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Preface

Swarm robotics can be defined as the study of how a swarm of relatively simple
physically embodied agents can be constructed to collectively accomplish tasks
that are beyond the capabilities of a single one. Different from other studies on
multi-robot systems, swarm robotics emphasizes self-organization and emergence
while keeping in mind the issues of scalability and robustness. These emphases
promote the use of relatively simple robots, equipped with localized sensing abil-
ities, scalable communication mechanisms and the exploration of decentralized
control strategies.

With the recent technological advances, the study of robotic swarms is be-
coming more and more feasible. There are already a number of ongoing projects
that aim to develop and/or control large numbers of physically embodied agents.
In Europe, the CEC (Commission of the European Communities) has been fund-
ing swarm robotics studies through its FET (Future and Emerging Technolo-
gies) program. In USA, DARPA (Defense Advanced Research Projects Agency)
has funded swarm robotics projects through its SDR (Software for Distributed
Robotics) program.

Within this context, we set out to organize a meeting to bring together
researchers in swarm robotics to review the ongoing studies, and to discuss and
identify the research directions. Despite being the first meeting on the topic,
our proposal to organize the workshop as part of the SAB 2004 (From Animals
to Animats: Simulation of Adaptive Behavior) conference was enthusiastically
accepted by the organizers, and Alfred Hofmann of Springer kindly agreed to
publish the proceedings as a State-of-the-Art Survey in their LNCS (Lecture
Notes in Computer Science) series. The Swarm Robotics Workshop was held on
July 17, 2004, Santa Monica, CA, USA, after the SAB 2004 conference. We can
confidently say that most of the prominent research tracks on swarm robotics
were represented, and the workshop achieved the goals it set forth.

This volume contains 13 articles that were presented during the workshop
which, we believe, provide a good review of the current state-of-the-art in swarm
robotics studies. The first article is contributed by Gerardo Beni, who had coined
the term swarm intelligence 15 years ago. In this article, Beni tells the story
of how, and in what context, the term was conceived. He then describes the
evolution of the term “swarm” applied to different domains, setting the stage
for the term “swarm robotics.” In a complementary follow-up to Beni’s article,
Şahin, in his article, proposes a definition for the term swarm robotics and puts
forward a set of criteria that can be used to distinguish swarm robotics studies
from the many other flavors of multirobot research. Balch’s article reviews some
of his early work on multirobot systems that are very relevant to swarm robotics
approaches.

Dorigo et al.’s article provides a nice review of the SWARM-BOTS project,
funded by CEC within FET. As part of this project, a mobile robot platform
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with the ability to connect to each other, called an s-bot, is developed. This plat-
form and its physics-based simulations were then used to study self-organization
and self-assembling behaviors, inspired from those observed in social insects.
Payton et al.’s article reviews another project, funded by DARPA within SDR,
describing their vision behind the “virtual pheromone” approach. They describe
how a swarm of pherobots (mobile robots that can locally communicate with
each other through directional infrared messaging) can be used to find survivors
in disaster areas and guide the user towards them. Rothermich et al.’s article
presents a review of another project, funded by the same source, on how a swarm
of swarmbots1 (mobile robots that can localize each other through “line-of-sight
infrared communication”) can perform collaborative localization in an unknown
environment. Seyfried et al.’s article presents the vision of the I-SWARM project,
funded by the CEC within the FET (Future and Emerging Technologies) pro-
gram, which started in 2004. The I-SWARM project has a goal of designing a
micro-robot of size 2 × 2 × 1 mm that can be mass produced in thousands. The
challenges of building micro-robots of that size are discussed.

Spears et al.’s article describes the “physicomimetics” framework, which re-
lies on local control rules derived from physics, rather than ethology, and illus-
trates how this approach can be used to create solid formations for distributed
sensing, liquids for obstacle avoidance, and gases for surveillance tasks. One
advantage of this approach is the use of standard physics analysis techniques
that allows the reliable control of the emergent behaviors by establishing correct
parameter settings from theoretical first principles.

Martinson et al.’s article also focuses on the task of distributed sensing,
and illustrates that, by exploiting a common reference orientation, orthogonal
control rules can be developed that reduce the occurrence of local minima in
the formation of lattices. Their control rules are a blend of ethological and
physicomimetics-inspired behaviors. A nice aspect of their work is an illustration
of robustness in the face of sensor noise.

Bayazıt et al.’s article reviews how roadmap methods can be integrated with
simple flocking methods to generate guided behaviors such as exploring and shep-
herding. Winfield et al., in their article, introduce a new concept called “swarm
engineering” to study how swarm intelligence-based systems (like swarm robotic
systems) can be “assured of dependability.” Lerman et al. review their work
on the mathematical modeling of swarm robotic systems and discuss how such
modeling would be of help in their analysis and design. The last article of the
volume is another from Gerardo Beni. In his paper, Beni proves that “swarms
with partial random synchronicity can converge in cases where synchronous or
sequentially updated schemes do not.” We believe that this result is very pow-
erful, since it provides a rigorous support to the view that the swarm robotic
approach has advantages over traditional centralized control approaches.

We would like to thank the SAB 2004 organizers Stefan Schaal, Auke Jan
Ijspeert, Aude Billard, Sethu Vijayakumar, chairs, John Hallam and Jean-Arcady
Meyer for giving us the opportunity to organize this workshop within the SAB

1 The swarmbots have no relation with the SWARM-BOTS project described above.
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conference; Alfred Hofmann of Springer for accepting to publish the post-pro-
ceedings of the workshop as a State-of-the-Art Survey in the Lecture Notes in
Computer Science series; all the authors for submitting their papers; and the
program committee members for providing timely and objective reviews which
improved the quality of the articles in this volume. The program committee con-
sisted of: Tucker Balch, O. Burçhan Bayazıt, Gerardo Beni, Marco Dorigo, Paolo
Gaudiano, Alcherio Martinoli, David Payton, Cem Ünsal, Alan F.T. Winfield,
and Joerg Seyfried.

Erol Şahin thanks Erkin Bahçeci, Levent Bayındır, Onur Soysal and Emre
Uğur for helping him during the organization and the review process of the
workshop and the preparation of this volume. Erol Şahin also acknowledges the
travel support provided by TÜBİTAK (Turkish Science and Technical Research
Council) and the support of the Department of Computer Engineering, Middle
East Technical University (METU).

Finally, we would like to take this opportunity to announce the web site
http://swarm-robotics.org. The idea of building a web site had emerged during
the workshop, and we believe that it will be essential to build a swarm robotics
community. The web site already hosts the presentations and movies of the
papers included in this volume, and BibTeX entries for swarm robotics literature.
We invite all interested researchers to visit the web site and join this newly
forming community.

September 2004 Erol Şahin
William M. Spears
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From Swarm Intelligence to Swarm Robotics

Gerardo Beni

Department of Electrical Engineering,
University of California, Riverside CA 92521, USA

beni@ee.ucr.edu

Abstract. The term “swarm” has been applied to many systems (in
biology, engineering, computation, etc.) as they have some of the qualities
that the English-language term “swarm” denotes. With the growth of the
various area of “swarm” research, the “swarm” terminology has become
somewhat confusing. In this paper, we reflect on this terminology to help
clarify its association with various robotic concepts.

1 Introduction

This paper is meant as an introduction to a panel discussion on the use of
various terms in current use, such as “swarm”, “swarming”, “swarm intelligence”,
“swarm optimization”, “swarm engineering” and “swarm robotics”. I will try to
give some perspective by way of tracing, very imperfectly and subjectively, the
evolution of some of these terms, hoping that, in looking at them, some robotics
concepts may become clearer.

2 Why “Swarms”

About 20 years ago there was a significant interest in cellular automata; the
interest diminished in the nineties until recently when the new book by Wolfram
was published [1]. Wolfram gave some of the most important contributions to
cellular automata theory in the early eighties. At that time, being interested in
the topic of self-reproducing robots, I became interested in cellular automata
since they can produce patterns of significant complexity starting from simple
rules. Around the same time, Fukuda in Japan used the term “cellular robots” [2]
to indicate groups of robots that could work like cells of an organism to assemble
more complex parts. I used also the term “cellular robot” [3] but to indicate
an extension, or a more general type, of cellular automaton. The extension was
simply the fact that the units of the automaton were not operating synchronously
nor sequentially and were moving and interacting dynamically. They were meant
to represent a group of simple robots, self-organizing in new patterns.

With Jing Wang, we presented a short paper on cellular robots at one of
the Il Ciocco conferences [4]. The discussion was quite lively and I remember
Alex Meystel saying that “cellular robot” was an interesting concept, but the
name was not appealing; a buzz word was needed to describe “that sort of
‘swarm’ ”, as he put it. I agreed that the term “cellular robot” was not very

E. Şahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 1–9, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Gerardo Beni

exciting and, besides, it had already been used by Fukuda. By the way, also the
term “cellular automaton” is probably not a very good choice. (May be part
of the reason more people have not pursued that field is that it did not have
a good buzz word.) Anyway, in thinking of how to call the “cellular robots”
with a better term, I did not make any leap of imagination but simply used the
word “swarm” that Alex had mentioned casually. There were some good reasons
though. The fact is that the group of robots we were dealing with was not just a
“group”. It had some special characteristics, which in fact are found in swarms
of insects, i.e., decentralized control, lack of synchronicity, simple and (quasi)
identical members. Important was also the size, i.e., the number of units. It was
not as large as to be dealt with statistical averages, not as small as to be dealt
with as a few-body problem. The number of units was thought to be realistically
of the order of 102 − 10<<23. So “swarm” was not just a buzz word but a term
quite appropriate to distinguish that type of group.

Swarms were appealing as robotic systems since, compared to centralized
systems designed for the same task, they had very simple components. Thus, the
robotic units could be, in principle, modularized, mass produced, and could be
interchangeable and maybe disposable. The second main (promised) advantage
was reliability: since the swarm was in general highly redundant, the swarm could
be designed to survive through many kinds of disturbances (possibly more severe
than those considered in standard control systems); because of redundance, the
swarm would have the ability to adapt dynamically to the working environment–
another feature required for high reliability. It was also possible to envision the
swarm as acting like a massive parallel computational system and thus carry
out tasks beyond those possible to other type of robotic systems, either complex
single robots or centralized groups of robots. (This is the main topic of section 4.)

While the swarm appeared as a very promising concept for robotics, Guy
Theraulaz came to visit with us for a while and spoke about his work with
insects [5]. It was clear that the concept of swarm was quite appropriate for insect
societies. While roboticists tried to make the swarm do some prescribed tasks,
the biologists tried to explain the behavior of insect societies as swarms. All the
key qualities of swarms apply to insect societies: decentralized, not-synchronized,
with quasi-homogeneous, simple units, not in “Avogadro-large” numbers. A key
concept in their model of swarm was “stigmergy”, i.e., communication by way
of the environment. Ants communicate to other ants the “quality” of a path
by marking it with pheromones so that a positive feedback mechanism ends
eventually in most insects following the “best” path. This is an example of
“swarm optimization”, and in this particular area the concept of swarm has
been most successful.

3 Why “Swarm Optimization”

While progress by roboticists in making swarms of robots do prescribed tasks
has proceeded slowly, progress by biologists and other interested in optimization
has been significant. It also seems entirely appropriate to use terms like “swarm
optimization” to include algorithm such as Dorigo’s [6] “Ant Colony Optimiza-
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tion” (ACO) algorithm and the “Particle Swarm Optimization” algorithm of
Kennedy and Eberhart [7]. The word “swarm” here is appropriate because the
algorithms are run asynchronously and in a decentralized fashion. They also
mimic the stigmergic behavior of swarms of insects. This aspect of what swarms
can do has been original to biologists and was not considered extensively by
roboticists. The main departure is in the goal of the swarm. Roboticists were
looking at the swarm as a constructor, a system to create patterns or some kind
of ordered structures either internally, as self organization, or externally, as, e.g.,
self reproduction. Biologists instead were also looking at the swarm as a pattern
analyzer, a system capable of recognizing the best way to do something. From
this perspective the applications to stochastic optimization followed. Actually,
besides foraging and related optimization problems, biologists were also look-
ing at swarms of insects as creators of patterns since, e.g., in termite societies,
swarms of termites build complex structures. The interest was in modeling how
the swarm can build ordered complexity [8].

Looking at these various perspectives, it is not surprising if the concept of
swarm appears more and more to be closely associated with systems capable of
carrying out not just useful tasks but also “intelligent” tasks. From the robotic
side, swarms self-organize into patterns. From the biological side they construct
ordered patterns. The production of ordered patterns is a characteristic of in-
telligence. (Of course this is extremely simplified; in practice, robots can also
manipulate objects and construct patterns, not just move around). Another is
the recognition and/or analysis of patterns, which swarms do when they opti-
mize a function. So, from all sides, we are led to look at the swarms as maybe
doing something intelligent – “swarm intelligence”.

4 Why “Swarm Intelligence”

“Swarm” and “swarm optimization” are appropriate terms to represent two well-
defined concepts. The term “Swarm Intelligence” is more complicated to justify
mainly because the term “intelligence” is very difficult to deal with [9–11]. A
similar situation applies in Artificial Intelligence. As is well known, there is no
satisfactory definition of intelligence. The concept is elusive. There are many
qualities of intelligence, but, for any one of them, one can think of some non-
intelligent system that has it. Dealing with robotics, we wanted to restrict the
attention to some qualities of intelligence relevant to robotics.

One characteristic of intelligent behavior is the production of something or-
dered, i.e., unlikely to occur: an improbable outcome. Another is the fact that
this outcome should not be predictable. A manufacturing machine produces
a mechanical piece (ordered pattern, improbable outcome) but in a predictable
way. We do not consider that machine intelligent. On the other hand the designer
that produces the design of that mechanical piece is considered intelligent. No-
body knew what the designer would come up with. She was unpredictable. But
of course just unpredictability is not intelligence; a roulette is not intelligent. It
seems that somehow both unpredictability and the creation of some order are
necessary to be able to speak of “intelligence”.
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In [12], we were thinking about this concept of intelligence in relation to the
cellular robots and ended up calling it “swarm intelligence” (with no pretense
of knowing what intelligence is). To get to that definition, in [12] we labored
through a set of preliminary definitions, as follows.

Machine: an entity capable of mechanical behavior, i.e., of transferring and/or
processing matter/energy.

Automaton: an entity capable of informational behavior, i.e., of transferring
and/or processing information.

Robot : a mechanical automaton, i.e., an entity capable of both mechanical and
informational behavior.

These three definitions are somewhat different from those in common usage but
they help avoiding confusion since they contain only the two well-defined con-
cepts of matter/energy and information. Strictly speaking, a “pure” machine
cannot exist. A machine is always also an automaton since mechanical states
contain information; in processing/transferring matter, a machine always also
processes/transfers information (In contrast, an automaton can be a pure au-
tomaton since it operates on representations of states, not on physical states).
Thus, in the definition of machine given above, there is the implied assumption
that the information change is negligible with respect to the mechanical change
produced by the machine.

An intelligent robot was defined as,

Intelligent robot (preliminary def. 1): a robot whose behavior (as defined below)
is neither random nor predictable (as specified below).

Note that all the previous definitions apply to a generic entity regardless of its
plurality, so they apply to groups of units as well. Groups of automata cannot be
robots since they do not process matter/energy. But groups of pure (as defined
above) machines can be robots since they can process information by chang-
ing mechanical states (e.g., by encoding information in patterns of the group).
Thus intelligent robots can be built out of groups of pure machines. At this
point the possibility of an intelligent robot made from a group of non-intelligent
ones has been defined. However, the definition of intelligent robot still needs
specifications. First, about “behavior”, it is necessary to define the intelligent
robot’s behavior in terms of its relation to patterns of matter, i.e., arrangements
of material objects, in contrast to arrangements of representations. In terms of
patterns, there are two types of intelligent behavior: pattern analysis and pattern
synthesis. The former can be accomplished by an automaton, the latter only by
intelligent robots. Thus, the behavior specific to the intelligent robot was defined
as the synthesis of material patterns. Thus,

Intelligent robot (preliminary def. 2): a robot capable of forming material pat-
terns unpredictably (in the sense specified below).

At this point in [12] the concept of intelligent swarm could be formulated as:

Intelligent swarm (preliminary def. 3): a group of non-intelligent robots form-
ing, as a group, an intelligent robot. In other words, a group of “machines”
capable of forming “ordered” material patterns “unpredictably”.
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Note, in passing, that the swarm algorithms derived from foraging, such as the
ACO algorithm and the PSO, are forms of pattern analysis behavior. The swarm
finds an optimal pattern (e.g., path, function, etc.). Thus, the systems described
by these algorithms are more swarm automata than swarm robots. On the other
hand the termites’ behavior in building structure is characteristic of the intelli-
gent robot behavior defined above.

Most of the rest of [12] was a discussion of “unpredictability”. Without a clear
notion of unpredictability, the definition of intelligent swarm could be applied
to trivial systems. For example, the definition could be satisfied by a mechanical
“screen saver” that produces interesting patterns from a random algorithm. But
picking at random some ordered patterns from a set is not the idea of unpre-
dictability that suggests intelligence. Thus, anything that appears unpredictable
simply because it is not accessible must be ruled out. Eventually the argument
for unpredictability runs into the computational power of the system which is
very appropriate, since the concept of intelligence has been often associated with
computational power, as the Turing test, chess playing computers, and other AI
arguments show. At this point we could further improve the definition of Intel-
ligent Swarm as,
Intelligent swarm (preliminary def. 4): a group of “machines” capable of “un-

predictable” material computation.
Unpredictability can be achieved if the system making the prediction is not
capable of outrunning the system it is trying to predict. Now, if a system is
capable of universal computation it cannot be outrun. In fact if one tries to
predict a system which is capable of universal computation, one must use another
universal automaton to simulate the first. Thus, the infinite time behavior of a
system capable of universal computation is in general unknowable in any finite
time: the problem is formally undecidable.

Our interest though was not so much in a system that is unpredictable at
infinity, but at every step, or at least over a finite range of time; so, undecidability
was not an entirely satisfactory choice for “unpredictability”. We were looking
for a system (the intelligent swarm) which cannot be predicted in the time it
takes to form a new material pattern (of its own components). The issue is more
one of tractability than decidability.

Normally one does not have a way of telling whether the method used for a
particular computation is the most efficient possible. No clear lower bounds on
the difficulty of computation have ever been established. The rate of computa-
tion is the issue. In general, once you have a system that is universal, you can
make it to do any computation but the rate at which the computation is done
is not obvious. In fact, without special optimization, a universal Turing machine
will typically operate at some fixed fraction of the speed of any specific Turing
machine that it is set up to emulate. Indeed, a priori, there can be great differ-
ences in the rates at which given computations can be done. However, it turns
out [1] that a large number of universal systems can be made to emulate each
other in a comparable number of steps. So, can a swarm be outrun? Certainly
if is not properly designed. However, it is very plausible that the swarm can be
designed so that no system capable of universal computation can outrun it. This
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is easy to see in the case of a Von Neumann architecture universal automaton
versus a swarm.

To form the new pattern the intelligent swarm S would need to do (1) com-
putations and (2) motions. The swarm does (1) and (2) in parallel. A universal
automaton A trying to predict S must do (1) and simulate (2). We may assume
that for S the time T2 for (2) is much larger than for (1); but it is independent
of N, the number of units in S, since the motions of the units may be assumed
to occur in parallel. If A has a Von Neumann architecture the computation time
scales with the number of states to be dealt with. If N is large enough this
time will exceed T2. So an automaton with von Neumann architecture could not
predict the outcome of the intelligent swarm.

A more serious challenge to the intelligent swarm comes if A has a cellular
automaton architecture and it is set up to simulate the intelligent swarm from
its initial state. However, also in this case, A may not be able to outrun the
swarm. The key is of course that the swarm be designed so as to be capable of
universal computation. This is quite feasible since it has now become clear [1]
that relatively simple (in terms of rules of evolution) systems are capable of uni-
versal computation. And swarms are actually generalization of cellular automata
so there is no conceptual difficulty in thinking of a swarm capable of universal
computation. The second key point is that in general, given a universal automa-
ton, it is quite feasible to design it so that it cannot be outrun. This happens
if, given a particular initial condition, an irreducible amount of computational
work is required to find the outcome after a given number of steps of evolution.
It is now considered likely that, asking about the possible outcome after a cer-
tain finite number s of steps of evolution of a universal system is a NP-complete
problem. In other words, no Von Neumann or cellular automaton will ever be
able to guarantee to solve this problem in a number of steps that grows only like
some power of s.

So the intelligent swarm is unpredictable in the sense that it can be con-
structed as a computationally intractable system. Thus, the definition of intelli-
gent swarm can be further refined as,
Intelligent swarm: a group of non-intelligent robots (“machines”) capable of uni-

versal material computation.
Basically, the intelligent swarm [12], in terms of its unpredictability, is a partic-
ular instance of the principle of computational equivalence (and the concept of
computational irreducibility) which Wolfram discovered in the ‘80s while work-
ing on cellular automata [13]. After the publication of [1], these concepts are
becoming much clearer and more widespread. Which has further consequences
for swarms. In fact, it now appears quite plausible that swarm intelligence is not
just an interesting concept but something quite likely to be found in nature and
quite feasible to engineer.

The whole point of defining the intelligent swarm was that one felt reassured
of not studying a trivial system or a system that could easily be mapped into
other well known systems. Swarm intelligence was an emergent property which
led to systems of significant power in forming patterns of matter. The intelligent
swarm could be a universal mechanical computer and as such unpredictable. It
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also showed that swarms were not just capable of doing what single robots do, but
more capable. Thus, e.g., for defense applications, the swarm was inherently more
promising (for this and other advantages) than the single robot, and, arguably,
still is.

5 Why “Swarm Robotics”

The term swarm intelligence became more and more in use during the last 15
years and, as we have noted in sect. 2 and 3, generally with good justification.
At the same time, the original application of the term (to robotic systems, sect.
4) did not grow as fast. One of the reasons is that the swarm intelligent robot is
really a very advanced machine and the realization of such a system is a distant
goal (but still a good research and engineering problem.) Meanwhile, it is already
very difficult to make small groups of robots do something useful. Thus, there
is not much reason to use a term (swarm intelligence) for much more modest
groups of robots. It seems reasonable that terms such as “collective” robotics
and “distributed autonomous robotic systems” should be used.

On the other hand, the use of labels such as “swarm robotics” or “collec-
tive robotics/distributed robotics” should not be in principle a function of the
number of units used in the system. The principles underlying the multi-robot
system coordination are the essential factor. The control architectures relevant to
swarms are scalable, from a few units to thousands or million of units, since they
base their coordination on local interactions and self-organization. The fact that
only small groups of robots have been presented in most of the swarm robotics
literature is a side effect of cost of robotic equipment and of the number of tech-
nologies involved to make robots working. Making a single mobile, autonomous
robot working in a reliable way is already a big challenge nowadays, and even
more so for a robotic swarm.

In biology, there is no such a mismatch between the term “swarm” and
the systems one is looking at. First, because “swarm” is obviously the English-
language word that describes some of the biological systems studied, regardless of
whether or not what they do is intelligent. Second, because “swarm” is intuitively
applicable to relatively large random systems that do something interesting. For
example, “swarming” is used to describe mathematical solutions to some high
order PDE [14]. Here it is clear that the term has a more distant relation to the
concept of swarm as originally appeared in robotics (sect. 2); nevertheless it is a
reasonable English language description when one looks at the patterns formed
by the solutions of those PDEs, which resemble the paths of swarming fish or
birds.

Swarm robotics [15], as a discipline, has attracted a significant number of
research groups currently contributing to the field. An incomplete list of such
groups includes: Caltech, Carnegie Mellon, Ecole Polytechnique Lausanne, Geor-
gia Tech, Hughes Research Labs, MIT, Middle East Technical University, Riken,
Texas A & M, Tokyo Institute of Technology, University of Alberta, UCLA,
Universitat Karlsruhe, Université Libre de Bruxelles, USC, University of West
England, University of Wyoming, Washington University.
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Looking at applications, swarm robotics has by now accumulated a collec-
tion of “standard” problems which recur often in the literature. (This workshop
itself describes a large array of such problems.) One group of problems is based
on pattern formation: aggregation, self-organization into a lattice, deployment
of distributed antennas or distributed arrays of sensors, covering of areas, map-
ping of the environment, deployment of maps, creation of gradients etc. A second
group of problems focuses on some specific entity in the environment: goal search-
ing, homing, finding the source of a chemical plume, foraging, prey retrieval, etc.
And another group of problems deals with more complex group behavior: co-
operative transport, mining (stick picking), shepherding, flocking, containment
of oil spills, etc. This, of course, is not an exhaustive list; other generic robotic
tasks, such as obstacle avoidance and all terrain navigation, apply to swarms as
well.

Another aspect of swarm robotics that should be mentioned is “swarm con-
trol”. Ultimately, after algorithms for task implementation have been devised,
the practical realization requires robustness and this is the result of proper con-
trol. Swarm control presents new challenges to robotics engineers. The closest
classic example, from the control engineering side, is perhaps formation control,
e.g., the control of multi-robot teams or autonomous aircrafts or water vehicles.
These studies lead to consider problems of asynchronous stability of distributed
systems and are very much in line with the original drive toward swarm robotics.
A brief review of these problems, as well as their relation to swarming in general,
is given in the introduction section of a recent paper by Passino [16] whose work
has focused on swarm robotics control.

In thinking about the actual realizations of swarms, it is important to men-
tion also the new term “Swarm Engineering” coined by Alan Winfield and dis-
cussed in this workshop [17]. The notion goes beyond the control concepts of
robustness and adaptation and brings about the issue of dependability in the
actual realization of practical swarms. Generally, looking at swarm robotics and
swarm engineering in a long range perspective, we may regard these notions as
guiding paradigms toward the practical realization of systems capable of swarm
intelligence as discussed in the previous section.

Overall, for the roboticist interested in engineering robotics swarms, all this
nomenclature using the term “swarm” maybe a bit frustrating especially when
trying to organize conferences to discuss swarm robotics problems. So, although
defining terms is not one of the most creative activities, there is some valid
justification in trying to describe more clearly the field of “swarm robotics”.
What is happening is a normal process of differentiation as fields grow. The
success of the term “swarm” in various branches of science and technology is
creating some confusion in understanding what type of swarm one is talking
about; and so the need to separate various swarm areas has probably come. At
the same time, looking at swarms themselves, we see that confusion (randomness)
is an intrinsic reason for their power to do remarkable tasks. So, if at this time
there is some confusion among swarm researchers, it may turn out to be a good
thing.
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Abstract. Swarm robotics is a novel approach to the coordination of
large numbers of relatively simple robots which takes its inspiration from
social insects. This paper proposes a definition to this newly emerg-
ing approach by 1) describing the desirable properties of swarm robotic
systems, as observed in the system-level functioning of social insects,
2) proposing a definition for the term swarm robotics, and putting for-
ward a set of criteria that can be used to distinguish swarm robotics
research from other multi-robot studies, 3) providing a review of some
studies which can act as sources of inspiration, and a list of promising
domains for the utilization of swarm robotic systems.

1 Introduction

Swarm robotics is a novel approach to the coordination of large numbers of
robots. It is inspired from the observation of social insects – ants, termites,
wasps and bees – which stand as fascinating examples of how a large number of
simple individuals can interact to create collectively intelligent systems. Social
insects are known to coordinate their actions to accomplish tasks that are beyond
the capabilities of a single individual: termites build large and complex mounds,
army ants organize impressive foraging raids, ants can collectively carry large
preys. Such coordination capabilities are still beyond the reach of current multi-
robot systems.

2 Motivations for Swarm Robotics

Studies [1] have revealed that there exists no centralized coordination mecha-
nisms behind the synchronized operation of social insects, yet their system-level
functioning is robust, flexible and scalable. Such properties are acknowledged to
be desirable for also multi-robot systems, and can be stated as motivations for
the swarm robotics approach:

– Robustness requires that the swarm robotic system should be able to con-
tinue to operate, although at a lower performance, despite failures in the
individuals, or disturbances in the environment. As anyone who tried to ex-
tinguish an ant raid into his kitchen would agree, social insects are extremely

E. Şahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 10–20, 2005.
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difficult to get rid of. This robustness can be attributed to several factors;
First, redundancy in the system; that is, any loss or malfunction of an in-
dividual can be compensated by another one. This makes the individuals
dispensible. Second, decentralized coordination; that is, destroying a certain
part of the system will not deter the system’s operation. Coordination is an
emergent property of the whole system. Third, simplicity of the individu-
als; that is, in comparison to a single complex system that could perform
the same task, in a swarm robotic system, individuals would be simpler,
making them less prone to failures. Fourth, multiplicity of sensing; that is,
distributed sensing by large numbers of individuals can increase the total
signal-to-noise ratio of the system.

– Flexibility requires the swarm robotic system to have the ability to generate
modularized solutions to different tasks. As nicely demonstrated by ants,
in ant colonies individuals take part in tasks of very different nature such
as foraging, prey retrieval and chain formation. During the foraging task,
ants act independently searching for food in the environment; their search is
partially coordinated by the pheromones laid in the environment. The prey
retrieval task requires the ants to generate a force much larger than that of a
single individual to drag a prey to the nest. When a large prey is discovered,
each ant grip the prey with its mandible and pull it in different directions.
The seemingly random pulls of ants are observed to be coordinated through
the force integrated over the prey. In the chain formation task, ants form a
physical chain-like structure that can extend beyond the reach of a single ant
and exert large forces pulling together leaves. During the task, ants use their
body as a medium of communication where ants in the chain act motionless
with each ant gripping/holding the leg of other ants in the chain. In this
task, coordination is achieved through the bodies of the ants. Swarm robotic
systems should also have the flexibility to offer solutions to the tasks at hand
by utilizing different coordination strategies in response to the changes in
the environment.

– Scalability requires that a swarm robotic system should be able to operate
under a wide range of group sizes. That is, the coordination mechanisms
that ensure the operation of the swarm should be relatively undisturbed by
changes in the group sizes.

Although we have presented the inspiration behind the swarm robotics ap-
proach, and described its envisioned properties as observed from natural systems,
these by themselves are not sufficient to define the approach. In the next section,
we propose a definition of the term, followed by a set of criteria to support the
definition given.

3 Swarm Robotics

The term swarm intelligence was first coined by Gerardo Beni [2] as a “buzz
word” to denote a class of cellular robotic systems (see [3] for a brief history).
However, the term was embraced more by the social insect studies and by the
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optimization studies that used the social insect metaphor, losing much of its orig-
inal robotics context [4]. During recent years, the term swarm robotics emerged
as the application of swarm intelligence to multi-robot systems, with emphases
on physical embodiment of the entities and realistic interactions among the en-
tities and between the entities and the environment. In a sense, the term swarm
robotics took the heir of swarm intelligence which moved on to cover a broader
meaning.

Although, like every other newly coined term, swarm robotics will have a life
of its own to claim its meaning, our observations indicate that such new terms
run the risk of turning into buzz words that tend to be attached to existing
approaches with little thought over whether it really fits or not. Such misuses,
in time, can drift the term in every direction blurring the very point that made
it novel. In an attempt to prevent this, we will propose a definition and a set of
distinguishing criteria for the swarm robotics approach.

As our starting point, we propose the following definition for the term swarm
robotics:
Definition 1. Swarm robotics is the study of how large number of relatively
simple physically embodied agents can be designed such that a desired collective
behavior emerges from the local interactions among agents and between the agents
and the environment.

This definition by itself, however, is not sufficient to properly describe this
newly emerging term. Within the multi-robot research only (see [5] and [6] for
two rather out-dated surveys of the field), there already is a plethora of terms
labeling different flavors of multi-robot research such as “collective robotics” [7,
8], “distributed robotics” [9], “robot colonies” [10], with often vague and over-
lapping meanings. Therefore, we would like to put forward a set of criteria for
distinguishing swarm robotics research.

3.1 Autonomous Robots
As much as it seems obvious, we believe that the requirement that the individuals
that make up the swarm robotic system be autonomous robots needs to be
explicitly stated. That is, the individuals should have a physical embodiment in
the world, be situated, can physically interact with the world and be autonomous.
Sensor networks [11] that consist of distributed sensing elements, but with no
physical actuation abilities, should not be considered as swarm robotic systems.
Yet we believe that the studies on sensor networks are highly relevant for swarm
robotics.

The metamorphic robotic systems [12, 13], in which units adhere to each other
and can only move over each other by forming and disconnecting connections
with other units can also be considered as swarm robotic systems as long as
there exist no centralized planning and control centers.

3.2 Large Number of Robots
The study should be relevant for the coordination of a “swarm of robots.” There-
fore, studies that are applicable to the control of only a small number of robots
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and do not aim for scalability, fall outside swarm robotics. Although putting a
number as a lower bound of group size is difficult to justify, and most would
accept group sizes of 10–20 as “swarms.” Despite the lowering cost of robots,
maintainance and experimentation with large groups of robots will remain as a
main obstacle. Therefore the issue of relevancy is mentioned to express that the
field should be open to studies that are carried out with smaller group sizes, but
with the vision/promise of scalability in sight.

3.3 Few Homogenous Groups of Robots

The robotic system being studied should consist of relatively few homogeneous
groups of robots, and the number of robots in each group should be large. That
is, studies that are concerned with highly heterogeneous robot groups, no matter
how large the group is, are considered to be less “swarm robotic.” For instance,
studies on robosoccer teams mostly fall outside of swarm robotics since these
teams typically consist of individuals whose different “roles” are assigned to
them by an external agent prior to the operation of the team and hence they
are highly heteregenous.

We agree that, the issue of homogeneity in a group of robots is not a triv-
ial one. In [14] Balch proposed a metric, called the hierarchical social entropy,
which can be used for this purpose. Yet, it is difficult to determine whether two
individuals belong to the same group or not using a simple evaluation run in
the evaluation chamber as proposed in [14]. This is due to two reasons: 1) the
nonlinear inter-robot interactions will have a large affect on the behavior of the
robots, and 2) probabilistic behaviors can make it impossible to obtain exact
similar evaluation runs under exactly the same conditions.

3.4 Relatively Incapable or Inefficient Robots

The robots being used in the study should be relatively incapable or inefficient on
their own with respect to the task at hand. That is, either 1) the robots should
have difficulties in carying out the task on their own, and the cooperation of a
group of robots should be essential, or 2) the deployment of a group of robots
should improve the performance/robustness of the handling of the task. Collec-
tive retrieval of a large prey by ants is a good example to the first case where
retrieval by a single ant would be impossible. Collective foraging of ants using
pheromones laid on the ground for stigmergic communication create foraging
patterns which are believed to improve their foraging performance [1]. Using a
group of simple mobile robots, Sugawara et al. [15] showed that signalling the dis-
covery of an object in environments where objects are non-uniformly distributed
can yield super-linear increases in the performance of the swarm.

It is important to note that this criterion does not impose any restrictions
on the hardware and software complexity of the robots. The incapability and
inefficiency of individual robots should not be taken in absolute terms, rather
they should be seen relative to the task and be considered as a justification for
the simplicity of robots.
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3.5 Robots with Local Sensing and Communication Capabilities

The robots being used in the study should only have local and limited sensing and
communication abilities. This constraint ensures that the coordination between
the robots is distributed. In fact, the use of global communication channels
within the robot group is likely to result in unscalable coordination mechanisms
and would therefore act against the first criterion mentioned above. However,
note that the global communication channels, which can be used as a means to
download a common program onto the swarm, is acceptable, as long as it is not
used for coordination among the robots.

We would like to warn the reader that the definition and the list criteria
humbly expresses our current understanding of this newly emerging approach,
as partially shaped by discussions held during the workshop. The reader should
keep in mind that these criteria are not meant to be used as a checklist for
determining whether a particular study is a swarm robotics study or not. Instead,
they should be used as yardsticks for measuring the degree to which the term
“swarm robotic” might apply. We hope that these views will act as a seed1 for
further discussion which will promote a better definition of “swarm robotics.”

4 Sources of Inspiration

There are many research fields that can act as sources of inspiration for swarm
robotics. First and foremost among them is the study of self-organization, which
is defined [1] as “a process in which pattern at the global level of a system
emerges solely from numerous interactions among the lower-level components of
the system.” In this sense, swarm robotics can be considered as the engineering
and utilization of self-organization in physically embodied mobile swarms.

Studies of self-organization in biological systems show that an interplay of
positive and negative feedback of interactions among the individuals is essential
for such phenomena. In these systems, the positive feedback is typically gener-
ated through autocatalytic behaviors. The snowballing effect triggered by the
positive feedback cycle is counterbalanced by a negative feedback mechanism,
which typically stems from a depletion of physical resources in the system or the
environment.

Studies that attempt to uncover the principles behind the emergence of self-
organization in biological systems, often develop models that are built with sim-
plified interactions in the world and abstract behavioral mechanisms in individ-
uals. Self-organization models of social insects and animals have already been
used as inspiration sources for many swarm robotics studies.

Below, we would like to draw attention to three other lines of research, which
we believe, contain ideas that can act as inspiration sources. In our reviews, we
tried to emphasize the ideas that, we consider, most relevant and inspiring for
swarm robotics research.

1 The discussion presented here extends from the views first put forward by Dorigo
and Şahin in [16].
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4.1 Unicellular Organisms
Some species of unicellular organisms, such as bacteria, myxobacteria, amoeba,
are observed to display interesting examples of coordination. These organisms,
which act independent of each other under favorable conditions (plenty of food,
no antibiotics, etc.), are observed to display coordinated behaviors when times
get hard.

Aggregation of Amoeba into Slime Mold. Aggregation is a highly observed
phonemena in various life forms since it constitutes a pre-condition of most
collective behaviors. One well known example of aggregation is observed during
the formation of the slime mold by the D. discoideum from cellular Dictyostelium
amoeba [1]. When the food is abundant in the environment, these amoeba feed
and multiply with no signs of coordination among different individuals. When
the food supply is depleted, however, the amoeba begins to aggregate forming
complex spatial patterns. The aggregation process creates a slug, a multicellular
organism which can move on a surface for some time, and then sporulate.

Studies have shown that the aggregation is governed by cAMP, a chemoat-
tractant that is produced and released into the extracellular environment by the
starving amoeba. It is shown that amoeba have two modes of cAMP secretion:
oscillatory and relay. In the oscillatory mode, starving amoeba releases cAMP
with a period of 5-10 minutes. In the relay mode, that is when the amoeba is hit
by a cAMP pulse, the amoeba responds by a producing a larger cAMP pulse.
The positive feedback of cAMP production cycle is bounded by the desensitiza-
tion of cAMP receptors in high cAMP concentrations. This mechanism is shown
[1] to generate spiral cAMP waves that propagate in one direction. The cAMP
waves guide the cells towards the center of the spiral, which once begin to adhere
to each other, create clumps that are difficult to disperse.

The amazing aspect of this aggregation process is its size; typically 10,000–
100,000 cells aggregate to form the slime mold. Experiments on developing con-
trollers for aggregation of mobile robots, which use sound or light for long range
signalling, indicate that even aggregation of individuals on the order of 10’s
is very difficult [17]. The gap between the scales of aggregation suggests that
stigmergic communication (which occurs through cAMP concentration in the
extracellular environment of amoeba) is very important. Long range signalling
modalities, such as sound and light, that are typical on mobile robots are not
persistent in the environment as chemicals making them unusable for such stig-
mergic coordination. Two possible strategies to use stigmergy in swarm robotic
systems exist. First, one can use embedded intelligent markers in the environ-
ment which can store stigmergic information and interact with each other to
simulate physical diffusion like signal spreading. Gnats [18] or smart materials
like those envisioned by the amorphous computing paradigm [19] can used for
this purpose. Second, in a large swarm, some of the individuals can make them-
selves immobile and act as a stigmergic medium to guide the rest of the swarm.
Although similar ideas were used in [20, 21] for route discovery and following,
their use are rather limited and the idea needs to be exploited for other tasks as
well.
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Quorum Sensing and Communication in Bacteria. Recent studies of bac-
teria [22] started to reveal intricate communication mechanisms within bacteria
colonies. Some species of bacteria are known to use quorum sensing to synchro-
nize their actions: Vibrio fischeri produces light when its population reach a
critical size, Vibrio cholarae delays the production of virulance factor in their
host bodies until they reach a certain mass, possibly to ensure a successful in-
fection by reducing the chance of immune system alert. Recent studies indicated
that quorum sensing is done by the detection and production of extracellular
chemicals called autoinducers that modulate gene expression. The discovery of
different autoinducers and quorum sensing mechanisms in bacteria suggests that
interactions between them can play an important role for the formation of com-
plex structural organizations composed of multiple bacteria species.

