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Preface 

This Volume contains the (refereed) papers presented at the 38th 
Conference of the School of Mathematics "G.Stampacchia" of the 
"E.Majorana" Centre for Scientific Culture of Erice (Sicily), held in Memory 
ofG. Stampacchia and J.-L. Lions in the period June 20 - July 1, 2003. 

The presence of 130 participants from 15 Countries has greatly 
contributed to the success of the meeting. 

The School of Mathematics was dedicated to Stampacchia, not only for 
his great mathematical achievements, but also because He founded it. 

The core of the Conference has been the various features of the 
Variational Analysis and their motivations and applications to concrete 
problems. Variational Analysis encompasses a large area of modem 
Mathematics, such as the classical Calculus of Variations, the theories of 
perturbation, approximation, subgradient, subderivates, set convergence and 
Variational Inequalities, and all these topics have been deeply and intensely 
dealt during the Conference. In particular, Variational Inequalities, which 
have been initiated by Stampacchia, inspired by Signorini Problem and the 
related work of G. Fichera, have offered a very great possibility of 
applications to several fundamental problems of Mathematical Physics, 
Engineering, Statistics and Economics. 

The pioneer work of Stampacchia and Lions can be considered as the 
basic kernel around which Variational Analysis is going to be outlined and 
constructed. 

The Conference has dealt with both finite and infinite dimensional 
analysis, showing that to carry on these two aspects disjointly is unsuitable 
for both. 



xii Variational Analysis and Applications 

The book is divided into two parts. The former contains the reproduction 
under kind permission of J.Wiley - of a paper presented in 1978 at 

"E.Majorana" Centre by J.-L.Lions on the work of Stampacchia just after 
His death, and - in alphabetic order - reminiscences and comments on the 
mathematical achievements of Stampacchia. The latter contains in 
alphabetic order - the other papers presented at the Conference. 

We want to express our deep gratitude to all those who took part in the 
Conference. Special mention should once more be made of the "E. 
Majorana" Centre, which offered its facilities and stimulating environment 
for the meeting. We are all indebted to the "E.Majorana" Centre, the 
Municipality of Erice, the Italian National Group for Mathematical Analysis, 
Probability and Applications (GNAMPA), the University of Catania, the 
Faculty of Sciences and the Dept.of Mathematics and Computer Science of 
University of Catania, the University of Messina, the University of Pisa, the 
Dept.of Mathematics of University of Pisa, the University of Reggio 
Calabria (DIMET), for their financial support. We are grateful to 
Dr.J.Martindale of Kluwer Publ.Co. and to Professor P.M.Pardalos for 
having proposed to publish this book. We want also to thank L. Lucarelli Co. 
for the typing. 

F.Giannessi A.Maugeri 
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THE WORK OF G. STAMPACCHIA IN 
VARIATIONAL INEQUALITIES' 

J.-L. Lions 

. I N T R O D U C T I O N  

An introductory survey on variational inequalities should have been made 
here by G. Stampacchia. 

All those of  you who knew him, who had the pleasure to share with him 
long and stimulating discussions, who knew his warm personality, will share 
my emotion and my sorrow. 

In what follows, I will try to present some of his main ideas and his main 
contributions in the field of variational inequalities, the main topic of the 
meeting mentioned in the preface and where he was looking forward to 
participating and lecturing. 

Therefore, I will not speak of  his previous contributions; a general report 
with a complete bibliography will be presented by E. Magenes in the 
Bollettino dell'Unione Matematica Italiana. 

In the field of  partial differential equations and functional analysis, in 
1958 he published a survey with E. Magenes (Annali Scuola Normale 
Superiore Pisa, 12 (1958), 247-357), which had a very deep influence on the 
teaching of  partial differential equations (PDE), and he made very important 

° Re-printed from "Variational Inequalities and Complementarity Problems. Theory and 
Applications", Edited by R. W. Cottle, F. Giannessi, J.-L. Lions, J. Wiley, 1980, pp. 1-24. 

z Vol. 15-A, No. 3, 1978, pp. 715-756. 
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contributions to the study of second-order elliptic operators, in particular 
those without any smoothness hypothesis on the coefficients. It was while he 
was working on deep questions of  regularity of solutions when coefficents 
are only assumed to be bounded and measurable, and on problems of 
potential theory, that he was led, at the beginning of  the 60's, to variational 
inequalities. 

. VARIATIONAL INEQUALITIES 

The following result is now classical [ 1 ]: let Vbe a Hilbert space on IR ; 
let a(u,v) be a continuous bilinear form on V, which is not necessarily 
symmetric, and which is V-elliptic, i.e. which satisfies 

a(v,v) > a Ilvll 2, a>0, Vv Z (1) 

(l[ II denotes the norm in V.) Let K be a closed convex subset of V, K ~ O, 
and let v ~ ( f ,v)  be a continuous linear form on V; then, there exists a 
unique element u E K such that 

a ( u , v - u ) > ( f , v - u )  VvEK (2) 

This (2) is what is called a variational inequality (in short VI). 
Let us remark that: 

(i) if K = V, (2) is equivalent to 

a(u,v)=(f ,v) ,  VvEV (3) 

and the above result gives the Lax-Milgram lemma; 
(ii) if a is symmetric (i.e. a(u,v)=a(v,u)Vu, vE V) then (2)is equivalent to 

1 
2a(u ,u ) - ( f ,u )  = min[Za(v,K L 2 v , v ) - ( f , v ) l  (4) 

The idea of the original proof of Stampacchia is as follows: 
(I) the result is immediate, according to (ii) above, i f a  is symmetric; 
(II) if (2) is proven for a(u,v), it will also be proven for a(u,v)+ p(u,v) 

where p(u,v) is a not too large perturbation of a(u,v); 
(III) with this in mind, one introduces 
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a(v,u)l = 

(5) 

= ½ E , ( , , u ) -  

and, for 0_<0_<1, 

a o ( u , v ) = a ( u , v ) +  Ofl(u,v ) (6) 

By virtue of (I), the result is true for 0 = 0; using (II) one checks that the 
result is true for a o (u,v),  0 < 0 < 0 o, where 0 0 is a constant depending only 
on a, and one proceeds in this way. 

The main application that Stampacchia had in mind at the beginning of 
this theory was to potential theory; he was at that time giving a series of  
lectures in Leray's seminar [ 2, 3 ]. Let us give one example extracted from 
one of  his works (see [ 2 ]). 

. A P P L I C A T I O N  T O  P O T E N T I A L  T H E O R Y  

Let ~ be a bounded open set of  IR" ; we consider the classical Sobolev 
spaces 

Ov i5, e L ( n )  
/_/2 (f~) = vV, ox,...,Ox, 

H~ ( n ) =  {v v e H '  ( n ) ,  v = 0 on r} 

Let ag (x) be a family of  functions such that 

a o. ~ L ~ (~), (7) 

n 

i,j=l i= l  

and let us define, Vu,v ~ H I ( ~ ) :  
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Ou Ov dx (9) a(u 'v l :  .~' ~au(X) axj j 

We do not assume symmetry (a  U v aij in general) and we do not assume 

regularity on the a0.  

Let us define (in a vague manner for the moment) the set K as follows: let 
E be a closed subset of  f2 and let us set 

K : { v v ~ H ~ ( n ) , v >  l onE} (10) 

The precise meaning of  'v >_ 1 on E' is as follows: we say that v > 1 on E in 
the sense of H~ (f~) if there exists a sequence of smooth functions u,, in 
H~ (f~) such that: 

(i) /'/m -'~ V in H~ (U2) 

(ii) u , .>l  onE 

I f K  is not empty, then there exists a unique element u e K satisfying 

a(a,v-u)>O V v e K  (11) 

3.1 In t e rp r e t a t i on  o f  (11)  

Stampacchia shows that 

a(u,v)= ~vd,u, VveH~(~)~C°( f2)  (12) 

where 

dkt is a positive measure, with support in the 
(13) 

boundary aE of E 

The fact that one has (12) with a positive measure is very simple: let ~o be 
any smooth function with, say, compact support in ~ ,  and such that ~o > 0; 
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then if  u is the solution o f  (11), it is clear that v = u + (9 belongs to K, so that 
by using this choice o f v  in (11) we obtain 

a(u,~o)>O fo reve ry  ~p>0 (14) 

The result follows using a theorem of  Schwartz (every distribution which is 
greater than or equal to 0 is a (positive) measure). 

The main point consists o f  showing that/ . t  has its support in OE. 
One shows first that 

u = 1 o n e  (15) 

(in the sense of  H~ ( ~ ) ) .  In order to do that, Stampacchia used a simple 
technique, but a very powerful  one, which is now one o f  the classical tools o f  
the theory o f  partial differential equations. Let us define 

w = inf {u, 1} (16) 

One checks that w ~ K and that 

a(w,w-u)=O (17) 

Indeed, either u > 1 and then w = 1, or u < 1 and then w -  u = 0,  so that 

(x) O ( w - u )  (x) = 0 aij 
oxj Ox, 

in either case. We can take v = w in (11), and from (11) and (17) we deduce 
that 

a(w-u,w-u)<O 

Since 2 

a ( w - u , w - u ) > - a l l w - u l l  2 

it follows that 

W = U  
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hence (15) follows. 
Let us take now (o as a smooth function in H~ (f)) ,  with support in CE; 

then v = u + cp ~ K ,  and taking v = u + fo in (1 I) gives 

a(u,~o) = 0, Vfp with compact support in CE ( 1 8 )  

Then (13) follows from (15) and (18). 
The measure /t is called the capacitary measure of E with respect to 

a(u,v) and to ~ ,  and/~(1)  in the corresponding capacity of E. 
In reference [ 2 ](see also reference [ 3 ]), Stampacchia proceeds to study 

the properties of  this capacity. He introduces, among other things, the notion 
of  regular points with respect to A and shows that this notion is in fact 
independent of A (in the class of  elliptic operators), so that it is equivalent 
with the Wiener condition (relative to A = -A ). (A is the second-order elliptic 
operator associated with a). 

The techniques and the ideas of Stampacchia gave rise to several 
interesting contributions in potential theory 3. 

. A N U M B E R  O F  V A R I A N T S  A N D  E X T E N S I O N S  

Let us return now to (8). A number of  theoretical questions immediately 
present themselves. 

A first natural question is connected with (10); if one considers, instead of  
½ a(v, v) - ( f ,  v), a general convex function J(v) defined in a Banach space, 

one is lead to a V I of the form ( i f J  is differentiable). 

(J ' (u) ,V-u)>O,  V v ~ K  

u ~ K  

It is then natural to replace the operator J '  by a monotonic operator. 
This led to the paper of Hartman and Stampacchia [ 4 ] where they study 

VI in reflexive Banach spaces, for non-linear partial differential operators of 
the types of  those introduced (in increasing order of  generality) by Minty 4, 

3 R.M. Herv6. Ann. Inst. Fourier, 14 (1964),493-508; M. Herv6, R. M. Herv6. Ann. Inst. 
Fourier 22 (1972), 131-145; A. Ancona. J. Mat. Pures et Appl., 54 (1975), 75-124. 

4 G. Minty. Duke math. ,i., 29 (1962), 341-6. 
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Browder 5, and Leray and Lions 6. The good abstract notion for abstract 
operators A leading to "well set" elliptic V I 

(A(u),v-u)>_o, 

u ~ K  

V v e K  

(19) 

was introduced by Brezis 7 with the notion of pseudo-monotonic operators. 
As always in the work of  Stampacchia, there is a motivation for the 

"abstract" part of  the work[ 4 ]; we shall return to that. 
Another question, motivated by the so-called "unilateral boundary 

conditions" arising in elasticity (or "Signorini's problem"; see Fichera 8) is 
whether the coerciveness hypothesis (7) can be relaxed. This has been 
studied by Stampacchia and Lions [ 5, 6 ]. Let us mention here one result: 
suppose that a(u, v) is given as in section 2 but that it satisfies, instead of (7), 
the much weaker condition: 

a(v,v)>O, V v e V  (20) 

We assume that (8) allows at least one solution, and we denote by X the set 
of  all solutions; one checks immediately that X is a closed convex set; let 
b(u, v) be a continuous bilinear form on V such that 

b(v,v) Pllvll 2, p>O, Vv V (21) 

Let v --~ (g,v) be a continuous linear form on V; for every ~ > 0, there exists 
(according to the result (1) of  section 2) a unique u~ e K such that 

a ( u c , v - u , ) + c b ( u , , v - u , ) > ( f  +eg, v - u , ) ,  V v E K  (22) 

Then, as c --, 0, u c ~ u 0 in V, where u 0 is the solution of 

b(u0,v-u0) >- (g,v- u0), 

u o E S 

V v E X  

(23) 

5 F. Browder. Bull. Am. Math. Soc., 71 (1965), 780-5. 
6 J. Leray and J. L. Lions. Bull Soc. Math. Fr., 93 (1965), 97-107. 
7 H. Brezis. Ann. Inst. Fourier, 18 (1968),115-75. 
8 G. Fichera. Mem. Accad Naz. Lincei, 8 (1964), 91-140. 
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This result is used in reference [ 6 ], among other things, to solve the 
unilateral problem. 

Still another natural question is the evolution analogue of  (2): find a 
function t ~ u(t),  where t is the time, such that 9 

u(t) ~ K (24) 

Ou(t),v u ( t ) ) + a ( u ( t ) , v - u ( t ) ) > ( f ( t ) , v - u ( t ) )  
- - 5 ; -  - 

V v ~ K  
(25) 

u(t)l,=o=U(O ) = u  ° is given (in K) (26) 

When K = V, (25) reduces to 

Ou(t) ,vl  + a ( u ( t ) , v ) = ( f ( t ) , v ) ,  V v e V  (27) 
Ot ) 

It is the variational form of  "abstract" parabolic equations. 
This problem has been introduced in [ 6 ]; it was considerably extended 

and deepened in the work of  Brezis~°; many examples arising from 
mechanics have been studied~; this problem is also connected with non- 
linear semi groups Iz . 

One difficulty which arises in connection with (25) is in the definition of  
what we mean by a solution of  a V! and an important remark is now in order: 
let A be a non-linear operator from a reflexive Banach space V into its dual 
V', and let us assume that A is monotonic, i.e. 

( ( A ( u ) - A ( v ) , U - v ) > O ,  V u , v ~ Z  (28) 

Then if  u is a solution of  the V I 

9 We do not define in detail the function spaces where u can be taken. 
10 H. Brezis. NATO Summer School, Venice, June 1968; H. Brezis. J. Math. Pures et Appl., 

51 (1972), 1-168. 
)l G. Duvaut and J. L. Lions. "Les indquations en Mdcanique et en Physique". Dunod, Paris 

(1972). 
12 H. Brezis. "Op6rateurs maximaux monotones et semi groupes de contractions dans les 

espaces de Hilbert". North-Holland, Amsterdam (1973). 
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(A(u) ,V-U)>(f ,v-u) ,  VvEK 

u~K 

one has 

11 

(29) 

(A(v),V-U)>_(f,v-u), Vv~K 
(30) 

u~K 

This is obvious, since 

( A(v),V-U)=( A(u),V-U)+( A(v)- A(u),v-u)--( 

(using (28)); but the reciprocal property is true, provided A is hemi- 
continuous (i.e. 2.--+ (A(u + 2v) ,w) is continuous Vu,v,w~ V). Indeed, if 

is given in K, and if we choose in (30) 

v=(1-O)u+O~, 0~]0 ,1]  

we obtain, after dividing by t3 : 

( A((1-O)u +OfO,~-u)>(f ,~-u ) (31) 

By virtue of  the hemi-continuity, we can let 0--+ 0 in (31) and we obtain 
(29) (with ~3 instead of  v). 

This remark allows one to define weak solutions, or generalized solutions, 
of VI; it is used in the paper with Lewy [ 7 ] (we shall retum to that) and it 
can also be used for (25) (to "replace" Ou/Ot by Ov/Ot). 

. T H E  O B S T A C L E  P R O B L E M  

In section 4 we indicated very briefly some of the problems in variational 
inequalities which were under study in the years 1966-68; it was at about this 
time, may be a little earlier, that Stampacchia started working on a problem 
which is simple, beautiful and deep - and which led to important discoveries 
some of  them being reported in this book. 

This is the so-called "obstacle" problem. Let us consider a(u,v) to be 
given by (9) and let us define 
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K = {v v e H~ ( n ) ,  v > V , g  given in f2} (32) 

Of  course, one has to specify in (32) the class where ~' is given, so that, 
in particular, K is not empty; the function V represents the obstacle. The 
corresponding VI (2) has a unique solution and the problem is as follows. 
(1) How to interpret the V I? 
(2) What are the regularity properties of  the solution u? 

In solving (1) and (2) a free-boundary problem will appear and the next 
question will be the following. 
(3) What are the regularity properties of the free boundary? 

Let us explain the basic idea of the work with Brezis [ 8 ] in a simple 
particular case. According to (30) the VI can be writte#3: 

(Av, v - u ) > ( f , v - u ) ,  V v ~ K  (33) 

where K is given by (32). Let us assume that 

~ H l ( f 2 )  v < O  o n F  
and (34) 

A~/<O 

Everything is based on a particular choice o fv  in (33). 
For c > 0 we define u c as the solution in H~ (f2) of 

~ A u  e +t , t  e = U  

u ,  = 0 o n  F 

in 
(35) 

Let us allow for the moment - this & the crucialpoint - that 

u , ~ K  (i.e. u,>_V i n ~ )  (36) 

Then one can choose v = u, in (33) and after dividing by e it gives 

( A u , , A u c ) < - ( f  , Au,.) 

Hence, it follows that 

,3 
ax i t, (.Q) (dual space of H o (~) )  
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IIAu~IIL,,o, -IIflIL~,o, (37) 

It is a simple matter to check that u, --~ u in H~0 (~)  as e --~ 0, so from 
(37) one obtains that 

Au ~ L 2 ( ~ )  (38) 

Therefore, if we set Au = f ( ~  ~ f in general!), one can think of u as 
being given by the solution of the Dirichlet's boundary value problem 

Au=? ( ? ~ e ( ~ ) ) ,  . = o  on r 

It follows that if the coefficients of A are smooth enough and if the 
boundary F of ~ is smooth enough, then 

u e H 2 ( ~ )  (39) 

that is 

02u - -  ~ L2 (f2), Vi, j 
axe% 

Let us verify now that (36) holds. We write (35) as 

cA(u~ -~')+(u, -~')+ eA~ =u-~" (40) 

and we take scalar products with ( u , - ~ ) -  (where, in general, 

v - = s u p ( - v , 0 ) ) .  We obtain, since (u,.-V/)-~H~(f2) and since 

a(v,v-)=-a(v-,v-), (v,v-)=-(v,v-): 

-~a((u,.- ~,)-,(u,- ~,)-)-[l(u~- ~')-~L2,o, + ~(A~',(u,. - ~')-) = 
= ( u - ~ , ( u , -  ~/)-) (41) 

Since A~_<0,then (A~,(u -v / ) - )_<0,  and (41) gives: 
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(u -p ' , (u , - f / ) - )+l (u , -~) -  ; (n ,+ea( (u , -~) - , (u , -~ ) - )  <-0 

But (u -p ' , ( u ,  - ~ ) - )  >- 0 and therefore (u, - g ) -  = 0 ,  i.e. u, _> g .  

The above analysis can be extended, as we show below. Before doing 
so, let us apply (38) to the interpretation of the VI. One shows easily that u is 
characterized by 

A u - f > O  
u -~>O 

i n f l  

(42) 

and of  course 

u = 0  o n F  

Consequently, there are two sets in ~ : 

the coincidence set, where u = ~, 

the equilibrium set, where Au = f 
(43) 

At least in the two-dimensional case, one can think of this problem as 
giving the displacement of  a membrane subjected to forces f and required to 
stay above the obstacle ~/. 

The membrane touches the obstacle on the coincidence set. The two 
regions are separated by a "surface" S, which is a free surface; S is not given, 
and on S one has two "boundary" conditions. If ~ E H 2 (f~), one has 

u = p '  

and (44) 

Ou_Op" Vi onS 
Ox~ Ox~ 

A natural and important question is now: under suitable hypotheses o n f  
and on ~/, is it true that 

Au ~ L p ( ~ )  ? (45) 
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This is, of course, important for the regularity of u in spaces like 

W'  (f~)= v V, ox ~ , Ox~Ox----~j 

for p large. For the study of this problem, a more "abstract" presentation is in 
order, always following the work of Brezis and Stampacchia. 

. A N  A B S T R A C T  R E G U L A R I T Y  T H E O R E M .  
A P P L I C A T I O N  T O  T H E  O B S T A C L E  P R O B L E M  

We consider the VI 

(Av, v - u ) > ( f  , v - u ) ,  

u ~ K  

V v E K  

(46) 

where K c V, and V is a Hilbert space. The situation extends to cases where 
A is non-linear and where V is a reflexive Banach space. Let us consider a 
space X such that 

V c X c V' (47) 

with continuous embedding, each space being dense in the following one. 
Example 1 
V=H~(f2) ,  V ' = H  -I(f~) and X = L  p(f~), for p large enough. The 
problem considered by Stampacchia and Brezis is: when can we conclude 
that 

A u ~ X ?  

One introduces a duality mapping J from X - - - ~ X ' ( v c x ' c v ' ) ,  i.e. a 
(non-linear) mapping from X ~ X'  such that 

(J (u),u) =llJ(u)ll,,llull, 
IIJ(u)llx is a strictly increasing function o f  llullx and goes  to +oo as 

Ilull~ - ~  oo. 
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Example 2 
If  X = L p ( ~ ) , J ( u )  =[ul p-2 u. 

I f  X is a Hilbert space that we identify with its dual (X  = L 2 (f2) in the 
example), then J = identity. The crucial hypothesis is now: 

One can find a duality mapping J from X --~ X '  such that 
V~ > 0 and Vu ~ K,  there exists u~ such that (48) 
u, e K ,  Au, E X  and u, +EJAu,=u 

One can then take v = u, in (46) and using the properties o f  J one obtains 
that 

IIAull  -< constant 

Hence, it follows that 

Au ~ X (49) 

Application to the problem. 
We take J(u)  = Jp (u) = lul p-2 u and we consider the equation (48), i.e. since 

1 1 
J-~ = Jp. and - -  + - -  = 1 

p p '  

then 

We want to show that u, >_ ~. We use the same technique as in section 5, 

i.e. we multiply by (u, - p ')- .  We obtain 

(51) 

But 
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1  lu,-ul Ep'-I 

so that (51) gives (since A g < 0 ): 

Therefore, either u , . ( x ) - u ( x ) = O ,  and hence u,.(x)>_u(x)>_g/(x),  or 
(u~ ( x ) - g ( x ) ) -  = 0 ,  i.e. u,. (x)>_ ~/ (x) .  

It will follow that, under reasonable assumptions, the solution u of  the 
obstacle problem satisfies 

u ~ W"P(f2) (53) 

Simple one-dimensional examples show that one cannot obtain L p estimates 
for higher-order derivatives. One can study the regularity in Schauder spaces; 
we refer the reader to the book of  Kinderlehrer and Stampacchia j4 and to 
other chapters of  this book. See also the report at the International Congress 
of  Mathematicians, Vancouver, 1974, made by Kinderlehrer. 

Remark Due to the physical interpretation of  the obstacle problem, it is 
quite natural to consider the problem of minimal surfaces with obstacle. This 
has been considered by Nitsche ~5 and by Giusti, 16 Giaquinta and Pepe, IVand 
for surfaces with mean curvature fixed, it has been considered by Mazzone. is 

14 An introduction to variational inequalities and their applications. Academic Press, New 
York, 1980. 

Js J.C. Nitsche. "Vorlesungen uber Minimalflachen". Grundlehr. Math. Wiss., vol. 199, 
Springer, Berlin (1975). 

t6 E. Giusti. "Minimal surfaces with obstacles". CIME course on Geometric Measure theory 
and Minimal surfaces, Rome, 1973,pp. 119-53. 

17 M. Giaquinta and L. Pepe. "Esistenza e regolarit~ per il problema dell'area minima con 
ostacoli in n variabili". Ann. Scu. Norm. Sup., Pisa, 25 (1971), 481-507. 

is S. Mazzone. "Un problema di disequazioni variazionali per superficie di curvatura media 
assegnata". Boll. Unione Mat. Ital., 7 (1973), 318-29. 
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7. A N  I N E Q U A L I T Y  F O R  T H E  O B S T A C L E  P R O B L E M  

In the above proof of  the regularity for the obstacle problem, the 
hypothesis 'A~, < 0' is much too restrictive. This can be overcome in several 
ways. 
(1) One can introduce more flexibility in the abstract hypothesis of  section 4 
(see [48]); following Brezis and Stampacchia, one introduces families of 
operators B c : V ~ X, Cc : V ~ X', which are bounded as g ~ 0 and such 
that the equation 

u, + eJ  ( Au,. + B,u ,  ) = u + EC,.u, (54) 

has a solution u~ ~ K such that Au~ ~ X ;  one then obtains the conclusion 
(same proof) that 

Au ~ X (55) 

and this allows one to obtain regularity results similar to the above results 
under the assumption: 

Ag is a measure on ~ ;  sup {Ag/,O}~LP(f)) (56) 

(2) One can use penalty arguments. 
(3) One can use an inequality given in Lewy and Stampacchia [9, 10] that we 
now explain. 

Let u be the solution of  the obstacle problem. Then one has 

f <Au<max{A~, f}  (57) 

One does not restrict the generality in taking 

f = 0  (58) 

(Indeed if co is defined by Aco = f ,  co = 0 on F ,  then it suffices to work on 
u - co instead of  u). Then one has to show that 

0_< Au_< max{A~,0} (59) 

Actually, one can obtain a more precise result [9].Let us introduce O(s)= 1 
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for s<O,O(s)=O f o r s > 0 .  Then there exists a unique function u in 
W 2'p (f2) such that 

Au=max{A~/,O}O(u-~) 

u = 0  inF  

i n ~  
(60) 

and u is the solution of the obstacle problem. (Of course (59) follows from 
(60).) 

Proof" The proof of(60) is in two essential steps: 
Step1 One considers an approximation of (60). Let 0. (s) be a sequence 

of Lipschitz continuous functions approximating 0 : 

oo(s) 
! if s<O 

= -ns if 0<  s<l /n  

if s > l/n 
(61) 

One considers the equation 

Au. =max{A~,O}O.(u . -~) ,  u. =0 on F (62) 

One proves that this equation has a solution by a fixed-point argument: given 
co e H~ (~ )  one defines z~ as the solution of 

Ah = max { A~,O}O. ( co-~)  (63) 

One verifies that co--+h=T(co) maps a suitable ball Y. of H ~ ( ~ ) i n t o  

itself and that T is continuous. One has also, if max {Ag,0} ~ L p (f~), and if 

the coefficients of A are smooth enough, that fi ~ WZ'~'(f)) One then 
verifies that the mapping T is compact from E --~ Z,  and hence it has a fixed 
point, which is a solution u. of (62), 

One has also obtained in this manner that 

u. remains in a bounded set of W 2'~' (~ )  (64) 
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Step 2 The second step in the proof consists of  proving that 

u. > g (65) 

Assume that one can find x 0 where u. (x 0 ) < g (x,,).Then one can find an 
open set G around x 0 such that 

u. < g on G 
and (66) 

u. = g  on OG 

Since on G one has u. < g ,  equation (62) reduces to 

Au. = max{A~,0} on G 

hence 

A(u.-~,)_>0 onG 
(67) 

u , - ~ = 0 Z  o n 0  G 

Therefore, by the maximum principle, u , - ~ '  > 0 in G, in contradiction to 
u, (x 0 ) < g ( x  0). Hence (65) follows. 

One can then pass to the limit in n, using (64) and (65), and one shows that 
u is the solution of  the VI of the obstacle problem and that u satisfies (60). 

Application to the regularity. 
The application is obvious, and actually it is already implicitly contained 

in (64). 
Remark A systematic use of  inequality (57) or of  similar inequalities with 

other boundary conditions, or with parabolic operators, is made in the work 
of  Mosco, Troianiello, Jo 1 y, Hanouzet and others. 

. ELASTO-PLASTIC PROBLEM 

Another important VI arises in the theory of e lasto-pl astic materials; the 
physica 1 prob 1 em corresponds to dimension 2. 

One considers the same bilinear form a(u.v) as in section 3 and the convex 
set 
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K={v l v~Ho(92 ) , lVv (x ) l< l  a.e.in ~} (68) 

(a.e. = a l most everywhere). 

The following result is due to Brezis and Stampacchia [8] : if f ~ L p (92), 
the solution of  the VI corresponding to (68) satisfies 

Au ~ L p(D) (69) 

One uses the idea of  section 6. One has to consider then the equation 

u, + cJpAu, = u (70) 

where u is given in K,u,. = 0 on 1" and to show that it has a solution u,. in K 
such that Au, ~ L p (f2). In fact, if u, ~ K then it is bounded and (70) implies 

that Au,. ~ L ® (f2).We write (70) in the form 

and one has to show that there is a solution such that I Vu,. (x)I_< 1 a.e. 

More generally, let A --+ 0 (2 )  be a strictly increasing function such that 

0(0) = 0 and let us consider the equation: 

Au=O(S-u) ,  u (72) 

Brezis and Stampacchia [8] show that this problem has a solution and that 
if[ V f  (x) l_< 1 a.e.,it follows that u ~ K.  

The proof rests on a comparison lemma and on several technical ideas in 
order to obtain estimates on Vu ; the authors consider first the case when 92. 
is convex and then the general case. 

This problem of  elasto-plasticity has been the object of  a large number of  
interesting works. Two of  the main questions are as follows. 
(i) Let us consider 6(x)  ,which is the distance o fx  to F,  and let us define 
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K ,={v lv  ~ H~(f~), Iv(x)l<_6(x)} (73) 

Let us consider 

(74) 

Let u (and, respectively, ~) be the solution of 

a ( u , v - u ) > ( f , v - u )  V v ~ X (75) 
u ~ K  

and, respectively, 

a ( ~ , v - ~ ) > ( f , v - ~ ) ,  V v ~ K, 

~ K I 
(76) 

Then, under suitable hypotheses onfand 2 it has been proven by Brezis 
and Sibony j9 that 

t7 =u (77) 

Their proof uses, in an essential way, an idea of Hartman and Stampacchia 
[4]. 

When f~ is multiply connected, the formulation of the elasto-plastic 
problem has to be slightly changed with respect to the above - one has to 
consider functions which are constant on the boundaries of the "holes" of 
(see Lanchon2°). 
(ii) Another important question is connected with the regularity of  the free 
boundary, that is the regularity of the boundary between the elastic region 
(where LVu(x)1< 1) and the plastic region (wherel Vu(x)l= 1 ). Let us refer 

the reader to Caffarelli and Friedman 2~ and to the bibliography therein. 

]9 H.Brezis and M.Sibony. "Equivalence de deux I.V."Arch.Ration.Mech.Anal., 41 (1971), 
254-65. 

20 H.Lanchon. J.Mdcanique, 13 (1974), 267-320. 
2z L.A. Caffarelli and A. Friedman. "The free boundary for elastic plastic torsion problems". 

To appear. 
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9. HODOGRAPH METHOD AND VI 
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Towards the end of  the 1960s, as the free-boundary problems solved by 
the technique of  VI were becoming understood (with, of  course, still many 
questions unanswered - in particular, of  regularity - at that time), another type 
of  question came into the picture: given a free-boundary problem arising 
from mathematical physics z2, when can it be formulated (and hopefully 
solved) by the technique of VI. 

This type of  question was raised, in particular, in problems of  infiltration 
through porous media. It was observed in 1971 by Baiocchi 23 that by an 
appropriate transformation of  the unknown function, it was possible to 
reduce, at least in some case, the problem of  infiltration through porous 
media to a VI. 

This idea gave rise to a large number of  papers. Some of  the most 
interesting among them are those of  Brezis and Stampacchia [12, 13]. 

