 is different from true, we cannot
conclude that the equality x3 = x2 % 2 holds at program point 3.

As a second application of wp-computations with the lattice E we obtain:

Theorem 2. Assume p is a Herbrand program without disequality guards and vt is a
program point of p. Then it can be determined in polynomial time whether or not a

0

1

2

3

4

x1 := 2

x3 := x3 − 1

x1 := x2

x3 := x2 %x1

x1 = 2x2 = 2

(x1 = 2) ∧ (x2 = 2)

(x3 = x2 % 2) ∧ (x2 = 2)

Fig. 3. The pre-conditions computed for x3 = x2 % 2 at program point 3.
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variable xi is constant at vt, i.e., has always the same value c ∈ TΩ when program
execution reaches vt.

Proof. We introduce the equality xi = y for some fresh variable y. Then xi is constant
at program point vt iff the weakest precondition WP[st] of this equality at program
entry is implied by y = c for some ground term c ∈ TΩ . In this case WP[st] either
is equivalent to true – implying that vt is dynamically unreachable – or equivalent to
y = c. In the latter case, the value c constitutes the constant value of xi at program
point vt. Since WP[st] for the given equality can be computed in polynomial time, we
conclude that all program constants can be computed in polynomial time as well. ��

Theorems 1 and 2 also follow from results recently presented by Gulwani and Nec-
ula [8]. However, while Gulwani and Necula rely on a classic forward propagation of
valid facts, we use a symbolic weakest precondition computation here with a backwards
propagation of assertions. This backwards propagation technique is crucial for the next
section in which we present the main novel results of this paper. We do not know how
to achieve these results by means of forward propagation algorithms.

5 Disjunctions

In this section, we consider finite disjunctions of finite conjunctions of equalities which
we call DC-formulas. Note that every positive Boolean combination of equalities, i.e.
each formula which is built up from equalities by means of conjunctions and disjunc-
tions can be written as a DC-formula by the usual distributivity laws. Clearly, the lan-
guage of DC-formulas is closed under substitution and disjunction and, again by dis-
tributivity, also under conjunction. First, we convince ourselves that it is indeed also
closed under universal quantification.

Lemma 5. Assume that TΩ is infinite. Then we have:

1. For every conjunction c of equalities, ∀xj . c ⇔ c[t1/xj ] ∧ c[t2/xj] for any
ground terms t1, t2 ∈ TΩ with t1 �= t2.

2. For every disjunction φ ≡ c1 ∨ . . . ∨ cm of conjunctions ci of equalities,

∀xj . φ ⇔ (∀xj . c1) ∨ . . . ∨ (∀xj . cm) .

Proof. Obviously, it suffices to verify assertion 1 only for a single equality c ≡ xi = s
for xi ∈ X and s ∈ TΩ(X), where s is syntactically different from xi. If c holds for all
values of xj , then it also holds for particular values t1, t2 for xj . Therefore, it remains to
prove the reverse implication. We distinguish two cases. First assume that the equation
c does not contain an occurrence of xj . Then for k = 1, 2, c[tk/xj ] ≡ c, and validity of
c also implies validity of ∀xj . c. Therefore in this case, assertion 1 holds. Now assume
that c contains an occurrence of xj . We claim that then c[t1/xj ] ∧ c[t2/xj] is unsatisfi-
able. Under this assumption, ∀xj . c is trivially implied and the assertion follows. There-
fore, it remains to prove the claim. For a contradiction, assume that c[t1/xj ]∧ c[t2/xj ]
is satisfiable and thus has a most general unifier σ : (X\{xj}) → TΩ(X\{xj}). If the
variable xi of the left-hand side of the equation c is given by xj , then t1 = σ(s) = t2 –
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in contradiction to our choice of t1, t2. If on the other hand, xj occurs in s, then σ(xi) =
σ(s[t1/xj ]) = σ(s[t2/xj ]). Note that σ(s[tk/xj ]) = σ(s)[tk/xj ] for k = 1, 2, since
the tk are ground. By induction on the size of a term s′ containing the variable xj ,
we verify that the mapping t �→ s′[t/xj ] is injective, i.e., different t produce different
results. Here, substituting t1, t2 into σ(s) results in the same term σ(xi). We conclude
that therefore, t1 must equal t2 – in contradiction to our assumption. This completes the
proof of assertion 1.

Assertion 2 follows from assertion 1 by means of infinite version of the pigeon-hole
princible. Consider a disjunction φ ≡ c1∨ . . .∨cm for conjunctions ci, and assume that
∀xj . φ holds for some substitution σ. Thus, σ |= φ[t/xj ] for every t ∈ TΩ . Since TΩ is
infinite, we conclude that there exists some i such that σ |= ci[t/xj ] for infinitely many
t. In particular, σ |= ci[t1/xj ] ∧ ci[t2/xj ] for ground terms t1 �= t2. Thus by assertion
1, σ |= ∀xj . ci and therefore also, σ |= (∀xj . c1)∨ . . .∨ (∀xj . cm), which proves one
implication of assertion 2. The reverse implication is trivial. ��

A DC-formula d need no longer have a single most general unifier. The disjunction
ax1 = a b∨a c = ax1, for example, has two maximally general unifiers {x1 �→ b} and
{x1 �→ c}. By Lemma 3, however, each conjunction in a DC-formula d can be brought
into reduced form. Let us call the resulting formula a reduced DC-formula. Our further
considerations are based on the following fundamental theorem.

Theorem 3. Let dj , j ≥ 0, be a sequence of DC-formulas such that dj ⇐ dj+1 for all
j ≥ 0. Then this sequence is ultimately stable, i.e., there is some m ∈ N such that for
all m′ ≥ m, dm ⇔ dm′ .

Proof. If any of the dj is unsatisfiable, i.e., equivalent to false, then all positive Boolean
combinations of greater index also must be unsatisfiable, and the assertion of the the-
orem follows. Therefore let us assume that all dj are satisfiable. W.l.o.g. all dj are
reduced. We successively construct a sequence Γj , j ≥ 0, where Γ0 = d0 and Γj+1 is
a reduced DC-formula equivalent to Γj ∧ dj+1 for j ≥ 0. Since dj ⇐ dj+1 for all j,
Γj is equivalent to dj . For a reduced DC-formula Γ , we maintain a vector v[Γ ] ∈ Nk

where the i-th component of v[Γ ] counts the number of conjunctions in Γ with exactly
i equalities. On Nk we consider the lexicographical ordering “≤” which is given by:
(n1, . . . , nk) ≤ (n′

1, . . . , n
′
k) iff either nl = n′

l for all l, or there is some 1 ≤ i ≤ k
such that nl = n′

l for all l < i, and ni < n′
i. Recall that this ordering is a well-ordering,

i.e., it does not admit infinite strictly decreasing sequences.
Now assume that Γj equals c1 ∨ . . . ∨ cm for reduced conjunctions ci. Assume that

dj+1 equals c′1∨. . .∨c′n for reduced conjunctions c′l. Then by distributivity,Γj∧dj+1 is
equivalent to

∨m
i=1 ci∧(c′1∨. . .∨c′n). First, assume that for a given i, ci∧c′l is equivalent

to ci for some l. Then also ci ∧ (c′1 ∨ . . . ∨ c′n) is equivalent to ci. Let V denote the
subset of all i with this property. Thus for all i �∈ V , ci is not equivalent to any of the
conjunctions ci ∧ c′l. Let J [i] denote the set of all l such that ci ∧ c′l is satisfiable. Then
by Lemma 3, we can construct for every l ∈ J [i], a non-empty conjunction cil such
that ci ∧ cil is reduced and equivalent to ci ∧ c′l. Summarizing, we construct the reduced
DC-formula Γj+1 equivalent to Γj ∧ dj+1 as:(∨

i∈V ci

)
∨
(∨

i�∈V

∨
l∈J[i] ci ∧ cil

)
.
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According to this construction, v[Γj ] = v[Γj+1] implies that V = {1, . . . , k} and
therefore that Γj is equivalent to Γj+1. Moreover, if Γj is not equivalent to Γj+1, then
v[Γj ] > v[Γj+1]. Accordingly, if the sequence Γj , j ≥ 0, is not ultimately stable, we
obtain an infinite sequence of strictly decreasing vectors – contradiction. ��

In particular, Theorem 3 implies that compactness holds for DC-formulas as well. Note
that if we consider not just positive Boolean combinations but additionally allow nega-
tion, then the compactness property is immediately lost. To see this, consider an infinite
sequence t1, t2, . . . of pairwise distinct ground terms. Then obviously, all conjunctions∧m

i=1(x1 �= ti), m ≥ 0, are pairwise inequivalent.
In order to perform effective fixpoint computations, we need an effective test for

stability.

Lemma 6. It is decidable for DC formulas d, d′ whether or not d ⇒ d′.

Proof. Assume d ≡ c1∨. . .∨cr and d′ ≡ c′1∨. . .∨c′s for conjunctions ci, c
′
j . W.l.o.g.

we assume that all conjunctions ci are satisfiable and thus have a most general unifier
σi. Then d ⇒ d′ iff σ |= d implies σ |= d′ for all substitutions σ. The latter is the case
iff for every i we can find some j such that σi |= c′j . Since it is decidable whether or
not a substitution satisfies a conjunction of equalities, the assertion follows. Note that
this decision procedure for implications requires polynomial time. ��

We now extend the lattice E to a lattice D of equivalence classes of DC-formulas. Again,
the ordering is given by implication “⇒” where the binary greatest lower bound oper-
ation is “∧”. By Theorem 3, all descending chains in D are ultimately stable. Similar
to E, we deduce that D is in fact a complete lattice and therefore amenable to fixpoint
computations. Note however that, in contrast to the complete lattice E, the new lattice
D has infinite strictly ascending chains. An example is the ascending chain defined by
φ0 = false and φi+1 = φi∨x1 = ti, where t0, t1, . . . is a sequence of pairwisely distinct
ground terms. This implies that D does not have finite height and that there exist strictly
descending chains of arbitrary lengths. This more general lattice allows us to treat also
disjunctions and hence also Herbrand programs which, besides assignments, contain
disequality guards t1 �= t2. As weakest precondition computations generate descending
chains at each program point, they must become stable eventually and by Lemma 6,
we can detect when stability has been reached. In contrast, in a forward propagation
of valid facts, we would generate ascending chains such that we could not guarantee
termination. We obtain the main result of this section:

Theorem 4. Assume p is a Herbrand program, possibly with disequality guards. For
every program point vt of p and every positive Boolean combination of equalities d, it
is decidable whether or not d is valid at vt. ��

Consider again the example program from Section 2. Assuming that we want to check
whether x3 = x2 % 2 holds at program point 3, we compute the weakest pre-conditions
for the program points 0, . . . , 3 as shown in Figure 4. Indeed, the pre-condition for the
start node 0 is true implying that the equality to be checked is valid at program point 3.

Generalizing the idea from Section 4 for constant propagation, we obtain:
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0

1

2

3

4

x3 := x2%x1

x1 
= x2

x1 := 2

x3 := x3 − 1

x1 := x2

x1 = 2true

x3 = x2%2

(x1 = 2) ∨ (x1 = x2)

Fig. 4. The pre-conditions computed for x3 = x2 % 2 at program point 3.

Theorem 5. For a Herbrand program p possibly with disequality guards let WP[st]
denote the weakest precondition of xi = y at the program point vt. Then we have:

1. vt is dynamically unreachable iff WP[st] is equivalent to true.
2. Suppose vt is dynamically reachable and let c ∈ TΩ , Then xi = c holds at vt iff

∀x1. . . . .xk.WP[st] is equivalent to y = c.

In particular, it can be decided whether xi is constant at vt.

Proof. We only prove the second assertion. Let φ ≡ (∀x1. . . . .xk.WP[st]). We first
show that for any given ground term c ∈ TΩ , the following equivalence holds:

xi = c holds at vt iff φ[c/y] is equivalent to true . (1)

For proving this equivalence, consider for a given ground term c ∈ TΩ a modified
program pc which first performs the assignments y := c;x1 :=?; . . . ;xk :=? and then
behaves like p. As y is not used anywhere in the program p and the variables x1, . . . ,xk

have unknown initial values anyhow, xi = c holds at program point vt in p if and only
if it holds at vt in pc. This is the case iff xi = y holds at vt in pc because y is assigned
c by the first assignment in pc and is never modified. It follows from Lemma 2 that
xi = y holds at vt in pc iff the weakest precondition for validity of xi = y at vt in
pc is equivalent to true. If we compute this weakest precondition, we obtain at the start
node of pc a formula equivalent to φ[c/y] by the definition of weakest preconditions for
statements. Equivalence (1) follows.

If φ is equivalent to true, WP[st] is equivalent to true as well. In this case vt is
dynamically unreachable by assertion 1; assertion 2 follows for trivial reasons. If φ is
equivalent to false, Equivalence (1) yields that there is no c ∈ TΩ such that xi = c
holds at vt; thus in this case both sides of the equivalence claimed in assertion 2 are
dissatisfied.

Finally, if φ is equivalent to neither true nor false, it can be written as a non-
empty disjunction of reduced, pairwisely inequivalent conjunctions by Lemma 5 and
Lemma 3. As only y appears free in φ this disjunction takes the form y = c1∨· · ·∨y =
cl with l ≥ 1 and pairwisely distinct ground terms c1, . . . , cl ∈ TΩ . Then, φ[c/y] is
equivalent to true iff c ∈ {c1, . . . , cl}. By (1) this means that xi = c holds at vt iff
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c ∈ {c1, . . . , cl}. For l = 1, both sides of the equivalence claimed in assertion 2 are
satisfied. For l > 1, on the other hand, both xi = c1 and xi = c2 hold at vt. As c1 �= c2
this implies that vt is dynamically unreachable and assertion 2 follows for trivial rea-
sons. (Note, that in this case by assertion 1 WP[st] and thus φ is equivalent to true.
Thus, actually the case l > 1 cannot appear.) ��

6 Limitations and Lower Bounds

In [15], we showed for affine programs, i.e., programs where the standard arithmetic
operators except division are treated precisely, that equality guards allow us to encode
Post’s correspondence problem. In fact, multiplication with powers of 2 and addition
of constants was used to simulate the concatenation with a given string. For Herbrand
programs, we simply may encode letters by unary operators. Thus, we obtain:

Theorem 6. It is undecidable whether a given equality holds at some program point in
a Herbrand program with equality guards of the form xi = xj . ��
We conclude that completeness cannot be achieved if we do not ignore equality guards.
As explained in the introduction, Herbrand interpretation based analyses of equality
guards are also questionable for soundness reasons. Turning to our algorithm for check-
ing disjunctions, we recall that termination of the fixpoint algorithm is based on the
well-foundedness of the lexicographical ordering. This argument does not provide any
clue to derive an explicit complexity bound for the algorithm. We can show, however,
that it is unlikely that an algorithm with polynomial worst case running time exits.

Theorem 7. It is at least PSPACE-hard to decide in a Herbrand program with dise-
quality guards whether a given Herbrand equality is true or not.

We prove Theorem 7 by means of a reduction from the language-universality problem
of non-deterministic finite automata (NFA), a well-known PSPACE-complete problem.
The details can be found in Appendix A.

7 Conclusion

We presented an algorithm for checking validity of equalities in Herbrand programs.
In absence of disequality guards, our algorithm runs in polynomial time. We general-
ized this base algorithm to an algorithm that checks positive Boolean combinations of
equalities and deals with programs containing disequality guards. We also showed that
our techniques are sufficient to find all Herbrand constants in such programs.

Many challenging problems remain. First, termination of the generalized algorithm
is based on well-founded orderings. We succeeded in establishing a PSPACE lower
bound to the complexity of our analysis. This lower bound, however, did not exploit
the full strength of Herbrand programs – thus leaving room for, perhaps, larger lower
bounds. On the other hand, a more constructive termination proof could help to derive
explicit upper complexity bounds. Finally, note that any algorithm that checks validity
can be used to infer all valid assertions up to a given size. Clearly, a more practical
inference algorithm would be highly desirable. Also, it is still unknown how to decide
whether or not any finite disjunction of Herbrand equalities exists which holds at a given
program point.
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13. M. Müller-Olm and O. Rüthing. The Complexity of Constant Propagation. In 10th European

Symposium on Programming (ESOP), 190–205. LNCS 2028, Springer-Verlag, 2001.
14. M. Müller-Olm and H. Seidl. Polynomial Constants are Decidable. In 9th Static Analysis

Symposium (SAS), 4–19. LNCS 2477, Springer-Verlag, 2002.
15. M. Müller-Olm and H. Seidl. A Note on Karr’s Algorithm. In 31st Int. Coll. on Automata,

Languages and Programming (ICALP), 1016–1028. Springer Verlag, LNCS 3142, 2004.
16. M. Müller-Olm and H. Seidl. Computing Polynomial Program Invariants. Information Pro-

cessing Letters (IPL), 91(5):233–244, 2004.
17. M. Müller-Olm and H. Seidl. Precise Interprocedural Analysis through Linear Algebra. In

31st ACM Symp. on Principles of Programming Languages (POPL), 330–341, 2004.
18. J. H. Reif and R. Lewis. Symbolic Evaluation and the Gobal Value Graph. In 4th ACM Symp.

on Principles of Programming Languages (POPL), 104–118, 1977.
19. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers and Redundant

Computations. In 15th ACM Symp. on Principles of Programming Languages (POPL), 12–
27, 1988.
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A Proof of Theorem 7

As mentioned, we prove Theorem 7 by means of a polynomial-time reduction from
the language-universality problem of non-deterministic finite automata (NFA). This is
known to be a PSPACE-complete problem (cf. the remark to Problem AL1 in [6]). An
instance of the problem is given by an NFA A over an alphabet Σ. The problem is to
decide whether A accepts the universal language, i.e., whether L(A) = Σ∗.

Without loss of generality, we may assume that Σ = {0, 1}. So suppose given
an NFA A = (Σ,S, δ, s1, F ), where Σ = {0, 1} is the underlying alphabet, S =
{s1, . . . , sk} is the set of states, δ ⊆ S × Σ × S is the transition relation, s1 is the
start state, and F ⊆ S is the set of accepting states. From this NFA, A, we construct a
Herbrand program π which uses k variables x1, . . . ,xk that correspond to the states of
the automaton and another set y1, . . . ,yk of auxiliary variables. These variables hold
the values 0 or 1 only in executions of π. Consider first the programs πi

σ for σ ∈ Σ,
i ∈ {1, . . . , k} pictured in Fig. 5 that are used as building blocks in the construction
of π. As mentioned in Sect. 2, the finite disjunctions and conjunctions of disequality
guards used in πi

σ (and later in π) can be coded by simple disequality guards. It is not
hard to see that the following is valid:

Lemma 7. For each initial state, in which the variables x1 . . . ,xk hold only the values
0 and 1, πi

σ has a unique execution. This execution sets yi to 1 if and only if xj holds 1
for some σ-predecessor sj of si. Otherwise, it sets yi to 0. ��

yi := 1yi := 0

∧
{xj �= 1 | (sj , σ, si) ∈ δ}

∨
{xj �= 0 | (sj , σ, si) ∈ δ}

Fig. 5. The program πi
σ .

Consider now the program π shown in Fig. 6. Intuitively, each path from the initial
program point 0, to the program point 2 corresponds to a word w ∈ Σ∗ and vice versa.
Execution of the initializing assignments on the direct path from 0 to 2 corresponds to
the empty word, ε. Each execution of the loop body amounts to a prolongation of the
corresponding word by one letter. If the left branch is taken in the loop body (the one
via program point 3) then the word is extended by the letter 0; if the right branch is
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x1 := y1

x1 := 0

∧{xj �= 1 | sj ∈ F}

xk := 0

x2 := 0

x1 := 1

xk := yk

π1
0

πk
0

π1
1

πk
1

x1 := 1

1

5

7

8

9

43

0

2

6

Fig. 6. The program π.

taken (the one via program point 4), the word is extended by the letter 1. Let pw be the
path from program node 0 to node 2 that corresponds to the word w. We prove:

Lemma 8. After execution of pw variable xi (for i = 1, . . . , k) holds the value 1 if
state si is reachable in the automaton under the word w. Otherwise, xi holds 0.

Proof. We prove Lemma 8 by induction on the length of w.

Base Case: Under the empty word, just the initial state s1 is reachable in A. As the
initialization sets x1 to 1 and the variables x2, . . . ,xk to 0, the property claimed in
the lemma is valid for the empty word.

Induction Step: Suppose w = w′0 with w′ ∈ Σ∗; the case w = w′1 is similar. Let p
be the cycle-free path from 2 to itself via 3. Then pw = pw′p.
Assume si is reachable under the word w in A. Then, clearly, there is a 0-predeces-
sor sj of si in A that is reachable under w′. Thus, by the induction hypothesis, xj

holds 1 after execution of pw′ . Consider executing p. The programs π1
0 , . . . , π

i−1
0

do not change xj . Thus, by Lemma 7, the program πi
0 sets yi to 1 and this value

is copied to xi in the i-th assignment after program point 5 because the programs
πi+1

0 , . . . , πk
0 do not change yi.

Finally, assume that si is not reachable under the word w in A. Then, clearly, no σ-
predecessor sj of si in A is reachable under w′. Thus, by the induction hypothesis,
for all 0-predecessors sj of si, xj holds 0 after execution of pw′ . The programs
π1

0 , . . . , π
i−1
0 do not change these values. Thus, by Lemma 7, the program πi

0 sets
yi to 0 and this value is copied to xi in the i-th assignment after program point 5
because the programs πi+1

0 , . . . , πk
0 do not change yi. ��

It is not hard to see from this property that there is an execution of π that passes the
guard at the edge between the nodes 7 and 8 if and only if L(A) �= Σ∗. This implies:
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Lemma 9. The relation x1 = 0 is valid at node 9 of program π iff L(A) = Σ∗.

Proof. We prove both directions of the equivalence claimed in Lemma 9 separately:

“⇒”: The proof is by contraposition. Assume L(A) �= Σ∗. Let w ∈ Σ∗ such that
w /∈ L(A). This implies that no state sj ∈ F is reachable in A under w. Therefore,
after executing pw all variables xj with sj ∈ F hold 0 by Lemma 8 such that the
condition

∧
{xj �= 1 | sj ∈ F} is satisfied. Hence, we can proceed this execution

via the nodes 7, 8, and 9. After this execution, however, x1 holds 1 such that the
relation x1 = 0 is invalidated.

“⇐”: Assume L(A) = Σ∗. Then after any execution from the initial program node 0
to node 2 one of the variables xj with sj ∈ F holds the value 1 because the word
corresponding to this execution is accepted by A. Therefore, the path 2, 7, 8, 9 is not
executable, such that x1 is set of 0 whenever 9 is reached. Therefore, the relation
x1 = 0 is valid at program point 9. ��

Note that our PSPACE-hardness proof does not exploit the full power of Herbrand pro-
grams and Herbrand equalities. We just use constant assignments of the form x := 0
and x := 1, copying assignments of the form x := y, and disequality guards of the
form x �= 0 and x �= 1, where 0 and 1 are two different constants. Moreover, we just
need to check whether a relation of the form x = 0 is valid at a given program point.
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Abstract. We present a framework to graphically describe and analyze
embedded systems which are built on asynchronously wired synchronous
subsystems. Our syntax is close to electronic diagrams. In particular,
it uses logic and arithmetic gates, connected by wires, and models syn-
chronous subsystems as boxes containing these gates.
In our approach, we introduce a continuous-time semantics, connecting
each point of the diagram to a value, at any moment. We then describe an
analysis derived from the abstract interpretation framework enabling to
statically and automatically prove temporal properties of the diagrams
we defined. We can prove, for example, that the output of a diagram
cannot be equal to a given value in a given interval of time.

1 Introduction

Embedded systems are often built on synchronous subsystems. Several tools
help programmers to such a design, like ScadeTM[2]/Lustre[5] or Simulink.
For safety matters, these synchronous subsystems must however be redundant.
This is the origin of several issues.

First, in case of disagreement between these redundant synchronous subsys-
tems, the system has to choose which subsystem should be trusted. Then, it
appears that the former problem will happen very frequently, because of the
de-synchronization of the clocks of these subsystems: two physical clocks, even
started simultaneously, cannot stay synchronized. This phenomenon is unavoid-
able as soon as we consider real embedded system with long use duration. In this
case, the different synchronous subsystems compute in a de-synchronized way
on different inputs and consequently always disagree!

This is why, without complementary hypothesis, asynchronous composition
won’t satisfy many safety properties. We therefore assume that the synchronous
subsystems are always quasi-synchronous, which means that the duration of
the cycles of these subsystems are very close to each other. Provided with this
hypothesis, we may prove safety properties of some fault-tolerant systems.

Synchronous systems may have a discrete semantics. On the other hand,
quasi-synchronous systems must be connected to a semantics that considers the
time as continuous. Considering the quasi-synchronous hypothesis may indeed

R. Cousot (Ed.): VMCAI 2005, LNCS 3385, pp. 97–112, 2005.
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drive us to suppose that one cycle starts for example between time t1 and time
t2, which is a continuous-time property.

We present a framework that enables a graphical description of such pro-
cesses. We then propose a tool to prove temporal safety properties of such com-
plex compositions of programs. This tool is based on several analyses, derived
from the abstract interpretation theory.

Previous works. P. Caspi and R. Salem presented in [6] a system with fault
tolerance without synchronization between synchronous subsystems. They man-
aged to prove by hand the robustness properties of the procedures they wrote.
In [1] were introduced the LTTA, enabling, under some hypotheses, synchronous
systems with non-perfect clocks to communicate in a secure way. S. Thompson
and A. Mycroft, on the other side, proposed in [12] several abstractions to study
asynchronous circuits that convinced us of the high simplification that could
be achieved through abstraction. Their methods, however, could not be directly
used to reach our goal, because their abstractions partially discard the time.
Last, we widely used the theory and we inspired by the applications developed
by P. Cousot, R. Cousot and their team ([4, 3, 8, 7, 11, 9]).

We introduce in Section 2 a new syntax and a continuous-time semantics.
We then present in Section 3 an abstract domain based on constraints. Section
4 defines abstract operators. We then present our first analysis and an example
in Section 5. Lastly, we propose in Section 6 another improved analysis.

2 Syntax and Semantics

The semantics developed in order to give a meaning to the asynchronous compo-
sition of synchronous programs often relies on a translation into a synchronous
environment. However, it implies to check all the possible interleavings of the
events of the synchronous subsystems. In our case, it appears that the number of
interleavings is by far too big to be exhaustingly explored. That’s why it seams
reasonable to introduce a continuous-time semantics.

2.1 Syntax

We chose an easily representable syntax, inspired by electronic diagrams, with
gates (arithmetic, logic,...), wires connecting the gates, and boxes isolating parts
of the diagrams. The advantage of this graphic representation is that it reminds
us that the elements of the syntax are continuous, like in a real electronic dia-
gram, where each point is connected to a voltage at each time.

2.1.1 Calculus Units: Gates. The calculus of our programs are described
by gates:

– +, −, ×, with two inputs and one output
– OR, XOR, AND, with two inputs and one output
– NOT, with one input and one output
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– CONSTα, with no input and one output
– TRASH, with one input and no output
– DELAY[α, β], with one input and one output

The meaning of the three first types of gates is obvious. The gate CONSTα is meant
to generate a constant value, TRASH simply absorbates the value it is given, and
DELAY[α, β] postpones the input values by a real delay which can vary between
α and β.

2.1.2 Replacing Variables: Internal Wires. The previous gates are con-
nected by wires, which simply transmit values arriving at their inputs. We also
allow splitting wires, which transmit values identicaly and simultaneously to
several gates.

With the previous objects, we can already build diagrams like the one on
Fig. 1.

CONST
1

DELAY [1,1]

−
s
1

s
2

s
3

s
4

s
5

Fig. 1. A simple diagram

Definition 1 (control point). A control point is any input or output of a gate
or of a wire.

We often collapse the two control points of the same wire. We call V the set of
control points of a diagram.

2.1.3 Synchronous Units: Boxes. A box is meant to represent a whole
synchronous program, i. e. gates and wires, executed quasi-synchrously. As a
consequence, it has to be isolated from the rest of the diagram, which represents
other programs and wires between them. A synchronous program is executed
in a cyclic way. Each cycle is supposed to last between α and β. We therefore
connect each box to an execution duration interval [α, β]. For example, the box in
Fig. 2 is assumed to be executed in constant time 1, since its execution duration
interval is [1, 1]. Lastly, a box has the same inputs and outputs as the ones of
the diagram it is built on. For example, the box in Fig. 2 has no input and one
output.

2.1.4 Communication Units: External Wires. External wires connect
an output of a box to an input of a box, in an oriented non-instantaneous way.
They are tagged with a time interval, and therefore represented on diagrams as
a DELAY gate, as depicted on the left diagram of Fig. 3.
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CONST
1

DELAY [1,1]

−
s
1

s
2

s
3

s
4

s
5

[1,1]

Fig. 2. A simple box

2.2 Continuous-Time Semantics

We write R for the set of reals, R∗
− for the negative reals, and B for the booleans.

2.2.1 The Set of Concrete Elements. We said above that we want our
semantics to be continuous. The easier way to achieve this is to chose signals as
elements of the concrete domain. This choice is by the way very coherent with
the graphical representation of the programs.

Definition 2 (signal). A signal is a function R �→ B or R which is equal to 0
or false on R∗

−.

Definition 3 (concrete elements). The set of concrete elements is V →
P(S). This set is ordered by the usual pointwise inclusion of sets.

2.2.2 Two New Gates: The Sampler and the SHIFT. These gates won’t be
used when designing diagrams. They aim at translating the discrete properties
of synchronous programs into our continuous model. They thus take a set of
clocks as parameter, and have one input and one output. A clock is any strictly
increasing function c : N �→ R, such that c(0) = 0. At this point, we do not
discard Zeno’s paradox. However, the semantics of the three time-sensitive gates
(sampler, SHIFT, and DELAY[μ, ν]) prevents it to appear by requiring μ > 0.

The sampler is represented on diagrams as |||[μ, ν] and the SHIFT as SHIFT[μ,ν],
where μ and ν are parameters restricting the clocks that may affect the input
signal. They must satisfy: ν � μ > 0.

2.2.3 Equations Generated by the Gates

– The semantics of a OR gate with two input control points E1 and E2 and an
output S1 is noted �(E1, E2), OR, S1� and is the equation:

∀t ∈ R, S1(t) = True iff E1(t) = True or E2(t) = True

The other logic and arithmetic gates have a similar semantics.
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– �E1, DELAY[α, β], S1� is the equation:

∃δ : R → R+, increasing, such that

∀t ∈ R, δ(t) − t ∈ [α, β] and ∀t ∈ R, S1(δ(t)) = E1(t).

– The semantics of a sampler |||[μ, ν] is �E1, |||[μ, ν], S1�, defined as:

∃c clock, ∀n ∈ N, c(n + 1) − c(n) ∈ [μ, ν], and

∀t ∈ [c(n), c(n + 1)[, S(t) = S(c(n))

– The semantics of a SHIFT SHIFT[μ, ν] is �E1, SHIFT[μ, ν], S1�, defined as1:

∃c clock, ∀n ∈ N, c(n + 1) − c(n) ∈ [μ, ν], and

∀t ∈ [c(n), c(n + 1)[, S(t) = S(c(n)−)

– Lastly, the equations generated by wires are simple equalities.

You can notice that all the gates are considered as instantaneous, except
DELAY[α, β], SHIFT[μ,ν], and |||[μ, ν]. The definition of DELAY[α, β] implies that
it keeps the order between the values on the signal. It thus represents a serial
transmission.

2.2.4 The Concrete Semantics

A preliminary transformation: We would like to consider the function connecting
the control points to a set of signals which, at these points, satisfy the equations
generated by a diagram as the semantics of the diagram. But this definition
faces the existence of boxes. That’s why we define a function Φ which connects
a diagram S to another one Φ(S) such that, at each box B with an execution
duration interval [αB , βB]:

– we add at each input of B a gate |||[αB , βB].
– we add at each output of B a gate:

• DELAY[αB , βB] if the box contains no DELAY gate.
• SHIFT[αB , βB] if the box contains at least one DELAY gate.

– we remove the box!

Semantics.

Definition 4 (Semantics). The equational semantics of a diagram is the func-
tion f : V → P(S), such that for each v ∈ V , f(v) is the set of signals u such
that for each w ∈ V \ {v} = {w1, ...., w#V −1} exists a signal sw, such that
(u, sw1 , ...., sw#V −1) satisfies all the equations in the semantics of the elements
of the diagram.

We note �D� for the semantics of the diagram D.
1 We define f(x−) 	 lim

y → x

y < x

f(y)
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Fig. 3. Transforming a simple diagram

An example. let us consider the semantics2 of the diagram on Fig. 2:

( , CONST1, s1) (s1, DUPL, (s2, s3)) (s3, DELAY[1,1], s4) ((s2, s4),−, s5)

s1 �→ s2, s3 �→ s4 �→ s5 �→
{λt.if t < 0 {λt.if t < 0 {λt.if t < 1 {λt.if 0 
 t < 1
then 0 else 1} then 0 else 1} then 0 else 1} then 1 else 0}

1 11 1

2.3 Concrete Operators

The equational semantics is unfortunately quite difficult to handle. If, for ex-
ample, we have an information on one control point of a diagram, it has con-
sequences on the control points on the other side of any gate connected to this
control point. But we still cannot easily control the propagation of the infor-
mation. We choose to orientate this propagation backwards. To propagate the
information backwards without loosing too much precision, we just define op-
erators that compute the weakest precondition implying the postcondition we
already have as hypothesis.

2.3.1 Operator DELAY[α,β]. We define ΨDELAY[α,β](A) as:⎧⎨⎩a such that ∃δ

∣∣∣∣∣∣
δ : R → R

∀t, δ(t) − t ∈ [α, β]
λt.a(δ(t)) ∈ A

⎫⎬⎭ .

If we assume that (E1, S1) satisfies �e1, DELAY[α, β], s1�, then E1⊆ΨDELAY[α,β](S1).
2 We here use Church’s lambda calculus notation: λx.e is the function mapping x to

the expression e
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2.3.2 Operator DUPL
ΨDUPL(A,B) 	 A ∩B

Again, if (E1, (S1, S2)) satisfies �e1, DUPL, (s1, s2)�, then E1 ⊆ ΨDUPL(S1).

2.3.3 Logic Operators. Let us define:

ΨAND(A) 	 {(x, y)|∃a ∈ A, ∀t, x(t) ∧ y(t) = a(t)}

Again, if ((E1, E2), S1) satisfies �(e1, e2)ANDs1�, then (E1, E2) ⊆2 ΨAND(S1). We
define the same way ΨOP(A) for the other logic gates, as well as for the arithmetic
gates.

2.3.4 Operator |||[μ,ν]

Ψ|||[μ,ν](A) 	

⎧⎨⎩x
∣∣∣∣ ∃a ∈ A
∃C ∈ N → R str. ↗

∣∣∣∣∣∣
∀n,C(n + 1) − C(n) ∈ [μ, υ]

∀t ∈ [C(n), C(n + 1)[
a(t) = x(C(n))

⎫⎬⎭
If (E1, S1) satisfies �e1, |||[μ, ν], s1�, then E1 ⊆ Ψ|||[μ,ν](S1)

2.3.5 Operator SHIFT. In the following, we won’t consider any longer the
SHIFT operator. It can, however be connected to concrete operator and, later,
to an abstract one. SHIFT[μ,ν] is indeed equivalent to a DELAY[ε,ε] followed by
a |||[μ, ν], where ε is very small compared to all the delays present in the box
it comes from. Once divided into two gates, it may be transformed into two
operators, either concrete or abstract ones.

2.3.6 Coding the Diagram into Operators. We are now able to connect
any diagram S to an operator ΨS coding its wiring. For example, Ψ connects
the diagram on the right to the table on the left. We let T denote the semantics
of the diagram on the right, and it thus is a function. We write ΨOP ◦ pi(T ) for
ΨOP ◦ T (i), and pi(T ) ◦ ΨOP for the i-th coordinate of the result of ΨOP. As T is
the semantics of the diagram, for any control point t, T (t) ⊆ pt ◦ ΨOPt ◦ p′t(T ),
where OPt is the gate after t, pt and p′t represent the wiring with that gate.

T ⊆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ|||[39,41]
◦ p1

Ψ|||[39,41]
◦ p2

p1 ◦ ΨAND ◦ p4

ΨNOT ◦ p3

p2 ◦ ΨAND ◦ p4

ΨDUPL ◦ (p5, p6)
ΨDELAY[39−41] ◦ p5′

ΨDELAY[39−41] ◦ p6′

λx.S
ΨDELAY[0−10] ◦ p2′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(T )

e1 t 1

t 2 t 3

t 4

t 5

t 6
e2 t

ET

39−41

39−41

Delay:39−41

Delay:39−41

Delay:0−10

NON
2

1t’

t’

5t’

6 ’
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The advantage of such a notation is that it is very easy to be translated into
any abstract domain: we replace any concrete operator ΨOP by an abstract Ψ#

OP.
These new abstract operators must however be linked to the concrete ones, so
that the abstract properties possibly proved thanks to these abstract operators
can be translated back into the concrete domain.

2.3.7 Expressing Concrete Properties with Concrete Operators and
Fixpoints. We said above that we have an operator ΨS built on all the operators
ΨOP, satisfying the property: if T is the semantics of a diagram S, then T ⊆ ΨS(T ).

Let us try to express this property in a fixpoint form.
Let suppose we want to prove a property P on the signals in the semantics of a

diagram S. Let Z¬P : V → P(S) such that if sv1 , ..., svn ∈ Z¬P (v1), ..., Z¬P (vn)
then sv1 , ..., svn doesn’t satisfy P . We thus would like to prove the assertion
A 	 �S� ∩ Z¬P = ∅. Now, since A ⊆ �S�, A ⊆ Ψ(A). Then A = (Ψ ∩ Id)(A), so
that, by Tarski’s fixpoint theorem,

A ⊆ gfpZ¬P
(Ψ ∩ Id)

Let us now try to prove that this fixpoint is empty. Introducing the operators,
we solved the difficulty of controlling the propagation of the information. We now
would like to take advantage of a better way to handle this information contained
in the sets of signals. In particular, it should be easily handled by a computer
program. We therefore design a new abstract domain.

3 A Non-relationnal Abstract Domain: The Constraints

3.1 The Constraints

We define three types of constraints:

– A constraint denoted by [a; b] : x, meaning that any signal takes the value x
at least once during the interval [a; b].

– A constraint denoted by 〈a; b〉 : x, meaning that any signal takes the value
x during the whole interval [a; b].

– A constraint Abs_contr, which denotes the absence of constraint.

We let Z denote the set of all constraints.

3.2 Abstract Domain

The abstract domain is V → P(P(Z)). Each element is a disjunction of con-
junctions of constraints, described in a disjunctive normal form. They represent
the properties of the signals. At this point, we allow infinite conjunctions and
disjunctions. However, we will see in Sec. 6 that we can avoid them, so that a
computer is able to handle such elements.
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3.3 Concretization Map

The set of signals that satisfy an abstract property P# is given by γ(P#), where
γ is the concretization map, defined as follows.

Definition 5 (Concretization map).

⎛⎜⎜⎝
V → P(P(Z)) → V → P(S)

λv.{fi,v, i ∈ I} �→ λv.
⋂

i∈I

(⋃
([a,b]:y)∈fi,v

{x,∃t ∈ [a, b], x(t) = y}
)

∪
(⋃

(〈a;b〉:y)∈fi,v
{x,∀t ∈ [a, b], x(t) = y}

)
⎞⎟⎟⎠

Thus, for example:

– γ({∅}) = S
– γ({{([0, 1] : 1)∧ ([1, 2] : 0)∧ 〈2; 3〉 : 1} ∨ {([0, 1] : 0)∧ ([1, 2] : 1)∧ 〈2; 3〉 : 1}})

⊆ {f |f switches from 0 to 1 or from 1 to 0 between 0 and 2, but is equal
to 1 between 2 and 3}

3.4 Pre-order, Union, Intersection

The abstract domain is pre-ordered by ⊆# defined by:

f# ⊆# g# ⇔ γ(f#) ⊆ γ(g#)

We use a pre-order because a set of signals may be described by several
unrelated abstract elements. This change doesn’t affect our analysis, and will be
discussed later. Indeed, some of the equivalent notations representing the same
abstract element are easier to manipulate and we will try to favour them.

We also define ∩# and ∪#, as usually on disjunctive normal forms.

4 Abstract Operators

The abstract domain defined above isn’t much simpler than the concrete one
until we define abstract operators, enabling the translation of the fixpoint-based
concrete properties into fixpoint-based abstract properties. We can now define
abstract operators, either constraint by constraint, or directly. We thus define,
for any operator OP, except |||[μ,ν] and DUPL:

Ψ#
OP(A

#) =
{{

Ψ̇#
OP(C)

∣∣∣C ∈ A#
i

} ∣∣∣A#
i ∈ A#

}
with

Ψ#
DUPL(A

#, B#) = A# ∩# B#

Ψ̇#
DELAY[α,β](([a, b] : x)) = ([a− β, b− α] : x)

Ψ̇#
DELAY[α,β]((〈a; b〉 : x)) = (〈a− α; b − β〉 : x)
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Ψ̇#
ET((I : True)) = (I : True, I : True)

Ψ̇#
OU((I : False)) = (I : False, I : False)

Ψ̇#
NON((I : x)) = (I : ¬x)

Now, we recursively define:

Ψ̇#
|||[μ,ν]

(([a, b] : x)) = ([a− ν, b] : x)

and

Ψ#
|||[μ,ν]

(A1, ..., Ak−1, {C1, ..., Ck−1, (〈a, b〉 : x) , Ck, ..., Cn} , Ak+1, ..., An)

	 Ψ#
|||[μ,ν]

(A1, ..., Ak−1, {Ci, i ∈ [1, n]} ∪ {([t, t] : x) , t ∈ [a, b]} , Ak+1, ..., An)

5 Link Between Concrete and Abstract Properties

5.1 From Concrete Properties to Abstract Properties

We use the next theorem to link concrete properties and abstract properties:

Theorem 1. For any Ψ defined above, Ψ ◦ γ ⊆ γ ◦ Ψ#

It is easy to prove, considering each possible Ψ . We then are able to use the next
theorem:

Theorem 2. 3 If:

– F and F# are continuous.
– F ◦ γ ⊆ γ ◦ F#

– A# is an abstract element such that F (γ(A#)) ⊆ γ(A#) and F#(A#) ⊆ A#

then:
gfpγ(A#)F ⊆ γ(gfpA#F#)

Now, if, on the other hand, Z¬P = γ(A#) and γ(gfpA#(ΨS ∩ Id)#) = ∅ then it
entails that gfpZ¬P

(ΨS ∩ Id) = ∅ so that the wanted property P is true.

5.2 Example

Let us consider the diagram on Fig. 4, and try to prove P = �δ ∈ R, ∀t ∈
[δ, δ + 100], t′5(t) is true. As we said above, we thus consider ¬P , and therefore
try to propagate an hypothesis constraint A# = 〈δ, δ + 100〉 : True in this
diagram, for any δ.

3 Variant of Proposition 25, [9]
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e1 t 1

t 2 t 3

t 4

t 5

t 6
e2 t

ET

39−41

39−41

Delay:39−41

Delay:39−41

Delay:0−10

NON
2

1t’

t’

5t’

6 ’

Fig. 4.

Step Constraint function (control point → constraints)
1 t′5 → 〈δ, δ + 100〉 : True
2 t5 → 〈δ − 39, δ + 59〉 : True
3 t4 → 〈δ − 39, δ + 59〉 : True

4
t1 → 〈δ − 39, δ + 59〉 : True
t3 → 〈δ − 39, δ + 59〉 : True

5
t′1 →

∧
t∈[δ−39,δ+59]

([t− 41, t] : True)

t2 → 〈δ − 39, δ + 59〉 : False
6 t′2 →

∧
t∈[δ−39,δ+59]

([t− 41, t] : False)

7 t′6 →
∧

t∈[δ−39,δ+59]

([t− 51, t] : False)

8 t6 →
∧

t∈[δ−39,δ+59]

([t− 82, t− 39] : False)

9 t4 →
∧

t∈[δ−39,δ+59]

([t− 82, t− 39] : False)

The result is that the control point t4 must satisfy two contradictory con-
straints, 〈δ − 39, δ + 59〉 : True and

∧
t∈[δ−39,δ+59]

([t− 82, t− 39] : False). In-

deed, gfpZ¬P
(Ψ ∩ Id)# ⊆# (Ψ)#3(Z¬P ) ∩# (Ψ)#9(Z¬P ) ⊆# ∅#. As a conse-

quence, gfpZ¬P
(Ψ ∩ Id) = ∅. We then proved that P = � ∃δ, ∀t ∈ [δ, δ+ 100], t′5(t)

is true.
Here, the contradiction appeared after only nine steps, but we can imagine a

much later convergence, or even a convergence after an infinity of steps. In that
case, we would have to use a widening operator [10].

6 Improvements to the Analysis

6.1 A Transformation of Diagrams

The main loss of information in our previous analysis is due to the imprecision
of our abstract operators. The only way to solve this is to provide the operator
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representing a gate with more information about the gates around it. We now
apply a transformation to diagrams in order to face this issue.

First, we label each gate P with σ(P) representing its synchronicity group.
Two gates are said synchronous if they have the same synchronicity group. This
synchronicity group must satisfy:

– If P and P′ are any gates (except DELAY and |||) only wired to inputs of the
same box, they are synchronous.

– If P and P′ are any gates (except DELAY and |||) only wired to synchronous
inputs, they are synchronous.

Once this is done, let us define the minimal stability, denoted τ of con-
trol points. This minimal stability represents the minimum delay between two
changes of the value of any signal at this control point:

– Any input of the diagram is connected to τ = 0.
– Any output S of a sampler |||[μ, ν], of input E, is connected to τ(S) = μ.
– Any output S of a gate DELAY[α, β], of input E, is connected to τ(S) =
τ(E) − (β − α).

– Any output S of a gate DUPL or NON, of input E, is connected to τ(S) = τ(E).
– Any output S of a gate ET, OR or XOR, of synchronous inputs E, is connected

to τ(S) = τ(E1) = τ(E2).
– Any output S of a gate ET, OR or XOR, of non synchronous inputs E, is

connected to τ(S) = 0.
– Any output S of a gate CONSTα, of input E, is connected to τ(S) = ∞.

For example, this new transformation, applied to Fig. 4, gives the result
shown on figure Fig. 5. In this diagram, the gates NOT, DUPL et AND are syn-
chronous, and labeled “A”. The control points are followed by their minimal
stability.

Fig. 5. Fig. 4, modified
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6.2 Modification of the Operators Ψ#

The operators, as formerly defined, cannot be easily programmed. Indeed, the
operator Ψ#

|||[μ,ν]
, applied to 〈a, b〉 : x generates

∧
t∈[a,b]

Ψ̇#
|||[μ,ν]

(([t, t] : x)), which

cannot be easily handled by a computer.
Ψ#
|||[μ,ν]

, instead of being computed on:

Γ1 ∨ ... ∨ (C1 ∧ ... ∧ Ci ∧ (〈a; b〉 : x) ∧ ... ∧ Ck) ∨ ... ∨ Γn

should now compute Ψ#
|||[μ,ν]

of
Γ1 ∨ ...∨(

C1 ∧ ... ∧ Ci ∧ ([a,a] : x) ∧ ... ∧
([

a +

⌊
(b− a)

η

⌋
η, a +

⌊
(b− a)

η

⌋
η

]
: x

)
∧ ... ∧ Ck

)
∨... ∨ Γn

This enables for example the equality:

Ψ#
|||[μ,ν]

{{(〈a, b〉 : x)}} =
⋂

j∈
[
0;
⌊

(b−a)
η

⌋]Ψ#
|||[μ,ν]

({{([a + jη, a+ jη] : x)}})

where η = μ
k , is a parameter, with k an integer. This change is correct with

respect to the theorem 1 of the Sec. 5.1, since it simply forgets some constraints.
On the other hand, it appears that there won’t be too much loss of information,
since the former and the new constraint are equivalent (for ⊆#), as far as the
signals are restricted to those with a minimal stability superior or equal to μ.

6.3 Modification of the Abstract Domain

The abstract domain of Sec. 3 was non-relational. This means that the con-
straints on the different control points are independant. This is an issue if, for
example one try to find which constraints on the inputs of a gate AND implies that
its output satisfies 〈a; b〉 : false. A relational abstract domain should therefore
be defined.

Definition: The relational abstract domain is the disjunctive completion of the
domain of Sec. 3, that is the set Z∨∧ = P(P(V → Z)), representing the disjunc-
tions of the conjunctions of functions connecting control points to one constraint.
We link the both abstract domains with two functions, that were implemented
in ocaml.

Link with the non-relational domain
Let us consider: List tab : U �→ (W list)− > (U �→ W) list, returning the list of
the functions such that the n-th element of this list connects any element u of
U to the n-th element of the list connected to u. In the following example, U is
the set of integers and a function from U is represented as an array (1 �→ x, 2 �→
y=[|x;y|]):

List tab([|[1; 3; 5]; [2; 4; 6]|]) = [[|1; 2|]; [|3; 4|]; [|5; 6|]]
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Let us consider Tab list : (U �→ W) list− > U �→ (W list), returning a function
connecting each u of U to to all the elements connected to u by a function of
the list in argument. For example, with the same conventions as before:

Tab list([[|1; 2|]; [|3; 4|]; [|5; 6|]]) = [|[1; 3; 5]; [2; 4; 6]|]

Let map f l be the function returning the list of the results of f applied to each
element of l. Then, let

α = Tab list ◦ (map Tab list)

and
γ = (map List tab) ◦ List tab

(α, γ) is a Galois connection. We can thus define for any operator OP.

Ψ relational
OP = γ ◦ Ψnon-relational

OP ◦ α

These new operator are thus very close to the former ones, and won’t improve
precision. We therefore now refine some of them.

Improving the operators let Ψ̈#
(σ1,σ2,ET,σ3) connects:⎛⎜⎜⎜⎜⎜⎜⎝

s1 → d1

...
σ3 → [a, b] : false

...
sp → dp

⎞⎟⎟⎟⎟⎟⎟⎠
to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 → d1

.

.

.

σ2 → [a, b] :
false

.

.

.

σ1 → [a, b] :
false

.

.

.
sp → dp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 → d1

.

.

.

σ2 → [a, b] :
true

.

.

.

σ1 → [a, b] :
false

.

.

.
sp → dp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 → d1

.

.

.

σ2 → [a, b] :
false

.

.

.

σ1 → [a, b] :
true

.

.

.
sp → dp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
As for the universal constraint 〈a; b〉 : false, it is transformed into a set of

existential constraints {[a + kη; a + kη] : x, k ∈ [0;
⌊

(b−a)
η

⌋
]}. We already did

such an operation in section 6.2. We then define Ψ̇#
(σ1,σ2,ET,σ3)

such that:

Ψ̇#
(σ1,σ2,ET,σ3)(Γ1, ..., Γk) =

{
a ∧ b,

a ∈ Ψ̈#
(σ1,σ2,ET,σ3)(Γ1)

b ∈ Ψ̇#
(σ1,σ2,ET,σ3)

(Γ2, ..., Γn)

}
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Lastly,

Ψ#
(σ1,σ2,ET,σ3)(Γ1, ..., Γn) = (Ψ̇#

(σ1,σ2,ET,σ3)(Γ1), ..., Ψ̇
#
(σ1,σ2,ET,σ3)(Γn))

A similar transformation is of course also applied to Ψ#
OR and Ψ#

XOR. These new op-
erators face the former problem of the loss of all information on some constraints
by these operators.

7 Conclusion

The analyses we presented were easily implemented in the ocaml language, en-
abling to prove, the same way we did it for the example presented section 5.2,
temporal properties of several diagrams, containing more than 20 gates. The
continuous-time semantics we used solved many difficulties often met when an-
alyzing these systems, in particular the exhaustive exploration of all the inter-
leavings. We choosed, in order to prove these properties, a very simple abstract
domain, which enabled all the same to prove the properties we submitted to our
analyzer.
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and X. Rival. A static analyzer for large safety-critical software. Proc. ACM
SIGPLAN 2003 Conf. PLDI, 196-207, San Diego, CA, USA, . ACM Press, 7-14
juin 2003.

5. Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lustre: A declara-
tive language for programming synchronous systems. Proceedings of the 14th ACM
symposium on Principles of programming languages, POPL’87, 1987.

6. Paul Caspi and Rym Salem. Threshold and bounded-delay voting in critical control
systems. Vol. 1926 of Lecture Notes in Computer Science, September 2000.

7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
238—252, Los Angeles, California, 1977.

8. P. Cousot and R. Cousot. Constructive versions of tarski’s fixed point theorems.
Pacific Journal of Mathematics, Vol. 82, No. 1,pp. 43—57, 1979.



112 Julien Bertrane

9. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2–3):103—179, 1992.

10. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation, invited paper. pages 269–295,
1992.

11. Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511—547, August 1992.

12. S. Thompson and A. Mycroft. Abstract interpretation of asynchronous circuits.
SAS, Verona, Italy, August 2004.



Termination of Polynomial Programs�

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma

Computer Science Department
Stanford University

Stanford, CA 94305-9045
{arbrad,zm,sipma}@theory.stanford.edu

Abstract. We present a technique to prove termination of multipath
polynomial programs, an expressive class of loops that enables practical
code abstraction and analysis. The technique is based on finite differences
of expressions over transition systems. Although no complete method ex-
ists for determining termination for this class of loops, we show that our
technique is useful in practice. We demonstrate that our prototype im-
plementation for C source code readily scales to large software projects,
proving termination for a high percentage of targeted loops.

1 Introduction

Guaranteed termination of program loops is necessary for many applications,
especially those for which unexpected behavior can be catastrophic. Even for ap-
plications that are not considered “safety critical,” applying automatic methods
for proving loop termination would certainly do no harm. Additionally, prov-
ing general temporal properties of infinite state programs requires termination
proofs, for which automatic methods are welcome [4, 7, 10].

We present a method of nonlinear termination analysis for imperative loops
with multiple paths, polynomial guards, and polynomial assignments. The
method is nonlinear, first, because the guards and assignments need not be lin-
ear and, second, because it can prove the termination of terminating loops that
do not have linear ranking functions. The method is sound, but not complete.
Indeed, we show that no complete method for this class of programs exists. In
practical programs, however, our method proves termination of a high percentage
of the targeted loops at low computation cost, and hence is useful.

Recent work on automatic proofs of termination for linear imperative loops
has mostly focused on the synthesis of linear ranking functions. A ranking func-
tion for a loop maps the values of the loop variables to a well-founded domain;
further, it decreases value on each iteration. A linear ranking function is a ranking
function that is a linear combination of the loop variables and a constant. Colón
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and Sipma first address the synthesis of linear ranking functions in a deductive
manner [2]. They present a method based on the manipulation of polyhedral
cones, extending these results to loops with multiple paths and nested loops in
[3]. In [11], Podelski and Rybalchenko specialize the analysis to a less expressive
class of single-path imperative loops, providing an efficient and complete synthe-
sis method based on linear programming. Departing from linear ranking function
synthesis, Tiwari proves that the termination of a class of single-path loops with
linear guards and assignments is decidable, providing a decision procedure via
constructive proofs [13].

In the functional programming community, the size-change principle has re-
cently been proposed for termination analysis of functional programs [6]. This
effort is largely orthogonal to efforts for imperative loops. The principle focuses
on structural properties of functional programs, given that particular expressions
decrease or do not increase. While imperative loops, and in particular our ab-
stractions of such loops, may be translated to tail-recursive functional programs,
nothing is gained. Finding the proper size measure to show termination based on
the size-change principle is equivalent to proving termination in the imperative
setting. However, it is possible that our work may be applied as a size measure
for the termination analysis of some functional programs or recursive functions
in imperative programs, thus combining the strengths of each approach.

Our method extends termination analysis to multipath polynomial programs
(MPPs). We show that this class is sufficiently expressive to serve as a sound ab-
straction for a large class of loops appearing in ordinary C code. We implemented
our method and, via CIL [8], applied it to several large open-source C programs,
with size up to 75K lines of code. The timing results clearly demonstrate the
practicality of the analysis.

Unlike other recent work, we analyze loops via finite differences. Finite dif-
ferences have a long history in program analysis (e.g., [14, 5, 1]). These meth-
ods construct and solve difference equations and inequations, producing loop
invariants, running times, and termination proofs. While the equations and in-
equations are often difficult to solve, we observe that, for termination analysis
anyway, explicit solutions are unnecessary. Rather, our method analyzes loops
for qualitative behavior – specifically, that certain expressions eventually only
decrease by at least some positive amount, yet are bounded from below. We ad-
dress the challenge of characterizing such behavior in loops with multiple paths
and nonlinear assignments and guards.

The rest of the paper is ordered as follows. Section 2 introduces MPPs, while
Section 3 develops the mathematical foundations for our analysis. Section 4 then
formalizes the termination analysis of MPPs, additionally suggesting an alternate
abstraction and analysis based on sets of guarded commands. Section 5 describes
our prototype implementation and empirical results, and Section 6 concludes.

2 Preliminaries

Definition 1 (Multipath Polynomial Program) For real variables x =
(x1, . . . , xn), a multipath polynomial program (MPP) with m paths has the form
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shown in Figure 1(a), where Pi and Pij are a vector and a matrix, respectively,
of polynomials in x. θ expresses the initial condition on x.

This abstraction of loops is convenient. Multiple paths and arbitrary Boolean
combinations of guard expressions are essential for a straightforward abstraction
of real code. Moreover, the initial condition, θ, is useful for expressing invari-
ants of variables unaffected by the loop. Such variables may appear in constant
expressions in our analysis.

initially θ
while

∨
i

∧
j Pij(x) {≥, >} 0 do

τ1 : x := P1(x)
or
...
or

τm : x := Pm(x)
od

while x ≥ y do
τ1 : (x, y) := (x + 1, y + x)

or
τ2 : (x, y, z) := (x− z, y + z2, z − 1)

od

(a) (b)

Fig. 1. (a) Form of multipath polynomial programs. (b) Multipath polynomial pro-
gram chase.

Example 1. Consider the MPP chase in Figure 1(b). x and y may each increase
or decrease, depending on current values. Further, while they both eventually
increase, termination relies on y increasing more rapidly than x.

Theorem 1. (No Complete Method) Termination of MPPs is not semi-
decidable; that is, there is no complete method for determining termination of
MPPs.

Proof. We construct a reduction from Hilbert’s 10th problem, the existence of a
nonnegative integer root of an arbitrary Diophantine equation, which is unde-
cidable. First, we note that the existence of such a root is semi-decidable, via a
proper enumeration of vectors of integers: if a root exists, the enumeration termi-
nates with an affirmative answer. Thus, the nonexistence of nonnegative integer
roots is not semi-decidable. Now, we reduce from the question of nonexistence
of roots.
Instance: Given Diophantine equation P (x) = 0 in variables x = (x1, . . . , xn),
determine if there does not exist a nonnegative integer solution.
Reduction: Construct the multipath polynomial program with the following
variables: (1) one variable corresponding to each xi, called xi; (2) counter variable
c; and (3) upper limit variable N . The program has the following form:
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initially c = 1 ∧
∧n

i=1 xi = 0
while c ≤ N do

{x1, c} := {x1 + 1, 2 · P (x)2 · c}
or
...
or

{xn, c} := {xn + 1, 2 · P (x)2 · c}
od

The program is a multipath polynomial program, as the loop condition and
assignment statements involve only polynomials. Computations in which always
P (x) �= 0 are terminating, as c is initially 1 and at least doubles on each iteration,
while N remains constant. If P (x) = 0 does occur in a computation, then c is
assigned 0 on the subsequent iteration, and thus for every future iteration. When
such a computation is possible, there exist values for N as the upper bound on
c so that the computation does not terminate before P (x) = 0; afterward, c
remains 0, so the computation does not terminate. Since the program always
terminates if and only if there is no solution to the Diophantine equation, we
conclude that termination of multipath polynomial programs is neither decidable
nor even semi-decidable.

Given this fundamental negative result, this paper focuses on a sound and
computationally inexpensive method for concluding termination of multipath
polynomial programs. The approach essentially looks for expressions that evolve
with polynomial behavior, independently of the order in which transitions are
taken. A polynomially behaved expression must eventually only increase, only
decrease, or – in a degenerate case – remain unchanged, even if its initial behavior
varies. The method that we present soundly classifies expressions that eventually
only decrease (or eventually only increase). An expression that eventually only
decreases, yet is bounded from below within the loop, indicates termination.

3 Finite Difference Trees

To classify polynomial expressions as eventually only decreasing with respect
to a transition system, we use finite differences over transitions. We first recall
the definition of a finite difference, placing finite differences in the context of
transition systems.

Definition 2 (Finite Difference) The finite difference of an expression E(x)
in x over assignment transition τ is

ΔτE(x) def= E(x′) − E(x),

where τ provides the value of x′ in terms of x. Thus, ΔτE(x) is also an expression
in x. For convenience, we denote a chain of finite differences Δτin

· · ·Δτi1
E(x)

by Δτi1 ,...,τin
E(x) or more simply by Δi1,...,inE(x) (note the reversal of the list).
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If τin = · · · = τi1 , we denote the chain by Δn
τi1

E(x) or more simply by Δn
i1E(x).

For list of transitions T with length n, we say that ΔTE(x) is an nth order finite
difference.

Example 2. For program chase, the first, second, and third order finite differ-
ences of x− y over transition τ1 are the following:

Δ1(x− y) = (x + 1) − (y + x) − (x− y) = 1 − x
Δ2

1(x− y) = Δ1(Δ1(x− y)) = Δ1(1 − x) = 1 − (x + 1) − (1 − x) = −1
Δ3

1(x− y) = Δ1(Δ2
1(x− y)) = Δ1(−1) = (−1) − (−1) = 0.

Consider also the first and second order finite differences

Δ2(x − y) = (x− z) − (y + z2) − (x− y) = −(z2 + z)
Δ2,1(x − y) = Δ1(Δ2(x− y)) = −(z2 + z) + (z2 + z) = 0.

Finite differences with respect to transitions in different orders can be repre-
sented in a finite difference tree.

Definition 3 (Finite Difference Tree) The finite difference tree (FDT) of
an expression E(x) with respect to transitions T = {τ1, . . . , τm} has root E(x)
and branching factor m. Each node, indexed by its position with respect to the
root, represents an expression over x; specifically, the node indexed I represents
finite difference ΔIE(x). The leaves of an FDT are nodes with only 0-children
(child nodes with value 0). Thus, each leaf is a constant expression with respect
to T . The height of an FDT is the longest path to a leaf. A finite FDT is a finite
difference tree with finite height.

For notational convenience, we sometimes refer to FDT nodes by their finite
difference expressions; i.e., ΔTE(x) is the node indexed by T , where T is the
list of transitions that lead from the root to the node.

x− y
���

���
1− x
���

���
−z2 − z

���
−1 −z

���
2z
���

−1 −2

x− y
���

���
1− x
���

���
−z2 − z

���
−1 −z 2z

���
−2

(a) (b)

Fig. 2. (a) Finite difference tree for chase of x−y with respect to {τ1, τ2}. (b) Taylored
finite difference tree.

Example 3. The FDT of x−y with respect to {τ1, τ2} is shown in Figure 2(a). 0-
nodes are not shown. The left node labeled with −1 is indexed (τ1, τ1), reflecting
that it is the result of twice taking the finite difference with respect to τ1.
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The finite FDT t of an expression E(x) succinctly describes the evolution
of E(x). Given computation π = τi0τi1τi2 . . . with initial values x0, t has initial
value t0. Its subsequent values are found by applying each transition in turn,
where an application of a transition τi to t increases each node by the value
of its τi child (simultaneously, or starting from the root). The value of E(x)
depends not only on the number of times each transition is taken, but also on
the order that transitions are taken.

Example 4. Suppose x, y, and z of chase have initial values x0, y0, and z0,
respectively. After taking transition τ1, the root node of Figure 2(a) has value
x0 − y0 + 1− x0 = 1− y0, node (τ1) has value −x0, and the other nodes remain
unchanged. After then taking transition τ2, the root and (τ1) nodes have values
1−y0−z2

0−z0 and −x0−z0, respectively. The other nodes are similarly updated.

Note that an expression may not have a finite FDT with respect to some sets
of transitions. Such cases arise when the transitions have exponential behavior
(e.g., x := 2x); conversely, finite cases arise when transitions have qualitatively
polynomial behavior. Intuitively, the height of a finite FDT parallels the degree
(i.e., linear, quadratic, etc.) of the polynomial behavior. In this paper, we ad-
dress only the finite case – expressions in loops that evolve with qualitatively
polynomial behavior.

To facilitate the analysis we define Taylor FDTs and partial Taylor FDTs,
which eliminate the dependence on the order in which the transitions are taken.
We then show how every finite FDT can be conservatively approximated by a
partial Taylor FDT.

Definition 4 (Critical Leaves) The set of critical leaves ΔTE(x) of a finite
FDT are those nodes such that for all permutations σ, Δσ(T )E(x) has value 0
or is a leaf, and for at least one permutation σ, Δσ(T )E(x) is a leaf.

Definition 5 (Taylor FDT and Partial Taylor FDT) A finite FDT of E(x)
is a Taylor FDT if for each sequence of transitions T and every permutation σ
of T , ΔTE(x) = Δσ(T )E(x). That is, all nth order finite differences sharing
the same multiset of transitions have the same value. A finite FDT of E(x)
is a partial Taylor FDT if for each critical leaf ΔTE(x) and permutation σ,
ΔTE(x) = Δσ(T )E(x).

Even if an FDT is not a Taylor or partial Taylor FDT, it is associated with a
partial Taylor FDT.

Definition 6 (Taylored FDT) Given finite FDT t of E(x), the positive Tay-
lored FDT t+ is a partial Taylor FDT. Each critical leaf ΔTE(x) of t is given
value maxσ Δσ(T )E(x) in t+; the rest of t+ is identical to t. The negative
Taylored FDT t− is similar, except that each critical leaf’s value is given by
minσ Δσ(T )E(x).

The definition of a positive Taylored FDT t+ implies that the value of a node in
t+ is at least that of its counterpart in t. The opposite relation holds between t−
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and t. Consequently, given a computation π = τi0τi1τi2 . . ., t− ≤ t ≤ t+ always
holds, where ≤ expresses nodewise comparison, and thus E(x)− ≤ E(x) ≤
E(x)+.

Example 5. The Taylored FDT of x is shown in Figure 2(b). Node (τ1, τ2, τ2)
becomes 0 because

max{Δ1,2,2(x − y), Δ2,1,2(x− y), Δ2,2,1(x− y)} = max{−1, 0, 0} = 0.

For conceptual clarity, we extend the definition of a Taylored FDT so that
the result is a Taylor FDT; however, the extension can only be computed with
respect to the initial values of a computation.

Definition 7 (Fully Taylored FDT) Given finite FDT t of E(x) and initial
value x0, the positive fully Taylored FDT t+f is a Taylor FDT. Each node n at
index T in t+f has value maxσ(Δσ(T )E(x)[x �→ x0]). The negative Taylored FDT
t−f is similar, except that each leaf’s value is given by minσ(Δσ(T )E(x)[x �→ x0]).

We note that for a given initial state and computation π, always t−f ≤ t− ≤
t ≤ t+ ≤ t+f . Because the negative (fully) Taylored FDT of an expression is
equivalent to the positive (fully) Taylored FDT of the negated expression, we
will only consider the positive form henceforth and drop the qualifier “positive.”

A fully Taylored FDT has the property that for any multiset of transitions
T , all finite difference nodes Δσ(T )E(x) have the same value. Consequently,
the FDT may be analyzed in a way parallel to the analysis of polynomials of
multiple variables that vary continuously with time. Specifically, we look at the
Taylor expansion around “time” 0 – the beginning of the computation. Since the
behavior is polynomial, the Taylor expansion is exact.

Consider, for a moment, a fully Taylored FDT as expressing derivatives of
E(x) with respect to time. Then given the initial value of the computation, the
Taylor series expansion is simply given by the FDT itself; i.e.,∑

ΔT E(x)∈t

∏
τ∈T xτ

|T |! ΔTE(x)[x �→ x0],

viewing the T s as lists or multisets. In the discrete context, the expansion is
slightly different; however, the dominant terms are the same for the continuous
and discrete expansions. Moreover, the coefficients of the dominant terms are
those of the critical leaves, which are either constants or constant expressions.
In some cases, constant expressions may be soundly approximated by constants,
taking care that if a constant expression can possibly be 0, other terms in the ex-
pansion dominate. Then for a partial Taylor FDT, the dominant terms comprise
the dominant Taylor expression.

Definition 8 (Dominant Taylor Expression) Given finite partial Taylor
FDT t, its dominant Taylor expression is∑

ΔT E(x)∈critical leaves(t)

∏
τ∈T xτ

|T |! ΔTE(x),
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where one variable xτ is introduced per transition τ , representing the number of
times the transition has been taken.

while x ≥ 0 do
τ1 : (x, y, z) := (x + z, y + 1, z − 2)

or
τ2 : (x, y) := (x + y, y − 2)

od

x
����

����
z

���
���

y
���

���
−2 1 1 −2

(a) (b)

Fig. 3. (a) MPP interaction. (b) Taylored FDT.

Example 6. For chase, the dominant Taylor expression of the Taylored FDT
for the expression x− y is

−1
x2

1

2!
− 2

x3
2

3!
=

−x2
1

2
− x3

2

3
,

where x1 and x2 express the number of times that transitions τ1 and τ2 are
taken, respectively. Conceptually, we may consider a new MPP in which the
nonnegativity of the dominant Taylor expression is the guard, xi are the vari-
ables, and each transition τi in the original MPP corresponds to a transition
xi := xi + 1 in the new MPP. Clearly, the value of the new guard at any point
in a computation depends only on the number of times each transition has been
taken.

Example 7. Consider MPP interaction in Figure 3(a) and the Taylored FDT
for x with respect to {τ1, τ2} in Figure 3(b). The dominant Taylor expression of
the Taylored FDT for the expression x is

−2 · 1
2!
x1x1 +

1
2!
x1x2 +

1
2!
x2x1 − 2 · 1

2!
x2x2 = −x2

1 + x1x2 − x2
2.

Note the nonnegative term x1x2, indicating the adverse interaction of τ1 and τ2.

Combining the result t−f ≤ t− ≤ t ≤ t+ ≤ t+f with the dominant Taylor
expression admits analysis of the evolution of E(x). In the next section, we show
how to use the dominant Taylor expression of t+ to discover if E(x) eventually
decreases beyond any bound on all computations, which leads naturally into
proofs of termination.

4 FDTs and Termination

In the last section, we developed a theory of finite differences for transition sys-
tems involving polynomial expressions and assignments. The conclusion hinted
at the intuition for a termination analysis. If the dominant Taylor expression of
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the Taylored FDT of E(x) with respect to the transitions T decreases without
bound on all computations then, first, E(x)+f from the fully Taylored FDT must
decrease without bound so, second, as E(x) ≤ E(x)+ ≤ E(x)+f , E(x) must also
decrease without bound. If continuation of the loop depends on E(x) {≥, >} 0,
then the loop must terminate on all input. In this section, we formalize this
description and analyze several conditions on a MPP guard’s FDTs that ensure
termination.

4.1 Single Loop Condition

For the case of one loop condition P (x) {≥, >} 0, we consider the FDT of P (x)
with respect to the loop’s assignment transitions T .

Proposition 1. (Taylor Condition) Suppose that for each nonempty T ′ ⊆ T ,

1. the FDT t of P (x) with respect to T ′ is finite;
2. the dominant Taylor expression of the Taylored FDT t+ decreases without

bound as the length of the computation increases.

Then the loop terminates on all input.

Proof. Each subset T ′ represents a possible set of transitions that are taken in-
finitely often. Consider one such set. Suppose the dominant Taylor expression
of t+ with respect to T ′ decreases without bound as the length of the computa-
tion increases. For all initial values, the dominant Taylor expression dominates
the Taylor expansion of the root of the fully Taylored FDT; therefore, P (x)+f
decreases without bound. But P (x)+f ≥ P (x)+ ≥ P (x), so P (x) also decreases
without bound. Since this conclusion holds for all T ′, the loop must terminate.

Since the FDTs we consider have finite depth, if a dominant Taylor expression
eventually only decreases, then it eventually decreases without bound. We refer
to polynomials that satisfy the assumption of the proposition as decreasing with
respect to T .

Example 8. For chase, the dominant Taylor expressions for x with respect to
{τ1}, {τ2}, and {τ1, τ2} are the following, respectively:

−x2
1

2
,

−x3
2

3
, and

−x2
1

2
− x3

2

3
.

The last expression was calculated in Example 6. All three expressions clearly
decrease without bound as the length of the computation increases. Thus, chase
terminates on all input.

The following example introduces a technique for showing that a more com-
plicated dominant Taylor expression is decreasing. Changing to polar coordinates
allows the length of a computation to appear explicitly in the dominant Taylor
expression.
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Example 9. Recall that the dominant Taylor expression for x with respect to
{τ1, τ2} in interaction is −x2

1 + x1x2 − x2
2. Call the expression

√
x2

1 + x2
2 the

absolute length of a computation (in which both transitions are taken infinitely
often). Since x1 and x2 express the number of times τ1 and τ2 have been taken,
the absolute length is initially 0 and grows with each iteration. If the dominant
Taylor expression decreases without bound as the absolute length of the com-
putation increases, then the assumption of the Taylor condition is satisfied for
each of τ1 and τ2 occurring infinitely often.

Let x1 = r cos θ and x2 = r sin θ. r corresponds to the absolute length, while
θ ∈ [0, π

2 ] expresses the ratio of x2 to x1. Then after a change of variables,

−x2
1 + x1x2 − x2

2 = −r2 cos2 θ + r2 cos θ sin θ − r2 sin2 θ = r2(cos θ sin θ − 1).

Call this expression Q(r, θ). Differentiating, we find

∂Q

∂r
= 2r(cos θ sin θ − 1) and

∂2Q

∂r2
= 2(cos θ sin θ − 1).

The relevant domain of θ is [0, π
2 ], over which the maximum of ∂2Q

∂r2 is −1, oc-
curring at θ = π

4 . Therefore, independent of θ, as r increases, Q(r, θ) eventually
decreases without bound; therefore, the dominant Taylor expression also even-
tually decreases without bound.

Finally, considering the case where only τ1 (τ2) is taken after a certain point,
we note that the dominant Taylor expression is −x2

1 (−x2
2), which decreases

without bound. Thus, interaction terminates on all input.

We can apply the trick of using the absolute length and changing to polar co-
ordinates in general, via the usual extension of polar coordinates to higher di-
mensions. For m transitions and expression Q(r, θ1, . . . , θm−1), we check if ∂nQ

∂rn

is everywhere at most some negative constant over θi ∈ [0, π
2 ], i ∈ [1..m − 1],

where ∂nQ
∂rn is the first derivative with respect to r that is constant with respect

to r.
In many cases, a weaker condition on the structure of the single FDT with

respect to all transitions T is sufficient for proving termination, precluding an
expensive analysis of the dominant Taylor expression for each subset of transi-
tions. The condition follows from the Taylor condition, although it is intuitive
by itself.

Proposition 2. (Standard Condition) If every leaf of the FDT t of P (x)
with respect to T is negative, and the root of t has |T | children, then the loop
terminates on all input.

Example 10. The Taylored FDT for chase in Figure 2(b) meets this condition,
proving termination, while the Taylored FDT for interaction in Figure 3(b)
does not.
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4.2 General Loop Condition

Consider now the loop condition
∧

j Pj(x) {≥, >} 0. Clearly, one simple condi-
tion is that at least one conjunct’s FDT decreases without bounds; however, a
stronger condition based on a lexical ordering is possible. The following definition
will be useful for specifying the condition.

Definition 9 (Neutral Transitions) A set of transitions Tn ⊆ T is neutral
toward an expression E(x) decreasing with respect to transitions T \Tn if E(x)
is decreasing with respect to T , except possibly when only transitions in Tn are
taken infinitely often.

Checking if a set of transitions is neutral merely requires excluding certain sub-
sets of transitions (those that contain only transitions that need only be neutral)
when analyzing termination. For the standard condition, if transition τi is neu-
tral, the root need not have a τi child.

while x ≥ 0 ∧ z3 ≥ y do
τ1 : (x, y) := (x− 1, y − 1)

or
τ2 : (y, z) := (y − 1, z + y)

od

Fig. 4. Program conjunct.

Example 11. Consider program conjunct in Figure 4. The FDT of x with re-
spect to {τ1, τ2} is shown in Figure 5(a). Transition {τ2} is neutral toward x,
which decreases with respect to {τ1}. Its dominant Taylor expression is −x1,
which decreases without bound unless τ1 is not taken after a certain iteration,
regardless of how frequently τ2 is taken.

Proposition 3. (Conjunction Condition) Consider the loop with transitions
T , a conjunction of n loop conditions Pj(x) {≥, >} 0, and a map μ : T �→ [1..n]
mapping transitions to conjuncts. Then the loop terminates on all input if for
each j, the set {τ | μ(τ) > j} is neutral toward Pj(x), which decreases with
respect to {τ | μ(τ) = j}.

Proof. Suppose the assumption holds, yet the computation σ is nonterminating.
Let T∞ be the set of transitions occurring infinitely often and Tmin = {τ ∈
T∞ | μ(τ) = minτ ′∈T∞ μ(τ ′)} be the set of T∞-transitions mapping to the loop
condition with the lowest index, j. Following the assumption, Pj(x) is decreasing
with respect to Tmin, while T∞\Tmin is neutral toward Pj(x). Thus, Pj(x) is
decreasing with respect to T∞, and Pj(x) {≥, >} 0 is violated in a finite number
of steps, a contradiction.

For the most general loop condition
∨

i

∧
j Pij(x) {≥, >} 0, each disjunct

must satisfy the conjunction condition. Of course, either the Taylor condition
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or the standard condition may be used to determine whether an expression is
decreasing with respect to a certain set of transitions or if a set of transitions is
neutral toward an expression.

x

��
−1

z3 − y
����

����
1 1− z3 + (y + z)3

����
����

(y + z − 1)3 − (y + z)3 z3 − 2(y + z)3 + (2y + z − 1)3

...
. . .

−90

(a) (b)

Fig. 5. FDTs of (a) x and (b) z3 − y with respect to the transitions of program
conjunct.

Example 12. Consider program conjunct with index order P1(x, y, z) = x,
P2(x, y, z) = z3 − y, and map μ such that μ(τ1) = 1, μ(τ2) = 2. τ2 is neutral
toward x, while τ1 is not neutral toward z3 − y, as suggested by the FDT for
z3−y in Figure 5(b). Nonetheless, the conjunction condition holds, so conjunct
terminates on all input.

Specifically, for P1(x, y, z) = x, we need only consider the subsets {τ1, τ2}
and {τ1}, each of which result in the decreasing dominant Taylor expression
−x1. For P2(x, y, z) = z3−y, only the subset {τ2} must be considered, for which
the dominant Taylor expression − 90

6! x
6
2 is decreasing.

Using the standard condition, we merely note that the FDT for x with respect
to {τ1, τ2} shows that {τ2} is neutral toward x (no τ2 child of the root), while
x decreases with respect to {τ1} (−1 leaf). Further, the rightmost branch in
Figure 5(b), which is the FDT of z3 − y with respect to {τ2}, terminates with
−90, also satisfying the standard condition.

4.3 Guarded Commands

Instead of an MPP, consider a set of polynomial guarded commands C = {G1 →
S1, . . . , Gn → Sn}, for which the Gi are conjunctions of polynomial inequations
and the Si are polynomial assignments. An initial condition θ may be associated
with the set of guarded commands.

Proposition 4. (Guarded Commands Condition) Consider the set of
guarded commands C = {G1 → S1, . . . , Gn → Sn}. C always terminates if there
exists a permutation σ such that for each i, there exists a conjunct (e {≥, >} 0) of
Gi such that e is decreasing with respect to {Si} and to which {Sj | σ(j) > σ(i)}
is neutral.

Briefly, the first guarded command given by σ can only be executed a finite
number of times before its guard is violated; as the remaining commands are
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neutral toward G1, it is henceforth violated. The same reasoning applies to
the second command once the first command is disabled. The disabling of the
remaining commands follows by induction.

The language of sets of polynomial guarded commands is more expressive
than the language of MPPs – indeed, our practical experience (see Section 5)
supports the guarded command abstraction as the more useful. However, the
relationship between the general loop condition of Section 4.2 and Proposition
4 is incomparable. Given an MPP and its natural translation to a set of poly-
nomial guarded commands, if Proposition 4 proves termination, then applying
Proposition 3 to each disjunct of the MPP’s guard also proves termination (ex-
tract the lexicographic orders for the latter from the single lexicographic order
of the former). However, if, for example, the MPP has two disjuncts requiring
opposite orders for Proposition 3, then no interpolation produces a suitable or-
der for Proposition 4. Of course, Proposition 4 is more applicable, in some sense,
because of the extra expressiveness of the guarded command abstraction. Al-
lowing disjunction in the guards of the guarded commands makes the resulting
guarded command abstraction and the natural termination condition strictly
more powerful, but we have not found this additional power useful.

5 Experimental Results

To test the applicability of our termination analysis, we implemented a C loop
abstracter in cil [8] and the termination analysis in Mathematica [15]. The pur-
pose of the loop abstracter is to extract a set of polynomial guarded commands
from a C loop with arbitrary control flow, including embedded loops. The anal-
ysis then applies to the extracted guarded commands a version of Proposition 4
that exploits the standard condition. The implementation is weaker than Propo-
sition 4, in that it requires for each i that all other assignments Sj �= Si are
neutral toward the expression e from Gi, rather than allowing a lexicographic
ordering. The analysis is sound up to alias analysis, modification of variables
by called functions, and unsigned casts. We chose to ignore these factors in our
experimentation, as they have no bearing on the scalability of the actual ter-
mination analysis. Handling unsigned casts, for example, would require proving
invariants about signed integers; a complete program analysis package would
contain this functionality.

Given a loop, the abstraction first creates a number abstraction by slicing
on the number typed variables that receive values within the loop from poly-
nomial expressions. Division is allowed for floats, but not for integers; further,
an integer cast of an expression with a floating point value excludes the expres-
sion from consideration. Nondeterministic choice replaces disallowed expressions.
Next, the abstraction constructs all possible top-level guarded paths; variables
that are modified by embedded loops are set nondeterministically (a heavy-
handed version of summarizing embedded loops). The construction of a guarded
path proceeds by the usual composition of assignments, so that the final guarded
path consists of a conjunction of guard expressions and a single concurrent up-
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date to a set of variables. The result is a set of guarded commands, as described
in Section 4.3. Our Mathematica implementation of the standard condition then
analyzes this set, failing if an FDT reaches a predetermined maximum depth
during construction.

while(i < a.n || j < b.n) {

if (i >= a.n)

c.e[c.n++] = b.e[j++];

else if (j >= b.n)

c.e[c.n++] = a.e[i++];

else if (a.e[i] <= b.e[j])

c.e[c.n++] = a.e[i++];

else

c.e[c.n++] = b.e[j++];

}

j < b.n ∧ i < a.n → (c.n, j) := (c.n + 1, j + 1)
j < b.n ∧ i < a.n → (c.n, i) := (c.n + 1, i + 1)
j ≥ b.n ∧ i < a.n → (c.n, i) := (c.n + 1, i + 1)
j < b.n ∧ i ≥ a.n → (c.n, j) := (c.n + 1, j + 1)

(a) (b)

Fig. 6. (a) Imperative loop in C and (b) the corresponding set of polynomial guarded
commands.

Example 13. The loop in Figure 6(a) merges two lists. The abstracted set of
guarded commands is shown in Figure 6(b); four guarded commands with false
guards were pruned. The analysis proves that the loop terminates.

5.1 Empirical Results

We applied the analysis to several open-source projects from Netlib [9] and
Sourceforge [12]. The results of the analyses are summarized in Table 1. These
programs span a range of applications: for example, f2c converts FORTRAN
source to C source; spin is a model checker; and meschach is a package of
numerical algorithms.

5.2 Analysis

A glance over the loops in the programs suggests that when the number ab-
straction of a C loop is proved terminating, the reason is probably because of
a counter. In some sense, this observation is disappointing: of what value is
our analysis when the reasons are trivial? Three points come to mind. First,
applying any analysis at all is useful. Programmers regularly write loops with
complicated control structure that span several editor pages. Verifying manu-
ally that all paths increment a counter (and the right counter) is thus tedious
and ineffective. An automated analysis filters out correct cases, while remaining
loops warrant a second look.

Second, our analysis scales well to triviality: the FDTs are shallow (of depth
one for the counter case), thus requiring an insignificant amount of time. Com-
pare the minimal computation required for the standard condition on a shallow
FDT to the manipulation of polyhedra [2, 3], the solving of linear programs [11],
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Table 1. Results of analysis. Legend: LOC: lines of code of files successfully parsed
and containing loops, as measured by wc; # L: total number of analyzed loops; # A:
number of loops successfully abstracted; # P: number of (abstracted) loops proved
terminating; % P/A: percentage of abstracted loops proved terminating; % P/L:
percentage of total loops proved terminating; Time: total time in seconds required to
analyze the program. small1 requires a maximum FDT height of 4; data for all others
are for a maximum height of 1.

Name LOC # L # A # P % P/A % P/L Time (s)

small1 310 8 6 4 66 50 4
vector 361 13 13 12 92 92 3
serv 457 9 6 5 83 55 4
dcg 1K 55 53 53 100 96 4
bcc 4K 70 18 18 100 25 6
sarg 7K 122 26 25 96 20 102
spin 19K 652 132 119 90 18 29
meschach 28K 896 803 770 95 85 40
f2c 30K 434 114 96 84 22 41
ffmpeg/libavformat 33K 453 270 214 79 47 45
gnuplot 50K 825 329 298 90 36 106
gaim 57K 605 60 52 86 8 97
ffmpeg/libavcodec 75K 2216 1945 1856 95 83 112

or the analysis of matrix-like transitions [13] (assuming that the latter two ap-
proaches can scale to multiple paths). However, the extra power of the nonlinear
analysis is available when needed.

Finally, compared to a naive syntactic analysis, our approach has two advan-
tages. First, a naive syntactic analysis would be sensitive to the presentation of
the loop. For example, a syntactic analysis may well stumble on a while loop
that terminates using break or goto statements. Our abstraction and analy-
sis approach not only is insensitive to such presentations of loops, it may also
identify other loop guards than the one explicitly provided by the for or while
statement. Second, even trivial termination behavior is not always completely
trivial. For example, the meschach source contains loops with terminating be-
havior similar to that in Figure 6. Our analysis easily handles such cases. Ad-
ditionally, despite the prototype-related overheads of our implementation, the
timing results indicate acceptable performance.

Reasons for failed proofs are numerous. A failure to abstract a nontrivial
guarded set may indicate nontermination (especially if, say, all transitions but
one increment a counter), but usually arises because the termination behavior is
not number-related. Even “successful” abstractions may present only incidental
information; termination may rest on other criteria. In several cases, we noted
that the lack of an initial condition weakens the abstraction. Other cases played
on the weaknesses of the analysis, including the following: (1) expressions evolve
with exponential behavior, resulting in infinite FDTs; (2) variables are modified
by inner loops, often in a way that trivially suggests an inequality relation.



128 Aaron R. Bradley, Zohar Manna, and Henny B. Sipma

The number abstraction may be extended beyond pure numbers. Many loops
are based on iterating through collection data structures, such as linked lists and
heaps. A sophisticated analysis tool would allow the user to input information
about such data structures, allowing a number abstraction of iteration. The
resulting termination analysis would be sound relative to the correctness of the
data structure. Widely used implementations of data structures, such as those
provided by the STL, are candidates for automatic analysis.

6 Conclusion

Multipath polynomial programs and polynomial guarded commands provide an
expressive language for abstracting real code. Although termination for this class
of loops is not even semi-decidable, we provide a sound analysis that is effective
in practice. This analysis is notable for two reasons. First, it is applicable to
polynomial, rather than just linear, expressions and assignments. Second, our
analysis naturally scales to the difficulty of the problem, which enables our pro-
totype implementation to analyze tens of thousands of lines of C in seconds.

The analysis can be strengthened in several ways. First, head and tail loops,
or embedded loops that precede or follow, respectively, all assignments in the
top-level loop, may be abstracted to form a set of paths to include as neutral
top level paths. Second, analysis of the code preceding loop entry, or even in-
variant generation, can supply initial conditions. Third, embedded loops that
modify some variables may sometimes be abstracted as transition relations with
inequations. Extending both the abstraction and the analysis to handle such
inequations would increase our method’s applicability. Fourth, the analysis may
be extended to handle FDTs with infinite or large finite height by arbitrar-
ily curtailing FDT construction and using invariant analysis to provide useful
bounds on the resulting leaves. Fifth, the abstraction may be extended to iterat-
ing over data structures. Finally, we plan to employ the analysis within a larger
C analysis that exploits alias information, thus providing a path toward a sound
implementation.
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Abstract. We combine compositional reasoning and reachability analy-
sis to formally verify the safety of a recent cache coherence protocol. The
protocol is a detailed implementation of token coherence, an approach
that decouples correctness and performance. First, we present a formal
and abstract specification that captures the safety substrate of token co-
herence, and highlights the symmetry in states of the cache controllers
and contents of the messages they exchange. Then, we prove that this
abstract specification is coherent, and check whether the implementa-
tion proposed by the protocol designers is a refinement of the abstract
specification. Our refinement proof is parametric in the number of cache
controllers, and is compositional as it reduces the refinement checks to
individual controllers using a specialized form of assume-guarantee rea-
soning. The individual refinement obligations are discharged using refine-
ment maps and reachability analysis. While the formal proof justifies the
intuitive claim by the designers about the ease of verifiability of token
coherence, we report on several bugs in the implementation, and accom-
panying modifications, that were missed by extensive prior simulations.

1 Introduction

Shared memory multiprocessors have become the most important architecture
used for commercial and scientific workloads. Such systems use hardware cache
coherence protocols to create the illusion of a single, shared memory without
caches. These protocols are important factors of the overall system performance,
and numerous optimizations contribute to their complexity. Since hard-to-cover
race conditions elude simulations of the protocols, formal methods are often
employed to verify their correctness.

Token Coherence is a new approach to cache coherence protocols that de-
couples correctness requirements from performance choices, claiming to improve
both performance and verifiability [22]. Separate correctness mechanisms ensure
safety and liveness. Safety is achieved by token counting: per memory location,
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the number of tokens in the system is a global invariant. By requiring at least
one token for read access and all tokens for write access, the protocol directly
enforces a single-writer, multiple-reader policy. On the other hand, Liveness is
achieved by persistent requests. This reliable, but slower protocol is used when
the regular requests do not succeed within a timeout period. Persistent requests
are required because the regular requests, while likely to complete quickly, do
not guarantee eventual success.

In this work, we combine compositional verification and model checking to
verify the safety of a detailed implementation of a token coherence protocol for
an arbitrary number of caches. Our method takes advantage of the opportunities
offered by the token coherence design. It proceeds in four steps.

1. We present a formal specification of the safety substrate of token coherence.
This abstract protocol is based on rewrite rules and multisets, and expresses
the symmetry between components and messages. It applies to arbitrary
network topologies, cache numbers, and even cache hierarchies.

2. We prove manually that the abstract protocol is safe (i.e. coherent). The
verification problem is thus reduced to checking that the implementation
correctly refines the abstract protocol.

3. We prove that the refinement can be verified for each component individ-
ually, by replacing its context with an abstraction. We prove that this de-
composition into local refinement obligations is sound, using a variant of
assume-guarantee reasoning based on contextual refinement, and performing
an induction on the number of caches.

4. We discharge the local refinement obligations with the conventional model
checker Murϕ [12, 11]. To obtain the models, we manually translate, abstract
and annotate the implementation code. This procedure reduces the refine-
ment checking to a reachability problem, which Murϕ solves by enumerative
state space search.

Even though the protocol implementation had been extensively simulated
prior to this work, we discovered a few bugs, and were able to fix them quickly
with the help of counterexamples produced by the model checker. The compo-
sitional refinement method proved to be effective in avoiding the state space
explosion problem [16] which is commonly encountered in system-level mod-
els [28].

Because of the page limit, we had to omit most proofs. A more complete
version of this article can be found online [7].

1.1 Related Work

Prior work on formal verification of cache coherence varies in (1) the proto-
col complexity and level of detail (2) the coverage achieved (safety, liveness,
parametric systems) (3) the underlying tools (enumerative or symbolic model
checkers, decision procedures, theorem provers), (4) reduction techniques (sym-
metry, abstraction, compositional verification), and (5) degree of automation.
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We refer to Pong and Dubois [28] for a general survey, and to various illustrative
efforts [23, 27, 14, 3].

Our proof methodology modifies and combines a variety of ideas in the for-
mal verification literature. These include assume-guarantee reasoning for compo-
sitional verification (c.f. [1, 8, 2, 25]), structural induction for proving properties
for arbitrary number of processes (c.f. [19, 9, 15, 13, 10, 4]), data abstraction (c.f.
[32, 17]), use of term rewrite systems for hardware verification [5], and proving
refinement using reachability analysis (c.f. [18]).

2 Process Model

In this section, we define the process model and introduce our assume-guarantee
proof rules. We chose to define the process model from scratch, so to keep it con-
cise and self-contained, and to obtain the desired combination of features. Ex-
cept for the specialized definition of contextual refinement, all concepts (traces,
composition, refinement) are standard and appear in many variations and com-
binations in the process algebra literature [29].

A process is defined as the set of its traces, which are finite words over an
alphabet Σ of events. Σ is considered fixed and common to all processes. We
further partition Σ = Σe∪Σc into disjoint subclasses:Σe contains events that are
visible to external observers of the system only, while Σc describes synchronous
communication events. Matching events in Σc (e.g. sending and receiving of a
message) are denoted σ and σ.

Definition 2.1. A process P over Σ is a non-empty prefix-closed language; i.e.
P ⊂ Σ∗, P �= ∅ and for all u, v ∈ Σ∗ : uv ∈ P ⇒ u ∈ P . A process P refines a
process Q, written P � Q, iff P ⊂ Q. A process P is closed if P ⊂ Σ∗

e .

The refinement relation � is a complete partial order on the processes. The
bottom (silent) process {ε} has but one trace: the empty string. The top (uni-
versal) process Σ∗ includes all possible traces.

When composing processes, we merge their traces by interleaving their events
and hiding mutual communication.

Definition 2.2. Let u, v, w ∈ Σ∗ be traces. We define the relation u | v ( w
(speak: u, v can combine to form w) by the following inference rules:

ε | ε ( ε
(epsilon) u | v ( w σ ∈ Σc

uσ | vσ ( w
(communication)

u | v ( w σ ∈ Σ

uσ | v ( wσ
(l-event)

u | v ( w σ ∈ Σ

u | vσ ( wσ
(r-event)

Example 2.3. Let Σe = {a, b, c, d} and Σc = {e, e}. Then we have

ab | cd ( acbd ab | cd ( abcd ae | eb ( ab ae | eb ( aeeb

but not ae | eb ( ba.
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Definition 2.4. Let P , Q be processes. Then P | Q .= {w ∈ Σ∗ | ∃u ∈ P : ∃v ∈
Q : u | v ( w}.

Composition is commutative and associative. Composition does not restrict
its components: for processes P,Q we always have P � P | Q. This same style
of communication is used by CCS [26].

Refinement is preserved by composition: if P ′ � P , then P ′ | Q � P | Q. We
can use this fact to prove that a system implementation refines its specification

P ′ | Q′ � P | Q (1)

from the simpler, local refinement conditions

P ′ � P and Q′ � Q . (2)

However, this method is not very powerful, because the refinements (2) do often
not hold because of implicit assumptions on the context. Assume-guarantee rea-
soning remedies this shortcoming. We provide the context as an explicit subscript
to the refinement relation, enabling us to conclude (1) from

P ′ �Q P and Q′ �P Q . (3)

Most process models used for compositional refinement of hardware [2, 24] can
express the contextual refinement P ′ �Q P directly as P ′ ‖Q � P (using syn-
chronous parallel composition). The same does not work in our context (as ex-
emplified by the observation 5 below), so we use a direct definition instead.

Definition 2.5 (Contextual refinement). Let P, P ′, C be processes. Then P ′

is said to refine P in context C, written P ′ �C P , iff for all traces u ∈ P ′ the
following condition holds: if there is a trace v ∈ C such that u ↑ Σc = v ↑ Σc

(i.e. the communication events in u, v match up), then u ∈ P .

Intuitively, we require that all behaviors of P ′ that are actually possible
within an environment that adheres to C are allowed by P .

The following observations provide insight about contextual refinement.

1. For any process C, �C is a pre-order on processes.
2. If P ′ �C P , and C′ � C, then P ′ �C′ P .
3. Refinement in a universal context corresponds to regular refinement:

P ′ �Σ∗ P ⇔ P ′ � P .
4. Refinement in a silent context corresponds to refinement of closed processes:

P ′ �{ε} P ⇔ (P ′ ∩Σ∗
e ) � (P ∩Σ∗

e )
5. The refinement P ′ | C �{ε} P | C does not imply P ′ �C P , because the

traces of P ′ | C do not indicate what mutual communication takes place.
However, the converse always holds.

To avoid circularity in the assume-guarantee reasoning, we conservatively
require that the specification processes can always engage in a subset of commu-
nication events Σr ⊂ Σc that is sufficiently large, i.e. Σr ∪Σr = Σc; in our case,
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we will take care of this requirement by having specification processes accept any
message at any time1. We use the following definition to formalize this property
of processes.

Definition 2.6. Let P be a process over Σ, and Σr ⊂ Σ be an event subset. P
is called Σr-enabled iff ∀u ∈ P : ∀σ ∈ Σr : uσ ∈ P .

We now give the two proof rules for compositional refinement. The first rule is
simpler, but restricted to two components. The second rule is a generalization
suited for induction.

Theorem 2.7. Let P, P ′, Q,Q′, C be processes over Σ = Σe ∪Σc. Let Σr ⊂ Σc

such that Σr ∪Σr = Σc. Then the following proof rules are sound:

P ′ �Q P P,Q are Σr-enabled Q′ �P Q

P ′ | Q′ �{ε} P | Q

P ′ �Q|C P P,Q are Σr-enabled Q′ �P |C Q

P ′ | Q′ �C P | Q

For example, consider again the local refinement obligations (3). Suppose
that the specification processes P,Q can receive messages at any time. We can
then apply the first proof rule to conclude that P ′ | Q′ refines P | Q, if there is
no external communication, i.e., there are no other components in the system.

3 Token Coherence

In this section, we introduce a formal specification of the safety substrate of
token coherence. This abstract protocol is a generalization of the MOESI token
counting rules in Martin’s dissertation [20]. We then justify it’s use as a spec-
ification, by proving that it is coherent, and with it any implementation that
refines it.

3.1 Background: Cache Coherence

Cache coherence describes the contract between the memory system and the
processor in a shared-memory multiprocessor. It is typically established at the
granularity of a cache block. A memory system is cache coherent if for each
block, writes are serialized, and reads get the value of the last write.

Definition 3.1. Let V be the set of values of a fixed cache block, and v0 ∈ V
the initial value. Let Σrw = {rd(v), wr(v) | v ∈ V } be the alphabet of events,

1 If this is not true by default, we could extend the specification to generate a special
error event if it receives an unexpected message.
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describing accesses to the block by some processor. Then the coherent traces of
the system are given by the following regular language over Σrw :

Coh = rd(v0)∗
(⋃

v∈V

wr(v) rd(v)∗
)∗

Token coherence, like many contemporary coherence protocols such as the
popular MOESI protocol family [31], provides this strong form of coherence by
enforcing a “single writer, multiple reader” policy2.

3.2 The Abstract Protocol

In our abstract protocol, system components and messages are of the same type
and treated completely symmetrically: both are represented by token bags. Token
bags are finite multisets (or bags) over some set T of tokens, and may be required
to satisfy some additional constraints (well-formedness). The tokens in the bag
constitute the state of the component, or the contents of the message.

The state of the entire system is represented as yet another bag that encloses
the token bags of the individual components and messages. The sending of a
message is modeled as a division, where a bag separates into two bags, dividing
its tokens. The receipt of a message, symmetrically, is modeled as a fusion of
token bags. Change is expressed by local reactions: tokens within a bag can be
consumed, produced or modified according to rewrite rules.

We give two preliminary definitions before proceeding to the definition of the
abstract protocol.

Definition 3.2 (Multisets). Let T be a set. Two words u, v ∈ T ∗ are equiva-
lent if one is a permutation of the other. The induced equivalence classes {[u] |
u ∈ T ∗} are called finite multisets over T , or T -bags. Multiset union is defined
as concatenation [u] � [v] .= [uv]. The set of all T -bags is denoted M(T ). For
x ∈ M(T ), let |x| denote the set of elements of T that occur in x.

For example, for any t1, t2 ∈ T , all of the following denote the same T -bag:
[ t21 t2 ] = [ t1 t1 t2 ] = {t1t1t2, t1t2t1, t2t1t1}. The exponent is a convenient
notation for repeated symbols, and often used with regular languages.

Definition 3.3 (Token Transition System). A TTS is a tuple (T,B, I,Σe,
W ) where T is a set of tokens, B ⊂ M(T ) defines the set of well-formed T -
bags, I ∈ M(B) is the initial configuration, Σe is a set of local events, and
W ⊂ Σe ×M(T )× 2T ×M(T ) is a set of rewrite rules.

A rewrite rule (a, x,H, y) ∈ W is denoted a: x =⇒
H

y. It describes a reaction

labeled a that can occur whenever all the tokens in x are together in a bag, and
2 We are considering only the interface between the memory system and the processor

here. Independently, the contract between the processor and the programmer may
use weaker forms of coherence that involve temporal reordering of events, as specified
by the memory model.
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the bag does not contain any of the inhibiting tokens listed in H . When the
reaction fires, the tokens x are replaced by the tokens y. If H is empty, we omit
it from the notation.

A TTS defines a process over the alphabet Σ = Σe ∪ Σc, with Σc =
{snd(b), rcv(b) | b ∈ B}, with the traces {u ∈ Σ∗ | ∃C ∈ M(B) : I u−→ C},
where we define the transition relation C

u−→ C′ with the inference rules3 below.

C
ε−→ C

(stutter)
C

u−→ C′ C′ v−→ C′′

C
uv−→ C′′ (trans)

x�y ∈ B

[ C x y ] ε−→ [ C x�y ]
(fusion)

[ C x�y ] ε−→ [ C x y ]
(division)

a: x =⇒
H

y |z| ∩H = ∅ y�z ∈ B

[ C x�z ] a−→ [ C y�z ]
(reaction)

[ C x ]
snd(x)−−−−→ [ C ]

(send)
[ C ]

rcv(x)−−−−→ [ C x ]
(receive)

Token transition systems have a feel of concurrency much like a biological sys-
tem where reactive substances are contained in cells that can undergo fusion and
division. Chemical abstract machines [6] capture the same idea (with molecules,
membranes, and solutions instead of tokens, bags, and configurations), but are
also different in many ways (for example, they do not have fusion or division).

Definition 3.4 (The abstract protocol). The safety substrate Tm (where m
is the number of tokens, a fixed parameter) is a TTS (T,B, I,Σe,W ) where

– T contains the following tokens:
R is a regular token as used by token coherence.
O(s) is a owner token in one of two states s ∈ {C,D} (clean or dirty).
D(v) is an instance of the data, with value v ∈ V .
M(v) is a memory cell containing the value v ∈ V .

– B is defined by imposing two conditions on a token bag x ∈ M(T ):
• if x contains data D(v), then it must contain at least one regular token
R or an owner token O(s).

• if x contains a dirty owner token O(D), then it must contain data D(v).
– I

.= [ [ Rm−1 O(C) M(v0) ] ].
– Σe

.= {rd(v),wr(v),memread,memwrite, copy, drop | v ∈ V }.
– W consists of the rewrite rules shown in Table 1.

Table 2 shows an example trajectory of the abstract protocol. Next, we ex-
plain the reaction rules and their interaction in some more detail.
3 The variables in the rule templates range over the following domains: u, v, w ∈ Σ∗,

x, y, z ∈ B, and C, C′, C′′ ∈M(B). Furthermore, as a syntactic shortcut, we allow
C, C′, C′′ to match several positions in a multiset of token bags: for example, [ C z ]
can match [ x y z ] by setting C = [ x y ].
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Table 1. The reaction rules of the abstract protocol.

rd(v): [ D(v) ] =⇒ [ D(v) ]

wr(w): [ Rm−1 O(s) D(v) ] =⇒
{D(v)}

[ Rm−1 O(D) D(w) ]

memread: [ M(v) O(C) ] =⇒ [ M(v) O(C) D(v) ]

memwrite: [ M(v) O(D) D(w) ] =⇒ [ M(w) O(C) D(w) ]

copy: [ D(v) ] =⇒ [ D(v) D(v) ]

drop: [ D(v) ] =⇒ [ ]

Table 2. A short example trajectory of the abstract protocol, representing a system
with a memory D and two caches C1 and C2. For clarification, token bags carry sub-
scripts indicating the component that they represent. Those subscripts are not part of
the abstract protocol.

Description System trajectory

initial state [ [ M(v0) O(C) Rm−1 ]D [ ]C1 [ ]C2 ]

C1 requests M (requests are abstracted away)

D responds

— read memory data
memread−−−−−→ [ [ M(v0) D(v0) O(C) Rm−1 ]D [ ]C1 [ ]C2 ]

— send data w/ tokens
ε−→ [ [ M(v0) ]D [ D(v0) O(C) Rm−1 ] [ ]C1 [ ]C2 ]

C1 receives response
ε−→ [ [ M(v0) ]D [ D(v0) O(C) Rm−1 ]C1 [ ]C2 ]

C1 writes value v1
wr(v1)−−−−→ [ [ M(v0) ]D [ D(v1) O(D) Rm−1 ]C1 [ ]C2 ]

C2 requests S (requests are abstracted away)

C1 responds

— copy data
copy−−→ [ [ M(v0) ]D [ D(v1) D(v1) O(D) Rm−1 ]C1 [ ]C2 ]

— send data w/ token
ε−→ [ [ M(v0) ]D [ D(v1) O(D) Rm−2 ]C1 [ D(v1) R ] [ ]C2 ]

rd(v) reads a value from a data instance (it can be applied at any time, and
does not modify the state). wr(w) modifies a data token, and can only be applied
if all m tokens (one owner token and m− 1 regular tokens) are present, and no
other data copies are in the same bag (which guarantees that the data token
being modified is the only one in the system).
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To guarantee proper writebacks of modified data, a special owner token is
used. The owner token records the clean/dirty state, i.e. whether the memory
value is stale. When modifying data, the owner token is set to dirty. When the
memory writes back the data (memwrite), the owner token is cleaned. memread
loads data from the memory only if there is a clean owner token, and thereby
avoids reading stale data.

The rules copy and drop imply that data instances D(v) can be freely copied
or destroyed, subject only to the restriction enforced by B that all bags are well-
formed – for example, whoever has the dirty owner token must keep at least one
data instance.

We can now prove that the abstract protocol is coherent.

Theorem 3.5. The closed system Tm ∩Σ∗
e is coherent:

(Tm ∩Σ∗
e ) ↑ Σrw ⊂ Coh

To prove this, verify that (1) all of the following invariants hold in the initial
state I and (2) prove (by induction on derivations) that if the invariants hold
for a state C, they hold for any state C′ such that C u−→ C′ for some u ∈ Σ∗

e .

1. The number of regular tokens R in the system is m− 1.
2. There is always exactly one owner token O(s).
3. There is always exactly one memory cell M(v).
4. All data instances D(v) have the same values.
5. If the owner token is clean, any data instances present have the same value

as the memory cell.
6. If there is a data token, it contains the value of the last write. Otherwise,

the memory does.

Together, these invariants guarantee that all data instances D(v) are always
up-to-date; therefore, reads get the correct value which implies coherence.

All state is modeled by tokens, and there is no distinction between com-
ponents and messages. This symmetry points out interesting design directions.
For example, we consider the memory cell M(v) to be stationary. However, the
formal token rules do not impose this restriction and and could be used as an
implementation guideline for a system with home migration.

4 Implementation

In this section, we describe how we verified the safety of a detailed implementa-
tion of token coherence for an arbitrary number of caches. We describe how we
used compositional verification to deal with the parametric character, and how
we employed abstraction to handle the fine level of detail. We conclude with a
list of discovered bugs.

4.1 The Protocol Implementation

The protocol implementation was developed by Martin et al. for architecture
research on token coherence [20], and was extensively simulated prior to this
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Fig. 1. The SLICC table for the memory controller. Rows show controller states,
columns show events, and cells show transitions. For example, consider the upper left
box. It states that if a Request-Exclusive message arrives while the controller is in state
O, the actions d, b and j are executed in sequence, and the controller transitions to
the NO state. Shaded cells indicate that an event is not expected to occur in the given
state.

work. It consists of finite state machines (FSM) for the cache and memory con-
trollers, augmented with message passing capabilities. The FSMs are specified
using the domain-specific language SLICC (Specification Language for Imple-
menting Cache Coherence) developed by Martin et al.

The FSMs include all necessary transient states that arise due to the asyn-
chronous nature of the protocol. The memory and cache controller amount to 600
and 1800 lines of SLICC code, respectively, a scale on which purely manual anal-
ysis methods are impractical, in particular because these low-level specifications
are usually changed over time.

The SLICC compiler generates (1) executables for the simulation environ-
ment and (2) summary tables containing the control states, events and transi-
tions in a human-readable table format4.

Fig. 1 shows the summary table for the memory controller, with its 3 states
and 11 events. Note that some parts of the state, such as the number of tokens,
or the actual data values, are stored in variables that are not visible in the
summary table.

Due to lack of space, we can not reproduce the summary table for the cache
controller (17 states and 20 events), and we can not explain further the meaning
of the states and events. The complete SLICC code and interactive HTML-
tables are online [21], along with implementations of three other cache coherence
protocols.

4.2 Parametric Compositional Refinement Proof

Consider the system S′
n consisting of n caches C′, a directory controller D′

(which is attached to the memory, and sometimes called memory controller), and
4 More about the table format can be found in Sorin et al. [30].
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a interconnection network N ′. We consistently use primes for implementation
processes to distinguish them from specification processes:

S′
n
.= C′ | C′ | · · · | C′︸ ︷︷ ︸

n

| N ′ | D′ (4)

In the beginning, the memory holds all tokens. We define local specification
processes as token transition systems:

D
.= Tm = (T,B, I,Σe,W )

C
.= (T,B, [ [ ] ], Σe,W )

N
.= (T,B, [ [ ] ], Σe,W )

Since a token transition system already models all possible distributions of the
state, no new behavior arises when it is composed:

C | D = D C | C = C

We now state the central result which (together with Theorem 3.5) allows us to
verify the implementation components D′, C′ and N ′ individually, each within
an abstracted context rather than a fully instantiated system.

Theorem 4.1. If the implementation processes satisfy the local refinement obli-
gations

D′ �C D C′ �D C N ′ �D C

then for all n ∈ N, we have S′
n �{ε} Tm, i.e., the system refines the formal token

coherence protocol.

The proof uses induction and the proof rules (Theorem 2.7).

4.3 Discharging the Obligations

To discharge the remaining obligations, we used manual translation, abstraction,
and annotation, and the explicit model checker Murϕ [12, 11]. The following steps
give an overview of the method.

1. Obtain models D′, C′ for the memory and cache controller implementations.
This step involves translating the SLICC code to Murϕ, instrumenting it
with the read/write events relevant for coherence, and abstracting both the
state space and the message format. Fig. 2 shows snippets of translated code.
The SLICC instructions that fell prey to the abstraction are in slanted face.
For example, only a single cache block is modeled, therefore the code dealing
with addresses is abstracted away. Also, message source and destination
fields are irrelevant due to the deep symmetry of formal token coherence.
Furthermore, two data values are sufficient5.

5 Restricting the set of values is justified by the data-independence [32], which implies
that we can freely substitute values in the traces.
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2. Obtain good encodings for the specification/environment processes D, C. We
can take advantage (1) of the global system invariants established earlier
and (2) of the fact that fusion and division are not observable. For example,
the flattening map [ b1 b2 . . . bk ] �→ b1 � b2 . . . � bk provides a canonical
representative state. This means that a single T -bag, rather than a multiset of
T -bags, is sufficient to model the context. The models we obtain this way are
compact and contribute much to the state-space economy of our approach.

3. Annotate the transitions of the implementation with matching specification
transitions, and provide refinement maps. For each transition of the imple-
mentation process, the annotations specify a sequence of transitions of the
specification process. Fig. 2 shows such annotations in uppercase. The re-
finement maps are functions that map a controller state to its corresponding
token bag.

4. Run the model checker Murϕ separately for the two relevant obligations6

D′ �C D and C′ �D C.
Proposition 4.3 listed below describes how the contextual refinement is dis-
charged. The state enumeration performed by the model checker effectively
constructs and verifies the relation R, which describes the reachable states
of the implementation process I within the abstract context C. The annota-
tions provided by the user eliminate the need for existential quantification.
The model checker also validates the assertions present in the implementa-
tion code.

Definition 4.2. For a labeled transition system (Q, q0, Σ∪{ε}, δ), states q1, q2 ∈
Q and a word v ∈ Σ∗ we define: q v=⇒ q′ iff there exists a k ≥ 0 and a sequence of
transitions q0

v1−→ q1
v2−→ . . .

vk−→ qk such that q0 = q, qk = q′ and v1v2 . . . vk = v
(where v1v2 . . . vk = ε for k = 0).