Quorum sensing is a fundamental problem for swarm robotics that is yet to be
faced. Therefore coordination mechanisms revealed in bacteria are very relevant.
Although we would admit that the current state of the studies reviewed above,
does not provide sufficient detail about these mechanisms yet, it is likely to do
so in the very near future and therefore worth to keep an eye.

Information Exchange in Bacteria. It is observed [23] that “bacterial
colonies can be far more resistant to antibiotics than the same bacteria living in
suspension.” It is thought that bacteria living in colonies form a genomic web
and the enhanced robustness is due to the communication capabilities of bacteria
through chemical signalling or the transfer of genetic material. The communi-
cation capabilities can be classified into two different categories: inducive and
informative. In inducive communication, the (chemical) signal triggers a certain
action within the cell. In informative communication, however, the message re-
ceived is interpreted by the cell and the response is based on the current state
of the cell and its history.

In real life, it is highly likely that some individuals of swarm robotic systems
will discover certain hazards the hard way, through being destroyed by these haz-
ards. Utilization of an information exchange mechanisms, inspired from bacterial
communication, that can pass last-minute signals or codes to other individuals
has the potential of improving the robustness of the swarm robotic systems in
unknown environments.

4.2 Amorphous Computing
Amorphous computing, proposed by Abelson [19], sets its challenge as “How can
pre-specified, coherent behavior be engineered from the cooperation of vast num-
bers of unreliable parts interconnected in unknown, and time-varying ways?”
This line of research considers “a system of irregularly placed, asynchronous,
locally interacting computing elements” as a medium and aims to develop pro-
gramming paradigms for translating a desired global pattern onto a finite set
of rules to be executed by the elements. Their approach takes its inspiration
from the morphogenetic processes in biological systems, such as tissue growth.
In [24], Coore developed a programming language, called the growing-point lan-
guage, which can be used to grow patterns in an amorphous medium through
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directed wave (message) propagation. Although there is no limitation on the mo-
bility of the elements, work carried out so far has focused on immobile elements.
Despite this, the programming paradigms developed in this line of research, we
believe, are relevant for swarm robotics research.

4.3 Self-assembly of Materials
Self-assembly, defined as “the autonomous organization of components into pat-
terns or structures without [external] intervention” [25], is of interest at differ-
ent scales; Molecular self-assembly is useful for fabricating materials with regular
structures (such as molecular and liquid crystals), nanoscale self-assembly stands
as a promising method for building large numbers of micro electro-mechanical
systems, meso- to macroscopic (objects with dimensions from microns to cen-
timeters) self-assembly can aid robotic assembly process.

In [26], Whitesides and Boncheva argue that for successful molecular self-
assembly the following characteristics be present; 1) the components should be
designed for the desired structure, 2) the components should be mobile with
respect to each other, 3) there exists an equilibrium of attractive and repulsive
forces at the desired configurations of the components, 4) associations between
the molecules should be reversible, allowing molecules to adjust their positions
with respect to each other, 5) the environment should guide the interactions in
the desired way.

Browsing through self-assembly literature, we discovered two other interest-
ing ideas for swarm robotics research. One idea is the use of templates. It can
scaffold the process reducing the defects in self-assembly. Another is the use of
catalytic agents. Both ideas have the potential to improve the pattern formation
performance in large swarm robotic systems and worth to be explored.

5 Domains of Application

Mass production of robots is essential for the deployment of swarm robotic
systems. Advances in mechatronics technology have already started to shrink
the size and costs of traditional autonomous robots. MEMS (Micro-Electro-
Mechanical System) technology has been making impressive progress on the
integration of mechanical, sensor, actuator and electronics components on sili-
con substrate opening the way to fully-autonomous micro-robots. As the mass
produced robots, at macro, micro and nano levels, become available their cost
will be relatively much cheaper (with respect to other single-robot solutions)
making the individuals dispensible.

Below, we present a number of task domains where the swarm robotics would
be applicable. We emphasize the properties of the tasks that make them suitable
for swarm robotic systems, and provide a number of real-world problems as
examples.

5.1 Tasks That Cover a Region
Swarm robotic systems are distributed sytems and would be well-suited for tasks
that are concerned with the state of a space. Environmental monitoring (or
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tracking the well-ness) of a lake, would constitute a good domain of application.
The distributed sensing ability of swarm robotic system can provide surveillance
for immediate detection of hazardous events, such as the accidental leakage of
a chemical. In dealing with this, a swarm robotic system would have two major
advantages of sensor networks, which can also be considered as immobilized
swarm robotic systems. First, in such a case, a swarm robotic system has the
ability to “focus” on the location of problem by mobilizing its members towards
the source of the problem. Such ability would allow the swarm to better localize
and identify the nature of the problem. Second, the swarm can self-assemble
forming a patch that would block the leakage.

5.2 Tasks That Are Too Dangerous

Individuals that create a swarm robotic system are dispensible making the sys-
tem suitable for domains that contain dangerous tasks. For instance, clearing a
corridor on a mining field can be cheaply accomplished by a swarm of robots.
Unlike a single (more complex and expensive) “robotic de-miner” designed for
the same task, the members of the swarm can afford being “suicidal” for carry-
ing out their task by marching through the field. We would also argue that, a
corridor that is marched by a swarm of robots would be safer than the one that
is checked by the single “robotic de-miner” since the swarm robotics approach
would physically walk over the mines, simulating the walk of the soldiers.

5.3 Tasks That Scale-Up or Scale-Down in Time

Swarm robotic systems have the power to scale-up or scale-down with the task
at hand. For instance, the scale of an oil leakage, from a sunk ship, can increase
dramatically as the tanks of the ship breaks down. A swarm robotic system
which self-assembled to contain the initial spillage in a bounded area, can be
scaled up by the “pouring” more robots into the area.

5.4 Tasks That Require Redundancy

The robustness of swarm robotic systems come from the implicit redundancy in
the swarm. This redundancy allows the swarm robotic system to degrade peace-
fully making the system less prone to catastrophic failures. For instance, swarm
robotic systems can create dynamic communication networks in the battlefield.
Such networks can enjoy the robustness achieved through the re-configuration
of the communication nodes when some of the nodes are hit by enemy fire.

6 Conclusions

In this paper we tried to define the newly emerging field of swarm robotics
as a new aproach to the control and coordination of multi-robot systems. We
stated the inspirations behind this approach, the desirable properties, and the
requirements to clarify the defining characteristics of this approach in relation
to other existing studies. However, the reader should note that like any other
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approach, this approach should not be seen to be applied in its pure “crystal”
form to real problems. These clarifications are provided with the hope that it
will guide the researchers to reveal the mechanisms behind, which can then be
mixed with other approaches.
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Communication, Diversity and Learning:
Cornerstones of Swarm Behavior

Tucker Balch

Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract. This paper reviews research in three important areas con-
cerning robot swarms: communication, diversity, and learning. Commu-
nication (or the lack of it) is a key design consideration for robot teams.
Communication can enable certain types of coordination that would be
impossible otherwise. However communication can also add unnecessary
cost and complexity. Important research issues regarding communication
concern what should be communicated, over what range, and when the
communication should occur. We also consider how diverse behaviors
might help or hinder a team, and how to measure diversity in the first
place. Finally, we show how learning can provide a powerful means for
enabling a team to master a task or adapt to changing conditions. We
hypothesize that these three topics are critically interrelated in the con-
text of learning swarms, and we suggest research directions to explore
them.

1 Overview

What is the relationship between communication, learning, and diversity in the
context of robot swarms? We know already that different types of learning can
impact the behavioral diversity of a learning robot team [1]. We also know that
communication can improve robot team performance significantly. But commu-
nication adds cost and complexity to a robot system [2]. In spite of a substantial
volume of work in each of these areas, there has been little, or no research that
ties all three areas together.

The focus of this paper is to review fundamental research concerning robot
teams in the areas of communication, diversity and learning. We hypothesize
that robotic swarms will depend critically on research in each of these domains,
and that successful systems will leverage results from each area. In fact, we
suggest that it will be essential to consider all three issues at once. We propose
new research directions that will serve to bring these domains together in the
context of robot swarms.

The research we review here was primarily conducted with small teams of
robots (from one to eight) and in simulation. These limitations were due pri-
marily to experimental resource constraints that were present in the 1990s, but
are largely absent in the 2000s: reliable robots are much less expensive now. We
expect that the results from this earlier work will apply to swarms as well as
they apply to teams.

E. Şahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 21–30, 2005.
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2 Communication in Robot Teams

Robot system designers must carefully consider each component of their design.
The inclusion of sensors, actuators, or additional robots must be justified by
contributing to efficient task completion. This becomes especially important in
the case of robot swarms, which may include hundreds or thousands of agents
– and thus multiplying cost substantially. The question is not simply whether
or not to include inter-robot communication, but what type, speed, complexity
and structure. How should these design decisions be made?

In the early 1990s Arkin [3] reported that successful task-achieving behav-
ior can occur even in the absence of communication between agents. His work
complements later research by Mataric that showed kin recognition can play an
important role in robot team performance [4]. In particular, if robots can simply
recognize their locations with respect to one another, they can perform better
in in some tasks.

In the mid-1990s Balch and Arkin investigated how communication impacts
multiagent robotic system performance [2]. We devised three societal robot tasks
in which the performance in simulation of a team of robots was measured. For
each task we evaluated three different types of communication. The experiments
were designed so that performance for each type of communication can be com-
pared across different tasks. In all, a six-dimensional space of task, environment,
and control parameters was explored including: task, communication type, num-
ber of robots, number of attractors, mass of attractors, and percentage of obstacle
coverage. The simulation results were supported by porting the control system
to a team of Denning mobile robots. We focus on these results here.

2.1 Tasks for Communicating Robots

Our research focused on three tasks: foraging, consuming, and grazing. For-
aging consists of searching the environment for objects (referred to as attractors)
and carrying them back to a central location. Consuming requires the robot to
perform work on the attractors in place, rather than carrying them back. Graz-
ing is similar to lawn mowing; the robot or robot team must adequately cover
the environment.

The forage task for a robot is to wander about the environment looking
for items of interest (attractors). Upon encountering one of these attractors,
the robot moves toward it, finally attaching itself. After attachment, the robot
returns the object to a specified home base.

Figure 1a shows a simulation of two robots foraging for seven attractors
and returning them to a home base. In the simulation, obstacles are shown as
large black circles, attractors are represented as small circles, and the paths of
the robots are shown as solid or dashed lines. They leave dashed lines as they
wander, and solid lines when they acquire, attach, and return the attractors to
home base.

Like forage, the consume task involves wandering about the environment to
find attractors. Upon encountering an attractor, the robot moves toward it and
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Forage Consume Graze

Fig. 1. Simulation of Forage, Consume, and Graze with two robots and seven attrac-
tors.

attaches itself to the object. Unlike the forage task, however, the robot performs
work on the object in place after attachment. It is not necessary for the robot to
carry the object back to home base. Applications for robots that can accomplish
the consume task might include toxic waste cleanup, assembly, or cleaning tasks.

Figure 1b shows a simulation of two robots consuming seven attractors. Note
that this task is performed in exactly the same environment as the forage task
shown in Figure 1a. The robots leave dashed lines as they wander, and solid lines
when they acquire and move to the attractors.

The graze task differs from forage and consume in that discrete attractors
are not involved. Instead, the object is to completely cover, or visit the environ-
ment. Some familiar examples are mowing the lawn, sowing seed, and of course,
cows grazing. The graze task for a robot is to search for an area that has not
been grazed, move toward it, then graze over it until the entire environment (or
some percentage of it) has been covered. It is assumed that the robot possesses
some means to “graze” and that it grazes over a fixed “swath.” The size of the
task is dictated by the proportion of environment that must be covered before
completion. Figure 1c shows a simulation of two robots grazing over 95% of the
environment. The robots leave dashed lines as they wander, and solid lines when
they graze. Grazing robots might be used to mow, plow or seed fields, vacuum
houses [5], or remove scrub in a lumber producing forest.

2.2 Three Types of Communication

Three different types of communication were evaluated in this research. Using a
minimalist philosophy, the first type, no communication, actually involves no
direct communication between the agents. The second type, state communica-
tion allows for the transmission of state information between agents in a manner
similar to that found in display behavior in animals [6]. The third type, goal
communication requires the transmitting agent to recognize and broadcast the
location of an attractor when one is located within detectable range.

In the case of no communication no messages are exchanged between the
robots. However the robots are able to perceive the locations of nearby team-
mates (i.e. recognize their “kin”). When state communication is permitted,
robots are able to detect the behavioral state (e.g. which behaviors are acti-
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vated) of other robots. Although communication is often considered a deliberate
act state communication is not necessarily “intentional” since information can
be relayed by passive observation.

To take advantage of state information in reactive control, the behaviors for
each task are modified slightly. From a robot’s point of view, the most important
states to look for in another robot are those where the other robot has found an
attractor or an area to graze; that means that the other robot has found useful
work. If the robot goes to the same location, it is likely to find useful work as
well, or at least be able to assist cooperatively.

Goal communication involves the transmission and reception of specific goal-
oriented information. Goal communication differs from the other two levels in
that the sender must deliberately send or broadcast the information. A natural
example of this type of communication is found in the behavior of honey bees.
When a bee discovers a rich source of nectar, it returns to the hive and com-
municates the location with a “dance” which encodes the direction and distance
from the hive to the source.

For reactive control, goal communication is implemented by modifying the
behavioral assemblages in the same manner as described for state communica-
tion. However, a receiving robot moves directly toward the location of the at-
tractor. The intent is that the agent may now follow a more direct path (beeline)
to the attractor.

2.3 Results: The Impact of Communication and Stigmergy

Figure 2 shows a typical simulation run of two robots foraging for seven attractors
with no, state, and goal communication. Inspecting the images from left to right
reveals an apparent improvement in the “orderliness” of the robots’ paths.

We compared the quantitative improvement in performance in all three tasks
with communication to performance without communication. These results are
summarized in the table below.

Forage
State vs No Communication 16%
Goal vs No Communication 19%
Consume
State vs No Communication 10%
Goal vs No Communication 6%
Graze
State vs No Communication 1%
Goal vs No Communication 1%

Specific conclusions we draw from these results are:

– Communication provides an important improvement in performance in for-
age and consume tasks.

– Communication doesn’t help in the graze task.
– Goal communication does not provide much of an advantage over state com-

munication in forage and consume tasks.
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No Comm. State Comm. Goal Comm.

Fig. 2. Typical run for forage task with No (left), State (center), and Goal (right)
Communication. The simulations required 5145, 4470 and 3495 steps, respectively, to
complete.

Considering these results at a higher level, we observe that some tasks (in this
case the graze task) enable a kind of communication through the environment:
robots change the environment as they execute the task, and this change assists
other robots in completing the task as well. Biologists refer to this as stigmergy.
Since the time of this work was completed other roboticists have made similar
observations and applied them to multi-robot tasks as well. In such tasks, explicit
communication does not provide as much of an advantage.

3 Behavioral Diversity in Swarms

We now move to another important issue for swarm robotics – the advantages
(or disadvantages) of heterogeneous teams. Most research in robot swarms has
centered on homogeneous systems, with work in heterogeneous systems focused
primarily on mechanical and sensor differences (such as Parker’s work [7]). On
the other hand, behavioral diversity refers to the situation where robots are
mechanically identical, but differ according to their behavior.

In early work regarding behavioral diversity, the diversity of multirobot teams
was evaluated on a bipolar scale, with systems classified as either heterogeneous
or homogeneous, depending on whether any of the agents differ [8, 9, 7]. Un-
fortunately, this labeling doesn’t tell us much about the extent of diversity in
heterogeneous teams.

Heterogeneity is better viewed on a sliding scale providing for quantitative
comparisons. Such a metric enables the investigation of issues like the impact
of diversity on performance, and conversely, the impact of other task factors
on diversity. Social entropy, inspired by Shannon’s information entropy [10],
is introduced as a measure of diversity in robot teams. The metric captures
important components of the meaning of diversity, including the number and
size of groups in a society.

To evaluate the diversity of a multirobot system, the agents are first grouped
according to behavior (e.g. all red-collecting agents are placed in one group).
Next, the overall system diversity is computed based on the number and size
of the groups. Social entropy for a multirobot system composed of M groups is
defined as:
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H(X) = −
M∑
i=1

pi log2(pi) (1)

where pi represents the proportion of agents in group i.
An important limitation of simple social entropy as a diversity metric con-

cerns its lack of sensitivity to the degree of difference between agents. As an
example, consider that we have two robot societies, each composed of two groups
of robots with the same number of robots in each group. In one society the two
groups are not very much different – perhaps both groups are foraging robots
and they both forage for the same type of attractor but in a slightly different
manner. In the other society, however, the two groups are very much different:
one group is a team of foraging robots, but the other group is a team of soccer
robots. Their behaviors are substantially different. Simple social entropy would
evaluate both systems as having the same degree of diversity. To address this
issue we developed a slightly more complicated measure of diversity referred to
as hierarchic social entropy. For more details, readers are referred to [1].

4 Learning and Diversity in Robot Teams

We now describe how social entropy can be employed experimentally to evalu-
ate learning teams. We use simulated soccer and foraging tasks as domains for
experiment. In both sets of experiments, the agents are provided a common set
of skills (motor schema-based behavioral assemblages) from which they build a
task-achieving strategy using reinforcement learning. The agents learn individ-
ually to activate particular behavioral assemblages given their current situation
and a reward signal.

To foreshadow the results, we discovered that the diversity of a team depends
critically on the form of the reward function used to train it. This begs the
question that perhaps other factors may affect the level of diversity as well. We
will address one of those (communication) later in the paper.

4.1 Learning Soccer

Soccer experiments were conducted by engaging an experimental learning team
against a fixed opponent control team in soccer contests. Performance is evalu-
ated as the total number of points scored by the learning team.

The learning teams were developed using the same behavioral assemblages
and perceptual features as the control team. This approach ensures that the
performance of a learning team versus the control team is due only to differences
in policy. The control team’s configuration uses a fixed selector for coordination.
Learning is introduced by replacing the fixed mechanism with a selector that uses
Q-learning instead. The Q-learner automatically tracks previous perceptions and
rewards to refine its policy [11]. At each step, the learning module is provided
the current reward and perceptual state. It learns over time to select the best
assemblage given the situation.
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Fig. 3. Examples of homo- and heterogeneous learning soccer teams. In both cases the
learning team (dark) defends the goal on the right. A homogeneous team (left image)
has converged to four identical behaviors which in this case causes them to group
together as they move toward the ball. A heterogeneous team (right) has settled on
diverse policies which spread them apart into the forward and middle of the field.

The policy an agent learns depends on the reward function used to train it.
One objective of this research is to discover how local versus global reinforcement
impacts the diversity and performance of learning teams. Global reinforcement
refers to the case where a single reinforcement signal is simultaneously delivered
to all agents, while with local reinforcement each agent is rewarded individually.
To that end, we consider two reinforcement functions for learning soccer robots:

– Local performance-based reinforcement: each agent is rewarded indi-
vidually when it scores a goal, or is punished when it is nearest the ball when
the team is scored against.

– Global performance-based reinforcement: all agents are rewarded
when when the team scores, or punished when the team is scored against.

Experimental data were gathered by simulating thousands of soccer games and
monitoring robot performance as the robot teams learned. The learning robots
are evaluated on two criteria: task performance (score) and diversity of behavior.

When rewarded using the global reinforcement signal Rglobal, the learning
teams out-scored the control team by an average of six points to four. This av-
erage includes the initial phase of training. When trained using the local reward
Rlocal, the learning teams lose by an average of four points to six. In these soccer
experiments, teams trained using global reinforcement perform best.

Two example teams, one homogeneous, the other heterogeneous, are illus-
trated in Figure 3. All members of the team on the left have converged to iden-
tical policies. In fact, all robots in the 10 locally-reinforced teams converged to
the same “forward” policy used by the control team. All 10 teams converged
to fully homogeneous behavior. H(R) = 0 for the homogeneous teams trained
using local reinforcement.

In contrast, all of the 10 globally-reinforced teams diversify to heterogeneous
behavior. In all cases, the agents settle on one of three particular policies. All
the teams include one robot that converges to the same “forward” policy used
by the control team; they also include at least one agent that follows the same



28 Tucker Balch

policy as the control team’s “goalie.” The other robots learn a policy similar to
a mid-back role.

4.2 Learning Foraging

As in the soccer experiments, the approach in foraging experiments is to provide
each agent a reward function that generates feedback at each movement step
regarding the agent’s progress, then to use that function over many trials to
train the robot team. Again, Q-learning is used to associate actions with state.
The learning agents are initialized with random Q-tables, thus random, poorly
performing policies. Since each agent begins with a different policy, the teams are
initially maximally diverse. They improve their policies using the reinforcement
functions described below. Three reward functions were investigated:

– Local performance-based reinforcement: each agent is rewarded indi-
vidually when it delivers an attractor.

– Global performance-based reinforcement: all agents are rewarded
when any agent delivers an attractor.

– Local shaped reinforcement: each agent is rewarded progressively as it
accomplishes portions of the task [12].

Full details on the formulation of these reward functions are provided in [1].
Agents are able to learn the task using all three types of reinforcement. A plot

of the average performance for each learning strategy versus the number of agents
on the team is presented in Figure 4. (In separate research, the performance of
three different hand-coded systems was also evaluated [1]; performance of the
best hand-coded system (a homogeneous strategy) is included in the graph for
comparison).

The plot shows that, of the learning strategies, local performance-based and
heuristic (shaped) reinforcement systems perform best. Performance in the glob-
ally reinforced system is worse than the other learning teams. Note that the
performance plots for teams using local and shaped rewards are nearly identical
and that one’s confidence interval overlaps the other’s mean value. Both also
overlap the performance of the hand-coded homogeneous policy. In fact, there
is no statistically significant difference between the homogeneous hand-coded
systems and the best learning systems. Local and shaped reinforcement systems
perform as well as the best hand-coded system.

5 Implications for Robot Swarms

The results across all these experiments suggest a number of implications for
learning swarms. Namely:

– Global rewards tend to encourage diversity in a learning team.
– Local rewards encourage homogeneous teams.
– Which is best depends on the task. In some cases diversity is good, in others

it is not.
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Fig. 4. Performance of foraging teams versus the number of robots on a team. The
error bars indicate 95% confidence intervals.

We can also begin to answer the question of why behavioral diversity might
be useful to a robot team (or swarm)? Our work and others’ has shown that
diversity becomes important when one or more of the following conditions exist
[1, 8]:

– When individual robots cannot perceive the entire operating environment
by themselves.

– When individual robots do not have enough program memory to hold an
entire solution for the task.

– When communication bandwidth between robots is limited or it suffers from
delays.

In these situations heterogeneous solutions can provide guarantees such as an
assurance that necessary roles or locations will be assumed by at least one robot.
In fact, in [13] we established conditions for tasks under which at least one
optimal solution is heterogeneous.

When one considers all these results together it becomes clear that commu-
nication, learning and diversity are intimately related. As an example, consider
how a noisy communication environment might impact the effectiveness of a
particular learning algorithm for a robot swarm. Experiments indicate that for
situations in which communications bandwidth is limited, diverse solutions are
preferred. Furthermore, global rewards tend to encourage diversity. Accordingly
a global reward system may be best in this case (this is speculation of course).

Communication, learning and diversity may be related in other ways as well.
For instance, one method by which learning rates could be sped up for a team in-
volve robots sharing their learning experiences. When using reinforcement learn-
ing, for example, a robot samples its sensors, selects an action, then receives
a reward. Robots could share these <sense, act, reward> experience tuples by
broadcasting them to one another. Essentially, the robots would hallucinate each
others’ learning experiences. Note however, that this kind of sharing would prob-
ably lead to homogeneous policies among the learners. But what if the task is
best served by a heterogeneous solution?

The above suggestions are merely hypotheses. But they point to areas ripe
for new work that will be critical for successful robot swarms.
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4 ASL, École Polytechnique Fédérale de Lausanne, Switzerland
{francesco.mondada,dario.floreano}@epfl.ch

http://lsa.epfl.ch/
5 IDSIA, Lugano, Switzerland

luca@idsia.ch

http://www.idsia.ch/

Abstract. This paper provides an overview of the SWARM-BOTS
project, a robotic project sponsored by the Future and Emerging Tech-
nologies program of the European Commission. The paper illustrates the
goals of the project, the robot prototype and the 3D simulator we built.
It also reports on the results of experimental work in which distributed
adaptive controllers are used to control a group of real, or simulated,
robots so that they perform a variety of tasks which require cooperation
and coordination.

1 Vision

This paper introduces and illustrates the theoretical underpinning and the re-
search agenda of the SWARM-BOTS project, a robotic project sponsored by
the Future and Emerging Technologies program of the European Commission
(IST-2000-31010). The aim of this project is the development of a new robotic
system, called a swarm-bot, based on swarm robotics techniques.

Swarm robotics is an emergent field of collective robotics that studies robotic
systems composed of swarms of robots tightly interacting and cooperating to
reach their goals [1]. Swarm robotics finds its theoretical roots in recent studies
of animal societies, such as ants and bees. Social insects are a valuable source of
inspiration for designing collectively intelligent systems comprising many agents.

E. Şahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 31–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Despite noise in the environment, errors in processing information and perform-
ing tasks, and no global information, social insects are quite successful at per-
forming group-level tasks. Based on the social insect metaphor, swarm robotics
emphasises aspects such as decentralisation of the control, limited communica-
tion abilities among robots, use of local information, emergence of global be-
haviour and robustness [2].

The work carried out within the SWARM-BOTS project is directly inspired
by the collective behaviour of social insects colonies and other animal societies,
and in particular it focuses on the study of the mechanisms which govern the
processes of self-organisation and self-assembling in artificial autonomous agents.
In order to pursue these objectives, a new type of robot, referred to as s-bot, has
been developed. Hardware development runs in parallel with the development of
distributed adaptive architectures that make the s-bots capable of autonomously
carrying out individual and collective behaviour by exploiting local interactions
among the s-bots and between the s-bots and their environment.

The s-bots are mobile robots with the ability to connect to and disconnect
from each other [3, 4]. A swarm-bot is defined as an artifact composed of a
swarm of assembled s-bots (see Figure 1). S-bots have relatively simple sensors
and motors and limited computational capabilities. Their physical links are used
to assemble into a swarm-bot able to solve problems that cannot be solved by
a single s-bot. In the swarm-bot form, the s-bots are attached to each other
as a single robotic system that can move and reconfigure. Physical connections
between s-bots are essential for solving many collective tasks. For example, s-bots
can form pulling chains to retrieve a heavy object (see Figure 1a). Also, during
navigation on rough terrain, physical links can serve as support if the swarm-bot
has to pass over a hole larger than a single s-bot (see Figure 1b), or when it has
to pass through a steep concave region. However, for tasks such as searching for
a goal location or tracing a path to a goal, a swarm of unconnected s-bots can
be more efficient.

(a) (b)

Fig. 1. Graphic visualisation of how the rigid gripper can be used to connect in a secure
way s-bots among themselves so that they form a swarm-bot for (a) retrieving heavy
objects or (b) passing over holes.
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The design and realisation of both the hardware and the software of such a
robotic system represents the scientific challenge of the SWARM-BOTS project.
In what follows, we first give a brief description of the robot hardware, and of
the experimental methodology employed to develop the s-bots controllers (see
Section 2). Then, in Section 3 we describe the results of several experiments
in which controllers have been designed to allow the s-bots to autonomously
perform a variety of individual and collective behaviours in partially or totally
unknown environments. Discussion and conclusions can be found in Section 4.

(a) (b)

Fig. 2. Graphic visualisation of the s-bot concept. (a) The main body (turret), which
has a diameter of 116 mm, is equipped with passive and active gripping facilities,
sensors and electronics. (b) The lower body (traction system) is equipped with tracks
and hosts the batteries.

2 The Hardware and the Simulation Environment

The construction of a number of artifacts (30-35) capable of self-assembling and
self-organising represents one of the most significant scientific challenges faced by
the SWARM-BOTS project. In subsection 2.1, we briefly describe the hardware
of the s-bots, with particular reference to its sensor and motor apparatus. A
more detailed description of the hardware components can be found in [5]. In
subsection 2.2, we briefly introduce the main features of swarmbot3d, a simulation
environment employed to design the software which controls the s-bots1.

2.1 The s-bot

An s-bot is the basic elementary unit of the swarm-bot (see Figure 2). Each s-bot
is a fully autonomous mobile robot capable of performing simple tasks such as
autonomous navigation, perception of the environment and grasping of objects.
In addition to these features, one s-bot is able to communicate with other s-bots
1 Details regarding the hardware and simulation of the swarm-bot can also be found

on the project web-site (www.swarm-bots.org).
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(a) (b)

Fig. 3. Pictures of s-bots transporting an object that can not be moved by a single s-
bot. (a) A swarm-bot comprising four s-bots pulls an object. (b) Three s-bots pull/push
an object to which they are directly attached.

and physically connect to them, thus forming a so-called swarm-bot. A swarm-
bot is able to perform tasks in which a single s-bot has major problems, such
as exploration, navigation, and transportation of heavy objects on rough terrain
(see Figure 3).

As far as it concerns the mobility of the s-bot, an innovative system has been
developed which makes use of both tracks and wheels as illustrated in Figure 2.
The wheel and the track on a same side are driven by the same motor, building
a differential drive system controlled by two motors. This combination of tracks
and wheels is labelled Differential Treels c© Drive2. Such a combination has two
advantages. First, it allows an efficient rotation on the spot due to the larger
diameter and position of the wheels. Second, it gives to the traction system a
shape close to the cylindrical one of the main body (turret), avoiding in this
way the typical rectangular shape of simple tracks and thus improving the s-bot
mobility.

The s-bot ’s traction system can rotate with respect to the main body by
means of a motorised axis. Above the traction system, a rotating turret holds
many sensory systems and the two grippers for making connections with other
robots or objects. In particular, each s-bot is equipped with sensors necessary
for navigation, such as infrared proximity sensors, light and humidity sensors,
accelerometers and incremental encoders on each degree of freedom. Each robot
is also equipped with sensors and communication devices to detect and com-
municate with other s-bots, such as an omni-directional camera, coloured LEDs
around the robot’s turret, and sound emitters and receivers. In addition to a
large number of sensors for perceiving the environment, several sensors provide
each s-bot with information about physical contacts, efforts, and reactions at the
interconnection joints with other s-bots. These include torque sensors on most
joints as well as traction sensors to measure the pulling/pushing forces exerted
on the s-bot ’s turret.

2 Treels is a contraction of TRacks and whEELS.
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S-bots have two types of possible physical interconnections for self-assembling
into a swarm-bot configuration: rigid and semi-flexible. Rigid connections be-
tween two s-bots are established by a gripper mounted on a horizontal active
axis (see Figure 2). Such a gripper has a very large acceptance area allowing it
to realize a secure grasp at any angle and, if necessary, allowing it to lift another
s-bot. Semi-flexible connections are implemented by a gripper positioned at the
end of a flexible arm actuated by three servo-motors.

2.2 The Simulation Environment: Swarmbot3d

Swarmbot3d is a 3D dynamics simulator of our multi-agent system of cooperating
robots, based on the SDK VortexTM toolkit3, which provides realistic simulations
of dynamics and collisions of rigid bodies in 3D. Swarmbot3d provides s-bot
models with the functionalities available on the real s-bots (see [5] for details).
It can simulate different sensor devices such as IR proximity sensors, an omni-
directional camera, an inclinometer, sound, and light sensors.

A fundamental feature of the swarmbot3d simulator is that it provides robot
simulation modules at different levels of detail. In particular, it provides a hi-
erarchy of four s-bot reference models with increasing levels of detail. The less
detailed models have been employed to speed up the process of designing neu-
ral controllers through evolutionary algorithms. The most detailed models have
been employed to validate the evolved controllers before porting them on real
hardware. The advantages of such a simulation environment are multiple: it
works as an aiding tool for accurately predicting 3D kinematics and dynamics
of a single s-bot in a swarm-bot ; it has been employed to evaluate possible new
options for hardware parts; it represents a “plastic” world model which allows
the design of new experimental setups in 3D; it has been employed to quickly
evaluate new distributed control ideas before porting them to the real hardware.
Furthermore, the simulator provides on-line interactive control during simula-
tion, useful for rapid prototyping of new control algorithms. Swarmbot3d allows
to handle a group of robots either as independent units or in a swarm-bot con-
figuration, which can be thought of as a graph, in which each node represents
a connected s-bot. The connections can be created and released dynamically at
simulation time. Connections may be of a rigid nature giving to the resulting
structure the solidity of a whole entity.

3 Results

In this section, we briefly summarise the methods and the results of experimental
work in which controllers have been designed to allow the s-bots to autonomously
display a variety of individual and collective behaviours in partially and totally
unknown environments. These basic behaviours represent different lines of in-
vestigation which are pursued in parallel, and are focused on: 1) aggregation;
2) coordinated motion; 3) collective and cooperative transport of a prey item;

3 Critical Mass Labs, Canada (www.criticalmasslabs.com).
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4) exploration; 5) adaptive task allocation; 6) navigation on rough terrain; 7)
functional self-assembling. These research lines have been identified by looking
at the kind of requirements that either a single s-bot or an aggregation of s-bots
must fulfil in order to successfully perform the tasks involved in a complex sce-
nario. The latter requires a swarm of up to 35 s-bots to transport heavy objects
from their initial location to a goal location in an environment which presents
difficulties of various nature, such as obstacles and holes on the ground. More-
over, the weight and/or size of the objects to be transported are such that these
objects can not be transported by a single s-bot (see Figure 4).

To be capable of accomplishing the scenario, the s-bots must be equipped
with controllers that allow them to successfully navigate in a totally or partially
unknown environment in order to find and retrieve a target. The s-bots must
also be capable of aggregating and self-assembling in a swarm-bot formation.
The swarm-bot might be of fundamental importance for passing over a hole
larger than a single s-bot, or to retrieve objects that can not be transported
by a single s-bot. Finally, a group of s-bots should be capable of adaptively
allocating resources to different tasks to be carried out either sequentially or
in parallel. For example, if two heavy objects must be transported, a group of
s-bots must be capable of splitting into two sub-groups each of which is formed
by the number of s-bots appropriately chosen with respect to the nature of
the object to be transported. The following subsections illustrate the research
activities concerning the development of the basic behavioural capabilities above
mentioned.

3.1 Aggregation

Within the SWARM-BOTS project, aggregation is of particular interest since
it stands as a prerequisite for other forms of cooperation. For instance, in order
to assemble into a swarm-bot, s-bots should first be able to aggregate. Several
experiments have focused on the design of scalable aggregation behaviours by
means of sound signalling (see [6, 7] for details). Artificial neural networks shaped
by evolutionary algorithms control the behaviour of a homogeneous group of
s-bots (i.e., within a group, all the s-bots share the same controller). During
the evolutionary phase, the groups are randomly placed in a square arena. The
agents are equipped with a simulated speaker that can emit a tone for long range
signalling. S-bots can perceive the intensity of sound using three sound sensors
that simulate three directional microphones. The s-bot controller takes as input
the state of the s-bot proximity sensors, and the state of the sound sensors. Two
output nodes control the s-bot ’s motors. Controllers that exploit sound to let
a group of s-bots aggregate are evolved using a fitness function that selectively
rewards those groups which minimise the average distance of all the s-bots from
the group centre of mass.

The evolved controllers show quite robust aggregation strategies. In particu-
lar, the s-bots exploit the sound signal both to get closer to each other, and to
remain aggregated. In general, all evolved strategies rely on a delicate balance
between attraction to sound sources and repulsion from other robots, the former
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Fig. 4. The scenario: a swarm of up to 35 s-bots must transport a heavy object from
an initial to a goal location. The cylinder on the left side represents the object to be
transported; the landmark on the right side represents the target location where the
object has to be transported. The four s-bots between the cylindrical object and the
target location form a path which logically connects the former to the latter. This path
is exploited by other s-bots to move back and forth between the target location and
the object to be retrieved. Also visible are two types of obstacles: walls and holes.

being perceived by sound sensors, the latter by proximity sensors. A qualitative
analysis of the evolved controllers reveals that different replications result in
slightly different behaviours. In particular, the evolved solutions differ mainly in
the behaviour of s-bots when they are close to each other.

Further evaluation tests concerning scalability of the evolved solutions have
shown that controllers evolved for groups of four s-bots can successfully bring
forth aggregation in groups with a higher number of s-bots (up to 40 s-bots). The
best scalable strategy was the one in which the controller creates an aggregate
that moves across the arena. This is a result of the complex motion of s-bots
within the aggregate, which in turn is the result of the interaction between
attraction to sound sources and repulsion from other robots. The slow motion of
the aggregate across the arena leads to scalability, as an aggregate can continue
to move joining solitary s-bots or other already formed aggregates, eventually
forming a single cluster of s-bots.

3.2 Coordinated Motion

Coordinated motion represents another basic ability for a swarm-bot formed of
connected s-bots that, being independent of each other in their control, must co-
ordinate their actions to choose a common direction of motion. The coordinated
motion ability is essential for an efficient motion of the swarm-bot as a whole,
and it is achieved mainly through the exploitation of the information coming
from the traction sensor, which is placed at the turret-chassis junction of an
s-bot. The traction sensor returns the direction (i.e., the angle with respect to
the chassis’ orientation) and the intensity of the force of traction (henceforth
called “traction”) that the turret exerts on the chassis. Traction is caused by the
movement of both the connected s-bots and the s-bot ’s chassis. Note that the
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turret of each s-bot physically integrates the forces that are applied to the s-bot
by the other s-bots. As a consequence, the traction sensor provides the s-bot with
an indication of the average direction toward which the group is trying to move
as a whole. More precisely, it measures the mismatch between the directions
toward which the entire group and the s-bot ’s chassis are trying to move. The
intensity of traction measures the size of this mismatch.

Our experimental work has focused on the evolution of artificial neural net-
works capable of coordinately controlling the behaviour of a swarm-bot (a col-
lection of assembled s-bots). In this kind of experiments, the problem that the
s-bots have to solve is that their wheels might have different initial directions
or might mismatch while moving. In order to coordinate, s-bots should be able
to collectively choose a common direction of movement having access only to
local information (see Figure 5). Each s-bot ’s controller (i.e., an artificial neu-
ral network), takes as input the reading of its traction sensor and other sensor
readings, and sets the status of the s-bot ’ actuators.

The results show that evolution can find simple and effective solutions that
allow the s-bots to move in a coordinate way independently of the topology
of the swarm-bot and of the type of link with which the s-bots are connected
(semi-flexible or rigid). Moreover, it is shown that the evolved s-bots also exhibit
obstacle avoidance behaviour (when placed in an environment with obstacles)
and object pulling/pushing behaviour (when assembled to or around an object,
see Figure 6), and scale well to swarm-bots of a larger size (see [8, 9] for details).