One considers in the plane x, y the flow of  a perfect fluid (assumed to be 
steady, irrotational and incompressible) around a profile P, which is 
symmetric with respect to y. The flow is assumed to be uniform at infinity, 
i.e. if q --{u,v} denotes the velocity 

q(x,y)---~{q=,O} as Ixl÷lYl~oo (78) 

(see the figure), one has 

div q=0, rot q=0 

q is tangential to P along c3 P 

(79) 

(80) 

22 We do not speak here of the free-boundary problems arising in the theory of optimal 
control. 

23 C. Baiocchi. "Sur un probl6me a frontibre libre traduisant le filtrage de liquides h travers 
des milieux poreux". C. R. Acad. Sci., Paris 273 (1971), 1215-7. 
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There is a wake denoted by y; 7' is a free boundary and along y one has the 
two conditions 

q is a tangent to 7" 
(81) 

Iql=qoo 

One introduces the stream function p' by 

u =~y. v=-~, x 

Then 

A~, =0  (82) 

and by symmetry it suffices to consider the problem for y >0. 
Boundary conditions are (see the figure) 

= 0 on M A B (83) 

= 0, IV, 1= q® on 7" (84) 

One considers the hodograph transformation 

x , y  --+ u,v --+ O,q 

where 

tan 0 = v/u ,  q=lql 

One considers ~ as a function of the independent variables 

0 and o-=-logq (85) 

Then, one has 

A~/ = O2~' + Oz~/ =O (86) 
002 00 "2 
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In the hodograph transformation, the part of  the boundary where one has 
only one condition (i.e. MAB) becomes a free boundary and the part of  the 
boundary where one has two conditions (i.e. y )  becomes known (in fact, a 
part of  the o- axis) and one ends up with a problem of  the following nature. 

Let ~ be an open set in ~" ; find D c f) and a function ~ defined in D 

such that 

-A g/= ~o on D (~o given in ~ ) (87) 

satisfies a standard boundary condition on 013 ~ a ~  (88) 

~ ' = 0  o n S = O D n ~  

O~//Ov = zr . v on S 
(89) 

where zr is a given vector field in ~ ,  v is the normal to S extended to D; S is 
the free boundary (in the "hodograph" plane). 

By a transformation of  an unknown function of  the type of  that introduced 
by Baiocchi, one can reduce - at least in some case - this type of  problem to a 
V1 (see Brezis and Stampacchia [ 12,13,19]). 

The analogous problem in a finite strip has been solved by a research 
student of  Stampacchia 24 . 

10. F O U R T H - O R D E R  V I  

In a paper [17] with Brezis, Stampacchia studied the regularity of  fourth- 
order VI; a very simple remark shows that - essentially - one cannot go 
farther than third-order derivative estimates. Indeed, if one defines 

where a and/3  are constants, a < 0 </3 ,  and if one considers the VI 

(Au,A(v-u))__(S,v-u) W X, 
u ~ K  I 

then, if f~L2( f f~) ,  one has u a W a ' P ( ~ )  

24 

(90) 

for every p finite but "nothing 

F. Tomarelli. Graduation Thesis, Scuola normale Superiore, Pisa (1978). 
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better". This is immediate: let us introduce F by 

kaw=f, F~H~(f2) 

If  we set Au = h,Av = f~, then (90) becomes equivalent to 

( f i , f , -h)>(F,f-h)  Vf, 

a<f,<fl and a<h<f l  

Then, i f2  ---> P ( 2 )  denotes the projection R ---> [a , f l ] ,we  have 

fi = P ( F )  

so that u ~ W I'~° (~ )  and u has exactly the regularity properties given above. 
If  one considers instead of K~ the convex se t  K 2 given by 

K2 ={vlv~Hg(n),  a<-Av<-fl } 

and if we denote by u the solution of  the VI (90) where K~ is replaced by K 2, 
then, again one has the same regularity result, namely, u ~ W 3'p (f~) for 

every p finite and essentially "nothing better". The proof consists of  showing 
that there exists z ~ L ~ (f2), such that Az = 0 and such that h (with the same 

notations as above) can be represented by 

h=P(F+z)  

For the "obstacle problem", i.e. the same problem with K~ or  K 2 replaced 
by 

it has been shown by Frehse =s that the corresponding solution belongs to 
3 H~oea ~ ( ~ )  (assuming that ~ is smooth), a result which has been recently 

25 j. Frehse. Hamburg Univ. Math. Sem., Abhard., 36 (1971),140-9. 
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improved by Caffarelli and Friedman 26 (these authors also study the 
regularity of the free boundary). 

Further remarks concerning this problem with the convex set K 2 can be 
found in Torelli 27. 

1 1. I N F I L T R A T I O N  IN P O R O U S  M E D I A  

We now briefly report on a posthumous work [20] with Brezis and 
Kinderlehrer on infiltration in porous media. This type of problem has been 
studied in particular by Baiocchi 28 and by Alt 29. The method introduced in 
reference [18] is, roughly speaking, as follows. We are given an open set 

c N  2 with boundary 0f2 which consists of three parts: 
af2 = S, u S 2 t j  S 3 ; we want to find p ~ H ' ( ~ ) ,  p > 0 ,  and g ~ L ~° (f)) ,such 
that 

g = l  if p > 0  
g e [0,1] if p =  0 (91) 

p = given function on S 2 u S 3 (92) 

V p V ( + g  dxdy < 0, V ( E Z  (93) 

where Z is defined as follows : 

Z = { ( [ ( e C ' ( ~ ) , ( > O  o n S e , ( = O  onSj} 

In order to prove that there exists p ~ Wtlo~ (f~) V finite s, and that there 

exists g ~ L ~° (f2) such that (91), (92) and (93) are true, the authors in [18] 

introduce the following approximation procedure (of the penalty type). Let 

26 LA. Caffarelli and A. Friedman. "The obstacle problcm for the biharmonic operator". Ann. 
Scuola Normale Superiore, Pisa, Classe Scienze, (IV), 6, 1979, pp. 151-184. 

27 A. Torelli. "Some regularity results for a family of variational inequalities". Ann. Scuola 
Normale Superiore, Pisa, Classe Scienze, (IV), 6 (1979), pp. 497-510. 

2s C. Baiocchi. C. R. Acad. Sci., Paris, 278 (1974), 1201-4: See also the book of Baiocchi and 
Capelo. Disequazioni Variazionali e Quasi variazionali. Applicazioni a problemi di 
frontiera libera.Published by Unione Matematica ltaliana, Univ. of Bologna (1978). 

29 H. W. Alt. Arch Ration. Mech. Anal., 64 (1977), 111-26. 
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H~ (2 )  be defined by 

! if 3, > 

H,  (2) = c i f 0 < 2 < c  
if g ,<0 

(94) 

and let us consider the problem of finding p,. E H I (~ )  such that 

p,  = given on S 2 w S 3 (same values as in (92) (95) 

 dy=0, 

such that ( = 0 on S 2 u S 3 
(96) 

The authors prove (i) that (95) and (96) have a unique solution; and (ii) 
that p,. converges, as c--~ 0, to a solution of the problem. (The uniqueness 
o f p  is an open question, except in particular cases, solved by Caffarelli and 
Rivi6re 3°. 

The existence in (95) and (96) follows easily from Schauder's fixed-point 
theorem. 

For the uniqueness, if p,  and /3,. are two solutions, one introduces 

q=p,  - ~  

and it is enough to prove that q < 0 
p,  a n d / 3 , q  = 0 )  

One verifies that 

(since then, by exchanging the roles of 

I ~a(grad q) ( g r ad ( )  dxdy[<Z lql I (~ ldxdy  (97) 

where L depends on c (but e is fixed for the time being). 
Then one chooses, for any 6 > 0,  

3o L. Caffarelli and N. Rivi6re, "Existence and uniqueness for the problem of filtration 
through a porous media". Notices A.M.S., 24, A-576. 
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( = l ( q - 6 ) +  
q 

and after some computations, one shows that this implies (97). 
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12. C O N C L U S I O N  

In the above report, we have not spoken of  a number of  related works. Let 
us briefly cite some further related work not mentioned in the above report: 
on the regularity of  solution of  VI [20,21]; on the obstacle problem with the 
obstacles irregular [22] (work with A. Vignoli); or when the boundary 
conditions are of  mixed type [23] (with V. Murthy). Stampacchia was also 
interested in the numerical aspects of  the solution of  VI as shown in [24,25]. 

For many years, he wanted to write a book, one which would be an 
introduction to VI and would also carry the reader close to the frontiers of  
research. Work on this book was undertaken in collaboration with D. 
Kinderlehrer in July 1976; this book was nearly completed at the time of  his 
death [26]. 

Guido Stampacchia has left to us a beautiful example of  a mathematician, 
working with very good taste on strongly motivated problems; he introduced 
elegant abstract methods but only when necessary and without artificial 
generality; he introduced, and masterfully used, some techniques which 
already belong to the classical tools of  analysis. 
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IN MEMORY OF GUIDO STAMPACCHIA 

M,G. Garroni 
Dept. of Mathematics, University of Rome "La Sapienza", Rome, Italy 

Dear friends and colleagues, I am happy to have the occasion to take part 

in this international Congress in memory of Guido Stampacchia, that starts 

today. 

Many of  you, at least those closer to him, have come here not only to 

honour the memory of a great mathematician, but also in the name of  the 

friendship and the affection for a friend and, in the case of  the younger 

participants, for a real master. The personality of Stampacchia was both 

strong and simple, open and helpful. His human qualities are well known to 

all of  you. I do not want to recall them with words that may sound 

conventional. All the participants here, who more, who less, have had the 

occasion to experiment, know and appreciate them, both within the common 

mathematical activity and outside the scientific work. I know that everybody 

shares my feelings at the only mention of them. Our being here together is 

already an implicit commemoration, more effective then any speech, and a 

testimony of  admiration and of sincere unchanged affection. 

What I just mentioned well explains the nature of this Congress: an 

International Conference and at the same time, how to say?, an almost 
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familial gathering. This is a gathering of the scholars that have worked with 

Guido Stampacchia, who have shared his directions of  research, who have 

known him well and not only superficially, who have been his students. In 

this Congress there is only one conference dedicated to the aspects of  

Stampacchia's own mathematical work, the one given by Professor 

Magenes. This is just as Stampacchia would have liked. The rest of  the 

congress consists of  scientific communications mostly dealing with the 

continuation of  his research. This is the best commemoration for a man who 

has devoted his entire life to research. 

On my side, I only want to add a personal recollection. The place: Pisa. 

The time: the year 1966. I had just come out from a difficult period in Rome, 

due to a worsening of  human relationships that had rendered my activity at 

the University unbearable. (I was not responsible for that situation, but that 

is not important.) I was tired and discouraged, and also exhausted from the 

birth of  my younger daughter Adriana. Well, at that time Ennio De Giorgi, a 

close friend of mine from the years of  our common University studies, 

introduced me to Professor Stampacchia. That was a decisive acquaintance: 

Stampacchia encouraged me not to leave the University, a decision that I 

was on the verge of taking, and to go back to scientific work. 

I then started working again, this time under his direction. He was 

satisfied with my work, and gave me his full scientific and personal support. 

Until Stampacchia moved to the University of Rome, I went to Pisa at least 

once a month. On those occasions I had the chance to know people such as 

Nirenberg, Levy, Br6zis, Kinderlehrer, and other important mathematicians 

that used to visit Guido Stampacchia. My scientific life (and not only 

scientific) changed completely. 

In my opinion, this is not a small reason for my gratitude towards a 

master. 

Thank you very much. 



THE COLLABORATION BETWEEN GUIDO 
STAMPACCHIA AND JACQUES-LOUIS LIONS 
ON VARIATIONAL INEQUALITIES 

E. Magenes 
Dept. of Mathematics, University of Pavia, Italy 

It is a motive of deep emotion for me to recall the collaboration between 
Stampacchia and Lions, since they were among my dearest friends; with 
each of whom I had the fortune of working together scientifically. The 
friendship with Stampacchia began in 1941, when we met as students at 
Scuola Normale Superiore in Pisa. As for Lions, the first time the three of us 
met was at Nice during the "I Congr6s International des Mathdmaticiens 
d'expression latine", held during September 1957. Since then, we have met 
very many times; also in Erice in 1971 (June 27-July 7) 

Concerning the collaboration between Stampacchia and Lions on 
Variational Inequalities, I consider here the classic paper [10] (announced 
essentially in [9]). But also after this paper their exchange of ideas and their 
discussions have been continuous, during their frequent meetings; a 
synthetic exposition is the lecture "The Work of G.Stampacchia in 
Variational Inequalities" delivered by Lions in Erice, during the 
International Conference held in June 19-30, 1978, published in [5] and then 
also in [7] (see, moreover, the paper by S. Mazzone in this Volume [11]). 

Let V be a Hilbert space over R ; let a(u,v) be a continuous bilinear form 
on V; let K be a closed convex subset of V and finally let f be an element of 
the dual space V' (dual space of V). The problem studied in [10] is the 
following one: 

Prob lem 1: find u e K which satisfies the "Variational Inequality": 

a(u,v-u) > < f , v - u > ,  V v e K ,  (1) 



34 Variational Analysis and Appls. 

where <.,.> denotes the duality pairing between V' and V. 
It is well known that, if a(u,v) is also symmetric (i.e. a(u,v)=a(v,u), 

Vu, v ~ V ), then (1) is equivalent to the following minimization problem: 

I a(u, u) - < f, u > = minve I~ 1 a(v, v)- < f, v >} 

Moreover, if a(u,v) is again symmetric and also coercive on V, i.e. 

a(v,v)  > a II v II 2 , Vv v (2) 

( a ,  a positive constant, II II denotes the norm in V), then Problem 1 has a 
unique solution. 

Stampacchia had long been interested in Calculus of Variations, since he 
was student of L. Tonelli in Pisa; and he was able to prove that Problem 1 
has one and only one solution even if a(u,v) is coercive, but not necessarily 
symmetric, and to deduce some important applications to the theory of 
"capacitary potential" theory (see [12], [13]). 

In the paper [10] Stampacchia and Lions try to study the existence of at 
least one solution of Problem 1; to this end, they replace the hypothesis (2) 
with the more general condition: 

a(v,v) > 0, Vv e V. (3) 

Such a condition had been inspired by the papers of G. Fichera about the 
"Signorini Problem" in elasticity theory ([6], [7]), where the related bilinear 
form a(u,v) is symmetric and satisfies (3), but not (2). 

The main results of [10] can be summarized as follows (the hypothesis 
being still that a(u,v) is bilinear continuous on V, satisfies (3) and K is a 
closed and convex set of V): 

1 °) the set X of all solutions of Problem I is a (possibly empty) closed and 
convex set; 

2 °) approximation of the set X by regularizations: Ve > 0, let us consider the 
problem which consits in finding u, e K ,  such that: 

a(u~,v-u~)+efl(u~,v-u~)>_ < f + e g , v - u ~  >, V v e K ,  (4) 
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where fl(u,v) is a bilinear continuous coercive form on V and g a fixed 
element of  V': problem (4) has one and only one solution u,  ~ K ,  since 
a(u, v) + ~fl(u, v) is coercive on V. Stampacchia and Lions showed that 

u ,  stronghly converges in V to u 0 as g tends to zero, (5) 

where u 0 is the unique solution in X of  the inequality 

fl(Uo,V-Uo) >_ < g , V - U o > ,  V v e X ;  (6) 

3 °) if moreover X is also bounded, then Problem 1 has at least one solution; 
4°)semicoercive forms: let us assume that the norm Ilvll of v is equivalent 

to p0(v)+pj(v)  where p0(v) is a norm in V, with respect to which V 
is a pre-Hilbert space and p~(v) is a seminorm on V, the space 
Y--{v  ~ V, p l (v)= 0}has a finite dimension, and there exists a constant 
cl, such that: 

inf po(v-y)~c,p,(v). 
y~Y 

Moreover, let a (u,v) be a continuous bilinear form on V which is semi- 
coercive, i.e. 

a(v,v) _> c 2 (Pl (v)) z, Vv ~ V, (c 2 positive constant); 

let K be a closed and convex subset of V containing {0}; finally, let 
f E V ' b e  such that f = f 0  +f~, with f0 e V ' , f ~ e V '  and satisfying, if 
Y n K ~ {0}, the following conditions: 

< f 0 , y >  < 0, V y ~ Y ~ K ,  y e 0  
1< fl, Y >l -< c3Pl (V), 'V'V E V (C 3 positive constant). 

Then, there exists at least one solution of Problem 1. 

The proofs of  the results 1°), 2°), 3°), 4 °) are given in the Sections 3,4,5 
of  [10]. In Section 6 of  [10] some examples of  applications to different 
problems for elliptic partial differential equations are given. In particular, as 
an application of  4°), Section 6 contains an example, which is related to the 
above mentioned "Signorini Problem" (for this, besides Fichera's papers [6] 
and [7], I suggest to refer, for more details, to the papers [1] by C. Baiocchi, 
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[2] by C. Baiocchi-F. Gastaldi-F. Tomarelli and [3] by C. Baiocchi-G. 
Buttazzo-F. Gastaldi-F. Tomarelli). 

Finally, it seems to me important to point out also Section 7 of  [10], in 
which for the first time the "Evolution Variational Inequalities" are 
introduced. The starting point is the following one: more in general (with 
respect to Problem 1), we can consider a bilinear form a(u, cp) defined for 
u e V and cp e O ,  where • is a Hilbert space strictly contained in V (then 
a(u,u) has no meaning Vu ~ V). If now K is a closed subset of  V and 
u ,~ - -+  a (u ,~)  is a bilinear continuous form on V x¢,, the problem, 
analogous to Problem 1, is the following one: to find u ~ K ,  such that: 

a (u ,~-u)  > <f ,~o-u>,  V(peqbc~K. (7) 

The main example of  this situation - studied in Section 7 of  [10] - is a 
Parabolic Evolution Inequality, which we will describe here, taking for 
simplicity the heat operator: 

On 
- - - • u + c u  (c>0). 
0t 

Let ~ be an open, bounded, regular subset of  N", and V and q3 the 
spaces 

V = {v: v e L 2 (0,+ oo ;H' (f0), v'( = ~tt ) e L 2 (0, + oo ;H-' (~)), v(0) = 0} (8) 

and 

• = {(,o e Lz(0,+oo ;H' (f2)), (,o(0) = 0}, (9) 

which are Hilbert spaces equipped with the obvious scalar products. 
Moreover  let ~ = 0f~x]0,+oo[ be the lateral boundary of  f~x]0,+oo[; for 
v E V we can find the "trace" v Iz (and we have: 

v Iz e L 2 (0, +oo; H ~ (OO.)). 

Let us take 

K = { v e V : v l z  =0} , (10) 
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which is a convex and closed subset o f  V. Then Stampacchia and Lions 
prove that, if  f E L z ( ~ ) ,  then there exists one and only one u ~ K ,  solution 
o f  the Parabolic Variational Inequality: 

, ~  , ~ { V u V ( @ - u )  + c u ( ~ o - u ) } d x d t -  j~o ~u~pdxdt 

>~f(@-u)dxdt, V @ ~ * n K .  (11) 

where Vv is the gradient o f v  with respect to the x variables. 
Moreover,  they give an interpretation of  (12), proving that the solution u 

o f  (12) defines a "weak"  solution of  the parabolic equation: 

014 - - - A u + c u  = f  in f2×]O,+oo[, (12) 
Ot 

which satisfies the initial condition u(x,0)=0 and the "unilateral condition" 
o n E :  

u > 0 0 u  > 0 u Ou = 0 (u exterior normal on Of~). 
- ' O r -  ' "Ou 

This first result has been the starting point for further developments of  
the variational Evolution Inequalities due to H. Brezis in several important 
papers (see mainly [5]) and others. 
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IN MEMORY OF GUIDO STAMPACCHIA 

O.G. Mancino 
Dept. of Applied Mathematics, University of Pisa, Pisa, Italy 

Certainly, the remarkable human qualities, the successful academic 
career and the important scientific production of Guido Stampacchia are well 
known, especially to the national and international mathematical community. 
However, I don't think superfluous to recall briefly who he was and what he 
did, so that we all can reflect on the greatness of the Man we lost, on the 
honor we had in knowing him and how he enriched us both from a human 
and a scientific point of  view. 

It is therefore with deep love and sincere gratitude that I am going to 
remember Guido Stampacchia as a master and a scientist. Because someone 
else, more qualified than I am in the fields cultivated by Stampacchia, will 
talk about his scientific work and the influence it has in the present days, it 
will be enough for me to outline his academic career, sketch the main 
subjects of  his research activity and recall some stages of  my collaboration 
with him. 

Stampacchia was born on March 26, 1922 in Napoli, the town he always 
loved. Besides in Pisa where, as a student at the Scuola Normale Superiore 
he had Leonida Tonelli as a master, Stampacchia completed his University 
studies in Napoli, where he took his degree in Mathematics in November 
1944 and was a pupil of  Renato Caccioppoli and Carlo Miranda. He was an 
assistant professor since January 1946 until December 1952, firstly at the 
Istituto Navale and then at the University. 

In December 1952 he became Appointed Professor of Mathematical 
Analysis at the University of Genova and in November 1960 he was called 
by the University of  Pisa, where he taught at the Faculties of  Science and 
Engineering. In November 1968, he went to Rome, where he was professor 
at the Faculty of  Science of  the University "La Sapienza" and Director of the 
Istituto per le Applicazioni del Calcolo "M. Picone" of the National 
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Research Council. Finally, on November 1970, he returned to Pisa as 
Professor at the Scuola Normale Superiore. 

Stampacchia was fellow of the Unione Matematica Italiana since 1948, 
member of the Societ/t Italiana di Scienze, Lettere ed Arti of Napoli since 
1954 and he won the Feltrinelli Award in 1966. Besides, he was 
corresponding fellow of the Accademia Nazionale dei Lincei since 1968, 
member of the Scientific Commission of the U.M.I. from 1964 to 1976 and 
President of the U.M.I. from 1967 to 1973. 

Stampacchia was member of the managing board of the International 
Summer Center for Mathematics and of the editorial board of many 
scientific reviews, among which "Advances in Mathematics", "Applied 
Mathematics and Optimization", "Calcolo" and the "Annali della Scuola 
Normale Superiore". Since 1974 he was the Director of this last review, as 
well. 

Stampacchia has left an indelible trace in the mathematical world with 
his 86 publications. Because of the originality, the depth and the importance 
of his scientific contributions, Stampacchia was invited to deliver lectures in 
many international Congresses, and courses or seminars in many Italian and 
foreign Universities. 

His scientific work is mainly concerned with boundary-value problems in 
ordinary differential equations; the calculus of variations of multiple 
integrals and its connection with partial differential equations; variational 
inequalities and their application to problems of mathematical physics and 
numerical analysis. Enrico Magenes and Jacques Louis Lions have 
summarized, in a masterly way, the scientific work of Guido Stampacchia 
into two articles appeared in 1978 on Bull. U.M.I.. Therefore, I'll limit 
myself to personal memories. 

• ~" "A" "A" 

I first met Stampacchia in Pisa during the spring of 1965. I was a 
researcher at the Centro Studi Calcolatrici Elettroniche. In that occasion, 
Stampacchia told me about his note "Formes bilin6aires coercitives sur les 
ensembles convexes", published on the C. R. Acad. Sc. Paris in 1964. His 
opinion was that it would be possible to infer from the paper a method for 
solving systems of equations, and he asked me to realize the method. 

So I did, and my results appeared in two papers: "Sui sistemi lineari 
contenenti un parametro", published on Calcolo in 1966, and "Resolution by 
Iteration of Some Nonlinear Systems", appeared on the Journal of the 
A.C.M. in 1967. In the first paper, I consider a system of linear equations 
with a coefficient matrix of the form A + tB, where A and B are n x n 
matrices, A symmetric and positive definite, B skew. Then, I present an 
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iterative method for solving a sequence of  such systems, generated by 
assigning discrete increasing real values to the parameter t starting with 
t = 0 .  

In the second paper, I consider a system of  nonlinear equations satisfying 
certain conditions. Then I prove that such a system admits a unique solution, 
present an iterative method for solving it, and find a formula which gives an 
excellent starting point. 

~°xq¢ 

In November 1968 Stampaechia went to Rome, but our collaboration 
continued. Our main results appear in the joint paper "Convex Programming 
and Variational Inequalities", published on J.O.T.A. in 1972. The following 
results, obtained in this paper, are worth of  being considered. 

Let x=(xj ,Xz, . . . ,x , )  be a generic point of  n-dimensional Euclidean 
space R",  (x ,y)  the scalar product in R",  K ~ O a closed, convex subset 
of  R",  OK the boundary of  K and F(x)  a continuous mapping from R" 
into R".  The mapping F is said monotone if: 

( F ( x ' ) -  F(x") ,  x' - x") >_ 0 (I) 

for every pair of  points x',x" ~ R",  and strictly monotone if in relation (1) 
equality holds when and only when x' = x". 

Given x ,  the equation: 

(F (x ) , y  - x) = 0 (2) 

represents a hyperplane if F(x)  ¢ 0.  A hyperplane passing through x ~ OK 
is called a supporting plane for K in x,  if it leaves the whole convex set K 
on the same part. 

Let f ( x )  be a continuously differentiable convex function in R".  The 
gradient of  f ( x )  is a continuous, monotone mapping of  R"---~ R" .  The 
problem of finding a point x K ~ K such that: 

f ( x  K) = min f ( x )  (3) 

is equivalent to that of  finding a point x x e K for which: 

(grad f ( x  K ), x - x K ) > 0 Vx ~ K, (4) 
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which is a particular case of the more general problem of  finding a point x 
such that: 

x ~ K, (F(x), y - x) > 0 Vy e K. (5) 

The relation (5) is called a variational inequality and any point satisfying it 
is called a solution of the variational inequality. We have the following 
results. 

Theorem 1 I f  F(x) is strictly monotone in K,  then there exists at most 
one solution of  the variational inequality (5). 

Theorem 2 I f  a solution x of  (5) is an interior point of  K ,  then (5) is 
equivalent to F(x) = O. 

Supposing that F(x) is strictly monotone in R" and that for every non- 
empty, closed, convex subset of  R" , the variational inequality (5) admits a 
solution, we have the following 

Theorem 3 Let K~ and K2 be two non-empty, closed and convex subsets 

of  R" suck that K i c K 2 ,  and let xx, and xK~ be the two solutions of  the 

corresponding variational inequalities, i.e.: 

xK, e K ,  (F(xx , ) ,y -xK,)  >_ 0 V y e K I  

x K ~ K 2  (F(xK2),y--xK~) >-- 0 VYGK2. 

Then, if xK, is interior to K, ,  we have: xx, - =xK,. I f  otherwise xK, ~OK,, 

the hyperplane (F(xK,),y-xK, ) = 0 separates xK2 .from Kt,  i.e.: 

(F(xx,),xK~ -xK,)<O. 

More precisely, we find." 

( F (  XK, ),XK~ -- XKI ) <0 

unless XK2 = Xl, q . 

As a consequence of  this theorem, if x 0 is the solution of the equation 
F(x) = 0,  then we have the following 
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Theorem 4 Let  x x be the so lu t ion  o f (5 ) .  Then: 

/) / f  x 0 ~ K,  x x co inc ides  wi th  x o; 

ii) i f  ins tead  x o ~ K ,  the hyperp lane  (2) wi th  x = x x s tr ic t ly  separa tes  

xo f r o m  K . 

From a geometrical point of  view, proposition ii) means that x K belongs 
to the subset 00K of  OK consisting of  all the points of  OK at which there 
exists a supporting plane separating x 0 from K (see figure below). 

X" o 

Let us now consider the case in which K is the set of  points in R" for 
which the constraints: 

h i (x) < 0 (i = 1, 2,..., m) (6) 

hold, the h i (x) 's being linear functions of  the type 
hi(x  ) = ai.~x ~ + ai.2x 2 + . . .  + ai, ,x . - ai.,+ ~ , such that any set of  s < n functions 
h i(x) constitutes a set of  linearly independent functions. The boundary of  
K is composed by the points of  K for which at least one of the functions 
h~(x) vanishes. 

If K' denotes the subset of  K obtained by imposing some equality 
constraints, for instance: 

K' = {x ~ R"lhi(x) : 0,i : 1,2 , . . . , k ;h j (x )  < O, j  : k + 1,k + 2,..., m} 

and x x, is a point such that: 

x x , ~ K '  , ( F ( x x , ) , x - x ~ , ) > O  V x e K ' ,  
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then we have: 

Theorem 5 Point x K, is solution of the variational inequality relative to K 
if there exist non-negative constants eq such that." 

k 
F~(XK,)+~-~a,.ra,=O (r  = 1,2,...,n), (7) 

i=1 

where F r (x x,) is the generic component of F(x x,). 
Using the previous theorems, we reduce the resolution of  the variational 

inequality (5) under the constraints (6) to the resolution of variational 
inequalities: 

xe eEs, (F(xe ),x-xE )>O VxEE.~ (8) 

where E are linear manifolds defined by s constraints, among those given, 
in the form of  equality, chosen by means of a procedure quite close to the 
method of  Theil - Van de Panne for solving the quadratic programming 
problem. 

Assuming, without loss of generality, that: 

E = {x ~ R "  : h, (x)  : 0 ..... & (x)  : 0} 

and setting: 

all al2 "" a~.] 

(a,I G2 "'" G. )  

d=la2'"+ll, u= UZ 

we have the following: 
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Theorem 6 The system: 

F(x)  + Aru = O, Ax = d (9) 

is equivalent to the variational inequality (8). 
Therefore, the resolution of  (5) under (6) comes down to the repeated 

application of  the Lagrange multipliers method, since we can write (9) as: 

F(x)  + u~Vh, (x) = 0 (10) 

[h  i (x) = 0, (i = 1, 2,...,s). 

Remark Obviously, if .~ and h are two vectors such that: 

F(£c) + Arfi = O, AYe = d, 

wehave  ~- -x  K if h i>0( i= l ,2 , . . . , s ) .  

• k ' ~  ¢¢ 

These memories well show how Stampacchia was generous with his 
ideas. 

As his assistant at the Faculty of Engineering and his friend since our 
first meeting, I knew Stampacchia very well. He was an excellent teacher; 
his lessons were uncommonly lucid and precise. The numerous students, 
who had him as a professor, remember him with high esteem and 
admiration. Nevertheless, during examinations, he was apparently severe. 

Guido was a far-sighted man, sincerely democratic and friendly with his 
colleagues. He loved classic music and good cooking, but was a heavy 
smoker. He had a refined humour and liked to express witty remarks usually 
in his colourful Neapolitan language. 

Guido and I often met and talked about Mathematics, our children, 
politics, and so on. I remember that the last topic we discussed together was 
"The role and the function of mathematicians in the technological society 
and the industry". We did not conclude our discussion because of the sudden 
death of  Stampacchia on April 27, 1978, in Paris where he was as a visiting 
professor. 

The last time I saw Guido was in the mortuary Chapel of  the 
Misericordia in Via S. Frediano in Pisa, the day before the funeral ceremony. 
This took place at the Scuola Normale Superiore at the presence of  close 
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relatives, friends and colleagues. Professor Carlo Miranda described the 
human and scientific figure of his great pupil by deep-felt words. 

Guido now rests in Napoli, in the small British Cemetery, which he 
himself chose as his last home. 



GUIDO STAMPACCHIA 

Silvia Mazzone" 
Dept. of Mathematics, University of Rome "La Sapienza ", Rome, Italy 

. SCIENTIFIC EDUCATION AND FIRST RESEARCH 
ACTIVITY AT THE SCUOLA N O R M A L E  SUPERIORE 
IN PISA AND AT THE UNIVERSITY OF NAPLES.  