Proposition 4.3. Let I, S and C be processes defined by the trace sets of the
labeled transition systems Li

.= (Qi, q0i, Σ ∪ {ε}, δi) with i ∈ {I, S, C}. Let φ :
QI → QS be a function (the refinement map). If R ⊂ QI ×QC is a relation with
the properties (R1)–(R4) listed below, then I �C S.

(R1) (q0I , q0C) ∈ R, and φ(q0I) = q0S

(R2) If (qI , qC) ∈ R and qC
u−→ q′C for some u ∈ Σe ∪ {ε},

then (qI , q
′
C) ∈ R.

(R3) If (qI , qC) ∈ R and qI
u−→ q′I for some u ∈ Σe ∪ {ε},

then (q′I , qC) ∈ R and φ(qI)
u=⇒ φ(q′I).

(R4) If (qI , qC) ∈ R and qI
σ−→ q′I and qC

σ−→ q′C for some σ ∈ Σc,
then (q′I , q

′
C) ∈ R and φ(qI)

σ=⇒ φ(q′I).

The full Murϕ code is available online [7].

6 Theorem 4.1 lists three obligations, but we skip N ′ �D C because it reduces to
checking the reliablity of the network, which is trivial at the given abstraction level.
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rule "get Request-Excl in O state"
(I_DirectoryState = state_O)

==>
begin

d_sendDataWithAllTokens();
I_DirectoryState := state_NO;

endrule;

procedure d_sendDataWithAllTokens();
var

out_msg: I_message;
begin

out_msg.RType := DATA_OWNER;
if !(I_Tokens > 0) then
error "d: assertion failed. ";

endif;
out_msg.Tokens := I_Tokens;
out_msg.DataBlk := I_DataBlk;
out_msg.Dirty := false;
I_Tokens := 0;
EVENT_MEMLOAD();
EVENT_SEND(out_msg);
EVENT_DROP();

end;

transition(O, RequestExcl, NO) {
d_sendDataWithAllTokens;
b_forwardToSharers;
j_popIncomingRequestQueue;

}

action(d_sendDataWithAllTokens, "d") {
peek(requestNetwork_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg) {

out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA_OWNER;
out_msg.Sender := id;
out_msg.SenderMachine := MachineType:Directory;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DestMachine := MachineType:L1Cache;
assert(directory[address].Tokens > 0);
out_msg.Tokens := directory[in_msg.Address].Tokens;
out_msg.DataBlk := directory[in_msg.Address].DataBlk;
out_msg.Dirty := false;
out_msg.MessageSize := MessageSizeType:Response_Data;

}
}
directory[address].Tokens := 0;

}

Fig. 2. The murphi code (top) is obtained from the SLICC code (bottom).
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4.4 Results

The translation required about two days of work. This estimate assumes familiar-
ity with token coherence, and some knowledge of the implementation. We found
several bugs of varying severity, all of which were missed by prior random sim-
ulation tests similar to those described by Wood et. al. [33]. Seven changes were
needed to eliminate all failures (not counting mistakes in the verification model):

1. The implementation included assertions that do not hold in the general sys-
tem. Although they were mostly accompanied by a disclaimer like “remove
this for general implementation”, the latter was missing in one case.

2. The implementation was incorrect for the case where a node has only one
token remaining and answers a Request-Shared. This situation was not en-
countered by simulation, probably because the number of tokens always ex-
ceeded the number of simulated nodes. We fixed the implementation, which
involved adding another state to the finite state control.

3. Persistent-Request-Shared messages (which are issued if the regular Request-
Shared is not answered within a timeout period) suffered from the same
problem, and we applied the same fix.

4. The implementation copied the dirty bit from incoming messages even if they
did not contain the owner token. Although this does not compromise coher-
ence, it can lead to suboptimal performance due to superfluous writebacks.
This performance bug would have gone undetected had we only checked for
coherence, rather than for refinement of the abstract protocol.

5. After fixing bug 4, a previously masked bug surfaced: the dirty bit was no
longer being updated if a node with data received a dirty owner token.

6. Two shaded boxes (i.e. transitions that are specified to be unreachable) were
actually reachable. This turned out to be yet another instance of the same
kind of problem as in bug 2.

7. Finally, another (last) instance of bug 2 was found and fixed.

As expected, the compositional approach heavily reduced the number of
searched states. This kept computational requirements low, in particular con-
sidering that the results are valid for an arbitrary number of caches. The mea-
surements in Fig. 3 were carried out on a 300MHz Pentium III ThinkPad.

5 Conclusions and Future Work

We make three main contributions. First, we formally verified the safety of a
system-level implementation of token coherence, for an arbitrary number of

# tokens component # states # transitions time

4 memory controller 92 1692 0.3s
8 memory controller 188 5876 0.6s

32 memory controller 764 83396 7.49s
4 cache controller 700 23454 1.4s
8 cache controller 1308 76446 4.6s

32 cache controller 4956 1012638 65.2s

Fig. 3. Computational requirements for the model checking.
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caches. Second, we developed a general and formal specification of the safety
substrate of token coherence, and prove its correctness. Third, we demonstrated
that token coherence’s “design for verification” approach indeed facilitates the
verification as claimed.

Future work may address the following open issues. First, the methodol-
ogy does not currently address liveness. Second, other protocols or concurrent
computations may benefit from the high-level abstraction expressed by token
transition systems, and offer opportunities for compositional refinement along
the same lines. Third, much room for automation remains: for example, we could
attempt to integrate theorem provers with the SLICC compiler.
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Abstract. Unlike model checking which is restricted to finite-state systems, there
are two methods which can be applied for the verification of arbitrary infinite-
state systems. These are the methods of deductive verification and finitary ab-
straction (FA). Finitary abstraction is the process which provides an abstraction
mapping, mapping a potentially infinite-state system into a finite-state one. After
obtaining the finite-state abstraction, we may apply model checking in order to
verify the property.
In the talk, we will explore some of the relations between the methods of finitary
abstraction and deductive verification. One important connection is the recent
proof that finitary abstraction is as powerful as deductive verification, thus es-
tablishing the completeness (and universality) of the finitary abstraction method.
In order to obtain this result, it was necessary to extend the procedure by al-
lowing augmentation of the verified system with auxiliary variables prior to the
application of abstraction. With this extension, it is possible to transform the phe-
nomenon of well-founded descent which is essential for proofs of liveness prop-
erties into fairness properties of the finite abstracted system.
Since the proof of completeness of the FA method builds upon the proof of com-
pleteness of deductive verification, one may get the false impression that, while
being as powerful as deductive verification, FA is not much easier to apply. The
focus of the talk is aimed at dispelling this false impression, in particular for the
case of liveness properties.
We consider first the case of predicate abstraction, which is a special case of
FA. We can view predicate abstraction as an effort to find an inductive assertion,
where the user does not know the full form of the assertion but can identify a set
of atomic formulas under the conjecture that there exists a useful inductive asser-
tion which is some boolean combination of these atomic formulas. In this case,
we let the model checker find for us the correct (and best) boolean combination
that yields an inductive assertion. In analogy with this view, we will consider the
“augmented finitary abstraction” approach as a situation that the user finds it dif-
ficult to formulate a full ranking function, as required by deductive verification,
but can identify some components of such a ranking function. In that case, we
let the model checker arrange and combine these components into a full liveness
proof. In both cases, the method relies on the superior ability of model checkers
to exhaustively analyze all the combinations of a finite (but possibly large) set of
components.
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Abstract. The technique of abstract interpretation analyzes a computer
program to infer various properties about the program. The particular
properties inferred depend on the particular abstract domains used in the
analysis. Roughly speaking, the properties representable by an abstract
domain follow a domain-specific schema of relations among variables.
This paper introduces the congruence-closure abstract domain, which in
effect extends the properties representable by a given abstract domain to
schemas over arbitrary terms, not just variables. Also, this paper intro-
duces the heap succession abstract domain, which when used as a base
domain for the congruence-closure domain, allows given abstract domains
to infer properties in a program’s heap. This combination of abstract do-
mains has applications, for example, to the analysis of object-oriented
programs.

1 Introduction

The automatic reasoning about computer programs from their program text is
called static analysis. It has applications in, for example, compiler optimizations
and program verification. An important form of static analysis is abstract in-
terpretation [6, 7], which systematically computes over-approximations of sets of
reachable program states. The over-approximations are represented as elements
of some given lattice, called an abstract domain. The elements of the abstract
domain can be viewed as constraints on a set of variables, typically the variables
of the program. For example, the polyhedra abstract domain [8] can represent
linear-arithmetic constraints like x + y 
 z .

Often, the constraints of interest involve function and relation symbols that
are not all supported by any single abstract domain. For example, a constraint
of possible interest in the analysis of a Java or C# program is sel(H, o, x) + k 

length(a) where H denotes the current heap, sel(H, o, x) represents the value
of the x field of an object o in the heap H (written o.x in Java and C#),
and length(a) gives the length of an array a . A constraint like this cannot be
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if 0 
 x then
y := x

else
y := −x

end
(a)

if 0 
 o.x then
y := o.x

else
y := −o.x

end
(b)

x := 0 ; y := 0 ;
while x < N do

y := y + x ;
x := x + 1

end
(c)

o.x := 0 ; p.y := 0 ;
while o.x < N do

p.y := p.y + o.x ;
o.x := o.x + 1

end
(d)

Fig. 1. Two pairs of simple programs demonstrating the difference in what can be
inferred without and with the congruence-closure and the heap succession abstract
domains.

represented directly in the polyhedra domain because the polyhedra domain does
not support the functions sel and length . Consequently, the polyhedra abstract
domain would very coarsely over-approximate this constraint as true – the lattice
element that conveys no information. This example conveys a general problem
for many abstract domains: the abstract domain only understands constraints
consisting of variables and its supported function and relation symbols. If a given
constraint mentions other, alien, function or relation symbols, it is ignored (that
is, it is very coarsely over-approximated) by the abstract domain.

Rather than building in special treatment of such alien symbols in each ab-
stract domain, we propose a coordinating congruence-closure abstract domain,
parameterized by any set of given abstract domains that we shall refer to as
base domains. The congruence-closure abstract domain introduces variables to
stand for subexpressions that are alien to a base domain, presenting the base
domain with the illusion that these expressions are just variables. For example,
by itself, the polyhedra domain can infer that 0 
 y holds after the program in
Fig. 1(a), but it can only infer true after the program in Fig. 1(b). In contrast,
the congruence-closure domain using the polyhedra domain as a base domain
can also infer that 0 
 y holds after the program in Fig. 1(b).

In this paper, we introduce the congruence-closure abstract domain and de-
tail its operations. The congruence-closure abstract domain gets its name from
the fact that it stores congruence-closed equivalence classes of terms. It is these
equivalence classes that are represented as variables in the base domains. Equiv-
alence classes may be dissolved as the variables of the program change. So as not
to lose too much information, the congruence-closure domain consults its base
domains during such updates.

We also introduce a particular base domain, the heap succession abstract
domain, that is useful in analyzing programs with a heap, such as object-oriented
programs (but also applies more generally to arrays and records). The benefit
of this domain is demonstrated by the programs in Fig. 1 where program (d)
involves updates to the heap. The polyhedra domain can infer that 0 
 x ∧
0 
 y holds after the program in Fig. 1(c), but it can only infer true after the
program in Fig. 1(d), even when the polyhedra domain is used as a single base
domain of the congruence-closure domain. However, if one additionally uses the
heap succession domain as a base domain, one can infer that 0 
 o.x ∧ 0 
 p.y
holds after the program in Fig. 1(d).
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2 Abstract Interpretation

In this section, we introduce the basic interface of each abstract domain. In an
extended version of this paper [5], we briefly review abstract interpretation [6]
and illustrate the use of our abstract-domain interface to infer properties of
programs written in a toy imperative language.

Expressions. We assume expressions of interest to be variables and functions
applied to expressions:

expressions Expr e, p ::= x | f(#e)
variables Var x, y, . . .
function symbols FunSym f
expression sequences Expr[ ] #e ::= e0, e1, . . . , en−1

In programs and examples, we take the liberty of deviating from this particular
syntax, instead using standard notation for constants and operators. For exam-
ple, we write 8 instead of 8() and write x + y instead of +(x, y). A constraint
is any boolean-valued expression.

interface AbstractDomain {
type Elt ;

ToPredicate : Elt→ Expr ;

Top : Elt ;
Bottom : Elt ;
AtMost : Elt× Elt→ bool ;

Constrain : Elt × Expr→ Elt ;
Eliminate : Elt × Var→ Elt ;
Rename : Elt× Var× Var→ Elt ;

Join : Elt× Elt→ Elt ;
Widen : Elt × Elt→ Elt ;

}

Fig. 2. Abstract domains.

Abstract Domains. The basic abstract do-
main interface is shown in Fig. 2. Each ab-
stract domain provides a type Elt , represent-
ing the elements of the abstract domain lat-
tice. Each lattice element corresponds to a
constraint on variables. This constraint is re-
turned by the ToPredicate operation. Con-
versely, ToElt(p) yields the most precise rep-
resentation for constraint p in the lattice,
which may have to lose some information. We
do not need to compute ToElt, so we have
omitted it from the abstract domain inter-
face. In the literature [6], the functions cor-
responding to ToElt and ToPredicate are
often written as α (abstraction) and γ (con-
cretization), respectively.

An abstract domain is required to define a partial ordering on the lat-
tice elements (AtMost), Top and Bottom elements (required to correspond to
true and false , respectively), and Join and Widen operations. Furthermore,
an abstract domain must define operations to add a constraint to an element
(Constrain), existentially quantify a variable (Eliminate), and rename a free
variable (Rename), all of which may be conservative. See the extended version [5]
for a more detailed description of these operations.

In the extended version [5], we also fix a particular imperative language and
review how to apply the abstract domain operations to compute over-approx-
imations of reachable states to infer properties about the program. This ends our
general discussion of abstract interpretation. Next, we describe the congruence-
closure abstract domain.
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3 Congruences and Alien Expressions

The congruence-closure abstract domain C is parameterized by a list of base
domains #B . A lattice element of the congruence-closure domain is either ⊥ ,
representing BottomC , or has the form 〈G, #B〉 , where G is an equivalence graph
(e-graph) that keeps track of the names given to alien expressions and #B is a
list containing one non-BottomBi lattice element from each base domain Bi .
The names introduced by the congruence-closure domain to stand for alien ex-
pressions appear as variables to the base domains. To distinguish these from the
variables used by the client of the congruence-closure domain, we call the newly
introduced variables symbolic values. Intuitively, a symbolic value represents the
value to which a client expression evaluates. Alternatively, one can think of the
symbolic value as identifying an equivalence class in the e-graph. Throughout,
we use Roman letters to range over client variables and Greek letters to range
over symbolic values. The e-graph consists of a set of mappings:

mappings Mapping m ::= t �→ α
terms Term t ::= x | f(#α)
symbolic values SymVal α, β, . . .

In addition to providing the service of mapping alien expressions to symbolic
values, the e-graph keeps track of equalities between terms. It represents an
equality between terms by mapping these terms to the same symbolic value. For
example, the constraint w = f(x) ∧ g(x, y) = f(y) ∧ w = h(w) is represented
by the e-graph

w �→ α x �→ β f(β) �→ α y �→ γ g(β, γ) �→ δ f(γ) �→ δ h(α) �→ α (Ex. 1)

The e-graph maintains the invariant that the equalities it represents are congru-
ence-closed. That is, if the e-graph represents the terms f(x) and f(y) and the
equality x = y , then it also represents the equality f(x) = f(y). For instance, if
the e-graph in Ex. 1 is further constrained by x = y , then β and γ are unified,
which in turn leads to the unification of α and δ , after which the e-graph
becomes

w �→ α x �→ β f(β) �→ α y �→ β g(β, β) �→ α h(α) �→ α

A supplementary description of how these mappings can be viewed as a graph
is given in Appendix A.

To compute ToPredicateC(〈G, #B〉), the congruence-closure domain first ob-
tains a predicate from each base domain Bi by calling ToPredicateBi(Bi).
Since the base domains represent constraints among the symbolic values, these
predicates will be in terms of symbolic values. The congruence-closure domain
then replaces each such symbolic value α with a client expression e , such that
recursively mapping the subexpressions of e to symbolic values yields α . In
Sec. 3.3, we explain how we ensure that such an e exists for each α . Finally, the
congruence-closure domain conjoins these predicates with a predicate expressing
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the equalities represented by the e-graph. For example, if the congruence-closure
domain uses a single base domain B0 for which ToPredicateB0(B0) returns α 

γ , then the congruence-closure domain may compute ToPredicateC(〈(Ex. 1), #B〉)
as w = f(x) ∧ g(x, y) = f(y) ∧ w = h(w) ∧ w 
 y .

In the remainder of this section, we detail the other abstract domain opera-
tions for the congruence-closure domain.

3.1 Constrain

The operation ConstrainC(〈G, #B〉, p) may introduce some new symbolic val-
ues and constraints in G and then calls ConstrainBi(Bi, pi) on each base
domain Bi , where pi is p with expressions alien to Bi replaced by the corre-
sponding symbolic value. If any ConstrainBi operation returns BottomBi , then
ConstrainC returns ⊥ . Additionally, if the constraint p is an equality, then the
congruence-closure domain will make note of it in the e-graph by calling Union
(discussed below).

In order for the congruence-closure domain to know which subexpressions of
p to replace by symbolic values, we extend the interface of abstract domains
with the following operation:

Understands: FunSym × Expr[ ] → bool

which indicates whether the abstract domain understands the given function
symbol in the given context (i.e., the arguments to the function in question).
An abstract domain may choose to indicate it “understands” a function symbol
even when it only partially interprets it.

To translate the client expression to an expression understandable to a base
domain, the congruence-closure domain traverses top-down the abstract syntax
tree of the client expression calling Understands on the base domain for each
function symbol. If the base domain understands the function symbol, then C

leaves it as is. If not, then C replaces the alien subexpression with a symbolic
value and adds this mapping to the e-graph. Hopeful that it will help in the
development of good reduction strategies (see Sec. 6), we also let C continue to
call Understands on subexpressions of alien expressions and assert equalities
with the symbolic value for any subexpression that is understood by the base
domain. In fact, this is done whenever a new client expression is introduced into
the e-graph as part of the Find operation (discussed below).

To illustrate the ConstrainC operation, suppose the congruence-closure do-
main is given the following constraint:

ConstrainC(〈G, #B〉, 2 · x + sel(H, o, f) 
 |y − z|)

If a base domain Bi is the polyhedra domain, which understands linear arith-
metic (+, − , · , 2 , 
 in this example), then the congruence-closure domain
makes the following calls on the polyhedra domain Bi :

ConstrainBi(ConstrainBi(Bi, γ = υ − ζ), 2 · χ+ α 
 β)
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and the e-graph is updated to contain the following mappings:

x �→ χ H �→ σ sel(σ, ω, φ) �→ α
y �→ υ o �→ ω |γ| �→ β
z �→ ζ f �→ φ υ − ζ �→ γ

We now define the union-find operations on the e-graph. The Union opera-
tion merges two equivalence classes. It does so by unifying two symbolic values
and then merging other equivalence classes to keep the equivalences congruence-
closed. Unlike the standard union operation, but akin to the union operation in
the Nelson-Oppen congruence closure algorithm that combines decision proce-
dures in a theorem prover [15], doing the unification involves updating the base
domains.

The Find operation returns the name of the equivalence class of a given
client expression, that is, its symbolic value. If the e-graph does not already
represent the given expression, the Find operation has a side effect of adding
the representation to the e-graph. Like Union, this operation differs from the
standard find operation in that it involves updating the base domains. As noted
above, to avoid loss of information by the congruence-closure domain, additional
equality constraints between understandable subexpressions and their symbolic
values (like γ = υ − ζ in the example above) are given to the base domains.
Detailed pseudo-code for ConstrainC along with both Union and Find are
given in the extended version [5].

3.2 Rename and Eliminate

Since the base domains never see client variables, the congruence-closure do-
main can implement RenameC without needing to call the base domains. The
congruence-closure domain need only update its e-graph to map the new variable
to the symbolic value mapped by the old variable (and remove the mapping of
the old variable).

Similar to RenameC , we implement EliminateC by simply removing the map-
ping of the given variable (without calling the base domains). This means that
base domains may have constraints on symbolic values that are no longer rep-
resentable in terms of client variables. We postpone eliminating such “garbage
values” from the base domains until necessary, as we describe in the next subsec-
tion. Pseudo-code for RenameC and EliminateC are also given in the extended
version [5].

3.3 Cleaning up Garbage Values

Garbage values – symbolic values that do not map to any client expressions – can
be generated by EliminateC , JoinC , and WidenC . The garbage values would
be a problem for ToPredicateC . Therefore, at strategic times, including at the
start of the ToPredicateC operation, the congruence-closure domain performs
a garbage collection. Roughly speaking, Eliminate with garbage collection is a
lazy quantifier elimination operation.
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To garbage collect, we use a “mark-and-sweep” algorithm that determines
which terms and symbolic values are reachable in the e-graph from a client
expression; a symbolic value that is not reachable is a garbage value. We define
“reachable (from a client expression)” as the smallest relation such that: (a) any
client variable is reachable, (b) any function application term whose arguments
are all reachable is reachable, and (c) if the left-hand side of a mapping in the
e-graph is reachable, then so is the right-hand side of the mapping.

There may be terms in the e-graph that depend on unreachable symbolic
values (i.e., that take unreachable symbolic values as arguments). Dropping
these may lead to an undesirable loss of information, as we demonstrate in Sec. 4.
However, the base domains may have additional information that would allow us
to rewrite the term to not use the garbage value. To harvest such information,
we extend the abstract domain interface with the following operation:

EquivalentExpr: Elt × Queryable × Expr × Var → Expr option

Operation EquivalentExpr(B,Q, t, α) returns an expression that is equivalent
to t but does not mention α (if possible). The Queryable parameter Q provides
the base domain an interface to broadcast queries to all other abstract domains
about certain predicates, which it might need to yield an equivalent expression.

After marking, the garbage collector picks a candidate garbage value (say α),
if any. Then, for every mapping t �→ β where t mentions α , each base domain
is asked for an equivalent expression for t that does not mention α ; if one is
obtained, then the t in the mapping is replaced by the equivalent expression.
The marking algorithm is then resumed there, in case an equivalent expression
may have given rise to more reachable terms and symbolic values. After that,
if α is still unreachable, all remaining mappings that mention α are removed
from the e-graph and EliminateBi(Bi, α) is called on every base domain Bi .
At this time, α has either been determined to be reachable after all, or it has
been eliminated completely from the e-graph and all base domains. The garbage
collector then repeats this process for the next candidate garbage value, if any.

3.4 Congruence-Closure Lattice

Mathematically, we view the congruence-closure domain C as the Cartesian
product lattice [7] over an equivalences lattice E and the base domain lattices.
We consider the equivalences lattice E as the lattice over (empty, finite, and infi-
nite) conjunctions of equality constraints between expressions ordered by logical
implication. Elementary lattice theory gives us that both E and C are indeed
lattices (assuming the base domain lattices are indeed lattices) [4].

However, as with other “standard” e-graph data structures, the e-graph de-
scribed in previous sections represents only an empty or finite conjunction of
ground equalities plus implied congruences, that is, only a proper subset of E .
To define the set of equalities implied by an e-graph, we define the evaluation
judgment G ( e ⇓ α , which says that the e-graph G evaluates the client expres-
sion e to the symbolic value α :
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G � e ⇓ α

G(x) = α

G � x ⇓ α
var

G � e0 ⇓ α0 · · · G � en−1 ⇓ αn−1 G(f(α0, α1, . . . , αn−1)) = α

G � f(e0, e1, . . . , en−1) ⇓ α
fun

This corresponds to intuition that an expression belongs to the equivalence class
of expressions labeled by the symbolic value to which it evaluates. We define the
equalities implied by an e-graph by introducing the following judgment:

G  e0 = e1

G � e0 ⇓ α G � e1 ⇓ α

G  e0 = e1

eval
G  e0 = e1

G  f(e0) = f(e1)
cong

G  e = e
refl

G  e1 = e0

G  e0 = e1

symm
G  e0 = e1 G  e1 = e2

G  e0 = e2

trans

An equality is implied by the e-graph if either both sides evaluate to the same
symbolic value, it is a congruence implied by the e-graph, or it is implied by the
axioms of equality.

We let G denote the poset of e-graphs ordered with the partial order from
E (i.e., logical implication). All the operations already described above have
the property that given an element representable by an e-graph, the resulting
element can be represented by an e-graph. However, JoinG cannot have this
property, which is demonstrated by the following example given by Gulwani et
al. [9]:(
x = y

)
�E

(
g(x) = g(y) ∧ x = f(x) ∧ y = f(y)

)
=
∧

i : i�0

g(fi(x)) = g(fi(y)) (Ex. 2)

where we write �E for the join in the lattice E and fi(x) for i applications of f .
This example shows that G is not a lattice, since for any k , ∧i : 0�i�kg(fi(x)) =
g(fi(y)) can be represented by an e-graph, but not the infinite conjunction.
Thus, JoinC may have to conservatively return an e-graph that is less precise
(i.e., higher) than the join in E . These issues are discussed further in Sec. 3.5.

AtMost. Aside from the trivial cases where one or both of the inputs are TopC

or BottomC , AtMostC(〈G0, #B0〉, 〈G1, #B1〉) holds if and only if G1  e0 = e1
implies G0  e0 = e1 for all e0, e1 and AtMost�B( #B0, #B1). For the e-graphs, we
determine if all equalities implied by G1 are implied by G0 by considering all
“ground” equalities in G1 (given by two mappings to the same symbolic value)
and seeing if a Find on both sides in G0 yield the same symbolic value (since
the e-graph is congruence-closed).

3.5 Join

The primary concern is how to compute the join of two e-graphs, since the
overall join for elements of the congruence-closure domain is simply the join of
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the e-graphs and the join for the base domains (which is obtained by calling
Join�B on the base domains). Some may find the graphical view of the e-graph
described in Appendix A more intuitive for understanding this algorithm, though
it is not necessary. Intuitively, there is a potential symbolic value (i.e., node) in
the result e-graph for every pair of symbolic values in the input e-graphs (one
from each). Let us denote a symbolic value in the resulting e-graph with the
pair of symbolic values from the input e-graphs, though we actually assign a
new symbolic value to each unique pair of symbolic values. Then, the resulting
e-graph G = JoinG(G0, G1) consists of the following mappings:

x �→ 〈α′, β′〉 if G0(x) = α′ and G1(x) = β′

f( #〈α, β〉) �→ 〈α′, β′〉 if G0(f(#α)) = α′ and G1(f(#β)) = β′

In Fig. 3, we give the algorithm that computes this join of e-graphs, intro-
duces the new symbolic values in the base domains, and then computes JoinC as
the Cartesian product of the various joins. As we create new symbolic values in
the result e-graph, we need to remember the corresponding pair of symbolic val-
ues in the input graphs. This is given by two partial mappings M0 and M1 that
map symbolic values in the resulting e-graph to symbolic values in G0 and G1 ,
respectively. Visited0 and Visited1 track the symbolic values that have already
been considered in G0 and G1 , respectively.

The workset W gets initialized to the variables and 0-ary functions that are
in common between the input graphs (along with where they map in the input
graphs) (line 5, Fig. 3). One can consider the workset as containing terms (i.e.,
edges) that will be in the resulting e-graph but do not yet have a symbolic value
to map to (i.e., a destination node).

Then, until the workset is empty, we choose some term to determine what
symbolic value it should map to in the resulting e-graph. For a 〈t, α0, α1〉 ∈ W ,
if the pair 〈α0, α1〉 is one where we have already assigned a symbolic value γ in
the resulting e-graph G , then map t to γ in G (line 9). Otherwise, it is a new
pair, and we create a new symbolic value (i.e., node) ρ in G , update M0 and M1

accordingly, consider α0 and α1 visited, and map t to ρ in G (lines 11–15). So
that information is not lost unnecessarily (unless chosen to by the base domains),
we assert equalities between the symbolic values in the input graphs with the
corresponding symbolic values in the result graph (line 12) before taking the join
of the base domains. Finally, we find each function in common between G0 and
G1 from α0 and α1 , respectively, where all arguments have now been visited
(α0 and α1 being the last ones). We add each such function to the workset
but with the arguments being in terms of the symbolic values of the resulting
e-graph (line 16).

We can make a few small optimizations when creating a new symbolic value
in the result graph. First, if we have a global invariant that symbolic values
are never reused, then α can be used for the symbolic value in the resulting
e-graph corresponding to the pair 〈α, α〉 in the input graphs (rather than get-
ting a fresh symbolic value). Second, for the first symbolic value ρ in the re-
sulting e-graph that maps to α0 in the input graph G0 , rather than calling
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0: fun JoinC(〈G0, �B0〉 : Elt, 〈G1, �B1〉 : Elt) : Elt =
1: let G : EGraph in
2: let B′

0, B
′
1 : Elt[ ] = B0, B1 in

3: let M0, M1 : SymVal→ SymVal in
4: let Visited0,Visited1 : set of SymVal in

5: let W : set of Term × SymVal× SymVal =
{〈x,G0(x), G1(x)〉 | x ∈ domain(G0) ∧ x ∈ domain(G1)}
∪ {〈f(), G0(f()), G1(f())〉 | f() ∈ domain(G0) ∧ f() ∈ domain(G1)}

in

6: while W is not empty do
7: pick and remove (t, α0, α1) ∈ W ;

8: if M−1
0 (α0) ∩M−1

1 (α1) = {γ} then
9: add t �→ γ to G

10: else
11: let ρ : SymVal = fresh SymVal in
12: �B′

0 := Constrain�B( �B′
0, α0 = ρ); �B′

1 := Constrain�B( �B′
1, α1 = ρ);

13: add ρ �→ α0 to M0 and ρ �→ α1 to M1 ;
14: add t �→ ρ to G ;
15: add α0 to Visited0 and α1 to Visited1 ;
16: find each f( �β0) ∈ domain(G0) and f( �β1) ∈ domain(G1) such that

�β0 ⊆ Visited0 ∧ α0 ∈ �β0 ∧ �β1 ⊆ Visited1 ∧ α1 ∈ �β1

and add each 〈f(�β), G0(f( �β0)), G1(f( �β1))〉 to W such that

M0(�β) = �β0 ∧ M1(�β) = �β1 ∧ ρ ∈ �β
17: end if
18: end while;

19: 〈G, Join�B( �B′
0,

�B′
1)〉

20: end fun

Fig. 3. The join for the congruence-closure abstract domain.

Constrain�B( #B′
0, α0 = ρ), we can call Rename�B( #B′

0, α0, ρ) since α0 will not be
a symbolic value in the result e-graph (and similarly for G1 ).

Soundness. We show that the above join algorithm indeed gives an upper bound.
Note that since the Constrain�B calls on the base domain simply give multiple
names to existing variables, the soundness of JoinC reduces to soundness of the
join of the e-graphs (assuming the joins of the base domains are sound). We
write JoinG for the algorithm described in Fig. 3 ignoring the base domains.
Informally, JoinG is sound if for any equality implied by the resulting e-graph,
it is implied by both input e-graphs. The formal statement of the soundness
theorem is given below, while its proof is given in our extended paper [5].

Theorem 1 (Soundness of JoinG ) Let G = JoinG(G0, G1) . If G  e0 = e1 ,
then G0  e0 = e1 and G1  e0 = e1 .

Completeness. Note that different e-graphs can represent the same lattice ele-
ment. For example, consider the following e-graphs
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x �→ α y �→ α (Ex. 3a) x �→ α y �→ α f(α) �→ β (Ex. 3b)

that both represent the constraint x = y (and any implied congruences). For the
previous operations, the element that is represented by the result was the same
regardless of the form of the e-graph in the input; however, the precision of the
join algorithm is actually sensitive to the particular e-graph given as input. For
example, the join of the e-graphs shown in Ex. 3a and Ex. 3b with an e-graph
representing the constraint f(x) = f(y) yields elements true and f(x) = f(y),
respectively, as shown below:

JoinG({x �→ α, y �→ α} , {x �→ γ, y �→ δ, f(γ) �→ ε, f(δ) �→ ε}) = {x �→ ρ, y �→ σ}
JoinG({x �→ α, y �→ α, f(α) �→ β} , {x �→ γ, y �→ δ, f(γ) �→ ε, f(δ) �→ ε})

= {x �→ ρ, y �→ σ, f(ρ) �→ τ, f(σ) �→ τ}

A näıve idea might be to extend e-graph (Ex. 3a) to (Ex. 3b) in the join algorithm
as necessary; however, the algorithm no longer terminates if the join in the lattice
E is not representable as a finite conjunction of equality constraints plus their
implied congruences. Recall that Ex. 2 shows that such a non-representable join
is possible.

Ex. 2 does, however, suggest that JoinG can be made arbitrarily precise
though not absolutely precise. In fact, the precision is controlled exactly by
what terms are represented in the e-graph. If an equality is represented in both
input e-graphs to JoinG , then that equality will be implied by the result e-
graph. In fact, a slightly stronger statement holds that says that the equality
will also be represented in the result e-graph. Thus, the precision of the join can
be controlled by the client by introducing expressions it cares about in the initial
e-graph. We state the completeness theorem formally below, while its proof is
given in the extended version [5].

Theorem 2 (Relative Completeness of JoinG ) Let G = JoinG(G0, G1) .
If G0 ( e0 ⇓ α0 , G0 ( e1 ⇓ α0 , G1 ( e0 ⇓ α1 , and G1 ( e1 ⇓ α1 , then
G  e0 = e1 .

This theorem, however, does not directly indicate anything about the pre-
cision of the entire join JoinC . While without the calls to Constrain�B , much
information would be lost, it is not clear if as much as possible is preserved.
Gulwani et al. [9] give the following challenge for obtaining precise combinations
of join algorithms. Let E0

def= a = a′ ∧ b = b′ and E1
def= a = b′ ∧ b = a′ , then

E0 �E E1 ≡ true E0 �P E1 ≡ a+ b = a′ + b′

E0 �E,P E1 �E,P

∧
i : i�0

f i(a) + f i(b) = f i(a′) + f i(b′)

where P is the polyhedra abstract domain and E,P is a hypothetical combi-
nation of equalities of uninterpreted functions and linear arithmetic. Note that
the combined join also yields an infinite conjunction of equalities not repre-
sentable by our e-graph. Thus, we cannot achieve absolute completeness using
the congruence-closure domain with the polyhedra domain as a base domain;
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however, we do achieve an analogous relative completeness where we obtain all
conjuncts where the terms are represented in the input e-graphs. In the table
below, we show the e-graphs for E0 and E1 with one application of f to each
variable explicitly represented and the join of these e-graphs. Consider the input
elements for the polyhedra domain to be TopP . We show the elements after the
calls to ConstrainP during JoinC and the final result after the polyhedra join.

C0 C1 JoinC(C0, C1)

E-Graph a �→ α0 b �→ β0

a′ �→ α0 b′ �→ β0

f(α0) �→ γ0 f(β0) �→ δ0

a �→ α1 b �→ β1

b′ �→ α1 a′ �→ β1

f(α1) �→ γ1 f(β1) �→ δ1

a �→ ρ b �→ τ
a′ �→ σ b′ �→ υ

f(ρ) �→ φ f(τ ) �→ ψ
f(σ) �→ χ f(υ) �→ ω

Polyhedra
(after Constrains)

α0 = ρ = σ β0 = τ = υ
γ0 = φ = χ δ0 = ψ = ω

α1 = ρ = υ β1 = τ = σ
γ1 = φ = ω δ1 = ψ = χ

ρ + τ = σ + υ
φ + ψ = χ + ω

ToPredicateC on the result yields a+ b = a′ + b′ ∧ f(a) + f(b) = f(a′) + f(b′),
as desired. (Gulwani and Tiwari have indicated that they have a similar solution
for this example.) Note that there are no equality constraints in the resulting
e-graph; these equalities are only reflected in the base domain. This example sug-
gests that such equalities inferred by a base domain should be propagated back
to the e-graph in case those terms exist in the e-graph for another base domain
where such a term is alien (akin to equality sharing of Nelson-Oppen [15]).

3.6 Widen

Unfortunately, the above join operation successively applied to an ascending
chain of elements may not stabilize (even without consideration of the base
domains), as can demonstrated by the following example. Let Gi (for i � 0) be
an ascending chain of e-graphs representing x = f2

i

(x). Then,

G′
0 = G0 G′

1 = JoinG(G′
0, G1) = G1 G′

2 = JoinG(G′
1, G2) = G2 · · ·

does not reach a fixed point. The above sequence does not converge because a
cycle in the e-graph yields an infinite number of client expressions that evaluate
to a symbolic value (by following the loop several times). Thus, a non-stabilizing
chain can be constructed by joining with a chain that successively rules out
terms that follow the loop less than k times (as given above). The same would
be true for acyclic graphs with the join algorithm that adds additional terms to
the e-graph as necessary to be complete. Therefore, we can define WidenC by
following the join algorithm described in Fig. 3 except fixing a finite limit on the
number of times a cycle can be followed in G0 (and calling Widen�B on the base
domains rather than Join�B ). Once the e-graph part stabilizes, since the set of
symbolic values are fixed up to renaming, the base domains will also stabilize by
the stabilizing property of Widen�B .



Abstract Interpretation with Alien Expressions and Heap Structures 159

4 Heap Structures

In this section, we specifically consider programs with heaps, such as object-
oriented programs. We view a heap as an array indexed by heap locations.
Therefore, what we say here more generally applies also to arrays and records.

4.1 Heap-Aware Programs

We consider an imperative programming language with expressions to read ob-
ject fields (o.x) and statements to update object fields (o.x := e). To analyze
these programs, we explicitly represent the heap by a program variable H . The
heap is an array indexed by heap locations 〈o, x〉 , where o denotes an object
identity and x is a field name.

A field read expression o.x in the language is treated simply as a shorthand
for sel(H, o, x). Intuitively, this function retrieves the value of H at location
〈o, x〉 . Thus, from what we have already said, the congruence-closure domain
allows us to infer properties of programs that read fields. For example, using
the polyhedra domain as a base domain on the program in Fig. 1(b), we infer
arithmetic properties like y = sel(H, o, x) ∧ 0 
 sel(H, o, x) after the statement
in the true-branch and 0 
 y after the entire program.

The semantics of the field update statement o.x := e is usually defined as an
assignment H := upd(H, o, x, e) (cf. [10, 11, 16]), where upd is a function with
the following axiomatization:

sel(upd(H, o, x, e), o′, x′) = e if o = o′ and x = x′

sel(upd(H, o, x, e), o′, x′) = sel(H, o′, x′) if o �= o′ or x �= x′

We choose a slightly different formulation introducing the heap succession pred-
icate H ≡o.x H ′ , which means H ′ is an updated heap equivalent to H every-
where except possibly at o.x . We thus regard the field update statement o.x := e
as the following assignment:

H := H ′ where H ′ is such that H ≡o.x H ′ and sel(H ′, o, x) = e

A more precise semantics is given in the extended version [5].
Unfortunately, this is not enough to be useful in the analysis of heap struc-

tured programs. Consider the program in Fig. 1(d). Applying the congruence-
closure domain with, say, the polyhedra domain as a single base domain gives
the disappointingly weak predicate true after the entire program. The problem
is that an analysis of the field update statement will effect a call to the operation
EliminateC(〈G, #B〉, H) on the congruence-closure domain, which has the effect
of losing all the information that syntactically depends on H . This is because no
base domain Bi is able to return an expression in response to the congruence-
closure domain’s call to EquivalentExprBi

(Bi, Q, sel(H, o, x), H) (or more pre-
cisely, with expression sel(σ, φ, χ) and variable σ that are the corresponding
symbolic values).

To remedy the situation, we develop an abstract domain that tracks heap up-
dates. Simply including this abstract domain as a base domain in our congruence-
closure abstract domain solves this problem.
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4.2 Heap Succession Abstract Domain

A lattice element in the heap succession abstract domain S represents false or
a conjunction of heap succession predicates

(∃ . . . • H0 ≡o0.x0 H1 ∧ H1 ≡o1.x1 H2 ∧ · · · ∧ Hn−1 ≡on−1.xn−1 Hn)

for some n � 0, where the Hi , oi , and xi are variables, some of which may be
existentially bound, and where no Hi is repeated.

The heap succession domain, like any other base domain, works only with
variables and implements the abstract domain interface. However, of primary
importance is that it can often return useful results to EquivalentExpr calls.
Specifically, it substitutes newer heap variables for older heap variables in ex-
pressions when it is sound to do so, which is exactly what we need. The operation
EquivalentExprS(S,Q, t,H) returns nothing unless t has the form sel(H, o, x)
and element S contains a successor of heap H . If there is a heap successor H ′

of H , that is, if S contains a predicate H ≡p.y H ′ , then S first determines
whether o �= p ∨ x �= y (i.e., whether the references o and p are known to be
unaliased or the fields are distinct). If it finds that o �= p ∨ x �= y and H ′ is
not existentially bound, then the operation returns the expression sel(H ′, o, x);
otherwise, the operation iterates, this time looking for a heap successor of H ′ . If
x and y denote two different fields (which are represented as 0-ary functions),
the condition is easy to determine. If not, the heap succession domain may need
to query the other abstract domains via Q to find out if any other abstract
domain knows that o �= p .

4.3 Preserving Information Across Heap Updates

We give an example to illustrate how the heap succession domain can allow
information to be preserved across heap updates. Consider a heap update state-
ment o.x := z and suppose that before the update, the abstract domains have
the information that p.y = 8 (i.e., sel(H, p, y) = 8). After the update to o.x , we
hope to preserve this information, since the update is to a different field name.
Consider the relevant mappings in the e-graph after the update:

H �→ σ′ sel(σ, ψ, υ) �→ α sel(σ′, φ, χ) �→ ζ
p �→ ψ o �→ φ 8 �→ α z �→ ζ
y �→ υ x �→ χ

while the heap succession domain has the following constraint: σ ≡φ.x σ
′ . The

old heap σ is now a garbage value. Recall that during garbage collection be-
fore σ is eliminated from the base domain, the congruence-closure domain will
call EquivalentExprBi

to ask each base domain Bi whether it can give an
equivalent expression for sel(σ, ψ, υ) without σ . In this case, the heap succes-
sion domain can return sel(σ′, ψ, υ) because field name constants x and y are
distinct. Thus, the information that sel(H, p, y) = 8 is preserved. In the same
way, the congruence-closure domain with heap succession and polyhedra as base
domains computes 0 
 o.x ∧ N 
 o.x ∧ 0 
 p.y after the program in Fig. 1(d).
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5 Related Work

Gulwani et al. [9] describe several join algorithms for both special cases of the
theory of uninterpreted functions and in general. The representation of equality
constraints they consider, called an abstract congruence closure [1, 2], is a con-
vergent set of rewrite rules of the form f(c0, c1, . . . , cn−1) → c or c0 → c for
fresh constants c, c0, c1, . . . , cn−1 . If the latter form is excluded, then we obtain
something analogous to our e-graph where the fresh constants are our symbolic
values. In fact, because the latter form can lead to many different sets of rewrite
rules for the same set of equality constraints, Gulwani et al. quickly define a
fully reduced abstract congruence closure that precisely excludes the latter form
and then only work with fully reduced abstract congruence closures. Our work
goes further by introducing the concept of base domains and recognizing that
symbolic values can be used to hide alien expressions. Gulwani et al. discuss
an item of future work to combine their join algorithm for the theory of unin-
terpreted functions with some other join algorithm (e.g., for linear arithmetic)
and a challenge for such a combination. Using the congruence-closure abstract
domain with polyhedra as a base domain, we seem to stand up to the challenge
(see Sec. 3.5).

Previous research in the area of abstract interpretation and dynamic data
structures has centered around shape analysis [14], which determines patterns of
connectivity between pointers in the heap. Using transitive closure, shape anal-
ysis can reason about reachability in the heap and abstracts many heap objects
into so-called summary nodes. Our technique of combining abstract domains
does not specifically attempt to abstract objects into summary nodes, though it
would be interesting to consider the possibility of using such a shape analyzer
as a base domain in our technique. In shape analysis, properties of nodes can be
encoded as specially interpreted predicates (cf. [17, 12]). Our technique differs in
that it extends the representable properties of nodes by simply plugging in, as
base domains, classic abstract domains that reason only with relations among
variables. This feature allows our analysis to obtain properties like o.f 
 p.g
with an “off-the-shelf” polyhedra implementation.

Logozzo uses abstract interpretation to infer object invariants with several
objects but with some restrictions on the possible aliasing among object refer-
ences [13]. The abstract domains described in this paper might be able to be
used as building blocks for another method for inferring object invariants.

6 Conclusion

We have described a technique to extend any abstract domain to handle con-
straints over arbitrary terms, not just variables, via a coordinating abstract
domain of congruences. Moreover, this technique is designed so that abstract
domains can be used mostly unmodified and oblivious to its extended reason-
ing. To implement the congruence-closure domain, we have given a sound and
relatively complete algorithm to join e-graphs.
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Additionally, we have described the heap succession domain, which allows our
framework to handle heap updates. This domain need only be a base domain
and thus fits modularly into our framework. Lastly, the handling of heap updates
can be improved modularly through other base domains that yield better alias
(or rather, unaliased) information.

We have a prototype implementation of our technique in the abstract in-
terpretation engine of the Spec# program verifier, which is part of the Spec#
programming system [3], and are in the process of obtaining experience with it.

Our work is perhaps a step toward having a uniform way to combine ab-
stract domains, analogous to the Nelson-Oppen algorithm for cooperating de-
cision procedures [15]. For example, continuing to assign symbolic values to
subexpressions of alien expressions, as well as notifying base domains of addi-
tional understandable subexpressions suggests some kind of potential sharing
of information between abstract domains. The structure of our framework that
uses a coordinating abstract domain of congruences is perhaps also reminiscent
of Nelson-Oppen. While equality information flows from the congruence-closure
domain to the base domains, to achieve cooperating abstract domains, we need
to add a way for each base domain to propagate information, like equalities
that it discovers, to the congruence-closure domain and other base domains. We
believe exploring this connection would be an exciting line of research.
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A Graphical View of the E-Graph

Fig. 4. An e-graph.

We can view the e-graph as a rooted directed graph
where the vertices are the symbolic values (plus a dis-
tinguished root node) and the edges are the terms.
Variables and 0-ary functions are labeled edges from
the root node to the symbolic value to which they
map. The n-ary functions are multi-edges with the
(ordered) source nodes being the arguments of the
function and the destination node being the symbolic
value to which they map labeled with the function
symbol. More precisely, let G be a mapping in Sec. 3,
then the corresponding graph is defined as follows:

vertices(G) = range(G) ∪ {•}
edges(G) =

{
• x−→ G(x)

∣∣∣ x ∈ domain(G)
}
∪
{

�α
f−→ G(f(�α))

∣∣∣ f(�α) ∈ domain(G)
}

where • stands for the distinguished root node, as well as the empty sequence.
Fig. 4 gives the graph for Ex. 1.
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Abstract. The paper presents an approach for shape analysis based on predicate
abstraction. Using a predicate base that involves reachability relations between
program variables pointing into the heap, we are able to analyze functional prop-
erties of programs with destructive heap updates, such as list reversal and various
in-place list sorts. The approach allows verification of both safety and liveness
properties. The abstraction we use does not require any abstract representation
of the heap nodes (e.g. abstract shapes), only reachability relations between the
program variables.
The computation of the abstract transition relation is precise and automatic yet
does not require the use of a theorem prover. Instead, we use a small model the-
orem to identify a truncated (small) finite-state version of the program whose
abstraction is identical to the abstraction of the unbounded-heap version of the
same program. The abstraction of the finite-state version is then computed by
BDD techniques.
For proving liveness properties, we augment the original system by a well-founded
ranking function, which is abstracted together with the system. Well-foundedness
is then abstracted into strong fairness (compassion). We show that, for a restricted
class of programs that still includes many interesting cases, the small model the-
orem can be applied to this joint abstraction.
Independently of the application to shape-analysis examples, we demonstrate the
utility of the ranking abstraction method and its advantages over the direct use of
ranking functions in a deductive verification of the same property.

1 Introduction

The goal of shape analysis is to analyze properties of programs that perform destructive
updating on dynamically allocated storage (heaps) [11]. Programs manipulating heap
structures can be viewed as parameterized in the number of heap nodes, or, alterna-
tively, the memory size.

This paper presents an approach for shape analysis based on predicate abstraction
that allows for analyses of functional properties such as safety and liveness. The abstrac-
tion used does not require any abstract representation of the heap nodes (e.g. abstract
shapes), but rather, requires only reachability relations between the program variables.
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States are abstracted using a predicate base that contains reachability relations among
program variables pointing into the heap. The computation of the abstract states and
transition relation is precise and automatic and does not require the use of a theorem
prover. Rather, we use a small model theorem to identify a truncated (small) finite-
state version of the program whose abstraction is identical to the abstraction of the
unbounded-heap version of the same program. The abstraction of the finite-state version
is then computed by BDD techniques.

For proving liveness properties, we augment the original system by a well-founded
ranking function, which is then abstracted together with the system. Well-foundedness
is abstracted into strong fairness (compassion). We show that, for a restricted class of
programs (that still includes numerous interesting cases), the small model theorem can
be applied to this joint abstraction.

We demonstrate the power of the ranking abstraction method and its advantages
over direct use of ranking functions in a deductive verification of the same property,
independent of its application to shape-analysis examples.

The method is illustrated on two examples, both using (singly) linked lists: List
reversal and in-place sort. We show how various predicate abstractions can be used to
establish various safety properties, and how, for each program, one of the abstractions
can be augmented with a progress monitor to establish termination.

The paper is organized as follows. Section 2 describes the formal model of fair
transitions systems and their finite heap version, finite heap systems. Section 3 has an
overview of finitary abstraction and predicate abstraction. Section 4 deals with the sym-
bolic computation of abstractions. It states and proves the small model property, and
describes how to apply it to obtain abstract finite heap systems. Section 5 deals with
proving liveness of heap systems. Sections 2–5 use a list reversal program as a running
example. Section 6 presents a more involved example of a nested loop bubble sort, and
shows its formal verification using the new method.

Related Work
The work in [16] presents a parametric framework for shape analysis that deals with
the specification language of the shape analysis framework and the construction of the
shape analyzer from the specification. A 2-value logic is used to represent concrete
stores, and a 3-valued logic is used to represent abstract stores. Properties are specified
by first-order formulae with transitive closure; these also describe the transitions of the
system. The shape analyzer computes a fixed point of the set of equations that are gen-
erated from the analysis specification. The systems considered in [16] are more general
than ours, e.g., we allow at most one “next pointer” for each node. Due to the restricted
systems and properties we consider, we do not have to abstract the heap structure itself,
and therefore our computation of the transition relation is precise. Moreover, their work
does not handle liveness properties.

In [7], Dams and Namjoshi study shape analysis using predicate abstraction and
model checking. Starting with shape predicates and a property, the method iteratively
computes weakest preconditions to find more predicates and constructs abstract pro-
grams that are then model checked. As in the [16] framework, the abstraction computed
in not precise. Some manual intervention is required to apply widening-like techniques
and guide the system into convergence. This work, too, does not handle liveness.
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There are several works studying logics for shape analysis. E.g., [5] present a de-
cidable logic for reasoning about heap structures. No treatment of liveness is described.

Some related but less relevant works are [9, 8] that study concurrent garbage collec-
tion using predicate abstraction, [10] that study loop invariants using predicate abstrac-
tion, and [13] that calculates weakest preconditions for reachability. All these works do
not apply shape analysis or use shape predicates.

2 The Formal Framework

In this section we present our computation model.

2.1 Fair Discrete Systems

As our computational model, we take a fair discrete system (FDS) S = 〈V,Θ, ρ,J , C〉,
where

• V — A set of system variables. A state of S provides a type-consistent interpreta-
tion of the variables V . For a state s and a system variable v ∈ V , we denote by
s[v] the value assigned to v by the state s. Let Σ denote the set of all states over V .

• Θ — The initial condition: An assertion (state formula) characterizing the initial
states.

• ρ(V, V ′) — The transition relation: An assertion, relating the values V of the vari-
ables in state s ∈ Σ to the values V ′ in an S-successor state s′ ∈ Σ.

• J — A set of justice (weak fairness) requirements (assertions); A computation
must include infinitely many states satisfying each of the justice requirements.

• C — A set of compassion (strong fairness) requirements: Each compassion require-
ment is a pair 〈p, q〉 of state assertions; A computation should include either only
finitely many p-states, or infinitely many q-states.

For an assertion ψ, we say that s ∈ Σ is a ψ-state if s |= ψ.
A computation of an FDS S is an infinite sequence of states σ : s0, s1, s2, ..., satis-

fying the requirements:

• Initiality — s0 is initial, i.e., s0 |= Θ.
• Consecution — For each 	 = 0, 1, ..., the state s�+1 is an S-successor of s�. That

is, 〈s�, s�+1〉 |= ρ(V, V ′) where, for each v ∈ V , we interpret v as s�[v] and v′ as
s�+1[v].

• Justice — for every J ∈ J , σ contains infinitely many occurrences of J-states.
• Compassion – for every 〈p, q〉 ∈ C, either σ contains only finitely many occurrences

of p-states, or σ contains infinitely many occurrences of q-states.

2.2 Finite Heap Systems

To allow the automatic computation of abstractions, we place further restrictions on the
systems we study, leading to the model of finite heap systems (FHS), that is essentially
the model of bounded discrete systems of [2] specialized to the case of heap programs.
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For brevity, we describe here a simplified two-type model; the extension for the general
multi-type case is straightforward.

We allow the following data types parameterized by the positive integer h, intended
to specify the heap size:

1. bool: boolean and finite-range scalars; With no loss of generality, we assume that
all finite domain values are encoded as booleans.

2. index: [0..h];
3. Arrays of the types index �→ bool (bool array) and index �→ index (index array).

We assume a signature of variables of all of these types. Constants are introduced as
variables with reserved names. Thus, we admit the boolean constants 0 and 1, and the
index constant nil . An additional reserved-name variable is H : index whose value is
always h.

We often refer to an element of type index as a node. If the interpretation of an
index variable x in a state s is 	, then we say that in s, x points to the node 	. An index
term is an index variable or an expression Z[y], where Z is an index array and y is an
index variable.

Atomic formulas are defined as follows:

• If x is a boolean variable, B is a index �→ bool array, and y is an index variable,
then x and B[y] are atomic formulas.

• If t1 and t2 are index terms, then t1 = t2 is an atomic formula.
• A Transitive closure formula (tcf ) of the form Z∗(x1, x2), denoting that x2 is Z-

reachable from x1, where x1 and x2 are index variables and Z is an index array.

A restricted A-assertion is a formula of the form ∀#y.ψ(#x, #y), where #y is a list of
index variables that do not include nil , and ψ(#x, #y) is a boolean combination of atomic
formulas such that the only atomic formulas referring to a universally quantified y are
of the forms B[y], y = u, or Z1[y] = Z2[y] under positive polarity. In particular, note
that in restricted A-assertions, universally quantified variables may not occur in tcf’s.
As the initial condition Θ, the transition relation ρ, as well as the fairness requirements,
we only allow restricted A-assertions.

The definition of restricted A-assertions allows for programs that manipulate heap
elements strictly via a constant set of reference variables, which is in accordance with
most programming languages. The set of operations that are allowed is however greatly
restricted. For example, arithmetic operations are not allowed. While the present defi-
nition doesn’t allow inequalities, it is not hard to extend it to support them.

Example 1 (List Reversal). Consider program LIST-REVERSAL in Fig. 1, which is a
simple list reversal program. The array Nxt describes the pointer structure. We ignore
the actual data values, but they can easily be added as bool type variables.

Fig. 2 describes the FHS corresponding to program LIST-REVERSAL. The expres-
sion pres(V1) is an abbreviation for

∧
v∈V1

(v′ = v), i.e., pres(V1) means that all the
variables in V1 are not changed by the transition. The expression pres-array(Nxt , U)
is an abbreviation for ∀u ∈ index.u /∈ U → (Nxt ′[u] = Nxt[u]). Note that all the
clauses in Fig. 2 are restricted assertions. The justice requirement states that as long as
the program has not terminated, its execution continues.
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H : integer where H = h
x, y : [0..h] init y = nil
Nxt : array [0..h] of [0..h]⎡⎢⎣ 1 : while x �= nil do

2 : (x, y, Nxt [x]) := (Nxt [x], x, y)
end

3 :

⎤⎥⎦

Fig. 1. Program LIST-REVERSAL

V :

⎧⎪⎪⎨⎪⎪⎩
H : integer
x, y : [0..h]
Nxt : array [0..h] of [0..h]
π : [1..3]

Θ : H = h ∧ π = 1 ∧ y = nil

ρ :

⎡⎢⎢⎢⎢⎣
π = 1 ∧ x = nil ∧ π′ = 3 ∧ pres({H, x, y}) ∧ pres-array(Nxt , ∅)

∨ π = 1 ∧ x �= nil ∧ π′ = 2 ∧ pres({H, x, y}) ∧ pres-array(Nxt , ∅)
∨ π = 2 ∧ x′ = Nxt [x] ∧ y′ = x ∧ Nxt ′[x] = y ∧ π′ = 1 ∧

pres({H}) ∧ pres-array(Nxt , {x})
∨ π = 3 ∧ π′ = 3 ∧ pres({H, x, y, π}) ∧ pres-array(Nxt , ∅)

⎤⎥⎥⎥⎥⎦
J : {π �= 1, π �= 2}
C : ∅

Fig. 2. FHS for Program LIST-REVERSAL

3 Abstraction

We fix an FHS S = 〈V,Θ, ρ,J , C〉 whose set of states is Σ for this section.

3.1 Finitary Abstraction

The material here is an overview of (a somewhat simplified version of) [12]. See there
for details.

An abstraction is a mapping α : Σ → Σ
A

for some set Σ
A

of abstract states. The
abstraction α is finitary if the set of abstract states ΣA is finite. We focus on abstractions
that can be represented by a set of equations of the form ui = Ei(V ), i = 1, . . . , n,
where the Ei’s are assertions over the concrete variables (V ) and {u1, . . . , un} is the
set of abstract variables, denoted by V

A
. Alternatively, such α can be expressed by:

V
A

= Eα(V )

For an assertion p(V ), we define its abstraction by:

α(p) : ∃V.(VA = EA(V ) ∧ p(V ))

The semantics of α(p) is ‖α(p)‖ = {α(s) | s ∈ ‖p‖}. Note that ‖α(p)‖ is, in general,
an over-approximation – an abstract state is in ‖α(p)‖ iff there exists some concrete
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p-state that is abstracted into it. An assertion p(V, V ′) over both primed and unprimed
variables is abstracted by:

α(p) : ∃V, V ′.(VA = EA(V ) ∧ V ′
A

= EA(V ′) ∧ p(V, V ′))

The assertion p is said to be precise with respect to the abstraction α if ‖p‖ =
α−1(‖α(p)‖), i.e., if two concrete states are abstracted into the same abstract state, they
are either both p-states, or they are both ¬p-states. For a temporal formula ψ in positive
normal form (where negation is applied only to state assertions), ψα is the formula
obtained by replacing every maximal state sub-formula p in ψ by α(p). The formula
ψ is said to be precise with respect to α if each of its maximal state sub-formulas are
precise with respect to α.

In all cases discussed in this paper, the formulae are precise with respect to the
relevant abstractions. Hence, we can restrict to the over-approximation semantics.

The α-abstracted version of S is the system

Sα = 〈V
A
, α(Θ), α(ρ),

⋃
J∈J

α(J),
⋃

(p,q)∈C
(α(p), α(q))〉

From [12] we derive the soundness of finitary abstraction:

Theorem 1. For a system S, abstraction α, and a positive normal form temporal for-
mula ψ:

Sα |= ψα =⇒ S |= ψ

Thus, if an abstract system satisfies an abstract property, then the concrete system sat-
isfies the concrete property.

3.2 Predicate Abstraction

Predicate abstraction is an instance of finitary abstraction where the abstract variables
are boolean. Following [15], an initial predicate abstraction is chosen as follows: Let P
be the (finite) set of atomic state formulas occurring in ρ, Θ, J , C and the concrete
formula ψ that refer to non-control and non-primed variables. Then the abstraction α
is the set of equations {Bp = p : p ∈ P}. The formula ψα is then checked over Sα

producing either a confirmation that Sα |= ψa or a counterexample. In the former case,
the process terminates concluding that S |= ψ. Else, the counterexample produced is
concreticized and checked whether it is indeed a feasible S-trace. If so, the process
terminates concluding that S �|= ψ. Otherwise, the concrete trace implies a refinement
α′ of α under which the abstract error trace is infeasible. The process repeats (with
a′) until it succeeds – ψ is proven to be valid or invalid – or the refinement reaches
a fixpoint, in which case the process fails. See [6, 3, 4] for discussion of the iterated
abstraction refinement method.

We close this section by demonstrating the process of predicate abstraction on pro-
gram LIST-REVERSAL. In the next section we show how to automatically compute the
abstraction.
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Example 2 (List Reversal Abstraction). Consider program LIST-REVERSAL of Exam-
ple 1. One of the safety properties one wishes to prove is that no elements are removed
from the list, i.e., that every element initially reachable from x is reachable from y upon
termination. This property can be expressed by:

∀t.(π = 1 ∧ t �= nil ∧ Nxt∗(x, t)) → �(π = 3 → Nxt∗(y, t)) (1)

We augment the program with a generic variable t, which is a variable whose initial
value is unconstrained and remains fixed henceforth. Then validity of Formula (1) re-
duces to the validity of:

(π = 1 ∧ t �= nil ∧ Nxt∗(x, t)) → �(π = 3 → Nxt∗(y, t)) (2)

Following the above discussion, to prove the safety property of Formula (2), the set
P consists of x = nil , t = nil , Nxt∗(x, t), and Nxt∗(y, t), which we denote as the
abstract variables x nil , t nil , r xt , and r yt respectively.

The abstract program is ABSTRACT-LIST-REVERSAL, shown in Fig. 3, and the
abstract property corresponding to Formula (2) is:

ψα : (Π = 1 ∧ ¬t nil ∧ r xt) → �(Π = 3 → r yt)

where Π is the program counter of the abstract program.

x nil , t nil , r xt , r yt : bool
init x nil = t nil = 0, r xt = 1, r yt = t nil⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 : while ¬x nil do

2 :

⎡⎢⎢⎢⎢⎢⎢⎣

(r xt , r yt) := case
¬r xt ∧ ¬r yt : (0, 0)
¬r xt ∧ r yt : {(0, 1), (1, 1)}
otherwise : {(0, 1), (1, 0), (1, 1)}

esac
x nil := if r xt then 0 else {0, 1}

end
3 :

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 3. Program ABSTRACT-LIST-REVERSAL

It is now left to check whether Sα |= ψα, which can be done, e.g., using a model
checker. Here, the initial abstraction is precise enough, and program ABSTRACT-LIST-
REVERSAL satisfies ψα. In Section 6 we present a more challenging example requiring
several iterations of refinement.

4 Symbolic Computation of Abstractions

This section describes a methodology for symbolically computing an abstraction of
an FHS. The methodology is based on a small model property, that establishes that
satisfiability of a restricted assertion can be checked on small instantiation of a system.
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Let V be a vocabulary of typed variables, whose types are taken from the restricted
type system allowed in an FHS. A model M for V consists of the following elements:

• A positive integer h > 0.
• For each boolean variable b ∈ V , a boolean value M [b] ∈ {0, 1}. It is required that
M [0] = 0 and M [1] = 1.

• For each index variable x ∈ V , a natural value M [x] ∈ [0..h]. It is required that
M [nil ] = 0 and M [H ] = h.

• For each boolean array B ∈ V , a boolean function M [B] : [0..h] �→ {0, 1}.
• For each index array Z ∈ V , a function M [Z] : [0..h] �→ [0..h].

We define the size of model M to be h + 1. Let ϕ = ∀#y.ψ(#x, #y) be a restricted A-
assertion, where #x is the set of free variables appearing in ϕ. For a given #x-model M ,
we can evaluate the formula ϕ over the model M . Model M is called a satisfying model
for ϕ if M |= ϕ. An index term t ∈ {x, Z[x]} is called a free term in ϕ. Let Tϕ denote
the set consisting of the term nil and all free terms which occur in formula ϕ.

A model M is called a Z-uniform model (uniform model for short), if for every
k ∈ [0..h] and every index arraysZ1 andZ2 such thatM [Z1](k) = k1 andM [Z2](k) =
k2 for k1 �= k2, then k and at least one of k1 or k2 are M -interpretations of a free
term belonging to Tϕ. A restricted A-assertion is called a Z-uniform assertion (uniform
assertion for short) if all its models are Z-uniform. For example, assertion ρ of Fig. 2 is
uniform where Z1 and Z2 are the arrays Nxt and Nxt ′. From now on, we will restrict
our attention to uniform assertions and their models. This restriction is justified since
in all programs we are studying here, every pointer that is being updated is assigned a
value of a variable or a free term, e.g., Nxt ′[x] = y or Nxt ′[y] = Nxt [yn] (though the
value of the pointer before the assignment is not necessarily pointed to by any variable).

The following theorem states that if ϕ has a satisfying model, then it has a small
satisfying model. The theorem is a variant of a similar one stated originally in [14].

Theorem 2 (Small model property). Let ϕ : ∀#y.ψ be a uniform restricted A-assertion
and T be a set of free terms containing Tϕ. Then ϕ has a satisfying model iff it has a
satisfying model of size not exceeding |T | + 1.

Proof. Let M be a satisfying model of size exceeding |T | + 1. We will show that M
can be reduced to a smaller satisfying model M whose size does not exceed |T | + 1.

Let 0 = n0 < · · · < nm be all the distinct values that model M assigns to the terms
in T . Obviously, m < |T |. Let d be the minimal value in [0..h] which is different from
each of the ni’s. Define a mapping γ : [0..h] → [0..m] as follows:

γ(u) =
{
i if u = ni

m+1 otherwise

We define the model M as follows:

• h = m+1.
• M [x] = M [x] for each boolean variable x ∈ T .
• M [u] = γ(M [u]), for each free index variable u ∈ T .
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• M [B] = λi.if i ≤ m then M [B](ni) else M [B](d), for each boolean array
B ∈ T .

• Finally consider an index array Z ∈ T . We let M [Z](m+1) = m+1. For i ≤ m
let v = M [Z](ni). If some n ∈ {n0, . . . , nm} is Z-reachable from v in M , let nj ,
j ≤ m, be the “Z-closest” to v, and then M [Z](i) = j. Otherwise, M [Z](i) =
m+1.

Concerning the last clause in the definition, note that if nj is “Z1-closest” to v then, due
to uniformity, it is also the “Z2-closest” to v, for every Z2.

It remains to show that M |= ϕ under the assumption that M |= ϕ. The proof of
this claim is presented in Appendix A. ��

For example, consider a formula ϕ and a set T = {nil , v1, v2, v3} that includes Tϕ. Let
M be a uniform model with h = 7; M [v1] = 1;M [v2] = 3,M [v3] = 5,M [Nxt] =
[6, 6, 7, 5, 5, 5, 7]. Then, according to the construction, h = 4;M [nil ] = 0;M [v1] =
1;M [v2] = 2;M [v3] = 3;M [Nxt ] = [3, 4, 3, 4].

Given a restricted A-assertion ϕ and a positive integer h0, we define the h0-
bounded version of ϕ, denoted +ϕ,h0 , to be the conjunction ϕ ∧ (H ≤ h0). Theorem 2
can be interpreted as stating that ϕ is satisfiable iff +ϕ,|T | is satisfiable.

Next, we would like to extend the small model theory to the computation of ab-
stractions. Consider first the case of a restricted A-assertion ϕ which only refers to
unprimed variables. As explained in Subsection 3.1, the abstraction of ϕ is given by
α(ϕ) = ∃V (V

A
= E

A
(V )∧ϕ(V )). Assume that the set of (finitely many combinations

of) values of the abstract system variables VA is {U1, . . . , Uk}. Let sat(ϕ) be the subset
of indices i ∈ [1..k], such that Ui = Eα(V ) ∧ ϕ(V ) is satisfiable. Then, it is obvious
that the abstraction α(ϕ) can be expanded into

α(ϕ)(V
A
) =

∨
i∈sat(ϕ)

(V
A

= Ui) (3)

Next, let us consider the abstraction of +ϕ,|T |, where T consists of all free terms in ϕ
and Eα(V ) and the variable H , i.e. all the free terms in the assertion Ui = Eα(V ) ∧
ϕ(V )∧(H ≤ h0). Our reinterpretation of Theorem 2 implies that sat(+ϕ,|T |) = sat(ϕ)
which leads to the following theorem:

Theorem 3. Let ϕ be an assertion which only refers to unprimed variables, α : V
A

=
E

A
(V ) be an abstraction mapping, T be the set of free terms in the formula (Ui =

EA(V )) ∧ ϕ(V ) ∧ (H ≤ h0), and h0 = |T |. Then

α(ϕ)(V
A
) ∼ α(+ϕ,h0)(VA

)

Theorem 3 deals with assertions that do not refer to primed variables. It can be extended
to the abstraction of an assertion such as the transition relation ρ. Recall that the abstrac-
tion of such an assertion involves a double application of the abstraction mapping, an
unprimed version and a primed version. Thus, we need to consider the set of free terms
in the formula (Ui = EA(V )) ∧ Uj = EA(V ′) ∧ ρ(V, V ′) plus the variable H .

Next we generalize these results to entire systems. For an FHS S = 〈V,Θ, ρ,J , C〉
and positive integer h0, we define the h0-bounded version of S, denoted +S,h0 , as
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〈V ∪ {H}, +ρ,h0, +J ,h0 , +C,h0〉, where +J ,h0 = {+J,h0 | J ∈ J } and +C,h0 =
{(+p,h0 , +q,h0) | (p, q) ∈ C}. Let h0 be the maximum size of the sets of free terms for
all the abstraction formulas necessary for computing the abstraction of all the compo-
nents of S. Then we have the following theorem:

Theorem 4. Let S be an FHS, α be an abstraction mapping, and h0 the maximal size
of the relevant sets of free terms as described above. Then the abstract system Sα is
equivalent to the abstract system +S,α

h0
.

We use TLV [1] to compute the abstract system +S,α
h0

. The only manual step in the
process is the choice of the state predicates. As discussed in Section 3, the initial choice
is usually straightforward. One of the attractive advantages of using a model checker
for the abstraction is that it can be invisible – thus, the abstraction, and checking of the
(abstract) property over it, can be done completely automatically, and the user need not
see the abstract program, giving rise to the method of invisible abstraction. However,
because of the need for refinement, the user may actually prefer to view the abstract
program.

Example 3. Consider again program LIST-REVERSAL of Example 1. In Example 2
(of Section 3) we described its abstraction, which was manually derived. In order
to obtain an automatic abstraction for the system whose set of free terms is T =
{nil , H, x, y, t, x′, y′,Nxt ′[x]}, we bounded the system by h0 = 8.

We compute the abstraction in TLV by initially preparing an input file describing the
concrete truncated system. We then use TLV’s capabilities for dynamically constructing
and updating a model to construct the abstract system by separately computing the ab-
straction of the concrete initial condition, transition relation, and fairness requirements.

Having computed the abstract system, we check the safety property ψα, which, of
course, holds. All code is in http://www.cs.nyu.edu/acsys/shape-analysis.

5 Liveness

5.1 Transition Abstraction

State abstraction often does not suffice to verify liveness properties and needs to be
augmented with transition abstraction. Let (D,-) be a partially ordered well founded
domain, and assume a ranking function δ : Σ → D. Define a function decrease by:

decrease =

⎧⎨⎩
1 δ - δ′

0 δ = δ′

−1 otherwise

Transition abstraction can be incorporated into a system by (synchronously) composing
the system with a progress monitor [12], shown in Fig. 4. The compassion requirement
corresponds to the well-foundedness of (D,-): the ranking cannot decrease infinitely
many times without increasing infinitely many times. To incorporate this in a state ab-
straction α, we add the defining equation decA = dec to α.
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dec : {-1, 0, 1}
compassion (dec = 1, dec = −1)[

loop forever do
1 : dec := decrease

]

Fig. 4. Progress Monitor M(δ) for a Ranking δ

Example 4 (List Reversal Termination). Consider program LIST-REVERSAL and the
termination property .(π = 3). The loop condition x �= nil in line 1 implies that
the set of nodes starting with x is a measure of progress. This suggests the ranking
δ = {i | Nxt∗(x, i)} over the well founded domain (2N,⊃). That is, the rank of a
state is the set of all nodes which are currently reachable from x. As the computation
progresses, this set loses more and more of its members until it becomes empty. Using
a sufficiently precise state abstraction, one can model check that the abstract property.(Π = 3) indeed holds over the program.

Just like the case of predicate abstraction, we lose nothing (except efficiency) by
adding potentially redundant rankings. The main advantage here over direct use of
ranking functions within deductive verification is that one may contribute as many el-
ementary ranking functions as one wishes. Assuming a finitary abstraction, it is then
left to the model-checker to sort out their interaction and relevance. To illustrate this,
consider the program NESTED-LOOPS in Fig. 5. The statements x := ?, y := ? in
lines 0 and 2 denote assignments of a random natural to x and y. Due to this unbounded
non-determinism, a deductive termination proof of this program needs to use a ranking
function ranging over lexicographic triplets, whose core is (π = 0, x, y). With augmen-
tation, however, one need only provide the rankings δ1 : x and δ2 : y.

5.2 Computing the Augmented Abstraction

We aim to apply symbolic abstraction computation of Section 4 to systems augmented
with progress monitors. However, since progress monitors are not limited to restricted
A-assertions, such systems are not necessarily FHS’s. Thus, for any ranking function δ,
one must show that Theorem 4 is applicable to such an extended form of FHS’s. Since all
assertions in the definition of an augmented system, with the exception of the transition
relation, are restricted A-assertions, we need only consider the augmented transition
relation ρ ∧ ρδ , where ρ is the unaugmented transition relation and ρδ is defined as
dec′ = decrease. Let T be a set consisting of all free terms in the assertions ρ ∧ ρδ,

x, y : N⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 : x := ?
1 : while x > 0 do⎡⎢⎢⎢⎢⎢⎣

2 : y := ?
3 : while y > 0 do[

4 : y := y − 1
5 : skip

]
6 : x := x − 1
7 : skip

⎤⎥⎥⎥⎥⎥⎦
8 :

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 5. Program NESTED-LOOPS
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Eα(V ), and Eα(V ′), as well as the variable H . Then Theorem 4 holds if it is the case
that

sat(+ρ ∧ ρδ,|T |) = sat(ρ ∧ ρδ) (4)

Since proving Formula (4) for an arbitrary ranking is potentially a significant manual
effort, we specifically consider the following commonly used ranking functions over
the well founded domain (2N,⊃):

δ1(x) = {i | Nxt∗(x, i)} (5)

δ2(x, y) = {i | Nxt∗(x, i) ∧ Nxt∗(i, y)} (6)

In the above, x, y are index variables, and Nxt is an index array. Ranking δ1 is used
to measure the progress of a forward moving pointer x, while ranking δ2 is used to
measure the progress of pointers x and y toward each other. Throughout the rest of this
section we assume that the variables x and y appearing in δ1 or δ2 are free terms in the
unaugmented transition relation.

In order to extend the small model property to cover transition relations of the form
ρδ we impose stronger conditions on the set of terms T . A term set T is said to be
history closed if for every term of the form Nxt[x], Nxt ′[x] ∈ T only if Nxt [x] ∈ T .
From now on, we restrict to history-closed term sets. Note that history closure implies
a stronger notion of uniformity as follows: For any model M and nodes k, k1, k2, if
M [Nxt](k) = k1 �= k2 = M [Nxt ′](k), then all of k, k1, k2 are pointed to by terms
in T .

The following theorem, whose proof is in Appendix B, establishes the soundness of
our method for proving liveness for the two ranking functions we consider.

Theorem 5. Let S be an unaugmented FHS with transition relation ρ, δi be a ranking
with i ∈ {1, 2}, M be a uniform model satisfying ρ ∧ ρδ , T be a history-closed term
set containing the variable H and the free index terms in the assertions ρ ∧ ρδ , Eα(V ),
and Eα(V ′), and M be the appropriate reduced model of size h0 = |T |.

Then M |= ρδi only if M |= ρδi .

Example 5 (List Reversal Termination, concluded). In Example 4 we propose the rank-
ing δ1 to verify termination of program LIST-REVERSAL. From the Theorem 5 it fol-
lows that there is a small model property for the augmented program. The bound of the
truncated system, according to Theorem 4, is

h0 = |T | = |{H,nil , x, y, x′, y′,Nxt ′[x],Nxt [x]}| = 8

We have computed the abstraction, and proved termination of LIST-REVERSAL using
TLV.

6 Bubble Sort

We present our experience in verifying a bubble sort algorithm on acyclic, singly-linked
lists. The program is given in Fig. 6. The requirement of acyclicity is expressed in the
initial condition Nxt∗(x,nil) on the array Nxt . In Subsection 6.1 we summarize the
proof of some safety properties. In Subsection 6.2 we discuss issues of computational
efficiency, and in Subsection 6.3 we present a ranking abstraction for proving termina-
tion.
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H : integer where H = h
x, y, yn, prev, last : [0..h]
Nxt : array [0..h] of [0..h] where Nxt∗(x, nil)
D : array [0..h] of bool⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 : (prev, y, yn, last) := (nil , x,Nxt [x],nil);
1 : while last �= Nxt[x] do⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 : while yn �= last do⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 : if (D[y] > D[yn]) then⎡⎢⎢⎢⎢⎢⎣
4 : (Nxt [y],Nxt[yn]) := (Nxt [yn], y);
5 : if (prev = nil) then

6 : x := yn
else

7 : Nxt[prev] := yn;
8 : (prev, yn) := (yn, Nxt[y])

⎤⎥⎥⎥⎥⎥⎦
else

9 : (prev, y, yn) := (y, yn, Nxt[y])

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10 : (prev, y, yn, last) := (nil , x,Nxt [x], y);
11 :

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 6. Program BUBBLE SORT

6.1 Safety

Two safety properties of interest are preservation and sortedness, expressed as follows:

∀t.(π = nil ∧ t �= nil ∧ Nxt∗(x, t)) → �(Nxt∗(x, t)) (7)

∀t, s.(π = 11 ∧ Nxt∗(x, t) ∧ Nxt∗(t, s)) ⇒ D[t] ≤ D[s] (8)

As in Example 2 we augment the program with a generic variable for each universal
variable. The initial abstraction consists of predicates collected from atomic formulas
in properties (7) and (8) and from conditions in the program. These predicates are

last = Nxt[x], yn = last, D[y] > D[yn], prev = nil , t = nil ,
Nxt∗(x,nil), Nxt∗(x, t), Nxt∗(t, s), D[t] ≤ D[s]

This abstraction is too coarse for either property, requiring several iterations of refine-
ment. Since we presently have no heuristic for refinement, new predicates must be de-
rived manually from concretized counterexamples. In shape analysis typical candidates
for refinement are reachability properties among program variables that are not ex-
pressible in the current abstraction. For example, the initial abstraction cannot express
any nontrivial relation among the variables x, last, y, yn, and prev. Indeed, our final
abstraction includes, among others, the predicates Nxt∗(x, prev) and Nxt∗(yn, last).
In the case of prev, y, and yn, it is sufficient to use 1-step reachability, which is more
efficiently computed. Hence we have the predicates Nxt [prev] = y and Nxt[y] = yn.

6.2 Optimizing the Computation

When abstracting BUBBLE SORT, one difficulty, in terms of time and memory, is in
computing the BDD representation of the abstraction mapping. This becomes apparent
as the abstraction is refined with new graph reachability predicates. Naturally, comput-
ing the abstract program is also a major bottleneck.

One optimization technique used is to compute a series of increasingly more re-
fined (and complex) abstractions α1, . . . , αn, with αn being the desired abstraction.
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For each i = 1, . . . , n − 1, we abstract the program using αi and compute the set of
abstract reachable states. Let ϕi be the concretization of this set, which represents the
strongest invariant expressible by the predicates in αi. We then proceed to compute the
abstraction according to αi+1, while using the invariant ϕi to limit the state space. This
technique has been invaluable in limiting state explosion, almost doubling the size of
models we have been able to handle.

6.3 Liveness

Proving termination of BUBBLE SORT is more challenging than that of LIST-
REVERSAL due to the nested loop. While a deductive framework would require con-
structing a global ranking function, the current framework requires only to identify in-
dividual rankings of each loop. Therefore we examine both loops independently, specif-
ically their exit conditions.

The outer loop condition (last �= Nxt [x]) implies that “nearness” of last to x is a
measure of progress. We conjecture that after initialization, subsequent assignments ad-
vance last “backward” toward x. This suggests the ranking δ2 defined in Subsection 5.2.
As for the inner loop, it iterates while yn �= last. We conjecture that yn generally pro-
gresses “forward” toward the list tail. This suggests the ranking δ1 from Subsection 5.2.

We use δ1 and δ2 as a ranking augmentation, as well as a version of state abstraction
described in Subsection 6.1 that omits predicates related to generic variables.

7 Conclusion

We have shown an approach for combining augmentation and predicate abstraction with
model-checking, for the purpose of performing shape analysis without explicit repre-
sentation of heap shapes. Using a small model property as a theoretical basis, we are
able to use the model-checker in a role traditionally relegated to external decision proce-
dures. Consequently, the complete process, from abstraction to verification, is automatic
and fully encapsulated in the model-checker. We have shown successful application of
the method to two programs that perform destructive heap updates – a list reversal al-
gorithm and a bubble sort algorithm on linked lists.

In the immediate future we plan to focus on optimization of the abstraction compu-
tation. One such direction is to integrate with a SAT-solver. Another natural direction is
to generalize the model from singly-linked structures to trees and finite DAG’s.
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A Proof of Claim in Theorem 2

To complete the proof of Theorem 2, we show that, with the given construction of M ,
M |= ϕ under the assumption that M |= ϕ.

To interpret the formula ϕ over M , we consider an arbitrary assignment η to the
quantified variables #y which assigns to each variable y a value η[y] ∈ [0..m+1]. For
compatibility, we pick an assignment η, which assigns an M -value to variable y, given
by η(y) = if η(y) = i then ni else d. It remains to prove that (M,η) |= ψ under the
assumption that (M,η) |= ψ. For simplicity, we denote by Mη the joint interpreta-
tion (M,η) which interprets all quantified variables according to η and all other terms
according to M . Similarly, let Mη denote the joint interpretation (M,η).
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We list below several properties of the extended model Mη

P1. For every boolean variable b, Mη[b] = Mη[b].
P2. For every boolean array B and variable u ∈ #x ∪ #y, Mη[B[u]] = Mη[B[u]].
P3. If t is a free term, then Mη[t] ∈ {n0, . . . , nm} and Mη[t] = i iff Mη[t] = ni.
P4. If t is a non-free term, such that Mη[t] = ni for some i ≤ m, then Mη[t] = i.
P5. If x1 and x2 are free variables then Mη |= Z∗(x1, x2) iff Mη |= Z∗(x1, x2)

Properties P1–P3 are direct consequences of the definition of Mη. Let us consider
Property P4. For the case that t = y, then Mη[y] = ni iff η[y] = ni iff η[y] = i iff
Mη[y] = i. The other case is that t = Z[y]. By considering separately the cases that
Mη[y] = nj and Mη[y] = d, we can show that Mη[Z[y]] = i.

Property P5 follows from the definition of M [Z] and the fact that M [Z](m+1) =
m+1, so that no spurious Z-chains through m+1 are generated by M .

To prove M |= ϕ, it is sufficient to show that each free atomic formula (i.e., a
formula not referring to any of the #y variables) is true in Mη iff it is true in Mη and,
for each non-free atomic formula p, if Mη |= p then Mη |= p. The relaxation in
the requirements about non-free atomic formulas stems from the fact that they always
appear under positive polarity in ϕ. We consider in turn each type of an atomic formula
p that may occur in ψ.

For the case that p is a boolean variable b or a boolean term B[u], the claim follows
from properties P1, P2.

Next, consider the case that p is the formula t1 = t2, where t1 and t2 are free index
terms. According to Property P3, the values of t1 and t2 are equal in Mη iff they are
equal in Mη.

Turning to the case that p is the formula y = u, where y is a quantified variable, the
correspondence between the assignments η and η, guarantee that this equality holds in
Mη iff it holds in Mη.

Finally, let us consider the non-free atomic formula Z1[y] = Z2[y], and the case
that Mη |= Z1[y] = Z2[y]. For the case that Mη[y] = d, the equality holds in Mη

since Mη[Z1](m+1) = Mη[Z2](m+1) = m+1. Otherwise, let Mη[y] = ni, and let
n = Mη[Z1](ni) = Mη[Z2](ni). If n = nj then Mη[Z1(y)] = Mη[Z2(y)] = j.
Otherwise, Mη[Z1(y)] and Mη[Z2(y)] are both equal to j, where nj is the closest nk

which is Z1-reachable (equivalently,Z2-reachable) from n, if there exist one. If no such
nk is Z1-reachable from n, then Mη[Z1(y)] = Mη[Z2(y)] = m + 1.

The case of atomic formulas of the form Z∗(x1, x2) follows from Property P5. ��

B Proof of Theorem 5

Theorem 5 claims that M |= ρδi implies M |= ρδi , where ρδi is defined as dec′ =
decrease. We prove the claim for a ranking δ1 of the form δ1(x) = {i | Nxt∗(x, i)}
specified in equation (5). The case of δ2 is justified by similar arguments.

The evaluation of δ1 in M , written M [δ1], is the set {i | M [Nxt∗](M [x], i)}, i.e, the
set of all M -nodes which are reachable from M [x] by M [Nxt]-links. The evaluation of
δ1 in M and of δ′1 in M and M are defined similarly.

First note the following property of terms in T : It follows directly from Property P5
of Theorem 2 that, for any term t in T and δ ∈ {δ1, δ′1}, M [t] ∈ M [δ] iff M [t] ∈ M [δ].
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To prove the claim it is enough to show that both properties δ1 ⊃ δ′1 and δ1 = δ′1
are satisfied by M iff they are satisfied by M . First assume M |= δ1 ⊃ δ′1. It is easy
to show that δ1 ⊇ δ′1 is satisfied in M . This is true since by construction, any node
i ∈ [0 . . . N ] is pointed to in M by a term in T , and membership in δ1, δ

′
1 is preserved

for such terms.
It is left to show that δ1 �= δ′1 is satisfied in M . We do this by identifying a term in

T that M interprets as a node in M [δ1] −M [δ′1]. Such a term must point to a node in
M that is a member of M [δ1] −M [δ′1]. To perform this identification, let 	 be a node
in M [δ1] − M [δ′1]. Let M [x] = r1, . . . , rq = 	 denote the shortest Nxt-path in M
from the node M [x] to 	, i.e., for i = 1, . . . , q−1, M [Nxt](ri) = ri+1. Let j be the
maximal index in [1..q] such that rj ∈ {n0, . . . , nm}, i.e., rj is the M -image of some
term t ∈ T . If rj �∈ M [δ′1], our identification is complete.

Assume therefore that rj ∈ M [δ′1]. According to our construction, there exists an
M [Nxt]-chain connecting rj to 	, proceeding along rj+1, rj+2, . . . , 	. Consider the
chain of M [Nxt ′]-links starting from rj . At one of the intermediate nodes: rj , . . . , 	, the
M [Nxt]-chain and the M [Nxt ′]-chain must diverge, otherwise 	 would also belong to
M [δ′1]. Assume that the two chains diverge at rk, for some j ≤ k < q. Then, according
to strong uniformity (implied by history closure), rk+1 ∈ {n0, . . . , nm}, contradicting
the assumed maximality of j.

In the other direction, assume that M satisfies δ1 ⊃ δ′1. We first show that M
satisfies δ1 ⊇ δ′1. Let n be a node in M [δ′1], and consider a Nxt ′-path from M [x′] to
n in M . Let m be the ancestor nearest to n that is pointed to by a term in T . From
Theorem 2 it follows that m ∈ M [δ1]. The fact n ∈ M [δ1] follows by induction on
path length from m to n and by uniformity of M and M . Therefore M [δ1] ⊇ M [δ′1].
We now show that M satisfies δ1 ⊃ δ′1. Let j be a node such that j ∈ M [δ1] −M [δ′1].
By construction, j is pointed to in M by a term t or j = m+1. In the first case, t points
to a node nj in M , such that nj ∈ M [δ1] −M [δ′1], and we are done. In the latter case,
from construction we have M [Nxt](m+1) = M [Nxt ′](m+1) = m+1. Therefore, if
m+1 is not Nxt ′-reachable from M [x′], there must exist a node i in M [δ1] − M [δ′1]
such that M [Nxt ](i) �= M [Nxt ′](i). By uniformity, i must be pointed to in M by a
term in T . From Theorem 2 there exists a corresponding node in M .

It is left to show that M |= (δ1 = δ′1) iff M |= (δ1 = δ′1). This is done by similar
arguments.

The case of δ2, while not presented here, is shown by generalization: While δ1
involves nodes reachable from a single distinguished pointer x, δ2 involves nodes on
a path between x and a pointer y. Thus, given node 	 satisfying some combination of
properties of membership in δ2, δ

′
2, we identify a node satisfying the same properties,

that is also pointed to by a term in T . Here, however, we consider not only distant
ancestors of 	 on the path from x, but also distant successors on the path to y. ��
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Abstract. Predicate abstraction and canonical abstraction are two finitary ab-
stractions used to prove properties of programs. We study the relationship be-
tween these two abstractions by considering a very limited case: abstraction of
(potentially cyclic) singly-linked lists.
We provide a new and rather precise family of abstractions for potentially cyclic
singly-linked lists. The main observation behind this family of abstractions is that
the number of shared nodes in linked lists can be statically bounded. Therefore,
the number of possible “heap shapes” is also bounded. We present the new ab-
straction in both predicate abstraction form as well as in canonical abstraction
form.
As we illustrate in the paper, given any canonical abstraction, it is possible to de-
fine a predicate abstraction that is equivalent to the canonical abstraction. How-
ever, with this straightforward simulation, the number of predicates used for
the predicate abstraction is exponential in the number of predicates used by the
canonical abstraction.
An important feature of the family of abstractions we present in this paper is
that the predicate abstraction representation we define is far more practical as it
uses a number of predicates that is quadratic in the number of predicates used by
the corresponding canonical abstraction representation. In particular, for the most
abstract abstraction in this family, the number of predicates used by the canonical
abstraction is linear in the number of program variables, while the number of
predicates used by the predicate abstraction is quadratic in the number of program
variables.
We have encoded this particular predicate abstraction and corresponding trans-
formers in TVLA, and used this implementation to successfully verify safety
properties of several list manipulating programs, including programs that were
not previously verified using predicate abstraction or canonical abstraction.

1 Introduction

Abstraction and abstract interpretation [7] are essential techniques for automatically
proving properties of programs. The main challenge in abstract interpretation is to de-
velop abstractions that are precise enough to prove the required property and efficient
enough to be applicable to realistic applications.
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Predicate abstraction [11] abstracts the program into a Boolean program which con-
servatively simulates all potential executions. Every safety property which holds for the
Boolean program is guaranteed to hold for the original program. Furthermore, abstrac-
tion refinement [6, 2] can be used to refine the abstraction when the analysis produces a
“false alarm”. When the process terminates, it yields a concrete error trace in which the
property is violated, or successfully verifies the property. In principle, the whole process
can be fully mechanized given a sufficiently powerful theorem prover. This process was
successfully used in SLAM [19] and BLAST [12] to prove safety properties of device
drivers.

Canonical abstraction [23] is a finitary abstraction that was specially developed to
model properties of unbounded memory locations (inspired by [16]). This abstraction
has been implemented in TVLA [17], and successfully used to prove various properties
of heap-manipulating programs (e.g., [21, 25, 24]).

1.1 Main Results

In this paper, we study the utility of predicate abstraction to prove properties of pro-
grams operating on singly-linked lists. We also compare the expressive power of predi-
cate abstraction and canonical abstraction.

The results in this paper can be summarized as follows:

– We show that current state-of-the-art iterative refinement techniques fail to prove
interesting properties of singly-linked lists such as pointer equalities and absence
of null dereferences in a fully automatic manner. This means that on many simple
programs the process of refinement will diverge when the program is correct. This
result is inline with the experience of Blanchet et al. [4].

– We show that predicate abstraction can simulate arbitrary finitary abstractions and,
in particular, canonical abstraction. This trivial result is not immediately useful
because of the number of predicates used. The number of predicates required to
simulate canonical abstraction is, in the worst case, exponential in the number of
predicates used by the canonical abstraction (usually, this means exponential in the
number of program variables).

– We develop a new family of abstractions for heaps containing (potentially cyclic)
singly-linked lists. The main idea is to summarize list elements on unshared list seg-
ments not pointed-to by local variables. For programs manipulating singly-linked
lists, this abstraction is finitary since the number of shared list elements reachable
from program variables is bounded. Abstractions in this family vary in their level
of precision, which is controlled by the level of sharing-relationships recorded.

– We show that the abstraction recording only one-level sharing relationships (i.e.,
the least precise member of the family that records sharing) is sufficient for suc-
cessfully verifying all our example programs, including programs that were not
verified earlier using predicate abstraction or canonical abstraction.

– We show how to code the one-level-sharing abstraction using both canonical ab-
straction (with a linear number of unary predicates) and predicate abstraction (with
a quadratic number of nullary predicates).
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//head points to the first element of an acyclic list
//tail points to the last element of the same list

1 curr = head;
2 while (curr != tail) {
3 assert (curr != null);
4 curr = curr.n;
5 }

Fig. 1. A simple program on which counterexample-guided refinement diverges

1.2 Motivating Examples

Fig. 1 shows a program that traverses a singly-linked list with a head-pointer head and
a tail-pointer tail. This is a trivial program since it only uses an acyclic linked list,
and does not contain destructive pointer updates. When counterexample-guided itera-
tive refinement is applied to this program to assure that the assertion at line 3 is never
violated, it will diverge. At the i-th iteration it will generate an assertion of the form
curr(.n)i! = null. However, no finite value of i will suffice. Indeed, the problem of
proving the absence of null-dereferences is undecidable even in programs manipulating
singly-linked lists and even under the (non-realistic) assumption that all control flow
paths are executable [5].

In contrast, the TVLA abstract interpreter [17] proves the absence of null dererefer-
ences in this program in 2 seconds, consuming 0.6MB of memory. TVLA uses canon-
ical abstraction which generalizes predicate abstraction by allowing first-order pred-
icates (relation symbols) that can have arguments. Thus, nullary (0-arity) predicates
correspond to predicates in the program and in predicate abstractions. Unary predicates
(1-arity) are used to denote sets of unbounded locations and binary (2-arity) predicates
are used to denote relationships between unbounded locations.

A curious reader may ask herself: Are there program properties that can be verified
with canonical abstractions but not with predicate abstractions?

It is not hard to see that the answer is negative, since any finitary abstraction can
be simulated by a suitable predicate abstraction. For example, consider an abstraction
mapping α : C → A, from a concrete domain C to a finite abstract domain of indexed
elements A = {1, . . . , n}. Define the predicate BIT[j] to hold for the set of concrete
states {c | the jth bit of α(c), in its binary representation, is 1}. Now, the set of predi-

cates {BIT[j]}�log n�
j=1 yields a predicate abstraction that simulates A. This simulation is

usually not realistic, since it contains too many predicates. The number of predicates
required by predicate abstraction to simulate canonical abstraction can be exponential
in the number of predicates used by the canonical abstraction.

Fortunately, the only nullary predicate crucial to prove the absence of null deref-
erences in this program is the fact that tail is reachable from curr by a path of n
selectors (of some length). Similar observations were suggested independently in [15,
3, 14]. In this paper, we define a quadratic set of nullary predicates that captures the
invariants in many programs manipulating (potentially cyclic) singly-linked lists.

Fig. 2 shows a simple program removing a contiguous segment from a cyclic singly-
linked list pointed-to by x. For this example program, we would like to verify that the
resulting structure pointed-to by x remains a cyclic singly-linked list. Unfortunately,
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// x points to a cyclic singly-linked list
// low and high are two integer values, low < high

1 t = null;
2 y = x;
3 while (t != x && y.data < low) {
4 t = y.n; y = t;
5 }
6 z = y;
7 while (z != x && z.data < high) {
8 t = z.n; z = t;
9 }
10 t = null;
11 if (y != z) {
12 y.n = null;
13 y.n = z;
14 }

Fig. 2. A simple program that removes the segment between low and high from a linked list

using TVLA’s canonical abstraction with the standard set of predicates turns out to
be insufficient. The problem stems from the fact that canonical abstraction with the
standard set of predicates loses the ordering between the 3 reference variables that point
to that cyclic singly-linked list (this is further explained in the next section).

In this paper, we provide two abstractions – a predicate abstraction, and a canonical
abstraction – that are able to correctly determine that the result of this program is indeed
a cyclic singly-linked list.

The rest of this paper is organized as follows: Sec. 2 provides background on the
basic concrete semantics we are using, canonical abstraction, and predicate abstraction.
Sec. 3 presents an instrumented concrete semantics that records list interruptions. Sec. 4
shows a quite precise predicate abstraction for singly-linked lists. Sec. 5 shows a quite
precise canonical abstraction of singly-linked lists. In Sec. 6, we show that the predicate
abstraction of Sec. 4 and the canonical abstraction of Sec. 5 are equivalent. Sec. 7
describes our experimental results.

Proofs of claims and additional technical details can be found in [18].

2 Background

In this section, we provide basic definitions that we will use throughout the paper. In
particular, we define canonical abstraction and predicate abstraction.

2.1 Concrete Program States

We represent the state of a program using a first-order logical structure in which each
individual corresponds to a heap-allocated object and predicates of the structure corre-
spond to properties of heap-allocated objects.

Definition 1. A 2-valued logical structure over a vocabulary (set of predicates) P is
a pair S = 〈U, ι〉 where U is the universe of the 2-valued structure, and ι is the in-
terpretation function mapping predicates to their truth-value in the structure: for every
predicate p ∈ P of arity k, ι(p) : Uk → {0, 1}.
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We denote the set of all 2-valued logical structures over a set of predicates P by
2-STRUCTP . In the sequel, we assume that the vocabulary P is fixed, and abbreviate
2-STRUCTP to 2-STRUCT.

Table 1. Predicates used for representing concrete program states

Predicates Intended Meaning
eq(v1, v2) v1 is equal to v2

{x(v) : x ∈ PVar } reference variable x points to the object v

n(v1, v2) next field of the object v1 points to the object v2

Table 1 shows the predicates we use to record properties of individuals. A unary
predicate x(v) holds when the object v is pointed-to by the reference variable x. We
assume that the set of predicates includes a unary predicate for every reference variable
in a program. We use PVar to denote the set of all reference variables in a program. A
binary predicate n(v1, v2) records the value of the reference field n.
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Fig. 3. The effect of the statement y.n=null in the concrete semantics. (a) a possible state of
the program of Fig. 2 at line 12; (b) the result of applying y.n=null to (a)

Concrete Semantics. Program statements are modelled by actions that specify how
statements transform an incoming logical structure into an outgoing logical structure.
This is done primarily by defining the values of the predicates in the outgoing struc-
ture using formulae of first-order logic with transitive closure over the incoming struc-
ture [23]. The update formulae for heap-manipulating statements are shown in Table 2.
For brevity, we omit the treatment of the allocation statement new T(), the interested
reader may find the details in [23].

To simplify update formulae, we assume that every assignment to the n field of an
object is preceded by first assigning null to it. Therefore, the statement at line 12 of the
example program of Fig. 2 assigns null to y.n before the next statement assigns it the
new value z.
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Table 2. Predicate-update formulae that define the semantics of heap-manipulating statements

Statement Update formulae
x = null x′(v) = 0

x = t x′(v) = t(v)

x = t.n x′(v) = ∃v1 : t(v1) ∧ n(v1, v)

x.n = null n′(v1, v2) = n(v1, v2) ∧ ¬x(v1)

x.n = t (assuming x.n == null) n′(v1, v2) = n(v1, v2) ∨ (x(v1) ∧ t(v2))

Example 1. Applying the action y.n = null to the concrete structure of Fig. 3(a),
results with the concrete structure of Fig. 3(b). Throughout this paper we assume that
all heaps are garbage-free, i.e., every element is reachable from some program variable,
and that the concrete program semantics reclaims garbage elements immediately after
executing program statements. Thus, the two objects between y and z are collected
when y.n is set to null, as they become unreachable.

2.2 Canonical Abstraction

The goal of an abstraction is to create a finite representation of a potentially unbounded
set of 2-valued structures (representing heaps) of potentially unbounded size. The ab-
stractions we use are based on 3-valued logic [23], which extends boolean logic by
introducing a third value 1/2 denoting values that may be 0 or 1.

We represent an abstract state of a program using a 3-valued first-order structure.

Definition 2. A 3-valued logical structure over a set of predicates P is a pair S =
〈U, ι〉 where U is the universe of the 3-valued structure (an individual in U may rep-
resent multiple heap-allocated objects), and ι is the interpretation function mapping
predicates to their truth-value in the structure: for every predicate p ∈ P of arity k,
ι(p) : Uk → {0, 1, 1/2}.

An abstract state may include summary nodes, i.e., an individual which corresponds
to one or more individuals in a concrete state represented by that abstract state. A
summary node u has eq(u, u) = 1/2, indicating that it may represent more than a
single individual.

Embedding. We now formally define how states are represented using abstract states.
The idea is that each individual from the (concrete) state is mapped into an individual
in the abstract state. More generally, it is possible to map individuals from an abstract
state into an individual in another, less precise, abstract state.

Formally, let S = 〈U, ι〉 and S′ = 〈U ′, ι′〉 be abstract states. A function f : U → U ′

such that f is surjective is said to embed S into S′ if for each predicate p of arity k, and
for each u1, . . . , uk ∈ U , one of the following holds:

ι(p(u1, . . . , uk)) = ι′(p(f(u1), . . . , f(uk))) or ι′(p(f(u1), . . . , f(uk))) = 1/2

We say that S′ represents S when there exists such an embedding f .
One way of creating an embedding function f is by using canonical abstraction.

Canonical abstraction maps concrete individuals to an abstract individual based on the
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values of the individuals’ unary predicates. All individuals having the same values for
unary predicate symbols are mapped by f to the same abstract individual.

Table 3. Predicates used for the canonical abstraction in Fig. 4, and their meaning

Predicates Intended Meaning Defining formulae
{x(v) : x ∈ PVar } reference variable x points to v

n(u, v) next field of u points to v

{ rx(v) : x ∈ PVar } v is reachable from x by ∃vx.x(vx) ∧ n∗(vx, v)
dereferencing n fields

cn(v) v resides on a cycle of n fields n+(v, v)

is(v) v is heap-shared ∃v1, v2.n(v1, v) ∧ n(v2, v) ∧ (v1 �= v2)

Table 3 presents the set of predicates used in [23] to abstract singly-linked lists. The
predicates rx(v), cn(v), and is(v), referred to in [23] as instrumentation predicates,
record derived information and are used to refine the abstraction.
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NotNull[x]

NotNull[y]

NotNull[z]

EqualsNext2[x, y]

EqualsNext3[y, z]

EqualsNext2[z, x]

. . .

(a) (b) (c)

Fig. 4. (a) a concrete possible state of the program of Fig. 2 at line 12, (b) its canonical abstraction
in TVLA, (c) its predicate abstraction with the set of predicates in Table 4

This set of predicates has been used for successfully verifying many programs ma-
nipulating singly-linked lists, but is insufficient for verifying that the output of the ex-
ample program of Fig. 2 is a cyclic singly-linked list pointed-to by x.

Example 2. Fig. 4(b) shows the canonical abstraction of the concrete state of Fig. 4(a),
using the predicates of Table 3. The node with double-line boundaries is a summary
node, possibly representing more than a single concrete node. The dashed edges are
1/2 edges, a dashed edge exists between v1 and v2 when n(v1, v2) = 1/2. The abstract
state of Fig. 4(b) records the fact that x,y, and z point to a cyclic list (using the cn(v)
predicate), and that all list elements are reachable from all 3 reference variables (using
the rx(v),ry(v), and rz(v) predicates). This abstract state, however, does not record
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the order between the reference variables. In particular, it does not record that x does
not reside between y and z (the segment that is about to be removed by the program
statement at line 12). As a result, applying the abstract effect of y.n=z to this abstract
state results with a possible abstract state in which the cyclic list is broken.

2.3 Predicate Abstraction

Predicate abstraction abstracts a concrete state into a truth-assignment for a finite set of
propositional (nullary) predicates.

A predicate abstraction is defined by a vocabulary PA = {P1, . . . , Pm}, where
each Pi is associated with a defining formula ϕi that can be evaluated over concrete
states. An abstract state is a truth assignment to the predicates in PA. Given an abstract
state A, we denote the value of Pi in A by Ai.

A concrete state S over a vocabulary PC , is mapped to an abstract state A by an
abstraction mapping β : 2-STRUCT[PC ] → 2-STRUCT[PA]. The abstraction mapping
evaluates the defining formulae of the predicates in PA over S and sets the appropriate
values to the respective predicates in A. Formally, for every 1 ≤ i ≤ m, Ai = [[ϕi]]S2 .

Table 4. Predicates used for the predicate abstraction in Fig. 4, and their meaning. Note that the
maximal tracked length K is fixed a priori

Predicates Intended meaning Defining formulae
{NotNull[x] : x ∈ PVar } x is not null ∃vx.x(vx)

{EqualsNextk[x, y] the node pointed-to by y ∃v0, . . . , vk.x(v0) ∧ y(vk)∧
: x, y ∈ PVar, is reachable by k n fields

∧
0≤i<k n(vi, vi+1)

0 ≤ k ≤ K } from the node pointed-to by x

Table 4 shows an example set of predicates similar to the ones used in [1, 8].

Example 3. Fig. 4(c) shows the predicate abstraction of the concrete state shown in
Fig. 4(a) using the predicates of Table 4. A predicate of the form NotNull[x] records the
fact that x is not null. In Fig. 4(c), all three variables x,y,and z are not null. A predicate
of the form EqualsNextk[x, y] records that the node pointed-to by y is reachable by k
steps over the n fields from the node pointed-to by x (Note that K , the maximal tracked
length, is fixed a priori). For example, in Fig. 4(c), the list element pointed-to by y is
reachable from the list element pointed-to by x in 2 steps over the n field, and therefore
EqualsNext2[x, y] holds.

3 Recording List Interruptions

In this section, we instrument the concrete semantics to record a designated set of nodes,
called interruptions, in singly-linked lists. The instrumented concrete semantics pre-
sented in this section serves as the basis for the predicate abstraction and the canonical
abstraction presented in the following sections.
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3.1 The Intuition

The intuition behind our instrumented concrete is that a garbage-free heap, containing
only singly-linked lists, is characterized by two factors: (i) the “shape” of the heap,
i.e., the connectivity relations between a set of designated nodes (interruptions); and
(ii) the length of “simple” list segments connecting interruptions, but not containing
interruptions themselves. This intuition is similar to proofs of small model properties
(e.g., [22]).

Considering this characterization, we observe that the number of shapes that are
equivalent, up to lengths of simple list segments, is bounded. We therefore instrument
our concrete semantics to record interruptions, which are an essential ingredient of the
sharing patterns.

The abstractions presented in the next sections, abstract the lengths of simple list
segments into a fixed set of abstract lengths (thereby obtaining a finite representation).
These abstractions retain the general shape of the heap but lose any correlations between
the actual lengths of different simple list segments. Our experience indicates that the
correctness of program properties usually depends on the shape of heap, rather than on
the lengths of simple list segments.

In the rest of this section, we formally define the notions of interruptions and sim-
ple list segments, and formally define the information recorded by our instrumented
concrete semantics.

3.2 Basic Definitions

We say that a list node v is an interrupting node, or simply an interruption, if it is
pointed-to by a program variable or it is heap-shared. Fig. 5 shows a heap with 4 in-
terruptions: (i) the node pointed-to by x, (ii) the node pointed-to by y, (iii) the node
pointed-to by xs,1 and ys,1, and (iv) the node pointed-to by xs,2 and ys,2.

Definition 3 (Uninterrupted Lists). We say that there is an uninterrupted list between
list node u and list node v, denoted by UList(u, v), when there is a non-empty path
between them, such that, every node on the path between them (i.e., not including u and
v) is non-interrupting.

We also say that there is an uninterrupted list between list node v and null, denoted
by UListNULL(v), when there is a non-empty path from v to null, such that, every node
on the path, except possibly v, is non-interrupting.

Table 5 formulates UList(u, v) and UListNULL(v) as formulae in FOTC .
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Fig. 5. Two lists sharing the same tail, and their representation in the instrumented concrete se-
mantics
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Table 5. Shorthand notations used throughout this paper

Shorthand Meaning Formula
HeapShared(v) v is heap-shared ∃a, b.n(a, v) ∧ n(b, v) ∧ (a �= b)

PtByVar(v) v is pointed-to by some variable
∨

var∈PVar
var(v)

Interruption(v) v is an interrupting list node HeapShared(v) ∨ PtByVar(v)

UList1(u, v) there is an uninterrupted list of n(u, v)
length 1 from u to v

UList2(u, v) there is an uninterrupted ∃m.¬Interruption(m)∧
list of length 2 from u to v n(u, m) ∧ n(m, v)

UList>2(u, v) there is an uninterrupted ∃m1, m2 : n(u, m1) ∧ n(m2, v)∧
list of length > 2 from u to v (TC a, b : n(a, b) ∧ ¬Interruption(a)∧

¬Interruption(b))(m1, m2)

UList(u, v) there is an uninterrupted list of UList1(u, v) ∨ UList2(u, v)∨
some length from u to v UList>2(u, v)

UListNULL1(v) there is an uninterrupted list of ∀w.¬n(v, w)
length 1 from v to null

UListNULL2(v) there is an uninterrupted ∃m.n(v, m) ∧ ¬Interruption(m)∧
list of length 2 from v to null UListNULL1(m)

UListNULL>2(v) there is an uninterrupted ∃m1, m2 : n(v, m1) ∧ UListNULL1(m2)
list of length > 2 from v (TC a, b : n(a, b) ∧ ¬Interruption(a)∧
to null ¬Interruption(b))(m1, m2)

UListNULL(v) there is a list of some length UListNULL1(v) ∨ UListNULL2(v)∨
from v to null UListNULL>2(v)

Given a heap, we are actually interested in a subset of its uninterrupted lists. We say
that an uninterrupted list is maximal when it is not contained in a longer uninterrupted
list.

The heap in Fig. 5 contains 4 maximal uninterrupted lists: (i) from the node pointed-
to by x and the node pointed-to by xs,1 and ys,1, (ii) from the node pointed-to by y and
the node pointed-to by xs,1 and ys,1, (iii) from the node pointed-to by xs,1 and ys,1 to
the node pointed-to by xs,2 and ys,2, and (iv) from the node pointed-to by xs,2 and ys,2

to itself.

3.3 Statically Naming Heap-Shared Nodes

We now explain how to use a quadratic number of auxiliary variables to statically name
all heap-shared nodes. This will allow us to name all maximal uninterrupted lists us-
ing nullary predicates for the predicate abstraction, and using unary predicates for the
canonical abstraction.

Proposition 1. A garbage-free heap, consisting of only singly-linked lists with n pro-
gram variables, contains at most n heap-shared nodes and at most 2n interruptions.

Corollary 1. In a garbage-free heap, consisting of only singly-linked lists with n pro-
gram variables, list node v is reachable from list node u if and only if it is reachable by



Predicate Abstraction and Canonical Abstraction for Singly-Linked Lists 191

a sequence of k < n uninterrupted lists. Similarly, there is a path from node v to null if
and only if there is a path from v to null by a sequence of k < n uninterrupted lists.

Proof. By Proposition 1, every simple path (from u to v or from v to null) contains at
most n interruptions, and, therefore, at most n− 1 maximal uninterrupted lists.

For every program variable x, we define a set of auxiliary variables {xs,k|k =
1 . . . n− 1}. Auxiliary variable xs,k points to a heap-shared node u when there exists a
simple path consisting of k maximal uninterrupted lists from the node pointed by x-to
to u, such that all of the interrupting nodes on the path are not pointed-to by program
variables (i.e., they are heap-shared). Formally, we define the set of auxiliary variables
derived for program variable x by using the following set of formulae in FOTC .

xs,1(v) ≡ ∃vx.x(vx) ∧ UList(vx, v) ∧ HeapShared(v) ∧ ¬PtByVar(v),
. . .
xs,k+1(v) ≡ ∃vk.xs,k(vk) ∧ UList(vk, v) ∧ HeapShared(v)∧

¬PtByVar(v) ∧ ¬(
∨

m=1...k xs,m(v)) .

We denote the set of auxiliary variables by AuxVar and the set of all (program and
auxiliary) variables by Var = PVar ∪ AuxVar.

Proposition 2. Every heap-shared node is pointed-to by a variable in Var. Also, xs,k(v)
holds for at most one node, for every reference variable x and k.

3.4 Parameterizing the Concrete Semantics

Let n denote the number of (regular) program variables. Notice that |AuxV ar| =
O(n2). In the following sections, we will see that using the full set of auxiliary variables
yields a canonical abstraction with a quadratic (O(n2)) number of unary predicates, and
a predicate abstraction with a bi-quadratic (O(n4)) number of predicates.