3.3 Collective and Cooperative Transport of a Prey Item

By taking inspiration from the behaviour of ants, the SWARM-BOTS project
aims to build autonomous agents which by solely relying on local information,
are capable of cooperatively and collectively carrying objects which can not be

(a) (b)

Fig. 5. (a) Four physically linked s-bots forming a linear structure. The lines between
two s-bots represent the physical link between them. The white line above each s-bot
indicates the direction and intensity of the traction. (b) Eight s-bots connected by rigid
links into a “star formation”.
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moved by a single agent. The members of a group have to coordinate their actions
to achieve the desired outcome. In particular, due to the nature of the object
(i.e., its shape, dimension, and weight) the s-bots might be required to connect
to each other in swarm-bot formation and/or to the object itself for transporting
it (i.e., gripping the object with the fixed gripper, see Figure 7).

In a series of experimental works, artificial neural networks have been evolved
to control the actions of a single homogeneous group of s-bots which is required
to pull and/or push an object in an arbitrarily chosen direction. During the evo-
lutionary phase, the s-bots are located in a boundless arena, in the proximity of
objects of various shape, dimension, and weight. Only indirect communication
through the environment can be exploited to attain coordination. The evolved
controllers exhibit rather good transport performances. Certain controllers show
scaling properties: they can be applied to larger groups of s-bots to move big-
ger and heavier prey objects. However, the controllers’ performances are very
sensitive to the size of the prey (see [10]).

A follow-up work focused on the self-organisation of s-bots into assembled
structures and on the transport of heavy prey by groups of assembled s-bots to
a target. To facilitate the process of assembling, the s-bots are provided with the
ability to detect teammates; in addition, the presence of assembled structures is
favoured by the fitness function employed. The best evolved controller proved
fairly robust with respect to different combinations of size and shape of the prey
(see [11]).

Recently, the situation has been studied in which some s-bots are given the
opportunity to localise the transport target, while the others (called the blind
ones) are not. To enable a blind s-bot to contribute to the group’s performance,
it has been equipped with sensors to perceive both whether or not it is moving,
and traction forces on its turret. For group sizes ranging from 2 to 16, it has
been shown that blind s-bots make an essential contribution to the group’s per-

(a) (b)

Fig. 6. (a) Eight s-bots connected to an object through rigid links. (b) Traces left by
the s-bots (thin lines) and the object (thick line) during 150 simulation cycles. The
gray and black circles represent the initial positions of the s-bots and of the object.
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(a) (b)

Fig. 7. (a) S-bots connected to each other and to an object. (b) A closer view on the
connections.

formance. For the best evolved solution the performance scales well with group
size, making possible the transport of heavier prey by larger swarms of blind and
non-blind s-bots (see [12]).

3.4 Exploration

This subsection illustrates the mechanisms employed by the s-bots to efficiently
explore a partially or totally unknown environment. Our approach is based on
the exploitation of the collectivity, and it requires that some s-bots – referred
to as s-bot beacons – be capable of positioning themselves in the environment
in order to work as beacons for other s-bots – referred to as s-bot explorers –
that move back and forth from a starting position to a goal location. The s-bot
beacons should form a chain which connects different locations that cannot be
perceived simultaneously by a single s-bot. In this way, a path between a goal
and a home location is established, and it can be subsequently exploited by the
s-bot explorers. The main advantage of this exploration strategy is that it does
not require the s-bots to create a map-like representation of the world.

The status of these experiments, in which a behaviour-based approach is
employed to design the s-bots controllers, is still preliminary. However, simply
by varying two parameters of the s-bots controller (i.e., the probability of each
single agent to become a beacon and the probability of a robot beacon to become
an explorer) it is possible to bring forth a variety of exploration strategies each
of which results more adaptive in certain types of environment than in others.
Up to date, two different strategies have been implemented. In the simplest
setup, we have static chains: the s-bots beacons do not move. In the other setup,
the s-bots that form a chain move coordinately without breaking the chain.
We are currently working on the development of an adaptive mechanism which
autonomously sets these parameters with respect to the characteristics of the
environment experienced by the s-bots.
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3.5 Adaptive Task Allocation

Task allocation and division of labour are two important research areas within
collective robotics. Previous studies have shown that small groups of robots
might perform a collective task similar or better than a larger group. However,
this efficiency loss can be avoided if large groups of robots are equipped with an
adaptive task allocation mechanism which distributes the resources of the group
with respect to the nature of the task and the diversity among the individuals
of the group. Within the SWARM-BOTS project we are obviously interested in
designing an adaptive task allocation mechanism which allocates to each task a
sufficient number of s-bots without reducing the efficiency of the entire group.
In particular, we have been working on a mechanism which adaptively tunes the
number of active agents in a foraging task: that is, searching for objects and
retrieving them to a nest location. The agents, controlled by a behaviour-based
architecture, use a simple adaptive mechanism which adjusts the probability
of each agent to be a forager with respect to the current success rate of the
individual on the task. Owing to this simple adaptive mechanism, a self-organised
task allocation is observed at the global level. That is, not all the agents end
up being active foragers. The same mechanism is also effective in exploiting
mechanical differences among the robots inducing specialisation in the robots’
activities. More details are given in [13, 14].

3.6 Navigation on Rough Terrain

Navigating on rough terrain is an important feature for an adaptive autonomous
system. It can apply to many possible application scenarios, like space explo-
ration or rescue in a collapsed building. Within the SWARM-BOTS project,
several experiments have been run on an instance of the family of navigation
on rough terrain tasks, that is, hole avoidance. A swarm-bot is required to per-
form coordinated motion in an environment that presents holes too large to be
traversed. Thus, holes must be recognised and avoided, so that the swarm-bot
does not fall into them. The difficulty of this task is twofold: first, s-bots should
coordinate their motion. Second, s-bots have to recognise the presence of a hole,
communicate it to the whole group and re-organise to choose a safer direction
of motion. The results demonstrate that the evolved controllers (i.e., artificial
neural networks) manage to efficiently manoeuvre a swarm-bot in the proximity
of holes in the ground. Evolution is able to produce a self-organising system
that relies on simple and general rules, a system that is consequently robust to
environmental changes and to the number of s-bots involved in the experiment.
The evolved strategies strongly rely on the traction forces produced by those
s-bots that feel the presence of a hazard (see [15] for details).

3.7 Functional Self-assembling

These studies focus on the design of controllers for a group of s-bots required
to connect to each other, each time environmental contingencies prevent a sin-
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gle s-bot to achieve its goal [16]. We refer to this capability as functional self-
assembling, since the self-organised creation of a physically connected structure
has to be functional to the accomplishment of a particular task.

The complexity of functional self-assembling resides in the nature of the
individual mechanisms required to bring forth the coordinated movements that
lead firstly to the formation of the assembled structure, and subsequently to the
collective motion of the assembled structure.

In a preliminary set of studies, we have focused on the evolution of neural
controllers for self-assembling s-bots required to solve a simple scenario. In par-
ticular, we have investigated a scenario which requires the s-bots to approach a
light source located at the end of a corridor. Assembling is required to navigate
in a “low temperature” area in which a swarm-bot can navigate more effectively
than a group of disconnected s-bots. When located in the low temperature area,
the aggregation of the s-bots should facilitate the subsequent assembling through
their gripper element. This experimental setup allows us to investigate the basic
mechanisms that underpin functional self-assembling.

The results of our empirical work show that integrated (i.e., not modularised)
artificial neural networks can be successfully synthesised by evolutionary algo-
rithms in order to allow a group of s-bots to display individual and collective
obstacle avoidance, individual and collective phototaxis, aggregation and self-
assembling. To the best of our knowledge, our experiments represent one of the
first works in which (i) functional self-assembling in a homogeneous group of
robots has been achieved and (ii) evolved neural controllers successfully cope
with a complex scenario, producing different individual and collective responses
based on the appropriate control of the state of various actuators triggered by
the local information coming from various sensors.

4 Discussion and Conclusions

In this paper we have illustrated the most important features of a novel robotic
concept, called swarm-bot. A swarm-bot is a self-organising, self-assembling ar-
tifact composed of a variable number of autonomous elementary units, called
s-bots. As illustrated in Section 2, each s-bot is a fully autonomous agent capa-
ble of displacement, sensing and acting based on local information. Moreover,
the self-assembling ability of the s-bots enables a group of agents to execute tasks
that are beyond the capabilities of the single robot.

Concerning the hardware, the presence of many of such autonomous entities
that can self-assemble in a single body and disband any time the union is no
longer required, makes the system extremely versatile and robust to failures.
Contrary to the swarm-bot, other robotic systems composed of small elementary
units capable of reconfiguring themselves are less versatile and less robust, due
to the fact that each unit has no or very limited mobility, very limited sensing
capabilities, and acts often under the control of a central unit (see [17–19]).

Concerning the s-bots’ controllers, we have developed them making an ex-
tensive use of artificial neural networks shaped by evolutionary algorithms. The
solutions found by evolution are simple and in many cases they generalise to



The SWARM-BOTS Project 43

different environmental situations. This demonstrates that evolution is able to
produce a self-organised system that relies on simple and general rules, a system
that is consequently robust to environmental changes and that scales well with
the number of s-bots involved in the experiments.
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9. Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T.H., Baldassarre, G., Nolfi,
S., Deneubourg, J.L., Mondada, F., Floreano, D., Gambardella, L.M.: Evolving
self-organizing behaviors for a swarm-bot. Autonomous Robots 17 (2004) 223–245

10. Groß, R., Dorigo, M.: Evolving a cooperative transport behavior for two simple
robots. In Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M., eds.:
Artificial Evolution – 6th International Conference, Evolution Artificielle. Volume
2936 of Lecture Notes in Computer Science., Springer Verlag, Berlin, Germany
(2004) 305–317

11. Groß, R., Dorigo, M.: Cooperative transport of objects of different shapes and
sizes. In Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F.,
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Abstract. Using the biologically inspired notion of ‘virtual pheromone’
we describe how a robot swarm can become a distributed computing
mesh embedded within the environment, while simultaneously acting as
a physical embodiment of the user interface. By virtue of this simple
peer-to-peer messaging scheme, many coordinated activities can be ac-
complished without centralized control.

1 Vision

We envision a robotic system where the system itself is not a single robot or
even a team of robots, but rather, a superorganism of many small and sim-
ple autonomous elements acting together as a unified whole. The challenge in
realizing such a system lies in developing a suitable medium for interaction be-
tween elements and in deriving the appropriate modes of information exchange
such that large-scale complex coordinated actions can occur from the cumula-
tive effects of many simple local interactions. This paper describes a biologically
inspired concept for such an interaction medium and a software infrastructure
for controlling the local information exchange between elements.

Imagine a future scenario in which a rescue team enters an unfamiliar building
after a disaster, and needs to quickly locate survivors. A rescue worker opens
a jar containing thousands of microscopic MEMS-based robots [9] and tosses
them into the room. Interacting only locally with their neighbors, these robots
use attraction/repulsion behaviors to quickly disperse into the open spaces. A
robot, upon detecting a survivor, emits a message signaling the discovery. This
message is relayed locally between neighboring robots, propagating only along
unobstructed paths, producing a “virtual pheromone” gradient as it is propa-
gated as illustrated in Figure 1. Ultimately, the message makes its way back to
the entrance where rescue team members can now follow the gradient to the
survivor. To do this, the robots themselves serve as a distributed display of
guideposts leading the way along the shortest unobstructed path.

Ultimately, swarms of small-scale robots should be able to achieve large-scale
results in tasks such as surveillance, reconnaissance, hazard detection, path find-
ing, payload conveyance, and small-scale actuation [9]. The challenges to reach-
ing this goal lie as much in the technology for controlling and coordinating the
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Fig. 1. A pheromone gradient produced by dispersed robots directs a user toward a
disaster victim.

actions of thousands of entities as it does in the technologies for miniaturiza-
tion. We address these issues of coordination and control by borrowing from
techniques used by ants and termites.

Inspired by the chemical markers used by these insects for communication
and coordination, we have developed a form of messaging we call a ‘virtual
pheromone,’ implemented using simple beacons and directional sensors mounted
on each robot. Like their chemical counterparts, our virtual pheromones facili-
tate simple communication and emergent coordinated movement between robots
while requiring minimal on-board processing. Unlike chemical pheromones, vir-
tual pheromones also transform a robot swarm into a distributed computation
grid embedded in the world. This grid can be used to compute nonlocal informa-
tion about the environment such as shortest paths and choke points in ways that
are foreign to insect colonies. Our goal is to apply these techniques in a man-
ner that is applicable to future robots with extremely small form factors and is
scaleable to large, heterogeneous groups of robots as well. The remainder of this
paper describes our mobile platforms and some of the unique hardware we use
to produce virtual pheromones within a swarm of small robots. We also describe
some of the software building blocks we use to manipulate virtual pheromones
and to influence robot behavior. These logical building blocks provide a means to
construct a variety of compound operations at the local level that allow complex
group operations to emerge from local interactions.
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Fig. 2. A pherobot swarm disperses to fill open spaces within a building.

2 The Swarm Robotic Environment/Methodology

Our swarm robotic environment consists of 20 custom-made pheromone robots,
or ‘pherobots.’ Pherobots have a specially designed infrared communications
ring that facilitates both inter-robot communication and obstacle detection. The
pherobots are designed to perform cooperative tasks with minimal computing
power, so we use a PalmV PDA as the main control computer. Use of a PDA
provides a convenient combination of computing platform, display device, and
user input device. Additional onboard processors handle real-time communica-
tions and mobility tasks. An additional coded beacon on each robot enables
them to transmit data to an augmented reality display that allows users to vi-
sualize pheromone gradients superimposed over their surroundings. A swarm of
pherobots is shown below in Figure 2.

Our approach is characterized by three key concepts: Virtual Pheromones
provide a diffusive local-neighborhood interaction mechanism by which ther

¯
obots

communicate and coordinate. World-Embedded Computation is a technique for
performing many graph-theoretic algorithms in a distributed fashion, without
requiring a centralized intermediate representation. World-Embedded Display
is a method for obtaining information from a swarm by using each robot as a
display element embedded in the physical world. These concepts will be described
in the next three subsections.
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2.1 Virtual Pheromones

In nature, chemical pheromones and pheromone gradients are used extensively by
insects to produce sophisticated organized group activity that emerges out of the
simple interactions between individuals [1],[4],[6],[8],[11]. To arrive at properties
similar to chemical pheromones, we implement virtual pheromones via optically
transmitted signals from each robot that may be propagated in a relay-type
fashion. Atop each robot is a set of eight radially-oriented directional infrared
receivers and transmitters as shown in Figure 3. These allow a robot to trans-
mit and receive messages directionally relative to its current orientation. The
communications PIC, which manages all message traffic into and out of these
devices, allows simultaneous receipt of eight distinct 10-bit messages, one from
each receiver. If multiple messages should impinge upon a single receiver, a mes-
sage collision is detected based on a parity check, and no message is recorded.
When messages are properly received, they are tagged with the corresponding
intensity and orientation of the received signal. These intensity and orientation
values play an important role in both obstacle detection and in determining
distance and direction to neighboring robots.

Infrared was chosen as the preferred medium of transmission for several rea-
sons: it is directional, it propagates by line of sight, it is easily modulated, and it
loses intensity with increased distance from the source. Directionality is needed
to encode pheromone gradients, line-of-sight propagation is needed to assure
that pheromone gradients do not pass through walls, modulation is needed to
encode pheromone type and other data, and distance drop-off provides a means
for robots to estimate their distance to the sender.

Our virtual pheromones are encoded through discrete messages consisting of
a type field, a hop-count field, and a data field. The type field allows us to encode
a large number of distinct pheromone types. Typically, pheromone messages are
received, modified, and then retransmitted in their modified form. One of the
most common ways a pheromone message is modified is through alteration of its
hop-count field to create a pheromone gradient. In this computation, each robot,
upon receipt of a virtual pheromone message, decrements the hop-count field and
retransmits the message in some or all directions. If a robot receives the same
type of pheromone from multiple directions, only the message with the highest
hop-count value is used. Any pheromone messages of the same type received
with hop-count values equal to or less than the hop-count already transmitted
are ignored. Just as in the insect world, the sender of a pheromone message never
needs to be concerned with which robots will receive a message or whether it
has been properly received. These propagation rules are illustrated with a team
of six robots in Figure 4.

Unlike chemical pheromones, our virtual pheromones are tied to the robots
themselves rather than to locations in the environment. In addition, since vir-
tual pheromones are propagated as symbolic messages, pheromone gradients
may be altered without the need for physical movement of the robots. Despite
the fact that a robot’s virtual pheromone transmissions are received only by
nearby neighbors, the relay mechanism allows any single message to propagate



Pheromone Robotics and the Logic of Virtual Pheromones 49

Fig. 3. A transceiver for virtual pheromones provides directional line-of-sight commu-
nications between robots.

quickly throughout an entire swarm of robots. If an originating source for a vir-
tual pheromone moves, or if the environment changes, the gradient will adjust
quickly, without the characteristic persistence of chemical pheromones. We can
even envision implementing various ant algorithms using the messaging system
alone, without any need for the robots to move. In this sense, our robot collec-
tive can truly become a distributed computing grid with each node providing
local sensing, and connectivity between nodes revealing information about the
topology of traversable paths. These properties are very important for enabling
what we call world-embedded computation.

Our underlying communications mechanism is capable of modeling various
aspects of chemical pheromones used by insect colonies, such as diffusion by
means of message relaying and evaporation by means of systematic decrementing
of all hop counts if the originating source is not sustained. Typically, we sustain
an originating source by periodically retransmitting the pheromone message.
Neighboring units receiving this message will then perform their operations on
the message and retransmit, thereby rippling the message wave front throughout
the swarm.

2.2 World Embedded Computation

Our use of virtual pheromones offers a new way to analyze an environment’s
geometry and identify salient features. Over the past decades, approaches to
path planning and terrain analysis have focused primarily on single or parallel
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Fig. 4. Virtual pheromones are relayed with a lower hop-count by each subsequent
robot.

processor solutions operating on an internal map containing terrain features [17].
Our approach externalizes the map, spreading it across a collection of simple
processors, each of which determines the terrain features in its locality. Global
properties such as shortest routes, blocked routes, and contingency plans can be
computed in a robust, distributed manner, with each member of the population
of simple processors contributing a small piece of the result.

Figure 5 illustrates the difference between our world-embedded approach and
conventional approaches. In conventional methods, information about terrain or
mobility features is extracted by sensors and then translated into a symbolic
model such as a map. It is this symbolic representation that is then processed
to obtain information about the terrain such as finding minimum cost paths.

Using world-embedded computation with our pherobots, there is no distinct
step of map generation. Instead, the robots act as a distributed set of processors
embedded in the environment, performing both sensing and computation tasks
simultaneously. At the heart of this approach is the realization that commu-
nication pathways can double as a means of sensing obstacles and that many
algorithms for computing properties of a map may also be performed as dis-
tributed computations within our robot swarm. For example, the fundamental
message propagation rules we use for our virtual pheromones exactly mimic the
wavefront computation used in Dijkstra’s shortest path algorithm [7]. Because
our computation is embedded in the world, however, this also means that the
computation itself can directly affect the positioning of the robots, thereby guid-
ing the acquisition of additional information.

While modification of hop counts is common in many ad-hoc networking
systems, our approach is distinguished by the fact that we are explicitly seeking
to exploit node connectivity to tell us something about the environment. In our
approach, when a robot receiving a pheromone message modifies that message for
retransmission, it does so for the purpose of incorporating information regarding
the properties of the physical environment across the latest transmission hop.
This can be as simple as updating a hop count or as complex as incorporating
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Fig. 5. In contrast to conventional map-based approaches to terrain reasoning, our
approach is based on sending the processors out into the world, i.e. the world is its own
map.

factors such as received signal strength, locally sensed terrain properties, or
interactions with other received pheromone types. The propagation of the signal
between successive pairs of robots provides, at each step, a local summary of the
nonlocal properties along the path.

2.3 World-Embedded Display

Although our robot swarm can compute a great deal without the use of maps, we
still must somehow convey this information back to a user. As it turns out, a rich
source of information about the environment can be provided even with robots
that have no explicit representations or maps of their locale. To do this, we
transform our robot swarm into a distributed display embedded within the en-
vironment [5]. In effect, each robot becomes a pixel within a much larger display
space so that any robot only has to send the user a small amount of information
related to its location. The robot’s position within the environment provides
the remaining context needed for interpreting the meaning of the transmitted
information.

Our concept of a world-embedded display is obtained using an augmented
reality (AR) system [2] to present information to the user. A video camera
mounted on the user’s head, as shown in Figure 6, receives coded infrared signals
from each robot. These signals are tracked, decoded and then displayed in a head-
mounted display so that information such as gradient arrows appear overlaid on
top of the individual robots. Taken collectively, a user sees these arrows as a
gradient field [20] leading toward a hidden objective as illustrated in Figure 1.
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Fig. 6. Coded infrared signals are decoded into arrows for overlay onto a real scene.
These are visible via the augmented reality head-mounted display system with camera.

3 Results

Using our swarm of 20 pherobots, we have demonstrated a variety of coordi-
nated robot behaviors that combine robot locomotion with pheromone logic. We
began with a set of primitive behaviors such as dispersing a swarm into an open
space, generating virtual pheromone gradients, and following a gradient toward
its source. We have also been able to demonstrate more complex behaviors that
use these primitive behaviors as a basis. Some of the more sophisticated of these
are behaviors for hiding and for distributed resource allocation.

Our distributed resource allocation technique provides a good example of how
multiple primitive swarm behaviors can be combined to obtain fairly complex
emergent behaviors from the swarm [22]. We begin with a swarm of robots with
heterogeneous capabilities. For example, some robots may be suited for acoustic
sensing while others are better suited for motion sensing. A resource allocation
problem arises when it becomes desirable to bring together several robots at a
particular location to combine information from their different sensors. Ideally,
only the right number and combination of robots will come to the intended
location, and no central coordination will be required.

Our demonstration illustrates our technique for distributed resource alloca-
tion by first dispersing a swarm of robots, each identified with one of three
different capabilities: acoustic sensing, motion sensing, or neutral. During the
dispersal phase, robots simply move away from each other and from obstacles
[21] such that they fill the available space while remaining in contact with their
neighbors. This is done either by modeling repulsive forces that push each robot
away from its neighbors, or preferably, by modeling attractive forces that draw
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each robot toward open spaces. If a robot wanders too far from the swarm, it
will be attracted back toward other robots until it gets within a predetermined
range to its closest neighbors.

At some point, a detection will be triggered from one robot, requiring con-
firmation of the detection from another robot of the complementary type. The
detecting robot first initiates a pheromone gradient that attracts all robots with
a complementary sensor. All robots attracted to this pheromone then transmit
a second pheromone type, adding to the data field an indication of how many
hops they are from the source of the attracting pheromone. All attracted robots
then treat this second pheromone as an inhibitor if they are further from the
attracting source than another attracted robot. Since this inhibiting signal is
transmitted throughout the swarm, only one robot will not be inhibited and be
able to make its way toward the source. Of course, should this robot become
disabled, the next closest robot will immediately take over because it now will
no longer be inhibited. This provides a very robust methodology for any number
of resources to be made to converge upon a location where they may then work
together on a task.

4 Discussion and Outlook

Extending our techniques for virtual pheromones and world-embedded computa-
tion beyond the basic 2D world of our current implementation presents challenges
in many different areas. The issues arise primarily in the areas of transitioning
to denser grids of smaller robots and to more complex 3D spaces. With larger
numbers of smaller robots, there is a potential mismatch between the scale of
features that will be significant to the robots and the scale of features that will
be of interest to a human user. Certainly, we don’t want small pebbles or other
objects on the floor to appear as insurmountable obstacles. Likewise, we don’t
want the robots to topologically link two rooms in a building simply because
of a small mouse hole in the wall between them. Dealing with such potential
incompatibilities between the scale of the robot network and the scale of the
user will be an important area for development of distributed algorithms that
allow reasoning about spatial extent as well as topology.

When we consider 3D spaces, similar issues arise. In some cases, perfectly
ordinary topological connections between spaces could easily be missed because
they involve small changes in elevation that end up looking like obstacles to a
set of robots. Problems such as this might be overcome by using a different com-
munications medium which is not strictly line-of-sight, but which is still blocked
by major obstacles and walls. If robots are made to fly or operate underwater,
then we truly have a 3D problem. In such cases, our algorithms would still be
applicable, but the pheromone messaging system would have to operate in a
spherical pattern rather than a circular pattern.

Ultimately, the aspect of this work that we consider most important is not
the specific implementation of robots, but the underlying principles we use to or-
ganize their interactions. It is easy to imagine any number of nonrobotic applica-
tions where the concept of using the communication medium between distributed
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elements is used both for exchanging information and for sensing features of the
environment. In so doing, it is likely that communication models such as our
virtual pheromones will help facilitate the design of distributed algorithms that
take advantage of such information.

5 Related Work

Several related efforts in robotics have been driven by some of the same biological
inspirations that lie behind our own work. Many have sought to emulate behav-
iors of natural systems such as ant foraging, sorting, or cooperative transport
[3, 12, 14, 24]. In Lewis and Bekey [15], a concept is described by which a swarm
of nanorobots might be organized using diffusion of distinct chemical markers
to perform tasks such as removal of a tumor. Of particular note is their idea of
guidepost nanorobots that transmit a chemical marker of one type in response
to detecting another. These guideposts are used both to extend the range of a
diffused chemical marker as well as to focus robot movement around an axis of
advance toward a detected tumor. In some ways, this use of guidepost robots
to relay chemical markers is similar to our own use of robots to relay a virtual
pheromone message.

In Werger and Mataric [27], robots themselves were used as a physical em-
bodiment of a pheromone trail by forming into a contiguous chain. In this case,
a pheromone trail could adapt to changing conditions through physical modifi-
cation of the robot chain. In our work, a combination of robots and their com-
munication serves to maintain an embodiment of pheromone trails. Our robots,
however, are more like a substrate upon which pheromones can propagate rather
than an actual embodiment of the pheromones. This allows a more rapid dis-
persion of pheromone messages, and enables a variety of pheromone types to be
used.

In the somewhat different domain of distributed sensor networks, versions
of message diffusion that are similar to our virtual pheromone concept can be
found [13, 16]. Intanagonwiwat et al [13] introduce the idea of directed diffusion.
This technique uses strictly local neighbor-to-neighbor communication to find
efficient paths for information flow within a network of distributed sensor nodes.
A request for information from a sink generates a gradient throughout the net-
work. Information supplied by a source flows along the gradient back to the sink
along multiple paths. The network reinforces the most efficient paths to elim-
inate redundant information flows. Although the general methods of diffusion
used here are similar to our own work, there are some interesting differences.
Since this work focuses on information transfer, the mechanism for establishing
diffusion gradients is expressed in terms of requested data rates and rates of
information updates. This provides a useful means for reinforcing the best paths
for information flow, but it would probably not be as useful for creating a topo-
logically meaningful gradient field toward an objective. McLurkin [16] uses a
combination of pheromone messages that produce diffusion gradients and agent
messages that hop from node to node in a directed fashion. This proves to be an
effective combination for establishing message relay networks, position estima-



Pheromone Robotics and the Logic of Virtual Pheromones 55

tion, edge detection, and path projection within a distributed sensor network. It
is notable that Intanagonwiwat and McLurkin both rely on explicit one-to-one
communication between nodes. This means that each node must have a unique
identity, which may be impractical for extremely large numbers of nodes. This
requirement could probably be eliminated by use of a directional communication
scheme comparable to ours. Directional communications and sensitivity of the
communications medium to local environmental features are important aspects
of our approach that enable our robots to perform world-embedded computa-
tions that make our virtual pheromone gradients correspond to physical paths.
These aspects are absent from the above two approaches.

Parunak, et al [18, 19] employ a repelling pheromone approach in which
robots leave virtual trails and are attracted to areas that have little or no
pheromone. The pheromone concentrations dissipate and diffuse over time, so
areas are searched periodically with some probability. Pheromone concentrations
are stored and tracked by “place agents” that may be implemented in memory
or in physical unattended ground sensors. Like their approach, we use digital
pheromones to implement properties of potential fields. But our approach has
taken digital pheromones much farther by using properties of the transmission of
pheromone messages to implement specialized computations about the environ-
ment. Parunak [19] also mentions role allocation by means of a bidding process
where matches are made based on the closest source with the right capabilities
but there are not enough details for a thorough comparison.

Spears and Gordon [25] use a circular ‘potential well’ around particles to draw
them to within a fixed range of each other, similar to the way we keep pherobots
at a uniform spacings. But they point out a subtle distinction between a potential
fields approach and the type of velocity vector combination used by an approach
like ours. The former may be analyzed by conventional physics methods, which
they do in [26]. Also they assert that the former can mimic natural physics
phenomena more easily.
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Icosystem Corporation, Cambridge, MA 02138, USA
{jr,ihsan,paolo}@icosystem.com

Abstract. We describe a project where behaviors of robot swarms are
designed and studied for use in a distributed mapping domain. Behav-
iors are studied in both simulation and physical robots. We discuss the
advantages and challenges of swarm robotics, in general and specific to
our research. Software implementations and algorithms are introduced,
as well as methodologies for the creation and assessment of swarm be-
haviors.

1 Introduction

This paper summarizes our achievements in a research effort supported under
DARPA’s Software for Distributed Robotics (SDR) program1. The overall goal
of the SDR program is to perform a building-clearing mission: a swarm of robots
enters a building whose layout is not known. The robots then disperse through
the building and attempt to locate an object of interest. Once the object has
been located, the swarm remains in the building to protect the item of interest
until friendly forces arrive. This research was inspired by Doug Gage’s vision of
a swarm of simple, inexpensive robots collaborating to carry out exploration and
mapping tasks [6, 7].

Icosystem is an applied research company that focuses on using principles of
swarm intelligence and complexity science [3, 2, 8]. Our task in this project was to
develop distributed algorithms that allow simple robots to execute key portions
of the SDR building clearing mission. This includes not only the creation of
distributed algorithms, but also improving our understanding of how and when
these algorithms should be used, and qualities of the algorithms that impact
their effectiveness.

We are trying to build foundations for a quantitative methodology that will
facilitate practical applications of swarm intelligence to distributed robotics. This
section lists some fundamental questions we are trying to answer about swarm
robotics. Following is a brief overview of our approach, related work, and a high
level description of some specific algorithms we have designed.
1 This work was supported in part by DARPA contract NBCHC030042. Any opinions,

findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of DARPA or the Department
of Interior-National Business Center (DOI-NBC).
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1.1 Problem Description

The concept of swarming is generating significant interest as a methodology
for the control of large groups of vehicles, epecially unmanned air and ground
vehicles (UAVs and UGVs). While there seems to be general agreement that
swarms can somehow afford a high degree of robustness and flexibility, little has
been done to demonstrate systematically if and when a swarm approach to the
control of unmanned vehicles is in fact superior to alternative approaches, or
even desirable at all [7].

During a recent conference on ‘Swarming and Network Enabled C4ISR’, lead-
ers from government, industry, and academia discussed applications of swarming
to a variety of problems ranging from tactical maneuvers to logistics and net-
work communications. The ample time dedicated to defining the term “swarm”
and discussing potential applications stood in stark contrast with the paucity of
quantitative results from real-world applications obtained under realistic condi-
tions. Given the increasing interest in swarming concepts for military and indus-
trial applications, it is imperative that future efforts focus on quantification of
results and on a clarification of what exactly swarming can and cannot do. This
is particularly important in the area of controlling large groups of UAVs and
UGVs, where recent technological advances and cost reductions make swarming
applications a near-term possibility.

We have identified a number of pressing questions that, by and large, have
not yet been addressed satisfactorily. We have grouped these questions into six
sets. The first set of questions centers on the general issue of when, or if, swarms
should be used: What missions are particularly well suited for swarms? Are there
missions that can only (or should not) be tackled with swarms? Are there indices
or metrics that can be used to evaluate the “swarmability” of a mission? How
do the stated success criteria of a mission influence the choice of control rules?

The second set of questions revolves around the functionality of individual
robots and how this impacts swarm performance: How do the sensory, commu-
nication, and mechanical characteristics of individual robots affect the types of
missions that the swarm can carry out? Are there sensors that are particularly
well suited for swarm applications? How does sensor accuracy impact swarm
performance? How does performance degrade as a result of individual failures?

Having established the characteristics of individual robots, the third set of
questions focuses on communications: How should robots communicate with
one another and with an operator? Do swarms require massive communica-
tions bandwidth? Can decentralized control strategies function well in spite of
unreliable communications?

The fourth set of questions aims to an understanding of how the emergent
behavior of swarms can be reconciled with the tight control requirements of
a typical military mission: How can humans control a swarm efficiently and
effectively? What level of control must an operator exert on individual robots?
What information must the robots convey back to the operator? Is it possible to
quantify the number of operators needed for a given swarm on a given mission?
Can multiple operators share the load of controlling a swarm?
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The fifth set of questions focuses on the quantification of swarm performance
and efficiency: How is swarm performance measured and success quantified? How
does performance depend on swarm size? Does software complexity increase or
decrease when using swarms? Is the eventual performance increase of using a
swarm offset by concomitant increases in cost?

Finally, the ability of a swarm to complete a mission may depend heavily on
the environment in which the mission is carried out: How can the complexity of
the environment be quantified? Is it possible to estimate accurately the required
swarm size and functionality as a function of environment complexity for a given
mission type?

This chapter describes a specific project that begins to address some of these
issues in the context of real mobile robots performing a real-world task. The
next section describes some related work in the general areas of robotic swarms
and multi-robot control. This is followed by a description of our approach, the
algorithms we developed, and some representative results. The chapter closes
with a summary and discussion.

2 Related Work

Collective robotics, multi-robot systems, distributed robotics and swarm robotics
are some of the terms that have been used to describe systems involving multiple
robots. With few exceptions, work in these fields has existed only for about ten
years. In fact, the technology required to assemble a sizable team of unmanned
vehicles is only now becoming available. Much of the work on collective robotics
to date has been qualitative in nature. The few examples of research with a strong
quantitative component have typically been applied to tightly defined tasks that
are amenable to direct analytical solution. In this section we summarize some of
the work that is most relevant to this research.

A few publications have reviewed work in distributed robotics. Cao, Fuku-
naga and Kahng [4] have provided an extensive review of cooperative mobile
robotics. A recent book by Balch and Parker [1] also provides useful overviews
and examples of robot team applications. The journal Autonomous Robots is
preparing a special issue on Swarm Robotics [5].

In terms of specific research projects, Matarić [17] is considered a pioneer
in the study of collective robotics. She used a modified Reinforcement Learning
algorithm to control a group of four robots performing a coordinated task, such
as foraging. Her research was later extended to larger groups, and investigated
other forms of control. [18] provides a good review of some of her work, which
is considered seminal in the field of collective robotics.

Martinoli and colleagues [16] have done extensive research on autonomous
collective robotics using the Khepera robotics platform (K-Team SA, Switzer-
land). As part of his research, he collaborated on the development of a laser-
based positioning system, and a conducting floor that supplies power to the
robots. Under normal conditions, the Khepera receives power through a tether,
which renders multi-robot experiments virtually impossible. This system was
used by Martinoli for various applications of swarm intelligence systems to au-
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tonomous collective robotics, and by other researchers, including for instance [13]
developed a system of 12 Khepera robots to study task allocation in a foraging
problem. One of the problems with this work is that the system they used would
be difficult and costly to replicate. The Khepera robot, especially if equipped
with wireless communications, costs thousands of dollars. The system developed
by Krieger and Billeter included a custom-designed surface covered in copper to
provide a continuous flow of power to the Kheperas.

Hayes [10] recently reported some simulation results using the Webots simu-
lator. Hayes defines a metric to quantify performance of a team of robots during
a search mission, which consists of finding a single target located at a random
position in a square area. A team of simulated robots is released at the center
of the area. The author derives analytical expressions to estimate the cost of
searching the area as a function of team size (1–80 robots) under two different
search strategies: a random strategy, in which each robot simply moves randomly
around the area, and a coordinated strategy, in which the robots partition the
space into equal-sized areas. He then performs Monte Carlo simulations and
reports results, showing a good match to the data under the random search
strategy. Unfortunately he does not report simulation results for the coordinate
strategy. We believe part of the reason is that his analytical estimation effectively
assumes that the robots start out already spread out uniformly. If the robots
had to start from a single point and spread out, the results would undoubtedly
differ from the analytical prediction. While the results are somewhat limited and
the specific task overly simplistic, Hayes’ quantitative approach should be com-
mended. Of particular interest is his concept of calculating the cost of carrying
out a mission, which he defines as a weighted sum of the time to find the target,
the distance traveled by each robot, and the number of robots. This particular
formulation of cost is limited, but it shows some interesting ways in which mul-
tiple criteria can be combined to derive a single performance metric, which may
be more robust or meaningful than a single, directly measurable variable.

A task that has received significant attention, and that will be crucial for
the proposed work, is collaborative mapping. If more than one robot is navi-
gating an area, how can the various robots interact so as to construct the map
more efficiently? Several approaches to this problem have been proposed in the
literature. One class of approaches focuses on combining mapping information
between multiple robots using probabilistic approaches [11, 22].

A different class of approaches uses information about the relative position
between robots to propagate information or estimate positions and distances. For
instance, Rekleitis and colleagues [19, 20] propose a method whereby two robots
can observe one another and determine their relative positions. By taking turns
at moving, one robot acts as a fixed landmark, and the other can compare its rel-
ative position to estimate its location in the environment more accurately than
through dead reckoning (odometry). A related approach, proposed by Kurazume
and colleagues [14, 15] uses multiple robots to perform triangulation. These au-
thors have proposed several variants of what they call Cooperative Positioning
System (CPS): in short, three robots take turns so that at any time one robot
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moves between two others, using triangulation to determine its position with a
high degree of accuracy. By taking turns, the robots can navigate through an en-
vironment while maintaining a highly accurate estimate of localization even over
very long distances. A third, related approach has been proposed by Howard and
colleagues [12]. These authors also use the measured relative positions between
robots for accurate localization. In this case, the formalism used to determine
relative position is maximum likelihood estimation. In all three cases, the au-
thors have shown some promising results using both simulated and real robots.
With the exception of Howard et al., it is not clear how well the proposed ap-
proaches will scale with swarms of increasing size. Furthermore, the results are
generally limited to one or few specific examples. Extending these approaches to
larger swarms, and performing systematic evaluations of the sensitivity of the
system to parameter variations, will be crucial in determining which, if any, of
these proposals is likely to be applicable under realistic scenarios with variable
swarm sizes.

3 Methodology

We now turn to a description of the methodology we employed for this project.
Our effort combines software simulation as well as implementation on real robots.
Our approach is to leverage and extend an existing robotics simulation tool. On
top of this we are building a swarm control tool for swarm level communication,
control and visualization. In addition, we are emulating specific hardware for
the robots that we are using. Algorithms that are tested in simulation are then
moved to physical robots to be evaluated.

In particular, our software simulation tool is the Player/Stage simulator de-
veloped at USC and HRL [9] (source available at sourceforge.net). This is an open
source robotics development tool consisting of two distinct packages: Player pro-
vides a network interface to robots and sensors. It contains device drivers that
allow control algorithms written in any programming language to control the
sensors and hardware of robots. Stage is the simulation engine that allows mul-
tiple robots to interact with a simulated environment and device models. The
power in the Player/Stage model is that the same control algorithms written
for the Stage simulation environment can work directly on real robots using the
Player drivers.

We have developed a tool that we call the Swarm Operator Control Center, or
SOCC, designed as a Player/Stage client. SOCC will be described in detail in a
separate paper, but we summarize here its main functional characteristics. SOCC
allows the operator to control the swarm as a whole or to control individual
robots manually. A behavior or a pre-defined combination of behaviors can be
selected via the user interface. The user is able to monitor swarm behaviors
online and offline using SOCC’s visualization tools. Since the code is written
for simulated hardware devices, the code can be transferred to real robots with
minimal effort. On a technical level, it is written in C++ with the Qt GUI
development library. SOCC features self-generating code, auto thread handling,
widget creation, video capture and logging, and enables full automation of Stage
and creates a socket communication to the Player/Stage simulator.
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For this project, we used iRobot’s Swarmbot hardware platform [21]. iRobot
kindly allowed us to use their facilities and provided us with the technical support
necessary to implement our algorithms. Swarmbots are small, limited sensor
robots. The Swarmbots do not have accurate range sensors for the detection of
obstacles, but they can localize one another through line-of-sight infrared (IR)
communications.