Guido Stampacchia was born on March 26 th, 1922 in Naples, to the 
family of  Emanuele Stampacchia and Giulia Campagnano. Giulia 
belonged to a Jewish family of Florentine origin, ~ that owned a factory 
which made hand embroidered household linen and linen garments for 
women. The Stampacchia family had origins in Lecce and practiced the 
Valdese Christian religion: the father, Emanuele, managed an iron tools 
factory which he was forced to sell off at the time of the war in Ethiopia, 
as a result of  his refusal to join the fascist party. The young Guido got 
essentially a lay education, although as a child he attended the Valdese 
church together with his two sisters. He obtained his high school 
certification in classical subjects (maturit/~ classica) at the age of  eighteen 
from the Liceo-Ginnasio Gian Battista Vico in Naples, obtaining the 
excellent mark of  9/10 only in Mathematics and Physics. In spite of  the 
classical studies he had followed, he intended to dedicate himself to 

Acknowledgment: I am very grateful to Sara Stampacchia and Enrico Magenes, who 
read a first draft of this writing and made a number of comments supplying useful 
information. My thanks are also due to M.K.Venkatesha Murthy for his help in the 
English translation of my Italian text and to Maria Giovanna Garroni, Louis Nirenberg 
and Paolo Podio Guidugli who read the final version. 
In some documents of the twenty years of fascism, the surname Campagnano was 
changed into Campagna, probably because of the then existing racist reasons. 
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mathematics and hence broadened his preparation in Mathematics and 
Physics by studying "the basic principles of the program prescribed for 
the scientific high school, seeking .... to find a logical process". 2 

In the autumn of 1940 he was admitted as an internal alumnus to the 
Scuola Normale Superiore of Pisa, for the undergraduate course in Pure 
Mathematics of the Classe di Scienze (Science Faculty), having secured 
the fifth position in the competitive entrance examination3; after that he 
completed brilliantly all the examinations in the curriculum of the first 
three years as required for the students of the Scuola Normale. In 
particular, he had Francesco Cecioni and Salvatore Cherubino among his 
teachers in the first three years of his university career, while in the third 
year he followed the courses of Leonida Tonelli on Analisi superiore 
(Advanced Analysis) and of Lamberto Cesari on Teoria delle funzioni 
(Theory of Functions). The latter, having graduated in 1933 under the 
supervision of Tonelli, was a professor in charge of a course from 1938, 
while Tonelli, the undisputed master of the Mathematical School in Pisa, 
taught the courses of Analisi infinitesimale and Analisi superiore, and 
maintained the chair of Analisi superiore during the three years - from 
November 1939 to October 1942 - when he had moved to the University 
of Rome. The advanced courses of Tonelli were concerned with 
trigonometric series, integral equations and calculus of variations, in a 
three-year cycle; when Stampacchia attended it, the course on Analisi 
superiore was dedicated to calculus of variations. During this period, the 
assistants of Tonelli at the University were Jaures Cecconi, who then 
became a professor at Genova, Landolino Giuliano, who later became a 
professor at the Naval Academy at Livorno, and Emilio Baiada who, as a 
professor, later taught at Palermo and Modena. 

The courses at the Scuola Normale were organized by Tonelli and 
Giuliano. Tonelli used to organize two seminars, one for first level 
students and one for advanced students: respectively, Esercitazioni di 
Analisi e Geometria (Tutorial Sessions in Analysis and in Geometry) and 
Conferenze di teoria delle funzioni (Conferences in the Theory of 
Functions). He was the editor-in-chief of the Annali della Scuola 
Normale Superiore; later he was also the Director of the Scuola Normale, 
during the academic year 1943-44, contributing greatly to the survival of 
the Scuola in such a critical and difficult moment for Pisa and the whole 
country. Stampacchia followed his tutorial course of Analysis and 

G. Stampacchia, Nota sugli studi e le tendenze personali, sent along with the 
application for admission to the Scuola Nonnale of Pisa, conserved in the personal 
files ofG. Stampacchia as a student, in the Archives of the Scuola. 
The topic of the written test in Analysis, for the competitive examination of the 
Scuola, was the theory of real numbers. 
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Geometry in 1941-42, took the examination in Theory of Functions the 
following year and, in 1943, passed the discussion on Ordinary 
Differential Equations, obtaining the mention of excellent preparation 
and excellent aptitude. Giuliano taught the courses of Complementary 
Mathematics I and II attended by Stampacchia, who took the relative 
examinations in his first and second year. During his stay at the Scuola 
Normale, Stampacchia had among his fellow students Giuseppe 
Colombo, Mario Dolcher, Jacopo Barsotti, who had joined the Scuola 
before him, Enrico Magenes, Roberto Conti, who joined a year later, and, 
finally, Aldo Andreotti, who was admitted in October 1942. 

On the 24 th of March 1943, Stampacchia, who had been drafted, 
informed the Administration of the Scuola Normale that he was expected 
to report at the Regia Aeronautica (the Royal Air Command) by the 28 th 
of that month; anyway, he managed to take the examinations at the 
University of Pisa during the summer session of June 1943, securing 
marks of 30/30 cum laude from both Cesari and Tonelli. At the end of 
June he was sent to Rome to attend a course for Sergeant Cadet in 
technical specializations. He remained there until the 8 th of September 
1943, when he joined the Resistance Movement against the Germans, in 
the defense of Rome. After an adventurous trip, he regrouped with his 
parents and sisters in Isemia and retumed to Naples only after the 
liberation of the city. He was assigned by the Liberation Army to 
administrative duties, and eventually discharged in June 1945. 

In the meantime, taking advantage of a special Ministerial decree due 
to the war, he completed his fourth year of studies at the University of 
Naples. There he graduated, on the 28 th of November 1944, obtaining his 
Laurea, on behalf of the University of Pisa, with the mark of 110/110 
cum laude, discussing a thesis on ordinary differential equations, written 
under the guidance of Renato Caccioppoli. His thesis 4 was concerned 
with an adaptation of an approximation procedure for Volterra integral 
equations due to Tonelli 5 to boundary value problems for systems of 
ordinary differential equations. 6 

In the fall of 1944 he won a scholarship from the University of Naples 
for new graduates in mathematics, which allowed him to continue his 
studies under the direction of Renato Caccioppoli and Carlo Miranda; in 
addition, he worked as a voluntary assistant to the chair of Analisi 
Matematica (Mathematical Analysis) where he did tutorial work for the 

Stampacchia 1947, Ma [1], p. 418. Here and in the following Ma[.] is used to indicate 
the numbering of the scientific publications of G. Stampacchia as introduced by 
Magenes 1978b. 
See G. Sansone, Equazioni d~fferenziali nel campo reale, v. 1, pp. 45-48. 
Stampacchia 1947, Ma[ 1 ], pp. 413-414. 
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course of  Analisi Algebrica (Algebraic Analysis). Meanwhile he also 
prepared himself for the Esame di Licenza (Final Examination) in Analisi 
Superiore at the Scuola Normale, which he passed with 70/70 cum laude 
on November 19 th, 1945. As the topic of  his examination, he had chosen 
the semicontinuity of  the double integral in the calculus of  variations 
~f(x ,y , z , s )dxdy ,  with the integrand depending on the mixed second- 
D 

order derivatives of  the unknown function. Thus, from his very beginning 
as a researcher, Stampacchia's interest for a topic very much studied by 
Tonelli and his school was evident, a topic on which he was to obtain 
very significant results within a span of  few years. 

In the academic year 1945-46, he shared with Jacopo Barsotti the first 
place for a position of  Perfezionamento (Specialization) at the Scuola 
Normale in the Faculty of  Sciences, but he declined, in order to accept a 
position of  assistant at the Naval Institute at Naples, where Caccioppoli 
and Miranda were in charge of  the courses in Analysis. A reason behind 
this decision, in addition to personal ones, was a certain dissatisfaction 
with his studies, which he so describes: "During the period I stayed in 
Pisa, I tried in several ways to develop a special interest in something, 
but I wandered among many different topics due to an absolute lack of  a 
guide. Thereby, the reasons for the sacrifices I would have to make if I 
remained in Pisa became all the more meaningless. ''7 

Stampacchia worked in Naples willingly and with satisfaction: having 
found in Caccioppoli a second teacher, he continued the studies in 
Differential Equations and Calculus of  Variations he had begun with 
Tonelli. During the years 1945-46, 1946-47 and 1947-48 he fulfilled his 
teaching duties at the Naval Institute giving tutorial courses in Algebraic 
and Infinitesimal Analysis, as assistant in charge. At the same time, as a 
voluntary assistant, he helped with the courses on Analysis at the 
University, until he was given charge of  the course entitled Istituzioni di 
Matematica (Principles of  Mathematics) at the Faculty of  Sciences, 
which he taught from November 1948 to December 1952. Moreover, in 
the academic year 1948-49, he held a CNR (National Research Council) 
scholarship to work on Calculus of  Variations and methods of  Functional 
Analysis at the Mathematics Institute of  the University of  Naples. 

G. Stampacchia to L. Russo, Naples 21-1-1946, conserved in the personal files of G. 
Stampacchia as a student, in the Archives of the Scuola Normale. Enrico Magenes 
remembers with emotion a visit he made with Stampacchia, on the first days of 
November 1945, to the house in Asciano Pisano where Leonida Tonelli had retired for 
health reasons. On this occasion, Tonelli advised Stampacchia to leave Pisa and benifit 
the possibility of working with Miranda and especially with Caccioppoli, whose 
charm had strongly attracted Stampacchia (Magenes 2000, p. 27). Leonida Tonelli 
died after a few months on 12 March 1946. 
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The scientific and economic independence he achieved in Naples 
permitted him to realize his desire, already evidenced when he gave up 
the specialization at the Scuola Normale, and marry Sara Naldini, his 
fellow student at the University. After the wedding was celebrated, in 
October 1948, the couple settled in Naples in the family house, where 
their children Mauro and Renata were born, in 1949 and 1951. 

At the age of twenty seven, after having been declared eligible in a 
competition for the position of assistant in which he participated in 
November 1948, he was appointed as assistant with tenure to the chair of 
Mathematical Analysis at the University of Naples, on July 1 st, 1949. 
Further, in the month of  April 1951, he obtained the Libera Docenza 
(Habilitation) in Mathematical Analysis: for this examination, he 
presented 14 papers ranging from ordinary differential equations to the 
the theory of functions of real variables, from calculus of variations to 
partial differential equations. 8 

In the field of ordinary differential equations, which was the topic of 
his graduation thesis, Stampacchia studied, generalizing a problem posed 
by Nicoletti at the end of the eighteenth century, the problem of 
determining the solutions of a first order system of nonlinear differential 
equations, in the case when the boundary conditions were also given in a 
nonlinear form (Ma[ 1], [5]). In the Piccole Note of  Unione Matematica 
Italiana (UMI), he gave a condition under which the solution of an 
equation of  order n depending on a parameter, together with conditions to 
identify a polynomial of degree n, is reduced to an ordinary boundary 
value problem for an equation of order n+l (Ma[7]). Further, in a note 
appeared in the Rendiconti Lincei, he gave a functional interpretation of 
the Peano phenomenon concerning the lack of uniqueness in the Cauchy 
problem (Ma[9]). Stampacchia returned to the study of ordinary 
differential equations during the fifties, when he solved the problem of 
determining an integral curve for a first order system lying on an n 
dimensional manifold (Ma[21]); and when, in a lecture delivered at 
Catania in May 1956, he gave a survey of the theory of boundary value 
problems for systems of ordinary differential equations (Ma[26]). 

Among his first research works are the study of the Goursat problem 
at the large for a second order nonlinear hyperbolic partial differential 
equation in two variables (Mail0]) and, due to his closeness with 
Caccioppoli, the paper (Ma[2]), in which he proves, for rectifiable 
surfaces, a conjecture about the uniqueness of the definition of area 
which fulfils lower semicontinuity condition. 

8 For details and an exaustive examination of these papers, see Magenes 1978a, pp. 717- 
722 (XIII-XVIII). 
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The work of Stampacchia in the Calculus of Variations, stimulated by 
the results obtained and the techniques developed by Tonelli, which he 
had rapidly mastered during his university career, continued with 
applications of the direct methods to double integrals depending on 
generic differential operators acting on the unknown function. In one of 
his earliest papers, semicontinuity was considered (Ma[3]); this work was 
completed by determining the conditions ensuring the existence of the 
minimum (Ma[ 11]). These results were the subject of a communication at 
the III UMI Congress, held in Pisa in September 1948. 9 In the case of 
functionals depending only on second order derivatives (Ma[4]), taking 
the Laplacian of the unknown function as the differential parameter, the 
minimization problem is set in the class of once continuously 
differentiable functions, which are assumed to be absolutely continuous 
along lines parallel to the axes (absolutely continuous according to 
Tonelli), and such that the pure second derivatives are integrable; for 
functionals depending on the mixed derivatives (Ma [6]), one considers a 
class of doubly absolutely continuous functions (absolutely continuous 
according to Vitali). 

Studying the papers of Fubini and Beppo Levi on the minimum 
principle for the Dirichlet integral, Stampacchia realized j° that, to prove 
the existence of a minimum for the case of double integrals, in the use of 
the direct method was not necessary to have uniform convergence; and 
that the appropriate function space for formulating the problem was not 
the space of absolutely continuous functions. Thus, with the 
encouragement of Caccioppoli, he began to examine functions separately 
continuous with respect to each variables together with the associated 
notion of quasi uniform convergence and the corresponding compactness 
criteria (Ma[8], [12]), which found applications in the calculus of 
variations (Ma[13]) and in the study of the Dirichlet problem for second 
order elliptic equations in two variables (Mail4]). In particular, in the 
paper (Ma[13]) published in 1950 in the Giornale di Battaglini, of which 
Caccioppoli and Miranda were the editing directors, in order to overcome 
the limitations of Tonelli's theory, Stampacchia introduced a class of 
functions of the type of Sobolev space, in the two-dimensional case. 
Thus, independently and using different methods, he found results similar 
to those of C.B. Morrey on variational problems for multiple integrals, ~ 
about which he learned much later because of the then existing scientific 

9 G. Stampacchia, Gli integrali doppi del calcolo delle variazioni in forma ordinaria, 
Atti III Congresso UMI, 1948 (1951), p. 110. 

10 Stampacchia 1950, Ma[13], p. 171 - Stampacchia 1996-97, p. 31. 
11 C.B. Morrey, Existence and differentiability theorems for the solution of variational 

problems for multiple integrals, Bull. Amer. Math. Soc.,v. 47, 1940, pp. 439-458. 
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isolation of Italy, due to the war. Stampacchia remarks explicitly that, 
while his formulation was similar to Morrey's as far as the nature of the 
functions considered, the treatment was different in so much as Morrey 
makes use of functions defined up to sets of measure zero, thus 
precluding an analysis of boundary traces. 

Naturally the existence theorems so obtained furnish minimizing 
functions in the new class, leaving open the regularity problem of the 
solutions thus found. 

The depth and penetration with which these problems were treated 
and understood are very aptly described in the words with which Ennio 
De Giorgi remembers a visit to Naples during this period: "Picone was 

very much interested in problems of the type min (Sg + H,_~ (c3f))l and 

thought that Caccioppoli was the right person to find a path to the 
solution. Hence, he sent me for some days to Naples, where, talking to 
Caccioppoli, Stampacchia and Carlo Miranda, I could experience all the 
richness of their ideas from their live voices, much more than as those 
ideas were stated in their very ingenious writings. In the words of 
Caccioppoli, Stampacchia and Miranda their personal experiences and 
the teaching of their masters Picone and Tonelli were integrated, and the 
spirit of the direct methods of the calculus of variations and, in particular, 
of the procedure divided into four fundamental steps: relaxation, 
semicontinuity theorems, representation theorems, regularity theorems, 
came out clearly. ''12 

The years that Stampacchia spent in Pisa and Naples characterize the 
formation of his personality as an analyst: he was a passionate specialist 
in calculus of variations and in the theory of partial differential equations, 
a practitioner and an inspirer of research works of considerable depth and 
originality of thought. As is well known, his work has contributed 
notably to the progress of mathematics and the fields of research opened 
by him are still drawing the attention of the international mathematical 
community. 

T H E  C H A I R  AT T H E  U N I V E R S I T Y  OF G E N O V A  A N D  
T H E  A D M I T T A N C E  INTO T H E  I N T E R N A T I O N A L  
M A T H E M A T I C A L  C O M M U N I T Y .  

In 1952 Stampacchia came out first in the national competition for a 
chair of Algebraic and Infinitesimal Mathematical Analysis at the 

12 De Giorgi 1985, p. 185. 
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University of  Palermol3; he was nominated Professor on Probation 
(Professore Straordinario) in the Faculty of  Mathematical, Physical and 
Natural Sciences of the University of Genoa on the 15 th of  December 
1952. In December 1955, he was promoted Full Professor (professore 
ordinario)) 4 He then settled himself with his family in Genova, where his 
daughters Giulia, in 1955, and Franca, in 1956, were born. 

In the years between his habilitation and full professorship, 
Stampacchia generalized ~5 to the case of  n variables the class of  functions 
he had introduced for the two dimensional case, and he proved the 
corresponding compactness criteria (Mail5]). He presented these results 
at the Congress of  UMI held at Taormina in October 1951 (Ma[16]). In 
his communication, he also treated the question of  existence of  the 
minimum for multiple integrals depending on the first and second 
derivatives of the unknown function, leading to the Euler equation being 
satisfied almost everywhere and thus strengthening the relation between 
calculus of  variations and partial differential equations, a constant theme 
of  all his research. The minimum is attained (Mail7]) in a class of  
functions having traces on the boundary together with their normal 
derivative; since it is shown to satisfy the Euler equation, one obtains 
existence results for a fourth order elliptic equation with assigned 
boundary values of both the function and its normal derivative. The study 
of  these boundary conditions led Stampacchia to examine the question of  
the approximability of  a function on an assigned surface (Mail 8]). 

As to the differentiability properties of  the minimizing function of  
multiple integrals depending on the gradient (Ma[19]), we recall 
Stampacchia's results of  local integrability of the second derivatives 16 
and of analyticity of the solutions, with H61der-continuous first order 
derivatives, of  regular problems. These regularity results, together with 
an analysis of  variational problems for multiple integrals depending on 
the first order derivatives of  the unknown function, were illustrated in a 
lecture delivered in Torino in January 1954 (Ma[20]). The next step was 
to study the Euler equations by the direct methods of  the calculus of  
variations in the case of Neumann or mixed boundary conditions 

13 The report of the board of juries, constituted by L. Fantappi6, G. Scorza, C. Miranda, 
S. Cinquini and L. Amerio, is published in Bollettino ufficiale M.P.I., II part, 9 July 
1953, n. 28, pp. 2192-2203. 

14 The report of the board of juries, constituted by F. Cecioni, C. Miranda and S. 
Cinquini, is published in Bollettino ufficiale M.P.I., II part, 26 July 1956, n. 30, pp. 
5071-5073. 

15 See Magenes 1978a, pp. 722-725 (XVIII-XXI). 
16 This result was obtained by extending the methods introduced by C. Miranda, Sui 

sistemi di tipo ellittico di equazioni lineari a derivate parziali del primo ordine in n 
variabili indipendenti, Mem. Accad. Naz. Lincei, s. 8, v. 3, 1952, pp. 85-121. 
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(Ma[23]). Some of the results of this paper, dedicated to Mauro Picone 
on the occasion of his seventieth birthday, are the subject of a 
communication presented at the International Congress of 
Mathematicians held in Amsterdam in September 1954 (Ma[22]), while 
some remarks on the existence and uniqueness of solutions were 
published in Rendiconti dell'Accademia delle Scienze of Naples 
(Ma[24]). 

The variational method was also used by Stampacchia to treat the so 
called transmission problem, namely, the problem of two equations in 
two domains having parts of their boundary in common and with a 
natural condition of matching on the common part of the boundary 
(Ma[27]). This kind of a situation arises in the study of phenomena 
taking place in a stratified medium. The leading idea is again solving the 
problem in a weak form, then studying the regularity of the weak solution 
thus found. A clear exposition of the results on transmission problems for 
elliptic equations was presented in a talk at the Seminario Matematico of 
Bari in December 1960 (Ma[32]). 

Stampacchia's interest in the different classes of functions used in 
proving existence in weak form can be found in his lectures (Ma[28]) at 
the CIME course on Singular Integrals and Related Questions, held at 
Varenna in June 1957, where he presented a theory of completion of 
function spaces following ideas suggested by Aronszajn and Smith.~7 

During the years he spent in Genoa, Stampacchia taught courses in 
Analisi Matematica, Analisi Superiore, Matematica Superiore (Higher 
Mathematics), Istituzioni di Matematica II, and Topologia. In addition, 
during the academic year 1960-61, when he had already moved to Pisa, 
he also taught a course of Complementi di Matematica (Complements of 
Mathematics) at the School of Engineering. In February 1960, he was 
appointed to represent the Faculty of Sciences in the Council of Directors 
of the newly created Centro di Calcolo Numerico. 

He interacted agreably with his colleagues Eugenio G. Togliatti, Enzo 
Martinelli and Francesco Sbrana. When Martinelli moved to Rome, he 
favoured the arrival of Enrico Magenes, with whom he had always kept a 
close relation. He established scientific and friendly relations also with 
Jaures P. Cecconi, Giulio Aruffo and Emilio Gagliardo; later on, Sergio 
Campanato also worked with him. During these years, he began to 
entertain the intense international relations, which were to characterize 
his future mathematical career. In August 1954, at the conference 
"Problemi esistenziali e qualitativi per le equazioni differenziali lineari 
alle derivate parziali" organized by Gaetano Fichera in Trieste, 

17 N. Aronszajn - K.T. Smith, Functional spaces and functional completion, Ann. Inst. 
Fourier, 6, 1956, pp. 125-185. 
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Stampacchia met Louis Nirenberg, with whom he remained a very close 
friend until his death. Together with Magenes, he had guests as 
prestigious as Laurent Schwartz, Henri George Garnir, Antoni Zygmund, 
Bernard Malgrange and Nachman Aronszajn; he first met Jacques-Louis 
Lions at Nice, in September 1957, during the R6union des 
Math6maticiens d'Expression Latine. 

He very often traveled abroad for scientific studies and collaborations. 
His travels were so frequent that it is impossible to remember all the 
visits he made, either to attend conferences or to give talks, to 
innumerable research institutes in Italy and abroad. We shall limit 
ourselves to mention long-time visits, and only to the most prestigious 
institutes. Quite often, these visits resulted in significant scientific 
publications. 

As a result of common interests and continued collaboration with 
Magenes, an exposition of a complete and general survey of the different 
approaches to boundary value problems for linear elliptic differential 
equations of arbitrary order was written up in the spring of 1958 
(Ma[29]). Even more than ten years after its publication, and in spite of  
notable further developments on the subject matter, this article remained 
a remarkable instrument for all those who wished to dedicate their studies 
to these issues. The subject was reconsidered later, in the general lecture 
(Ma[31]) Stampacchia gave at the VI UMI Congress, held in Naples in 
1959. 

During the mid fifties, the work of  Stampacchia on the 
differentiability properties of  the extremals of regular multiple integrals 
was concerned with different types of  questions: on the one hand, 
existence of square integrable second order derivatives of the solutions to 
minimum problems, solutions being a priori of very low regularity; on 
the other hand, analyticity in the case of H61der continuous first order 
derivatives (Mail9], [25]). A relation between these results was missing, 
namely, to assure the analyticity of  the minimizing functions whenever 
the integrand in the regular integral is analytic. Stampacchia stimulated 
De Giorgi's thoughts on this important problem, TM which De Giorgi 
solved in a famous paper presented at the V UMI Congress held in Pavia 
in October 1955, and published later on, in 1957.19 

Continuing along the De Giorgi's ideas, Stampacchia considered 
linear elliptic equations with discontinuous coefficients in spaces of 

18 On this question, in addition to the work of De Giorgi, we recall those ofJ. Nash and, 
later, ofJ. Moser. 

19 E. De Giorgi, Sulla differenziabilith e la analiticith delle estremali degli integrali 
multipli regolari, Mem. Accad. Sci. Torino, s. 3, v. 3, 1957, pp. 25-43. A pre- 
publication note was published in 1956 in Rendiconti dell'Accademia dei Lincei. 
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dimension n > 2; in the span of about ten years, he obtained results in 
various directions: L p estimates for the solutions, the maximum 
principle, H61der continuity of the solutions up to the boundary, existence 
and properties of the Green's function for the Dirichlet problem, 
characterization of regular points on the boundary. 2° The notable body of 
scientific publications of the highest international standards on elliptic 
equations, to which these works of Stampacchia belong, is very well 
illustrated by Carlo Miranda in a lecture at the VIII UMI Congress, 21 in 
whose reference list the name of Stampacchia is found among the most 
eminent specialists in the field. 

He first obtained preliminary regularity results (Ma[30]), such as 
boundedness and integrability of solutions for a large class of boundary 
value problems for second order elliptic equations with bounded and 
measurable coefficients, imposing only the "cone condition" on the 
boundary of the domain. In order to explain his technique, he recalled the 
idea of  De Giorgi to obtain the interior regularity of the extremals. 
Moreover, in the appendix, by comparing some results from the theory of 
capacity to the Sobolev inequality, he glimpsed a relation between these 
results and some isoperimetric inequalities. The questions of summability 
and of boundedness were taken up again in July 1960 (Ma[35]), in a 
lecture at the International Symposium on Linear Spaces held in 
Jerusalem, refining the technique of truncation with a lemma, by now 
classical, on decreasing functions. Some limiting cases of summability of 
the known right hand side were analysed later in (Ma[39]), during his 
visit at the Courant Institute of Mathematical Sciences. 

The H61der continuity up to the boundary of the solution was 
essentially considered in a memoir dedicated to Giovanni Sansone in the 
occasion of his seventieth birthday (Ma[34]), which had been 
preannounced by a Comptes Rendus note in February 1960. 22 More 
precisely, for equations more general than those considered by De Giorgi, 
and for an "admissible" class of sets f2 introduced to this purpose, 
Stampacchia proves H61der continuity in ~ of the solutions of the 
Dirichelet problem, of the Neumann problem, and of the mixed problem 
in which the boundary data are discontinous, but the boundary of ~q, the 
coefficients and the right hand side of the equation are regular. The 
geometrical conditions ensuring "admissibility" of a set ~ were exposed 

2o See Magenes 1978a, pp. 726-732 (XXII-XXVIII). 
21 C. Miranda, Progressi e orientamenti della teoria delle equazioni ellittiche negli ultimi 

quindici anni, Atti VIII Congresso UMI, 1967 (1968), pp. 23-54. 
22 G. Stampacchia, Solutions continues de probl~mes aux limites elliptiques ~ donnOes 

discontinues. C. R. Acad. Sci. Paris, 250, 1960, pp. 1426-1427. 
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at the Colloque sur l'Analyse Fonctionnel, held at Louvain in July 1960 
(Ma[33]). 

In 1960 Stampacchia was a visiting professor for one month at the 
Institut des Hautes I~tudes in Paris, where he gave a brief course under 
the auspices of the Sdminaire Schwartz, during the year devoted to partial 
differential equations and interpolation. In the published version of this 
course (Ma[36]), he obtained the integrability and the boundedness of 
solutions of second order elliptic equations with discontinuous data, 
under less restrictive hypotheses on lower order terms than those 
considered in earlier works (Ma[30], [35]). In the month of November of 
the same year, he sent a letter of support and solidarity, which was jointly 
signed by 46 other Italian mathematicians, to Laurent Schwartz, who had 
been removed from his chair at the I~cole Politechnique. 

During his academic career, Stampacchia served as a member in 
many committees for national competitions for professorial positions in 
Analysis. Among these, we mention that he was the secretary of the 
selection committee 23 for a position in Mathematical Analysis at the 
University of Messina, for which Ennio De Giorgi was first among the 
selected candidates. 

Even after he moved to Genoa, he kept a privileged contact with 
Naples, both because of his close relationship with his sisters and his 
other relatives who lived in Naples and because of his relations with the 
scientific community in Naples, first of all with C. Miranda and 
Caccioppoli, and also with Federico Cafiero, Donato Greco and Renato 
Vinciguerra. He was elected a corresponding member of Societg 
Nazionale di Scienze, Lettere ed Arti of Naples in November 1954. 

As remarked by Magenes, 24 Stampacchia was always proud of  his 
native Naples and of the family background in which he was bom; in 
fact, he was very happy of being born in such a special place and in an 
unusual family. These peculiar roots were particularly suited to his 
personality, rather nonconformist, and certainly contributed to his 
formation. Part of his characteristic nature was that of a very amiable and 
easy-going gentlemanliness, a simplicity coupled with the consciousness 
of his important position in the mathematical community, a very strong 
sense of criticism and a great sense of humour. Very frank in expressing 
clearly whatever he thought, he had a very generous and free attitude 
towards friends and students which was reciprocated with affection. It is 
worth recalling the testimony of Ha~'m Brezis, who remembers the 
beginning of their long and fruitful mathematical relation: "Pendant la 

23 The other members of the board were Giovanni Ricci, Carlo Miranda, Gianfranco 
Cimmino, and Sandro Faedo. 

24 Magenes 1978a, p. 715 (XI). 
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pr6paration de ma th6se j 'eu la chance de rencontrer trois maitres, F61ix 
Browder, Louis Nirenberg et Guido Stampacchia, qui ont donn6 une 
ouverture internationale h mon travail. [...] Ma premi6re invitation 
math6matique est arriv6e de l'Universit6 de Pise off enseignait G. 
Stampacchia. J'avais b. peine vingt-trois ans [1967] et j 'ai des souvenirs 
merveilleux de cette visite d'un mois. L'hospitalit6 de G. Stampacchia 
6tait 16gendaire; il 6tait impossibile de r6gler une addition, ni m6me de 
payer un caf6, en sa pr6sence. Comme j 'ai l'ai dit, mes connaissances en 
EPD (6quations aux d6riv6es partielles) 6taient tr6s fragmentaires et je 
n'6tais m6me pas familier avec le c616bre principe du maximum; plus 
pr6cis6ment, il 6tait enseign6 ~ Paris - en th6orie du potentiel - mais sous 
une forme tellement abstraite et d6guis6e que le lien avec les EPD s'6tait 
perdu. Au lieu d'etre surpris de mes lacunes et de me sugg6rer des 
lectures, G. Stampacchia s'est charg6 lui-m6me de me l'enseigner en 
suivant une approche tr6s 616gante z5 qu'il avait d6couverte. ''26 

. B A C K  T O  PISA:  T H E  G O L D E N  A G E  O F  T H E  
M A T H E M A T I C A L  I N S T I T U T E ,  T H E  F E L T R I N E L L I  
P R I Z E  A N D  T H E  P R E S I D E N C Y  OF  U N I O N E  
M A T E M A T I C A  I T A L I A N A .  

While Stampacchia was in Genoa, Sandro Faedo, who had returned 
definitively to Pisa to the chair left vacant at the death of  Tonelli, had 
already started to do his best to strengthen the Istituto Matematico. Faedo 
began by bringing in Aldo Andreotti from Turin; together, they tried 
from 1956 to 1958 to convince Stampacchia to move from Genoa to Pisa, 
offering him first the chair of  Cecioni and then a position at the Scuola 
Normale. 27 For various reasons, Stampacchia's transfer did not come 
through; however, the mathematical community in Pisa was enriched by 
the arrival of  Edoardo Vesentini at the University and of Ennio De Giorgi 
at the Scuola Normale. Thus, in 1960 when a position in Mathematical 
Analysis at the University of  Pisa was available, Stampacchia eventually 
accepted the offer and moved from Genoa to Pisa with his family. In the 
same year, Barsotti too returned to Pisa, as Giovanni Prodi and Sergio 
Campanato did a little later. 

25 See Stampacchia 1963, Ma [38], pp. 387-388 - Stampacchia 1996-97, pp. 399-400 
and Stampacchia 1965, Ma [45], pp. 206-207 - Stampacchia 1996-97, pp. 488-489. 

26 j. Vauthier, Harm Brezis un math~maticien juif, Beauchesne, Paris, 1999, p. 25. 
Similar feelings are also expressed by David Kinderlehrer (Kinderlehrer 1988). 