We use a parameter k to define different subsets of Var as follows: Vark = PVar ∪
{xs,i(v)|x ∈ PVar, i ≤ k}. By varying the “heap-shared depth” parameter k, we are
able to distinguish between different sets of heap-shared nodes. We discovered that,
in practice, heap-shared nodes with depth > 1 rarely exist (they never appear in our
examples), and, therefore, restricting k to 1 is usually enough to capture all maximal
uninterrupted lists. Using Var1 as the set of variables to record, we obtain a canonical
abstraction with a linear number of unary predicates (O(n)) and a predicate abstraction
with a quadratic (O(n2)) number of variables.

Fig. 5 shows a heap containing a heap-shared node of depth 2 (pointed by xs,2 and
ys,2). By setting the heap-shared depth parameter k to 1, we are able to record the
following facts about this heap: (i) there is a list of length 1 from the node pointed-to by
x to a heap-shared node, (ii) there is a list of length 1 from the node pointed-to by y to
a heap-shared node, (iii) the heap-shared node mentioned in (i) and (ii) is the same (we
record aliasing between variables), and (iv) there is a partially cyclic list (i.e., a non-
cyclic list connected to a cyclic list) from the heap-shared node mentioned in (iii). We
know that the list from the first heap-shared node does not reach null (since we record
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lists from interruptions to null) and it is not a cycle from the first-heap shared node to
itself (otherwise there would be no second heap-shared node and the cycle would be
recorded). The information lost, due to the fact that xs,2 and ys,2 are not recorded, is
that the list from the first heap-shared node to second has length 2 and the cycle from
the second heap-shard node to itself is also of length 2.

The Instrumented Concrete Semantics. The instrumented concrete semantics op-
erates by using the update formulae presented in Table 2 and then using the defining
formulae of the auxiliary variables to update their values.

4 A Predicate Abstraction for Singly-Linked Lists

We now describe the abstraction used to create a finite (bounded) representation of
a potentially unbounded set of 2-valued structures (representing heaps) of potentially
unbounded size.

4.1 The Abstraction

We start by defining a vocabulary PA of nullary predicates, which we use in our ab-
straction. The predicates are shown in Table 6.

Table 6. Predicates used for the predicate abstraction and their meaning

Predicates Defining formulae and intended meaning
{Aliased[x, y] : x, y ∈ Var } ∃v : x(v) ∧ y(v)

variables x and y point to the same object
{UList1[x, y] : x, y ∈ Var } ∃vx, vy : x(vx) ∧ y(vy) ∧ n(vx, vy)

the n field of the object pointed-to by x and the variable y
point to the same object

{UList2[x, y] : x, y ∈ Var } ∃vx, vy : x(vx) ∧ y(vy) ∧ UList2(vx, vy)
there is an uninterrupted list of length 2 from the
object pointed-to by x to the object pointed-to by y

{UList[x, y] : x, y ∈ Var } ∃vx, vy : x(vx) ∧ y(vy) ∧ UList(vx, vy)
there is an uninterrupted list of length 1 or more from the
object pointed-to by x to the object pointed-to by y

{UList1[x, null] : x ∈ Var } ∃vx : x(vx) ∧ UListNULL1(vx)
there n field of the object pointed-to by x points to null

{UList2[x, null] : x ∈ Var } ∃vx.x(vx) ∧ UListNULL2(vx)
there is an uninterrupted list of length 2 from the
object pointed-to by x to null

{UList[x, null] : x ∈ Var } ∃vx.x(vx) ∧ UListNULL(vx)
there is an uninterrupted list of length 1 or more from the
object pointed-to by x to null

Intuitively, the heap is partitioned into a linear number of uninterrupted list seg-
ments and each list segment is delimited by some variables. The predicates in Table 6
abstract the path length of list segments into one of the following abstract lengths: 0 (via
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the Aliased[x, y] predicates), 1 (via the UList1[x, y] predicates), 2 (via the UList2[x, y]
predicates), or any length ≥ 1 (via the UList[x, y] predicates), and infinity (i.e., there is
no uninterrupted path and thus all of the previously mentioned predicates are 0).

The abstraction function βPredAbs : 2-STRUCT[PC ] → 2-STRUCT[PA] operates as
described Sec. 2.3 where PA is the set of predicates in Table 6.

Aliased[x, x], Aliased[y, y], Aliased[z, z]

UList2[x, y], UList2[z, x]

UList[x, y], UList[y, z], UList[z, x]

Aliased[x, x], Aliased[y, y], Aliased[z, z]

UList1[y, null]
UList2[x, y], UList2[z, x]

UList[x, y], UList[z, x], UList[y, null]
(a) (b)

Fig. 6. The abstract effect of y.n=null under predicate abstraction. (a) predicate abstraction of
the state of Fig. 3(a); (b) result of applying the abstract transformer of y.n=null to (a)

Example 4. Fig. 6(a) shows an abstract state abstracting the concrete state of Fig. 3(a).
The predicates Aliased[x, x],Aliased[y, y], Aliased[z, z] represent the fact that the ref-
erence variables x, y, and z are not null. The predicate UList2[x, y] represents the fact
that there is an uninterrupted list of length exactly 2 from the object pointed-to by x
to the object pointed-to by y. This adds on the information recorded by the predicate
UList[x, y], which represents the existence of a list of length 1 or more. Similarly, the
predicate UList2[z, x] records the fact that a list of exactly length 2 exists from z to x.
Note that the uninterrupted list between y and z is of length 3, a length that is abstracted
away and recorded as a uninterrupted list of an arbitrary length by UList[y, z].

4.2 Abstract Semantics

Rabin [20] showed that monadic second-order logic of theories with one function sym-
bol is decidable. This immediately implies that first-order logic with transitive closure
of singly-linked lists is decidable, and thus the best transformer can be computed as sug-
gested in [22]. Moreover, Rabin also proved that every satisfiable formula has a small
model of limited size, which can be employed by the abstraction. For simplicity and
efficiency, we directly define the abstractions and the abstract transformer. The reader
is referred to [13] which shows that reasonable extensions of this logic become unde-
cidable. We believe that our techniques can be employed even for undecidable logics
but the precision may vary. In particular, the transformer we provide here is the best
transformer and operates in polynomial time.

Example 5. In order to simplify the definition of the transformer for y.n = null,
we split it to 5 different cases (shown in [18]) based on classification of the next list
interruption. The abstract state of Fig. 6(a) falls into the case in which the next list
interruption is a node pointed-to by some regular variable (z in this case) and not heap-
shared (case 3). The update formulae for this case are the following:
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UList1[z1, z2]′ = UList1[z1, z2] ∧ ¬Aliased[z1, y]
UList1[z1, null]′ = UList1[z1, null] ∨ Aliased[z1, y]
UList2[z1, z2]′ = UList2[z1, z2] ∧ ¬Aliased[z1, y]
UList[z1, z2]′ = UList[z1, z2] ∧ ¬Aliased[z1, y]
UList[z1, null]′ = UList[z1, null] ∨ Aliased[z1, y]

Applying this update to the abstract state of Fig. 6(a) yields the abstract state of
Fig. 6(b).

In [18], we show that these formulae are produced by manual construction of the
best transformer.

5 Canonical Abstraction for Singly-Linked Lists

In this section, we show how canonical abstraction, with an appropriate set of predi-
cates, provides a rather precise abstraction for (potentially cyclic) singly-linked lists.

5.1 The Abstraction

As in Sec. 4, the idea is to partition the heap into a linear number of uninterrupted
list segments, where each segment is delimited by a pair of variables (possibly includ-
ing auxiliary variables). The predicates we use for canonical abstraction are shown in
Table 7. The predicates of the form cul[x](v), for x ∈ Var, record uninterrupted lists
starting from the node pointed-to by x.

Table 7. Predicates used for the canonical abstraction and their meaning. We use the shorthand
UList(u, v) as defined in Def. 3

Predicates Intended Meaning Defining Formulae
{ x(v) : x ∈ Var } object v is pointed-to by x
{ cul[x](v) : x ∈ Var } there exists an uninterrupted list to v, ∃vx : x(vx) ∧ UList(vx, v)

starting from the node pointed-to by x

Example 6. Fig. 7(a) shows an abstract state abstracting the concrete state of Fig. 3(a).
The predicates cul[x](v),cul[y](v), and cul[z](v) record uninterrupted list segments.
Note that, in contrast to the abstract state of Fig. 4(b) (which uses the standard TVLA
predicates), the abstract configuration of Fig. 7(a) records the order between the refer-
ence variables, and is therefore able to observe that x is not pointing to an object on the
list from y to z.

6 Discussion

Equivalence of the Canonical Abstraction and the Predicate Abstraction. We first
show that the two abstractions – the predicate abstraction of Sec. 4, and the canonical
abstraction of Sec. 5 – are equivalent. That is, both observe the same set of distinctions
between concrete heaps.
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Fig. 7. The abstract effect of y.n=null under canonical abstraction. (a) canonical abstraction
of the state of Fig. 3(a); (b) result of applying the abstract transformer of y.n=null to (a)

Theorem 1. The abstractions presented in Section 4 and in Section 5 are equivalent.

Proof (Sketch). We prove the equivalence of the two abstractions by showing that,
for any two concrete heaps C1 and C2 (2-valued structures), we have βPredAbs(C1) =
βPredAbs(C2) if and only if βCanonic(C1) = βCanonic(C2).

Denote the result of applying the predicate abstraction to the concrete heaps by
AP

1 = βPredAbs(C1) and AP
2 = βPredAbs(C2), and the result of applying the canonical

abstraction to the concrete heaps by AC
1 = βCanonic(C1) and AC

2 = βCanonic(C2).
When AP

1 and AP
2 have different values for some predicate in PA, we show that:

(i) there exists an individual v1 in AC
1 that does not exist in AC

2 (i.e., there is no individual
in AC

2 with the same values for all unary predicates as v1 has in AC
1 ), or (ii) there exist

corresponding pairs of individuals (i.e., with same values for all unary predicates) in
AC

1 and AC
2 such that the value of n between them is different for AC

1 and AC
2 . This is

done by considering every predicate from PA in turn.
Finally, when all predicates in PA have the same values for both AP

1 and AP
2 , we

show that there is a bijection between the universe of AC
1 and the universe of AC

2 that
preserves the values of all predicates.

The Number of Predicates Used by the Abstractions. In general, the number of
predicates needed by a predicate abstraction to simulate a given canonical abstraction
is exponential in the number of unary predicates used by the canonical abstraction. It is
interesting to note that, in this case, we were able to simulate the canonical abstraction
using a sub-exponential number of nullary predicates.

We note that there exist predicate abstractions and canonical abstractions that are
equivalent to the most precise member of the family of abstractions presented in the
previous sections (i.e., with the full set of auxiliary variables) but require less predicates.
We give the intuition to the principles underlying those abstractions and refer the reader
to [18] for the technical details.
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In heaps that do not contain cycles, the predicates in Table 3 are sufficient for keep-
ing different uninterrupted lists from being merged. We can “reduce” general heaps to
heaps without cycles by considering only interruptions that occur on cycles:

Interruptionc(v) ≡ Interruption(v) ∧ OnCycle(v) ,

and use these interruptions to break cycles by redefining the formulae for uninterrupted
lists to use Interruptionc instead of Interruption. Now, a linear number of auxiliary
variables can be used to syntactically capture those interruptions. For every reference
variable x, we add an auxiliary variable xc, which is captured by the formula

xc(v) ≡ x(v) ∧ OnCycle(v)∨
∃v1, v2.x(v1) ∧ n∗(v1, v2) ∧ ¬OnCycle(v2) ∧ n(v2, v) .

The set of all variables is defined by Var′ = PVar ∪ {xc | x ∈ PVar}, and the
predicates in Table 8 define the new canonical abstraction.

Table 8. Predicates used for the new canonical abstraction with linear number of predicates. The
shorthand UListc denotes an uninterrupted list where interruptions are defined by Interruptionc

Predicates Intended Meaning Defining Formulae
{ x(v) : x ∈ Var′ } object v is pointed-to by x
{ culc[x](v) : x ∈ Var′ } there exists an uninterrupted list to v, ∃vx : x(vx) ∧ UListc(vx, v)

starting from the node pointed-to by x
is(v) u is heap-shared HeapShared(v)

Recording Numerical Relationships. We believe that our abstractions can be gener-
alized along the lines suggested by Deutsch in [9], by capturing numerical relationships
between list lengths. This will allow us to prove properties of programs which traverse
correlated linked lists, while maintaining the ability to conduct strong updates, which
could not be handled by Deutsch. Indeed, in [10] numerical and canonical abstractions
were combined in order to handle such programs.

7 Experimental Results

We implemented in TVLA the analysis based on the predicates and abstract transform-
ers described in Section 2.3. We applied it to verify various specifications of programs
operating on lists, described in Table 9. For all examples, we checked the absence of
null dereferences. For the running example and reverse cyclic we also verified that the
output list is cyclic and partially cyclic, respectively.

The experiments were conducted using TVLA version 2, running with SUN’s JRE
1.4, on a laptop computer with a 796 MHZ Intel Pentium Processor with 256 MB RAM.

The results of the analysis are shown in Table 9. In all of the examples, the analysis
produced no false alarms. In contrast, TVLA, with the abstraction predicates in Table 1,
is unable to prove that the output of reverse cyclic is a partially cyclic list and that the
output of removeSegment is a cyclic list.
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The dominating factor in the running times and memory consumption is the loading
phase, in which the predicates and update formulae are created (and explicitly repre-
sented). For example, the time and space consumed during the chaotic iteration of the
merge example is 8 seconds and 7.4 MB, respectively.

Table 9. Time, space and number of errors measurements. Rep. Err. is the number of errors
reported by the analysis, and Act. Err. is the number of real errors

Benchmark Description Time Space Rep. Err./
(sec) (MB) Act. Err.

create Dynamically allocates a new linked list 3 1.8 0/0
delete Removes an element from a list 7 9.1 0/0
deleteAll Deallocates a list 3 2.7 0/0
getLast Retrieves the last element in a list 4 4 0/0
insert Inserts an element into a sorted list 9 13.5 0/0
merge Merges two sorted lists into a single list 15 29.6 0/0
removeSegment The running example 7 8.4 0/0
reverse Reverses an acyclic list in-place 5 6 0/0
reverse cyclic reverse, applied to a partially cyclic list 2 7.1 0/0
rotate Moves the first element after the last element 6 7.9 0/0
search Searches for an element with a specified value 3 2.1 0/0
search nullderef Erroneous implementation of search that 3 2.4 1/1

dereferences a null pointer
swap Swaps the first two elements in a list 6 8.8 0/0
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Abstract. We present a new purity and side effect analysis for Java
programs. A method is pure if it does not mutate any location that
exists in the program state right before the invocation of the method.
Our analysis is built on top of a combined pointer and escape analysis,
and is able to determine that methods are pure even when the methods
mutate the heap, provided they mutate only new objects.
Our analysis provides useful information even for impure methods. In
particular, it can recognize read-only parameters (a parameter is read-
only if the method does not mutate any objects transitively reachable
from the parameter) and safe parameters (a parameter is safe if it is
read-only and the method does not create any new externally visible heap
paths to objects transitively reachable from the parameter). The analysis
can also generate regular expressions that characterize the externally
visible heap locations that the method mutates.
We have implemented our analysis and used it to analyze several applica-
tions. Our results show that our analysis effectively recognizes a variety
of pure methods, including pure methods that allocate and mutate com-
plex auxiliary data structures.

1 Introduction

Accurate side effect information has several important applications. For example,
many program analyses need to understand how the execution of invoked meth-
ods may affect the information that the analysis maintains [14,15,18]. In program
understanding and documentation, the knowledge that a method is pure, or has
no externally visible side effects, is especially useful because it guarantees that in-
vocations of the method do not inadvertently interfere with other computations.
Pure methods can safely be used in program assertions and specifications [3,21].
As a final example, when model checking Java programs [11,12,32,34], the model
checker can reduce the search space by ignoring irrelevant interleavings between
pure methods, or, more generally, between methods that access disjoint parts of
the heap.

This paper presents a new method purity analysis for Java programs. This
analysis is built on top of a combined pointer and escape analysis that accurately
extracts a representation of the region of the heap that each method may access.
We use an updated version of the Whaley and Rinard pointer analysis [35].

R. Cousot (Ed.): VMCAI 2005, LNCS 3385, pp. 199–215, 2005.
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The updated analysis retains many ideas from the original analysis, but has
been completely redesigned in order to allow the analysis correctness proof from
[29]. Our analysis conservatively tracks object creation, updates to the local
variables and updates to the object fields. This information enables our analysis
to distinguish objects allocated within the execution of a method from objects
that existed before the method was invoked.

Therefore, our analysis can check that a method is pure, in the sense that it
does not mutate any object that exists in the prestate, i.e., the program state
right before the method invocation; this is also the definition of purity adopted in
the Java Modeling Language (JML) [21]. This definition allows a pure method
to perform mutation on temporary objects (e.g., iterators) and/or construct
complex object structures and return them as a result.

Our analysis applies a more flexible purity criterion than previously imple-
mented purity analyses, e.g., [8,20], that consider a method to be pure only if it
does not perform any writes on heap locations at all, and does not invoke any
impure method.

Other researchers have used different pointer analyses to infer side effects [9,
16,25,28]. While our pointer analysis is not the only choice for the basis of a side
effect analysis, it has several advantages that recommend it for this task. First,
the analysis abstraction distinguishes between prestate objects and newly allo-
cated objects, enabling the support of a more general purity property. Second,
the additional information that the analysis computes can identify other useful
side effect information (see below). Third, our underlying pointer analysis has
already been proved correct [29], implemented, and used for a variety of tasks,
including optimizations like stack allocation and synchronization removal [35],
and modular reasoning about aspect oriented programs [27].

Purity Generalizations. Even when a method is not pure, it may have some
useful generalized purity properties. For example, our analysis can recognize
read-only parameters; a parameter is read-only if the method does not mutate
any object reachable from the parameter. It can also recognize safe parameters;
a parameter is safe if it is read-only and the method does not create any new
externally visible heap paths to objects reachable from the parameter.

For compositionality reasons, our analysis examines each method once, under
the assumption that objects from the calling context are maximally unaliased.
The intraprocedural analysis computes a single parameterized result for each
method; the interprocedural analysis instantiates this result to take into account
the aliasing at each call site. Similarly, the clients of the analysis should use the
read-only/safe parameter information in the context of the aliasing information
at each call site1. For example, to infer that a call to an impure method does not
mutate a specific object, one needs to check that the object is unreachable from
parameters that are not read-only. This is the common approach in detecting
and specifying read-only annotations for Java [2].

1 Our underlying pointer analysis already provides such aliasing information.
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Here is an example scenario for using the safe parameter information: a types-
tate checker, e.g., [14], is a tool that tracks the state of objects and usually checks
the correct usage of finite state machine-like protocols. The typestate checker can
precisely track only the state of the objects for which all aliasing is statically
known. Consider the case of a method invocation that uses a tracked object in
the place of a safe parameter. As the typestate checker knows all aliasing to
the tracked object, it can check whether the tracked object is not aliased with
objects transitively reachable from non-safe arguments at the call site. In that
case, the typestate checker can rely on the fact that the method call does not
change the state of the object, and that it does not introduce new aliasing to
the object.

Finally, our analysis is capable of generating regular expressions that com-
pletely characterize the externally visible heap locations that a method mutates.
These regular expressions identify paths in the heap that start with a parameter
or static class field and end with a potentially mutated object field.

The side effect information that our analysis computes for impure meth-
ods – read-only/safe parameters and the aforementioned regular expressions –
can provide many of the same benefits as the purity information because it
enables other program analyses and developers to bound the potential effects of
an impure method.

Contributions:

– Purity Analysis: We present a new analysis for finding pure methods in
unannotated Java programs. Unlike previously implemented purity analy-
ses, we track variable and field updates, and allow pure methods to mutate
newly allocated data structures. Our analysis therefore supports the use of
important programming constructs such as iterators in pure methods.

– Experience: We present our experience using our analysis to find pure
methods in a number of benchmark programs. We found that our analysis
was able to recognize the purity of methods that 1) were known to be pure,
but 2) were beyond the reach of previously implemented purity analyses
because they allocate and mutate complex internal data structures.

– Beyond Purity: Our analysis detects read-only and safe parameters. In
addition, our analysis generates regular expressions that conservatively ap-
proximate all externally visible locations that an impure method mutates.

Paper Structure: Section 2 introduces our analysis through an example. Sec-
tion 3 presents our analysis, and Section 4 shows how to interpret the raw analy-
sis results to infer useful side effect information. Section 5 presents experimental
results, Section 6 discusses related work, and Section 7 concludes.

2 Example

Figure 1 presents a sample Java program that manipulates singly linked lists.
Class List implements a list using cells of class Cell, and supports two opera-
tions: add(e) adds object e to a list, and iterator() returns an iterator over the
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list elements2. We also define a class Point for bidimensional points, and two
static methods that process lists of Points: Main.sumX(list) returns the sum of
the x coordinates of all points from list, and Main.flipAll(list) flips the x
and y coordinates of all points from list.

1 class List {
2 Cell head = null;
3 void add(Object e) {
4 head = new Cell(e, head);
5 }
6 Iterator iterator() {
7 return new ListItr(head);
8 }
9 }

10
11 class Cell {
12 Cell(Object d, Cell n) {
13 data = d; next = n;
14 }
15 Object data;
16 Cell next;
17 }
18
19 interface Iterator {
20 boolean hasNext();
21 Object next();
22 }
23
24 class ListItr implements Iterator {
25 ListItr(Cell head) {
26 cell = head;
27 }
28 Cell cell;
29 public boolean hasNext() {
30 return cell != null;
31 }
32 public Object next() {
33 Object result = cell.data;
34 cell = cell.next;
35 return result;
36 }
37 }

39 class Point {
40 Point(float x, float y) {
41 this.x = x; this.y = y;
42 }
43 float x, y;
44 void flip() {
45 float t = x; x = y; y = t;
46 }
47 }
48
49 class Main {
50 static float sumX(List list) {
51 float s = 0;
52 Iterator it = list.iterator();
53 while(it.hasNext()) {
54 Point p = (Point) it.next();
55 s += p.x;
56 }
57 return s;
58 }
59
60 static void flipAll(List list) {
61 Iterator it = list.iterator();
62 while(it.hasNext()) {
63 Point p = (Point) it.next();
64 p.flip();
65 }
66 }
67
68 public static void main(String args[]) {
69 List list = new List();
70 list.add(new Point(1,2));
71 list.add(new Point(2,3));
72 sumX(list);
73 flipAll(list);
74 }
75 }

Fig. 1. Sample Code for Section 2.

Method sumX iterates over the list elements by repeatedly invoking the next()
method of the list iterator. The method next() is impure, because it mutates
the state of the iterator; in our implementation, it mutates the field cell of the
iterator. However, the iterator is an auxiliary object that did not exist at the
beginning of sumX. Our analysis is able to infer that sumX is pure, in spite of
the mutation on the iterator. Our analysis is also able to infer that the impure
method flipAllmutates only locations that are accessible in the prestate3 along
paths that match the regular expression list.head.next*.data.(x|y).

2 In real code, the classes Cell and ListItr would be implemented as inner classes of
List; we use a flat format for simplicity.

3 I.e., the state of the program right before the execution of an invoked method.
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Fig. 2. Points-To Graph for the end of Main.sumX(List).

2.1 Analysis Overview

For each method m and for each program point inside m, the analysis computes
a points-to graph that models the part of the heap that the method m accesses
up to that program point. During the analysis of method m, the analysis scope
contains m and its transitive callees. Figure 2 presents the points-to graph for
the end of Main.sumX(List).

The nodes from the points-to graphs model heap objects. The inside nodes
model the objects created by the analyzed method; there is one inside node for
each allocation site; this node models all objects allocated at that site during
the current execution of the analyzed method. The parameter nodes model the
objects passed as arguments; there is one parameter node for each formal pa-
rameter of object type (i.e., not an int, boolean, etc.). The load nodes model
the objects read from outside the method; there is at most one load node for
each load instruction. In Fig. 2, the parameter node P12 models the List object
pointed by the formal parameter list, the inside node I2 models the iterator
allocated to iterate over the list, and the load node L6 represents the first list
cell (read from P12 by the invoked method List.iterator, at line 7). For each
analyzed program, the number of nodes is bounded, ensuring the termination of
our fixed-point computations.

The edges from the points-to graphs model heap references; each edge is
labeled with the field it corresponds to. We write 〈n1, f, n2〉 to denote an edge from
n1 to n2, labeled with the field f; intuitively, this edge models a reference from
an object that n1 models to a node that n2 models, along field f. The analysis
uses two kinds of edges: the inside edges model the heap references created by
the analyzed method, while the outside edges model the heap references read by
the analyzed method from escaped objects. An object escapes if it is reachable
from outside the analyzed method (e.g., from one of the parameters); otherwise,
the object is captured. An outside edge always ends in a load node. In Fig. 2, the
outside edge 〈P12, head, L6〉 models a reference read from the escaped node P12;
the inside edges 〈I2, cell, L6〉 and 〈I2, cell, L5〉 model the references created by
sumX4 from the iterator I2 to the first, respectively to the next list cells. “Loop”

4 Indirectly, through the iterator-related methods it invokes.
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Fig. 3. Analysis results for several simple methods. We use the conventions from Fig. 2.

edges like 〈L5, next, L5〉 are typical for methods that manipulate recursive data
structures.

For each method m, the analysis also computes a set W m containing the
modified abstract fields that are externally visible (the term will become clear
later in this section). An abstract field is a field of a specific node, i.e., a pair of
the form 〈n, f〉. There are no externally visible modified fields for Main.sumX.

The analysis examines methods starting with the leaves of the call graph. The
analysis examines each method m without knowing m’s calling context. Instead,
the analysis uses parameter/load nodes to abstract over unknown nodes, and
computes a single parameterized result for m. This result is later instantiated
for the aliasing relation at each call site that may invoke m; the interprocedural
analysis contains an algorithm that disambiguates parameter/load nodes. Nor-
mally, the analysis processes each method once; still, recursive methods may
require several analysis passes in order to reach a fixed point.

2.2 Analysis of the Example

Figure 3.a presents the analysis results for the end of the constructor of class
Cell. The analysis uses the parameter nodes P2, P3, and P4 to model the objects
that the three parameters – this5, d, and n – point to. The analysis uses inside
edges to model the references that the Cell constructor creates from P2 to P3 and
P4. The constructor of Cell mutates the fields data and next of the parameter
node P2.

Parts b and c of Fig. 3 present the analysis results at different points inside
the method List.add. The analysis of method List.add uses the parameter node
P5 to model the this object (the list we add to), and the parameter node P6
to model the object to add to the list. The method reads the field this.head.
The analysis does not know what this.head points to in the calling context.
Instead, the analysis uses the load node L1 to model the loaded object and adds
the outside edge 〈P5, head, L1〉. Next, the method allocates a new Cell, that we
model with the inside node I1 (see Fig. 3.b), and calls the Cell constructor with
the arguments I1, P6, and L1. Based on the points-to graph before the call, and

5 For each non-static Java method, the parameter this points to the receiver object.



Purity and Side Effect Analysis for Java Programs 205

the points-to graph for the invoked constructor (Fig. 3.a), the analysis maps each
parameter node from the Cell constructor to one or more corresponding nodes
from the calling context. In this case, P2 maps to (i.e., stands for) I1, P3 maps
to P6, and P4 maps to L1. The analysis uses the node mapping to incorporate
information from the points-to graph of the Cell constructor: the inside edge
〈P2, data, P3〉 translates into the inside edge 〈I1, data, P6〉. Similarly, we have
the inside edge 〈I1, next, L1〉. As P2 stands for I1, the analysis knows that the
fields data and next of I1 are mutated. However, I1 represents a new object,
that did not exist in the prestate; hence, we can ignore the mutation of I1. This
illustrates two features of our analysis: 1) the analysis propagates mutations
interprocedurally, using the mappings for the callee nodes and 2) the analysis
ignores mutations on inside nodes. Finally, the analysis of List.add adds the
inside edge 〈P5, head, I1〉, and records the mutation on the field head of P5.
Figure 3.c presents the result for the end of the method.

The analysis of the rest of the program proceeds in a similar fashion (see [30,
Section 2] for the full details). Figure 2 presents the points-to graph for the
end of Main.sumX (the set of modified abstract fields is empty). The results for
Main.flipAll are similar to those for Main.sumX, with the important difference
that the method flipAll mutates the fields x and y or node L4.

Analysis Results: For the method Main.sumX, the analysis does not detect any
mutation on the prestate. Therefore, the method sumX is pure, and we can freely
use it in assertions and specifications.

The analysis detects that the method Main.flipAll is not pure, due to the
mutations on the node L4 that is transitively loaded from the parameter P12.
Still, the analysis is able to conservatively describe the set of modified prestate
locations: these are locations that are reachable from P12 (the only parameter),
along paths of outside edges. These paths are generated by the regular expres-
sion head.next*.data. Hence, flipAll may modify only the prestate locations
reachable along a path that matches list.head.next*.data.(x|y). We can
still propagate information across calls to flipAll, as long as the information
refers only to other locations. For example, as none of the list cells matches the
aforementioned regular expression (by a simple type reasoning), the list spine
itself is not affected, and we can propagate list non-emptiness of across calls to
flipAll.

3 Analysis

This section continues the presentation of the analysis that we started in Sec. 2.1.
Due to space constraints, we give an informal presentation of the analysis. A
formal presentation is available in a companion technical report [30].

In addition to the points-to relation, each points-to graph records the nodes
that escape globally, i.e., those nodes that are potentially accessed by unknown
code: nodes passed as arguments to native methods and nodes pointed from
static fields; in addition, any node that is transitively reachable from these nodes
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along inside/outside edges escapes globally too. The analysis has to be very
conservative about these nodes: in particular, they can be mutated by unknown
code. We use the additional special node nGBL as a placeholder for other unknown
globally escaping nodes: nodes loaded from a static field and nodes returned from
an unanalyzable/native method.

3.1 Intraprocedural Analysis

At the start of each method, each object-type parameter (i.e., not an int,
boolean, etc.) points to the corresponding parameter node. Next, our analy-
sis propagates information along the control flow edges, using transfer functions
to abstractly interpret statements from the analyzed program. At control flow
join points, the analysis merges the incoming points-to graphs: e.g., the result-
ing points-to graph contains any edge that exists in one or more of the incoming
points-to graphs. The analysis iterates over loops until it reaches a fixed point.

As a general rule, we perform strong updates on variables, i.e., assigning
something to a variable removes its previous values, and weak updates on node
fields, i.e., the analysis of a store statement that creates a new edge from n1.f
leaves the previous edges in place. Because n1 may represent multiple objects,
all of these edges may be required to correctly represent all of the references that
may exist in the heap.

A copy statement “v1 = v2” makes v1 point to all nodes that v2 points to.
A new statement “v = new C” makes v point to the inside node attached to
that statement. For a store statement “v1.f = v2”, the analysis introduces an
f-labeled inside edge from each node to which v1 points to each node to which
v2 points.

The case of a load statement “v1 = v2.f” is more complex. First, after the
load, v1 points to all the nodes that were pointed by an inside edge from v2.f.
If one of the nodes that v2 points to, say n2, escapes, a parallel thread or an
unanalyzed method may create new edges from n2.f, edges that point to objects
created outside the analysis domain. The analysis represents these objects using
the load node nL attached to this load statement. The analysis sets v1 to point
to nL too, and introduces an outside edge from n2 to nL. The interprocedural
analysis uses this outside edge to find nodes from the calling context that may
have been loaded at this load statement.

3.2 Interprocedural Analysis

For each call statement “vR = v0.s(v1, . . . , vj)”, the analysis uses the points-
to graph G before the call and the points-to graph Gcallee from the end of
the invoked method callee to compute a points-to graph for the program point
after the call. If there are multiple possible callees (this may happen because of
dynamic dispatch), the analysis considers all of them and merges the resulting
set of points-to graphs.

The interprocedural analysis operates in two steps. First, the analysis com-
putes a node mapping that maps the parameter and load nodes from the callee
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Fig. 4. Rules for the construction of the interprocedural node mapping.

to the nodes they may represent. Next, the analysis uses the node mapping to
project Gcallee and merge it with the points-to graph from before the call.

Due to space constraints, we describe only the construction of the node map-
ping, and we refer the reader to [30] for an in-depth description of the second
step. Intuitively, the second step involves projecting the callee graph through
the node mapping, and next merging the result with the graph before the call.

Initially, the analysis maps each parameter node to the nodes to which the
corresponding actual argument points. It then repeatedly applies the two rules
from Fig. 4 to match outside edges (from read operations) against inside edges
(from corresponding write operations) and discover additional node mappings,
until a fixed point is reached. The first rule matches outside edges from the callee
against inside edges from the caller. This rule handles the case when the callee
reads data from the calling context. If node n1 maps to node n2, we map each
outside edge 〈n1, f, n3〉 from Gcallee against each inside edge 〈n2, f, n4〉 from G,
and add a mapping from n3 to n4. The second rule maps outside and inside
edges from the callee. This rule handles the unknown aliasing introduced at the
calling context. If nodes n1 and n2 have a common mapping, or one of them is
mapped to the other one, they may represent the same location. This potential
aliasing was unknown during the analysis of the callee, and we have to handle it
now. Therefore, we match each callee outside edge 〈n1, f, n3〉 from Gcallee against
each callee inside edge 〈n2, f, n4〉 and map n3 to n4, and to all nodes that n4

maps to.

3.3 Effect Analysis

We piggy-back the side-effect analysis on top of the pointer analysis described
in the previous two sections. For each analyzed method m, the analysis main-
tains a set W m containing the abstract fields (pairs of nodes and fields) that
m mutates. The set W m is initialized to the empty set. Each time the analysis
of m encounters an instruction that writes a heap field, it records into W m the
relevant field and node(s). For example, the analysis of the Cell constructor
records the mutations of 〈P2, data〉 and 〈P2, next〉.
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The analysis propagates effects interprocedurally as follows: when the anal-
ysis of method m encounters a call instruction, it uses the interprocedural node
mapping to project the effects of the callee and include these effects in the
set W m . For example, when the analysis of List.add encounters the call to
the Cell constructor, as P2 from the constructor maps to I1, the constructor’s
effects {〈P2, data〉, 〈P2, next〉} are projected into {〈I1, data〉, 〈I1, next〉}. How-
ever, these abstract fields are not added to W List.add because of the following
additional rule: the analysis does not record mutations on inside nodes – these
nodes represent new objects that do not exist in the prestate.

4 Inferring the Side Effect Information

After the analysis terminates, for each analyzable method m, we can use the
points-to graph G for the end of m, and the set W m of modified abstract fields
to infer method purity, read-only parameters, safe parameters, and write effects.
We explain each such application in the next paragraphs.

Method Purity. To check whether m is pure, we compute the set A of nodes
that are reachable in G from parameter nodes, along outside edges. These nodes
represent prestate objects read by the method. The method m is pure iff ∀n ∈ A,
1) n does not escape globally, and 2) no field of n is mutated, i.e., ∀f.〈n, f〉 �∈ W m .

For constructors, we can follow the JML convention of allowing a pure con-
structor to mutate fields of the “this” object: it suffices to ignore all modified
abstract fields for the parameter node nP

m,0 that models the “this” object.

Read-Only Parameters. A parameter p is read-only iff none of the locations
transitively reachable from p is mutated. To check this, consider the correspond-
ing parameter node np , and let S1 be the set that contains np and all the load
nodes reachable from np along outside edges. Parameter p is read-only iff 1)
there is no abstract field 〈n, f〉 ∈ W m such that n ∈ S1, and 2) no node from S1

escapes globally.

Safe Parameters. A parameter is safe if it is read-only and the method m does
not create any new externally visible heap paths to an object transitively reach-
able from the parameter. To detect whether a read-only parameter p is safe, we
compute, as before, the set S1 that contains the corresponding parameter node
np and all the load nodes reachable from np along outside edges. We also com-
pute the set S2 of nodes reachable from the parameter nodes and/or from the
returned nodes, along inside/outside edges; S2 contains all nodes from G that
may be reachable from the caller after the end of m. To check the absence of
a new externally visible path to an object reachable from p, it suffices to check
the absence of any inside edges from nodes in S2 to nodes in S1.

Write Effects. We can infer regular expressions that describe all the
prestate locations modified by m as follows: we construct a finite state automa-
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ton F with the following states: 1) all the nodes from the points-to graph G,
2) an initial state s, and 3) an accepting state t. Each outside edge from G
generates a transition in F , labeled with the field that labels the outside edge.
For each parameter p of m, we create a transition from s to the corresponding
parameter node, and label it with the parameter p. For each mutated abstract
field 〈n, f〉, we add a transition from n to the accepting state t, and label it with
the field f. In addition, for each globally lost node n, we add a transition from n
to t, and label it with the special field REACH. The heap path P.PATH matches
all objects that are transitively reachable from an object that matches P.

The regular expression that corresponds to the constructed automaton F
describes all modified prestate locations. We can use automaton-minimization
algorithms to try to reduce the size of the generated regular expression.

Note: The generated regular expression is valid if G does not contain an
inside edge and a load edge with the same label. This condition guarantees
that the heap references modeled by the outside edges exist in the prestate
(the regular expressions are supposed to be interpreted in the prestate). An
interesting example that exhibits this problem is presented in [31]. If this “bad”
situation occurs, we conservatively generate a regular expression that covers
all nodes reachable from all parameters, with the help of the REACH field. In
practice, we found that most of the methods do not read and mutate the same
field.

5 Experience

We implemented our analysis in the MIT Flex compiler infrastructure [1], a
static compiler for Java bytecode. To increase the analysis precision (e.g., by
reducing the number of nodes that are mistakenly reported as globally escaped
and therefore mutated) we manually provide the points-to graphs for several
common native methods. Also, we attach type information to nodes, in order
to prevent type-incorrect edges, and avoid inter-procedural mappings between
nodes of conflicting types.

5.1 Checking Purity of Data Structure Consistency Predicates

We ran our analysis on several benchmarks borrowed from the Korat project [3,
24]. Korat is a tool that generates non-isomorphic test cases up to a finite bound.
Korat’s input consists of 1) a type declaration of a data structure, 2) a finitization
(e.g., at most 10 objects of type A and 5 objects of type B), and 3) repOk, a pure
boolean predicate written in Java that checks the consistency of the internal
representation of the data structure. Given these inputs, Korat generates all
non-isomorphic data structures that satisfy the repOk predicate. Korat does so
efficiently, by monitoring the execution of the repOk predicate and back-tracking
only over those parts of the data structure that repOk actually reads.

Korat relies on the purity of the repOk predicates but cannot statically check
this. Writing repOk-like predicates is considered good software engineering prac-
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tice; during the development of the data structure, programmers can write as-
sertions that use repOk to check the data structure consistency. Programmers do
not want assertions to change the semantics of the program, other than abort-
ing the program when it violates an assertion. The use of repOk in assertions
provides additional motivation for checking the purity of repOk methods.

We analyzed the repOk methods for the following data structures:

BinarySearchTree - Binary tree that implements a set of comparable keys.
DisjSet - Array-based implementation of the fast union-find data structure,

using path compression and rank estimation heuristics to improve efficiency
of find operations.

HeapArray - Array-based implementation of heaps (priority queues).
BinomialHeap and FibonacciHeap - Alternative heap implementations.
LinkedList - Doubly-linked lists from the the Java Collections Framework.
TreeMap - Implementation of the Map interface using red-black trees.
HashSet - Implementation of the Set interface, backed by a hash table.

LinkedList, TreeMap, and HashSet are from the standard Java Library. The
only change the Korat developers performed was to add the corresponding repOk
methods. The repOk methods use complex auxiliary data structures: sets, linked
lists, wrapper objects, etc. (see [30, Appendix A] for an example). Checking
the purity of these methods is beyond the reach of simple purity checkers that
prohibit pure methods to call impure methods, or to do any heap mutation.

The first problem we faced while analyzing the data structures is that our
analysis is a whole-program analysis that operates under a closed world as-
sumption: in particular, it needs to know the entire class hierarchy in order to
infer the call graph. Therefore, we should either 1) give the analysis a whole
program (clearly impossible in this case), or 2) describe the rest of the world
to the analysis. In our case, we need to describe to the analysis the objects
that can be put in the data structures. The methods that our data struc-
ture implementations invoke on the data structure elements are overriders of
the following methods: java.lang.Object.equals, java.lang.Object.hashCode,
java.util.Comparable.compareTo, and java.lang.Object.toString.

We call these methods, and all methods that override them, special methods.
We specified to the analysis that these methods are pure and all their parameters
are safe6. Therefore, these methods do not mutate their parameters and do not
introduce new externally visible aliasing. Hence, the analysis can simply ignore
calls to these methods (even dynamically dispatched calls)7.

We ran the analysis and analyzed the repOk methods for all the data struc-
tures, and all the methods transitively called from these methods. The analysis
was able to verify that all repOk methods mutate only new objects, and are

6 These assumptions correspond to the common intuition about the special methods.
E.g., we do not expect equals to change the objects it compares.

7 Additional processing is required to model the result of the toString special meth-
ods: as Strings are supposed to be values, each call to toString is treated as an
object creation site. The other special methods return primitive values.
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Table 1. Java Olden benchmark applications.

Application Description

BH Barnes-Hut N-body solver

BiSort Bitonic Sort

Em3d Simulation of electromagnetic waves

Health Health-care system simulation

MST Bentley’s algorithm for minimum spanning tree in a graph

Perimeter Computes region perimeters in an image represented as a quad-tree

Power Maximizes the economic efficiency of a community of power consumers

TSP Randomized alg. for the traveling salesman problem

TreeAdd Recursive depth-first traversal of a tree to sum the node values

Voronoi Voronoi diagram for random set of points

therefore pure. On a Pentium 4 @ 2.8Ghz with 1Gb RAM, our analysis took
between 3 and 9 seconds for each analyzed data structure.

Of course, our results are valid only if our assumptions about the special
methods are true. Our tool tries to verify our assumptions for all the special
methods that the analysis encountered. Unfortunately, some of these meth-
ods use caches for performance reasons, and are not pure. For example, sev-
eral classes cache their hashcode; other classes cache more complex data, e.g.,
java.util.AbstractMap caches its set of keys and entries (these caches are nul-
lified each time a map update is performed).

Fortunately, our analysis can tell us which memory locations the mutation
affects. We manually examined the output of the analysis, and checked that all
the fields mutated by impure special methods correspond to caching.

Discussion. In order to analyze complex data structures that use the real Java
library, we had to sacrifice soundness. More specifically, we had to trust that
the caching mechanism used by several classes from the Java library has only a
performance impact, and is otherwise semantically preserving. We believe that
making reasonable assumptions about the unknown code in order to check com-
plex known code is a good tradeoff. As our experience shows, knowing why ex-
actly a method is impure is useful in practice: this feature allows us to identify
(and ignore) benign mutation related to caching.

5.2 Pure Methods in the Java Olden Benchmark Suite

We also ran the purity analysis on the applications from the Java Olden bench-
mark suite [6,7]. Table 1 presents a short description of the Java Olden applica-
tions. On a Pentium 4 @ 2.8Ghz with 1Gb RAM, the analysis time ranges from
3.4 seconds for TreeAdd to 7.2 seconds for Voronoi. In each case, the analysis
processed all methods, user and library, that may be transitively invoked from
the main method.
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Table 2. Percentage of Pure Methods in the Java Olden benchmarks.

Application All Methods User Methods
count % pure count % pure

BH 264 55% 59 47%

BiSort 214 57% 13 38%

Em3d 228 55% 20 40%

Health 231 57% 27 48%

MST 230 58% 31 54%

Perimeter 236 63% 37 89%

Power 224 53% 29 31%

TSP 220 56% 14 35%

TreeAdd 203 58% 5 40%

Voronoi 308 62% 70 71%

Table 2 presents the results of our purity analysis. For each application, we
counted the total number of methods (user and library), and the total number
of user methods. For each category, we present the percentage of pure methods,
as detected by our analysis. Following the JML convention, we consider that
constructors that mutate only fields of the “this” objects are pure. As the data
from Table 2 shows, our analysis is able to find large numbers of pure methods
in Java applications. Most of the applications have similar percentages of pure
methods, because most of them use the same library methods. The variation
is much larger for the user methods, ranging from 31% for Power to 89% for
Perimeter.

6 Related Work

Modern research on effect inference stems from the seminal work of Gifford et
al on type and effect systems [17, 23] for mostly functional languages. More re-
cent research on effects is usually done in the context of program specification
and verification. JML is a behavioral specification language for Java [5] that
allows annotations containing invocations of pure methods. JML also allows the
user to specify “assignable” locations, i.e., locations that a method can mu-
tate [26]. Currently, the purity and assignable clauses are either not checked or
are checked using very conservative analyses: e.g., a method is pure iff 1) it does
not do I/O, 2) it does not write any heap field, and 3) it does not invoke impure
methods [20]. ESC/Java is a tool for statically checking JML-like annotations of
Java programs. ESC/Java uses a theorem prover to do modular checking of the
provided annotations. A major source of unsoundness in ESC/Java is the fact
that the tool uses purity and modifies annotations, but does not check them.

Several approaches to solve this problem rely on user-provided annotations;
we mention here the work on data groups from [19, 22], and the use of region
types [13, 33] and/or ownership types [4, 10] for specifying effects at the granu-
larity of regions/ownership boundaries. In general, annotation based approaches
are well suited for modular checking; they also provide abstraction mechanisms
to hide representation details.
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Analysis-based approaches like ours are appealing because they do not require
additional user annotations. Even in situations where annotations are desired
(e.g., to facilitate modular checking), static analysis can still be used to give the
user a hint of what the annotations should look like. We briefly discuss several
related analyses.

ChAsE [8] is a syntactic tool for modular checking of JML assignable
clauses. For each method, the tool traverses the method code and collects write
effects; for method invocation, ChAsE uses the assignable clauses from the
callee specification. Although lightweight and useful in many practical situa-
tions, ChAsE is an unsound syntactic tool; in particular, unlike our analysis, it
does not keep track of the values / points-to relation of variables and fields, and
ignores all aliasing. Some of these problems are discussed in [31]. [31] contains
compelling evidence that a static analysis for this purpose should propagate not
only the set of mutated locations, but also information about the new values
stored in those locations; otherwise, the analysis results are either unsound or
overly-conservative. Our analysis uses the set of inside edges to keep track of the
new value of pointer fields. Unfortunately, we are unaware of an implementation
of the analysis proposed in [31].

Other researchers [9, 16, 25, 28], have already considered the use of pointer
analysis while inferring side effects. Unlike these previous analyses, our analysis
uses a separate abstraction (the inside nodes) for the objects allocated by the
current invocation of the analyzed method. Therefore, our analysis focuses on
prestate mutation and supports pure methods that mutate newly allocated ob-
jects. [28] offers evidence that almost all pure methods can be detected using a
very simple pointer analysis. However, the method purity definition used in [28]
is more rigid than ours; for example, pure methods from [28] are not allowed to
construct and return new objects.

Fugue [14] is a tool that tracks the correct usage of finite state machine-like
protocols. Fugue requires annotations that specify the state of the tracked ob-
jects on method entry/exit. All aliasing to the tracked objects must be stat-
ically known. Many library methods 1) do not do anything relevant to the
checked protocol, and 2) are too tedious to annotate. Hence, Fugue tries to
find “[NonEscaping]” parameters that are equivalent to our safe parameters.
The current analysis/type checking algorithm from Fugue is very conservative
as it does not allow a reference to a “[NonEscaping]” object to be stored in fields
of locally captured objects (e.g., iterators).

Javari [2] is an extension to Java that allows the programmer to specify const
(i.e., read-only) parameters and fields. A type checker checks the programmer
annotations. To cope with caches in real applications, Javari allows the program-
mer to declare mutable fields; such fields can be mutated even when they belong
to a const object. Of course, the mutable annotation must be used with extreme
caution. Our solution is to expose the mutation on caches to the programmer,
and let the programmer judge whether the mutation is allowed or not. Our tool
could complement Javari by inferring read-only parameters for legacy code.
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7 Conclusions

Recognizing method purity is important for a variety of program analysis and
understanding tasks. We present the first implemented method purity analysis
for Java that is capable of recognizing pure methods that mutate newly allocated
objects. Because this analysis produces a precise characterization of the accessed
region of the heap, it can also recognize generalized purity properties such as
read-only and safe parameters. Our experience using our implemented analysis
indicates that it can effectively recognize many pure methods. It therefore pro-
vides a useful tool that can support a range of important program analysis and
software engineering tasks.
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Abstract. We propose the use of tree automata as abstractions in the
verification of branching time properties, and show several benefits. In
this setting, soundness and completeness are trivial. It unifies the abun-
dance of frameworks in the literature, and clarifies the role of concepts
therein in terms of the well-studied field of automata theory. Moreover,
using automata as models simplifies and generalizes results on maximal
model theorems.

1 Introduction

Program verification, and in particular the model checking [3, 27] approach that
we consider here, usually takes the form of property checking: Given a program
model M and a property ϕ, does M satisfy ϕ (M |= ϕ)? The answer obtained
should be true or false ; otherwise verification has failed. Program analysis [26],
on the other hand, serves a somewhat different purpose, namely to collect infor-
mation about a program. Thus, program analysis produces a set of properties
that M satisfies. The more properties there are, the better: this enables more
compiler optimizations, better diagnostic messages, etc.

Abstraction is fundamental to both verification and analysis. It extends model
checking to programs with large state spaces, and program analyses can be
described in a unified way in terms of Abstract Interpretation [5]. An abstraction
framework includes the following components. The set C of concrete objects
contains the structures whose properties we are principally interested in, such
as programs. A is the set of abstract objects (or abstractions), which simplify
concrete objects by ignoring aspects that are irrelevant to the properties to be
checked (in verification) or collected (in analysis), thus rendering them amenable
to automated techniques. An abstraction relation ρ ⊆ C ×A specifies how each
concrete object can be abstracted. Properties are expressed in a logic L and
interpreted over concrete objects with |= ⊆ C × L and over abstract objects1

with |=α ⊆ A × L. A principal requirement for any abstraction framework is
that it is sound : if ρ(c, a) and a |=α ϕ, then c |= ϕ. This ensures that we can
establish properties of concrete objects by inspecting suitable abstractions.

Abstraction for analysis and verification. In program analysis, depending on the
kind of information that needs to be collected, a particular abstract data domain
is chosen that provides descriptions of concrete data values. The abstract object

1 One could choose different logics on the concrete and abstract sides, but this would
unnecessarily complicate the discussion here.

R. Cousot (Ed.): VMCAI 2005, LNCS 3385, pp. 216–232, 2005.
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is then, e.g., a non-standard collecting semantics, computed by “lifting” all pro-
gram operations to the abstract domain. Soundness is ensured by showing that
each lifted operation correctly mimics the effect of the corresponding concrete
operation. Ideally, lifted operations are optimal, which means that the largest
possible set of properties is computed relative to the chosen abstract domain.
As this is not always possible, the precision of a lifted operation is of interest.

In Model Checking, the properties of interest go beyond the universal safety
properties that are commonly the target of program analyses; they include live-
ness aspects and existential quantification over computations, as formalized by
branching-time temporal logics. Under these circumstances, the usual recipe for
lifting program transitions to abstract domains falls short: the abstract programs
thus constructed are sound only for universal, but not for existential properties.
This can be fixed by lifting a transition relation in two different ways, interpret-
ing universal properties over one relation (called may), and existential ones over
the other relation (called must) [22].

Given an abstract domain, optimal may and must relations can be defined [4,
7, 28]. But one may argue that for program verification, the notion of precision is
overshadowed by the issue of choosing a suitable abstract domain. In verification,
unlike in analysis, a partial answer is not acceptable: one wants to either prove
or disprove a property. Hence, even an optimal abstraction on a given domain is
useless if it does not help settle the verification question. In other words, the focus
shifts from precision of operators to precision of domains. Tools for verification
via abstraction will need to be able to construct modal transition systems over
domains of varying precision, depending on the given program and property.

Is it, then, enough to consider a may-must transition system structure over
arbitrarily precise abstract domains? No, suggest a number of research results
[23, 25, 30, 6, 10]: modifying must transitions so as to allow multiple target states
– a must hyper-transition – enables one to devise even more precise abstract
objects, which satisfy more existential properties. Are there other missing ingre-
dients? When have we added enough? To answer these questions, we first need
to formulate a reasonable notion of “enough”.

From precision to completeness. As we have argued earlier, precision is not
really the key abstraction issue in the context of verification. Even within the
limited setting where abstract objects are finite transition systems with only
may transitions, it is always possible to render more universal properties true,
by making a domain refinement. The implicit question in the above-mentioned
papers is a different one, namely: is it always possible to find a finite abstract
object that is precise enough to prove a property true of the concrete object?
(The emphasis on finiteness is because the end goal is to apply model checking
to the abstract object.) This is the issue of (in)completeness: An abstraction
framework is complete2 if for every concrete object c ∈ C and every property

2 A different notion of completeness is studied by Giacobazzi et. al. in [14]. Their notion
of completeness requires that for every concrete object, there exists an abstraction of
it that satisfies precisely all the properties as the concrete object, relative to a given
logic. For example, in the context of CTL, this requires the concrete and abstract
transition systems to be bisimilar, and thus there is not always a finite abstraction.
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ϕ ∈ L such that c |= ϕ, there exists a finite abstract object a ∈ A such that
ρ(c, a) and a |= ϕ. For the case of linear-time properties, completeness was first
addressed in [32, 20].

The quest for completeness for branching time, undertaken in [25, 6], has
shown that without the addition of must hyper-transitions (obtained by so-called
focus moves in [6]), modal transition systems are incomplete for existential safety
properties. Furthermore, as already predicted by [32, 20], fairness conditions are
needed to achieve completeness for liveness properties.

Contribution of this paper. Over the years, research in refinement and abstrac-
tion techniques for branching time properties on transition systems has pro-
duced a large and rather bewildering variety of structures: Modal Transition
Systems, with may and must relations [22]; Abstract Kripke structures [9] and
partial and multi-valued Kripke structures [1, 2], with 3-valued components; Dis-
junctive Modal Transition Systems [23], Abstract transition structures [10], and
Generalized Kripke Modal Transition Systems [30], with must hyper-transitions;
and Focused Transition Systems, with focus and defocus moves and acceptance
conditions [6]. Having achieved completeness for full branching time logic with
Focused Transition Systems, which put all essential features together, it may be
time to step back to try and see the bigger picture in this abundance of concepts.
Is there an encompassing notion in terms of which the key features of all of these
can be understood?

In this paper we answer this question affirmatively: indeed, behind the vari-
ous disguises lives the familiar face of tree automata. We start by showing how
automata themselves can be employed as abstract objects, giving rise to remark-
ably simple soundness and completeness arguments. The technical development
rests upon known results from automata theory. We view this as a strong posi-
tive: it shows that establishing the connection enables one to apply results from
the well-developed field of automata theory in a theory of abstraction. Then, we
connect automata to previously proposed notions of abstract objects, by show-
ing how one of the existing frameworks can be embedded into the automaton
framework.

A tree automaton, indeed, can be seen as just an ordinary (fair) transition
system extended with an OR-choice (or “focus”) capability. Remarkably, this
simple extension turns out to be enough to guarantee completeness. Automata
thus identify a minimal basis for a complete framework, showing that some of
the concepts developed in modal/mixed/focused structures are not strictly nec-
essary3. As a further illustration of the clean-up job achieved by our observation,
we illustrate how the use of automata generalizes and simplifies known maximal
model theorems [15, 21].

An appetizer. To demonstrate how the use of automata as abstractions simplifies
matters, we consider the notions of soundness and completeness in an abstraction
3 This conclusion applies only to the issue of completeness: in terms of size, for in-

stance, focused transition systems may be exponentially more compact than ordinary
automata, since they can exploit both 3-valuedness (in propositional labelings and
in transitions) and alternation.
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framework that uses automata (details follow in subsequent sections). For an
automaton A considered as an abstract object, the set of concrete objects that
it abstracts (its concretization) is taken to be its (tree4) language £(A).

The question is how to define the evaluation of temporal properties over
tree automata such that soundness is ensured. Adopting the automata-theoretic
view, we express also a property ϕ by an automaton, whose language consists
of all models of ϕ. Clearly, the answer then is to define, for any automaton A
and property B, A |= B as £(A) ⊆ £(B). Soundness then holds trivially: if
M ∈ £(A) and A |= B, then M ∈ £(B). Furthermore, also completeness follows
immediately: Given any, possibly infinite, M such that M |= B, there exists a
finite abstraction of M through which B can be demonstrated, namely B itself:
clearly, M ∈ £(B) and B |= B. All this is trivial, and that is precisely the point:
using automata, constructions that are otherwise rather involved now become
straightforward.

In practice, the above set-up is less appealing, since checking a property over
an abstraction requires deciding tree-language inclusion, which is EXPTIME-
hard. In Section 3, we define a notion of simulation between tree automata.
Deciding the existence of such a simulation has a lower complexity (in NP,
and polynomial in the common case), yet it is a sufficient condition for language
inclusion. We show that the approach remains sound and complete for this choice.

2 Background

In the introduction, we make an informal case that tree automata are more ap-
propriate than transition systems as the objects of abstraction. Tree automata
are usually defined (cf. [12]) over complete trees with binary, ordered branching
(i.e., each node has a 0-successor and a 1-successor). This does not quite match
with branching time logics: for example, the basic EX operator of the μ-calculus
cannot distinguish between the order of successors, or between bisimilar nodes
with different numbers of successors. In [18, 19], Janin and Walukiewicz intro-
duced a tree automaton type appropriately matched to the μ-calculus, calling it
a μ-automaton. We use this automaton type in the paper.

Definition 1 (Transition System, Kripke Structure). A transition system
with state labels from Lab is a tuple S = (S, Ŝ, R, L) where S is a nonempty,
countable set of states, Ŝ ⊆ S is a set of initial states, R ⊆ S×S is a transition
relation, and L : S → Lab is a labeling function.

Fix Prop to be a finite set of propositions. A Kripke Structure is a transition
system with state labels from 2Prop. ��

From each initial state, a transition system can be “unfolded” into its compu-
tation tree. Formally, a tree is a transition system with state space isomorphic
4 We focus on verification of branching-time properties, and consequently use tree

automata as abstractions. But our suggestion to use automata as abstractions spe-
cializes to the case of linear-time properties and word automata, and indeed was
inspired by it – see [20].
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to a subset of strings over the naturals such that if x.c is a state, so is x, and
there is a transition from x to x.c. The state corresponding to the empty string
is called the root. We refer to a state in a tree as a node.

Definition 2 (μ-Automaton [18]). A μ-automaton5 is a tuple A = (Q,B, Q̂,
or,br, L,Ω) where:

– Q is a non-empty, countable set of states, called or states,
– B is a countable set of states, disjoint from Q, called branch states,
– Q̂ ⊆ Q is a non-empty set of initial states,
– or ⊆ Q×B is a choice relation, from or states to branch states,
– br ⊆ B ×Q is a transition relation, from branch states to or states,
– L : B → 2Prop is a labeling function, mapping each branch state to a

subset of propositions,
– Ω : Q → N is an indexing function, used to define the acceptance condition.

��

We sometimes Curry relations: for instance, or(q) is the set {b | (q, b) ∈ or}. The
automaton is finite iff Q∪B is a finite set. Only finite automata are formulated
in [18]; we allow automata to be infinite so that an infinite transition system
can be viewed as a simple tree automaton. (Indeed, μ-automata generalize fair
transition systems only in allowing non-trivial or choice relations. This is made
precise in Definition 5 of the next section.) In the rest of the paper, we use
“automaton” to stand for “μ-automaton”, unless mentioned otherwise.

Informal Semantics: Given an infinite tree, a run of an automaton on it pro-
ceeds as follows. The root of the tree is tagged with an initial automaton state;
a pair consisting of a tree node and an automaton state is called a configura-
tion. At a configuration (n, q), the automaton has several choices as given by
or(q); it chooses (non-deterministically) a branch state b in or(q) whose la-
beling matches that of n. The automaton tags the children of n with or states
in br(b), such that every or-state tags some child, and every child is tagged
with some or state. This results in a number of successor configurations, which
are explored in turn, ad infinitum. Notice that there can be many runs of an
automaton on a tree, based on the non-determinism in choosing branch states
in the automaton, and in the way children are tagged in the tree. An input tree
is accepted if there is some run where every sequence of configurations produced
on that run meets the automaton acceptance condition. To illustrate this pro-
cess, Figure 1 shows a tree, an automaton for the CTL formula EFp (“a state
labeled p is reachable”), and an accepting run of the automaton on the tree.

Definition 3 (Automaton Acceptance [18]). Let S = (S, {ε}, R, LS) be a
tree with labels from 2Prop, and let A = (Q,B, Q̂,or,br, LA, Ω) be an automa-
ton. For q̂ ∈ Q̂, a q̂-run of A on S is a tree T where each node is labeled with a
configuration from S × (Q ∪B), satisfying the following conditions.
5 We have made some minor syntactic changes over the definition in [18]: making the

role of the branch states explicit, allowing multiple initial states, and eliminating
transition labels.
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Fig. 1. Left: an input tree. Middle: μ-automaton for EFp, taking Prop = {p}. The
state � accepts any subtree. Right: an accepting run.

1. (Initial) The root of T is labeled with (ε, q̂).
2. (or) Every node of T that is labeled with (n, q), where q ∈ Q, has a child

labeled (n, b) for some b ∈ or(q).
3. (branch) For every node x ∈ T that is labeled with (n, b) where b ∈ B:

(a) LS(n) = LA(b).
(b) For every n′ ∈ R(n), there is a child of x labeled with (n′, q′), for some

q′ ∈ br(b).
(c) For every q′ ∈ br(b), there is a child of x labeled with (n′, q′), for some

n′ ∈ R(n).

A q̂-run T of A on S is accepting (by the so-called “parity condition”) iff on
every infinite path π in T , the least value of Ω(q), for or-states q that appear
infinitely often on π, is even. The tree S is accepted by A iff for some q̂ ∈ Q̂,
there is a q̂-run of A on S that is accepting. A Kripke Structure is accepted by
A iff all trees in its unfolding are accepted by A. The language £(A) of A is the
set of all Kripke Structures that are accepted by A. ��

3 Abstraction with Automata

3.1 Abstraction with Language Inclusion

We now define the abstraction framework based on automaton language inclusion
that was discussed at the end of the introduction. The concrete objects are
Kripke Structures. The abstract objects are finite automata. The abstraction
relation is language membership: i.e., a Kripke Structure S is abstracted by
automaton A iff S ∈ £(A). Finally, branching time temporal properties are
given as finite automata, where a property B holds of a Kripke Structure S (i.e.,
a concrete object) iff S ∈ £(B), and B holds of an automaton A (i.e., an abstract
object) iff £(A) ⊆ £(B). In the introduction we showed the following.

Theorem 1. The abstraction framework based on automaton language inclusion
is sound and complete.
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3.2 Abstraction with Simulation

The simplicity of the framework presented above makes it attractive from a
conceptual point of view. However, checking a temporal property amounts to
deciding language inclusion between tree automata, which is quite expensive
(EXPTIME-hard even for the finite tree case [29]). Hence, we consider below a
framework based on a sufficient condition for language inclusion, namely the ex-
istence of a simulation between automata, which can be checked more efficiently.

For automata on finite trees, simulation has been defined previously, see e.g.
[8], and our definition here is a straightforward generalization of that. Roughly
speaking, simulation between automata A1 and A2 ensures that at correspond-
ing or states, any or choice in A1 can be simulated by an or choice in A2. As
such, it follows the structure of the standard definition of simulation between
transition systems [24]. At corresponding branch states, however, the require-
ment is more reminiscent of the notion of bisimulation: any branch transition
from one automaton has a matching branch transition from the other. In order
to deal with the infinitary acceptance conditions, it is convenient to describe
simulation checking as an infinite, two-player, game, as is done in [16] for fair
simulation on Kripke Structures.

Definition 4 (Automaton Simulation). Let A1 and A2 be automata. For
initial states q̂1 ∈ Q̂1 and q̂2 ∈ Q̂2, we define the (q̂1, q̂2)-game as follows.
Every play is a sequence of configurations as specified by the following rules.
Each configuration consists of a pair of states of the same type (i.e., both are or
states or both are branch states).

1. (Initial) The initial configuration is (q̂1, q̂2).
2. (or) In an “or” configuration (q1, q2) (where q1 ∈ Q1 and q2 ∈ Q2), Player

II chooses b1 in or(q1); Player I has to respond with some b2 in or(q2), and
the play continues from configuration (b1, b2).

3. (branch) In a “branch” configuration (b1, b2) (where b1 ∈ B1 and b2 ∈
B2), each of the following are continuations of the play:
(a) (Prop) In this continuation, the play ends and is a win for Player I if

L1(b1) = L2(b2), and it is a win for Player II otherwise.
(b) (Bisim) Player II chooses a ‘side’ i in {1, 2}, and an or-state qi in

bri(bi); Player I must respond with an or-state qj in brj(bj), from
the other side j (i.e., j ∈ {1, 2}; j �= i) and the play continues from
configuration (q1, q2).

If a finite play ends by rule 3a, the winner is as specified in that rule. For an
infinite play π, and i ∈ {1, 2}, let proji(π) be the infinite sequence from Qω

i

obtained by projecting the or configurations of π onto component i. Then π is a
win for Player I iff either proj1(π) does not satisfy the acceptance condition for
A1, or proj2(π) satisfies the acceptance condition for A2.

We say that A1 is simulated by A2, written A1 � A2, if for every q̂1 ∈ Q̂1,
there exists q̂2 ∈ Q̂2 such that player I has a winning strategy for the (q̂1, q̂2)-
game. ��
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Theorem 2. If A1 � A2 then £(A1) ⊆ £(A2).

Theorem 3. Deciding the existence of a simulation relation between finite au-
tomata is in NP, and can be done by a deterministic algorithm that is polynomial
in the size of the automata and exponential in the number of parity classes.

Proof. (sketch) A winning strategy for Player I in the simulation game cor-
responds to a tree labeled with configurations where every path satisfies the
winning condition. It is easy to construct a finite automaton that accepts such
trees. The automaton remembers the current configuration and which player’s
turn it is, while the transitions of the automaton ensure that the successors in
the tree are labeled with configurations that respect the constraints of the game
(e.g., a node where player II takes a turn must have all possible successor con-
figurations for a move by player II). This automaton is of size proportional to
the product of the original automaton sizes. Its acceptance condition is that of
the game. A parity condition can be written as either a Rabin or a Streett (com-
plemented Rabin) condition, so the winning condition for the game, which has
the shape (¬(parity) ∨ parity), is a Rabin condition. Thus, the existence of a
winning strategy reduces to the non-emptiness of a non-deterministic Rabin tree
automaton. The complexity results then follow from the bounds given in [11] for
this question. If the acceptance conditions are Büchi, the simulation check is in
polynomial time.

The simulation-based framework is defined like the one based on language
inclusion, except that a branching-time temporal property B is defined to hold of
an automaton A (i.e., an abstract object) iff A � B. Soundness and completeness
are again easy to show.

Theorem 4. The simulation based framework is sound and complete.

Proof. (Soundness) Let S be a Kripke structure, and B an automaton property.
Suppose that A is an abstraction of S (S ∈ £(A)) which satisfies property
B (A � B). By Theorem 2, it follows that £(A) ⊆ £(B). So it follows that
S ∈ £(B), i.e. S satisfies property B.

(Completeness) Let S be a Kripke Structure that satisfies an automaton
property A (S ∈ £(A)). So A itself is an abstraction of S. Since it satisfies A
(A � A), completeness follows.

The abstraction relation in the framework based on simulation is still lan-
guage membership: a Kripke Structure S is abstracted by automaton A iff
S ∈ £(A). However, this can be replaced by an equivalent definition in terms
of simulation. For this, we need to be able to “lift” a Kripke Structure to an
automaton. The structure states become branch states of the automaton, and
trivial or states are inserted that each have only a single or choice.

Definition 5. Let S = (S, Ŝ, R, L) be a Kripke Structure. The automaton asso-
ciated with S, Aut(S), is as follows. Aut(S) has or states {qs | s ∈ S}, branch

states {bs | s ∈ S}, and initial states {qŝ | ŝ ∈ Ŝ}. Each or state qs has bs as its
only or choice. Each branch state bs has a br transition to qt for every t such
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that R(s, t) in the Kripke Structure. The labeling of a branch state bs is the
labeling of s in the Kripke Structure. The indexing function assigns 0 to every
or state. ��

It can be shown that Aut(S) accepts precisely the bisimulation class of S. We
now have:

Lemma 1. S ∈ £(A) iff Aut(S) � A.

Proof. (sketch) The simulation game for Aut(S) � A is identical to an automa-
ton run in this special case where the automaton on the left hand side is obtained
from a Kripke Structure.

4 Translations: KMTS’s to Automata

In the previous section, we gave a simple translation from Kripke Structures to
automata. In this section we present a more elaborate translation from Kripke
Modal Transition Systems (KMTS’s) [17] to automata. This provides insight into
their relation, and can be adapted to obtain translations from similar notions,
such as the Disjunctive Modal Transition Systems [23]. KMTS’s are based on
3-valued logic. Let 3 = {true,maybe, false}, and define the information ordering
≤ by: maybe ≤ x, x ≤ x for every x ∈ 3, and x �≤ y otherwise. ≤ is lifted in the
standard way to functions into 3, and ≥ denotes the inverse of ≤. A proposition
p in a state of a KMTS takes on values in 3. We formalize this by letting p be a
3-valued predicate that maps states to 3. The following definitions are adapted
from [13].

Definition 6 ([13]). A Kripke Modal Transition System is a tuple M = (S, Ŝ,
−→, ���, P ), where S is a nonempty countable set of states, Ŝ ⊆ S is a subset of
initial states, −→, ��� ⊆ S×S are the must and may transition relations resp.,
such that −→ ⊆ ���, and P = {predp | p ∈ Prop}, where for every p ∈ Prop,
predp : S → 3. ��

With −→ = ��� and P the 2-valued predicates predp : S → {true, false} we
recover the Kripke Structures from Definition 1.

We usually just write p for predp. Finite state KMTS’s have been suggested
as abstract objects in a framework where the concrete objects of interest are
Kripke Structures and the properties are phrased in branching-time temporal
logic. The concretization of a KMTS M (the set of Kripke Structures that are
abstracted by M) is called its completion, defined as follows.

Definition 7 ([13]). The completeness preorder 0 between states of KMTS’s
M1 = (S1, Ŝ1,−→1, ���1, P1) and M2 = (S2, Ŝ2,−→2, ���2, P2) is the greatest
relation B ⊆ S1 × S2 such that (s1, s2) ∈ B implies: (1) for every p ∈ Prop,
p(s1) ≥ p(s2); (2) −→1 simulates −→2; and (3) ���1 is simulated by ���2. M1

is more complete than M2, denoted M1 0 M2, iff for every ŝ1 ∈ Ŝ1 there exists
ŝ2 ∈ Ŝ2 with ŝ1 0 ŝ2. The completion C(M) of M is the set of all Kripke
Structures S such that S 0 M . ��
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The final component we need for a KMTS-based abstraction framework is an
interpretation of branching-time properties over a KMTS. Also in this case, the
setting is 3-valued. We consider here the so-called thorough semantics since it
has a more direct connection to automata.

Definition 8 ([13]). The thorough semantics assigns a truth value from 3 to
a KMTS and a temporal formula, as follows: [M |= ϕ] = true (false) if S |= ϕ
is true (resp. false) for all S ∈ C(M), and [M |= ϕ] = maybe otherwise6. ��

Note that the relations −→ and ��� can together be seen as a 2-bit encoding
of a single “3-valued transition relation”, i.e. a predicate that maps every pair
s, t of states into 3: when s −→ t and s ��� t, this transition relation has
value true; when neither s −→ t nor s ��� t, it has value false; and when
only s ��� t, it is maybe; note that the fourth combination is excluded by the
requirement that −→ ⊆ ���. In terms of this 3-valued transition relation, the
intuition behind a KMTS’s transition structure can be explained as follows. View
a state s of a KMTS as the set of all Kripke Structure states that it abstracts
(i.e., {n | n 0 s}). Consider the value of the transition between KMTS states s
and t. If it is true, then all states in s have a transition to some state in t. If it
is false , then no state in s has a transition to any state in t. If it is maybe, then
some states in s do, and others do not, have a transition to some state in t.

We can “massage” a KMTS into an automaton by splitting its states so that
all propositions and transitions become definite (true or false). What makes this
possible7 is the presence of or states: Initially, trivial or states (with single suc-
cessors) are inserted into the KMTS – one or state preceding every KMTS state
– similar to the definition of the transformation Aut of Definition 5. Consider a
state s and a proposition p that evaluates to maybe in s, see Figure 2(a). If we
view s as its concretization some of its concrete states will evaluate p to true,
and others to false. We split s so as to separate these states from one another,
creating new abstract states s′ and s′′ in place of s, one where p is true, and
another where it is false. All transitions from s are copied to both s′ and s′′.
Similarly, a state s with an outgoing maybe transition (to or state t, say) is
replaced by two states, one with a true transition to t, the other with a false
transition to t; see Figure 2(b).

This is done for every state s, every proposition that is maybe in s, and every
outgoing maybe transition from s. This translation, called τ , will be defined more
formally below. While it turns the completion of a KMTS into the language of the
resulting automaton, i.e. C(M) = £(τ(M)), it does not follow that M and τ(M)

6 Compared to the definitions in [17] and [13], we have added initial states to KMTS’s.
In this case, a temporal property is defined to be true (false) for a KMTS if it is
true (resp. false) in all initial states, and maybe otherwise.

7 This is not possible in general if we stay within the framework of KMTS’s, which
can be seen by considering the KMTS that has a single state where the (single)
proposition p is maybe, and which has must and may transitions back to itself.
There exists no finite 2-valued KMTS that has the same completion – the set of all
total trees labeled with subsets of {p}.
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Fig. 2. Removing 3-valuedness from propositions (a) and transitions (b) by splitting
states. Must and may transitions are depicted as solid and dashed arrows resp.

make the same properties true. For this, we need to generalize the semantics |=α

of branching-time properties, interpreted over automata, to be 3-valued as well.

Definition 9. The 3-valued semantics |=α maps an automaton and a branching-
time property ϕ (expressed by an automaton Aϕ) to 3, as follows. [A |=α Aϕ] =
true (false) if £(A) ⊆ £(Aϕ) (resp. £(A) ⊆ £(Aϕ)) and maybe otherwise. ��

Theorem 5. For every KMTS M and branching-time temporal property ϕ,
[M |= ϕ] = [τ(M) |=α Aϕ].

4.1 Modal Automata

The description of τ above can be seen as a two-step process. First, by inserting
or states, the KMTS is lifted into a special kind of automaton, namely one that
allows 3-valued propositions and transitions. Then, this 3-valuedness is compiled
away by splitting branch states.

Definition 10. A modal automaton A is a tuple (Q,B, Q̂,or,−→, ���, P,Ω)
where Q, B, Q̂, or, Ω are as in Definition 2, and:

– −→, ��� ⊆ B×Q are must and may transition relations, resp., from branch
states to or states, and

– P = {predp | p ∈ Prop}, where for every p ∈ Prop, predp : B → 3. ��

The notion of automaton simulation from Definition 4, �, is extended to these
modal automata.

Definition 11. The simulation relation � on modal automata is defined as in
Definition 4 where A1 and A2 are now modal automata, and rule 3 is replaced
by the following:

3. (branch) In a “branch” configuration (b1, b2) (where b1 ∈ B1 and b2 ∈
B2), each of the following are continuations of the play:
(a) (Prop) In this continuation, the play ends and is a win for Player I if for

all p ∈ Prop, p(b1) ≥ p(b2), and it is a win for for Player II otherwise.
(b) (may) Player II chooses an or state q1 such that b1 ���1 q1; Player I

must respond with an or state q2 such that b2 ���2 q2, and the play
continues from configuration (q1, q2).
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(c) (must) Player II chooses an or state q2 such that b2 −→2 q2; Player I
must respond with an or state q1 such that b1 −→1 q1, and the play
continues from configuration (q1, q2).

The language £(A) of a modal automaton A is the set of all Kripke Structures
S such that Aut(S) � A. ��

τ is now defined as the composition of translations τ1 and τ2:

τ : KMTS τ1−→ modal (i.e., 3-valued) automaton τ2−→ (2-valued) automaton

The definition of τ1 is a generalization of the embedding Aut of Def. 5.

Definition 12. Let M = (S, Ŝ,−→, ���, P ) be a KMTS. The modal automa-
ton associated with M , τ1(M), is as follows: τ1(M) has or states {qs|s ∈ S},
branch states {bs | s ∈ S}, and initial states {qŝ | ŝ ∈ Ŝ}. Each or state qs has
bs as its only or choice. Each branch state bs has a −→ (���) transition to qt

for every t such that −→ (s, t) (resp. ��� (s, t)) in the KMTS. The predicates of
τ1(M) are the same as in the KMTS. The indexing function assigns 0 to every
or state. ��

Lemma 2. Let M be a KMTS. Then C(M) = £(τ1(M)).

Proof. Similar to the proof of Lemma 1.

The translation τ2, that compiles away 3-valued propositions and transitions
from a modal automaton while preserving its language, is itself defined in two
steps. The first step, τ2A, removes 3-valuedness from the propositional labeling,
yielding modal automata that have must and may transitions, but whose state
predicates assign definite values to states.

Definition 13. Let A = (Q,B, Q̂,or,−→, ���, P,Ω) be a modal automaton.
For b ∈ B, define its associated valuation val(b) : Prop → 3 to be λ p ∈
Prop . predp(b). For a valuation v : Prop → 3, define its completion Compl(v)
as {w : Prop → 2 | w ≥ v}. With every state b ∈ B we associate a fresh set
C(b) = {bw | w ∈ Compl(val(b))} of states. The modal automaton τ2A(A) is
defined as follows.

– its set of or states is Q,
– its set of branch states is

⋃
b∈B C(b),

– its set of initial states is Q̂,
– its choice relation is {(q, bw) | (q, b) ∈ or, bw ∈ C(b)},
– its must transition relation is {(bw, q) | b −→ q, bw ∈ C(b)},
– its may transition relation is {(bw, q) | b ��� q, bw ∈ C(b)},
– for every p ∈ Prop and bw ∈ branch, predp(bw) = w(p), and
– its indexing function is λ q . 0. ��

Lemma 3. Let A be a modal automaton. Then £(A) = £(τ2A(A)).
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The kind of automata targeted by τ2A have actually been defined in [19], where
it is also shown that they can be translated back to (non-modal) automata.
We reuse their result here, to emphasize the close relationship between the use
of 3-valuedness for abstraction in verification, and developments in the field
of automata theory. In [19], the branch transitions from a state t which has
OR successors q1, . . . , qk are given as a first-order logic formula of the form
∃n1, . . . , nk. q1(n1) ∧ · · · ∧ qk(nk) ∧ ∀z. β(z) which specifies when a tree node
x is accepted from the automaton state t. The variables ni and z range over the
child nodes of x. The notation q(n) means that (the tree rooted at) child n is
accepted from state q, and β(z) is a conjunction of disjunctions of formulas of
the form q(n). Thus, the formula says that for every 1 ≤ i ≤ k, there exists a
child ni of x that is accepted from qi, and in addition the constraint β must hold
for all children of x. Note that the automata from Def. 2 are a special case where
the β is of the form ∃1 ≤ i ≤ k. qi(z). Furthermore, must and may transitions
can be recovered as well. Let Qmust = {q′1, . . . , q′l} be a subset of {q1, . . . , qk}.
The formula ∃n1, . . . , nl. q

′
1(n1)∧· · ·∧q′l(nl) ∧ ∀z ∃1 ≤ i ≤ k. qi(z) then specifies

that the states in Qmust act as must successors, while all qi are may successors
of t. Hence this special form of automaton is the same as a modal automaton
with must and may transitions, but in which all propositional valuations are
definite. In [19] it is shown that such automata can be translated back into
the restricted form of Def. 2, i.e., calling the translation τ2B, it is shown that
£(A) = £(τ2B(A)). Together with Lemma 3, this implies the correctness of τ2
which is defined as τ2A followed by τ2B .

Lemma 4. Let A be a modal automaton. Then £(A) = £(τ2(A)).

Finally, Theorem 5 follows easily from Lemma 2 and Lemma 4.

5 Maximal Model Theorems

In the previous sections we have proposed to use automata as the abstract ob-
jects in an abstraction framework for checking branching-time properties over
transition systems. In the resulting framework, the concrete and abstract ob-
jects do not live in strictly separated worlds: through the embedding Aut from
Definition 5, transition systems themselves are promoted to automata – be it
possibly infinite ones. It follows from Lemma 1 that the transition system and
its embedding satisfy the same branching time properties, regardless of whether
these are evaluated using the language inclusion or the simulation based defini-
tion. Furthermore, Lemma 1 and Theorem 2 together show that the abstraction
relation between the concrete and abstract domains can be embedded into the
abstraction order � over the abstract domain.

Another area that can benefit from this view is the study of maximal models.
There, we also consider objects ordered by an abstraction order which is such
that more-abstract objects satisfy fewer properties, relative to a given logic of
interest. A maximal model for a property is then a model for the property that is
maximally abstract. In abstraction frameworks such as the ones above, where the
concrete domain is embedded in the abstract domain, there is a close connection
between maximal models and completeness, made explicit below.
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Theorem 6. If every property has a finite maximal model, then the abstraction
framework is complete.

Proof. Let M be a model of property φ, and let maxφ be a finite maximal model
for φ. By definition of maximality, maxφ abstracts M . Thus, one can always pick
maxφ as a finite abstraction for M , ensuring completeness.

The converse is not necessarily true.Grumberg and Long showed [15] how
to construct finite, fair Kripke Structures that are maximal models for ACTL
(the universal fragment of CTL) through tableaux constructions; this was ex-
tended to ACTL∗ by Kupferman and Vardi [21], using a combination of tableaux
and automata-theoretic constructions. By the theorem above, it follows imme-
diately that fair simulation abstraction yields a complete framework for ACTL,
ACTL∗, and linear-time temporal logic (which can be considered to be a sub-
logic of ACTL∗). For the richer branching time logics that include existential
path quantification, however, there cannot be such maximal models.

Theorem 7. In abstraction frameworks for branching time logics that are based
on Kripke Structures or Kripke Modal Transition Systems, not every property
has a finite maximal model.

Proof. This follows immediately from Theorem 6 and the result of [6] showing
that these frameworks are incomplete for existential properties.

One can recover the guarantee of finite maximal models, however, by enlarging
the class of structures to include automata8. A Kripke Structure M is now viewed
as the automaton Aut(M).

Theorem 8. In the automaton abstraction frameworks based either on language
inclusion or on simulation, every property has a finite maximal model.

Proof. Consider a property given as a finite automaton B. Viewed as a structure,
B satisfies the property B in either framework. For any other model M of B,
letting the satisfaction and simulation relations coincide for automata models,
B is maximal in the abstraction order. Hence, B is a finite maximal model for
property B in either framework.

We can use the connection made in Theorem 8 to re-derive the maximal
model results for ACTL and ACTL∗; in fact, we can extend these easily to
the universal fragment of the mu-calculus, Aμ. It should be noted that Aμ is
more expressive than even ACTL∗ (e.g., “every even-depth successor satisfies
P” (νZ : p ∧ AX(AX(Z))) is expressible in Aμ but not in ACTL∗). The idea is
to (i) construct an equivalent finite automaton for a formula in this logic – this
is using known techniques from automata theory –, (ii) view this automaton as
a maximal model, following the theorem above, and then (iii) show that, due
to its special structure, it can be transformed back to a Kripke Structure. The
result is the following theorem. Its proof is omitted due to space constraints.
8 This solution is similar to the introduction of complex numbers: enlarging the solu-

tion space from real to complex numbers ensures that every non-constant polynomial
has a “zero”.
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Theorem 9. The fair simulation abstraction framework on Kripke Structures
is complete for Aμ.

6 Discussion

We have proposed to use tree automata as abstractions of countable transition
systems, in the verification of branching time properties. A tree automaton serves
as an abstraction for any transition system in its language. Expressing also
branching time properties as tree automata, the definition of when a property
holds on an abstraction can be defined as language inclusion, or alternatively as
simulation between automata. Both frameworks are trivially sound. The notion
of simulation between automata on infinite trees is novel to the best of our
knowledge. Like in the word case, it is easier to decide than language inclusion,
and is a sufficient condition for it.

Also completeness follows directly in both frameworks. The completeness
argument shows that, for a transition system S and a property Aϕ that is true
of it, the finite abstraction of S that can be used to demonstrate Aϕ is Aϕ

itself. This highlights the essence of the more elaborate completeness arguments
presented in [32, 20, 25, 6]. The use of Janin and Walukiewicz’ μ-automata, whose
languages are closed under bisimulation and therefore correspond naturally to
the μ-calculus, further simplifies the technical presentation.

Section 4 demonstrated how Kripke Modal Transition Systems can be trans-
formed into automata. Similar constructions can be carried out for the other
transition notions, such as disjunctive modal transition systems. The insight
gained from these transformations is that one can view the various proposals in
the literature as being but variations on automaton syntax, some more compact
than others. This point is implicit in our earlier paper [6], which demonstrates
that alternating tree automata – the most compact automaton notation – cor-
respond to Focused Transition Systems.

A key issue in the practice of verification via abstractions is how to auto-
matically obtain suitable abstractions. By the embedding results of Section 4,
any approach to the construction of abstractions (e.g. [30]) can be used in the
automaton-based framework. While the problem is undecidable in general, the
completeness result guarantees that a suitable automaton-as-abstraction always
exists.

Going beyond the technical benefits of automata, we feel that viewing au-
tomata as abstract objects, and realizing that known notions are but automata
in disguise, is a simple but profound shift of perspective that should enable many
fruitful connections between abstraction and automata theory.
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Abstract. This work presents game-based model checking for abstract
models with respect to specifications in μ-calculus, interpreted over a 3-
valued semantics. If the model checking result is indefinite (don’t know),
the abstract model is refined, based on an analysis of the cause for this
result. For finite concrete models our abstraction-refinement is fully au-
tomatic and guaranteed to terminate with a definite result true or false.

1 Introduction

This work presents a game-based [19] model checking approach for abstract
models with respect to specifications in the μ-calculus, interpreted over a 3-
valued semantics. In case the model checking result is indefinite (don’t know),
the abstract model is refined, based on an analysis of the cause for this result.
If the concrete model is finite then our abstraction-refinement is fully automatic
and guaranteed to terminate with a definite result (true or false).

Abstraction is one of the most successful techniques for fighting the state
explosion problem in model checking [3]. Abstractions hide some of the details
of the verified system, thus result in a smaller model. Usually, they are designed
to be conservative for true, meaning that if a formula is true of the abstract model
then it is also true of the concrete (precise) model of the system. However, if it
is false in the abstract model then nothing can be deduced of the concrete one.

The μ-calculus [12] is a powerful formalism for expressing properties of transi-
tion systems using fixpoint operators. Many verification procedures can be solved
by translating them into μ–calculus model checking [1]. Such problems include
(fair) CTL model checking, LTL model checking, bisimulation equivalence and
language containment of ω-regular automata.

In the context of abstraction, often only the universal fragment of μ-calculus
is considered [14]. Over-approximated abstract models are used for verification
of such formulae while under-approximated abstract models are used for their
refutation.

Abstractions designed for full μ-calculus [6] have the advantage of handling
both verification and refutation on the same abstract model. A greater advantage
is obtained if μ-calculus is interpreted w.r.t the 3-valued semantics [11, 10]. This
semantics evaluates a formula to either true, false or indefinite. Abstract models
can then be designed to be conservative for both true and false. Only if the
value of a formula in the abstract model is indefinite, its value in the concrete
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model is unknown. Then, a refinement is needed in order to make the abstract
model more precise. Previous works [13, 16, 17] suggested abstraction-refinement
mechanisms for various branching time logics over 2-valued semantics.

Many algorithms for μ-calculus model checking with respect to the 2-valued
semantics have been suggested [8, 20, 22, 5, 15]. An elegant solution to this prob-
lem is the game-based approach [19], in which two players, the verifier (denoted
∃) and the refuter (denoted ∀), try to win a game. A formula ϕ is true in a model
M iff the verifier has a winning strategy, meaning that she can win any play, no
matter what the refuter does. The game is played on a game graph, consisting of
configurations s ( ψ, where s is a state of the model M and ψ is a subformula
of ϕ. The players make moves between configurations in which they try to verify
or refute ψ in s. These games can also be studied as parity games [7] and we
follow this approach as well.

In model checking games for the 2-valued semantics, exactly one of the players
has a winning strategy, thus the model checking result is either true or false. For
the 3-valued semantics, a third value should also be possible. Following [18], we
change the definition of a game for μ-calculus so that a tie is also possible.

To determine the winner, if there is one, we adapt the recursive algorithm
for solving parity games by Zielonka [23]. This algorithm recursively computes
the set of configurations in which one of the players has a winning strategy. It
then concludes that in all other configurations the other player has a winning
strategy.

In our algorithm we need to compute recursively three sets, since there are
also those configurations in which none of the players has a winning strategy.
We prove that our algorithm always terminates and returns the correct result.

In case the model checking game results in a tie, we identify a cause for the
tie and try to eliminate it by refining the abstract model. More specifically, we
adapt the presented algorithm to keep track of why a vertex in the game is
classified as a tie. We then exploit the information gathered by the algorithm for
refinement. The refinement is applied only to parts of the model from which tie
is possible. Vertices from which there is a winning strategy for one of the players
are not changed. Thus, the refined abstract models do not grow unnecessarily.
If the concrete model is finite then our abstraction-refinement is guaranteed to
terminate with a definite result.

It is the refinement based on the algorithm which rules out the otherwise
interesting approach taken for example in [11, 10] in which a 3-valued μ-calculus
model checking problem is reduced to two 2-valued μ-calculus model checking
problems.

Organization of the paper. The 3-valued μ-calculus is introduced in the next
section. Then we describe the abstractions we have in mind. In Section 4, a 3-
valued model-checking game for μ-calculus is shown. We give a model-checking
algorithm for 3-valued games with a finite board in Section 5, and, explain how
to refine the abstract model, in case of an indefinite answer in Section 6. We
conclude in Section 7.
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2 The 3-Valued μ-Calculus

Let P be a set of propositional constants, and A be a set of action names. Every
a ∈ A is associated with a so-called must -action a! and a may-action a?. Let
A! = {a! | a ∈ A} and A? = {a? | a ∈ A}. A Kripke Modal Transition System
(KMTS) is a tuple T = (S, { x−→ | x ∈ A! ∪ A?}, L) where S is a set of states,
and x−→ ⊆ S × S for each x ∈ A! ∪ A? is a binary relation on states, s.t. for all
a ∈ Act: a!−−→ ⊆ a?−−→.

Let B3 = {⊥, ?,�} be partially ordered by ⊥ ≤ ? ≤ �. Then L : S → BP
3 ,

where BP
3 is the set of functions from P to B3. We use � to denote that a

proposition holds in a state, ⊥ for not holding, and ? if it cannot be determined
whether it holds or not.

A Kripke structure in the usual sense can be regarded as a KMTS by setting
a!−−→ = a?−−→ for all a ∈ A and not distinguishing them anymore. Furthermore, its

states labelling is over {⊥,�}.
Let V be a set of propositional variables. Formulae of the 3-valued modal

μ-calculus in positive normal form are given by

ϕ ::= q | ¬q | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | μZ.ϕ | νZ.ϕ

where q ∈ P , a ∈ A, and Z ∈ V . Let 3-Lμ denote the set of closed formulae
generated by the above grammar, where the fixpoint quantifiers μ and ν are
variable binders. We will also write η for either μ or ν. Furthermore we assume
that formulae are well-named, i.e. no variable is bound more than once in any
formula. Thus, every variable Z identifies a unique subformula fp(Z) = ηZ.ψ of
ϕ, where the set Sub(ϕ) of subformulae of ϕ is defined in the usual way.

Given variables Y, Z we write Y ≺ϕ Z if Z occurs freely in fp(Y ) in ϕ, and
Y <ϕ Z if (Y, Z) is in the transitive closure of ≺ϕ. The alternation depth ad(ϕ)
of ϕ is the length of a maximal <ϕ-chain of variables in ϕ s.t. adjacent variables
in this chain have different fixpoint types.

The semantics of a 3-Lμ formula is an element of BS
3 —the functions from S

to B3—which forms a boolean lattice when equipped with the following partial
order: let f, g : S → B3. f � g iff ∀s ∈ S : f(s) ≤ g(s). Joins (meets) in this
lattice are denoted by f � g (f � g, resp.). The complement of f , written f is
defined by f(s) := f(s) for s ∈ S where ⊥ and � are complementary to each
other, and ? =?.

Then the semantics [[ϕ]]Tρ of a 3-Lμ formula ϕ w.r.t. a KMTS T = (S, { x−→ |
x ∈ A! ∪ A?}, L) and an environment ρ : V → BS

3 , which explains the meaning
of free variables in ϕ, is an element of BS

3 . We assume T to be fixed and do not
mention it explicitly anymore. With ρ[Z �→ f ] we denote the environment that
maps Z to f and agrees with ρ on all other arguments. Later, when only closed
formulae are considered, we will also drop the environment from the semantic
brackets.

[[q]]ρ := λs.L(s)(q)
[[¬q]]ρ := λs.L(s)(q)
[[Z]]ρ := ρ(Z)
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[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ � [[ψ]]ρ
[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ � [[ψ]]ρ

[[〈a〉ϕ]]ρ := λs.

⎧⎪⎨⎪⎩
� , if ∃t ∈ S, s.t. s a!−−→ t and [[ϕ]]ρ(t) = �
⊥ , if ∀t ∈ S, if s a?−−→ t then [[ϕ]]ρ(t) = ⊥
? , otherwise

[[[a]ϕ]]ρ := λs.

⎧⎪⎨⎪⎩
� , if ∀t ∈ S, if s a?−−→ t then [[ϕ]]ρ(t) = �
⊥ , if ∃t ∈ S, s.t. s a!−−→ t and [[ϕ]]ρ(t) = ⊥
? , otherwise

[[μZ.ϕ]]ρ := ⊔{f | [[ϕ]]ρ[Z �→f ] � f}
[[νZ.ϕ]]ρ :=

⊔
{f | f � [[ϕ]]ρ[Z �→f ]}

Note that s a!−−→ t implies s a?−−→ t.
The functionals λf.[[ϕ]]ρ[Z �→f ] : BS

3 → BS
3 are monotone w.r.t. � for any Z,ϕ

and S. According to [21], least and greatest fixpoints of these functionals exist.
Approximants of 3-Lμ formulae are defined in the usual way: if fp(Z) = μZ.ϕ

then Z0 := λs.⊥, Zα+1 := [[ϕ]]ρ[Z �→Zα] for any ordinal α and any environment
ρ, and Zλ := ⊔α<λ Zα for a limit ordinal λ. Dually, if fp(Z) = νZ.ϕ then
Z0 := λs.�, Zα+1 := [[ϕ]]ρ[Z �→Zα], and Zλ :=

⊔
α<λ Zα.

Theorem 1. [21] For all KMTS T with state set S there is an α ∈ Ord s.t. for
all s ∈ S we have: if [[ηZ.ϕ]]ρ(s) = x then Zα(s) = x.

3 Abstraction

We use Kripke Modal Transition Systems [11, 9] as abstract models that preserve
satisfaction and falsification of 3-Lμ formulae.

Let TC = (SC , { a−→C | a ∈ A}, LC) be a (concrete) Kripke structure. Let SA

be a set of abstract states and γ : SA → 2SC a total concretization function that
maps each abstract state to the set of concrete states it represents. An abstract
model, a KMTS TA = (SA, { x−→A | x ∈ A! ∪ A?}, LA), can then be defined as
follows.

The labelling of an abstract state is defined in accordance with the labelling
of all the concrete states it represents. For p ∈ P : LA(sa)(p) = � (⊥) only if
∀sc ∈ γ(sa) : LC(sc)(p) = � (⊥). In the remaining cases LA(sa)(p) = ?.

The may-transitions in an abstract model are computed such that every
concrete transition between two states is represented by them: For every action
a ∈ A, if ∃sc ∈ γ(sa) and ∃s′c ∈ γ(s′a) such that sc

a−→C s′c, then there exists a
may transition sa

a?−−→A s′a. Note that it is possible that there are additional may
transitions as well. The must -transitions, on the other hand, represent concrete
transitions that are common to all the concrete states that are represented by
the source abstract state: a must -transition sa

a!−−→A s′a exists only if ∀sc ∈ γ(sa)
∃s′c ∈ γ(s′a) such that sc

a−→C s′c. Note that it is possible that there are less must
transitions than allowed by this rule. That is, the may and must transitions do
not have to be exact, as long as they maintain these conditions.
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s � ψ0 ∨ ψ1

s � ψi
∃ : i ∈ {0, 1} s � ψ0 ∧ ψ1

s � ψi
∀ : i ∈ {0, 1}

s � ηZ.ϕ

s � Z
∃ s � Z

s � ϕ
∃ : if fp(Z) = ηZ.ϕ

s � 〈a〉ϕ
t � ϕ

∃ : s
a!−−→ t or s

a?−−→ t
s � [a]ϕ

s � ϕ
∀ : s

a!−−→ t or s
a?−−→ t

Fig. 1. The model checking game rules for 3-Lμ.

Theorem 2. [9] Let T be a Kripke structure and let T ′ be a KMTS obtained
from T with the abstraction process described above. Let s be a state of T and
s′ its corresponding abstract state in T ′. For all closed ϕ ∈ 3-Lμ: [[ϕ]]T

′
(s′) �= ?

implies [[ϕ]]T (s) = [[ϕ]]T
′
(s′).

4 Model Checking Games for 3-Lμ

The model checking game ΓT (s0, ϕ0) on a KMTS T with state set S, initial
state s0 ∈ S and a 3-Lμ formula ϕ0 is played by players ∃ and ∀ in order
to determine the truth value of ϕ0 in s0, cf. [19]. Configurations are elements
of C ⊆ S × Sub(ϕ0), and written t ( ψ. Each play of ΓT (s0, ϕ0) is a maximal
sequence of configurations that starts with s0 ( ϕ0. The game rules are presented
in Figure 1. Each rule is marked by ∃ / ∀ to indicate which player makes the
move. A rule is applied when the player is in configuration Ci, which is of the
form of the upper part of the rule. Ci+1 is then the configuration in the lower
part of the rule. The rules shown in the first and third lines present a choice
which the player can make. Since no choice is possible when applying the rules
shown in the second line, we arbitrarily assign one player, let us say ∃, and call
the rules deterministic. If no rule can be applied the play terminates.

Definition 1. A play is called ∃-consistent, resp. ∀-consistent, if Player ∃, resp.
Player ∀, never chooses a transition of type a?−−→ for some a ∈ A.

Player ∃ wins an ∃-consistent play C0, C1, . . . iff

1. there is an n ∈ N, s.t. Cn = t ( q with L(t)(q) = � or Cn = t ( ¬q with
L(t)(q) = ⊥, or

2. there is an n ∈ N, s.t. Cn = t ( [a]ψ and there is no t′ ∈ S s.t. t a?−−→ t′, or
3. the outermost variable that occurs infinitely often is of type ν.

Player ∀ wins a ∀-consistent play C0, C1 . . . iff
4. there is an n ∈ N, s.t. Cn = t ( q with L(t)(q) = ⊥ or Cn = t ( ¬q with

L(t)(q) = �, or
5. there is an n ∈ N, s.t. Cn = t ( 〈a〉ψ and there is no t′ ∈ S s.t. t a?−−→ t′, or
6. the outermost variable that occurs infinitely often is of type μ.

In all other cases, the result of the play is a tie.
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Definition 2. The truth value of a configuration t ( ψ in the context of ρ is
the value of [[ψ]]ρ(t). The value � improves both ? and ⊥, while ? only improves
⊥. On the other hand, x worsens y iff y improves x.

An inspection of game rules and semantics shows: The deterministic rules pre-
serve the truth value in a move from one configuration to another. Player ∃ can-
not improve it but can preserve �. Player ∀ cannot worsen it but can preserve ⊥.

A strategy for player p is a partial function ζ : C → C, such that its domain is
the set of configurations where player p moves. Player p plays a game according
to a strategy ζ if all his choices agree with ζ. A strategy for player p is called
a winning strategy if player p wins every play where he plays according to this
strategy.

Theorem 3. Given a KMTS T = (S, { x−→ | x ∈ A!∪ Act?}, L), an s ∈ S, and
a closed ϕ ∈ 3-Lμ, we have:

(a) [[ϕ]]T (s) = � iff Player ∃ has a winning strategy for ΓT (s, ϕ),
(b) [[ϕ]]T (s) = ⊥ iff Player ∀ has a winning strategy for ΓT (s, ϕ),
(c) [[ϕ]]T (s) = ? iff neither Player ∃ nor Player ∀ has a winning strategy for

ΓT (s, ϕ).

Theorem 4. Let T = (S, { x−→ | x ∈ A}, L) be a Kripke structure with s ∈ S
and T ′ = (S′, { x−→ | x ∈ A!∪A?}, L′) be an abstraction of T with concretization
function γ. Let s′ ∈ S′ with s ∈ γ(s′).

(a) If Player ∃ has a winning strategy for ΓT ′(s′, ϕ) then T , s |= ϕ.
(b) If Player ∀ has a winning strategy for ΓT ′(s′, ϕ) then T , s �|= ϕ.

5 Winning Model Checking Games for 3-Lμ

The previous section relates model checking games with the semantics of 3-Lμ.
An algorithm estimating the winner of the game and a winning strategy is yet to
be given. Note that the result of the previous section also holds for infinite-state
systems. From now on, however, we restrict to finite KMTS.

For the sake of readability we will deal with parity games. Instead of Player
∃ and ∀, we talk of Player 0 and Player 1, resp., and use σ to denote Player 0
or 1 and σ̄ = 1 − σ for the opponent1.

Parity games are traditionally used to describe the model checking game for
μ-calculus. In order to describe our game for the 3-Lμ, we need to generalize them
in the following way: (1) we have two types of edges: must edges and may edges,
where every must edge is also a may edge, (2) terminal configurations (dead-end)
are classified as either winning for one player, or as tie-configurations, and (3) a
consistency requirement is added to the winning conditions.

A generalized parity game G = (A,χ) has an arena A = (V0, V1, Vtie ,
must−→,

may−→)
for which every v ∈ Vtie is a dead-end and must−→⊆ may−→. The set of vertices is denoted
1 The numbers 0 and 1 have parities and this is more intuitive for this notion of game.
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by V = V0 2 V1 2 Vtie . χ : V → N is a priority function that maps each vertex
v ∈ V to a priority.

A play is a maximal sequence of vertices v0, . . . , where Player σ moves from
vi to vi+1 when vi ∈ Vσ and (vi, vi+1) ∈

may−→. It is called σ-consistent iff Player σ
chooses only moves that are (also) in must−→. A σ-consistent play is winning for
Player σ if

– it is finite and ends in Vσ, or
– it is infinite and the maximal priority occurring infinitely often is even when
σ = 0 or odd when σ = 1.

All other plays are a tie.
A model checking game is a generalized parity game (see also [7]): Set V0

to the configurations in which ∃ moves together with configurations in which
the play terminates and ∃ wins. Set V1 to the configurations in which ∀ moves,
together with configurations in which the play terminates and ∀ wins. The re-
maining configurations, i.e. the ones of the form t ( q or t ( ¬q with L(t)(q) =
L(t)(¬q) = ? are set to Vtie . must−→ comprises the moves based on the rules shown
in the first two lines in Figure 1 or when a a!-transition is taken while may−→ com-
prises all possible moves. The priority of a vertex t ( ϕ is only non-zero when
ϕ is a fixpoint formula. Then, it is given by the alternation depth of ϕ, possibly
plus 1 to assure that it is even iff the outermost fixpoint variable in ϕ is ν. It is
easy to see that the notions of winning and winning strategies for both notions
of games coincide.

We define an algorithm for solving generalized parity games. Our algorithm
partitions V into three sets: W0,W1,Wtie , where for σ ∈ {0, 1}, the set Wσ

consists of all the vertices from which Player σ has a winning strategy and the
set Wtie consists of all the vertices from which none of the players has a winning
strategy. When applied to model checking whether s0 |= ϕ0, we check when the
algorithm terminates whether v = s0 ( ϕ0 is in W0, W1, or Wtie and conclude
true, false , or indefinite, respectively.

We adapt the recursive algorithm for solving parity games by Zielonka [23].
Its recursive nature makes it easy to understand and analyze, allows simple
correctness proofs, and can be used as basis for refinement.

The main idea of the algorithm presented in [23] is as follows. In each recursive
call, σ denotes the parity of the maximal priority in the current game. The
algorithm computes the set Wσ̄ iteratively and the remaining vertices form Wσ.
In our generalized game, we again compute Wσ̄ iteratively, but we then add
a phase where we also compute Wtie iteratively. Only then, we set Wσ to the
remaining vertices.

We start with some definitions. For X ⊆ V , the subgraph of G induced by X ,
denoted by G[X ], is (A|X , χ|X) where A|X = (V ′

0 , V
′
1 , Vtie ∩X,

must−→ ∩X ×X,
may−→

∩X ×X) and χ|X is the restriction of χ to X . For σ ∈ {0, 1}, let Bσ denote the
set of non-dead-end vertices that belong to Vσ in G, but become dead-ends in
G[X ]. Then, in G[X ], V ′

σ = ((Vσ \Bσ)∪Bσ̄)∩X . That is, vertices that become
dead-ends, move to the set of vertices of the other player.
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G[X ] is a subgame of G w.r.t. σ, for σ ∈ {0, 1}, if all non-dead-end vertices
of Vσ in G remain non-dead-ends in G[X ]. It is a subgame of G if it is a subgame
w.r.t. to both players. That is, if G[X ] is a subgame, then every dead-end in it
is also a dead-end in G.

For σ ∈ {0, 1} and X ⊆ V , we define the must-attractor set Attr!σ(G,X) ⊆ V
and the may-attractor set Attr?σ(G,X) ⊆ V of Player σ in G.

The must-attractor Attr!σ(G,X) ⊆ V is the set of vertices from which
Player σ has a strategy in the game G to attract the play to X or a dead-
end in Vσ while maintaining consistency. The may-attractor Attr?σ(G,X) ⊆ V
is the set of vertices from which Player σ has a strategy in G to either (1) attract
the play to X or a dead-end in Vσ ∪ Vtie , possibly without maintaining his own
consistency or (2) to prevent σ̄ from playing consistently. In other words, if σ̄
plays consistently, σ can attract the play to one of the vertices described in (1).

Let D0, D1, Dtie denote the dead-end vertices of V0, V1, Vtie respectively (i.e.,
Dtie = Vtie). It can be shown that the following is an equivalent definition of the
sets Attr!σ(G,X) and Attr?σ(G,X).

Attr!0σ(G,X) = X ∪Dσ

Attr!i+1
σ (G,X) = Attr!iσ(G,X)

∪ {v ∈ Vσ \Dσ | ∃v′.v must−→ v′ ∧ v′ ∈ Attr!iσ(G,X)}
∪ {v ∈ Vσ̄ \Dσ̄ | ∀v′.v may−→ v′ =⇒ v′ ∈ Attr!iσ(G,X)}

Attr!σ(G,X) =
⋃
{Attr!iσ(G,X) | i ≥ 0}

Attr?0
σ(G,X) = X ∪Dσ ∪Dtie

Attr?i+1
σ (G,X) = Attr?i

σ(G,X)
∪ {v ∈ Vσ \Dσ | ∃v′.v may−→ v′ ∧ v′ ∈ Attr?i

σ(G,X)}
∪ {v ∈ Vσ̄ \Dσ̄ | ∀v′.v must−→ v′ =⇒ v′ ∈ Attr?i

σ(G,X)}
Attr?σ(G,X) =

⋃
{Attr?i

σ(G,X) | i ≥ 0}
The latter definition of the attractor sets provides a method for computing

them. As i increases, we calculate Attr!iσ(G,X) or Attr?i
σ(G,X) until it is the

same as Attr!i−1
σ (G,X) or Attr?i−1

σ (G,X), respectively.
Note that Attr!iσ(G,X) ⊆ Attr?i

σ(G,X), and that for X ′ = V \Attr?σ(G,X)
we have X ′ = Attr!σ̄(G,X ′). Thus, the corresponding must and may attractors
partition V .

Solving the Game

We present a recursive algorithm SolveGame(G) (see Algorithm 3) that computes
the sets W0, W1, and Wtie for a parity game G. Let n be the maximum priority
occurring in G.

n = 0: W1 = Attr!1(G, ∅)
W0 = V \ Attr?1(G, ∅)
Wtie = Attr?1(G, ∅) \ Attr!1(G, ∅)

Since the maximum priority of G is 0, Player 1 can only win G on dead-
ends in V1 or vertices from which he can consistently attract the play to such
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Algorithm 1 Winning vertices for the opponent: ComputeOpponentWin

1 Function ComputeOpponentWin(G, σ, n)
2 Wσ̄ := ∅.
3 repeat
4 W ′

σ̄ := Wσ̄

5 Xσ̄ := Attr!σ̄(G, Wσ̄)
6 Xσ := V \Xσ̄

7 N := {v ∈ Xσ | χ(v) = n}
8 Y := Xσ \ Attr?σ(G[Xσ], N)
9 (Y0, Y1, Ytie) := SolveGame(G[Y ])

10 Wσ̄ := Xσ̄ ∪ Yσ̄

11 until W ′
σ̄ = Wσ̄

12 return Wσ̄

a dead-end. This is exactly Attr!1(G, ∅). From the rest of the vertices Player 1
does not have a winning strategy. For vertices in V \ Attr?1(G, ∅), Player 0 can
always avoid reaching dead-ends in V1 ∪ Vtie , while playing consistently. Since
the maximum priority in this subgraph is 0, it is easy to see that she wins in
such vertices. The remaining vertices in Attr?1(G, ∅) \ Attr!1(G, ∅) are a subset
of Attr?1(G, ∅), which is why Player 0 does not win from them (and neither
does Player 1, as previously claimed). Therefore none of the players wins in
Attr?1(G, ∅) \ Attr!1(G, ∅).

n ≥ 1: We assume that we can solve every game with maximum priority smaller
than n. Let σ = n mod 2 be the player that wins if the play visits infinitely
often the maximum priority n.

We first compute Wσ̄ in G. This is done by the function ComputeOpponentWin
shown in Algorithm 1.

Intuitively, in each iteration we hold a subset of the winning region of Player σ̄.
We first extend it to Xσ̄ by using the must-attractor set of Player σ̄ (which
ensures his consistency, line 5). From the remaining vertices, we disregard those
from which Player σ can attract the play to a vertex with maximum priority
n, perhaps by giving up his consistency. Left are the vertices in Y (line 8) and
Player σ is basically trapped in it. He can only “escape” from it to Xσ̄. Thus,
we can add the winning region of Player σ̄ in G[Y ] to his winning region in G.
This way, each iteration results in a better (bigger) under approximation of the
winning region of Player σ̄ in G, until the full region is found (line 11). The
correctness proof of the algorithm is sketched in the following.

Lemma 1. 1. For every Xσ as used in Algorithm 1, G[Xσ] is a subgame
w.r.t. σ.

2. For every Y as used in Algorithm 1, G[Y ] is a subgame.
Moreover, the maximum priority in G[Y ] is smaller than n, which is why the

recursion terminates.
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Lemma 2. At the beginning of each iteration in Algorithm 1, Wσ̄ is a winning
region for Player σ̄ in G.

Proof. The proof is by induction. The base case is when Wσ̄ = ∅ and the claim
holds. Suppose that at the beginning of the ith iteration Wσ̄ is a winning region
for Player σ̄ in G. We show that it continues to be so at the end of the iteration
and therefore at the beginning of the i + 1 iteration.

Clearly, Xσ̄ = Attr!σ̄(G,Wσ̄) is also a winning region for Player σ̄ in G: by
simply using his strategy to attract the play to Dσ̄ or to Wσ̄ (where he wins)
while being consistent, and from there using the winning strategy of Wσ̄ in G.

We now show that Yσ̄ is also a winning region of Player σ̄ in G. We know
that it is a winning region for him in G[Y ] (by the correctness of the algorithm
SolveGame for games with a maximum priority smaller than n). As for G, for
every vertex in Yσ̄, as long as the play remains in Y , Player σ̄ can use his
strategy for G[Y ]. Since G[Y ] is a subgame, Player σ̄ will always be able to
stay within Y in his moves in G and if the play stays there, then he wins (since
he uses his winning strategy). Clearly Player σ cannot move from Y to Xσ \
Y = Attr?σ(G[Xσ], N). Otherwise the vertex v ∈ Y ⊆ Xσ where this is done
belongs to Attr?σ(G[Xσ],Attr?σ(G[Xσ ], N)) (because the same move is possible
in G[Xσ]). Hence v belongs to Attr?σ(G[Xσ ], N) as well, in contradiction to
v ∈ Y . Finally, if Player σ moves to V \ Xσ = Xσ̄, then Player σ̄ will use his
strategy for Xσ̄ in G and also win.

We conclude that Xσ̄ ∪ Yσ̄ is a winning region for Player σ̄ in G. ��
This lemma ensures that the final result Wσ̄ of ComputeOpponentWin is in-

deed a subset of the winning region of Player σ̄ in G. It remains to show that
this is actually an equality, i.e. that no winning vertices are missing.