This robot measures approximately 15 × 15cm and is capable of moving
at a maximum speed of approximately 40cm/sec (configurable). Its sensor and
actuator payload includes a wrap-around bump skirt that can activate one or
more of eight bump sensors; four IR transmitter and receiver pairs (one at each
corner) that are used primarily for communications and reciprocal localization;
three LEDs that can be programmed to emit user-defined light patterns; and a
speaker. The robot runs on four wheels and through a differential drive mech-
anism (skid steer). On-board radio and camera modules are also available, but
were not used in this project.

The IR sensors are at the heart of the Swarmbot’s communications system,
which operates on a 4Hz transmit cycle. During each cycle, each Swarmbot
broadcasts a few bytes of information, some set by the operating system (e.g.,
the Swarmbot’s ID and its transmission power level), and a few other bytes
configurable by the user. When a Swarmbot receives a transmission from an-
other Swarmbot, it can use an intensity lookup table to determine the range of
the transmitting Swarmbot. By interpolating the intensity as observed from two
different IR receivers, it is also possible to establish the bearing of the transmit-
ting Swarmbot. The transmission power can be set to several levels, resulting in
communications ranges varying from about three feet to over 15 feet. It is also
possible to use the IR as a crude form of obstacle detection by using reflections
of a robot’s own ID.

The biggest challenge for our project was to overcome some of the limitations
of the Swarmbot’s sensors, communications and CPU. Importantly, the Swarm-
bot platform is not designed for the type of accurate localization that we want
to achieve, though it is perfectly adequate for distributed, emergent behaviors
of the types demonstrated successfully by iRobot’s team. We had to overcome
limitations in three general areas: (1) memory is limited to about 600KB of
RAM, (2) limited communication bandwidth of about 60 user-defined byte/sec,
and (3) high levels of sensor and communication noise. Much effort was aimed at
removing sources of systematic noise, e.g., rejecting range and bearing informa-
tion from robots at or near the corners, or adding checksums to our user-defined
data bytes. Details will be provided in a future full-length publication.

4 Overview of Algorithms

As we mentioned in Section 1 the goal of the SDR program is to perform a
building-clearing mission where neither the layout of the building nor the loca-
tion of the object of interest is not known. After we studied Swarmbot’s sensors
and built our infrastructure to overcome their limitations, we focused on the
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solution of three problems: collaborative localization, dynamic task allocation,
and collaborative mapping, which are the key elements of the building-clearing
mission.

4.1 The Collaborative Localization Algorithm

As each robot moves around the environment, it looks for landmarks (stationary
robots) within its IR range. The landmarks are constantly broadcasting data
packets containing their global position (X,Y) and heading. Each moving robot
can estimate the relative range and bearing of each landmark, and combine this
with the broadcasted information to estimate its own position in a global frame
of reference. Furthermore, each robot can make some use of odometry to improve
its localization.

At the core of our algorithm is a method for assigning confidence values to:
(1) individual IR readings from landmarks, (2) the overall localization estimate
based on the cumulative IR readings from multiple landmarks, (3) the odome-
try, and (4) overall localization estimates based on the combination of IR and
odometry. Each of these values is normalized in the range [0.0,1.0].

Odometry confidence decreases with distance moved, and is dropped dra-
matically if the robot is bumped or makes a sharp turn. Individual landmark
confidence is uniform to about 100cm and then decays linearly to a range of
about 150cm. Estimates from multiple landmarks are combined proportionately
to the confidence of each landmark. Finally, odometry is combined with IR es-
timates on the basis of their respective confidence values.

One key to successful localization is to collect data from multiple landmarks
and to weight more heavily those data received from more reliable landmarks.
However, when the size of the environment to be traversed is significantly larger
than the range of the reciprocal localization mechanism, it is not possible to
have a large number of stationary robots at known positions. If all robots are
moving, errors in absolute positioning will accrue quickly, even though the rela-
tive localization between robots can remain accurate. The proposed solution is
to let the robots take turns at moving and being stationary, and to do so in such
a way that the swarm as a whole moves forward, while maintaining accurate
global positioning information. In the next section we describe the dynamic task
allocation algorithm we devised as a solution to this problem.

4.2 The Dynamic Task Allocation Algorithm

In the work of Rekleitis and colleagues [19, 20] and of Kurazume and Hirose
[14, 15] experiments were limited to teams of three or at most four robots, and
movements were controlled by letting the robots take turns based on some pre-
specified strategies. We decided to extend this work to allow for large swarms,
possibly over one hundred. This requires a decentralized algorithm that does not
rely on predefined strategies for robot movement and which will not be sensitive
to the failure of individual robots.
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The task allocation algorithm is based on two components: the first deter-
mines if a robot is allowed to move based on constraints such as having the
required number of landmarks in sight, distance from landmarks, and quality of
localization information. For instance, a robot acting as a landmark should not
begin to move if there are sufficient landmarks around it (in which case it would
not be able to localize itself accurately), or if there are nearby moving robots
that may be relying on it for their localization. Likewise, if a robot is moving, it
should only stop and become a landmark if it has sufficiently good localization
data from current landmarks; it should also avoid becoming a landmark if it is
too close to another landmark, which could interfere with swarm movements,
and may lead to reduced localization accuracy.

The second component calculates a robot’s desire to move based on strictly
local data. The desire to move can be suppressed or enhanced by neighbor robots
based on factors including distance to landmarks, number of nearby moving
robots, etc. The core idea is that robots compete with one another to determine
who has the greatest desire to move. Competition depends in large part on the
robot type (Landmark or Moving), distance, and each robot’s current desire to
move. In addition to distance-dependent, inter-robot factors, all robots take into
account the swarm’s general heading and compete most strongly with robots
ahead of them; hence the robots that are toward the back of the swarm (relative
to the swarm heading) will have the highest desire to move.

For this work we defined the interactions between robots as follows as shown
on Figure 1. A landmark inhibits the desire to move of the nearby landmarks
(top left). On the other hand, it excites the nearby moving robots because it does
not want them to stop and be landmarks (bottom right). This prevents having
landmarks very close to each other. At large distances though it inhibits the
moving robots because we don’t want them to break away from the swarm or get
out of the range of the IR communication. For a moving robot the interactions
are the opposite: It inhibits close landmarks while exciting farther landmarks
(top right). This way those landmarks can move and join the moving robots.
Finally two moving robots excite each other at close distances (bottom left) so
that they move farther apart.

At each time step we updated the desire to move of a robot through:

I(t + 1) = (1.0 − r) I(t) + r +
N∑

i=1

w Ii f(d) (1)

where I is the desire to move of the robot that we are updating, r is the decay
rate (typically 0.005 in our experiments), w is the interaction weight (typically
0.05 in our experiments), and f is the interaction function that depends on
the current tasks of the robots and the distance d between them. The sum is
over all the neigbors seen at time t. Note that when the swarm had a general
heading we multiply the interaction functions by a directional term. Figure 2
shows desire-to-move interactions on an actual swarm from our experiment.

Taken together, these factors tend to generate a smooth forward progress,
whereby some robots act as landmarks while other robots move past them, then
the front robots become landmarks and the robots in the back migrate forward
through the swarm.
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Fig. 1. Functions used for robot interactions.

Fig. 2. Robot desire-to-move interactions shown on an actual swarm.

4.3 Collaborative Mapping

We combined all of the elements described above to allow the Swarmbots to
create maps of their environment. Because the Swarmbots lack range sensors, we
used the IR communications system to measure empty space between the robots.
At each time step, each moving robot estimated its location as described above. If
its localization confidence was sufficiently high (based on a predefined threshold),
the robot kept track of its position and the position of each landmark whose IR
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readings individually had sufficiently high confidence. At the next IR cycle, it
would perform the same calculations. If another good point was found, the robot
formed a triangle with the landmark at its vertex, and its own two positions as
the base. The triangles were then used to draw a map in the robot’s memory.
Landmarks also drew maps in a similar fashion, but only using information from
moving robots from which they got high-confidence readings. As localization
was done in global coordinates, each robot’s map was also in global coordinates.
However, each map was based on what the robot “saw” during its movements,
so different robots could have different maps. Combining these maps results in
a complete picture of what was seen by the swarm.

Figure 3 illustrates two examples of maps built in this fashion. In the first case
(a), a group of 10 robots was instructed to move straight ahead. Robot movement
was controlled by the dynamic task allocation algorithm described earlier. At the
time shown in Figure 3, the robots had covered a distance of approximately 5m
(nearly an order of magnitude greater than the reliable sensory range at the
power levels we used).

Fig. 3. (a) Localization and mapping along a straight hallway. (b) Mapping triangle
shaped area with object in center.

The top left panel shows a video capture of the robots; the top right shows
the position where each robot “thinks” it is; shading indicates the confidence
each robot has in its localization estimate, with darker shading representing
lower confidence. There is a clear agreement between the real and estimated
positions of the robots. The bottom left shows the map built by one of the robots
during the movement, while the bottom right shows the swarm map, obtained
simply by superimposing maps from all ten robots. In the second example (b), a
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triangle shaped area is mapped. The top picture shows the combined maps from
the robots and the bottom photograph shows three landmarks and two moving
robots. The obstacle in the middle of the area is visible in the combined map.

5 Discussion

We have presented an overview of a research project in which we created a system
for collaborative mapping using a swarm of small robots equipped with simple
sensors. Our project is a working demonstration of the vision first put forth by
Gage [6], demonstrating that collaborative techniques can be used to overcome
the limitations of individual robots.

Significant other work has been done in the study of task allocation in nat-
ural and artificial systems. For instance, Bonabeau [3] provides an extensive
description of task allocation, and summarizes some relevant work. We are not
aware of other implementations of dynamic task allocation for landmark-based
localization.

As mentioned earlier, other groups have proposed methods for collaborative
localization over large distances. In these cases, the authors have shown some
promising results using both simulated and real robots. With the exception of
Howard et al’s work, however, it is not clear how well the proposed approaches
will scale with swarms of increasing size. We feel that the techniques introduced
in this paper allow for a fully scalable algorithm that also can provide sufficient
accuracy.

In a later research effort, we are planning to use evolutionary computing
tools to identify swarm control strategies that are especially well suited to spe-
cific missions, and that afford a high degree of robustness and flexibility. It is
our experience that when controlling a real, complex system, the space of pos-
sible implementations becomes so vast that an exhaustive search is impossible.
We have developed a methodology that leverages evolutionary computing tech-
niques, such as Genetic Algorithms and Genetic Programming, to narrow in on
particularly promising areas of the solution space.
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Abstract. This paper presents the visions and initial results of the I-
SWARM project funded by the European Commission. The goal of the
project is to build the first very large-scale artificial swarm (VLSAS)
with a swarm size of up to 1,000 micro-robots with a planned size of 2×
2× 1 mm3. First, the motivation for such a swarm is described and then
first considerations and issues arising from the robots’ size resembling
“artificial ants” and the MST approach taken to realize that size are
given. The paper will conclude with a list of possible scenarios inspired
by biology for such a robot swarm.

1 Vision

In classical micro-robotics, highly integrated and specialized robots have been
developed in the past years, which are able to perform micro manipulations
controlled by a central high-level control system [1–5]. On the other hand, tech-
nology is still far away from the first “artificial ant” which would integrate all
capabilities of these simple, yet highly efficient swarm building insects.

This has been the motivation of other research fields focusing on studying
such swarm behavior [6] and transferring it to simulation or physical robot agents
[7]. Realizations of small robot groups of 10 to 20 robots are capable to mimic
some aspects of social insects, however, the employed robots are usually huge
compared to their natural counterparts, and very limited in terms of perception,
manipulation and co-operation capabilities.

The vision of the I-SWARM project is to take a leap forward in robotics re-
search by combining expertise in micro-robotics, in distributed and adaptive sys-
tems as well as in self-organizing biological swarm systems. The project aims at
technological advances to facilitate the mass-production of micro-robots, which
can then be employed as a “real” swarm consisting of up to 1,000 robot clients.
These clients will all be equipped with limited, pre-rational on-board intelligence.
The swarm will consist of a huge number of heterogeneous robots, differing in

E. Şahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 70–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. The I-SWARM: a vision.

the type of sensors, manipulators and computational power. Such a robot swarm
can then be employed for a variety of applications, including micro assembly, bi-
ological, medical or cleaning tasks.

To realize the project’s vision, the consortium has a large expertise in micro-
robot technologies. Topics like polymer actuators, collective perception, using
(instead of fighting) micro scaling effects, artificial and collective intelligence
will be addressed.

The primary goal of the integrated project I-SWARM is the realization of
a “real” micro-robot swarm, i.e. a thousand micro manufactured autonomous
robots will be designed for the collective execution of different tasks in the small
world. This will be achieved:

• by the realization of collective intelligence of these robots
– in terms of cooperation and
– collective perception
– using knowledge and methods of pre-rational intelligence, machine learn-

ing, swarm theory and classical multi-agent systems.
• by the development of advanced micro-robots hardware

– being extremely small (planned size of a single robot: 2 × 2 × 1 mm3.)
– by integrating novel actuators, miniaturized powering and miniaturized

wireless communication
– with ICs for on-board intelligence and
– integrating sensors and tools for the manipulation in the small world.
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The fundamental vision behind a swarm of micro-robots is the realization of
capabilities that are not given by either a single micro-robot, or with a small
group of micro-robots. The expected self-organization effects in the robot swarm
should be similar to that seen within other ecological systems like ant states,
bee colonies and other insect aggregations. The well-known potential benefits of
a self-organized system include greater flexibility and adaptability of the system
to the environment, robustness to failures, etc. Additionally, their collective be-
havior opens up new application fields, that cannot be solved with today’s tools.
A suitable sophisticated positioning system will be developed, possibly based
on the ones used by insects and incorporating tactile sensors and a small but
effective vision system, that will enable the individual agents to communicate
between themselves and thus enable and promote the desired swarm effects.

Considering the natural world, it is apparent that insects have been a very
successful species during evolution largely due to their ability to organize into
large co-operative communities and swarms [8, 9].

A major goal of the project is to transform knowledge gained by observations
of eusocial insect behavior, from observations of communicating insect aggrega-
tions and research already performed on swarm intelligence of robots and to
apply this to a swarm of micro-robots. The micro-robots to be developed within
the project will be capable of performing real micro manipulations similar to
(some of) the capabilities of insects. In this paper, some of the work carried out
within the project will be described, including:

1. Hardware design of a heterogeneous robot swarm: The realization of a large
number of robot clients (up to 1,000 or more) will present a major technical
challenge and will require new and novel approaches in terms of manufacture
and miniaturization. New techniques for the co-design of the miniaturized
hardware and its embedded software ‘intelligence’ will need to be developed.
(a) In designing the robot hardware, locomotion principles such as insect-

like walking will be examined. Research into enhancing this will lead to
novel, low-power micro-robot walking mechanisms.

(b) The knowledge gained by experiments on the “Laws of the small World”
will significantly deepen our understanding of microphysics as applied to
micro handling.

(c) The development of pre-rational intelligence modules will help to create
a swarm intelligence distributed over the whole system, thus making
it less prone to failures and improving its capability to adapt to new
situations.

2. More importantly, systems and methodologies will be developed which will
enable the swarm’s behavior for solving given tasks to be modelled and thus
predicted. This will require the development of knowledge not only about
the internal systemic behavior of a large number of heterogeneous agents. A
major contribution will also be a simulation system which takes into account
the hardware capabilities and restrictions of the swarm robots’ hardware, e.g.
sensory capabilities, uncertainties, etc. The result of this work will enable
the building of customized swarms which will act in a predetermined way.



The I-SWARM Project 73

As a prerequisite of the co-design of the robot hard- and software, swarm scenar-
ios have been identified and classified according to their requirements. A rough
categorization of swarm could be the following:

– grouping
– pattern forming or making a queue
– object collection, surface cleaning
– collective perception
– collective transport
– collective sorting and building
– collective maintenance of global homeostasis

There are many applications which can be derived from these scenarios:

– Assembly tasks in the micro world such as assembling of gears, micro pumps
and other micro systems,

– Self assembly/self recycling,
– Cleaning surfaces in a very short time,
– Mechanical self configuration,
– Testing and characterization of micro-parts,
– Future medical applications (e.g. examine and medicate the human body

inside and outside),
– Energy harvesting and distribution within the swarm.

We believe that the availability of a (possibly commercially available) low-cost,
mass fabricated swarm micro robot will have a great impact in the fields of
education, science and possibly also entertainment.

2 The Micro Robotic Approach

The experience from previous micro-robotic projects shows that we are clearly
at the limit of micro-robot development with a modular approach. If we want to
develop smaller robots, the design has to change drastically and an integrated
approach should be chosen. The selected concepts must allow further miniatur-
ization in the future in order to really reach the micro-scale. The micro-agents’
size and force must be in proportion to the size and fragility of the manipulated
objects, such as, for instance DNA or living cells. As a large number of micro-
agents will have to be realized, batch processes using micro system technology
(or MEMS1) will be compulsory.

Within this project, robotic agents realized with techniques from micro sys-
tem technology (MST) and employing insect as well as other motion principles
will be investigated. This will allow making the link between two research fields,
which do not have much interaction so far. On the one hand, there is a large
number of micro-locomotion systems, walkers, conveyors or motors, which have
been realized with MST. On the other hand, there is micro-robotics, where cer-
tain intelligence is present on autonomous platforms, which are assembled from
discrete elements.
1 Micro-Electro-Mechanical System.
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Actuators based on piezo-optic, thermal or other solid-state effects with the
possibility for a direct external energy supply will allow for agents without an
energy buffer for locomotion, thus further decreasing the size. The projected
size of a robot is 2 × 2 × 1 mm3 and velocities of up to 1mm/s. There will be
different kinds of micro-agents, each designed for a specific task and each with an
integrated nano-tool: optical sensor (1 or a few pixels), needle (e.g. functionalized
AFM like probe) etc. As for the robot itself, a modular approach for the tools
is excluded due to the limitations in size.

To create a breakthrough in micro-robot actuation, we are pursuing a bio-
inspired approach: in several insects the mechanical structure for locomotion is
based on shells and muscles in contrast to e.g. bones and muscles in larger an-
imals. A shell structure where bending hinges are used as joints is e.g. one way
to “mimic” the biological world with artificial structures since most of the micro
system techniques allow for planar shell fabrication. Agile limbs and antennas
can be made when a suitable “muscle” (actuator) material is integrated with the
shell structure. So far most integrated micro-robots have been based on silicon
technology. To mimic the biological world, the materials for the backbone of
the insect robot could instead be polymeric. Fortunately, there are several micro
system technologies for polymeric materials available and the lacking fabrica-
tion steps for the actuators will be successively developed. While several of the
injection moulding techniques would give large volumes at low prices the most
straightforward way of building small microsystems is to use flexible printed cir-
cuit boards (FPCB). These boards are extensively used in miniature systems
as consumer electronics and high-tech components. The FPCB gives flexibility,
electrical connects, three-dimensionality and high-quality material properties.
The more expensive FPCB use a polyimide base material that gives high perfor-
mance and some extraordinary properties. The processing technology will allow
for well-defined structures (the shells etc. in the insect robot) and well-controlled
grooves for the bending hinges. The stiffness can easily be controlled by struc-
tural definition (ridges etc.) or by metal reinforcement since the main application
of the FPCB is as a printed circuit board with metal conductors in top of the
carrier.

The actuator development for the integrated robots is performed in several
steps. The first evaluation is made with a functional but not optimized muscle
material. One example is a thermo-mechanical material that is well compatible
with the FPCB processing technology: a photo-patternable polyimide. There
are also other interesting actuators that will be considered for the swarm robots.
The high power consumption is however the main problem for autonomous op-
eration. One of the more interesting actuator groups are electro-active polymers
[10], e.g. piezoelectric polymer materials with two main advantages. Firstly, the
power consumption should be possible to decrease with two orders of magnitude
allowing for long operation times or uninterrupted operation with a continuous
power supply. Secondly, the movement stability should be much improved since
the actuation is controlled by electric voltage instead of temperature. Particu-
larly the possibility to stop at a given joint angle without any power consumption
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is important in many of the planned applications. The development of electro-
active polymers is rather fast and it can be suspected that some new alternatives
will be possible to evaluate soon. At present, modified PVDF types of piezoelec-
tric actuators appear to be the best choice. These materials have a strain and
stiffness close to the thermo-mechanical polyimide while the energy consump-
tion per cycle should be two orders of magnitude less. The main challenges with
introducing this material in a polymeric micro system are the high electric fields,
the electrode materials and the processing techniques.

In the final phase of this project, micro system technologies such as bulk micro
machining, piezoelectric thin or thick films, polymer film technologies etc. will
be employed in the creation of the small mobile micro-robot agents combining
features from both the autonomous micro-robots and the MST-based systems.

The functions of the agents will be reduced to locomotion, integrated tool
(one per agent) permitting basic manipulation, possibility to attach and release
other agents, a limited capability to store information on the state of the agent
as well as the possibility to transfer basic information from agent to agent and
eventually between agent and a supervisory system / robot.

3 Methodology and Initial Results

Since the project has just started2, at the time of preparing this paper, no results
beyond first hardware tests and initial simulations on the impact of the very
limited robot capabilities are yet available. However, the nature of the project
has led to very interesting and challenging design issues which will be described
in the following along with our approach on how to tackle them.

The fundamental difference in this project as compared to other (swarm)
robotics endeavors is that we have not proposed a fixed scenario the final robot
swarm is to perform. The proposition, as sketched in Section 1 was rather to
realize a swarm consisting of mm-sized robots which should subsequently be
programmed and deployed on various scenarios.

This situation is very uncommon in classical engineering, since it implies a
co-design of the problem along with the solution, Fig. 2. Since the Consortium
comprises partners involved in the design and fabrication of robot hardware and
partners involved in software, we initially faced a deadlock situation: Hardware
partners requested the required capabilities of the hardware from the software
partners, who in turn wanted to know the constraints which will be imposed by
the hardware given the stringent limitations in space.

In other words, this project tries not only to explore the space of solutions for
swarm robotics as in classical engineering, but also the space of possible problems
at the same time. To overcome this deadlock situation, we have started to collect
all available data on constraints imposed by physics, available technologies and
interactions of subsystems. The resulting analysis is presented in the next two
sections. A preliminary list of possible swarm scenarios inspired by biological
swarms will conclude this Chapter.
2 Project start was in January 2004.
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Fig. 2. Unconventional engineering problem in co-design.

3.1 Hardware Constraints

The Consortium is currently investigating principles and techniques for all robot
subsystems. Here, the subsystems most crucial for the resulting swarm scenarios
will be discussed.

Energy Supply: Speaking of autonomous3, highly miniaturized robots, the
first limitation to be considered is the amount of available on-board energy. If
one takes a pessimistic approach, the energy will be limited to 150μW. One
can then further estimate an energy breakdown onto the robots’ subsystems:
70% will be consumed by each robot’s actuation system, 20% by its hardware
circuitry and the rest is available for other functions.

While examining these figures in more detail, it becomes clear that the
amount of energy available on the robots is crucial while being a function of
the robot’s size. For some solutions, it depends only on its surface, for others
on the available volume. The list of possible energy sources for an autonomous
swarm micro robot is:

– Batteries
• Non-rechargeable: commercial types deliver 1 J/mm3, package sizes

are around 30mm3 which renders them useless for our case.
• Rechargeable: thick-film batteries deliver 1 J/mm3, too, and could be

used at 0.2W for about 5,000 seconds (1.4 hours, sufficient for most
conceivable scenarios even with very slow robots).

– Capacitors: super caps could be operated at 0.2mW for 1,000 seconds (16
minutes), package sizes are around 65mm3.

– Inductive Energy Transfer: on-board coils of 2mm ø could supply 1mW.
– Micro Fuel Cells: size [11, 12] are today still too large for on-board opera-

tion and refuelling with methanol will be a major problem given the robots’,
besides the production of waste water.

3 In terms of power supply, and to a large extent of control.
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– Micro Solar Cells: could deliver between 0.14mW/mm2 to 0.35mW/mm2

with a light source equivalent to daylight.

The conceivable power supply systems can therefore be classified into continuous
and recharging, while the continuous scenario is the more desirable one.

Sensor System: The sensor subsystem of the robots could consist of a tactile
sensor principle using a feeler-like design. Principles currently under investigation
are piezo- or polymer strips which can operate either passively, or in active
modes, by vibration or bringing them to resonance which opens up possibilities
to sense the robot’s surroundings (approximately one robot’s length in distance)
or even communicate through this sensor system, too; see Fig. 3. Other principles
which will be evaluated are capacitance measurements detecting changes in the
dielectric in the robot’s surroundings or optical principles.

Sending Receiving

f1

f2

Fig. 3. Communication with a tactile sensor system.

Communication System: The principles which could be employed for robot-
to-robot and robot-to-host communication are the following:

– Classical RF: commercial solutions like DECT, Bluetooth, WLAN and
even ZigBee are not applicable due to the size constraints.

– Infra-red: available transceivers have dimensions of 30-40mm3. Further
problems will be discussed in the next paragraph.

– Ultra-sound: sound waves propagating in free air have a very low power
efficiency. One alternative would be the transmission of sound through the
floor.

– Inductive: could be achieved through micro-coils for transmission distances
below 2 cm.

Considering these observations, robot-to-host communication will have to be
performed using a hierarchical approach: propagating gathered data to (a few)
higher-level robots with more advanced communication and sensing abilities
which will then send the data to a host.

For optical sensor or communication principles, the restrictions of the avail-
able energy are the most striking: standard infrared light diodes require between
50 and 150μW. This would mean that optical communication and actuation are
mutually exclusive (or impossible at all in the worst case, since no power for the
circuitry and other functions would be available when light is being emitted).
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Since the radiation characteristics of standard diodes produce their maximum
output upwards, robot-to-robot communication by optical means will require
extra integration work to emit light in the robots’ plane. Additional problems
arise from technological restrictions4: processes which could be used to fabri-
cate the robots’ hybrid D/A circuitry rise compatibility issues with processes
necessary to structure light emitting diodes. One possible solution (as employed
in the Smart-Dust project) would be the use of an external light source and
robot-mounted micro-mirrors (or shutters) which can be actuated to avoid the
necessity of on-board light generation.

Summary: As a result of this first design phase, a document has been cre-
ated which lists all necessary robot subsystems along with their characteristics
regarding size, die-area, power consumption and compatibility with different
manufacturing processes.

An additional task within the project deals with micro scaling effects. These
effects occur when scaling an object, e.g. a cube with side length a to 1mm and
below: the gravitational decreases with a3, while surface forces (adhesion due
to humidity, electrostatic forces or molecular forces like Van-der-Waals forces)
decrease only with a2. For objects below 1 mm, surface forces start to dominate
the volume forces. Based on simulation results of such forces, we expect to be
able to use such forces in micro robotics for actuation and manipulation instead
of avoiding them.

3.2 Software Considerations
To work towards possible swarm scenarios not only from the hardware side
(which could result in a highly miniaturized robot which has too limited capabil-
ities for even the most basic emergence effects to occur), we are also approaching
possible scenarios from the simulation and robot design side.

For this, we have derived a morphological table of possible swarm scenarios
as outlined in the next section (3.3) and added the requirements on the robot
hardware to each scenario. To complement this analysis, we have also started
simulations to assess the impact of the availability and performance of different
robot subsystems (i.e. sensors, locomotion system etc.).

The considerations on the hardware and software side are now being iterated
in order to gain a deeper understanding of the restrictions which have to be
considered. Additionally, this process also yields new scenarios which have not
been thought of before. One example is a non-continuous power supply scenario
(i.e. the robots have rechargeable energy supplies on board), where robots are
“rewarded” for achieving a task by energy. This could for example be a collection
task where robots which deliver a workpiece will be “refuelled”, while robots
performing this task badly will eventually “die” due to a lack of energy.

3.3 Scenarios

In the following paragraphs, initial ideas inspired by biological counterparts [16]
are presented. This description is still quite vanilla, since we are currently eval-
4 Since the robot size will limit the electronics to basically a single chip.
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uating the suitability and feasibility of the scenarios for a robotic swarm. Some
initial hints on the realization are given below, but for each scenario, there are
many ways to imitate the concepts that biological swarms use (for example, vir-
tual pheromone [17]: this can be simulated by a projected light gradient [18], or
by robot-to-robot communication, or other sensor principles).

Scenario 1: Aggregation: This scenario represents a simple aggregation of
the robots in a self-organized manner. This behavior is inspired by slime molds
or by cockroaches. The robots have the goal of positioning themselves into a
larger group.

Scenario 2: Aggregation Controlled by an Environmental Template:
In this scenario, the robots have to aggregate in the arena, too. In contrast to
Scenario 1, an environmental template influences this aggregation. The environ-
mental template could be a light source which has another color than the one
used for a “virtual pheromone”. The goal of this scenario is that the robots must
aggregate as near as possible to the center of this template. This phenomenon
can be found in nature by slime molds and cockroaches, too.

Scenario 3: Collective Building of Piles: The “Collective Building of Piles”
scenario is one of the most researched scenarios in the AI community. The goal
of the robots is to collect pucks, which are initially randomly distributed over
the whole arena, and build up one ore more piles. This scenario is a good base
for studying more advanced scenarios like the following one.

Scenario 4: Collective Sorting: This scenario is a more advanced version
of the latter one. It involves a controlled environment with different regions
within the arena. Those regions could be distinguished by the robots, for in-
stance through different light intensities or colors, which are projected with a
high-resolution beamer from the top of arena. Additionally, there are several
sorts of pucks which differ in a feature that is recognizable by the robot. The
goal of the robot is to bring a puck to the region of the arena which corresponds
with the type of the puck. This behavior should lead to a guided sorting of the
pucks within special regions. Ants use such mechanisms to sort their brood ac-
cording to the ambient soil temperature and humidity. Depending on the robots’
capabilities, the projected gradient could also be replaced by (local) broadcasts
depending on the robots’ communication capabilities.

At the first glance this scenario seems quite easy, but distinguishing between
different objects is a very difficult task for micro-scale robots.

Scenario 5: Royal Chamber: The “Royal Chamber” scenario goes back to
investigations on the ant species Leptothorax albipennis that build a wall around
their queen. The distance of this wall is affected by a pheromone that is excreted
by the queen. As in nature, the robots should collect building-material (pucks)
and dispose it around an imaginary queen. The queen’s pheromone is represented
by a potential field that can be, as in the latter scenario, projected on the arena.
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The robots should deposit the pucks at a given potential to form the royal
chamber. If the potential field changes – the queen grows – the robots should
reconfigure the built wall.

Scenario 6: A Court Around a “Robot Queen”: In this scenario, we
have two types of robots: the “queen robot” which is bigger in size and moves
slowly in the arena, and the “worker robots”. The “queen robot” emits a “virtual
pheromone” that affects the random walk of the workers. They are directed uphill
the pheromone gradient until they reach the queen. Then the worker robots join
the court of the queen. By the time they are exposed to the pheromone, their
reaction threshold increases. This effect will cause the robots to leave the court,
at least when the queen is moving. The goals of this scenario are to have a
maximum filled court of the queen and at the same time distribute the non-
court robots uniformly in the arena.

This scenario is inspired by the honeybee queen court. In the case of the
honeybee queen, the formation of the court as well as the joining frequency
per bee seems to be affected by the moving speed and turning frequency of the
queen. The moving activity of the honeybee queen is often associated with her
egg laying, which then results in different egg laying patterns.

Scenario 7: Collective Foraging Using Bucket Brigades: In this scenario,
the robots collectively forage a food from a known place and untread to the
known nest. In this scenario we have only 3 distinct groups of robots: the “big”,
the “median” and the “small” robots which differ by their size and their speed.
Every time a bigger robot has contact with a loaded smaller robot, the smaller,
but faster robots drop the object and turn again towards to the food source. The
bigger and slower robot lifts the object, turns and transports it towards to the
nest. This behavior is inspired by ants. The common goal of the swarm behavior
is to collectively maximize the number of transported objects per time unit.

Scenario 8: Collective Foraging for Objects Using Pheromone Trails:
A group of robots in this scenario collectively chooses the optimal source by
assessing the distance from the “nest” to the source. A “virtual pheromone”
deposited on the best source by the robots can be detected by other foraging
robots. Then several robots go to this source. A goal of this scenario is to collect
an objects from several food sources by minimizing the time spent outside of the
nest.

Scenario 9: Foraging with Distinction of the Source Quality: As in the
last scenario, the robots should forage by building a “virtual” pheromone trail.
In this case, however, they distinguish between the food sources and deposit
more pheromone for a better source. This scenario builds also on the “Collective
Sorting” scenario. The robots must recognize the different food sources and
evaluate them. There are two possibilities for evaluating the food sources. The
easiest one is that they know the value of the source after they identified it. The
other one, and the harder one, would be that the robots are rewarded by an
intelligent arena after delivering the food.
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Fig. 4. Pheromone map for the nursing task.

Scenario 10: Dynamic Task Allocation: This scenario should model the
process of brood nursing in social insects. There are two kinds of robots and two
kinds of “virtual” pheromones. The two pheromones represent two different kinds
of larvae. If a larva was not fed for a given time it starts secreting pheromone.
This pheromone is spatially very strictly bounded, see Figure 4. Each kind of
robot is more attracted to one kind of “virtual” pheromone. If a robot stays at
the peak of a pheromone, the pheromone level there will decrease – the robot is
feeding the larvae.

The goal is to keep the brood on an equal pheromone level even if the number
of robots of the one kind is decreased (deactivated). The other robots should then
take over their part. This should lead to a dynamic task allocation within the
swarm.

3.4 Conclusions

The list of scenarios in the last section is currently far from being complete. It
will also certainly comprise of scenarios which are plainly impossible for robots
of the planned size (and even for much bigger ones). However, it currently serves
us as a starting point for the assessment of a minimal robot configuration which
is necessary for the I-Swarm to be of any scientific interest. Based on this list,
a morphological table of possible swarm scenarios has been created in a spread-
sheet which serves as a means of exploring the parameter space of all possible
robot subsystem configurations and the impact on the possible scenarios.

One of the possible results of this initial design phase could clearly be that the
planned size of 2×2×1 mm3 is not feasible since it will make the possible swarm
scenarios too simple to be of any use. However, the design decisions taken could
be re-used for later projects when more advanced micro techniques are available.
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4 Discussion and Outlook

This paper presented a new challenging project, that will push the swarm and
micro robotics to a new frontier. Currently, the project is in the starting phase.
As described in Sections 1 and 2, several new techniques are being evaluated
regarding new algorithms in swarm intelligence, collective perception and MST.
As outlined in Section 3, a novel approach to building not only a swarm of
robots, but also exploring the space of possible swarm scenarios as a function of
the robots’ capabilities has been taken. Being able to implement and test swarm
algorithms with a VLSAS will lead to a new understanding of eusocial insects
and swarm robotics.
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Abstract. This paper provides an overview of our framework, called
physicomimetics, for the distributed control of swarms of robots. We
focus on robotic behaviors that are similar to those shown by solids,
liquids, and gases. Solid formations are useful for distributed sensing
tasks, while liquids are for obstacle avoidance tasks. Gases are handy for
coverage tasks, such as surveillance and sweeping. Theoretical analyses
are provided that allow us to reliably control these behaviors. Finally,
our implementation on seven robots is summarized.

1 Vision

The focus of our research is to design and build rapidly deployable, scalable,
adaptive, cost-effective, and robust swarms of autonomous distributed robots.
Our objective is to provide a scientific, yet practical, approach to the design and
analysis of swarm systems.

The team robots could vary widely in type, as well as size, e.g., from nanobots
to micro-air vehicles (MAVs) and micro-satellites. A robot’s sensors perceive
the world, including other robots, and a robot’s effectors make changes to that
robot and/or the world, including other robots. It is assumed that robots can
only sense and affect nearby robots; thus, a key challenge has been to design
“local” control rules. Not only do we want the desired global behavior to emerge
from the local interaction between robots (self-organization), but we also require
fault-tolerance, that is, the global behavior degrades very gradually if individ-
ual robots are damaged. Self-repair is also desirable, in the event of damage.
Self-organization, fault-tolerance, and self-repair are precisely those principles
exhibited by natural physical systems. Thus, many answers to the problems of
distributed control can be found in the natural laws of physics.

This paper provides an overview of our framework for distributed control,
called “physicomimetics” or “artificial physics” (AP). We use the term “artifi-
cial” (or virtual) because although we are motivated by natural physical forces,
we are not restricted to them [1]. Although the forces are virtual, robots act as if
they were real. Thus the robot’s sensors must see enough to allow it to compute
the force to which it is reacting. The robot’s effectors must allow it to respond
to this perceived force.

E. Şahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 84–97, 2005.
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There are two potential advantages to this approach. First, in the real phys-
ical world, collections of small entities yield surprisingly complex behavior from
very simple interactions between the entities. Thus there is a precedent for be-
lieving that complex control is achievable through simple local interactions. This
is required for very small robots, since their sensors and effectors will necessarily
be primitive. Second, since the approach is largely independent of the size and
number of robots, the results scale well to larger robots and larger sets of robots.

2 The Physicomimetics Framework

The basic AP framework is elegantly simple. Virtual physics forces drive a multi-
robot system to a desired configuration or state. The desired configuration (state)
is one that minimizes overall system potential energy. In essence the system acts
as a molecular dynamics (F = ma) simulation.

At an abstract level, AP treats robots as physical particles. This enables the
framework to be embodied in robots ranging in size from nanobots to satellites.
Particles exist in two or three dimensions and are point-masses. Each particle
i has position x and velocity v. We use a discrete-time approximation to the
continuous behavior of the system, with time-step Δt. At each time step, the
position of each particle undergoes a perturbation Δx. The perturbation depends
on the current velocity, i.e., Δx = vΔt. The velocity of each particle at each time
step also changes by Δv. The change in velocity is controlled by the force on the
particle, i.e., Δv = FΔt/m, where m is the mass of that particle and F is the
force on that particle. A frictional force is included, for self-stabilization. This is
modeled as a viscous friction term, i.e., the product of a viscosity coefficient and
the robot’s velocity (independently modeled in the same fashion by Howard et
al. [2]). We have also included a parameter Fmax, which restricts the maximum
force felt by a particle. This provides a necessary restriction on the acceleration a
robot can achieve. Also, a parameter Vmax restricts the velocity of the particles,
which is very important for modeling real robots.

Given a set of initial conditions and some desired global behavior, it is nec-
essary to define what sensors, effectors, and local force laws are required for the
desired behavior to emerge. This is explored, in the next section, for a variety of
simulated static and dynamic multi-robot configurations. Our implementation
with robots is discussed in Section 3.2.

3 Physicomimetic Results

Our research has focused on robotic behaviors that are similar to those shown by
solids, liquids, and gases. Solid crystalline formations are useful for distributed
sensing tasks, to create a virtual antenna or synthetic aperture radar. For such
tasks it is important to maintain connectivity and a lattice geometry. Liquids are
for obstacle avoidance tasks, since fluids easily maneuver around obstacles while
retaining connectivity. Solid and liquid behaviors are formed using a similar force
law, that has attractive and repulsive components. The transition between solids



86 William M. Spears et al.

and liquids can be performed via a change in only one parameter, which balances
the attractive and repulsive components [3].

Finally, gases are handy for coverage tasks, such as surveillance and sweeping
maneuvers. For these tasks it is imperative that coverage can be maintained,
even in the face of individual robot failures. Gas-like behaviors are created using
purely repulsive forces.