27 After the death of Caccioppoli, Stampacchia was contacted for transfer also from the 
University of Naples. 
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The presence of this group of highly active and qualified experts in 
different fields made the scientific atmosphere of the Institute of 
Mathematics very bright and also led to useful and intense joint 
collaborative research. Moreover, international relations became very 
frequent and constructive, with short and extended visits of 
mathematicians from Pisa to foreign institutions and also by way of the 
presence of very distinguished visitors from abroad. Among the guests of 
the famous office with red tapestry, reserved for distinguished visitors at 
the Institute - at that time located in "La Sapienza", the historical seat of 
the University of Pisa - and then of the new building at Via Derna, we 
recall Oscar Zarisky, Hans Lewy, Philip Hartman, Louis Nirenberg, 
Armand Borel, Joe J. Kohn, Shmuel Agmon, Bernard Malgrange, Donald 
G. Aronson, Pierre Grisvard, Stanley Kaplan, and Robert Seeley. Thus, 
the Institute of Mathematics at Pisa became internationally renowned and 
a pole of attraction and training for research workers both Italian and 
from abroad, among which Enrico Bombieri stands. 

From September 1961 to September 1963, Stampacchia moved with 
his family to the United States as a Temporary Member of the Courant 
Institute of Mathematical Sciences of New York University. On this 
occasion he also visited many other institutions and universities in the 
United States; in particular, at the University of Minnesota at 
Minneapolis he established scientific relationships with Walter Littman, 
Hans Weinberger and James Serrin. In the month of August 1962 he was 
one of the invited speakers at the International Congress of 
Mathematicians held in Stockholm; in his talk (Ma[37]) he presented the 
main results obtained up to that time on second order elliptic equations in 
divergence form with bounded measurable coefficients. 

The papers published during his long stay in America are of great 
relevance. Stampacchia, in collaboration with Littman and Weinberger, 
obtained a very refined result on regular boundary points for the Dirichlet 
problem associated to a uniformly elliptic operator with discontinuous 
coefficients, and he was led to a detailed analysis of the properties of the 
Green's function and of the capacitory potentials (Ma[40]). In March 
1963 he completed a paper (Ma[38]) strictly related to Calculus of 
Variations. In this paper 28 he obtained, under suitable hypotheses on the 
boundary of the domain and on the boundary condition, the existence and 
regularity of the minimizers of integrals which are only regular or 
uniformly regular, according to the kind of dependence on the unknown 
function. These results were obtained by the use of the maximum 
principle, proved by the truncation method; they can be applied to the 
problem of minimal surfaces, which could not be treated either by the 

28 See Magenes 1978a, pp. 734-735 (XXX-XXXI). 
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already mentioned theorem of De Giorgi or by its extensions due to C.B. 
Morrey and O.A. Ladyzenskaja and N.N. Ura'ltseva. 

A new line of research began at this stage, 29 to which S. Campanato 
and G.N. Meyers had already made contributions: namely, interpolation 
between £Y'~ spaces - which contain for particular values of the 
parameter ~, the Lebesgue spaces of measurable functions whose powers 
are integrable and the spaces of H61der continuous functions - and their 
application to elliptic equations (Ma[41]). These results were presented at 
the VII Congress of UMI held in Genoa at the end of September and 
October 1963 (Ma[42]), while the Dirichlet problem, in the limit case of 
the space of bounded mean oscillation (BMO) functions of John and 
Nirenberg, was considered in a section of Ma[39]. 

In the Conference "Convegno Lagrangiano", promoted by the 
Accademia delle Scienze di Torino in October 1963 in the occasion of 
the one hundred and fiftieth anniversary of the death of Lagrange, 
Stampacchia presented a survey (Ma[46]) of the main developments of 
the principle of minimum in the calculus of variations or, more precisely, 
of the relation between the minima of regular multiple integrals and the 
boundary value problems for elliptic partial differential equations, thus 
putting in a historical perspective the most recent results, from Sobolev 
spaces to trace theorems, from the maximum principle to the regularity of 
weak solutions. 

After returning to Pisa from the United States, Stampacchia continued 
his study on the interpolation between function spaces, refining, among 
others, certain properties of inclusion between Morrey spaces (Ma[47]). 
As an application of these results, he and Campanato obtained in a joint 
paper some L p estimates for the derivatives of solutions of elliptic 
equations (Ma[50]). Finally, in his talk at the Conference Equadiff II, 
Differential equations and their applications, held in September 1966 in 
Bratislava (Ma[54]), he presented a panoramic survey of the £Y'~ spaces 
and of their use in interpolation theory and in elliptic equations. 

As we have already observed, in his study of variational equations 
Stampacchia often considered the analysis of potential and capacity 
theories together; his well known generalization of Lax-Milgram lemma 
on coercive bilinear forms to convex sets, proved in 1964, can be put in 
this context (Ma[43]). Thus, the theory of variational inequalities was 
born, driven by the solution given by Gaetano Fichera to the Signorini 
problem on the elastic equilibrium of a body under unilateral constraints 3° 

29 See Magenes 1978a, pp. 733-734 (XXIX-XXX). 
30 G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con 

ambigue condizioni al contorno, Mem. Accad. Naz. Lincei, s. 8, v. 7, 1964, pp. 91- 
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and by Stampacchia's work on defining the capacitory potential 
associated to a non symmetric bilinear form. 

In the spring of  1964 he was a visiting professor for a month at 
Coll6ge de France, on an invitation by Jean Leray. He presented his work 
on interpolation spaces and he gave a course on second order elliptic 
equations in divergence form with bounded measurable coefficients, 
under the auspices of S6minaire Leray sur les 6quations aux d6riv6es 
partielles. In the published paper based on this course (Ma[44]), well 
known results for the case of  the Laplace equation, such as the maximum 
principle and the properties of  the Green function for the Dirichlet 
problem, were extended to second order elliptic equations in divergence 
form with bounded measurable coefficients. Also the extension of  
Harnack inequality by J. Moser, 31 based on the important result of  John 
and Nirenberg on bounded mean oscillation functions, was proved. These 
topics can be found in an extensive paper published in Annales de 
l'Institut Fourier in 1965, a paper which was especially devoted to the 
Dirichlet problem for an elliptic operator in divergence form having 
discontinuous coefficients and lower order terms (Ma[45]). In this paper, 
among other things, Stampacchia made use of  his result on non 
symmetric coercive forms to show the existence of the capacitory 
measure and of  the capacitory potential, and to obtain a comparison of  
the capacities corresponding to different operators. The theory of  elliptic 
equations with divergence structure and with discontinuous coefficients 
was reviewed in the summer course he gave in the S6minaire de 
Math6matiques Sup6rieures at the University of  Montreal. A presentation 
of  this topic in its most general form is found in the notes of  these 
lectures published in book form (Ma[52]). 

Many times at the University of Pisa, Stampacchia was entrusted, in 
addition to courses in Analysis, with the courses of  Analisi Superiore, 
Metodi Matematici della Fisica (Mathematical Methods in Physics) and 
Calcoli Numerici e Teoria dei Graft (Numerical Calculus and Graph 
Theory); he also taught courses in Equazioni Differenziali and Analisi 
Superiore at the Scuola Normale. In November 1966, he was elected as 
the Director of  the Istituto di Matematica. 

At the Institute, in addition to his already mentioned collaboration 
with Campanato, Stampacchia worked with other collegues, interested in 
fields other than Analysis. An important aspect of  that period was the 
weekly Seminar, which all the members of the Institute used to attend 

140. A preliminary note was published in Rendiconti dell'Accademia Nazionale dei 
Lincei in 1963. 

3t j. Moser, On Harnack's theorem for elliptic differential equation, Comm. Pure Appl. 
Math., v. 14, 1961, pp. 577-591. 
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independent of their specific research field. In this context, we recall the 
collaboration with Andreotti and Vesentini on Carleman estimates for the 
Laplace-Beltrami equation on complex manifolds. Stampacchia 
contributed significantly to this work proving an inequality "which 
highlights the crucial role of the completeness of the metric of the 
manifold. ''32 

Stampacchia and De Giorgi were able to put in evidence a property of 
minimal surfaces which was not encountered in the case of solutions of 
elliptic equations in general. Extending a result of Lipman Bers in two 
dimensions, they showed that a minimal surface which can be 
represented in Cartesian form on an open set in 9t" can have singularities 
in a compact set of zero capacity of order I or, equivalently, the 
singularity set can be a compact set of zero (n-1)-dimensional Hausdorff 
measure (Ma[48]). 

In collaboration with M.K. Venkatesha Murthy of Tata Institute of 
Fundamental Research in Bombay, who was a visitor to Pisa several 
times starting from 1963, Stampacchia considered degenerate elliptic 
operators, that is, those operators for which the so called ellipticity 
constant is replaced by a function. This means that the ellipticity constant 
can depend on the point in the domain and can also vanish on some 
subset of points, but this function together with its reciprocal satisfies 
suitable integrability conditions. This leads to the consideration of 
differential equations in the context of Sobolev spaces with weights and 
hence to the necessity of recovering in such spaces the relevant properties 
which allow one to obtain the results known for boundary value problems 
associated to elliptic equations with discontinuous coefficients (Ma[56]). 

The results in the papers with De Giorgi 33 and with Murthy (Ma[55]) 
were presented in the Conference "Le equazioni alle derivate parziali", 
held at Nervi (Genova) in February 1965, of which Stampacchia was one 
of the organizers. 

While Stampacchia was in Chicago as a visiting professor in May 
1966, on a proposal of Giovanni Sansone, he was awarded the Feltrinelli 
Prize for Mathematics, Mechanics and Applications of the Accademia 
Nazionale dei Lincei. In the motivation for awarding the prize, the 
committee 34 reviewed the important research activity of Stampacchia and 
underlined "the vast and ample scientific production", "the importance of 

32 Vesentini 1980, p. 12. 
33 E. De Giorgi - G. Stampacchia, Sulle singolarith eliminabili delle ipersuperficie 

minimali, Atti del Convegno su Le Equazioni alle Derivate Parziali (Nervi, 1965), 
Edizioni Cremonese, Roma, 1966, pp. 55-58. 

34 The members of the committee were Beniamino Segre, Mauro Picone, Enrico 
Pistolesi, Giovanni Sansone, Alessandro Terracini and Bruno Finzi. 
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the results" and "the high esteem and position that these have secured 
him in the intemational field". 35 He was appointed as a Corresponding 
Member of the Accademia dei Lincei in July 1968 with similar 
motivations. In fact, his frequent visits abroad, his extensive scientific 
relations in the international field and his vast group of students, direct or 
indirect, both Italians and foreigners, contributed very much to broaden 
the horizon of studies and research activities and to enhance the prestige 
of the Italian School of Mathematics in the scientific world. 

The intense scientific activity of those years did not divert 
Stampacchia's attention from the problems of the teaching of 
Mathematics and of the formation of teachers, and he personally 
undertook the work of channeling young people towards mathematical 
studies. In an article, originally pubblished in Bollettino della Societ~ ex- 
alunni della Scuola Normale and later reproduced also in the Bollettino 
dell'UMI, 36 he analysed the genesis of the organization of teaching and of 
the university curriculum of studies, and made a proposal to reorganize 
the teaching scheme, including also a three year plan for the future 
teachers of middle schools. Moreover, he accepted to participate in a pre- 
University orientation course organized at Erice by the Scuola Normale 
in September 1966, where he delivered some lectures on the subject 
"Mathematics as research and as an instrument of scientific and technical 
enquiry". Stampacchia considered mathematics and, in particular, 
Mathematical Analysis as a fundamental instrument to study natural 
phenomena. Like Tonelli, he used to remark that the evolution of a 
phenomenon is often governed by principles which correspond to a 
maximum or a minimum of some integral. Accordingly, he assigned a 
preminent role to Calculus of Variations and to the Theory of Differential 
Equations in the understanding of problems in Physics and hence in 
establishing a close relationship between theory and applications. In the 
preliminary notes of his Erice lectures, one finds remarks expressing his 
view of Mathematics and his unified vision of theoretical and applied 
research: "Mathematics, as an expression of human thought, reflects the 
active will, the contemplative reasoning, the desire for aesthetic 
perfection. Its fundamental basis consists of logic and intuition, analysis 
and construction, generalities and individualities. Any development of 
Mathematics has without doubt its psychological origins in more or less 
practical requirements or demands, but once it is initiated under 
circumstances of necessity it acquires a value by itself and transcends the 

35 Relazione per il conferimento del premio "Antonio Feltrinelli", Rendiconti delle 
adunanze solenni, v. VII (1965-1976), Atti Accad. Naz. Lincei 1976 (1977), p. 143. 

36 G. Stampacchia, Note sull'insegnamento della matematica, Boll. UMI, s. 3, v. 21, 
1966, pp. 186-190. 
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limits of  its immediate utility. This trend from the applied towards the 
theoretical science shows itself continuously in history." 

Stampacchia appreciated in Mathematics its utility in addition to its 
intrinsic beauty. He believed that a dynamic relationship between theory 
and application was of  fundamental importance for the development of 
Mathematics. Quite often, "a theory in Pure Mathematics may become 
very useful in Applied Mathematics and, conversely, problems suggested 
by Applied Mathematics can lead to a new theory in Pure 
Mathematics. ''37 He further stated: "In the last three decades Mathematics 
has gone through a period of  profound critical re-examination, trying to 
recognize its fundamental structure in an abstract manner; at the same 
time, an increasing number of  applied sciences discovered in 
Mathematics a basic instrument and indicated to it new fields of enquiry. 
Never before as in this period, has one seen this process of  interaction by 
which, on the one hand Mathematics creates new instruments and new 
languages for applied sciences, and on the other the latter sciences, with 
their specific problems, give rise to new areas of  research in Mathematics 
which were unthought of  before. Mathematics with its various aspects 
thus gets inserted as a fundamental fact in cultural, scientific and 
technical development. ''38 

In 1967 Stampacchia was elected, with 239 votes, President of  the 
Unione Matematica Italiana (UMI), of  which he was a member since 
1948 and a member of the Scientific Committee from 1964. He remained 
in this office till 1973, when he was re-elected, as per his wish, a member 
of  the Scientific Committee. 

As President, he gave the opening addresses at the VIII and at the IX 
Congresses. 39 In these adresses he identified the role of UMI as that of  
"preservation and improvement of the level of  mathematical research in 
Italy and of  modernization of  the teaching 'c° and he expressed his 
satisfaction for the adequate presence of Italian mathematical activity in 
the international community. However, he drew the Congress' attention 
to the necessity of  elaborating new policies and a new structure for the 
development of  mathematics, in order to further enlarge the research 
fields and to think over the teaching methods, starting from the primary 
school stage. 

37 G. Stampacchia, Matematica pura e applicata negli sviluppi attuali, introductory 
report to the Congress "Rapporti tra ricerca matematica pura ed applicata in Italia", 
Siena, 27-29 September 1973. 

3s G. Stampacchia, Discorso, Atti VIII Congresso UMI, 1967 (1968), p. 19. 
39 The VIII Congress of UMI was held in Trieste from 2 to 7 October 1967. The IX 

Congress of UMl was held in Bari from 27 September to 3 October 1971. 
40 G. Stampacchia, Discorso inaugurale, Atti IX Congresso UMI, 1971 (1974), p. 6. 
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His activity in UMI was directed, in particular, to the problem of 
renovating Italian Mathematics "after the sterile closure of dictatorship 
and war ''4~, whose damaging effects he had experienced personally at the 
beginning of his scientific career. The promotion of research was very 
dear to Stampacchia. He followed with great interest every initiative 
which contributed towards this end - for example, the program of 
visiting professors promoted by the National Committee for Mathematics 
of the National Research Council, and the CIME (International 
Mathematical Summer Center), which favoured the insertion of Italians 
in the international mathematical community, with the help of a program 
of updating and meetings - and he urged the Ministry of Education to 
pass the law on the reorganization of the Istituto Nazionale di Alta 
Matematica, which had been put under a commissioner since 1962. He 
gave special attention to the journal Bollettino dell'UMI, which, during 
the period of his Presidency, enhanced its prestige and also enlarged its 
diffusion. 

Being highly sensitive to the problems of the younger generation, he 
promoted several initiatives in order to direct young people towards 
mathematics and he was always concerned about the difficulties 
encountered by graduates in mathematics to obtain adequate jobs. He 
followed the questions related to the approval of the University Reform 
Bill by the Parliament and he proposed the institution of a commission to 
study the problems of teaching mathematics during the first two years of 
the university courses. Through the Italian Commission for the Teaching 
of Mathematics, he also took interest in teaching at the secondary school 
level. Accordingly, he favoured contacts between universities and 
secondary schools, as well as the diffusion in Italy of modem trends of 
teaching mathematics in foreign countries. 

Even after being fully involved in the activities of UMI and with the 
University of Pisa, Stampacchia undertook many visits abroad, especially 
to France and to the United States. Between the years 1965 and 1968 he 
made numerous visits to Paris, to the University of California at 
Berkeley, to the University of Minnesota at Minneapolis and to the 
University of Chicago. The publication of joint papers with Jacques 
Louis Lions, Philip Hartman, Ha'fm Brezis and Hans Lewy goes back to 
the period of these visits. 

Starting from this period, his research activity was concentrated on 
the theory of variational inequalities. 42 Stampacchia took the variational 
theory of boundary value problems for partial differential equations as 

41 G. Stampacchia, Discorso, Atti VIII Congresso UMI, 1967 (1968), p. 18. 
42 For a detailed presentation of the main contributions of G. Stampacchia to the theory 

of variational inequalities see Lions 1978. 
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the model: variational inequalities, in fact, represent a very natural 
generalization of such problems and allow one to consider several 
questions arising in such different contexts as Mechanics, Physics and 
Convex Programming. 

Continuing the studies he begun in 1964, Stampacchia announced 
(Ma[49]), in collaboration with Lions, the generalization to not 
necessarily coercive bilinear forms of his first result on this matter 
published in Comptes Rendus (Ma[43]). Associating some of the 
techniques already used in the study of minimum problems (Ma[38]) to 
the first results obtained for variational inequalities, he analyzed with 
Hartman the existence, uniqueness and regularity of  solutions of the 
Dirichlet problem for a nonlinear equation with a term depending 
functionally on the unknown (Ma[51]). The result was based on a 
preliminary theorem where conditions were given for the existence of  
solutions of  a variational inequality related to a monotone operator. 43 

In another important paper with Lions, 44 published in 
Communications on Pure and Applied Mathematics (Ma[53]), 
Stampacchia re-examined the entire linear theory, studying variational 
inequalities associated to bilinear forms which are coercive or simply non 
negative in Hilbert spaces, with applications to elliptic and parabolic 
operators and to problems with unilateral constraints. The regularity of  
the solutions of problems with obstacles for a second order linear elliptic 
operator, and the nature of  the set of  contact with the obstacle, were 
studied jointly with Hans Lewy (Ma[59]). This paper, published in 1969, 
was presented at the VIII UMI Congress in 1967 (Ma[60]). Finally, in 
collaboration with Brezis, Stampacchia obtained an abstract regularity 
theorem for variational inequalities associated to non linear monotone 
operators, a theorem applicable to a number of  examples wherein the 
convex sets are defined by constraint conditions on the unknown function 
or on its gradient 45 ( M a  [57]). The application of  the theorem of  Brezis- 
Stampacchia to the case of  a convex set defined via an obstacle from 
above and an obstacle from below was considered in Stampacchia's 
lecture at the American Mathematical Society Conference, Nonlinear 
Functional Analysis, held in Chicago in April 1968 (Ma[62]). 

On an invitation from Aldo Ghizzetti, Stampacchia gave an advanced 
level course on Variational Inequalities at the NATO Summer School on 
Theory and Applications of  Monotone Operators held in Venice during 

43 A similar result was independently obtained by Felix Browder, Non linear monotone 
operators and convex sets in Banach spaces, Bull. Amer. Math. Soc., 71, 1965, pp. 
780-785. 

44 See Lions 1978, pp. 740-741 (XXXVII-XXXVIII). 
45 See Lions 1978, pp. 747-748 (XLIV-XLV). 
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the summer of 1968. The lecture notes of this course (Ma[58]), which are 
a re-elaboration of the lecture notes for a course delivered in Minneapolis 
during the spring of the same year, contain a clear exposition of the 
results on existence and regularity of solutions of variational inequalities 
obtained up to that time, together with many examples and applications. 

3. AT T H E  U N I V E R S I T Y  OF R O M E  " L A  S A P I E N Z A " :  
T H E  S T U D E N T  M O V E M E N T ,  T H E  A P P O I N T M E N T  
AS D I R E C T O R  OF T H E  I S T I T U T O  P E R  LE 
A P P L I C A Z I O N I  D E L  C A L C O L O .  

Following informal contacts started in February 1967, in November 
1968 Stampacchia, the only person whose prestigious name drew 
complete unanimity among the professors of the then Mathematics 
Institute, was invited to take the position of Professor of Mathematical 
Analysis I (second chair) by the Faculty of Sciences of the University of 
Rome "La Sapienza". He was assigned the course of Istituzioni di Analisi 
Superiore in the academic year 1968-69, the course of Analisi Superiore 
in the following year. 

In the spring of 1970 he attended the ceremony of dedication to 
Beppo Levi of the Institute of Mathematics of the University of Rosario, 
in Argentina; that year he also visited the University of Sussex and the 
following year the University of Maryland at Baltimore. 

It is not difficult to imagine the influence that Stampacchia, who had 
brought with him a group of Italian as well as foreign young researchers, 
could have had in Rome both scientifically and also in the field of 
teaching: there was a lot of hope in this direction. But, instead, because of 
unfavourable circumstances and conditions, his stay in Rome lasted only 
two years, after which he accepted with pleasure the invitation to transfer 
himself to the Scuola Normale at Pisa. 

During the winter of 1970 "La Sapienza" was the theater of violent 
contrasts between the Student Movement and the neo-fascist group of 
Avanguardia Nazionale, fighting each other to gain control of University 
politics. There were frequent assemblies, demonstrations and occupations 
of the buildings; often, the police was called in by academic authorities, 
to intervene inside the University campus in order to separate the 
opposing factions or to disperse the demonstrating crowds. In this 
atmosphere Stampacchia assumed a position against the extreme right 
student organizations and publicly protested against the fascist 
demonstrations inside the campus. In a letter sent to the Dean of the 
Faculty of Sciences, Prof. Montalenti, Stampacchia expressed all his 
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indignation for the facts he have had to watch, and announced his 
decision not to go to the Institute of  Mathematics until every form of  
apologetic behaviour ceased. Among other things, he wrote: "Illustrious 
Dean, it is nearly a year and a half that I have been carrying out my duties 
as a member of  the teaching staff in your Faculty. I have seen episodes of 
struggle by the Student Movement which I first followed in the hope that 
it would act as an incentive for the indispensable reforms in the 
university system; then with a certain amount of mistrust, when these 
demonstrations became simply a demand for more examinations and less 
lessons; finally, with a lot of  discomfort when a part of  the teaching staff, 
self-defining subordinate, joined this movement, looking for positions of 
power only alternative to that of  the so called barons .. . .  Unfortunately, 
while entering the Citt~ Universitaria (University campus) to go to the 
Institute, I have been forced, for some days, to listen to hymns and to see 
walls filled with symbols inspired by those harmful ideologies of  which 
our generation very well knows the disastrous consequences. I refer to 
those ideologies in whose name, incapable, corrupt and violent men rose 
to power and removed from their teaching positions, and quite often 
cancelled, the best inteligentsia, lowering the cultural and social 
standards of  Italy and exposing our country to the contempt of  the whole 
world. If I were to continue to teach in this Citth Universitaria under 
these conditions, I would feel responsible for betraying not only my 
conscience, but also the memory of all those who fought those barbaric 
ideologies and who worked to lift up Italy from the level to which she 
had fallen. Therefore I am forced to announce that, until the academic 
authorities rid the Citt~ Universitaria of the groups of these hooligans, 
whose objectives are the denial of  culture and of  any social renovation, it 
will not be possible for me to go to the Institute of  Mathematics. ''46 

This decision of not to teach any more at the Institute of Mathematics 
was referred to in the daily newspapers of  Rome as well as in national 
newspapers, some of  which also carried ample sections of the letter to the 
Dean. The same day two self-styled students of Mathematics sent an 
insulting letter to Stampacchia, which he always kept among his papers. 

In Rome Stampacchia was entrusted with the direction of the Istituto 
per le Applicazioni del Calcolo (IAC) of  the National Research Council 
(CNR), in December 1968. He took office with the precise aim of 
strenghtening and updating the research sector of  the Institute, by taking 
on young graduates as research workers, by appointing consultants of  
high level scientific competence and by encouraging visits of  foreign 
fellowship holders and expert scholars, among whom we find the 
distinguished names of  Lars HOrmander and Hans Lewy. 

46 Paese Sera, March 2 nd, 1970, p. 4; Corriere della Sera, March 3 th, 1970, p. 7. 
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With Hans Lewy he studied the question of the regularity of the 
solution of the obstacle problem for the Laplacian, by considering it as 
the minimum of  the superharmonic functions which respect the constraint 
(Ma[65]) and focused his attention on nonlinear monotone operators 
defined by means of a vector field, proving, in the case of a Lipschitz 
continuous obstacle, the existence of a Lipschitz continuous solution 
which may exhibit further regularization properties (Ma[66]). This type 
of problems contains as a particular case the problem of a minimal 
surface which lies over an obstacle and assumes fixed boundary values, 
for which the study of the contact set was later continued by David 
Kinderlehrer. 47 

Variational inequalities were also the subject of his talks in two 
international meetings of great relevance. He was one of the invited 
speakers at the International Conference on Functional Analysis and 
Related Topics organized in Tokyo by the International Mathematical 
Union and the Mathematical Society of Japan, in April 1969. In his talk 
(Ma[63]) he gave an exposition of the theorems of existence and of 
regularity he had obtained with Hartman, Brezis and Hans Lewy, 
followed by a treatment of several examples. He gave a special lecture 
(Ma[63]) at the International Congress of Mathematicians held in Nice in 
September 1970, where he presented the main techniques used in 
problems of variational inequalities, such as the method of penalization 
for approximating the solution, the use of the lemma of Minty for passing 
to the limit, and the introduction of pseudo-monotone operators due to 
Brezis. 

The main guiding principle that inspired him in the activities at the 
Istituto per le Applicazioni del Calcolo was his belief, expressed on 
several occasions, that the distinction between pure and applied 
mathematics, being very vague and variable with time, was artificial. In 
his own words: "To take a right attitude towards mathematics it is 
necessary to reject a distinction (because it is dangerous) between pure 
mathematicians and applied mathematicians. ''48 He was also very 
concerned with the influence that powerful industrial groups, increasing 
in number, could exercise to direct the research work, thus undermining 
the freedom of science from economic power: "The life of research 
centers and of advanced teaching institutions is necessary at the present 
moment, in which Universities seem to be unable to carry out this task. 

47 D. Kinderlehrer, How a minimal surface leaves an obstacle, Acta Mathematica 130, 
1973, pp. 221-242. 

48 G. Stampacchia, Matematica pura e applicata negli sviluppi attuali, introductory 
report to the Congress "Rapporti tra ricerca pura ed applicata in Italia", Siena, 27-29 
September 1973. 
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The task of  research and of preparation of qualified research workers 
could have been carried out by the National Research Council through 
some of  its institutes. But this task seems now difficult to realize also 
because a good deal of  the funds that the Country has invested for 
scientific and technological research will end up funding research 
activities more industry related, thus neglecting fundamental research 
which would have permitted the formation of real research workers, and 
not just simple users of  national or foreign industrial products. ''49 

The experience at the IAC came to an end in January 1971 when, 
during the time of a visit of  three months to Berkeley, a Commissioner 
was nominated by the President of  CNR to substitute him as the Director 
of  the Institute. Stampacchia experienced a great bitterness because of  
this event and made every effort to remove the shadow that he felt he was 
under due to his dismissal - even filing a complaint before the Consiglio 
di Stato (Supreme Administrative Court). This matter ended only in 
1975, when Sandro Faedo having become the President of  CNR, both 
parties reached an agreement which Stampacchia, in a letter, considered 
"satisfactory not so much from the material point of  view but rather for 
my moral condition, since our own past vicissitudes influence the future 
of  every one of us. When one reaches my age, when one thinks of having 
given to scientific culture as much as one could give, with the impression 
that in the future one will no more have similar opportunities, at this age 
it is a pleasure to receive also formal acknowledgements. If instead of 
this, one suffer an abuse of power, believe me, one feels very 
depressed. ''5° 

On reading again Stampacchia speeches, one is often impressed with 
the extreme lucidity and incredible up-to-dateness of  some of  his 
statements: in the introductory report prepared in September 1973 for the 
Congress "Relations between pure and applied mathematics in Italy", 
with the aim to denounce the bureaucratization of  research and of  
scientific policies in Italy, he renamed the CNR, National Council for 
Research, as National Council for Reports, and defined "Comprogresso" 
("Comprogress"), the process by which the reforms are often carried out 
in Italy. He wrote: "One of the fundamental processes put in execution in 
Italian life can be baptised with the name Comprogress. It is the result of  
different demands of  progress very much heard of, and of  their 
compromise. One of  the illustrious victims of  Comprogress is the Italian 
University." 

49 Autograph preparatory manuscript for the inaugural speech for the IX UMI Congress, 
Bari, 1971. 

50 G. Stampacchia to his lawyer M. Tarello, 29 June 1973, rough draft of an autograph 
letter. 
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4. O N C E  A G A I N  AT PISA:  B A C K  TO T H E  S C U O L A  
N O R M A L E .  

Having been invited, with a unanimous vote of the Council of 
Direction of the Scuola Normale Superiore, including the student 
representatives, to assume the position of professor for the chair of 
Analisi Superiore, Stampacchia returned to Pisa starting on November 1 st, 
1970. 

Together with his colleagues De Giorgi and Vesentini, he strove to 
maintain the international prestige reached by the Scuola Normale and to 
create a lively scientific atmosphere with frequent visits of foreign 
mathematicians, among wich we mention the prestigeous names of J. 
Leray, H. Lewy, J.L. Lions, L. Nirenberg, O. Oleinik, D.G. Aronson, H. 
Brezis, R. Finn, J. Serrin, M.F. Atiyah, and D. Edmunds. Moreover, he 
found a new pleasure in teaching: in addition to his course on Analisi 
Superiore, he taught Analisi Matematica to the students of Physics at the 
University and then, he also had the charge of the course of Matematica I 
for the second year students at the Scuola Normale. 

We have valuable notes of some of his courses at the Universities of 
Pisa, of Rome and at the Scuola Normale, notes which have been used 
partially for his books. We recall, in particular, the notes from his lectures 
on second order elliptic equations of 1963-64, those of 1967-68 on the 
theory of ordinary differential equations, which later became the subject 
of a joint volume with L. C. Piccinini and G. Vidossich (Ma[85]), and 
finally the notes on variational inequalities of 1970-71. 

During these years his scientific activity was devoted to variational 
inequalities. During his stay at Berkeley in 1971, he studied with Alfonso 
Vignoli, a problem with non Lipschitz continuous obstacle (Ma[67]) and 
in his talk 51 at the Conference on Theory of Ordinary and Partial 
Differential Equations, held in Dundee, Scotland, in March 1972, he 
made a survey of the recent results obtained by him and his school. In 
Pisa, in collaboration with Murthy, he considered an obstacle problem 
with mixed boundary conditions for a second order elliptic operator 
(Ma[68]). In this paper, which he presented at the International 
Symposium on Partial Differential Equations and the Geometry of 
Normed Linear Spaces, held in Jerusalem in June 1972, the regularity of 
the solution was proved making use preliminarily of the truncation 
method and then of some nonlinear approximations. Later, in September 
1972, in a joint paper with Brezis and Nirenberg, he obtained the 
extension of some existence results for variational inequalities to the case 

51 G. Stampacchia, Recent results in the theory of variational inequalities, Lecture Notes 
in Math., 280, 1972, pp. 147-153. 
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of functions of two variables defined in a cartesian product C x C of a 
convex set C in a topological vector space, and a minimax principle 
(Ma[71]). 