Lemma 3. When W ′
σ̄ = Wσ̄, then V \Wσ̄ is a non-winning region for Player σ̄

in G.

Proof. When W ′
σ̄ = Wσ̄, it must be the case that the last iteration of SolveGame

ended with Yσ̄ = ∅, and Wσ̄ = Xσ̄. Therefore it suffices to show that V \Xσ̄ = Xσ

is a non-winning region for Player σ̄ in G.
Clearly, Player σ̄ cannot move from Xσ to Xσ̄ without compromising his con-

sistency. Otherwise the vertex v ∈ Xσ where this is done belongs to Attr!σ̄(G,Xσ̄)
and so to Xσ̄ as well. This contradicts v ∈ Xσ. Hence, Player σ̄ cannot win by
moving to Xσ̄. As G[Xσ] is a subgame w.r.t. σ, Player σ is never obliged to move
to Xσ̄.

Consider the case where the play stays in Xσ. In order to prevent Player σ̄
from winning, Player σ will play as follows. If the current configuration is in Y ,
then Player σ will use his strategy on G[Y ] for preventing Player σ̄ from winning
(such a strategy exists since Yσ̄ = ∅). If the play visits a vertex v ∈ N , then
Player σ will move to any successor v′ inside Xσ. Such a successor must exist
since vertices in N are never dead-ends in G. Furthermore, they belong to Vσ,
thus since G[Xσ] is a subgame w.r.t. σ (by Lemma 1.1), they remain non-dead-
ends in G[Xσ]. If the play visits Attr?σ(G[Xσ ], N) \ N , then Player σ will use
his strategy to either cause Player σ̄ to be inconsistent, or to attract the play
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Algorithm 2 Vertices in which no win is possible: ComputeNoWin

13 Function ComputeNoWin(G, σ, n,Wσ̄)
14 nowin := Wσ̄.
15 repeat
16 nowin′ := nowin
17 Xσ̄ := Attr?σ̄(G, nowin)
18 Xσ := V \Xσ̄

19 N := {v ∈ Xσ | χ(v) = n}
20 Y := Xσ \ Attr!σ(G[Xσ], N)
21 (Y0, Y1, Ytie) := SolveGame(G[Y ])
22 nowin := Xσ̄ ∪ Yσ̄ ∪ Ytie

23 until nowin′ = nowin
24 return nowin

in a finite number of steps to N or D′
σ ∪ Dtie (such a strategy exists by the

definition of a may-attractor set). We use D′
σ to denote the dead-end vertices

of Player σ in G[Xσ]. Since G[Xσ] is not necessarily a subgame w.r.t. σ̄, D′
σ

may contain non-dead-end vertices of Player σ̄ from G that became dead-ends
in G[Xσ]. However, this means that all their successors are in Xσ̄, and as stated
before Player σ̄ cannot move consistently from Xσ to Xσ̄, thus he cannot win in
them in G as well.

It is easy to see that this strategy indeed prevents Player σ̄ from winning. ��

Corollary 1. The result of ComputeOpponentWin is the full winning region of
Player σ̄ in G.

In the original algorithm in [23], given the set Wσ̄, we could conclude that
all the remaining vertices form the winning region of Player σ in G. Yet, this
is not the case here. We now divide the remaining vertices into Wtie and Wσ.
We first compute the set nowin of vertices in G from which Player σ does not
have a winning strategy, i.e. Player σ̄ has a strategy that prevents Player σ from
winning. This is again done iteratively, by the function ComputeNoWin, given as
Algorithm 2.

The algorithm ComputeNoWin resembles the algorithm ComputeOpponentWin.
The initialization here is to Wσ̄, since this is clearly a non-winning region of
Player σ. Furthermore, in this case after the recursive call to SolveGame(G[Y ]),
the set Xσ̄ is extended not only by the winning region of Player σ̄ in G[Y ], Yσ̄, but
also by the tie-region Ytie (line 22). Apart from those differences, one can see that
the only difference is that the use of a must-attractor set is replaced by a may-
attractor set and vice versa. This is because in the case of ComputeOpponentWin
we are after a definite win of Player σ̄, whereas in the case of ComputeNoWin we
also allow a tie, therefore may edges take a different role. Namely, in this case,
when we extend the current set nowin (line 17), we use a may-attractor set of
Player σ̄ because when our goal is to prevent Player σ from winning, we allow
Player σ̄ to be inconsistent. On the other hand, in the computation of Y we now
remove from Xσ̄ only the vertices from which Player σ can consistently attract
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the play to the maximum priority (using the must-attractor set, line 20). This is
because only such vertices cannot contribute to the goal of preventing Player σ
from winning. Other vertices where he can reach the maximum priority, but only
at the expense of consistency can still be of use for this goal.

Lemma 4. 1. For every Xσ as used in Algorithm 2, G[Xσ] is a subgame.
2. For every Y as used in Algorithm 2, G[Y ] is a subgame.

Again, the maximum priority in G[Y ] is smaller than n, which is why the
recursion terminates.

Lemma 5. At the beginning of each iteration, the set nowin is a non-winning
region for Player σ in G.

This lemma that can be shown with a careful analysis ensures that the final
result nowin of ComputeNoWin is indeed a subset of the non-winning region of
Player σ in G. It remains to show that no non-winning vertices are missing.

Lemma 6. When nowin′ = nowin, then V \ nowin is a winning region for
Player σ in G.

Proof. When nowin′ = nowin, it must be the case that the last iteration of
SolveGame ended with Yσ̄ = Ytie = ∅, and nowin = Xσ̄. Therefore it suffices to
show that V \Xσ̄ = Xσ is a winning region for Player σ in G.

Clearly, Player σ̄ cannot move from Xσ to Xσ̄. Otherwise the vertex v ∈ Xσ

where this is done belongs to Attr?σ̄(G,Xσ̄) and therefore to Xσ̄ as well. This
contradicts v ∈ Xσ. Hence, Player σ̄ is “trapped” in Xσ and as G[Xσ] is a
subgame, Player σ is never obliged to move to Xσ̄.

Consider the case where the play stays in Xσ. In order to win, Player σ
will play as follows. If the current configuration is in Y , then Player σ will
use his winning strategy on G[Y ] (such a strategy exists since Yσ̄ = Ytie = ∅
and Yσ = Y ). If the play visits a vertex v ∈ N , then Player σ will move to
a must successor v′ inside Xσ. Such a successor exists because otherwise v ∈
Attr?σ̄(G,Xσ̄) and hence also in Xσ̄, in contradiction to v ∈ N ⊆ Xσ. If the
play visits Attr!σ(G[Xσ], N) \N , then Player σ will attract it in a finite number
of steps to N or Dσ, while being consistent.

This strategy ensures that Player σ is consistent and is indeed winning. ��

Corollary 2. ComputeNoWin returns the full non-winning region of Player σ
in G.

We can now conclude that the remaining vertices in V \ nowin form the full
winning region of Player σ in G, and the tie region in G is exactly nowin \Wσ̄.
This is the set of vertices from which neither player wins.

Solving the game is now achieved by Function SolveGame shown in Algo-
rithm 3.

We have suggested an algorithm for computing the winning (and non-winning)
regions of the players. The correctness proofs also show how to define strategies
for the players. Yet, we omit this discussion due to space limitations. The algo-
rithm can also be used for checking a concrete system in which all may-edges
are also must-edges and Vtie = ∅.
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Algorithm 3 The main function: SolveGame

25 Function SolveGame(G)
26 n := max{χ(v) | v ∈ V }
27 if n = 0 then // return (W0, W1, Wtie)
28 return (V \ Attr?1(G, ∅), Attr!1(G, ∅), Attr?1(G, ∅) \ Attr!1(G, ∅))
29 else
30 σ := n mod 2
31 Wσ̄ := ComputeOpponentWin(G, σ, n)
32 Wσ := V \ ComputeNoWin(G, σ, n, Wσ̄)
33 Wtie := V \ (Wσ̄ ∪Wσ)
34 return (W0, W1, Wtie)

Remark 1. Let G be a parity game in which Vtie = ∅ and all edges are must.
Then Wtie computed by the algorithm SolveGame is empty.

Complexity. Let l and m denote the number of vertices and edges of G. Let
n be the maximum priority. A careful analysis shows that the algorithm is in
O((l + m)n+1).

Theorem 5. Function SolveGame computes the winning regions (W0,W1,Wtie)
for a given parity game in time exponential in the maximal priority. Additionally,
it can be used to determine the winning strategy for the corresponding winner.

We conclude that when applied to a model checking game ΓT (s0, ϕ0), the
complexity of SolveGame is exponential in the alternation depth of ϕ0.

6 Refinement of Generalized Parity Games

Assume we are interested to know whether a concrete state sc satisfies a given
formula ϕ. Let (W0,W1,Wtie) be the result of the previous algorithm for the
parity game obtained by the model checking game. Assume the vertex v = sa (
ϕ, where sa is the abstract state of sc, is in W0 or W1. Then the answer is clear:
sc |= ϕ if v ∈ W0 and sc �|= ϕ if v ∈ W1. Otherwise, the answer is indefinite and
we have to refine the abstraction to get the answer.

As in most cases, our refinement consists of two parts. First, we choose a
criterion telling us how to split abstract states. We then construct the refined
abstract model using the refined abstract state space. In this section we study
the first part.

Given that v ∈ Wtie , our goal in the refinement is to find and eliminate at
least one of the causes of the indefinite result. Thus, the criterion for splitting
the abstract states is obtained from a failure vertex. This is a vertex v′ = s′a ( ϕ′

s.t. (1) v′ ∈ Wtie ; (2) the classification of v′ to Wtie affects the indefinite result
of v; and (3) the indefinite classification of v′ can be changed by splitting it. The
latter requirement means that v′ itself is responsible for introducing (some) un-
certainty. The others demand that this uncertainty is relevant to the result in v.
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The game solving algorithm is adapted to remember for each vertex in Wtie

a failure vertex, and a failure reason. We distinguish between the case where
n = 0 and the case where n ≥ 1 in SolveGame.

n = 0: In this case the set Wtie is computed by Attr?1(G, ∅)\W1. Note that W1

is already updated when the computation of Attr?1(G, ∅) starts. We now enrich
the computation of Attr?1(G, ∅) to record failure information for vertices which
are not in W1 and thus will be in Wtie .

In the initialization we have two possibilities: (1) vertices in D1, which are
clearly not in Wtie , thus no additional information is needed; and (2) vertices in
Dtie , for which the failure vertex and reason are the vertex itself [failDE].

As for the iteration, suppose we have Attr?i
1(G, ∅), with the additional infor-

mation attached to every vertex in it which is not in W1. We now compute the
set Attr?i+1

1 (G, ∅). Let v′ be a vertex that is added to Attr?i+1
1 (G, ∅). If v′ ∈ W1,

then no information is needed. Otherwise, we do the following.
1. If v′ ∈ V1 and there exists a may edge v′

may−→ v′′ s.t. v′′ ∈ W1, then v′ is a
failure state, with this edge being the reason [failP1].

2. If v′ ∈ V0 and has a may edge v′
may−→ v′′ s.t. v′′ �∈ Attr?i

1(G, ∅), then v′ is a
failure state, with this edge being the reason [failP0].

3. Otherwise, there exists a may (that is possibly also a must) edge v′
may−→ v′′

s.t. v′′ ∈ Attr?i
1(G, ∅) \W1. The failure state and reason of v′ are those of

v′′.

Note that the order of the “if” statements in the algorithm determines the failure
state returned by the algorithm. Different heuristics can be applied regarding
their order. A careful analysis shows the following.

Lemma 7. The computation of failure vertices for n = 0 is well defined, mean-
ing that all the possible cases are handled. Furthermore, if the failure reason
computed by it is a may edge, then this edge is not a must edge.

Intuitively, during each iteration of the computation, if the vertex v′ ∈ Wtie

that is added to Attr?i+1
1 (G, ∅) is not responsible for introducing the indefinite

result (cases 1 and 2), then the computation greedily continues with a vertex in
Wtie that affects its indefinite classification (case 3).

There are three possibilities where we say that the vertex itself is responsible
for ? and consider it a failure vertex: failDE, failP1 and failP0. For a vertex in
Vtie (case failDE), the failure reason is clear. Consider case failP1. In this case
v′ ∈ V1 is considered a failure vertex, with the may edge to v′′ ∈ W1 being the
failure reason. By Lemma 7 we have that it is not a must edge. The intuition
for v′ being a failure vertex is that if this edge was a must edge, it would change
the classification of v′ to W1. If no such edge existed, then v′ would not be
added to Attr?i+1

1 (G, ∅) and thus to Wtie . Finally, consider case failP0. In this
case v′ ∈ V0 has a may edge to v′′ which is still unclassified at the time v′ is
added to Attr?1(G, ∅). This edge is considered a failure reason because if it was
a must edge rather than a may edge then v′ would remain unclassified as well
for at least one more iteration. Thus it would have a better chance to eventually
remain outside the set Attr?i

1(G, ∅) until the fixpoint is reached, changing the
classification of v′ to W0.
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n ≥ 1: In this case the set Wtie is computed by V \ (Wσ̄ ∪Wσ). This equals
ComputeNoWin(G, σ, n, Wσ̄) \Wσ̄, where Wσ̄ is already updated when the com-
putation of ComputeNoWin(G, σ, n, Wσ̄) starts. Similarly to the previous case, we
enrich the computation of ComputeNoWin(G, σ, n, Wσ̄), and remember a failure
vertex for each vertex which is not in Wσ̄ and thus will be in Wtie .

In each iteration of ComputeNoWin the vertices added to the computed set
are of three types: Xσ̄, Yσ̄ and Ytie .

The set Xσ̄ is computed by Attr?σ̄(G,nowin). Thus in order to find failure
vertices for such vertices that are not in Wσ̄ we use an enriched computation of
the may-attractor set, as described in the case of n = 0. This time the role of W1

is replaced by Wσ̄, 0 is replaced by σ and 1 by σ̄. Furthermore, in the initialization
of the computation we now also have the set nowin from the previous iteration,
for which we already have the required information.

Vertices in Ytie already have a failure vertex and reason, recorded during the
computation of SolveGame(G[Y ]).

We now explain how to handle vertices in Yσ̄. Such vertices have the property
that Player σ̄ wins from them in G[Y ]. Hence, as long as the play stays in G[Y ],
Player σ̄ wins. Furthermore, Player σ̄ can always stay in G[Y ] in his moves. Thus,
for a vertex v′ in Yσ̄ that is not in Wσ̄ it must be the case that Player σ can force
the play out of G[Y ] and into (V \Y )\Wσ̄ (If the play reaches Wσ̄ then Player σ̄
can win after all). Thus, v′ ∈ Attr?σ(G, (V \Y )\Wσ̄). Let Ȳ = V \Y be the set of
vertices outside G[Y ]. We get that Yσ̄ \Wσ̄ = Yσ̄ ∩Attr?σ(G, Ȳ \Wσ̄). Therefore,
to find the failure reason in such vertices, we compute Attr?σ(G, Ȳ \Wσ̄). During
this computation, for each vertex v′ in Yσ̄ that is added to the attractor set (and
thus will be in Wtie) we choose the failure vertex and reason based on the
reason for v′ being added to the set. This is because if the vertex was not in
Attr?σ(G, Ȳ \Wσ̄), it would be in Wσ̄ in G as well. The information is recorded
as follows.

In the initialization of the computation we have vertices in Dσ, Dtie or Ȳ \Wσ̄

which are clearly not in Yσ̄, thus no additional information is needed.
As for the iteration, suppose we have Attr?i

σ(G, Ȳ \Wσ̄), with the additional
information attached to every vertex in it which is in Yσ̄ (by the above equality
such a vertex is not in Wσ̄). We now compute the set Attr?i+1

σ (G, Ȳ \Wσ̄). Let v′

be a vertex that is added to Attr?i+1
σ (G, Ȳ \Wσ̄). If v′ �∈ Yσ̄, then no information

is needed. Otherwise, we do the following.

1. If v′ ∈ Vσ and there exists a may edge v′
may−→ v′′ which is not a must edge

s.t. v′′ ∈ Ȳ \Wσ̄, then v′ is a failure state, with this edge being the reason.
2. If v′ ∈ Vσ and it has a must edge to v′′ ∈ Xσ̄ \Wσ̄, then we set the failure

vertex and reason of v′ to be those of v′′ (which are already computed).
3. Otherwise, v′ has a may (possibly must) edge to a vertex v′′ ∈ Attr?i

σ(G, Ȳ \
Wσ̄) ∩ Yσ̄. In this case the failure state and reason of v′ are those of v′′.

Lemma 8. The computation of failure vertices for n ≥ 1 is well defined, mean-
ing that all the possible cases are handled.

Intuitively, in case 1, v′ is considered a failure state, with the may (not must)
edge to v′′ ∈ Ȳ \Wσ̄ being the reason because if this edge did not exist, v′ would
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not be added to the may-attractor set, and thus would remain in Wσ̄ in G. A
careful analysis shows that the only possibility where there exists such a must
edge to v′′ ∈ Ȳ \Wσ̄ is when this edge is to Xσ̄ \Wσ̄. This is handled separately
in case 2. The set Xσ̄ \Wσ̄ is a subset of Wtie for which the failure was already
analyzed, and in case 2 we set the failure vertex and reason of v′ to be those
of v′′ ∈ Xσ̄ \Wσ̄. This is because changing the classification of v′′ to Wσ̄ would
make a step in the direction of changing the classification of v′ ∈ Vσ to Wσ̄

as well. Similarly, since the edge from v′ to v′′ is a must edge, changing the
classification of v′′ to Wσ would change the classification of v′ ∈ Vσ to Wσ. In
all other cases, the computation recursively continues with a vertex in Yσ̄ that
was already added to the may-attractor set and that affects the addition of v′

to it (case 3).

This concludes the description of how SolveGame records the failure infor-
mation for each vertex in Wtie . A simple case analysis shows the following.

Theorem 6. Let vf be a vertex that is classified by SolveGame as a failure
vertex. The failure reason can either be the fact that vf ∈ Vtie , or it can be an
edge (vf , v

′) ∈ may−→ \ must−→.
Once we are given a failure vertex v′ = s′a ( ϕ′ and a corresponding reason

for failure, we guide the refinement to discard the cause for failure in the hope
for changing the model checking result to a definite one. This is done as in [18],
where the failure information is used to determine how the set of concrete states
represented by s′a should be split in order to eliminate the failure reason. A
criterion for splitting all abstract states can then be found by known techniques,
depending on the abstraction used (e.g. [4, 2]).

After refinement, one has to re-run the model checking algorithm on the
game graph based on the refined KMTS to get a definite value for sc and ϕ.
However, we can restrict this process to the previous Wtie . When constructing
the game graph based on the refined KMTS, every vertex s2a ( ϕ′ for which
a vertex sa ( ϕ′ (where s2a results from splitting sa) exists in W0 or W1 in
the previous game graph can be considered a dead end winning for Player 0 or
Player 1, respectively. In this way we avoid unnecessary refinement.

7 Conclusion

This work presents a game-based model checking for abstract models with re-
spect to specifications in μ-calculus, interpreted over a 3-valued semantics, to-
gether with automatic refinement, if the model checking result is indefinite.

The closest work to ours is [18], in which a game-based framework is suggested
for abstraction-refinement for CTL with respect to a 3-valued semantics. While
it is relatively simple to extend their approach to alternation-free μ-calculus, the
extension to full μ-calculus is not trivial. This is because, in the game graph for
alternation-free μ-calculus each strongly connected component can be uniquely
identified by a single fixpoint. For full μ-calculus, this is not the case any more,
thus a more complicated algorithm is needed in order to determine who has the
winning strategy.
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Abstract. The paper presents methods for model checking a class of
possibly infinite state concurrent programs using various types of bi-
simulation reductions. The proposed methods work for the class of pro-
grams in which the functions that update the variables are mutually
commutative. A number of bi-simulation relations are presented for such
systems. Explicit state model checking methods that employ on-the-fly
reductions with respect to these bi-simulations are given. Some of these
methods have been implemented and have been used to verify some well
known protocols that employ integer variables.

1 Introduction

Two of the bottlenecks that hinder wider applicability of model checking ap-
proach is the state explosion problem and its less effectiveness in handling in-
finite state systems. In this paper, we present an approach for model checking
that works for certain classes of infinite state systems and that can also be used
to contain the state explosion problem.

One standard model checking method, employed often, is to construct the
reachability graph of the given program and then check the correctness property
against this graph. One way of reducing the size of the explored graph is to
employ a reduction with respect to a bi-simulation relation U on the states of
the reachability graph. Such a relation U is either known a priori through an
implicit representation or has been computed by other means.

In this paper, we give a method that does not require a priori computation
of a bi-simulation relation. Instead, we give a sufficient condition on any two
states to determine if they are bi-similar. This condition requires equivalence of
certain predicates associated with the two states. In fact, we present a number of
bi-simulation relations that can be used in on-the-fly model checking methods.
Our approach works for certain classes of programs that employ commutative
unary functions for updating variables. Since bi-similarity of two states is based
on the future behavior from these states, in general, it is not possible to check
their bi-similarity by looking only at the values of the variables in these states.

We assume that the concurrent program is given by a Transition Diagram
(TD) [8] which is an edge labeled directed graph. Each edge label consists of
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a condition, called guard, and an action which is a concurrent assignment of
values to variables. We consider a class of TDs, called simple TDs, in which an
expression that is assigned to a variable x is either a constant, or a variable, or
of the form f(x) where f is a unary function. Further more, we require that the
functions that are used be mutually commutative, that is, for any two functions
f, g, fg = gf . (Note that such TDs are as powerful as Turing M/Cs).

Our approach works as follows. First we preprocess the TD and compute
a set of predicate templates with respect to each node q in the TD. (A predi-
cate template is a predicate together with a function that renames some of its
variables). These sets of predicate templates are computed, using a terminating
fix-point computation on the graph of the TD, from guards of the transitions
of the TD and from predicates that appear in the correctness formula. In the
second step, the reachability graph is constructed in a symbolic form. Each of its
states consists of a node in the TD and other components that give the values
of the variables in symbolic form. We define an equivalence relation, ∼0, on the
states by instantiating the predicate templates associated with the correspond-
ing TD node. Two states are equivalent if they are at the same TD node and the
instantiations of the predicate templates in both the states are equivalent. We
show that this equivalence relation is a bi-simulation. In general checking equiv-
alence of predicates may require a theorem prover. However, for certain types
of programs, such as those that use integer variables and additions of constants
as functions, this equivalence can be checked efficiently if the predicates only
involve standard comparison operators such as <,>, etc.

The requirements for the bi-simulation ∼0 can some times be too strong. In
order for two symbolic states s, t at a node q to be related by ∼0, we require that
the instantiations, of each predicate template pt associated with q, in the states
s and t be equivalent. Each such predicate template pt corresponds to a guard
of a transition of the TD from some node r or to an atomic predicate in the
correctness formula. Suppose that none of the guards of the transitions entering
node r are ever satisfiable; then, we don’t need to require equivalence of the
instantiations of pt with respect to both s and t because r will be never reached
from either s or t. As a consequence, we can relax the equivalence requirement as
follows. Suppose e is a transition entering the node r; then we require equivalence
of the instantiations of pt only if the transition e is enabled with respect to
both the states s and t. Thus we require conditional equivalence of template
instantiations. The above relaxation in the requirement is done with respect to
all the transitions entering node r and for every such node. The resulting binary
relation ∼1 on symbolic states is also going to be a bi-simulation.

The above notion of relaxing the requirement with respect to edges entering
each node can be generalized to paths of length i entering each node. When we
do this, we get the relations ∼i for each i > 0. The relation ∼0, defined earlier,
can be considered to be the relation when we consider paths of length zero, i.e.
null paths, entering a node. We show that each ∼i is a bi-simulation and that
∼i⊆∼i+1 for each i ≥ 0. Thus we get a chain of non-decreasing bi-simulations.
For each i, we also show that there exists a TD for which ∼i is strictly contained
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in ∼i+1. In fact, we can get a TD for which ∼i⊂∼i+1 for every i ≥ 0. It is to be
noted that using ∼i+1 gives us a smaller bi-simulation reduction, however there
will be more conditional equivalence checks for ∼i+1 than for ∼i.

All the above bi-simulations preserve correctness under fairness also. We
have implemented the above methods and applied them to examples such as the
sliding window protocol, etc. Experimental results showing the effectiveness of
our approach are presented.

The paper is organized as follows. Section 2 discusses applicability of the
results of the paper and related work. Section 3 contains definitions and notation.
Section 4 presents our method based on the bi-simulation relation ∼0. Section 5
defines the bi-simulation relations with respect to paths of the TD, i.e. it defines
the relations ∼i for i > 0 and presents results relating them. Section 6 presents
experimental results. Section 7 contains conclusions.

2 Discussion and Related Work

The results of the paper are applicable to concurrent systems that can be mod-
eled by simple TDs over any domain as described earlier. In particular, they can
be applied to TDs over integer domains, i.e., where the variables range over inte-
gers and are updated by addition of constants and the predicates are of the form
eρc where e is a linear combination of variables, ρ is a comparison relation and c
is a constant. One class of integer TDs for which ∼0 gives a finite quotient of the
reachability graph is where each expression appearing in the predicates has finite
number of values in the reachability states, or each such expression is positive,
i.e., all its coefficients are positive and all its variables are always incremented
by positive constants. The exact characterization of systems for which each of
the bi-simulations ∼i (for i ≥ 0) gives a finite quotient needs to be explored as
part of future research.

The work that is most closely related is that given in [9]. In this work the
authors present a method that syntactically transforms a program with variables
ranging over infinite domain to boolean programs. Their approach involves two
steps. In the first step, they perform a fix point computation to generate a set
of predicates. In the second step, a boolean program is constructed using binary
variables to represent the generated predicates and this program is checked using
any existing model checker. The first step in their approach may not terminate.
They also give a completeness result showing that if the given program has finite
quotient under the most general bi-simulation then there exists a constant k so
that their fix point computation when terminated after k steps gives a boolean
program that is bi-similar to the give concurrent program. However it is not
clear how one knows the value of k in advance.

The first step of our method for computing the predicate templates always
terminates and the computed predicate templates are different from those gen-
erated by [9]. Our second step involves constructing the reduced graph and may
not terminate sometimes. Our methods are better suited for on-the-fly model
checking; i.e., we can terminate with an error message when the first error state
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is encountered during the construction of the reduced graph. In case of the
method of [9], the first step needs to be completed before actual model checking
can begin, and the first step may not terminate sometimes. There are examples
for which our system terminates but the method of [9] may not terminate. There
are examples over integer domains where their system terminates but our does
not; of course their approach is applicable to more general class of systems. Our
system is amenable for on-the-fly model checking for the particular classes of
TDs that we consider; this is achieved by checking the given property at the
same time as the reduced reachability graph is constructed.

There have also been techniques that construct the bi-simulation reduction in
an on-the-fly manner in [7]. The method given in [7] assumes symbolic represen-
tation of groups of states and requires efficient computation of certain operations
on such representations. Our work is also different from the predicate abstrac-
tion methods used in [11, 12, 5] and also in [1] These works use predicates to
abstract the concrete model, to get the abstract model and then perform model
checking on it. This abstraction ensures that there is a simulation relation from
the concrete model to the abstract model. They use ∀CTL for model checking.
If the abstract model does not satisfy the correctness then they will have to re-
fine the abstraction and try this process again. Since we use bi-simulation based
approach, we do not need any further iterations for refinement.

It should be noted that the commutativity assumption of TDs is different
from the commutativity assumption in partial reductions [10, 6]; our assumption
requires commutativity of functions employed to update the variables, while in
partial-order based methods commutativity of transitions is used which is more
restrictive.

It is to be noted that our method based on the bi-simulation ∼0 is itself a
generalized method for [2] where a location based bisimulation is used. Our work
is different from other works for handling large/infinite state systems such as the
one in [3] where symbolic representation of periodic sets is employed.

The work given in [4] considers verification of systems with integer variables.
Their method is based on computing invariants and employs approximation tech-
niques based on widening operators. Our method is based on bi-simulation and
can be employed for other domains also apart from systems with integer vari-
ables.

3 Definitions and Notation

3.1 Transition Diagram

We use Transition Diagram (TD) to model a concurrent system. Formally, a
TD is a triple G = (Q,X,E) such that Q denotes a set of nodes, X is a set
of variables, and E is a set of transitions which are quadruples of the form
〈q, C, Λ, q′〉 where q, q′ ∈ Q, C is a condition involving the variables in X and Λ
is a set of assignments of the form x := ρ where x ∈ X and ρ is an expression
involving the variables in X . For a transition 〈q, C, Λ, q′〉, we call C the condition
part or guard of the transition and Λ the action part of the transition and we
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require that Λ contains at most one assignment for each variable. For any node
q of G, we let guards(q) denote the set of guards of transitions from the node q.
We also let guards(G) denote the set of guards of all transitions of G.

An evaluation h of a set of variables X is a function that assigns type-
consistent values to each variable in X . A state of a TD G = (Q,X,E) is a
pair (q, h) where q ∈ Q and h is an evaluation of X . We say that a transition
e = (q1, C, Λ, q2) is enabled in the state (q, h) if q = q1 and the condition C is
satisfied by h, i.e., the values of the variables given by h satisfy C. We say that a
state (q′, h′) is obtained from (q, h) by executing the transition e if e is enabled
in (q, h), q′ = q2 and the following property is satisfied: for each variable x ∈ X ,
if there is an assignment of the form x := ρ in Λ then h′(x) = h(ρ), otherwise
h′(x) = h(x).

A path in G from node q to node r is a sequence of transitions starting with
a transition from q and ending with a transition leading to r such that each
successive transition starts from the node where the preceding transition ends.
Let π = e0, e1, ..., em−1 be a path in G from node q and let s0 = (q, h0) be
a state. We say that π is feasible from s0 if there exists a sequence of states
s1, ..., sm such that for each i, 0 ≤ i < m, the transition ei is enabled in si and
state si+1 is obtained by executing ei in the state si. In this case, i.e., when π is
feasible from s0, we say that sm is the state obtained by executing the path π
from s0.

The left part of figure 1 shows a TD with node set {0, 1, 2}, variable set
{a, b, x, y} and transition set {t1, t2, t3, t4}. Notice that the transitions t1 and t2
both have empty guards meaning that they are always enabled. It is easy to see
that the reachability graph from an initial state may be infinite since x, y can
grow arbitrarily large.

0

1

2

t3: a≤y → y++

s1

s0 s2

s3

(0, 0 0 0 0
a b x y )

(1, 0 0 0 0
a b x+1 y )

(0, 0 0 0 0
a b x+1 y+1 )

(2, 0 0 0 0
a b x+1 y )t4: b≤y → x:=0; y:=0

t2: b:=x; x++

t1: a:=x; x++

Fig. 1. Example of a TD and its reduced symbolic state graph

Commutativity Requirement

In this paper, we consider the TDs whose action parts only have assignments of
the following forms: x := c where c is a constant, or x := f(x), or x := y where
y is another variable of the same type as x. We require all functions that are
applied to variables of the same type to be commutative. We call such TDs as
simple TDs. In the full paper, we show how the commutativity requirement can
be further relaxed.
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3.2 Kripke Structures, Bi-simulation, etc.

A labeled Kripke structure H over a set of atomic propositions AP and over a
set of labels Σ is a triple (S,R,L) where S is a set of states, R ⊆ S × Σ × S
and L : S → 2AP associates with each state a set of atomic propositions. The
Kripke structure H is said to be deterministic if for every s ∈ S and every α ∈ Σ
there exists at most one s′ ∈ S such that (s, α, s′) ∈ R.

For the Kripke structure H = (S,R,L), an execution σ is an infinite sequence
s0, e0, s1, e1, ..., si, ei, ... of alternating states and labels in Σ such that for each
i ≥ 0, (si, ei, si+1) ∈ R. A finite execution is a finite sequence of the above
type ending in a label in Σ. Corresponding to the execution σ that is finite or
infinite, let trace(σ) denote the sequence L(s0), e0, ..., L(si), ei, .... A finite trace
from state s is the sequence trace(σ) corresponding to a finite execution from
s. The length of a finite trace is the number of transitions in it. For any integer
k > 0, let Finite T racesk(H, s) denote the set of finite traces of length k from s.

Let H = (S,R,L) and H ′ = (S′, R′, L′) be two structures over the same set
of atomic propositions AP and the same set Σ of labels. A relation B ⊆ S×S′ is
a bi-simulation between H and H ′ iff for all s ∈ S and s′ ∈ S′, if (s, s′) ∈ B, then
L(s) = L(s′) and the following conditions hold: (a) for every (s, α, s1) ∈ R, there
exists a state s′1 ∈ S′ such that (s′, α, s′1) ∈ R′ and (s1, s′1) ∈ B; (b) similarly,
for every (s′, α, s′1) ∈ R′, there exists a state s1 ∈ S such that (s, α, s1) ∈ R and
(s1, s′1) ∈ B.

Let G = (Q,X,E) be a TD, u be a state of G and Reach(G, u) = (S,R,L)
denote the Kripke structure over the set of atomic propositions AP and the set of
labels E defined as follows: S is the set of reachable states obtained by executing
the TD G from u; R is the set of triples (s, e, s′) such that the transition e ∈ E
is enabled in state s and s′ is obtained by executing e in state s; for any s ∈ S,
L(s) is the set of atomic propositions in AP that are satisfied in s. It is not
difficult to see that Reach(G, u) is a deterministic structure.

Let B be a bi-simulation relation from Reach(G, u) to itself. Instead of con-
structing Reach(G, u), we can construct a smaller structure using the relation
B. We incrementally construct the structure by executing G starting from u.
Whenever we get a state w by executing a transition from an already reached
state v, we check if there exists an already reached state w′ such that (w,w′) or
(w′, w) is in B; if so, we simply add an edge to w′ or else we include w into the
set of reached states and add an edge to w. This procedure is carried until no
more new nodes can be added to the set of reached states. We call the resulting
structure as the bi-simulation reduction of Reach(G, u) with respect to B. This
reduction has the property that no two states in it are related by B. The number
of states in this reduction may not be unique and may depend on the the order
of execution of the enabled transitions. However, if B is an equivalence relation
then the number of states in the reduction is unique and equals the number of
equivalence classes of S with respect to B.

Let G be a TD that captures the behavior of a concurrent program. The
Kripke structure Reach(G, u) is deterministic. An infinite execution σ is said
to be weakly fair if every process which is enabled continuously from a certain
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point in σ is executed infinitely often. Let Fair traces(s) denote the set of all
trace(σ) where σ is an infinite weakly fair execution s. For any bi-simulation
B from Reach(G, u) to itself, it is easy to show that for every (s, t) ∈ B,
Fair traces(s) = Fair traces(t). This condition holds for many other fairness
conditions such as strong fairness, etc.

We use the temporal logic CTL* to specify properties of Reach(G, u). Each
atomic proposition in the formulas is a predicate involving variables in X or
the special variable lc which refers to the nodes of G. We let AP be the set of
predicates that appear in the temporal formula that we want to check. For any
formula or predicate p, we let var(p) denote the set of variables appearing in it.

If K is a reduction of Reach(G, u) with respect to a bi-simulation relation
then a state which is present in both Reach(G, u) and K satisfies the same set
of CTL* formulas in both structures even if we restrict the path quantifiers to
fair paths. Also, any two states in Reach(G, u) that are bi-similar to each other
satisfy the same set of CTL* formulas.

We also use the following notation. If Φ represents an expression, then Φ{β/α}
is the expression obtained from Φ by substituting β for α.

3.3 Symbolic State Graph

Let G = (Q,X,E) be a TD, u = (q0, h0) be the initial state of G and AP be
the set of predicates that appear in the temporal formula to be checked. We ex-
ecute G symbolically starting with u, to obtain a structure Sym Reach(G, u) =
(S′, R′, L′). We call the structure Sym Reach(G, u) as the symbolic graph and
the states of S′ symbolic states since the variables are represented by expres-
sions. (It should be noted that our use of the term symbolic state is different
from the traditional use where it is meant to be some representation for sets of
actual states). Each state s in S′ is a triple of the form (s.lc, s.val, s.exp) where
s.lc ∈ Q, s.val is an evaluation of the variables in X and s.exp is a function
that assigns each variable x an expression which involves only the variable x.
Intuitively, s.lc denotes the node in Q where the control is, s.val(x) denotes the
latest constant assigned to x and s.exp(x) denotes the composition of functions
that were applied to x since then. We associate each symbolic state s with a
state act state(s) of G defined as follows: act state(s) = (q, h) where q = s.lc
and h(x) = s.exp(x){s.val(x)/x} for each x ∈ X ; that is the value of a vari-
able x is obtained by evaluating s.exp(x) after substituting s.val(x) for x in the
expression. We say that a transition e is enabled in a symbolic state s if it is
enabled in the corresponding actual state, i.e., it is enabled in act state(s).

The successor states of a symbolic state s are the states obtained by enabled
transitions in s. Assume that e = (q, C, Λ, q′) is enabled in s. The new symbolic
state s′ obtained by executing e from s is defined as follows: s′.lc = q′ and for
each variable x, if there is no assignment to x in Λ then s′.val(x) = s.val(x) and
s′.exp(x) = s.exp(x). If there is an assignment of the form x := c where c is a
constant then s′.val(x) = c and s′.exp(x) = x. If there is an assignment of the
form x := ψ(x) in Λ then s′.val(x) = s.val(x) and s′.exp(x) = ψ(s.exp(x)); that
is the value remains unchanged and the new expression is obtained by applying
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the function ψ to the old expression. If there is an assignment of the form x := y
in Λ then s′.val(x) = s.val(y) and s′.exp(x) = s.exp(y){x/y}; that is the value
of s.val(y) is copied and the expression of y in s is also copied after replacing
every y by x in the expression. If s′ is obtained by executing an enabled transition
e from a state s in S′, then s′ is a state in S′ and (s, e, s′) ∈ R′. Also for any
s ∈ S′, L′(s) = L(act state(s)).

Consider the TD given in the left part of figure 1 with initial value a = b =
x = y = 0. We represent each variable v ∈ X as a pair (v.val, v.exp). The actual
value of v is v.exp{v.val/v}. For figure 1, the initial state s0 is (0, 0 0 0 0

a b x y ), where
the first 0 denotes the node, the vectors (0, 0, 0, 0) and (a, b, x, y) represent the
functions s0.val and s0.exp respectively. In s0, transition t1 and t2 are enabled.
Suppose we execute t1 from s0 and get state s1. The node in s1 is 1. For variable a,
since x is assigned to it, we copy x.val and x.exp to a.val and a.exp respectively.
For variable x, which is updated by a function of itself, we keep x.val as before
and change x.exp from x to x + 1 according to the updating function. Since
there is no assignment to b and y in t1, their val and exp remain unchanged. So,
s1 is (1, 0 0 0 0

a b x+1 y ). We know t3 is enabled in s1 since the actual values of a, y
satisfy the guard. We execute t3 from s1 and get s2 = (0, 0 0 0 0

a b x+1 y+1 ) similarly.
Similarly, executing t2 from s0 we get s3. Executing t4 from s3 we get s0; notice
that since x is assigned 0, in the successor state s0 we have s.val(x) = 0 and
s.exp(x) = x and same holds for variable y.

Lemma 1 Let G be a TD, u be a state of G. Then the relation {(act state(s), s) :
s is a symbolic state in Sym Reach(G, u)} is a bi-simulation between Reach
(G, u) and Sym Reach(G, u).

4 Our Method

4.1 Intuitive Description

Let G = (Q,X,E) be a TD. Recall that AP is the set of predicates appearing in
the temporal formula. We motivate our definition of the bi-simulation relation
and give an intuitive explanation for the commutativity requirement. For ease
of explanation, assume that all the assignments in the transitions of G are of the
form x := ψ(x). Also assume that all the predicates in guards(G) ∪ AP have
at most one variable. It is not difficult to see that any two states s = (q, h) and
t = (q, h′) satisfying the following conditions are bisimilar in Reach(G, u): (i) for
every path π from node q, π is feasible in s iff it is feasible from t; (ii) for every
path π from node q to any node r such that π is feasible from s, if s′, t′ are the
states obtained by executing π from s, t respectively then s′, t′ satisfy the same
predicates in guards(r) ∪AP . For any path π in G and variable x ∈ X , let Fπ,x

denote the composition of the functions that update the variable x in the path π
where the composition is taken in the order they appear on the path. Using the
above observation, it can be seen that the following relation U over the states
of Reach(G, u) is a bi-simulation. U is the set of all pairs (s, t) of states where
s = (q, h), t = (q, h′) for some q ∈ Q and some evaluations h, h′ such that
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the following condition is satisfied: for every node r and for every path π from
q to r in G, and for every predicate p(x) ∈ guards(r) ∪ AP , the truth values
p(x){Fπ,x(h(x))/x} and p(x){Fπ,x(h′(x))/x} are the same.

Analogous to the relation U , we can define a relation V over the states of the
symbolic graph Sym Reach(G, u) as follows. V is the set of all pairs (v, w) of
symbolic states where v.lc = w.lc = q for some q ∈ Q, v.val(x) = w.val(x) = c
for some constant c and for every node r to which there is a path in G from
node q, and for every predicate p(x) ∈ guards(r) ∪ AP the following condi-
tion (A) is satisfied: (A) for every path π from q to r in G, the truth values
p(x){Fπ,x(ρ1(c))/x} and p(x){Fπ,x(ρ2(c))/x} are the same where ρ1(x), ρ2(x)
are the expressions v.exp(x), w.exp(x) respectively. Note that ρ1(c) is the value
of ρ1(x) when c is substituted for x. It is not difficult to see that V is also a
bi-simulation over Sym Reach(G, u). Due to the commutativity requirement on
the functions that update variables, we can see that Fπ,x(ρ1(c)) = ρ1(Fπ,x(c))
and a similar equality holds for the state w. As a consequence, condition (A)
can be rewritten as follows: (B) for every path π from q to r in G, the truth
values p(x){ρ1(Fπ,x(c))/x} and p(x){ρ2(Fπ,x(c))/x} are equal. Now we see that
condition (B) is automatically satisfied if the two predicates p(x){ρ1(x)/x} and
p(x){ρ2(x)/x} are equivalent (this is seen by substituting the value Fπ,x(c) for x
in these two predicates). As a consequence we can replace condition (A) by con-
dition (C) which requires the equivalence of the above two predicates. Checking
condition (A) requires considering every path from q to r which is not needed for
checking (C). The above argument holds even if we have predicates with more
than one free variable in guards(G) ∪ AP . However, if we have other types of
assignments to variables then we need to rename some of the variables to obtain
the predicates whose equivalence needs to be checked. This is done by computing
a set of predicate templates with respect to each node in G.

4.2 Predicate Templates

To define the bi-simulation, we associate a set of predicate templates, denoted
ptemplates(q), with each node q in the TD. Intuitively, ptemplates(q) is the
set of pairs of predicates and renaming functions on their variables; roughly
speaking, our bi-simulation condition requires that the predicates, obtained by
renaming the variables and substituting them by the corresponding expressions
in two symbolic states, should be equivalent. Formally, a predicate template is
a pair (p, f) where p is a predicate and f , called renaming function, is a total
function from var(p) to X ∪ {∗}.

First we need the following definition. Let π be a path in G. Each such
path denotes a possible execution in G. With respect to π, we define a function
dependsπ from X to X∪{∗}. Intuitively, if dependsπ(x) is a variable, say y, then
this denotes that the value of x at the end of the execution of π depends on the
value of y at the beginning of this execution; otherwise, i.e., dependsπ(x) = ∗,
the value of x at the end of π does not depend on the value of any variable at
the beginning of π; for example, this happens if x is assigned a constant some
where along π. We define dependsπ inductively on the length of π. If π is a
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single transition 〈q, C, Λ, q′〉 then dependsπ(x) is given as follows: if Λ has the
assignment x := y then dependsπ(x) = y; if Λ has no assignment to x or has an
assignment of the form x := ψ(x) then dependsπ(x) = x; when x is assigned a
constant, dependsπ(x) = ∗. If π is the path consisting of π1 followed by π2 then
dependsπ is defined as follows: for each x ∈ X , if dependsπ2(x) is a variable then
dependsπ(x) = dependsπ1(dependsπ2(x)), otherwise dependsπ(x) = ∗. For the
TD given in figure 1 and the path π given by the single transition from node 0
to 1, we see that dependsπ(a) = x.

For a node q, ptemplates(q) = {(p, dependsπ) : π is a path from node q to
some node r and p ∈ guards(r) ∪AP }. Although the number of paths from q
can be infinite, the number of functions dependsπ and hence ptemplates(q) is a
bounded set. We can compute ptemplates(q) without examining all the paths
from q as follows.

For a template (p, f) and a set of assignments Λ, let (p, f)Λ be the template
(p, f ′) where f ′ is given as follows: (note that (p, f ′) is different from the the
weakest precondition of p with respect to Λ)

– if f(x) = ∗, then f ′(x) = ∗.
– if f(x) = y where y ∈ X , then if the action part Λ has

• no assignment for y or an assignment of the form y := ψ(y), then f ′(x) =
y = f(x).

• an assignment of the form y := z, then f ′(x) = z.
• an assignment of the form y := c where c is a constant, then f ′(x) = ∗.

Let fid be the identity function. For each node q ∈ Q, the set ptemplates(q)
is the least fix point solution for the variables temp(q) in the following set of
equations:

temp(q) ={(p, fid)|p ∈ AP ∨ p ∈ guards(q)} ∪
{(p, f)Λ|(p, f) ∈ temp(q′) ∧ ∃(q, C, Λ, q′)∈E}

Consider the system given in figure 1. Suppose we want to check the formula
∀�(x ≥ y). Let p0 denote x ≥ y, p1 denote a ≤ y, p2 denote b ≤ y. Template
(p0, fid) will appear in templates of each location since it is in AP . (p1, fid)
will appear in ptemplates(1) since p1 is in guards(1). In the remainder of our
description, we will also represent a predicate template (p, f) where f maps
v1, v2 to z1, z2 respectively by the tuple (p, v1 : z1, v2 : z2). Suppose t is a
transition, let Λt denote the action part of t. By definition, (p1, fid)Λt1

will appear
in ptemplate(0). Since Λt1 contains the assignments a := x and x := x + 1, the
template (p1, fid)Λt1

is given by (p1, a : x, y : y). Using transition t4, we see that
the template (p0, x : ∗, y : ∗) is in ptemplates(2); note that in this template both
the variables are mapped to ∗ since both these variables are assigned constant
values in t4. By doing this, eventually, we will have

ptemplates(1) ={(p0, fid), (p1, fid),
{(p1, a : x, y : y), (p2, b : x, y : y)}
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We have only given the templates associated with node 1 and even from this
we omitted the templates whose renaming function maps all the variables to ∗.
From the above definition, we see that ptemplates(q) contains all the templates
in {(p, fid)|p ∈ AP ∪ guards(q)}.

We can use standard fix point algorithm to compute the set ptemplates(q)
for each q ∈ Q. It is easy to see that the algorithm terminates since the total
number of predicate templates is bounded.

Let Nn, Nt, Nv be the number of nodes in G, number of transitions in G
and the number of variables respectively. Similarly let Np and Na respectively
be the number of predicates in guards(G) ∪ AP and the maximum number of
variables appearing in any predicate. Since the maximum number of renaming
functions is (Nv +1)Na , we see that the maximum number of predicate templates
is Np · (Nv + 1)Na. Thus the number of the outer iterations of the fix point
computations is at most Nn·Np·(Nv+1)Na. The time complexity of the algorithm
is O(Nn · Np · Nt · (Nv + 1)Na). Thus we see that the number of predicates is
exponential in the number of variables that can appear in a predicate. In most
cases we have unary or binary predicates and hence the complexity will not be a
problem. Also this worst case complexity occurs when every variable is assigned
to every other variable directly or indirectly. We believe that this is a rare case.

4.3 Definition of the Bi-simulation Relation

Now we define the instantiation of a predicate template in a symbolic state.
Suppose s is a state of the symbolic state graph Sym Reach(G, u), (p, f) is a
predicate template and x1, x2, · · · , xn are variables appearing in p. Let p′ be
the predicate obtained by replacing every occurrence of the variable xi (for
1 ≤ i ≤ n), for those xi such that f(xi) �= ∗, by the expression s.exp(yi){xi/yi}
where yi is the variable f(xi). Note that the variables xi for which f(xi) = ∗
are not replaced. We define (p, f)[s] to be p′ as given above.

For the system given in figure 1, it is easy to see that for the state s1,
(p1, a :x, y : y)[s1] is a + 1 ≤ y. Note that for those templates whose renaming
function maps all the variables to ∗, the instantiation of them in any two symbolic
states will be identical and thus they are trivially equivalent. We can just ignore
such templates.

Definition 1. Define relation ∼0 as follows: For any two states s and t, s ∼0 t
iff s.lc = t.lc, s.val = t.val and for each (p, f) ∈ ptemplates(s.lc), (p, f)[s] ≡
(p, f)[t] is a valid formula.

Theorem 1. ∼0 is a bi-simulation on the symbolic state graph Sym Reach
(G, u).

It is possible that two symbolic states s, t correspond to the same actual
state but (s, t) /∈∼0. To overcome this problem, we consider the relation ∼equal =
{(s, t) : s, t are symbolic states and act state(s) = act state(t)}. Clearly, ∼equal

is a bi-simulation on Sym Reach(G, u). Given symbolic states s, t checking if
(s, t) ∈∼equal is simple. We simply compute act state(s) and act state(t) and
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check if they are equal. Now, we consider the relation ∼0 ∪ ∼equal. It is well
known that the union of bi-simulation relations is also a bi-simulation. From this,
we see that ∼0 ∪ ∼equal is a bi-simulation on Sym Reach(G, u). The reduction
of Sym Reach(G, u) with respect to the bi-simulation ∼0 ∪ ∼equal has at most
as many states as the number of states in Reach(G, u).

Checking if s ∼0 t requires checking equivalence of predicates (p, f)[s] and
(p, f)[t] for each template (p, f) ∈ ptemplates(s.lc). This check can be done
efficiently for cerain class of programs over integer domains. Details are left out
due to lack of space.

5 Bi-simulation Relations
with Respect to the Paths in the TD

In section 4, we defined the bi-simulation relation ∼0. Two symbolic states s, t
are related by this relation, if s.lc = t.lc and for every node r and for every
p ∈ guards(r) ∪ AP and for every path π from s.lc to r, the two predicates
(p, dependsπ)[s] and (p, dependsπ)[t] are equivalent (note that (p, dependsπ) is
a template in ptemplates(s.lc)). If none of the guards of transitions entering
r is satisfiable then we don’t need to require the equivalence of the above two
predicates since r is never reached. We define a bi-simulation relation ∼1 in which
we relax the condition equivalence condition. Suppose e is a transition entering
node r, then in the definition of ∼1, we require the equivalence of (p, dependsπ)[s]
and (p, dependsπ)[t] only for those cases when the transition e is enabled with
respect to both s and t. Such a requirement will be made with respect to every
transition entering r. This notion of relaxing the requirement can be generalized
to paths of length k entering node r leading to bi-simulation relations ∼k for
each k > 0. We describe this below.

First, we need the following definitions. Let π be a path in G and p be any
predicate. We define the weakest precondition of p with respect to π, denoted
by WP (π, p), inductively on the length of π as follows. If π is of length zero,
i.e., π is an empty path then WP (π, p) = p. If π is a single transition given
by (r, C, Λ, r′), where Λ is the set of assignments x1 := ρ1, ..., xk := ρk, then
WP (π, p) is the predicate p{ρ1/x1, ..., ρk/xk}. If π has more than one transition
and consists of the path π′ followed by the single transition e then WP (π, p) =
WP (π′,WP (e, p)). The following lemma is proved by a simple induction on the
length of π. (It is to be noted that our definition of the weakest precondition is
slightly different from the traditional one; for example, the traditional weakest
precondition is C ⊃ WP (π, p) for the case when π is a single transition with
guard C).

Lemma 2 If path π of G is feasible from state s, and t is the state obtained by
executing π from s, then t satisfies p iff s satisfies WP (π, p). �

Let π = e0, e1, ..., ek−1 be a path in G where, for 0 ≤ i < k, Ci is the guard of
the transition ei. For each i, 0 < i ≤ k, let π(i) denote the prefix of π consisting
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of the first i transitions, i.e., the prefix up to ei−1. Define Cond(π) to be the
predicate C0 ∧

∧
0<i<k WP (π(i), Ci). The following lemma is proved using the

property of the weakest preconditions given by the previous lemma.

Lemma 3 A path π of G is feasible from state s iff s satisfies the predicate
Cond(π). �

Let k > 0 be an integer. Now for each node q of G, we define a set called
extended templates(q, k) as follows. The set extended templates(q, k) is defined
as a set of triples. These triples are of the form (Cond(π′′),WP (π′′, p), dependsπ′)
where π′, π′′ are paths such that π′π′′ (i.e., π′ followed by π′′) is a path from
q to some node r, the length of π′′ is k and p ∈ guards(r) ∪ AP . Consider the
TD given in figure 2. By taking π′ to be the empty path and π′′ to be the single
edge from q0 to q1, it is easy to see that the triple (x2 = 0, x1 ≥ 20, fid) is in
extended templates(q0, 1). Similarly the tuple (x1 = 0, x2 ≥ 20, fid) is also in
this set. The only other significant tuples in the above set are (true, x1 = 0, fid)
and (true, x2 = 0, fid). These tuples are obtained by respectively using the paths
consisting of the self loop that increments x1 and the edge to q2, and a similar
path containing the self loop that increments x2 and the edge to q1.

Now we define the binary relation ∼k on the states of Sym Reach(G, u) as fol-
lows. ∼k is the set of all pairs (s, t) where s, t are states of Sym Reach(G, u) such
that (a) s.lc = t.lc and s.val = t.val, (b) Finite T racesk(Sym Reach(G, u), s)
= Finite T racesk(Sym Reach(G, u), t) and (c) for every triple (p1, p2, f) in the
set extended templates(s.lc, k), the formula ((p1, f)[s]∧(p1, f)[t]) ⊃ ((p2, f)[s] ≡
(p2, f)[t]) is a valid formula. Observe that in the template (p1, p2, f), the predi-
cate p1 corresponds to a path π′′ of length k in G, p2 corresponds to a predicate
p which is a member of AP or is a guard of some transition e from the last node
in π′′; roughly speaking condition (c) asserts an inductive hypothesis stating
that if it is possible to reach from s, t states s′, t′ (respectively) so that that π′′

is feasible from both s′, t′ and if state s′′, t′′ are reached by executing π′′ from
s′, t′ (respectively) then p has the same truth value in both s′′ and t′′. Thus
(c) together with (b) ensure inductively that the same set of infinite traces are
possible from both s and t.

Theorem 2. For each k > 0, ∼k is a bi-simulation relation. �

The bi-simulation relation ∼k is defined using paths of length k. We can
consider the relation ∼0 defined in section 4 as ∼k for k = 0; in this case, we
consider an empty path as a path of length zero. The following theorem states
that ∼k is contained in ∼k+1 for each k ≥ 0 and that for for every k there exists
a TD in which this containment is strict. Figure 2 gives a TD for which ∼0⊂∼1.

Theorem 3. (1) For every k ≥ 0, every TD G, and for every set AP of atomic
predicates, ∼k⊆∼k+1. (2) For every k ≥ 0, there exists a TD G and a set of
atomic predicates AP for which the above containment is strict, i.e. ∼k⊂∼k+1.

The set extended templates(q, k) for any node q and for any k > 0 can
be computed using a fix point computation just like the computation of ptem-
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plates(q). An efficient way to check condition (b) in the definition of ∼k, i.e., to
check Finite T racesk(Reach(G, u), s) = Finite T racesk(Reach(G, u), s), is as
follows. First check that s and t satisfy the same predicates from AP . For every
transition e enabled from s, check that e is also enabled from t and vice versa;
further, if s′, t′ are the states obtained by executing e from s, t respectively, then
check if Finite T racesk−1(Reach(G, u), s′) = Finite T racesk−1(Reach(G, u), t′)
inductively. This method works because Reach(G, u) is a deterministic structure.

It should be noted that for any i < j, checking if (s, t) ∈∼j is going to be
more expensive than checking if (s, t) ∈∼i. This is because checking condition
(c) in the definition of ∼i is less expensive since it requires checking equiv-
alence of fewer formulas since extended templates(q, i) is a smaller set than
extended templates(q, i). Similarly, checking condition (b) is less expensive for
∼i since the number of traces of length i less than the number of traces of length
j. However, the bi-simulation reduction with respect to ∼j will be smaller. Thus
there is a trade off. We believe that, in general, it is practical to use ∼i for small
values of i such as i = 0, 1, etc.

As in the section 4, for each i > 0, we can use the bi-simulation ∼i ∪ ∼equal

on the Sym Reach(G, u) to get a smaller bi-simulation reduction.

6 Experimental Results

We implemented the method given in the paper for checking invariance proper-
ties. This implementation uses the reduction with respect to the bi-simulation
∼0.

Our implementation takes a concurrent program given as a transition system
T . The syntax of the input language is similar to that of SMC [13]. The input
variables can be either binary variables or integer variables. The implementation
has two parts. The first part reads the description of T and converts it in to a
TD G by executing the finite state part of it. All the parts in the conditions and
actions that refer to integer variables in the transitions of T are transferred to
guards and actions in the transitions ofG. The second part of the implementation
constructs the bi-simulation reduction of G given in section 4 and checks the
invariance property on the fly.

We tested our implementation for a variety of examples. Our implementa-
tion terminated in all cases excepting for the example of an unbounded queue
implementation. In those cases where it terminated, it gave the correct answer.
One of our examples is the sliding window protocol with bounded channel. It is
an infinite state system due to the sequence numbers. This protocol has a sender
and receiver process communicating over a channel. The sender transmits mes-
sages tagged with sequence numbers and the receiver sends acknowledgments
(also tagged with sequence numbers) after receiving a message. We checked the
safety property that every message value received by the receiver was earlier
transmitted by the sender. We tested this protocol with a bounded channel un-
der different assumptions. The results are given in Table 2. The table shows
the window sizes, the time in seconds, the number of states and edges in the
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Table 1. Summary of the tests

Problem Instance Property t in sec # of states

Ticket algorithm ∀�(¬(pc1 = C1 ∧ pc2 = C2)) 0 9

ProducerConsumer
size of buffer

Property t in sec # of states

30 ∀�(0 ≤ p1 + p2 − (c1 + c2) ≤ s) 0.01 31

100 ∀�(0 ≤ p1 + p2 − (c1 + c2) ≤ s) 0.09 101

Circular Queue size
of queue

Property t in sec # of states

10 ∀�(h ≤ s ∧ t ≤ s) 0.24 121
∀�(t ≥ h→ p− c = t− h) 0.12 121

∀�(t ≤ h→ p− c = s− (h− t) + 1) 0.12 121
∀�(0 ≤ p− c ≤ s) 0.15 121

30 ∀�(h ≤ s ∧ t ≤ s) 16.4 961
∀�(t ≥ h→ p− c = t− h) 2.8 961

∀�(t ≤ h→ p− c = s− (h− t) + 1) 2.7 961
∀�(0 ≤ p− c ≤ s) 3.2 961

reduced graph and the environment for which the protocol is supposed to work
(here “duplicates” means the channel can duplicate messages, “lost” means the
channel can lose messages).

We also tested with three other examples taken from [4]. These are the
Ticket algorithm for mutual exclusion, Producer-Consumer algorithm and Cir-
cular queue implementation. The detailed descriptions of these examples can be
found in [4]. All these examples use integer variables as well as binary variables.
The ticket algorithm is an algorithm similar to the bakery algorithm. We checked
the mutual exclusion property for this algorithm. The Producer-Consumer al-
gorithm consists of two producer and two consumer processes. The producer
processes generate messages and place them in a bounded buffer which are re-
trieved by the consumer processes. In this algorithm, the actual content of the
buffer is not modeled. The algorithm uses some binary variables, four integer
variables p1, p2, c1, c2 and a parameter s denoting the size of the buffer. Here
p1, p2 denote the total number of messages generated by each of the producers
respectively; similarly, c1, c2 denote the number of messages consumed by the
consumers. The circular queue example has the bounded variables h, t which
are indexes into a finite array, positive integer variables p, c and a parameter
s that denotes the size of the buffer. Here p, c respectively denote the number
of messages that are enqueued and dequeued since the beginning. In all these
examples, our method terminated and the results are shown in table 1. Time in
the table is the time used to get the reduced symbolic state graph. Checking the
property does not take that much time.

We have also implemented the method using the relation ∼1. We run it
on examples such as the one given in figure 2 and get a smaller bi-simulation
reduction. More realistic examples need to be further examined.
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Table 2. Experiment on sliding window protocol

Sender Window Receiver Window t[s] # of states # of edges Environment

1 1 0.016 47 164 duplicate, lost

1 2 0.203 447 1076 duplicate

1 2 0.296 509 1731 duplicate, lost

2 1 0.860 1167 3832 duplicate

2 2 11.515 4555 11272 duplicate

x2 + +

q1

q2

q3q0

x1 ≥ 20 →

x2 ≥ 20 →

x2 = 0 →

x1 + +

x1 = 0 →

Fig. 2. Example of a TD for which ∼0⊂∼1

7 Conclusion

In this paper we gave methods for model checking of concurrent programs mod-
eled by simple Transition Diagrams. We have given a chain of non-decreasing
bi-simulation relations, ∼i for each i ≥ 0, on these TDs. They are defined by
using predicate templates and extended predicate templates that can be com-
puted by performing a static analysis of the TD. Recall that ∼i is defined by
using templates with respect paths of length i in the TD. Each of these bi-
simulations require that the two related states be indistinguishable with respect
to the corresponding templates. All these relations can be used to compute a
reduced graph for model checking. We have also given how some of these bi-
simulation conditions can be checked efficiently for certain types of programs.
We have also shown how they can be used to show the decidability of the reacha-
bility problem of some simple hybrid automata when the time domain is discrete.
We have also presented variants of the above approaches. We have implemented
the model checking method using the bi-simulations ∼0,∼1. We have given ex-
perimental results showing their effectiveness. To the best our knowledge, this is
the first time such a comprehensive analysis of simple TDs has been done and
the various types of bi-simulations have been defined and used.

Further work is needed on relaxing some of the assumptions such as the
commutativity and also on weakening the equivalence condition. Further inves-
tigation is also needed on identifying classes of programs to which this approach
can be applied.
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Abstract. This paper presents translations forth and back between for-
mulas of the linear time μ-calculus and finite automata with a weak par-
ity acceptance condition. This yields a normal form for these formulas,
in fact showing that the linear time alternation hierarchy collapses at
level 0 and not just at level 1 as known so far. The translation from
formulas to automata can be optimised yielding automata whose size is
only exponential in the alternation depth of the formula.

1 Introduction

One of the main reasons for the apparent success of automata theory within
computer science is the tight connection that exists between automata and logics.
Often, automata are the only tool for deriving (efficient) decision procedures for
a logic.

Starting in the 60s, Büchi and Rabin have used automata to show that
Monadic Second Order Logic (MSO) over infinite words and trees is decidable [5,
18]. Since then, automata have been found to be particularly useful for temporal
logics which usually are fragments of MSO over words or trees. Their emptiness
and membership problems are used to decide satisfiability and model check-
ing for various logics, and often certain automata and logics have been shown
to be equi-expressive. This characterises logics computationally and automata
denotationally.

The type of automaton used – i.e. structures they work upon, rank of de-
terminism, acceptance mode – depends on the type of logic one is interested
in: linear time logics need automata over words [21], branching time logics need
automata over trees [14]. In any case, alternating automata [16, 6] – i.e. those
featuring nondeterministic as well as universal choices – have proved to be most
beneficial for two reasons: (1) a temporal logic usually has disjunctions and
conjunctions which can uniformly be translated into automata states. (2) Alter-
nating automata are usually more succinct then (non-)deterministic automata,
hence, they can lead to more efficient decision procedures.

The acceptance condition needs to match the temporal constructs featured
in the logic. LTL for example is happy with a simple Büchi condition since it
only has very simple temporal constructs. Logics with more complex temporal
operators like extremal fixpoint quantifiers are best matched with more complex
acceptance conditions like Rabin, Streett, or Muller conditions for example.

R. Cousot (Ed.): VMCAI 2005, LNCS 3385, pp. 267–281, 2005.
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Best suited, however, for fixpoint logics with alternation1 – the interleaved
nesting of least and greatest fixpoint operators – are parity automata. Here,
every state is assigned a priority, and acceptance means the parity of the least
priority seen infinitely often in a run must be even. The match to fixpoint log-
ics can be explained as follows: both least and greatest fixpoints are recursion
mechanisms that get translated into automata states. A least fixpoint quantifier
is a recursive program that is bound to terminate eventually. Its dual counter-
part, a greatest fixpoint quantifier is a recursive program that is allowed to run
ad infinitum. Thus, automata states obtained from least fixpoint quantifiers ob-
tain odd priorities, those obtained from greatest fixpoint quantifiers obtain even
priorities.

Fixpoint alternation means a least fixpoint recursion X can call a greatest
fixpoint recursion Y which can in return call X , and vice versa. Then, the outer-
most program, i.e. the one that called the other first, determines whether or not
infinite recursion is good or bad. Hence, for example seeing priority 17 infinitely
often is alright, as long as priority 8 is also seen infinitely often.

The connection between parity tree automata, parity games – the evaluation
of a run of an alternating parity automaton – and the modal μ-calculus is widely
known, and much has been written about it [9, 8, 19, 7]. This immediately entails
an equal connection between its pendant over infinite words, the linear time μ-
calculus μTL [1, 20], and parity word automata. Just as the modal μ-calculus
can be seen as a backbone for branching time logics, μTL is the backbone for
linear time logics capable of defining at most regular properties.

Fixpoint alternation is what makes formulas hard to evaluate. Equally, the
emptiness and word problems for parity automata are harder than those for
simple Büchi automata and usually require algorithms that recurse over the
number of priorities present in the automaton. It is fair to look for simpler
acceptance conditions that still capture the essence of some logic’s constructs.
One possibility are weak automata. This concept was first introduced by Muller,
Saoudi and Schupp [17] as a structural restriction on Büchi automata. Weakness
refers to the fact that there are ω-regular languages that cannot be accepted by
these automata.

Alternation, however, makes up for weakness [13]: every alternating Büchi
automaton can be translated into a weak alternating Büchi automaton. The
problem of having established the term “weak” but also knowing that these
automata are not any weaker is solved by redefining weakness in terms of ac-
ceptance rather than the structure of an automaton’s state space. Weak Büchi
acceptance is looking for the occurrence of a final state rather than its infinite
recurrence. Consequently, a weak parity automaton accepts if the least priority
occurring at all is even.

1 Note that the term alternation is overloaded. It describes the type of the transition
function in an automaton as well as a structural property of formulas with fixpoint
quantifiers. Each time we use the term alternation it should become clear from the
context which type is meant. However, we will try to speak of fixpoint alternation
in the latter case.
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The advantage that weak parity automata have over normal parity automata
is apparent: it is easy to keep track of the least priority seen in a run so far
without worrying whether or not it would occur infinitely often. Consequently,
emptiness or word problems for weak automata are easier to solve.

Here we present first of all a direct translation from formulas of the linear
time μ-calculus into weak alternating parity automata. The novel part of this is
the directness. It is known that this translation is possible via alternating parity
automata, alternating Muller automata, and alternating Büchi automata. The
complexity of this translation however is exponential in the size of the formula.
We also show how to improve the direct translation in order to obtain weak
automata that are exponentially large in the alternation depth of the formula
only.

Then we present the converse translation from weak alternating parity au-
tomata back into μTL. This is based on ideas from [11] and [15]. The latter
deals with the connection between weak alternating automata and MSO. The
former considered automata models for μTL, obtaining an important result that
does not hold true for the modal μ-calculus [4]: every ω-regular language can be
defined by a μTL formula of alternation depth at most 1. A simple translation
from ω-regular expressions into μTL – just meant to form an intuition about
how μTL formulas express ω-regular properties – yields an alternative proof of
this result. But the translation back from weak alternating parity automata into
formulas of the linear time μ-calculus even improves this: the μTL alternation
hierarchy indeed collapses at level 0.

This paper is organised as follows. Section 2 recalls notions about infinite
words, alternating automata and the linear time μ-calculus. Section 3 presents
the aforementioned translations. Their complexities and possible optimisations
are discussed in Section 4. Finally, Section 5 concludes with a discussion about
the usefulness of this automaton characterisation for ω-regular word languages.

2 Preliminaries

2.1 Infinite Words and ω-Regular Expressions

Let Σ = {a, b, . . .} be a finite set of symbols. As usual, Σω denotes the set of
infinite words over Σ. Given a w ∈ Σω we write wk for the k-th symbol in w,
i.e. w = w0w1w2 . . ..

Σ∗ denotes the set of finite words over Σ. For an L1 ⊆ Σ∗ and an L2 ⊆ Σω,
their concatenation L1L2 consists of all words w ∈ Σω that can be decomposed
into w = w1w2 s.t. w1 ∈ L1 and w2 ∈ L2.

An ω-regular expression is of the form

α := ε | a | α ∪ α | α;α | α∗ | αω

describing, resp. the language containing just the empty word, all words begin-
ning with the letter a, the union and the concatenation of two languages, finite
and infinite iteration of a language. We write [[α]] for the language defined by α.
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Theorem 1. [5] For every ω-regular language L there is an ω-regular expres-
sion of the form δ =

⋃n
i=1 αi;βω

i for some n ∈ N, s.t. [[δ]] = L. Additionally, for
all i = 1, . . . , n we have: neither αi nor βi contains a subexpression of the form
γω, and ε �∈ [[βi]].

2.2 The Linear Time μ-Calculus μTL

Definition 1. Let Σ = {a, b, . . .} be a finite alphabet, and let V = {X,Y, . . .}
be a set of propositional variables. Formulas of the linear time μ-calculus μTL
are defined by the following grammar.

ϕ ::= a | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | μX.ϕ | νX.ϕ

where a ∈ Σ and X ∈ V . With ϕ{ψ/χ} we denote the formula that is obtained
from ϕ by replacing every occurrence of χ in it with ψ. We will write σ for either
of the fixpoint quantifiers μ or ν.

The set of subformulas of a μTL formula is defined in the usual way, i.e.
Sub(ϕ ∨ ψ) = {ϕ ∨ ψ} ∪ Sub(ϕ) ∪ Sub(ψ) and Sub(σX.ϕ) = {σX.ϕ} ∪ Sub(ϕ)
for example. Equally, free(ϕ) is the usual set of variables occurring in ϕ which
are not in the scope of a binding quantifier. We assume that formulas are well-
named, i.e. a variable is not quantified more than once in a formula. Then for
every closed ϕ there is a function fpϕ() : V ∩Sub(ϕ) → Sub(ϕ) which maps each
variable X to its unique defining fixpoint formula σX.ϕ. We say that X has
fixpoint type μ if fpϕ(X) = μX.ψ for some ψ, otherwise it is ν.

Assuming that 1 < |Σ| < ∞ it is easy to define the propositional constants
true and false as tt :=

∨
a∈Σ a and ff := a ∧ b for some a, b ∈ Σ with a �= b. If

the assumption does not hold then one can also include tt and ff as primitives
in the logic.

Formulas of μTL are interpreted over ω-words w ∈ Σω. Since the semantics
is defined inductively, one needs to explain the meaning of open formulas. This is
done using an environment which is a mapping ρ : V → 2N. With ρ[X �→ M ] we
denote the function that maps X to M and behaves like ρ on all other arguments.

[[a]]wρ := {i ∈ N | wi = a}
[[X ]]wρ := ρ(X)
[[ϕ ∨ ψ]]wρ := [[ϕ]]wρ ∪ [[ψ]]wρ
[[ϕ ∧ ψ]]wρ := [[ϕ]]wρ ∩ [[ψ]]wρ
[[©ϕ]]wρ := {i ∈ N | i + 1 ∈ [[ϕ]]wρ }
[[μX.ϕ]]wρ :=

⋂
{M ⊆ N | [[ϕ]]wρ[X �→M ] ⊆ M}

[[νX.ϕ]]wρ :=
⋃
{M ⊆ N | M ⊆ [[ϕ]]wρ[X �→M ]}

We write w |=ρ ϕ iff 0 ∈ [[ϕ]]wρ . If ϕ does not contain free variables we also drop
ρ since in this case the positions in w satisfying ϕ do not depend on it. The set
of all models of ϕ is denoted L(ϕ) := {w ∈ Σω | w |= ϕ}. Two formulas ϕ and
ψ are equivalent, ϕ ≡ ψ, if L(ϕ) = L(ψ).
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Approximants of a formula μX.ϕ are defined for all k ∈ N as

μ0X.ϕ := ff μk+1X.ϕ := ϕ{μkX.ϕ/X}

Dually, approximants of a νX.ϕ are defined as

ν0X.ϕ := tt νk+1X.ϕ := ϕ{νkX.ϕ/X}

The next result is a standard result about approximants.

Lemma 1.
a) w |= μX.ϕ iff there is a k ∈ N s.t. w |= μkX.ϕ.
b) w |= νX.ϕ iff for all k ∈ N: w |= νkX.ϕ.

The fixpoint depth fpd(ϕ) of ϕ measures the maximal number of fixpoint quan-
tifiers seen on any path in ϕ′s syntax tree. It is defined as

fpd(a) = fpd(X) := 0
fpd(ϕ ∨ ψ) = fpd(ϕ ∧ ψ) := max{fpd(ϕ), fpd (ψ)}

fpd(©ϕ) := fpd(ϕ)
fpd(σX.ϕ) := 1 + fpd(ϕ)

We say that X depends on Y in ϕ, written Y ≺ϕ X , if Y ∈ free(fpϕ(X)).
We write <ϕ for the transitive closure of ≺ϕ. The nesting depth nd(ϕ) of ϕ
is the length n of a maximal chain X0 <ϕ . . . <ϕ Xn. The alternation depth
ad(ϕ) is the length of such a maximal chain in which adjacent variables have
different fixpoint types. Note that for any ϕ we have ad(ϕ) ≤ nd(ϕ) ≤ fpd(ϕ).
Let μTLk := {ϕ ∈ μTL | free(ϕ) = ∅ and ad(ϕ) ≤ k + 1}.

A formula ϕ is guarded if every occurrence of a variable X ∈ Sub(ϕ) is in the
scope of a © operator inside of fpϕ(X). It is strictly guarded if every occurrence
of a variable X ∈ Sub(ϕ) is immediately preceeded by a © operator.

Lemma 2. Every ϕ ∈ μTLk for any k ∈ N is equivalent to a strictly guarded
ϕ′ ∈ μTLk.

Proof. It is known from [12] or [22] for example that every formula of the modal
μ-calculus can equivalently be translated into a guarded formula. There, guard-
edness means occurrence in the scope of either a 〈a〉 or a [a]. The alternation
depth is not effected by this process. The construction for μTL formulas proceeds
in just the same way.

Finally, strict guardedness can easily be achieved by pushing the next oper-
ator inwards using the equivalences ©(ϕ ∨ ψ) ≡ ©ϕ ∨ ©ψ and ©(ϕ ∧ ψ) ≡
©ϕ∧©ψ. What remains to be seen is that the next operator also commutes with
the fixpoint quantifiers. Take a formula of the form ©μX.ϕ(X,Y ). By induction
hypothesis, X is already strictly guarded in it, but Y may not. Let ϕ(©X) be the
formula that results from ©ϕ by pushing the © operators in as far as possible
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and removing it right in front of every occurrence of X . By hypothesis it exists.
Now

©μX.ϕ(X,Y ) ≡ ©
∨
i∈N

μiX.ϕ(X,Y )

≡ ©ff ∨
∨
i≥1

©μiX.ϕ(X,Y )

≡
∨
i≥1

©ϕ(μi−1X.ϕ(X,Y ), Y )

≡
∨
i≥1

ϕ(©X)(©μi−1X.ϕ(X,Y ), Y )

≡
∨
i≥1

μiX.ϕ(©X)(X,Y )

≡ μX.ϕ(©X)(X,Y )

The penultimate step requires a straight-forward induction on i. The temporary
introduction of infinitary formulas is justified by Lemma 1. The case of a greatest
fixpoint formula is analogous. ��

Just like the modal μ-calculus can define all (bisimulation-invariant) regular
languages of infinite trees [10], μTL can define all ω-regular word languages. We
will show this by giving a translation from ω-regular expressions into μTL.

Definition 2. For any ω-regular expression α we define trX(α) ∈ μTL that
describes the same ω-language over Σ. The inductive and uniform translation
uses a free variable X that will eventually be bound by an ω-operator. This
is essentially continuation-passing if the ω-regular expression is regarded as a
computation.

trX(ε) := X

trX(a) := a ∧©X

trX(α0 ∪ α1) := trX(α0) ∨ trX(α1)
trX(α0;α1) := trX(α0){trX(α1)/X}

trX(α∗) := μY.X ∨ trY (α)
trX(αω) := νX.trX(α)

This translation does not only give an automata-free proof of the fact that μTL
can describe all ω-regular languages. It also yields an alternative way of showing
that the alternation hierarchy in μTL collapses at level 1.

Theorem 2. For every μTL formula ϕ there is a ϕ′ ∈ μTL1 s.t. ϕ ≡ ϕ′.

Proof. It is well-known that a μTL formula can be regarded as an alternating
parity automaton. These can be translated into alternating Muller automata,
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then into alternating Büchi automata, then into nondeterministic Büchi au-
tomata, and finally into ω-regular expressions – whilst preserving equivalence
in each step. According to Theorem 1, the resulting expressions do not contain
nested ω-operators. Using Definition 2 they can be translated into μTL formulas
whose subformulas of the form μX.ψ contain at most one free variable that is
bound by a ν-operator. Hence, the alternation depth of the resulting formula is
at most 1. ��

Not only can this result be improved in terms of the level at which the hierarchy
collapses – see below. Such a translation is also of no practical relevance since it
is at least double exponential in the size of the formula.

2.3 Positive Boolean Formulas

For a given set Q let B+(Q) be the set of positive boolean formulas over Q.
I.e. B+(Q) is the least set that contains Q and fulfils: if f, g ∈ B+(Q) then
f ∨ g, f ∧ g ∈ B+(Q). We say that P ⊂ Q is a model of f if f evaluates to tt
when every q ∈ P in it is replaced by tt and every q �∈ P in it is replaced by ff.

We write f [q′/q] for the positive boolean formula that results from f by
replacing every occurrence of q in it with q′.

Later we will use a simple operation ()l that tags the elements of Q as ql.
This is extended to B+(Q) in the obvious way: (f ∨ g)l := (f)l ∨ (g)l, and
(f ∧ g)l := (f)l ∧ (g)l.

2.4 Alternating Automata

An alternating parity automaton (APA) is a tuple A = (Q,Σ, q0, δ, Ω) where Q
is a finite set of states, Σ a finite alphabet, and q0 ∈ Q the designated starting
state, δ : Q×Σ → B+(Q) is the transition function. Ω : Q → N assigns to each
state a priority.

A run r of A on a word w ∈ Σω is an infinite tree rooted with q0, s.t. for
every node qj on level i the set {p1, . . . , pn} of its children is a model of δ(qj , w

i).
Let π = q0, q1, . . . be a path of a run r of A on w. Let

Occ(π) := {q | ∃i ∈ N s.t. qi = q}
Inf (π) := {q | ∀j ∈ N : ∃i ≥ j s.t. qi = q}

A run r of an APA A on w is accepting iff for every path π of r: min{Ω(q) |
q ∈ Inf (π)} is even. A accepts w if there is an accepting run of A on w. The
language L(A) is the set of all words accepted by A.

A weak alternating parity automaton (WAPA) is an APA A with a less
demanding acceptance condition. A run r of a WAPA A on w is accepting if for
all paths π of r: min{Ω(q) | q ∈ Occ(π)} is even. L(A) is defined in the same
way.

An alternating Büchi automaton (ABA) is an APA A = (Q,Σ, q0, δ, Ω) where
Ω : Q → {0, 1}. We usually write an ABA as (Q,Σ, q0, δ, F ) with F := {q ∈ Q |
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Ω(q) = 0}. Acceptance then boils down to a state in F being visited infinitely
often.

A weak alternating Büchi automaton (WABA) could just be defined as
a WAPA with two priorities only. However, for technical reasons we prefer
the equivalent and original definition from [17]. A WABA is an ABA A =
(Q,Σ, q0, δ, F ) where Q can be partitioned into components C0, . . . , Cn s.t.

– for all q ∈ Q, i, j ∈ {0, . . . , n}, a ∈ Σ: if q ∈ Ci and q′ ∈ Cj and δ(q, a) =
f(. . . , q′, . . .) for some f then j ≤ i,

– for all 0 ≤ i ≤ n: Ci ⊆ F or Ci ∩ F = ∅.

3 From μTL to WAPA and Back

Definition 3. A WAPA with a hole q is a A = (Q,Σ, q0, δ, Ω) with q ∈ Q s.t.
δ(q, a) = ⊥ (undefined) for any a ∈ Σ, and Ω(q) = ⊥. Intuitively, a WAPA with
a hole is a WAPA whose construction is not finished yet.

Let A be a WAPA with a hole q, B be another WAPA and L ⊆ Σω. We write
A[q : B] for the WAPA that results from A by replacing q in A with the starting
state of B. We also write A[q : L] instead of A[q : B] for some B with L(B) = L.

Let Aff = ({ff}, Σ, ff, {(ff, a) �→ ff | a ∈ Σ}, {ff �→ 1}) be a WAPA that
accepts the empty language.

Theorem 3. For every closed ϕ ∈ μTL there is a WAPA Aϕ s.t. L(Aϕ) =
L(ϕ).

Proof. The proof proceeds by induction on the structure of ϕ. According to
Lemma 2, ϕ can be assumed to be strictly guarded.

Despite closeness of ϕ, we need to handle open subformulas. This will be done
using WAPAs with holes. Furthermore, we need to strengthen the inductive
hypothesis: for every ϕ we will construct a WAPA A = (Q,Σ, q0, δ, Ω) with
Ω(q0) > Ω(q) for all q �= q0.

Figure 1 shows the intuition behind some of the cases below.

Case ϕ = a. Let Aa = ({a, tt, ff}, Σ, a, δ, Ω) with δ(a, a) = tt, δ(a, b) = ff for
any b �= a, δ(q, a) = q for any a ∈ Σ, q ∈ {tt, ff} and Ω(a) = 2, Ω(ff) = 1,
Ω(tt) = 0. Then L(Aa) = {a}Σω = L(a).

Case ϕ = X. Let AX be the WAPA that consists of the hole X only.

Case ϕ = ©ψ. By hypothesis there is a WAPA Aψ = (Q,Σ, q0, δ, Ω) with
L(Aψ) = L(ψ). Assume ϕ �∈ Q, and let p := 1 + max{Ω(q) | q ∈ Q}. Define
Aϕ = (Q ∪ {ϕ}, Σ, ϕ, δ′, Ω′) with δ′ = δ ∪ {(q, a) �→ q0 | a ∈ Σ}, Ω′ = Ω ∪ {q �→
p}. Then L(Aϕ) = ΣL(Aψ) = L(©ψ). Note that every run of Aϕ starts with ϕ
but then contains only states with strictly smaller priorities. Thus, a word aw is
accepted by Aϕ iff w is accepted by Aψ .
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Aψ1

Aψ0

∨
∨ ∨

Arec
ψ

Aend
ψ

X

ff

p − 1

≥ p

< p − 1

case ϕ = ψ0 ∨ ψ1 case ϕ = μX.ψ

Fig. 1. Illustrations of the translation from μTL to WAPA.

Case ϕ = ψ0 ∨ ψ2. By hypothesis there are WAPAs Aψi = (Qi, Σ, q0,i, δi, Ωi)
for i ∈ {0, 1} s.t. L(Aψi) = L(ψi). We can assume Q0 and Q1 to be disjoint. Let
Q := Q0 ∪Q1 ∪ {ϕ}. This is where strict guardedness is needed. It ensures that
inside each Aψi there is a proper transition between the starting state and any
hole. Define Aϕ = (Q,Σ,ϕ, δ,Ω) where for any a ∈ Σ, q ∈ Q:

δ(q, a) :=
{
δ0(q0,0, a) ∨ δ(q0,1, a) if q = ϕ
δi(q, a) if q ∈ Qi, i ∈ {0, 1}

Ω(q) :=
{

1 + max{Ωi(q) | q ∈ Qi, i ∈ {0, 1}} if q = ϕ
Ωi(q) if q ∈ Qi, i ∈ {0, 1}

A run of Aϕ on any w is also a run of either Aψ0 or Aψ1 on w with the exception
that the root of the run in Aϕ has a higher priority. Hence, if w ∈ L(Aϕ) then
w ∈ L(Aψi) for some i ∈ {0, 1}. For the converse direction we need the stronger
hypothesis. Suppose w ∈ L(Aψi) for some i ∈ {0, 1}. Thus, on any path the
minimal priority that occurs is even. However, this cannot be the priority of the
root since it is the greatest occurring at all. But then the corresponding run of
Aϕ accepts w, too.

Case ϕ = ψ0 ∧ ψ1. Analogous to the previous case. The automaton for ϕ is
obtained as the disjoint union of the automata for the conjuncts with a new
starting state which does the conjunction of the two components’ starting states.

Case ϕ = μX.ψ. By hypothesis there is a WAPA Aψ = (Q,Σ, q0, δ, Ω). Let
p′ := max{Ω(q) | q ∈ Q} and p := p′ +2+(p′ mod 2) a strict even upper bound
on all the priorities occurring in Aψ .

Note that μX.ψ ≡ ψ if X �∈ free(ψ). Thus, Aψ can be assumed to contain a
hole X . Note that one hole suffices since holes are states that clearly behave in
the same way – namely not at all – and hence, can be collapsed.

Aϕ will consist of two disjoint copies of Aψ : one that unfolds the fixpoint a
finite number of times and one that puts a halt to the recursion. Technically, let
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Aϕ = (Q′, Σ, ϕ, δ′, Ω′) where

Qrec := {qrec | q ∈ Q \ {X}} ∪ {X}
Qend := {qend | q ∈ Q \ {X}} ∪ {ff}

Q′ := {ϕ} ∪Qrec ∪Qend

δ′(q, a) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(δ(q0, a))rec ∨ (δ(q0, a))end if q = ϕ

(δ(q0, a))rec ∨ (δ(q0, a))end if q = X

ff if q = ff

(δ(q, a))rec if q ∈ Qrec \ {X}
(δ(q, a))end [ff/X ] if q ∈ Qend \ {ff}

Ω′(q) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 · p− 1 if q = ϕ

p− 1 if q = X

1 if q = ff

Ω(q) + p if q ∈ Qrec \ {X}
Ω(q) if q ∈ Qend \ {ff}

Let Aend
ψ and Arec

ψ be the respective restrictions of Aϕ to Qend and Qrec. Note
the following facts:

– All the priorities in Aend
ψ are strictly smaller than those in Arec

ψ .
– In Arec

ψ , state X has the smallest priority which is odd.
– Aend

ψ is isomorphic to Aψ [X : ∅].
– Arec

ψ has the same structure as Aψ except for state X which accepts either
L(Aend

ψ ) or L(Arec
ψ ).

– Every path in an accepting run of Aϕ must not visit state X infinitely often,
for otherwise the least priority seen on this path at all would be odd.

Thus, L(Aϕ) is the least solution to the equation

L = L(Aψ[X : ∅]) ∪ L(Aψ[X : L])

Using the hypothesis twice as well as the approximant characterisation of least
fixpoints and Lemma 1 we get

L(Aϕ) =
⋃
k≥1

L(μkX.ψ) =
⋃
k≥0

L(μkX.ψ) = L(μX.ψ) = L(ϕ)

Case ϕ = νX.ψ. This is dual to the previous case. In order to adhere to Lemma 1,
the starting state as well as the recursion state X conjunctively combine the
transitions of qrec0 and qend

0 . State X obtains an even priority. The whole X in
the end-component is filled by a state tt which has priority 0 and loops back to
itself with any alphabet symbol. ��
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The next theorem is featured as an observation in [15] already. However, we
include its proof here in order to have a complete and effective translation from
WAPAs to μTL formulas. The result is also very similar to the theorem in
[13] stating that ABAs can be translated into WABAs. Consequently, its proof
proceeds along the same lines.

Theorem 4. [15, 13] For every WAPA A there is a WABA A′ s.t. L(A′) =
L(A).

Proof. Let A = (Q,Σ, q0, δ, Ω) with Ω : Q → {0, . . . , p}. Define A′ = (Q ×
{0, . . . , p}, Σ, (q0, Ω(q0)), δ′, F ) where for all q ∈ Q, a ∈ Σ:

δ′((q, k), a) := 〈δ(q, a)〉min{k,Ω(q)}

with 〈f ∨ g〉k := 〈f〉k ∨ 〈f〉k, 〈f ∧ g〉k := 〈f〉k ∧ 〈f〉k, and 〈q〉k := (q, k). Finally,
let F := { (q, k) | k is even }.

First observe that A′ is indeed a WABA. Let Ci := {(q, i) | q ∈ Q}. Then
C0, . . . , Cp is a partition on Q×{0, . . . , p}, transitions either stay inside a Ci or
lead to a Cj with j < i. At last, for every Ci we either have Ci ⊆ F or Ci∩F = ∅.

Now suppose that w ∈ L(A). A run r of A on w naturally induces a run r′ of
A′ on w. Every node in this run carries an extra component which remembers
the minimal priority seen on this path so far. Hence, if r is accepting, so is r′

since every path will eventually be trapped in a component that remembers even
priorities. The converse direction is proved in the same way. If every path of a
run in A′ visits infinitely many final states, then the corresponding run of A
must have seen even priorities as the least on every path. ��

Theorem 5. For every WABA A there is a μTL0 formula ϕA s.t. L(ϕA) =
L(A).

Proof. Let A = (Q,Σ, q0, δ, F ) with Q being disjointly partitioned into compo-
nents C0, . . . , Cp. W.l.o.g. we can assume for any i ∈ {0, . . . , p} that Ci ⊆ F if
i is even, and Ci ∩ F = ∅ if i is odd. Since transitions can at most lead into
components with smaller indices we can also assume q0 ∈ Cp.

Take such a component Ci and a state q ∈ Ci. For each component we use
the same method as proposed in [11] in order to come up with a μTL formula.
First, Ci is unfolded into a tree-like structure with root q that admits loops but
no merging of paths. A state at the beginning of a loop is called a (q, i)-loop
state. With Cq

i we denote this unfolding of Ci.
We will translate every unfolded Cq

i into a formula ϕq
i using auxiliary formu-

las that describe the local behaviour of state q in component i with root q′:

ψq
q′,i :=

⎧⎨⎩
σiXq′,i.

∧
a∈Σ

a → ©||δ(q′, a)||qi if q′ is a (q, i) − loop state∧
a∈Σ

a → ©||δ(q′, a)||qi o.w.
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where σi = μ if i is odd, σi = ν if it is even, and

||f ∨ g||qi := ||f ||qi ∨ ||g||qi
||f ∧ g||qi := ||f ||qi ∧ ||g||qi

||q′||qi :=

{
Xq′,i if q′ is a (q, i) − loop state
ψq′,i o.w.

Finally, let ϕq
i := ψq,i.

Note that every connected component of A is translated into a formula with-
out free variables that only uses closed formulas from components with lower
indices. Furthermore, the formulas created from one component have a single
fixpoint type only. Hence, the resulting formula is alternation-free.

The correctness of this construction can be shown using tableaux or games
for μTL as it is done in [11]. ��

Corollary 1. Every ϕ ∈ μTL is equivalent to a ϕ′ ∈ μTL0.

Proof. By composition of Theorems 3, 4 and 5. ��

4 Optimising the Translations

Proposition 1. For every ϕ ∈ μTL there is a WAPA Aϕ with L(Aϕ) = L(ϕ)
s.t. |A| = O(|ϕ| · 2fpd(ϕ)).

Proof. Immediate from the proof of Theorem 3. All inductive constructions are
linear, except those for fixpoint quantifiers. They double the size of the automata.

��

Proposition 2. For every WAPA A there is a ϕA ∈ μTL0 with L(ϕA) = L(A)
s.t. |ϕ| = O(|A|4).

Proof. Using Theorem 4, A can be transformed into a WABA of size O(|A|2).
Note that it is fair to assume that there are not more priorities than there are
states. Furthermore, Theorem 5 constructs for every state, every component and
every state in that component – i.e. every pair of states – a μTL formula of linear
size. Composing these two constructions yields a formula of size O(|A|4). ��

In the following we discuss how to improve the translation from μTL formulas
into WAPAs. The main focus is on optimising the costly translation of fixpoint
quantifiers. The first attempt reduces the size of the automaton by not dupli-
cating automata for nested but closed fixpoint formulas.

Take a formula of the form ϕ = σ1X1.ψ1(σ2X2.ψ2) s.t. X1 �∈ free(ψ2). Thus,
X2 does not depend on X1 and nd(ϕ) < fpd(ϕ). A clever algorithm for calculat-
ing the semantics of ϕ would calculate the semantics of σ2X2.ψ2 only once and
reuse it in every iteration needed to calculate the semantics of ϕ. Note that the
automaton constructed in the proof of Theorem 3 would include the automaton
A2 for σ2X2.ψ2 twice. Since there is no path out of A2 it suffices to include a
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Aψ2

Aψ1

Aψ1

Aψ2

ffff

X2 X1

Fig. 2. Simultaneously translating fix-
point formulas into WAPAs.

single copy of A. However, in the worst case A2 is a lot smaller than the au-
tomaton for ψ1 and no asymptotic improvement compared to O(|ϕ| · 2fpd(ϕ)) is
achieved.

The second attempt is based on Békic̀’s Theorem. Let μx.f denote the least
fixpoint of an arbitrary function f that takes an argument x.

Theorem 6. [2] Let A × B be a complete lattice and F : A × B → A × B a
monotone function defined by F (x, y) = (f1(x, y), f2(x, y)). Then μ(x, y).F =
(μx.f1(x, μy.f2(x, y)), μy.f2(μx.f1(x, μy.f2(x, y)), y).

The same holds for greatest fixpoints. Regarding formulas of μTL, Theorem 6
says that fixpoints of the same type can be computed simultaneously. We will
show how to build automata that do so for two fixpoint formulas. It can easily
be extended to formulas of arbitrary nesting depth as long as all variables are of
the same type.

Take a formula ϕ = μX1.ψ1(X1, μX2.ψ2(X1, X2)). Instead of building an au-
tomaton for μX2.ψ2(X1, X2) and then one for ϕ we will construct an automaton
for ϕ directly. By hypothesis we can assume that we already have automata Aψ2

with two holes X1 and X2, as well as an automaton Aψ1 with a hole for X1 and
another hole Z.

First let A′ := Aψ1 [Z : Aψ2 ]. We can collapse holes and assume that A′

only contains two holes X1 and X2. Then a WAPA Aϕ for L(ϕ) can be built
by duplicating A′ in the same way as it is done in the proof of Theorem 3. The
two states X1 and X2 get odd priorities that lie between those in the rec-part
and those in the end -part. Additionally, X1 has transitions back to either of the
beginnings of Aψ1 , X2 has transitions back to either of the beginnings of Aψ2 .
An illustration of this construction is given in Figure 2.

Proposition 3. Every μTL formula ϕ can be translated into an equivalent
WAPA of size O(|ϕ| · 2ad(ϕ)).

5 Conclusion

We reinforced the importance of weak alternating automata in the algorithmics
of ω-regular languages by giving direct translations from formulas of the linear
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time μ-calculus into these automata and back. Definition 2 has shown that every
ω-regular expression can easily be translated into μTL.

Remember that – just as the modal μ-calculus can be used as a specification
language for the verification of branching time properties – μTL is a straight-
forward temporal logic for the verification of linear time properties. In fact, the
work presented here is part of the development of a verification tool under the
term “bounded model checking for all ω-regular properties”. Bounded model
checking [3] only considers paths of finite length through a transition system,
and uses SAT-solvers for finding counterexamples to unsatisfied properties. It is
incomplete in the sense that it cannot show the absence of errors. However, it
is very successful as a symbolic verification method because of two reasons: (1)
often, errors occur “early”, i.e. small boundedness parameters suffice for finding
them. (2) In recent years, much effort has been put into the development of
SAT-solvers that behave efficiently despite SAT’s NP-hardness.

So far, bounded model checking is – to the best of our knowledge – only done
for LTL, hence, is only suitable for the verification of star-free, resp. first-order
definable properties. The work presented here yields a computational model for
all regular, i.e. monadic second-order definable properties that is easy to handle
algorithmically. It will be used in a bounded model checker that verifies regular
properties. Weak alternating parity automata will serve as the link between a
denotational specification language like μTL or ω-regular expressions on one
hand, and the actual model checker that generates formulas of propositional
logic on the other hand. These formulas then only need to describe the run of
a WAPA on a finite word or a word of the form wvω . Weakness, i.e. checking
for occurrence of priorities rather than infinite recurrence simplifies this process
vastly.

We believe that the direct translation from μTL, resp. ω-regular properties to
weak alternating automata can prove to be useful for other verification purposes
as well.
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Via Cintia, I-80126 Napoli, Italy
laura.bozzelli@dma.unina.it

Abstract. We consider the model checking problem for Process Rewrite
Systems (PRSs), an infinite-state formalism (non Turing-powerful) which
subsumes many common models such as Pushdown Processes and Petri
Nets. PRSs can be adopted as formal models for programs with dynamic
creation and synchronization of concurrent processes, and with recursive
procedures. The model-checking problem for PRSs w.r.t. action-based
linear temporal logic (ALTL) is undecidable. However, decidability for
some interesting fragment of ALTL remains an open question. In this pa-
per we state decidability results concerning generalized acceptance prop-
erties about infinite derivations (infinite term rewriting) in PRSs. As a
consequence, we obtain decidability of the model-checking (restricted to
infinite runs) for PRSs and a meaningful fragment of ALTL.

1 Introduction

Automatic verification of systems is nowadays one of the most investigated top-
ics. A major difficulty to face when considering this problem is that reasoning
about systems in general may require dealing with infinite–state models. Soft-
ware systems may introduce infinite states both manipulating data ranging over
infinite domains, and having unbounded control structures such as recursive
procedure calls and/or dynamic creation of concurrent processes (e.g. multi–
threading). Many different formalisms have been proposed for the description of
infinite–state systems. Among the most popular are the well known formalisms
of Context Free Processes, Pushdown Processes, Petri Nets, and Process Alge-
bras. The first two are models of sequential computation, whereas Petri Nets and
Process Algebra explicitly take into account concurrency. The model checking
problem for these infinite–state formalisms have been studied in the literature.
As far as Context Free Processes and Pushdown Processes are concerned, decid-
ability of the modal μ–calculus, the most powerful of the modal and temporal
logics used for verification, has been established (see [2, 5, 10, 14]). In [4, 8, 9],
model checking for Petri nets has been studied. The branching temporal logic as
well as the state-based linear temporal logic are undecidable even for restricted
logics. Fortunately, the model checking for action-based linear temporal logic
(ALTL) [8, 9] is decidable.

Verification of formalisms which accommodate both parallelism and recur-
sion is a challenging problem. In order to formally study this kind of systems,
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recently the formal framework of Process Rewrite Systems (PRSs) has been
introduced [12, 13]. This framework (non Turing-powerful), which is based on
term rewriting, subsumes many common infinite–states models such as Push-
down Processes and Petri Nets. PRSs can be adopted as formal models for
programs with dynamic creation and (a restricted form of) synchronization of
concurrent processes, and with recursive procedures. The decidability results al-
ready known in the literature for the general framework of PRSs concern the
reachability problem between two fixed terms and the reachable property prob-
lem [12, 13]. This last is the problem of deciding whether there is a reachable
term that satisfies certain properties that can be encoded as follows: some given
rewrite rules are applicable and/or other given rewrite rules are not applicable.
Decidability of this problem can be also used to decide the deadlock reachability
problem. Recently, in [3], symbolic reachability analysis is investigated (i.e., the
constructibility problem of the potentially infinite set of terms that are reach-
able from a given possibly infinite set of terms). However, the algorithm given
in [3] can be applied only to a subclass of PRSs (strictly less expressive), i.e, the
synchronization–free PRSs (the so–called PAD systems) which subsume Push-
down processes and the synchronization–free Petri nets. As concerns the ALTL
model–checking problem, it is undecidable for the whole class of PRSs [1, 12,
13]. It remains undecidable even for restricted models such as PA processes [1]
(these systems correspond to a subclass, strictly less expressive, of PAD sys-
tems). Fortunately, Bouajjani in [1] proved that for the complement of simple
ALTL1 (simple ALTL corresponds to Büchi ω-automata where there are only
self–loop), model–checking PA processes is decidable. Anyway, decidability for
some interesting fragment of ALTL and the general framework of PRSs remains
an open question.

In this paper we prove decidability of the model–checking problem (restricted
to infinite runs) for the whole class of PRSs w.r.t. a meaningful fragment of
ALTL that captures, exactly, the class of regular properties invariant under
permutation of atomic actions (along infinite runs). This fragment (closed under
boolean connectives) is defined as follows:

ϕ ::= F ψ | GF ψ | ¬ϕ | ϕ ∧ ϕ (1)

where ψ is an ALTL propositional formula (i.e, a boolean combination of atomic
actions). Within this fragment, class of properties useful in system verification
can be expressed: some safety properties (e.g., Gψ1), some guarantee proper-
ties (e.g., F ψ1), some obligation properties (e.g., F ψ1 → F ψ2, or Gψ1 →
Gψ2), some recurrence properties (e.g., GF ψ1), some persistence properties
(e.g., FGψ1), and finally some reactivity properties (e.g., GF ψ1 → GF ψ2) 2.
1 Simple ALTL is not closed under negation, and is defined as follows:

ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | G ψ | ψU ϕ

where ψ is an ALTL propositional formula, a is an atomic action, and <a>, G, and
U are the next, always, and until operators.

2 ψ1 and ψ2 denote ALTL propositional formulae.
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Notice that important classes of properties like invariants, as well as strong and
weak fairness constraints, can be expressed. Moreover, notice that this fragment
and simple ALTL are incomparable (in particular, strong fairness cannot be
expressed by simple ALTL).

In order to prove our result, we introduce the notion of Multi Büchi Rewrite
System (MBRS) that is, informally speaking, a PRS with a finite number of
accepting components, where each component is a subset of the PRS. Then, we
reduce our initial problem to that of verifying the existence of infinite derivations
(infinite term rewriting) in MBRS s satisfying generalized acceptance properties
(a la Büchi). Finally, we prove decidability of this last problem by a reduction
to the ALTL model–checking problem for Petri nets and Pushdown processes
(that is decidable). There are two main steps in the proof of decidability:

– First, we prove decidability of a problem concerning the existence of finite
derivations leading to a given term and satisfying generalized acceptance
properties. This problem is strictly more general than reachability problem
and is not comparable with the reachable property problem of Mayr [12, 13].
Moreover, our approach is substantially different from that used by Mayr.

– The second step concerns reasoning about infinite derivations in PRSs which
have not been investigated (to the best of our knowledge) in other papers
on PRSs.

The framework of MBRS s, introduced in this paper, can be also used to suit-
ably express other important class of regular properties, for example, the ALTL
fragment given by simple ALTL without the next operator. Properties in this
fragment can be translated in orderings of occurrences of rules belonging to the
accepting components of the given MBRS. Actually, we are working on the sat-
isfiability problem of the conjunction of this ALTL fragment with the fragment
(1) w.r.t. PRSs (i.e., the problem about the existence of an infinite run in the
given PRS satisfying a given formula), using a technique similar to that used
in this paper. The result would be particularly interesting, since it is possible
to prove (using a result of Emerson [7]) that the positive boolean combination
of this fragment with the fragment (1) subsumes the relevant ALTL fragment
(closed under boolean connectives) with the always and eventually operators (G
and F ) nested arbitrarily, i.e., (linear-time) Lamport logic3. This means that the
main result of this paper is an intermediate but fundamental step for resolving
the model–checking problem of PRSs against a full action-based temporal logic,
i.e., (linear-time) Lamport logic.

Plan of the paper: In Section 2, we recall the framework of Process Rewrite
Systems and ALTL logic. In Section 3, we introduce the notion of Multi Büchi
Rewrite System, and show how our decidability result about generalized accep-
tance properties of infinite derivations in PRSs can be used in model-checking
for the ALTL fragment (1). In Sections 4 and 5, we prove our decidability result.
3 Since Lamport logic (as well as the fragment (1)) is closed under negation, decidabil-

ity of the satisfiability problem implies decidability of the model–checking problem,
and viceversa.
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Finally, in Section 6, we conclude with some considerations about the complexity
of the considered problem.

Several proofs are omitted for lack of space. They can be found in the longer
version of this paper that can be requested to the author.

2 Preliminaries

2.1 Process Rewrite Systems

Let V ar = {X,Y, . . .} be a finite set of process variables. The set T of process
terms t over V ar is defined by the following syntax:

t ::= ε | X | t.t | t‖t

where X ∈ V ar, ε is the empty term, and “ ‖” (resp., “.”) denotes parallel
composition (resp., sequential composition). We always work with equivalences
classes of process terms modulo commutativity and associativity of “‖”, and
modulo associativity of “.”. Moreover, ε will act as the identity for both parallel
and sequential composition.

Definition 1 ([13]). A Process Rewrite System (PRS for short) over V ar and
an alphabet of atomic actions Σ is a finite set of rewrite rules of the form t

a→ t′,
where t ( �= ε) and t′ are terms in T , and a ∈ Σ.

A PRS 5 induces a Labelled Transition System (LTS) with set of states T , and
a transition relation → ⊆ T ×Σ × T defined by the following inference rules:

(t a→ t′) ∈ 5
t

a→ t′

t1
a→ t′1

t1 ‖ t a→ t′1 ‖ t
t1

a→ t′1

t1.t
a→ t′1.t

where t, t′, t1, t′1 are process terms and a ∈ Σ. In similar way we define for every
rule r ∈ 5 the notion of one–step derivation relation by r, denoted by r⇒�.

A path in 5 from t ∈ T is a (finite or infinite) sequence π = t0
a0→ t1

a1→ t2 . . .

such that t = t0 and every triple ti
ai→ ti+1 is a LTS edge. We write πi for the

path ti
ai→ ti+1

ai+1→ . . .. Let firstact(π) := a0. A run in 5 from t is a maximal
path from t, i.e., a path that is either infinite, or terminates in a term without
successors. We denote by runs�(t) (resp., runs�,∞(t)) the set of runs (resp.,
infinite runs) in 5 from t, and by runs(5) the set of all the runs in 5.

Given a finite (resp., infinite) sequence σ = r1r2 . . . of rules in 5, a finite
(resp., infinite) derivation in 5 from a term t (through σ), is a finite (resp.,
infinite) sequence d of the form t0

r1⇒� t1
r2⇒� t2 . . . such that t0 = t and every

triple ti
ri⇒� ti+1 is a one–step derivation. If d is finite and terminates in the term

t′, we say t′ is reachable in 5 from t (through derivation d). If σ is empty, we say
d is a null derivation. For terms t, t′ ∈ T and a rule sequence σ, we write t

σ⇒�
(resp., t σ⇒� t′) to mean that there exists a derivation (resp., a finite derivation
terminating in t′) from t through σ.
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For technical reasons, we also consider PRSs in a restricted syntactical form
called normal form [13]. A PRS 5 is said to be in normal form if every rule
r ∈ 5 has one of the following forms:

PAR rules: X1‖X2 . . .‖Xp
a→ Y1‖Y2 . . .‖Yq where p ∈ N \ {0} and q ∈ N.

SEQ rules: X
a→Y.Z or X.Y

a→Z or X a→Y or X a→ ε.

with X,Y, Z,Xi, Yj ∈ V ar. A PRS where all the rules are SEQ (resp., PAR)
rules is called sequential (resp., parallel) PRS.

2.2 ALTL (Action–Based LTL) and PRSs

The set of ALTL formulae over a set Σ of atomic actions is defined as follows:

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | 〈a〉ϕ | ϕU ϕ

where a ∈ Σ, 〈a〉 is the next operator, and U is the until operator. We also
define Fϕ := trueU ϕ (“eventually ϕ”) and its dual Gϕ := ¬F¬ϕ (“always ϕ”).
Given a PRS 5 and an ALTL formula ϕ, the set of the runs in 5 satisfying ϕ,
in symbols [[ϕ]]�, is defined inductively on the structure of ϕ as follows:

– [[true]]� = runs(5),
– [[¬ϕ]]� = runs(5) \ [[ϕ]]�,
– [[ϕ1 ∧ ϕ2]]� = [[ϕ1]]� ∩ [[ϕ2]]�,
– [[〈a〉ϕ]]� = {π ∈ runs(5) | firstact(π) = a and π1 ∈ [[ϕ]]�},
– [[ϕ1U ϕ2]]� = {π ∈ runs(5) | for some i ≥ 0 : πi ∈ [[ϕ2]]� and

for all j < i, πj ∈ [[ϕ1]]� }.

For any term t ∈ T , we say t satisfies ϕ (resp., satisfies ϕ restricted to infinite
runs) w.r.t. 5, in symbols t |=� ϕ (resp., t |=�,∞ ϕ), if runs�(t) ⊆ [[ϕ]]� (resp.,
runs�,∞(t) ⊆ [[ϕ]]�). The model-checking problem (resp., model–checking prob-
lem restricted to infinite runs) for ALTL w.r.t. PRSs is the problem of deciding
whether, given a PRS 5, an ALTL formula ϕ and a term t ∈ T , t |=� ϕ (resp.,
t |=�,∞ ϕ). The following is a well–known result:

Proposition 1 (see [2, 8, 12]). The model–checking problem for ALTL w.r.t.
parallel (resp., sequential) PRSs, possibly restricted to infinite runs, is decidable.

In this paper we are interested in the model-checking problem (restricted to
infinite runs) for unrestricted PRSs against the following ALTL fragment:

ϕ ::= F ψ | GF ψ | ¬ϕ | ϕ ∧ ϕ (1)

where ψ denotes an ALTL propositional formula defined by the following syntax:
ψ ::=<a> true |ψ ∧ ψ | ¬ψ (where a ∈ Σ).
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3 Multi Büchi Rewrite Systems

In order to prove the main result of this paper, i.e. the decidability of the model-
checking problem (restricted to infinite runs) of PRSs against the ALTL fragment
defined in Subsection 2.2, we introduce the framework of Multi Büchi Rewrite
Systems.

Definition 2. A Multi Büchi Rewrite System (MBRS) (with n accepting com-
ponents) over V ar and Σ is a tuple M = 〈5, 〈51, . . . ,5n〉〉, where 5 is a PRS
over V ar and Σ, and, for all i = 1, . . . , n, 5i ⊆ 5. 5 is called the support of
M .

We say M is a MBRS in normal form (resp., sequential MBRS, parallel
MBRS) if the support 5 is in normal form (resp., sequential, parallel).

For a rule sequence σ in 5 the finite acceptance of σ w.r.t. M , denoted by
Υ f

M (σ), is the set {i ∈ {1, . . . , n}| σ contains some occurrence of rule in 5i}. The
infinite acceptance of σ w.r.t. M , denoted by Υ∞

M (σ), is the set {i ∈ {1, . . . , n}|
σ contains infinite occurrences of some rule in 5i}. Given K,Kω ⊆ {1, . . . , n}
and a derivation d of the form t

σ⇒�, we say d is a (K,Kω)−accepting derivation
in M if Υ f

M (σ) = K and Υ∞
M (σ) = Kω. Moreover, we say d has finite acceptance

(resp., infinite acceptance) K (resp., Kω) in M . For all n ∈ N\{0}, let us denote
by Pn the set 2{1,...,n} (i.e., the set of the subsets of {1, . . . , n}).
Now, let us consider the following problem:

Fairness Problem: Given a MBRS M = 〈5, 〈51, . . . ,5n〉〉 over Var and Σ,
a process term t, and two sets K,Kω ∈ Pn, is there a (K,Kω)-accepting
infinite derivation in M from t?

Without loss of generality we can assume that the input term t in the Fairness
Problem is a process variable. In fact, if t /∈ V ar, then we add a fresh variable
X and a rule of the form X → t whose finite acceptance is the empty set.

As stated by the following Theorem, the Fairness Problem represents a suit-
able encoding of our initial problem in the framework of MBRS s.

Theorem 1. Model–checking PRSs against the considered ALTL fragment, re-
stricted to infinite runs, is polynomial-time reducible to the Fairness Problem.

In the remainder of this paper we prove that the Fairness Problem is de-
cidable. We proceed in two steps. First, in Section 4 we decide the problem for
the class of MBRS s in normal form. Then, in Section 5 we extend the result to
the whole class of MBRS s. For the proof we need some preliminary decidability
results, stated by the following Propositions 2–4, concerning acceptance proper-
ties of derivations in parallel and sequential MBRS s. In particular, the problems
in Propositions 2–3 (resp., in Proposition 4) are polynomial-time reducible to
the ALTL model–checking problem for parallel (resp., sequential) PRSs that is
decidable (see Proposition 1).

Proposition 2. Given a parallel MBRS MP over V ar and with n accepting
components, two variables X,Y ∈ V ar and K ∈ Pn, it is decidable whether
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there is a finite derivation in MP of the form X
σ⇒ (resp., of the form X

σ⇒ Y ,
of the form X

σ⇒ ε, of the form X
σ⇒ t‖Y with |σ| > 0) such that Υ f

MP
(σ) = K.