3.1 Simulation Results

Solids: Our initial application required that a swarm of MAVs self-organize into
a hexagonal lattice, creating a distributed sensing grid with spacing R between
MAVs [4]. Potential applications include sensing grids for the mapping or tracing
of chemical/biological plumes [5] or the creation of virtual antennas to improve
the resolution of radar images [1]. To map this into a force law, each robot repels
other robots that are closer than R, while attracting robots that are further than
R in distance. Thus each robot has a circular “potential well” around itself at
radius R – and neighboring robots will be separated by distance R. The inter-
section of these potential wells is a form of constructive interference that creates
“nodes” of low potential energy where the robots are likely to reside. A simple
compass construction illustrates that this intersection of circles of radius R will
form a hexagonal lattice where the robot separation is R. Note that potential
energy (PE) is never actually computed by the robots. Robots compute local
force vectors. PE is only computed for visualization or mathematical analysis.

With this in mind, we defined a force law F = Gmimj/rp, where F ≤ Fmax

is the magnitude of the force between two particles i and j, and r is the distance
between the two particles. The variable p is a user-defined power, which ranges
from -5.0 to 5.0. Unless stated otherwise, we assume p = 2.0 and Fmax = 1 in
this paper. Also, mi = 1.0 for all particles (although the framework does not
require this). The “gravitational constant” G is set at initialization. The force
is repulsive if r < R and attractive if r > R. Each particle has one sensor that
can detect the distance and bearing to nearby particles. The one effector enables
movement with velocity v ≤ Vmax. To ensure that the force laws are local, we
allow particles to sense only their nearest neighbors. Hence, particles have a
visual range of only 1.5R.

A simple generalization of this force law will also create square lattices. If
robots are arbitrarily labeled with one of two colors, then square lattices are
formed if robots that have unlike colors have a separation of R, while robots that
have like colors have separation

√
2R. Furthermore, transformations between

square and hexagonal lattices (and vice versa) are easily accomplished. Figure 1
illustrates formations with 50 robots. The initial deployment configuration (left)
is assumed to be a tight cluster of robots. The robots move outwards into a square
formation (middle). Then they transform to a hexagonal formation (right). Self-
repair in the face of agent failure is also straightforward [6].

The total PE of the initial deployment configuration is an excellent indicator
of the quality of the final formation. High PE predicts high quality formations.
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Fig. 1. The initial deployment configuration (left) is assumed to be a fairly tight cluster
of robots. The robots move outwards into a square formation (middle). Then they
transform to a hexagonal formation (right).

This energy is dependent on the value of G, and it can be proven that the optimal
value of G for hexagonal lattices is [7]:

Gopt
� = FmaxRp[2 − 1.51−p]

p/(1−p)
(1)

The value of Gopt does not depend on the number of particles, which is a nice
result. However, for square lattices:

Gopt
� = FmaxRp

[√
2(N − 1)[2 − 1.31−p] + N [2 − 1.71−p]√

2(N − 1) + N

]p/(1−p)

(2)

Note that in this case Gopt depends on the number of particles N . It occurs
because there are two classes (colors) of robots. However, the dependency on N
is not large and goes to zero as N increases.

Our current research is focused on the movement of formations through
obstacle fields towards some goal. Larger obstacles are created from multiple,
point-sized obstacles; this enables flexible creation of obstacles of arbitrary size
and shape. As a generalization to our standard paradigm, goals are attractive,
whereas obstacles are repulsive (similar to potential field approaches, e.g., [8]).

Figure 2 illustrates how a square formation moves through an obstacle field
via a sequence of rotations and counter-rotations of the whole collective. This

Fig. 2. A solid formation moves through an obstacle field towards a goal (upper left
part of the field). The rotations and counter-rotations of the whole collective are an
emergent property.
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behavior emerges from the interaction of forces and is not a programmed re-
sponse. If this cannot be accomplished, the formation may not be able to make
further progress towards the goal.

Liquids: As stated above, the difference in behavior between solid formations
and liquid formations depends on the balance between the attractive and repul-
sive components of the forces. In fact, the parameter G once again plays a crucial
role. Below a certain value of G ≡ Gt, liquid behavior occurs. Above that value,
solid behavior occurs. The switch between the two behaviors acts very much like
a phase transition. Using a standard balance of forces argument we can show
that the phase transition for hexagonal lattices occurs at [3]:

Gt
� =

FmaxRp

2
√

3
(3)

The phase transition law for square lattices is:

Gt
� =

FmaxRp

2
√

2 + 2
(4)

Neither law depends on the number of robots N , and the difference in the
denominators reflects the difference in hexagonal and square geometries. There
are several uses for these equations. Not only can we predict the value of Gt

at which the phase transition will occur, but we can also use Gt to help design
our system. For example, a value of G ≈ 0.9Gt yields the best liquid formation,
while a value of G ≈ 1.8Gt ≈ Gopt yields the best solid formations.

As mentioned before, liquids are especially interesting for their ability to
flow through obstacle fields, while retaining their connectivity. Figure 3 illus-
trates how a “square” liquid formation moves through the same obstacle field as
before. In comparison with the solid formation shown above, far more deforma-
tion occurs as the liquid moves through the obstacles. However, the movement
is quicker, because the liquid does not have to maintain the rigid geometry of
the solid. Despite this, connectivity is maintained. One can easily imagine a sit-
uation where a formation lowers G to move around obstacles, and then raises G
to “re-solidify” the formations after the obstacles have been avoided.

Fig. 3. A liquid formation moves through the same obstacle field towards the goal. Far
more deformation occurs, but connectivity is maintained.
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Gases: The primary motivation for gas behavior is regional coverage, e.g., for
surveillance and sweeping. For stealth it is important for individual robots to
have an element of randomness, while the emergent behavior of the collective is
still predictable. Furthermore, any approach must be robust in the face of robot
failures or the addition of new robots. The AP algorithm for surveillance is
simple and elegant – agents repel each other, and are also repelled by perimeter
and obstacle boundaries, providing uniform coverage of the region. If robots
are added/destroyed, they still search the enclosed area, but with more/less
virtual “pressure” [6]. An interesting phase transition for this system depends
on the value of G. When G is high, particles fill the corridor uniformly, providing
excellent on-the-spot coverage. When G is low, particles move toward the corners
of the corridor, providing excellent line-of-sight coverage. Depending on whether
the physical robots are better at motion or sensing, the G parameter can be
tuned appropriately.

Currently we are investigating the more difficult task of “sweeping” a region,
while avoiding obstacles. This task consists of starting a swarm of robots at
one end of a corridor-like region, and allowing them to travel to the opposite
end, providing maximum coverage of the region in minimal time. A goal force
causes the robots to traverse the corridor length. As they move, robots must
not only avoid obstacles, but they must also sweep in behind the obstacles to
minimize holes in the coverage. One obvious tradeoff is the speed at which the
robots move down the corridor. If they move quickly, they traverse the corridor
in minimal time, but may move too quickly to sweep in behind obstacles. On
the other hand, excellent sweeping ability behind obstacles can significantly slow
the swarm. What is required is a Pareto optimal solution that balances sweeping
ability with traversal speed vtraversal.

To address this task we modified our standard AP algorithm to employ a
more realistic gas model that has Brownian motion and expansion properties
[9]. The collective swarm behavior appears as Brownian motion on a small scale,
and as a directed bulk movement of the swarm when viewed from a macroscopic
perspective. The expansion properties provide across-corridor coverage and the
ability to sweep in behind obstacles. An analogy would be the release of a gas
from the ceiling of the room that has an atomic weight slightly higher than the
normal atmosphere. This gas drifts downward, moving around obstacles, and
expanding back to cover the areas under the obstacles.

As mentioned above, speed of movement down the length of the corridor
is governed by vtraversal. However, the expansion properties (across the corri-
dor width) are governed by a temperature parameter T , which determines the
expected kinetic theory speed [9]:

〈vkt〉 =
1
4

√
8πkT

m
(5)

where k is Boltzmann’s constant. Note that 〈vkt〉 is an emergent property of
the system – each robot can continually change its velocity, based on “virtual”
robot/robot, robot/obstacle, and robot/corridor collisions. The net effect is to
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Fig. 4. These three figures depict a sweep of a swarm of robots from the top of a
corridor to the bottom.

provide a stochastic component to each robot, while maintaining predictable col-
lective behavior. The resultant velocity of each robot depends on both vtraversal

and 〈vkt〉. In other words, although the speed of the swarm is predictable, the
individual robot velocities are not. This is especially valuable for stealthy surveil-
lance.

Figure 4 illustrates the compromise between traversal speed and the quality of
the sweep, providing effective coverage in reasonable time, with the exception of
small gaps behind the obstacles. Numerous experiments with different corridors
confirm this effectiveness in simulation [10].

3.2 Results with Robots

The current focus of this project is the physical embodiment of AP on a team
of robots.

For our experiments, we built seven robots. The “head” of each robot is a
sensor platform used to detect other robots in the vicinity. For distance infor-
mation we use Sharp GP2D12 IR sensors. The head is mounted horizontally on
a servo motor. With 180◦ of servo motion, and two Sharp sensors mounted on
opposite sides, the head provides a simple “vision” system with a 360◦ view.
After a 360◦ scan, object detection is performed. A first derivative filter detects
object boundaries, even under conditions of partial occlusion. Width filters are
used to ignore narrow and wide objects. This algorithm detects nearby robots,
producing a “robot” list that gives the bearing/distance of neighboring robots.

Once sensing and object detection are complete, the AP algorithm computes
the virtual force felt by that robot. In response, the robot turns and moves to
some position. This “cycle” of sensing, computation and motion continues until
we shut down the robots or they run out of power. Figure 5 shows the AP code.
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void ap() {

int theta, index = 0;

float r, F, fx, fy, sum_fx = 0.0, sum_fy = 0.0;

float vx, vy, delta_vx, delta_vy, delta_x, delta_y;

vx = vy = 0.0; // Full friction.

// Row i of robots[][] is for the ith robot located.

// Column 0/1 has the bearing/range to that robot.

while ((robots[index][0] != -1)) { // For all neighboring robots do:

theta = robots[index][0]; // get the robot bearing

r = robots[index][1]; // and distance.

if (r > 1.5 * R) F = 0.0; // If robot too far, ignore it.

else {

F = G / (r * r); // Force law, with p = 2.

if (F > F_MAX) F = F_MAX;

if (r < R) F = -F; // Has effect of negating force vector.

}

fx = F * cos(theta); // Compute x component of force.

fy = F * sin(theta); // Compute y component of force.

sum_fx += fx; // Sum x components of force.

sum_fy += fy; // Sum y components of force.

index++;

}

delta_vx = delta_T*sum_fx; // Change in x component of velocity.

delta_vy = delta_T*sum_fy; // Change in y component of velocity.

vx = vx + delta_vx; // New x component of velocity.

vy = vy + delta_vy; // New y component of velocity.

delta_x = delta_T*vx; // Change in x component of position.

delta_y = delta_T*vy; // Change in y component of position.

// Distance to move.

distance = (int)sqrt(delta_x*delta_x + delta_y*delta_y);

// Bearing of movement.

turn = (int)(atan2(delta_y, delta_x));

// Turn robot in minimal direction.

if (delta_x < 0.0) turn += 180; }

Fig. 5. The main AP code, which takes as input a robot neighbor list (with distance
and bearing information) and outputs a vector of motion.

It takes a robot neighbor list as input, and outputs the vector of motion in terms
of a turn and distance to move.

To evaluate performance we ran two experiments. The objective of the first
experiment was to form a hexagon. The desired distance R between robots was
23 inches. Using the theory, we chose a G of 270 (p = 2 and Fmax = 1). The
beginning configuration was random. The results were very consistent, producing
a good quality hexagon ten times in a row and taking approximately seven cycles
on average. A cycle takes about 25 seconds to perform, almost all of which is
devoted to the scan of the environment. The AP algorithm itself is extremely fast.
A new localization technology that we are developing will be much faster and
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Fig. 6. Seven robots self-organize into a hexagonal formation, which then successfully
moves towards a light source (a window, not the reflection of the window). Pictures
taken at the initial conditions, at two minutes, fifteen minutes, and thirty minutes.

will replace the current scan technique. For all runs the robots were separated
by 20.5 to 26 inches in the final formation, which is only slightly more error than
the sensor error.

The objective of the second experiment was to form a hexagon and then move
in formation to a goal. For this experiment, we placed four photo-diode light
sensors on each robot, one per side. These produced an additional force vector,
moving the robots towards a light source (a window). The magnitude of the goal
force must be less than

√
3G/Rp for cohesion of the formation to be maintained

[11]. The results, shown in Figure 6, were consistent over ten runs, achieving
an accuracy comparable to the formation experiment above. The robots moved
about one foot in 13 cycles of the AP algorithm.

In conclusion, the ability to set system parameters from theory greatly en-
hances our ability to generate correct robotic swarm behavior.

4 Discussion and Outlook

This paper has summarized our framework for distributed control of swarms of
robots in sensor networks, based on laws of artificial physics (AP). The moti-
vation for this approach is that natural laws of physics satisfy the requirements
of distributed control, namely, self-organization, fault-tolerance, and self-repair.
The results have been quite encouraging. We illustrated how AP can self-organize
hexagonal and square lattices. Results showing fault-tolerance and self-repair are
in [1]. We have also summarized simulation results with dynamic multi-agent be-
haviors such as obstacle avoidance, surveillance, and sweeping. This paper also
outlines several physics-based analyses of AP, focusing on potential energy, force
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balance equations, and kinetic theory. These analyses provide a predictive tech-
nique for setting parameters in the robotic systems. Finally, we have shown AP
on a team of seven mobile robots.

We consider AP to be one level of a more complex control architecture.
The lowest level controls the movement of the robots. AP is at the next higher
level, providing “way points” for the robots, as well as providing simple repair
mechanisms. Our goal is to put as much behavior as possible into this level, in
order to provide the ability to generate laws governing important parameters.
However, levels above AP are needed to solve more complex tasks requiring
planning, learning, and global information [12].

5 Future Work

Currently, we are improving our mechanism for robot localization. This work is
an extension of Navarro-Serment et. al. [13], using a combination of RF with
acoustic pulses to perform trilateration. This will distinguish robots from ob-
stacles in a straightforward fashion, and will be much faster than our current
“scan” technique.

We also plan to address the topic of optimality, if needed. It is well understood
that potential field (PF) approaches can yield sub-optimal solutions. Since AP is
similar to PF, similar problems arise with AP. Our experience thus far indicates
that this is not a crucial concern, especially for the tasks that we have examined.
However, if optimality is required we can apply new results from control theory
to design force laws that guarantee optimality [14, 15]. Although oscillations of
the formations do not occur, excess movement of the robots can occur due the
fact that the force law F = Gmimj/rp is not zero at the desired separation
distance R. Current work using an alternative force law based on the Lennard-
Jones potential, where the magnitude of the force is negligible at the desired
separation, greatly minimizes this motion.

From a theoretical standpoint, we plan to formally analyze other important
aspects of AP systems. This analysis will be more dynamic (e.g., kinetic theory)
than the analysis presented here. We also intend to expand the repertoire of
formations, both static and dynamic. For example, initial progress has been
made on developing static and dynamic linear formations. Many other formations
are possible within the AP framework. Using evolutionary algorithms to create
desired force laws is one intriguing possibility that we are currently investigating.
We summarize one preliminary experiment here.

5.1 Evolving Force Laws for Surveillance

This task consists of an environment with areas of forest and non-forest. The goal
is for a swarm of MAVs to locate tanks on the ground. Tanks are hidden from the
MAVs if they are in the forest. Each MAV has a target sensor with a small field
of view for locating the tanks (with probability of detection Pd), and a foliage
sensor with a larger field of view for detecting forest below it. The environment
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is shown in Figure 7 with three MAVs. The smallest circle represents the target
sensor. The next largest circle represents the foliage field of view. Each MAV
acts as if it were contained in a “bubble” that has a certain radius (depicted as
the outer circle). If the bubbles of two MAVs are separated from each other, the
MAVs are attracted to one another. If the bubbles overlap, they are repelled.
The optimum MAV separation occurs when the bubbles touch.

Fig. 7. The surveillance environment, showing areas of forest, three MAVs, and 100
tanks. The triangle represents a tank that has not yet been seen but is visible, the +
represents a tank that has been seen and is visible, the × represents a hidden tank
that has not been seen, and the | represents a tank that is currently hidden but has
been previously seen.

A genetic algorithm is used to find the optimum bubble radius, as well as the
G, p, and Fmax parameters of the force law. We generated one environment with
100 tanks, 25% forest coverage, 20 MAVs, and Pd = 1. The GA fitness function
was the percentage of tanks seen within 3000 time steps. In this “training” phase
the GA was used to evolve a force law, that when used by all MAVs, created
perfect coverage (all tanks were seen).

Testing consisted of generating other environments and performing ablation
studies. First, nine other environments were created with the same parameter
settings. The MAVs had no difficulty finding all tanks. Next, the percentage of
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foliage was systematically changed from 0% to 90% in increments of 10%. In all
cases the MAVs found all tanks. Finally, two ablation studies were performed.
First, the number of MAVs was reduced from 20, to 15, to 10, and then to 5.
The results were quite robust; performance only suffered when the number of
agents was reduced to 5. Second, we also lowered the probability of detection Pd

from 1.0, to 0.75, to 0.5, and then to 0.25. Again, the results were quite robust,
showing negligible performance drops (see Figure 8).

In summary, the results are extremely promising. Using only one training
environment, the GA evolved a force law that showed surprising generality over
changes in the environment, the number of MAVs, and the quality of the target
detection sensor.
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Fig. 8. The number of tanks found as the number of MAVs is reduced (left graph).
The number of tanks found as the probability of detection (Pd) of the target sensor is
reduced (right graph). The number of visible tanks is 73.

6 Related Work

Most of the swarm literature can be subdivided into swarm intelligence, behavior-
based, rule-based, control-theoretic and physics-based techniques. Swarm intelli-
gence techniques are ethologically motivated and have had excellent success with
foraging, task allocation, and division of labor problems [16]. In Beni et. al. [17,
18], a swarm distribution is determined via a system of linear equations de-
scribing difference equations with periodic boundary conditions. Behavior-based
approaches [19–22] are also very popular. They derive vector information in a
fashion similar to AP. Furthermore, particular behaviors such as “aggregation”
and “dispersion” are similar to the attractive and repulsive forces in AP. Both
behavior-based and rule-based (e.g., [23]) systems have proved quite successful
in demonstrating a variety of behaviors in a heuristic manner. Behavior-based
and rule-based techniques do not make use of potential fields or forces. Instead,
they deal directly with velocity vectors and heuristics for changing those vectors
(although the term “potential field” is often used in the behavior-based litera-
ture, it generally refers to a field that differs from the strict Newtonian physics
definition). Control-theoretic approaches have also been applied effectively [14].
Our approach does not make the assumption of having leaders and followers [24].



96 William M. Spears et al.

One of the earliest physics-based techniques is the potential fields (PF) ap-
proach (e.g., [8]). Most of the PF literature deals with a small number of robots
(typically just one) that navigate through a field of obstacles to get to a target
location. The environment, rather than the agents, exert forces. Obstacles exert
repulsive forces, while goals exert attractive forces. Recently, Howard et al. [2]
and Vail and Veloso [25] extended PF to include inter-agent repulsive forces –
for the purpose of achieving coverage. Although this work was developed inde-
pendently of AP, it affirms the feasibility of a physics force-based approach. The
social potential fields [26] framework by Reif and Wang is highly related to AP,
in that they rely on a force-law simulation similar to our own. We plan to merge
their approach with ours.
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Abstract. The purpose of this work is to enable an array of mobile sen-
sors to autonomously arrange themselves into a regularly spaced lattice
formation such that they may collectively be used as an effective phased-
array sensor. Existing approaches to this problem encounter issues with
local minima which allow the formation of lattice patterns that are locally
regular but have discontinuities or defects that would be undesirable in
a narrow-band beamforming application. By exploiting a common refer-
ence orientation, such as might be obtained from a magnetic compass,
we have been able to create control laws that operate on orthogonal axes
and thereby minimize the occurrence of local minima. The result is that
we can now form lattice patterns with greater uniformity over extended
distances, with significantly less energy or movement per robot. Despite
the need for a shared directional reference, our methods are also robust
to significant error in the reference readings.

1 Introduction

Distributed sensor arrays have featured prominently in recent years. With the
decreasing sensor prices, and the availability of inexpensive wireless networking
hardware, many envision massively parallel sensor arrays distributed over large
areas, but a significant impediment to this vision is how to distribute the sensors.
Some researchers have proposed simply dropping them from airplanes, or other
airborne vehicles, letting the sensors lay wherever they land [1]. Still others have
placed the sensors on robot platforms and used control strategies to optimize
coverage area by a team of mobile robots [2]. Either strategy results in an irreg-
ular sensor distribution. However, if the incoming signal properties are known,
then a regular, or narrow band, sensor configuration may improve the array’s
global performance. In this work, we propose a control strategy for constructing
such a regular array using a team of mobile robots with only local information.

A regular pattern, also called regular planar tiling in graphics, is a pattern
constructed of only one type of regular polygon. Only triangles, squares and
hexagons can be used to construct a regular pattern. For our sensor array, we
focused on square and/or rectangular arrays. This is because receivers aligned
in space can be used to accurately reconstruct wavelengths related to the phys-
ical spacing. If a user can specify the properties of the incoming signal, then a
dynamic array could configure itself to better recover the signal.

E. Şahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 98–111, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Starting from a random initial position (left) a regularly spaced square array
is formed (right).

A square array can be decomposed into two perpendicular sets of equally
spaced lines. Similarly, the problem of moving initially randomly spaced robots
into a regular pattern can be broken into two parts, or behaviors. Start by
specifying the desired orientation of one set of lines (the primary axis). Then
a group of mobile robots can use the detected positions of their neighbors and
an onboard compass to autonomously construct a formation consisting of a set
of parallel lines in the direction of the primary axis. Let us call this a primary
axis line force. To form a rectangular array, a secondary axis line force is applied
in the perpendicular direction. Figure 1 demonstrates a rectangular array being
created from an initially random configuration.

When combining forces in reactive systems, most local minima occur due to
two or more behaviors having sometimes opposing goals. In the array forma-
tion problem, this type of local minima can be resolved by projecting each line
force behavior only into a single perpendicular dimension. Thus, behaviors op-
erating in perpendicular dimensions have no direct interaction with each other.
Platt et. al. [3] called this casting control laws into each other’s null-spaces, and
demonstrated that by doing so, the conflicts between different objectives can
be minimized. By minimizing such conflicts in the array-formation problem, we
demonstrate how arrays can be formed faster and with less energy.

2 Related Work

Several works in recent years have looked at the problem of pattern formation
using a group of mobile robots. Balch and Hybinette [4] demonstrated how some
patterns do not require much information to maintain. Robots can hold a sym-
metric formation such as a diamond, line, or squares by generating an attraction
force to the nearest recognized location within the formation. Fredslund and
Mataric [5] extended this work by not only maintaining but constructing for-
mations from initially random positions, using small numbers of robots. With
unique recognizable ID tags on each robot, they can arrange themselves into
concave formations about a leader.

Suzuki and Yamashita [6] looked at using groups of robots starting in initially
random positions, and forming specific large formations. The types of formations
constructed vary, as their exact shapes and positions are specified by an external
user. Robots first use movement to align their X-Y coordinate systems then they
can move to fill in vacant positions in the geometric design. Flocchini et. al. [7]
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extended the algorithm to use a compass instead of manually aligning coordinate
systems.

Spears and Spears [8] at the University of Wyoming constructed arrays of
robots, from a behavioral perspective, specifically using a local artificial gravity
force to build regular formations with consistent internal structure. Robots are
either repulsed or attracted to their neighbors by a gravity force F=G/R2, where
the force is negative if R < threshold. The threshold variable is the desired
spacing between robots. If all robots try to put themselves evenly between all
neighbors, they would form a triangular lattice. The work also was extended
to square lattices. Robots were allowed to choose virtual spins that could be
recognized by their neighbors. Opposite spins applied different forces on each
other than similar spins, forming a square lattice with similar spins along the
diagonals.

The Artificial Physics method produces a large number of local minima,
especially those of two robots vying for the same position. One reason is that
robots only use purely local information when calculating forces, discarding the
effects of robots greater than 1.5*R away from the robot. A second reason is
that that the sum of the forces applied by surrounding robots on a robot in
the middle of the array, serve to lock a robot in position, making it unable to
move away from a bad configuration. At least two solutions were proposed. The
first was to add noise to robots in a bad location, which helps remove global
errors from the array but leaves a number of local minima. A further solution
was suggested that gives each robot a unique ID and then allow the robots to
perform a sorting application, but this requires a pre-specified position for each
robot in the array.

3 Algorithm

Like the artificial physics model, this work uses simple locally applied behaviors
to construct regular square lattices. Our methods are based on the idea of cre-
ating an ordered set of separable controllers such that subordinate controllers
operate in the null-space of their superior controllers. The key to following the
null-space criterion is to create a separation of control laws such that a sub-
ordinate controller cannot produce any action that moves against the objective
functions of its superior controllers. We were able to accomplish this by establish-
ing controllers that operate on orthogonal axes. Specifically, a primary control
law operates so as to establish parallel lines of robots with an appropriate spacing
between lines. Then, a secondary controller operates to establish proper spacing
along each line. We found that this secondary controller can actually be the same
line-forming controller as the primary controller, since its actions are limited to
an axis orthogonal to the primary controller.

In addition to the array formation behaviors, an avoid obstacles behavior is
utilized to avoid contact between robots or with environmental obstacles.

3.1 Line Force Behavior
The basic concept behind the line-force behavior is that each robot places an
imaginary array of parallel lines over itself, oriented along the direction of a
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Fig. 2. Array lines are centered about the target robot (solid). Other robots generate
forces on the target robot relative to their distance from the array lines.

user-specified axis as shown in Figure 2. An onboard compass maintains the
direction of the array axis relative to the robot’s local reference frame. Force
vectors are then generated for each detected robot based on its distance to the
nearest line of the imaginary array. Notice that the resulting forces in this figure
are all perpendicular to the specified axis. The sum of these force vectors is
then determined, ignoring the moment about the center, yielding a net force
vector perpendicular to the specified axis. Below are the series of steps taken to
compute the line force.

1. Generate a list of all other team members and classify which line each neigh-
boring robot should be located on. I.e. if they are on the same line as the
target robot (the robot running the line force behavior), then they are on
line 0. If on an immediately adjacent line, then they are on line 1.
– β = desired spacing between parallel lines [meters]
– α = current heading minus desired alignment [radians]
– Vi = vector towards the ith robot [V θ

i , V ρ
i ]

– dθi = V θ
i − α

whichline = round(
V ρ

i sin(dθi)
β

)

2. If the detected robot is too close to the target, generate a repelling vector
from that robot, and otherwise generate an attractive vector toward that
robot.

disti = |whichlinei ∗ β

sin(dθi)
|

3. Sum the resulting vectors.

vector output =
∑

(
V ρ

i − disti
disti

, V θ
i )

4. Return only the component of vector output perpendicular to α.

The Line-Force behavior still suffers from local minima when multiple robots
are vying for the same position on the lines. This can result either in contention
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between two robots, or the formation of new lines with incorrect spacing. Both
happen more frequently when robots are initialized closer together. The solution
is to increase the strength of the avoid obstacles force used in the controller,
which separates the robots out to approximately the desired spacing.

3.2 Hypothesis Generation

A significant variant to the basic line-force method has been developed by as-
suming that array lines may not be centered on the target robot, but instead
that neighboring robots might already form a suitable set of lines and the target
robot must move onto the nearest of those lines. Instead of building vectors that
would place neighboring robots on the line running through the target, we first
identify the “best” array that fits the local neighbors, and then drive the target
robot toward that array. The trick now is determining the target robot’s offset
to that “best” array.

The hypothesis generation (HypGen) method solves this problem by treating
each neighbor as a member of a hypothetical set of lines, or hypothesis. Moving
the target robot into formation is just a vector to the nearest parallel line in the
hypothesis. Since every vector is in the same direction (with positive/negative
magnitudes), each hypothesis can actually be represented as a single real mag-
nitude. To choose the “best” hypothesis, we treat each magnitude as the center
of a Gaussian distribution with unit standard deviation. If we were to sum the
Gaussians, then the point with the highest sum should point to the average
magnitude between the hypotheses. Instead, we want the robot to choose just
one hypothesis and move. To do that, we first score each hypothesis by summing
up all of the Gaussians at that magnitude and choose the hypothesis with the
highest score. This will be the hypothesis we use for getting the robot into the
desired formation.

The second step in Hypothesis-Generation is to generate a force from the
target robot to the nearest hypothetical line. The final step is to generate an
adjustment force that indicates how the selected hypothesis should be adjusted
to better fit with the remaining robots. This second force is computed using the
standard line-force algorithm described in the previous section. The two forces
are then summed together as the output of the HypGen behavior. This drives the
target robot toward the adjusted line. When all robots perform this behavior,
they line up along the axis determined by the compass.

1. Generate a hypothesis for every detected neighboring robot. A hypothesis is
represented by a magnitude along the line perpendicular to the hypothetical
lines.
– Hi = hypothesis, given Vi

li = round(
V ρ

i sin(dθi)
β

)

Hi = V ρ
i sin(dθi) − li ∗ β
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Fig. 3. (left) Behavioral controller for robots using the HypGen behaviors. (right) A
type of local minima which can occur when using HypGen.

2. Score each hypothesis. Let ηi be a normal distribution centered at Hi with
σ = 1. Then ηi(x) is normal distribution ηi sampled at x.

scorei =
n∑

k−1

ηk(Hi)

3. Choose the hypothesis with highest score (HS)
4. Generate a vector towards the chosen hypothesis (VH)
5. Run the normal lineForce algorithm, adjusting whichlinei as follows, adding

the result of the normal LineForce behavior to VH

whichlinei = round(
V ρ

i sin(dθi) − HS

β
)

For the best performance in constructing a regular array, an additional force is
needed to first separate the robots along the secondary axis. Unlike the Line-
Force behavior, the force is needed only along the secondary axis and is not used
all of the time. The controller for this design can be seen in Figure 3(left). A
simple threshold on the magnitude of the space robots force determines when
the secondary HypGen behavior is suppressed.

4 Comparative Performance

In this section, we compare a number of array construction algorithms, including
our own and the artificial physics method. All of the methods tested assumed a
set of 30 robots, with a sensor range of 1.75 times the desired spacing between
the robots. For initial placement, 100 different starting positions were created
randomly. Tests were run in simulation, allowing 5000 time-steps for each start-
ing position using the Team-Bots simulation environment. Results were then
averaged over all starting positions.

4.1 Performance Metrics

Two performance metrics were used to evaluate the most important aspects of
robotic array construction: resulting global formation error, and average energy
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consumption. The global formation error was determined by fitting a perfect
grid to the positions of the robots in the last time step, then using Least Mean
Squares to determine the error in the grid. We normalized this measure by
averaging least mean squares error for a set of random arrays and expressing
errors as a percentage of this average.

Energy consumption was evaluated as the average distance each robot trav-
eled over the fixed time period of the simulation. This metric is critical for
performance, because movement by the sensor robots equates directly to energy
consumption. If an algorithm with low global formation error also requires a lot
of movement, then it is not economically feasible to implement on real robots.

4.2 Methods Tested

To evaluate the effectiveness of the Line-Force and Hypothesis-Generation al-
gorithms, we compared them to a variety of other array formation methods.
This includes a simple dispersion model using an avoidance behavior, a behav-
ior based implementation of the artificial physics model [8], and a basic spring
model for array formation. For the spring model in this test, virtual springs are
attached to the 4 neighboring robots that are closest to the locations that would
be found in an ideal square lattice.

Because none of these alternative methods incorporate any concept of steer-
ing the array, we assumed that orienting the array to the user’s specifications
would have to be done after the array construction was completed. Further-
more, we evaluated the performance without re-orienting the array so as not to
introduce any additional error.

None of the methods tested could remove all local minima from the resulting
array. For this reason, we also include some additional strategies for removing
them. The simplest is to introduce a weak noise behavior to the summation. A
better solution is to add a noise vector whose magnitude is dependent upon the
ratio of the magnitude of component force vectors and the sum of those vectors
at each local node. Nodes where this ratio is high are usually at the center of a
defect. Causing these nodes to include more random movement typically helps
remove the defect. We call this strategy “local annealing.”

The Hypothesis-Generation behaviors also result in a particular type of local
minima, seen in Figure 3(right). Robots on the same line are in contention for the
same spot in the array, skewing the entire line. Out of 100 tests, the Hypothesis-
Generation behavior with no noise resulted in 24 out of place lines. A fix for this
solution was to use a variant on the spin idea introduced in the Artificial Physics
method. After 1000 time-steps, robots probabilistically change their spin state if
robots on the same line are of different spins or if robots on neighboring lines are
the same spin. This causes most robots on the same line to have the same spin
state and robots on alternating lines to have opposite spin states. Depending on
the spin state, a weak vector forward or backward along the primary axis is added
to the summation controller. If no error exists, then the force is weak enough
that the robots do not move. However, if an error in the array does exist, then
this technique adds noise in the vicinity of the error and the line corrects itself.
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4.3 Results

The Line-Force behaviors produced a similar amount of formation error as the
Artificial Physics method, with as much as 104 times less distance moved by each
robot (see Figure 4). In practice, a simple threshold could be used to reduce the
amount of movement using artificial physics, but it might also increase the aver-
age formation error. In comparison, the line-force method required only 3 times
as much movement on average as the basic dispersion method. Furthermore, by
adding a small noise vector to the Line-Force controller we could reduce the for-
mation error to 7% of random, better than springs with local annealing, which
had the lowest formation error of any non-LineFormation based method.

Hypothesis-Generation methods showed the greatest ability to reduce for-
mation error. Although the basic HypGen behavior required 10 times as much

Fig. 4. Comparative performance between different methods. The prior best method by
Spears and Gordon, is displayed in the center, while our best, Hypothesis Generation,
is on the far right. The line formation methods in general required orders of magnitude
less energy to form arrays with similar or less formation error.

Method Formation Error Energy
(% of Random) (Distance Moved)

Random 100 -
Avoidance Force(Dispersion) 79 0.76

Springs 77 1.6x105
Springs with Local Annealing 9 1.1x105

Artificial Physics 18 6.3x104
Artificial Physics with Noise 15 6.1x104

Line-Force 19 2.6
Line-Force with Noise 7 31.61

Line-Force with Extended Range 6 1.3
Hypothesis-Generation 3 24.53
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Fig. 5. Formation Error in the array over time. The LineForce behavior converges to
a stable array much faster than either the physics or springs based methods.

movement on average as the basic Line-Force, the average formation error was
only 3% of random, much better than the best Line-Force controller. Further-
more, all of the errors in arrays constructed by the HypGen controller were of
the same type, a shifting of one line of the array. By using the spin-flip method
to repair this error, the formation error nearly goes to zero. Out of 100 tests,
only one robot in one test was out of place. Removing this type of local minima
early on means that the robots settle into a stable array quickly and the average
distance required for formation is cut by 1/3.

Figure 5 demonstrates why the Line-Force algorithm uses so much less move-
ment to form the array. The Line-Force algorithms converge toward the minimum
much faster than either the springs method, or the artificial physics method.
While the alternative methods are working out local minima through a lot of
local movement, the line-force methods move quickly into formation in the be-
ginning and stop.

5 Sensor Noise

The Line-Force and Hypothesis Generation algorithms both depend on the re-
liability of two sensors for success. The first sensor is a compass, which allows
each robot to align with a user-specified axis. The second sensor is a relative
localization sensor, for finding other robots in the domain. The validity of any
error results depends heavily on the sensitivity of these algorithms to noise in
this sensor data. The following set of tests was designed to explore the robustness
of the algorithms with that purpose in mind.

All of the tests in this section were performed with 30 simulated robots using
just the Line-Force algorithm. The robots had 2.75 unit sensor range, where 1
unit is the desired spacing between robots in formation. Unless otherwise stated,
each sample point is the mean result over 10 different initial configurations.
Finally, all graphs were smoothed with an averaging filter of window size 3.
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5.1 Compass Error

Two types of noise in the compass measurements were explored: gaussian noise
in the readings, and delayed measurements due to time lag. Although most noise
in robot-mounted compass readings are due to environmental effects, such as the
robot itself, or large pieces of nearby metal, these types of errors are systematic
and can often be corrected or filtered. Our modeling noise as gaussian lets us
explore how the system reacts to unpredictable compass noise. Furthermore, a
common solution for environmental noise is to add large window filters which
add significant time-delay to the system; a second type of noise that we explore.

The change in formation error vs compass error is seen in Figure 6(top). In
both charts, the formation error actually improves with small amounts of noise,
as a little randomness helps the system work out remaining local minima. In the
case of gaussian noise, the system actually improves up to a standard deviation
of 0.1 radians. With time lag, this distributed system is very resilient. It handles
up to 6 time-steps of time lag before performance significantly degrades.

5.2 Localization Error

Accurate tracking of neighboring robots is a tough problem, and the resulting
error is highly dependent on the sensors used. To explore the relative localiza-
tion problem, we split the problem into two aspects: distance and angle. Fig-
ure 6 shows the change in formation error for each of these parts. Given that

Fig. 6. [Top]Formation Error vs. Compass error, assuming gaussian noise(left) and
time lag(right). [Bottom]Formation Error vs Localization Error.
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the desired radius between robots was 2 meters, the distributed system could
handle a standard deviation of roughly 0.4 meters in distance error before the
formation error dramatically increased. This being 20% of the desired distance
between robots, it demonstrates the general robustness of the distributed system
as robots use each other for proper alignment. With angular error, the system
could handle up to 4 radians in standard deviation before seeing the same per-
formance degradation.

All of these tests assume ideal performance from the other sensor, and except
for time lag, also assume error centered around the true value. While the mag-
nitude of the tolerance observed in simulation is not likely to be the same in the
real implementation, these tests indicate that the system can handle reasonable
amounts of error in its sensors. Furthermore, these tests provide guidelines for
a real implementation by illustrating how strongly different forms of error alter
array performance.

6 Beyond Square Arrays

In this section we focus on how to extend the basic Line-Force algorithm to other
types of arrays. We build arrays in the presence of environmental obstacles, con-
struct more general rectangular arrays, and vary the intersecting angle between
forces to build skewed arrays.

6.1 Environmental Obstacles

Obstacles in the environment are going to always remain a problem for array
deployment. If there are too many obstacles, it will be impossible to form an
array with any degree of regularity. However, if there are only a few obstacles,
then the robots should be able to construct a regular array without deformations
around the obstacle. Figure 7 (left) is an example of the robots using the straight
line force algorithm with an avoid obstacles behavior to build an array around
the obstacles.

Although the robots start close together, as they did with the original array
formation tests, the obstacles force the robots to separate more as they seek
acceptable positions in the array. For the best results, the robots need a higher
sensor range to view robots that have been separated from each other while
avoiding obstacles. With a low sensor range, the robots may create several small
arrays with low local error, but high error across all robots.

6.2 Rectangular Arrays

Rectangular arrays can be created by making two changes to the basic Line-Force
controller:

– Select two different desired radii (β) for horizontal and vertical line forces.
– Using an elliptical instead of circular repulsion zone with the Avoid Robots

primitive. We defined an elliptical repulsion zone as an elliptical sphere of
influence passed into the avoid − static − obstacle primitive, defined in [9].
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Depending on the angle α at which each detected robot was located relative
to the primary axis, an elliptical sphere of influence was defined as:

sphere of influence =

√(
S2

x

cos2(α)
+

S2
y

sin2(α)

)

Where Sx is the maximum sphere of influence along the primary axis, and
Sy is the maximum sphere of influence along the secondary axis. For the
infinite repulsion zone, we maintained a spherical distance about the center
of the robot. Figure 7(Right) demonstrates a rectangular array with some
skew.