In addition to the theoretical aspects examined so far, Stampacchia 
had considered also numerical and applied aspects of variational 
inequalities, both as a consultant of the Istituto per l'Elaborazione 
dell'Informazione of CNR at Pisa and in some of his publications and 
internal reports. With Otello Mancino, he studied variational inequalities 
for monotone operators on convex sets in finite dimensional spaces and 
gave an algorithm to find the solution of the convex programming 
problem in a polyhedron (Ma[64]). 52 At the Convegno di Analisi 
Numerica, held in Rome at the Istituto Nazionale di Alta Matematica in 
January 1972, he examined the problem of the numerical treatment of 
variational inequalities with an obstacle, approximating the solution with 
the help of two sequences of solutions of nonlinear equations, one 
increasing and the other decreasing, thus allowing to estimate the error 
introduced in the approximation (Ma[69]). 

A very important feature of variational inequalities associated to 
elliptic differential operators is their connection with free boundary value 
problems, a connection put in evidence in Stampacchia's first paper with 
Hans Lewy (Ma[59]) and expounded in his talk at the Conference 
"Metodi Valutativi della Fisica Matematica" held in Rome at the 
Accademia dei Lincei in December 1972 (Ma[73]). In this talk 
Stampacchia described the clever trick with which Claudio Baiocchi, in 
1971, had transformed the problem of filtration through a porous dam 
into one of variational inequality. 53 In addition, he took up the study of 
the stationary irrotational subsonic plane motion of a compressible fluid 
around a symmetric convex profile, which he had reduced to a free 
boundary problem associated to a variational inequality in the hodograph 
plane, 54 in a joint paper with Brezis (Ma[72]). This problem had been 
proposed by the Department of Rational Mechanics of the Politecnico di 
Torino to the Istituto per le Applicazioni del Calcolo; the interest of the 
solution method lies in the fact that it allows also the numerical 
calculation of the solution. Also the Expos6 at the S6minaire Goulaouic- 
Schwartz at the l~cole Polytechnique, in December 1972, was dedicated 
to questions of this type studied in a joint paper with Brezis. This 

52 The paper Ma [74] collects together the notes of April 1973, taken during a seminar of 
Stampacchia on this work. 

53 C. Baiocchi, Su un problema di frontiera libera connesso a questioni di idraulica, 
Ann. Mat. Pura Appl., 92, 1972, pp. 107-127. A preliminary note was published in 
1971 in Comptes Rendus of the Academie des Sciences of Paris. 

54 See Lions 1978, pp. 794-750 (XLVI-XLVII). 
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exposition takes up the method of Baiocchi and investigates the motion 
of a fluid around a convex profile in the incompressible case. This latter 
study, appropriately developed and completed, was presented at the 
Conference Sur les Applications de l'Analyse Fonctionnelle aux 
Probl6mes de M6canique, held in Marseille in September 197555, and 
eventually published in the Archive for Rational Mechanics and Analysis 
in 1976 (Ma[78]). 

During these years Stampacchia drew up the project to write a book 
on variational inequalities, later carried out in collaboration with D. 
Kinderlehrer (Ma[86]). 

After leaving the presidency of UMI, Stampacchia occupied himself 
actively with the task of promoting mathematical research. He accepted 
the nomination as Director of the Scuola Superiore di Analisi matematica 
of the International Center of Scientific Culture Ettore Maiorana at Erice. 
On taking this office, he indicated as his main objective that of 
encouraging contacts among Italian and foreign specialists in various 
disciplines and between specialists and young research workers. To this 
purpose, he was one of the organizers of two courses on the theory, 
development and recent applications of variational inequalities. The first 
was held at Erice in March 1975, the second, in 1978, unfortunately 
turned out to be the first Conference dedicated to his memory. Moreover, 
he took part as teaching member, in the course on Mathematical and 
Numerical Methods in Fluid Dynamics, organized by the International 
Center for Theoretical Physics at Trieste. 

There was a forced period of rest in the autumn of 1973, due to 
serious heart problems; but within a few months he returned to his 
intense teaching and scientific activities, and also to frequent visits 
abroad, ignoring the advice of his doctors to entertain a more relaxed and 
restful life style. 

In November 1973 Stampacchia received, with great personal 
satisfaction, the invitation to give a talk on Hilbert's twenty-third 
problem, extensions of the Calculus of Variations, at the Mathematical 
Symposium on Developments Arising from Hilbert's Problems promoted 
by the American Mathematical Society at De Kalb, Illinois. In his lecture 
given on 16 th May 1974, he described the history of Calculus of 
Variations starting from the problem of solids with minimum resistance - 
considered by Newton at the end of the 17 th century - to the Dirichlet 
principle, from the contributions of Beppo Levi, Fubini and Lebesgue in 
Rendiconti del Circolo Matematico di Palermo to the development of 

55 H. Brezis - G. Stampacchia, The odograph method in fluid-dynamics in the light of 
variational inequalities, in: Applications of methods of functional analysis to 
problems in mechanics, Lecture Notes in Math., 503, 1976, pp. 239-257. 
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direct methods. Further he examined the relation with elliptic equations 
and the extension of variational methods, from the theory of partial 
differential equations to variational inequalities, from non linear 
functional analysis to problems of optimal control (Ma[79]). 

He took the Editorial Directorship of the Science Section of the 
Annali della Scuola Normale Superiore in 1974. His first task was to 
include in the editorial committee mathematicians of great reputation 
from different countries such as S. Agmon, J. Leray, J.L. Lions, L. 
Nirenberg, in order to raise the journal to high international standards and 
prestige. At that time he was also a member of the editorial committees 
of Advances in Mathematics, Applied Mathematics and Optimization, 
and of Calcolo, and he was a member of the selection committee for 
invited speakers, presided over by Jean Leray, at the International 
Congress of Mathematicians held at Moscow (1966) and then at 
Vancouver (1974). 

Stampacchia kept his interest in free boundary problems and 
considered, in a paper dedicated to the memory of Ivan G. Petrovskii, the 
motion of a fluid in a porous medium, for instance, water in an earth 
dam, in a model which could not be reduced to a two dimensional 
problem (Ma[75]). He reduced the three-dimensional problem to a 
variational inequality, and established the regularity of the solution; 
furthermore, he showed that the free surface is the graph of a function, 
leaving open the problem of its regularity, which was later on treated in a 
general way by Hans W. Alt. 56 In addition to his studies on the regularity 
of solutions of variational inequalities associated to second order 
operators recalled so far, Stampacchia considered also operators of fourth 
order, and established the regularity of solutions of some variational 
inequalities. 57 As a first step, he examined a one-dimensional model 
representing the elastoplastic behaviour of a beam, in a paper dedicated 
to G. Sansone for his eightyfifth birthday (Ma[76]); then he studied, in a 
joint paper with Brezis, a variational inequality for the biharmonic 
operator in n variables (Ma[80]). 

In August 1975 he was invited to the Netherlands for the second 
Scheveningen Conference on New Developments in Differential 
Equations. There he presented a joint work with Kinderlehrer s8 where 
they examined a free boundary problem for the Poisson equation in the 
plane through a variational inequality approach and they proved that the 

56 H.W. Aft, The fluid .flow through porous media. Regularity of the free surface, 
Manuseripta math., 21, 1977, pp. 255-272. 

57 Cfr. Lions 1978, pp. 750-751 (XLVII-XLVIII). 
58 G. Stampacehia, Free boundary problem for Poisson's equation, New developments 

in differential equations, 1976, pp. 39-42. 
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unknown curve, on which conditions of  both Dirichlet and Newman 
types are simultaneously imposed, is regular (Ma[77]). Finally, a joint 
paper with Brezis and Kinderlehrer, which was published posthumously, 
was once again dedicated to the problem of  filtration through a porous 
dam. 59 In this article, a new formulation was proposed for the problem, 
whose solution coincides with that of Baiocchi, in the case of  a 
rectangular dam (Ma[81 ]). 

Stampacchia also wrote textbooks for university courses and articles 
for popular scientific publications, such as the ones issued by Istituto 
Geografico De Agostini and Enciclopedia Einaudi. 

His total rejection of  any superficially demagogical attitude, his 
feeling of  distrust and his pessimism for the future of the Italian 
university system, which had already characterized his choices and his 
speeches, were once more evident towards the end of 1977. At that time, 
in a renewed climate of  violence and uncertainty, he was called upon to 
preside over a Ministerial Investigating Commission, to evaluate the 
behaviour of  a teacher of  Mathematical Analysis and Analytical 
Geometry at the Faculty of  Architecture of  the Polytechnic of Milano, 
where several irregularities had been denounced. The commission, in the 
report presented to the Minister, interpreted the facts that had taken place 
as "a symptom of  the great uneasiness that one perceives in our 
universities" after more than ten years of waiting for an organic reform 
law, and remarked that the legislative measures which had been passed 
had created "a situation far worse than that which was intended to be 
remedied". In a handwritten draft, Stampacchia judged the attitude of  the 
entire faculty as "an affront to those who want to defend the principle of  
the autonomy of  the university system, a principle on which the 
University, its progress and its cultural tradition are based." 

He spent a considerable amount of his energies also to make known 
abroad his research activity, giving seminar talks on the theory of  partial 
differential equations and variational inequalities: he was a visiting 
professor at the University of Sussex from October to December of 1971 
and in the month of Febuary 1976 and he spent a month in Paris at 
Coll6ge de France between May and June 1976. He also went to the 
United States for three months from March to May of 1977 as visiting 
professor at the Courant Institute in New York and at the School of  
Mathematics of the University of Minnesota at Minneapolis. At last he 
returned to Paris around the middle of February 1978, as a visiting 
professor for two months at the University Pierre et Marie Curie, to give 
a course on partial differential equations. 

59 Cfr. Lions 1978, pp. 751-752 (XLVIII-XLIX). 
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In Paris he suffered once more a serious heart attack, following which 
he was admitted to Boucicaut Hospital. Just when the evolution of  the 
illness seemed to be taking such a satisfactory course that he was 
authorized to return home, Stampacchia expired due to a sudden heart 
arrest, on 27 th April 1978, the same day he was to be discharged from the 
hospital. He was 56 years old. According to a wish he had expressed 
many times, he was buried in the British Cemetery in Naples. 

On 17 th May 1978, the Council of  Directors of  National and 
International Schools of  the Centro di Cultura Scientifica Ettore 
Maiorana at Erice decided to honour his memory by dedicating to his 
name the International School of Mathematics, which hosts the present 
Conference, and by founding a fellowship to be awarded to a young 
mathematician to attend the School. 
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MEMORIES OF GUIDO STAMPACCHIA 

L. Nirenberg 
Courant Institute, New York, NY, USA 

I first met Guido at a conference in 1954 in Trieste, organized by 
Professor Fichera. This was, essentially, my first contact with Italian analysts 
working in partial differential equations. Among those were Roberto Conti, 
Enrico Magenes, Carlo Miranda, Carlo Pucci and Francesco Tricomi. This 
meeting was the beginning of  a long friendship with Italian colleagues and a 
love affair with Italy. Guido and I became very close friends - to me he was 
like a brother - our warm friendship continued up to his demise. 

It was always a great pleasure to meet him. We would always talk about 
mathematics, cinema, politics, etc. His enthusiasm and love of mathematics 
was contagious. He affected everyone who came into contact with him. 

It was Guido who pointed out to Ennio De Giorgi the problem of 
extending to higher dimensions Morrey's regularity result in 2 dimensions 
for elliptic variational problems. Afterwards Guido extended De Giorgi's 
results up to the boundary in his beatiful 1966 lecture notes at the University 
of Montreal. These notes have had a great influence. 

In 1958-59 1 spent a sabbatical year in Rome and Guido and I organized a 
seminar which met once a month, over a weekend in Pisa. Over the years, 
when I visited him and his family in Pisa I was like Io "zio d'America". 

Though we discussed mathematics all the time we wrote only one joint 
paper, together with Brezis, in 1972. 

Guido played a very important role in creating scientific contact between 
Italy and other countries. He visited the Courant Institute several times, for 
extended periods. 
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Guido was full of  life and humour and I have wonderful memories of  our 
walks, talks and dinners together. He continues to live in the hearts of  all 
who knew him. 



IN MEMORY OF GUIDO STAMPACCHIA 

C. Sbordone 
Dept. of  Mathematics and Applications "R. Caccioppoli "', Napoli, Italy 

On behalf of the Unione Matematica Italiana I am honored to address a 
few words on the occasion of the International Conference "Variational 
Analysis and Applications" in memory of Guido Stampacchia. 

Even though the fame of Guido Stampacchia goes beyond the boundary 
of a national scientific society, I wish to give testimony to his contribution to 
the developement of the U.M.I. 

From 1964 to 1976 he was a member of the Scientific Committee of the 
UMI. He served as a President from 1967 to 1973. 

In that period he dedicated a special care to the Bulletin of the UMI, that 
started a new series in 1968. The level of the papers highly improved; longer 
articles were accepted; the referees system was introduced. In 1973 the 
circulation of the Bulletin increased up to 2400 copies, and the number of 
the UMI members doubled with respect to the 1967. 

He gave talks at many national Congresses of the UMI: in Taormina in 
1951, at the age of 29, he was award one of the eight prizes for the best talks 
of young assistants, in Napoli in 1959 he gave a plenary address. 

During his career of a distinguished mathematician he received important 
recognitions like the invitation to lecture at the Intemational Congresses of 
Mathematicians in Stocholm in 1962 and in Nice in 1970 and the Feltrinelli 
Prize from the Accademia dei Lincei in 1966. 

Stampacchia was one of the first among Italian Mathematicians who 
cooperated intensively with foreign colleagues, in particular in France with 
J.L. Lions and H. Brezis and in US with L. Nirenberg, H. Weinberger, H. 
Lewy, W. Littman, P. Hartman and D. Kinderlehrer, writing many joint 
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papers and publishing them in prestigious intemational Joumals (Comm. 
PAM, CRAS, Ann. Fourier, Acta Math, Archive). 

The numerous quotations of his work are evident in the recent annual 
issues of the Citation Index, where his name appears at least twenty times 
per year, and this clearly demonstrate that his ideas are still very much alive. 

On a personal side I am pleased to acknowledge the influence his papers 
had on me and my mathematical work and his generous advices during my 
stay at the Scuola Normale Superiore in 1974-75, a period when there was in 
Pisa a continuous flow of analysts from many countries due to his and De 
Giorgi's prestigious personalities. 

A selection of his most famous papers has been published into two 
volumes by the UMI, sponsored by CNR and Scuola Normale Superiore of 
Pisa, to allow joung mathematicians to know his very important work in 
Pde's and Calculus of Variations. The idea of publishing these volumes was 
supported by italian and foreign mathematicians, some of them are present at 
this memorial meeting. 

I take now the opportunity to express my warm congratulations to the 
winner of the First "Stampacchia Medail", prof. Tristan Riviere. 



GUIDO STAMPACCHIA, MY FATHER 

G. Stampacchia 
Dept. of Neurosciences, University of Pisa, Pisa, Italy 

I am grateful, and with me my family, to prof. Franco Giannessi for his 
invitation to this commemoration, and to prof. Silvia Mazzone for her 
excellent biography of  my father as a man and as a mathematician. 

I also wish to thank all the presents and particularly all my father's 
friends that have spoken before me, tracing a profile of  my father, both from 
the point of  view of his scientific work and of  his human profile. 

I am bringing you in particular the thankfulness of  my mother that has 
not been able to be here in person, but is present here in heart and has 
recommended me to greet with great affection all my father's -and so also 
hers- friends. 

I must confess that I am in a certain sense feeling uneasy in speaking in 
front of  an audience of"real"  scientists. I have had many times, as a medical 
doctor and researcher in the field of  neurology, the occasion to deliver a 
paper in a scientific meeting, but my audience in those occasions is usually 
made up of  a different sort of  "scientists". I cannot avoid to remember the 
words of  my father, when I told him I wanted to become a student in the 
Medical faculty: "Didn't you say you wanted to enroll in a scientific 
Faculty?". He used to remark that Medicine wasn't what he thought be a 
science, he saw it with a lot of  "witchery" in it. But in effect things have 
changed since those times, and mathematics has more and more been applied 
to medical research. Eventually, my father was proud, as I learned in the 
years, of  my medical studies. 

Silvia Mazzone writes, quite agreably, that my father was a man of 
humour and anticonformist attitude. Magenes has spoken of  "Naepolitan 
irony". This aspect of  my father's personality was at times not so easy for 
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me, my brother and sisters (a bunch of  four altogether) because we had to 
face a model very difficult to imitate. Many times my father, when he heard 
from me something that could sound banal, conformist, what in Italian we 
call a "frase fatta" (a "stock" or a "set phrase" you would call it in English), 
told me in a very serious way not to speak fesserie, a word much used in 
Southern Italy to indicate things of  no wit and intelligence. His critical spirit 
determined in us a very strict or better to say a strong education. De Giorgi 
has said that my father "was never indulgent towards superficiality and 
laziness", and I believe that that is true not only for my father as a teacher, 
but also for my father as a father. But he was never grave, or rethorical, or 
pompous, in the way he behaved but nevertheless showed a deep 
commitment to seriousness only edulcorated with his ironic wit. 

My sister Renata still remembers how, when she finally reached the goal 
of  her degree in Physics, my father, in the United States for work, sent her a 
congratulation card. The card portrayed a big question mark and he wrote 
underneath: "Congratulations... and now?". 

My father always stimulated us to study with a serious attitude and he 
wanted good results, that he thought to be in any case due. The fact that we 
chose to study -a t  any level, from elementary to University- implied 
commitment and good results. There were no prices for good qualifications 
and passing to following classes. He did not, on the other hand, reproached 
us if we did not achieve good results, but encouraged us. Once I had some 
"price" for my studies, and I remember well the occasion, because it marked 
quite a turn in the relation between me and my father. It was when, at my 
first University exam, I had the maximum vote cum laude. My father bought 
me a box of  chocolates and added some 30 thousand lire as a bonus, quite a 
lot of  money in 1974 Italy. I understood from now then, that my father was 
beginning to consider me an adult, and started to talk with me as an adult. 
Unfortunately, due to his premature death, this new period of  a Guido-adult 
Giulia father-daugther relation was bound to last only a few years. 

My father was particularly fond of his Neapolitan origins and 
background. Now he rests, as he desired, in the British Cemetery in Naples, 
the Protestant Cemetery. 

My mother Sara once told me of  a love declaration of my father. He said 
to her: "three things are important for me in my life: 1. Mathematics, 2. the 
city of  Naples, 3. Sara". He liked particularly the food and the Naepolitan 
dialect. When not in Naples he avoided speaking Naepolitan, and my father 
spoke Italian without any local accent, but when he was back in Naples he 
loved to speak Naepolitan. But some word of Naepolitan origin he still used: 
I remember when I was in junior high school I happened to write, in a 
composition about my family, that my father, when he came home from 
work, "si  sparapanzava on the easy chair". I heard that word used normally 
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in my family, and I used it in the composition thinking it were a correct 
Italian word, but my teacher thought it was a mistake and in effect I had to 
admit there was not such a word in the Italian dictionary. But when I 
explained it to the teacher, she appreciated such an onomatopoeic word and 
asked me to keep it in the text, only putting it inside quotation marks. 

Neapolitanity, if you pass the word, and his critical and anticonformistic 
spirit, were the origin of  two of his most common words he used. To define a 
person of  mediocre spirit, but quite engaged and convinced of  having great 
cultural prestige, used to say with some benevolence that he was a 
"fessacchiotto". He was much more critical towards people with arrogance, 
conformist, and speaking with made-up and rethorical phrases. Those were, 
with no appeal, in a very coloured Naepolitan expression, "mezze calzette". 

Neapolitan food was also much appreciated. I remember the "Sara, 
u'caf~" request, that meant "please Sara make a good coffee for me". He 
asked for pizza at meals, and sometimes he liked to cook himself. I 
remember particularly the tasty lasagne alla napoletana or, alternatively, 
with a meat ball and ricotta sauce. 

Naples was also the city of his great maestro Caccioppoli, whose 
photographic portrait was quite in evidence in my father's study, drawing the 
attention of  all visitors. 

Although my father was in all sense Neapolitan, he was in the same time 
very open to the world. He often travelled in Europe, America and Asia also, 
and opened our house to many foreigners. So we were brought up with 
people from all the world, because he invited foreigners not only at dinners, 
but also as guests in our house and as travel companions. I have recently 
found old photos taken when I was a child and in one of them there was 
professor Murthy and my family in Assisi. 

Being open to the world is one of  the teachings my father gave to all of  
us. We have learned it very well because it given out not only in words but 
in practice. My father did not state equality between peoples but made us 
live for periods outside of  Italy and brought many persons from all the parts 
of  the world in our house. 

Guido Stampacchia didn't love only mathematics, Naples and his wife. 
He was a man full of  interests and he also loved to play. His hobbies were 
not banal but had to do with creativeness. He loved taking photos and still 
nowadays my mother has drawers full of  photos of us, in the various ages; he 
loved cinema and he not only had a good time making family movies, but 
also short documentaries and cartoons. When the Lego brick games was put 
on the market, my father bought one that had different pieces, bricks, 
windows and doors. He was very jealous of  his constructions, and we were 
not allowed to touch them. He made a short animation movie that I 
remember to have seen with a lot of  fun and also amazement when I was 
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child (we are around the Sixties), in which a small house built itself from 
nothing with Lego bricks. In later times my father's love for the house and 
garden had satisfaction when in 1966, when he won the Feltrinelli prize, he 
bought a house in Ronchi of Marina di Massa, where he spent his holidays, 
that were actually periods of  intellectual and professional work. In fact, 
while us children went to the beach, he often spent days in the garden to 
think mathematics. He sometimes invited colleagues to work with him in the 
peace of  his garden. 

I would like to say some final words on my father as a teacher. Mazzone 
says about Guido Stampacchia that "he always had towards students an 
available and generous attitude". In effects I remember that in the Eighties as 
a Perfezionanda in Neurofisiologia in the Scuola Normale Superiore in Pisa, 
I made friends with some young mathematicians that had been students with 
my father, and I was struck from the way they remembered with affection 
Guido Stampacchia and they expressed me a sort of  envy for my having had 
such a father. 

I would like to conclude thanking again the organizers of this ceremony 
for having invited me to actively participate. I have to confess that this 
occasion has been for me and my family -mother, brother and sisters- a 
moment of  reflection. We were brought to gather to share the individual 
memoirs of  every one of us concerning the moments and the life spent with 
Guido Stampacchia, husband and father. 



PART 2 



C O N V E R G E N C E  AND STABILITY OF A 
R E G U L A R I Z A T I O N  METHOD FOR MAXIMAL 
M O N O T O N E  INCLUSIONS AND ITS 
APPLICATIONS TO CONVEX OPTIMIZATION 

Ya. I. Alber, ~ D. Butna r iu  2 and  G. K a s s a y  3 
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Abstract: In this paper we study the stability and convergence of a regularization method 
for solving inclusions f ~ Ax, where A is a maximal monotone point-to-set 
operator from a reflexive smooth Banach space X with the Kadec-Klee 
property to its dual. We assume that the data A andfinvolved in the inclusion 
are given by approximations A k and fk converging to A a n d f  respectively, 
in the sense of Mosco type topologies. We prove that the sequence 
x ~ = (A k + atkJ~)-~f * which results from the regularization process converges 
weakly and, under some conditions, converges strongly to the minimum norm 
solution of the inclusion f ~ Ax, provided that the inclusion is consistent. 
These results lead to a regularization procedure for perturbed convex 
optimization problems whose objective functions and feasibility sets are given 
by approximations. In particular, we obtain a strongly convergent version of 
the generalized proximal point optimization algorithm which is applicable to 
problems whose feasibility sets are given by Mosco approximations 
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. I N T R O D U C T I O N  

Let X be a reflexive, strictly convex and smooth Banach space with the 
X k Kadec-Klee property (i.e., such that if a sequence { }k~N in X converges 

k weakly to some x e X ,  then {x }k~N converges strongly whenever 

xkl=[lxl]) and let X* be the dual of X .  Given a maximal monotone limk_,® 

mapping A : X --, 2 x" and an element f E X*, we consider the following 
problem 

Find x ~ X such tha t f  e Ax. (1) 

Problems like (1) are often ill-posed in the sense that they may not have 
solutions, may have infinitely many solutions and/or small data perturbations 
may lead to significant distortions of the solution sets. A regularization 
technique, whose basic idea can be traced back to Browder [16] and 
Cruceanu [23], consists of replacing the original problem (1) by the problem 

Find z '~ e X such tha t f  ~ (A + c~JV)z ~ , (2) 

where a is a positive real number and J~' : X ---) X* is the duality mapping 
of gauge /.t defined by the equations 

(J~Y 'Y)= JUY ,llyl] and j l ,  y =/j(l ly[i) ,  (3) 

while /.t :[0,+oo) ~ [0,+oo) is supposed to be continuous, strictly increasing, 
having ¢t(0)= 0 and lim,_,~,u(t)= +oo. One does so for several reasons. 

since the mapping A + a J  ~' is surjective and (A +aJ~') -I is First, single 

valued (cf. [22, Proposition 3.10, p. 165]), the regularized problem (2) has 
unique solution (even if the inclusion (1) has no solution at all). Second, it 
follows from [47, p. 129] and [23] that, if {ak}k~ N is a sequence of positive 

real numbers and limk_,® % = 0 then by solving (2) for a = a k one finds 
vectors z ~' converging to a solution of (1) provided that this inclusion is 

Third, the operator (A+aJ l ' )  -~ is continuous and, therefore, consistent. 

small perturbations of f will not make the vector z ~ be far from the 

theoretical solution ( A + a J U ) - t f  of (2). In applications it frequently k ,t 
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happens that not only f but also the operator A involved in (1) can be 
approximated but not precisely computed. This naturally leads to the 
question whether the regularized inclusion (2) is stable, that is, whether by 
solving instead of the regularized inclusion (2) a sequence of regularized 
inclusions 

fk  ~ (A k + akj~,)x 

in which A k "X---> 2 x' are maximal monotone operators approximating A 
and fk approximates f ,  the sequence of corresponding solutions 

X k =(A t~ +akJ~')- l f  k (4) 

still converges to a solution of (1) when lim,_,oo a k = 0 and the original 
inclusion (1) is consistent. This question was previously considered by 
Lavrentev [36] who dealt with it in Hilbert spaces under the assumption that 
A is linear and positive semidefinite, Dom A = X and /x(t)= t/2. In Alber 
[1 ] the problem appears in a more general context but under the assumption 
that the operator A is defined on the whole Banach space X. 

The main purpose of this paper is to show that if the approximations A k 
and fk satisfy some quite mild requirements, then the answer to the 

x k question posed above is affirmative, i.e., the sequence { }k~r~ defined by (4) 

converges strongly to the minimal norm solution of (1) as a k -->0 and 
provided that (1) has at least one solution. Subsequently, we prove that the 
stability results we have obtained for the regularization method presented 
above apply to the resolution of convex optimization problems with 
perturbed data and, in particular, to produce a strongly convergent version of 
a proximal point method. 

The stability results proved in this work (see Section 2) do not make 
additional demands on the data of the original inclusion (1) besides the 
assumption that A is maximal monotone. The conditions under which we 
prove those results only concern the quality of the approximations A k and 
fk .  They ask that either the Mosco weak upper limit (as defined in [45]) or 
the weak-strong upper limit (introduced in Subsection 2.1 below) of the 
sequence of sets {Graph(A k/}k~N be a subset of Graph(A), the later being a 

somewhat weaker requirement. Also, they ask for a kind of linkage of the 
approximative data in the form of the boundedness of the sequence 

{ a;ldist. (fk, A k v k )} k~r~ (5) 
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V k for some bounded sequence { }k~N in X. If approximants A k and fk 

satisfying these conditions exist, then the inclusion (1) is necessarily 
consistent, the sequence {x k }k~N defined by (4)is bounded and its weak 

accumulation points are solutions of it (see Theorem 2.2 and Corollary 2.3). 
The main stability results we prove for the proposed regularization scheme 
are Theorem 2.4 and its Corollary 2.5. They show that if solutions of (1) 
exist and each of them is the limit of a sequence {v k}k~N such that the 

(5) converges to zero, then the sequence {Xk}k~N given by (4) sequence 

converges strongly to the minimal norm solution of (1). 
When one has to solve optimization problems like that of finding a vector 

x* ~ argmin{F(x):  g,(x)  < O, i ~ I} ,  (6) 

where the functions F ,  gi :X~(-oo,+oo]  are convex and lower 
semicontinuous, perturbations of data are inherent because of imprecise 
computations and measurements. Since problems like (6) may happen to be 
ill-posed, replacing the original data F and gi by approximations F k and 
g~ may lead to significant distortions of the solution set. In Section 3 we 
consider (6) and its perturbations in their subgradient inclusion form. We 
apply the stability results presented in Section 2 for finding out how "good" 
the approximative data F k and g~ should be in order to ensure that the 
vectors x * resulting from the resolution of the regularized perturbed 
inclusions strongly approximate solutions of (6). Theorem 3.2 answers this 
question. It shows that for this to happen it is sufficient that the perturbed 
data would satisfy the conditions (A) and (B) given in Subsection 3.1. 
Condition (A) asks for sufficiently uniform point-wise convergence of F k 
to F. Condition (B)  guarantees weak-strong upper convergence of the 
feasibility sets of the perturbed problems to the feasibility set of the original 
problem. Proposition 3.6 provides a tool for verifying the validity of 
condition ( B ) in the case of optimization problems with affine constraints as 
well as in the case of some problems of semidefinite programming. 

In Section 4 we consider the question whether or under which conditions 
the generalized proximal point method for optimization which emerged from 
the works of Martinet [43], [44], Rockafellar [52] and Censor and Zenios 
[21] can be forced to converge strongly in infinite dimensional Banach 
spaces. The origin of this question can be traced back to Rockafellar's work 
[52]. The relevance of the question emerges from the role of the proximal 
point method in the construction of augmented Lagrangian algorithms (see 
[53], [18, Chapter 3] and [30]): in this context a better behaved sequence 
obtained by regularization of the proximal point method may be of use in 
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order to determine better approximations for a solution of the primal 
problem. It was shown by Butnariu and Iusem [17] that in smooth uniformly 
convex Banach spaces the generalized proximal point method converges 
subsequentially weakly, and sometimes weakly, to solutions of the 
optimization problem to which it is applied. However, it follows from the 
work of Gialer [28] that the sequences generated by the proximal point 
method may fail to converge strongly. The generalized proximal point 
method essentially consists of solving a sequence of perturbed variants of the 
given convex optimization problem. We apply the results established in 
Section 3 in order to prove that by regularizing the perturbed problems via 

k X k the scheme studied in this paper we obtain a sequence {(y ,  )}k~r~ in 

X × X such that, when the optimization problem is consistent, {F(yk)}k~r~ 

to the optimal value of F and {x k }k~N converges strongly to the converges 
minimum norm optimal solution of the original optimization problem. 

The stability of the regularization scheme represented by (2) was studied 
before in various settings, but mostly as a way of regularizing variational 
inequalities involving maximal monotone operators (which, in view of 
Minty's Theorem, can be also seen as a way of regularizing inclusions 
involving maximal monotone operators). Mosco [45], [46], Liskovets [39], 
[40], [41], Ryazantseva [54], Alber and Ryazantseva [6], Alber [2], Alber 
and Notik [5] have considered the scheme under additional assumptions (not 
made in our current work) concerning the data A and f (as, for instance, 
some kind of continuity or that the perturbed operators A k and A should 
have the same domains). The stability results they have established usually 
require Hausdorff metric type convergence conditions for the graphs of A k . 
Also under Hausdorff metric type convergence conditions, but with no 
additional demands on the operator A than its maximal monotonicity, strong 

X k of the regularized sequence { }k~r~ defined by (4) to the convergence 
minimal norm solution of (1) was proven by Alber, Butnariu and 
Ryazantseva in [4]. Recently, weak convergence properties of this 
regularization scheme were proved by Alber [3] under metric and Mosco 
type convergence assumptions on the approximants. By contrast, we 

X k establish here strong convergence of the regularized sequence { }k~ by 

exclusively using variants of Mosco type convergence for the approximants. 
The stability of regularization schemes applied to ill-posed problems is a 

multifaceted topic with multiple applications in various fields as one can see 
from the monographs of Lions and Magenes [37], Dontchev and Zolezzi 
[24], Kaplan and Tichatschke [31], Engl, Hanke and Neubauer [27], 
Showalter [55], and Bonnans and Shapiro [14]. We prove here that the 
regularization scheme (4) has strong and stable convergence behavior under 
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undemanding conditions and that it can be applied to a large class of convex 
optimization problems. An interesting topic for further research is to find out 
whether and under which conditions this regularization scheme works when 
applied to other problems like, for instance, differential equations [55], 
inverse problems [27], linearized abstract equations [14, Section 5.1.3.], etc. 
which, in many circumstances, can be represented as inclusions involving 
maximal monotone operators. Convergence of the regularization scheme (4) 
may happen to be slow (as shown by an example given in [4]). Its rate of 
convergence seems to depend not only on the properties of A ~ and fk but 
also on the geometry of the Banach space X in which the problem is set. It 
is an interesting open problem to evaluate the rate of convergence of the 
regularization scheme discussed in this work in a way similar to that in 
which such rates were evaluated for alternative regularization methods by 
Kaplan and Tichatschke [34], [33], [32] and [42]. Such an evaluation may 
help decide for which type of problems and in which settings application of 
the regularization scheme (4) is efficient. 