Proposition 3. Let MP1 and MP2 be two parallel MBRSs over V ar, with the
same support 5P , and with n accepting components. Given X ∈ V ar, K,Kω ∈
Pn, and a subset Λ of 5P , it is decidable whether: (1) there exists a (K,Kω)-
accepting infinite derivation in MP1 from X; (2) there exists a derivation in 5P

of the form X
σ⇒ such that Υ f

MP1
(σ) = K, Υ∞

MP1
(σ) ∪ Υ f

MP2
(σ) = Kω, and σ is

either infinite or contains some occurrence of rule in Λ.

Now, we give the notion of s-reachability in sequential PRSs.

Definition 3. Given a sequential PRS 5S over V ar, and X,Y ∈ V ar, Y is
s-reachable from X in 5S if there exists a term t of the form Y.X1.X2. . . . Xn

(where Xi ∈ V ar for any i = 1, . . . , n, and n ≥ 0) such that X ⇒ t.

Proposition 4. Given a sequential MBRS MS over V ar and with n accepting
components, two variables X,Y ∈ V ar, and two sets K,Kω ∈ Pn, it is decid-
able whether: (1) Y is s-reachable from X in MS through a (K, ∅)-accepting
derivation; (2) there is a (K,Kω)-accepting infinite derivation in MS from X.

4 Decidability of the Fairness Problem
for MBRSs in Normal Form

In this subsection we prove decidability of the Fairness Problem for the class of
MBRS s in normal form. We fix a MBRS in normal form M = 〈5, 〈51, . . . ,5n〉〉
over V ar and Σ, and two elements K and Kω of Pn. Given X ∈ V ar, we have
to decide if there exists a (K,Kω)-accepting infinite derivation in M from X .

Remark 1 Since M is in normal form (and in the following we only consider
derivations starting from variables or terms in which no sequential composition
occurs) we can limit ourselves to consider only terms in normal form, defined as
t ::= ε | X | t‖t | t.X (where X ∈ V ar). In fact, given a term in normal form t,
each term t′ reachable from t in M is still in normal form.

There are two main steps for the decidability proof of the Fairness Problem.

Step 1 First, we prove decidability of the following problem:
Problem 1 (Finite Derivations): Given X,Y ∈ V ar and K ′ ∈ Pn, is
there a finite derivation in M of the form X

σ⇒ (resp., X σ⇒ Y ) such that
Υ f

M (σ) = K ′?
Step 2 Using decidability of Problem 1, we show that the Fairness Problem can

be reduced to (a combination of) simpler and decidable problems regarding
acceptance properties of derivations of parallel and sequential MBRS s.

Before illustrating our approach, we need additional notation.
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In the following, MP = 〈5P , 〈5P,1, . . . ,5P,n〉〉 denotes the restriction of M
to the PAR rules, i.e., 5P (resp., 5P,i for i = 1, . . . , n) is the set 5 (resp., 5i for
i = 1, . . . , n) restricted to the PAR rules. Moreover, we shall use a fresh variable
ZF , and denote by T (resp., TPAR, TSEQ) the set of process terms in normal
form (resp., in which no sequential composition occurs, in which no parallel
composition occurs) over V ar ∪ {ZF}.

Definition 4 (Subderivation). Let t λ⇒ t‖(s.X) σ⇒ be a derivation4 in 5 from
t ∈ T . The set of the subderivations d′ of d = (t‖(s.X) σ⇒) from s is inductively
defined as follows:

1. if d is a null derivation or s = ε or d is of the form t‖(Z.X) r⇒ t‖Y σ′
⇒ (with

r = Z.X
a→Y and s = Z), then d′ is the null derivation from s;

2. if d is of the form t‖(s.X) r⇒ t‖(s′.X) σ′
⇒ (with s

r⇒ s′ and r ∈ 5) and s′
μ′
⇒

is a subderivation of t‖(s′.X) σ′
⇒ from s′, then s

r⇒ s′
μ′
⇒ is a subderivation of

d from s;

3. if d is of the form t‖(s.X) r⇒ t′‖(s.X) σ′
⇒ (with t

r⇒ t′ and r ∈ 5 ), then every

subderivation of t′‖(s.X) σ′
⇒ from s is also a subderivation of d from s.

Moreover, we say that d′ is a subderivation of t λ⇒ t‖(s.X) σ⇒.

Given a rule sequence σ in 5, and a subsequence σ′ of σ, σ \ σ′ denotes the
rule sequence obtained by removing from σ all and only the occurrences of rules
in σ′.
STEP 1 We prove decidability of Problem 1 by a reduction to a similar
problem restricted to a parallel MBRS (that is decidable by Proposition 2). The
main idea is to mimic finite derivations in M of the form p

σ⇒t (preserving p, the
finite acceptance of σ in M , and the final term t if t ∈ TPAR) starting from terms
in TPAR by using only PAR rules belonging to an extension, denoted by MPAR

(and with support 5PAR), of the parallel MBRS MP . In order to illustrate this,
let us denote by NSEQ(σ) the number of occurrences in σ of SEQ rules of the
form X

a→Z.Y . We proceed by induction on NSEQ(σ). If NSEQ(σ) = 0, since
p ∈ TPAR, we deduce that p

σ⇒ t is also a derivation in MP (and so in MPAR,
since MPAR is an extension of MP ). Now, let us assume that NSEQ(σ) > 0. In

this case p
σ⇒ t can be rewritten in the form p

λ⇒ p‖X r⇒ p‖(Z.Y ) ν⇒ t where
r = X

a→Z.Y , λ contains only occurrences of PAR rules in 5, p ∈ TPAR and
X,Y, Z ∈ V ar. Let Z

ρ⇒ t1 be a subderivation of p‖(Z.Y ) ν⇒ t from Z. By the
definition of subderivation only one of the following three cases may occur:

4 In the following, locutions of the kind ’the derivation t
σ⇒’ mean that (there is a

derivation of this form) and we are considering a specific derivation of the form t
σ⇒,

and t
σ⇒ is used as a reference to this derivation.
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A t1 �= ε, p
ν\ρ⇒ t2, and t = t2‖(t1.Y ).

B t1 = ε and p
σ⇒ t is of the form p

λ⇒ p‖X r⇒ p‖(Z.Y ) ν1⇒ t2‖Y
ν2⇒ t, where ρ is

a subsequence of ν1 and p
ν1\ρ⇒ t2.

C t1 = W ∈ V ar, and p
σ⇒ can be written as

p
λ⇒ p‖X r⇒ p‖(Z.Y ) ν1⇒ t2‖(W.Y ) r′

⇒ t2‖W ′ ν2⇒ t (1)

where r′ = W.Y
b→W ′, ρ is a subsequence of ν1 and p

ν1\ρ⇒ t2.

Cases A, B and C can be dealt in similar way, so that we examine only case C.
Let us consider equation (1). By anticipating the application of the rules in ρr′

before the application of the rules in ν1\ρ we obtain the following derivation that

has the same finite acceptance as (1): p λ⇒p‖X r⇒p‖(Z.Y )
ρ⇒p‖(W.Y ) r′

⇒p‖W ′ γ⇒
t, where γ = (ν1\ρ)ν2. Since Z

ρ⇒W with Z,W ∈ V ar and NSEQ(ρ) < NSEQ(σ),
by the induction hypothesis there will be a derivation in MPAR having the form
Z

π⇒�PAR
W with Υ f

MP AR
(π) = Υ f

M (ρ). By Proposition 2 for each K ′ ∈ Pn

it is decidable whether there exists in MPAR a finite derivation starting from
variable Z and leading to variable W , having finite acceptance K ′ (in MPAR).

Then, the idea is to collapse the finite derivation d = X
r⇒ Z.Y

ρ⇒ W.Y
r′
⇒

W ′ into a single PAR rule of the form r′′ = X
K′
→W ′ such that K ′ = Υ f

M (rr′)
∪ Υ f

MP AR
(π) = Υ f

M (rr′ρ) and Υ f
MP AR

(r′′) = K ′. So, rule r′′ keeps track of the
meaningful information of the derivation d, i.e., the starting term X ∈ V ar,
the final term W ′ ∈ V ar, and the finite acceptance of rr′ρ in M . Since the set

of rules of the form X
K′
→W ′ with X,W ′ ∈ V ar and K ′ ∈ Pn is finite, MPAR

can be built effectively. After all, we have that p λr′′
⇒�P AR

p‖W ′ and p‖W ′ γ⇒� t

such that p‖W ′ ∈ TPAR, Υ f
MP AR

(λr′′) = Υ f
M (λrr′ρ) and NSEQ(γ) < NSEQ(σ).

Applying again the induction hypothesis we deduce that there exists a finite
derivation in MPAR of the form p

ξ⇒�P AR
p′ such that Υ f

MP AR
(ξ) = Υ f

M (σ), and
p′ = t if t ∈ TPAR. The fresh variable ZF is used to manage case A, where
the subderivation Z

ρ⇒ t1 does not influence the applicability of rules in ν \ ρ
(i.e., p

ν\ρ⇒ t2). In this case, in order to keep track of the derivation X
r⇒ Z.Y

ρ⇒ t1.Y , it suffices to preserve the starting term X and the finite acceptance of

rρ. Therefore, we introduce a new rule of the form r′′ = X
K′
→ZF such that K ′ =

Υ f
M (rρ) and Υ f

MP AR
(r′′) = K ′. MPAR is formally defined as follows.

Definition 5. The MBRS MPAR = 〈5PAR, 〈5PAR,1, . . . ,5PAR,n〉〉 is the least
parallel MBRS, over V ar ∪ {ZF } and the alphabet Σ ∪ Pn, such that:

1. 5PAR ⊇ 5P and 5PAR,i ⊇ 5P,i for all i = 1, . . . , n.
2. Let r = X

a→Z.Y ∈ 5, Z σ⇒�P AR
p for some term p (resp., Z σ⇒�P AR

ε), and

K ′ = Υ f
M (r) ∪ Υ f

MP AR
(σ). Then r′ = X

K′
→ZF ∈ 5PAR (resp., r′ = X

K′
→Y ∈

5PAR) and Υ f
MP AR

(r′) = K ′.
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3. Let r = X
a→Z.Y ∈ 5, r′ = W.Y

b→W ′ ∈ 5, Z σ⇒�P AR
W , and K ′ = Υ f

M (rr′)

∪ Υ f
MP AR

(σ). Then r′′ = X
K′
→W ′ ∈ 5PAR and Υ f

MP AR
(r′′) = K ′.

Lemma 1. The parallel MBRS MPAR can be effectively constructed.

Proof. Figure 1 reports the procedure BUILD-PARALLEL-MBRS(M) which
builds MPAR. The algorithm uses the routine UPDATE (r′,K ′) defined as:
5PAR := 5PAR ∪ {r′};
for each i ∈ K ′ do 5PAR,i := 5PAR,i ∪ {r′};
Notice that by Proposition 2, the conditions in each of the if statements in lines
7, 9 and 13 are decidable, therefore, the procedure is effective. Moreover, since

the set of rules of the form X
K′
→Y with X ∈ V ar, Y ∈ V ar∪{ZF } and K ′ ∈ Pn

is finite, termination is guaranteed.

Algorithm BUILD–PARALLEL–MBRS(M)

1 �PAR := �P ;
2 for i = 1, . . . , n do �PAR,i := �P,i;
3 repeat
4 flag:=false;
5 for each r = X

a→Z.Y ∈ � and K1 ∈ Pn do
6 Set K′ = K1 ∪ Υ f

M (r);

7 if Z
σ⇒�P AR

p for some p such that Υ f
MP AR

(σ) = K1 then

8 if r′ = X
K′
→ZF /∈ �PAR then UPDATE(r′, K′); flag:=true;

9 if Z
σ⇒�P AR

ε such that Υ f
MPAR

(σ) = K1 then

10 if r′ = X
K′
→Y /∈ �PAR then UPDATE(r′, K′); flag:=true;

11 for each r′ = W.Y
b→W ′ ∈ � do

12 Set K′ = K1 ∪ Υ f
M (rr′);

13 if Z
σ⇒�P AR

W such that Υ f
MP AR

(σ) = K1 then

14 if r′′ = X
K′
→W ′ /∈ �PAR then UPDATE(r′′, K′); flag:=true;

15 until flag = false

Fig. 1. Algorithm to build the parallel MBRS MPAR.

The following two lemmata (whose proof is simple) establish the correctness of
our construction.

Lemma 2. Let p σ⇒� t‖p′ with p, p′ ∈ TPAR. Then, there exists s ∈ TPAR such
that p

ρ⇒�P AR
s‖p′, Υ f

M (σ) = Υ f
MP AR

(ρ), s = ε if t = ε, and |ρ| > 0 if |σ| > 0.

Lemma 3. Let p σ⇒�P AR
p′‖p′′ such that p, p′, p′′ ∈ TPAR, p′ does not contain

occurrences of ZF , and p′′ does not contain occurrences of variables in V ar.
Then, there exists t ∈ T such that p

ρ⇒� p′‖t, Υ f
M (ρ) = Υ f

MP AR
(σ), t = ε if

p′′ = ε, and |ρ| > 0 if |σ| > 0.

These two results, together with Proposition 2, allow us to conclude that
Problem 1 is decidable.
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STEP 2 Let us go back to the Fairness Problem. We define a class of deriva-
tions, in symbols Π(K,Kω), that is the set of derivations d in 5 such that there
is not a subderivation of d that is a (K,Kω)-accepting infinite derivation in M .
Now, we show that we can limit ourselves to consider only this class of deriva-
tions. Let d be a (K,Kω)-accepting infinite derivation in M from a variable X .
If d does not belong to Π(K,Kω), then it can be written in the form X

ρ⇒ t‖W
r⇒ t‖(Z.Y ) ν⇒, with Z ∈ V ar and r = W

a→Z.Y , and such that there exists a sub-
derivation of t‖(Z.Y ) ν⇒ from Z that is a (K,Kω)-accepting infinite derivation
in M . Following this argument we can prove that there exist m ∈ N\{0}∪{∞},
a sequence of variables (Xh)h=m

h=0 with X0 = X , and a sequence of SEQ rules
(rh)h=m

h=1 such that one of the following two conditions is satisfied:

1. m is finite, for each h = 0, . . . ,m − 1 we have that Xh
ρh⇒ th‖Yh+1, rh+1 =

Yh+1
ah+1→ Xh+1.Zh+1, Υ

f
M (ρhrh+1) ⊆K, and there exists a (K,Kω)-accepting

infinite derivation in M from Xm belonging to Π(K,Kω).
2. (for K = Kω) m is infinite, and for all h ∈ N we have that Xh

ρh⇒ th‖Yh+1,
rh+1 = Yh+1

ah+1→ Xh+1.Zh+1, and Υ f
M (ρ0r1ρ1r2 . . .) = Υ∞

M (ρ0r1ρ1r2 . . .)=
Kω.

For each h let us consider the derivation Xh
ρh⇒ th‖Yh+1. By Lemma 2 there

exists a finite derivation in MPAR of the form Xh
λh⇒�PAR

ph‖Yh+1 such that
Υ f

MP AR
(λh) = Υ f

M (ρh) and ph ∈ TPAR. By Proposition 2 for each K ′ ∈ Pn it is
decidable whether variable Yh+1 is partially reachable in MPAR from Xh through
a derivation having finite acceptance K ′. The idea is to introduce a SEQ rule of

the form Xh
K′
→Yh+1 where K ′ = Υ f

MP AR
(λh), and whose finite acceptance is K ′.

Let us denote by MSEQ the sequential MBRS (with n accepting components)
containing these new rules (whose number is finite) and all the SEQ rules of M
having the form X

a→Z.Y , and whose accepting components agree with the labels
of the new rules. Then, case 2 above amounts to check the existence of a (K,Kω)-
accepting infinite derivation in MSEQ from variable X . By Proposition 4 this is
decidable. Case 1 amounts to check the existence of a variable Y ∈ V ar such that
Y is s-reachable from X in MSEQ through a derivation with finite acceptance (in
MSEQ) K ′ ⊆ K (by Proposition 4 this is decidable), and there exists a (K,Kω)-
accepting infinite derivation in M from Y belonging to Π(K,Kω). MSEQ is
formally defined as follows.

Definition 6. By MSEQ = 〈5SEQ, 〈5SEQ,1, . . . ,5SEQ,n〉〉 we denote the se-
quential MBRS over V ar and the alphabet Σ ∪ Pn defined as follows:

– 5SEQ = {X a→Z.Y ∈ 5} ∪
{X K′

→Y | X,Y ∈ V ar, X
σ⇒�P AR

p‖Y
for some p ∈ TPAR, |σ| > 0, and Υ f

MP AR
(σ) = K ′}

.

– 5SEQ,i = {X a→Z.Y ∈ 5i} ∪ {XK′
→Y ∈ 5SEQ | i ∈ K ′} for all i = 1, . . . , n.

By Proposition 2 we obtain the following result
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Lemma 4. MSEQ can be built effectively.

Thus, we obtain a first reduction of the Fairness Problem.

Lemma 5. Given X ∈ V ar, there exists a (K,Kω)-accepting infinite derivation
in M from X if, and only if, one of the following conditions is satisfied:

1. There exists a variable Y ∈ V ar s-reachable from X in 5SEQ through
a (K ′, ∅)-accepting derivation in MSEQ with K ′ ⊆ K, and there exists a
(K,Kω)-accepting infinite derivation in M from Y belonging to Π(K,Kω).

2. (Only when K = Kω) There exists a (K,Kω)-accepting infinite derivation
in MSEQ from X.

Therefore, it remains to manage the class Π(K,Kω). We proceed by induc-
tion on |K|+ |Kω|. Let p σ⇒be a (K,Kω)-accepting infinite derivation in M from
p ∈ TPAR belonging to Π(K,Kω). If σ contains only occurrences of PAR rules,
then p

σ⇒ is also a (K,Kω)-accepting infinite derivation in MPAR. Otherwise,
it can be rewritten in the form p

λ⇒ p‖W r⇒ p‖(Z.Y ) ν⇒where r = W
a→Z.Y , λ

contains only occurrences of PAR rules in 5, p ∈ TPAR and W,Y, Z ∈ V ar. Let
Z

ρ⇒be a subderivation of p‖(Z.Y ) ν⇒ from Z. If Z
ρ⇒ is finite, as shown in Step

1, we can keep track of the finite derivation W
r⇒Z.Y

ρ⇒ (preserving acceptance
properties) by using a PAR rule belonging to MPAR. If |K| + |Kω| = 0 (i.e.,
K = Kω = ∅), since p

σ⇒ belongs to Π(K,Kω) (and ρ is a subsequence of σ),
then Z

ρ⇒ can be only finite. Therefore, all the subderivations of p σ⇒ are fi-
nite. Then, by Step 1 we deduce that there must exist a (∅, ∅)-accepting infinite
derivation in MPAR from p. Since V ar ⊆ TPAR, by Lemma 5 we obtain the
following decidable (by Propositions 3–4) characterization for the existence of a
(∅, ∅)-accepting infinite derivation in M from a variable X :

– (when K = Kω = ∅) Either (1) there exists a (∅, ∅)-accepting infinite deriva-
tion in MSEQ from X , or (2) there exists a variable Y s-reachable from X
in MSEQ through a derivation having finite acceptance (in MSEQ) K = ∅,
and there exists a (∅, ∅)-accepting infinite derivation in MPAR from Y .

Now, let us assume that |K| + |Kω| > 0 and Z
ρ⇒ is infinite. Since p‖(Z.Y ) ν⇒

is also in Π(K,Kω), by definition of subderivation we deduce that there is a

derivation belonging to Π(K,Kω) having the form p
ν\ρ⇒. Since p

σ⇒ belongs to
Π(K,Kω), it follows that Υ f

M (ρ) = K ⊆ K, Υ∞
M (ρ) = Kω ⊆ Kω, and |K| +

|Kω| < |K| + |Kω|. By our assumptions (induction hypothesis) it is decidable
whether there exists a (K,Kω)-accepting infinite derivation in M from variable
Z. Then, we keep track of the infinite derivation W

r⇒�Z.Y
ρ⇒� by adding a PAR

rule of the form r′ = W
K1,Kω→ ZF with K1 = K ∪ Υ f

M (r) ⊆ K. So, the label of r′

keeps track of the finite and infinite acceptance of rρ in M . Now, we can apply

recursively the same argument to the derivation p‖ZF
ν\ρ⇒ in 5 from p‖ZF ∈

TPAR, which belongs to Π(K,Kω) and whose finite (resp., infinite) acceptance
in M is contained in K (resp., Kω). In other words, all the subderivations of
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p
σ⇒ are abstracted away by PAR rules non belonging to 5, according to the

intuitions given above. Formally, we define two extensions of MPAR (with the

same support) that will contain these new PAR rules r′ = W
K1,Kω→ ZF . The

accepting components of the first (resp., the second) extension agree with the
first component K1 (resp., the second component Kω) of the label of r′ (that keep
track of the finite acceptance – resp., the infinite acceptance – of the simulated
infinite rule sequences in M).

Definition 7. By MK,Kω

PAR = 〈5K,Kω

PAR , 〈5K,Kω

PAR,1, . . . ,5
K,Kω

PAR,n〉〉 and
MK,Kω

PAR,∞ = 〈5K,Kω

PAR , 〈5K,Kω

PAR,∞,1, . . . ,5
K,Kω

PAR,∞,n〉〉 we denote the parallel MBRSs
over V ar ∪ {ZF} and the alphabet Σ ∪ Pn ∪ Pn × Pn (with the same support),
defined as follows:

– 5K,Kω

PAR = 5PAR ∪
{X K,Kω→ ZF | K ⊆ K,Kω ⊆ Kω, there exist r = X

a→Z.Y ∈ 5
and an infinite derivation Z

σ⇒� such that

|Υ f
M (σ)| + |Υ∞

M (σ)| < |K| + |Kω| and

Υ f
M (σ) ∪ Υ f

M (r) = K and Υ∞
M (σ) = Kω}.

– 5K,Kω

PAR,i = 5PAR,i ∪ {XK,Kω→ ZF ∈ 5K,Kω

PAR | i ∈ K} for all i = 1, . . . , n.

– 5K,Kω

PAR,i,∞ = {XK,Kω→ ZF ∈ 5K,Kω

PAR | i ∈ Kω} for all i = 1, . . . , n.

By the induction hypothesis on the decidability of the Fairness Problem for sets
K,Kω ∈ Pn such that K ⊆ K, Kω ⊆ Kω and |K|+ |Kω| < |K|+ |Kω|, we have

Lemma 6. MK,Kω

PAR and MK,Kω

PAR,∞ can be built effectively.

The following two Lemmata establish the correctness of our construction.

Lemma 7. Let p
σ⇒ be a (K,Kω)-accepting derivation in M from p ∈ TPAR

belonging to Π(K,Kω), where K ⊆ K and Kω ⊆ Kω. Then, there exists in
5K,Kω

PAR a derivation of the form p
ρ⇒ such that Υ f

MK,Kω
P AR

(ρ) = K, Υ∞
MK,Kω

P AR

(ρ) ∪
Υ f

MK,Kω
P AR,∞

(ρ) = Kω. Moreover, if σ is infinite, then either ρ is infinite or contains

some occurrence of rule in 5K,Kω

PAR \ 5PAR.

Lemma 8. Let p σ⇒
�K,Kω

P AR

such that p ∈ TPAR, and σ is either infinite or con-

tains some occurrence of rule in 5K,Kω

PAR \ 5PAR. Then, there exists in 5 an

infinite derivation of the form p
δ⇒ such that Υ f

M (δ) = Υ f

MK,Kω
P AR

(σ) and Υ∞
M (δ) =

Υ∞
MK,Kω

P AR

(σ) ∪ Υ f

MK,Kω
P AR,∞

(σ).

Finally, we can prove the desired result

Theorem 2. The Fairness Problem is decidable for MBRSs in normal form.
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Proof. We start constructing MPAR and MSEQ (they do not depend on K and
Kω). Then, we accumulate information about the existence of (K,Kω)-accepting
infinite derivations in M from variables in V ar, where |K|+ |Kω| ≤ |K|+ |Kω|
and K ⊆ K and Kω ⊆ Kω, proceeding for crescent values of |K|+|Kω|. We have
seen that this is decidable for |K|+ |Kω| = 0. We keep track of this information
by adding new PAR rules according to Definition 7. When |K| + |Kω | > 0
(assuming without loss of generality that K = K and Kω = Kω), by Lemmata
5, 7, and 8 the problem for a variable X ∈ V ar is reduced to check that one of
the following two conditions (that are decidable by Propositions 3–4) holds:

– There exists a variable Y ∈ V ar s-reachable from X in 5SEQ through a
(K ′, ∅)-accepting derivation in MSEQ with K ′ ⊆ K, and there exists a deriva-
tion Y

ρ⇒
�K,Kω

PAR

such that Υ f

MK,Kω
P AR

(ρ) = K and Υ∞
MK,Kω

P AR

(ρ) ∪ Υ f

MK,Kω
P AR,∞

(ρ) =

Kω. Moreover, ρ is either infinite or contains some occurrence of rule in
5K,Kω

PAR \ 5PAR.
– (only when K = Kω). There exists a (K,Kω)-accepting infinite derivation

in MSEQ from X .

5 Decidability of the Fairness Problem
for Unrestricted MBRSs

In this section we extend the decidability result stated in the previous Section to
the whole class of MBRS s, showing that the Fairness Problem for unrestricted
MBRS s is reducible to the Fairness Problem for MBRS s in normal form. We use
a construction very close to that used in [12, 13] to solve reachability for PRSs.
We recall that we can assume that the input term in the Fairness Problem is
a process variable. Let M be a MBRS over V ar and Σ, and with n accepting
components. Now, we describe a procedure that transforms M into a new MBRS
M ′ with the same number of accepting components. Moreover, this procedure
has as input also a finite set of rules 5AUX , and transforms it in 5′

AUX . If M
is not in normal form, then there exists some rule r in M (that we call bad rule
[12]) that is neither a PAR rule nor a SEQ rule. There are five types of bad
rules5:

1. r = u
a→u1‖u2. Let Z1, Z2,W be fresh variables. We get M ′ replacing the

bad rule r with the rules r′ = u→W , r3 = W→Z1‖Z2, r1 = Z1→u1, r2 =
Z2→u2 such that Υ f

M ′(r′) = Υ f
M (r), Υ f

M ′ (r1) = Υ f
M ′(r2) = Υ f

M ′ (r3) = ∅ 6. If
r ∈ 5AUX , then 5′

AUX = (5AUX \ {r})∪ {r′, r1, r2, r3}, otherwise, 5′
AUX =

5AUX .
2. r = u1‖(u2.u3)

a→u. Let Z1, Z2 be fresh variables. We get M ′ replacing the
bad rule r with the rules r1 = u1→Z1, r2 = u2.u3→Z2, r′ = Z1‖Z2→u

such that Υ f
M ′ (r′) = Υ f

M (r), Υ f
M ′(r1) = Υ f

M ′ (r2) = ∅. If r ∈ 5AUX , then
5′

AUX = (5AUX \ {r}) ∪ {r′, r1, r2}, otherwise, 5′
AUX = 5AUX .

5 We assume that sequential composition is left-associative. So, when we write t1.t2,
then t2 is either a single variable or a parallel composition of process terms.

6 Note that we have not specified the label of the new rules, since it is not relevant.
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3. r = u
a→u1.u2 (resp., r = u1.u2

a→u) where u2 is not a single variable. Let Z
be a fresh variable. We get M ′ and 5′

AUX in two steps. First, we substitute
Z for u2 in (left-hand and right-hand sides of) all the rules of M and 5AUX .
Then, we add the rules r1 = Z→u2 and r2 = u2→Z such that Υ f

M ′ (r1) =
Υ f

M ′ (r2) = ∅.
4. r = u1

a→u2.X . Let Z,W be fresh variables. We get M ′ replacing the bad
rule r with the rules r′ = u1→W , r1 = W→Z.X , r2 = Z→u2 such that
Υ f

M ′ (r′) = Υ f
M (r) and Υ f

M ′(r1) = Υ f
M ′ (r2) = ∅. If r ∈ 5AUX , then 5′

AUX =
(5AUX \ {r}) ∪ {r′, r1, r2}, otherwise, 5′

AUX = 5AUX .
5. r = u1.X

a→u2 where u1 is not a single variable. Let Z be a fresh variable. We
get M ′ replacing the bad rule r with the rules r1 = u1→Z, r′ = Z.X→u2,
such that Υ f

M ′(r′) = Υ f
M (r) and Υ f

M ′(r1) = ∅. If r ∈ 5AUX , then 5′
AUX =

(5AUX \ {r}) ∪ {r′, r1}, otherwise, 5′
AUX = 5AUX .

After a finite number of applications of this procedure, starting from 5AUX =
∅, we obtain a MBRS M ′ in normal form and a finite set of rules 5′

AUX . Let
M ′ = 〈5′, 〈5′

1, . . . ,5′
n〉〉. Now, let us consider the MBRS in normal form with

n + 1 accepting components given by MF = 〈5′, 〈5′
1, . . . ,5′

n,5′ \ 5′
AUX〉〉. We

can prove that, given a variable X ∈ V ar and two sets K,Kω ∈ Pn, there exists
a (K,Kω)-accepting infinite derivation in M from X if, and only if, there exists
a (K ∪ {n + 1},Kω ∪ {n + 1})-accepting infinite derivation in MF from X .

6 Complexity Issues

We conclude with some considerations about the complexity of the considered
problem. Model–checking parallel PRSs (that are equivalent to Petri nets) w.r.t.
the considered ALTL fragment, interpreted on infinite runs, is EXPSPACE -
complete (also for a fixed formula) [11]. ALTL model–checking for sequential
PRSs (that are equivalent to Pushdown processes) is less hard, since it is EXP-
TIME -complete [2]. Therefore, model–checking the whole class of PRSs w.r.t. the
considered ALTL fragment (restricted to infinite runs) is at least EXPSPACE -
hard. We have reduced this problem (in polynomial time) to the Fairness Prob-
lem (see Theorem 1). Moreover, as seen in Section 5, we can limit ourselves
(through a polynomial-time reduction) to consider only MBRS s in normal form.
The algorithm presented in Section 4 to resolve the Fairness Problem for MBRS s
in normal form is an exponential reduction (in the number n of accepting com-
ponents) to the ALTL model–checking problem for Petri nets and Pushdown
processes: we have to resolve an exponential number in n of instances of decision
problems about acceptance properties of derivations of parallel and sequential
MBRS s, whose size is exponential in n 7. These last problems (see Propositions
2–4) are polynomial-time reducible to the ALTL model–checking problem for
Petri nets and Pushdown processes. It was shown [8] that for Petri nets, and for

7 Note that the number of new rules added in order to built MPAR, MSEQ, MK,Kω
PAR ,

and MK,Kω
PAR,∞ is exponential in n and polynomial in |V ar|.
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a fixed ALTL formula, model checking has the same complexity as reachability
(that is EXPSPACE -hard, but the best known upper bound is not primitive
recursive). Therefore, for n fixed (i.e., for a fixed formula of our ALTL fragment)
the upper bound given by our algorithm is the same as reachability for Petri
nets.
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Abstract. It is a hotly researching topic to eliminate irrelevant vari-
ables from counterexample, to make it easier to be understood. K Ravi
proposes a two-stages counterexample minimization algorithm. This al-
gorithm is the most effective one among all existing approaches, but
time overhead of its second stage(called BFL) is very large due to one
call to SAT solver per candidate variable to be eliminated. So we pro-
pose a faster counterexample minimization algorithm based on unit core
extraction and incremental SAT. First, for every unsatisfiable instance
of BFL, we perform unit core extraction algorithm to extract the set of
variables that are sufficient to lead to conflict, all variables not belong
to this set can be eliminated simultaneously. In this way, we can elimi-
nate many variables with only one call to SAT solver. At the same time,
we employ incremental SAT approach to share learned clauses between
similar instances of BFL, to prevent overlapped state space from being
searched repeatedly. Theoretic analysis and experiment result show that,
our approach is 1 order of magnitude faster than K Ravi’s algorithm, and
still retains its ability to eliminate irrelevant variables.

1 Introduction

Model checking technology is widely employed to verify software and hardware
system. One of its major advantages in comparison to such method as theorem
proving is the production of a counterexample, which explains how the system
violates some assertion.

However, it is a tedious task to understand the complex counterexamples gen-
erated by model checker. Therefore, how to automatically extract useful infor-
mation to aid the understanding of counterexample, is an area of hotly research
[5, 6, 13, 14].

A counterexample can be viewed as an assignment to a variable set Free,
There must be a variables subset R ⊆ Free, which is sufficient to lead to coun-
terexample. Then for variables in Free− R,no matter what value do they take
on, they can’t prevent the counterexample. Thus we call R as minimization
set, and call the process that extract R as counterexample minimization.

Now we demonstrate the concept of counterexample minimization with fol-
lowing example:

R. Cousot (Ed.): VMCAI 2005, LNCS 3385, pp. 298–312, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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For AND gate z = a&b, assume the assertion is ”z always equal to 1”,
then there are three counterexamples: {a ⇐ 0, b ⇐ 0, z ⇐ 0}, {a ⇐
1, b ⇐ 0, z ⇐ 0}, and {a ⇐ 0, b ⇐ 1, z ⇐ 0}.
However, from an intuitive viewpoint, b is an irrelevant variable when
a equal to 0. At the same time, a is also an irrelevant variable when b
equals to 0. Then we can minimize above three counterexamples, and
obtain 2 minimization sets: {a ⇐ 0, z ⇐ 0} and {b ⇐ 0, z ⇐ 0}.

Thus, a minimized counterexample is much easier to be understood.
K Ravi[5] proposes a two-stage counterexample minimization algorithm. In

the first stage, an Implication Graph Based Lifting(IGBF) algorithm is per-
formed to quickly eliminate some irrelevant variables. In the second stage, a
highly expensive Brute Force Lifting algorithm(BFL) is performed to further
eliminate more irrelevant variables.

In BFL, free variables set contains input variables at all cycle and the initial
state variables. ”free” means that they can take on any value independent of
others. For every free variable v, BFL constructs a SAT instance SAT(v), to
determine if some assignment to v can prevent the counterexample. If SAT(v)
is unsatisfiable, then v can’t prevent the counterexample from happening , thus
v is irrelevant to counterexample and can be eliminated.

K Ravi[5] compares his approach with other counterexample minimization
approaches, and concludes that his approach is the most efficient one, it can
often eliminates up to 70% free variables. However, the run time complexity of
his approach is much higher than all other existing approaches. At the same
time, run time overhead of BFL is 1 to 3 orders of magnitude larger than that
of IGBF. So the key to speedup K Ravi’s two-stage approach is to reduce time
overhead of BFL.

The reasons of BFL’s large time overhead are:

1. It needs to call SAT solver for every free variable. But there are often thou-
sands of free variables in a counterexample. This means BFL needs to call
SAT solver thousands of times, it is a huge overhead;

2. It can’t share learned clause between similar SAT instances, so overlapped
state space may be searched repeatedly.

Accordingly, the keys to reduce time overhead of BFL are:

1. Eliminate as many as possible variables after every call to SAT solver;
2. Share learned clauses between similar SAT instances, to avoid searching

overlapped state space repeatedly.

So we propose a faster counterexample minimization algorithm based on unit
core extraction and incremental SAT. First, for every unsatisfiable instance of
BFL, we perform unit core extraction algorithm to extract the set of variables
that are sufficient to lead to conflict, all variables not belong to this set can be
eliminated simultaneously. In this way, we can eliminate many variables with
only one call to SAT solver. At the same time, we employ incremental SAT
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approach to share learned clauses between similar instances of BFL, to prevent
overlapped state space from being searched repeatedly.

We implement our algorithm based on zchaff[10] and NuSMV[9], and perform
experiment on ISCAS89 benchmark suite[11]. Experiment result shows that, our
approach is 1 order of magnitude faster than K Ravi’s algorithm[5], and without
any lost in its ability to eliminate irrelevant variables.

The remainder of this paper is organized as follows. Section 2 presents back-
ground material. Section 3 presents the counterexample minimization approach
based on unit core extraction. Section 4 presents the incremental SAT approach.
Section 5 presents experiment result of our approach and compares it to that of
K Ravi’s approach[5]. Section 6 reviews related works. Section 7 concludes with
a note on future work.

2 Preliminaries

2.1 Satisfiability Solvers

Basic Notions of Satisfiability Solvers
Given a Boolean formula F , the SAT problem involves finding whether a satis-
fying assignment for F exists. A SAT solver typically computes a total satisfying
assignment for F , if one exists, otherwise returns an UNSATISFIABLE answer.
In a SAT solver a Boolean formula F is usually represented in CNF. For instance,

f = (a ∨ b) ∧ (¬c ∨ d) (1)

A CNF formula is a conjunction of clauses. A clause is a disjunction of
literals. A literal is a variable or its negation. As shown by equation (1), formula
f contains two clauses:(a∨b) and (¬c∨d). Clause (¬c∨d) include two literals:¬c
and d. ¬c is a negative phase literal of variable c, and d is a positive phase literal
of d.

A total satisfying assignment for f is {(a, 0), (b, 1), (c, 0), (d, 0)}. ”total” means
that it contains assignments to all variables. {(b, 1), (c, 0)} is a partial satisfying
assignment because it contains only assignments to a subset of variables.

It is also convenient to use literals to designate variable-value pairs. For exam-
ple, the assignment {(a, 0), (b, 1), (c, 0), (d, 0)} can be denoted by {¬a, b,¬c,¬d}.

Implication Graph
According to unit clause rule, when a clause contains only one unassigned literal,
and all other literals are rendered false, then the variable of this unassigned literal
can take on its value according to its phase. This mechanism is called implication.
For instance, for clause (¬c ∨ d) and assignment {¬d}, variable c must take on
value 0 to make this clause true.

With this implication mechanism, we can construct an Implication Graph
G = (V,E). The nodes set V represents the literals of the assignments made by
implications or decisions. Each directed hyperedge E ⊆ 2V × V represents an
implication, caused by an antecedent clause.
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Conflict Learning
Conflict learning[8] can significantly boost performance of modern SAT solver.

While solving SAT instance, when a conflict arises, SAT solver will analyze
implication graph to construct learned clauses, and insert these clauses into
clause database. These clauses record the information of searched state space,
to prevent them from being searched again.

So after SAT solver terminates,there are two types of clauses in clause data-
base:

1. Origin clauses are those clauses inserted into clause database before SAT
solver start running.

2. Learned clauses are those clauses generated by conflict analysis.

2.2 Bounded Model Checking

We first define the Kripke structure:

Definition 1 (Kripke structure). Kripke structure is a tuple M=(S,I,T,L),
with a finite set of states S, the set of initial states I ⊆ S, a transition relation
between states T ⊆ S×S, and the labeling of the states L : S → 2AP with atomic
propositions set AP.

Bounded Model Checking (BMC)[7] is a model checking technology that
consider only limited length path. We call this length k as the bound of path.
Let Si and Si+1 be the state of the i-th and (i+1)-th cycle, and T (Si, Si+1)
represents the transition relation between them.

Assume q is a boolean proposition, and the safety assertion under verification
is ”G q”, then the goal of BMC is to find a state S that violates q, that is to
say, ¬q ∈ L(S). In the remainder of this paper, ¬q will be denoted by P , and
we will not refer to q any more.

Let Pi be P at i-th cycle ,then BMC problem can be expressed as:

F := I(S0) ∧
k−1∧
i=0

T (Si, Si+1) ∧
k−1∧
i=0

¬Pi ∧ Pk

BMC always searches for shortest counterexample, so
∧k−1

i=0 ¬Pi always holds
true. Thus, we can remove it from above equation, and obtain following equation:

F := I(S0) ∧
k−1∧
i=0

T (Si, Si+1) ∧ Pk (2)

Reduce equation (2) into propositional satisfiability problem, and solve it
with SAT solver, then a counterexample can be found if it exists.

2.3 BFL Algorithm and Its Shortcoming

BFL algorithm proposed by K Ravi[5] can eliminate much more free variables
than all existing algorithms, often up to 70% free variables can be eliminated.

Lets first define some terminology below:
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Definition 2 (Assignment Clause). Assume the value of variable v in coun-
terexample is denoted by V alue(v) ∈ {0, 1}, then the Assignment Clause of v is
a unit clause which contain only one literal, which is defined as:

Assign(v) :=
{
{v} if Value(v)==1
{¬v} otherwise (3)

Definition 3 (Free Variables Set). Assume the set of input variables is W ,
then input variables set of i-th cycle is denoted by Wi. Assume the set of state
variables is X, then state variables set of i-th cycle is denoted by Xi.

Assume the bound of counterexample is k, then the set of free variables is
Free := X0 ∪

⋃k
i=0 Wi.

Obviously,Free includes input variables at all cycle and initial state variables.
”Free” means that they can take on any value independent of others.

For a free variable v ∈ Free, v is an irrelevant variable if and only if the
following statement holds true: ”no matter what value do v take on, it can’t
prevent the counterexample from happening. That is to say, it can’t prevent
Pk of equation (2) from equal to 1”. Formal definition of irrelevant variable is
presented below:

Definition 4 (Irrelevant Variable). for v ∈ Free, v is irrelevant variable iff:

¬∃c ∈ {0, 1}.(
k−1∧
i=0

T (Si, Si+1) ∧ (v ⇐ c) ∧
∧

v′∈Free\v

Assign(v′) ∧ ¬Pk) (4)

Convert
∧k−1

i=0 T (Si, Si+1) ∧
∧

v′∈Free\v Assign(v′) ∧ ¬Pk into SAT instance,
then v is irrelevant variable iff this SAT instance is unsatisfiable.

Thus, the BFL algorithm that extracts minimization set from counterexample
is shown below:

Algorithm 1: BFL Counterexample Minimization Algorithm

1. F” =
∧k−1

i=0 T (Si, Si+1) ∧ ¬Pk

2. for each v ∈ Free
3. F ′ = F” ∧

∧
v′∈Free\v Assign(v′)

4. if(SAT Solve(F ′)==UNSATISFIABLE) Free = Free \ v
5. Free is the minimization set

We introduce 2 definitions here to make it easier to describe our algorithm:

Definition 5 (Model Clause Set). In step 3 of algorithm 1, the clauses set
generated from F” is called Model Clause Set.

Definition 6 (Assignment Clause Set). In step 3 of algorithm 1, the clauses
set generated from

∧
v′∈Free\v Assign(v′) is called Assignment Clause Set.

We call F” Model Clause Set because it represents inverted model checking
problem of equation (2). We call

∧
v′∈Free\v Assign(v′) Assignment Clause Set

because it is used to assign to all variables their value in counterexample, except
v. SAT solver will assign these values to them by performing BCP.
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3 Counterexample Minimization
with Unit Core Extraction

As stated before, the key to reduce time overhead of BFL is to eliminate multiple
variables after every call to SAT solver. So we present our key ideas below:

In algorithm 1, when SAT instance F ′ is unsatisfiable, a variables set R
that is sufficient to lead to conflict can be extracted from it by unit core
extraction. Then F”∧

∧
v′∈R Assign(v′) is an unsatisfiable clause subset

of F ′. Thus Free − R can be eliminated immediately. In this way, we
can achieve our goal of eliminating multiple variables simultaneously.

In this section, we first describe the overall algorithm flow in subsection 3.1,
and then describe the most important part– unit core extraction algorithm in
subsection 3.2. We will prove its correctness in subsection 3.3. At last, we will
analyze the complexity of this algorithm in subsection 3.4.

3.1 Overall Algorithm Flow

Run time overhead of BFL is very large due to one call to SAT solver per
candidate variable to be eliminated. Therefore, it is very important to reduce
the number of calls to SAT solver.

Overall flow of our algorithm is shown by algorithm 2:

Algorithm 2 BFL with unit core extraction

1. F” =
∧k−1

i=0 T (Si, Si+1) ∧ ¬Pk

2. for each v ∈ Free
3. F ′ = F” ∧

∧
v′∈Free\v Assign(v′)

4. if(SAT Solve(F ′)==UNSATISFIABLE)
5. R=Unit Core(v)
6. Free = Free ∩ R
7. Free is the minimization set

Compare it to algorithm 1, step 5 and 6 of algorithm 2 are newly inserted
steps, which are highlighted with bold font. In step 5, we perform unit core
extraction to extract the variables set R that lead to UNSATISFIABLE. And
then in step 6, we eliminate all variables not belong to R, then we don’t need to
call SAT solver for them any more. Thus, the number of calls to SAT solver is
significantly decreased in our approach compared to BFL.

3.2 Unit Core Extraction Algorithm

As stated by last subsection, we perform unit core extraction algorithm to extract
the variable set R that lead to UNSATISFIABLE. Main idea of our unit core
extraction algorithm are presented below:
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all literal of conflict clause c

S

Fig. 1. Implication graph starting from the unit clauses at the leaves and ending with
the conflict clause c at the root.

For SAT instance F ′, let F” be its model clause set, and A be its assignment
clause set. After SAT solver finished running, let C be its learned clause set.

Refer to last paragraph of section 2.2 of L.Zhang’s famous paper about un-
satisfiable core extraction [16],we have the following theorem 1.

Theorem 1. If F ′ is unsatisfiable, then there must be a conflict clause at deci-
sion level 0, we denote it by c. Because the decision level is 0, so there are no
decided variables, any variables can only take on their value by implication.

According to this theorem,there must be an implication graph starting from
the unit clauses at the leaves and ending with the conflict clause c at the root.
We show this implication graph in figure 1.Every rectangle is an unit clause,
and S is the set of unit clauses that make all literals of conflict clause c to
be false. Staring from clause c, we can traverse the implicate graph in reverse
direction, to obtain the set of unit clauses S that lead to conflict. We denote the
assignment clauses in S by S ∩A, then the variables set that lead to conflict is
R = {v|Assign(v) ∈ S ∩A}. This is the key idea of Unit Core Extraction.

Now we present the unit core extraction algorithm below.

Algorithm 3 Unit Core Extraction Unit Core(v)

1. set S = φ;
2. queue Q = φ;
3. for each literal l ∈ c
4. push antecedent clause of l into Q
5. mark antecedent clause of l as visited
6. while(Q is not empty)
7. cls=pop first clause from Q
8. if(cls is unit clause)
9. S = S + {cls}

10. if(cls is a learned unit clause) return R = Free \ v
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11. else
12. for each literal l ∈ cls
13. assume ante(l) is antecedent clause of l
14. if(ante(l) has not being visited before)
15. push ante(l) into Q
16. mark ante(l) as visited
17. return R = {v|Assign(v) ∈ S ∩A}

There is a special case in step 10 of algorithm 3. When cls is a learned clause
with only one literal, we can’t backtrack further because the SAT solver has not
record the clauses involved in resolution to generate learned clause cls. In this
case, we abandon the effort to extract unit core, and just return R = Free \ v.
This means that we can eliminate only one variable v in this case.

Fortunately, we has not met with this special case in our experiments. But
we just can’t prove its absence in theory. Currently, I think it is because of the
1UIP conflict learning mechanism of zchaff, which may never generate learning
clause with only one literal.

The unsatisfiable core extraction approaches[16,17] do provide a mechanism
to record the clauses involved in resolution to generate learned clause. This
mechanism do help to eliminate more irrelevant variables, but it imposes very
large time overhead, which will outweigh the benefit of unit core extraction.

3.3 Correctness of Algorithm

Theorem 2. F” ∧
∧

cls∈S cls is an unsatisfiable clause subset of F ′

Proof. It is obvious that F”∧
∧

cls∈S cls is a clause subset of F ′, so we only need
to prove that F” ∧

∧
cls∈S cls is unsatisfiable.

Assume C′ ⊆ C is the set of conflict clauses met with by algorithm 3 while
traverse the implication graph. Then according to algorithm 3 and figure 1,
F” ∧

∧
cls∈S cls∧

∧
cls∈C′ cls is unsatisfiable. Then if we can remove

∧
cls∈C′ cls

from it, and still retain its unsatisfiability?
For every learned clause cls ∈ C′, assume NU(cls) and U(cls) are non-unit

clauses set and unit clauses set that involved in resolution to construct cls. Then
it is obvious that F” ∧

∧
cls∈S cls ∧

∧
cls∈C′(

∧
cls′∈U(cls) cls

′ ∧
∧

cls′∈NU(cls) cls
′)

is unsatisfiable.
It is obvious that NU(cls) ⊆ F”. And according to [8], unit clauses

never involve in resolution, so U(cls) is empty set. Thus we can remove∧
cls∈C′(

∧
cls′∈U(cls) cls

′ ∧
∧

cls′∈NU(cls) cls
′) from F” ∧

∧
cls∈S cls ∧

∧
cls∈C′

(
∧

cls′∈U(cls) cls
′ ∧
∧

cls′∈NU(cls) cls
′), and still reatin its unsatisfiability.

So F” ∧
∧

cls∈S cls is unsatisfiable.
Thus this theorem is proven.

Theorem 3. F” ∧
∧

v′∈R Assign(v′) is an unsatisfiable clause subset of F ′

Proof. It is obvious that R ∈ Free\v, so F”∧
∧

v′∈R Assign(v′) is clause subset
of F ′ = F” ∧

∧
v′∈Free\v Assign(v′).
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So we only need to prove that F” ∧
∧

v′∈R Assign(v′) is unsatisfiable.
According to step 17 of algorithm 3,

∧
v′∈R Assign(v′) is equal to∧

cls∈S∩A cls.
So we only need to prove that F” ∧

∧
cls∈S∩A cls is unsatisfiable.

According to theorem 2, F”∧
∧

cls∈S cls is unsatisfiable, and it can be rewrit-
ten as F” ∧

∧
cls∈S∩A cls ∧

∧
cls∈S−A−F” cls.

We discuss it in 2 aspects:

1. if S − A− F” is an empty set, then F” ∧
∧

cls∈S cls and F” ∧
∧

cls∈S∩A cls
are of the same, then F” ∧

∧
cls∈S∩A cls is unsatisfiable.

2. otherwise, S − A − F” isn’t an empty set. In this case, algorithm 3 will
meet with a learning clause with only one literal. According to step 10 of
algorithm 3,it will abandon the effort to extract unit core, and eliminate
only one variable v. According to step 3 of algorithm 2, it is obvious that
F” ∧

∧
v′∈R Assign(v′) is unsatisfiable.

Thus this theorem is proven.

According to theorem 3, Assigning to all variables in R their value in coun-
terexample can make F ′ unsatisfiable. Thus according to definition 3, variables
in Free − R are all irrelevant variables. No matter what value do they take
on, they can’t prevent the counterexample. Thus, we can eliminate Free − R
simultaneously in step 6 of algorithm 2.

3.4 Complexity Analysis

Because our algorithm depends heavily on SAT solver, so we don’t analyze its
complexity directly. Instead, we compare our algorithm with SAT solver.

We first analyze space complexity of our algorithm. Comparing algorithm
2 and 1, the only difference is that algorithm 2 add an unit core extraction
step. Therefore, difference of space complexity between them resides in unit core
extraction algorithm. We know that the space overhead of unit core extraction
mainly resides in set S and queue Q. Lets analyze them as below:

– We add a tag to each clause in clause database of SAT solver, to indicate
that if this clause belongs to set S. Therefore, space overhead of S is linear
to size of clause database.

– For queue Q, it may contain learned clauses. Because conflict analysis algo-
rithm of SAT solver also need to perform similar implicate graph traversing,
so space overhead of Q is not larger than that of SAT solver. We will present
the peak size of Q in table 3 of experiment result, it is obvious that its size
are much smaller than clause database.

Next, we will analyze the time complexity of our algorithm.
In algorithm 3, the most complex part is the if statement in step 14. For

every clauses that has been in Q, this if statement will be run once. Because the
size of Q is much smaller than clause database, so time overhead of algorithm 3
is much smaller than that of BCP in SAT solver.



Minimizing Counterexample with Unit Core Extraction 307

In algorithm 2, one call to unit core extraction algorithm will eliminate many
irrelevant variables, thus prevent them from calling SAT solver. This will signif-
icantly decrease the number of calling SAT solver and time overhead.

We will present the number of calls to unit core extraction algorithm and
SAT solver in table 3 of experiment result.

4 Incremental SAT

From step 3 of algorithm 2, it is obvious that F ′ of two consecutive iterations
are very similar. This suggests a good chance to share learned clause between
them by employ incremental SAT approach.

In last paragraph of section 6, K Ravi[5] has mentioned that BFL’s perfor-
mance can be improved by Incremental SAT. But he hasn’t presented how to
achieve this. And all his experiments are based on non-incremental SAT. So we
present here a novel approach to improve BFL’s performance further by incre-
mental SAT.

For two consecutive iterations, assume the two variables to be eliminated are
v1 and v2. Then for the first iteration, F ′ = F” ∧

∧
v′∈Free\v1 Assign(v′). For

the second iteration, F ′ = F” ∧
∧

v′∈Free\v2 Assign(v′). After we have finished
solving the first F ′, to obtain the second one, we only need to delete Assign(v1)
and insert Assign(v2) into clause database.

N. Een[12] concludes that: when delete a unit clause that contains only one
literal, all learned clauses can be safely kept in clause database.

So when we delete Assign(v1), we don’t need to delete any learned clauses.
Thus all learned clauses can be shared between consecutive iterations.

Therefore, we modify algorithm 2 into the following algorithm 4. All new
steps are highlight with bold font.

Algorithm 4 BFL with unit core extraction and Incremental SAT

1. F” =
∧k−1

i=0 T (Si, Si+1) ∧ ¬Pk

2. Insert F ′ = F” ∧ (
∧

v′∈Free Assign(v′)) into clause database
3. for each v ∈ Free
4. delete Assign(v) from clause database
5. if(SAT Solve(F ′)==UNSATISFIABLE)
6. R=Unit Core(v)
7. Free = Free ∩R
8. For each v′ ∈ Free−R
9. delete Assign(v′) from clause database

10. else
11. Insert Assign(v) into clause database
12. Free is the minimization set

In step 8 and 9 of algorithm 4, according to N. Een’s conclusion [12] stated
above, we can simply delete all such Assign(v′), and no need to delete any
learned clauses.
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Thus, This mechanism improves performance in 2 aspects:

1. Learned clauses can be share between similar instances, to avoid searching
overlapped state space repeatedly.

2. No need to waste time on deleting learned clauses.

5 Experiment Result

K Ravi[5] only presents the circuits that used to generate counterexample, but
has not presented the assertion used. Therefore, we can’t compare our result
with his one directly. So we implement K Ravi’s two-stages algorithm and ours
in zchaff[10], such that we can compare them with same circuits and assertions.

We use NuSMV[9] to generate deep counterexample in the following way:

1. Perform a symbolic simulation to generate a state sequence S0, ..., Sk.
2. Use ”Sk can not be reach” as an assertion, and put it into BMC package of

NuSMV[9] to obtain a counterexample shorter than k.

We perform counterexample minimization with K Ravi’s two-stages algo-
rithm[5] and our algorithm. The timeout limit is set to 10000 seconds.

5.1 Experiment Result of K Ravi’s Two Stages Approach

Because K Ravi’s approach includes two stages, so we first present its result in
table 1. The 1st column are the circuits used to generate counterexample. The
2nd column presents the length of counterexample. The 3rd column presents
number of free variables.

The 4th column is the number of variables eliminated by first stage of K
Ravi’s approach, the 5th column is the run time overhead of first stage.

The 6th column is the number of variables eliminated by BFL, the second
stage of K Ravi’s approach, The 7th column is run time overhead of BFL.

According to table 1, most irrelevant variables are eliminated by first stage,
with little run time overhead. But to further eliminate more irrelevant variables,
the highly expensive BFL must be called. The run time overhead of BFL is 2 to
3 orders of magnitude larger than that of first stage.

In the last 2 rows of table 1, K Ravi’s approach run out of time limit. To
obtain the data in the 6th column, we incorporate incremental SAT into BFL,
but without unit core extraction.

5.2 Comparing Result of Our Approach and That of K Ravi

Experiment result of our approach and that of K Ravi are presented in table 2.
The 1st column are the circuits used to generate counterexample. The 2nd col-
umn presents the length of counterexample. The 3rd column present number of
free variables.
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Table 1. Experiment Result of K Ravi’s Two Stage Approach.

Circuits CE Free first stage second stage
length Vars Eliminated Run Eliminated Run

Vars time Vars time

s1512 21 667 601 0.07 5 5.097

s1423 24 483 325 0.07 75 92.443

s3271 15 507 398 0.911 34 38.946

s3384 13 743 596 0.08 19 29.01

s3330 6 373 279 0.03 16 2.613

s5378 10 530 344 0.08 72 12.698

s9234 7 362 169 0.09 57 16.984

s13207 22 1352 977 0.581 132 4080.34

s38584 14 1621 1008 2.592 61 >10000

s38417 14 2029 909 1.365 71 >10000

Table 2. Experiment Result.

Circuits CE Free Result of K Ravi[5] Result of our approach
length Vars Eliminated Run Eliminated Run Speedup

Vars time Vars time

s1512 21 667 606 5.167 606 3.45 1.50

s1423 24 483 400 92.513 397 7.12 12.99

s3271 15 507 432 39.857 432 6.11 6.52

s3384 13 743 615 29.09 615 9.61 3.02

s3330 6 373 295 2.643 295 1.77 1.49

s5378 10 530 416 12.778 411 8.21 1.56

s9234 7 362 226 17.074 226 10.36 1.65

s13207 22 1352 1109 4080.921 1093 153.92 26.51

s38584 14 1621 1069 >10000 1069 682.19 >10

s38417 14 2029 980 >10000 981 947.84 >10

The 4th column is the number of irrelevant free variables eliminated by the
two stages of K Ravi’s algorithm[5]. run time of the two stages of K Ravi’s
algorithm is shown in 5th column.

The 6th column is the number of irrelevant free variables eliminated by our
approach. run time of our algorithm is shown in 7th column. The speedup com-
pared to K Ravi’s algorithm is shown in last column.

5.3 Run Time Statistics of Our Approach

In table 3, we present some run time statistics of our algorithm:
The first column is the name of circuits. The variables and clauses number of

CNF files are presented in 2nd and 3rd column. Their number of free variables are
presented in 4th column, the variable eliminated by unit core extraction in step 7
of algorithm 4 are presented in 5th column. The numbers of UNSATISFIABLE



310 ShengYu Shen, Ying Qin, and SiKun Li

Table 3. Run Time Statistics.

Circuits Vars Clauses Free Eliminated Number Number Peak
Vars by of of size

Unit Core UNSAT SAT of Q

s1512 14858 39735 667 601 5 61 397

s1423 16565 44248 483 369 29 85 736

s3271 21769 59656 507 416 16 75 448

s3384 19452 50353 743 596 19 128 458

s3330 6935 17322 373 278 17 78 321

s5378 16180 42415 530 387 24 119 484

s9234 18291 49555 362 173 53 136 581

s13207 107079 284839 1352 1025 68 259 1999

s38584 237756 661828 1621 1005 64 552 5119

s38417 211653 576324 2029 910 71 1048 7703

instances are presented in the 6th column. The numbers of SAT instances are
presented in 7th column. The peak size of Q is presented in last column.

Relationship between these columns is:
4th column=5th column+6th column+7th column

5.4 Conclusion About Experiment Result

From these tables, we can conclude that:

1. In most case, our approach run much faster than K Ravi’s algorithm;
2. According to last column of table 2, it is obvious that the more complex the

counterexample, the higher the speedup. For the three most complex coun-
terexample:s13207, s38584 and s38417, our approach is 1 order of magnitude
faster than K Ravi’s algorithm.

3. Our approach achieves this speedup without any lost in its ability to elimi-
nate irrelevant variables;

4. From 5th column of table 3, most variables are eliminated by unit core
extraction, and don’t need to run SAT solver for them any more;

5. Compare last column of table 3 to 3rd column, the size of Q are much smaller
than that of clause database.

6 Related Works

Our work are somewhat similar to SAT solution minimization of SAT-based
image computation[2–4].

Ken.McMillan’s approach [3] needs to construct an alternating implication
graph rooted at input variables. With this graph, he eliminates irrelevant vari-
ables from SAT solution.

Hyeong-Ju Kang[4] assigns lower decision priority to next state variables,
such that when the transition relation is satisfied, as many as possible next state
variables are undecided.
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P Chauhan[2] employs an ATPG-like approach to analyze the dependence
relation between input variables and transition relation. And try to eliminate as
many as possible next state variables from final solution.

Minimization of counterexamples is useful in the context of abstraction-
refinement[1, 15]. Refinement is often more effective when it is based on the
simultaneous elimination of a set of counterexamples rather than on elimination
of one counterexample at a time.

There are also other approaches to minimize counterexample.
Jin[6] presents a game-based technique that partitions an error trace into

fated segments, controlled by the environment attempting to force the system
into an error, and free segments, controlled by the system attempting to avoid
the error.

P. Gastin[13] proposes a length minimization approach for explicate state
model checker SPIN, which tries to generate shorter counterexample.

Alex Groce[14] proposes a value minimization approach for C language. His
approach tries to minimize the absolute value of typed variables of C language.

7 Conclusion

To make the counterexample easier to be understood, irrelevant variables must
be eliminated. At the same time, minimized counterexamples can significantly
improve the performance of many important verification algorithm.

K Ravi’s algorithm is the most effective counterexample minimization algo-
rithm. However, its time overhead is too large.

Therefore, we propose a faster counterexample minimization algorithm in
this paper. Our algorithm is 1 order of magnitude faster than K Ravi’s algorithm
without any lost in its ability to eliminate irrelevant variables;

In this paper we only due with path like counterexample of safety assertion,
we would also like to address minimization of loop-like counterexample in future
work.
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Abstract. Directed model checking has proved itself to be a useful technique in
reducing the state space of the problem graph. But still, its potential is limited by
the available memory. This problem can be circumvented by the use of secondary
storage devices to store the state space. This paper discusses directed best-first
search to enhance error detection capabilities of model checkers like SPIN by us-
ing a streamed access to secondary storage. We explain, how to extend SPIN to
allow external state access, and how to adapt heuristic search algorithms to ease
error detection for this case. We call our derivate IO-HSF-SPIN. In the theoretical
part of the paper, we extend the heuristic-based external searching algorithm to
general weighted and directed graphs. We conduct experiments with some chal-
lenging protocols in Promela syntax like GIOP and dining philosophers and have
succeeded in solving some hard instances externally.

1 Introduction

Model checking [3] has evolved into one of the most successful verification techniques.
Examples range from mainstream applications such as protocol validation, software and
embedded systems’ verification to exotic areas such as business work-flow analysis,
scheduler synthesis and verification.

There are two primary approaches to model checking. Symbolic model checking [2]
uses a representation for the state set based on boolean formulae and decision diagrams.
Property validation amounts to some form of symbolic fix-point computation. Explicit-
state model checking uses an explicit representation of the system’s global state graph.
Property validation amounts to a partial or complete exploration of the state space.
The success of model checking lies in its potential for push-button automation and
in its error reporting capabilities. A model checker performs an automated complete
exploration of the state space of a model, usually applying a depth-first search strategy.
When a property violating state is encountered, the search stack contains an error trail
that leads from an initial system state to the encountered state. This error trail greatly
helps engineers in interpreting validation results.

The sheer size of the reachable state space of realistic models imposes tremendous
challenges on the algorithm design for model checking technology. Complete explo-
ration of the state space is often impossible, and approximations are needed. Also, the
error trails reported by depth-first search model checkers are often exceedingly lengthy
– in many cases they consist of multiple thousands of computation steps which greatly
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hampers error interpretation. The use of directed model checking [6] renders erstwhile
unanalyzable problems analyzable in many instances. The quality of the results obtained
with heuristic search algorithms like A* [9] depends on the quality of the heuristic es-
timate. Various heuristic estimates have been devised that are specific for the validation
of concurrent software, such as specific estimates for reaching deadlock states.

Nonetheless, the search spaces that are generated during the automated verification
process are often too large to fit into main memory. One solution studied in this paper
is external exploration. In this case, during the algorithm only a part of the graph is pro-
cessed at a time; the remainder is stored on a disk. The block-wise access to secondary
memory has led to a growing attention to the design of I/O-efficient algorithms in recent
years. Algorithms that explicitly manage the memory hierarchy can lead to substantial
speedups, since they are more informed to predict and adjust future memory access.

In this paper, we address explicit model checking on secondary memory. First we
recall the most widely used computation model to design and analyze external memory
algorithms. This model provides a basis to analyze external memory algorithms by
counting the data transfers between different levels of memory hierarchy. Then, we
recall External A∗, which extends delayed duplicate detection to heuristic search for
the case of implicit (graph is generated on the fly), undirected, and unweighted graphs.
In Section 4, we extend the External A* algorithm for the case of directed and weighted
implicit graphs - a usual case with state space graphs that appear in model checking.
Weighted graphs introduce new issues to the problem. One of the main issue is the
presence of negative weights in the graph. These issues are also dealt with further in
this section along with proofs of optimality for these extensions.

The second part of the paper mainly deals with practical aspects of external model
checking. For the implementation of our algorithms, we chose the experimental model
checker HSF-SPIN as the basis. HSF-SPIN (Section 5) extends SPIN by incorporating
heuristics in the search procedure. It has shown a large performance gain in terms of
expanded nodes in several protocols. We call our extension as IO-HSF-SPIN and is
discussed in Sections 6. For the experiments, we choose three protocols in Promela
syntax: Dining philosophers, Optical Telegraph, and CORBA-GIOP. In Section 7, we
illustrate the efficiency of our approach on these protocols, by the sizes of problems
that we have succeeded in solving. Finally, we address related and future work and
draw conclusions. For the convenience of readers, an appendix is set at the end of the
paper that discusses the proofs of some of the key theorems referenced in this paper.

2 I/O Efficient Algorithms

The commonly used model for comparing the performance of external algorithms [18]
consists of a single processor, a small internal memory that can hold up to M data
items, and an unlimited secondary memory. The size of the input problem (in terms of
the number of records) is abbreviated by N . Moreover, the block size B governs the
bandwidth of memory transfers. It is often convenient to refer to these parameters in
terms of blocks, so we define m = M/B and n = N/B. It is usually assumed that at
the beginning of the algorithm, the input data is stored in contiguous block on external
memory, and the same must hold for the output. Only the number of blocks’ reads and
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writes are counted; computations in internal memory do not incur any cost. An exten-
sion of the model considers D disks that can be accessed simultaneously. When using
disks in parallel, the technique of disk striping can be employed to essentially increase
the block size by a factor of D. Successive blocks are distributed across different disks.

It is often convenient to express the complexity of external-memory algorithms us-
ing a number of frequently occurring primitive operations. The simplest operation is
scanning, which means reading a stream of records stored consecutively on secondary
memory. In this case, it is trivial to exploit disk- and block-parallelism. The number of
I/Os is Θ( N

DB ) = Θ( n
D ). We abbreviate this quantity with scan(N). Algorithms for

external sorting fall into two categories: those based on the merging and those based
on the distribution paradigm. It has been shown that external sorting can be done with
Θ( N

DB logM/B
N
B ) = Θ( n

D logm n) I/Os. We abbreviate this quantity with sort(N).

3 External A*

In the following we study how to extend external exploration in A* search. The main
advantage of A* with respect to other optimal exploration algorithms like breadth-first
search or admissible depth-first search is that it traverses a smaller part of the search
space to establish an optimal solution. In A*, the merit for state u is f(u) = g(u)+h(u),
with g being the cost of the path from the initial state to u and h(u) being the estimate
of the remaining cost from u to the goal. The new value f(v) of a successor v of u
is f(v) = g(v) + h(v) = g(u) + w(u, v) + h(v) = f(u) + w(u, v) − h(u) + h(v).
We first assume an undirected unweighted state space problem graph, and a consistent
heuristic, where for all u and v we have, w(u, v) ≥ h(u) − h(v). These restrictions
are often met in AI search practice. In this case we have h(u) ≤ h(v) + 1 for every
state u and every successor v of u. Since the problem graph is undirected this implies
|h(u) − h(v)| ≤ 1 so that h(v) − h(u) ∈ {−1, 0, 1}. This implies that the evaluation
function f is monotonic non-decreasing. No successor will have a smaller f -value than
the current one. Therefore, the A* algorithm, which traverses the state set in f -order,
does not need to perform any re-opening strategy.

External A* [5] maintains the search horizon on disk. The priority queue data struc-
ture is represented as a list of buckets ordered first by their h + g value and then by the
g value. In the course of the algorithm, each bucket Open(i, j) will contain all states
u with path length g(u) = i and heuristic estimate h(u) = j. As same states have
same heuristic estimates it is easy to restrict duplicate detection to buckets of the same
h-value. By an assumed undirected state space problem graph structure we can restrict
aspirants for duplicate detection furthermore. If all duplicates of a state with g-value
i are removed with respect to the levels i, i − 1 and i − 2, then there will remain no
duplicate state for the entire search process. We consider each bucket for the Open list
as a different file that has an individual internal buffer. A bucket is active if some of
its states are currently expanded or generated. If a buffer becomes full then it is flushed
to disk. Fig. 1 depicts the pseudo-code of the External A* algorithm. The algorithm
maintain the two values gmin and fmin to address the correct buckets. The buckets of
fmin are traversed for increasing gmin unless the gmin exceeds fmin. Due to the increase
of the gmin-value in the fmin bucket, an active bucket is closed when all its successors
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Procedure External A*
Open(0, h(I))← {I}
fmin ← h(I)
while (fmin �=∞)

gmin ← min{i | Open(i, j) �= ∅, i + j = fmin}
hmax ← fmin − gmin

while (gmin ≤ fmin)
if (hmax = 0 and Open(gmin, hmax) contains terminal state u)

return path(u)
A(fmin), A(fmin + 1), A(fmin + 2)← succ(Open(gmin, hmax))
A′(fmin), A′(fmin + 1), A′(fmin + 2)←

remove duplicates from (A(fmin), A(fmin + 1), A(fmin + 2))
Open(gmin + 1, hmax + 1)← A′(fmin + 2) ∪ Open(gmin + 1, hmax + 1)
Open(gmin + 1, hmax)← A′(fmin + 1) ∪ Open(gmin + 1, hmax)
Open(gmin + 1, hmax − 1)← (A′(fmin) ∪ Open(gmin + 1, hmax − 1)) \

(Open(gmin − 1, hmax − 1) ∪ Open(gmin, hmax − 1))
gmin ← gmin + 1

fmin ← min{i + j > fmin | Open(i, j) �= ∅} ∪ {∞}

Fig. 1. External A* for consistent heuristics.

have been generated. Given fmin and gmin the corresponding h-value is determined by
hmax = fmin − gmin. According to their different h-values, successors are arranged
into three different horizon lists A(fmin), A(fmin + 1), and A(fmin + 2). Duplicate
elimination is delayed.

Since External A* simulates A* and changes only the order of elements to be ex-
panded that have the same f -value, completeness and optimality are inherited from the
properties of A*. The I/O complexity for External A* in an implicit unweighted and
undirected graph with a consistent estimates is bounded by O(sort(|E|) + scan(|V |)),
where |V | and |E| are the number of nodes and edges in the explored subgraph of
the state space problem graph. If we additionally have |E| = O(|V |), the complexity
reduces to O(sort(|V |)) I/Os.

We establish the solution path by backward chaining from starting with the target
state. There are two main options. Either we store predecessor information with each
state on disk or, more elegantly, we for a state in depth g intersect the set of possible pre-
decessors with the buckets of depth g−1. Any state that is in the intersection is reachable
on an optimal solution path, so that we can recur. The time complexity is bounded by the
scanning time of all buckets in consideration and surely in O(scan(|V |)). It has been
shown [5] that the lower bound for the I/O complexity for delayed duplicate bucket
elimination in an implicit unweighted and undirected graph A* search with consistent
estimates is at least Ω(sort(|V |)).

4 General Graphs

So far, we have looked at uniformly weighted graphs only. However, in practical model
checking, the transition systems that are encountered are often directed. Also, valida-
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tion of softwares and communication protocols often contains atomic regions. Atomic
region corresponds to a block of statements that should be executed without the inter-
vention of any other process. Atomic regions are represented in the general state graph
as arcs with weights equal to the number of instructions in the atomic region. This
motivates the generalization of graph search algorithms for non-uniformly weighted di-
rected graphs. Later in this section, we discuss the effect of introducing heuristics in
these algorithms.

We define, w : E → IR as the weight function for edges; the weight or cost of a
path p = (s = v0, . . . , vk = v) can then be defined as w(p) =

∑k
i=1 w(vi−1, vi). Path

p is called optimal path if its weight is minimal among all paths between s and v; in this
case, its cost is called the shortest path distance δ(s, v). The optimal solution path cost
is abbreviated as δ(s, T ) = min{t ∈ T | δ(s, t)}, with T being the set of target states.

4.1 Directed Graphs

As seen above, undirected and unweighted graphs require to look at one previous and
one successor layer only. For directed graphs, the efficiency of external algorithms is
dependent on the duplicate elimination scope or locality of the search. The locality of a
directed search graph is defined as max{δ(s, u) − δ(s, v), 0} for all nodes u, v, with v
being a successor of u. In other words, locality determines the thickness of the layer of
nodes needed to prevent duplicates in the search. It has been analyzed in the context of
the breadth-first heuristic search.

Theorem 1. [24] The number of previous layers of the graph that need to be retained
to prevent duplicate search effort is equal to the locality of the state space graph.

As a consequence, in undirected unweighted graphs, the locality is one and we need
to store the immediate previous layer only, to check for duplicates.

Lemma 1. For undirected, but weighted graphs the locality is smaller than or equal to
the maximum edge weight C = maxe∈E w(e) in the state space graph.

Proof. By the triangle inequality for shortest paths, we have δ(x, y)+δ(y, z) ≥ δ(x, z)
for all nodes x, y, z in the state space graph. For all v ∈ succ(u) we have

δ(s, u) − δ(s, v) = δ(u, s) − δ(v, s) ≤ δ(u, v) ≤ w(u, v).

Lemma 2. Let D be the cost of the largest cycle in the state space graph. Then the
locality of the state space graph is smaller than D.

Proof. Let δ(v, u) be the smallest cost to get back from v to u in the global state
space graph with v ∈ succ(u). We have that δ(s, u) − δ(s, v) ≤ δ(v, u) using the
triangular property of shortest paths, so that maxu,v∈succ(u){δ(s, u) − δ(s, v)} ≤
maxu,v∈succ(u) δ(v, u) < D.

In model checking, the global transition system is often composed of smaller com-
ponents, called devices, processes or threads. For example, in the verification of soft-
ware [1], the state space consists of the cross product of local state spaces, together with
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some additional information, e.g., on communication queues or global variables. As the
product of the local state spaces is asynchronous, only one transition in one process is
executed at a time.

Using asynchronism, we have that maxu,v∈succ(u) δ(v, u), in the global state space
graph is bounded from below by maxu′,v′∈succ(u′) δ(v′, u′) in any local state space
graph. Each cycle in the global state space is actually consists of local cycles in the
local state spaces.

Lemma 3. Let p1, . . . , pk be the processes in the system. If we denote Di as the cost
of the largest cycle in the graph representation of process pi, i ∈ {1, . . . , k}. Then we
have that the locality is bounded by D1 + . . .+ Dk.

Proof. Let c be the largest cycle in the global state space graph with w(c) = D. As
it decomposes into cycles c1 . . . , ck in the local state space graphs of the processes
p1, . . . , pk, we have that D ≤ w(c1) + . . .+ w(ck) ≤ D1 + . . . + Dk.

Even if the number of stored layers b ≥ 2 is less than the locality of the graph, the
number of times a node can be re-opened in breadth-first search is only linear in the
depth of the search. This contrasts the exponential number of re-openings for linear-
space depth-first search strategies.

Theorem 2. [24] The worst-case number of times a node u can be re-opened is
bounded by +(δ(s, T ) − δ(s, u))/b,.

If the locality is lesser than b, a breadth-first search algorithm does not need to
consider re-openings of nodes at all.

4.2 Positive Weights

To compute the shortest path in weighted graphs, Dijkstra [4] proposed a greedy search
strategy based on the principle of optimality δ(s, v) = minv∈succ(u){δ(s, u)+w(u, v)}.
That is, the minimum distance from s to v is equal to the minimum of the sum of the
distance from s to a predecessor u of v, plus the edge weight between u and v. This
equation implies that any sub-path of an optimal path is itself optimal.

The exploration algorithm maintains an estimate of the minimum distance, more
precisely, an upper bound f(u) on δ(s, u) for each node u; initially set to ∞, f(u)
is successively decreased until it is equal to δ(u, v). From this point on, it remains
constant throughout the rest of the algorithm. As the exploration of the problem graph
is implicit, we additionally maintain a list Closed to store expanded nodes. The node
relaxation procedure for a single-state algorithm, as opposed to the algorithms that work
on sets of states, is shown in Fig. 2.

The correctness argument of the algorithm is based on the fact that for a node u
with minimum f -value in Open, f is correct, i.e., f(u) = δ(s, u). Hence, when a node
t ∈ T is selected for removal from the Open, we have f(t) = δ(s, T ). Moreover, if the
weight function of a problem graph is strictly positive and if the weight of every infinite
path is infinite, then Dijkstra’s algorithm terminates with an optimal solution.



I/O Efficient Directed Model Checking 319

Procedure Relax
if (Search(Open, v))

if (f(u) + w(u, v) < f(v))
DecreaseKey(Open, v, f(u) + w(u, v))

else
if not (Search(Closed, v))

Insert(Open, v, f(u) + w(u, v))

Fig. 2. Node relaxation in implicit Dijkstra’s algorithm.

4.3 Re-weighting

A heuristic h can be incorporated into Dijkstra’s algorithm by a re-weighting transfor-
mation of the implicit search graph. The re-weighting function ŵ(u, v) is defined as
ŵ(u, v) = w(u, v) − h(u) + h(v). If the heuristic is not consistent, re-weighting intro-
duces negative weights into the problem graph. It is not difficult to obtain the following
result.

Theorem 3. Let G = (V,E,w) be a weighted graph, and h : V → IR be a heuristic
function. Let δ(s, t) be the length of the shortest path from s to t in the original graph
and δ̂(s, t) be the corresponding value in the re-weighted graph.

1. We have w(p) = δ(s, t), if and only if ŵ(p) = δ̂(s, t), i.e., if p is the shortest path
in the original graph, then p is also the shortest path in the re-weighted graph.

2. G has no negative weighted cycles with respect to w if and only if it has none with
respect to ŵ.

Proof. For proving the first assertion, let p = (s = v0, . . . , vk = t) be any path from the
start node s to a goal node t. We have ŵ(p) =

∑k
i=1 (w(vi−1, vi) − h(vi−1) + h(vi)) =

w(p) − h(v0). Assume that there is a path p′ with ŵ(p′) < ŵ(p) and w(p′) ≥ w(p).
Then w(p′) − h(v0) < w(p) − h(v0); resulting in w(p′) < w(p), a contradiction. The
other direction is dealt with analogously.

For the second assertion, let c = (v0, . . . , vl = v0) be any cycle in G. Then we have
ŵ(c) = w(c) + h(vl) − h(v0) = w(c). ��

The equation h(u) ≤ h(v) + w(u, v) is equivalent to ŵ(u, v) = h(v) − h(u) +
w(u, v) ≥ 0. Hence, a consistent heuristic yields a first A* variant of the algorithm of
Dijkstra. It sets f(s) to h(s) for the initial node s and updates f(v) with f(u)+ ŵ(u, v)
instead of f(u)+w(u, v) each time a node is selected. Since the shortest path pt remains
invariant through re-weighting, if t ∈ T is selected from Open, we have

f(t) = δ̂(s, t) + h(s) = ŵ(pt) + h(s) = w(pt) = δ(s, t).

4.4 Graphs with Edges of Negative Weight

Unfortunately, Dijkstra’s algorithm fails on graphs with negative edge weights. As
a simple example consider the graph consisting of three nodes with w(s, u) = 4,
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Procedure Relax
if (Search(Open, v))

if (f(u) + w(u, v) < f(v))
DecreaseKey(Open, v, f(u) + w(u, v))

else if (Search(Closed, v))
if (f(u) + w(u, v) ≤ f(v))

Delete(Closed, v)
Insert(Open, v, f(u) + w(u, v))

else
Insert(Open, v, f(u) + w(u, v))

Fig. 3. An node relaxation with re-opening that copes with negative edge weight.

w(s, v) = 5, andw(v, u) = −2, for which the algorithm of Dijkstra computes δ(s, u) =
4 instead of the correct value δ(s, u) = 3. The problem can be dealt with by re-
opening already expanded node. The corresponding node relaxation procedure is shown
in Fig. 3.

The following result was shown in the context of route planning [8], and is funda-
mental to prove the correctness of A* derivate.

Theorem 4. [8] Let G = (V,E,w) be a weighted graph and f be the cost of the
shortest path so far for a particular node from the start node s in the modified algorithm
of Dijkstra. At each selection of a node u from Open, we have the following invariant:
Let p = (s = v0, . . . , vn = t) be a least-cost path from the start node s to a goal node
t ∈ T . Application of Relax preserves the following invariant:

(I) Unless vn is in Closed with f(vn) = δ(s, vn), there is a node vi in Open such
that f(vi) = δ(s, vi), and no j > i exists such that vj is in Closed with f(vj) =
δ(s, vj).

In short, at least we can be certain that there is one good node with perfect node
evaluation in the Open list, that can be extended to an optimal solution path.

To optimize secondary storage accesses, expansions can be performed more effi-
ciently if a particular order is selected. Invariant (I) is not dependent on the order that is
present in the Open list.

In Fig. 4 we give a pseudo-code implementation for the node-ordering scheme. In
contrast to Dijkstra’s algorithm, reaching the first goal node will no longer guarantee
optimality of the established solution path. Hence, the algorithm has to continue until
the Open list runs empty. By storing and updating the current best solution path length
as a global upper bound value α, it improves the solution quality over time.

Admissible heuristics are lower bounds, i.e. h(u) ≤ δ(u, T ) in the original graph.
This corresponds to 0 ≤ δ̂(u, T ) in the re-weighted graph.

Theorem 5. [8] If δ(u, T ) ≥ 0, then the general node-ordering algorithm is optimal.

But in model checking practice, we observe that non-admissible heuristics could
appear. For example, the seemingly admissible heuristic Active Processes that for a
given state identifies the number of active processes turned out to be non-admissible for



I/O Efficient Directed Model Checking 321

Procedure Node-Ordering
Closed← {}; Open← {s};
α←∞; best← ∅
while (Open �= ∅)

u← Select(Open)
Open← Open \ {u}; Closed← Closed ∪ {u}
if (f(u) > α) continue
if (terminal(u) and f(u) < α)

α← f(u); best← path(u)
else

for all v in succ(u)
Relax(u, v)

return best

Fig. 4. Relaxing the node expansion order.

some domains. Let’s take the example of dining philosphers with deadlock detection.
Assume that there are 2 philosophers A and B and both are thinking. This gives the
number of active processes as 2. Now, A picks up her/his right fork. Since the left fork
is still on the table, both A and B are still non-blocked. For the second move, let’s
assume that B picks up her/his right fork. This move blocks both A and B; resulting in
the sudden decrease of number of active processes from 2 to 0. A heuristic is said to be
admissible if it never overestimates the actual path cost. Here, with just one move we
reached the deadlock as apposed to the heuristic estimate 2, implying that the heuristic
was non-admissible.

As we saw that there are non-admissible heuristics, used in model checking, the
re-weighted graph we will have δ(u, T ) < 0, implying that we cannot apply the above
theorem. To further guarantee cost optimality of the solution, we have to extend the
pruning criterion. It is not difficult to show that if we drop the criterion “if (f(u) > α)
continue” then the algorithm is optimal for all re-weighted graph structures. We can
prove slightly more.

Theorem 6. If we set f(u)+δ(u, T ) > α as the pruning condition in the node ordering
algorithm, then the algorithm is optimal.

Proof. Upon termination, each node inserted into Open must have been selected at
least once. Suppose that invariant (I) is preserved in each loop, i.e., there is always a
node v in the Open list on an optimal path with f(v) = δ(s, v). Thus the algorithm
cannot terminate without eventually selecting the goal node on this path, and since by
definition, it is not more expensive than any found solution path and best maintains
the currently shortest path, an optimal solution will be returned. It remains to show
that the invariant (I) holds in each iteration. If the extracted node u is not equal to v
there is nothing to show. Otherwise f(u) = δ(s, u). The bound α denotes the currently
best solution length. If f(u) + δ(u, T ) ≤ α no pruning takes place. On the other hand
f(u) + δ(u, T ) > α leads to a contradiction since δ(s, T ) = δ(s, u) + δ(u, T ) =
f(u) + δ(u, T ) > α ≥ δ(s, T ). ��
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Unfortunately, we do not know the value of δ(s, T ), so the only thing that we can
do is to take a lower bound to it. Since h that has been used earlier on is not admissible,
we need a different bound or condition. For the original graph, it is easy to see that all
nodes that have a larger path cost value than the obtained solution path cannot lead to a
better solution, since the weights in the original graph are non-negative. Consequently,
if g(u) denotes the path length from s to u, g(u) > α is one pruning condition that we
can apply in the original graph.

5 Explicit-State Model Checking in SPIN and HSF-SPIN

SPIN [10] is probably the most prominent explicit state model checking tool. Mod-
els are specified in its input language Promela. The language is well-suited to specify
communication protocols, but has also been used for a wide range of other verification
tasks. The model checker transforms the input into an internal automata representation,
which, in turn, is enumerated by its exploration engine. Several efficiency aspects rang-
ing from partial-order reduction to bit-state hashing enhance the exploration process.
The parser produces sources that encode states and state transitions in native C code.
These are linked together with the validation module to allow exploration of the model.
The graphical user interface XSPIN allows to code the model, run the validator, show
the internal automata representation, and simulate traces with message sequence charts.

Our own experimental model checker HSF-SPIN [6] is a compatible extension to
SPIN. Additionally it incorporates directed search in explicit state model checking. The
tool has been designed to allow different search algorithms by providing a general state
expanding subroutine. In its current implementation it provides depth-first and breadth-
first search as well as heuristic search algorithms like best-first search, A* and IDA*,
and local search algorithms like hill-climbing and genetic algorithms. Partial order and
symmetry reduction have been successfully combined with this portfolio [16, 15]. HSF-
SPIN can handle a significant fraction of Promela and deals with the same input and
output formats as SPIN. Heuristic search in HSF-SPIN combines positively with auto-
mated abstractions in form of abstraction databases.

The internal representation of a state consists of two parts. The first part contains
information necessary for the search algorithms. This includes the estimated value for
the state to the goal, the cost of the current optimal path to the state, a link to the
predecessor state and information about the transition that lead to the state. The second
part contains the representation of the state of the system and is usually called state
vector. This part is represented similarly as in SPIN. Few modifications were, however,
necessary due to technical details. Basically, the state vector contains the value of the
variables and the local state of each process.

The expansion function is a fundamental component of the verifier. Actually, it was
the component of HSF-SPIN that required most of the implementation efforts. It takes
the representation of a state as input and returns a list containing each successor state.
The use of this function in each search algorithm implies that the implementation of the
depth-first search is not the most efficient.

All heuristic functions return a positive integer value for a given state. Some of them
profit from information gathered before the verification starts. For example, the FSM
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distance estimate requires to run the all-pairs shortest path algorithm on the state tran-
sition graph of each process type. On the other hand, the deadlock inferring approach
allows the user to determine explicitly which states have to be considered as potentially
blocking by labeling statements in the model.

6 From HSF-Spin to IO-HSF-SPIN

Although theoretically simple, the practical extension of an existing explicit model
checker like SPIN to external search is not trivial, and poses a lot of subtle imple-
mentation problems. In an external model it is required that the algorithm should be
capable of writing any intermediate result to the disk, reading it again at any point of
time in the future, and reusing it like it remained in the main memory. This requirement
turned out to be a non-trivial one in order to adapt SPIN for external model checking.
As described above, SPIN’s state consists of two parts: state’s information and the state
vector. The state vector can be viewed as a sequence of active processes and message
queues, describing the actual state of the system being checked.

SPIN is highly optimized for efficiency and hence uses a lot of global variables.
These global variables are used to store the meta information about the state vector.
This meta information consists of the address information of processes and queues in
the state vector. Since the information about actual addresses would be void once a state
has been flushed to the disk and retrieved back to a new memory address, we suggested
to save the information that can reset the global variables to work on the new location
of the state vector. We identified that with the order and type of each element in the
state vector in hand, we can reset all the global variables. This motivates us to extend
the state’s description.

The new state’s description S can be viewed as a 4-tuple, (M,σ, κ, τ), where M is
the information about the state, e.g., its g and h values, size of the state vector, etc., σ
is the state vector, and κ can be defined as κ : σ → {Process, Queue}, i.e., given an
element σi ∈ σ, κ identifies whether σi is a Process or a Queue. SPIN differentiates
between different types of processes (resp. queues) by assigning an ID to each of them.
If P = {P1, P2, . . . , Pn} is the set of all processes and Q = {Q1, Q2, . . . , Qm} is the
set of all queues, τ : σi ∈ σ → P , if κ(σi) = Process or τ : σi ∈ σ → Q, otherwise.

We employed a two level memory architecture for storing the states. Initially all
states are kept in the internal memory. An upper limit is defined on the maximum con-
sumption of the internal memory available. If the total memory occupied by the stored
states exceeds the maximum limit, the external memory management routines are in-
voked that flushes the excess states to the disk. The advantage of having a two-level
memory management routine is to avoid the I/Os when the internal memory is suffi-
ciently large for a particular problem.

A bucket(i, j) is represented internally by a fixed size buffer. When the buffer gets
full, it is sorted and flushed to the disk by appending it at the end of the correspond-
ing file. Duplicates removal is then done in two stages. First, an external merge and
compaction of the sorted flushed buffers that removes all the duplicates in the file is
performed. Second, the files of the top layers with the same h values but smaller g val-
ues are subtracted from the resulting file. The number of top layers that are checked
depends on the locality of the graph, as explained earlier.
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Consequently, the reading of states for expansion is done by copying a part of the ex-
ternal bucket file to the corresponding internal buffer. Once the whole buffer is scanned
and the successors are generated for all the states within the buffer, the next part of the
file is read in the same buffer. The process continues until the file is completely read.

7 Experiments

We choose three classical and challenging protocol models namely, dining philoso-
phers, optical telegraph and CORBA-GIOP for our experiments. The property to search
for is the deadlock property. We employed the number of active processes as the heuris-
tics to guide the exploration. For each experiment we report, the solution depth d, num-
ber of stored nodes s, number of expansions e, number of transitions t, and the space
requirement of the stored nodes Space. The experiments are performed on a 4 pro-
cessors Sun Ultra Sparc running Solaris operating system and using GCC 2.95 as the
compiler. Additionally, symmetry reduction is employed in all experiments.

Table 1 presents the results for the deadlock detection for different instances of
dining philosophers problem. The bottleneck in the dining philosopher’s problem is not
only the combinatorial explosion in the number of states but also the size of the states.
As can be observed in the last column depicting the space requirement, the problem
instance with 150 philosophers requires a storage space of 10.2 gigabytes, which is
much higher than even the address limits of present micro computers.

The second domain is the optical telegraph model. We conducted experiments with
different number of stations. The results are presented in Table 2.

Table 1. Deadlock Detection in Dining Philosophers.

N d s e t Space
(in gigabytes)

100 402 980,003 19,503 999,504 2.29
150 603 3,330,003 44,253 3,374,254 10.4

Table 2. Deadlock Detection in Optical Telegraph.

N d s e t Space
(in gigabytes)

5 33 10,874 4,945 24,583 0.0038
7 45 333,848 115,631 820,319 137
8 50 420,498 103,667 917,011 186
9 57 9,293,203 2,534,517 23,499,519 4.29

CORBA - GIOP [12] turned out to be one of the hardest models to verify because
of its enormous state space. The reason is the high branching factor in the state space
graph that results in the generation of a large number of states. The model takes two
main parameters namely: the number of users N and the number of servers M with a
range restriction of 1 to 4 on N and 1 to 2 on M . We have been able to solve all the
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Table 3. Deadlock Detection in CORBA - GIOP.

N M d s e t Space
(in gigabytes)

2 1 58 48,009 39,260 126,478 0.033
3 1 70 825,789 670,679 2,416,823 0.572
4 1 75 7,343,358 5,727,909 22,809,278 5.17
2 2 64 158,561 125,514 466,339 0.121
3 2 76 2,705,766 2,134,724 8,705,588 2.1
4 2 81 26,340,417 20,861,609 88,030,774 20.7

instances of the GIOP model especially the configuration with 4 users and 2 servers
which requires a storage space of 20.7 gigabytes.

One of the main hurdles while running the experiments was the system limit on the
number of file pointers that can be opened at a particular time. A large number of file
pointers are the requirements while merging the sorted flushed buffers. For the files that
needed file pointers more than the system limit, the experiments are re-run with larger
internal buffer size that results in smaller number of large sorted buffers.

Summing up, the largest problem size reported to be solved by the first external
model checker Murφ [23] consisted of 1,021,464 states of 136 bytes each. This gives
the overall space requirement of 0.129 gigabytes. With the presented approach, the
largest problem size that we have been able to solve requires 20.7 gigabytes.

8 Conclusions

With this article we contribute the first theoretical and analytical study of I/O efficient
directed model checking. In the theoretical part of the paper, we extended External A*
to directed and weighted graphs. Through the process of re-weighting, we refer to some
general results of node-ordering in the exploration of graphs with negative weights. We
give different pruning conditions for node ordering algorithms for admissible and non-
admissible heuristics. Moreover, we showed some necessary conditions on the locality
of the graph to ease duplicate detection during the exploration. The concepts are then
extended to the situation in model checking, where the global state space is composed
of local transition graphs.

In the practical part of the paper, we have seen a non-trivial implementation to
extend a state-of-the-art model checker SPIN to allow directed and external search.
The first results on challenging benchmark protocols show that the external algorithms
reduce the memory consumption, are sufficiently fast in practice, and have some further
advantages by using a different node expansion order. It should be noted here that some
of the hardest problems like GIOP and dining philosophers with scaled parameters that
were not tractable earlier due to the internal memory requirements, have been solved
for the first time. The present implementation is capable of coping with negative edges
in the presence of inconsistent heuristic.
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9 Related and Future Work

We are, however, not the first ones that look at the performance of model checkers on
external devices. One of the first approaches toward this direction was proposed [23] in
the context of the Murφ validation tool. With a special algorithm disk instead of main
memory is used for storing almost all of the state table at the cost of a small runtime
penalty, which is typically around 15% when the memory savings factor is between one
and two orders of magnitude. The algorithm linearizes the accesses to the state table
and amortizes the cost of accessing the whole table over all the states in a breadth-first
search level.

External breadth-first search for explicit graph structures that reside on disk has
been introduced by [19]. It was improved to a sub-linear number of I/Os in [17]. Single-
source shortest-pair algorithms that deal with explicit graphs stored on disk are surveyed
in [18]. Delayed duplicate detection [14] adapts external BFS to implicit graphs. This
extension to the External A* algorithm as proposed in [5] exploits the work of [24].
Zhou and Hansen [25] also worked on a different solution to apply external search for
AI domains. They term their approach as structured duplicate detection, in which they
use state space abstraction to establish which part of the search space can be external-
ized, and which part cannot.

Korf [13] also successfully extended delayed duplicate detection to best-first search
and considered omission of the visited list as proposed in frontier search. In his pro-
posal, it turned out that any 2 of the 3 options are compatible yielding the following set
of algorithms: breadth-first frontier search with delayed duplicate detection, best-first
frontier search, and best-first search with external non-reduced closed list. In the last
case, the algorithm simulate a buffered traversal in a bucket-based priority queue. With
External A* it turns out that one can combine all three approaches. In Korf’s work,
external sorting based on hash function partition is proposed. In summary, all external
AI search approaches have independent contributions and can cooperate.

There is a tight connection between external and symbolic exploration algorithms.
Both approaches consider sets of states instead of individual ones. It is apparent that
the presented approach for an explicit state model checking will transfer to symbolic
model checking. For example, in explicit graph theory, the external computation for
the all-pair shortest path problem is studied in [22], while symbolic single-source and
all-pair shortest path algorithms are considered in [20, 21]. As an interesting side ef-
fect, the symbolic algorithm of Bellman-Ford often outperformed Dijkstra’s algorithm
on symbolically represented graphs. For heuristic search, the splitting of the Open-list
into buckets as seen in this text, corresponds to the fg-search method in the SetA* [11]
version of the BDDA* algorithm [7]. However, refined considerations on the dupli-
cate scope as presented here have not been studied. The implementation of an external
directed search symbolic model checker is one of our future research goals.
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Appendix: Proof of the Theorems

Theorem 1. The number of previous layers of the graph that need to be retained to
prevent duplicate search effort is equal to the locality of the search graph.

Proof. To prove equality, we have to show that if the number of stored layers of a
breadth-first search graph is smaller than the locality l, this can lead to re-openings, and
if the number is greater than or equal to the locality, there are no re-openings.

For the first case, consider u and v with δ(s, u) − δ(s, v) > l. We will show that
there is a duplicate node. When u is expanded, its successor v is either in the boundary
of the previous k layers, in which case no re-openings occurs, or it is not, in which case,
we have a re-opening of v. However, in the first case v has a sub-optimal depth and has
been previously re-opened.

If the number of stored layers of a breadth-first search graph is greater than or equal
to the locality of a graph this prevents re-openings as follows. Certainly, there is no re-
opening in the first l layers. By induction, when a new layer is generated, no previously
deleted node can be re-generated.

Theorem 2. The worst-case number of times a node u can be re-opened is bounded by
+(δ(s, T ) − δ(s, u))/b,.

Proof. We have no duplicate in every b layers. Therefore, the earliest level for a node u
to be re-opened is δ(s, u)+b and the earliest next level it will be re-opened is δ(s, u)+2b
and so on. Since the total number of layers is bounded by δ(s, T ) the number of re-
openings for a node cannot exceed +(δ(s, T ) − δ(s, u))/b,.

Theorem 4. Let G = (V,E,w) be a weighted graph and f be the cost of the shortest
path so far for a particular node from the start node s in the modified algorithm of
Dijkstra. At each selection of a node u from Open, we have the following invariant: Let
p = (s = v0, . . . , vn = t) be a least-cost path from the start node s to a goal node
t ∈ T . Application of Relax preserves the following invariant:

(I) Unless vn is in Closed with f(vn) = δ(s, vn), there is a node vi in Open such
that f(vi) = δ(s, vi), and no j > i exists such that vj is in Closed with f(vj) =
δ(s, vj).

Proof. Without loss of generality, let i be maximal among the nodes satisfying (I). We
distinguish the following cases:
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1. Node u is not on p or f(u) > δ(s, u). Then node vi �= u remains in Open. Since
no v in Open ∩ p ∩ Γ (u) with f(v) = δ(s, v) ≤ f(u) + w(u, v) is changed and
no other node is added to Closed, (I) is preserved.

2. Node u is on p and f(u) = δ(s, u). If u = vn, there is nothing to show.
First assume u = vi. Then Relax will be called for v = vi+1 ∈ Γ (u); for all other
nodes in Γ (u) \ {vi+1}, the argument of case 1 holds. According to (I), if v is
in Closed, then f(v) > δ(s, v), and it will be reinserted into Open with f(v) =
δ(s, u) + w(u, v) = δ(s, v). If v is neither in Open or Closed, it is inserted into
Open with this merit. Otherwise, the DecreaseKey operation will set it to δ(s, v).
In either case, v guarantees the invariant (I).
Now suppose u �= vi. By the maximality assumption of i we have u = vk with
k < i. If v = vi, no DecreaseKey operation can change it because vi already has
optimal merit f(v) = δ(s, u) + w(u, v) = δ(s, v). Otherwise, vi remains in Open
with unchanged f -value and no other node besides u is inserted into Closed; thus,
vi still preserves (I). ��

Theorem 5. If δ(u, T ) ≥ 0, then the node-ordering algorithm is optimal.

Proof. Upon termination, each node inserted into Open must have been selected at
least once. Suppose that invariant (I) is preserved in each loop, i.e., that there is always
a node v in the Open list on an optimal path with f(v) = δ(s, v). Thus the algorithm
cannot terminate without eventually selecting the goal node on this path, and since by
definition it is not more expensive than any found solution path and best maintains the
currently shortest path, an optimal solution will be returned. It remains to show that the
invariant (I) holds in each iteration. If the extracted node u is not equal to v there is
nothing to show. Otherwise f(u) = δ(s, u). The bound α denotes the currently best
solution length. If f(u) ≤ α no pruning takes place. On the other hand f(u) > α leads
to a contradiction since α ≥ δ(s, u) + δ(u, T ) ≥ δ(s, u) = f(u) (the latter inequality
is justified by δ(u, T ) ≥ 0). ��
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Abstract. We apply the theory of abstract interpretation to validate
a Reed Solomon error correcting code. We design and implement an
abstract simulator for VHDL descriptions. This tool computes an over-
approximation of all the states that would be reached during any run of
a conventional simulator. It collects linear constraints that hold between
signals in the design. It is used to check the RTL implementations of
the Reed Solomon encoder and decoder against correct high-level spec-
ifications. We explain how to express the correctness property so as to
defeat the state explosion incurred by the deep pipeline in the decoder.
Benchmarks show the abstract simulator is very frugal in both memory
and time. Comparisons with VIS confirm that specialized tools outper-
form general purpose algorithms. Abstract simulation also competes ad-
vantageously with simulation. In less time than what was allocated for
simulation by the designers of the components, it achieves full coverage.

1 Introduction

In order to design today’s complex system-on-a-chips (SoCs), the ability to reuse
existing intellectual properties (IPs) has become a necessity. Ideally, IP reuse
shortens time-to-market and bounds design costs. However, in practice, the as-
sembly of components from multiple sources on a single chips turns out not to
be simple. First, the behavior of each IP must be clearly documented. Such a
documentation can take various more or less satisfactory forms. Informal specifi-
cations, test vectors together with expected results, testbenches or assertions are
all possible. The specification may be formally expressed in a standard property
language such as PSL/Sugar [3] but traditional hardware description languages
are for the most part expressive enough already. Also, obviously, the internal
behavior of an IP must match its documentation. If it doesn’t, then finding the
origin of a flaw during whole chip simulation becomes a nightmare. Unfortu-
nately, it is in general impossible to ensure a property of a design using only
a simulator. Simulation explores an extremely small fragment of all the possi-
ble executions. It is inherently not exhaustive. Only formal methods have this
unique capability of proving a component’s correctness with respect to a given
property. Hence, the IP reuse methodology stresses the need for automatic and
efficient formal verification tools critically.
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We believe great efficiency can be obtained by designing tools that are spe-
cialized to their application domain. In that, we follow a similar path to the
one explored in [6]. In previous work [17, 18], we applied the methodology of
abstract interpretation [12] to design an abstract simulator for VHDL [1]. The
abstract simulator computes a superset of all the states that may be reached
during any conventional simulation of a given VHDL description. It employs a
numerical domain [20, 19, 23] to symbolically encode the possible values of sig-
nals. Precision can be traded for efficiency by simply changing the numerical
domain. We want to tailor this tool to the application domain of linear error
correcting codes (ECCs). Hence the domain of linear relationships [19] is most
appropriate. We slightly adapt the domain so that it can track undefined (’U’)
standard logic signals. For integer variables, we use the domain of constants.
We apply the abstract simulator to a Reed Solomon encoder and decoder that
was provided to us by industrial partners. The correctness of each component
is expressed by a non-deterministic testbench written as a behavioral VHDL
piece of code. The testbench is carefully written so as to circumvent the state
explosion induced by the pipeline of the component under verification. The tool
successfully performs the verification of both components. The performances of
our experimental prototype turn out to be astonishingly good. In particular, in
comparison to a standard BDD based model checker like VIS [15], the memory
consumption is very low. The tool was also helpful to find the origin of flaws in
incorrect descriptions.

2 Reed Solomon

Data transmitted over a communication channel or stored on a memory device
may undergo corruption. Error correcting codes elude possible information loss
by adding redundancy. In our information based society, ECCs have become
ubiquitous: CDs, modems, digital television and wireless communication all in-
corporate them. We wish to validate a synthesizable register transfer level (RTL)
VHDL description of a Reed Solomon ECC [25] encoder and decoder.

The informal documentation of the components explains how 16 bits mes-
sages are encoded by adding 8 bits of redundancy. The bits are packed in groups
of 4 consecutive bits called symbols. The decoder is able to recover from a cor-
ruption that affects a unique symbol, i.e. at most 4 bits in the same block. The
set of all recoverable corruptions of a vector of bits x is:

correctable(x) = {y | ∃s ∈ [0 . . . 5] : ∀i /∈ [4 ∗ s . . . 4 ∗ s + 3] : yi = xi} .

Then, the characteristic property of the RS code can be stated by:

∀x ∈ B16 : ∀y ∈ B24 : y ∈ correctable(ref enc(x)) =⇒ ref dec(y) = x . (1)

We write concise VHDL behavioral implementations of the encoding ref enc
and decoding functions ref dec. These descriptions constitute the golden ref-
erence model for the functionality of the components. We check by extensive
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Fig. 1. Design and verification harness.

simulation that they observe property 1. This task spans over the negligible
time of 6 seconds.

It may seem that it is as simple to validate the actual components as it is to
check the specification. This is far from true. Let us consider the encoder. Its role
is not to encode one 16 bits message and then terminate. Rather, at every clock
cycle it takes a different 16 bits message and encodes it. The design is pipelined,
so that encoding is performed in 2 clock cycles. Our goal is not to show that the
encoder encodes correctly one, or two, or a bounded number of messages. Rather,
we want to ensure it will function correctly forever. At each clock cycle and
whatever the input, the component must compute exactly the same sequence of
values as the ref enc function would. We write in VHDL the testbench depicted
in figure 1. A simple cycle-accurate, bit-accurate specification of the expected
behaviour of the encoder is built by adding two rows of registers to the function
ref enc. At each clock cycle, random values are fed to the two components and
their outputs are compared. At this point, showing the correctness of the encoder
boils down to proving that no simulation run ever sets the signal failure to
true. We have designed and implemented a tool to do this automatically.

3 Abstract Simulation

3.1 Semantics

In order to reason about VHDL descriptions, their semantics must be prop-
erly defined. We assume the descriptions are translated into the kernel language
whose abstract syntax is found in Fig. 2. A description consists of a finite num-
ber of processes that are run concurrently. Each process executes its commands
sequentially until it either terminates or is suspended by a wait statement. The
local memory (unshared variables) of each process is modified by a variable
assignment command. The global memory (signals) is updated only during a
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descr → process { | process } (Parallel composition)
process → command ; { command ; } (Sequence)
command → lval := exp (Variable assignment)

→ lval <= exp (Signal assignment)
→ wait on sig list until exp for timeout (Suspension)
→ while exp do process (Iteration)
→ if exp -> process { | exp -> process } (Alternative)
→ display(x, . . ., x ) (Display)

lval → x | x [exp ]. . .[exp ] (Memory accesses)
exp → n ∈ Z | ’0’ | ’1’ | ’U’ (Constants)

→ lval | op exp | exp op exp

→ rnd() | lrnd() | lvec rnd(n ) (Random generators)
→ rising edge(x ) (Edge detector)
→ int to lvec(x ) | lvec to int(x ) (Conversion functions)

op → not | or | and | xor | - | + | < | =
where x is a variable or a signal identifier, sig list a possibly empty set of signal
names and timeout a positive integer or the keyword ever (to denote the absence of
timeout clause). The notation {. . .} reads “zero or more instances of the enclosed”.

Fig. 2. Syntax of the kernel language.

global synchronization phase. Hence, the effect of the signal assignment is just
to schedule a memory update for the next synchronization point. Synchroniza-
tion occurs whenever all processes are suspended. First, the global memory is
updated. Then, the simulator wakes up any process for which at least one of
the signals it is waiting for just changed. If no process can be awaken that way,
then the simulation time is advanced by the smallest timeout. The while loop
and the alternative construct both control the flow of execution. The alterna-
tive construct, introduced by Dijkstra in [13], runs one of the guarded processes
whose guard evaluates to true. At last, display outputs the value of its argu-
ments. The descriptions manipulate std logics, booleans, integers and statically
allocated multi-dimensional arrays. Of the std logic literals only ’0’, ’1’ and
’U’ are actually used. The rising edge evaluates to true whenever a signal
goes from ’0’ to ’1’. The functions int to lvec and lvec to int convert an
array of std logic to an integer and back. Even though these three functions are
not basic VHDL but defined in external IEEE packages [2], we consider them
as primitive operators. We also incorporate random generators rnd, lrnd and
lvec rnd to be able to inject non-determinism in a design.

We give an operational semantics in the style of Plotkin [24] to this kernel
language. We refer the reader to [17, 18] for more in-depth descriptions. A state
of the simulator (c0, . . . , ci, . . . , cn, ρ) ∈ Σ is a tuple of program points followed
by an environment. For each process, a program point ci indicates the command
to execute next. The environment ρ stores the value of all variables and signals.
The relation → describes one computation step of the simulator:

(c0, . . . , ci, . . . , cn, ρ) → (c′0, . . . , c
′
i, . . . , c

′
n, ρ

′) .
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We are interested in all the states reachable from some initial configuration s0:

O = {s | s0 →∗ s} .

This set can be equivalently expressed as the least fixpoint of the continuous
function F on the complete lattice of set of states (℘(Σ), ∅,∪, Σ,∩) where:

F(X) = {s0} ∪ {s′ | ∃s ∈ X : s → s′} .

Unfortunately, because of the excessive size of the state space, the computation
of this fixpoint often turns out to be too expensive. However an approximation of
the reachable states is often sufficient to show the absence of errors in a design.

3.2 Abstract Interpretation

We follow the methodology of abstract interpretation [12] to design a tool that
computes a superset of the reachable states. We proceed in two steps. First,
we choose a representation for sets of states. To do so, we suppose we have an
abstract numerical domain (N , γN ) which is left as a parameter of our construc-
tion. An element of this domain describes a set of environments as defined by the
monotonic concretization function γN . In the following, we call abstract environ-
ments the elements of N . Then, we abstract a set of states by a function Y that
maps each tuple of program points to an abstract environment. This mapping
represents all the states (c1, . . . , cn, ρ) for which the environment ρ satisfies the
constraints associated with the program points (c1, . . . , cn). The abstraction is
formalized by the following monotonic concretization function γ:

γ(Y ) = {(c1, . . . , cn, ρ) | ρ ∈ γN (Y (c1, . . . , cn))} .

Second, we systematically derive from F a monotonic abstract counterpart F


which operates on the abstract domain. We express, in [17], the abstract transfer
function F
 in terms of a few primitives that operate on the numerical domain
N : ⊥ represents the empty set, � compares two abstract environments, � joins
abstract environments, assign undertakes assignments, select asserts boolean
conditions and singleton yields the abstract representation for a single concrete
environment. In [17], we also explicit the soundness condition that each of these
operations must obey in order for F
 to be sound. Soundness ensures that the
result of applying F
 contains all the states obtained when applying F:

F ◦ γ ⊆ γ ◦ F
 .

This local soundness condition guarantees that the least fixpoint of F
 is a sound
over-approximation of the reachable states:

lfp F ⊆ γ(lfp F
) .

Our tool computes the least fixpoint of F
. It consists of approximately 3000 lines
of code in OCaml [22]. The compiler from VHDL to the intermediate represen-
tation of Fig. 2 accounts for another 2000 lines. The abstract simulator stores
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abstract environments in a hashtable. The fixpoint algorithm is the standard
worklist algorithm found in [16]. The program points to be visited are placed on
a priority queue. When the queue is empty, we have reached the fixpoint. We
chose this data-structure so that the body of loops and alternative constructs
are visited before the next instruction.

We can plug any kind of numerical domain [20, 19, 23, 7] as a backend to our
analysis. The selection of an adequate numerical domain is of paramount impor-
tance: too coarse an abstraction might be insufficient to achieve the verification
goals whereas precision is often gained in detriment to efficiency. Next section
explains the tradeoff we chose to handle linear ECCs.

3.3 Boolean Affine Relationships

For the back-end of the analyzer, there is a tremendous variety of numerical
domains that we can choose from. To cite but a few see [20, 19, 23, 27, 14]. We
implemented a numerical domain which we believe is well adapted to the verifica-
tion of linear error correcting codes (ECCs). We take the product of the domain
of affine relationships for std logic variables and the domain of constants [20]
for integer variables.

Let V be a set of n boolean valued variables. We bestow the addition xor
(⊕) and multiplication and (∧) on the set BV of binary vectors indexed by
the variables in V . Now, (BV ,⊕,∧) is a vector space over B of dimension n. A
boolean affine equality is an equation of the form:

c1 ∧ x1 ⊕ . . .⊕ cn ∧ xn = c ,

where x1, . . . , xn are variables in V and c1, . . . , cn, c, boolean values. It represents
the set of vectors in BV that make the equality hold. The domain (KV , γK) of
Karr [19] tracks the affine equalities that are satisfied by variables in V . An
element of Karr’s domain is a system of affine equalities. The system is kept in
row-echelon normal form thanks to the Gauss pivot algorithm. Karr describes all
the primitives we need to manipulate the domain: ⊥K, �K, assignK, selectK and
singletonK. Each of these operations obey their respective soundness condition.
Two additional primitives allow to add and remove variables from the domain:
extend and project. If V and W are sets of variables such that V ⊆ W then:

{ρ | ρ|V ∈ γK(R)} ⊆ γK(extendW (R))
{ρ|V | ρ ∈ γK(R)} ⊆ γK(projectV (R)) .