6.3 Skewed Arrays

Skewed arrays are created by altering the angle at which the vertical and hor-
izontal line forces operate. Instead of using two orthogonal line forces, one line
force still operates along the desired compass angle, while the second operates
along a direction greater or less than 90◦. For small delta, the two lines will still
form regular planar arrays. Figure 7(Right) demonstrates a skewed rectangular
array where the lines intersect at 75◦.

Fig. 7. (Left)The robots form a regular grid around the obstacles in the environment.
(Right) Changing the distances between line forces creates rectangular arrays. Chang-
ing the angle of intersection creates a skew in the array. The lines are superimposed
on the array to demonstrate the skew.

7 Conclusion

In this paper a distributed algorithm for the formation of regular spaced square
arrays was developed and compared against alternative approaches. It was de-
monstrated that our technique using orthogonal line formation forces required
orders of magnitude less movement to form arrays with similar formation error.
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Furthermore, using the Hypothesis Generation methods, we could reduce the
formation error to 0.1% of random, with a small increase in average movement.

We further demonstrated that the line force methods are robust in the pres-
ence of sensor noise. Testing multiple types of compass and relative formation
error, we demonstrated ranges of sensor noise over which the formation error
remains low. This will help in a hardware implementation when it becomes nec-
essary to select particular sensors that meet the requirements for the algorithm.

Finally, we demonstrated that the line force methods are extendable to ar-
rays other than regular square arrays. Arrays can be formed in the presence of,
and around, environmental obstacles. Line forces can also be used to build rect-
angular arrays by varying the distances between vertical vs. horizontal forces,
and skewed arrays by varying the angle at which the forces intersect. In general,
line forces provide a useful set of methods for constructing a variety of arrays
with a minimum of local minima.
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Appendix: Artificial Physics Implementation

Our implementation of the Artificial Physics model was created to fit into the
same robot controller as the Line-Force methods. The AP behavior outputs
a force vector which is weighted and summed with the vector from an avoid
obstacle behavior. The steps to create the force vector are outlined below.
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1. Generate a list of all other team members, and divide them into categories:
same spin, or opposite spin.

2. For all detected robots (Vi) of an opposite spin from the target robot, calcu-
late the force vector (Ai) exerted on the target. The angle remains the same
for all robots (Aθ

i = V θ
i ). Sum the resulting the forces.

Aρ
i =

⎧⎨
⎩

G

(V ρ
i )2 , if V ρ

i ≥ β

−G

(V ρ
i )2 , V ρ

i < β

Fopposite =
∑
i=1

Ai

G is a gravitational constant set at initialization.
3. For all detected robots (Vi) with the same spin as the target robot, calculate

the magnitude of the force vector (Bi) exerted on the target. The angle
remains the same for all robots (Bθ

i = V θ
i ). Sum the resulting forces.

Bρ
i =

⎧⎨
⎩

2∗G

(V ρ
i )2 , if

V ρ
i√
2
≥ β

−2∗G

(V ρ
i )2 ,

V ρ
i√
2

< β

Fsame =
∑
i=1

Bi

4. Sum the two vector forces (Foutput = Fsame + Fopposite).
5. Switch spins with some small probabability ( 1% ) if any robots of the same

spin have V ρ
i < β.

It is worth noting that in our implementation, we interpreted the ‘force’ vector
as a velocity command whereas in the standard Artificial Physics method, this
vector is treated as an acceleration command.
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Abstract. While techniques exist for simulating swarming behaviors,
these methods usually provide only simplistic navigation and planning
capabilities. In this review, we explore the benefits of integrating road-
map-based path planning methods with flocking techniques to achieve
different behaviors. We show how group behaviors such as exploring can
be facilitated by using dynamic roadmaps (e.g., modifying edge weights)
as an implicit means of communication between flock members. Extend-
ing ideas from cognitive modeling, we embed behavior rules in individual
flock members and in the roadmap. These behavior rules enable the flock
members to modify their actions based on their current location and
state. We propose new techniques for several distinct group behaviors:
homing, exploring (covering and goal searching), passing through narrow
areas and shepherding. We present results that show that our methods
provide significant improvement over methods that utilize purely local
knowledge and moreover, that we achieve performance approaching that
which could be obtained by an ideal method that has complete global
knowledge. Animations of these behaviors can be viewed on our web-
pages.

1 Vision

Coordinating the movement of a swarm of robots plays an important role in
robotics. Although techniques to achieve coordinated movements have attracted
the attention of many researchers, most research has focused on techniques for
modeling individual behaviors of flock members inspired by Reynolds’ boids [1].
Boids exhibit so-called emergent behavior in which characters only react to im-
mediate events. Although, they can be coupled with simple methods for guiding
global flock movement [2], existing methods have difficulty if complex naviga-
tion is required, such as in cities, through crowded rooms, or over rough terrain.
In contrast, path planning algorithms developed in the robotics community are
capable of navigation in complex environments [3]. In particular we note the
roadmap-based methods which construct, usually during preprocessing, a net-
work of representative feasible paths in the environment. While roadmap meth-
ods can efficiently support complex navigation, they have generally not been
customized to support coordinated group behavior.

E. Şahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 112–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Obstacle

Obstacle

Obstacle

(a) (b)

Fig. 1. Roadmaps in navigation: (a) global navigation information can assist coordi-
nated group behaviors, such as flocking or mine sweeping (shown here), in complex
environments, (b) a prm roadmap (C-space).

In this review, we present the benefits of integrating flocking techniques with
roadmap-based path planning methods to achieve different swarming behaviors.
The details of our approach including the related work can be found in [4–7]. We
find that the global navigation information provided by the roadmaps can also
be exploited to support more sophisticated group behaviors than possible using
traditional (local) flocking methods. In particular, we consider several different
behaviors: homing, goal searching, covering, passing through narrow passages
and shepherding. Our new techniques can be applied to an entire flock, to indi-
vidual flock members, or to an external agent that may influence the flock (e.g.,
a sheep dog).

2 The Swarm Robotic Environment/Methodology

In this section, we briefly describe probabilistic roadmap techniques and then
discuss how these techniques can be used for swarming behaviors.

2.1 Probabilistic Roadmap Methods and Flocking Systems

Given a description of the environment and a movable object (the ‘robot’), the
motion planning problem is to find a feasible path that takes the movable object
from a given start to a given goal configuration [3]. Since there is strong evidence
that any complete planner (one that is guaranteed to find a solution, or deter-
mine that none exists) requires time exponential in the number of degrees of
freedom (DOF) of the movable object [3], attention has focused on randomized
or probabilistic methods.

As mentioned in Section 1, our approach utilizes a roadmap encoding rep-
resentative feasible paths in the environment. While noting that our techniques
could use any roadmap, our current implementation is based on the probabilistic
roadmap (prm) approach to motion planning [8]. Briefly, prms work by sampling
points ‘randomly’ from the robot’s configuration space (C-space), and retaining
those that satisfy certain feasibility requirements (e.g., they must correspond
to collision-free configurations of the movable object). Then, these points are
connected to form a graph, or roadmap, using some simple planning method
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to connect ‘nearby’ points. During query processing, the start and goal are con-
nected to the roadmap and a path connecting their connection points is extracted
from the roadmap using standard graph search techniques (see Figure 1(b)).

We use a particular variant of the prm called the Medial-Axis prm, or maprm
[9]. In maprm, instead of generating the nodes uniformly at random in C-space,
they are generated on or near the medial-axis of C-Space. maprm is particularly
well suited to flocking behavior since roadmap nodes tend to maximize clear-
ance from obstacles. Note that although the initial roadmap is found for the
static environment, the roadmap, or a path extracted from it, can be modified
according to dynamic changes in the environment, e.g., a new roadmap could
be built from scratch [10], the existing roadmap can be modified [11–13], or a
path containing collisions (an approximate path) can be modified to fit the new
requirements [14].

Basic flocking systems [1] model simple group behavior by providing individ-
ual members with simple rules that implement separation (to avoid collision with
nearby neighbors), alignment (to move in the same direction as its neighbors)
and coherence (to stay close to neighbors) maneuvers based on the positions and
velocities of the flockmates inside the sensing range. Constraints are satisfied by
generating forces for each rule and applying an integrated force to change the
state of the flock member, e.g., the flock member’s velocity vector updated by
finding the acceleration resulted from the integrated force using the Newtonian
equation F = ma. Our implementation of this is based on particle systems [15].
In the presence of obstacles, force is also generated to push the flock member
away. This basic system can be seen in Figure 2. More complicated behavior is
usually simulated by adding other forces.

2.2 Roadmap-Based Group Behavior

In this section, we show how roadmap-based techniques can be used to achieve
different behaviors. We consider several behaviors: homing, exploring (covering
and goal searching), traversing narrow passages and shepherding. The first two
behaviors influence where the flock goes – reaching a pre-defined goal (homing),
attempting to cover (visit) all reachable areas of the environment (covering)
or search for a goal whose location is not known. The narrow passage behavior
influences how the flock members position themselves relative to each other when
they move through the passage. In the shepherding, an external agent controls
the movement of the flock.

Homing Behavior. Homing behavior is usually simulated by adding an at-
tractive force toward the goal [16]. However, this method may easily be trapped
in a local minimum even in a simple environment. A method commonly used in
computer games requiring motion of a group of objects is a grid-based A∗ search
[17]. In this approach, the environment is discretized to small grid cells and the
search for the flock’s path is based on expanding toward the most promising
neighbor of already visited positions. Although A∗ search finds shortest paths
and it is usually fairly fast, it does have some drawbacks. Of particular note here
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(a) (b) (c)

Fig. 2. Individual member behavior for flocks. (a) Separation: avoid crowding neigh-
bors. (b) Alignment: match velocity of neighbors. (c) Cohesion: stay close to neighbors.
The arrow represents steering direction.

(a) (b) (c)

Fig. 3. Covering an environment. (a) A roadmap is built. (b–c) Robots move to the
roadmap and increase the weights as they move along the edges. At an intersection
the robots select their destination by a probability function based on the edge weights
(edges with small weights are preferred).

(a) (b) (c) (d) (e)

Fig. 4. Ten flock members are searching for an unknown goal. (a) The flock faces a
branch point. (b) Since both edges have the same weight, the flock splits into two
groups. (c) After dead ends are encountered in the lower left and upper right, edge
weights leading to them are decreased. (d) As some members find the goal, edge weights
leading to it are increased. (e) The remaining members reach the goal.

Fig. 5. Passing through a narrow passage using the Follow the Leader behavior
(Algorithm 2.4).

is the necessity of finding a completely new path for each new goal which reduces
efficiency and increases the computation time for complex environments.

In contrast, roadmap-based path planning methods work on a global scale
and once the roadmap is generated, finding new paths is fast and efficient. Once a
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path is found, individual flock members follow the path. The path is partitioned
into a set of subpaths (identified by subgoals) based on the individual flock
member’s sensor range. Each member keeps track of subgoals and as soon as
a subgoal comes within sensory range the next subgoal becomes the steering
direction for the global goal.

With other interacting forces from neighboring flock members and obstacles,
steering toward the subgoal has the lowest priority, so individual members still
move together while moving toward the subgoal. Since the subgoals are usually
away from the obstacles, due to global roadmap, this approach results in a flock-
ing toward the goal and avoids getting trapped in local minima. The homing
behavior is shown in Algorithm 2.1.

Covering the Environment. In this behavior we want some member of our
flock to have covered every location in the environment. We assume we start with
a roadmap covering all relevant portions of the environment and the roadmap
has adaptive edge weights. In this approach, each individual member uses the
roadmap to wander around. Specifically, the flock members follow roadmap edges
and there are no predefined paths. The goal is to have some flock member visit
every edge and vertex of the roadmap (see Figure 3). The edge weights rep-
resent how relevant the edge is to the current task, in this case exploring the
environment. Initially, edges all have weight one. As the flock members traverse
a roadmap edge they increase its weight. This is similar to ant pheromones which
increase as more ants follow the same path. Since our goal is to cover the en-
vironment, the individual flock members are biased toward relatively uncovered
areas of the roadmap. This is achieved by having them select roadmap edges
with smaller weights with some higher probability at the intersections (roadmap
nodes). This algorithm is shown in Algorithm 2.2.

Goal Searching. Our goal searching behavior is similar to ant colony optimiza-
tion (ACO). Although the individual flock members know the environment, they
don’t know the location of the goal. If an individual reaches a location where
the goal is within sensor range, all other members try to reach the goal. Like
the previous case, we implemented this behavior using adaptive roadmap edge
weights. The weight of an edge shows how promising a path segment is. Again,
the member chooses an edge to leave a roadmap node with some probability
based on the edge’s weight. As an individual traverses a path in the roadmap, it
remembers the route it has taken. Then, when it reaches a goal, it increases the
weight of the edges on the route it took. If the individual reaches a roadmap node
without any outgoing connections (i.e., with only one edge) or a node already
contained in the current path (i.e., a cycle), the weight of the edges it followed
will be decreased. This approach is summarized in Algorithm 2.3 and illustrated
in Figure 4.

Narrow Passage Behavior. Sometimes the flock’s behavior depends on the
surrounding environment. For example, different group formations may be used
in relatively open areas than are used when passing through narrow regions. One
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Algorithm 2.1 Homing

1: if (goal is in view range) then
2: set goal as target.
3: else if (target is in view range) then
4: set next subgoal as the target.
5: end if
6: steer toward the target.

Algorithm 2.3 Goal Searching

1: for (each flock member) do
2: if ( goal found) then
3: increase edge weights on path to

goal
4: else if (dead end found) then
5: pop stack until a new branch is

found
6: decrease weight of edge corr. to

popped node
7: else
8: select a neighboring node of the

current node
9: push this node onto the stack

10: end if
11: end for

Algorithm 2.5 Shepherding (for dog)

1: Find a path on roadmap
2: while (goal not reached) do
3: Select the next node on the path as

subgoal
4: while (subgoal not reached) do
5: Move to rear of flock on the far side

of subgoal
6: if (flock separates) then
7: Move the subgroup that is far-

thest from subgoal toward other
subgroups

8: end if
9: end while

10: end while

Algorithm 2.2 Covering the Env.

1: for (each flock member) do
2: while (not all nodes visited)

do
3: if (not in the roadmap)

then
4: move to closest

roadmap node
5: end if
6: if (current node has no

outgoing edge) then
7: pop stack until a new

branch is found
8: else
9: probabilistically pick a

lower-weight edge
10: increase edge weight
11: push this node onto the

stack
12: end if
13: end while
14: end for

Algorithm 2.4 Narrow Passage

1: while (not all flock members
in gathering area) do

2: set individual members’ goal
to gathering area

3: end while
4: set leader to NIL
5: while (there are flock mem-

bers outside passage) do
6: select the closest unselected

member as Current
7: if (Leader is NIL) then
8: set Leader to Current and

set Leader’s goal to next
step in the path

9: else
10: set Current’s goal to Pre-

vious
11: end if
12: set Previous to Current
13: increase neighbor avoidance

threshold
14: end while



118 O. Burçhan Bayazıt, Jyh-Ming Lien, and Nancy M. Amato

(a) (b) (c) (d)

Fig. 6. Shepherding: sheep are represented by large circles and the dog by a small dark
circle. (a) Roadmap, (b) path selected by dog, (c) dog’s steering location, (d) flock is
separated.

nice property of roadmaps is that, the roadmap nodes can be the representa-
tives of different regions of the environment. Hence, different rules or navigation
strategies can be assigned to different nodes and if a flock member reaches a
node, it follows the rules associated with that node.

We employ different rules to pass through a narrow passage. A naive way
to achieve narrow passage traversal by the flock is to use the homing behavior
and to select two nodes as goals, first a node in front of the entrance to the
passage and then a node outside the exit from the passage. One drawback of
this approach is that flock members may bunch up and conflict with each other
as they try to move through the passage.

A follow-the-leader strategy may avoid the congestion problems of the naive
strategy (see Figure 5). In this strategy, we first assemble the flock in front of the
narrow passage, and then select the closest agent to the narrow passage entrance
as the leader. Then, the remaining flock members are arranged into a queue that
follows the leader. Their position in the queue depends on their distance to the
entrance of the narrow corridor. They can be kept from crowding each other by
selecting appropriate values for the repulsive force from other flock members.

Note that different behaviors can be achieved by using a different criterion to
select the next flock member in line 6 of Algorithm 2.4. For example, instead of
selecting the next closest flock member to the narrow passage, one might select
the farthest, which would create a ‘milling around’ effect at the entrance to the
passage.

Shepherding Behavior. In the previous sections we have observed two distinct
class of flocking behaviors. In the first case, the flock members were moving
toward a goal together, i.e., as a flock. The motion was planned for the flock. In
the second case, the flock members were exploring and planning their motions
individually. In a sense, the flock had control of the motion in the first case and
individual flock members had control in the second case. In our third scenario,
neither the flock nor the individuals have control of the motion. Instead, an
outside agent guides or shepherds them. In the simulation shown in Figure 6(a),
the external agent is a dog whose objective is to move the flock of sheep toward
the goal. The only motion control for the flock is to move away from the dog.
A similar implementation has been done in [18] where a robot was programmed
to move geese toward a goal position. We would like to implement a similar
algorithm where a subgoal will be a roadmap node found in the path. Until the
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subgoal is reached, the robot will move toward that goal and then will choose
the next roadmap node on the path as the next subgoal (see Figure 6(b)).

To move the flock toward the goal, the dog steers the flock from behind
(Figure 6(c)). If any subgroup separates from the flock, it is the dog’s job to
move the subgroup back to the flock (Figure 6(d)). Our approach is presented
in Algorithm 2.5. We present an improved shepherding algorithm in [7].

3 Results

In this section we evaluate our roadmap-based techniques for the homing, ex-
ploring, and shepherding behaviors that were described in Section 2. Movies
illustrating the experiments as well as the behaviors in three-dimensional space
with rigid or deformable objects can be found on our webpage
(http://www.cse.wustl.edu/∼bayazit).

Our experiments are designed to compare our roadmap-based techniques with
more traditional approaches for simulating flocking behavior and to study the
improvements possible by incorporating global information about the environ-
ment as encoded in a roadmap.

To study the efficiency of our covering and goal searching techniques, we
also compare our roadmap-based techniques with ‘ideal’ variants which have
complete knowledge of the environment and the current status of the search.
For example, in the goal searching behavior, the location of the goal is known
at all times in the ideal variant. A more through evaluation of our approach can
be found in [4–7] where we presented additional results for narrow passage and
shepherding.

All of our experiments were run on a Linux system with Athlon 1.33 processor
and 256MB memory.

3.1 Homing Behavior

For the homing behavior, our roadmap-based technique is compared with a basic
flocking behavior using a potential field [16] and a grid-based A∗ search behavior.

The environment is a square with sides measuring 420 meters (see Figure 7).
It contains a total of 301 randomly placed obstacles (six types of obstacles are
used). At any given time there is one goal, and when all flock members reach it,
a new goal is randomly generated; this process continues until eight goals have
been generated and reached. The experiment involves 40 flock members, which
are initially placed according to a Gaussian distribution around the center of the
square environment. The simulation is updated every 100 ms.

For the flocking behavior using a potential field, flock members are attracted
towards the current goal. For the grid-based A∗ behavior, a bitmap of the envi-
ronment of 914× 914 cells is constructed; the length of a side of each square cell
is equal to the diameter of a flock member. Cells are classified as free cells and
collision cells. Path to the current goal is found in this bitmap using A∗ search.
For the roadmap-based behavior, the roadmap is built using the maprmmethod
(Section 2.1) to generate 400 roadmap nodes and we attempt to connect each
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Fig. 7. Environment for homing experiments.

node to its 4 nearest neighbors. Path to the current goal is found using this
roadmap.

Table 1 shows that, without global information, only a few flock members
reach the last goal and most are trapped in local minima. On the other hand,
when global navigation information is utilized, either with the grid-based A∗

method or our roadmap-based method, all flock members reach the goal.
In Table 2 we show the time spent searching for paths, the number of local

minima encountered along all paths, and the total time spent escaping from local
minima. This offers some insight into the methods studied, as can be seen more
clearly in Figure 8. Although the flock takes a shorter path with the grid-based
A∗ search than with the roadmap-based method (Figure 8(a)), the flock reaches
the final goal faster with the roadmap-based method (Figure 8(b)). As A∗ search

Table 1. Homing behavior. This table shows how many of the 40 flock members reach
the last goal (8th) within 30 seconds using the basic flocking behavior, the grid-based
A∗ behavior, and the roadmap-based behavior.

Homing behavior: Basic v.s. Roadmap

Method #flockmates reaching the goal

Basic 10

grid-based A∗ 40

roadmap-based 40

Table 2. Homing behavior. This table shows the time for initialization, the average
time to find a path, and the total time spent by all flockmates escaping local minima
if they stuck in a place due to quickly changing forces.

Homing behavior: Roadmap v.s. grid-based A∗

Behavior init find path local minima
Method time time # escape (s)

roadmap-based 0.88 0.652 255 22.99

grid-based A∗ 6.02 5.757 2005 1035.43
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Fig. 8. Homing behavior: (a) The number of flock members reaching goals with respect
to the length of the paths they took. (b) The number of flock members reaching goals
over time. Although the grid-based A∗ behavior finds shorter paths, the flock spends
less time to reach the goals with the roadmap-based behavior.

is known to be fast and to find shortest paths, this example illustrates that our
roadmap-based method indeed is a competitor for grid-based A∗ methods – while
the paths found are a bit longer, they are found faster.

3.2 Covering the Environment

Space covering is tested on the environment shown in Figure 9, which requires
flock members to pass through narrow passages to access undiscovered areas. In
this experiment, we compare basic flocking behavior, roadmap-based behavior,
and an ideal variant of the roadmap-based behavior that has dynamic knowledge
of the undiscovered regions.

The environment (80 × 100) is populated with 16 obstacles (6 types of ob-
stacles) and in total 24% of the environment is occupied by obstacles. 50 flock
members are simulated and states are updated every 100ms. A bitmap is built
to record discovered/undiscovered information. A bitmap cell is discovered when
it is inside the sensory range of any flock member. We set the radius of the sen-
sory circle as 5m. For the roadmap, 120 nodes are sampled and connections are
attempted to each node’s 4 nearest neighbors.

The roadmap-based covering behavior is described in Section 2.2.
The basic behavior uses only local information, and is essentially a random

walk through the environment. It shows that the lack of global knowledge results
in some areas never being discovered, especially those nearly surrounded by
obstacles.

The behavior with perfect knowledge of the undiscovered locations uses the
roadmap to find paths from a flockmate’s current position to the closest unex-
plored spot. Although such knowledge would not be available in this covering
application, this variant gives us an idea of how fast an environment can be
covered in the best case.
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Fig. 9. Covering behavior: the percentage
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As seen in Figure 9, the perfect behavior rapidly covered almost 91% of
the environment in the first 30 seconds. The roadmap-based behavior, using
indirect communication (adaptive edge weights) takes about three times as long
(90 seconds), to reach a similar coverage point of 91.6%. Nevertheless, like the
perfect behavior, the roadmap-based behavior found most reachable areas. In
contrast, the basic flocking behavior had difficulty covering more than 80% of the
environment. However, it is interesting to note that the basic flocking behavior
found more undiscovered areas than the roadmap-based approach in the first 40
seconds; this is due to the basic behavior which tends to bounce around and
discover ‘easy’ areas very quickly.

3.3 Searching for a Goal

In this experiment, the roadmap-based behavior is compared with a simple flock-
ing behavior that has only local information about the environment and no
knowledge of the goal position, and with an ideal variant of the roadmap-based
behavior that has a priori knowledge of the position of the goal. The environment
is the same as that used in the covering experiment.

We are interested in how many flock members reach the goal and how fast
they get there. As previously mentioned, the behavior with complete knowledge
is used to establish a best case (lowerbound) for the simulation efficiency, and the
basic behavior using only local information is used to illustrate the importance
of global knowledge. The results of some experiments are shown in Figure 10.
The flocks using the basic behavior do not discover any goals within 35 seconds,
and in particular, none of the flock members discover the narrow passage out
of the confined region in which they start. Overall, the roadmap-based behavior
is competitive with the ideal roadmap-based behavior – only taking 5 seconds
longer than the method in which the position of the goal is known a priori. In
addition, it is surprising to note that two of the flock members in the roadmap-
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based method reach the goal earlier than any of their flockmates in the ideal
roadmap-based behavior. While we expect the roadmap-based method to con-
tinue to perform well in more complex environments, we expect its efficiency
relative to the ideal method to decline somewhat.

4 Discussion and Outlook

In this paper, we have shown that complex group behaviors can be generated
if some global information of the environment is available. The global knowl-
edge used is a roadmap of the environment. The information it contains, such as
topological information and adaptive edge weights, enables the flock to achieve
behaviors that cannot be modeled with local information alone. Moreover, since
in many cases global knowledge involves high communication costs between indi-
viduals, indirect communication though dynamic updates of the roadmap’s edge
weights provides a less expensive means of obtaining global information.

Our simulation results for the types of behaviors studied show that the per-
formance of the roadmap-based behavior is very close to an ideal behavior that
has complete knowledge. Our future work will focus on shepherding with multi-
ple external agents and searching for moving goals, as in pursuit/evasion games.
We are also working on exploration strategies if the environment is not known
a priori.

5 Related Work

Reynolds’ influential flocking simulation [1] showed that flocking is a dramatic
example of emergent behavior in which global behavior arises from the inter-
action of simple local rules. Each individual member of the flock (boid), has a
simple rule set stating that it should move with its neighbors. This concept has
been used successfully by researchers both in computer graphics and robotics.
Tu and Terzopoulos [19] used flocking behaviors with intention generators to
simulate a school of fish. They also demonstrated shepherding behavior in which
a T-Rex herds raptors out of its territory.

A number of related methods for achieving group behaviors have been pro-
posed. Nishimura and Ikegami [20] used flocking dynamics to investigate col-
lective strategies in a “prey-predator” game model. Ward et al. [21] studied an
evolving sensory controller for producing schooling behavior based on “boids”.
Brogan and Hodgins [22] investigated group behavior with significant dynamics,
such as human-like bicycle riders. Sun et al. [23] achieve swarm behaviors based
on a biological immune system. Balch and Hybinette [24] propose a behavior-
based solution to the robot formation-keeping problem. Fukuda et al. [25] de-
scribe group behavior for a Micro Autonomous Robotics System. Mataric [26]
classifies a basic set of group behaviors which can be used to create more com-
plex behaviors including flocking and herding. Saiwaki et al. [27] use a chaos
model to simulate a moving crowd. An interesting approach by Vaughan et al.
[18] used a robotic external agent to steer a flock of real geese.
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Although there is little research on path planning for flocks, many meth-
ods have been proposed for planning for multiple robots. These methods can
be characterized as centralized or decoupled. Centralized methods consider all
robots as one entity, while decoupled methods first find a path for each robot
independently and then resolve conflicts. In work from Li et al. [28], each group
of crowds is guided by a leader and the paths of the leaders are generated using
a decoupled approach.

The observation of the behavior of ant colonies has inspired the ant colony
optimization (ACO) meta-heuristic for discrete optimization. Dorigo et al. [29]
exploit this ant-like behavior to optimize solutions for several NP-Complete prob-
lems. In our work, the flock’s ability to explore comes from using an ACO-like
approach to adaptively adjust roadmap edge weights.
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Abstract. This review paper sets out to explore the question of how
future complex engineered systems based upon the swarm intelligence
paradigm could be assured for dependability. The paper introduces the
new concept of ‘swarm engineering’: a fusion of dependable systems en-
gineering and swarm intelligence. The paper reviews the disciplines and
processes conventionally employed to assure the dependability of con-
ventional complex (and safety critical) systems in the light of swarm
intelligence research and in so doing tries to map processes of analy-
sis, design and test for safety-critical systems against relevant research
in swarm intelligence. A case study of a swarm robotic system is used
to illustrate this mapping. The paper concludes that while some of the
tools needed to assure a swarm for dependability exist, many do not, and
hence much work needs to be done before dependable swarms become a
reality.

1 Vision

From an engineering standpoint the design of complex distributed systems based
upon swarm intelligence is compellingly attractive but problematical. A distin-
guishing characteristic of distributed systems based upon swarm intelligence is
that they have no hierarchical command and control structure, and hence no
common mode failure point or vulnerability. Typically, individual agents make
decisions autonomously, based upon local sensing and communications [5, 6].
Systems with these characteristics could, potentially, exhibit very high levels of
robustness, in the sense of tolerance to failure of individual agents; much higher
levels of robustness than in complex distributed systems based on traditional
design approaches. However, that robustness comes at a price. Complex sys-
tems with swarm intelligence might be very difficult to control or mediate if
they started to exhibit unexpected behaviours. Such systems would therefore
need to be designed and validated for a high level of assurance that they ex-
hibit intended behaviours and equally importantly do not exhibit unintended
behaviours. It seems reasonable to assert that future engineered systems based
on the swarm intelligence paradigm would need to be subject to processes of
design, analysis and test no less demanding that those we expect for current
complex systems.

E. Şahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 126–142, 2005.
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Some might argue that a ‘dependable swarm’ is an oxymoron; that the swarm
intelligence paradigm is intrinsically unsuitable for application in engineered sys-
tems that require a high level of integrity. The idea that overall desired swarm
behaviours are not explicitly coded anywhere in the system, but are instead an
emergent consequence of the interaction of individual agents with each other and
their environment, might appear to be especially problematical from a depend-
ability perspective. This paper suggests that this is not so: that systems which
employ emergence should, in principle, be no more difficult to validate than
conventional complex systems and, indeed, that some characteristics of swarm
intelligence are highly desirable from a dependability perspective.

The aim of this paper is to explore the question of how future engineered
systems based on the swarm intelligence paradigm might be designed, analysed
and tested for dependability. The paper attempts to do this by the juxtaposition
of two hitherto disconnected disciplines: dependable systems engineering and the
design of multi-agent systems based on the swarm intelligence paradigm (which
we shall term ‘swarm engineering’). This is a big question, a complete answer to
which is well beyond the scope of this paper. The paper instead tries to set out
the important questions for the ongoing study of dependable swarms.

In order to illustrate the questions raised by this paper an example of a
robotic swarm is presented as a case study. The case study is incomplete, since
the tools and disciplines needed to fully validate the system in question do not
exist: that is of course the point of this paper. The case study does, however, help
us to think about the rather abstract issues of dependable systems engineering
with reference to a robotic swarm that could see real-world application within
the near future. This paper proceeds as follows. Section 2 introduces the case
study that will be used throughout the rest of the paper. Section 3 is a review
of current best practice in the field of dependable systems engineering. While
outlining and referencing the processes and methodologies of analysis, design and
test, this section will reflect on what these might mean in practice, for swarm
engineering, with reference to the case study. Section 4 then concludes with a
discussion and outlook, setting out a roadmap of the work that needs to be done
before real-world swarm engineering can become a reality.

2 Case Study: Swarm Containment

As a case study let us consider a swarm robotics approach to physical contain-
ment or encapsulation, as illustrated in figure 1.

Potential applications for such an approach might include a swarm of marine
robots that find and then contain oil pollution or in-vivo nano-bots that seek
and isolate harmful cells in the blood stream (a kind of artificial phagocyte). The
latter application is not so far-fetched when one considers the rate of progress
in the engineering of genetic circuits, see Yokobayashi et al [27].

The emergent encapsulation behaviour of figure 1 is one of a number of emer-
gent properties of a class of algorithms that we have developed, which make use
of local wireless connectivity information alone to achieve swarm aggregation;
see Nembrini et al. [18]. Wireless connectivity (what Støy termed situated com-
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Fig. 1. Emergent encapsulation; (left) encapsulation in progress and (right) encapsu-
lation complete.

munication [24]) is linked to robot motion so that robots within the swarm
are wirelessly ‘glued’ together. This approach has several advantages: firstly the
robots need neither absolute or relative positional information; secondly the
swarm is able to maintain its coherence (i.e. stay together) even in unbounded
space, and thirdly, the connectivity needed for and generated by the algorithm
means that the swarm naturally forms an ad-hoc communications network. Such
a network would be a requirement in many swarm robotics applications. The al-
gorithm requires that connectivity information is transmitted only a single hop.
Each robot broadcasts its ID and the IDs of its immediate neighbours only, and
since the maximum number of neighbours a real robot can have is physically
constrained and the same for a swarm of 100 or 10,000 robots, the algorithm
scales linearly for increasing swarm size. The algorithm thus meets the criteria
for swarm robotics, articulated by Sahin [21] and Beni [3]. We have a highly
robust and scalable swarm of homogeneous and relatively incapable robots with
only local sensing and communication capabilities, in which the required swarm
behaviours are truly emergent. Furthermore we observe flexibility to its environ-
ment in that our wireless connected swarm demonstrates emergent taxis towards
a beacon (which, in this case, is the object to be contained), emergent obstacle
avoidance and emergent beacon encapsulation.

Our algorithms for coherent swarming of wireless networked mobile robots
have been tested extensively in simulation and, rather less extensively, using a
fleet of physical laboratory robots. A group of these robots (‘Linuxbots’) are
shown in figure 2. The real robot implementation does not, however, constitute
a real-world application. It is instead an ‘embodied’ simulation, whose main
purpose is to verify that algorithms tested in computer simulation will transfer
to the real world of non-ideal and noisy sensors and actuators.

3 Dependable Swarm Engineering

Current best practice in assuring the dependability of complex systems requires
that a set of processes and disciplines are transparently applied during system
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Fig. 2. The Linuxbots, used for embodied simulations.

analysis, design and test, see Anderson et al [1]. This paper now considers the
approaches that would typically need to be applied to safety-critical systems
in the context of swarm engineering, under these three headings. Note that
best practice requires that the processes of analysis, design and test are applied
concurrently and iteratively, so the ordering of the following sections should not
be taken to imply sequence.

3.1 Analysis

From a dependability perspective, analysis is concerned with trying to establish
two properties of a system: ‘liveness’ and ‘safety’. Liveness is defined as the
property of exhibiting desirable behaviours (doing the right thing) and safety
is defined as the property of not exhibiting undesirable behaviours (not doing
the wrong thing). While these properties are clearly somewhat complementary
proof of one does not imply proof of the other, by inversion. A system that is
provably safe could, for example, do the wrong thing safely. Although it may
appear counter-intuitive, the methods needed to verify these two properties are
not the same.

Verification of Liveness. Verification of ‘liveness’ requires that we formally
prove that a system exhibits desirable behaviours. Conventionally this requires
analytical or mathematical modelling. In the safety systems community the use
of testing alone to prove liveness is now deprecated on the grounds that sys-
tems are becoming too complex to allow anything like acceptably complete test
coverage, or even to allow complete test specifications to be written. Simula-
tion is similarly regarded as unacceptable as an analysis tool (an interesting
observation given the widespread use of simulation within swarm intelligence
research1). Simulation is nevertheless accepted as a useful tool in prototyping,

1 For a valuable discussion of the role of simulation in embodied systems research see
Ziemke [29].
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to for instance refine the system specification and to understand the design or
parameter space.

Complete verification of the liveness of a swarm system thus requires mathe-
matical modelling at two levels: the individual agent, and the swarm as a whole.

Let Us First Consider the Individual Agent. Often, single artificial agents within
swarms are designed using the behaviour-based control paradigm [7]. Behaviour-
based control is appropriate given that such agents are typically reactive finite-
state machines with relatively few states. We have developed an approach,
based on a second order extension of Lyapunov stability theorems, proving both
marginal and asymptotic stability [11]. The significance of second order stability
is that position control in mobile agents can generally only be achieved through
actuators that generate forces which govern acceleration; the second derivative of
position. Of particular significance is that these new stability theorems provide
an explicit mathematical representation of subsumption. Based on this observa-
tion Harper has developed a design methodology called ‘Direct Lyapunov Design’
which leads from analysis directly to a colony-style behaviour based controller
which is provably stable (in the sense of Lyapunov), and exhibits the liveness
property [12]. In a fixed-priority behaviour-based architecture such as the colony-
style subsumption architecture [9], the transfer functions of behaviour modules
must be partial functions, i.e. which do not generate outputs continuously, in or-
der that lower priority behaviour modules will have a chance to drive the system.
Direct Lyapunov Design allows the construction of behaviour modules as partial
functions and hence their integration into a colony-style subsumption controller.
This approach thus advantageously encompasses both analysis and design.

Case Study: Figure 3 shows the colony-style subsumption controller for a sin-
gle robot in the coherent swarm described in section 2. For simplicity only the
bottom three layers are shown; the beacon-taxis layer is omitted. Notice that
the local neighbourhood connectivity information can be treated as, in effect,
sensory input to the coherence layer. In fact, the coherence layer makes use of
memory to store neighbourhood connectivity, but in modelling the controller as
a subsumption architecture we can treat the memory as part of the connectiv-

Fig. 3. Case study: single robot control architecture.
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ity ‘sensor’. The two behaviours in the coherence layer are ‘U-turn’, executed
when the connectivity-sensor estimates that the robot is leaving the swarm; and
‘Random turn’, executed when the connectivity-sensor estimates that the robot
has regained the swarm (for a description of how these estimates are made refer
to [18]).

As a demonstration of the application of the second order stability theorems
consider the analysis of the avoidance layer module. If we describe the state-space
vector for the avoidance layer as xA(t), and assume the existence of a candidate
Lyapunov function2 VA(x), then the value of that Lyapunov function along the
state trajectories of the avoidance behaviour can be defined as function WA(t)
where

WA(t) ≡ V (xA(t)) (1)

The principle of the method is based on the observation that the first order
asymptotic stability theorem subsumes the second order theorem whenever the
system motion is stable in the first order sense, i.e. whenever the motion is
naturally convergent on the desired goal and ẆA(t) < 0. The second order
asymptotic stability theorem can be used to design stable behaviour even if
ẆA(t) ≥ 0 within limits, as long as the second derivative ẄA(t) is negative and
the motion is decelerating, i.e.

0 ≤ ẆA(t) < Ẇmax ∧ ẄA(t) < Ẅmax < 0 (2)

In order to achieve stable collision avoidance behaviour the transfer function
of the collision avoidance behaviour module needs only to be defined for states
where ẆA(t) ≥ 0, generating outputs (actions) which ensure that ẄA(t) < 0 and
therefore it is a partial function over the state space of the collision avoidance
behavioural domain. Since it is a partial function it can be included within
a fixed-priority subsumption architecture. The same argument would apply to
the coherence layer and the value of the Lyapunov function along the state
trajectory for the coherence behaviour, WC(x). Thus, we are able to move toward
verification of the liveness property for a single robot within our case study.

Now Consider the Mathematical Modelling of the Whole Swarm. There has been
relatively little work in this direction, but one very promising approach is the
probabilistic model developed by Martinoli et al. [19]. In this approach the in-
teractions of agents with each other and their environment are modelled as a
series of stochastic events, with probabilities determined by simple geometrical
analysis. By modelling several series together, one for each agent, the overall
behaviour of the swarm can be studied. The approach of Martinoli et al may be
thought of as bottom up (or microscopic as they describe it). A top down (or
macroscopic) approach has been developed by Lerman and Galystan [14]. Like
Martinoli, Lerman and Galystan regard the behaviour of each agent as inher-
ently probabilistic and Markovian, because their next state is a function only of

2 Which could be as straightforward as the Euclidian distance between x(t) and the
goal state xg(t).
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their current state. However, they develop an overall model of the system using
the stochastic Master Equation (from stochastic dynamical systems), then derive
rate (differential) equations from it, which describe how the average macroscopic
system properties change over time. A review of modelling and analysis methods
for swarm robotic systems is given in Lerman et al. [15].