The convergence and the reliability under errors of the generalized 
proximal point method in finite dimensional spaces was systematically 
studied along the last decade (see [25], [26] and see [29] for a survey on this 
topic). In infinite dimensional Hilbert spaces repeated attempts were recently 
made in order to discover how the problem data should be in order to ensure 
that the generalized proximal point method converges weakly or strongly 
under error perturbations (see [8], [9], [15], [30]). Projected subgradient type 
regularization techniques meant to force strong convergence in Hilbert 
spaces of Rockafellar's classical proximal point algorithm were discovered 
by Bauschke and Combettes [12, Corollary 6.2] and Solodov and Svaiter 
[57]. The regularized generalized proximal point method we propose in 
Section 4 works in non Hilbertian spaces too. It presents an interesting 
feature which can be easily observed from Theorem 4.2 and Corollary 4.3: if 
X is uniformly convex, smooth and separable, then by applying the 
regularized generalized proximal point method (60) one can reduce 
resolution of optimization problems in spaces of infinite dimension to 
solving a sequence of optimization problems in spaces of finite dimension 
whose solutions will necessarily converge strongly to the minimal norm 
optimum of the original problem. 
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. C O N V E R G E N C E  A N D  S T A B I L I T Y  A N A L Y S I S  F O R  
M A X I M A L  M O N O T O N E  I N C L U S I O N S  

2.1 We start our discussion about the stability of  the regularization scheme 
(2) by recalling (see [45, Definition 1.I]) that a sequence {Sk}k~r~ of  subsets 
of  X is called convergent (in Mosco sense) if 

w -  lim S k = s - lim Sk, 

where s -  lim S k represents the collection of all y e X which are limits (in 
the strong convergence sense) of  sequences with the property that x k e S k 

for all k e N and w - l i m S  k denotes the collection of all x e X such that 

there exists a sequence {yk }k~r~ in X converging weakly to x and with the 

property that there exists a subsequence {Si, }k~r~ of {Sk}k~ ~ such that 

yk e Si, for all k e N. In this case, the set 

S := s - lim S k = w -  lim S k 

is called the limit of {S k }kcr~ and is de___noted S = LimS k . 
By analogy with Mosco's w - l i m  we introduce the following notion of 

limit for sequences of  sets contained in X × X ' .  This induces a form of  
graphical convergence for point-to-set mappings from X to X" which we 
use in the sequel. For a comprehensive discussion of  other notions of 
convergence of  sequences of  sets see [ 13]. 

Definition. The weak-strong upper limit of  a sequence {U k }ke~ of  subsets of 

X x X*, denoted w s -  lim U k, is the collection of all pairs ( x , y ) e  X x X" 
X k for which there exists a sequence { }ken contained in X which converges 

yk X* weakly to x and a sequence { }k,r~ contained in which converges 

strongly to y and such that, for some subsequence {U,~ }ken of  {U, },cN we 

have (xk,yk)eUi~ for all k e N .  

It is easy to see that, if A k : X -+ X*, k e N,  is a sequence of point-to-set 
mappings then the weak-strong upper limit of the sequence 
Uk=Graph(Akl ,  k e N ,  is the set U of all pairs ( x , y ) e X x X "  with the 
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k property that there exists a sequence {(xk,y )}k~NcXxX" such that 
yk {X*}k~N converges weakly to x in X, { },~N converges strongly to y in 

X* and, for some subsequence {A i* }k~ of{A k }k~N we have 

yk e A i* (x k), Vk e N. 

Therefore, in virtue of  [11, Proposition 7.1.2.], the graphical upper limit 
of the sequence {Ak}k~N " o k , hmk_+®A , considered in [11, Definition 7.1.1], 

the weak-strong upper limit ws- lim Graph(A k ) and the Mosco upper limit 

w - lim Graph(A k ) are related by 

Graph(lim~_,~Aklcws-lim Graph(Ak)Ew-lim Graph(A' 1. (7) 

As noted in the Introduction, a goal of this work is to establish 
convergence and stability of the regularization scheme (4) under 
undemanding convergence requirements for the approximative data A k and 
fk.  As far as we know, the most general result in this respect is that 
presented in [4, Section 2]. It guarantees convergence and stability of the 
regularization scheme (4) under the requirement that the maximal monotone 
operators A k approximate the maximal monotone operator A in the sense 
that there exist three functions a,g,('lR+--~N+, where ( is strictly 
increasing and continuous at zero, such that for any (x,y) e Graph(A) and 

• • k k k • " " for any k e N ,  there exists a pair (x ,y )eGraph(A ) with the property 
that 

Ix - x '  _ a(llxll)k-' and ly - yk ,< g(llyll.)((k-'). (8) 

Clearly, if this requirement is satisfied, then 

Graph(A) ~ Graph (lim~k_,ooA k ), (9) 

w h e r e "  ~ k hmk_,=A stands for the graphical lower limit of the sequence 
{Ak }k~r~ (see [11, p. 267]). Since the mappings A k and A we work with are 

maximal monotone, Proposition 7.1.7 from [11] applies and, due to (9), it 
implies that A is exactly the graphical limit of the sequence {A k }k~N' that is, 
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A lim~k_,ooA k • , k = = llm,_.ooA . (10) 

In this section we show that convergence and stability of  the 
regularization scheme (4) can be ensured under conditions that are much less 
demanding than the locally uniform graphical convergence (8). In fact, we 
prove convergence and stability of  the scheme (4) by requiring (see (16) 
below) less than the graphical convergence (10). This allows us to apply the 
regularization scheme to a wide class of convex optimization problems as 
shown in Sections 3 and 4. 

All over this paper we denote by /a : [0 ,+oo)~  [0,+oo) a gauge function 
with the property that the following limit exists and we have 

lim 'u(t) > O. (11) 
I--~Qo t 

The duality mapping of  gauge /t is denoted j u ,  as usual. 

2.2 The next result shows that, under quite mild conditions concerning 
X k the mappings A k and the vectors f k ,  the sequence { }k~N generated in X 

according to (4) is well defined, bounded and that its weak accumulation 
points are necessarily solutions of (1). 

Theorem.  Let {ak}k~ be a bounded sequence of  positive real numbers. 

Suppose that, for each k ~ N, the mapping A k : X ---> 2 x" is maximal 
monotone. Then the following statements are true." 

( i ) The sequence {x k }k~r~ given by (4) is well defined; 

( i i )  I f  there exists a bounded sequence {vk}k~r ~ in X such that the 

(5) is bounded, then the sequence {x k }k~N is bounded too sequence 

and has weak accumulation points; 
( i i i)  If, in addition to the requirements in (ii), we have that the 

sequence {c e, }k~N converges to zero, the sequence { f k  }k~N 

converges weakly to f in X* and 

w - l i m  Graph[ Ak )c_ Graph( A), (12) 

then the problem (1) has at least one solution and any weak 
k accumulation point oi  {x is a solution ol  it. 
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Proof.  Since the mappings A k are maximal monotone it follows that 
A k +al, J u are surjective and (A k + a k J ' )  -l are single valued. Hence, the 

x k { }k~N is well defined. In order to show that this sequence is sequence 

bounded, observe that, for each k ~ N,  there exists a function h k ~ Akx k 
such that 

f k  = h k + akj~,x k. (13) 

The sets Akv k are nonempty because, otherwise, the sequence (5) would be 
unbounded. Also, these sets are convex and closed. Hence, for each k ~ N 
there exists gk ~ Akv k such that 

gk _ f k ,  = dist, (fk, AkV k ). (14) 

Taking into account that A k is monotone, we deduce 

(h k -- gk,xk -- Vk ) > O. 

Hence, 

<~,x~- v,>_< <~,,x~- v~> = <i ~ -~j~x~,x~-v~> 

_-<z,, u, x'NF > 
, 

where the first equality follows from (13) and the third equality, as well as 
the last inequality, follows from (3). By consequence, 

~(x~ l ) (  x~ - v~l)_< <i ~ -~,x~-v~> 
05) 

_< f k _ g k L  xk + f k _ g k ,  V k 
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for all k ~ N'. Suppose, by contradiction, that {x* }k,r~ is unbounded. Then, 

for some subsequence {X~'}k~N o f i t w e h a v e  l im~=lx"[=+oo. From(15)we 
deduce that, for sufficiently large k, we have 

;, [ 'ciix I}( x,, i  #-=,,  x', j' 

where, according to (14)and the hypothesis, the sequence {a;i[[f k - gkil.}k~r~ 

is bounded. Taking on both sides of this inequality the upper limit as k ~ ov 
and taking into account (11), (14) and the boundedness of {v k }k,r~ one gets 
that the limit on the left hand side is +oo while that on the right hand side is 
finite, that is, a contradiction. This shows that {x k }k~r~ is bounded and, since 

X is reflexive, {x k }k~r~ has weak accumulation points. 

Now, assume that {a k}k,r~ converges to zero, {fk}k,N converges weakly 

to f in X* and (12)also holds. Observe that the sequence {a gk-f~ll.}~o~ 

converges to zero because { ilk }k~N converges to zero, 

M := supk~r ~ a~ -~ dis t , ( fk,A%k) is finite and 

b ,' -~'11._< ~,M, 

for all k ~N. Consequently, since {fk}k~N converges weakly to f ,  we 

deduce that {gk}k~r~ converges weakly to f too. Let v be a weak 

accumulation point of the sequence {v k }~N and denote by {v i' }k~N a 

subsequence of {v k }k~N converging weakly to v. Since for any k e N we 

have (vi',g ì  )~GraphIA i~ ], condition (12)implies that (v , f )~Graph(A),  

i.e., v is a solution of (1). Let x be a weak accumulation point of {x k }k~N 

an~,et {x~' t.~. ~ea s.bs~on~o of ( ; L .  which ~onvor~os wo~,y to ~ 
Note that for any z ~ X we have 
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(z,:-,,,}=(z,:-:,}+(.,:,-,,,) 

..x', 

where the last sum converges to zero as k--+ oo. This shows that the 
sequence {hk}k~r ~ converges weakly to f .  Hence, the sequence 

{ (xj*'hj`)}k~r~ converges weakly to (x , f )  in X×X*. Since we also have 

that h h ~A hx h for all k ~ N ,  condition (12) implies that 
(x , f )  ~ Graph(A), that is, x is a solution of(I). 

2.3 Condition (12) involved in Theorem 2.2 is difficult to verify in 
applications as those discussed in Section 3 below. We show next that this 
condition can be relaxed at the expense of strenghtening the convergence 

k requirements for {f  }k,N" Note that in view of (7) condition (16) below is 
weaker than (12). Precisely, we have the following result: 

Corollary. Let {ct k }k~r~ be a sequence of positive real numbers converging to 

zero. Suppose that, for each k ~ N, the mapping A k ' X --~ 2 x" is maximal 
V k monotone and that there exists a bounded sequence { }kor~ in X such that 

X k sequence sequence given the (5) is bounded. Then the { }k~r~ by (4) is well 

defined, bounded and has weak accumulation points. If  in addition, the 

{fk}k~N converges strongly to f in X* and sequence 

ws - l im Graph( Ak )c_ Graph(A), (16) 

then the problem (1) has solutions and any weak accumulation point of  
{x' }k~r ~ is a solution of it. 

Proof. Well definedness and boundedness of the sequence {x k}k,N results 
from Theorem 2.2. Exactly as in the proof of Theorem 2.2 we deduce that 
for each k ~ N there exist h k E Akx k and gk e Akv k such that (13) and (14) 

hold. Observe that the sequence {gk }k~N converges strongly to f because 
of (14) and the boundedness of (5). It remain to show that, under the 
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assumptions that {fk }k~ converges strongly to f and (16) holds, any weak 

accumulation point of {Xk}k~N is a solution of (1). Let v be a weak 

accumulation point of the sequence {Vk}k~N (such a point exists because 

{Vk}k~N is bounded and X is reflexive)and denote by {v i*}k~N a 

subsequence of {Vk}keN converging weakly to v. Since for all k e  N we 

have (v'*,g ~*)eGraph(A i* ), condition (16)implies that (v , f )eGraph(A) ,  

i.e., v is a solution of (1). Let x be a weak accumulation point of {Xk}k~N 

and let {x h }k~N be a subsequence of {x k }k~N which converges weakly to x. 
Note that, according to (13), we have 

f _h k ,< f _ f k  + fk_h~] ,  

=[f _ f k  +~Z k j~,x k ,' 

where the last sum converges to zero as k --+ 0% because {x k }k~r~ is bounded 

(and, hence, so is {J~x*},EN) and the sequence {f* },~r~ converges to f by 

hypothesis. Therefore, the sequence {h* },~ converges strongly to f .  Since 

we also have that h* ~Akx * for all k e N ,  condition (16) implies that 
(x,f)  e Graph(A), that is, x is a solution of(l).  [] 

2.4 If problem (1) has only one solution (as happens, for instance, when 
A is strictly monotone), then Theorem 2.2 guarantees weak convergence of 
the whole sequence {x k }k~N" However, in general, we do not know whether 

the whole sequence {x k }k~N converges weakly. The next result shows that 
X k not only weak convergence, but also strong convergence of { },~N to a 

solution of (1) can be ensured provided that any element of A-I f  (the 
solution set) is the limit of a sequence {v k }k~N satisfying (17) below. In view 
of the remarks in Subsection 2.1, this result improves upon Theorem 2.2 in 
[4]. 

Theorem. Suppose that problem (1) has at least one solution and that the 
sequence of  positive real numbers {ak}k~ n converges to zero. I f  
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A k : X --> 2 x" , k ~ N, are maximal monotone operators with the property 

fk (12), /f { }k~N is a sequence converging weakly to f in X* and if, for 

each v e A- ' f ,  there exists a sequence {v k }k~r~ which converges strongly to 

v in X and such that 

0 ~ s - l i m  1-~-[A'v' - f '  ], 
6~ k 

(17) 

then the sequence {x* }k~N given by (4) is well defined and converges 

strongly to the minimal norm solution of problem (1). 

Proof. The assumption that problem (1) has solutions implies, in our current 
setting, the existence of a bounded sequence {v k }k~r~ as required by Theorem 

2.2. Observe that, since (17) holds, the sequence {a;~dist.(fk,Akvk)}k~r~ 

converges to zero and, therefore, it is bounded. Hence, one can apply 
Theorem 2.2 in order to deduce well definedness and boundedness of 
{ xk }k~r~ and the fact that any weak accumulation point of it is a solution of 

(1). Note that, since A is maximal monotone, A -u is maximal monotone too 
and, therefore, the set A-~f, which is exactly the presumed nonempty 
solution set of problem (1), is convex and closed. The space X is reflexive 
and strictly convex and, therefore, the nonempty, convex and closed set 
A - i f  contains a unique minimal norm element 2 (the metric projection of 
0 onto the set A-~f).  We show that the only weak accumulation point of 

x k { xk}k~r~ is 2. To this end, let {x g'}k~N be a subsequence of { }k~r~ which 

converges weakly to some x e X .  According to Theorem 2.2, x is 
necessarily contained in A- ' f .  If x = 0, then this is necessarily the minimal 
norm element of A-~f, i.e., x = 2". Suppose that x ¢ 0. Let v be any other 

solution of problem (1). By hypothesis, there exists a sequence {v k}k~r~ 

converging strongly in X to v and such that, for some sequence {l k }k~r~ 

with l k ~ Akv k for each k e N, we have 

l i m l / l k  - fk )  = O. 
k ~  0:, k ', 

(18) 
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Clearly, 

0 < [N[ -< li~.f x~ l 

and there exists a subsequence {x j* },~N of {x i* }k~N such that 

lim_inf Ix" = ~imllx'* . (19) 

The subsequence {x h }k~N is still weakly convergent to x and has 

0</1 ([Ix][)_</~ [lim~..,ooinf x i* ]= ,u[}im x j' ]= k-+limp[ x h ], (20) 

because ,u is continuous and increasing (as being a gauge function). For 
each k ~ N, let h k ~ Akx k be the function for which (13) is satisfied. These 
functions exist because {x k }k~N is well defined. Due to the monotonicity of 
A k, we have 

0 _< <~-,~, x~- ~> = <i ~ -~j~x~- ,~,  x~-~)  

llu . 

where the first equality results from (13) and the last inequality follows from 
(3). This implies 

P( xk 11 xk <--'~k{ f k  - l k ' x k - v * )  + ~( xk 1) vk ' (21) 

where the first term of the right hand side converges to zero as k ~ oo 
because of (18) and because of the boundedness of {Vk}k~N and {Xk}k~N. 
Replacing k by Jk in this inequality, we deduce that for k large enough 
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Letting here k --+ oo we get 

< lim v h = v , Ilxll-< Jim Ix'* -,--,o~ [ II II 
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because {v k }k~r~ converges strongly to v and because of (19). Since v is an 

arbitrarily chosen solution of problem (1), it follows that x = 2 .  Hence, the 
sequence {x k }k~r~ converges weakly to 2". 

It remains to show that {x k }k~N converges strongly. To this end, observe 

that, since {x k }k~N converges weakly to ~ and since X is a space with the 

Kadec-Klee property, it is sufficient to show that {Ix k I},,N converges to IM[. 

In other words, it is sufficient to prove that all convergent subsequences of 
X k the bounded sequence { I}k~r~ converge to 114 In order to prove that, let 

X k { xp' }k,r~ be a convergent subsequence of { I}k~r~" If I x  p* }k~r~ converges 

to 0, then 

0___ I1~11-< lim inflxkll_< lim Ix p' =0, 
k---~oo k---~ 

that is, M = lim,__,= x p~ = 0. Suppose now that 

~im x p' = f l > 0 .  

Then, there exists a positive integer k 0 such that, for all integers k > k 0, we 
have x p* > 0. According to (21) this implies that, for k > k 0 , one has 

1 1 ( f p , _ l P , , x P , _ v p , ) + v p ,  . 
xP* I <- u[ [xP, lap, 

Letting k --~ oo in this inequality we get 

II ll-< lim_,inf Ix k II -< lim Ix" _< lim Iv" - - H .  

Since v is an arbitrarily chosen solution of problem (1) we can take here 
v= 2 and obtain 112"11= limk--,~o xp* • This completes the proof. [] 
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2.5 Similarly to Corollary 2.3 ensuring that the weak accumulation points 
of {x k } are solutions of (1), we can use Theorem 2.4 in order to prove 

k e n  

strong convergence of {x k }k,N to a solution of (1) when condition (12) is 

replaced by the weaker requirement (16) but strenghtening the convergence 
requirements on {fk }k~¢" 

Corollary, Suppose that problem (1) has solutions and the sequence of  

positive real numbers {ct k }k~r~ converges to zero. I f  Ak :X  ~ 2 x" , k ~ N, 

are maximal monotone operators with the property (16), /f {fk}k~r ~ is a 

sequence converging strongly to f in X* and if for each v ~ A-J f , there 

exists a sequence {Vk }k~N which converges strongly to v in X and satisfies 

(17), then the sequence {x k }k~r~ given by (4) is well aefinea ana converges 

strongly to the minimal norm solution of  problem (1). 

X k Proof. Well definedness and boundedness of { }k~r~ as well as the fact that 

any weak accumulation point of it is a solution of (I) result from Corollary 
2.3. In order to show that {x k }k~N converges strongly to the minimal norm 

solution of the problem one reproduces without modification the arguments 
made for the same purpose in the proof of Theorem 2.4. [] 

. R E G U L A R I Z A T I O N  OF C O N V E X  O P T I M I Z A T I O N  
PROBLEMS 

3.1 We have noted above that Theorem 2.4 and Corollary 2.5, can be of 
use in order to prove stability properties of the procedure (4) applied to 
optimization problems with perturbed data. Such properties are of interest in 
applications in which the data involved in the optimal solution finding 
process are affected by computational and/or measurement errors. To make 
things precise, in what follows F : X ~ (-o% +oo] is a lower semicontinuous 
convex function and fl is a nonempty, closed convex subset of 
Int(Dom F), the interior of the domain of F. We consider the following 
optimization problem under the assumption that it has at least one solution: 

(P) Minimize F(x) subject to x ef l .  (23) 
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It is not difficult to verify that by solving the following inclusion 

(P') Find x e X such that 0 e Ax, 

where A : X --> 2 x* is the operator defined by 

A = OF + Nn, (24) 

with OF denoting the subdifferential of F and N n • X ~ 2 x° denoting the 
normal cone operator associated to [2, that is, 

X':(h,z-x)<O, 
Nn(x)  = ~ 

V z ~ }  i f x e / 2 ,  
(25) 

otherwise, 

one implicity finds solutions of  (P). The operators OF and N n are maximal 
monotone (cf. [51] by taking into account that Nn is the subgradient of  the 
indicator function of  the set ~ ) .  Consequently, the operator A is maximal 
monotone too (cf. [50]). 

We presume that the function F can not be exactly determined and that, 
instead, we have a sequence of  convex, lower semicontinuous functions 
F k : X  --~ (-oo,+~], (k ~ N), such that 

Dom F c Dom Fk, Vk ~ N, (26) 

and which approximates F in the following sense: 

Condi t ion ( A ). There exists a continuous function c : [0, +oo) --+ [0, +oo) 
and a sequence o f  positive real numbers {4 }k~N such that limk__,o o 4 = 0 and 

IF k ( x ) -  F(x)1< e (llxll) 8k, (27) 

whenever x ~ Dom F and k ~ N . 

In real world optimization problems it often happens that the set Y~ is 
defined by a system of inequalities gi (x)< 0, i E 1, where gi are convex 
and lower semicontinuous functions on X .  The functions g~ may also be 
hard to precisely evaluate and, then, determining the set ~ (or determining 
whether a vector belongs to it or not) is done by using some (still convex and 
lower semicontinuous) approximations g~, k ~ N,  instead. In other words, 
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one replaces the set £2 by some nonempty closed convex approximations 
f~,, k e H,  of  it. In what follows we assume that 

~ k c I n t ( D o m F ) ,  V k e H ,  (28) 

and that the closed convex sets £2, approximate the set ~ in the following 
sense: 

Condition ( B ). The next two requirements are satisfied." 

( i )  For any y ~ ~ there exists a sequence {yk },~r~ which converges 

strongly to y in X and such that y k e ~ k for  all k e H ; 
Z k ( ii ) If { },~ is a sequence in X which is weakly convergent and such 

that for some subsequence t~,. }~o. of {~k},o~ we have z* ~ , .  Ior 

all k e N then there exists a sequence I w ~ l contained in f2 
' [ JkeN 

with the property that ~im Iz' - w k = O. 

Observe that the requirement (B ( i ) )  is equivalent to the condition that 
D _ s - lim ~ , .  The requirement (B  ( i i ) )  implies that w -  lim D, c ~.  
Taken together, the requirements (B(i))  and (B( i i ) )  imply that ~ = Lim 
~k. It can he verified that the requirement ( B  ( i i ) )  is satisfied whenever 
there exists a function b : X  ~ [0,+oo) which is bounded on bounded sets, 
and a sequence of  positive real numbers {Yk}k~N converging to zero such 
that for any k e N and each z e Dk, we have that d i s t ( z ,~ )<b(z )y  k . The 
last condition was repeatedly used in the regularization of variational 
inequalities involving maximal monotone operators (see [4]). 

For each k e N,  we associate to problem (23) the problem 

(P,) Minimize F* (x) subject t o x e f 2  k, 

which can be solved by finding solutions of the inclusion 

(P,') Find x k ~ X such that 0 e  Akx k, 

where the operator A k • X ---> 2 x* is defined by 

A k := OF, + Nn, , (29) 
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and is also maximan monotone. The question is whether under the 
conditions (A), (B), (11) and presuming that {a k }k~N converges to zero, 

the sequence {x~ generated according to (4) for the operators A k given 
I k ~ N  

by (29) and for fk  = f = 0,k ~ N, i.e., the sequence 

) (o.) (30) 

converges strongly to a solution of problem (P') and, hence, to a solution of 
the original optimization problem (P).  It should be noted that, since by 
Asplund's Theorem (see, for istance, [22] we have 

J.x=o (llxll ) with ~b(t):= yo',U(v), 

determining the vectors xkdefined by (30) amounts to solving the 
optimization problem 

(Ok) Minimize F k (x)-q-,~ko(l[xll) subject to x (31) 

By contrast to problem(P k) which may have infinitely many solutions, the 
problem(Qk) always has unique solution. Moreover, by choosing /3(t) = 2t 
and, thus,~b(t)=t 2, one ensures that the objective function of (Qk) is 
strongly convex and, therefore, the problem (Qk) may be better posed and 
easier to solve than (Pk). 

3.2 We aim now towards giving an answer to the question asked in 
Subsection 3.1. To this end, when D is a nonempty closed convex subset of 
X and x ~ X,  we denote by Projo(x ) the metric projection of x onto the 
set D (this exists and it is unique by our hypothesis that the space X is 
strictly convex and reflexive). The next result shows stability and 
convergence of the regularization technique when applied to convex 
optimization problems. For proving it, recall that the objective function F 
of the problem (P )  is assumed to be lower semicontinuous and convex and 
its domain Dom F has nonempty interior since O ~ ~ c Int(Dom F) - (see 
Subsection 3.1). Consequently, F is continuous on Int(DomF),  for each 
x~In t (DomF) ,  we have OF(x)~Q (cf. [48, Proposition 3.2 and 
Proposition 1.11]) and the right hand sided derivative of F at x, i.e. the 
function F ° (x,.) : X ~ R given by 
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F ° (x, d)  := lim F(x + td) - F ,x) , (  
t ~ o  t 

is a well defined continuous seminorm on X. 

Theorem.  Suppose that conditions ( A ) and ( B ) are satisfied, l f  there exists 
a sequence {a k }k~v~ of  positive real numbers converging to zero such that for 

v k each optimal solution v of  ( P ), there exists a sequence { }k~N with the 

properties that v k ~ f)k for all k ~ N and 

lim Iv k - v] = 0 = l ima ; '  ProJ0F, (v')+N,, (~ ' ) (0) ,  
k--~oo k---~oo 

(32) 

then the sequence {xk}k~r~ given by (30) converges strongly to the minimal 
norm solution of  the optimization problem ( P ). 

Proof. We show that Corollary 2.5 applies to the problems ( P ' )  and ( ~ ) ,  
that is, to the maximal monotone operators A and A k defined by (24) and 
(29), respectively, and to the functions f~  = f = 0, (k ~ N) .  First, we prove 
that the condition (16) is satisfied. For this purpose, take 
(z,h)~ws-l-~mGraph(A~). Then, there exists a sequence {Zk}k~ 
converging weakly to z m X and there exists a sequence {hk}k~n 
converging strongly to h in X* such that for some subsequence {A i' }k~ of 
{Ak}k~N we have (zk,h k) ~ Graph(A t' ) for all k ~ N. This means that 

z k e f2i~ and h k e 0F~, (z k) + Na, ' (z k), Vk e N, 

or, equivalently, 

zk ~ ~i ,  and h k = ~k + O k, 

with ~k e0F~, (z k) and O k e Na, ' (z k) for all k e N. We have to show that 

z e f~ and h e OF(z) + N n (z). (33) 

The sequence {z k }k~N is weakly convergent to z and z k ~ f2i~ for all k e N.  

W k Therefore, according to (B (ii)), there exists a sequence { }k~N ~ f2 such 

that limk__,= Iz k - w k = 0. Clearly, the sequence {w k }k~N, converges weakly 
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to z.  Since the set f2 is closed and convex, and therefore weakly closed, we 
obtain that z ~ f2. In order to complete the proof of (33), let u ~ f2 be fixed. 
According to ( B ( i ) ) ,  there exists a sequence {Uk}k,N which converges 
strongly to u and such that U k ~ k  for any k ~ N .  Since 
h k _ Ok = ~k ~ OFi, (z k ) we deduce 

(h ~ -~,"~ ,u i, _ z ~ ) <_ F~, (u" ) -  F,, (z k ) 

<lF~, ( u ~ ' ) - F ( u ~ ' ) l + l F ( z k ) - F ~ ,  (zk) I 

+F(u" ) - F(z k ) 

<_ (c(lu" l)+ c( zkl))6i, + F(u i' ) -  F(zk), 

where the last inequality results from (27). By consequence, 

(hk,u ' -zk)<_(c( u" )+c( z k ))4, + F(u" ) - F ( z k )  

where the last term on the right hand side of  the inequality is nonpositive 
because O k ~ Am, ' (z k) and u '~ ~ ~i, (see (25)). Thus, for any k e N,  we 
obtain 

(hk,u i' -zk)<_(c( u ik )+c z k ))6i, + F(u i ' ) -F(zk) .  (34) 

As noted above, the function F is continuous on Int(Dom F) .  Hence, the 
sequence {F(u i' )}k~r~ converges to F(u). Since F is also convex, it is 
weakly lower semicontinuous and, then, we have F(z)< lim infk_,o o F(zk). 
Taking lim sup for k ---> m on both sides of  (34), and taking into account 
that the sequences {u ~' }k~r~ and {z k }k~ are bounded and that the function c 
is continuous (see condition ( A )), we obtain that 

(h,u - z) < F(u) - F(z). (35) 

Since the latter holds for arbitrary u ~ ~ ,  it implies that h ~ aFn (z), where 
F a • X ---> (--~, +~] is the lower semicontinuous convex function defined by 

Fn : = F + t  m 
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with t n standing for the indicator function of the set fL As noted above, the 
function F is continuous on the interior of  its domain and, thus, is 
continuous on f2 = Dom F n. Hence, applying [48, Proposition 3.23] and 
observing that Ot n = N n (see (25)), we deduce that, for any x e X, 

OFn(x ) = OF(x) + Ota(x ) = OF(x) + Na(x ). 

Consequently, 

h ~ OF n (z) : OF(z) + N n (z) 

and this completes the proof of  (33). 
Now observe that, according to (32) and (29), we have that for each 

V k V k V a sequence f2 k solution of  ( P )  there exists { }k~N such that e for all 

k e N and with the property that 

- '  " " 0  A k k .  l ima / '  Proj0F~ , +U ~ (0) l i m a  k aist,t , v )=k_+~ ,< ) 0,~ ) ,=0'  
k---~ 

that is, condition (17) is also satisfied. [] 

3.3 Recall (see Subsection 3.1) that we assume that the problem ( P )  has 
optimal solutions. By contrast, some or all problems (Pk) may not have 
optimal solutions. Theorem 3.2 guarantees existence and convergence of 
{ xk}k~N to a solution of  ( P )  with no consistency requirements on the 

problems (Pk). In our circumstances the functions F k may not have global 
minimizers either. The following consequence of Theorem 3.2 may be of  use 
for global minimization of  F when some of the problems (Pk) have no 
optimal solutions. 