Unfortunately, we can not use the domain of boolean equality as it is: VHDL
implementations embed B into the type std logic. In fact, variables of type
std logic do not only take the values ’0’ or ’1’ but also ’U’. To adapt the
domain, we track the set b of std logic variables which are definitely different
from ’U’. Karr’s domain is used to collect the linear relationships that solely
concern the variables in b:
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N = {(b, k) | b ⊆ V ∧ k ∈ Kb} ∪ {⊥}
γ(b, k) = {ρ | ρ|b ∈ γK(k)}
γ(⊥) = ∅ .

We produce sound definitions for the various operators. Abstract inclusion and
union are:

(b1, k1) � (b2, k2) = b2 ⊆ b1 ∧ projectb2(k1) �K k2

(b1, k1) � (b2, k2) = (b, projectb(k1) �K projectb(k2)) where b = b1 ∩ b2 .

Predicate in01b(e) holds of expressions that necesseraly evaluate to ’0’ or ’1’,
assuming the std logic variables in b are different from ’U’. It is defined by
structural induction on the syntax of expressions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

in01b(c) = true if c ∈ {’0’, ’1’}
in01b(lrnd()) = true

in01b(x) = (x ∈ b)
in01b(not e) = in01b(e)
in01b(e1 op e2) = in01b(e1) ∧ in01b(e2) if op ∈ {and, xor}
in01b(e) = false for all other expressions .

The assignment of an expression e to variable x is carried on in the Karr domain
only when we are sure that e evaluates to ’0’ or ’1’:

assignx←e(b, k) =

{
(b1, assignKx←e(extendb1(k))) if in01b(e)
(b2, projectb2(k)) otherwise

where b1 = b ∪ {x} and b2 = b \ {x} .

In a similar way to assignments, the selection operation refines the Karr’s com-
ponent of our domain only when possible:{

selecte1=e2(b, k) = (b, selectKe1 = e2(k)) if in01b(e1) ∧ in01b(e2)
selecte(b, k) = (b, k) otherwise .

At last, the singleton primitive is:

singleton(ρ) = (b, singletonK(ρ|b)) with b = {x | ρ(x) ∈ {’0’, ’1’}} .

In the implementation, we adopt a sparse matrix representation for the system
of linear equalities. The set of variables b is encoded by a bitfield. The memory
usage of the abstract domain is of the order of n2 while the complexity of the
most expensive operation is in n3.
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Optimization. We do not necessarily need to always collect all the linear equal-
ities of a design. In particular, sometimes we only care about the functional re-
lationship that hold between each variable y and some variables in a set X . If
this is the case, we may safely trim the system of constraints to speed up the
computation and free some memory. To do so, we first normalize the system in
row-echelon form. We use an ordering of the column where the variables in X
come last. Then, we discard any constraint that involves more than one variable
not in X .

Example 1. We illustrate on the following system of equalities:

y2 ⊕ y3 ⊕ y4 = 1
y1 ⊕ y3 ⊕ x1 = 0

y3 ⊕ x2 = 1 .

Suppose X = {x1, x2}. We put the system in normalized row-echelon form with
the order (y1, y2, y3, x1, x2):

y1 ⊕ x1 ⊕ x2 = 1
y2 ⊕ y4 ⊕ x2 = 0

y3 ⊕ x2 = 1 .

Any constraint with more than one variable not belonging to X is removed:

y1 = x1 ⊕ x2 ⊕ 1
y3 = x2 ⊕ 1 .

We implemented a tool, called vhdla+, which performs this optimization after
each join operation.

The domain of boolean linear equalities is particularly fit to show the cor-
rectness of linear ECCs. This is because the encoding function of linear ECCs
is linear, that is its input/output relation can be exactly captured by an affine
equality. In the next sections, we present experimental results that support this
claim.

4 Encoder

We run our tool on the RS encoder with the testbench of Fig. 1. First, we compile
the description to the intermediate representation:

$ vhdlc encoder.vhd > encoder.khl

Then, we launch the abstract simulator:

$ vhdla encoder.vhd encoder.khl

The abstract simulator outputs its results in html format. It annotates all display
directives with the constraints it has inferred. Figure 3 shows a screenshot of the
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Fig. 3. Results presented by the tool.

results. It shows the piece of code in the testbench which is in charge of comparing
the output of the RS encoder (crcrs clk66m) with the output of the reference
implementation (crc out). The tool was able to find out that for each index i:

crcrs clk66m(i) xor crc out(i) = ’0’ .

In other words, the outputs are equal element wise. This allows to conclude the
error state inside the if statement is unreachable, which validates the encoder.

5 Decoder

The description of the decoder is harder to verify. Indeed, the function com-
puted by the decoder is not linear. The reference implementation ref dec for
the decoder works as follows:

syndrome := control(din);
dout := correct(din, syndrome);

The linear map control computes the syndrome of the message. The function
correct then modifies the message according to the value of the syndrome.
For a fixed syndrome, correct is linear in din. The syndrome is made up of
two symbols. Each symbol is 4 bits (here std logics) wide. This means that the
domain of the reference decoding function ref dec can be split in 256 pieces.
The restriction of ref dec on any of these pieces is linear.

Moreover, the decoder is pipelined with a depth of five cycles. With the
initial row of registers put on the inputs, this means that at most six different
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process begin

-- reset phase

din <= (others => ’0’);

wait until rising_edge(clk); wait until rising_edge(clk);

wait until rising_edge(clk); wait until rising_edge(clk);

rst_na <= ’1’;

-- operating phase

while rnd() loop

din <= lvec_rnd(24); wait until rising_edge(clk);

end loop;

-- testing phase

x := lvec_rnd(24); y := ref_dec(x); din <= x;

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

if (dout /= y) then report "Failure"; end if;

end process;

Fig. 4. Driver for the RS decoder.

datas may be at the same time in different stages of the design. If we naively
distinguish the 256 cases for each of these stages then we are bound to suffer
from the state explosion problem since:

2566 = 248 ≈ 280000 billions .

More complex abstractions would probably shield us from the effects of state
explosion. But we prefer to circumvent the problem so as to reuse the same tool
that already worked for the encoder. We reformulate the correctness property.
Let us consider a run of a conventional simulator on the decoder. We restrict
our observation to the input din and output dout of the component at rising
edges of the clock. We want to ensure that, at any clock cycle t, if some data is
fed to the component, then the expected result shows up 6 clock cycles later:

∀t : ∀x : dint = x =⇒ doutt+6 = ref dec(x) . (2)

To enforce this property, we drive the component with the process in Fig. 4.
First, the component is reset. Then, it is fed with arbitrary values for some
time. Intuitively, this first part in the driver expresses the ∀t of equation (2).
An input message x is picked randomly and fed to the component. After 6 clock
cycles have elapsed, the output from the component dout and the expected
value y are compared. The statement report "Failure." must be shown un-
reachable. Since the specification function ref dec is not linear, the verification



340 Charles Hymans

can’t be performed in one run of the current abstract simulator. Instead, we
can equivalently check 256 simpler properties. We specialize the previous driver
for each possible value of the syndrome. For instance, for a syndrome equal to
"10110111", the following code simply replaces the last part of the driver:

-- testing phase for a syndrome equal to "10110111"
x := lvec_rnd(24); syndrome := control(x);
if (syndrome = "10110111") then
y := correct(x, syndrome); din <= x;
wait until rising_edge(clk); din <= lvec_rnd(24);
wait until rising_edge(clk); din <= lvec_rnd(24);
wait until rising_edge(clk); din <= lvec_rnd(24);
wait until rising_edge(clk); din <= lvec_rnd(24);
wait until rising_edge(clk); din <= lvec_rnd(24);
wait until rising_edge(clk); din <= lvec_rnd(24);

if (dout /= y) then report "Failure"; end if;
end if;

Combinational Processes. To our surprise and dismay the tool fails. After
inspection of the results, we find out it needs to establish intermediate invariants
that involve non-linear constraints. Consider the following example:

process begin
a <= lrnd(); b <= lrnd(); wait for 1 ns;
display(a, b, y);
a <= ’1’; b <= lrnd(); wait for 1 ns;
display(a, b, y);

end process;
process(x) begin y <= a and b; end process;

The abstract simulator is unable to infer the linear equality

b = y

that holds at the second display statement. This problem arises because of the
combinational process. Let us follow the computation of the tool. At the first
display statement, the value of signal a, b and y are linked by the relationship:

a and b = y .

However, simply because this constraint is not a boolean linear equality, it is
not inferred. Then, when the tool reaches the second wait statement, it must
explore the two possible outcomes of the combinational process. Either it wakes
up and y is assigned the value of ’1’ and b. Or, it stays idle in which case y is
not modified. Unfortunately, the tool already lost all information about y. The
restraint y = b can not be deduced.
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The exact same sequence of events prevents the analysis of the decoder from
being conclusive. To resolve this problem, we inline the code of each combina-
tional process wherever the signals it is sensitive on may be modified. As for
now, this simple program transformation is done by hand. However, it can easily
be made automatic and integrated as a final phase of the preprocessor vhdlc.

At last, the abstract simulator succeeds. It computes during 849 seconds on
an AMD Athlon MP 2200+ and consumes 141 megabytes at its peak. Of course,
to completely validate the decoder, the abstract simulator must be run 256 times,
i.e. one time for each possible syndrome.

6 Discussion

Debugging Information. The tool may also be useful in the purpose of debug-
ging. To trace the origin of flaws in a faulty design, we can display the constraints
computed by the abstract simulator at different program points in the design.
For instance, it is possible to discover the conditions on the input signals that
lead the design into an abnormal state. Also, with a driver as described in Fig.
4, it is easy to follow the data flow through the pipeline. We can thus locate the
first stage where signals in the design do not match their expected values.

Stronger Abstraction. The specificity of the property checked by the driver
in Fig. 4 allows to take advantage of vhdla+, the optimized version of our tool.
Indeed, not all affine relationships that hold in the design are important. It is
sufficient to just collect the relationships that link the signals with the input
vector x. Any other constraint may be freely disposed of. The computation time
and memory consumption are down respectively to 593 seconds and 88 Mb. So
we estimate the whole verification effort takes less than two days (10 minutes ∗
256 ≈ 42 hours).

Benchmarks. We compared with the BDD-based model checker VIS [15]. To
our knowledge there is no freely available model checking tool that inputs VHDL
code. So we chose VIS which reads synthesizable synchronous Verilog descrip-
tions. The VHDL descriptions were translated by hand. The asynchronous reset
had to be removed completely. We also transformed the driver of Fig. 4 into a
form suitable for synthesis. Table 1 displays various statistics of our benchmarks.
The sizes of the descriptions are expressed in number of lines of VHDL, of the
intermediate representation and of Verilog. The number of latches of the cir-
cuit synthesized by VIS is also shown. Then, time and memory consumption are
shown. Line vhdla+ corresponds to the implementation of the stronger abstrac-
tion. We ran VIS with the check invariant command. We tried both static and
dynamic variables ordering for the BDDs. For the dynamic ordering, we used
the window method. Dynamic ordering improves the memory consumption, but
at the cost of increased computation time. Both methods failed: static ordering
burns the 2GB of available memory very quickly, whereas dynamic ordering does
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Table 1. Statistics on an AMD Athlon MP 2200+ with 2GB of memory.

Program
encoder decoder dec. 1 dec. 1–2 dec. 1–3 dec. 1–4

Size in various metrics

VHDL lines 251 395 215 265 305 358

IR lines 338 963 370 484 602 828

Verilog lines 235 519 206 310 358 415

VIS latches 337 647 286 486 529 617

Verification time (s)

vhdla 58 849 37 152 259 513

vhdla+ 45 593 37 166 261 420

vis static 1666 >960 >840 >845 >1826 >895

vis dynamic 4379 >172800 (48h) 2774 4540 78037 (21h) >172800 (48h)

Peak memory consumption (Mb)

vhdla 50 141 23 44 66 98

vhdla+ 37 88 20 37 49 73

vis static 693 >2000 >2000 >2000 >2000 >2000

vis dynamic 173 >374 233 243 277 >333

Benchmarks dec. 1 to dec. 1–4 are troncated versions of the decoder: dec. 1 contains
only the first stage of the pipeline, dec. 1–2, the first two stages and so on.

not finish within a timeout of 48 hours. The last benchmarks are performed on
restricted versions of the decoder where only the first few stages of the pipeline
are considered. These benchmarks confirm that specialized tools can outperform
general algorithms like BDD based model checking.

At the time the component was designed, the hardware engineers allocated
two days to simulation. The whole verification effort to fully validate the en-
coder and decoder takes less than two days with our prototype implementation.
Obviously, simulation lacks the full coverage that we attain. So, our approach is
competitive with conventional simulation: in a similar amount of time, it pro-
duces a much higher valued result.

7 Related Work

There exists numerous formal verification tools for hardware. We compared our
approach with traditional BDD [7] based model checking [9]. Using the model
checker VIS [15], we observed an undeniable blowup in the size of the BDDs or
the time devoted to simplify them on the fly.

In bounded model checking [5], a violation of the property reachable in less
than a bounded number of steps is searched for. The task is reduced to a propo-
sitional satisfiability problem and solved with regular sat-solvers. The tool de-
scribed in [11] checks the consistency of a Verilog design with its specification
written in ANSI-C. Essentially, in contrast to symbolic model checking, SAT
based methods trade memory consumption for computation time. It proves very
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efficient to quickly find errors in designs. However, when the property holds,
bounded model checking too tends to suffer from the state explosion problem.

Symbolic simulation algorithms [8] extend the power of traditional simula-
tors by manipulating symbolic expressions instead of plain values. In particular,
ternary symbolic simulation operates on BDDs whose nodes are variables de-
noting the input to the circuit and whose leaves are 0, 1 or X (for unknown).
Symbolic trajectory evaluation [26] improves on ternary symbolic simulation by
providing a logic to express the property to check. Symbolic trajectory evaluation
was shown to be an abstract interpretation in [10]. The efficiency of symbolic
simulation stems from the limited number of variables needed for the BDDs. In-
deed, this number depends only on the property to check and not on the design.
For instance, to establish the correctness of the RS decoder, only 24 variables
would be needed. In comparison to the domain of linear constraints, which is
polynomial, there is still the possibility of an exponential blowup. The imple-
mentation of a symbolic simulation for RT-level Verilog is described in [21]. The
authors claim to support the full IEEE 1364-1995 semantics. However, they do
not state, even less prove, the soundness of their algorithm with respect to a
formalization of the Verilog semantics.

As for the specification part, we could use more complex formalisms like
PSL/sugar [4]. Such logic is helpful to specify complex control properties or
liveness properties. But as we have seen, for the simple case study of RS, VHDL
augmented with non-determinism is already expressive enough. Our choice was
also motivated by the fact that engineers prefer traditional hardware description
languages with which they are already familiar.

8 Conclusion

We successfully verified VHDL descriptions of Reed Solomon error correcting
code encoder and decoder. The descriptions, supplied to us by an industrial
partner, were in no way modified for the purpose of verification. The verification
tool we used was designed following the methodology of abstract interpretation.
It computes an over-approximation of the reachable states of a VHDL descrip-
tion. It is systematically derived by abstraction from an event-driven simulation
semantics of VHDL. The abstract numerical domain, used to represent the pos-
sible values of the signals in the description, may be freely chosen. This allows
for various tradeoffs between the precision of the approximation and the cost of
the computation. This facility is crucial to reach the verification goals within a
reasonable time and memory budget. For the specific class of linear ECCs, we
selected the domain of boolean linear equalities. It must be slightly adapted in
order to handle multivalued logic (the VHDL std logic data-type). The exper-
imental results are excellent.

This study shows it is possible to validate descriptions produced by hardware
engineers in an efficient manner. Abstract interpretation proved the adequate ap-
proach for this work. First, abstraction allows to fill the gap between the hard-
ware description language and the verification tool. The soundness of the tool
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was proved with respect to a formalization of the VHDL simulation algorithm.
Second, abstraction was necessary to achieve good performances. This is a step
forward toward the integration of formal tools into existing design practices.

In the future, we plan to study the applicability of our tool in the VHDL
design flow. Our tool is not limited to synthesizable descriptions only. So in
theory, it can be used to first check high-level behavioral specifications. Then, the
consistency of the lower level description can be verified against the specification.
This approach helps to identify errors early in the design flow.
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Abstract. We present a flow and context sensitive compositional infor-
mation flow analysis for full (mono-threaded) Java bytecode. We base our
analysis on the transformation of the Java bytecode into a control-flow
graph of basic blocks of code which makes explicit the complex features
of the Java bytecode. We represent information flows through Boolean
functions and hence implement an accurate and efficient information flow
analysis through binary decision diagrams. To the best of our knowledge,
it is the first one for full Java bytecode.

1 Introduction

Information flow analysis infers dependencies between program variables and lets
us check if a program is free from undesired information flows, a basic component
of security [20]. Namely, a security policy can be defined as a complete lattice
of security classes and information is allowed to flow from variables of a given
security class to variables of higher security classes only [11, 20]. Static analysis
has been used to check if a program meets its security policy, both through
data/control-flow analyses [6, 9, 15, 21, 18] and type-inference [22, 25, 5, 4, 14, 12].
In the former case, it infers a superset of all possible information flows, from
which the security policy is checked. In the latter case, program variables are
classified into security classes, and well-typedness guarantees that programs do
not leak secrets. Our work belongs to the data/control-flow approach.

There is a flow of information from a variables x to a variable y, denoted by
x�y, if changes in the input values of x are observable from the output values
of y. Such flows are classified in direct and indirect [11]. Direct flows are explicit
when they arise from assignments: in x=y+z, information flows from y and z to x;
or they are implicit when they arise from conditionals: in if (x>0) then y=w
else y=z, information flows explicitly from w and z to y and implicitly from x
to y. Indirect flows are defined as follows: if x�y is followed by y�z, then x�z.
In this paper we do not address information flows arising from covert channels
such as termination, timing etc. Moreover, we study information flow in the
context of low-level languages, namely, Java bytecode, since we want to analyse
real-world applications as they are downloaded from the Internet or embedded
in low-level devices such as banking cards, for which security is a real issue.
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A first contribution of this paper is the novel use of a graph-based represen-
tation of Java bytecode to identify all and only the implicit flows in the program
with the nodes of the graph with at least two successors. This lets us fit inside
the same setting all implicit flows which can arise in a Java bytecode, from con-
ditionals to exceptions to dynamic method dispatch. Moreover, it lets us recover
the structure of low-level code, without relying on decompilation.

A second contribution is the implementation of our analysis for full Java
bytecode through Boolean functions, as pioneered in [12], efficiently implemented
through binary decision diagrams [8].

2 Some Examples of Analysis

In Section 3 we describe our information flow analysis for Java bytecode. Here,
we show some examples of analysis. We consider several Java byte codes as well
as their original Java source codes (since it is easier to understand than the
corresponding bytecode). However, our analyser actually works on the compiled
bytecode. We only report the variables which flow into the return value of the
methods or their exceptions, since the final values of the local variables are not
observable when a method returns.

Example 1. Consider the following Java method:

public int loop1(int x) {
int res;
for (res = 0; res < x; res++);
return res;

}

0: iconst 0 5: iinc 2, 1
1: istore 2 6: goto 2
2: iload 2 7: iload 2
3: iload 1 8: ireturn
4: if_icmpge 7

The analyser reports the information flow set {l1�s0} i.e., the initial value of
local variable 1 (which holds x) may affect the final value of the only element s0
in the operand stack at the end of loop1 (i.e., the return value of loop1). This
is an implicit flow. No flow is computed for the exceptions i.e., loop1 does not
raise an exception in a way which depends from its input arguments. �

Example 2. Consider the following Java method:

public int loop2(int x) {
int res;
for (res = 0; res < x; res++);
res = 10;
return res;

}

0: iconst 0 6: goto 2
1: istore 2 7: bipush 10
2: iload 2 8: istore 2
3: iload 1 9: iload 2
4: if_icmpge 7 10: ireturn
5: iinc 2, 1

which is obtained by adding “res=10” to the program in Example 1. This time
the analyser computes the empty set of information flows. This is correct since
the return value of the method does not depend from its arguments. �
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Example 3. Consider the following Java method:

public int divide1(int a, int b) {
return a/b;

}

0: iload 1
1: iload 2
2: idiv
3: ireturn

The analyser reports the information flow set {l1�s0, l2�s0, l2�e} i.e., both
a and b (local variables 1 and 2) may flow to the return value (s0). The flow
l2�e says that divide1 may raise an exception in a way which depends from
the initial value of b (if b = 0, then a division by zero occurs). �

Example 4. Consider the following Java method:

public int divide2(int a, int b) {
int res;
try {
a = a/b;
res = 0;

} catch (ArithmeticException ae) {
res = 1;

}
return res;

}

0: iload 1 10: iload 3
1: iload 2 11: ireturn
2: idiv
3: istore 1
4: iconst 0
5: istore 3
6: goto 10
7: astore 4
8: iconst 1
9: istore 3

The analyser computes the set {l2�s0} i.e., b (local variable 2) may flow to the
return value. This is an implicit flow, since if b is initially 0 then a division by
zero occurs and divide2 returns 1. Otherwise, it returns 0. The initial value of
a is irrelevant, so the flow l1�s0 is not reported, while it was in Example 3.
Since the exception is handled inside divide2, there is no flow from b to e. �

Example 5. Consider the following Java method:

public int divide3(int a, int b) {
int res;
try {
a = a/b;
res = 0;

} catch (ArithmeticException ae) {
res = 1;

} finally {
res = 2;

}
return res;

}

0: iload 1 12: iconst 2
1: iload 2 13: istore 3
2: idiv 14: goto 27
3: istore 1 15: astore 5
4: iconst 0 16: iconst 2
5: istore 3 17: istore 3
6: iconst 2 18: aload 5
7: istore 3 19: athrow
8: goto 20 20: iload 3
9: astore 4 21: ireturn

10: iconst 1
11: istore 3

The analyser computes the empty set of information flows, since divide3 always
returns 2. Hence our analyser is able to deal with a complex interaction between
exceptions and the jsr and ret bytecodes used to implement finally [17]. �
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3 Information Flow Analysis for Java Bytecode

Java bytecode [17] is a strongly-typed, object-oriented low-level language. It
lacks an explicit scope structure and uses an operand stack to hold intermediate
computational results. A Java bytecode program consists of a set of classes,
each defining a set of methods and fields. A method contains a sequence of
Java bytecode statements, still called bytecodes. Stack and local variables used
to execute a method are denoted by Sm and Lm and both start from index 0.
When it is clear from the context, we write S and L instead of Sm and Lm.

The verification algorithm [17] imposes some rules on valid Java bytecode.
One of them is essential here, and requires that the stack height at each given
program point is statically known i.e., for each bytecode b we know the indexes
q and p of the top stack element before and after b’s execution, respectively (if
the stack is empty, we assume that they are equal to −1). Hence, one cannot
create information flows by manipulating the stack height.

The rest of this section describes our analysis. Section 3.1 shows how we
recover the structure of a Java bytecode program through a control-flow graph.
Section 3.2 characterises implicit flows in a graph-theoretical way. Section 3.3
describes the analysis of single bytecodes and Section 3.4 extends it to sequences
of bytecodes. Sections 3.5, 3.6 and 3.7 add support for methods, exceptions and
fields, respectively. Section 3.8 discusses the correctness of the analysis.

3.1 Recovering the Structure of Java Bytecode Programs

As a low-level programming language, Java bytecode lacks structure. Consider
for example the Java program in Figure 1 (on the left) and its translation into
Java bytecode (in the middle). The structure of the Java program is expressed
syntactically. Namely, the body of the loop is y=y-1;x=y;z=z+1 and y=0 is exe-
cuted at its end. Recovering the structure of the Java bytecode is much harder.
We need to examine the control transfer bytecodes in order to understand, for
instance, that lines 6-15 are the body of a loop.

We solve this problem through the technique already applied in [1] to other
programming languages. Namely, we split the code into basic blocks and allow
transfers of control only at the end of a block. We build a control-flow graph by
connecting these blocks with directed edges which reflect the transfers of control
in the program. For instance, the bytecode in the middle of Figure 1 is translated
into the control-flow graph on its right, which contains control-flow information
similar to that of the original Java program: Block 0 is the guard of the loop;
Block 1 corresponds to y=0; and Block 2 is the body of the loop. At the end of
Block 0, control is transferred to Block 2 if x > 0, and to Block 1 otherwise. The
new bytecodes goon ifle and goon ifgt are there to select the right execution
path, so that we do not need a new kind of node for conditions.

3.2 Implicit Flows in the Control-Flow Graph

Implicit information flows are originated from conditionals, such as ifle in Fig-
ure 1, but also from dynamic method dispatch and exceptions. We translate a
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while ((x*=2)>0) {

y = y - 1;

x = y;

z = z + 1;

}

y = 0;

0: iload 1 10: iload 0

1: iconst 2 11: istore 1

2: imul 12: iload 2

3: istore 1 13: iconst 1

4: iload 1 14: iadd

5: ifle 17 15: istore 2

6: iload 0 16: goto 0

7: iconst 1 17: iconst 0

8: isub 18: istore 0

9: istore 0

Block 0

 iload 1 
 iconst 2 
 imul 
 istore 1 
 iload 1 

Block 1

 goon_ifle
 iconst 0
 istore 0

Block 2

 goon_ifgt
 iload 0
 iconst 1
 isub
 istore 0
 iload 0
 istore 1
 iload 2
 iconst 1
 iadd
 istore 2 

Fig. 1. A Java method (on the left); its translation to Java bytecode (in the middle);
and its control-flow graph (on the right).

virtual method call into a block with as many immediate successors as there are
possible targets for the call (Section 3.5); and we put a bytecode which might
raise an exception at the end of a basic block with two immediate successors,
one for the case when the exception is raised, and another for the normal con-
tinuation (Section 3.6). The following result follows.

Proposition 1 (Implicit Flows). There is a one-to-one correspondence be-
tween sources of implicit flows and nodes of the control-flow graph with at least
two immediate successors. �

Example 6. In the control-flow graph in Figure 1, the only implicit flow arises
from Block 0, which transfers control either to Block 1 or to Block 2. The choice
depends on the value of the top element of the stack, where x is stored. �

Proposition 1 identifies the sources of implicit flows with some nodes of the
graph. But we also need their scope i.e., the set of bytecodes affected by the
implicit flow arising at those nodes.

Definition 1 (Scope). The scope ς(n) of a node n of a control-flow graph are
the nodes which are executed conditionally, depending on the path taken at n. �

Example 7. In the graph in Figure 1, the execution of Block 0 and Block 2
depends on the path taken at Block 0, while Block 1 is always executed (assuming
that the program terminates). Hence ς(Block 0 ) = {Block 0 ,Block 2}.

Example 8. Consider the following graph. Its scopes are reported to its right.

1

2

3

4

5

7 8

6 ς(1) = {2, 3, 4, 6, 7, 8} ς(5) = {}
ς(2) = {7} ς(6) = {}
ς(3) = {} ς(7) = {}
ς(4) = {4, 6} ς(8) = {}.
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S0

1 l2
2 l1
3 l0
L0

iload 1
=⇒

s0 2
S1

1 l2
2 l1
3 l0
L1

iconst 2
=⇒ s1 2

s0 2
S2

1 l2
2 l1
3 l0
L2

imul
=⇒

s0 4
S3

1 l2
2 l1
3 l0
L3

istore 1
=⇒

S4

1 l2
4 l1
3 l0
L4

iload 1
=⇒

s0 4
S5

1 l2
4 l1
3 l0
L5

Fig. 2. Stack and local variables during an execution of some bytecodes.

Nodes 3, 5, 6, 7 and 8 do not generate implicit flows and have empty scopes.
Node 5 is not in the scope of 1 since its execution is independent from the path
taken at 1, namely 5 is always executed after 1. �

Due to space concerns, an algorithm for computing the scopes is available in
the extended version of this paper [13].

3.3 Step I: Single Bytecodes

We show here how we compute the information flows for some simple Java
bytecodes, which represent most of the bytecodes described in [17].

Figure 2 shows an execution involving imul, which pops two values from the
stack and pushes their product instead. The output value of s0 depends on the
input values of s0 and s1 i.e., a change in such values may affect the output value
of s0. The other variables keep their values unchanged. Hence imul features the
set of information flows {s0�s0, s1�s0, l0�l0, l1�l1, l2�l2}. We must however
consider the implicit flows that arise if imul is in the scope of a node n of the
control-flow graph. We express this with the flow w�s0 (since s0 is updated)
where w stands for a generic implicit flow and will be bound when we analyse n
(Definition 6). This way the analysis is modular i.e., we analyse each component
independently from its context. This is formalised below.

Definition 2 (Identity Flow Mappings). The identity flow mappings for
the stack elements and local variables are IdS(j) = {si�si | 0 ≤ i < j} and
IdL(X) = {li�li | li ∈ X}. �

Definition 3 (Denotation for imul). The information flows for imul (with
q input stack elements and p output stack elements) are

[[imul]]α = {sq�sp, sq−1�sp, w�sp, w�w} ∪ IdS(p) ∪ IdL(L)

where w is a variable which stands for the (yet unknown) implicit flows. �

The flow w�w is used in Definition 5 to let implicit flows propagate along a
sequential composition of bytecodes.
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Example 9. Consider the imul bytecode in Figure 2 and its input and output
states. We have q = 1 and p = 0, so that

[[imul]]α = {s0�s0, s1�s0, w�s0, w�w} ∪ IdS(0) ∪ IdL({l0, l1, l2})
= {s0�s0, s1�s0, w�s0, w�w} ∪ {} ∪ {l0�l0, l1�l1, l2�l2}.

�

Let us consider other examples. The iconst c bytecode pushes the constant
c on the stack, iload k pushes the value of local variable lk on the stack, and
istore k pops the top of the stack and stores it into local variable lk.

Definition 4 (Denotations for iconst c, iload k and istore k). The in-
formation flows for iconst c, iload k and istore k are

[[iconst c]]α = {w�sp, w�w} ∪ IdS(p) ∪ IdL(L)
[[iload k]]α = {lk�sp, w�sp, w�w} ∪ IdS(p) ∪ IdL(L)

[[istore k]]α = {sq�lk, w�lk, w�w} ∪ IdS(p + 1) ∪ IdL(L \ {lk})

where w is a variable which stands for the (yet unknown) implicit flows. �

Example 10. The denotations of the iconst, iload and istore bytecodes in
Figure 2 are (the two occurrences of iload 1 have the same p and q):

[[iload 1]]α ={l1�s0, w�s0, w�w} ∪ IdS(0) ∪ IdL({l0, l1, l2})
={l1�s0, w�s0, w�w} ∪ {} ∪ {l0�l0, l1�l1, l2�l2}

[[iconst 2]]α ={w�s1, w�w} ∪ IdS(1) ∪ IdL({l0, l1, l2})
={w�s1, w�w} ∪ {s0�s0} ∪ {l0�l0, l1�l1, l2�l2}

[[istore 1]]α ={s0�l1, w�l1, w�w} ∪ IdS(0) ∪ IdL({l0, l2})
={s0�l1, w�l1, w�w} ∪ {} ∪ {l0�l0, l2�l2}.

�

3.4 Step II: Composition of Denotations

We describe here how we compose denotations of Java bytecodes that occur
sequentially in the same basic block. As in [9, 12], we say that there is an infor-
mation flow from x to y in the composition C1;C2 if there is a flow from x to z
in C1 and a flow from z to y in C2.

Definition 5 (Composition of Denotations). Let C1 and C2 be two Java
bytecodes. The information flow generated by executing C2 immediately after C1

is [[C1]]α ⊗ [[C2]]α = {x�y | ∃z.x�z∈[[C1]]α ∧ z�y∈[[C2]]α}. �

Example 11. The composition [[B0]]α = [[iload 1]]α ⊗ [[iconst 2]]α ⊗ [[imul]]α ⊗
[[istore 1]]α ⊗ [[iload 1]]α of the bytecodes in Figure 2 (see also Examples 9
and 10) is {w�l1, w�s0, w�w, l1�s0, l0�l0, l1�l1, l2�l2}. �
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Definition 5 lets us compose denotations of bytecodes inside a given basic
block. Composing the denotations of two basic blocks is similar in principle, but
we must propagate the implicit flows from each basic block to those in its scope.

Example 12 (Handling Implicit Flows). Consider the control-flow graph in Ex-
ample 8. During the analysis, node 1 imposes its implicit flow on its immediate
successors 2, 3 and 4, which accept it since they are all in the scope of 1. Then
node 2 imposes its implicit flow, and the implicit flow that it got from 1, on
nodes 7 and 8. Node 7 accepts both incoming implicit flows since it is in the
scope of both 1 and 2, while node 8 accepts the incoming implicit flow of 1, since
it is in its scope, but ignores the implicit flow of 2, since it is not in its scope. �

The example above leads us to redefine the denotation of a basic block in order to
impose, accept and ignore implicit flows. Namely, we replace each w�x ∈ [[Bi]]α

with wj�x when the flow wj generated at Bj must be accepted.

Definition 6 (Accepting and Ignoring Incoming Implicit Flows). Let
Bi be a basic block. Its denotation [[Bi]]α is transformed in order to accept or
ignore incoming implicit flows on the basis of the scope structure:

W(Bi) = {x�y ∈ [[Bi]]α | x �= w} ∪ {wj�y | w�y ∈ [[Bi]]α ∧ i ∈ ς(j)}

where wj stands for implicit flow generated by Bj. �

Example 13. In the graph in Figure 1, Block 0 is in its own scope. Hence its deno-
tation [[B0]]α = {w�l1, w�s1, w�w, l1�s0, l0�l0, l1�l1, l2�l2} (Example 11)
is refined into W(B0) = {l1�s0, l0�l0, l1�l1, l2�l2}∪{w0�l1, w0�s1, w0�w}.
If the same bytecodes were contained in node 7 of the graph of Example 8, then
W(B7)={l1�s0, l0�l0, l1�l1, l2�l2}∪{w1�l1, w1�s1, w1�w,w2�l1, w2�s1,
w2�w} since node 7 is in the scope of nodes 1 and 2. �

We further refine [[Bi]]α now, in order to impose to Bi’s successors its implicit
flow, if any (Proposition 1), and those propagated from Bi’s predecessors. A
condition is always tested at the end of a basic block with at least two successors.
For instance, in the graph in Figure 1, the condition ifle is tested at the end of
Block 0. For simplicity, we assume that such conditions work always as follows:
they check if they hold on the top k values on the stack, remove the top l
values from the stack and decide which path to take. Hence, their information
flows state that there are flows from the top k stack elements to wi, which is
the implicit flow generated by Bi; and that the rest of the stack and the local
variables flow into themselves.

Definition 7 (Denotation of a Condition). Let Bi be a basic block, q the
index of the top element of the stack at its end (before the condition is checked),
k the number of stack elements tested by the condition, and l the number of
elements removed from the stack after checking the condition. The information
flows generated by the condition are

Mi = {sj�wi | q − k < j ≤ q} ∪ IdS(q − l + 1) ∪ IdL(L).
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Note that when Bi does not end with a condition then k = l = 0 and Mi behaves
like an identity mapping. �

Example 14. For the condition ifgt checked at the end of Block 0 in Figure 1
we have q = k = l = 1. Hence M0 = {s0�w0, l0�l0, l1�l1, l2�l2}. �

We modify the denotation of a block Bi, in order to handle both the incoming
and the outgoing implicit flows. Namely, we compose W(Bi) with Mi, and add
the flows wj�wj so that the implicit flows coming from Bi’s predecessors are
propagated to its successors.

Definition 8 (Refined Denotation of Basic Blocks). The refined denota-
tion of a basic block Bi which can handle incoming and outgoing implicit flows
is R(Bi) = (W(Bi) ⊗Mi) ∪ {wi�wi | wi�w ∈ W(Bi)}. �

Example 15. For the graph in Figure 1, we have computed W(B0) in Exam-
ple 13 and M0 in Example 14. Then R(B0) = (W(B0) ⊗ M0) ∪ {w0�w0} =
{l0�l0, l1�l1, l2�l2, l1�w0, w0�l1, w0�w0}. Note that w0�l1 i.e., the implicit
flow of B0 flows into l1 since B0 is in its own scope and updates l1; w0�w0 i.e.,
B0’s incoming implicit flow is passed to its successors; and l1�w0 i.e., the same
flow w0 is also generated by B0. �

By using the refined denotation for each block in the control-flow graph, we
generate an equation system whose least solution approximates the information
flows of the corresponding Java bytecode program.

Definition 9 (Information Flow Equation System). Let P be a Java byte-
code program. Its information flow equation system is the set of equations Ei =
∪{Ej ⊗ R(Bi) | Bj is an immediate predecessor of Bi} for each basic block Bi

in the control-flow graph of P . �

We assume that the computation starts always from an initial basic block Bs

which simply copies the input values to the corresponding output values. This
is a technical issue required when the real initial node occurs in a loop.

Example 16. Consider the Java program, its translation into Java bytecode and
its control-flow graph in Figure 1. Local variables l0, l1 and l2 correspond to
the original variables y, x and z, respectively. For simplicity, we use the original
names instead of l0, l1 and l2. Moreover, we assume that the stack is empty
before Block 0, and hence between all blocks. Block 0 is the only conditional
block, with scope ς(0) = {0, 2}. We have:

R(Bs) = {x�x, y�y, z�z} R(B0) ={x�w0,w0�x,w0�w0,x�x, y�y,z�z}

R(B1) = {x�x, z�z} R(B2) =
{
w0�y, w0�x,w0�z, w0�w0,
y�x, y�y, z�z

}
.

By using the above refined denotations we generate the equations Es = R(Bs),
E1 = E0 ⊗ R(B1), E0 = (Es ⊗R(B0)) ∪ (E2 ⊗ R(B0)) and E2 = E0 ⊗ R(B2)
whose solution for E1 (the exit point): is {x�x, y�x, x�z, z�z, y�z}. The
flow y�z is the composition of y�x and x�z due to the repeated execution of
the loop. Nothing flows to y since it is assigned to a constant at the end. �
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3.5 Step III: Methods

Java bytecode has a complex family of method call bytecodes. When a method
m is invoked on an object x, namely x.m(e1, . . . , ek), the following steps are
performed:

1. The value of the variable x is pushed into the stack;
2. The values of e1, . . . , ek are computed and pushed into the stack;
3. The actual method to be called is determined on the basis of the class of x;
4. A new frame with local variables Lm and empty stack Sm is created;
5. The top k+ 1 elements of the stack are copied into lm0 , lm1 , . . . , lmk ∈ Lm and

removed from the stack; and
6. Control is transferred to the method code, which uses Lm and Sm.

When the method executes an ireturn bytecode, the top element of Sm is
pushed into the stack of the caller, to which control returns.

The execution of a method might induce information flows from its argu-
ments to its return value r. Moreover, if at least two candidate methods exist in
step 3, then an implicit information flow exists from x to r, since by observing
r one might learn which method was called and hence gather information about
x. When we build the control-flow graph of a program, we use class hierarchy
analysis [10] to approximate statically the dynamic classes of x and hence de-
termine a superset of the methods that might be called at run-time. For each
such fully qualified method κ.m, we create a basic block which statically calls κ.m
(call κ.m) and we link it as a successor to the invocation point. If at least two
successors exist, the mechanism of Section 3.4 handles the implicit flow.

We perform a denotational static analysis. Namely, we use a table from
method names κ.m to their current approximation [[κ.m]]α, initialised to {} and
updated iteratively until a fixpoint. The set [[κ.m]]α lives in the context of κ.m,
whose arguments are the lowest local variables, whose return value (if any) is
the top of a stack of one element and whose input stack is empty [17]. First we
explain how we compute the denotations of the call and ireturn bytecodes,
and then how we modify the equation system of Definition 9 to compute the
denotation of each method.

Definition 10 (Denotation for call). Let [[κ.m]]α be the current denotation
of the method κ.m and assume that it uses l′i to denote its arguments (including
this) and that it uses s′0 for its return value. Then [[call κ.m]]α is

({sq−k+i�l′i}i=k
i=0 ⊗ [[κ.m]]α ⊗ {s′0�sp}) ∪ {w�sp, w�w} ∪ IdS(p) ∪ IdL(L).

�

Definition 11 (Denotation for ireturn). The information flows generated
by ireturn are [[ireturn]]α = {sq�s0, w�s0, w�w}. �

We add now to the equation system an equation for each method so that the
denotations of the methods are computed during the fixpoint computation.
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int loop_rec(int l, int v, int p) {

if (v > 0) {

return loop_rec(l - 1,l - 1,p + 1);

} else {

return p;

}

}

int loop_rec(int,int,int);

0: iload 2 8: isub

1: ifle 14 9: iload 3

2: aload 0 10: iconst 1

3: iload 1 11: iadd

4: iconst 1 12: invoke loop_rec

5: isub 13: ireturn

6: iload 1 14: iload 3

7: iconst 1 15: ireturn

Block 0

 iload 2 

Block 1

 goon_ifle
 iload 3
 ireturn 

Block 2

 goon_ifgt
 aload 0
 iload 1
 iconst 1
 isub
 iload 1
 iconst 1
 isub
 iload 3
 iconst 1
 iadd

Block 3

 call loop_rec

Block 4

 ireturn 

Fig. 3. A recursive method.

Definition 12 (Equations for the Methods). For each method κ.m, we add
the following equation to the equation system of Definition 9:

[[κ.m]]α = ∪{Ei | Ei finishes with an ireturn statement}[v/v′]

where [v/v′] renames each variable v into v′, to distinguish the variables of the
method from those of the call site. �

Example 17. Consider the recursive method loop rec and its translation into
Java bytecode and into a control-flow graph in Figure 3. Block 3 of such graph
contains the recursive call to loop rec, solved statically (hence it does not induce
any implicit flow). The refined denotations for each basic block are:

R(B0) = {l0�l0, l1�l1, l2�l2, l3�l3, l2�w0, l2�s0}
R(B1) = {l3�s0, w0�s0, w0�w0}
R(B2) = {l0�s0, l1�s1, l2�s2, l3�s3, w0�s0, w0�s1, w0�s2, w0�s3, w0�w0}
R(B3) = ({s0�l′0, s1�l′1, s2�l′2, s3�l′3} ⊗ [[loop rec]]α ⊗ {s′0�s0})∪

{w0�s0, w0�w0} ∪ {l0�l0, l1�l1, l2�l2, l3�l3}
R(B4) = {s0�s0, w0�s0, w0�w0}

and the corresponding equation system is

E0 = R(B0) E1 = E0 ⊗R(B1) E2 = E0 ⊗R(B2)
E3 = E2 ⊗R(B3) E4 = E3 ⊗R(B4) [[loop rec]]α = (E1 ∪ E4)[v/v′].
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int div(int x,int y) {

return x/y;

}

int div(int, int);

0: iload 1

1: iload 2

2: idiv

3: ireturn

Block 0
 iload_1
 iload_2
 idiv 

Block 1
 ireturn

Block 2
 catch
 athrow 

Fig. 4. A Java method which may raise an exception.

The solution for [[loop rec]]α is {l′1�s′0, l
′
2�s′0, l

′
3�s′0}. It is clear that l′3 and l′2

(i.e., p and v) flow to the return value r. It is not obvious instead that l′1 (i.e.,
l) flows to r. But this is true since the second argument of the recursive call is
l-1, and hence v during the computation depends on the initial value of l. �

3.6 Step IV: Exceptions

Some bytecodes throw exceptions [17], which are potential sources of implicit
information flows. For example an arithmetic exception raised by the division
x/y leaks the information “y is zero”. To handle exceptions, we use a variable
e which represents the exception. Our representation of Java bytecode through
basic blocks is such that each bytecode which might raise an exception is at
the end of a basic block with at least two successors, for normal or exceptional
continuation. The latter might further route the computation to the appropriate
exception handler, if any.

Example 18. Consider in Figure 4 a Java program and its translation into its
bytecode and control-flow graph. The execution of idiv leads to Block 1 if s1
(i.e., y) is not 0, and to Block 2 otherwise. �

The denotation of a typical bytecode that can raise exceptions is as follows.

Definition 13 (Denotation of idiv). The information flows for idiv are

[[idiv]]α = {sq�sp, sq−1�sp, w�sp, w�w, sq�e} ∪ IdS(p) ∪ IdL(L).

�

Both sq and sq−1 flow into sp (the result of the division) but only sq flows to e. In
the exception handlers, we use the bytecodes catch, which pushes an exception
into an empty stack, and athrow, which throws the top of the stack.

Definition 14 (Denotations of catch and athrow). The denotations of the
bytecodes catch and athrow are:

[[catch]]α = {e�s0, w�s0, w�w} ∪ IdL(L)
[[athrow]]α = {w�e, sq�e, w�w} ∪ IdL(L).

�
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The implicit information flow due to exceptions generated by a block Bi must
be imposed on its successors. Hence we update the Definition 7 of the implicit
information flows generated by Bi, by adding e�e and e�wi to Mi.

Example 19. In the graph in Figure 4, the denotations R(Bi) are

W(B0) M0

R(B0) =
︷ ︸︸ ︷
{l0�l0, l1�s0, l2�s0, l2�e}⊗

︷ ︸︸ ︷
{e�w0, e�e}

= {l0�l0, l1�s0, l2�s0, l2�e, l2�w0}
R(B1) = {s0�s0, w0�s0, w0�w0} R(B2) = {e�e, w0�e, w0�w0}

and the corresponding equation system is E0 = R(B0), E1 = E0⊗R(B1), E2 =
E0 ⊗R(B2). The denotation of the method div is (E1 ∪ (E2 ⊗ {e�e}))[v/v′] =
{l′1�s′0, l

′
2�s′0, l

′
2�e′} i.e., we consider all its final blocks. However, exceptional

blocks contribute through e only, so we write E2 ⊗{e�e} to project E2 on e. �

An exception can be propagated back across the method invocations stack.
Hence, in Definition 10, we change {s′0�sp} into {s′0�sp, e

′�e}.

3.7 Step V: Fields

We treat fields as static (i.e., global) class variables. Hence we do not distinguish
between the same field of two objects of a given class. The two bytecodes that
manipulate fields are getfield f, which pops an object from the stack and
pushes the value of its field f instead, and putfield f, which pops a value v
and an object o from the stack and sets the field f of o to the value v.

Definition 15 (Denotations of getfield and putfield). The information
flow denotations of getfield and putfield are:

[[getfield f]]α = {f�sp} ∪ IdS(p) ∪ IdL(L)
[[putfield f]]α = {sq�f} ∪ IdS(p + 1) ∪ IdL(L).

�

Since we treat fields as static variables, we accumulate their information flows
when composing denotations. Hence the denotation of x.f=a; y.f=b; z=x.f
will include {a�z, b�z} i.e., the accumulation of a�f and b�f .

Definition 16 (Refinement of ⊗). The refinement of the composition opera-
tor ⊗ of Definition 5 is:

[[C1]]α ⊗ [[C2]]α = {x�y | ∃z.x�z∈[[C1]]α ∧ z�y∈[[C2]]α}∪{x�f ∈ [[C1]]α}.

�
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Example 20 (Fields). Consider the following Java bytecode:

0: aload 0 3: aload 1 6: aload 0
1: iload 2 4: iload 3 7: getfield f
2: putfield f 5: putfield f 8: istore 4

The denotations for bytecodes 0-2, 3-5 and 6-8 are, respectively:

[[C0−2]]α = {l2�f, l0�l0, l1�l1, l2�l2, l3�l3, l4�l4}
[[C3−5]]α = {l3�f, l0�l0, l1�l1, l2�l2, l3�l3, l4�l4}
[[C6−8]]α = {f�l4, l0�l0, l1�l1, l2�l2, l3�l3}.

Hence [[C0−2]]α⊗[[C3−5]]α⊗[[C6−8]]α = {l2�l4, l3�l4, l0�l0, l1�l1, l2�l2, l3�l3}
∪ {l2�f, l3�f}. The old definition of ⊗ would miss {l2�l4, l2�f, l3�f}. �

We also use a variable inside each method κ.m, which stands for the implicit
flows affecting the call site of κ.m and is used when κ.m updates a field and its
call site is in the scope of an implicit flow.

3.8 Correctness

A finite execution trace τ for a Java bytecode is a finite sequence of states (similar
to those in [24]) of the form 〈	, ς, μ〉 where 	 is an array of local variables, ς a
stack and μ a heap. The initial and last states of τ are τi and τf , respectively.
We access local variables, stack elements and fields in a state through a path.

Definition 17 (Path). A path is p = v.f1. . . . .fn where v is a local variable lk
or a stack element sh and f1, . . . , fn are field names. If n = 0 the path is just a
local variable or a stack element. Paths are ordered as p � p′ if and only if p is
a prefix of p′. If p refers to a value of primitive type, such as an integer, p is a
primitive path. If it refers to a location, p is a location path. The value of p in
a state is

〈	, ς, μ〉(lk) = 	(k), 〈	, ς, μ〉(sh) = ς(h), 〈	, ς, μ〉(p.f) = μ(

l︷ ︸︸ ︷
〈	, ς, μ〉(p))(f)

The last case says that the value of p.f is the value of the field f of the object
μ(l) pointed by p. If l is null, we define 〈	, ς, μ〉(p.f) = ⊥. �

Information flows to primitive paths and to location paths are different.

Definition 18 (Information Flow to Primitive Paths). Let C be a Java
bytecode, p a path and q a primitive path. The input value of p flows to the output
value of q, denoted by p

π
�q, if there exist two execution traces τ and σ for C s.t.

[(τi(p) �= σi(p)) ∧ (∀p′ s.t. p �� p′. τi(p′) = σi(p′))] → (τf (q) �= σf (q)). �

The allocation policy of the Java Virtual Machine is not specified [17]. Hence
information cannot leak through the exact value of a location, but only by com-
paring locations with each other or with null.
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Definition 19 (Information Flow to Location Paths). Let C be a Java
bytecode, p a path and q1, q2 two location paths or a location path and null.
Extend Definition 17 so that σ(null) = null. The input value of p flows to the
comparison of the output values of q1 and q2, denoted by p

λ
�{q1, q2}, if there

exist two execution traces τ and σ for C s.t. [(τi(p) �= σi(p)) ∧ (∀p′ s.t. p ��
p′. τi(p′) = σi(p′))] → [(τf (q1) �= τf (q2)) ∧ (σf (q1) = σf (q2))]. �

Proposition 2 (Correctness). Let C be a Java bytecode. If p π
�q then p̂�q̂ ∈

[[C]]α and if p λ
�{q1, q2} then p̂�q̂1 ∈ [[C]]α and q1 �= null, or p̂�q̂2 ∈ [[C]]α and

q2 �= null, where l̂k = lk, ŝh = sh and ˆp.f = f . �

4 Experiments

program C M B Time
Dhrystone 7 21 604 5

ImageViewer 2 20 1,238 38
Morph 1 14 1,367 28
Julia 21 169 7,815 389
JLex 25 131 12,520 557
Jess 186 808 25,862 2,844

Fig. 5. Some examples of analysis. For
each benchmark we report the number C,
M and B of classes, methods and byte-
codes, respectively, and the time of the
analysis, in seconds.

We have implemented our analysis in-
side the generic static analyser Julia
for full Java bytecode [23], by using
Boolean functions to represent sets of
information flows, as described in [12].
Boolean functions have been imple-
mented as binary decision diagrams
(BDDs) [8] by using the BuDDy li-
brary [16]. Figure 5 shows the applica-
tion of our analysis to some programs
(already compiled in Java bytecode):
Dhrystone is a testbench for numer-
ical computations; ImageViewer is an
image visualisation applet; Morph is an
image morphing program; Julia is our
Julia analyser itself (without the classes representing the Java bytecodes); JLex
is a lexical analysers generator; and Jess is a rule language interpreter. For each
program we report its size and the run-time of the analysis. Our experiments
have been performed on a centrino� 1.4 Ghz machine with 512 megabytes of
RAM, running Linux� 2.4, Sun� Java Development Kit version 1.3.1 and Ju-
lia version 0.36. Figure 5 shows that we are already able to analyse non-trivial
applications.

5 Related Work

In the literature, there are several techniques for checking secure information
flow and non-interference in software, ranging from standard data/control-flow
analysis techniques [6, 9, 15, 21, 18, 12, 2] to type inference [22, 25]. An overview
is contained in [20]. Data/Control-flow approaches usually infer dependencies
between the input and the output values of a program variables from which the
information flow is observable. Type-based approaches associate inductively, at
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compile-time, a type to each program statement and then prove that well-typed
programs do not leak secrets [22, 25].

Non-interference for Java has been studied in [3, 19]. Zwandevic and My-
ers [26] study it for a λ-calculus with jumps. Bonelli, Compagnoni and Mendel [7]
and Kobayashi and Shirane [14] studied it for a simple low-level language. Barthe,
Rezk and Basu [4] studied information flow for a small subset of the Java byte-
code. Recently, Barthe and Rezk [5] defined an information flow type system for
a non-trivial portion of the Java bytecode. No implementation was reported.

6 Conclusions

We think ours is the first implementation of an information flow analysis for a
complex low-level language such as Java bytecode. Our examples in Section 2
and our experimental evaluation in Section 4 show that it is precise and efficient
enough for practical use.
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Abstract. Implementations of cryptographic protocols, such as OpenSSL for ex-
ample, contain bugs affecting security, which cannot be detected by just analyz-
ing abstract protocols (e.g., SSL or TLS). We describe how cryptographic proto-
col verification techniques based on solving clause sets can be applied to detect
vulnerabilities of C programs in the Dolev-Yao model, statically. This involves
integrating fairly simple pointer analysis techniques with an analysis of which
messages an external intruder may collect and forge. This also involves relating
concrete run-time data with abstract, logical terms representing messages. To this
end, we make use of so-called trust assertions. The output of the analysis is a
set of clauses in the decidable classH1, which can then be solved independently.
This can be used to establish secrecy properties, and to detect some other bugs.

1 Introduction

Cryptographic protocol verification has come of age: there are now many ways of ver-
ifying cryptographic protocols in the literature (see [12] for a sampler). They all start
from a fairly abstract specification of the protocol. However, in real life, what you use
when you type ssh or when you connect to a securized site on your Web browser is
not a 5-line abstract protocol but a complete program. While this program is intended
to implement some protocol, there is no guarantee it actually implements it in any way.
The purpose of this paper is to make a few first steps in the direction of analyzing
cryptographic protocols directly from source code.

1. A → B: {NA, A}pub(B)
2. B → A:{NA, NB}pub(A)
3. A → B:{NB}pub(B)

Fig. 1. The NS protocol.

To make things concrete, here is a specification of
the public-key Needham-Schroeder protocol in standard
notation (right). The goal is for A and B to exchange their
secret texts NA and NB while authenticating themselves
mutually [19]. It is well-known that there is an attack
against this protocol (see [17]). This attack also makes
NB available to the intruder, although NB was meant to remain secret.

� Partially supported by the ACI jeunes chercheurs “Sécurité informatique, protocoles cryp-
tographiques et détection d’intrusions” and the ACI cryptologie “Psi-Robuste”. Work done
while the second author was at LSV.

R. Cousot (Ed.): VMCAI 2005, LNCS 3385, pp. 363–379, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Figure 1 reads as follows: any agent implementing A’s role will first create a fresh
nonce NA, typically by drawing a number at random, then build the pair (NA, A) where
A is taken to be A’s identity (some string identifying A uniquely by convention), then
encrypt the result using B’s public key pub(B). The encrypted text {NA, A}pub(B) is then
sent out. If traffic is not diverted, this should reach B, who will decrypt this using his
private key prv(B), and send back {NA, NB}pub(A) to A. A waits for such a message
at step 2., decrypts it using her private key prv(A), checks that the first component is
indeed NA, then sends back {NB}pub(B) at step 3. for confirmation.

Compare this specification (Figure 1) with excerpts from an actual C implementa-
tion of A’s role in it (Figure 2). First, the C code is longer than the specification (although
Figure 2 only implements message 1 of Figure 1). Difficulties in analyzing such a piece
of C code mainly come from other, less visible, problems:

Fig. 2. A piece of code of a sample C implementation of the NS protocol.

– First, C is a real programming language, with memory allocation, aliasing, pointer
arithmetic; all this is absent from protocol specifications, and must be taken into
account. E.g., in Figure 2, line 80, the pointer cipher1 is set to the address allo-
cated by BN_new(); at line 81, the encryption function encrypt_mesg expects
to encrypt its first argument with the key in second and third arguments, putting the
result at the address pointed to by its fourth argument cipher1.
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– C programs are meant to be linked to external libraries, whose code is usually
unavailable (e.g., memcpy, strcpy, strncmp, read, write in Figure 2) and
cannot be analyzed. More subtly, low-level encryption functions should not be an-
alyzed, simply because we do not know any way to recognize that some given
bit-mangling code implements, say, RSA or DES. We shall take the approach that
such functions should be trusted to do what they are meant to do.

– Even without looking at the intricacies of statically analyzing C code, we usually
only have the source code of one role at our disposal. For example, the code of
Figure 2 implements A’s role in the protocol of Figure 1, not B’s, not anyone else’s
either. So we shall analyze C code modulo an abstract description of the world
around it. This so-called external trust model will state what malicious intruders
can do, and what honest agents are trusted to do (e.g, if B is assumed to be honest,
he should only be able to execute the corresponding steps in Figure 1).
Alternatively, we could also analyze the source code of two or more roles. But we
would still need an external trust model, representing malicious intruders, and hon-
est agents of other protocols which may share secrets with the analyzed programs.

What we do in this paper. We analyze reachability properties of C code implementing
roles of cryptographic protocols. Amongst all reachability properties, we shall con-
centrate on (non-)secrecy, i.e., the ability for a malicious intruder to get hold of some
designated, sensitive piece of data. All problems considered here are undecidable: we
therefore concentrate on upper approximations of behaviors of programs, i.e., on repre-
sentations that contain at least all behaviors that the given program may exhibit – in a
given external trust model, and a given execution model (see below). In particular, we
aim at giving security guarantees. When none can be given by our techniques, just as
in other static analyses, it may still be that the analyzed program is in fact safe.

What we do not do. First, we do not infer cryptographic protocols from C code, i.e.,
we do not infer Figure 1 from Figure 2. This might have seemed the most reasonable
route: when Figure 1 has been reconstructed, use your favorite cryptographic proto-
col verifier. We do not believe this is practical. First, recall that we usually only have
the source code of some of the roles. Even is we had code for all roles, real imple-
mentations use many constructs that have no equivalent in input languages for cryp-
tographic protocol verification tools. To take one realistic example, implementations
of SSL [10] such as ssh use conditionals, bindings from conventional names such
as SSL_RSA_WITH_RC4_128_MD5 to algorithms (i.e., records containing function
pointers, initialized to specific encryption, decryption, and secure hash functions),
which are far from what current cryptographic protocol verification tools offer.

Second, we do not guarantee against any arbitrary attack on C code. Rather, our
techniques are able to guarantee that there is no attack on a given piece of C code in
a given trust model, stating who we trust, and in a given execution model, i.e., assum-
ing a given, somewhat idealized semantics of C. In this semantics, writing beyond the
bounds of an array never occurs. If we did not rely on such idealized semantics, essen-
tially every static analysis would report possible security violations, most of them fake.
It follows that buffer overflow attacks will not be considered in this paper. While buffer
overflows are probably the most efficient technique of attack against real implementa-
tions (even not of cryptographic protocols; for hackers, see [11]), they can be and have
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already been analyzed [25, 24]. On programs immune to buffer overflows, we believe
our idealized semantics to be a fair account of the semantics of C. Programs should be
checked against buffer overflows before our techniques are applied; we consider buffer
overflows as an important but independent concern.

Outline. After reviewing related work in Section 2, we introduce the subset of C we
consider in Section 3, augmented with trust assertions – the cornerstone of our way of
describing relations between in-memory values and Dolev-Yao-style messages. Its con-
crete semantics is described in Section 4, including trust assertions and the external trust
model. We describe the associated abstract semantics in Section 5, which approximates
C programs plus trust models as sets of Horn clauses, and describe our implementation
in Section 6. We conclude in Section 7.

2 Related Work

Analyzing cryptographic protocols directly from source code seems to be fairly new.
As far as we know, the only previous attempts in this direction are due to El Kadhi and
Boury [16, 6], who propose a framework and algorithms to analyze leakage of confi-
dential data in Java applets. They consider a model of cryptographic security based on
the well-known Dolev-Yao model [8], just as we do. While we use Horn clauses as a
uniform mechanism to abstract program semantics, intruder capabilities, and security
properties alike, El Kadhi and Boury use a dedicated constraint format, and use a special
constraint resolution calculus [16].

Analyzing cryptographic programs is not just a matter of analyzing cryptographic
protocols. El Kadhi and Boury analyze Java applets (from bytecode, not source), and
concentrate on a well-behaved subset of Java, where method calls are assumed to be
inlined. Aliasing in Java is simpler to handle in Java than in C: the only aliases that may
occur in Java arise from objects that can be accessed through different access paths (e.g.,
different variables); in C, more complex aliases may occur, such as through pointers to
variables (see &mesg1 for example in Figure 2). The StuPa tool [6] uses different static
analysis frameworks to model the Dolev-Yao intruder and to analyze information flow
through the analyzed applet; we use a uniform approach based on Horn clauses.

Finally, the security properties examined in [6] are models of leakage of sensitive
data: sensitive data are those data stored in specially marked class fields, and are tracked
through the program and the possible actions of the intruder; data can be leaked to the
Dolev-Yao intruder, or more generally to untrusted classes in the programming envi-
ronment. The aim of [6] is to detect whether some sensitive piece of data can be leaked
to some untrusted class. Because we use Horn clauses, any property which can be ex-
pressed as a conjunction of atoms can be checked in our approach (as in [7]), in partic-
ular secrecy or leakage to some untrusted part of the environment.

Cryptographic protocol analysis. If we are just interested in cryptographic protocols,
not programs, there are now many methods available: see [12] for an overview. One of
the most successful models today is the Dolev-Yao model [8], where all communication
channels are assumed to be rerouted to a unique intruder, who can encrypt and decrypt
any message at will – provided it knows the inverse key in the case of decryption. Every
message sent is just given to the intruder, and every message received is obtained from
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the intruder. This is the basis of many papers. One of the most relevant to our work is
Blanchet’s model [3], where a single predicate knows (called attacker in op.cit.) is
used to model what messages may be known to the intruder at any time. The abilities
of the intruder are modeled by the following Horn clauses (in our notation):

knows(nil) Intruder can (1)

knows(cons(X, Y ))⇐ knows(X), knows(Y ) build lists. (2)

knows(X)⇐ knows(cons(X, Y )) Intruder can read (3)

knows(Y )⇐ knows(cons(X, Y )) all elements of a list. (4)

knows(crypt(X, Y ))⇐ knows(X), knows(Y ) Intruder can encrypt. (5)

knows(X)⇐ knows(crypt(X, pub(Y ))),knows(prv(Y )) Intruder can decrypt (6)

knows(X)⇐ knows(crypt(X, prv(Y ))),knows(pub(Y )) provided he knows (7)

knows(X)⇐ knows(crypt(X, sk(Y, Z))), knows(sk(Y, Z)) the inverse key. (8)

knows(pub(X)) Intruder knows public keys.(9)

We shall use a Prolog-like notation throughout: identifiers starting with capital letters,
such as X or Y , are universally quantified variables; nil is a constant, cons and crypt
are function symbols. Clause (5), for example, states that whenever the intruder knows
(can deduce) X and Y , then he can deduce the result crypt(X,Y ) of the encryption
of X with key Y . Clauses (6) through (8) state that he can deduce the plaintext X from
the ciphertext crypt(X, k) whenever he knows the inverse of key k; prv(A) is meant
to denote A’s private key, pub(A) is A’s public key, and sk(A,B) is some symmetric
key to be used between agents A and B.

Most roles in cryptographic protocols are sequences of rules M ⇒ M ′ (not to
be confused either with implication ⇐ or the arrows → shown in Figure 1), meaning
that the role will wait for some (optional) message matching M , then (optionally) send
M ′. For example, role A in Figure 1 implements the rules ⇒ {NA, A}pub(B) (step 1.)
and {NA, NB}pub(A) ⇒ {NB}pub(B). This is easily compiled into Horn clauses. A rule
M ⇒ M ′ is simply compiled as the clause knows(M ′) ⇐ knows(M), modulo some
details. For example, and using Blanchet’s trick of coding nonces as function symbols
applied to parameters in context (e.g., NA will be coded as na(B), in any session where
A talks to some agent B), the role of A in Figure 1 may be coded as:

knows(crypt(cons(na(B), cons(a, nil)), pub(B)) (10)

knows(crypt(Nb, pub(B))) ⇐ knows(crypt(cons(na(B), cons(Nb, nil)),(11)

pub(a)))

Finally, secrecy properties are encoded through negative clauses. For instance, given
a specific agent b, that NA remains secret when A is talking to b will be coded as
⊥ ⇐ knows(na(b)). More complicated queries are possible, e.g.,⊥ ⇐ knows(na(B)),
honest(B) asks whether NA remains secret whatever agent A is really talking to, pro-
vided this agent is honest, for some definition of honesty (see [7] for example). We
won’t explore all the variants, and shall be content to know that we can use at least one.
Note that the encodings above are upper approximations of the actual behavior of the
protocol; this is needed in any case, as cryptographic protocol verification is undecid-
able [9, 1].
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Program analysis. There is an even wider literature on static program analysis. Our
main problem will be to infer what variables contain what kind of data. As these vari-
ables are mostly pointers to structures allocated on the heap, we have to do some kind
of shape analysis. The prototypical such analysis is due to Sagiv et al. [22]. This anal-
ysis gives very precise information on the shape of objects stored in variables. It is also
rather costly. A crucial observation in [22] is that store shapes are better understood as
formulae. We shall adapt this idea to a much simplified memory model.

At the other end of the spectrum, Andersen’s points-to analysis [2] gives a very
rough approximation of what variables may point to what others, but can be com-
puted extremely efficiently [14]. (See [15] for a survey of pointer analyses.) We shall
design an analysis that is somewhere in between shape analysis and points-to anal-
ysis as far as precision is concerned: knowing whether variable x may point to y is
not enough, e.g. we need to know that once lines 77–82 of Figure 2 have been ex-
ecuted, cipher1 points to some allocated record containing A’s identity as ip_id
and that the field mesg1.msg.msg1.nonce contains A’s nonce NA. (This is al-
ready non-trivial; we also need to know that this record actually denotes the term
crypt(cons(na(B), cons(a, nil)), pub(B)) when seen from the cryptographic pro-
tocol viewpoint.) While this looks like what shape analysis does, our analysis will be
flow-insensitive, just like standard points-to analyses.

One of our basic observations is that such pointer analyses can be described as
generating Horn clauses describing points-to relations. Once this is done (Section 5), it
will be easier to link in the cryptographic protocol aspects (e.g., to state that cipher_1
denotes crypt(cons(na(B), cons(a, nil)), pub(B), as stated above).

3 C Programs, and Trust Assertions

We assume that C programs are represented as a set of control flow graphs Gf , one
for each function f . We assume that the source code of each function f is known – at
least all those that we don’t want to abstract away, such as communication and cryp-
tographic primitives. We also consider a restricted subset of C, where casts are absent,
and expressions are assumed to be well-typed. We do definitely consider pointers, and
in particular pointer arithmetic, one of the major hassles of C semantics.

Formally, we define a C program as a map from function names f to triples (inf ,
locf , Gf ), where inf is the list of f ’s formal parameters, locf is the list of f ’s local
variables, andGf is f ’s control flow graph. We assume that the node sets of each control
flow graph Gf are pairwise disjoint.

A control flow graph (CFG) is a directed graph G with a distinguished entry node
I(G) and a distinguished exit node O(G). Edges are labeled with instructions. The
set of instructions in Figure 3 will be enough for our purposes, where x, y, z, . . . ,
range over names of local variables, c ranges over integer and floating-point constants,
f over function names, a over struct field names, and op ranges over primitive opera-
tions (arithmetic operations, bitwise logical operations, comparisons): The instructions
x = &y[z] and x = &y → a implement pointer arithmetic. The first adds the integer z
to the pointer y, yielding x. The second adds the offset of field a to the pointer y. More
complex instructions can be broken down to sequences of instructions as above. For ex-
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i ∈ Instr ::= x = y variable copy
| x = c storing constant c into x
| x = f storing the address of function f into x
| x = &y storing the address of variable y into x
| x = ∗y reading from a pointer
| ∗x = y storing into a pointer
| x = &y[z] taking the address of entry z of array y
| x = &y → a taking the address of field a in struct y
| x = g(x1, . . . , xn) calling function g
| x = (∗y)(x1, . . . , xn) indirect call
| x = op(x1, . . . , xn) primitive call
| ?x == 0 zero test
| ?x != 0 non zero test
| trust A⇐ A1, . . . , An trust assertion

A ∈ Atom ::= x rec t x is trusted to denote t
| P (t) term t is trusted to obey property P

Fig. 3. Syntax of core C.

ample, msg->id_1[0] = id[0] can be translated to the sequence of instructions
z = 0, x1 = &id[z], x2 = ∗x1, x3 = &msg → id_1, x4 = &x3[z], ∗x4 = x2. This
of course presumes a given scheduling of elementary instructions; to verify output from
a given C compiler, the same scheduling should be used. The test instructions ?x == 0
and ?x != 0 do nothing, but can only be executed provided x is zero, resp. non-zero;
they are used to represent if and while branches.

The only non-standard instruction above is the trust assertion. This is one of the
main ingredients we use to link concrete C data with abstract Dolev-Yao style messages
that they are meant to denote. A trust assertion trust x rec t ⇐ x1 rec t1, . . . ,
xn rec tn relates the value of C variables (x, x1, . . . , xn) to terms (messages; t, t1,
. . . , tn) that they are meant to denote. Intuitively, this states that the value of x denotes
the term t, as soon as x1 denotes t1, and . . . and xn denotes tn. While atomic formulae
x rec t state that the value of x denotes t, other atomic formulae P (t) (e.g., knows(t),
see Section 2) will be defined by the external trust model (see Section 4.2).

We have chosen to let the programmer state trust relations in the C source code
using special comments; they are enclosed between /* % and % */ in Figure 2. For
example, the comment at line 20 translates to the trust statement trust cipher rec
crypt(M,K) ⇐ msg rec M, key_pub rec K , and states that, if msg points to
a memory zone where message M is stored, and if key_pub points to some zone
containing K , then cipher will be filled with the ciphertext crypt(M,K); in other
words, encrypt_mesg computes the encryption of *msg using key *key_pub and
stores it into *cipher.

We do require trust assertions. Otherwise, there is no way to recognize statically that
the call to BN_mod_exp on line 18 actually computes modular exponentiation on arbi-
trary sized integers (“bignums”, of type BIGNUM), and much less that this encrypts its
second argument plain using the key given as third and fourth arguments key_pub,
key_mod, storing the result into the first argument cipher. In fact, there is no way
to even define a sensible map from bignums to terms that would give their purported
meaning in the Dolev-Yao model.
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We need such trust assertions for two distinct purposes. The first is to describe the
effect of functions in the API in terms of the Dolev-Yao model; in particular, to ab-
stract away the effect of low-level cryptographic functions that are used in the analyzed
program (e.g., the OpenSSL crypto lib), or of the standard C library (see the comment
on line 47, which abstracts away the behavior of the write function, stating that any
message sent to write through the buffer buf will be known to the Dolev-Yao in-
truder). The second purpose of trust assertions is to state initial security assumptions:
see the comment on line 67, which states that the array ip_id is trusted to contain A’s
identity, initially. (The notation CTX(Agent(A)) refers to A’s identity as given in a
global context CTX; we shall not describe this in detail here.)

4 Concrete Semantics

We first describe the memory layout. Let Addr be a denumerable set of so-called ad-
dresses. A store μ ∈ Store is any map from adresses to zones. Intuitively, addresses are
those memory addresses returned by memory allocation functions, e.g., malloc. (As a
technical aside, we assume that declaring a local C variable x in a C function has the ef-
fect of allocating some memory, too, for holding x’s value, at an address that is usually
written &x in C. We do this because, contrarily to, say, Java, you can take the address of
variables in C, and modify them through pointer operations.) Zones describe the layout
of data stored at given addresses, and are described by the following grammar:

z ::= code f code for function f
| int n integer n
| float x floating-point value x
| ptr 	 pointer, pointing to location 	
| struct {lab1 = z1, . . . , labn = zn} structure, with labels labi, 1 ≤ i ≤ n
| array(z1, . . . , zn) array of n sub-zones

Let Zone be the set of all zones. Locations 	, as used in pointers, are strings
a.sel1. . . . .selk, where a ∈ Addr, and selj , 1 ≤ j ≤ k, are selectors, namely ei-
ther labels lab ∈ Lab or integers n ∈ Z. For example, in Figure 4, if a is the address of
x, a.data.t.2 is the location of the cell shown in red.

Let Loc be the set of all locations. Let Store = Addr → Zone be the set of all
stores. Any store μ extends in a unique way to a map μ̂ from locations to zones: if
a ∈ Addr, then μ̂(a) = μ(a); μ̂(	.labi) = zi provided μ̂(	) is defined and of the form
struct {lab1 = z1, . . . , labn = zn}, 1 ≤ i ≤ n; and μ̂(	.j) = zj provided μ̂(	) is
defined and of the form array(z1, . . . , zn), 1 ≤ j ≤ n. E.g., x.data has a location,
namely a.data, mapped by μ̂ to the zone shown in Figure 4, top right.

Given a C program mapping each function f to (inf , outf , Gf ) (Section 3), we
define its semantics as a transition system. Transitions (inside Gf ) are defined by judg-

ments q, ρ, μ
i−→q′, ρ′, μ′, one for each edge q

i−→q′ in Gf , where ρ and ρ′ are en-
vironments mapping variables to their addresses. This is shown in Figure 5. The no-
tation ρ[x �→ z] denotes the map sending x to z, and every other y ∈ dom ρ to
ρ(y). Similarly for μ[a �→ z], where a ∈ Addr and z ∈ Zone. To model writ-
ing into arbitrary locations 	, not just addresses, we extend this notation by letting
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1 typedef enum { RSA, DES } Myenum;
2
3 typedef struct Mystruct1 {
4 int m;
5 char t[4];
6 void *next;
7 } Mystruct1;
8
9 typedef struct Mystruct2 {

10 Myenum cryptfun;
11 Mystruct1 data;
12 } Mystruct2;

m t next

Start of location

cryptfun data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x.data.t[2]

Fig. 4. Sample memory zone.

q, ρ, μ
x=y
−−−→ q′, ρ, μ[ρ(x) �→ μ(ρ(y))]

q, ρ, μ
x=c
−−−→ q′, ρ, μ[ρ(x) �→ c]

q, ρ, μ
x=f
−−−→ q′, ρ, μ[ρ(x) �→ a] if μ(a) = code f for some a ∈ dom μ

q, ρ, μ
x=&y
−−−→ q′, ρ, μ[ρ(x) �→ ptr(ρ(y))]

q, ρ, μ
x=∗y

−−−→ q′, ρ, μ[ρ(x) �→ μ̂(�)] if μ(ρ(y)) = ptr � for some � ∈ Loc

q, ρ, μ
∗x=y

−−−→ q′, ρ, μ[� �→ μ(ρ(y))] if μ(ρ(x)) = ptr � for some � ∈ Loc

q, ρ, μ
x=&y[z]

−−−−→ q′, ρ, μ[ρ(x) �→ ptr (�.(j + 1))] if ρ(y) = ptr �,
μ(�) = array (z1, . . . , zn), and μ(ρ(z)) = int j, 0 ≤ j ≤ n

q, ρ, μ
x=&y→a

−−−−−→ q′, ρ, μ[ρ(x) �→ ptr (�.a)] if ρ(y) = ptr �,
and μ(�) = struct {. . . , a = z, . . .}

q, ρ, μ
x=g(x1,...,xn)

−−−−−−−−−−→ q′, ρ′, μ′iff: see main text

q, ρ, μ
x=(∗y)(x1,...,xn)

−−−−−−−−−−→ q′, ρ′, μ′iff: see main text

q, ρ, μ
x=op(x1,...,xn)

−−−−−−−−−−→ q′, ρ, μ[ρ(x) �→ ôp(μ(ρ(x1)), . . . , μ(ρ(xn)))]

q, ρ, μ
?x==0
−−−−→ q′, ρ, μ if μ(ρ(x)) = int 0

q, ρ, μ
?x != 0
−−−−→ q′, ρ, μ if μ(ρ(x)) �= int 0

q, ρ, μ
trust A⇐A1,...,An

−−−−−−−−−−−−→ q′, ρ, μ

Fig. 5. Concrete semantics.

μ[	.labi �→ z] = μ[	 �→ struct {lab1 = z1, . . . , labi = z, . . . , labn = zn}]
whenever μ̂(	) = struct {lab1 = z1, . . . , labn = zn}, and μ[	.i �→ z] = μ[	 �→
array(z1, . . . , z, . . . , zn)] with z at position i, whenever μ̂(	) = array(z1, . . . , zn)
and 1 ≤ i ≤ n. (This is then partially defined.) This extension is used in the semantics
of ∗x = y.

The rules deserve some explanation. E.g., the semantics of x = y consists in fetch-
ing the address ρ(y) at which the contents of variable y is stored in memory (the address
usually referred to as &y in C code), and copying it into the address ρ(x) at which x is
stored. In effect, x = y in C really means ∗(&x) = ∗(&y). To lighten up the semantics,
we agree that mentioning any expression entails that it is defined. In other words, the
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mere fact that we are writing μ[ρ(x) �→ μ(ρ(y))] in the semantics of ∗x = y really
means that we must first check that y ∈ dom ρ and ρ(y) ∈ dom μ and x ∈ dom ρ and
ρ(x) ∈ dom μ.

The semantics of x = f presumes that there is an address at which the code for
the function f is stored; whichever such a is then stored into x. This is taken care of
by starting the program in a store that contains such a mapping from addresses to code
fragments (and similarly contains storage for string constants).

Most other entries are self-explanatory. In the semantics of primitive calls x =
op(x1, . . . , xn), we assume that the semantic ôp of op is given separately.

Figure 5 leaves out the semantics for function calls x = g(x1, . . . , xn). We let

q, ρ, μ
x=g(x1,...,xn)

−−−−−−−−−−→q′, ρ′, μ′ if and only if I(Gg), ρI , μI −→∗ O(Gg), ρO, μO , where
μI is obtained by allocating one new structure for formal parameters, one for local vari-
ables, and one for the return value (i.e., μI = μ[ain �→ struct {&x1 = z1, . . . ,&xn =
zn}, aloc �→ struct {&y1 = z′1, . . . ,&ym = z′m}, aret �→ struct {&return =
z}], where ain, aloc, and aret are distinct fresh addresses, x1, . . . , xn are the formal
parameters, y1, . . . , ym are the local variables, and z1, . . . , zn, z

′
1, . . . , z

′
m, z are appro-

priate zones, considering the types of variables), where ρI maps each xi to ain.&xi,
each yj to aloc.&yj , and the fresh variable return (used to actually return a value
from g) to aret.&return, where μ′ is μO restricted to dom μO \ {ain, aloc, aret}, and
where ρ′ = ρ[x �→ μ̂O(aret.&return)]. Note that we encode return v as an assign-
ment return = v. We deal with indirect calls x = (∗y)(x1, . . . , xn) similarly: the only
change is that we check that μ(ρ(y)) = code g for some function g.

At the level of zones and pointers which we consider in this section, trust assertions
just do nothing. We shall extend this semantics in the next section to properly handle
trust assertions.

4.1 Semantics of Trust Assertions

The purpose of trust assertions is to define the denotation of concrete C data as Dolev-
Yao style messages. A given piece of C data z may have one such denotation, or zero
(e.g., if z just denotes, say, some index into a table, with no significance, security-
wise), or several (e.g., if only for cardinality reasons, there are infinitely many terms
but only finitely many 128-bit integers; concretely, even cryptographic hash functions
have collisions.) Therefore we model the semantics of trust assertions as generating a
trust relation R – a binary relation between C values and ground first-order terms –
together with a trust base B – a set of ground first-order atoms. Let Term0 be the set
of all ground terms, Atom0 be the set of ground atoms, and V al the set of C values, so
a trust relation R is a subset of V al× Term0, and a trust base B is a subset of Atom0.

A difficulty here is in defining what a C value is. Typically, an integer n should be
a C value, and two integers should be equal as values if and only if they are equal as
integers. In general, it is natural to think that zones should somehow represent C values.
This implies that a zone of the form ptr(	), i.e., a pointer, should also represent a C
value. This is needed: in Figure 2, we really want to understand the pointer cipher1
(l.55) as denoting a message. But only the contents of the zone pointed to by cipher1
should be relevant, not the location 	.
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The irrelevance of 	 is best handled through the notion of bisimilarity, which we
define by imitation from [18]. A bisimulation is a binary relation ∼ on Loc × Store,
together with a binary relation (again written ∼) on Zone× Store, such that:

– if (	, μ) ∼ (	′, μ′) then either 	 �∈ dom μ̂ and 	′ �∈ dom μ̂′, or 	 ∈ dom μ̂,
	′ ∈ dom μ̂′ and (μ̂(	), μ) ∼ (μ̂′(	′), μ′);

– if (z, μ) ∼ (z′, μ′) then either z = z′ is of the form code f or int n or float x;
or z is of the form ptr(	), z′ is of the form ptr(	′), and (	, μ) ∼ (	′, μ′); or
z = struct {lab1 = z1, . . . , labn = zn}, z′ = struct {lab1 = z′1, . . . , labn =
z′n}, and (zi, μ) ∼ (z′i, μ

′) for every i, 1 ≤ i ≤ n; or z = array(z1, . . . , zn),
z′ = array(z′1, . . . , z

′
n), and (zi, μ) ∼ (z′i, μ

′) for every i, 1 ≤ i ≤ n.

Let ∼= (bisimilarity) be the largest bisimulation, with respect to inclusion of binary re-
lations. A pair (	, μ) of a location and a store μ describes a rooted graph in memory,
whose root is 	, and whose edges are given by following pointers. Then, each rooted
graph can be unfolded to yield an infinite tree. It is standard that bisimilarity relates
(	, μ) to (	′, μ′) if and only if the unfolded infinite trees corresponding to each graph
are isomorphic. It is natural to equate C values with such unfolded infinite trees (up
to isomorphism), hence to pairs (	, μ) up to bisimilarity: we therefore let V al be the
quotient (Loc× Store)/ ∼=. We let [	, μ] be the equivalence class of (	, μ) under ∼=.

We need to modify our semantics of C so that it takes into account trust assertions.
For each instruction i in function f , except trust assertions, define the new transition

relation q, ρ, μ,R,B i−→q′, ρ′, μ′,R′,B′ (which now deals additionally with R,R′ ⊆
V al × Term0 and B,B′ ⊆ Atom0) by: q, ρ, μ

i−→q′, ρ′, μ′ as defined in Figure 5, and
R′ = R and B′ = B. That is, ordinary C instructions do not modify the trust relation
or the trust base, and otherwise behave in the standard way.

When i is the trust assertion trust A ⇐ A1, . . . , An, do the following. First, fix a
set of definite clauses M. (For now, just imagine M is empty. M is the external trust
model, which we shall explain in Section 4.2.) The trust assertion simply adds to R
and B all the new consequences deducible from the current R and B, using the clauses
A ⇐ A1, . . . , An and the clauses in M.

Formally, given any atom A′, say that ρ, μ,R,B |= A′ if and only if A′ is of the
form x rec t and ([ρ(x), μ], t) ∈ R, or A′ is of the form P (t) and P (t) ∈ B. For
each definite clause C of the form A ⇐ A1, . . . , An, let T ρ,μ

C (R,B) be the smallest
pair (R′,B′) in the componentwise subset ordering such that, for every substitution σ
such that Aσ, A1σ, . . . , Anσ are ground and such that ρ, μ,R,B |= Aiσ for each i,
1 ≤ i ≤ n, then ρ, μ,R′,B′ |= Aσ. For every set M of definite clauses, let T ρ,μ

M (R,B)
be the sup over all C ∈ M of T ρ,μ

C (R,B). (This is the familiar TP operator of Prolog
semantics.) Let lfp T ρ,μ

M (R,B) be the least fixpoint of T ρ,μ
M above (R,B).

Then, when i is the trust assertion trust A ⇐ A1, . . . , An, we define q, ρ, μ,R,B
i−→q′, ρ′, μ′,R′,B′ if and only if q

i−→q′ is an edge of Gf , ρ = ρ′, μ = μ′ (so trust
statements behave as no-operations in the standard C semantics), and

(R′,B′) = lfp T ρ,μ
M (T ρ,μ

A⇐A1,...,An
(R,B)) (12)
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To simplify things a bit, imagine that M is empty. So (R′,B′) = T ρ,μ
A⇐A1,...,An

(R,B).
In particular, if i is trust x rec t ⇐ x1 rec t1, . . . , xn rec tn, then B′ = B and

R′ = R∪ {([ρ(x), μ], tσ)|([ρ(x1), μ], t1σ) ∈ R and . . . and ([ρ(xn), μ], tnσ)}

where σ ranges over all substitutions such that tσ, t1σ, . . . , tnσ are ground terms. In
other words, remembering that the C value of a variable y is [ρ(y), μ], this states that
we trust that the C value of x should denote any message that is a ground instance tσ of
t, as soon as the C value of x1 denotes t1σ and . . . and the C value of xn denotes tnσ.

Trust assertions are given as special C comments. E.g., the trust assertion on line 20
of Figure 2 states that encrypt_mesg really encrypts: we trust that, at the end of
encrypt_mesg, cipher points to the encryption crypt(M,K) of the plaintext
pointed to by msgwith key pointed to by key_pub. Line 47 states that we trust write
to make anything the contents of the buffer buf available to the Dolev-Yao intruder.

4.2 The External Trust Model

As we have already said in the introduction, programs such as SSL or the one of Figure 2
cannot be analyzed in isolation. We have to describe how the outside world, i.e., the
other programs with which the analyzed programs communicates, behaves. This is in
particular needed because the canonical trust statement for write is to declare that
knows(t) holds whenever its input argument is trusted to denote message t; and the
canonical trust statement for read is to declare that the contents of the buffer given as
input will denote any message t such that knows(t). (This is the standard assumption in
the Dolev-Yao model, that all communication is to and from an all powerful intruder.)

Concretely, in particular, we have to describe the semantics of the knows predicate,
meant to represent all messages that a Dolev-Yao intruder may build. We do this by
providing clauses such as (1)–(9), but also such as (10)–(11) to describe an abstract
view of the roles of honest principals participating in the same or other protocols, and
which are believed to share secrets with the analyzed program. Such clauses can be built
from spi-calculus terms for example, following either Blanchet’s [3] or Nielson et al.’s
[20] approaches. (We tend to prefer the latter for pragmatic reasons: the output clauses
are always in the decidable class H1; more detail later.)

In any case, we parameterize our analysis by an external trust model, which is just a
set M of definite Horn clauses given in advance. The concrete semantics of programs is
defined relatively to M, see (12). The effect of applying lfp T ρ,μ

M is to close all facts in
R and B under any finite number of applications of intruder and honest principal rules
from the outside world.

5 Abstract Semantics

Let AbsStore and AbsEnv be the set of abstract stores and abstract environments. It
does not matter much really how we represent these. Any static analysis of C code that is
able of handling pointer aliases would probably do the job. We choose one that matches
the simplicity of points-to analysis as much as we can. We associate an abstract zone
with each variable (local or global), and with each memory allocation site, in the form
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of a fresh constant, taken from a finite set. An atomic formula p(t, t′), where t is a term,
states that t is a location that may point to zone t′. The abstract semantics is then given
as Horn clauses stating what new possible values may be found at what abstract zones.

Following the spirit of points-to analyses, we only include gen equations, and no
kill; this considerably simplifies the abstract semantics. We define the abstract seman-
tics �i�#ρ# of instruction i in the abstract environment ρ#, mapping variable names to
abstract zones, a.k.a., constants, as sets of Horn clauses. The semantics of a function,
resp. a whole program, is just the union of the semantics of all instructions in the given
control flow graphs.

�x = y�#ρ# = {p(cx, X)⇐ p(cy, X)} where cx = ρ#(x), cy = ρ#(y)
�x = c�#ρ# = {p(cx, c)}
�x = f�#ρ# = {p(cx, code(f))}

�x = &y�#ρ# = {p(cx, ptr(cy))}
�x = ∗y�#ρ# = {p(cx, X)⇐ p(cy, ptr Y ), p(Y,X)}
�∗x = y�#ρ# = {p(X, Y )⇐ p(cx, ptr X), p(cy, Y )}

�x = &y[z]�#ρ# = {p(cx, ptr(Xj+1))⇐ p(cy, ptr(Y )),
p(Y,array(X1, . . . , Xn, Xn+1))

|j ∈ �z�#int} if y is an expanded array
{p(cx, ptr(X))⇐ p(cy , ptr(X))} if y is a shrunk array

�x = &y → a�#ρ# = {p(cx, ptr(Z))⇐ p(cy, ptr(Y )),
p(Y, struct {. . . , a = Z, . . .})

�trust A⇐ A1, . . . , An�#ρ# = {(A⇐ A1, . . . , An)ρ�}

Fig. 6. Some abstract semantic equations.

In Figure 6, we use the convention that cx = ρ
(x), cy = ρ
(y). This is recalled
in the first rule, and omitted in later rules. In the second and third clauses, we assume
that constants c and functions f can also serve as term constants when used in clauses.
For the sake of precision, integer constants thus recorded are not used in computing
array indices (instructions x = &y[z]); rather an auxiliary analysis is run, based on a
given integral abstract domain, yielding a set of possible integer values �z�#int for the
variable z: we follow here [4, 5] in that we distinguish expanded array cells (arrays
whose length n is completely known, and are handled much like collections of sepa-
rate global variables) and shrunk array cells (arrays thought of as one single abstract
cell). In x = &y[z] and x = &y → a, we assume the types of all variables to be
completely known; this determines the right form of term array(X1, . . . , Xn, Xn+1)
or struct {. . . , a = Z, . . .} in the bodies of clauses (in the first case, it yields the
length n of the expanded array; the fictitious element Xn+1 is added so as to cope
with the fact that &y[n] is legal C code although y[n] is not a valid element; while
struct {. . . , a = Z, . . .} is syntactic sugar for some term where field labels have been
ordered in some way, and Z denotes the entry corresponding to the a label).

The abstract semantics for function calls is implemented as in [14]. We leave its
formal expression as a (tedious) exercise. Intuitively, calling the known function g by
x = g(x1, . . . , xn) works as though the actual parameters were copied, using run-
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of-the-mill assignments, into global locations g.in.x1, . . . , g.in.xn. A local variable
struct g.loc is also used to hold local variables, another g.ret to hold the return value,
and the assignment x = g.ret.&return is simulated. (This matches the names of
structs used in the concrete semantics of function calls, see Section 4.) Additional stan-
dard optimizations are added, e.g., keeping track of effective call sites when returning
from functions to avoid spurious, fake control flow.

One advantage of this points-to-like abstract semantics is that the semantic of trust
assertions is as simple as it can be: just add the trust assertion as a clause, replacing all C
variables x by their location ρ#(x). Reading ρ# as a substitution, this means applying
the substitution ρ# to the entire clause A ⇐ A1, . . . , An.

This abstract semantics is of course rather coarse. One may improve somehow the
precision of the analysis by renaming local variables after each assignment, in effect
using variants of the SSA form.

5.1 Checking Abstract Properties

Once the abstract semantics of the program has been computed, as a set of Horn clauses,
add the external trust model M, which specifies all intruder capabilities, as well as
behaviors that we trust other honest participants may have on the network. This yields
a set S of Horn clauses.

Confidentiality. Assume we want to check that the value of variable x is always
secret. This can be checked by verifying that S plus the goal clause ⊥ ⇐ knows(Y ),
p(cx, X), X rec Y is satisfiable. (That security boils down to satisfiability of clause
sets, and more precisely to the existence of a model, was first noticed explicitly by
Selinger [23].) Indeed, our abstract semantics is an upper approximation of all correct
behaviors of our C program in the current trust model. If there is an attack, then there
will be a closed term t (denoting the bit-level value of variable x, in the sense of Sec-
tion 4.1) such that p(cx, t) holds, and a closed term u (denoting the message that we
think is one possible reading of the value t) such that t rec u, and which the intruder
can discover, namely knows(u).

Conformance. We may also check that specific variables may contain values of a
specific form, say values trusted to denote messages matching a given open term t.
We can test this by checking whether S plus the goal ⊥ ⇐ p(cx, X), X rec t is
unsatisfiable, where X is not free in t. This can be used to detect bugs, e.g., when one
variable name was mistyped.

Checking satisfiability of sets of Horn clauses is in general undecidable. How-
ever we notice that all the clauses provided in the abstract semantics are in the de-
cidable class H1, and in fact in the polynomial-time decidable subclass H2 [20]. We
prefer clauses in the external trust model M, accordingly, to fall in H1, too. Other-
wise, we can approximate them as follows. We assume without loss of generality that
only monadic predicate symbols occur; e.g., p(u, v) is encoded as p(c(u, v)). Given a
Horn clause P (t) ⇐ body, first linearize t by making copies of each variable, copy-
ing the corresponding parts of the body as needed. E.g., transform P (f(X,X)) ⇐
Q(X), R(Y ) into P (f(X1, X2)) ⇐ Q(X1), Q(X2), R(Y ). Then, if t is of the form
f(t1, . . . , tn) where some ti at least is not a variable, replace P (t) ⇐ body by the
clauses P (f(X1, . . . , Xn)) ⇐ Q1(X1), . . . , Qn(Xn) and Qi(ti) ⇐ body, 1 ≤ i ≤ n,
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for fresh predicates Q1, . . . , Qn, and repeat the process on the latter clauses. This yields
clauses in H1, and is guaranteed to have a least Herbrand model that is an upper approx-
imation of that of the original clause set. (In effect, this defines a set-constraint based
typing discipline.) Since most clauses arise from the abstract semantics of the program,
we do not lose much precision by doing this second abstraction step. Moreover, past
experience in the verification of cryptographic protocols demonstrates that this does
not throw away any essential information [13]. We have yet to evaluate whether this
abstraction to H1 remains practical in the context of program verification.

6 Implementation

We have implemented this in the CSur project [21].
In a first phase, a specific compiler csur_cc reads, manages and generates a

control-flow graph for each function of the program. All control flow graphs are stored
in a unique table. Starting from the main function, the second phase uses a hybrid
analyzer (computing abstract memory zones and collecting all Horn clauses for all pro-
gram points) and performs function calls using the above table. Our tool follows the
Compile-Link-Analysis technique of Heintze and Tardieu [14].

For each function, a control flow graph is generated and the compiler collects types
for each variable of programs. For all types, the physical representation is also computed
(using low level representations, for example field offsets of structures are computed
as seen as Figure 4). Finally a linker merges all control flow graphs and types into a
unique table. In the same way a library manager csur_ar (used just like ar) was
implemented to help collect control flow graphs as single archives. These tools are
defined as gcc front-ends to collect compilation options of source file.

The csur_cc compiler also collects trust assertions as it analyzes C code, and spits
out a collection of Horn clauses which are then fed to an H1 solver – currently SPASS
[27, 26] or the first author’s prototype h1 prover. The fact that most clauses are in H2, a
polynomial class, is a treat: despite several optimizations meant to decrease the number
of generated clauses, a running 229 line implementation (excluding included files) of
A’s role in the Needham-Schroeder protocol results in a set of 459 clauses.

7 Conclusion

This paper is one of the first attempts at analyzing actual implementations of crypto-
graphic protocols. Our aim is not to detect subtle buffer overflows, which are better
handled by other techniques, but to detect the same kind of bugs that cryptographic
protocols are fraught with, only on actual implementations. We must say that combin-
ing the intricacies of analyzing C code with cryptographic protocol verification is still a
challenge. This can be seen from the fact that our abstract semantics for C is still fairly
imprecise. First experiments however show that this is enough on the small examples
we tested. Despite the shortcomings that our approach clearly still has, and which will
be the subject of future work, we would like to stress the importance of trust assertions
as a logical way of linking the in-memory model of values to the abstract Dolev-Yao
model of messages; and the fact that compiling to Horn clauses is an effective, yet
simple way of checking complex trust and security properties.
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Abstract. We consider the problem of bounded model checking for linear tem-
poral logic with past operators (PLTL). PLTL is more attractive as a specifica-
tion language than linear temporal logic without past operators (LTL) since many
specifications are easier to express in PLTL. Although PLTL is not more expres-
sive than LTL, it is exponentially more succinct. Our contribution is a new more
efficient encoding of the bounded model checking problem for PLTL based on
our previously presented encoding for LTL. The new encoding is linear in the
bound. We have implemented the encoding in the NuSMV 2.1 model checking
tool and compare it against the encoding in NuSMV by Benedetti and Cimatti.
The experimental results show that our encoding performs significantly better
than this previously used encoding.

Keywords: Bounded Model Checking, Past LTL, NuSMV

1 Introduction

Bounded model checking [1] is an efficient method of implementing symbolic model
checking, a way of automatically verifying system designs w.r.t. properties given in a
temporal logic. Symbolic model checking allows verification of designs with large state
spaces by representing the state space implicitly. In bounded model checking (BMC)
the system is represented as a propositional logic formula, and only the bounded paths
of the system are considered. Given a system model, a temporal logic specification and
a bound k, a formula in propositional logic is generated which is satisfiable if and only if
the system has a counterexample of length k to the specification. A satisfiability (SAT)
solver is used to check if the generated formula is satisfiable. By letting the bound
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grow incrementally we can prove that the system has no counterexample for the given
property. Although basic BMC is an incomplete method in practice (it is difficult to
a priori determine a reasonably small bound k which guarantees completeness) it has
been very successful in industrial context [2–4]. The success of BMC is mostly based
on that propositional logic is a compact representation for Boolean functions and that
BMC allows leveraging the vast improvements in SAT solver technology made in recent
years.

Linear temporal logic (LTL) is one of the most popular specification languages used
in model checking tools and many model checking tools support some variant of it.
However, in most of its incarnations only the so called future fragment of the language
(which we will denote by LTL) is considered. This fragment includes only temporal op-
erator which refer to future states. Recently, several papers [5–7] have also considered
supporting LTL with past operators (PLTL). The main argument for adding support for
past operators is motivated by practice: PLTL allows more succinct and natural specifi-
cations than LTL. For instance, the specification “if the discharge valve is open, then the
pressure alarm must have gone off in the past” can easily be expressed in PLTL while
expressing it in LTL is not as straightforward. We believe that an intuitive specifica-
tion language reduces the probability of a model checking effort failing because of an
erroneous specification. The usefulness of PLTL has already been argued earlier in [8].

PLTL also has theoretical advantages compared to LTL. Although PLTL and LTL
are equally expressive [9, 10], PLTL is exponentially more succinct than LTL [11]. This
succinctness comes for free in the sense that model checking for LTL and PLTL are
both PSPACE-complete in the length of the formula [12]. In practice, however, PLTL
model checking algorithms are more difficult and complex to implement.

The first to present a reasonable solution for doing BMC with PLTL were Benedetti
and Cimatti [7]. They showed how the standard BMC encoding [1] can be extended
to handle PLTL. Our main contribution is a new encoding for BMC with PLTL based
on our LTL encoding [13]. Unlike the encoding in [7], the size of our new encoding is
linear in the bound k. The new encoding is quadratic in the size of the formula. When the
number of nested past operators is fixed, the encoding becomes linear in the size of the
formula. The new encoding has been implemented in the NuSMV 2 model checker [14]
and we have experimentally evaluated our encoding. The results clearly show that the
new encoding has better running times and that it generates smaller SAT instances than
the current encoding in NuSMV. Since the new encoding is also very simple, it allows
a straightforward implementation.

2 Bounded Model Checking

The main idea of bounded model checking [1] is to search for bounded witnesses for a
temporal property. A bounded witness is an infinite path on which the property holds,
and which can be represented by a finite path of length k. A finite path can represent
infinite behaviour, in the following sense. Either it represents all its infinite extensions
or it forms a loop. More formally, an infinite path π = s0s1s2 . . . of states contains a
(k, l)-loop, or just an k-loop, if π = (s0s1 . . .sl−1)(sl . . . sk)ω. The two cases we consider
are depicted in Fig. 1.
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s
l−1sks

l−1 sl

k l( , )−loop

s
k−10 =s0s sk

(a) no loop (b)

Fig. 1. The two possible cases for a bounded path.

In BMC all possible k-length bounded witnesses of the negation of the specification
are encoded as a SAT problem. The bound k is increased until either a witness is found
(the instance is satisfiable) or a sufficiently high value of k to guarantee completeness
is reached.

Note that as in [7, 13, 15] the shape of the loop and accordingly the meaning of
the bound k is slightly different from [1]. In this paper, a finite path of length k for
representing an infinite path with a loop contains the looping state twice, at position
l −1 and at position k.

2.1 LTL

LTL is a commonly used specification logic. The syntax is defined over a set of atomic
propositions AP. Boolean operators we use are negation, disjunction and conjunction.
Regarding temporal connectives, we concentrate on the next time (X ), the until (U ) ,
and the release (R ) operators. The semantics of an LTL formula is defined along infinite
paths π = s0s1 . . . of states si. The states are part of a model M with transition relation T
and initial state constraint I. Further, let πi denote the suffix of π starting from the i:th
state. The semantics can then be defined recursively as follows:

πi |= ψ ⇔ ψ holds in si for ψ ∈ AP.
πi |= ¬ψ ⇔ πi �|= ψ.
πi |= ψ1 ∨ψ2 ⇔ πi |= ψ1 or πi |= ψ2.
πi |= ψ1 ∧ψ2 ⇔ πi |= ψ1 and πi |= ψ2.
πi |= Xψ ⇔ πi+1 |= ψ.
πi |= ψ1 Uψ2 ⇔ ∃n ≥ i such that πn |= ψ2 and π j |= ψ1 for all i ≤ j < n.
πi |= ψ1 Rψ2 ⇔ ∀n ≥ i,πn |= ψ2 or π j |= ψ1 for some i ≤ j < n.

Commonly used abbreviations are the standard Boolean shorthands � ≡ p ∨¬p for
some p ∈ AP, ⊥ ≡ ¬�, p ⇒ q ≡ ¬p∨q, p ⇔ q ≡ (p ⇒ q)∧ (q ⇒ p), and the derived
temporal operators Fψ ≡�Uψ (’finally’), Gψ ≡ ¬F¬ψ (’globally’).

It is always possible to rewrite any formula to positive normal form, where all nega-
tions only appear in front of atomic proposition. This can be accomplished by using
the dualities ¬(ψ1 Uψ2) ≡ ¬ψ1 R¬ψ2, ¬(ψ1 Rψ2) ≡ ¬ψ1 U¬ψ2 and ¬Xψ ≡ X¬ψ.
In the following we assume all formulas are in positive normal form.
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2.2 Bounded Model Checking for LTL

We briefly review our simple and compact encoding for bounded model checking LTL
given in [13]. This encoding has been shown to outperform previous encodings and in
addition is much simpler to implement. Moreover, it forms the basis for our new encod-
ing of PLTL in this paper. It consists of three types of constraints. Model constraints
encode legal initialised finite paths of the model M of length k:

|[M]|k := I(s0)∧
k∧

i=1

T (si−1,si),

where I(s) is the initial state predicate and T (s,s′) is a total transition relation. The
loop constraints are used to detect loops. We introduce k fresh loop selector variables
l1, . . . , lk that have the following constraint: if li is true then si−1 = sk. In this case the
LTL encoding treats the bounded path as a (k, i)-loop. If no loop selector variable is
true the LTL encoding treats the path as a simple path without a loop. At most one loop
selector variable is allowed to be true. Thus, the loop selector variables show where the
bounded path loops. This is accomplished with the following constraints:

|[LoopConstraints]|k ⇔ Loopk ∧AtMostOnek,

Loopk ⇔
∧k

i=1 (li ⇒ (si−1 = sk)) ,

AtMostOnek ⇔
∧k

i=1 (SmallerExistsi ⇒¬li) ,

SmallerExists1 ⇔ ⊥, and

SmallerExistsi+1 ⇔ SmallerExistsi ∨ li, where 0 < i ≤ k.

The constraints select a (k, l)-loop (also called lasso-shaped path) from the model, when
a loop is needed to find a counterexample. Finally, LTL constraints restrict the bounded
path defined by the model constraints and loop constraints to witnesses of the LTL
formula. The encoding utilises the fact that for lasso-shaped Kripke structures the se-
mantics of CTL and LTL coincide [16, 17]. Essentially, the encoding can be seen as
a CTL model checker for lasso-shaped Kripke structures based on using the least and
greatest fixpoint characterisations of U and R . The computation of the fixpoints for U
and R is done in two parts. An auxiliary translation 〈〈·〉〉 computes an approximation
of the fixpoints that is refined to exact values by |[·]|. The presentation of the constraints
differs slightly from [13] to allow easier generalisation to the PLTL case.

ϕ 0 ≤ i < k i = k

|[p]|i pi pi

|[¬p]|i ¬pi ¬pi

|[ψ1 ∧ψ2]|i |[ψ1]|i ∧ |[ψ2]|i |[ψ1]|i ∧ |[ψ2]|i
|[ψ1 ∨ψ2]|i |[ψ1]|i ∨ |[ψ2]|i |[ψ1]|i ∨ |[ψ2]|i
|[Xψ1 ]|i |[ψ1]|i+1

∨k
j=1

(
l j ∧ |[ψ1]| j

)
|[ψ1 Uψ2]|i |[ψ2]|i ∨

(
|[ψ1]|i ∧ |[ψ1 Uψ2 ]|i+1

)
|[ψ2]|i ∨

(
|[ψ1]|i ∧

(∨k
j=1

(
l j ∧〈〈ψ1 Uψ2〉〉 j

)))
|[ψ1 Rψ2]|i |[ψ2]|i ∧

(
|[ψ1]|i ∨ |[ψ1 Rψ2 ]|i+1

)
|[ψ2]|i ∧

(
|[ψ1]|i ∨

(∨k
j=1

(
l j ∧〈〈ψ1 Rψ2〉〉 j

)))
〈〈ψ1 Uψ2〉〉i |[ψ2]|i ∨

(
|[ψ1]|i ∧〈〈ψ1 Uψ2〉〉i+1

)
|[ψ2]|i

〈〈ψ1 Rψ2〉〉i |[ψ2]|i ∧
(
|[ψ1]|i ∨〈〈ψ1 Rψ2〉〉i+1

)
|[ψ2]|i
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The conjunction of these three sets of constraints forms the full encoding of the boun-
ded model checking problem into SAT:

|[M,ϕ,k]| = |[M]|k ∧|[LoopConstraints]|k ∧|[ϕ]|0.

The LTL formula ϕ has a witness in M that can represented by a finite path of length k
iff the encoding is satisfiable. For more details on the encoding and how it can be used
for model checking please refer to [13].

3 Bounded Model Checking with Past Operators

Benedetti and Cimatti [7] were the first to consider bounded model checking for PLTL.
Their approach is based on the original encoding of Biere et al. [1]. The approach is
such that it generates constraints separately for each possible bounded path with a loop
(for all values of 0 ≤ l ≤ k). This makes sharing structure in the formula difficult. Our
encoding is based on a different solution where the concerns of evaluating the formula
and forming the bounded path have been separated. As we shall see, this allows for a
simple and compact encoding for PLTL.

3.1 PLTL

Extending LTL with past operators results in a logic which is more succinct than LTL
and arguably more intuitive for some specifications. The simplest past operators are the
two previous state operators Yψ and Zψ. Both are true if ψ was true in the previous
time step. The semantics of the operators differ at the origin of time: Yψ is always false
while Zψ is always true. Similar to the derived future operators Fψ and Gψ are Oψ
(’once’) and Hψ (’historically’) that hold if ψ holds once in the past or ψ holds always
in the past, respectively. The binary operator ψ1 Sψ2 (’since’) holds if ψ2 was true once
in the past and ψ1 has been true ever since. Note that ψ2 must have been true at some
point in the past in order for ψ1 Sψ2 to hold. The other past binary operator ψ1 Tψ2

(’trigger’) holds when ψ2 holds up until the present starting from the time step where
ψ1 was true. If ψ1 never was true ψ2 must have been true always in the past.

We define the semantics of PLTL by extending the formal semantics of LTL. Only
semantics for the new operators are given.

πi |= Yψ ⇔ i > 0 and πi−1 |= ψ.
πi |= Zψ ⇔ i = 0 or πi−1 |= ψ.
πi |= Oψ ⇔ π j |= ψ for some 0 ≤ j ≤ i.
πi |= Hψ ⇔ π j |= ψ for all 0 ≤ j ≤ i.
πi |= ψ1 Sψ2 ⇔ π j |= ψ2 for some 0 ≤ j ≤ i and πn |= ψ1 for all j < n ≤ i.
πi |= ψ1 Tψ2 ⇔ for all 0 ≤ j ≤ i : π j |= ψ2 or πn |= ψ1 for some j < n ≤ i.

Useful dualities which hold for past operators are ¬(ψ1 Sψ2) ≡ ¬ψ1 T¬ψ2, ¬Hψ ≡
O¬ψ, ¬(ψ1 Tψ2) ≡ ¬ψ1 S¬ψ2, ¬Oψ ≡ H¬ψ, ¬Zψ ≡ Y¬ψ, and ¬Yψ ≡ Z¬ψ. Ex-
amples of simple PLTL formulas are G(p⇒Oq) (’all p occurrences are preceded by an
occurrence of q’) and FG(pS¬q) (’eventually p will stay true after q becomes false’).
Recall that we assume that all formulas are in positive normal form.
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The maximum number of nested past operators in PLTL formula is called the past
operator depth.

Definition 1. The past operator depth for a PLTL formula ψ is denoted by δ(ψ) and is
inductively defined as:

δ(ψ) = 0 for ψ ∈ AP,
δ(◦ψ) = δ(ψ) for ◦ ∈ {¬,X ,F ,G} ,
δ(ψ1 ◦ ψ2) = max(δ(ψ1),δ(ψ2)) for ◦ ∈ {∨,∧, U , R} ,
δ(◦ψ) = 1 + δ(ψ) for ◦ ∈ {Y ,Z ,O ,H} , and
δ(ψ1 ◦ ψ2) = 1 + max(δ(ψ1),δ(ψ2)) for ◦ ∈ {S , T} .

PLTL has features which impact the way model checking can be done. We illustrate
these features through examples. As a running example we use an example from [7]
adapted to better suit our setting. In this example the system to be model checked is a
counter which uses a variable x to store the counter value. The counter is initialised to
0 and the system adds one to the counter variable x at each time step until the highest
value 5 is reached. After this the counter is reset to the value 2 in the next time step and
the system starts looping as illustrated in Fig. 2. Thus the system is deterministic and
the counter values can be seen as an infinite sequence (012)(3452)ω corresponding to a
(6,3)-loop of the system.

Fig. 2. Execution of the counter system.

Consider the (6,3)-loop of the counter system. The formula

((x = 3)∧YYY(x = 0))

holds only at time point 3 but not at any later time point. This demonstrates the (quite
obvious) fact that unlike pure future LTL formulas, the PLTL past formulas can distin-
guish states which belong to different unrollings of the loop. We introduce the notion
of a time point belonging to a d-unrolling of the loop to distinguish between different
copies of each state in the unrolling of the loop part.

Definition 2. For a (k, l)-loop π we say that the period p(π) of π is (k− l)+1, i.e., the
number of states the loop consists of. We define that a time point i≥ 0 in π belongs to the
d-unrolling of the loop iff d ≥ 0 is the smallest integer such that i < l +((d +1) · p(π)).

At the time point 3, which belongs to the 0-unrolling of the loop, the formula YYY(x =
0) holds. However, at the time point 7 belonging to the 1-unrolling of the loop the
formula YYY(x = 0) does not hold even though they both correspond to the first state
in the unrolling of the loop.
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Benedetti and Cimatti [7] observed that encoding the BMC problem for PLTL when
the bounded path has no loop was fairly straightforward. It is simple to generalise the
no loop case of Biere et al. [1] to include past operators, as they have simple semantics.
In the no loop case our encoding reduces to essentially the same as [7]. This case is an
optimisation that can sometimes result in shorter counterexamples but is not needed for
correctness. When loops are allowed the matter is more complicated and therefore we
will focus on this part in the rest of the paper. The fact which enables us to do bounded
model checking of PLTL formulas (containing past operators in the loop case) is the
following property first observed by [11] and later independently by [7]: for (k, l)-loops
the ability to distinguish between time points in different d-unrollings in the past is
limited by the past operator depth δ(ϕ) of a formula ϕ.

Proposition 1. Let ϕ be a PLTL formula and π be a (k, l)-loop. For all i ≥ l it holds
that if the time point i belongs to a d-unrolling of the loop with d ≥ δ(ϕ) then: πi |= ϕ
iff π j |= ϕ, where j = i− ((d− δ(ϕ)) · p(π)).

Proof. The proposition directly follows from Theorem 1 and Lemma 2 of [7].

The proposition above can be interpreted saying that after unrolling the loop δ(ϕ) times
the formula cannot distinguish different unrollings of the loop from each other. There-
fore if we want to evaluate a formula at an index i belonging to a d-unrolling with
d > δ(ϕ), it is equivalent to evaluate the formula at the corresponding state of the δ(ϕ)-
unrolling.