Case Study: Analysis suggests that mathematical modelling of our swarm con-
tainment case will not yield to the method proposed by Martinoli, et al [19]. We
are able to model the single robot controller as a state transition diagram (see
figure 4), however, because our swarm operates in an unbounded space then ge-
ometrical analysis cannot be used to develop expressions for the state transition
probabilities. In particular transitions between the forward state and the U-
turn or Random-turn states in the coherence behaviour depend on local network
topology. Similarly, we are unable to use the macroscopic approach of Lerman
et al [14] because the individual agents in our case cannot be modelled as simple
Markovian processes; they have memory and their next state may depend on
the recent history of the local network topology.

Verification of Safety. To verify ‘safety’ we need to prove that a system does
not exhibit undesirable behaviours. In order to attempt such a proof first requires
that we identify and articulate all possible undesirable behaviours. This is called
‘hazard analysis’ and is problematical with conventional complex systems; and
there is no reason to suppose that identifying the hazards in swarm engineered
systems will be any different. Hazards analysis is problematical because there are
no formal methods for identifying hazards. It simply has to be done by inspection
(typically by ‘extreme brainstorming’ to try and list all possible hazards no
matter how seemingly implausible or improbable).

Given a reasonably well understood operational environment there are two
reasons for undesirable behaviours: random errors, or systematic (design) errors.
Random errors are those due to hardware or component faults, and these are
typically analysed using techniques such as Failure Mode and Effects Analysis

Fig. 4. Case study: single robot state transition diagram.
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(FMEA). The likelihood that random errors cause undesirable behaviours can
be reduced, in the first instance, by employing high reliability components. But
systems that require high dependability will typically also need to be fault tol-
erant, through redundancy for example. This is an important point since swarm
engineered systems should, in this respect, offer significant advantages over con-
ventional complex systems. Two characteristics of swarms work in our favour
here. Firstly, simple agents with relatively few rules lend themselves to FMEA,
and their simplicity facilitates design for reliability. Secondly, swarms consist of
multiple agents and hence, by definition, exhibit high levels of redundancy and
tolerance to failure of individual agents. Indeed, swarms may go far beyond con-
ventional notions of fault tolerance by exhibiting tolerance to individuals who
actively thwart the overall desired swarm behaviour.

Systematic errors are those aspects of the design that could allow the system
to exhibit undesirable behaviours. For swarm engineered systems analysis of sys-
tematic errors clearly needs to take place at two levels: in the individual agent
and for the swarm as a whole. Analysis of systematic errors in the individual
agent should be helped by the relative simplicity of the agents, but is not trivial.
In general terms we would need to prove that an agent’s state-space trajectory
is always ‘away from’ the hazard states. Following the discussion of section 3.1
we conjecture that the 2nd order Lyapunov approach could be extended to cover
the analysis of hazard states as well as goal states, thus offering the possibility
of verifying liveness and safety with a single analysis, see Appendix A. Analysis
of systematic errors for the swarm as a whole is much more problematical, par-
ticularly if the desired behaviours are emergent. Proof of safety for the overall
swarm would appear to require that we prove that there are no undesired emer-
gent behaviours. How to prove this to an acceptable level of confidence is by no
means clear.

Case Study: A valuable measure of the ‘coherence’ of our swarm is network
connectivity. Within the coherence layer of our single robot controller comparison
of local network connectivity against a threshold determines the estimate of
‘swarm lost’ and hence triggers the U-turn behaviour. Adjusting this threshold
value for the whole swarm controls the network connectivity, and hence area
coverage; a low value of threshold generates a low density swarm with relatively
few wireless connections between individual robots, whereas a high threshold
value generates a dense and highly connected swarm. We have developed, from
graph theory, upper and lower bounds on the area coverage of the swarm, for
given threshold values and swarm sizes. While these bounds are rather loose,
they nevertheless provide valuable confidence that the swarm will not exceed a
given area coverage. Of course, the swarm exceeding a given area is only one
possible ‘hazard’, so our upper bounds analysis provides proof of swarm safety
for just this one identified hazard.

3.2 Design

The design of systems based on the swarm intelligence paradigm is challenging,
not least because there are no principled design approaches for determining the
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behaviours required of the individual agents in order to give the desired emergent
overall swarm behaviour. Indeed, some would argue that a principled approach
to the design of emergence is impossible. This paper is however concerned with
dependability, and there is no reason to suppose that emergent behaviours cannot
form part of a dependable system.

Most complex systems are designed top-down from an overall functional de-
sign specification (FDS), by functional decomposition: breaking down the overall
system into smaller and smaller components, then defining each of those compo-
nents and the interfaces between them. What differentiates design for depend-
able, or safety critical, systems is that it will typically use a structured design
methodology to provide a framework for capturing and documenting the de-
sign as it progresses, top down. The Yourdon structured design methodology,
for instance, is based upon the dataflow paradigm. It starts at the top level by
describing the overall system and its interfaces with its operational environment
as a ‘context diagram’: this is level 0. The context diagram is then decomposed
into level 1 ‘processes’ and the dataflows between them, expressed in a data flow
diagram (DFD). Each process in level 1 is then further decomposed into lower
level DFDs, and so on, see Yourdon [28]. The structured design may well be
applied within the discipline of a document driven approach [13], together with
code inspection [10].

If we consider the applicability, and utility, of the Yourdon structured design
methodology to swarm engineered systems it is clear that, at the top level, we
can express the single swarm and its interfaces with the environment as a context
diagram (level 0). Equally well, we could describe the internal processes of an
individual agent with a data flow diagram (level 2). What is interesting, however,
is how we might express the intermediate level 1 as a DFD. If we assume that
single agents are (a) mobile, and (b) able to sense only their immediate neigh-
bours [18, 25], then the level 1 DFD will reflect the instantaneous topography of
the swarm. After the mobile agents have moved, the DFD must change to reflect
the new swarm topography. This interestingly suggests an extension of the DFD
which we could term the ‘dynamic data flow diagram’.

Case Study: As discussed above we can express the design of our case study
swarm robotic system graphically, as a hierarchy of data flow diagrams. Figure
5 shows the level 1 DFD but, in a departure from standard DFD notation, the
data flows between level 1 processes - which happen to be robots - will change
dynamically as the robots move. The DFD in figure 5 is thus a snapshot of the
relationship between processes, rather than a static map. However, since every
level 1 process (robot) and every dataflow between level 1 processes is identical
then the DFD in figure 5 is simpler than it appears. The value of this approach
is that we can make use of the full structured formalism of Yourdon to capture
the design at both swarm and single robot level.

Figure 6 shows the DFD for a single level 1 process (robot), and its decom-
position into level 2 processes. The ‘behaviour-based control process’ shown in
figure 6 is described as a subsumption architecture in figure 3, and a state tran-
sition diagram in figure 4. When we add specifications for interfaces between
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Fig. 5. Case study: swarm dynamic data flow diagram.

Fig. 6. Case study: single robot data flow diagram.

processes (dataflows) and data structures then we have a complete description
of the design specification for the swarm and its robots. The Direct Lyapunov
Design methodology [12] introduced in section 3.1 provides a design procedure
for formally deriving implementations of individual robot behaviours, as ‘mo-
tor schema’, from the 2nd order Lyapunov stability analysis. The advantage of
motor schema [2] is that they are simple piecewise mapping functions relating
sensor inputs to actuator outputs which could be realised as gate arrays for very
reliable controller hardware.
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3.3 Test

Within the safety critical systems community there is general agreement that
testing, whilst essential, can only provide a limited measure of confidence in the
liveness and safety properties of a system [8]. There are two problems. Firstly,
to write a complete test specification for a complex system is very difficult, and
secondly to achieve 100% test coverage (which means exercising every possible
execution path through control code or state machines under controlled condi-
tions), whilst not technically impossible, is infeasibly time consuming for even
moderately complex systems. Thus even the most safety critical systems in use
today, such as aircraft flight management systems, will have been put through
demanding but ultimately incomplete testing [16]. This is the reason that test-
ing needs to go hand in hand with mathematical modelling, as discussed in 3.1
above.

Typically, a test regime for safety critical systems is split into two parts:
system level functional testing and component level testing. System level testing
is primarily concerned with liveness, and treats the overall system as a black box,
testing only for correct behaviour of the system as a complete entity against a
system test specification. Component level testing breaks the system into its
sub-systems and tests each one individually. Thus component level testing is the
equivalent of system level white box testing.

At component level, sub-systems need to be tested functionally. This nor-
mally requires that test harnesses are created to enable components to be tested
in isolation from the rest of the system. A test harness will set up input con-
ditions for a component that might be extremely difficult to create by treating
the system as an integrated whole. Test coverage can be measured directly in a
process called dynamic analysis, which ‘instruments’ code such that each time it
is executed a tally is kept of the number of times every possible execution path
has been exercised. Dynamic analysis is an iterative (and cumulative) process
in which ever more ingenious new tests are devised (typically by inspection of
the code), in order to exercise those parts of the code revealed to have been not
executed by the testing so far. The process continues until the target level of test
coverage has been achieved. Needless to say dynamic analysis is a difficult and
time consuming process. For completeness static analysis should also be men-
tioned since it often goes hand in hand with dynamic analysis. Static analysis
measures code without actually executing it against coding standards includ-
ing, typically, the McCabe complexity measure to assess the ‘spaghetti-ness’ of
code [20].

If we now consider swarm engineered systems in the light of the discussion
above, it is clear that system level testing needs to apply to the swarm as a
whole, operating in its intended environment, and component level testing ap-
plies, in effect, to an individual agent. The fact that individual agents are often
identical in swarm systems, and relatively simple in functional terms, suggests
that component level testing should not be intractable. This view is, however,
probably illusory, since the ‘environment’ for a single agent is the sum total
of the other (presumably) neighbouring agents and the environment. Complete
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testing of a single agent would require that every possible configuration of neigh-
bours and environment is specified, and repeatable tests devised (the neighbours
plus environment becomes in effect the test harness). There has been little work
in mobile robotics to quantitatively assess the effect of its environment on an
individual robot, but see Schöner et al. [22]; Smithers [23]. The recent paper of
Nehmzow and Walker [17] suggests methods based on dynamical systems theory,
time series analysis and deterministic chaos theory.

The question of how to write a swarm test specification (STS) for the swarm
as a whole might appear to be problematical given that the internal structure
of the swarm is typically highly dynamic and chaotic. However, if we discipline
ourselves to treating the swarm as a single entity then it should be possible to
develop tests for the desired swarm behaviours. These will almost certainly be
statistical, measuring for instance the frequency with which a given behaviour
reaches a quantitative threshold condition of achievement within a given time
frame, over repeated test runs. Thus, developing an STS for a swarm engineered
system is likely to require careful attention to defining criteria for the achieve-
ment of swarm behaviours, including metrics for swarm properties such as mean
swarm velocity, or mean area coverage.

Case Study: Providing the means to repeatably test a real robotic swarm could
well, depending upon the size and form of the robots, present a significant en-
gineering challenge. This requires, in the first instance, an instrumented test
arena in which a representative operational environment can be created so that
the performance of the swarm in achieving its desired behaviours can be observed
and measured. This is itself not straightforward. Of course ultimately the swarm
would also need to be tested in its real operational environment and that could
be an even greater challenge, so let us confine ourselves here to thinking about
the controlled test environment. Figure 7 shows two successive frames from a
test run of our case study swarm. It must be stressed that these robots are not
the real robots of a real-world application of our case study; the setup shown
here is an embodied simulation aimed at providing proof-of-concept confirma-
tion of the basic algorithms. Nevertheless, it will serve to illustrate the tools and
techniques that will be required to test the real swarm.

Figure 7 shows a test of our embodied simulation in progress. Here we are
trying to experimentally verify that the swarm maintains coherence, i.e. stays
together. Note that the seven robots in figure 7 are grouped together by virtue
of their wireless connectivity, not the physical bounds of the experimental arena;
it follows that in our case the arena needs to be large enough with respect to the
coherent swarm to provide it with an effectively unbounded space. The tests of
figure 7 are concerned with, firstly, testing when, how and with what probability
robots become detached from the swarm and, secondly, measuring the swarm
area coverage. Area coverage is indicated by the bounded polygon of figure 7.
The swarm test arena needs to provide the means to (a) motion capture test runs,
(b) track and label individual robots and (c) process the captured test sequences
to identify lost robot events and measure area coverage. The fact that our robots
are equipped with wireless LAN [26] is a distinct advantage here, since it provides
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Fig. 7. Case study: two successive frames from a system level test run (captured by
the overhead camera in the laboratory test arena).

us with, firstly, the ability to be able to command the robots to a given starting
position to initialise each test run and, secondly, the means to obtain continuous
telemetry on each robot’s internal state, connectivity, and odometry. Recording
and time synchronising this data against the motion capture is important since
it provides us with the information to be able to conduct deep analysis of the
progress of test runs. In fact, a test script which automatically initialises each
test run then, at the end of the run, halts the robots and re-initialises them for
the next run, allows us to automate the whole of the swarm test sequence, from
the STS to plots of swarm performance metrics.

If we now consider the problem of conducting component level tests, i.e. tests
on a single robot, we can see that the experimental test environment described
here provides us with the means to verify the correct operation of a single robot
under a very wide range of ‘environmental’ conditions (recall that the test en-
vironment for a single robot is the sum total of its neighbouring robots plus
the external (to the swarm) environment). By collecting data on internal state,
connectivity and odometry for every robot, we can track the progress of a single
robot through the swarm and - for a wide range of local conditions (proximity
and connectivity) - confirm that the control action actually taken by the robot is
the action that would be expected for those particular conditions. The dynamic-
ity of the swarm provides us naturally with a very wide range of ‘test’ conditions
for an individual robot, and by running a simple simulation of a single robot con-
troller we can automate the process of verifying actual against expected control
actions. Thus, in a sense, the single Robot Test Specification (RTS) does not
need to be written (in that every possible test condition does not need to be
written down), nor does it need to be manually executed. The system level test
provides both the tests, and test environment, for the single robot.



Towards Dependable Swarms and a New Discipline of Swarm Engineering 139

4 Discussion and Outlook

This paper has proposed a framework for a new discipline of ‘Swarm Engineer-
ing’. The paper has attempted a juxtaposition of dependable systems engineering
with swarm intelligence and in so doing has tried to map processes of analysis,
design and test for safety-critical systems against relevant work in swarm intel-
ligence research. Perhaps not surprisingly, there is not a great deal of overlap
between the two fields. To the authors’ knowledge there has not been, to date,
a single real-world application of swarm engineering with real physical agents.
Thus no-one has yet had to face the challenge of assuring the dependability of
such a system.

In respect of analysis, this paper has shown that promising mathematical
modelling approaches are emerging for establishing the liveness property, for
both the overall swarm and its constituent robots. These approaches are at
present limited; for the overall swarm, to swarms in which individual robots can
be treated as stochastic Markov processes; and for individual robots in which
the controller can be modelled as a colony-style subsumption architecture. The
more serious weakness, from a dependability perspective, is that no tools exist
for establishing the safety property, that is to determine that a robotic swarm
cannot exhibit undesirable behaviours. How to do this is by no means clear,
although this paper has suggested two possible approaches: an extension of the
Lyapunov stability approach for the individual robot, and a ‘bounding’ approach
for the overall swarm.

From a design perspective, this paper has shown that the Yourdon struc-
tured design methodology might be usefully employed to describe the design of
a robotic swarm; the approach has the merit of consistency when moving from
the description of the overall swarm to its constituent robots. However, this
approach is largely a description tool. Ideally, we require a formal, provable ap-
proach to the design of individuals within the swarm, and to the design of overall
swarm behaviours. This paper has indicated one possible approach to the for-
mer with the technique we term Direct Lyapunov Design. Overall swarm design
is problematical because there are at present no principled approaches to the
design of emergent behaviours: finding the set of ‘atomic’ behaviours for the in-
dividuals in the swarm that will result in the overall desired emergent behaviour
is at present more a process of discovery than design. This paper has, however,
argued that this is not necessarily a problem for dependability providing that
the emergent swarm behaviours can be assured for liveness and safety.

Finally, in respect of test, this paper has highlighted the need to establish
robust measures for determining when and how desired swarm behaviours have
been achieved, then define (statistical) tests for these measures. The paper has
argued that testing, while certainly challenging, is feasible if an appropriate
test environment can be created. A surprising conclusion of this paper is that an
instrumented test environment for the whole swarm also provides an environment
for rigorously testing the swarm at component (i.e. robot) level - for free.
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To summarise, from a dependability perspective, future work is needed:

– to extend methods for the mathematical modelling of swarm robotic systems;
– to extend and strengthen formal approaches to provably stable single robot

control;
– to start work on ‘safety’ analysis at both swarm and individual robot levels;
– to develop, if possible, a principled approach to the design of emergence;
– to extend the Direct Lyapunov Design approach to a wider class of behaviour-

based controllers, and
– to develop methodologies and practices for the testing of swarm engineered

systems.

It is clear that a great deal of work needs to be done before dependable robotic
swarms can become an engineering reality.
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Appendix A

The work of Harper [12], shows that if we have a behaviour-based controller in
which behaviours are implemented as motor schema, then we can prove that the
Euclidian distance ‖x−xg‖ is a Lyapunov function for that schema and therefore
that its behaviour is stable with respect to the goal states xg. This represents a
formal proof of ‘liveness’.

Conjecture: that there is a Lyapunov function V (x) defined as the ratio of
the Euclidian distance of the goal states xg and the hazard states xh,

V (x) =
‖x − xg‖
‖x − xh‖

(3)

and if the trajectory of V (x) is negative, i.e. V̇ (x) < 0 then the agent will both
seeks its goals and avoid its hazards at the same time. In other words the liveness
and safety properties are stable over state space.
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22. Schöner G, Dose M and Engels C: Dynamics of behavior: theory and applications
for autonomous robot architectures, Robotics and Autonomous Systems, 16 (1995)



142 Alan F.T. Winfield, Christopher J. Harper, and Julien Nembrini

23. Smithers T: On quantitative performance measures of robot architectures, Robotics
and Autonomous Systems, 15 (1995) 107–133

24. Støy K: Using situated communication in distributed autonomous robotics, Proc.
7th Scandinavian Conference on Artificial Intelligence (2001)

25. Winfield AFT: Distributed sensing and data collection via broken ad hoc wireless
connected networks of mobile robots, in Parker LE, Bekey G and Barhen J (eds)
Distributed Autonomous Robotic Systems 4, Springer-Verlag (2000) 273–282

26. Winfield AFT and Holland OE: The application of wireless local area network
technology to the control of mobile robots, Microprocessors and Microsystems,
23(10) (2000) 597–607

27. Yokobayashi Y, Collins CH, Leadbetter JR, Arnold FH and Weiss R: Evolutionary
Design of Genetic Circuits and Cell-Cell Communications, Advances in Complex
Systems, 6(1) (2003) 37–45

28. Yourdon E: Modern Structured Analysis, Prentice-Hall (1989)
29. Ziemke T: On the role of Robot Simulations in Embodied Computer Science, AISB

Journal 1(4) (2003) 389–399



A Review of Probabilistic Macroscopic Models
for Swarm Robotic Systems

Kristina Lerman1, Alcherio Martinoli2, and Aram Galstyan1

1 USC Information Sciences Institute,
Marina del Rey CA 90292, USA

lermand@isi.edu

http://www.isi.edu/~lerman/
2 Swarm-Intelligent Systems Group, Nonlinear Systems Laboratory, EPFL,

CH-1015 Lausanne, Switzerland

Abstract. In this paper, we review methods used for macroscopic mod-
eling and analyzing collective behavior of swarm robotic systems. Al-
though the behavior of an individual robot in a swarm is often charac-
terized by an important stochastic component, the collective behavior
of swarms is statistically predictable and has often a simple probabilis-
tic description. Indeed, we show that a class of mathematical models
that describe the dynamics of collective behavior can be generated using
the individual robot controller as modeling blueprint. We illustrate the
macroscopic modelling methods with the help of a few sample results
gathered in distributed manipulation experiments (collaborative stick
pulling, foraging, aggregation). We compare the models’ predictions to
results of probabilistic numeric and sensor-based simulations as well as
experiments with real robots. Depending on the assumptions, the metric
used, and the complexity of the models, we show that it is possible to
achieve quantitatively correct predictions.

1 Vision

Swarm Robotics is an emerging area in collective robotics which uses a fully
distributed control paradigm and relatively simple robots to achieve coordinated
behavior at the group level. Swarm robotic systems are self-organizing, meaning
that constructive collective (or macroscopic) behavior emerges from individual
(or microscopic) decisions robots make. These decisions are based on purely local
information that comes from other robots as well as the environment. Swarm
Robotics takes its inspiration from examples of collective behavior exhibited by
biological systems, such as social insects [3], and the swarming, flocking, herding,
and shoaling phenomena in vertebrates. In all these systems, the abilities of the
collective appear to transcend the abilities of the constituent individuals.

The main advantages of the application of the swarm approach to the control
of a group of robots are: (i) scalability: the control architecture can be kept
exactly the same from a few units to thousands of units; (ii) flexibility: units can
be dynamically added or removed, they can be given the ability to reallocate

E. Şahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 143–152, 2005.
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and redistribute themselves in a self-organized way; (iii) robustness: the resulting
collective system is robust not only through unit redundancy but also through
unit simplicity and an appropriate balance between exploitative and exploratory
behavior.

The main difficulty in designing swarm robotic systems with desirable self-
organized behavior is understanding the effect individual robot characteristics
have on the collective behavior. In the past, few analysis tools have been avail-
able to researchers. Experiments with physical robots are very costly and time
consuming, and systematically studying group behavior is often impractical.
Simulations, such as with embodied simulators [5, 13], attempt to realistically
model the environment, the robots’ imperfect sensing of and interactions with
it. Though simulations are much faster and much more reliable than experiments,
their results are not easily generalizable. Exhaustive scan of the design parame-
ter space is often required to reach any conclusion. Moreover, simulations do not
scale well with the system size – unless computation is performed in parallel, the
greater the number of agents, the longer it takes to obtain results.

Macroscopic modeling and mathematical analysis offer an alternative to ex-
periments and simulations. Using mathematical analysis we can quickly and
efficiently study swarm robotic systems, predict their long term behavior, gain
insight into system design: e.g., how individual robot characteristics affect group
behavior. Additionally, mathematical analysis may be used to select parameters
that optimize group performance, prevent instabilities, etc. Finally, results of
analysis can be used as feedback to guide performance-enhancing modifications
of the robot controller.

In this paper we survey existing work on modeling collective behavior of
robot swarms with macroscopic models. The robots themselves in these systems
are simple, usually using reactive control: robots decide about future actions
based solely on input from sensors (including communication with other robots)
and the action they are currently executing. They do not rely on abstract rep-
resentation, planning, or higher order reasoning functions. Such robots can be
represented as stochastic Markov processes. An equation, known as the Rate
Equation, describes the dynamics of their collective behavior. The Rate Equa-
tion formalism can be derived from theory of stochastic processes [8], although in
practice, the equations are usually phenomenological and can be easily written
down by considering details of the individual robot controller. The Rate Equa-
tion approach has been applied to study several distributed robot systems [14,
10, 7, 11, 1]. Below we review the elements of the mathematical formalism and
illustrate with a few sample results from the robotics domain.

2 Methods for Modeling Swarm Robotic Systems

Models can generally be broken into two classes: microscopic and macrosco-
pic. Microscopic descriptions treat the robot as the fundamental unit of the
model. These models describe the robot’s interactions with other robots and
the environment. Solving or simulating a system composed of many such agents
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gives researchers an understanding of the global behavior of the system. Exam-
ples of such microscopic models are reported in [12, 6]; they have been used to
study collective behavior of a swarm of robots engaged in object aggregation and
collaborative pulling. Rather than compute the exact trajectories and sensory
information of individual robots, the robot’s interactions with other robots and
the environment are modeled as a series of stochastic events, with probabilities
determined by simple geometric considerations and systematic experiments with
one or two real robots. Running several series of stochastic events in parallel, one
for each robot, allows researchers to study the collective behavior of the swarm.

A macroscopic model, on the other hand, directly describes the collective be-
havior of the robotic swarm. It is computationally efficient because it uses fewer
variables. Macroscopic models have been successfully applied to a wide variety
of problems in physics, chemistry, biology and the social sciences. In these appli-
cations, the microscopic behavior of an individual (e.g., a Brownian particle in
a volume of gas or an individual residing in US) is quite complex, often stochas-
tic and only partially predictable, and certainly analytically intractable. Rather
than account for the inherent variability of individuals, scientists model the be-
havior of some average quantity that represents the system they are studying
(e.g., volume of gas or population of US). Such macroscopic descriptions often
have a very simple form and are analytically tractable. It is important to re-
member that such models do not reproduce the results of a single experiment
– rather, the behavior of some observable averaged over many experiments or
observations. The two description levels are, of course, related: we can start from
the Stochastic Master Equation that describes the evolution of a robot’s prob-
ability density and get the Rate Equation, a macroscopic model, by averaging
it [8]. In most cases, however, Rate Equations are phenomenological in nature,
i.e., not derived from first principles. Below we show how to formulate the Rate
Equations describing dynamics of a homogeneous robot swarm by examining the
details of individual robot controller.

The Rate Equation is not the only approach to modeling collective behav-
ior. Anderson [2], for example, shows how geometric analysis can be used to
predict distribution of individuals playing spatial participative games from the
microscopic rules each individual is following.

2.1 Stochastic Approach to Modeling Robotic Swarms

The behavior of individual robots in a swarm has many complex influences,
even in a controlled laboratory setting. Robots are influenced by external forces,
many of which may not be anticipated, such as friction, battery power, sound or
light signals, etc. Even if all the forces are known in advance, the robots are still
subject to random events: fluctuations in the environment, as well as noise in the
robot’s sensors and actuators. A robot will interact with other robots whose exact
trajectories are equally complex, making it impossible to know which robots will
come in contact with one another. Finally, the designer can take advantage of
the unpredictability and incorporate it directly into the robot’s behavior: e.g.,
the simplest effective policy for obstacle avoidance is for the robot to turn a
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searching

pickuphoming

start

Fig. 1. Diagram of a robot controller for the simplified foraging scenario.

random angle and move forward. In summary, the behavior of robots in a swarm
is so complex, it is best described probabilistically, as a stochastic process.

Consider Figure 1, it depicts a controller for a simplified foraging scenario.
Each box represents a robot’s state – the action it is executing. In the course of
accomplishing the task, the robot will transition from searching to puck pick-up
to homing. Transitions between states are triggered by external stimuli, such
as encountering a puck. This robot can be described as a stochastic Markov
process1, and the diagram in Figure 1 is, therefore, the Finite State Automaton
(FSA) of the controller.

The stochastic process approach allows us to mathematically study the be-
havior of robot swarms. Let p(n, t) be the probability robot is in state n at time
t. The Markov property allows us to write change in probability density as [8]

Δp(n, t) = p(n, t + Δt) − p(n, t)

=
∑
n′

p(n, t + Δt|n′, t)p(n′, t) −
∑
n′

p(n′, t + Δt|n, t)p(n, t). (1)

The conditional probabilities define the transition rates for a Markov process

W (n|n′; t) = lim
Δt→0

p(n, t + Δt|n′, t)
Δt

. (2)

The quantity p(n, t) also describes a macroscopic variable – the fraction of
robots in state n, with Equation 1 describing how this variable changes in time.
Averaging both sides of the equation over the number of robots (and assum-
ing only individual transitions between states are allowed), we obtain in the
continuous limit (limΔt→0)

dNn(t)
dt

=
∑
n′

W (n|n′, t)N ′
n(t) −

∑
n′

W (n′|n, t)Nn(t), (3)

where Nn(t) is the average number of robots in state n at time t. This is the so-
called Rate Equation. It is sometimes also written in a discrete form, as a finite
difference equation that describes the behavior of N(kT ), k being an integer
and T the discretization interval: (N(t + T ) − N(t))/T . Equation 3 has the
following interpretation: the number of robots in state n will increase in time
1 A Markov process’s future state depends only on its present state and none of the

past states.
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due to transitions to state n from other states, and it will decrease in time due
to the transitions from state n to other states.

Rate Equations are deterministic. In stochastic systems, however, they de-
scribe the dynamics of average quantities. How closely the average quantities
track the behavior of the actual dynamic variables depends on the magnitude of
fluctuations. Usually the larger the system, the smaller are the (relative) fluctua-
tions. In a small system, the experiment may be repeated many times to average
out the effect of fluctuations. The agreement increases as the size of the system
grows.

2.2 A Recipe for Model Construction

The Rate Equation is a useful tool for mathematical analysis of collective dy-
namics of robot swarms. To facilitate the analysis, we begin by drawing the
macroscopic state diagram of the system. The collective behavior of the swarm
is captured by an FSA that is functionally identical to the individual robot FSA,
except that each state of the automaton now represents the number of robots
executing that action [10, 7, 11]. Not every microscopic robot behavior need to
become a macroscopic state. In order to keep the model tractable, it is often
useful to coarse-grain it by considering several related actions or behaviors as a
single state. For example, we may take the searching state of robots to consist
of the actions wander in the arena, detect objects and avoid obstacles. When
necessary, the searching state can be split into three states, one for each behav-
ior; however, we are often interested in the minimal model that captures the
important behavior of the system. Coarse-graining presents a way to construct
such a minimal model.

The macroscopic automaton can be directly translated into the Rate Equa-
tions. Each state in the automaton becomes a dynamic variable Nn(t), with its
own Rate Equation. Every transition will be accounted for by a term in the
equation: a positive term for the incident (W (n|n′)Nn′) arrows and negative
term for the outgoing (W (n′|n)Nn) arrows.

Finding an appropriate mathematical form for the transition rates is the main
challenge in studying real systems. The transition is triggered by some stimulus
– be it another robot in a particular state, an object to be picked up, etc. In
order to compute the transition rates, we assume, for simplicity, that robots and
stimuli are uniformly distributed. The transition rates then have the following
form: W (n|n′) ≈ M , where M is the environmental stimulus encountered (e.g.,
number of sticks in the arena). The proportionality factor connects the model to
experiments, and it depends on the rate at which a robot detects sticks. It can be
roughly estimated from first principles (“scattering cross section” approach [10]),
measured from simulations or experiments with one or two robots, or left as a
model parameter. There will be cases where the uniformity assumption fails: e.g.,
in overcrowded scenarios where robots, depending on their obstacle avoidance
controller, tend to clump, forming “robotic clouds” [11]. If the transition rates
cannot be calculated from first principles, it may be expedient to leave them as
parameters of the model and obtain them by fitting the model to data.
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3 Application to Swarm Robotic Experiments

The Rate Equation has been used to study a variety of distributed robot systems.
Below we illustrate the approach with a few sample results from swarm robotic
experiments, for which a body of experimental and simulations data exists.

3.1 Collaborative Stick Pulling

The stick-pulling experiments were carried out to study dynamics of collabora-
tion in robots [6]. The robots’ task was to locate sticks scattered around the
arena and pull them out of their holes. A single robot cannot complete the task
on its own: rather, when a robot finds a stick, it lifts it partially out of the
hole and waits for a period specified by its gripping time parameter for a second
robot to find it. If a second robot finds the first during this time interval, it will
pull the stick out; otherwise, the first robot releases the stick and returns to the
searching state.

Lerman et al. [10] studied a minimal continuous time model of the system.
A minimal model includes only the salient details of the process it describes.
They found that this model reproduced key experimental observations and qual-
itatively agreed with results of experiments and simulations (see Figure 2(a)).
Martinoli & Easton [11] formulated a more detailed model based on finite dif-
ference equations that accounts for every state in the robot control diagram.

Figure 2 depicts the collaboration rate, the rate at which robots pull sticks
out, as a function of the individual robot gripping time parameter for the minimal
(a) and the detailed (b) models. Figure 2(b) also shows results of embodied and
probabilistic numeric simulations for the same set of parameters. One can see
quantitative agreement already with swarms as small as 8 robots. The minimal
model shows the same qualitative behavior as the more detailed model.
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Fig. 2. Collaboration rate per robot vs gripping time parameter for different robot
group sizes and 16 sticks. (a) Results of the minimal model for 8 (short dash), 16 (long
dash) and 24 (solid line) robots. (b) Results for detailed model (solid lines), embodied
simulations (dotted lines), the microscopic model (dashed lines).
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3.2 Collective Object Collection

Mathematical models have been applied to study collective collection experi-
ments (aggregation and foraging). In the aggregation experiments, the task was
to gather small objects in a single cluster starting from a situation where they
were all randomly scattered in an arena [12, 1]. Swarms of robots of different
group size, or differing in the sensing and actuation capabilities, were used to
aggregate different types of objects. These publications considered both micro-
scopic and macroscopic models as well as a few metrics for measuring the evolu-
tion of aggregation (average cluster size, number of clusters, size of the biggest
cluster). Figure 3(a) shows the results of macroscopic model’s predictions com-
pared to realistic embodied simulation for swarm sizes of one and five robots
(see [1] for details). It is worth nothing that, although certain swarm sizes con-
sidered were extremely small, quantitative agreement between model and realis-
tic simulation was achieved. The authors also report experiments using variable
swarm sizes, by enabling robots to decide whether to continue aggregating the
objects or rest. Also in this scenario, theoretical predictions were extremely faith-
ful not only in predicting dynamics of aggregation but also the number of active
workers over time.

In foraging experiments, Lerman and Galstyan studied the influence of phys-
ical interference on the swarm performance [7]. Interference is a critical issue in
swarm robotics, in particular in foraging experiments where there is a spatial
bottleneck at the predefined “home” region where the collected objects must
be delivered. When two robots find themselves within sensing distance of one
another, they will execute obstacle avoidance maneuvers. Because this behavior
takes time, interference decreases robots’ efficiency. Clearly, a single robot work-
ing alone is relatively more efficient, because it does not experience interference
from other robots (the larger the swarm, the greater the degree of interference).
However, parallel work helps speed up the foraging process and increases the
system robustness in case of individual robot failures.

Figure 3(b) shows the total time required to complete the task for two differ-
ent interference strengths, as measured by the avoiding time τ . For both cases
task completion time is minimized for some swarm size and increases for larger
swarms. The greater the effect of interference (larger τ), the smaller the optimal
swarm size. Results show good quantitative agreement with embodied simula-
tions with swarms of one to 20 robots.

4 Discussion

The macroscopic methods used to analyze collective behavior of robot swarms
are based on viewing individual robots as stochastic Markov processes. In order
to construct a description of the behavior of a swarm, we do not need to know
the exact trajectories of every robot; instead, we derive a model that governs
the dynamics of the aggregate, or average, swarm behavior.

A number of simplifying assumptions and specific conditions were used in the
methods presented in this paper. While these are not strictly necessary for the
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Fig. 3. (a) Evolution of the mean cluster size in an arena with 20 objects to gather
and swarms of one and five robots. Macroscopic model (dashed lines) and embodied
simulation (continuous lines) are compared. (b) Time it takes the swarm of robots
to collect objects in the arena for two difference interference strengths. Symbols are
results of embodied simulations, while lines give the model’s predictions.

validity of the overall approach, they are important for producing mathemat-
ically tractable macroscopic models. First, we assume that robot’s actions are
largely independent of one another (dilute limit), and the transition rates can be
represented by aggregate quantities that are spatially uniform and independent
of individual robots or their trajectories. Second, up to date we considered exclu-
sively nonspatial metrics for evaluating collective swarm performance. As long
as detection areas do not overlap between the objects placed in the arena and
the metric does not specifically address spatiality, these assumptions are correct.
Third, we assumed that modeled robots have perfectly centered, uniform, and
precise range of detection for each object they may encounter in the arena, in
contrast to the individual, heterogeneously distributed, noisy sensors available
to the real robots and in the embodied simulation. Fourth, modeled robots are
characterized by a set of parameters, each of them representing the mean value
of some real robot feature: mean speed, mean duration for performing a certain
maneuver, and so on. We do not consider parameter distributions in our models.
Fifth, further difficulties may arise due to behavioral granularity captured in the
models. For instance, certain controllers can be approximated by a FSA, though
certain routines (e.g., obstacle avoidance and interference) might rely on different
control architectures. For instance, proximal control architectures such as neural
networks are often used for such routines. They tightly couple actuators with
sensors without passing through a distal representation as, for instance, is the
case for behavior-based implementations. Parameters used to describe the states
corresponding to such routines can still be measured in systematic tests with
one or two real robots for achieving well calibrated models without using free
parameters but this usually implies some inaccuracies. While for predicting high
level metrics such as those considered in the distributed manipulation experi-
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ments mentioned above, this approximation is quite sufficient, for other metrics
closer to the the robot movements (e.g., average number of robots in search or
in obstacle avoidance) such inaccuracies might have a more relevant effect. As a
consequence, it might be much more difficult to achieve quantitative agreement
between models’ predictions and experimental results without fitting the data.
Finally, depending on the type of experiment performed and the metrics used,
nonlinear mapping between microscopic and macroscopic representations might
generate prediction discrepancies between the two type of models simply because
average quantities in closed form at the macroscopic level cannot be calculated
from the linear combination of the individual Markov chains constituting the
microscopic model. As a general rule, discrepancies between the two modeling
categories are usually more important with smaller swarm sizes. In such cases
microscopic models are often more faithful than macroscopic ones.

5 Conclusion and Outlook

In this paper we have reviewed methods for macroscopically modeling and an-
alyzing the behavior of robot swarms. Our analysis is based on the theory of
distributed stochastic processes, which is applicable to robot swarms because
the behavior of each robot is inherently probabilistic in nature and often not
completely predictable, and its future state depends only on its present state.
Despite the inherent unpredictability, the probabilistic description of the col-
lective behavior is surprisingly simple. We showed that Rate Equations describe
how the average collective system properties change in time. These equations can
be easily written down from the details of the individual robot controller. We
illustrated the formalism by reporting a few sample results from swarm robotics
experiments presented in the past. Analysis yields important insights into the
system, such as what are the important parameters that determine the behavior,
how to optimize swarm performance, etc.

Much work remains to be done in extending stochastic mathematical models
to new domains and overcoming limitations of the current models. For example,
Lerman & Galstyan [9, 4] have moved beyond simple Markov processes to study
distributed systems composed of adaptive robots that can change their behavior
based on their estimates of the global state of the system. Another unexplored
area is in modeling systems in which position has to be taken into account.
Such systems include any that are based on diffusing pheromone fields. Another
research direction is to move beyond the mean-field approximation and develop
exact statistical formulations of problems. Such formulations will enable us to
study directly stochastic effects, including the strength of fluctuations.
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Abstract. We consider swarms as systems with partial random syn-
chronicity and look at the conditions for their convergence to a fixed
point. The conditions turn out to be not much more stringent than for
linear, one-step, stationary iterative schemes, either synchronous or se-
quential. The rate of convergence is also comparable. The main result
is that swarms converge in cases when synchronous and/or sequential
updating systems do not. The other significant result is that swarms
can undergo a transition from non convergence to convergence as their
degree of partial synchronicity diminishes, i.e., as they get more “disor-
dered”. The production of order by disordered action appears as a basic
characteristic of swarms.

1 Introduction

1.1 The Problem

Swarm Intelligence [1–3] is a paradigm for designing “intelligent” systems as the
result of cooperation among a relatively small number (102 − 10<<23) of sim-
ple, (basically) identical, autonomous units, interacting without common clock,
typically at short-range and without centralized control. Regardless of being
or not considered to be “Swarm Intelligence”, there are many paradigms for
collective behavior with resemblance to biological systems [4–5]. They are meth-
ods imported from biology, physics and/or computer science, including: non lin-
ear dynamics, force fields, self-catalytic stochastic processes, diffusion-reaction
equations, cellular automata, genetic algorithms, formation control, evolution-
ary algorithms, neural networks, etc. All these tools are generally characterized
by: centralized control and a common clock. Note also that any model based
on differential equations (unless explicitly solved asynchronously) is implicitly a
synchronous system, with a centralized clock and a centralized mechanism for
updating the units. In contrast, the swarm model is decentralized and not syn-
chronous. Studies of asynchronous swarms stability are not very common. An
exception is the work by Passino and coworkers [6–10]. The difference between
the asynchronous swarm paradigm and synchronous methods has been pointed
out, e.g., in the problem of morphogenesis [11]. The Turing (Diffusion-Reaction)
model [12] implies synchronicity and central control, hence (unlike the Swarm
model) it is physically not realistic for a scale of ˜100 cells.