Corollary.  Suppose that conditions (A)  and (B )  hold. I f  there exists a 
sequence {or k }k~N of  positive real numbers" converging to zero such that for  

each optimal solution v o f  (P),  there exists a sequence {v k }k~N with the 

properties that v ~ ~ f~k for  all k ~ N and 

Jim Iv k - v  = 0 =  ~ima~ l Proj0 ,,v,,(0)] , (36) 

then the sequence {Xk}k~r~ given by (30) converges strongly to the minimal 
norm solution o f  the optimization problem ( P ). 
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Proof. Note that 0 ~ Nn, (v k) for all k ~ N and, therefore, when (36) holds, 
we have 

dist.(0, A% k) : inf {llg + g (v and ( ~ Nn~ (vk)} 

< inf{M..g ~ OFk (v')} 
= ProjaF~v,l(O) . 

This implies (32) because of (36). [] 

3.4 If X is a Hilbert space and the functions F and F k are differentiable 
on the interior of Do m(F ) ,  then the condition (36) can be relaxed by taking 
into account (see [52, Remark 3, p. 890]) that, in this case, we have 

V F  k (v*) + ProjN,, ' (v')(-VFk (v*)). = ProJr,, (v,)(-VF k (v k )). ,  (37) 

where To, (v k) denotes the tangent cone of f~k at the point v k, that is, the 
polar cone of Nn, (v k). Precisely, we have the following result whose proof 
reproduces without modification the arguments in Theorem 3.2 with the only 
exception that for showing (17) one uses (37), (39) below, and the equalities 

dist.(0, Akv k) = dist.(0, VFk (v k ) + Nn, (v k )) 

= dist . (-VF k (v k), Nn, (v k )) 

= VF, (v k) + ProjN , ( -VF, (v  k))l, 
o k (  ) , 

(38) 

where the first is due to the fact that 0 E N~(v k) and the second follows 
from (36). 

Corollary. Suppose that X is a Hilbert space and that conditions (A )  and 
( B ) hold. I f  the functions F and F k, k ~ N, are (Gdteaux) differentiable on 

Int(Dom F) and if there exists a sequence {a k }k~N of positive real numbers 

converging to zero such that for each optimal solution v o f (P) ,  there exists 
a sequence {Vk}k~t~ with theproperties that v k ~ f)k for all k ~ N and 

lim v k - v  = 0 =  limct;llProJrn,(v,)(--VFk(vk))l, 
k---~ao k-+oo , 

(39) 
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then the sequence {x k }k~ given by (30) converges strongly to the minimal 
norm solution of  the optimization problem ( P ). 

3.5 If  ~k = F~ for all k ~ N,  then condition (B)  is, obviously, satisfied. 
In this case, if there exists a sequence {ak}k~r~ of positive real numbers 
converging to zero such that, for each solution v of ( P ) ,  we have 

tim <' IIVF, (v)- V F ( v ) l l  * : 0 ,  (40) 

then (32) holds too. Indeed, if v is a solution o f ( P ) ,  then 

(VF(v),u - v) = limo ° F(v + t(u - v)) - F(v) >_ O, 
t 

for any u E D and this shows that - V F ( v ) ~  Nn(v ). Therefore, taking 
v k := v for all k e N we have 

IPr°Jav, (v')+uo, ( ¢ ) ( 0 )  < VF  k (v) + ProjN,,(v)(--VFk (V)), 

: PrOju,,(v ) ( - V F  k (v)) - ( - V F  k (v)).  

< V F  k (v) - V F ( v ) ,  

which together with (40) implies (32). Hence, we have the following result: 

Corollary. Suppose that £)k = f~ for all k ~ N and condition ( A ) holds. 
Assume that the functions F and Fk, k ~ N ,  are (Gdteaux) differentiable 
on Int(Dom F). I f  there exists a sequence of  positive real numbers {at k }k~r~ 
converging to zero such that for each solution v o f  ( P )  condition (40) is 
satisfied, then the sequence {Xk}k~N given by (30) converges strongly to the 
minimal norm solution of  the optimization problem ( P ). 

3.6 Theorem 3.2 shows that perturbed convex optimization problems can 
be regularized by the method (4). This naturally leads to the question of  
whether this regularization technique still works when the set ~ is defined 
by continuous affine constraints and one has to replace the affine constraints 
of  ( P )  by approximations which are still continuous and affine. We are 
going to show that this is indeed the case when fl  satisfies a Robinson type 
regularity condition. In order to do that, let £ , ( X , X ' )  be the Banach space 
of  all linear continuous operators L : X --> X* provided with the norm 
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Ilqo := sup {IILxlI. : x Bx (o, 1)}, (41) 

where B x (u,r) stands for the closed ball of center u and radius r in X. 
Suppose that L, L k ~ £ ( X , X * ) ,  l, l k ~ X ° and let K c X* be a nonempty 
closed convex cone. Suppose that the sets f l  and f l ,  are defined by 

f2 := {x ~ X "L(x) + l ~ K} (42) 

and 

~k := {x ~ X :L k (x) + I k e K}. (43) 

The set £) is called regular if the point-to-set mapping x --~ L(x) + l - K is 
regular in the sense of  Robinson [49, p. 132], that is, 

0 ~ Int{L(x) + l - y : x ~ X, y ~ K}. (44) 

Taking in the next result K = {0} one obtains an answer to the question 
posed above. The fact is that the proposition we prove below is more general 
and can be also used in order to guarantee validity of  condition ( B ) for some 
classes of  problems of  interest in semidefinite programming. Combined with 
Theorem 3.2 it implies that if the data involved in the constraints of  the 
perturbed problem ( Pk ) are strong approximations of the data of ( P )  and if 
conditions (A)  and (32) hold, then the regularization technique (4) can be 
applied in order to produce strong approximations of  the minimal norm 
solution of  ( P ). 

Proposition. Suppose that L, L k ~ L(X ,  X*) and l, l k E X* for  any k ~ N.  

Let K c X* be a nonempty closed convex cone and consider the problems 
( P )  and ( Pk ) with the feasibility sets f2 and ~k defined at (42) and (43), 

respectively. I f  the set ~ is regular, i f  the sequence {L k },~r~ converges 

k strongly to L in L ( X , X * )  and i f  the sequence{l }k~ converges strongly to 

l in X*, then condition ( B ) is satisfied. 

Proof.  We first prove ( B ( ii )). For this purpose we apply Corollary 4 in [10, 
p. 133] to the set M = K - l  and to the point-to-set mapping G : X - - 4  2 x" 
defined by G(x) = L(x) - M. This is possible because of the regularity of  f) 
(see (44)) which guarantees that 0~ IntG(X). Hence, by observing that 
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~ =  G-~(0), we deduce that for any xEf2  there exists a positive real 
number 6(x) such that for any z ~ X we have 

1 
dist(z,f2) : dist(z, G-' (0)) _< (1 +llz- xll) 8<x) 

=(1 + l lz -  xl[ ) 61x)d is t , (L(z )+ I,K). 

d i s t , (L(z ) ,M)  

(45) 

Now, let x ~ ~ be fixed and let 6 := 6(x). If  z ~ f~,, then 

dist , (L(z)+l ,K)<_ ( L ( z ) + l ) - ( L k ( z ) + l k ) ,  

<- L(z)  - L k (z) ,+ l - l k , 

<_ L - L k L I  z + l - I  k " 

because of (41). Taking into account (45), it follows that for any z e f2k, we 
have 

dist(z,~)_< 6(1+ IIz- xll)[ L-  Vnollzll+ t - l  k ,] 

_-~(1+ Ilzll + IIxMzll + 1)max { L - L k o' l - l  k [, }. 

(46) 

Consider the bounded on bounded sets function b" X --> [0, +~) defined by 

b(u) := ~(llull + 1)(1 + Ilull + Ilxll). 

By (46) we obtain that, for any z E ~k,  

z -  Projn (z)l = dist (z,~)_< b ( z ) y  k , 

where 

{zk}k~ N 

y k : = m a x { L - L  k 0, l - l k , }  converges to zero as k-->oo. Let 

be a weakly convergent sequence in X such that, for some 
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subsequence {f~i, }k~N of  {~k }k~' we have z ~ ~ ~i, for all k ~ N.  According 

to (47), the vectors w k := Projn (z ~) have the property that 

[ zk - wk <-- b( zk)yk, 

where, since {z k}k~r~ is bounded, the sequence {b(zk)}k~ N is bounded too. 

Hence, limk_~® Iz k - w k = 0 and (B ( ii )) is satisfied. 

Now we prove that ( B ( i )) is also satisfied. To this end, we consider the 
function g : X x N ~ X ° defined by 

= l L ( x ) + l  i f k = 0 ,  
g(x,k)  [L,_,(x)+lk_ , ifk_> 1. 

and the point-to-set mapping F : X × 1~ -~ 2 x* defined by 

r ( x , k ) = g ( x , k ) - K  , V x ~ X  a n d k > 0 .  

Since ~ is regular (see (44)), we have that 0 ~ Int[ImF(.,0)]. 
Clearly, ~ = f'-~ (.,0)(0). Let u ° ~ ff~. By Theorem 1 in [49], there exists 

1/> 0 such that 

B x. (0,71) c g(B x (u°,l),0) - X, (48) 

Since L k - L  and l k - l  converge to 0, k 0 ]~o there exists N such that for 
any integer k > k 0 we have 

][g(x,O)-g(x,k)[[. = L ( x ) + l - L k - ' ( x ) - I  ~-' < rl k/x6Bx(u°,l) .  
--2' 

This implies that whenever k _> k 0 we have 

This and (48) show that the function g satisfies the assumptions in [49, 
Corollary 2] (with - K  instead of K ). Consequently, application of this 
result yields that, for each x ~ f~ and for any integer k >_ ko, the set 
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Y2k+ , = {x  ~ X " g ( x , k )  ~ K}  

contains the open ball B x (0,~) and that for any x e X we have 

dist(x, f 2 k ) < 2 ( l +  x - u  ° ) d i s t , ( O , g ( x , k ) - K ) .  (50) 

Note that, if x ~ ~,  then g(x ,O)  ~ K and, therefore, we have 

dist,(0, g(x ,  k) - K) = dist. (g(x ,  k), K)  

<]lg(x,k)-g(x,o)ll. 
= L k-I (x)  + l k-I - L(x)  - l • 

<_ L~-'-LIolIxll ÷ l~-'-l.  

~_ (lixil + l/max{I ~ - ' -  ~ o. ,~-'-, .}. 

This and (50) implies 

d i s t ( x , ~ k ) < 2 ( l + H x [ I  + u ° )(llxl[+l)max{ L ~ - ' - L o ,  l k - ' - l L } ,  (51) 

for any x e f~. Define the function a : [0, +oo) ~ [0, +oo) by 

and the sequence ofnonnegative real numbers 

=max{ L k - ' - L  0' lk-' - I  ,} Vk~N.  Pk 

According to (51) we have 

x - Proj., (x) = dist(x,•k) < a(llxll),flk, 

for all integers k>_k 0 and for all x e ~ .  Since, by hypothesis, 
limk_,® fl, = 0, condition ( B ( i )) holds. [] 
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3.7 The implementation of  the regularization procedure discussed in this 
work requires computing vectors x k defined by (30) with operators A k 
given by (29). This implicitly means solving problems like (31). In some 
circumstances, in the regularization process, one can reduce problems placed 
in infinite dimensional settings to finite dimensional problems for which 
many efficient techniques of  computing solutions are available. This is 
typically the case of  the problem considered in the following example. 

Let X=g, p with p~(1,oo), q = p ( p - 1 ) - '  and, then, X*=g, q. Let 
a ~ gq/{0} and b ~ e gq I{0}, for all j E J ,  where J is a nonempty set of  
indices and gq stands for the subset of gq consisting of vectors with 
nonnegative coordinates. For each j e J ,  let ,fit be a nonnegative real 
number. Consider ( P ) to be the following optimization problem in g" : 

Minimize F(x) = ( a,x) (52) 

over the set 

n : = { x ~ g : ' @ ' * , x ) < _ f l j , j e J } .  (53) 

We assume that a = (a~,...,a i .... ) has infinitely many coordinates ai ~ 0 and 
that the problem ( P )  has optimal solutions. Whenever u is an element in gP 
or in gq, we denote by u[k] the vector in the same space as u obtained by 
replacing by zero all coordinates u~ of u with i > k. With this notations, for 

a k .1/2 each k E N ,  let % :=l la-  [ ] .  , and observe that {%}kcr~ is a sequence of 
positive real numbers which converge to zero as k--+ oo. We associate to 
problem (52)+(53) the perturbed problems ( Pk ) given by 

Minimize F k (x) =(a[k],x) over f2. (54) 

Note that, for each k ~ N,  the problem (54) has optimal solutions because its 
objective function F k is bounded from below on f2 by 
F" = inf{F(x) : x ~ ~}. Problem ( P )  is ill posed and, therefore, even if one 
can find an optimal solution yk for each of  the essentially finite dimensional 

yk linear programming problems (Pk), the sequences { tk~r~ may not 

converge in gP or, at best, its weak accumulation points (if any) are optimal 
solutions of  ( P ). 

We apply the regularization method (4) to the problems ( P )  and (Pk) 
with the function /a(t)= t v-j. It is easy to see that, in this case, determining 
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the vector x k defined by (30) reduces to finding the unique optimal solution 
of the problem 

Minimize (a[k],x)+ ~,llxll" over ~.  (55) 

Theorem 3.2 applies to problems ( P )  and (Pk) and guarantees that the 

{x* }kEN converges strongly to the minimal norm solution of (P ) .  sequence 

Indeed, observe that condition (A)  is satisfied because, for any x ~ gP, we 
have 

[F(x ) -  Fk(x )1-< Ila - at k 111. Ilxll : ~llxll, 

and condition ( B ) trivially holds. It remains to prove that (32) holds too, that 
is, for any optimal solution v of ( P )  there exists a sequence {v*},~N of 

vectors in f] such that 

lim Iv* - v = 0 = lim a~ -l ProjaL,~+u, ,(,,) (0) ,. (56) 
k -Too k--+oo 

Take the constant sequence v k = v, (k ~ 1"~ ). Then the first equality in (56) 
holds and, for any xef2 ,  we have (-a,x-v)=(a,v)-(a,x)<O, showing 
that - a  ~ N n (v). Thus, for each k ~ N,  we obtain that 

Proj,,t,]+No(,, ) (0) .  _< ]]a[k]- all. = ~ 

and this implies the second equality in (56). 
Solving problem (55) can be done by finding the unique optimal solution 

u* of the following optimization problem in II~ k 

k k k 

Minimize ~_a,x i +a,~lx , l"  s.t.~b/xi__/~,, (j~J),x>o (57) 
i=l i=1 i=I 

k k and taking x k = (u t ,...,u k ,0,...). Indeed, for any x E ~ we have 

<aN,x> + 6, Ilxll ' = (a[k],x[k])+ a k Ilxl( 

>-(a[k]'x[k]) + ak II/NIr -> (a[kl,u* ) + ~llu~ll ' 
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where the last inequality holds because x[k] E ~ (due to the nonnegativity 
of the vectors b j ). 

. REGULARIZATION OF A PROXIMAL POINT 
M E T H O D  

4.1 A question of interest in convex optimization concerns the strong 
convergence of the generalized proximal point method (GPPM for short) 
which emerged from the works of Martinet [43], [44], Rockafellar [52] and 
Censor and Zenios [21]. When applied to the consistent problem ( P )  
described in Subsection 3.1 the GPPM produces iterates according to the 
rule 

yO E n a n d  yk+, :=arg min{F(x)+cokDc(x, y k ) ' x e ~ }  (58) 

with De:  Dom (G) x Int( Dom G) --~ [0, +oo) defined by 

Do(x,y):=G(x)-G(y)-(VG(y) ,x-y) ,  Vy~Int (Dom G), (59) 

where {COk}k~ is a bounded sequence of positive real numbers and 
G : X ~ (-oo,+oo] is a Bregmanfunction on f2, that is, a function satisfying 
the following conditions: 

( i )  ~ c Int(Dom G); 
(ii) G is Fr6chet differentiable on Int(Dom G); 
( iii ) G is uniformly convex on bounded subsets of f2; 
(iv) For each x ~ f~, the sets 

R~ (x) = { y ~ f2: D~(x,y) < a} 

are bounded for all real numbers a > 0. 
yk The sequences { }k,r~ generated by the GPPM are well defined, 

bounded and their weak accumulation points are solutions of ( P )  - cf. [17]. 
Weak convergence of these sequences can be ensured only when the 
Bregman function G has very special properties as, for instance, when VG 
is sequentially weakly-to-weak* continuous on f2 - (see [18, Chapter 3]). 
Strong convergence may not happen at all even when weak convergence 
does occur. This is in fact the case of the classical proximal point method for 
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optimization which is the particular version of GPPM in Hilbert spaces in 
which G =ll.U z (cf. [28]). The conditions under which the GPPM is known to 
converge strongly (see [52], [35], [7], [17], [20] and the references therein) 
are quite restrictive and mostly concern the data of ( P )  [in contrast to those 
ensuring weak convergence which mostly concem the Bregman function G 
whose selection can be done from a relatively large pool of known 
candidates - cf. [18]]. We are going to prove, by applying Theorem 3.2 and 
its corollaries, that a regularized version of the GPPM produces sequences 
which behave better than the sequences {yk}kEN associated to ( P )  by (58). 

By contrast to the regularization method of GPPM proposed in [57] which, 
in Hilbert spaces, produces strongly convergent sequences whose limits are 
the projection of their initial points onto the set of optima of (P) ,  the 
sequences resulting from the regularized version of GPPM proposed here 
converge strongly to the minimal norm solution of (P) .  

4.2 From now on we assume that X is an uniformly convex and 
uniformly smooth Banach space. We are going to show that in this not 
necessarily Hilbertian setting, by regularizing GPPM following the 
technique defined in (4), one obtains a procedure which generates sequences 
converging strongly to optima of (P) .  To this end, we denote G(x)=UxU p 
and ¢/(t) = pt p-~ for some p E (1,+oo). Recall (cf. [19]) that G is a Bregman 
function and that G' is exactly the duality mapping jr,. We denote by S 
the presumed nonempty set of optimal solutions of the problem ( P )  
described in Subsection 3.1. 

Theorem. Let {f~k }kEN be a sequence of closed convex sets contained in f~ 

such that ( B ( i )) is satisfied and 

(b)  Lim ( S n a k ) = S .  
If  {% }k~N and {~k }k~r~ are sequences of positive real numbers such that 

the first converges to zero and the second has the property that 
limk_,® (COk+~/ak) = O, then, for any initial point yO e ~o, the sequences 

{ xk }k~r~ and {yk }k~N generated according to the rule 

yk =arg min{F(x)+co~Dc(x, yk-'):xef~k}, 

+ /~-1 
xk=[OF+Nn, co+(J~'-J~'y+)+a+J ] (0), 

(60) 
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are well defined and have the following properties: 
( i )  The sequence {y, },,r~ is bounded, the sequence 

converges and 

~im F ( y  k ) = inf {F(y) • y ~ f~}; 

( ii ) The sequence {x k }k~r~ converges strongly to a solution of(  P ). 

Proof. For each k ~ N,  define the functions E, ,H ,  : X ~ (-0%+00] by 

E, (x) = F(x) + tn, (x), 

and 

H, (x) = E k (x) + cokDa (x, yk-I ), 
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{F(Yk)}k~N 

(61) 

Dc(2- ,yk- ' ) -Do(2- ,y*)-Dc(y*,y*- ' )> l [Ek(y~)-Ek(2")~, 
co, 

for all integers k > 1. Thus, if co is a positive upper bound of the bounded 
sequence {cok}k,N' we get 

Dc (2-, y,_,) - Dc (2-,yk) - Da(y~,yk_,) >_ l [ F ( y k )  - F(2")] _> O, (62) 

exists and is well defined. Note that this is exactly the vector y,  given by 
yk (60) and, thus, the sequence { },~r~ is well defined. Let 2-~S~[[ '-]~=0~,/ .  

Observe that, for each positive integer k, the vector 2 is also a minimizer of 
the function E k over ~k. An argument similar to that in the proof of [18, 
Proposition 3.1.6] applied to the functions E k and H k shows that 

yk : arg min {H k (y) : y ~ f~k }. 

where tn, stands for the indicator function of the set ~ , .  The functions E k 
and H k are lower semicontinuous, convex and bounded from below. 
According to [18, Proposition 3.1.5] applied to them we deduce that, for any 
integer k > 1, the vector 
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for all integers k > 1, because yk ~ f2 k C__ f2 and 2" is a solution of (P) .  
k From ( 6 2 ) i t  can be easily seen that the sequence {DG(2",y )}k,r~ is 

nonincreasing, hence, convergent, and, consequently, that the sequence 
O k k-I { G(Y ,Y )}k~N converges to zero. These and (62) imply that 

l im ,_ ,=[F(y ' ) -F(2" )~=O.  Hence, (61)is proved. Boundedness of {y '} ,~  

follows from the fact that {Dc(2-,yk)}k~ ~ is bounded by a = Do(2-,y °) and, 

then, all yk are contained in the set R~ (2-) which is bounded because, as 
noted above, G is a Bregman function. Hence, the proof of ( i ) is complete. 

In order to prove ( ii ), we apply Theorem 3.2 to the problem ( P )  given at 
(23) and to the problems (Pk) with the functions F k : X  ~ (--0%+oo] given 
by 

F k (x) := F(x )  + cok+ ID c (x, yk ), 

where, for each nonnegative integer k, the vector yk is defined by (60), that 
is, 

yk : a r g  min{Fk_,(x): x ~f),}.  

Note that F k is convex, lower semicontinuous and has Dom F k = Dom F. 
Also, by Asplund's Theorem which shows that V G  is exactly the duality 
mapping J~', we obtain 

OF k (x) := OF(x) + cok+ , (J~'x - j~,yk ). 

We associate to each function F k the maximal monotone operator A k 
defined by (29). Observe that the vectors x k defined by (60) are exactly 
those given by (30) for this specific operator A k and, thus, it is well defined. 
We show next that the operators A k have the properties required by the 
hypothesis of Theorem 3.2. 

Let x ~ Dom F. Then, for any k ~ N,  we have 
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F k (x) - F ( x )  = cok+ ID G (x, yk ) 

y >l 

___~o~+,(llxll ~ + ( p - l ) y k  "+ j~,yk ,llxll ) 
= ~o~+, (llxll ~ + ( p - l )  ykt'  + P y,  P-' Ilxll) 

The sequence {yk}k,N is bounded as shown above. Let M be a positive 

upper bound of  the sequence y k,N' Define the continuous function 

c : [0, +oo) --+ [0, +oo) by 

c(t) = t p + pMP-' t  + (p  - 1)M p-' . 

Hence, for each k ~ N we have 

[F~ (x)- F(x)[_ cok+, [llxlr + ( p - I ) M "  + p M  f'-x Ilxlll = ~ok+,c(llxll), 

showing that condition (A)  is satisfied with 6 k = c%t, k ~ N. Condition 
( B  ( i i ) )  holds in our case because, by hypothesis, all f2 k are subsets of  ~.  
So, condition ( B )  is satisfied. 

It remains to show that for any solution v s f2 of ( P )  there exists a 
V k V k sequence E ~k { }k~r~ ' which has for all k ~ N, and satisfies (32). To 

this end, note that each S k := ~k ~ S is a nonempty, closed and convex 
subset of  X .  By (b) ,  we have 

S = LimS k. (63) 

Also, there exists a sequence {w k }k~u such that, for each k ~ N,  w k E ~k 

i k v k and 1 mk._,® ]w - v = 0. Let = Proj s, ( wk)' Observe that, according to [24, 

p. 40], the space X is an E-space because it is uniformly convex. 
Therefore, Theorem 10 in [24, p. 49] combined with (63) imply that 

lim v k = lim Projs (w k ) = Projs (v) = v. (64) 
k--~oo k--+oo k 
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Now, observe that each v k e S k and, hence, is a minimizer of E k over X, 
that is, 0 e OE, (v*). Similarly to F, the functions F, are continuous on the 
interiors of their respective domains and, therefore, they are continuous on 
f~, (see (26) and (28)). By consequence, we have 

OE k (v k ) = OF(v k ) + Otn, (v k ) = OF(v k) + Nn, (v k). (65) 

From (65) we obtain 

0 ~ OF(v k) + Nn, (vk). (66) 

For each k e N,  we have 

ProJ0F, (~,)+ N, * (~,)(0) .=  dist.(O, OF ( v k ) + Nnk ( v k ) + COk+ , ( J~'v k - jV, y* )) 

= dist.(c%, ( J  yk _jV, v* I,OF(vk)+ Na ~ (vk)) 

where the last inequality follows from (66). By consequence, taking into 
account (3), we obtain 

Proj0~i(¢)+N, ' (¢)(0)[. < cok+ ~ Jev  k - J~'ykl. 

and, thus, we have 

PrOJoF,(¢)+u,,,(~,)(O) <-PCOk+,I]Vk "-'+ M,,-, I, 

V k Let N be an upper bound of the sequence { }k,N 

q := p(NP- '  + MP-' ). 

Then, by (67), we have 

Vk ~ N. (67) 

and denote 



126 Variational Analysis and Appls. 

a ; '  ProJ0F,~v,)+u.,t~,)(0) • _< q c°k+', Vk E N. (68) 
O~ k 

This and (64) imply (32) by hypothesis. According to (68), condition (32) 
holds too. These show that Theorem 3.2 is applicable to F and to the 

X k functions In turn, Theorem 3.2 implies that the sequence { }k~N 

converges strongly to the minimal norm minimizer of  F over f~. [] 

4.3 Verifying the conditions ( a )  and (b )  of Theorem 4.2 may be 
difficult. In some circumstances the following consequence of  Theorem 4.2 
may be of use. For instance, if X has a countable system of  generators 
{ek}kEr ~ and the problem ( P )  is unconstrained (i.e., f2 = X) ,  then using the 

next result with the sets 

£2 k = aff{e ~ : 0 < i < k}, 

which necessarily satisfy condition ( c )  below, one reduces the resolution of  
( P )  to solving a sequence of unconstrained problems in spaces of finite 
dimension whose solutions x k will necessarily converge strongly to an 
optimum of  ( P ) .  

Corollary. Let {f~k }k~r~ be a sequence of closed convex subsets of  f~ such 

that ( B ( i )) is satisfied and one of  the following conditions hold." 
o o  

( c )  Sc_Uk=0ff2 k and f~k c-~k,z f°ral l  k e N ;  
( d ) Int S ~ O and S ~ f2 k ~ O for all k e N .  
I f  {ak}k~ N and {COk}k~r~ are sequences of positive real numbers such that 

the first converges to zero and the second has the property that 
limk__,® (cok,i/~z k ) = 0, then, for any initial point yO E f2, the sequences 

{ xk }k,N and {yk}kEN generated according to the rule (60)are  well defined 

and have the properties ( i ) and ( ii )from Theorem 4.2. 

Proofi Suppose that condition ( c )  holds. Take any 2-E S. There exists a 
f k o 

number k 0 E N such that 2- E f2ko. Denote f20 = [,-Jk=0 f2k and f~k = f~,,,+k 
for k > 1. Applying Lemma 1.2 from [45] we deduce that Lim(f~' k ~ S) = S. 
Applying Theorem 4.2 to the sets f~'k we obtain the result. Now, assume that 
( d )  holds. Then, Lemma 1.4 from [45] guarantees that condition (b )  of  
Theorem 4.2 is satisfied and we can apply that proposition in this case too. 

[] 
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4.4 The previous results in this section deal with the case that the sets ~k 
are contained in £2. If F has bounded level sets 

L r(a):= { x e X ' F ( x ) < a } ,  

then the regularized proximal point method (60) is also stable under outer 
approximations of ~ .  

Proposit ion.  Let {~)k }k,r~ be a sequence of  closed convex sets contained in 
oo 

In t (DomF)  such that condition (B )  is satisfied, f)=f'qk=0f2k and 

f2k+ , c f~k for all k ~ N. Let {ct k }k~r~ be a sequence of positive real numbers 

converging to zero. Suppose that for each number a >__ 0 the level set 
L F (a) of  the objective function F is bounded. Then, for any initial point 

yk yO ~ f2, the sequences {x k }k~r~ and{ }k,N generated according to the rule 

(60) where the positive numbers co k are chosen such that 

limk._,o~ (COk+,/ak) = 0 and for some positive number K, 

cokDo(y°, y k-I ) <_ K, (69) 

are well defined and have the properties ( i ) and (i i) from Theorem 4.2. 

Proof. We use the notations Fk. E k and H k introduced in the proof of 
Theorem 4.2. Observe that, since X is reflexive and the level sets of F are 
bounded, for any k ~ N,  there exists 

z ~ ~arg min{F(x):x~g)k}. 

According to [18, Proposition 3.1.5] applied to E k and H k we deduce that, 
for any integer k > 1, the vector 

y* =arg min{H k ( y ) ' y e n k } .  

exists. Let z ~ S and observe that, for any k e N,  

F(z k) < F(z TM) < F(z), (70) 
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because f2 c_ f'2 k and f2k+ I c f~k. This shows that all z k belong to 

LF(F(z)) and, therefore, the sequence {Zk}k~N is bounded. Since Y is 

z k reflexive, the bounded sequence { }k~r~ contains a weakly convergent 

subsequence {z" }k~N" Let z' be the weak limit of {z" }k~" According to [45, 
Lemma 1.3], we have that 

ao  

F~ = ['7 ~k = Lim f~  
k=0 

and this implies that z' e f2. Hence, by taking (70) into account we get 

F(z k) < F(z)  < ' 
_ F(z ). 

Since F is lower semicontinuous and the sequence {F(zk)}k~r~ is 
nondecreasing this implies 

F(z')  <_ ~imF(z~' ) = ]imF(z k ) <_ F(z)  <_ F(z'), 

that is, F ( z ' ) = F ( z )  showing that {F(zk)}k~ N converges to the minimal 

value of F over f~. Now observe that according to (60) and (69) we have 

F(y  k ) < F(y  k ) + cokDc(yk,y k-' ) 

<_ F(yO) + Ok Da (yO, yk-, ) 

<- F(y  °) + K 

• yk because y 0 e ~ c _ f t  k This implies that the sequence { }k~r~ is bounded 

because it is contained in LF(F(y °) + K). Also according to (60) we have 

0 < F ( f f ) -  F(z  k ) < co k [ Dc(zk ,yk - ' ) -  Dc(yk,yk-,)] 

= o, [Iz, y ,r  - z >l, 
(71) 
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where the quantity between the square brackets is bounded because both 

sequences {y*}k~r~ and {z*},~r~ are bounded as shown above. Note that 

{COk}k~ N converges to zero. Hence, by (71), we obtain that 

and this proves ( i ). 
For proving (ii) one reproduces without modifications the arguments 

made for the same purpose in the proof of  Theorem 4.2 and keeping in mind 
that in the current circumstances we have that S k : - - S ~ f 2  k = S for all 
k e N .  [] 
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Abstract: 

Key words: 

Two recent papers [1] and [2] have presented existence and uniqueness results 
for solutions of mixed variational inequality problems involving P -mappings 
and convex and separable but not necessarily differentiable functions where 
the feasible set is defined by box type constraints. In this paper we generalise 
these results for the case where the subspaces constituting the initial space are 
not real lines. 

Mixed variational inequalities, nondifferentiable functions, product sets, order 
monotonicity, existence and uniqueness results. 

. INTRODUCTION 

Many equilibrium problems arising in Mathematical Physics, Economics, 
Operations Research and other fields possess a partitionable structure which 
enable one to essentially weaken the conditions for existence and uniqueness 
results of solutions and for convergence of solution methods. Usually, such 
results are based on order monotonicity type assumptions, however, they are 
restricted with the case where subspaces are one-dimensional; see e.g. [3]- 
[5]. In two recent papers [1] and [2], several existence and uniqueness results 
for solutions of such problems involving P type mappings and convex and 
separable but not necessarily differentiable functions have been established. 
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In this work, we consider extensions of  order monotonicity concepts for 
mappings to the case where subspaces need not be real lines with 
applications to the mixed variational inequality problems. 

Let M b e  an index set M = {1,...,m}. We consider a fixed partition of  the 
real Euclidean space R" associated to M, i.e. 