Consider again the running example where we next want to evaluate whether the
formula

F ((x = 3)∧O ((x = 4)∧O (x = 5))) (1)

holds in the counter system. The formula expresses that it is possible to reach a point
at which the counter has had the values 3,4,5 in decreasing order in the past. By using
the semantics of PLTL it is easy to check that this indeed is the case. The earliest time
where the subformula ((x = 3)∧O((x = 4)∧O(x = 5))) holds is time 11 and thus the
top-level formula holds at time 0. In fact the mentioned subformula holds for all time
points of the form 11+ i ·4, where i ≥ 0 and 4 = p(π) is the period of the loop 3452. The
time point 11 corresponds to a time step which is in the 2-unrolling of the loop 3452.
This stabilisation at the second unrolling is guaranteed by the past operator depth of
two of the formula in question. The subformula ((x = 4)∧O(x = 5)) has past operator
depth δ(ϕ) = 1 and it holds for the first time at time step 8 which is in the 1-unrolling of
the loop. Again the stabilisation of the formula value is guaranteed by the past operator
depth of one of the formula in question. It will also hold for all time steps of the form
8 + i ·4, where i ≥ 0. Thus, if we need to evaluate any subformula at a time step which
belongs to a deeper unrolling than its past operator depth, e.g. if we want to evaluate
((x = 4)∧O((x = 5))) at time step 16 in 3-unrolling, we can just take a look at the truth
value of that formula at the time step corresponding to the unrolling of the formula to
its past operator depth, in this case at time step 8 = 16− (3−1) ·4.

3.2 Translation

At this point we are ready to present the propositional encoding of the BMC problem
for PLTL. From the previous discussion it is fairly obvious that an efficient encoding
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requires that we encode the unrolling of the loop in a sensible manner and encode the
semantics of the operators succinctly.

The basic idea of the encoding is to virtually unroll the path by making copies of the
original k step path. A copy of the original path corresponds to a certain d-unrolling.
If all loop selector variables li are false the encoding collapses to the original path
without a loop. The number of copies of the path for a PLTL formula ϕ is dictated by
the past operator depth δ(ϕ). Since different subformulas have different past depths,
the encoding is such that subformulas with different past depths see different Kripke
structures. Fig. 3 shows the running example unwound to depth d = 2, for evaluating
formula (1).

Fig. 3. Black arcs show the Kripke structure induced by virtual unrolling of the loop for k = 6 up
to depth 2 (i.e., δ(ϕ) = 2) when l3 holds.

The PLTL encoding |[ϕ]|di has two parameters: d is the current d-unrolling and i is
the index in the current d-unrolling. The case where d = 0 corresponds to the original
k-step path. Subformulas at virtual unrolling depth beyond their past operator depth can
by Prop. 1 be projected to the depth corresponding to the past operator depth. From this
we get our first rule:

|[ϕ]|di = |[ϕ]|δ(ϕ)
i , when d > δ(ϕ).

The rest of the encoding is split into cases based on the values of i and d. Encoding
atomic propositions and their negation is simple. We simply project the atomic propo-
sitions onto the original path. The Boolean operators ∨ and ∧ are also easy to encode
since they are part of standard propositional logic.
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ϕ 0 ≤ d ≤ δ(ψ),0 ≤ i ≤ k

|[p]|di pi

|[¬p]|di ¬pi

|[ψ1 ∧ψ2]|di |[ψ1]|di ∧|[ψ2]|di
|[ψ1 ∨ψ2]|di |[ψ1]|di ∨|[ψ2]|di

The translation of the future operators is a fairly straightforward generalisation of
our pure future encoding of Sect. 2.2 published in [13]. The path is copied as many times
as required by the past depth. When d < δ(ψ) the translation is essentially identical to
the pure future encoding with the exception of the case i = k. As only the loop part of
the copy of the path is relevant (see Fig. 3), the successor for i = k must be encoded to
select the correct state in the next d-unrolling. This is accomplished by using the loop
selector variables li.

ϕ 0 ≤ d < δ(ϕ),0 ≤ i < k 0 ≤ d < δ(ϕ), i = k

|[Xψ1 ]|di |[ψ1]|di+1
∨k

j=1

(
l j ∧ |[ψ1]|d+1

j

)
|[ψ1 Uψ2]|di |[ψ2]|di ∨

(
|[ψ1]|di ∧ |[ψ1 Uψ2]|di+1

)
|[ψ2]|di ∨

(
|[ψ1]|di ∧

(∨k
j=1

(
l j ∧ |[ψ1 Uψ2]|d+1

j

)))
|[ψ1 Rψ2]|di |[ψ2]|di ∧

(
|[ψ1]|di ∨ |[ψ1 Rψ2]|di+1

)
|[ψ2]|di ∧

(
|[ψ1]|di ∨

(∨k
j=1

(
l j ∧ |[ψ1 Rψ2]|d+1

j

)))

When d = δ(ϕ) we have reached the d-unrolling where the Kripke structure loops
back. At this depth we can guarantee that the satisfaction of the subformulas has sta-
bilised (see Prop. 1). Therefore we call the auxiliary translation 〈〈ϕ〉〉d

i , which is needed
to correctly evaluate until- and release-formulas along the loop (see [13]), at this depth.

ϕ d = δ(ϕ),0 ≤ i < k d = δ(ϕ), i = k

|[Xψ1]|di |[ψ1]|di+1
∨k

j=1

(
l j ∧ |[ψ1]|dj

)
|[ψ1 Uψ2]|di |[ψ2]|di ∨

(
|[ψ1]|di ∧ |[ψ1 Uψ2]|di+1

)
|[ψ2]|di ∨

(
|[ψ1]|di ∧

(∨k
j=1

(
l j ∧〈〈ψ1 Uψ2〉〉d

j

)))
|[ψ1 Rψ2]|di |[ψ2]|di ∧

(
|[ψ1]|di ∨ |[ψ1 Rψ2]|di+1

)
|[ψ2]|di ∧

(
|[ψ1]|di ∨

(∨k
j=1

(
l j ∧〈〈ψ1 Rψ2〉〉d

j

)))
〈〈ψ1 Uψ2〉〉d

i |[ψ2]|di ∨
(
|[ψ1]|di ∧〈〈ψ1 Uψ2〉〉d

i+1

)
|[ψ2]|di

〈〈ψ1 Rψ2〉〉d
i |[ψ2]|di ∧

(
|[ψ1]|di ∨〈〈ψ1 Rψ2〉〉d

i+1

)
|[ψ2]|di

The starting point for the encoding for the past operators is using their one-step
fixpoint characterisation. This enables the encoding of the past operators to fit in with
the future encoding. Since past operators look backwards, we must encode the move
from one copy of the path to the previous copy efficiently. To save space we do not give
the encodings for the derived operators Hψ ≡ ⊥Tψ and Oψ ≡ �Sψ since they are
easily derived from the encodings of the binary operators ψ1 Tψ2 and ψ1 Sψ2.

The simplest case of the encoding for past operators occurs at d = 0. At this depth,
the past is unique in the sense that the path cannot jump to a lower depth. We do need
to take into account the loop edge, so the encoding follows from the recursive charac-
terisation ψ1 Sψ2 and ψ1 Tψ2. Encoding Yψ and Zψ is trivial.
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ϕ d = 0, i = 0 d = 0,1 ≤ i ≤ k

|[ψ1 Sψ2]|di |[ψ2]|di |[ψ2]|di ∨
(
|[ψ1]|di ∧|[ψ1 Sψ2]|di−1

)
|[ψ1 Tψ2]|di |[ψ2]|di |[ψ2]|di ∧

(
|[ψ1]|di ∨|[ψ1 Tψ2]|di−1

)
|[Yψ1]|di ⊥ |[ψ1]|di−1

|[Zψ1]|di � |[ψ1]|di−1

When d > 0 the key ingredient of the encoding is to decide whether the past opera-
tor should consider the path to continue in the current unrolling of the path or in the last
state of the previous unrolling. The decision is taken based on the loop selector vari-
ables, which indicate whether we are in the loop state. In terms of our running example,
we need to traverse the straight black arrows of Fig. 3 in the reverse direction. We im-
plement the choice with an if-then-else construct (li ∧ψ1)∨ (¬li ∧ψ2). The expression
encodes the choice if li is true then the truth value of the expression is decided by ψ1,
otherwise ψ2 decides the truth value of the expression.

ϕ 1 ≤ d ≤ δ(ϕ),2 ≤ i ≤ k

|[ψ1 Sψ2]|di |[ψ2]|di ∨
(
|[ψ1]|di ∧

((
li ∧|[ϕ]|d−1

k

)
∨
(
¬li ∧|[ϕ]|di−1

)))
|[ψ1 Tψ2]|di |[ψ2]|di ∧

(
|[ψ1]|di ∨

((
li ∧|[ϕ]|d−1

k

)
∨
(
¬li ∧|[ϕ]|di−1

)))
|[Yψ1]|di , |[Zψ1]|di

(
li ∧|[ψ1]|d−1

k

)
∨
(
¬li ∧|[ψ1]|di−1

)
The only case left, which actually can be seen as an optimisation w.r.t. the above

case, occurs at i = 1. The encoding has the general property that if l j is true all con-
straints generated by the encoding for i < j will not affect the encoding for d > 0. At
i = 1 we can thus ignore the choice of continuing backwards on the path and always
proceed to the previous d-unrolling.

ϕ 1 ≤ d ≤ δ(ϕ), i = 1

|[ψ1 Sψ2]|di |[ψ2]|di ∨
(
|[ψ1]|di ∧|[ψ1 Sψ2]|d−1

k

)
|[ψ1 Tψ2]|di |[ψ2]|di ∧

(
|[ψ1]|di ∨|[ψ1 Tψ2]|d−1

k

)
|[Yψ1]|di , |[Zψ1]|di |[ψ1]|d−1

k

Combining the tables above we get the full encoding |[ϕ]|di . Given a Kripke structure
M, a PLTL formula ϕ, and a bound k, the complete encoding as a propositional formula
is given by:

|[M,ϕ,k]| = |[M]|k ∧|[LoopConstraints]|k ∧|[ϕ]|00.
The correctness of our encoding is established by the following theorem.

Theorem 1. Given a PLTL formula ϕ, a bound k and a path π = s0s1s2 . . . which is a
(k, l)-loop, π |= ϕ iff |[M,ϕ,k]| is satisfiable.

Proof. (sketch) The proof proceeds as an induction on the structure of the formula. All
future cases follow a similar pattern. As an example, consider the case ϕ = ψ1 Uψ2.
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By appealing to the induction hypothesis we can assume that |[ψ1]|di and |[ψ2]|di are
correct. The future encoding replicates the path δ(ϕ) times, which ensures that at d =
δ(ϕ) all subformulas have stabilised (see Prop. 1). Let k′ = k + p(π) · δ(ϕ) denote the
index of π which corresponds to the final index of the unrolled model. We first prove

that the encoding is correct at πk′ corresponding to |[ϕ]|δ(ϕ)
k . We will make use of the

equivalence: πi |= ψ1 Uψ2 iff πi |= ψ2 or
(
πi |= ψ1 and πi+1 |= ψ1 Uψ2

)
.

First assume that |[ϕ]|δ(ϕ)
k holds. The encoding has the following property: for a

(k, l)-loop π, whenever |[M,ϕ,k]| has a satisfying truth assignment where no loop se-
lector variable li is true another satisfying truth assignment exists where ll is true. Thus

we only need to consider the case where ll is true. From |[ϕ]|δ(ϕ)
k it follows that either

|[ψ2]|δ(ϕ)
k holds, or that |[ψ1]|δ(ϕ)

k and 〈〈ϕ〉〉δ(ϕ)
l hold. In the former case we can appeal to

the induction hypothesis and we are done. In latter case we can argue by the definition

of 〈〈ψ1 Uψ2〉〉 that |[ψ2]|δ(ϕ)
j must hold for some l ≤ j ≤ k. Let j be the smallest such

index. Since 〈〈ψ1 Uψ2〉〉δ(ϕ)
l holds and the definition of 〈〈ψ1 Uψ2〉〉 forces |[ψ1]|δ(ϕ)

i to

hold until j, we can conclude that |[ψ1]|δ(ϕ)
i holds for all l ≤ i < j. By the induction

hypothesis and the semantics of U we can then conclude πk′+1 |= ϕ. Combining this
with πk′ |= ψ1, we get πk′ |= ϕ.

Now assume that πk′ |= ϕ. By the equivalence above and the semantics of until
we can split the proof into two cases. In the case πk′ |= ψ2 we can by the induction

hypothesis conclude that |[ψ2]|δ(ϕ)
k and thus |[ϕ]|δ(ϕ)

k . In the other case we have that
πk′ |= ψ1 and that ψ2 is satisfied at some later index. Let j′ be the smallest such index

and denote j = l + j′ − (k′ + 1). Then we know that |[ψ2]|δ(ϕ)
j must hold (Prop. 1 and

induction hypothesis) and therefore also 〈〈ϕ〉〉δ(ϕ)
j holds. By the semantics of U we have

that πi |= ψ1 for all k′ ≤ i < j′. This fact together with |[ψ2]|δ(ϕ)
j implies that 〈〈ϕ〉〉δ(ϕ)

i

holds for all l ≤ i ≤ j. Consequently, |[ϕ]|δ(ϕ)
k holds since we know that |[ψ1]|δ(ϕ)

k holds.
Once the correctness of the case d = δ(ϕ), i = k has been established, the correctness

of the remaining cases are easily established. Since the encoding |[ψ1 Uψ2]|di directly
follows the recursive semantic definition of U to compute all the other cases of i and d,
and these cases ultimately depend on the proven case we can conclude the encoding is
correct for these as well.

Proving correctness for the past operators follows a similar pattern. Consider ϕ =
ψ1 Sψ2. By the induction hypothesis we can assume that |[ψ1]|di and |[ψ2]|di are dealt
with correctly. For the past operators the case i = 0,d = 0 initialises the encoding while
the other cases are computed using the recursive semantic definition of S . The cor-
rectness of the initialisation can be argued using the semantics of S and the induction
hypothesis. Again by Prop. 1 we do not need to go deeper than i = k,d = δ(ϕ). With
these ingredients we can establish the correctness of the translation for |[ψ1 Sψ2]|di .
Performing a case analysis for the rest of the past operators completes the proof. ��

The following result can be proved as a straightforward generalisation of the no
loop case of [1] to PLTL.
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Theorem 2. If |[M,ϕ,k]| has a satisfying truth assignment where all loop selector vari-
ables li are false then no matter how the corresponding finite path is extended to an
infinite path π, it holds that π |= ϕ.

The new encoding is very compact. Let |I| and |T | denote the size of the initial state
predicate and the size of the transition relation seen as Boolean circuits.

Theorem 3. Given a model M, a PLTL formula ϕ, a bound k, the size of |[M,ϕ,k]| seen
as a Boolean circuit is of the order O (|I|+ k · |T |+ k · |ϕ| ·δ(ϕ)).

Proof. The unrolling of the transition relation and the loop constraints contribute the
term O (|I|+ k · |T |). For each subformula of ϕ we add a constant number of constraints
at each time point and k constraints at time points i = k. Although k constraints that refer
to other linear sized constraints (|[·]| and 〈〈·〉〉) are added at i = k, the circuit remains
linear because |[·]| and 〈〈·〉〉 can easily be shared among the constraints. As the loop is
virtually unrolled there are O (k ·δ(ϕ)) time points for a subformula in the worst case.
Combining these two we get O (|I|+ k · |T |+ k · |ϕ| ·δ(ϕ)). ��

The translation is linear in all components but since δ(ϕ) can be O(|ϕ|), it can be seen as
worst case quadratic in the formula length. Usually, however, linearity w.r.t. the bound
k is the most critical as finding deeper bugs is considered more important than handling
very large formulas. When dealing with formulas of fixed δ(ϕ), e.g. pure LTL formulas,
the encoding is linear in |ϕ|.

4 Experiments

We have implemented the new encoding in version 2.1.2 of the NuSMV 2 model
checker [14]. This facilitates easy comparison against NuSMV, currently the only pub-
lished PLTL bounded model checker, which is based on the encoding given in [7]. For
our implementation of the new PLTL encoding we have adapted the optimisations for
the future LTL encoding presented in [13].

We have performed two different sets of experiments. In order to asses how the
encodings scale in general, we model checked randomly generated formulas on small
randomly generated models. This lets us evaluate how the encodings scale when the
size of the formulas is increased or the length of the bound is increased. We also tested
the encodings on a few real-life examples to corroborate our findings from the random
experiments. In both experiments we measured the size of the generated conjunctive
normal form (CNF) expressions. Specifically, we measured the number of variables,
clauses and literals (the sum of the lengths of the CNF-clauses) in the generated CNF,
and the time to solve the CNF instance. All experiments were run on a computer with an
AMD Athlon XP 2000+ processor and 1 GiB of RAM using the SAT solver zChaff [18],
version 2003.12.04. Our implementation and files related to the experiments are avail-
able at http://www.tcs.hut.fi/˜timo/vmcai2005/.

4.1 Random Formulae

The experiments with random formulae were performed in the following way. Random
formulae were generated with the tool described in [17]. We generated 40 formulas for
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Fig. 4. Random formulae benchmarks.

each formula size between three and seven. For each formula we generated a BMC
problem for all bounds up to k = 30. The BMC problem is constructed using a ran-
dom Kripke model with 35 states that was generated with techniques described in [17].
The Kripke models have a fairness requirement that requires that at least one of two
randomly selected states should appear infinitely often in a counterexample path. This
eliminates many short counterexamples and makes the measurement more meaningful
for larger values of k.

Figure 4 has twelve plots depicting the results of the benchmarks. In the first row, all
results are averaged over the bound and show how the procedures scale with increasing
formula size. In the second row, all results are averages over the formula size and show
how the procedures scale in the bound k. For the third row the size of the formula is fixed
at 5 and the plots show the average over the 40 formulas. The plots in the first column
show the number of variables in the generated CNF. Plots in the second column show
the number of clauses and plots in the third column the number of literals in the CNF.
The last column has plots which show the time to solve the CNF instances.
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From the plots it is clear that the new encoding scales much better than the encoding
implemented in NuSMV. This is the case both when considering scaling w.r.t. the size
of the formula and the length of the bound.

4.2 Real-Life Examples

The second set of experiment were performed on a few real-life examples. We used five
models of which four are included in the NuSMV 2 distribution. The models were an
alternating bit protocol (abp), a bounded resource protocol (brp), a distributed mutual
exclusion algorithm (dme), a pci bus (pci) and a 5-bit shift-register (srg5). For abp and
pci we checked a property with a counterexample while the properties for brp, dme and
srg5 were true properties. The template formulae are collected in Table 1.

Table 1. Properties used in real-life benchmarks.

Model Property
abp G (p ⇒ YHq)
brp FG (p ⇒ O (q ⇒ Or))
dme G (p ⇒ pT (¬pTq))
pci G p ⇒ G (q∧Y (¬q∧O (r∧O (s∧Ot))) ⇒ O (u∧O (v∧Gw)))
srg5 FG p∧GFq∧GFr ⇒ F (sS (t S (uS (vSw))))

We measured the number of variables, clauses, and literals in the generated CNF,
and the time used to solve an instance at a specific bound k. We also report the cumu-
lative time (Σ time) used to solve all instances up to the given k. The results of the runs
can be found in Table 2.

The new encoding was always the fastest. In all cases the new encoding produced
the smallest instances w.r.t. all size measures. For srg5, NuSMV was not able to proceed
further than k = 18 because the computer ran out of memory. The reason for this can
be found in the apparently at least cubic growth w.r.t. the bound k of the encoding for
nested binary past operators.

Table 2. Real-life benchmarks.

Model k NuSMV New
vars clauses literals time Σ time vars clauses literals time Σ time

abp 16 25,175 74,208 174,644 104 342 22,827 67,116 158,096 52.5 269
10 14,115 41,228 98,304 0.9 2.5 8,961 25,736 62,156 0.7 2.2

brp 15 30,225 89,218 211,334 4.6 15.9 13,346 38,536 93,076 1.5 7.5
20 56,935 169,008 398,564 19.2 75.6 17,731 51,336 123,996 3.2 19.7
10 49,776 139,740 338,752 10.3 15.1 28,855 76,947 192,235 6.3 17.5

dme 15 139,071 404,485 962,837 98.9 171 42,685 115,282 288,030 15.5 70.2
20 346,166 1,022,630 2,411,522 1,017 1,812 56,515 153,617 383,825 41.2 214
10 81,285 242,133 567,029 96.7 188 60,456 179,616 421,156 69.8 151

pci 15 159,885 477,358 1,116,914 2,441 5,408 90,611 269,491 631,891 888 2,422
18 227,357 679,429 1,589,029 2,557 19,119 108,704 323,416 758,332 867 11,992
10 137,710 412,952 963,900 53.6 90.7 1,655 4,757 11,445 0.0 0.1

srg5 18 1,264,988 3,794,698 8,854,918 14,914 33,708 2,999 8,677 20,869 0.2 0.9
30 N/A N/A N/A N/A N/A 5,015 14,557 35,005 0.7 6.6
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5 Discussion and Conclusions

We have presented an encoding of the BMC problem for PLTL. The encoding is linear
in the bound k unlike the encoding by Benedetti and Cimatti [7]. In the general case the
encoding is quadratic in the size of the formula but if we fix the past operator depth,
the encoding is also linear in the size of the formula. Experiments confirm that the
encoding is more compact and efficient than the original encoding. In the experiments
our encoding scales better both in the bound k and in the size of the formula.

After having independently discovered our new encoding we very recently became
aware of a manuscript [19] discussing an alternative approach to bounded model check-
ing of PLTL. Our approach differs in many ways from that of [19], the main differences
being that their approach does not perform any virtual unrolling at all and that their
starting point is the so called SNF encoding for BMC [15]. It is easy to modify our
encoding not to virtually unroll (k, l)-loops by defining the past operator depth function
δ(ϕ) to return the constant 0 for all formulas irregardless of their past operator depth.
However, in this case the encoding would not remain sound for formulas with looping
counterexamples. For example, verifying the formula ¬GFYYY(x = 0) on our run-
ning example would result in a counterexample at k = 6 even though the formula holds.
We do not see how soundness for full PLTL could be achieved without performing
virtual unrolling.

If we restrict ourselves to searching for non-looping counterexamples (not all PLTL
formulas have non-looping counterexamples) or to specifications in some subset of full
PLTL, the virtual unrolling could be discarded while maintaining soundness. However,
although virtual unrolling has a small overhead it also has benefits. For example, model
checking formula (1) on our running example requires the transition relation to be un-
rolled 6 times with our encoding but the encoding of [19] requires the transition relation
to be unrolled 11 times before the first witness is found. Due to the efficiency of our en-
coding the overhead of virtual unrolling is small and the potential gain in using smaller
bounds can be significant. We argue that our approach can be more efficient than [19],
at least in the cases where the encoding is dominated by the system transition relation
size (|T | 9 |ϕ|) and the counterexample can be detected earlier by virtual unrolling.
In our opinion the new encoding is also easier to understand and implement than that
of [19].

There are still possibilities for improving the performance of our encoding and ex-
tending it to other uses. The bounded satisfiability problem asks if there is any model
represented as a bounded path of length k for a given PLTL formula ψ. The new en-
coding can easily be extended to solve this problem by removing all constraints set by
the transition relation on the state variables. If the encoding is viewed as a Boolean
circuit, the loop selector variables li and the atomic propositions (and their negations)
are viewed as input gates, then the encoding generates a monotonic Boolean circuit.
This could be exploited in specific SAT solver optimisations. Another possible topic for
future research is considering incremental encodings for BMC in the spirit of [20].
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International Journal on Software Tools for Technology Transfer 4 (2002) 57–70

18. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient
SAT solver. In: Proceedings of the 38th Design Automation Conference, IEEE (2001)

19. Cimatti, A., Roveri, M., Sheridan, D.: Bounded verification of past LTL. In: Formal Methods
in Computer-Aided Design (FMCAD 2004). Volume 3312 of LNCS., Springer (2004) 245–
259
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Abstract. Bounded model checking (BMC) is an automatic verification method
that is based on finitely unfolding the system’s transition relation. BMC has been
successfully applied, in particular, for discovering bugs in digital system design.
Its success is based on the effectiveness of satisfiability solvers that are used to
check for a finite unfolding whether a violating state is reachable. In this paper
we improve the BMC approach for linear hybrid systems. Our improvements are
tailored to lazy satisfiability solving and follow two complementary directions.
First, we optimize the formula representation of the finite unfoldings of the tran-
sition relations of linear hybrid systems, and second, we accelerate the satisfiabil-
ity checks by accumulating and generalizing data that is generated during earlier
satisfiability checks. Experimental results show that the presented techniques ac-
celerate the satisfiability checks significantly.

1 Introduction

Model checking is widely used for the verification of concurrent state systems, like
finite state systems [20, 12] and timed automata [3]. One main reason for the accep-
tance of model checking is its push-button appeal. A major obstacle to its universal
applicability, however, is the inherent size of many real-world systems. This obstacle is
often called the state space explosion problem. Bounded model checking (BMC) [10]
has attracted attention as an alternative to model checking. The bounded model check-
ing problem starts from a more modest question: Does there exist a counterexample of
length k ∈ N refuting a stipulated property P ? In particular, when P is a safety prop-
erty, a counterexample is simply a finite run leading to the violation. Whether P can be
violated in k steps is reduced to checking satisfiability of the formula

I(s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ ¬P (sk) , (1)

where si are state variables, I is a unary predicate describing the initial states, and
T is a binary predicate describing the transition relation. The bound k is successively
increased until either a counterexample is found or some limit is reached (e.g., an upper
bound on k or resource limitations).
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BMC shares with model checking its push-button appeal. However, without fur-
ther extensions, BMC does not terminate for properties that are fulfilled by the system.
While this seems to be a step backwards, BMC has practical relevance. For finite state
systems, the formula (1) corresponds to a propositional satisfiability problem that en-
ables the use of state-of-the-art SAT-solvers. Empirical evidence, e.g., in [11] and [13],
shows that BMC is often superior to model checking, in particular when the focus is
on refuting a property. Extensions for using the BMC approach also for verification are
summarized in [9].

The BMC approach for finite state systems cleanly extends to many classes of infi-
nite state systems [16]. For infinite state systems, formula (1) is a Boolean combination
of domain-specific constraints depending on the class of the systems. Instead of a SAT-
solver we have to use a solver specific to that domain. For instance, BMC has been
extended and applied to timed automata in, e.g. [19, 22, 7, 25]. The BMC approach can
be further extended to the more general class of linear hybrid automata [2, 18]. For
linear hybrid automata, the domain-specific constraints are linear (in)equations, where
variables range over the reals. Prominent state-of-the-art solvers that can be used in the
BMC approach for linear hybrid systems are MathSAT [5], CVC Lite [8], and ICS [15].
All these solvers have in common that the satisfiability checks are done lazily. Roughly
speaking, this means that these solvers are based on a SAT-solver that calls on demand
solvers for conjunctions of the domain-specific constraints.

In this paper we improve the BMC approach for linear hybrid systems by acceler-
ating the satisfiability checks. Our improvements are motivated by a thorough inves-
tigation of checking satisfiability of formulas of the form (1), which describe in our
context finite runs of a fixed length k of a linear hybrid system. First, we optimize the
formula representation of finite runs. The optimized representation is tailored to lazy
satisfiability solving. Besides others, one point is to force alternation of the different
types of transitions of hybrid systems, namely discrete and time transitions. Second,
we accumulate the conflicts returned by the domain-specific solver during the lazy sat-
isfiability check of (1). We use these conflicts as follows. If (1) is unsatisfiable, i.e.,
there is no counterexample of size k, we generalize the returned conflicts and use these
generalized conflicts such that the domain-specific solver is not called again for similar
conflicts in forthcoming satisfiability checks. This means, we learn generalized domain-
specific conflicts in each satisfiability check. This learning technique also applies to the
BMC approach for other classes of infinite state systems.

Both kinds of optimization reduce the demand-driven calls to the domain-specific
solver for conjunctions of linear (in)equations. Furthermore, they are complementary in
the sense that the optimized encoding leads to fewer conflicts that are generalized and
learned. We extensively evaluated our techniques for a number of linear hybrid systems.
The outcome of our experiments is that the combination of both techniques increases
the bound k on the size of the runs by several orders of magnitudes for which state-of-
the-art solvers are able to perform the satisfiability checks in a reasonable amount of
time and space.

We proceed as follows. In §2 we review the definition of linear hybrid automata and
the BMC approach for linear hybrid automata using lazy satisfiability solvers. In §3 we
optimize the encoding of finite runs and in §4 we introduce our learning technique. We



398 Erika Ábrahám et al.

�� ��

�� ��
off

− 3
10
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present experimental results in §5. In §6 we discuss related work and finally, in §7 we
draw conclusions.

2 Bounded Model Checking for Linear Hybrid Systems

Before presenting our work, we first introduce linear hybrid systems and describe a
straightforward encoding of finite runs as Boolean combinations of (in)equations. Fur-
thermore, we describe relevant details of state-of-the-art solvers for checking satisfia-
bility of Boolean combinations of linear (in)equations and pinpoint obstacles for using
these solvers in the BMC approach for linear hybrid automata.

2.1 Hybrid Systems Background

Hybrid automata [2, 18] have been introduced in control engineering and in computer
science as a formal model for systems with both discrete and continuous components.

Hybrid automata are often given graphically, like the one shown in Figure 1. This
automaton models a thermostat, which senses the temperature x of a room and turns a
heater on and off. In location off the heater is off and the temperature falls according
to the flow condition − 3

10 ≤ ẋ ≤ − 1
10 . The location’s invariant x ≥ 18 assures that

the heater turns on at latest when the temperature reaches 18 degrees. Analogously for
the location on , where the heater is on. Control may move from location off to on if
the temperature is below 19 degrees, and from on to off if the temperature is above 21
degrees. The temperature x does not change by jumping from off to on or from on to
off . Initially, the heater is off and the temperature is 20 degrees.

In the remainder of the paper we only consider the class of linear hybrid automata,
which can be described using first-order logic formulas over (R,+, <, 0, 1). Formally,
a linear hybrid automaton H is a tuple(

L, V, (jump�,�′)�,�′∈L, (flow �)�∈L, (inv �)�∈L, (init �)�∈L

)
,

where L and V are finite nonempty sets, and (jump�,�′)�,�′∈L, (flow �)�∈L, (inv �)�∈L,
(init �)�∈L are families of first-order logic formulas over the structure (R,+, <, 0, 1):

– L = {	1, . . . , 	m} is the set of locations.
– V = {v1, . . . , vn} is the set of continuous variables.
– (jump�,�′)�,�′∈L is an (L×L)-indexed family of formulas with free variables in V

and their primed versions. A formula jump�,�′(v1, . . . , vn, v
′
1, . . . , v

′
n) represents

the possible jumps from location 	 to location 	′, where v1, . . . , vn are the values
of the continuous variables before the jump and v′1, . . . , v

′
n are the values of the

continuous variables after the jump.
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– (flow �)�∈L is an L-indexed family of formulas with free variables in V , their
primed versions, and t. A formula flow �(v1, . . . , vn, t, v

′
1, . . . , v

′
n) represents the

flow of duration t ≥ 0 in location 	, where the values of the continuous variables
change from v1, . . . , vn to v′1, . . . , v

′
n.

– (inv �)�∈L is an L-indexed family of formulas with free variables in V . A formula
inv �(v1, . . . , vn) represents the invariant in location 	. We require that all invariants
are convex sets.

– (init �)�∈L is an L-indexed family of formulas with free variables in V representing
the initial states of the system.

For instance, the flow in location on of the thermostat in Figure 1 can be described by
the formula flowon(x, t, x′) = 10x′ − 10x ≥ t ∧ 5x′ − 5x ≤ t. The other components
of the thermostat can be described analogously. Since (R,+, <, 0, 1) admits quantifier
elimination, we assume without loss of generality that the formulas occurring in the
description of a linear hybrid automaton are quantifier-free.

Hybrid systems often consist of several hybrid automata that run in parallel and
interact with each other. The parallel composition of hybrid automata requires an ad-
ditional event set for synchronization purposes. The parallel composition is standard
but technical and we omit it here. For simplicity and due to space limitations, in the
theoretical part of the paper we restrict ourselves to a single linear hybrid automaton.

Encoding Linear Hybrid Automata. In the remainder of this subsection, let H =(
L, V, (jump�,�′)�,�′∈L, (flow �)�∈L, (inv �)�∈L, (init �)�∈L

)
be a linear hybrid automa-

ton with L = {l1, . . . , lm} and V = {v1, . . . , vn}, for some m,n ∈ N. For readability,
we write tuples in boldface, i.e., v abbreviates (v1, . . . , vn), and we introduce state
variables s = (at ,v), where at ranges over the locations in L and v = (v1, . . . , vn).

A jump of the automaton H is described by the formula

J(s, s′) =
∨

�,�′∈L

(
at = 	 ∧ at ′ = 	′ ∧ jump�,�′(v,v′) ∧ inv �′(v′)

)
and a flow of H is described by the formula

F (s, t, s′) =
∨

�∈L

(
at = 	 ∧ at ′ = 	 ∧ t ≥ 0 ∧ flow �(v, t,v

′) ∧ inv �(v′)
)
,

where s = (at ,v) and s′ = (at ′,v′) are state variables, and t is a real-valued variable
representing the duration of the flow. Note that we check the invariant of a location
after t time units have passed in F (s, t, s′) and when we enter the location of s′ in a
jump J(s, s′). Since we assume that invariants are convex sets, we do not have to check
at every time point between 0 and t of a flow whether the invariant in the location is
satisfied. For k ∈ N, we recursively define the formula πk by

π0(s0) =
∨

�∈L

(
at0 = 	 ∧ inv �(v0)

)
and for k > 0,

πk(s0, . . . , sk, t1, . . . , tk) =
πk−1(s0, . . . , sk−1, t1, . . . , tk−1) ∧

(
J(sk−1, sk) ∨ F (sk−1, tk, sk)

)
,



400 Erika Ábrahám et al.

where s0, . . . , sk are state variables and t1, . . . , tk are real-valued variables. Intuitively,
πk describes the runs of length k of a linear hybrid automaton by glueing together k
jumps and flows. Moreover, we have to assure that the first state satisfies the location’s
invariant.

BMC for Linear Hybrid Automata. With the formulas πk at hand, it is straightfor-
ward to obtain a semi-decision procedure for checking whether a linear hybrid automa-
ton violates a state property given by the formula safe(s). For k ∈ N, we define

ϕk(s0, . . . , sk, t1, . . . , tk) =(∨
�∈L(at0 = 	 ∧ init �(v0))

)
∧ πk(s0, . . . , sk, t1, . . . , tk) ∧ ¬safe(sk) .

Starting with k = 0 and iteratively increasing k ∈ N, we check whetherϕk is satisfiable.
The algorithm terminates if ϕk is satisfiable, i.e., an unsafe state is reachable from an
initial state in k steps.

The effectiveness of the algorithm depends on the effectiveness of checking whether
the ϕks are satisfiable. Experimental results show that the satisfiability checks of ϕk

often become impractical even for small ks and rather small linear hybrid systems,
like the railroad crossing example [4], which consists of three linear hybrid automata
running in parallel (two of them have 3 locations and one automaton has 4 locations).
For instance, the satisfiability check for ϕ10 takes 18 seconds with the state-of-the-art
solver ICS [16] and the satisfiability check for ϕ15 takes almost 4 minutes. In order to
pinpoint the reasons for the bad running times of the satisfiability checks, we first have
to give some ICS details.

2.2 Satisfiability Checking Details and Performance Issues

We first recall details of lazy theorem proving [16]. Lazy theorem proving is built on top
of a SAT-solver for propositional logic that lazily interacts with a solver for a specific
domain. In our context, the domain specific solver checks satisfiability of conjunctions
of linear (in)equations over the reals.

Assume that ϕ is a Boolean combination of the atomic formulas α1, . . . , αn. We
define the mapping abs(αi) = bi, where bi is a fresh Boolean variable. The mapping
abs is homomorphically extended to Boolean combinations of (in)equations. We call
abs(ϕ) the Boolean abstraction of the formula ϕ. The pseudo-code of the lazy theo-
rem proving algorithm from [16, 14] is shown in Figure 2. We start with the Boolean
abstraction β = abs(ϕ). In each loop, the SAT-solver suggests a candidate assignment
ν : {b1, . . . , bn} → {true, false} satisfying β. If the conjunctionψ =

∧
ν(bi)=true αi ∧∧

ν(bi)=false ¬αi is satisfiable, then ϕ is satisfiable. Otherwise, we extend β to β ∧
¬abs(explain(ψ)), where explain(ψ) is an unsatisfiable subformula of ψ, i.e., a con-
junction of some atomic formulas or their negations occurring in ψ that is responsible
for the unsatisfiability of ψ. We call the formula explain(ψ) an explanation. A simple
implementation of explain is the identity function, i.e., it returns ψ. Using this simple
implementation, there is one loop iteration for each satisfying assignment of abs(ϕ).
General techniques for reducing the number of iterations, and in particular more so-
phisticated implementations of the explain function are described in [16, 14].
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procedure sat(ϕ)
β ← abs(ϕ)
loop

ν ← SAT-Solver(β)
if ν = unsatisfiable then return unsatisfiable
ψ ←

∧
ν(bi)=true αi ∧

∧
ν(bi)=false ¬αi

if Solver(ψ) �= unsatisfiable then return satisfiable
β ← β ∧ ¬abs(explain(ψ))

end loop

Fig. 2. The lazy theorem proving algorithm for checking satisfiability of a Boolean combination
of linear (in)equations.

Less lazy variants of the lazy theorem proving algorithm, like in CVC Lite [8] and
ICS [16] consist of a tighter integration of a SAT-solver and the satisfiability checks of a
solver for conjunctions of linear (in)equations. In ICS, a truth assignment to a Boolean
variable by the SAT-solver adds the corresponding (in)equation to the conjunction of
(in)equations for which the corresponding Boolean variables are already assigned to
some truth value. A frequency parameter, for which the user can provide a thresh-
old, determines after how many truth assignments the SAT-solver checks whether the
conjunction of (in)equations is still satisfiable, i.e., the SAT-solver calls the solver for
conjunctions of (in)equations. An inconsistency triggers backtracking in the search for
Boolean variable assignments and is propagated to the SAT-solver by adding a clause
to the formula explaining the inconsistency using the explain function.

Performance Issues. The lazy theorem proving algorithm in Figure 2 scales poorly
for checking satisfiability of the formulas ϕk. The reason is the large number of loop
iterations: for most examples, the number of iterations grows exponentially in k. The
following examples illustrate this obstacle more clearly.

Example 1. Consider the following linear hybrid automaton:

�� ��
�� ��

�0
ẋ = 1
true

true→x:=x+1������
��

x=0 ��

Assume that we want to check whether we can reach in k steps a state with x < 0.
Clearly, a run with x having the initial value 0 and that increases x in each step cannot
reach a state with x having a negative value. However, when we only look at a finite
unfolding of the transition relation, we must be aware of all changes made on the value
of x in order to check that the value of x is not negative after k steps. Independently of
the implementation of the explain function, for checking unsatisfiability of ϕk with the
lazy theorem proving algorithm, the number of loop iterations is at least 2k.

The reason for the above exponential behavior can be explained as follows. For each
of the 2k possible sequences of k flows and jumps there is a corresponding satisfying
assignment of abs(ϕk) assigning true to the Boolean variable for xk < 0 and to the
Boolean variables whose (in)equations describe the initial state and the transitions in
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the sequence. Without loss of generality, the truth values of the other Boolean variables
abs(ϕk) need not to be considered. For a satisfying assignment of abs(ϕk) the explain
function has to return a conjunction containing at least the (in)equations in which xi

occurs and for which the Boolean variable is assigned to true. Since two such conjunc-
tions of (in)equations are distinct for assignments corresponding to different sequences
of k flows and jumps, we have to check at least 2k conjunctions of (in)equations.

The less lazy variant of the lazy theorem proving algorithm is faced with a similar
problem: the number of satisfiability checks for conjunctions of (in)equations corre-
sponding to partial truth assignments of the Boolean variables in the Boolean abstrac-
tion is often exponential in the bound k. For the railroad crossing example, we have
95 explanations in the satisfiability check for ϕ5, 1047 explanations for ϕ10, and 6462
explanations for ϕ15.

Experimental evaluations [16] have shown that the less lazy variant – as, e.g., imple-
mented in ICS – is superior to the lazy theorem proving algorithm in Figure 2. However,
in our experiments we observed that if the Boolean abstraction of a formula has few
satisfying assignments then the lazy theorem proving algorithm usually performs better
than the less lazy variant, since the solver for conjunctions of (in)equations is called
less often. In §4, we will exploit this observation by switching from the less lazy variant
to the lazy theorem proving algorithm whenever it is likely that the Boolean abstraction
has few satisfying assignments.

Before we present and evaluate the optimizations for the BMC approach for linear
hybrid systems we want to comment on the BMC approach for a larger class of hybrid
systems. For the BMC approach, it is, in principal, possible to allow first-order logic
formulas over (R,+, ·, <, 0, 1) instead of (R,+, <, 0, 1) in the definition of a hybrid
automaton in §2.1. By allowing formulas over (R,+, ·, <, 0, 1) we can describe a much
larger class of hybrid systems. Note that the first-order theory over (R,+, ·, <, 0, 1) is
decidable since it admits quantifier elimination [24]. The lazy theorem proving algo-
rithm can be easily modified to handle quantifier-free formulas over (R,+, ·, <, 0, 1).
However, for a non-linear flow, we have to check a location’s invariant in a run for
all time points of that flow. This introduces in the formula description of a flow step
an additional universally quantified variable, which has to be eliminated before we
apply the lazy theorem proving algorithm. The reason why we restrict ourselves to
(R,+, <, 0, 1) is that eliminating such a quantified variable can be expensive. Further-
more, the authors are not aware of a satisfiability checker for quantifier-free formulas
over (R,+, ·, <, 0, 1) that performs well in practice for large conjunctions of quantifier-
free formulas. However, the following optimizations will also be useful for this larger
class of hybrid systems, since they reduce the number of interactions of the SAT-checker
and the domain specific solver for the conjunctions.

3 Optimizing the Encoding

For improving the BMC approach for linear hybrid automata, we optimize the formula
encoding of finite runs. Our optimized encoding is tailored to the lazy theorem proving
algorithms. In order to give an impression of the impact of the different optimizations,
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Table 1. Experimental results for the railroad crossing example.

Formula encoding k = 5 k = 10 k = 15
with optimizations time (secs.) # expl. time (secs.) # expl. time (secs.) # expl.

ϕk 0.5 95 18.0 1047 234.5 6462

ϕk + §3.1 0.2 21 3.7 349 46.8 1922

ϕk + §3.1 + §3.2 0.2 24 2.8 242 35.5 1741

ψ2k+1 + §3.1 + §3.2 0.2 4 1.8 53 3.6 109

ψ1, . . . , ψ2k+1 + §3.1 + §3.2 0.7 14 5.1 144 14.0 396

ψtau
1,2k+1 + §3.1 + §3.2 0.4 14 0.9 21 6.8 169

we list in Table 1 the improvements for the railroad crossing example. We obtain similar
improvements for other examples of hybrid automata (further experiments are in §5).

Let H =
(
L, V, (jump�,�′)�,�′∈L, (flow �)�∈L, (inv �)�∈L, (init �)�∈L

)
be a linear

hybrid automaton with V = {v1, . . . , vn}.

3.1 Using Boolean Variables

The lazy theorem proving algorithm in Figure 2 and its variants can be easily extended
such that they also handle Boolean combinations of (in)equations and Boolean vari-
ables. Since the location set L is finite, we can use �lg |L|� Boolean variables for each
0 ≤ i ≤ k to encode the formulas at i = 	 with 	 ∈ L in ϕk . However, the algorithm
in Figure 2 replaces (in)equations by fresh Boolean variables; for each 0 ≤ i ≤ k, this
requires |L| Boolean variables for the atomic formulas at i = 	 with 	 ∈ L.

Encoding finite sets by Boolean variables is not new. However, we want to point
out the benefit of using Boolean variables for the lazy theorem proving algorithm. The
Boolean encoding of locations has two advantages over the encoding by equations of the
form at i = 	: The first advantage is that we need exponentially less Boolean variables.
The more important advantage is the following. A satisfying assignment of abs(ϕk)
may assign the corresponding Boolean variables for the equations at i = 	 and at i = 	′

with 	 �= 	′ both to true. Such a conflict is not discovered until we call the solver
for conjunctions of (in)equations. With Boolean location encoding such conflicts are
already discovered by the SAT-solver. This results in less interaction of the SAT-solver
and the solver for conjunctions of (in)equations. In particular, note that when using the
Boolean encoding of the locations, the assignments returned by the SAT-solver always
describe a path in the location graph of the hybrid automaton.

Analogously to the Boolean encoding of locations we can use Boolean variables for
all system variables with a finite domain. In order to keep formulas readable, we still
write formulas like at i = 	 as abbreviation for their Boolean encodings.

3.2 Excluding Bad and Initial State Loops

Another optimization is to require that we do not visit an initial state twice and only the
last state violates the specification. This means, we add to ϕk the two conjuncts∧

0<i≤k

∧
�∈L ¬

(
at i = 	 ∧ init �(vi)

)
and

∧
0≤i<k safe(si) .

This optimization has already been proposed in [21] for finite state systems.
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It is worth mentioning that the speed-up due to this optimization heavily depends on
the underlying linear hybrid automaton and the specification: For specifications contain-
ing Boolean variables (or Boolean encodings of locations), the number of assignments
for the Boolean abstraction can be reduced this way. On the other hand, if adding the
above conjuncts introduces (in)equations that do not occur in ϕk , then it is less likely
that this optimization improves the running times of the satisfiability checks. However,
it does not significantly slow them down in our examples.

3.3 Alternating Flows and Jumps

Since two successive flows of durations t and t′ can always be represented by a single
flow of duration t + t′, we can require that each flow is followed by a jump. This
restriction excludes irrelevant computations, and thus leads to a reduced number of
solutions for the Boolean abstractions of the formulas ϕk. Excluding successive flows
has already been proposed in [7].

Below we define a formula that describes computations with alternating flows and
jumps, thereby excluding successive time steps without any overhead. Note that we also
exclude runs with successive jumps. However, successive jumps can be expressed us-
ing flows of duration 0. Each computation can be rewritten to this form with alternating
flows and jumps. The advantage of alternating flows and jumps over excluding succes-
sive flows is discussed in Remark 1. For k ∈ N, we define ψk similar to ϕk where πk is
replaced by π′

k:

ψk(s0, . . . , sk, t1, . . . , tk) =(∨
�∈L(at0 = 	 ∧ init �(v0))

)
∧ π′

k(s0, . . . , sk, t1, . . . , tk) ∧ ¬safe(sk) ,

where π′
0(s0) = π0(s0), and for k > 0,

π′
k(s0, . . . , sk, t1, . . . , tk) =

π′
k−1(s0, . . . , sk−1, t1, . . . , tk−1) ∧

{
J(sk−1, sk) if k is even,

F (sk−1, tk, sk) otherwise.

Using the above definition for searching iteratively for counterexamples, it suffices
to start with k = 1 and to increase k in each iteration by 2: We start with a run con-
sisting of a single flow. In each iteration we extend the runs under consideration with a
jump that is followed by a flow. Since flows may have the duration 0, there is a coun-
terexample containing k jumps iff ψ2k+1 is satisfiable.

Recall that ϕk is satisfiable iff there is a counterexample of length k. Now, if there
is a counterexample of length less than or equal to k then there is also a counterex-
ample containing at most k jumps. However, not all runs with at most k jumps can be
represented by a run of length less than or equal to k. Consequently, the unsatisfiability
of ψ1, ψ3, . . . , ψ2k+1 implies the unsatisfiability of ϕ0, ϕ1, . . . , ϕk. The converse is not
true.

The formula ψ2k has twice as many variables as ϕk but the number of distinct
(in)equations is approximately the same. Note that for the satisfiability check the num-
ber of distinct (in)equations is relevant and not the number of variables. That means,
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using ψ2k+1 instead of ϕk has the advantage that with no overhead the first k iterations
check all runs of length less than or equal to 2k+ 1 with at most k jumps in addition to
the runs of length less than or equal to k, as it is also done by ϕk.

Moreover, the satisfiability check for ψ2k+1 is in most cases faster than the sat-
isfiability check for ϕk (see Table 1 and the experiments in §5). The reason is that
the number of calls of the solver for conjunctions of (in)equations in the lazy theorem
proving algorithms often reduces significantly.

Remark 1. When excluding successive flows we still have the choice of doing a jump
or a flow after we have done a jump. This choice is eliminated when we alternate be-
tween flows and jumps. In practice, eliminating this choice pays off. For instance, for
the hybrid automaton in Example 1, for every k ≥ 0 there is exactly one satisfying as-
signment for the Boolean abstraction of ψ2k+1when flows and jumps alternate. There-
fore, we have to check only one conjunction of (in)equations. In contrast, by excluding
successive flows we would have to cope with exponentially many assignments.

Note that applying the optimization in §3.2 together with the encoding using alter-
nating flows and jumps, we have to allow that the first two states can be initial states,
since there are runs that can be described only with a first flow having the duration 0.
Similarly, we must allow the last two states to violate the specification.

3.4 Introducing τ -Transitions

The BMC approach analyzes in each iteration runs of a certain length. That means, in
order to show all runs of a length less than or equal to k to be safe, we must check
the satisfiability of k + 1 formulas. In this section we develop a method to search for
counterexamples reachable by runs of length less than or equal to k in a single satis-
fiability check. To do so, we introduce jumps that do nothing, so-called τ -transitions.
Recall that flows may have the duration 0. We require that after a τ -transition only fur-
ther τ -transitions or flows of duration 0 are possible. Formally, for k, k′ ∈ N we define
ψtau

k′,k similar to ψk, where π′
k is replaced by π′′

k′,k:

ψtau
k′,k(s0, . . . , sk, t1, . . . , tk) =(∨

�∈L(at0 = 	 ∧ init �(v0))
)
∧ π′′

k′,k(s0, . . . , sk, t1, . . . , tk) ∧ ¬safe(sk) ,

where π′′
k′,k describes computations of length k allowing τ -transitions to occur after the

first k′ steps only. We define π′′
k′,k = π′

k for k′ ≥ k, and for k′ < k we define

π′′
k′,k(s0, . . . , sk, t1, . . . , tk)= π′′

k′,k−1(s0, . . . , sk−1, t1, . . . , tk−1)∧{(
(¬tauk−2 ∧ J(sk−1, sk)) ∨ tauk

)
if k is even,

F (sk−1, tk, sk) ∧ (tauk−1 → tk = 0) otherwise

where tauk is a shortcut for false if k ≤ 0 and sk−1 = sk, otherwise.
Assume that we already know that there are no counterexamples of length less than

or equal to k′, and we want to check for some k > k′ whether we can reach a bad state
in at most k steps. Instead of checking satisfiability of the formulas ψ2k′+3, . . . , ψ2k+1

or ψtau
1,2k+1 it suffices to check satisfiability of ψtau

2k′+3,2k+1.
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The formula ψtau
k′,k allows us more flexibility in the BMC approach with hardly any

overhead by increasing the length of the runs. The main advantage of using ψtau
k′,k is that

we only have to call the solver once, and guide the solver not to do unnecessary work,
i.e., we force the solver not to look for counterexamples that end in a bad state in less
than k′ steps.

For the railroad crossing example, the last two rows of Table 1 compare the sums
of running times for ψ2k+1, where k ranges from 0–5, 0–10, and 0–15 with the running
times of ψtau

1,2k+1 for k ∈ {5, 10, 15}.

4 Learning Explanations

The bottleneck of the lazy theorem proving algorithm and its less lazy variants for the
satisfiability check of a Boolean combination ϕ of (in)equations is the large number of
calls to the solver for conjunctions of (in)equations. In the BMC approach, the num-
ber of calls usually grows exponentially with respect to the bound k. In this section we
present a simple but effective method for reducing the calls of the solver for conjunc-
tions of (in)equations.

The idea is that we make use of the knowledge of the unsatisfiability of the ex-
planations that were generated during the previous satisfiability checks of the BMC
algorithm. Assume that there is no counterexample of length less than k, i.e., the for-
mulas ψ1, . . . , ψ2k−1 are unsatisfiable. Moreover, assume that γ1, . . . , γn are the ex-
planations that are generated during the satisfiability checks for ψ1, . . . , ψ2k−1. Since
the γis are unsatisfiable conjunctions of (in)equations, we can check satisfiability of
ψ2k+1 ∧

(∧
1≤i≤n ¬γi

)
instead of ψ2k+1 in the next iteration of the BMC algorithm.

Intuitively, this means that we “learn” for the next iteration the unsatisfiability of the
explanations γ1, . . . , γn.

In practice it turned out that just adding explanations from the previous satisfiability
checks does not result in much speed-up. However, we can do better. In order to describe
our method of exploiting the knowledge of the unsatisfiability of the explanations, we
need the following definitions.

Definitions. Let γ =
∧

1≤i≤m αi and γ′ =
∧

1≤i≤m′ α′
i be explanations. The expla-

nation γ (syntactically) subsumes γ′ if for every 1 ≤ i ≤ m there is a 1 ≤ j ≤ m′

such that αi and α′
j are syntactically equal. The explanation γ is minimal if for ev-

ery 1 ≤ j ≤ m, the conjunction
∧

1≤i≤m and i�=j αi is satisfiable. For an integer s,
shift(γ, s) denotes the formula γ where each variable index i occurring in γ is replaced
by i + s. The motivation of shifting indices in explanations is that the lazy theorem
proving algorithm often checks similar conjunctions of (in)equations that only differ by
the indices of the variables. Note that shifting the indices does not change the satisfi-
ability of a formula. Let min(γ) be the smallest index occurring in γ and let max(γ)
be the largest index occurring in γ. Figure 3 illustrates the possible range of values for
shifting the indices in the explanation γ up to some bound k. The set of all variations of
γ due to index shifting such that all indices are between 0 and k is defined as

SHIFT (γ, k) =
{
shift(γ, s)

∣∣ − min(γ) ≤ s ≤ k − max(γ) and s is even
}
.
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Fig. 3. Shifting an explanation γ.

Observe that we always shift indices by an even integer. An (in)equation in an explana-
tion γ describing a flow rarely describes also a jump. Since flows and jumps alternate
in the formula ψ2k−1, it is unlikely that for an odd s, the additional conjunct shift(γ, s)
prunes the search space in the satisfiability check of ψ2k+1 ∧ ¬shift(γ, s).

Learning Method. The learned explanations should not contain irrelevant (in)equa-
tions. Therefore we first minimize every explanation that is generated during a satisfia-
bility check. We do minimization greedily: We eliminate the first (in)equation α in an
explanation γ if γ without α is still unsatisfiable; otherwise we do not remove α. We
proceed successively with the other (in)equations in γ in the same way. After minimiz-
ing an explanation γ we delete all other explanations that are subsumed by γ. Finally,
using shifting, we generalize all the remaining explanations for the next BMC iteration.
In the kth BMC iteration we check satisfiability of the formula

ψlearning
2k+1 = ψ2k+1 ∧

(∧
γ∈E

∧
γ′∈SHIFT (γ,2k+1) ¬γ′) ,

whereE is the set of all minimized explanations that occurred in the first k−1 iterations
and that are not subsumed by other explanations.

We point out that with the additional conjunct
(∧

γ∈E

∧
γ′∈SHIFT (γ,2k+1) ¬γ′) we

not only learn explanations that have been generated during earlier satisfiability checks,
but due to index shifting we also apply them to the whole length of computations. Our
case studies have shown that the same conflicts occur in different iterations with shifted
indices, i.e., at another part of the computation sequence.

Due to our learning method, the Boolean abstractions of the formulas ψlearning
2k+1

often have very few satisfying assignments. For such formulas, it is often more efficient
to use the lazy theorem proving algorithm than the less lazy variant of it, since the
solver for conjunctions of (in)equations has to be called less often. We pursue the policy
that if in the last two iterations there are less than a threshold number (we use 50) of
explanations then we assign a large value to the frequency parameter (see §2.2) of ICS,
i.e., ICS switches to a “very” lazy variant of the lazy theorem proving algorithm. The
running times heavily depend on this threshold.

5 Experimental Results

We carried out tests for evaluating the BMC approach for linear hybrid systems with
the different encodings and techniques described in §3 and §4. Our test suite1 consists

1 A detailed description of our test suite and all the experimental results is in [1].
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Table 2. Maximal number of BMC iterations k.

Example Last iteration below 200 secs. of CPU time
naive optimized optimized+learning

Thermostat 70 > 1500 > 1500

Water-level monitor 39 > 1500 > 1500

Railroad crossing 14 52 872

Extended railroad crossing 10 12 80

Fischer’s protocol (2 processes) 10 15 1254

Fischer’s protocol (3 processes) 9 14 31

Bakery protocol (2 processes) 10 45 742

Nuclear reactor 20 82 > 1500

Audio-control protocol 20 62 357

of standard examples, e.g., examples that come with the HyTech tool and the Bakery
protocol2. All experiments were performed on a SUN Blade 1000 with 8 Gbytes of main
memory and two 900 Mhz UltraSparc III+ processors; each one with an 8 Mbyte cache.
We used ICS (version 2.0b) [16] for checking satisfiability of the formulas in the BMC
approach. The reason for us to use ICS was that in most cases ICS behaves at least as
good as other state-of-the-art solvers [15]. We expect similar running times with other
state-of-the-art solvers, like e.g., CVC Lite [8], since they use similar techniques as
described in §2.2 for checking satisfiability of Boolean combinations of (in)equations.

We report on experimental results for the following three different encodings of
finite runs: (A) the naive encoding as described in §2.1; (B) the optimized encoding as
described in §3.1–§3.3; (C) the optimized encoding as in (B) with additional learning
of explanations as described in §4. Table 2 lists for each example the maximal number
of BMC iterations for which every satisfiability check could be performed within a time
limit of 200 seconds.

Additionally, we recorded the running times for each iteration and the numbers of
explanations that are generated during the satisfiability checks. In the following, we
describe the outcome of our experiments separately.

Running Times. Figure 4 shows the running times for the encodings (A), (B), and (C)
for some of our examples with k ranging from 0 to 200.

Checking satisfiability of the formulas ϕk becomes impractical even for small ks.
For example, the satisfiability check for the railroad crossing example with k = 15
needs more than 230 seconds of CPU time. Although the optimization of the represen-
tation with alternating flows and jumps leads to a reduction of the running times, check-
ing satisfiability of ψ2k+1 is also limited to rather small ks. For the railroad crossing
example each satisfiability check for k < 53 needs less than 200 seconds; for k = 53
the satisfiability check exceeds our time limit of 200 seconds. The technique of learn-
ing explanations reduces the running times significantly. More importantly, the running
times of satisfiability checks often scale much better for our examples. For instance, for

2 The Bakery protocol is not a hybrid system but a discrete infinite state system. Our techniques
can also be used for the BMC approach of such systems.
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Fig. 4. Running times for the satisfiability checks for the naive encoding, the optimized encoding,
and the optimized encoding with learning explanations.

the railroad crossing example each satisfiability check for k ≤ 200 is under 11 seconds.
The running times for computing the set of explanations that are added to the formula
are not included. For the railroad crossing example, the sum of CPU times that ICS
needs for the explanation minimization amounts to 15 seconds in the first 12 iterations;
there are no explanations generated in later iterations. The reason for not including the
times for minimizing explanations and the subsumption checks is twofold: First, we
are interested in the speed-up of the satisfiability check that is due to the learning of
explanations. Second, the implementation of the minimization and subsumption check
is currently rather naive. For instance, we call ICS for each minimization step.

Number of Explanations. Additionally to the running times, we also recorded the
numbers of explanations that are generated during the satisfiability checks. The run-
ning times strongly correlate with the numbers of explanations. A detailed statistics on
the number of explanations for the railroad crossing example is listed in Table 3. We
obtained similar numbers for the other examples.

The second and third column in Table 3 list the numbers of explanations generated
during the satisfiability checks of ϕk and of ψ2k+1 with the optimizations of §3.1–§3.2,
respectively, for some different ks. The optimizations significantly reduce the number
of generated explanations. Further reduction can be reached by learning explanations,
as illustrated in the fourth column. Only a few explanations (column 5) are left over af-
ter minimization and removing subsumed explanations. The sizes of the explanations,
i.e., the numbers of (in)equations in the explanations (column 6) are reduced by min-
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Table 3. Number of explanations that are generated during the satisfiability checks for the railroad
crossing example.

naive optimized optimized+learning
# expl. # expl. # expl. # expl. mean expl. size mean expl. size

k after subsumption check after minimization

0 1 1 1 1 3 2

3 31 3 1 1 25 18

6 179 12 0 0 0 0

9 651 40 27 6 19 8

12 2500 20 9 2 21 13

15 6462 109 0 0 0 0

imization. Column 7 shows the mean sizes of the minimized explanations that remain
after subsumption. These sizes are often moderate in comparison to the bound k. For
the railroad crossing example with optimization and learning explanations, ICS only
generates explanations for k ∈ {0, . . . , 12}.

6 Related Work

BMC has been extended to verify properties for finite state systems [21] by introducing
termination conditions that are again checked by a SAT-solver. A generalization and
extension of these methods to infinite state systems is presented in [17]. We have also
applied our presented optimizations for checking termination conditions. We obtained
similar improvements as for the satisfiability checks of the counterexample search3.

A complementary method of learning conflicts discovered in previous satisfiability
checks is described in [23]. The conflicts that are learned by the two methods originate
from different kinds of inconsistencies. The method in [23] learns conflicts that are
discovered by the SAT-solver and our method learns conflicts that are discovered by the
domain-specific solver.

Our work is in the line of the works by Audemard et. al. [7, 6] and by Sorea et. al.
[22, 16] on the BMC approach for timed systems using lazy satisfiability solvers for
Boolean combinations of (in)equations. The papers [7] and [22] extend the BMC ap-
proach to timed automata for properties written as LTL formulas. For simplicity, we
only considered state properties. The paper [7] proposes several optimizations for en-
coding finite runs of timed systems. For instance, Audemard et. al. avoid successive
flows and encode some form of symmetry reduction. The symmetry reduction only ap-
plies to certain timed systems, e.g., for systems consisting of identical components. As
explained in Remark 1 in §3.3, alternating between flows and jumps is superior to ex-
cluding successive flows. Alternating between flows and jumps also appears in [22] with
a different motivation. Sorea argues that alternation guarantees nonzenoness and often
leads to smaller completeness thresholds for timed automata. In contrast, our motiva-
tion is that alternating between flows and jumps accelerates lazy satisfiability solving.
We show that alternation significantly speeds up the satisfiability checks. The papers [6,
16] extend and generalize the work in [7, 22].

3 Due to space limitations we omit a description on checking termination conditions. Details
and the experimental results are in [1].
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In [19] bounded-length verification problems for timed automata are translated into
formulas in difference logic. Another approach of BMC for timed automata is presented
in [25]. In contrast to the work by Audemard et. al., Sorea et. al., and ours, the core of
their work is a reduction from the BMC problem for timed automata to a SAT problem
exploiting the region graph construction for timed automata.

7 Conclusion

In this paper we presented complementary optimizations for improving the BMC ap-
proach for linear hybrid automata and explained why these optimizations speed-up lazy
satisfiability solving. Experimental results substantiate the benefit of the optimizations.
The speed-up stems from reducing the interactions of the SAT-solver used as well as
the domain-specific solver. Our first optimization tunes the encodings of finite runs of
linear hybrid automata and the second optimization speeds up the satisfiability checks
by learning generalized conflicts. The learning technique can also be used in the BMC
approach for other classes of infinite state systems.

Other verification tools for linear hybrid systems, like the model checker HyTech,
are faster on some of our test examples. One reason is that, on small examples, the
reachable set computation terminates already after a few iterations. However, many
larger systems cannot be handled by model checkers due to state explosion. The BMC
approach for hybrid system verification is still in its infancy, but this paper shows, that
there is a large potential for further improvements to be successful also for larger ex-
amples.

Our future work includes developing a tighter integration of generalized conflict
learning and satisfiability solving. One task here is to develop methods that determine
the usefulness of conflicts in later satisfiability checks and data structures that efficiently
store generalized conflicts with fast look-ups. We also want to develop a more dynamic
adjustment of the “laziness” in the satisfiability checks. Moreover, minimizing expla-
nations is a crucial subtask in lazy satisfiability solving. At the moment, minimization
is done greedily. Other methods for explanation minimization have to be developed.
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412 Erika Ábrahám et al.

4. R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems.
IEEE Transactions on Software Engineering, 22:181–201, 1996.

5. G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani. A SAT based ap-
proach for solving formulas over boolean and linear mathematical propositions. In Proc. of
CADE’02, volume 2392 of LNAI, pages 195–210, 2002.

6. G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying industrial hybrid sys-
tems with MathSAT. In Proc. of BMC’04, 2004.

7. G. Audemard, A. Cimatti, A. Korniłowicz, and R. Sebastiani. Bounded model checking for
timed systems. In Proc. of FORTE’02, volume 2529 of LNCS, pages 243–259, 2002.

8. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. In Proc. of CAV’04, volume 3114 of LNCS, pages 515–518, 2004.

9. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model checking. Ad-
vances in Computers, 58, 2003.

10. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In
Proc. of TACAS’99, volume 1579 of LNCS, pages 193–207, 1999.

11. A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties of a PowerPCTM

microprocessor using symbolic model checking without BDDs. In Proc. of CAV’99, volume
1633 of LNCS, pages 60–71, 1999.

12. E. Clarke and E. Emerson. Design and synthesis of synchronisation skeletons using branch-
ing time temporal logic specifications. In Proc. of the Workshop on Logic of Programs 1981,
volume 131 of LNCS, pages 244–263, 1982.

13. F. Copty, L. Fix, R. Fraer, E. Guinchiglia, G. Kamhi, and M. Vardi. Benefits of bounded
model checking in an industrial setting. In Proc. of CAV’01, volume 2102 of LNCS, pages
436–453, 2001.

14. L. de Moura and H. Rueß. Lemmas on demand for satisfiability solvers. In Proc. of SAT’02,
pages 244–251, 2002.

15. L. de Moura and H. Rueß. An experimental evaluation of ground decision procedures. In
Proc. of CAV’04, volume 3114 of LNCS, pages 162–174, 2004.

16. L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model checking
over infinite domains. In Proc. of CADE’02, volume 2392 of LNAI, pages 438–455, 2002.

17. L. de Moura, H. Rueß, and M. Sorea. Bounded model checking and induction: From refuta-
tion to verification. In Proc. of CAV’03, volume 2725 of LNCS, pages 14–26, 2003.

18. T. Henzinger. The theory of hybrid automata. In Proc. of LICS’96, pages 278–292, 1996.
19. P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, N. Jain, and O. Maler. Verification of timed

automata via satisfiability checking. In Proc. of FTRTFT’02, volume 2469 of LNCS, pages
225–244, 2002.

20. J. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In Proc. of the 5th International Symposium on Programming 1981, volume 137 of LNCS,
pages 337–351, 1982.

21. M. Sheeran, S. Singh, and G. Stalmårck. Checking safety properties using induction and a
SAT-solver. In Proc. of FMCAD’00, volume 1954 of LNCS, pages 108–125, 2000.

22. M. Sorea. Bounded model checking for timed automata. Electronic Notes in Theoretical
Computer Science, 68, 2002.

23. O. Strichman. Accelerating bounded model checking of safety properties. Formal Methods
in System Design, 24(1):5–24, 2004.

24. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of Califor-
nia Press, Berkeley, 2nd edition, 1951.
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Abstract. We are concerned with the verification of certain properties,
such as freedom from deadlock, for parallel programs that are written
using the Message Passing Interface (MPI). It is known that for MPI
programs containing no “wildcard receives” (and restricted to a certain
subset of MPI) freedom from deadlock can be established by considering
only synchronous executions. We generalize this by presenting a model
checking algorithm that deals with wildcard receives by moving back
and forth between a synchronous and a buffering mode as the search
of the state space progresses. This approach is similar to that taken by
partial order reduction (POR) methods, but can dramatically reduce the
number of states explored even when the standard POR techniques do
not apply.

1 Introduction

It is well-known that finite-state verification techniques, such as model checking,
suffer from the state explosion problem: the fact that the number of states of a
concurrent system may – and often does – grow exponentially with the size of the
system. Many different approaches have been studied to counteract this difficulty.
These include partial order reduction (POR) methods, data abstraction, program
slicing, and state compression techniques, to name only a few.

For the most part, these approaches have been formulated in very general
frameworks. Their generality is both a strength and a weakness: the methods
can be broadly applied, but may miss opportunities for reduction in specific situ-
ations. This observation has led to interest in more domain-specific approaches.
The idea is to leverage knowledge of the restrictions imposed by a particular
programming domain, or of common idioms used in the domain, in order to
gain greater reductions than the generic algorithms allow. An example of this
approach for concurrent Java programs is given in [2], where analysis that iden-
tifies common locking patterns, among other things, is exploited to dramatically
improve the generic POR algorithms.
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This paper is concerned with the domain of parallel programs that employ the
Message Passing Interface (MPI). The MPI Standard [9,10] specifies the syntax
and semantics for a large library of message passing functions with bindings in
C, C++, and Fortran. For many reasons – portability, performance, the broad
scope of the library, and the wide availability of quality implementations – MPI
has become the de facto standard for high-performance parallel computing. In
addition, we focus on a particular class of properties of MPI programs, which we
call halting properties : claims on the state of a program whenever execution halts,
whether due to deadlock, or to normal termination. Freedom from deadlock is
an example of a halting property; another would be an assertion on the values
of variables when a program terminates.

Some explanation of the most essential MPI functions is required for what
follows. The basic MPI function for sending a message to another process is
MPI_SEND. To use it, one must specify the destination process and a message
tag, in addition to other information. The corresponding function for receiving a
message is MPI_RECV. In contrast to MPI_SEND, an MPI_RECV statement may
specify its source process, or it may use the wildcard value MPI_ANY_SOURCE,
indicating that this statement will accept a message from any source. Similarly,
it may specify the tag of the message it wishes to receive, or it may use the
wildcard value MPI_ANY_TAG. A receive operation that uses either or both
wildcards is called a wildcard receive. The use of wildcards and tags allows for
great flexibility in how messages are selected for reception.

Previous work has established that if a program (restricted to a certain subset
of MPI) contains no wildcard receives, then a suitable model M of that program
can be constructed with the following property: M is deadlock-free if, and only if,
no synchronous execution of M can deadlock [12, Theorem 7.4]. This is exactly
the kind of result we are after, as the need to represent all possible states of
message channels is often a significant source of state explosion. Unfortunately,
wildcard receives are common in actual MPI programs, and the theorem may
fail if the hypothesis on wildcard receives is removed [12, Sec. 7.3].

The approach of this paper generalizes the earlier result in three ways. First,
it shows that the hypothesis forbidding wildcard receives may be relaxed to allow
the use of MPI_ANY_TAG, with no ill effects. Second, the range of properties is
expanded to include all halting properties. But most importantly, it provides a
model checking algorithm that deals with MPI_ANY_SOURCE by moving back
and forth between a synchronous and a buffering mode as the search of the state
space progresses. This approach is similar to that taken by POR methods, but
can dramatically reduce the number of states explored even when the standard
POR techniques do not apply.

The discussion proceeds as follows. Section 2 establishes the precise defini-
tion of a model of an MPI program, and of the execution semantics of such
a model. The definition of a halting property and the statement of the main
theorem are given in Sec. 3. Section 4 deals with consequences of the main theo-
rem. These include a bounded model checking algorithm for halting properties;
the consequences for programs that do not use MPI_ANY_SOURCE are also ex-
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plored. Section 5 discusses the relationship with the standard POR techniques.
Results of an empirical investigation are presented in Sec. 6, and conclusions
are drawn in Sec. 7. Proofs of the theorems, a description of the program and
model for each example, complete MPI/C source code for the examples, and all
experimental results can be downloaded from http://laser.cs.umass.edu/
~siegel/projects.

2 Models of MPI Programs

For the purposes of this paper, an MPI program consists of a fixed number
of concurrent processes, each executing its own code, with no shared variables,
that communicate only through the MPI functions. The precise notion of a model
of such a program is defined below. While there are many issues that arise in
creating models from code, these are beyond the scope of this paper, and the
reader is referred to [12] for a discussion of this subject and some examples.
It is argued there that this notion of model suffices to represent MPI_SEND,
MPI_RECV, MPI_SENDRECV (which concurrently executes one send and one
receive operation), as well as the 16 collective functions, such as MPI_BCAST,
MPI_ALLREDUCE, etc. The definition of receiving states here is slightly more
general, in order to accommodate a new way to deal with tags, explained below.

2.1 Definition of a Model of an MPI Program

An MPI context is a 7-tuple

C = (Proc,Chan, sender, receiver,msg, loc, com).

The first two components are finite sets, representing the set of processes, and
the set of communication channels, respectively. The next two components are
functions from Chan to Proc; they define the sending and receiving process for
each channel. The function msg assigns, to each c ∈ Chan, a nonempty set
msg(c); this is the set of messages that can be sent over channel c. The final two
components are functions of Proc. For p ∈ Proc, loc(p) is a finite set representing
the set of local events for p, while com(p) is defined to be the set of communication
events for p, namely, the set of send and receive symbols

{c!x, d?y | c, d ∈ Chan, x ∈ msg(c), y ∈ msg(d), sender(c) = p = receiver(d)}.

Finally, for all p, q ∈ Proc, we assume loc(p) ∩ com(q) = ∅, and p �= q ⇒
loc(p) ∩ loc(q) = ∅.

Let p ∈ Proc. An MPI state machine for p under C is a 6-tuple

Mp = (Statesp,Transp, src, des, label, startp)

where Statesp and Transp are sets, src and des are functions from Transp to
Statesp, label is a function from Transp to loc(p) ∪ com(p), and startp ∈ Statesp.
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We do not use the subscript p for the functions src, des, and label, because the
process p will always be clear from the context. Finally, we require that every
state u must fall into one of 5 categories, which are determined by the transitions
departing from u. First, we define the following:

R(u) = {(d, y) | d ∈ Chan, y ∈ msg(d), ∃t ∈ Transp : src(t) = u ∧ label(t) = d?y}
Q(u) = {d ∈ Chan | ∃y ∈ msg(d) : (d, y) ∈ R(u)}
Rd(u) = {y ∈ msg(d) | (d, y) ∈ R(u)} (d ∈ Q(u)).

Now the 5 possibilities for u are as follows:

1. u is a final state: there are no transitions departing from u,
2. u is a local-event state: there is at least one transition departing from u, and

the transitions departing from u are labeled by local events for p,
3. u is a sending state: there is precisely one transition departing from u and

it is labeled by a send event for p,
4. u is a receiving state: there is at least one transition departing from u, and

the transitions departing from u are labeled by distinct receive events for p,
or

5. u is a send-receive state (see Fig. 1): R(u) �= ∅, and there is a c ∈ Chan with
sender(c) = p, an x ∈ msg(c), a state u′, and states v(d, y) and v′(d, y) for
all (d, y) ∈ R(u), such that the following all hold:
(a) the set of transitions departing from u consists of one transition to u′

whose label is c!x, and, for each (d, y) ∈ R(u), one transition labeled d?y
to v(d, y),

(b) for each (d, y) ∈ R(u), there is precisely one transition departing from
v(d, y), it is labeled c!x, and it terminates in v′(d, y), and

(c) for each (d, y) ∈ R(u), there is a transition from u′ to v′(d, y), it is labeled
d?y, and these make up all the transitions departing from u′.

The point of the send-receive state is to model the MPI_SENDRECV function,
which executes one send and one receive operation concurrently. This is modeled
by allowing the send and receive to happen in either order.

Finally, a model M of an MPI program is a pair (C,M), where C is a context
and M is a function that assigns, to each p ∈ Proc, an MPI state machine Mp

for p under C, such that Statesp ∩ Statesq = ∅ = Transp ∩ Transq for p �= q.
Given an MPI program, one may construct a model using one channel cp,q,

with sender(cp,q) = p and receiver(cp,q) = q, for each (p, q) ∈ Proc × Proc. To
translate a receive statement r it suffices to specify the sets Q(u) and Rd(u) for

d?1
d?2 e?α

c!1

c!1
c!1

c!1

d?1
d?2

e?α

u

v(d, 1) v(d, 2) v(e, α) u′

v′(d, 1) v′(d, 2) v′(e, α)

Fig. 1. A send-receive state u with Q(u) = {d, e}, Rd(u) = {1, 2}, Re(u) = {α}.
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the receiving state u corresponding to r. If r occurs in process q and specifies its
source p, then we let Q(u) = {cp,q}. If r instead uses MPI_ANY_SOURCE then
we let Q(u) = {cp,q | p ∈ Proc}. We may assume that the tags have been encoded
in the messages, so that to each message x is associated an integer tag(x). Now
if r specifies a tag t, we let

Rd(u) = {x ∈ msg(d) | tag(x) = t} (d ∈ Q(u)).

If instead r uses MPI_ANY_TAG, we take Rd(u) = msg(d). We will see below
that the execution semantics in effect allow a receive operation to choose non-
deterministically among the receiving channels Q(u), but, for a given d ∈ Q(u),
it must pick out the oldest message in d with a matching tag. This corresponds
exactly to the requirements of the MPI Standard [9, Sec. 3.5].

2.2 Execution Semantics of a Model of an MPI Program

Let N = {0, 1, . . .} and N∞ = N∪{∞}. A sequence S = (x1, x2, . . .) of elements
of a set X may be either infinite or finite. We write |S| for the length of S. If A
is a subset of a set B, and S is a sequence of elements of B, then the projection
of S onto A is the sequence that results by deleting from S all elements that
are not in A. If S is any sequence and n ∈ N, then Sn denotes the sequence
obtained by truncating S after the nth element.

Let M be a model of an MPI program. A global state σ of M is a pair of
functions (u, α), where u assigns, to each p ∈ Proc, a state up ∈ Statesp, and α
assigns to each c ∈ Chan a finite sequence αc of elements of msg(c). The sequence
represents the pending messages for c: messages that have been sent but not yet
received. We define Pendingc(σ) = αc and statep(σ) = up. The initial state of M
is the global state for which up = startp for all p, and αc is empty for all c.

Suppose σ = (u, α) and σ′ = (u′, α′) are global states of M, p ∈ Proc,
t ∈ Transp, and that src(t) = up, des(t) = u′

p, uq = u′
q for q �= p, and one of the

following holds:

1. label(t) ∈ loc(p) and α = α′,
2. there exist c ∈ Chan and x ∈ msg(c) such that label(t) = c!x, α′

c is obtained
by appending x to the end of αc, and α′

d = αd for d �= c, or
3. there exist d ∈ Chan and y ∈ msg(d) such that label(t) = d?y, y is the first

element of the projection of αd onto Rd(up), α′
d is obtained by deleting the

first occurrence of y from αd, and α′
c = αc for c �= d.

Then we call the triple τ = (σ, σ′, t) a simple global transition of M, and we
define label(τ) = label(t).

Suppose now that σ, σ′, and σ′′ are global states, t1, t2 are transitions, c ∈
Chan, x ∈ msg(c), p = receiver(c), and that the following all hold:

1. label(t1) = c!x and label(t2) = c?x,
2. Pendingc(σ) contains no element of Rc(statep(σ)), and
3. (σ, σ′, t1) and (σ′, σ′′, t2) are simple global transitions.
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In this case we will refer to the 4-tuple τ̃ = (σ, σ′′, t1, t2) as a synchronous global
transition, as it corresponds to a synchronous MPI communication: a message
that is transferred directly from the sender to the receiver in one atomic step.
We do not want to think of τ̃ as “passing through” the intermediate state σ′,
but rather as leading directly from σ to σ′′. In particular, since Pendingc(σ) =
Pendingc(σ′′), τ̃ leaves all of the channels unchanged. We define label(τ̃ ) to be
the symbol c!?x.

The state graph of M is the ordered pair G = (S, T ), where S is the set of all
global states, and T is the set of all (simple and synchronous) global transitions.
Let src, des : T → S be the projections onto the first and second coordinates,
respectively. These give G the structure of a directed graph.

An event α is any element of {label(τ) | τ ∈ T }. We say that α is enabled at
the global state σ if there exists τ ∈ T with src(τ) = σ and label(τ) = α.

Given a path T = (τ1, τ2, . . .) in G, we define the atomic length of T to be
||T || =

∑
i ε(τi), where ε(τ) = 1 if τ is simple and ε(τ) = 2 if τ is synchronous.

This is sometimes a more natural measure of length than |T |. A trace of M is
any path in G originating in the initial state. Finally, If T originates in the global
state σ and c ∈ Chan, we define

maxlenc(T ) = max
i

{|Pendingc(σ)|, |Pendingc(des(τi))|}.

3 The Main Theorem

The main theorem concerns halting properties so we first explain what these
are. In general, a concurrent program is considered to be in a halted state if
every process has become permanently blocked. A receive statement in an MPI
program blocks, as one would expect, as long as there is no pending message
that matches the parameters of that statement. However, the circumstances
under which a sending statement blocks are more subtle. Typically, one would
assume that each channel c has some fixed size ν(c) ∈ N, and declare that a send
on c blocks whenever the length of c equals ν(c). The MPI Standard, however,
imposes no such bounds, but instead declares that a send may block at any time,
unless the receiving process is at a state from which it can receive the message
synchronously [9, Sec. 3.4]. We thus make the following definition for a model
M:

Definition 1. A global state σ of M is potentially halted if no receive, local, or
synchronous event is enabled at σ.

We use the word “potentially” because a program in such a state may or may
not halt, depending on the particular choices made by the MPI implementation.

For any predicate f on the global states of M, and any subgraph H of G that
contains the initial state σ0, let Π(H, f) denote the statement for all states σ
reachable in H from σ0, f(σ). Let phalt be the predicate defined by phalt(σ) ⇔
σ is potentially halted.
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Definition 2. A halting predicate is a state predicate f of the form phalt ⇒ q,
where q is any state predicate. A halting property is a statement of the form
Π(H, f), where f is a halting predicate.
An example of a halting property is given by taking q = false, the predicate that
holds at no state. For this q, Π = Π(G, f) states that M never halts. One could
also take q = term, the predicate that is true when all processes are at final
states. Then Π states that whenever M halts, all processes have terminated,
i.e., M is deadlock-free. More generally, one could take q to be the predicate
termΣ that holds when all processes in a certain subset Σ are at final states.
One could also let q be the conjunction of termΣ with another predicate – for
example, a predicate that holds when variables in the processes in Σ, whose
values are encoded in the local states, have particular values. In this case Π
would say that whenever the program halts, all processes in Σ have terminated
and the variables have the specified values.

To motivate what follows, consider a model [12, Fig. 5] of three processes
with state machines as follows:

c?1

d?1

d?1

d?1

c!1 e!1 e?1 d!1

Suppose we try to verify freedom from deadlock for this model by considering
only synchronous executions. Then we only explore the sequence (c!?1, e!?1, d!?1),
which terminates normally, and miss the deadlocking sequence (c!1, e!?1, d!?1).
We can try to explain why we missed the deadlock in the following way. At the
initial state, process p = receiver(c) is at a wildcard receive u with Q(u) = {c, d}.
At this state, c is ready to receive a message (synchronously) but d is not. By
pursuing only synchronous communication, we never get to see the state in which
p is at u and a receive on d is enabled.

The solution is to consider all enabled events (not just synchronous ones)
whenever a process p is at a wildcard receive u, unless u has become “urgent.”
By this we mean that for each c ∈ Q(u), either a (synchronous or buffered)
receive on c is enabled or we know that a receive on c can never become enabled.
Note that once a receive on c becomes enabled, it will remain enabled until p
executes a transition, since p is the only process which may remove a message
from c. Since no receive event can be enabled at a potentially halted state σ, the
only way we can arrive at σ is if p eventually executes. Now if u is urgent, no new
events in p can become enabled, and so one of the currently enabled events in
p must occur if the system is to arrive at σ. Since those events are independent
of events in other processes, we might as well explore the paths that result
from scheduling each of those enabled events immediately. (If two events are
independent then neither can disable the other and the effect of applying one
and then the other does not depend on the order in which they are applied.)
Local event states are similar, but they are always urgent since the local events
are always enabled. The following definitions attempt to make all of this precise:
Definition 3. Let σ be a global state of M, p ∈ Proc, and u = statep(σ). We
say p is at an urgent state in σ if either u is a local event state, or all of the
following hold:



420 Stephen F. Siegel

1. u is a receiving or send-receive state,
2. for all d ∈ Q(u), at least one of the following holds:

(a) there is an event of the form d?y or d!?y enabled at σ, or
(b) statesender(d)(σ) is a final state,
and

3. there is at least one d ∈ Q(u) for which 2(a) holds.

We define Urgent(σ) to be the set of all p ∈ Proc such that p is at an urgent
state in σ. Finally, we say that σ is urgent if Urgent(σ) �= ∅.

Definition 4. A global transition τ is urgent for process p if τ has the form
(σ, σ′, t) or (σ, σ′, t′, t), where p ∈ Urgent(σ), t ∈ Transp, and label(t) is either a
local event or a receive.

Condition 2(b) of Definition 3 can be relaxed somewhat: all that is really required
is that sender(d) be in a state from which it can never reach a send on d. However,
the version that we have stated has the advantage that it is very easy to check.
Also, note that the third condition guarantees there is at least one enabled event
at an urgent state.

We now fix a total order on Proc. The reason for this will become clear: we
do not have to consider all urgent transitions departing from an urgent state,
but only those for a single process, and so we will just choose the least one.

Definition 5. Let T̃ denote the set of all global transitions τ for which either
src(τ) is not urgent, or τ is urgent for the minimal element of Urgent(src(τ)). Let
G̃ = (S, T̃ ).

Now we can state the main theorem:

Theorem 1. Given any path S in G from a global state σ0 to a potentially
halted global state σ, there exists a path T from σ0 to σ in G̃ such that ||T || =
||S||, |T | ≤ |S|, and maxlenc(T ) ≤ maxlenc(S) for all c ∈ Chan. In particular
Π(G, f) ⇔ Π(G̃, f) for any halting predicate f .

In light of the discussion above, it should come as no surprise that the proof
of Theorem 1 relies on many of the restrictions imposed by our domain and
property. For example, the fact that each channel has an exclusive receiving pro-
cess was used to show that once a receive event becomes enabled, it must remain
enabled until that process executes. The knowledge that the property could be
violated only if no receive were enabled was also used. The fact that a sending
state has exactly one outgoing transition also comes into play: if the sending state
had outgoing transitions on two different channels then a synchronous event that
was enabled on one channel could become disabled if the sending process were
to send on the other channel. These arguments withstand the introduction of
send-receive states only because the specific structure of those states guarantees
that the send event is independent of the receive events. Remove any of these
domain-specific restrictions, and Theorem 1 may fail.
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4 Consequences of the Main Theorem

4.1 The Urgent Algorithm

In general, the number of reachable states in G or G̃ may be very large (or even
infinite). So it is common practice to place upper bounds on the channel sizes,
or the search depth, in order to reach a conclusive result on at least a bounded
region of the state space. For these reasons we define the following concepts. Let
ν : Chan → N∞ and m ∈ N∞. Let Tν,m be the set of all global transitions that
occur in traces T that satisfy (i) ||T || ≤ m, and (ii) for all global states σ through
which T passes, and all c ∈ Chan, |Pendingc(σ)| ≤ ν(c). We let Gν,m = (S, Tν,m).

Let T �
ν,m be the set of all τ ∈ Tν,m such that τ ∈ T̃ and

if label(τ) = c!?x for some c, x then σ is urgent or |Pendingc(σ)| = ν(c), (1)

where σ = src(τ). Condition (1) is not strictly necessary, but it may provide
some additional reduction. The idea is that when σ is not urgent, it would be
redundant to consider synchronous transitions since we are already pursuing all
buffered sends and receives. An exception is made if a channel is full since then a
buffered send would not be enabled. Let G�

ν,m = (S, T �
ν,m). We have the following

consequence of Theorem 1:

Corollary 1. Given any path in Gν,m from a global state σ0 to a potentially
halted global state σ, there exists a path in G�

ν,m from σ0 to σ. In particular,
Π(Gν,m, f) ⇔ Π(G�

ν,m, f) for any halting predicate f .

If Statesp, Transp, and ν(c) are finite for all p ∈ Proc and c ∈ Chan, then
Tν,m and T �

ν,m are finite as well. It follows from Corollary 1 that we can ver-
ify a halting property in this case by performing a depth-first search of G�

ν,m.
Specifically, algorithm Urgent of Fig. 2 will find all reachable states in Gν,m for
which f does not hold. We assume Proc = {p1, . . . , pN} and p1 < · · · < pN . The
search is initiated by setting the global variable R to the empty set and calling
search(σ0, 0), where σ0 is the initial state. Function urgent transitions(σ, p) re-
turns the set of all τ ∈ T such that src(τ) = σ and τ is urgent for p. Function
standard transitions(σ,ν) returns the set of all τ ∈ T that satisfy (i) src(τ) = σ,
(ii) |Pendingc(des(τ))| ≤ ν(c) for all c, and (iii) label(τ) = c!?x ⇒ |Pendingc(σ)| =
ν(c). There is no need to specify ν for urgent transitions since an urgent transi-
tion can never increase the length of a channel.

Example. In a model of a client-server system with n clients (n ≥ 1), Proc =
{0, 1, . . . , n} with the natural order, Chan = {c1, d1, . . . , cn, dn}, msg(c) = {1}
for all c ∈ Chan, and sender(ci) = i = receiver(di), receiver(ci) = 0 = sender(di)
for 1 ≤ i ≤ n. For n = 2, the state machines for processes 0 (the server), 1, and
2, are respectively:

01 2

c1?1

d1!1

c2?1

d2!1

0 1

c1!1

d1?1

0 1

c2!1

d2?1
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1 function selected transitions(σ) /* returns {τ ∈ T �
ν,m | src(τ ) = σ} */

2 for i = 1 to N do
3 if pi ∈ Urgent(σ) then return urgent transitions(σ, pi) end if
4 end for;
5 return standard transitions(σ,ν)
6 end function;

7 procedure search(σ, l)
8 if l > m then return end if ;
9 R := R ∪ {σ};

10 if not f(σ) then report violation() end if ;
11 for all τ ∈ selected transitions(σ) do
12 if des(τ ) �∈ R then search(des(τ ), l + ε(τ )) end if
13 end for all
14 end procedure

Fig. 2. The Urgent Algorithm: depth-first search of G�
ν,m.

Let us see how the Urgent algorithm applies to this system for any ν and
m = ∞. We start with the initial state: this state is urgent for process 0, so we
explore the states resulting from the global transitions labeled ci!?1 for all i. For
any such i, the resulting state has process 0 in local state i, process i in local
state 1, and all other processes and channels unchanged. This state is urgent
for i, and so we explore the single transition di!?1. This returns us to the initial
state, which is already in R. Hence the algorithm explores a total of n+1 global
states, and 2n transitions. Notice also that, in this case, the search does not
explore any buffered communication, even though process 0 contains a wildcard
receive.

4.2 Source-Specific Models and Synchronous Traces

We say that M is source-specific if for every receiving and send-receive state
u in M, |Q(u)| = 1; this corresponds to an MPI program which never uses
MPI_ANY_SOURCE (though it may use MPI_ANY_TAG). We say that a path in
G is synchronous if it consists solely of local and synchronous transitions.

Let M be any model and σ a global state of M. If σ is urgent, then clearly
σ cannot be potentially halted. Now if M is source-specific, the converse is also
true. For if there is some c ∈ Chan and x ∈ msg(c) for which c?x or c!?x is
enabled at σ, then p = receiver(c) ∈ Urgent(σ), since Q(statep(σ)) = {c}.

Now suppose M is source-specific and T is a trace terminating in a poten-
tially halted state σ. By Theorem 1, there exists a trace T̃ = (τ1, . . . , τn) in G̃
terminating in σ, with n ≤ |T | and ||T̃ || = ||T ||. Let σk = des(τk) for 1 ≤ k ≤ n
and let σ0 be the initial state. Let i be the least integer for which σi is potentially
halted. For 0 ≤ j < i, σj is not potentially halted, which as we have seen means
that σj is urgent. This implies that τj+1 is a local event, synchronous, or receive
transition. But τj+1 cannot be a receive: if it were, there would have to be a
preceding send. In other words, T̃ i is synchronous. We have proved:
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Corollary 2. Let M be a source-specific model of an MPI program and T a
trace terminating in a potentially halted state σ. Then there exist i ∈ N and a
trace T̃ in G̃ that terminates in σ such that |T̃ | ≤ |T |, ||T̃ || = ||T ||, and T̃ i is
synchronous and terminates in a potentially halted state.

This leads to the following, which generalizes [12, Theorem 7.4]. Note that 0 is
used to denote the function on Chan which is identically 0. Note also that all of
the examples of halting predicates given in Sec. 3 satisfy the condition on q.

Corollary 3. Suppose M is a source-specific model of an MPI program, and
q is a state predicate satisfying q(σ) ⇒ q(σ′) for any simple global transition
(σ, σ′, t). Let f denote the predicate phalt ⇒ q, ν : Chan → N∞, and m ∈ N∞.
Then Π(Gν,m, f) ⇔ Π(G�

0,m, f).

5 Related Work

The literature on partial order reduction techniques is too large to summarize
here, but [1,4,11] and the references cited cover much of the ground. Persistent
set techniques [4, 5] form a family of POR methods that deal specifically with
freedom from deadlock. Those techniques associate, to each global state σ en-
countered in the search, a subset Tσ of the set of all transitions enabled at σ,
in such a way that the following condition holds: on any path in the full state
graph departing from σ, no transition dependent on a transition on Tσ can occur
without a transition in Tσ occurring first. (The word transition in this context
corresponds to a set of our global transitions.) The reduced search explores only
the transitions in Tσ, and so benefits whenever Tσ is a proper subset. If it is also
the case that Tσ is empty only when there are no enabled transitions at σ, then
we may conclude that the reduced search will explore all reachable deadlocked
states [4, Thm. 4.3].

It should be emphasized, however, that here “deadlocked state” is used in the
usual sense, to mean a state with no outgoing transitions. In our MPI context we
call such states absolutely halted. An absolutely halted state is certainly poten-
tially halted, but the converse is not always the case, and, in fact, the persistent
set POR algorithms may miss potentially halted states. Consider, for example,
the standard state graph (i.e., without the added synchronous transitions) aris-
ing from a model of an MPI program. For simplicity, let us assume the model
has no send-receive states. Now for any global state σ, we could declare σ to
be urgent if some process p were at either (i) a receiving state in which every
receiving channel had at least one pending matching message, (ii) a local-event
state, or (iii) a sending state. We could then let Tσ consist of the enabled events
for the least urgent process (or all enabled events if no process is urgent), and
this would satisfy the conditions of the previous paragraph. Consider a model
with Proc = {0, 1}, in the natural order, a local event λ in process 1, and with
state machines as follows:

c!1 d?1 λ d!1 c?1
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The model contains a potentially halted state σ1, obtained from the initial state
σ0 by executing λ. However, process 0 would be urgent at σ0, so we would have
Tσ0 = {c!1}. Hence the reduced search would not explore σ1, and in fact would
complete without encountering any potentially halted states.

We could attempt to correct this problem by simply not allowing the sending
states to be urgent, and it can in fact be shown that this would lead to an
algorithm that explored all potentially halted states. However, the algorithm
would miss many of the opportunities for reduction. Consider, for example, a
client server system with n clients. The system would not be in an urgent state
until every client had sent at least one request. In particular, the reduced search
would explore all possible states of the n request channels for which at least one
channel is empty.

Our approach solves this problem by adding the synchronous transitions
to the state graph and defining the Tσ to take advantage of those transitions
under the appropriate circumstances. This solution cannot, strictly speaking, be
characterized as a persistent set approach, since our Tσ do not necessarily satisfy
the persistent set condition. Consider, for example, a client-server system with
one client. At the initial state σ, our Tσ consists of the single transition labeled
c!?1. But the path c!1, c?1 is also possible from σ, and both c!1 and c?1 are
dependent on c!?1.

Other POR techniques preserve more complex temporal properties. The am-
ple set framework [1, Chap. 10] is an example of these. Here, the Tσ must satisfy
several conditions in addition to those described above for persistent sets. If all
the conditions are met, then the reduced state graph is guaranteed to be stutter-
equivalent to the full state graph, and hence can be used to verify any LTL−X

property [1, Cor. 2 and Thm. 12].
Returning to the MPI context, any halting property can be expressed as an

LTL−X property of the form �(phalt ⇒ q), and therefore, in theory, is amenable
to the ample set approach. Now, however, another problem arises. In the ample
set framework, a transition is invisible if it can never change the truth value of
a predicate (such as phalt) used in the LTL formula. The invisibility condition
requires that whenever Tσ is a proper subset of the set of all transitions enabled
at σ, every transition in Tσ is invisible. Since any local event, receive, or syn-
chronous transition might change phalt from false to true, these transitions are
not necessarily invisible, and therefore an ample set algorithm would not include
them in a Tσ (unless the Tσ consisted of all enabled transitions). This eliminates
most, if not all, of the opportunities for reduction.

As it turns out, the ample set invisibility condition is unnecessarily strict, and
all that is really required is that a transition never change phalt from true to false,
which is certainly the case for local event, receive, and synchronous transitions,
since they are not even enabled at potentially halted states. (Notice that send
transitions can change phalt from true to false, which explains why it really
would be a mistake to treat them as invisible.) Another condition, concerning
cycles in the reduced graph, can also be safely ignored in our context. After
these modifications, however, the ample set approach essentially reduces to the
persistent set approach, discussed above.
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Another deadlock-preserving reduction method is the sleep set technique [3,
4]. Sleep sets can be used in conjunction with the persistent set approach to
further reduce the numbers of states and transitions explored. The idea is to
associate to each state a dynamically changing set of transitions that can be
safely ignored even if they appear in the persistent set for that state. It is possible
that this method could be adapted to work with our urgent algorithm, an idea
we hope to explore in future work.

6 Experimental Results

Eight scalable C/MPI programs were used for our empirical investigation. They
range from standard toy concurrency examples to more complex programs from a
well-known book on MPI [6]. For each, we constructed by hand an abstract model
appropriate for verifying freedom from deadlock. These models were encoded as
certain Java classes that can be read by the MPI-Optimized Verifier (Mover),
a Java tool developed for this project. Given the model and an object describing
a halting property, Mover can either (A1) execute a generic depth-first search
of the state space to verify the property or report any violations, (A2) execute
the Urgent algorithm to do the same, or (A3) produce a Promela model that can
be used by the model checker Spin [7] to do the same.

The processes and channels in the Promela model correspond exactly to
those in the MPI model. There are no variables in the Promela, other than
the channels. The local states of a process are encoded by labeled positions
in the code. States with multiple departing transitions are encoded using the
Promela selection construct (if. . . fi). A never claim is inserted corresponding
to the LTL formula <>!(univenabled || terminated), where univenabled is
defined to hold whenever a synchronous, local, or receive event is enabled (the
definition refers to the lengths of the channels and the positions of the local
processes), and terminated is defined to hold when all terminating processes
are at final states. Spin uses a POR algorithm that is similar to the ample set
technique [8]. It might seem appropriate to use Spin’s xr and xs declarations,
which declare a process to have exclusive read or write access to a channel and
provide information to help the POR algorithm. However, this is not allowed,
as the never claim makes reference to all the channels, and in fact an attempt
to use those declarations causes Spin to flag the error. This is Spin’s way of
recognizing that the communication events may not be invisible with respect to
the property.

(A different way to use Spin to verify freedom from deadlock for MPI pro-
grams is described in [13]. In that approach, every send is immediately followed
by a non-deterministic choice between blocking until the channel becomes empty
and proceeding without blocking. Freedom from deadlock can then be checked in
the usual way with Spin, i.e., without a never claim. While we have not carried
out an extensive comparison, it appears that the state-explosion is much worse
for that approach than for the approach presented here, due to all the new states
introduced by the non-deterministic choices.)
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We applied all three approaches to each of the examples, increasing system
size n until n = 200 or we ran out of memory. In each case we recorded the
numbers of states and transitions explored, and the time and memory used. We
used the Java2 SDK 1.4.2 with options -Xmx1900M and Spin 4.2.0, with options
-DCOLLAPSE -DMEMLIM=2800 -DSAFETY; the maximum search depth also had to
be increased in some cases. The experiments were run on a Linux box with a
2.2 GHz Xeon processor and 4 GB of memory. In the one case where a deadlock
was found, the searches were stopped after finding the first counterexample.

Figures 3 and 4 show the number of states explored. We first observe that
the numbers for A1 and A3 are exactly equal in all cases where both searches
completed. Since A1 explores all reachable states, this means that Spin’s POR
algorithm (on, by default) made no difference in the number of states explored.
This is not surprising, since there are no invisible events for the algorithm to
exploit. For the one case where a violation exists, Spin did find the violation
much sooner than either Mover algorithm (Fig. 3(d)). This appears to be just
a fluke related to process ordering: we ran the same problem but reversed the
order in which the processes were declared (for both tools), and the results were
almost exactly reversed.

For the Client-Server, Producer-Consumer, and the two exchange examples,
the performance of A2 was the most impressive, reducing the complexity class
from one that is apparently exponential to one that is linear. For Monte Carlo
and Master-Slave, both functions appear to be exponential, but the exponent for
the A2 function is lower (significantly so for Master-Slave), allowing it to scale
further. In one case (Fig. 3(c)), the use of A2 makes almost no difference, but
there the number of reachable states was quadratic to begin with so there was
not much room for improvement. The Master Producer-Consumer proved the
most difficult: there seemed to be a small constant reduction but no approach
could scale beyond n = 4.

For Producer-Consumer, we give on one graph (Fig. 4, left) the results for
various values of ν. This graph demonstrates the impact of channel size on state
explosion for systems that can buffer many messages. For ν = 0, however, the
number of reachable states for the system of size n is just n+1, and A2 searches
that number of states for any value of ν, since the system contains no wildcard
receives. We also give the time for the Master-Slave example; typical of these
examples, the pattern is similar to that for the number of states.

In summary, the Urgent algorithm often dramatically reduced the number
of states explored. It can never increase that number, as long as the search is
carried to completion, nor did it appear to have a significant impact on the time
required to complete the search. In contrast, the POR algorithm implemented
in Spin had no effect on the number of states explored.

7 Conclusions and Future Work

We have presented a POR-like optimization to the standard model checking
algorithm for verifying halting properties of MPI programs. The algorithm seeks
to control state explosion by limiting the number of transitions explored that
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Fig. 3. Graphs of y = log10(f(n)), where f(n) is the number of states explored for the
system of size n, with channel size bound ν.
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Fig. 4. Producer-Consumer states for ν ∈ {0, 1, . . . , 4} (log10 of number of states, left),
and Master-Slave time (log10 of number of seconds, right).

involve buffering messages. The technique also interacts well with the imposition
of bounds on both the search depth and the sizes of the communication channels.

Earlier work showed that it suffices to consider only synchronous communi-
cation when verifying freedom from deadlock for certain MPI programs with no
wildcard receives. We have shown how that result follows easily from the theo-
rem that justifies our optimization. Moreover, we have shown that the restriction
that forbids wildcard receives may be relaxed to allow the use of MPI_ANY_TAG.

We have demonstrated the effectiveness of our algorithm on several scalable
examples, including some with wildcard receives. However, a better validation
of effectiveness would utilize more “realistic” examples. There is no guarantee
that scaling our simple examples presents the same kind of challenge to the
Urgent algorithm that an actual production-level MPI code would. Due to the
difficulty of creating models by hand, this task would benefit from an automated
MPI model extractor. We intend to develop such a tool, and use it to verify not
only freedom from deadlock, but also other halting properties. For example, we
would like to model the arithmetic computations performed by an MPI program
symbolically, and check that at termination the program has arrived at the
correct arithmetic result.

Finally, the study of domain-specific approaches may also shed light on the
general framework. It would be interesting to see if the ample set framework,
for example, could be extended to incorporate the idea of switching between a
synchronous and a buffering mode, generalizing our MPI-specific approach.
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Abstract. We present an analysis to verify abstract set specifications for pro-
grams that use object field values to determine the membership of objects in ab-
stract sets. In our approach, each module may encapsulate several data structures
and use membership in abstract sets to characterize how objects participate in its
data structures. Each module’s specification uses set algebra formulas to charac-
terize the effects of its operations on the abstract sets. The program may define
abstract set membership in a variety of ways; arbitrary analyses (potentially with
multiple analyses applied to different modules in the same program) may verify
the corresponding set specifications. The analysis we present in this paper veri-
fies set specifications by constructing and verifying set algebra formulas whose
validity implies the validity of the set specifications.
We have implemented our analysis and annotated several programs (75-2500
lines of code) with set specifications. We found that our original analysis algo-
rithm did not scale; this paper describes several optimizations that improve the
scalability of our analysis. It also presents experimental data comparing the orig-
inal and optimized versions of our analysis.

1 Introduction

Typestate systems [7, 10, 12, 13, 21, 30] allow the type of an object to change during
its lifetime in the computation. Unlike standard type systems, typestate systems can
enforce safety properties that depend on changing object states.

This paper develops a new, generalized formulation of typestate systems. Instead
of associating a single typestate with each object, our system models each typestate
as an abstract set of objects. If an object is in a given typestate, it is a member of the
set that corresponds to that typestate. This formulation immediately leads to several
generalizations of the standard typestate approach. In our formulation, an object can
be a member of multiple sets simultaneously, which promotes modularity and types-
tate polymorphism. It is also possible to specify subset and disjointness properties over
the typestate sets, which enables our approach to support hierarchical typestate classi-
fications. Finally, a typestate in our formulation can be formally related to a potentially
complex property of an object, with the relationship between the typestate and the prop-
erty verified using powerful independently developed analyses such as shape analyses
or theorem provers.

We have implemented the idea of generalized typestate in the Hob program specifi-
cation and verification framework [23,24]. This framework supports the division of the
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program into instantiable, separately analyzable modules. Modules encapsulate private
state and export abstract sets of objects that support abstract reasoning about the encap-
sulated state. Abstraction functions (in the form of arbitrary unary predicates over the
encapsulated state) define the objects that participate in each abstract set. Modules also
export procedures that may access the encapsulated state (and therefore change the con-
tents of the exported abstract sets). Each module uses set algebra expressions (involving
operators such as set union or difference) to specify the preconditions and postcondi-
tions of exported procedures. As a result, the analysis of client modules that coordinate
the actions of other modules can reason solely in terms of the exported abstract sets and
avoid the complexity of reasoning about any encapsulated state.

When the encapsulated state implements a data structure (such as list, hash table, or
tree), the resulting abstract sets characterize how objects participate in that data struc-
ture. The developer can then use the abstract sets to specify consistency properties that
involve multiple data structures from different modules. Such a property might state, for
example, that two data structures involve disjoint objects or that the objects in one data
structure are a subset of the objects in another. In this way, our approach can capture
global sharing patterns and characterize both local and global data structure consistency.

The verification of a program consists of the application of (potentially different)
analysis plugins to verify 1) the set interfaces of all of the modules in the program and
2) the validity of the global data structure consistency properties. The set specifica-
tions separate the analysis of a complex program into independent verification tasks,
with each task verified by an appropriate analysis plugin [23]. Our approach therefore
makes it possible, for the first time, to apply multiple specialized, extremely precise,
and unscalable analyses such as shape analysis [27,28] or even manually aided theorem
proving [31] to effectively verify sophisticated typestate and data structure consistency
properties in sizable programs [23, 31].

Specification Language. Our specification language is the full first-order theory of
the boolean algebra of sets. In addition to basic typestate properties expressible using
quantifier-free boolean algebra expressions, our language can state constant bounds on
the cardinalities of sets of objects, such as “a local variable is not null” or “the con-
tent of the queue is nonempty”, or even “the data structure contains at least one and
at most ten objects”. Because a cardinality constraint counts all objects that satisfy a
given property, our specification language goes beyond standard typestate approaches
that use per-object finite state machines. Our specification language also supports quan-
tification over sets. Universal set quantifiers are useful for stating parametric properties;
existential set quantifiers are useful for information hiding. Note that quantification over
sets is not directly expressible even in such sophisticated languages as first-order logic
with transitive closure1. Despite this expressive power, our set specification language is
decidable and extends naturally to Boolean Algebra with Presburger Arithmetic [22].

The Flag Analysis Plugin. The present paper describes the flag analysis plugin, which
uses the values of integer and boolean object fields (flags) to define the meaning of ab-

1 The first-order logic with transitive closure is the basis of the analysis [28]; our modular plug-
gable analysis framework [23] can incorporate an analyzer like TVLA [28] as one of the anal-
ysis plugins.
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stract sets. It verifies set specifications by first constructing set algebra formulas whose
validity implies the validity of the set specifications, then verifying these formulas us-
ing an off-the-shelf decision procedure. The flag analysis plugin is important for two
reasons. First, flag field values often reflect the high-level conceptual state of the en-
tity that an object represents, and flag changes correspond to changes in the conceptual
state of the entity. By using flags in preconditions of object operations, the developer
can specify key object state properties required for the correct processing of objects
and the correct operation of the program. Unlike standard typestate approaches, our
flag analysis plugin can enforce not only temporal operation sequencing constraints,
but also the generalizations that our expressive set specification language enables.

Second, the flag analysis plugin can propagate constraints between abstract sets
defined with arbitrarily sophisticated abstraction functions in external modules. The
plugin can therefore analyze modules that, as they coordinate the operation of other
modules, indirectly manipulate external data structures defined in those other modules.
The flag analysis can therefore perform the intermodule reasoning required to verify
global data structure invariants such as the inclusion of one data structure in another
and data structure disjointness. Because the flag plugin uses the boolean algebra of sets
to internally represent its dataflow facts, it can propagate and verify these constraints in
a precise way.

To evaluate our flag analysis, we have annotated several benchmark programs with
set specifications. We have verified our benchmarks (in part) using the flag analysis
algorithm described in Section 3, with MONA [19] as the decision procedure for the
boolean algebra of sets. We found that our original analysis algorithm did not scale. This
paper describes several optimizations that our analysis uses to improve the running time
of the algorithm and presents experimental data comparing the original and optimized
versions of our analysis.

2 Specification Language

Our system analyzes programs in a type-safe imperative language similar to Java or
ML. A program in our language consists of one of more modules; each module has an
implementation section, a specification section, and an (analysis-specific) abstraction
section. We next give an overview of the specification section.

Figure 1 presents the syntax for the specification section of modules in our language.
This section contains a list of set definitions and procedure specifications and lists the
names of types used in these set definitions and procedure specifications. Set decla-
rations identify the module’s abstract sets, while boolean variable declarations iden-
tify the module’s abstract boolean variables. Each procedure specification contains a
requires, modifies, and ensures clause. The requires clause identifies the
precondition that the procedure requires to execute correctly; the ensures clauses
identifies the postcondition that the procedure ensures when called in program states
that satisfy the requires condition. The modifies clause identifies sets whose ele-
ments may change as a result of executing the procedure. For the purposes of this paper,
modifies clauses can be viewed as a special syntax for a frame-condition conjunct
in the ensures clause. The variables in the ensures clause can refer to both the
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M ::= spec module m {(type t)∗(set S)∗(predvar b)∗P ∗}
P ::= proc pn(p1 : t1, . . . , pn : tn)[returns r : t]

[requiresB] [modifies S∗] ensuresB
B ::= SE1 = SE2 | SE1 ⊆ SE2 | card(SE)=k
| B ∧B | B ∨B | ¬B | ∃S.B | ∀S.B

SE ::= ∅ | p | [m.] S | [m.] S′

| SE1 ∪ SE2 | SE1 ∩ SE2 | SE1 \ SE2

Fig. 1. Syntax of the Module Specification Language.

initial and final states of the procedure. Both requires and ensures clauses use ar-
bitrary first-order boolean algebra formulas B extended with cardinality constraints. A
free variable of any formula appearing in a module specification denotes an abstract set
or boolean variable declared in that specification; it is an error if no such set or boolean
variable has been declared. The expressive power of such formulas is the first-order
theory of boolean algebras, which is decidable [20, 26]. The decidability of the spec-
ification language ensures that analysis plugins can precisely propagate the specified
relations between the abstract sets.

3 The Flag Analysis

Our flag analysis verifies that modules implement set specifications in which integer or
boolean flags indicate abstract set membership. The developer specifies (using the flag
abstraction language) the correspondence between concrete flag values and abstract
sets from the specification, as well as the correspondence between the concrete and the
abstract boolean variables. Figure 2 presents the syntax for our flag abstraction modules.
This abstraction language defines abstract sets in two ways: (1) directly, by stating a
base set; or (2) indirectly, as a set-algebraic combination of sets. Base sets have the
form B = {x : T | x.f=c} and include precisely the objects of type T whose field f
has value c, where c is an integer or boolean constant; the analysis converts mutations
of the field f into set-algebraic modifications of the setB. Derived sets are defined as set
algebra combinations of other sets; the flag analysis handles derived sets by conjoining
the definitions of derived sets (in terms of base sets) to each verification condition and
tracking the contents of the base sets. Derived sets may use named base sets in their
definitions, but they may also use anonymous sets given by set comprehensions; the flag
analysis assigns internal names to anonymous sets and tracks their values to compute
the values of derived sets.

In our experience, applying several formula transformations drastically reduced the
size of the formulas emitted by the flag analysis, as well as the time that the MONA

M ::= abst module m {D∗ P ∗}
D ::= id=Dr;

Dr ::= Dr ∪Dr | Dr ∩Dr | id | {x : T | x.f=c}
P ::= predvar p;

Fig. 2. Syntax of the Flag Abstraction Language.
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decision procedure spent verifying these formulas. Section 4 describes these formula
optimizations. These transformations greatly improved the performance of our analysis
and allowed our analysis to verify larger programs.