E. Şahin and W.M. Spears (Eds.): Swarm Robotics WS 2004, LNCS 3342, pp. 153–171, 2005.
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Although the swarm approach overcomes the unrealistic assumptions (syn-
chronicity and central control) of other models, the basic design problem of how
to make the collective system do a prescribed task, in most cases, remains un-
solved. In this paper, it is shown why and how swarms can be applied to the
“physical” solution of a very broad class of effects, namely most phenomena
which can be modeled by linear systems of equations. This is the case, for ex-
ample, of most systems described by difference equations. Hence, the design of
swarms doing prescribed tasks becomes, at least in principle, more feasible.

2 Swarms as Physical Iterative Methods

2.1 The Swarm Model

In a swarm model, the units operate with no central control and no global
clock. More precisely, they operate partially synchronously; they do not oper-
ate synchronously, but neither they operate strictly asynchronously, as, e.g., in
sequential updating. In fact, for both synchronous and strictly asynchronous up-
dating, central control is required. (Actually, a sort of strict asynchronicity could
be obtained without central control, by letting the interval between updates of
a single unit “go to infinity”. But this is not a realistic option.) The units of
a swarm generally run, partially synchronously, a distributed algorithm [13]. In
many cases [14, 15], the algorithm consists in solving a system of linear differ-
ence equations – each unit updating autonomously its state based on a linear
equation with values obtained from the neighboring units. Usually the units are
identical but this is not a necessary restriction. A discussion of how various phys-
ical interpretations of one-dimensional swarms translate into systems of linear
equations has been given in [16]. We generalize the definition of swarm of [16]
to include a broader class of physical systems, and without restriction to one
dimension. Without mathematical formalism we may define a Swarm as follows:

Definition 1. A Swarm is an ordered set of N units described by the N com-
ponents of a vector; any of the N units may update the vector, on its own time,
using a function of the vector components.

In many practical cases, the function is linear (linear swarm) and the up-
dating is also linear (strictly linear swarm). Also, in most cases of interest, each
unit of the swarm uses the same updating rule at the same average updating
rate (uniform swarms). Non-uniformity may be with respect to the rule or the
the average updating rate. Important in practice is also the case in which the
swarm is uniform except for a few units which satisfy boundary conditions. The
updating rule maybe deterministic or probabilistic (stochastic swarms). Also, of
most practical interest are swarms that update each component from the compo-
nents of the nearest neighbors or next-near neighbors only (low -order swarms).
Some swarms have units that update other units (governing swarms) but many
swarms are self-governing, i.e., each unit only updates itself. Finally, it is worth
noting the case in which some function of the describing vector is conserved in
the updating (conservative swarms).
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The swarm is a physical entity but, if we regard it as a purely mathemat-
ical entity, then the swarm represents an iterative scheme; the partial random
synchronicity of the swarm updating makes the mathematical iterative scheme
non trivial. Much of the interesting properties and capabilities of swarms stem
from the nature of this unusual iterative scheme. The Swarm of Definition 1
has very broad applicability, since non-linear problems are often reducible to a
set of linear problems. Also, differential equations can be discretized to differ-
ence equations which are then solved from systems of linear equations. Thus,
a physical system that represents linear systems can account for a very large
class of phenomena, and can be used to design a very broad range of behavior.
The difficulty is to get the swarm to produce the wanted solution, i.e., to make
the swarm converge to the desired value of its describing vector, regardless of
initial conditions and updating times of its units. Various partially synchronous
updating rules have been explored for swarms. We briefly summarize them in
the next subsection.

2.2 Updating Rules

First, we note the well known fact that the literature about iterative schemes for
linear systems is very extensive (see, e.g., [17]). But the bulk of this effort is in
finding new methods of numerical solutions, usually motivated by computational
power. What it is sought are faster and more accurate numerical methods with
the objective of getting a sufficiently approximate solution in the shortest time.
The interest is in solving linear systems that approximate the equations for the
evolution of a “physical” system. The point to note is that the evolution of the
“physical” system is not modeled by the procedure of the linear system solution.
In fact, the various methods of solutions of systems of linear equations have no
physical meaning for the physical system they are applied to. The relation is not
between the method of solution and the evolution of the physical system but
only between the solution to the mathematical system and the final state of the
physical system. The way the solution is reached is irrelevant to the physical
interpretation of the results. On the other hand, the physical meaning of the
mathematical method of solution is the essence of the swarm model since the
swarm model describes the evolution of a system that solves autonomously its
own system of equations.

For these reasons, the literature of methods of solutions of linear systems
contains practically no method which reflects the actual operation of the physical
system (unless the physical system is centrally controlled and synchronous).
Clearly, methods based on direct solutions (e.g., Gaussian elimination and LD
Decomposition) do not model the physical behavior of the system. Iterative
methods are closer to physical swarms since they reach the solution via successive
updating. On the other hand, the method of updating is dictated by the need of
speed and not by the need to model the process. The classic iterative methods are
either synchronous (e.g., Jacobi) or sequential (e.g., Gauss-Seidel). Many other
more recent methods fall into one or other of these categories. Hybrid methods
(partially synchronous and partially sequential also exist). The great majority
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of the methods in use are stationary, i.e. they repeat the same operation at each
step. An exception is, e.g., the conjugate gradient method. But no method in
current use relies on random repeated updates with randomly occurring partial
synchronicity. There is no reason why such a process would speed up the reaching
of the solution, hence it is of no computational interest. Interest in asynchronous
schemes of solutions exists in the area of distributed computing. Asynchronous
algorithms have been studied and important theorems about convergence have
been proven [18]. But significant differences with the swarm behavior exist, as
will be noted below.

A few basic types of updating rules have been proposed for swarms. A first
type of rule [15–19], is non-linear but it is based on a linear relation between
two neighboring units. A gradient type of swarm updating, has also been pro-
posed [11]. A comparison between classic iterative methods and the Swarm it-
eration scheme (Sect.3) is given in Appendix. Comparisons between the latter
scheme and other swarm-type updating [11, 15–19] are available from the author.

3 Swarm Iteration Scheme

3.1 Classic Iterative Methods

Consider first the classic stationary iterative methods: Jacobi, Gauss-Seidel, and
related schemes [17]. The problem they solve is the system of linear equations
Au = b, where A is a N × N non-singular matrix and b is a given N vector.
Approximate solutions can be generated using a non-singular preconditioning
matrix W and iterate according to:

u(n+1) = u(n) + W−1(b − Au(n)) (3.1)

This procedure of starting with an initial guess u(o) and generating successive
approximations using (3.1) has different names according to the choice of W . For
W equal to D, where D is the diagonal of A, it is the Jacobi iteration; for W
equal to the lower triangle of A, it is the Gauss-Seidel method; for W of the form
ω−1 D(ω is the so-called relaxation, or acceleration, parameter), it is the Jacobi
OverRelaxation (JOR) method; for W of the form ω−1 D + L where L is the
strict lower triangle of A, it is the Successive OverRelaxation (SOR) method [20,
21].

The iteration scheme (3.1) is generally recast as

u(n+1) = Hu(n) + W−1b (3.2)

where
H = I − W−1A (3.3)

As examples, for the JOR and the SOR methods,

HJOR = I − ωD−1A (3.4)

HSOR = (D + ωL)−1(D(1 − ω) − ωU) (3.5)

where U is the strict upper triangle of A.
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The convergence of the iterative scheme (3.2) depends only on H . A necessary
and sufficient condition for convergence, is that the spectral radius (largest of
the moduli of the eigenvalues) of H be

ρ(H) < 1 (3.6)

It is well known [20] that condition (3.6) is satisfied by HSOR for 0 < ω ≤ 2
in a large class of systems for which A is Symmetric Positive Definite (SPD). If
A is not SPD, the original system

Au = b (3.7)

can be rewritten as
AT Au = AT b (3.8)

where AT is the transpose of A. Since AT A is SPD for any real, non-singular
matrix, the SOR method is convergent in a large class of systems.

The rate of convergence of the iterative scheme (3.2) is also determined by
the updating matrix H . In particular, the asymptotic rate of convergence is

R(H) = − log(ρ) (3.9)

3.2 Partial Random Synchronicity

The main difference between stationary iterative methods and the type of up-
dating done by swarms, is in the lack of synchronicity and order of execution in
swarms. Stationary methods update identically at each step. Non-stationary it-
erative methods in use for numerical solutions do not update identically but still
update according to an order which physically could be realized only by a syn-
chronization and/or by centralized control. Hence, even non-stationary methods
do nor represent physically the mode of operation of a swarm.

To specify the kind of updating done by swarms, consider first the possible
cases. Divide the updates in updating cycles. An updating cycle (UC) ends
when all the units have updated at least once since the end of the previous UC.
According to the following three properties, there can be eight distinct types of
UC.

(A) Asynchronicity. No two units can update simultaneously. (Partial synchron-
icity is not allowed)

(R) Repetitiveness. Any unit may update more than once.
(D) Disorder. The updating order varies (randomly) from one UC to another.

Eight types of UC are obtained from the eight possible triplets of properties.
(A or not-A, R or not-R, D or not-D). The classic iteration methods (Sec. 3.1) use
either parallel (Jacobi and JOR) or sequential (Gauss-Seidel and SOR) updating.
Parallel updating is the (not-A, not-R, not-D) case, and sequential updating is
the (A, not-R, not-D) case. The swarm updating is the opposite of the latter
case. In fact, in a swarm, during an UC, any unit may update more than once
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(R); also it may update simultaneously with any number of other units (not-A);
and, in general, the order of updating, the number of repeated updates, and the
number/identity of units updating simultaneously are all events that occur at
random (D) during any UC. We call the swarm type of updating Partial Random
Synchronicity (PRS).

Note also that while swarm updating models a system with no central control,
the parallel and/or sequential updating of the classic iteration methods model
physical systems that are centrally controlled. This is obvious in the parallel
case. In the sequential case, in principle, each unit could update autonomously;
however, in order to keep the order, a leader must be assumed. Electing a leader
autonomously is generally possible [22] only under special topologies and condi-
tions. So, typically, the degree of order necessary for sequential updating, requires
a centralized controller.

Another important factor in an updating scheme is the communication delay.
This is of special importance in distributed computing systems [18]. In a typical
distributed computing model a set of processors operate with separate clocks.
Each processor pi updates at the sequence of times {ti : i = 1, 2, ...}. Other
processors pj , generally, update at other sequences of times {tj : i = 1, 2, ...}.
Considering the set of the time sequences for all processors in the system, at any
one of these times one or more processor is updating. Thus, the model is (not-A).
It is also clear that, in this model, repetition of updates may occur in a UC. The
model is (R). Typically, however, the model is (not-D). The processors operate
in their own time sequences but generally do not operate at random times. Ran-
domness, in this model, occurs in the updating values. Each processor updates
by using values residing in other processors. Access to these values may have
delays (communication delays) and these delays maybe at random. In fact, each
processor, whenever it updates, may use values from other processors obtained
at any previous time. Because of this randomness in the communication delays,
such systems are said to be running “Asynchronous Iterative Algorithms” [18].
The asynchronicity here refers to the randomness in the communication delays.
Actually several processes may be updating at the same time. So, in our termi-
nology, these systems are (not-A).

In the swarm model considered in this paper, communication delays are ne-
glected. It is assumed, in fact, that each unit updates using the values that
other units have obtained at their latest updating step. We neglect communica-
tion delays because, in a broad range of cases, the presence of communication
delays does not invalidate the convergence of a process which converges with-
out communication delays. This is the result of the Asynchronous Convergence
Theorem [18].

3.3 Swarm Factorization

Given two N ×N matrices A and B we define AB@ito be the matrix A with the
i-th row substituted by the i-th row of B. More generally, we define AB@{k}to
be the matrix A with the set {k} of rows substituted by the corresponding rows
of B. In particular IA@i is the identity matrix with the i-th row substituted by
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the i-th row of A. The matrices IA@i update only one component of a vector v
in the product IA@iv. Hence they are a representation for the action of a unit of
a linear swarm.

Definition 2. We define the “asynchronous conjugate” of a N × N matrix A,
to be the matrix A′′′

A′′′ = IA@N IA@(N−1).....IA@2IA@1 (3.10)

Replacing H with H ′′′ in the iteration scheme (3.2) corresponds to replacing
parallel updating with sequential updating. It is easy to see, for example, that
HSOR is the asynchronous conjugate of HJOR.

More generally,

Definition 3. We define the “p-th asynchronous conjugate” of a N ×N matrix
A, to be the matrix

A′′′
p = [IA@N IA@(N−1).....IA@2IA@1]p (3.11)

where []p denotes the p-th permutation of the product enclosed in []. Clearly
the possible permutations are N ! ; we call the set of these permutations the
asynchronous set of A. For the permutation corresponding to the sequential
update (3.10) we drop the subscript p for simplicity.

To see how this applies to the partial random synchronicity of swarms, note that:

(1) A random complete update cycle (as defined in sect. 3.2) is obtained by
substituting H , in the updating scheme (3.2), with a random element of the
asynchronous set of H .

(2) A repeated update of a component uj is obtained by inserting a factor IH@i

in a complete UC.
(3) Simultaneous updates of subsets of components are obtained by inserting,

in a complete UC, a factor IH@{k} where {k} is a subset of positive integers
no larger than N . This applies also if the UC is not complete but is missing
any or all of the factors IH@m , where m is an element of {k}.In fact, in this
case, the insertion of the factor IH@{k} completes the UC.

These three operations describe the partial random synchronicity (PRS) char-
acteristic of swarms (sect. 3.2). The next section considers the convergence of
iterative schemes which update with PRS.

4 Convergence of PRS Iterations

Accurate predictions of the convergence of non-stationary iterative methods are
difficult to make, but useful conditions can often be obtained. The effect on con-
vergence of the three PRS operations is considered in turn. (Assume throughout
that complete UC do take place, even without central control; this is very plau-
sible when updates occur at random, such as in a swarm.)
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Table 1. Spectral radii conditions.

Case ρ(H) ρ(H ′′′)
(i) < 1 < 1

(ii) < 1 ≥ 1

(iii) ≥ 1 < 1

(iv) ≥ 1 ≥ 1

4.1 Random Updating Order

Starting from the stationary iterative scheme (3.2), the convergence condition
(3.6) holds. A random updating order (without considering simultaneous and/or
repeated updates in a UC), replaces this condition with a slightly stricter one, as
follows . First, note that examples from Jacobi iterations and the Gauss-Seidel
counterpart show that the cases of Table 1 are all possible.

For case (i) both parallel updating and sequential updating converge. When
random updating order is substituted for sequential updating order by replacing
the sequential UC with another member of the asynchronous set (defined in sect.
3.3) of H , generally the spectral radius changes. However, the elements of the
asynchronous set fall into two classes: even and odd permutations. The spectral
radii for all the members of one class are identical. This can be easily proven from
the fact that the spectral radius of the product of two matrices is independent
of the order in which they are multiplied (see, e.g., [20]). The spectral radius of
the even class is ρ (H ′′′). For the odd class, it can be easily calculated as ρ

(
H ′′′

p

)
where p is any odd permutation. In this way, the convergence of cases (i) and
(iii) is maintained for random updating order, with only the added condition

ρ (H ′′′
odd) < 1 (4.1)

Clearly cases (ii) and (iv) will not converge even with random updating order.
But it will be seen below that repetitions of updating within a UC can lead to
convergence in these cases too.

4.2 Repeated Updating

Repeated updating has the most significant effect. In fact, it can lead to conver-
gence (or to the loss of it) in all four cases of Table 1. Begin by considering the
insertion (at any random position) of a single IH@iin the product H ′′′

p so as to
obtain the product

IH@N IH@(N−1)..IH@i...IH@2IH@1 (4.2)

By cycling permutations, the inserted factor can be repositioned at the be-
ginning of the product without affecting the spectral radius, i.e.,

IH@iIH@N IH@(N−1).....IH@2IH@1 = IH@iH
′′′
p (4.3)

Considering the max norm (‖A‖∞ ≡ max(
∑N

j=1 |ai,j |), we have
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‖IH@i‖∞ ≥ 1 (4.4)

And if
‖IH@i‖∞ = 1 i = 1, 2, ..N (4.5)

we have, ∥∥IH@iH
′′′
p

∥∥
∞ ≤ ‖IH@i‖∞

∥∥H ′′′
p

∥∥
∞ =

∥∥H ′′′
p

∥∥
∞ (4.6)

Therefore, when (4.5) holds, the insertion of a single IH@iin the product H ′′′
p

does not increase the max norm of H ′′′
p .

If H ′′′
p converges, ρ(H ′′′

p ) < 1 , but there is no such restriction on
∥∥H ′′′

p

∥∥
∞ .

However, in a large class of cases of practical importance, the stricter convergence
condition ∥∥H ′′′

p

∥∥
∞ < 1 (4.7)

also applies. Thus, from (4.6), ρ( IH@iH
′′′
p ) < 1.

By applying again the argument, (4.3) to (4.7), to the insertion of a matrix
IH@j in the product IH@iH

′′′
p we can see that , if H ′′′

p converges (with the
stricter condition (4.7)), the random insertion of a number of matrices IH@i

(i = 1, 2...N) in H ′′′
p maintains its convergence. Note that (4.5), by itself, does

not imply the convergence of either H ′′′
p or H , but it does not exclude the

convergence of either (since the spectral radius is never larger than any norm).
Thus, under rather general conditions (i.e., (4.5) and (4.7)), repeated up-

dating maintains convergence in case (i) and case (iii). Moreover, and more
importantly, convergence can be achieved also in cases (ii) and (iv), i.e., when
sequential updating without repetitions does not converge. This follows from
(4.6) when the strict inequality applies. Examples can be easily constructed (see
Appendix). The significant result is that repetitions within the UC can lead to
convergence.

4.3 Partially Synchronous Updating

The modes of updating considered in the previous two sections update one unit
at each time step. Now we consider updating more than one unit per time step.
This is partial synchronicity (the synchronous case is the limit when all the units
update in one time step). Consider then simultaneous updates of subsets of com-
ponents (operation (3) sect. 3.3); it may be assumed that there are no repetitions
since the effect of repetitions can be treated as in sect. 4.2. After substituting in
H ′′′

p the factors IH@i, with IH@{k} , we may examine the spectral radius ρ of the
resulting partially synchronous matrix H(ps). In general ρ(H(ps))depends on the
set {k} and on where IH@{k} is inserted. In any case though, for large enough
systems, ρ(H(ps)) can be regarded, in practice, as a continuous function of the
number of elements in the set {k}. As this number goes from zero to the number
of units in the swarm, ρ(H(ps)) goes from ρ(H) to ρ(H ′′′

p ). This fact by itself,
i.e. without knowing the actual value of ρ(H ′′′

p ), is significant since it affects the
convergence of case (iii) (see Table 1). In fact, if the set {k} contains more than
a critical number of elements nc (1 ≤ nc ≤ N) there will be no convergence.
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Determining nc analytically is not simple but the existence of nc is guaranteed
by the continuity of ρ(H ′′′

p ) and it can be verified numerically. The existence of
this threshold for convergence is an important effect for the design of swarms.
Increasing n beyond the threshold nc describes a transition from a larger degree
of synchronous updating to a larger degree of asynchronous updating. Thus, the
fact that the convergence is achieved only beyond a certain threshold, means
that a swarm can achieve convergence by reducing its amount of synchronism.
The implications of this result are discussed below.

4.4 PRS Updating

Combining the results of sect. 4.1-4.3, we see that swarm updating (partial ran-
dom synchronicity, sect. 3.2), under quite general conditions, does not restrict the
convergence of synchronous and/or sequential iterative schemes. This is a main
result. Moreover, some significant new behavior is possible for swarms, which is
not for synchronous and other centralized schemes of updating: (1) swarms can
converge when synchronous and other centralized schemes do not; (2) swarms
can converge as their degree of partial synchronicity diminishes. Both results
characterize swarms as systems capable of producing order by “disordered” ac-
tion. This is a feature of swarms that distinguish them from other forms of group
behavior.

5 Conclusion

A swarm operates as a map in the general sense that it determines the time
evolution of a system by expressing its state as a function of its previous state.
Iterating the map corresponds to the system moving through time in discrete
updates. The swarm iterates the map “physically”, i.e., the state being updated
is the physical (e.g., dynamical) state of the swarm itself.

Many maps giving rise to rich phenomena, such as chaos and bifurcations,
are non-linear maps. In contrast, the key feature of the swarm maps (i.e., the
unpredictable reaching of a fixed point) is not in the non-linearity but in the par-
tial random synchronicity (PRS) of the swarm iterating process. Also, a swarm
is not a random iteration algorithm of an Iterated Function System (IFS) (see,
e.g., [23]) since the matrices IA@i are not contraction maps, for (4.4). Hence,
Elton’s ergodic theorem [24] cannot be applied.

In this paper we have shown that, under a broad range of conditions, PRS
linear maps have the property of reaching the same fixed points as their syn-
chronous counterpart in comparable times (rates of convergence are discussed in
Appendix) and under not much stricter conditions. Moreover, swarms can reach
fixed points unreachable by synchronous and/or centralized updating.

5.1 Applications

From the results (sect.4) it is clear that swarms can be applied to the “physi-
cal” solution of a very broad class of effects, e.g., most phenomena which can
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be modeled by linear systems of equations. This is the case, e.g., of many sys-
tems described by differential/difference equations. Thus, the design problem of
making swarms do prescribed tasks that reduce to the solution of linear systems
becomes, at least in principle, feasible. In fact, apart from modeling by linear
systems of equations, the feasibility of forming arbitrary patterns can be simply
illustrated. While the description of realistic applications of swarm convergence
is left to another publication, a simple example of how a swarm can be designed
to reach a desired arbitrarily complex pattern is as follows.

Consider the updating rule (3.2); it can be recast as

u(n+1) = Hu(n) + (I − H)u(w) (5.1)

where u(w) is the “wanted” pattern, i.e. the pattern to be formed by the swarm.
The swarm does not know u(w) ; it knows only the “guiding vector” v = (I −
H)u(w). More precisely, each unit i of the swarm knows only its component of
the guiding vector, vi . The swarm knows also its updating rule. In a nearest
neighbor type of swarm, this means knowing Hii, Hi,i+1, and Hi,i−1. In the
simple example considered here Hii = 0, and Hi,i+1 = Hi,i−1 ≡ a random
number xi (0 < xi < 0.5). So each unit i of the swarm knows only two numbers:
xi and vi. These two numbers are generally totally unrelated to the final value
that the unit i will reach, i.e., u

(w)
i . And the unit i can sense only the swarm

components ui(that is itself) and (its nearest neighbours) ui+1 and ui−1. This is
all the information accessible to each unit of the swarm. Clearly no unit of the
swarm can come to know in advance the “wanted” pattern u(w) which it will
eventually contribute to form by reaching its final value u

(w)
i . Also, the goal of

the swarm is inaccessible to any observer of a subset of units of the swarm. And
even if the whole swarm were to be observed, there is still no guarantee (from
the assumed knowledge of v and H) of being able to tell what u(w) is going to be,
since this would require knowledge of the ordering of the units and the solution
of u(w) = (I − H)−1v , which may not be possible, in general, or at least before
the swarm reaches its goal.

Figure 1 shows results for this simple example. Figure (1a) is the desired
pattern that the swarm has to form. Figure (1b) is the initial pattern: the swarm
units are all in the same state with ui = 0. Figure (1c) is a representation of the
“guiding vector” v. Each component of v is represented by a gray value. It may
be possible to vaguely discern the wanted pattern in v. It is clear, however, even
for this very simplistic choice of H , that the wanted pattern is quite different
from the guiding vector.

Figures 1(d–f) illustrate the swarm self organization into the final pattern,
figure 1(f). Figure 1(d) represents the state of the swarm after 10 iterations
(starting from the initial state 1(b)) and figure 1(e) after 20 iterations. After 100
iterations (figure 1(f)) the swarm has essentially reached the wanted pattern. In
this example the amount of synchronicity is kept at a low level of 3.6% to show
clearly that synchronism is not required to converge to the stationary state.

The example does not show how a swarm can form patterns by motion. All
the units have a fixed location and are ordered in a linear sequence (the units are
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Fig. 1. Labels from top left (a) to bottom right (f). (a) pattern u(w)to be formed; (b)
initial pattern; (c) “guiding vector” v; (d-f) patterns formed by the swarm after 10, 20
and 100 iterations (only 3.6% of units updated synchronously at each iteration).

the pixels, ordered from top left to bottom right). The purpose of this example
is simply to show that arbitrarily sophisticated patterns can be formed with
the Partial Randomly Synchronous updating method of swarms. Applications
to realistic swarm robotics problems require a separate publication.

5.2 Summary and Comments

Starting from a definition of a swarm as a special type of self-updating vector
(Definition 1) we have seen the relation of swarm updating to the classic sta-
tionary iterative methods (3.1). Next we have used these methods to make them
applicable to swarms . This extension required to take into account the essential
feature of the swarm, i.e. its partial random synchronicity in updating the state
of its units (3.2). We have seen that these properties correspond mathematically
to specific operations on matrices derived from the synchronous update matrix
(3.3). The essential step in deriving these matrices is the factorization of the
sequential update matrix into the product of simple matrices derived from the
rows of the synchronous update matrix. We have seen that the swarm converges
(4.3) to the synchronous solution under not much more restrictive conditions
than in sequential updating. Since, as is well known, the sequential updating ma-
trix converges for a large class of practically relevant matrices (e.g., tridiagonal,
symmetric, positive definite), the conditions for swarm convergence turn out to
be quite general. Moreover, the swarm converges in cases when the synchronous
and/or sequential updating do not. And the swarm can undergo a transition from
non convergence to convergence as its degree of partial synchronicity diminishes,
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i.e., as it gets more “disordered”. The rate of convergence has been tested with
numerical examples (see Appendix). It is comparable to that of synchronous
updating; and it is generally faster than some basic swarm algorithms.

Several points are worth commenting. First, the objection maybe raised as
to whether considering “Partial Random Synchronicity” in swarm updating is
really necessary. Wouldn’t a synchronous but stochastic model be equivalent in
describing natural systems? To answer this question, the point to clarify is the
difference between “synchronous and stochastic” on one hand, and “deterministic
and non (or partially) synchronous” on the other. The difference between the
two cases is best understood by first specifying the sense in which we take the
term “stochastic”. There are several ways of introducing randomness in a system
besides updating in random order. The randomness maybe in the rules applied
to the updating or in the possible outcomes of the rules.

The first case is what is done for example in probabilistic iterated function
systems (IFS) [23]. In probabilistic IFS a vector evolves via a set of maps; at
each time step a map is chosen, probabilistically, from a set of possible maps. So
the probabilistic IFS evolution is defined by a set of maps and by a probability
distribution of choosing them. At each time step a map is chosen according to
the probability distribution. This is a “synchronous stochastic” case of evolution.

The second case is typical of probabilistic cellular automata (CA). In proba-
bilistic cellular automata [25] the state vector, at each time steps, evolves accord-
ing to fixed rules which produce a new state vector from the previous one. The
rules are based on the state of the neighbors of each unit and don’t change from
step to step as in the case of probabilistic IFS. But, the outcome of the rules is not
unique; rather it is distributed according to some distribution of values. So, the
same rule, from the same initial state vector, would in general produce (slightly)
different outcomes, randomly. This is also a case of “synchronous stochastic”
evolution.

But, is the swarm evolution reducible to one of these cases, in which either the
evolution rule or the outcome of the evolution rule is stochastic ? The answer is no
for the following reason. Suppose we try to describe the swarm as a synchronous
system. We can think that at each time step a map is applied to the swarm
vector with the following probabilistic rule:

{p : R; (1 − p) : I} (5.2)

Which means, with probability p, apply updating rule R (e.g. a difference
equation updating matrix), and, with probability (1 − p) do nothing (the rule
I stands for “Identity”). This is a synchronous stochastic description of the
probabilistic IFS type. (We must exclude the probabilistic CA type since the
outcomes in the swarm updating are “deterministic” in the sense that the same
rule produces the same outcome). But, is the rule (5.2) really the same as the
swarm updating?

It all depends on how one takes the meaning of “apply”. If “apply” refers
collectively to all the components, then the updating according to (5.2) is indeed
of the probabilistic IFS type, but it is not of the swarm updating type. If, on the
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other hand, “apply” refer to applying the rule individually to each component,
then (5.2) indeed describes the swarm and it is different from the probabilistic
IFS type of updating.

So, the key difference between swarms and the other systems considered
above is not in the synchronicity. The rule (5.2), which can be used to describe
the swarm, is applicable synchronously to all the units at each step; so one can
create, e.g., a synchronous simulation of the swarm (and in fact this is what
is done in the calculations in the Appendix). But this synchronous simulation
models units that update with Partial Random Synchronicity since each unit,
at each time step, may or may not update.

The key difference is not even in “probabilistic” versus “deterministic”. One
might in fact consider probabilistic as well as deterministic swarms– rule R in
(5.2) could be chosen to be probabilistic in its outcome. This is not essential. The
key difference is in collective versus individual updating. Notice that individual
updating does not require that the units obey different rules. The units may
obey the same identical rule (as in (5.2) above) which may also be applied
synchronously. But if the rule is applied independently for each unit, rather
than collectively for all units, the result is a system that updates with Random
Partial Synchronicity (the Swarm updating method) unlike any of the other
systems considered above.

Having mentioned the synchronous simulation of the swarm, we note that
this type of simulation, in which the updating is done synchronously but with
a rule of the type (5.2) applied individually to each component, is actually not
implemented frequently (generally because of high computational time). Much
more commonly, in order to represent independently updating units, a sequential
type of updating is carried out. For example, in Particle Swarm Optimization
(PSO) [3], each particle is updated in turn. Each particle follows the same rule,
resulting in different outcomes for different particles because of different condi-
tions and because the rule is probabilistic. Still, no two particles update simul-
taneously. They do not operate on independent clocks. They obey a “centrally
imposed” sequential order of updating. Since PSO is not meant to represent any
physical system this is not a problem. But for models of actual swarms, this
mode of updating would not be valid.

On the other hand, the validity of the swarm mode of updating (PRS) is not
really an issue. In fact, partial randomly synchronous updating is simply a fact in
many natural systems (and especially biological systems). And carrying out PRS
updating simulations is not difficult. But, as far as I can tell, these simulations
are not so common. The reason is that the distinction between collective and
individual updating is often not considered. The point is that for most systems
there is not a clear connection between simulations and analytical results, so
that one often remains to wonder if a result is general or due to a particular
simulation and/or system.

Attempts at elucidating this issue have been carried out for Asynchronous
Cellular Automata (ACA). As pointed out in [26] there are several description
of “asynchronicity” for CA. These different descriptions lead in general to qual-
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itatively different results. In step-driven asynchronous updating, the types of
updating considered correspond to the asynchronous and repetitive updating
considered here in sections 4.1 and 4.2. There is, however, no counterpart of the
partially synchronous updating (Sect. 4.3). All the different updating of ACA
are carried out one unit at a time. So, no partial synchronicity is possible. But,
partial synchronicity is of course fundamental in swarms and it is the reason for
the synchronous/asynchronous transition.

Even though ACA updating does not contain the partial synchronicity char-
acteristic of swarms, the results for ACA point out clearly that synchronous
and asynchronous updating lead to qualitatively different results. This had been
noted already ten years ago [27] in connection with Artificial Life studies us-
ing CA. In [27] two famous CAs were compared: Conway’s “game of life” and
the Immune Network model. The former is a synchronous CA and the latter is
asynchronous. The crucial factor in the different behavior of the two systems
was identified as the synchronous vs. asynchronous updating. In fact, it was
concluded that, in this case, asynchrony induces stability in CA. This agrees
qualitatively with our results for swarms.

To sum up this comment on stochastic and deterministic updating: first of
all, swarms cannot be considered special cases of CA, neither asynchronous nor
probabilistic. Swarms generalize CA in several features regarding the updating
rules and in particular in the PRS mode of updating. The effects observed in
swarms depend fundamentally (and not trivially due to simulation methods)
on the mode of updating. Second, the fact that swarms converge, under broad
conditions, to the same stationary states as their synchronous counterparts, is
not obvious. In fact it has been shown for CA that, although the stationary states
for asynchronous and synchronous updating must the same [26], these states
have, in general, totally different basins of attraction. This means that, starting
from a given initial configuration, synchronous and asynchronous updating may
lead to totally different stationary states. And there are examples of stationary
states that may not be at all reachable with any asynchronous updating method.
Hence, the result on swarm convergence derived here is relevant.

From another point of view, we may look at the results obtained here as of
relevance to justifying (or not) some types of simulation methods. In a sense,
we have considered a (large) class of simulations (PRS updating simulations)
and have shown that we can predict the results of this class of simulations on
the basis of analytical results for the corresponding synchronous or sequential
systems. The class of simulations considered applies to systems described by,
e.g., difference equations but evolving individually. For these systems, analytical
predictions on convergence exist (based on the spectral radius of the updating
matrix) when the systems evolve collectively. What we have seen is that such
predictions can be extended to include systems simulated by evolving them in-
dividually. We have also been able to see how the individual updating of the
swarms may lead to unexpected convergence. So if in a simulation of the swarm
type it is found, contrary to intuition, that the system converges when it should
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not, it is not to be concluded automatically that there is something wrong with
the simulation. Updating independently helps the convergence (in some cases).
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Appendix

Rate of Convergence

General Considerations. The rate of convergence of the iterative scheme (3.2)
is determined by the spectral radius of the updating matrix H , as in (3.9). From
the features of convergence of the swarm iterative method (Section 4) it is clear
that the rate of convergence for the swarm is also determined by the spectral
radii of H , and H ′′′

p . For the sequential case, the rate determining matrix is
H ′′′

p . For the partially synchronous case, the determining matrices are both H
and H ′′′

p in varying degree depending on the amount of synchronicity. The more
synchronous is the updating the more determining H becomes. Thus, we do not
expect the swarm iteration (PRS) to be faster than H ′′′

p (in terms of number
of updates) nor faster than H (in terms of clock time) but to be of comparable
speed both in number of updates and in clock time. Compared with other types
of swarm updating, the PRS swarm updating is expected to be generally faster.
Analytical results for rates of convergence are not straightforward in the case of
swarms because of the random nature of the updating. So, in order to compare
rates of convergence we consider numerical examples.

Comparisons with JOR and SOR. The swarm is assumed to consist of
100 units (N = 100). In (3.7) we choose A to be a block tridiagonal (actually
Toeplitz, Symmetric, tridiagonal) matrix with10 × 10 diagonal blocks S, and
10 × 10 off-diagonal blocks T , where S is a tridiagonal matrix with diagonal
elements a, and off diagonal elements c; and T = cI10 where I10 is the identity
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Table 2. Parameters for six numerical examples.

Examples ω c ρ(JOR) ρ(SOR)

I and II 1 −1 0.959 0.921

III 1 1 0.959 0.921

IV 1 −0.75 0.72 0.518

V 1 0.9 0.864 0.746

VI 1.33 0.9 1.48 0.33

matrix of rank 10. For the numerical results of this subsection we use a = 4 and
the parameter values given in Table 2.

For any of these values the matrix A is SPD. Since the matrix is also block
tridiagonal, JOR is also guaranteed to converge (for 0 < ω ≤ 1). Note that in
case VI the JOR method does not converge (consistently with ω > 1) as can be
seen from ρ(JOR) > 1.

Although the value of the vector b does not affect the rate of convergence
of SOR or JOR, which depends only on the iteration matrix, two values of b
are given here to check the spread in the numerical accuracy of the results. For
both cases the values of the b components are chosen arbitrarily to be signif-
icantly different. For cases I,III,IV,V,and VI, the vector b is chosen with zero
components except as follows : b2 = b9 = b91 = b99 = 1. For case II the vec-
tor b is chosen with zero components except as follows: b1 = 2; = bi = 1 for
i = 2, 3, 11, 21, 31, 41, 51, 61, 71, 81, 91. The initial value of the solution is taken
to be: u(0) = 0. The relaxation parameter is set to the (non optimal) value
ω = 1, except for case VI. In case VI, the relaxation parameter is optimized by
the well known [20] relation: ωbest = 2/(1+

√
1 − ρ2(J) ) where ρ(J) is the Jacobi

spectral radius. Apart from this case, SOR and JOR reduce to the Gauss-Seidel
and Jacobi methods respectively. So, in these examples, the rate of convergence
is generally not optimized. In fact, we are interested only in comparing the rates
of convergence of the swarm PRS updating with the classic methods and with
other swarm methods. The results are given in Table 3 for the six representative
cases of the parameters shown in Table 2.

The values shown in Table 3 are number of iterations (in hundreds of sin-
gle unit updates) required to reach a solution which differs less that 2.5% from

Table 3. Numerical results for six indicative cases. Swarm (Asyn) is randomly repeated
SOR, i.e., using members of the asynchronous set of JOR . Swarm (PRS) updates with
partial random synchronicity from JOR. This is the actual swarm updating method
(sect. 4).

Method I II III IV V VI

SOR 41 40 13 4 7 5

JOR 79 78 20 7 11 NA

Swarm(Asyn) 81.4 85.0 21.0 8.8 13.0 10.0

Swarm(PRS) 79.2 85.6 20.9 8.6 11.5 11.1
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the exact solution. The latter two methods include randomness; the results are
averaged over five runs. The Swarm (Asyn) row gives results for totally asyn-
chronous Swarms, whereas Swarm (PRS) includes partially synchronous updat-
ing. The latter numerical results are for an average number of 50 (i.e., half the
total number) of units updating synchronously.

As discussed previously, in case VI, we would expect the convergence to dis-
appear above a critical number of simultaneously updating units. This is indeed
the case for approximately above 80% of the units updating simultaneously. On
the other hand, by comparing Swarm (Asyn) with Swarm (PRS) we see that
the simultaneous update of up to an average of 50% of the units does not affect
significantly the convergence rate. From Table 3 it is clear that the Swarm meth-
ods have a rate of convergence comparable to JOR which is typically, as in this
case, about half as fast as SOR. Still, the results confirm the fact that the swarm
updating is capable of reaching the solution in a number of updates comparable
to that of classic iteration algorithms for synchronous and/or sequential sys-
tems. Comparisons with LAQOR and the gradient methods are available from
the author.

Swarm Convergence When Other Methods Fail

We give an example of swarm convergence in cases where synchronous methods,
such as Jacobi or JOR, and sequential methods, such as Gauss-Seidel and SOR,
do not converge.

Consider a block diagonal matrix with the block

A =

⎡
⎣ 2.3 1.0 2.0
−1.0 2.3 −2.0
−2.0 2.0 2.3

⎤
⎦ (A1)

From this matrix, form the Jacobi matrix :

H =

⎡
⎣ 0 −0.4348 −0.8696

0.4348 0 0.8696
0.8696 −0.8696 0

⎤
⎦ (A2)

Then, from H , form the aynchronous set of H and calculate the spectral
radius of H ′′′

p for both even and odd permutations p. The spectral radii for H ,
H ′′′

p(even), H ′′′
p(odd) turn out to be: 1.304, 1.063, and 2.180, respectively. Hence

neither Jacobi, nor Gauss-Seidel methods converge; nor does the swarm(Asyn)
method. But the swarm(PRS) method, which includes repetitions in the UC,
converges. The key to convergence are the sequences of swarm unit updates

IH@3IH@2IH@3 and IH@3IH@1IH@3 (A3)

Such sequences are prevented in sequential schemes. But it is precisely these
sequences which, working as an “effective” contraction with spectral radius 0.756,
lead to convergence.
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