3.1 Operation of the Analysis Algorithm

The flag analysis verifies a module M by verifying each procedure of M . To verify
a procedure, the analysis performs abstract interpretation [5] with analysis domain el-
ements represented by formulas. Our analysis associates quantified boolean formulas
B to each program point. A formula F has two collections of set variables: unprimed
set variables S denoting initial values of sets at the entry point of the procedure, and
primed set variables S′ denoting the values of these sets at the current program point. F
may also contain unprimed and primed boolean variables b and b′ representing the pre-
and post-values of local and global boolean variables. The definitions in the abstrac-
tion sections of the module provide the interpretations of these variables. The use of
primed and unprimed variables allows our analysis to represent, for each program point
p, a binary relation on states that overapproximates the reachability relation between
procedure entry and p [6, 17, 29].

In addition to the abstract sets from the specification, the analysis also generates
a set for each (object-typed) local variable. This set contains the object to which the
local variable refers and has a cardinality constraint that restricts the set to have car-
dinality at most one (the empty set represents a null reference). The formulas that the
analysis manipulates therefore support the disambiguation of local variable and object
field accesses at the granularity of the sets in the analysis; other analyses often rely on
a separate pointer analysis to provide this information.

The initial dataflow fact at the start of a procedure is the precondition for that pro-
cedure, transformed into a relation by conjoining S′ = S for all relevant sets. At merge
points, the analysis uses disjunction to combine boolean formulas. Our current analysis
iterates while loops at most some constant number of times, then coarsens the for-
mula to true to ensure termination, thus applying a simple form of widening [5]. The
analysis also allows the developer to provide loop invariants directly2. After running the
dataflow analysis, our analysis checks that the procedure conforms to its specification
by checking that the derived postcondition (which includes the ensures clause and
any required representation or global invariants) holds at all exit points of the procedure.
In particular, the flag analysis checks that for each exit point e, the computed formula
Be implies the procedure’s postcondition.

Incorporation. The transfer functions in the dataflow analysis update boolean formulas
to reflect the effect of each statement. Recall that the dataflow facts for the flag analysis
are boolean formulas B denoting a relation between the state at procedure entry and
the state at the current program point. Let Bs be the boolean formula describing the

2 Our typestate analysis could also be adapted to use predicate abstraction [1,2,16] to synthesize
loop invariants, by performing data flow analysis over the space of propositional combinations
of relationships between the sets of interest, and making use of the fact that the boolean alge-
bra of sets is decidable. Another alternative is the use of a normal form for boolean algebra
formulas.
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effect of statement s. The incorporation operation B ◦ Bs is the result of symbolically
composing the relations defined by the formulasB and Bs. Conceptually, incorporation
updatesB with the effect ofBs. We computeB◦Bs by applying equivalence-preserving
simplifications to the formula

∃Ŝ1, . . . , Ŝn. B[S′
i �→ Ŝi] ∧Bs[Si �→ Ŝi]

3.2 Transfer Functions

Our flag analysis handles each statement in the implementation language by providing
appropriate transfer functions for these statements. The generic transfer function is a
relation of the following form:

�st�(B) = B ◦ F(st),

where F(st) is the formula symbolically representing the transition relation for the
statement st expressed in terms of abstract sets. The transition relations for the state-
ments in our implementation language are as follows.

Assignment Statements. We first define a generic frame condition generator, used in
our transfer functions,

framex =
∧

S 
=x, S not derived

S′ = S ∧
∧
p 
=x

(p′ ⇔ p),

where S ranges over sets and p over boolean predicates. Note that derived sets are
not preserved by frame conditions; instead, the analysis preserves the anonymous sets
contained in the derived set definitions and conjoins these definitions to formulas before
applying the decision procedure.
Our flag analysis also tracks values of boolean variables:

F(b = true) = b′ ∧ frameb

F(b = false) = (¬b′) ∧ frameb

F(b = y) = (b′ ⇔ y) ∧ frameb

F(b = 〈if cond〉) = (b′ ⇔ f+(〈if cond〉)) ∧ frameb

F(b =!e) = F(b = e) ◦ ((b′ ⇔ ¬b) ∧ frameb)

where f+(e) is the result of evaluating e, defined below in our analysis of conditionals.
We also track local variable object references:

F(x = y) = (x′ = y) ∧ framex F(x = null) = (x′ = ∅) ∧ framex

F(x = new t) = ¬(x′ = ∅) ∧
∧

S(x′ ∩ S = ∅) ∧ framex

We next present the transfer function for changing set membership. If R = {x :
T | x.f = c} is a set definition in the abstraction section, we have:

F(x.f = c) = R′ = R ∪ x ∧
∧

S∈alts(R) S
′ = S \ x ∧ frame{R}∪ alts(R)

where alts(R) = {S | abstraction module contains S = {x : T | x.f = c1}, c1 �= c.}
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The rules for reads and writes of boolean fields are similar but, because our analysis
tracks the flow of boolean values, more detailed:

F(x.f = b) =

(
b ∧B+′

= B+ ∪ x
∧
∧

S∈alts(B+) S′ = S \ x

)
∧
(
¬b ∧B−′

= B− ∪ x
∧
∧

S∈alts(B−) S′ = S \ x

)
∧frame{B}∪alts(B)

F(b = y.f) = (b′ ⇔ y ∈ B+) ∧ frameb.

where B+ = {x : T | x.f = true} and B− = {x : T | x.f = false}.
Finally, we have some default rules to conservatively account for expressions not oth-
erwise handled,

F(x.f = ∗) = framex F(x = ∗) = framex.

Procedure Calls. For a procedure call x=proc(y), our transfer function checks
that the callee’s requires condition holds, then incorporates proc’s ensures condition
as follows:

F(x = proc(y)) = ensures1(proc) ∧
∧
S

S′ = S

where both ensures1 and requires1 substitute caller actuals for formals of proc (in-
cluding the return value), and where S ranges over all local variables.

Conditionals. The analysis produces a different formula for each branch of an if
statement if (e). We define functions f+(e), f−(e) to summarize the additional in-
formation available on each branch of the conditional; the transfer functions for the true
and false branches of the conditional are thus, respectively,

�if (e)�+(B) = f+(e) ∧B �if (e)�−(B) = f−(e) ∧B.

For constants and logical operations, we define the obvious f+, f−:

f+(true) = true f−(true) = false
f+(false) = false f−(false) = true

f+(!e) = f−(e) f−(!e) = f+(e)
f+(x!=e) = f−(x==e) f−(x!=e) = f+(x==e)

f+(e1 && e2) = f+(e1) ∧ f+(e2) f−(e1 && e2) = f−(e1) ∨ f−(e2)

We define f+, f− for boolean fields as follows:

f+(x.f) = x ⊆ B f−(x.f) = x �⊆ B
f+(x.f==false) = x �⊆ B f−(x.f==false) = x ⊆ B

where B = {x : T | x.f = true}; analogously, let R = {x : T | x.f = c}. Then,

f+(x.f==c) = x ⊆ R f−(x.f==c) = x �⊆ R.

We also predicate the analysis on whether a reference is null or not:

f+(x==null) = x = ∅ f−(x==null) = x �= ∅.

Finally, we have a catch-all condition,

f+(∗) = true f−(∗) = true

which conservatively captures the effect of unknown conditions.
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Loops. Our analysis analyzes while statements by synthesizing loop invariants or by
verifying developer-provided loop invariants. To synthesize a loop invariant, it iterates
the analysis of the loop body until it reaches a fixed point, or until N iterations have
occurred (in which case it synthesizes true). The conditional at the top of the loop is
analyzed the same way if statements are analyzed. We can also verify explicit loop
invariants; these simplify the analysis of while loops and allow the analysis to avoid
the fixed point computation involved in deriving a loop invariant. Developer-supplied
explicit loop invariants are automatically conjoined with the frame conditions generated
by the containing procedure’s modifies clause to ease the burden on the developer.

Assertions and Assume Statements. We analyze statement s of the form assert A
by showing that the formula for the program point s implies A. Assertions allow devel-
opers to check that a given set-based property holds at an intermediate point of a proce-
dure. Using assume statements, we allow the developer to specify properties that are
known to be true, but which have not been shown to hold by this analysis. Our analysis
prints out a warning message when it processes assume statements, and conjoins the
assumption to the current dataflow fact. Assume statements have proven to be valuable
in understanding analysis outcomes during the debugging of procedure specifications
and implementations. Assume statements may also be used to communicate properties
of the implementation that go beyond the abstract representation used by the analysis.

Return Statements. Our analysis processes the statement return x as an assignment
rv = x, where rv is the name given to the return value in the procedure declaration.
For all return statements (whether or not a value is returned), our analysis checks that
the current formula implies the procedure’s postcondition and stops propagating that
formula through the procedure.

3.3 Verifying Implication of Dataflow Facts

A compositional program analysis needs to verify implication of constraints as part
of its operation. Our flag analysis verifies implication when it encounters an assertion,
procedure call, or procedure postcondition. In these situations, the analysis generates a
formula of the form B ⇒ A where B is the current dataflow fact and A is the claim to
be verified3. The implication to be verified, B ⇒ A, is a formula in the boolean algebra
of sets. We use the MONA decision procedure to check its validity [18].

4 Boolean Algebra Formula Transformations

In our experience, applying several formula transformations drastically reduced the size
of the formulas emitted by the flag analysis, as well as the time needed to determine
their validity using an external decision procedure; in fact, some benchmarks could

3 Note that B may be unsatisfiable; this often indicates a problem with the program’s specifica-
tion. The flag analysis can, optionally, check whether B is unsatisfiable and emit a warning if
it is. This check enabled us to improve the quality of our specifications by identifying specifi-
cations that were simply incorrect.
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only be verified with the formula transformations enabled. This subsection describes
the transformations we found to be useful.

Smart Constructors. The constructors for creating boolean algebra formulas ap-
ply peephole transformations as they create the formulas. Constant folding is the sim-
plest peephole transformation: for instance, attempting to create B ∧ true gives the for-
mulaB. Our constructors fold constants in implications, conjunctions, disjunctions, and
negations. Similarly, attempting to quantify over unused variables causes the quantifier
to be dropped: ∃x.F is created as just F when x is not free in F . Most interestingly,
we factor common conjuncts out of disjunctions: (A ∧ B) ∨ (A ∧ C) is represented
as A ∧ (B ∨ C). Conjunct factoring greatly reduces the size of formulas tracked after
control-flow merges, since most conjuncts are shared on both control-flow branches.
The effects of this transformations appear similar to the effects of SSA form conversion
in weakest precondition computation [14, 25].

Basic Quantifier Elimination. We symbolically compute the composition of state-
ment relations during the incorporation step by existentially quantifying over all state
variables. However, most relations corresponding to statements modify only a small
part of the state and contain the frame condition that indicates that the rest of the state
is preserved. The result of incorporation can therefore often be written in the form
∃x.x = x1 ∧ F (x), which is equivalent to F (x1). In this way we reduce both the
number of conjuncts and the number of quantifiers. Moreover, this transformation can
reduce some conjuncts to the form t = t for some Boolean algebra term t, which is a
true conjunct that is eliminated by further simplifications.

It is instructive to compare our technique to weakest precondition computation [14]
and forward symbolic execution [4]. These techniques are optimized for the common
case of assignment statements and perform relation composition and quantifier elimina-
tion in one step. Our technique achieves the same result, but is methodologically simpler
and applies more generally. In particular, our technique can take advantage of equali-
ties in transfer functions that are not a result of analyzing assignment statements, but are
given by explicit formulas in ensures clauses of procedure specifications. Such trans-
fer functions may specify more general equalities such as A = A′ ∪ x ∧ B′ = B ∪ x
which do not reduce to simple backward or forward substitution.

Quantifier Nesting. We have experimentally observed that the MONA decision pro-
cedure works substantially faster when each quantifier is applied to the smallest scope
possible. We have therefore implemented a quantifier nesting step that reduces the scope
of each quantifier to the smallest possible subformula that contains all free variables
in the scope of the quantifier. For example, our transformation replaces the formula
∀x. ∀y. (f(x) ⇒ g(y)) with (∃x. f(x)) ⇒ (∀y. g(y)).

To take maximal advantage of our transformations, we simplify formulas after ap-
plying incorporation and before invoking the decision procedure. Our global simplifi-
cation step rebuilds formulas bottom-up and applies simplifications to each subformula.
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5 Other Plugins

In addition to the flag plugin, we also implemented a shape analysis plugin that uses the
PALE analysis tool to verify detailed properties of linked data structures such as lists
and trees. This plugin represents an extreme case in the precision of properties that fully
automated analyses can verify. Nevertheless, we were interested in verifying even more
detailed and precise data structure consistency properties. Namely, we sought to verify
properties of array-based data structures such as hash tables, which are outside the scope
of the PALE tool. We therefore implemented a theorem proving plugin which generates
verification conditions suitable for partially manual verification using the Isabelle proof
checker [31]. One of the goals of this effort is build up a library of instantiable verified
data structure implementation modules. Ideally, such a library would eliminate internal
data structure consistency as a concern during development, leaving developers free to
operate exclusively at the level of abstract sets to concentrate on broader application-
specific consistency properties that cut across multiple data structures.

6 Experience

We have implemented our modular pluggable analysis system, populated it with several
analyses (including the flag, shape analysis, and theorem prover plugins), and used the
system to develop several benchmark programs and applications. Table 1 presents a sub-
set of the benchmarks we ran through our system; full descriptions of our benchmarks
(as well as the full source code for our modular pluggable analysis system) are avail-
able at our project homepage at http://cag.csail.mit.edu/∼plam/hob.
Minesweeper and water are complete applications; the others are either computational
patterns (compiler, scheduler, ctas) or data structures (prodcons). Compiler models a
constant-folding compiler pass, scheduler models an operating system scheduler, and
ctas models the core of an air-traffic control system. The board, controller, and view
modules are the core minesweeper modules; atom, ensemble, and h2o are the core wa-
ter modules. The bold entries indicate system totals for minesweeper and water; note
that minesweeper includes several other modules, some of which are analyzed by the
shape analysis and theorem proving plugins, not the flag plugin.

We next present the impact of the formula transformation optimizations, then dis-
cuss the properties that we were able to specify and verify in the minesweeper and water
benchmarks.

6.1 Formula Transformation Optimizations

We analyzed our benchmarks on a 2.80GHz Pentium 4, running Linux, with 2 gigabytes
of RAM. Table 2 summarizes the results of our formula transformation optimizations.
Each line summarizes a specific benchmark with a specific optimization configuration.
A �in the “Smart Constructors” column indicates that the smart constructors optimiza-
tion is turned on; a × indicates that it is turned off. Similarly, a �in the “Optimizations”
column indicates that all other optimizations are turned on; a × indicates that they are
turned off. The “Number of nodes” column reports the sizes (in terms of AST node
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Table 1. Benchmark characteristics.

Number of Lines Lines
modules of spec of impl

prodcons 41 50
compiler 75 143
scheduler 34 22
ctas 49 53
board 78 168
controller 43 133
view 43 372
minesweeper 7 236 750
atom 31 64
ensemble 164 883
h2o 158 420
water 10 582 1976

Table 2. Formula sizes before and after transformation.

Optimizations Smart Number Optimization MONA Flag
Constructors of nodes ratio time time

prodcons � �, × 12306 2.46 0.17 0.03
× �,× 30338 1.00 0.27 0.04

compiler � � 15854 32.06 0.45 5.10
� × 28003 18.15 0.60 6.19
× �,× 508375 1.00 N/A 60.27

scheduler � �,× 442 2.44 0.05 0.04
× �,× 1082 1.00 0.12 0.14

ctas � �,× 2874 3.18 0.21 0.12
× �,× 9141 1.00 12.79 0.33

board � � 28658 41.43 1.92 18.89
� × 106550 11.14 11.45 29.27
× � 926321 1.28 N/A 134.94
× × 1187379 1.00 N/A 151.46

controller � � 6759 4.23 0.41 0.18
� × 7101 4.02 0.41 0.18
× �,× 28594 1.00 3.08 0.54

view � � 15878 59.08 1.07 12.38
� × 53925 17.39 1.45 18.88
× �,× 93800 1.00 N/A 263.15

atom � � 9677 3.14 0.53 0.13
� × 10244 2.97 0.54 0.13
× �,× 30447 1.00 40.95 0.43

ensemble � � 120279 20.60 50.90 34.15
� × 148748 16.66 105.59 47.06
× �,× 2478004 1.00 N/A 464.52

h2o � � 205933 4.32 73.80 477.01
� × 206167 4.31 81.85 475.86
× �,× 889637 1.00 N/A 1917.99
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counts) of the resulting boolean algebra formulas. Our results indicate that the formula
transformations reduce the formula size by 2 to 60 times (often with greater reductions
for larger formulas); the Optimization Ratio column presents the reduction obtained in
formula size. The “MONA time” column presents the time spent in the MONA deci-
sion procedure (up to 73 seconds after optimization); the “Flag time” column presents
the time spent in the flag analysis, excluding the decision procedure (up to 477 seconds
after optimization). Without optimization, MONA could not successfully check the for-
mulas for the compiler, board, view, ensemble and h2o modules because of an out of
memory error.

6.2 Minesweeper

We next illustrate how our approach enables the verification of properties that span
multiple modules. Our minesweeper implementation has several modules: a game board
module (which represents the game state), a controller module (which responds to user
input), a view module (which produces the game’s output), an exposed cell module
(which stores the exposed cells in an array), and an unexposed cell module (which
stores the unexposed cells in an instantiated linked list). There are 750 non-blank lines
of implementation code in the 6 implementation modules and 236 non-blank lines in
the specification and abstraction modules.

Minesweeper uses the standard model-view-controller (MVC) design pattern [15].
The board module (which stores an array of Cell objects) implements the model
part of the MVC pattern. Each Cell object may be mined, exposed or marked. The
board module represents this state information using the isMined, isExposed
and isMarked fields of Cell objects. At an abstract level, the sets MarkedCells,
MinedCells, ExposedCells, UnexposedCells, and U (for Universe) repre-
sent sets of cells with various properties; the U set contains all cells known to the board.
The board also uses a global boolean variable gameOver, which it sets to true when
the game ends.

Our system verifies that our implementation has the following properties (among
others):

– The sets of exposed and unexposed cells are disjoint; unless the game is over, the
sets of mined and exposed cells are also disjoint.

– The set of unexposed cells maintained in the board module is identical to the set
of unexposed cells maintained in the UnexposedList list.

– The set of exposed cells maintained in the board module is identical to the set of
exposed cells maintained in the ExposedSet array.

– At the end of the game, all cells are revealed; i.e. the set of unexposed cells is empty.

Although our system focuses on using sets to model program state, not every mod-
ule needs to define its own abstract sets. Indeed, certain modules may not define any
abstract sets of their own, but instead coordinate the activity of other modules to ac-
complish tasks. The view and controller modules are examples of such modules. The
view module has no state at all; it queries the board for the current game state and calls
the system graphics libraries to display the state.
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Because these modules coordinate the actions of other modules – and do not en-
capsulate any data structures of their own – the analysis of these modules must oper-
ate solely at the level of abstract sets. Our analysis is capable of ensuring the validity
of these modules, since it can track abstract set membership, solve formulas in the
boolean algebra of sets, and incorporate the effects of invoked procedures as it ana-
lyzes each module. Note that for these modules, our analysis need not reason about any
correspondence between concrete data structure representations and abstract sets.

The set abstraction supports typestate-style reasoning at the level of individ-
ual objects (for example, all objects in the ExposedCells set can be viewed as
having a conceptual typestate Exposed). Our system also supports the notion of
global typestate. The board module, for example, has a global gameOver vari-
able which indicates whether or not the game is over. The system uses this vari-
able and the definitions of relevant sets to maintain the global invariant gameOver |
disjoint(MinedCells,ExposedCells).

This global invariant connects a global typestate property – is the game over? – with
a object-based typestate state property evaluated on objects in the program – there are no
mined cells that are also exposed. Our analysis plugins verify these global invariants by
conjoining them to the preconditions and postconditions of methods. Note that global
invariants must be true in the initial state of the program. If some initializer must execute
to establish an invariant, then the invariant can be guarded by a global typestate variable.

Another invariant concerns the correspondence between the ExposedCells,
UnexposedCells, ExposedSet.Content, and UnexposedList.Content
sets:

(ExposedCells = ExposedSet.Content) & (UnexposedCells = UnexposedList.Content)

Our analysis verifies this property by conjoining it to the ensures and requires
clauses of appropriate procedures. The board module is responsible for maintain-
ing this invariant. Yet the analysis of the board module does not, in isolation, have
the ability to completely verify the invariant: it cannot reason about the concrete state
of ExposedSet.Content or UnexposedList.Content (which are defined in
other modules). However, the ensures clauses of its callees, in combination with its
own reasoning that tracks membership in the ExposedCells set, enables our analy-
sis to verify the invariant (assuming that ExposedSet and UnexposedList work
correctly).

Our system found a number of errors during the development and maintenance of
our minesweeper implementation. We next present one of these errors. At the end of the
game, minesweeper exposes the entire game board; we use removeFirst to remove
all elements from the unexposed list, one at a time. After we have exposed the entire
board, we can guarantee that the list of unexposed cells is empty:

proc drawFieldEnd()
requires ExposedList.setInit & Board.gameOver &

(UnexposedList.Content <= Board.U)
modifies UnexposedList.Content, Board.ExposedCells,

Board.UnexposedCells, ExposedList.Content,
UnexposedList.Content

ensures card(UnexposedList.Content’) = 0;
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because the implementation of the drawFieldEnd procedure loops until isEmpty
returns true, which also guarantees that the UnexposedList.Content set is
empty. The natural way to write the iteration in this procedure would be:

while (UnexposedList.isEmpty()) {
Cell c = UnexposedList.removeFirst();
drawCellEnd(c);

}

and indeed, this was the initial implementation of that code. However, when we at-
tempted to analyze this code, we got the following error message:

Analyzing proc drawFieldEnd...
Error found analyzing procedure drawFieldEnd:

requires clause in a call to procedure View.drawCellEnd.

Upon further examination, we found that we were breaking the invariant ensuring that
Board.ExposedCells equals UnexposedList.Content. The correct way to
preserve the invariant is by calling Board.setExposed, which simultaneously sets
the isExposed flag and removes the cell from the UnexposedList:

Cell c = UnexposedList.getFirst();
Board.setExposed(c, true);
drawCellEnd(c);

6.3 Water

Water is a port of the Perfect Club benchmark MDG [3]. It uses a predictor/corrector
method to evaluate forces and potentials in a system of water molecules in the liquid
state. The central loop of the computation performs a time step simulation. Each step
predicts the state of the simulation, uses the predicted state to compute the forces acting
on each molecule, uses the computed forces to correct the prediction and obtain a new
simulation state, then uses the new simulation state to compute the potential and kinetic
energy of the system.

Water consists of several modules, including the simparm, atom, H2O,
ensemble, and main modules. These modules contain 2000 lines of implementa-
tion and 500 lines of specification. Each module defines sets and boolean variables; we
use these sets and variables to express safety properties about the computation.

The simparm module, for instance, is responsible for recording simulation pa-
rameters, which are stored in a text file and loaded at the start of the computation. This
module defines two boolean variables, Init and ParmsLoaded. If Init is true, then
the module has been initialized, i.e. the appropriate arrays have been allocated on the
heap. If ParmsLoaded is true, then the simulation parameters have been loaded from
disk and written into these arrays. Our analysis verifies that the program does not load
simulation parameters until the arrays have been allocated and does not read simulation
parameters until they have been loaded from the disk and written into the arrays.

The fundamental unit of the simulation is the atom, which is encapsulated within
the atom module. Atoms cycle between the predicted and corrected states, with the
predic and correc procedures performing the computations necessary to effect
these state changes. A correct computation will only predict a corrected atom or correct
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a predicted atom. To enforce this property, we define two sets Predic and Correc
and populate them with the predicted and corrected atoms, respectively. The correc
procedure operates on a single atom; its precondition requires this atom to be a mem-
ber of the Predic set. Its postcondition ensures that, after successful completion, the
atom is no longer in the Predic set, but is instead in the Correc set. The predic
procedure has a corresponding symmetric specification.

Atoms belong to molecules, which are handled by the H2O module. A molecule
tracks the position and velocity of its three atoms. Like atoms, each module can be in
a variety of conceptual states. These states indicate not only whether the program has
predicted or corrected the position of the molecule’s atoms but also whether the program
has applied the intra-molecule force corrections, whether it has scaled the forces acting
on the molecule, etc. We verify the invariant that when the molecule is in the predicted
or corrected state, the atoms in the molecule are also in the same state. The interface of
the H2O module ensures that the program performs the operations on each molecule in
the correct order – for example, the bndry procedure may operate only on molecules
in the Kineti set (which have had their kinetic energy calculated by the kineti
procedure).

The ensemble module manages the collection of molecule objects. This module
stages the entire simulation by iterating over all molecules and computing their posi-
tions and velocities over time. The ensemble module uses boolean predicates to track
the state of the computation. When the boolean predicate INTERF is true, for exam-
ple, then the program has completed the interforce computation for all molecules in
the simulation. Our analysis verifies that the boolean predicates, representing program
state, satisfy the following ordering relationship:

Init � INITIA � PREDIC � INTRAF � VIR � INTERF � · · ·

Our specification relies on an implication from boolean predicates to properties rang-
ing over the collection of molecule objects, which can be ensured by a separate array
analysis plugin [23].

These properties help ensure that the computation’s phases execute in the correct
order; they are especially valuable in the maintenance phase of a program’s life, when
the original designer, if available, may have long since forgotten the program’s phase
ordering constraints. Our analysis’ set cardinality constraints also prevent empty sets
(and null pointers) from being passed to procedures that expect non-empty sets or non-
null pointers.

7 Related Work

Typestate systems track the conceptual states that each object goes through during its
lifetime in the computation [7, 9–12, 30]. They generalize standard type systems in that
the typestate of an object may change during the computation. Aliasing (or more gener-
ally, any kind of sharing) is the key problem for typestate systems – if the program uses
one reference to change the typestate of an object, the typestate system must ensure
that either the declared typestate of the other references is updated to reflect the new
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typestate or that the new typestate is compatible with the old declared typestate at the
other references.

Most typestate systems avoid this problem altogether by eliminating the possibility
of aliasing [30]. Generalizations support monotonic typestate changes (which ensure
that the new typestate remains compatible with all existing aliases) [12] and enable
the program to temporarily prevent the program from using a set of potential aliases,
change the typestate of an object with aliases only in that set, then restore the typestate
and reenable the use of the aliases [10]. It is also possible to support object-oriented
constructs such as inheritance [8]. Finally, in the role system, the declared typestate of
each object characterizes all of the references to the object, which enables the typestate
system to check that the new typestate is compatible with all remaining aliases after a
nonmonotonic typestate change [21].

In our approach, the typestate of each object is determined by its membership in
abstract sets as determined by the values of its encapsulated fields and its participation
in encapsulated data structures. Our system supports generalizations of the standard
typestate approach such as orthogonal typestate composition and hierarchical typestate
classification. The connection with data structure participation enables the verification
of both local and global data structure consistency properties.

8 Conclusion

Typestate systems have traditionally been designed to enforce safety conditions that
involve objects whose state may change during the course of the computation. In par-
ticular, the standard goal of typestate systems is to ensure that operations are invoked
only on objects that are in appropriate states. Most existing typestate systems support a
flat set of object states and limit typestate changes in the presence of sharing caused by
aliasing. We have presented a reformulation of typestate systems in which the typestate
of each object is determined by its membership in abstract typestate sets. This refor-
mulation supports important generalizations of the typestate concept such as typestates
that capture membership in data structures, composite typestates in which objects are
members of multiple typestate sets, hierarchical typestates, and cardinality constraints
on the number of objects that are in a given typestate. In the context of our Hob modular
pluggable analysis framework, our system also enables the specification and effective
verification of detailed local and global data structure consistency properties, including
arbitrary internal consistency properties of linked and array-based data structures. Our
system therefore effectively supports tasks such as understanding the global sharing
patterns in large programs, verifying the absence of undesirable interactions, and en-
suring the preservation of critical properties necessary for the correct operation of the
program.
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Abstract. When a system fails to satisfy its specification, the model
checker produces an error trace (or counter-example) that demonstrates
an undesirable behavior, which is then used in debugging the system.
Error explanation is the task of discovering errors in the system or the
reasons why the system exhibits the error trace. While there has been
considerable recent interest in automating this task and developing tools
based on different heuristics, there has been very little effort in character-
izing the computational complexity of the problem of error explanation.
In this paper, we study the complexity of two popular heuristics used in
error explanation. The first approach tries to compute the smallest num-
ber of system changes that need to be made in order to ensure that the
given counter-example is no longer exhibited, with the intuition being
that these changes are the errors that need fixing. The second approach
relies on the observation that differences between correct and faulty runs
of a system shed considerable light on the sources of errors. In this ap-
proach, one tries to compute the correct trace of the system that is closest
to the counter-example. We consider three commonly used abstractions
to model programs and systems, namely, finite state Mealy machines,
extended finite state machines and pushdown automata. We show that
the first approach of trying to find the fewest program changes is NP-
complete no matter which of the three formal models is used to represent
the system. Moreover we show that no polynomial factor approximation
algorithm for computing the smallest set of changes is possible, unless
P = NP. For the second approach, we present a polynomial time al-
gorithm that finds the closest correct trace, when the program is repre-
sented by a Mealy machine or a pushdown automata. When the program
is represented by an extended finite state machine, the problem is once
again NP-complete, and no polynomial factor approximation algorithm
is likely.

1 Introduction

Model checking [1] is a popular technique for automated verification of software
and hardware systems. One of the principal reasons for its wide spread use is the
ability of the model checker to produce a witness to the violation of a property in
the form of an error trace (counter-example). While counter-examples are useful
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in debugging a system, the error traces can be very lengthy and they indicate
only the symptom of the error. Locating the cause of the error (or the bug) is
often an onerous task even with a detailed counter-example. Recently, consider-
able research effort [2–8] has been directed towards automating the process of
error explanation (or localizing errors or isolating error causes) to assist in the
debugging process by identifying possible causes for the faulty behavior. Error
explanation tools are now featured in model checkers such as SLAM [9, 6] and
Java PathFinder (JPF) [10, 7].

Error explanation is an intrinsically informal process that admits many
heuristic approaches which cannot be justified formally. Most current approaches
to this problem rely on two broad philosophical themes for justification. First, in
order to explain something (like an error), one has to identify its “causes” [11].
And second is Occam’s principle, which states that a “simpler” explanation is to
be always preferred between two competing theories. The different approaches
to error explanation primarily differ in what they choose to be the “causal the-
ory” for errors. Two popular heuristics have been widely and successfully used in
debugging. The first one relies on the observation that program changes which
result in a system that no longer exhibits the offending error trace identify pos-
sible causes for the error [12–14,3, 2]; in accordance with Occam’s principle, one
tries to find the minimum number of changes. The second, more popular ap-
proach [5–8] relies on the intuition that differences between correct and faulty
runs of the system shed considerable light on the sources of errors. This approach
tries to find correct runs exhibited by the system that closely match the error
trace. They then infer the causes of the error from the correct executions and
the given error-trace.

While algorithms for these heuristics have been developed based on sophis-
ticated use of SAT solvers and model checkers [12, 13, 3, 2, 5–8], there has been
very little effort to study the computational complexity of these methods. In
this paper we study the computational complexity of applying the above men-
tioned heuristics to three commonly used abstractions to model systems1. The
first and least expressive model we look at is that of Mealy Machines [15], which
are finite state machines (FSMs) that produce outputs when transiting from
one state to another; the reason we consider Mealy machines and not finite au-
tomata is because they are a generalization. The second model we consider are
Extended FSMs, which are finite state machines equipped with a finite number
of boolean variables which are manipulated in each transition. The third model
we examine is that of Pushdown Automata (PDA) which have been widely used
as a model of software programs in model checking2. Once again we consider a
generalization of PDAs that produce outputs.

1 We make no effort to judge the practical usefulness of these error explanation
approaches. The interested reader is referred to the papers cited here for examples
where these heuristics have been effective in debugging.

2 In software model checking the more commonplace model is actually a boolean
program with a stack, which is a combination of extended finite state machines and
PDAs. While we do not explicitly consider this model, our results have consequences
for doing error explanation for such boolean programs, which we point out.
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The two approaches to error explanation yield three distinct notions of the
‘smallest distance’ between the given program and a correct program, which we
now describe. The precise definitions of these distances depends on the represen-
tation used, and will be presented in Section 2.2. We investigate the complexity
of computing these distances when the program is abstractly represented by one
of the three computation models.

Minimum Edit Set. Let M be an abstract representation of the program. For
an input string wi and an output string wo of the same length as wi, an edit set
is a set of transitions of M that can be changed so that the resulting program
M ′ produces output wo on input wi. A minimum edit set XM (wi, wo) is an edit
set of smallest size.

Closest-Output Distance. Let M be an abstract representation of the restric-
tion of the program to correct runs. For an output string wo, the closest-output
distance dM (wo) is the smallest Hamming distance between wo and a string w
that can be produced by M .

Closest-Input Distance. Let M be an abstract representation of the restric-
tion of the program to correct runs. For an input string wi, the closest-input
distance dM (wi) is the smallest Hamming distance between wi and a string w
that is in the language of the machine represented by M .

Remark 1. Note that the latter two distances are defined when the restriction
of the program to correct runs is represented by one of the computation mod-
els we consider. The representations we consider are commonly used to model
programs, and for most correctness properties of interest (e.g. those expressed
in linear temporal logic) the subset of executions of the system satisfying such
properties can be expressed using the same kind of abstraction.

Summary of Results. Our results can be summarized as follows. The problem
of determining the size of a minimum edit set for given input/output strings
and a program represented as a Mealy machine is NP-complete. In addition,
there is no polynomial time algorithm for computing an edit set whose size is
within a polynomial factor of the size of a minimum edit set unless P = NP.
A couple of points are in order about these results. First, the intractability
of this error explanation method for extended finite state machines and PDAs
(and boolean programs) follows as a corollary because they are generalizations
of the simple Mealy machine model. Second, since we prove these results for a
deterministic model, we can also conclude the intractibility of this problem for
nondeterministic models, which are typically encountered in practice.

We provide a more positive answer for the second error explanation approach.
When the set of correct executions of a system can be represented by traces of
pushdown automata, we present a polynomial time algorithm based on dynamic
programming to determine the closest-output distance for a given output string.
Since finite state machines are a special case of pushdown automata, this upper
bound applies to them as well. However, when the set of correct traces is rep-
resented by an extended finite state machine, the results are radically different.
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Not only is the problem of computing the closest-input distance NP-complete
in this case, but we show that it is unlikely that polynomial factor approxima-
tion algorithms to compute the closest-input distance in polynomial time exist.
Note that the typical model for programs used in model checking is boolean pro-
grams, which can be seen as PDAs with boolean variables. Since this model is
a generalization of extended finite state machines, our lower bounds imply that
the second error explanation method will be intractible for boolean programs as
well.

Note also that for the purposes of error explanation, we are not just interested
in computing the above distance measures, but rather in computing the closest
correct execution. However, the results on computing the above distances have
direct consequences to error explanation. The intractibility of computing the
closest input distance for extended finite state machines implies that finding the
closest correct trace is also intractible. Further, the dynamic programming based
algorithm that we present for computing the closest-output distance for PDAs
(and FSMs) can be easily modified in a standard manner, to yield not just the
distance but also the closest correct trace to the given error trace.

The rest of the paper is organized as follows. In Section 2 we provide the
formal definitions of system models and the problems whose complexity we in-
vestigate. Section 3 provides the hardness results on computing the minimum
edit set. Section 4 provides a polynomial time algorithm to compute the closest
output distance and a hardness result for the problem of computing the closest
input distance. Finally, we present our conclusions in Section 5.

2 Preliminaries

2.1 Abstract Representations

In this section, we recall the definitions of the various formal models of systems
that we consider in this paper, namely, Mealy machines, Extended finite state
machines, and Pushdown Automata.

Mealy Machines. A (Σ,Ω)-FSM is a deterministic finite state Mealy machine
M = (VM , iM , δM ) with finite input alphabet Σ, finite output alphabet Ω, finite
set of states VM , initial state iM ∈ VM and transition function δM : VM ×Σ →
VM ×Ω. For w ∈ Σ∗, M(w) denotes the string in Ω∗ generated by M on input

w. We denote δM (u, σ) = (v, ω) by the shorthand u
σ/ω−−→M v.

Extended FSMs. Suppose X is a finite set of Boolean variables and A is the set of
all possible assignments to variables in X , i.e. A = {0, 1}X. Suppose B is the set
of all finite boolean expressions involving the variables in X and the constants �
(true) and ⊥ (false). A (Σ,X)-FSM is a tuple M = (VM , sM , FM , aM , gM , δM )
where:

1. VM is a finite set of states, FM ⊆ VM is the set of final (accepting) states ;
2. sM is the initial state, aM ∈ A is the initial assignment of variables ;
3. gM : VM ×Σ → B is the guard function ;
4. δM : VM ×Σ → VM ×A×A is the transition function.
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Executions of a (Σ,X)-FSM are defined as follows. The initial state is sM and
the initial assignment to the variables is aM . If the current state is s, the current
assignment is a, the input symbol is σ and δM (s, σ) = (s′, aT , aF ), then

– if gM (s, σ) = ⊥, no transition is possible ;
– if gM (s, σ) �= ⊥, the next state is s′ and the next assignment is a′, where
a′ = aT if gM (s, σ) is satisfied by a, and a′ = aF otherwise.

We use the shorthand notation (s, σ) aT−−→
aF

s′ to represent such a transition. We

use the notation (s, σ) → s′ when the new assignment is identical to the current
assignment a. If a ∈ A, we use the notation a[xi := b] to denote the assignment
in A that is identical to a except that xi is set to b. We use the notation LM ⊆ Σ∗

to denote the set of strings accepted by M .

Remark 2. Note that any (Σ,Ω)-FSM M = (VM , iM , δM ) can be modeled as
a (Σ × Ω, ∅)-FSM M ′ where the guard function for any pair (v, (σ, ω)) is �
whenever M produces the output ω on input σ from state v, and ⊥ otherwise.

Pushdown Automata. We formally define Pushdown Automata that produce
outputs on each transition. We restrict ourselves slightly to nondeterministic
pushdown automata which, on every transition, push or pop at most one symbol
from the stack, and consume exactly one input symbol. This model is neverthe-
less powerful enough to capture visibly pushdown automata [16] or control flow
graphs [17], which are typically used to model software systems in the model
checking community. A (nondeterministic) (Σ,Ω)-PDA with finite input alpha-
bet Σ and finite output alphabet Ω is a tuple M = (V, Vi, Γ, δ) where

1. V is a finite set of states, Vi ⊆ V is the set of initial states ;
2. Γ = Γ ′ ∪ {⊥} is a finite stack alphabet, ⊥ is the bottom-of-stack symbol ;
3. δ = δc ∪ δr ∪ δi is the transition relation, where δc ⊆ (V ×Σ × V × Γ ′ ×Ω),

δr ⊆ (V ×Σ × Γ ′ × V ×Ω) and δi ⊆ (V ×Σ × V ×Ω).

A transition (u, σ, v, γ, ω) ∈ δc is a push-transition where on reading σ, γ is
pushed onto the stack, ω is outputted and the state changes from u to v. Sim-
ilarly, (u, σ, γ, v, ω) ∈ δr is a pop-transition where on reading σ, if γ �= ⊥ is the
top of the stack, the symbol γ is popped from the top of the stack, ω is outputted
and the state changes from u to v. If the top of the stack is ⊥, no pop-transition
is possible. On internal transitions (u, σ, v, ω) ∈ δi, the stack does not change
and ω is outputted while the state changes from u to v. Note that (Σ,Ω)-PDAs
need not be deterministic.

The set of possible stacks S is Γ ′∗⊥. We say that a run r exists from (u1, s1) ∈
V ×S on input w = σ1σ2 . . . σk ∈ Σ∗ if ∃ (u1, s1), (u2, s2), . . . , (uk, sk) such that,
for every j = 1, . . . , k, (uj , sj) ∈ V × S and one of the following transitions tj
exists in δ:

1. tj = (uj , σj , uj+1, γ, ωj) ∈ δc such that γ ∈ Γ ′ and sj+1 = γsj

2. tj = (uj , σj , γ, uj+1, ωj) ∈ δr such that γ ∈ Γ ′ and sj = γsj+1

3. tj = (uj , σj , uj+1, ωj) ∈ δi and sj+1 = sj .



On the Complexity of Error Explanation 453

In this case, we say that the sequence of transitions t = t1t2 . . . tk is consistent
with the run r.

We say that w ∈ Σ∗ is a valid input from state v ∈ V if there is a run
r from (v,⊥) on input w. We say that w ∈ Σ∗ is a balanced input from state
v ∈ V if there is a run r from (v,⊥) on input w such that for some sequence t of
transitions consistent with r, the number of push-transitions in t is equal to the
number of pop-transitions in t. If the output string produced by the sequence t
is w′ and the destination of the final transition in t is v′, we use the notation

v
w/w′
−−−→M v′ to denote the fact that M produces output w′ on the balanced

input w from v, and the state changes from v to v′.
We say that M can reach the state v and can produce the output ω1ω2 . . . ωk

on input w if w is a valid input from some state u ∈ Vi and for some sequence of
transitions t1t2 . . . tk consistent with a run from (u,⊥) on input w, the output
of tj is ωj for every 1 ≤ j ≤ k and the destination of tk is v. Let M(w) denote
the set of all strings that M can produce on input w.

2.2 Problem Definitions

As mentioned in the introduction, we are interested in the examining the com-
plexity of two heuristics for error explanation. The first heuristic tries to find
the smallest number of program transformations that result in the error trace
not being exhibited any longer. This problem is related to computing what we
call a minimum edit set of a program, which we define formally below.

Minimum Edit Set. We define a minimum edit set when the program M is
represented as a (Σ,Ω)-FSM. Given equal length strings wi ∈ Σ∗, wo ∈ Ω∗, an
edit set is a set X ⊆ VM × Σ such that there is a (Σ,Ω)-FSM M ′ for which
VM ′ = VM , iM ′ = iM , δM and δM ′ differ only on the set X and M ′(wi) = wo. A
minimum edit set XM (wi, wo) is a smallest edit set X .

Remark 3. Although we have defined minimum edit set only for Mealy machines,
we could easily define it for the other models we consider as well. We shall show
that this problem is intractible for Mealy machines. Since the other models are
more general than Mealy machines, the intractibility result applies to these other
models as well.

The second heuristic tries to find the closest correct computation to the
given error trace. This is related to computing the closest-output distance that
we define below.

Closest-Output Distance. We define the closest-output distance when the correct
executions of the program are represented as a (Σ,Ω)-PDA M . Given a string
wo ∈ Ω∗, the closest-output distance dM (wo) is the smallest non-negative integer
d for which there is a string w ∈ M(wi) for some wi ∈ Σ∗ such that the
Hamming-distance between w and wo is d.
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Remark 4. We will present a polynomial time algorithm for the problem of com-
puting the closest-output distance, when the correct executions are modeled as
a PDA (and a Mealy machine). Therefore, we formally define this problem for
a model that has outputs as well, which is more general than a model without
outputs. Again we formally define this problem only for PDAs, which is a most
general model for which this upper bound applies. Also, for error explanation we
would actually be interested in computing the closest correct computation and
not just the distance, and we outline how this can be done in Section 4.

Finally, we show that applying the second heuristic when the correct traces
are modeled as an extended finite state machine is difficult. We do this by show-
ing that computing another distance measure is difficult; since we are proving a
lower bound, this measure is defined for models without outputs.

Closest-Input Distance. We define the closest-input distance when the correct
executions of the program are represented as a (Σ,X)-FSM M . Given a string
wi ∈ Σ∗, the closest-input distance dM (wi) is the smallest non-negative integer
d for which there is a string w ∈ LM such that the Hamming-distance between
w and wi is d.

3 Computing the Minimum Edit Set

3.1 NP-Completeness

Let M be a (Σ,Ω)-FSM. We consider the decision version of computing the
size of XM (wi, wo), i.e. given a non-negative integer k, decide whether or not
|XM (wi, wo)| ≤ k. Clearly, this problem is in NP: we guess an edit set X of
size k and guess the changes to δM to be made on the set X . We then verify if
M ′(wi) = wo for the resulting (Σ,Ω)-FSM M ′.

We now show that the decision version of the problem is NP-hard, even
when the size of the input and output alphabets (Σ and Ω) are bounded by
a constant. We will reduce the Hamiltonian-Cycle problem to our problem.
Given a directed graph G, we construct a (Σ,Ω)-FSM M and input/output
strings wi and wo such that any edit set must contain a certain set of transitions
of M . The key idea is to show that this set of transitions is “small” if and only
if G has a Hamiltonian cycle.

Reduction. The undirected Hamiltonian-Cycle problem for graphs with at
most one edge between any pair of vertices and with degree bounded by a
constant is NP-complete (see the reduction from 3-CNF in [18]). Since undi-
rected graphs are a special case of directed graphs, Hamiltonian-Cycle is
NP-complete for digraphs with outdegree bounded above by a constant d and
with at most one edge between any ordered pair of vertices. Let G = (V,E) be
any such digraph, where V = {v1, v2, . . . , vn} and for every i = 1, 2, . . . , n, there
is a non-negative integer mi ≤ d and a permutation πi of (1, 2, . . . , n) such that
(vi, vπi(k)) ∈ E iff k ≤ mi.
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Fig. 1. A graph G and the associated FSM M .

Let Σ = {σ0, σ1, σ2, . . . , σd} and let Ω = {x, y, z}. We construct an n-state
(Σ,Ω)-FSM M = (VM , iM , δM ), where VM = V , iM = v1 and for every i =

1, . . . , n: (1) vi
σ0/z−−−→M vi, (2) vi

σk/x−−−→M vπi(k) whenever 1 ≤ k ≤ mi, and (3)

vi
σk/x−−−→M vi whenever mi < k ≤ d. Figure 1 depicts an example graph and the

Mealy machine M with d = 2. We use the notation σk to denote σ repeated k
times. Let t1 = yxn−1, and for i = 2, . . . , n let ti = xn−i+1yxi−2. Further, let

s1...d = (σ0σ1σ
n
0 )(σ0σ2σ

n
0 ) . . . (σ0σdσ

n
0 )

wi = σ2n
0 s1...d (σ0s1...d)

n−1

wo = t1t1(yxt1)d
(
y(xxt2)dx(xxt3)d . . . x(xxtn)d

)
Lemma 1. |XM (wi, wo)| ≤ dn iff G has a Hamiltonian cycle.

Proof. Suppose G has a Hamiltonian cycle C. We obtain a (Σ,Ω)-FSM M ′

satisfying M ′(wi) = wo by modifying dn transitions of M as follows:
Since C is a Hamiltonian cycle in G, for every vi there is exactly one vj such

that (vj , vi) ∈ C. For every such vi, replace the transition vi
σ0/z−−−→M vi with the

transition vi
σ0/y−−−→M ′ vj (if vi = v1), and with the transition vi

σ0/x−−−→M ′ vj (if
vi �= v1). This accounts for n changes.

Further, by definition of M , for each such (vj , vi) ∈ C there is exactly one

transition of the form vj
σk/x−−−→M vi in M , and hence d − 1 transitions of the

form vj
σk/x−−−→M vl where vl �= vi. Replace each such transition with the transition

vj
σk/x−−−→M ′ vi. This accounts for (d− 1)n changes. Hence, M ′ differs from M in

dn transitions. It is easy to verify that M ′(wi) = wo.
Conversely, suppose G is not Hamiltonian. Consider a (Σ,Ω)-FSM M ′ =

(VM , iM , δM ′) such that M ′(wi) = wo. We claim that M ′ satisfies the following
properties for every 1 ≤ i, j,≤ n:

1. The edges corresponding to the σ0-labeled transitions of M ′ form a Hamil-
tonian cycle, i.e. the sequence of states reached in M ′ from vi on input
σ0, σ

2
0 , . . . , σ

n
0 is a permutation of the set of states VM and the state reached

in M ′ from vi on input σn
0 is vi.
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Fig. 2. A solution FSM for the example graph G.

2. vi
σ0/t−−−→M ′ v′i for some v′i ∈ V , where t = y if i = 1 and t = x otherwise.

3. If vi
σ0/t−−−→M ′ vj for some t ∈ {x, y}, then vj

σk/x−−−→M ′ vi for every k = 1, . . . , d.

To see this, consider the prefix σ2n
0 of wi and the corresponding prefix t1t1 =

yxn−1yxn−1 of wo. For every i = 1, . . . , n let vπ(i) be the state reached in M ′

from v1 on input σi−1
0 (note that π(1) = 1). On reaching state vπ(i), we note

that the output produced by M ′ on the subsequent input σn
0 is ti. Since, for

distinct i, j we have ti �= tj , (π(1), . . . , π(n)) must be a permutation of (1, . . . , n).
Also, the state v reached in M ′ on input σ0 from vπ(n) produces output t1 on
subsequent input σn

0 . Since M ′ has n states, v must in fact be v1. In other words,
we have the following cycle in M ′ obtained by following the edges labeled by σ0:

v1
σ0/y−−−→M ′ vπ(2)

σ0/x−−−→M ′ vπ(3)
σ0/x−−−→M ′ . . .

σ0/x−−−→M ′ vπ(n)
σ0/x−−−→M ′ v1. Hence M ′

satisfies the first two properties.
As observed above, from each state vπ(i), M ′ produces the unique output

ti on input σn
0 and returns to state vπ(i). Hence the output produced by M ′

on input σn
0 can be used to identify the current state in M ′. The string s1...d

defined above consists of d substrings of the form σ0σkσ
n
0 , where k = 1, . . . , d.

Since M ′(wi) = wo, it follows that for every i = 1, . . . , n and every k = 1, . . . , d,
M ′ goes from state vπ(i) to vπ(i) on input σ0σk with output of the form tx
(where t ∈ {x, y}). Hence, M ′ also satisfies the third property. For the example
presented in Figure 1, a solution Mealy machine M ′ must be as depicted in
Figure 2.

Since M ′ satisfies the first and third properties, for every i = 1, . . . , n and

every k = 1, . . . , d: vπ(i+1)
σk/x−−−→M ′ vπ(i) (where π(n + 1) = π(1)). Now G =

(V,E) is not Hamiltonian, so there is at least one j ∈ {1, . . . , n} such that

(vπ(j+1), vπ(j)) /∈ E. Thus, there is no transition of the form vπ(j+1)
σk/x−−−→M

vπ(j) in M . Also, for every i �= j, there is at most one transition of the form

vπ(i+1)
σk/x−−−→M vπ(i) in M . Hence, M ′ differs from M in at least d+(d−1)(n−1)

transitions.
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Furthermore, since M ′ satisfies the second property, it clearly differs from
M on the n σ0-labeled transitions. Thus, M ′ differs from M in at least dn + 1
transitions. Hence, |XM (wi, wo)| > dn. ��

This completes the proof of NP-completeness for the decision version of com-
puting |XM (wi, wo)| when M is a (Σ,Ω)-FSM.

Remark 5. Note that (Σ,Ω)-FSMs are restricted versions of (Σ ×Ω,X)-FSMs
(as observed in Remark 2) and (Σ,Ω)-PDAs. It is easy to show that the decision
version of computing |XM (wi, wo)| is also in NP when M is a (Σ ×Ω,X)-FSM
or a (Σ,Ω)-PDA. Hence, the decision version of computing |XM (wi, wo)| is also
NP-complete for these models.

3.2 Inapproximability Result

Given a (Σ,Ω)-FSM M = (VM , iM , δM ) and equal length strings wi ∈ Σ∗ and
wo ∈ Ω∗, we prove that if the minimum edit set has size d, then for every
positive constant k there is no polynomial time algorithm to construct a (Σ,Ω)-
FSM M ′ = (VM , iM , δM ′) such that M ′(wi) = wo and δM and δM ′ differ on a
set of size at most dk, unless P = NP.

Our proof is in three steps. We first prove a variant of a result by Pitt and
Warmuth [19]: Given a positive integer k and a set of input/output pairs of
strings P for which the smallest FSM consistent with P (i.e. an FSM which
produces output w′ on input w for every pair (w,w′) ∈ P ) has n states, there is
no efficient algorithm to construct an FSM consistent with P having at most nk

states (unless P = NP). Next, given such a set of pairs P , we carefully construct
an FSM M and a single input/output pair (wi, wo) such that the minimum edit
set XM (wi, wo) has size Θ(n). Finally, we show that any edit set X can be
efficiently modified to yield an FSM with |X | states that is consistent with P .
We put these three results together to complete our proof.

Definition 1. Given a finite set Σ and two finite sets POS, NEG ⊆ Σ∗, a
deterministic finite automata (DFA) is said to be consistent with (POS, NEG)
if it accepts all strings in POS and rejects all strings in NEG.

Under the assumption that P �= NP, Pitt and Warmuth [19] prove the following
inapproximability result for the minimum consistent DFA problem.

Theorem 1 (Pitt-Warmuth). Given a finite set Σ such that |Σ| ≥ 2, and
two finite sets of strings POS, NEG ⊆ Σ∗, for any positive integer k there is no
polynomial time algorithm to find a DFA with at most nk states, where n is the
number of states in the smallest DFA that is consistent with (POS, NEG).

Using the result above we prove the following:

Lemma 2. Given a finite set of input/output pairs P in Σ∗ × Ω∗, let n be the
minimum number such that there is a (Σ,Ω)-FSM M with n states that is con-
sistent with P (i.e. for every pair (wi, wo) ∈ P , M(wi) = wo). Then, assuming
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P �= NP, for any positive constant k, there is no polynomial-time algorithm to
find a consistent (Σ,Ω)-FSM M ′ with at most nk states. This result holds even
if |Σ| and |Ω| are bounded by suitable constants.

Proof. We reduce the minimum consistent DFA problem to the above problem.
Consider an instance of the minimum consistent DFA problem with input al-
phabet Σ and sets POS, NEG ⊆ Σ∗. Let Σ′ = Σ ∪ {c} where c /∈ Σ and
Ω = {0, 1, 2}. Consider the set of input output pairs P = P+ ∪ P−, where

P+ = {(wi, wo) | wi = xc, x ∈ POS and wo = 2|wi|1}
P− = {(wi, wo) | wi = xc, x ∈ NEG and wo = 2|wi|0}

If there is a (Σ′, Ω)-FSM M with n states consistent with the set of pairs in
P then we can construct a DFA M ′ with n states where we neglect the output
symbols and label states accept or reject by the output produced on the input c
from that state. Clearly this DFA is consistent with (POS,NEG). Conversely, if
there is a DFA consistent with (POS,NEG) then we can produce a (Σ′, Ω)-FSM
M that is consistent with P as follows: the output on all inputs in Σ is 2, and
the transition from every state on input c leads to the same state, with output
1 if the state is an accepting state of the DFA and with output 0 otherwise.
Clearly the FSM produced is consistent with P . ��

For the rest of this section, we fix an input alphabet Σ (with |Σ| = c, a con-
stant), a finite output alphabet Ω, and a finite set P ={(wi1, wo1), . . . , (wik, wok)}
of input/output pairs of strings over Σ∗×Ω∗, with |wis| = |wos| for 1 ≤ s ≤ k. A
necessary and sufficient condition for the existence of a (Σ,Ω)-FSM consistent
with the pairs in P is the following: For any w ∈ Σ∗, if w is a prefix of both
wip and wiq then the prefixes of length |w| of wop and woq must be identical. If
this condition is satisfied, it is easy to construct a (Σ,Ω)-FSM consistent with
P which has at most m = (

∑k
s=1 |wis|) + 1 states. As a corollary, if the smallest

(Σ,Ω)-FSM consistent with P has n states, then n ≤ m.
Let σ0, σ1 /∈ Σ and let x, y, z /∈ Ω. Let Σ′ = Σ ∪ {σ0, σ1} and Ω′ = Ω ∪

{x, y, z}. We construct a (Σ′, Ω′)-FSM M = (VM , v1, δM ) with m states such

that for every v ∈ VM , v
σ1/x−−−→ v1 and for every σ ∈ Σ, v

σ/z−−→M v; and further,
for some fixed permutation π of (1, 2, . . . ,m) such that π(1) = 1,

vπ(1)
σ0/y−−−→M vπ(2)

σ0/x−−−→M vπ(3)
σ0/x−−−→ . . .

σ0/x−−−→M vπ(n)
σ0/x−−−→M vπ(1)

i.e. the transitions on input σ0 form a Hamiltonian cycle, with output x for every
transition other than the transition from the initial state v1 = vπ(1), for which
the output is y. Let t1 = yxm−1 and for every i = 2, . . . ,m let ti = xm−i+1yxi−2.
Consider

wi = σ2m
0 [(σ0σ1σ

m
0 )(σ2

0σ1σ
m
0 ) . . . (σm−1

0 σ1σ
m
0 )][(wi1σ1)(wi2σ1) . . . (wikσ1)]

wo = t1t1[(yxt1)(yxxt1) . . . (yxm−2xt1)][(wo1x)(wo2x) . . . (wokx)]
We claim that |XM (wi, wo)| is Θ(n), where n is the number of states in the
smallest (Σ,Ω)-FSM consistent with P . The proof of this claim follows from the
following two lemmas:

Lemma 3. |XM (wi, w0)| ≤ cn.
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Proof. Notice that σ2m
0 is a prefix of wi and the corresponding prefix of wo is

t1t1 = yxm−1yxm−1. By an argument similar to the one used in the reduction
of Subsection 3.1, we can prove that any (Σ′, Ω′)-FSM M ′ = (VM , v1, δM ′) such
that M ′(wi) = wo must have the structure of a Hamiltonian cycle on the input
σ0, where the output on σ0 is y from the initial state v1, and x from every other
state; furthermore, all transitions of M ′ on input σ1 from any state must go to
the initial state v1 with output x. Notice that these properties are true of M .
Hence, M only needs to be modified so that it produces output wos on input
wis for each 1 ≤ s ≤ k.

As remarked earlier, m ≥ n. Since there is an n-state (Σ,Ω)-FSM consistent
with P , it is possible to select an n-state subset V of VM and modify only the Σ-
transitions from states in V to obtain a (Σ′, Ω′)-FSM M ′ such that M ′(wis) =
wos for every 1 ≤ s ≤ k. It now immediately follows that M ′(wi) = w0. Hence,
|XM (wi, wo)| ≤ |Σ|n = cn. ��
Lemma 4. |XM (wi, wo)| ≥ n.

Proof. As remarked earlier, m ≥ n. Let |XM (wi, wo)| = d and suppose we have
made d changes to M , yielding M ′ such that M ′(wi) = wo and hence, for every
1 ≤ s ≤ k, M ′(wis) = wos. Thus, there are at most d states v for which at least

one transition of the form v
σ/z−−→M v (σ ∈ Σ) has been changed. Hence, there

are at least m− d states in M ′ such that v
σ/z−−→M ′ v for every σ ∈ Σ. We claim

that we can discard all such states v and modify the resulting (Σ′, Ω′)-FSM to
obtain a (Σ,Ω)-FSM consistent with P .

Consider any state v such that v
σ/z−−→M ′ v for every σ ∈ Σ. Thus on an input

wis, 1 ≤ s ≤ k, if we can ever reach v, it must be the last state, since the output
from v on any input symbol in Σ is z and wos does not contain z. Clearly v
cannot be the start state of M ′. So v can be discarded from M ′ and it is still
possible to construct a (Σ′, Ω′)-FSM M ′′ such that M ′′(wis) = wos for every
1 ≤ s ≤ k (all edges into v can be sent to some other state).

This process can be repeated for all such states v, resulting in a (Σ′, Ω′)-FSM
M̂ with at most d states such that M̂(wis) = wos for every 1 ≤ s ≤ k. Now, by
discarding all σ0 and σ1 transitions from M̂ , we obtain a (Σ,Ω)-FSM consistent
with P which has d = |XM (wi, wo)| states. Hence, |XM (wi, wo)| ≥ n. ��
Recalling that c = |Σ| is a constant, we conclude that |XM (wi, wo)| is Θ(n).

Suppose there is a positive integer k and a polynomial time algorithm to
compute a (Σ′, Ω′)-FSM M ′ that differs from M in at most |XM (wi, wo)|k tran-
sitions for which M ′(wi) = wo. Using an argument similar to the one in Lemma 4,
we can modify M ′ in polynomial time by discarding at least m− |XM (wi, wo)|k
states and the σ0 and σ1 transitions to obtain a Θ(nk)-state (Σ,Ω)-FSM con-
sistent with P . By Lemma 2, this would imply that P = NP. Thus we have the
following

Theorem 2. Given a (Σ,Ω)-FSM M and equal length strings wi ∈ Σ∗ and
wo ∈ Ω∗, for any positive integer k there is no polynomial time algorithm to
compute an edit set of size |XM (wi, wo)|k unless P = NP.
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Remark 6. By observing that (Σ,Ω)-FSMs are restricted versions of (Σ×Ω,X)-
FSMs and (Σ,Ω)-PDAs, we obtain similar inapproximability results when the
program is represented using either of these abstractions.

4 Computing the Closest-Output Distance

4.1 Upper Bound for FSMs and PDAs

We will prove a polynomial upper bound on the time to compute the closest-
output distance when the correct executions of a program are represented as
a (Σ,Ω)-PDA. The closest-output distance can be expressed using two simple
recurrences, and our algorithm uses a straightforward dynamic programming
approach to solve these recurrences.

Let wo ∈ Ω∗ and let M = (V, Vi, Γ, δ) be a (Σ,Ω)-PDA. We consider the
problem of computing dM (wo). Let the length of wo, denoted by |wo|, be L. For
every 1 ≤ i ≤ j ≤ L let wo(i, j) denote the substring of wo from the i-th to the
j-th position and let wo(i) denote the i-th letter of wo (i.e. wo(i) = wo(i, i)).

For every v ∈ V and every 1 ≤ i ≤ L, let P (v, i) denote the Hamming
distance of the closest string to wo(i, L) that can be produced by M on a some
valid input w starting from state v. Also, for every u, v ∈ V and every 1 ≤
i ≤ j ≤ L, let B(u, v, i, j) denote the Hamming distance of the closest string to
wo(i, j) that can be produced by M on some balanced input w such that the
state changes from u to v. By definition, dM (wo) = minvi∈Vi P (vi, 1).

Let [ω1 �= ω2] be 1 if ω1 �= ω2 and 0 otherwise. For notational convenience, let
P (v, i) = 0 if i > L and let B(u, v, i+1, i) = 0 if u = v, and B(u, v, i+1, i) = ∞
otherwise. We observe that if w is a balanced string from state u, then w must
be of one of the following two forms:

1. w = σiw1 where (u, σi, v1, ω) ∈ δi for some v1 ∈ V and ω ∈ Ω, and w1 is a
balanced string from v1; or

2. w = σcw1σrw2 where (u, σc, v1, γ, ω) ∈ δc, v1
w1/t−−−→M v2 and (v2, σr, γ, v3, ω

′)
∈ δr for some v1, v2, v3 ∈ V , γ ∈ Γ , ω, ω′ ∈ Ω and t ∈ Ω∗, and w1 is a
balanced string from v1 and w2 is a balanced string from v3.

Note that w can be of the latter form only if |w| ≥ 2. Thus, for every 1 ≤ i ≤
j ≤ L, B(u, v, i, j) = b1 if j − i < 2 and B(u, v, i, j) = min(b1, b2) otherwise,
where

b1 = min[ω �= wo(i)] + B(v1, v, i + 1, j)
minimum over all σ, u1, ω such that (u, σ, v1, ω) ∈ δi

b2 = min[ωc �= wo(i)]+B(v1, v2, i+1, k)+[ωr �= wo(k+1)]+B(v3, v, k+2, j)
minimum over all σc, v1, v2, σr, v3, γ, k such that i < k < j and (u, σc, v1, γ, ωc) ∈
δc, (v2, σr, γ, ωr) ∈ δr for some σc, σr ∈ Σ, γ ∈ Γ ′, v1, v2, v3 ∈ V

We also observe that any valid input w from state u must be of the following
three forms:

1. w = σcw1 where (u, σc, v1, γ, ω) ∈ δc for some σc ∈ Σ, v1 ∈ V , γ ∈ Γ ′,
ω ∈ Ω, and w1 is a valid input from v1; or
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2. w = w1w2 where w1 is a balanced string from u, u
w1/t−−−→ v1 for some t ∈ Ω∗

and v1 ∈ V , and w2 is a valid input from v1; or
3. w is a balanced string from u.

Thus, for every 1 ≤ i ≤ L, P (v, i) = min(p1, p2, p3) where
p1 =minσc∈Σ,v1∈V,γ∈Γ ′,ωc∈Ω{[ωc �=wo(i)]+P (v1, i+1) | (u, σc, v1, γ, ωc) ∈ δc}
p2 =mini≤k<L;v1∈V B(v, v1, i, k) + P (v1, k + 1)
p3 =minv1∈V B(v, v1, i, L)

The required value minvi∈Vi P (vi, 1) can easily be computed using dynamic pro-
gramming in O(|Σ|2 · |Γ | · |V |5L3) time, which is polynomial in the size of the
input. By observing that a (Σ,Ω)-FSM is a special case of a (Σ,Ω)-PDA, we
obtain the following

Theorem 3. There is a polynomial time algorithm for computing the closest-
output distance when the correct executions of the program are represented as a
(Σ,Ω)-PDA or a (Σ,Ω)-FSM.

Remark 7. Note that the polynomial-time dynamic programming algorithm to
compute dM (wo) can easily be modified to compute a string w ∈ Σ∗ such that
the Hamming distance between wo and some string w′ ∈ M(w) is dM (wo).

Remark 8. Most programs are infinite-state systems and need to be abstracted
to form PDAs (or extended finite state machines); consequently these abstrac-
tions describe more than just the correct executions of the program. Hence, the
input string computed by the above dynamic programming algorithm may not
be legal, i.e. it may not correspond to a correct execution of the program. While
we do not know of a general technique to compute the closest-output distance
when inputs are constrained to be legal, the following technique can be used in
practice: Using the procedure by Lawler [20], the above dynamic programming
algorithm can be used to compute input strings corresponding to the closest-
output distance, the second-closest-output distance, . . . , the kth-closest-output
distance, in time polynomial in k and the size of the input. These input strings
can be examined in order, and the first legal input string can then be chosen.

4.2 Hardness Results for Extended FSM Representation

Given a (Σ,X)-FSM M and a string wi ∈ Σ∗, we show that the decision version
of computing dM (wi) is NP-complete and further, there is no polynomial-time
algorithm to compute dM (wi) to within any given polynomial factor (unless
P = NP). Briefly, given a SAT formula φ over a set X of n variables, we construct
a (Σ,X)-FSM M and a string wi ∈ Σ∗ such that every string w ∈ LM identifies
an assignment aw of the variables in X , and if w is “close” to wi, then aw satisfies
φ. The results follow from the NP-completeness of SAT.

Let Σ = {0, 1}, let X be a set of n boolean variables, and let φ be any SAT
formula over variables in X . For every positive integer k, let N(k) = nk + 1 and
construct the following (Σ,X)-FSM Mk = (V, v0, F, a0, g, δ):
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1. V = {v0, v1, . . . , vn} ∪ {u1, . . . , uN(k)} ∪ {s1, . . . , sN(k)}, F = {sN(k), uN(k)};
2. g(vi, j) = � for i = 0, . . . , n and j = 0, 1 ;
3. g(ui, j) = ¬φ and g(si, j) = φ for i = 1, . . . , N(k) and j = 0, 1 ;
4. (vi−1, 0) xi:=0−−−→

xi:=0
vi and (vi−1, 1) xi:=1−−−→

xi:=1
vi for i = 1, . . . , n;

5. (vn, 0) → s1 and (vn, 1) → u1 ;
6. (si, 0) → si+1, (si, 1) → si, (ui, 0) → ui, (ui, 1) → ui+1 for 1 ≤ i ≤ N(k)−1;
7. (sN(k), j) → sN(k) and (uN(k), j) → uN(k) for j = 0, 1;
8. the initial state is v0, and the initial assignment a0 sets all variables to 0.

[φ], 1

[φ], 0

[φ],1 [φ],0, 1

[¬φ],0

u1

[¬φ],1

[¬φ], 0

u2

[¬φ],0, 1

u2k+1

v0 v1 v2

0, x1 := 0

1, x1 := 1

0, x2 := 0

1, x2 := 1

0

1

s1 s2 s2k+1

Fig. 3. The FSM for n = 2.

Figure 3 shows the FSM for n = 2 variables. The transition arrows are labeled
by the input symbol 0 or 1. The change in assignment (if any) is given after the
input symbol while the enabling condition is given before the input symbol if it
is not always true.

Note that the size of Mk is polynomial in the size of the inputs. Let wi =
0n+N(k). By the construction of Mk, every w′ ∈ LMk

of length n+N(k) is either
of the form w0N(k) or w1N(k) where w ∈ Σn. Note that w uniquely determines an
assignment aw of the variables of X . It is immediately clear from the construction
of Mk that the Hamming distance between wi and w′ is at most n if aw satisfies
φ, and is at least N(k) otherwise.

The decision problem dMk
(wi) ≤ n is clearly in NP: we guess a string w′ of

length equal to wi and verify in polynomial time if w′ ∈ LMk
and the Hamming

distance between w′ and wi is at most n. If so, then as argued above, the prefix w
of length n of w′ uniquely determines a satisfying assignment to the SAT formula
φ. Since φ was an arbitrary SAT formula, we conclude that this decision problem
is NP-complete.

We now show that, unless P = NP, there is no polynomial time algorithm for
computing dMk

(wi) to within a polynomial approximation factor. Suppose, for
the sake of contradiction, that such an algorithm A exists. Let A(Mk, wi) denote
the output of A for the input Mk and wi defined above. Since dMk

(wi) ≤ n iff
φ is satisfiable, it follows that A(Mk, wi) < N(k) iff φ is satisfiable. Thus, no
such polynomial-time algorithm A exists unless SAT ∈ P . Hence, we have the
following
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Theorem 4. Let M be a (Σ,X)-FSM and let wi ∈ Σ∗ such that dM (wi) =
d. For any positive integer k, there is no polynomial time algorithm to decide
whether or not dM (wi) ≤ dk, unless P = NP.

Remark 9. The typical model for programs used in model checking is boolean
programs, which can be seen as PDAs with boolean variables. Since this model
is a generalization of extended finite state machines, our hardness result applies
to boolean programs as well.

Remark 10. As mentioned in Remark 8, programs may be abstracted as ex-
tended finite state machines, and thereby describe more than just the correct
executions of the program. The above hardness result for extended FSMs clearly
extends to this more general case as well.

5 Conclusions

We have proved upper and lower bounds for two popular heuristics used in au-
tomated error explanation for various models encountered in formal verification.
Based on our observations, we can draw two important conclusions. First, our
lower bounds provide justification for algorithms based on SAT solvers that have
been proposed in the literature. These algorithms are likely to be the most ef-
ficient that one can hope to design. Second, since the problem of determining
the minimum edit set is intractible even for Mealy machines, it is unlikely that
error explanation tools based on this heuristic will scale up to large software
programs. On the other hand, the closest correct trace to a counter-example can
be computed efficiently for PDAs (and hence for finite state models as well). The
intractibility of this problem for extended finite state machines is a consequence
of the well-known state space explosion problem, and does not seem intrinsic to
the heuristic itself.
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Abstract. We present two polynomial-time algorithms for automatic
verification of deadlock-freedom of large finite-state concurrent programs.
We consider shared-memory concurrent programs in which a process
can nondeterministically choose amongst several (enabled) actions at
any step. As shown in [23], deadlock-freedom analysis is NP-hard even
for concurrent programs of restricted form (no nondeterministic choice).
Therefore, research in this area concentrates either on the search for
efficiently checkable sufficient conditions for deadlock-freedom, or on im-
proving the complexity of the check in some special cases. In this paper,
we present two efficiently checkable sufficient conditions for deadlock
freedom.
Our algorithms apply to programs which are expressed in a particular
syntactic form, in which variables are shared between pairs of processes.
The first algorithm improves the complexity of the deadlock check of At-
tie and Emerson [4] to polynomial in all parameters, as opposed to the
exponential complexity of [4]. The second algorithm involves a concep-
tually new construction of a “global wait-for graph” for all processes. Its
running time is also polynomial in all its parameters, and it is more dis-
criminating than the first algorithm. We illustrate our algorithms by ap-
plying them to several examples of concurrent programs that implement
resource allocation and priority queues. To the best of our knowledge,
this is the first work that describes polynomially checkable conditions for
assuring deadlock freedom of large concurrent programs.

1 Introduction

One of the important correctness properties of concurrent programs is the ab-
sence of deadlocks , e.g. as defined in [28]: “a set of processes is deadlocked if
each process in the set is waiting for an event that only another process in the
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set can cause.” Most approaches to deadlock assume that the “event” that each
process waits for is the release of a resource held by another process. We refer to
this setting as the resource allocation setting. Four conditions are necessary for
a deadlock to arise [10, 20]: (1) resources can be held by at most one process; (2)
processes can hold some resources while waiting to acquire several (more than
1, in general) others; (3) resources cannot be taken away from a process (no pre-
emption); and (4) a cyclical pattern of waiting amongst the involved processes.
The exact pattern of waiting required to cause a deadlock depends on the spe-
cific resource model, and can be depicted in terms of a wait-for-graph (WFG):
a graph whose edges depict the “wait-for” relationships between processes. The
following models have been formulated [22]: (1) AND model: a process blocks iff
one or more of the resources it has requested are unavailable; (2) OR model: a
process blocks iff all of the resources it has requested are unavailable; (3) AND-
OR model: a process can use any combination of AND and OR operators in
specifying a resource request; and (4) k-out-of-n: a process requests any k re-
sources out of a pool of n resources. For the AND-model, deadlock arises if the
WFG contains a cycle. For the OR-model, deadlock arises if the WFG contains
a knot, i.e., a set of processes each of which can reach exactly all the others
by traversing wait-for edges. To our knowledge, no graph-theoretic construct
characterizing deadlock in the AND-OR or the k-out-of-n models is known [22].

In this paper, we address a version of the deadlock problem that is more
general than the resource-based model. We consider the deadlock problem in the
case that the event which each process waits for is the truthification of a predicate
over shared state. Thus, we deal with a shared variables model of concurrency.
However, our approach is applicable in principle to other models such as message
passing or shared events. We exploit the representation of concurrent programs
in a form where the synchronization between processes can be factored out, so
that the synchronization code for each pair of interacting processes is expressed
separately from that for other pairs, even for two pairs that have a process in
common. This “pairwise” representation was introduced in [4], where it was used
to synthesize programs efficiently from CTL specifications.

Traditionally, three approaches to dealing with deadlock have been investi-
gated: (1) deadlock detection and recovery: since a deadlock is stable, by defi-
nition, it can be detected and then broken, e.g., by the preemption, rollback, or
termination of an involved process. (2) deadlock avoidance: avert the occurrence
of a deadlock by taking appropriate action. Deadlock avoidance algorithms have
been devised for the resource-based formulation of deadlock [28], (3) deadlock
prevention: prevent a deadlock from arising by design. In particular, attempt to
negate one of the four conditions mentioned above for the occurrence of dead-
lock. As Tanenbaum [28] observes, attempting to negate any of the first three
conditions is usually impractical, and so we are left with condition (4): a cyclical
pattern of waiting.

Related Work. As shown in [23], deciding the deadlock-freedom of a finite-state
concurrent program is NP-hard even for constrained programs in which each
process consists of a finite prefix followed by an infinite loop.
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Most model checking algorithms can be applied to verifying deadlock free-
dom. The main impediment is state-explosion. Some approaches to ameliorating
state-explosion are to use a partial order instead of an interleaving model [16–18,
26], using symbolic model checking [21, 7, 8, 25] or by using symmetry reductions
[2, 9, 13, 14]. These approaches, however, have worst case running time exponen-
tial in the number of processes in a system, and often rely on the processes being
similar. (Roughly, two processes are similar if the code for one can be obtained
from the code for the other by replacing process indices). Our first algorithm has
better accuracy (i.e., returns a positive answer for deadlock-free programs) when
processes are similar, but our second algorithm does not depend on similarity in
any way.

In [1, 19] sufficient conditions for verifying deadlock-freedom are given, but it
is not shown that these can be evaluated in polynomial time. Also, no example
applications are given.

Attie and Emerson [4] formulate a condition that is sufficient but not nec-
essary for deadlock-freedom. Checking this condition requires the construction
of the automata-theoretic product of n + 2 processes, where n is the maximum
branching degree of a state-node in a state-transition graph that represents the
behavior of processes (essentially, n reflects the degree of “local” nondeterminism
of a single process in a state). The n+2 processes are arranged in a “star” config-
uration with a central process Pk and n+ 1 “satellite” processes. The condition
is that after every transition of Pk, either Pk does not block another process, or
Pk has another enabled transition. Hence Pk cannot be part of a cyclical waiting
pattern in either case. Since this product has size exponential in n, checking the
condition is infeasible for concurrent programs that have a high degree of local
nondeterminism. While the condition in [4] is formulated for systems of similar
(isomorphic) processes, the restriction to similar processes does not play any role
in the proof of correctness given in [4], and thus can be removed.

Our Contribution. In this paper we follow the approach of [4] to deadlock pre-
vention. We present two sufficient conditions for assuring deadlock freedom and
describe efficient (polynomial time) algorithms for checking these conditions.

The first condition is a modification of the condition presented in [4], but can
be checked by constructing the product of only three processes (triple-systems).
Roughly, the idea is to check the condition “after a transition, Pk either does
not block another process, or is itself enabled” in systems of only three pro-
cesses. We show that this implies the original condition of [4], and so implies
deadlock-freedom by the results of that paper. Since only triple-systems are
model-checked, the condition can be checked in time polynomial in all the in-
put parameters: the number of processes, the size of a single process, and the
branching degree of state-nodes of a process. Moreover, the space complexity
of the check is polynomial in the size of a single process, and the checks for
all triples can be performed sequentially, thus memory can be reused. Therefore,
this condition can be efficiently checked even on very large concurrent programs.

The second condition is more complex and also more discriminating. This
condition is based on constructing the “global wait-for graph,” a bipartite graph
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whose nodes are the local states of all processes, and also the possible transi-
tions that each process can execute. The edges of this graph represent “pairwise
wait-for” conditions: if in the system consisting of Pi and Pj executing their syn-
chronization code in isolation (pair-system), there is a transition ai of Pi that is
blocked in some state where the local state of Pj is sj, then there is an edge from
ai to sj . Since only pair-systems need be checked, the global wait-for-graph can
be constructed in polynomial time. Existence of a deadlock implies the existence
of a subgraph of the global wait-for-graph in which every process is blocked by
some other processes in the subgraph. We call such a subgraph a supercycle and
define it formally in the sequel. One could check the global wait-for-graph for
the occurrence of supercycles, but the results of [23] imply that this cannot be
done in polynomial time. Instead we check the global wait-for-graph for the oc-
currence of subgraphs of a supercycle. If these subgraphs are not present, then
the supercycle cannot be present either, and so our check succeeds in verifying
deadlock-freedom. If these subgraphs are present, then the supercycle may or
may not be present, and so our check is inconclusive.

To the best of our knowledge, this is the first work that describes sufficient
and polynomially checkable conditions for deadlock-freedom of large concurrent
programs. We have implemented our pairwise representation using the XSB logic
programming system [27]. This implementation provides a platform for imple-
menting the algorithms in this paper. Due to the lack of space, all proofs and
many technical details are omitted from this version. The full version can be
found at authors’ home pages.

2 Technical Preliminaries

2.1 Model of Concurrent Computation

We consider finite-state concurrent programs of the form P = P1‖ · · · ‖PK that
consist of a finite number n of fixed sequential processes P1, . . . , PK running in
parallel. Each Pi is a synchronization skeleton [15], that is, a directed multigraph
where each node is a (local) state of Pi (also called an i-state and is labeled by
a unique name (si), and where each arc is labeled with a guarded command [12]
Bi → Ai consisting of a guard Bi and corresponding action Ai. With each Pi we
associate a set AP i of atomic propositions , and a mapping Vi from local states of
Pi to subsets of AP i: Vi(si) is the set of atomic propositions that are true in si.
As Pi executes transitions and changes its local state, the atomic propositions in
AP i are updated. Different local states of Pi have different truth assignments:
Vi(si) �= Vi(ti) for si �= ti. Atomic propositions are not shared: AP i ∩ APj = ∅
when i �= j. Other processes can read (via guards) but not update the atomic
propositions in AP i. There is also a set of shared variables x1, . . . , xm, which
can be read and written by every process. These are updated by the action Ai. A
global state is a tuple of the form (s1, . . . , sK , v1, . . . , vm) where si is the current
local state of Pi and v1, . . . , vm is a list giving the current values of x1, . . . , xm,
respectively. A guard Bi is a predicate on global states, and so can reference any
atomic proposition and any shared variable. An actionAi is a parallel assignment
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statement that updates the shared variables. We write just Ai for true → Ai

and just Bi for Bi → skip, where skip is the empty assignment.
We model parallelism as usual by the nondeterministic interleaving of the

“atomic” transitions of the individual processes Pi. Let s = (s1, . . . , si, . . . , sK ,
v1, . . . , vm) be the current global state, and let Pi contain an arc from node
si to s′i labeled with Bi → Ai. We write such an arc as the tuple (si, Bi →
Ai, s

′
i), and call it a Pi-move from si to s′i. We use just move when Pi is

specified by the context. If Bi holds in s, then a permissible next state is
s′ = (s1, . . . , s′i, . . . , sK , v′1, . . . , v

′
m) where v′1, . . . , v

′
m are the new values for the

shared variables resulting from action Ai. Thus, at each step of the computation,
a process with an enabled arc is nondeterministically selected to be executed
next. The transition relation R is the set of all such (s, s′). The arc from node
si to s′i is enabled in state s. An arc that is not enabled is blocked.

Let S0 be a given set of initial states in which computations of P can start.
A computation path is a sequence of states whose first state is in S0 and where
each successive pair of states is related by R. A state is reachable iff it lies on
some computation path. Let S be the set of all reachable global states of P , and
redefine R to restrict it to S × S, i.e, to reachable states. Then, M = (S0, S,R)
is the global state transition diagram (GSTD) of P . We write states(M) for S.

2.2 Pairwise Normal Form

We will restrict our attention to concurrent programs that are written in a certain
syntactic form, as follows. Let ⊕,⊗ be binary infix operators. A general guarded
command [4] is either a guarded command as given in Section 2.1 above, or has
the form G1 ⊕ G2 or G1 ⊗ G2, where G1, G2 are general guarded commands.
Roughly, the operational semantics of G1 ⊕G2 is that either G1 or G2, but not
both, can be executed, and the operational semantics of G1 ⊗ G2 is that both
G1 or G2 must be executed, that is, the guards of both G1 and G2 must hold at
the same time, and the bodies of G1 and G2 must be executed simultaneously,
as a single parallel assignment statement. For the semantics of G1 ⊗ G2 to be
well-defined, there must be no conflicting assignments to shared variables in G1

and G2. This will always be the case for the programs we consider. We refer the
reader to [4] for a comprehensive presentation of general guarded commands.

A concurrent program P = P1‖ · · · ‖PK is in pairwise normal form iff the
following four conditions all hold: (1) every move ai of every process Pi has
the form ai = (si,⊗j∈I(i) ⊕�∈{1,...,nj} B

j
i,� → Aj

i,�, ti), where Bj
i,� → Aj

i,� is a
guarded command, I is an irreflexive symmetric relation over {1 . . .K} that
defines a “interconnection” (or “neighbors”) relation amongst processes1, and
I(i) = {j | (i, j) ∈ I}, (2) variables are shared in a pairwise manner, i.e., for
each (i, j) ∈ I, there is some set SHij of shared variables that are the only
variables that can be read and written by both Pi and Pj , (3) Bj

i,� can reference
only variables in SHij and atomic propositions in APj , and (4) Aj

i,� can update
only variables in SHij .
1 In other words, I is the topology of the connection network.



470 Paul C. Attie and Hana Chockler

For each neighbor Pj of Pi, ⊕�∈[1:n]B
j
i,� → Aj

i,� specifies n alternatives Bj
i,� →

Aj
i,�, 1 ≤ 	 ≤ n for the interaction between Pi and Pj as Pi transitions from si

to ti. Pi must execute such an interaction with each of its neighbors in order
to transition from si to ti (⊗j∈I(i) specifies this). We emphasize that I is not
necessarily the set of all pairs, i.e., there can be processes that do not directly
interact by reading each others atomic propositions or reading/writing pairwise
shared variables. We do not assume, unless otherwise stated, that processes are
isomorphic, or similar (we define process similarity later in this section).

We will usually use a superscript I to indicate the relation I, e.g., process
P I

i , and P I
i -move aI

i . For aI
i = (si,⊗j∈I(i) ⊕�∈{1,...,nj} B

j
i,� → Aj

i,�, ti), we define
aI

i .start = si, aI
i .guardj =

∨
�∈{1,...,nj}B

j
i,�, and aI

i .guard =
∧

j∈I(i) ai.guardj .
We write aI

i ∈ P I
i when aI

i is a move of P I
i . If P I = P I

1 ‖ . . .‖P I
K is a concurrent

program with interconnection relation I, then we call P I an I-system. Global
states of P I are called I-states .

In pairwise normal form, the synchronization code for P I
i with one of its

neighbors P I
j (i.e., ⊕�∈{1,...,nj}B

j
i,� → Aj

i,�) is expressed separately from the
synchronization code for P I

i with another neighbor P I
k (i.e., ⊕�∈{1,...,nk}B

k
i,� →

Ak
i,�). We can exploit this property to define “subsystems” of an I-system P as

follows. Let J ⊆ I and range(J) = {i | ∃j : (i, j) ∈ J}. If aI
i is a move of P I

i

then define aJ
i = (si,⊗j∈J(i) ⊕�∈{1...n} B

j
i,� → Aj

i,�, ti). We also use aI
i �J for

aJ
i , to emphasize the projection onto the subrelation J . Then the J-system P J

is P J
j1 ‖ . . . ‖ P J

jn
where {j1, . . . , jn} = range(J) and P J

j consists of the moves
{aJ

i | aI
I is a move of P I

j }. Intuitively, a J-system consists of the processes in
range(J), where each process contains only the synchronization code needed
for its J-neighbors, rather than its I-neighbors. If J = {{i, j}} for some i, j
then PJ is a pair-system, and if J = {{i, j}, {j, k}} for some i, j, k then PJ is a
triple-system. For J ⊆ I, MJ = (S0

J , SJ , RJ ) is the GSTD of P J as defined in
Section 2.1, and a global state of P J is a J-state. If J = {{i, j}}, then we write
Mij = (S0

ij , Sij , Rij) instead of MJ = (S0
J , SJ , RJ ).

Also, if sJ is a J-state, and J ′ ⊆ J , then s�J ′ is the J ′-state that agrees
with s on the local state of all Pj ∈ range(J ′) and the value of all variables
xij ∈ SHij such that i, j ∈ range(J ′), i.e, the projection of s onto the processes
in J ′. If J ′ = {{i, j}} then we write s�J as s�ij. Also, s�i is the local state of Pi

in s. Two processes Pi and Pj are similar if they are isomorphic to each other up
to a change of indices [4, p. 78]. A concurrent program P = P1‖ · · · ‖PK consists
of similar processes if for each 1 ≤ i, j ≤ K, we have that Pi and Pj are similar.

[4, 3, 5] give, in pairwise normal form, solutions to many well-known problems,
such as dining philosophers, drinking philosophers, mutual exclusion, k-out-of-
n mutual exclusion, two-phase commit, and replicated data servers. Attie [6]
shows that any finite-state concurrent program can be rewritten (up to strong
bisimulation) in pairwise normal form. Thus, the algorithms we present here are
applicable to any concurrent program, up to strong bisimulation.
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2.3 The Wait-for-Graph

The wait-for-graph for an I-state s gives all of the blocking relationships in s.

Definition 1 (Wait-for-Graph WI(s)). Let s be an arbitrary I-state. The wait-
for-graph WI(s) of s is a directed bipartite AND-OR graph, where

1. The AND nodes of WI(s) (also called local-state nodes) are the i-states
{s�i | i ∈ {1 . . .K}}2;

2. The OR-nodes of WI(s) (also called move nodes) are the moves
{aI

i | i ∈ {1 . . .K} and aI
i is a move of P I

i and aI
i .start = s�i }

3. There is an edge from s�i to every node of the form aI
i in WI(s);

4. There is an edge from aI
i to s�j in WI(s) if and only if {i, j} ∈ I and

aI
i ∈ WI(s) and s�ij(aI

i .guardj) = false.

The AND-nodes are the local states si (= s�i) of all processes when the
global state is s, and the OR-nodes are the moves aI

i such that local control in
P I

i is currently at the start state of aI
i , i.e., all the moves that are candidates for

execution. There is an edge from si to each move of the form aI
i . Nodes si are

AND nodes since P I
i is blocked iff all of its possible moves are blocked. There

is an edge from aI
i to sj (= s�j) iff aI

i is blocked by P I
j : aI

i can be executed in
s only if s�ij(aI

i .guardj) = true for all j ∈ I(i); if there is some j in I(i) such
that s�ij(aI

i .guardj) = false , then aI
i cannot be executed in state s. The nodes

labeled with moves are OR nodes, since aI
i is blocked iff some neighbor P I

j of P I
i

blocks aI
i . We cannot, however, say that P I

i itself is blocked by P I
j , since there

could be another move bI
i in P I

i such that s�ij(bI
i .guardj) = true, i.e., bI

i is not
blocked by P I

j (in state s), so P I
i can progress in state s by executing bI

i .
In the sequel, we use si−→aI

i ∈ WI(s) to denote the existence of an edge from
si to aI

i in WI(s), and aI
i−→sj ∈ WI(s) to denote the existence of an edge from

aI
i to sj in WI(s). We also abbreviate ((si−→aI

i ∈ W (s)) ∧ (aI
i−→sj ∈ W (s)))

with si−→aI
i−→sj ∈ W (s), and similarly for longer “wait-chains.” For J ⊆ I

and J-state sJ we define WJ (sJ) by replacing I by J and {1 . . .K} by range(J)
in the above definition.

2.4 Establishing Deadlock-Freedom: Supercycles

Deadlock is characterized by the presence in the wait-for-graph of a graph-
theoretic construct called a supercycle [4]:

Definition 2 (Supercycle). Let s be an I-state and si = s�i for all i ∈
{1 . . .K}. SC is a supercycle in WI(s) if and only if all of the following hold:

1. SC is nonempty,
2. if si ∈ SC then ∀aI

i : aI
i ∈ WI(s) implies si−→aI

i ∈ SC, and
3. if aI

i ∈ SC then ∃sj : aI
i−→sj ∈ WI(s) and aI

i−→sj ∈ SC.

2 In [4] state nodes are denoted by processes Pi and not by local states, since they
consider wait-for-graphs for each state of the system separately; in this paper, we
study wait-for-graphs that encompass all blocking conditions for all local nodes of all
processes together; hence we need to distinguish between different local state-nodes
of the same process.
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Note that SC is a subgraph of WI(s). If an i-state si is in a supercycle SC,
then every move of P I

i that starts in si is also in SC and is blocked by some
other I-process P I

j which has a j-state sj in SC (note that a process has at most
one local state in SC, and we say that the process itself is in SC). It follows
that no I-process in SC can execute any of its moves, and that this situation
persists forever.

a1 b1
a3

b3

b2

a2

s1

s2 s3

In the figure on the right we give
an example of a wait-for-graph for a
three process system. And-nodes (local
states of processes) are shown as •, and
or-nodes (moves) are shown as ◦. Each
process Pi, i ∈ {1, 2, 3} has two moves
ai and bi in the local state si. Since
every move has at least one outgoing
edge, i.e., is blocked by at least one
process, the figure is also an example
of a supercycle. In fact, several edges can be removed and still leave a supercycle
(for example, a3−→P1, b3−→P2, a2−→P1 can all be removed). Thus, the figure
contains several subgraphs that are also supercycles.

From [4], we have that the absence of supercycles in the wait-for-graph of a
state implies that there is at least one enabled move in that state:

Proposition 1 ([4]). If WI(s) is supercycle-free, then some move aI
i has no

outgoing edges in WI(s), and so can be executed in state s.

We say that s is supercycle-free iff WI(s) does not contain a supercycle. We
assume that all initial states of the I-system are supercycle free. That is, we do
not allow initial states that contain deadlocks.

3 Improving the Attie-Emerson Deadlock-Freedom
Condition

In this section we improve the Attie and Emerson [4] deadlock-freedom check
(the wait-for-graph assumption of [4]). Consider the following condition.

For every reachable I-state t in MI such that
s

k→ t ∈ RI for some reachable I-state s,
(¬∃aI

j : (aI
j−→tk ∈ WI(t))) or

(∃aI
k ∈ WI(t) : (∀	 ∈ {1 . . .K} : (aI

k−→t� �∈ WI(t)))). (a)

This condition implies that, after P I
k executes a transition, either P I

k blocks no
move of another process, or P I

k itself has an enabled move. Thus P I
k cannot be

in a supercycle. Hence, this transition of P I
k could not have created a supercycle;

any supercycle present after the transition must also have been present before
the transition. Since initial states are supercycle-free, we conclude, by induction
on computation path length, that every reachable I-state is supercycle-free.
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Let tk.moves = {aI
k | aI

k ∈ P I
k ∧ aI

k.start = tk}. It is proved in [4] that
it is enough to check condition (a) for all local states tk of P I

k and for all J-
systems for J ∈ J , where J is the set of all interconnection relations of the form
{{j, k}, {k, 	1}, {k, 	2}, . . . , {k, 	n}}, and n = |tk.moves|, 1 ≤ j, k, 	1 . . . , 	n ≤ K,
k �∈ {j, 	1 . . . , 	n}. This condition implies an algorithm that checks all possi-
ble subsystems J of the form {{j, k}, {k, 	1}, . . . , {k, 	n}}. The algorithm must
construct MJ , and so is exponential in n. It is thus impractical for large n.

Let Ji = {{j, k}, {k, 	i}} ⊆ J , for 1 ≤ i ≤ n 3. Then, for each move aJ
k and

state tJ ∈ states(MJ), ∀	 ∈ {	1, . . . , 	n} : aJ
k → tJ�	 �∈ WJ (tJ) holds iff

∀i : 1 ≤ i ≤ n : aJi

k → tJ�	i �∈ WJi(tJ�Ji). (1)

The last equation follows from wait-for-graph projection [4, Proposition 6.5.4.1].
Equation 1 is checked with respect to all systems of three processes, for all

reachable states of these triple-systems. To avoid constructing the J-system, we
check the following condition (b), which requires constructing only Ji-systems.
Define triple−reachable(k)={tk : (∀J={{j, k}, {k, 	}} ⊆ I : (∃tJ ∈ states(MJ)
: tJ�k = tk))}. That is, triple − reachable(k) is the set of local states tk of Pk

such that in every triple system Ji involving Pk there is a reachable state tJi

that projects onto tk. Then, the appropriate condition is:
∀tk ∈ triple− reachable(k)

∃ak ∈ tk.moves
∀Ji = {{j, k}, {k, 	i}} ⊆ I

∀tJi such that tJi ∈ states(MJi) and tJi
�k = tk

and sJi

k→ tJi for some sJi ∈ states(MJi):
(¬∃aJi

j : aJi

j −→tk ∈ WJi(tJi)) or
(aJi

k −→tJi
�	i �∈ WJi(tJi))) for aJi

k = ak�Ji. (b)

Condition (b) holds if either Pk blocks no move of another process or there exists
a move of Pk that is not blocked in any of the triple systems Ji. In either case,
in every system J = {{j, k}, {k, l1}, . . . , {k, ln}}, either Pk has an enabled move,
or Pk does not block any move of Pj . Hence, in the I-system, Pk cannot be
involved in a deadlock. Note that if the state tJ that projects onto tJi for all Ji

is reachable in the J-system, then condition (b) implies the deadlock-freedom
condition of [4] for the J-system. The converse always holds.

Theorem 1. If condition (b) holds, then the I-system P I is deadlock-free.

Intuitively, checking condition (b) involves constructing all triples of processes
with Pk being the middle process. Since the size of a triple system is polynomial
in the size of a single process, and the number of triples is polynomial in the
number of processes in the system, the check is polynomial in all parameters.

We check condition (b) as follows. For every process Pk, we compute the set
Sk = triple − reachable(k), and the set Jk of all triple-systems Ji which have
Pk as the “middle” process:

Jk = {Ji : Ji = {{j, k}, {k, 	i}} ∧ Ji ⊆ I ∧ k �= j, 	i}.
3 Since J ⊆ I and I is irreflexive, we have k �= i, �i.
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For every tk ∈ Sk, we compute the set tk.moves of outgoing moves of Pk from
tk. Then, for each ak ∈ tk.moves and each Ji ∈ Jk, we find every state tJi ∈
states(MJi) such that tJi

�k = tk ∧ (∃sJi ∈ states(MJi) : sJi

k→ tJi). This can be
done by a graph search of MJi . We then evaluate

(∀aJi

j : aJi

j −→tk �∈ WJi(tJi)) ∨ (aJi

k → tJi
�	i �∈ WJi(tJi)) (2)

where aJi

k = ak�Ji and aJi

j ranges over all moves of P Ji

j such that aJi

j .start =
tJi

�j, i.e., the moves of process j in the Ji-system which start in the local state
that process j has in state tJi .

If for all k ∈ {1 . . .K} and all tk, there exists ak ∈ tk.moves for which Equa-
tion 2 holds for all Ji ∈ J , then we conclude that the system is deadlock-free.
We formalize the procedure given above as the procedure Check-Triples(P I).

Check-Triples(P I)
0. for all k ∈ {1 . . . K}
1. Sk := triple− reachable(Pk)
2. Jk := {Ji | Ji = {{j, k}, {k, �i} ∧ Ji ⊆ I}
3. for all tk ∈ Sk

for all ak ∈ tk.moves
for all Ji in Jk

generate MJi

for all tJi such that tJi
�k = tk ∧ (∃sJi ∈ states(MJi) : sJi

k→ tJi)
evaluate Equation 2

if Equation 2 was found true for all Ji and all tJi then mark tk

4. if ∀k ∈ {1 . . . K}: all tk ∈ Sk are marked, then return (“No supercycle possible”)
else return (“Inconclusive”)

Upon termination of Check-Triples(P I), condition (b) holds iff “No su-
percycle possible” is returned. Termination is assured since all loops are finite.

Let b be the branching factor of a process, i.e., the maximum value of
|tk.moves| over all k ∈ {1 . . .K} and all tk ∈ triple− reachable(Pk).

Theorem 2. The time complexity of procedure Check-Triples(P I) is
O(K3N4b), and the space complexity is O(N3).

We apply our check to the general resource allocation problem [24, Chapter
11]. For a system of n processes, an explicit resource specification R consists
of a universal finite set R of (unsharable) resources and sets Ri ⊆ R for all
i ∈ 1, . . . , n, where Ri is the set of resources that process Pi requires to execute.

Example 1 (Deadlock detection in the general resource allocation problem). In
this example, we describe an solution to the the resource allocation problem in
which there is a potential deadlock and show how this deadlock can be detected
by studying triples of processes. We assume that each process needs at least one
resource in order to execute. We first consider a naive algorithm in which each
process chooses the order of requests for resources non-deterministically. That
is, if a process Pi needs resources {1, . . . , k}, it non-deterministically acquires
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resource 1 ≤ r1 ≤ k, then a resource r2 ∈ {1, . . . , k} \ r1, etc. After the last
resource has been acquired, Pi executes. Clearly, if a resource r is already allo-
cated to another process, Pi cannot acquire it. If at some state in the resources
allocation all remaining resources are allocated to other processes, Pi cannot
proceed. It can be shown that condition (b) fails, and indeed there is a dead-
locked state in the system (in which each process is trying to acquire a resource
already acquired by another process). In the full version we present the formal
and detailed description of this example.

Now consider the hierarchical resource allocation presented in Lynch [24,
Chapter 11]. In this case, there is a global hierarchy between processes, and the
resource is acquired to the process with the highest priority that requests it.
The system is deadlock-free. However, condition (b) fails, giving a false deadlock
indication. The reason for its failure is existence of waiting chains of length
three in the system, despite the fact that cyclical waiting pattern never ocurs. In
Section 4 we present a more complex (and more discriminating) test that shows
deadlock freedom of hierarchical resource allocation.

In the following example we demonstrate false deadlock indication. It de-
scribes a system in which there are two types of processes, and only processes
from one type can block other processes. The deadlock-freedom condition from
[4] (the “wait-for-graph assumption”) is satisfied, since it considers systems of
m + 2 processes, m being the branching degree of a single process. Since con-
dition (b) checks blocking for each outgoing move separately, it does not detect
unreachability of the blocking state.

Example 2. We give here only the brief informal description of the example.
For the formal description including the skeletons of participating processes the
reader is refered to the full version of the paper. The system in the example
consists of 4 processes P1, P2, P3, and P4 accessing two critical sections, where
the processes P3 and P4 can block all other processes, and the processes P1 and
P2 can only block each other. Consider a triple in which P3 is the middle process.
In its trying state it has two outgoing moves for accessing two critical sections.
Both moves can be blocked by process P4 separately, depending on the state of
the process P4. That is, the process P4 blocks the move of the process P3 that
attempts to access the same critical section as P4. The condition (b) fails. At
the same time, the condition in [4] passes, since it checks blocking conditions
for both moves of P3 at the same time. Then, it is easy to see that there are no
two processes that can block both moves of P3 simultaneously. In Section 4 we
show that the absence of reachable supercycles can be detected by examining
the global wait-for graph for this system.

Example 2 illustrates that while condition (b) implies the deadlock-freedom
condition of [4], the opposite is not true. That is, there exist cases in which
condition (b) fails, while the more discriminating condition of [4] is satisfied,
and hence the system is deadlock-free. This happens when the blocking state
is reachable for each triple separately, but not for the J-system with m + 2
processes.
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4 A More Complex and Discriminating
Deadlock-Freedom Check

We define a global wait-for graph W which contains the union of all WI(s), for all
reachable I-states s. Let reachable(Pi) = {si | ∃j ∈ I(i), sij ∈ Sij : sij�i = si},
that is, reachable(Pi) is the set of local states of Pi that are reachable in some
pair-system involving Pi.

Definition 3. (W) The graph W is as follows. The nodes of W are
1. the states si such that i ∈ {1 . . .K} and si ∈ reachable(Pi);
2. the moves aI

i such that i ∈ {1 . . .K}, aI
i is a move of P I

i , and aI
i .start = si

for some node si;
and the edges are:

1. an edge from si to every aI
i such that aI

i .start = si;
2. for (i, j) ∈ I and every move aI

i of P I
i , there is an edge from aI

i to sj iff
∃sij ∈ Sij : sij�j = sj ∧ sij(aI

i .guardj) = false.

We can view W as either a directed graph or as an AND-OR graph. When
viewed as an AND-OR graph, the AND-nodes are the local states si of all pro-
cesses (which we call local-state nodes) and the OR-nodes are the moves ai

(which we call move nodes). We use MSCC to abbreviate “maximal strongly
connected component” in the sequel.

Proposition 2. For every reachable I-state s, WI(s) is a subgraph of W.

Proposition 3. Let s be a reachable I-state, and assume that WI(s) contains
a supercycle SC. Then, there exists a nontrivial subgraph SC′ of SC which is
itself a supercycle, and which is contained within a maximal strongly connected
component of W.

Note that a supercycle is strongly connected, but is not necessarily a maximal
strongly connected component.

Proposition 4. If W is acyclic, then for all reachable I-states s, WI(s) is
supercycle-free.

We now present a test for supercycle-freedom. In the following we will view
W as a regular directed graph, rather than an AND-OR graph. The test is
given by the procedure Check-Supercycle(W) below, which works as follows.
We first find the maximal strongly connected components (MSCC’s) of W . If no
nontrivial MSCC’s exist, then W is acyclic and so the I-system is supercycle-free
by Proposition 4. Otherwise, we execute the following check for each local-state
node tk in W . If the check marks tk as “safe”, this means that no transition by Pk

that ends in state tk can create a supercycle where one did not exist previously.
If all local-state nodes in W are marked as “safe”, then we conclude that no
transition by any process in the I-system can create a supercycle. Given that all
initial I-states are supercycle-free, this then implies that every reachable I-state
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is supercycle free, and so the I-system is deadlock-free. The check for tk is as
follows. If tk does not occur in a nontrivial MSCC of W , then, by Proposition 3,
tk cannot occur in any supercycle, so mark tk as safe and terminate. Otherwise,
invoke Check-State(tk, C), where C is the nontrivial MSCC of W in which tk
occurs. Our test is sound but not complete. If some tk is not marked “safe”, then
we have no information about the possibility of the occurrence of supercycles.

Check-Supercycle(W)
1. Find the maximal strongly connected components of W
2. for each MSCC C of W that consists of a single node

if the node is a local-state node then mark it “safe”
3. for each MSCC C of W that contains more than one node

for each local-state node si of C, invoke Check-State(si, C)
4. if all local-state nodes in W are marked “safe”, then

return (“No supercycle possible”)
else return (“Inconclusive”)

Check-State(tk, C)
1. Construct a subgraph SC of C as follows.

Let SC initially be C
Remove from SC every sk such that sk ∈ reachable(Pk)− {tk}
repeat until no more nodes can be removed from SC

if aj is a node in SC with no outgoing edges in SC then
let sj be the unique node such that sj−→aj ∈ SC
remove sj and aj and their incident edges from SC

2. Compute the maximal strongly connected components of SC
3. if tk is not in some MSCC of SC then mark tk as “safe” and terminate.

else Let MC be the MSCC of SC containing tk

4. for all (sj , a
I
j , tk, aI

k, s�) such that sj−→aI
j−→tk−→aI

k−→s� ∈MC
Let J = {{j, k}, {k, �}}
if there exists a state sJ of MJ such that:

sJ is reachable along a path in MJ that ends in a transition by Pk, and
sj−→aJ

j−→tk−→aJ
k−→s� ∈ WJ(sJ)

then mark all the nodes and edges in sj−→aI
j−→tk−→aI

k−→s�

5. Remove from MC all nodes and edges within two hops from tk (in either direction)
that are unmarked. Call the resulting graph MC′

6. Calculate the maximal strongly connected components of MC′

7. if tk does not lie in an MSCC of MC′ then mark tk as safe

The procedure Check-State(tk, C) tests whether the wait-for chain from
some local state sj to some j-move aj to state tk to some 	-move a� to some state
s� can arise from a reachable transition of process Pk in the triple system con-
sisting of processes Pj , Pk, P�. If so, then all these states and moves are marked
and are retained, since they might form part of a supercycle involving tk. After
all such “length 5” chains have been examined, all nodes within 2 hops of tk are
removed, since these nodes cannot possibly be part of a supercycle involving tk.
If this removal process causes tk to no longer be contained in an MSCC, then
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tk cannot possibly be an essential part of a supercycle, since every supercycle
is “essentially” contained inside a single MSCC, since removing all parts of the
supercycle outside the MSCC still leaves a supercycle (see Proposition 3).

In summary, we check for the existence of subgraphs of a potential supercycle
that are wait-chains of length 5. If enough of these are absent, then no supercycle
can be present. Our check could be made more accurate by using longer length
chains, but at the cost of greater time complexity.

Theorem 3. If all local-state nodes in W are marked as “safe,” then the I-
system P I is supercycle-free.

Proposition 5. Let N be the size of the largest I-process (number of local states
plus number of I-moves). Then the size of W (number of nodes and edges) is
O(K2N2).

Theorem 4. The time complexity of Check-Supercycle(W) is O(K4N4).

It may be possible to improve the runtime complexity of the algorithm using
more sophisticated graph search strategies. For example, for each three-process
system, we could collect all the wait-chains together and search for them all
at once within the global state-transition graph (GSTD) of the three-process
system. Wait-chains that are found could then be marked appropriately for sub-
sequent processing.

It is not too hard to verify that the global wait-for graph for the hierarchical
resource allocation strategy that we discussed in Section 3 is acyclic. Indeed,
a supercycle in a wait-for graph represents a cyclical waiting pattern between
processes. However, a hierarchy establishes a total order between processes, and
the transitions in the graph represent blocking conditions, which can occur only
when moves of a process with a lower priority are blocked by a process with
higher priority. Thus, waiting conditions form chains, and not cycles in the wait-
for graph. In a more general situation, the requirement of total hierarchical order
can be relaxed for a subset of resources. Clearly, in this case deadlock can occur,
depending on the sets of resources that each process attempts to acquire and the
order of requests. Our algorithm can efficiently detect deadlocks in these cases.

The following proposition relates the deadlock-freedom check of Section 3
and the check introduced in this section.

Proposition 6. If procedure Check-Triples(P I) returns “No supercycle pos-
sible,” then so does procedure Check-Supercycle(W).

5 Examples

In this section, we study several examples of deadlock-free and deadlock-prone
instances of the resource allocation problem [24, Chapter 11] and summarize the
results obtained by using our algorithms. Due to the lack of space, many details
are omitted here. They can be found in the full version.
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Example 3 (Deadlock-free instance with two resources). We study a special case
of resource allocation problem [24] that we presented in Section 3. In this system,
there are two resources (we refer to them as priority queues) and the additional
parameter is the set of priorities of processes for the queues. Consider an I-
system where the processes are partitioned into 3 classes, and are accessing two
priority queues R and Q. The first class of processes has the highest priority for
R, and the second class of processes has the highest priority for Q. For processes
in the same class and processes in different classes that have the same priority,
the access to a queue is FIFO. There can be only one process at a time at the
head of each queue. Intuitively, a deadlock can occur if there are several processes
with the same priority in a trying state. However, the guards on transitions to
trying states guarantee that a process enters a trying state iff either there is no
other process is in the trying state, or the other process in the trying state has
a lower priority. We note that the unreachability of supercycles in the wait-for
graph is evident already by considering triple-systems, and thus condition (b) is
also satisfied.

Example 4 (Deadlock-prone instance with two resources). In this example we
describe a system with a reachable deadlocked state and demonstrate the evi-
dence for the deadlock in the global wait-for graph. The system consists of two
dissimilar processes P1 and P2 accessing two priority queues R and Q.

A deadlocked state [B1A2] can be reached in which
process P1 is in local state B1, waiting for process
P2 to release Q, and process P2 is in local state A2,
waiting for process P1 to release R. This cyclic waiting
can be discovered by examining the global wait-for
graph for supercycles.

A2 → R

B1 → Q

B1

A2

The drawing above presents a fragment of the graph that contains the su-
percycle for the deadlocked state [B1 A2]. The node labeled B1 → Q is the move
of P1 that acquires Q, and the move labeled A2 → R is the move of P2 that
acquires R. Condition (b) fails for the triple system J1 = {{P1, P2}, {P2, P1}},
and thus the cyclic waiting is discovered by applying Check-Triples(P I).

Example 5 (Overlapping sets of resources). For a process Pi, let Ri be the set
of resources Pi needs to acquire in order to execute. For each process Pk in the
system, there exist two different processes Pi and Pj such that Ri ∩Rk �= ∅ and
Rj ∩ Rk �= ∅. Also, the order of acquiring the resources is non-deterministic for
each process. In this case, condition (b) fails, thus indicating a possible deadlock.
It is easy to see that the system is indeed deadlock-prone.

Example 6 (Processes with rollback). Now we construct an example for which the
condition (b) described in Section 3 fails, although there is no deadlock. In this
example, we have two types of processes. One type is the processes that acquire
and lock resources one-by-one without the ability to rollback, as in the previous
examples. The second type is the processes that rollback in case they encounter
that one of the required resources is not available. In this case, condition (b)
fails, although there is no deadlock.
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6 Summary and Conclusions

examples existence algorithm algorithm
of deadlock from Section 3 from Section 4

Example 1 deadlock deadlock deadlock

Example 2 no deadlock deadlock no deadlock

Example 3 no deadlock no deadlock no deadlock

Example 4 deadlock deadlock deadlock

Example 5 deadlock deadlock deadlock

Example 6 no deadlock deadlock no deadlock

The inset table summa-
rizes the deadlock detec-
tion results for the in-
stances of resource allo-
cation problem (both in
the previous section and
in Section 3). We note
that although we did not
demonstrate this explic-
itly, it is easy to verify
that the deadlock detection algorithm of [4] recognizes deadlock correctly in
all the examples studied in this paper. Our fist algorithm is very simple and
has a polynomial complexity in all its parameters. The negative answer from
this algorithm, that is, if the system satisfies the condition (b), eliminates the
need to invoke more complex and time-consuming algorithms. In cases where
the system fails the condition (b), it might be necessary to invoke the more dis-
criminating algorithm from Section 4. While this algorithm is more complicated,
its complexity is still polynomial in all the parameters of the system.

By closely examining the instances of the resource allocation problem we
studied, we can see that the algorithm from Section 3 gives false positive deadlock
indications in systems with dissimilar processes, where there are some processes
with “more blocking power” than the others and the number of potentially
blocking processes is smaller than the branching degree of a single process. The
algorithm from Section 4 is more subtle, and is suitable for systems of any
number of dissimilar processes.

In conclusion, the success of our approach in verifying the deadlock-freedom
of many variants and instances of the resource allocation problem is evidence of
its wide applicability.
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