R" = I-[ R", (1) 
s~M 

hence for each x e R" we have x = (x s Is e M) ,  where x s ~ R ' .  Let K.,. be a 
nonempty closed convex set in R" for every s e M, and let 

K=I-- IK ,. 
s~M 

Let Q:K-- ,  R" be a continuous mapping. Then we can consider also the 

partition (Q~ Is ~ M)  of  Q associated to M such that Q~ : K ~ R" for 

s e M .  Let f :  K ~ R be a function of  the form f (x)  = ~ f~.(xs) where 
s~M 

fs :Ks- -*R be a convex function for each s ~ M. We consider the 
partitionable mixed variational inequality problem (MVI for short) of  the 
form: Find x* = (x; Is e M) e K such that 

sEM 

(2) 

Note that MVI involves a continuous mapping and a convex, but not 
necessarily differentiable function. Taking into account the partition of  the 
problem associated to M, we see that MVI (2) can be equivalently rewritten 
in the more standard form: Find x ° e K such that 

(Q(x*),x-x*)+ f ( x ) - f ( x * )  > 0 Vx e K, 

where f (x )= ~f , . (Xs ) .  We intend to present existence and uniqueness 
s E M  

results of  solutions for this problem under extended order monotonicity type 
assumptions on the cost mapping. 
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. T H E O R E T I C A L  B A C K G R O U N D  

So, we consider MVI (2) under the following standing assumptions. 
(A1) Q : K ~ R" is a mapping with the partition (Qs I s E M) associated to 

Msuch that Qs "K --~ R "~ ,s ~ M are continuous mappings. 

(A2) f :g---~ R i so f the form f ( x ) =  ~ f~ . (xs )  where f~ "K s --~ R i sa  
s c M  

convex continuous function for  every s ~ M. 
(A3) K is o f  the form 

K = I - I K  s, 
s~M 

where K s is a convex and closed subset o f  R" for  every s ~ M . 
Note that K is obviously convex and closed; in the case where K s = R~' 

for all s ~ M ,  we obtain K = R~, hence MVI (2) involves complementarity 
problems. First we give an equivalence result for MVI (2). 

Proposition 1. The following assertions are equivalent." 

(i) x" = (x,7 Is ~ M) is a solution to (2); 

(iO it holds that x* = (x'~ Is E M) ~ K and 

(Qs(X'),Xs -x , : )+ f s (Xs ) -L(x~)_>o  Vx,. ~ K , . , V s ~ M ;  (3) 

(iiO it holds that x" = (x'~ Is ~ M) ~ K and 

3g: ~a f~ (x~) : (Qs (x ' ) , x s - x : )+(g '~ , x~ -x : )>O Vx s ~ K s , V S ~ M . ( 4  ) 

Proof. It is clear that (iii) implies (ii) and (ii) implies (i). Conversely, let x* 
solve (2) and there exist an index l and a point Yl ~ K~ such that 

(Q,(  ") • x * ) , y , - x  I + f ( y , ) - f ( x , ) < o .  

Set ~ = (x~,...,x;_l,yl,xl*+l ..... x'~) ~ K ,  then we have 

Z(Qs(x'),~c~-x~)+ f~(£~.)- f .(x~)=(Ql(x') ,y , -xT)+ f ( y l ) -  f (x;)<O, 
s~M 

which is a contradiction. Hence, (i) implies (ii). Next, if x" solves (3), then 
it is a solution to the following convex programming problem: 
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min ~"((Q,(x*),x~)+ f~(x~)). 
xsEKs s~M 

It is clear that (4) represents necessary and sufficient optimality conditions 
for these problems. Therefore, (ii) implies (iii) and the proof is complete, i ! 

Definition 1. Let Mbe  an index set such that (1) holds, and let F : R" --~ R" 
be a mapping with the partition (F,.ls e M) associated to M. Then the 
mapping F is said to be 
(a) a Po(M)-mapping, if for all x ,y~R",  x ~ y ,  there exists an index 

s ~ M such that xs ~ Ys and 

(x, - y,, E (x) - F~ (y)) _> O. 

(b) a P(M) -mapping, if 

max(x~-y,,F~(x)-F~(y))>O for all x ,y~R" ,x~y;  
sEM 

(c) a strict P(M) -mapping, if there exists 7/> 0 such that F - yI, is a 
P(M) -mapping, where 1, is the identity map on R" ; 

(d) a uniform P(M) -mapping, if 

max(xs-y ,Z(x)- (y))>_/ llx-yll for all x,y~R", 

for some constant/.t  > 0 ; 

It is clear that each P(M) -mapping is a P0(M) -mapping, each strict P(M) - 
mapping is a P( M) -mapping, and that each uniform P( M) -mapping is a 
strict P(M)-mapping.  Moreover, each monotone (respectively, strictly, 
strongly monotone) mapping is a P0(M) (respectively, P(M), 
uniform P( M) ) - mapping. 

Now we give an example of  nonmonotone P0(M)- and P(M)- 
mappings. 

Example  1. Let us consider the mapping Q:R"--+R" with the partition 
(Q, Is ~ M) associated to M, such that (1) holds, x = (x s Is ~ M) ,  and 
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F s ( x ~ ) + A , . x  m if s . m ,  
Qs (x) = "-, r L--Zi=' ~iaimXi "+- F m ( X " )  if s = m ;  

where F~ :R"  ---> R"  is a mapping, 2~ > 0, and 4,. is an arbitrary n, x n,. 
matrix for each i • M .  Suppose that the mappings F, are monotone. Then Q 
may be nonmonotone since 2.~ ~ 1 in general. However, it is clear that Q is a 
P0(M)-mapping. Similarly, if the mappings F~ are strictly monotone, then 
Q is a P ( M )  -mapping. 

3. P R O P E R T I E S  O F  G A P  F U N C T I O N S  

Let us consider the function 

~ a ( x ) = m a x  ~-' O~(x,  ys) = ~ maxq~(x ,  ys) (5) 
yeK s~'~ s~M Ys~K~ 

where 

* :  (x,  y , )  = (Qs (x),x, - y.,. ) - 0  5 llxs - y ll 2 + (y , ) ,  

s • M,  a > 0. The function ~ (x,.) is strongly concave, hence, there exist 
unique solutions to each inner problem in (5), i.e., there exist elements y~ (x) • K, 
such that 

maxW~(x,y,)  =O~(x,y .~(x) ) ,  s • M.  
YseKs 

Set y~ (x)  ~ ~ r = (Yl (x) ..... y " ( x ) )  . It is clear that y~(x )  solves the problem 

maxZ((os(x),x -ys)-o.5 llx -y ll + (6) 
yeK seM 

for any fixed x. Taking Proposition 1 as a basis, we obtain the following 
equivalence result. 

L e m m a  1. The fo l lowing relations are equivalent: 

(i) y =  y~(x)," 

(ii) ~ • K  and 
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Vs ~ M, z~ e K,. 3~ e Of.,. (~.) such that 
Z 
scum 

(7) 

(iiO y ~ K and 

s~M 

+f,(z  ) - f ~ ( y , ) ) > 0  Vz s e K . , . , s e g ;  
(8) 

(iv) y ~ K and 

(Q~(x)+a(-~s - x , ) , z , - ~ ) + £ ( z , ) - f , ( y s ) >  0 Vz, e K , , s e M .  (9) 

Proof. Obviously, (7) represents the necessary and sufficient condition of 
optimality for problem (6), e.g. see [7, Theorem 27.4]. Therefore, (i) is 
equivalent to (ii). The equivalence of (ii), (iii) and (iv) follows from 
Proposition 1. !i ", 

We will show that fo,~ is a gap function for the initial MVI (2). 

Proposition 2. It holds that 
(i) ?~ (x) > 0 for  all x ~ K ; 
(i 0 the following assertions are equivalent: 

(a) ?,~ (x*) = 0 and x* ~ K,  

(b) x* solves (1), 
(c) x" = y~(x*). 

Proof. Assertion (i) follows directly from the definition. In case (ii), if x* 
solves (2), then 

* * 0 * * 2 ( ( Q ~ ( x  ) , x ~ . - y , ) -  .5a x,.-y~. 2 +f~(x, ) -L(y. , . ) )<  
s~M 

< E((Q., .(x') ,x*-y. , .)+ Z ( x : ) -  f~ (ys)) -< 0 
s~M 

for all y~ ~ K , . , s ~ M ,  hence ?~(x*)=0 due to (i). Next, using (8) with 
z = x = x *  and y=y~(x*)  gives 



Partitionable Mixed Variational Inequalities 13 9 

* * a * * a , 2 

~o=(x*) >_ ~'((Q;(x ),x s - y ,  ( x ) ) -0 .5a  x - y ,  (x )  +f(x,)-f(y;* ~ (x*))_> 
s e M  

_ 0 . 5 1 ~  * x -y~(x*) 2. 

Hence, q~ (x ' )=  0 now implies x' = y" (x*). Next, if x* = y'~(x'),  then (8) 
yields (1) and the proof is complete. EI 

Proposition 3. The mapping x ~ y" (x) is continuous. 

Proof. Take arbitrary points x',x" ~ R" and set y '  = y~(x') and y" = y~(x"). 
Adding (8) with x = x', y = y', z = y" and (8) with x = x",y  = y",z = y' 
gives 

t • . r + , . . ~ . . r > Z((Q.~(x)-Q~(x ) , y ; - y , )  a ( y  -y.~,y. -y.~)-a<x;-x.~,y. -y.~))_o. 
s e M  

It follows that 

ally"-/112 <-IIO(x'~-Q(x"~lllly"- y'l] + ~ IIx"- x'lllly"- y'll, 

or equivalently, 

Ily" - y'll IIQ(x'  - Q(x">l[ + [Ix"- x'll 

Since Q is continuous, this inequality implies that x ~ y" (x) is continuous, 
as desired. !~iI 

So, under the blanket assumptions, MVI (2) reduces to the problem of 
minimizing the function ~o,, over K, i.e., it is equivalent to the optimization 
problem 

m~n~(x) .  (10) 
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. GENERAL EXISTENCE AND UNIQUENESS 
RESULTS 

In this section, we establish existence and uniqueness results for MVI (2). 
We first consider the case where Q possesses P(M) type properties. 
Proposi t ion 4. Suppose K is a bounded set. Then MVI (2) has a solution. 

Proof. It was shown in Proposition 3 that the mapping x ~ y ~ ( x )  is 
continuous. Applying Brouwer's fixed point theorem, we conclude that there 
exists x* = y~(x ' ) .  Using Proposition 2, we deduce that x* is a solution to 
MVI (2). II 

Proposi t ion 5. Let Q be a P(M)-mapping. Then MVI (2) has at most one 
solution. 

Proof. Suppose for contradiction that there exist x' and x", x' ¢: x", which 
are solutions to MVI (2). By Proposition I, for each s e M we have 

( G  (x'),x; - x;> + L(x ; )  - L ( ~ )  -> o 

and 

(Q, (x"), ~ - x~') + L (~;) - L (~;)) -> o. 

Adding these inequalities yields 

<Q,(~')- Q,(K"),~'- <) >_ o, 

which is a contradiction. 

Combining both the propositions yields the following result. 

Corol lary 1. Let Q be a P( M) -mapping and let K be a bounded set. Then 
MVI (2) has a unique solution. 

Now we present an existence and uniqueness result for the unbounded case. 

Theorem 1. Let Q be a strict P(M)-mapping. Then MVI (2) has a unique 
solution. 
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Proof .  Due to Proposition 5, it suffices to show that MVI (2) is solvable. 
Clearly, if  K is bounded, then MVI (2) is solvable due to Proposition 4. 
Therefore, we have to consider the unbounded case. Fix a point 
z = (z s I s e M ) .  For a number r > 0 we set 

B+ (z+,r) = ~x+ • R; I IIx, - z~ll_< r~ 

for each s • M .  Let x r denote a unique solution o f  the problem (2) over the 
set 

K r ={xeR" Ix+ eK,  NB~(z+,r),seM}. 

By Proposition 1, we have 

for all y., eK,  NB,(z+,r),  s e M  
We now proceed to show that IIx+ - z•ll < r ,  s • M for r > 0 large 

Assume for contradiction that I I / r -  zll-, + as r--~ oo. Choose enough. an 

arbitrary sequence {rk}-+oo and set yk = x " .  Choose the index set 

J=¢sllly++ll-->+ask --> oo}. Letting 

+k { y~ if s ~ J, 
Z s =  

z,. if s e J ;  

we have 

(y++ -k k 
- z.,,+, Q.,,., ( y ' )  - Q.++ ( f ' )  - 7"(y.+,, - f++,,)> = 

(12) 
= max (y, ~ - e : , Q + ( / ) -  Q , ( e ' ) -  r (ys  ~ - e~)}  >0.  

Since the set M={ 1 . . . .  , m } is finite, without loss of  generality we can 
supposes that s k is fixed, i.e. s k = l. Note that l • J due to (12). Taking into 
account the monotonicity of  Of and the assumptions of  Theorem 1, we have 

+ <,,+ -+,g:  g,>> +  ,11 
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for all g~ E 0f/(yk ) and gl ~ Of (z I), or equivalently, 

<Q, (y~.y:-z,> + <~,~. ~,~ -z,> >_ ~ly, ~ -z, ~-<z,-  y:. Q,(:) + ~,> 
Since {~k},~is bounded,, we must  have Q~(2 k) < C  and ]lg,[[< C. Hence, it 
holds that l y ;  - z, I---~ oo and 

r y;-  z,I ~- (-y;,e,(:)+g,>[-~ +~, 

hence that 

<Q,(y~),z,-.,~>+<.,~,z,-.,~><o 

for k large enough,  which contradicts (12). Thus, there exists a number  k' 
such that y~ - z s I< r k , s e M ; if  k > k ' .  It follows that, for any x, e K ; ,  

there is e > 0 such that 

x2 +g(x , - x : )eK~OBs(zs , r ) ,  s e M ;  ifr>rk.. 

Applying  now (12) with Ys = x~ + c(x.~ - x.[) gives 

. . . .  + r ~g~,x~ +e(x~.-x~.)-x,.)>O, 3g, cOf.(x ):(Q~.(x ),x~. ~ ( x ~ . - x , . ) - Z ) +  ! . . . .  

or equivalently, 

~: ~:,(x~): <Q,(x~),x~ -x:>+<~:,x, -x;>>_ o 

s ~ M .  Due to Proposit ion 1, it means that x* is a solution to MVI (2). The 
proof  is complete.  [~] 

So, joint  existence and uniqueness results require for Q to be at least 
P(M).  Now we intend to obtain similar results under  weaker  assumptions 
on Q. We give an additional relationship between P0(M) and strict P(M)-  
mappings.  

P ropos i t ion  6. I f  F :K ~ R" is a Po (M)-mapping, then, for any ~ > O, 
F + cI, is a strict P(M) -mapping. 
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Proof. First we show that F (~) = F + c I ,  is a P(M)-mapping for each 
t X "  X "  t . e > 0 . C h o o s e  x,  ~U,  x ' ~  ,set  I = { s l x , ~ x , . }  andfix e > 0 . S i n c e F  

is a Po (M)-mapping, there exists an index k ~ I such that 

' ' - x"3  - m a x  ( F ,  ( x ' )  - F~ ( x " ) ,  x l - x~').  (F~ ( x ) -  F~ (x"), x, s ,  - ,oM- 

Then, by definition, 

and 

(~ ' -x; ' )>o,  ' ,  " ( x ' ) - F k ( x " ) , x  k _ x k xk, 

") > 0. t , t _ X k  o ~ X k - - X k , X  k 

Adding these inequalities yields 

(F~Cl(z,) (,~ . . . .  -Fk (x),Xk--xk)>0. 

Hence, F (') is a P ( M )  -mapping. Since F (~') = F (C') - (~" - ~")I, = 
_1_ t f T  f = t '  e ~, is a P ( M )  -mapping, if 0 < e" < F (') G , we conclude that is a strict 

P(M) -mapping. l-I 

Thus, if (A1)-(A3) hold and is a P0 (M) -mapping, we can consider the 
regularized problem with the cost mapping Q(,~ = Q + e l , .  From Proposition 
6 it follows that Q(C) is a strict P ( M )  -mapping for each ~" > 0, hence, using 
Theorem 1, we conclude that each regularized MVI, which approximates the 
initial MVI (2), will have a unique solution. 

At the same time, replacing the (strict) P ( M )  property of Q with (strong) 
strict convexity of f , ,  we can obtain similar results in the case where Q is a 
P0(M)-mapping. It also means that we can apply the same regularization 
approach to the functions f~ in the general case. 

Theorem 2. Let Q be a Po (M)-mapping  and let f.,. be strictly convex for  
s ~ M .  Then MV1 (2) has at most one solution. 

Proof. Suppose for contradiction that there exist x' and x", x' ~ x", which 
are solutions to MVI(2). By Proposition 1, we have 
3g; ~ Ofs(x~) "(O.,(x'),x~'- x:) +(g.: ,x; ' -  x;) >_ O 
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and 

3 g /  • OL (x;) . (o.~ (x"),x; - x;') + (g;',x: - x"~ >_ o 
S l  

s • M .  Adding these inequalities yields 

(Q, ( x ' ) -  Q, (x"), x;' - x;) + (g; - g",x; - x;) __ 0, (13) 

s • M .  For brevity, set I = {s ] x~ ;~ x i' }. Since Q is a P0 (M) -mapping, there 
exists an index k • I such that 

- n t x " ~  x '  - xk' ) = m a x  (Qs  (x ' )  - Q~ (x"),  x; - x"~ (Qk (x ' )  ~ , " ~ ,~M - " '" 

Then, by definition, (Qk(x')-Qk(x"),x'k-x[)>_O. Due to (13) we now 
obtain 

( g ; - g ; , x ; - x ; ) > _ o ,  

which is a contradiction, since fk is strictly convex, i.e., 0fk is strictly 
monotone. Iii 

Again, combining Theorem 2 and Proposition 4 yields the following 
result immediately. 

Corol lary  2. In addition to the assumptions of Theorem 2, suppose K is a 
bounded set. Then MVI (2) has a unique solution. 

We now present an existence and uniqueness result on unbounded sets 
under the P0(M) condition. This result can be viewed as a counterpart of  
that in Theorem 1. 

Theorem 3. Let Q be a Po(M)-mapping and let f~ be a strongly convex 
function for each s • M. Then MVI (2) has a unique solution. 

Proof. By Proposition 1, the initial problem is equivalent to the following 
VI: Find x* • K such that 

• " ( a  + : "> 3g~ eOZ(x,,): (x*) ex , , x , -x~  + 

+(g*,-ex2,x,,-g)>_O Vx, e K , , s e M ;  (14) 
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which can be rewritten equivalently as 

where FJ ~) (x) = Qs (x) + cx~ and ~.~ (or) = f~ (or) - ccr2/2. Again, on account 
o f  Proposition 1, problem (15) is equivalent to the MVI: Find x* e K such 
that 

~.,((F~<~)x'),x~-x*~)+~s(X~)-~'~(x*~))>_O Vx~ ~Ks, s e M .  
sEM 

(16) 

From Proposition 6 it follows that F (') is a strict P( M) -mapping for every 
c > 0.  We will show that each ~s is a convex function for some c > 0. 
Since f~ is strongly convex, we see that for all x~, x~' and 
t~ e 0 g(~ (x~), t" e 0 ~', (x~'), we have 

( , :  - , : , x ;  - x : )  : ( g :  - g : , x :  - x : ) -  lx,., .  - - 

for some g~ e Of, (x~), g" e Of, (x~'), hence 

(t:  - t; ,  x; - x")  > ' • _ ~ ( x ,  - x ; )  2 - , ' ( x ;  - x " )  ~ >_ o 

if  c < r ,  where r is the smallest constant of  strong monotonicity o f  afk 
(strong convexity o f  fk ). So, Cs is a convex function if 0 < c < r .  

By Theorem 1, problem (16) has a unique solution. However, problem 
(16) is equivalent to (15), i.e., it is equivalent to (14). This completes the 
proof, i~l 
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"dX - A f l ( X ) d t  = ~ dW, in (0,+oo) x O, 

[?(X) = 0 on (0, +oo) x 0 0 ,  (1.1) 

X(0,~) = x(~) in (9, 

where x/-Q dW, is a coloured noise of  covariance Q with Q • L(L2(O)) 
symmetric, nonnegative and of  trace class, defined in some probability space 
(~,b c, IP) and taking values in L 2 (O).  We shall assume further that 

Q • L (H- '  (O), L 2 (O)). (1.2) 

A typical example of  operator Q is Q = (-Ao) -~ with cr > n /2 ,  so that Tr 
Q < +oo, where .4 o = A,D(A0) = H z ((9) n H~((9)). 

Finally, fl" 1R --> ]R is a continuous nondecreasing function, such that 

f l (0)=0,  lim f l ( r )=+oo (1.3) 

and there exists fi > 0 such that 

(f l(r)  - tg(r~ ))(r - r~ ) > 6( f l ( r )  - fl(r,)2, r, r~ • ]R. (1.4) 

A typical example is 

aIr  forr_<0, 
f l ( r ) = ~  0 f o r 0 < r _ < p ,  (1.5) 

! 

{ a  2 (r - p)  for r > 0, 

(where a~, a 2, p are given positive numbers) which reduces problem (1.1) to 
the two phase Stefan problem studied in [2]. 

Under the above assumptions one proves in [2] that for any 
x • H = H -~ ((9) problem (1.1) has a unique generalized solution 

X(., x) • C W ([0, T]; L 2 (~,  H- '  ((9)). 

Moreover, the corresponding transition semigroup 
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PAo(x) = ]E[<p(X(t, x))], t > 0, x s K, 

defined for every <p bounded and Borel, has an invariant measure v with 
the support in 

{x ~ LZ (O) : fl( X )  E H~ (O)}. 

We recall that 

= <o(x)v(dx), <o C,,(H).  (1 66~ 

Here we shall study the irreducibility of  Pt. We recall that Pt is said to 
be irreducible if  for all T > 0, r > 0, x 0, x~ ~ H one has 

PrXs(x,,r) (x0) > 0, 

where B(x I,r) = {x ~ H :l x - x I l< r}. Equivalently, 

]P([X(T, xo) -X  t [_l>r)<l foral lT>O,r>O, xo,X I ~H.  (1.7) 

Irreducibility is an important property for the transition semigroup P, 
because it implies that the measure v is full. In fact, from (1.6) it follows, 
for any x ~ H,  r, t > 0 ,  that 

v( B( x, r)) = ~t Ptxs(x,.r) (x)v(dx) > O. 

Our main result is the following. 

T h e o r e m  1.1 Under assumptions (1.2), (1.3), (1.4) the transition semigroup 
Pt is irreducible. 

Theorem 1.1 will be proven in Sect.3. The main ingredient is an approximate 
controllability result for the deterministic equation 
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dy 
-d-~-Afl(y)=xfOu in (O,+oo)x O, 

fl(y) ~ H~ (0), 
(1.8) 

y(0 ,¢)  = x 0(4) in O, 

which will be proved in a general framework in Sect.2. 

We shall use the following notations. 
H = H-~(O) with the norm I'l-j and scalar product (',')-t. H~(O) and 

H 2 (69) are standard Sobolev spaces. 
B b (H) is the Banach space of  all real bounded mappings in H endowed 

with the sup norm 

II oll0 =supl~(x) l 
x~ll 

and Ch(H ) the closed subspace of all uniformly continuous and bounded 
mappings. 

Moreover, we set 

.4 o = A, D(Ao) = H 2 (0 )  ~/-/ol (0),  

and 

Ay=-Ay,  y ~ D ( A ) n H ,  

D( A) = {y ~ Lz ( O) : fl(y) ~ H~ (O)}. 
(1.9) 

We recall that A is m-accret ive (maximal monotone) in H × H (see e.g. 
[1], [39. 

Finally, C w ([0,T];L 2 ( ~ , H  -~ ((_9)) is the space of all stochastic processes 
which are square mean continuous and adapted to W. 
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. A P P R O X I M A T E  C O N T R O L L A B I L I T Y  

Let A be a nonlinear, multivalued operator on a Hilbert space H .  Let U 
be another Hilbert space and B:U--> H a linear operator. We denote by 
I ' I and (.,.) the norm and the scalar product of H and U.  

We shall assume that 

Hypothesis 2.1 

(i) A : D(A) c H --> H is quasi-m-accretive, i.e. there ex&ts y > 0 such 
that A + y l  is m-accretive (equivalently, maximal monotone) in 
H x H .  

(ii) B ~ L(U,H) and Ker B* = {0}, where B" is the adjoint of  B. 

We are concerned with the controlled equation 

"y'(t) + A(y(t)) 9 Bu(t), 

y(0) = Yo e H. 

t e[0,T] 
(2.1) 

It is well known (see e.g. [1]) that for each yoED(A) and any 
u eL2(O,T;U) the Cauchy problem (2.1) has a unique "mild" solution 
y=y"( t ,  Xo)eC([O,T];H ). If A=O~o is the subdifferential of a lower 
semicontinuous, convex function (o : H ---> (-o0, +oo] then (see [3], [ 1 ]): 

yU ~ W,,2([O,T];H) and Ay" e L2([O,T];H). 

Proposition 2.2 below amounts to say that under above assumptions, 
system (2.1) is approximately controllable. 

Proposition 2.2 Let yo,Y~eD(A). Then V s > 0 ,  BueC([O,T];U), such 
that 

l y"  (T) - y, I_< s. (2.2) 

We shall prove Proposition 2.2 in two steps. 

Lemma 2.3 Let Yo,Y~ eD(A) .  Then 3veL=(O,T;H), such that the mild 
solution z ~ C([0, T];H) to problem 
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t 
z'(t) + A(z(t)) ~ v(t), a.e. t e [O,T] 

z(O) = Yo • H, 

satisfies also 

z • ( [O ,T] ;H)  

(2.3) 

(2.4) 

z(T) = y,. 

Proof. Consider the nonlinear mapping 

F ( z )  = p sgn ( z -  Yl), 

where sgn is the multivalud mapping 

(2.5) 

sgn z = 

z 
if z ~ 0, 

i z l '  

{z:lzl< 1}, if z = 0 .  

It is not difficult to show that the operator A + F is quasi -m-accret ive  as 
well and consequently the Cauchy problem 

z'( t)  + A(z( t ) )  + p sgn ( z ( t ) -  Yl) ~ O, 

z(0) = Y0 • H,  

a.e. t • [0, T]. 
(2.6) 

has a unique strong solution z • Wt'~([O,T];H). (As a matter of  fact, z is 
right differentiable and (Az(t)+ v(t)) ° (the minimal section of Az(t)+ v(t)) 
is continuous from the right on [0, T). 

Now, multiplying the first equation in (2.6) by z ( t ) -  yj and integrating 
over (0,t) ,  we get 
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l d  

2 d t  
- - - - [  z ( t ) -  y, 12 +(u(t), z(t) - y ,)  + P] z ( t ) -  y, I = 0, 

where u(t) ~ A(z(t)). But, by the quasi accretivity of A, we have: 

(u ( t ) , z ( t ) -y , )  

so that 

l d  
2dr  

This yields 

= (u(t) - A°yl, z(t) - Yl) + (A°Y,, z(t) - Yl) 

>_ - y l z ( t ) - y ,  [ z +(A°y~,z(t)-y,) ,  

i.e. 

- - - I  z(t) - y, 12 + P l z ( t )  - y, 1< y I z(t) - y, 12 + I A° (Y, ) I I z ( t )  - y, 1. 

d (  -yt 
dt e [ z ( t ) - y , l )+ (p - lA° (y , )E )e  -'' <0 

+_1 
[ z ( t ) - y ,  [e -r' ( p - lA° ( y , )D(1 -e - r ' )< lYo -y ,  1, 

y 

for p >1Ao(y,) 1. By (2.7) we see that I z(t) - y~ [= 0 for 

t > To = - l l o g ( 1  Y I Y o - y ' I  1 
p_lAO(y~)l • 

t > 0. (2.7) 

For p sufficiently large T o can be taken just equal to T apriori fixed. (We 

note that if y = 1 then T o = ly0-y,I 
n-lA ° (y~)1 j '  

Then v ( t ) = - p s i g n ( z ( t ) - y l )  (or more precisely its single valued 
section) from equation (2.6) is the desired controller. 

We note that veL•(O,T;H).  Indeed [v(t)l<p for all t e [0 ,T ] ,  
y'(t) ~ -Ay( t )  + v(t) by maximal monotonicity of A + 7I and it follows that 
v is measurable. 

Next by continuity of the map Yo ~ zV(t, yo) the exact controllability 
results extends to all Yo ~D(A) .  Finally, by density it extends to all 
yl e D(A) as claimed. I J 
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Lemma 2.4 The set 

{v = Bu : u ~ C([O,T];U)} 

is dense in L2(O,T;H).  

Proof. It is immediate that {v = B u : u  ~ L2(O,T;U)} is dense in L2(O,T;H) 
because otherwise there exists r/~ L 2 (0, T; H ) ,  not identically zero, such that 

fr (Bu(t),rl(t))dt : O, u e L2(O,T;U). 

This yields fr I B'r/15 dt = O. Since Ker B* = {0} we infer that r/-- O. Since 

C([O,T];U) is dense in L2(O,T;U) the desired result follows by the 

continuous dependence of  y" with respect to u. [11 

Proof of Proposition 2.2. Nothing remains to do except to combine Lemma 
2.3 with Lemma 2.4. By Lemma 2.3 there is v s L 2 ( O , T ; H ) ,  such that 
y ( T )  = y, and 

y'(t) + A(y(t))  9 v(t), t ~ (o , r )  

(2.8) 

y(0) = Yo e H. 

On the other hand, by Lemma 2.4 for each c > 0 there is u c ~ C([O,T];U) 
such that 

II u - vllL2<0,T .,-< 

Let yc ~ C([O,T];H) be the solution to 

{ y~.(t)+ A(y,.(t)) ~ Bu,.(t), t ~ [0,T], (2.9) 

y(0) = Y0 E H. 

Subtracting (2.8) and (2.9) we get from monotonicity of  A that 
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[ y,. (t) - y ( t )  1< ~1 (Bu,  (s)  - v (s) )  [ ds < e T  m,  t ~ [0, T]. 

Hence t y , (T ) -  yl I_< c T  tie as claimed. This completes the proof, 
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Ir 

3. P R O O F  OF T H E O R E M  1.1 

We shall consider the deterministic equation (1.8) and apply Proposition 
2.2 where H = H -~ ( 0 ) ,  U = H -~ ((,9), B = ~ and A" D ( A )  c H --, H is 
defined by (1.9). 

Consequently, for each e > 0 ,  T>0  and all x o , x ~ e H - ~ ( O )  there is 
u ~ C([0,T];H - j ( O ) ) ,  such that 

[ y ( T )  - x  I [_,< c. (3.1) 

We note that by assumption (1.2) we have 

fQ u L 2(o,r;L 2(o)) C([0,TI;H-' (O)). 

Next substracting equations (1.1) and (1.9) we get 

X (t, x o) - y ( t ,  x o) - ~ A ( f l (  X (s, x o)) - f l ( y ( s ,  x o)))ds -- C ( W  (t) - u(t)).  (3.2) 

We set 

Z ( t )  = ~ ( f l ( X ( s ,  x o)) - f l ( y ( s ,  x o)))ds 

so that 

X (t, x o) - y ( t ,  x o) - A Z ( t )  = ~ ( W  (t) - u(t)).  (3.3) 

Multiplying both sides by Z ' ( t )  = f l ( X ( t ,  x o)) - f l ( y ( t ,  x o)) and integrating in 
t and ~ yields 
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(X(s,  Xo ) - y(s,  Xo ), p (X(s ,  Xo )) - p (y (s ,  Xo )))ds - ~ (aZ(s),  Z'(s))L2 ~o~ ds 

= j~ (.]-~ (W(s) - u (s)), p (X(s ,  Xo)) - p (y (s ,  Xo)))L2 ,o, ds. 

Since 

2 

-~ (AZ(~),Z'(s))L~,o , ds= ½ Z(t) ,,'o,o,' 

we get 

f (x(s, xo)- y(s, xo),~(x(s, xo))- p(y(s, xo)))~,,o, ds + ½ IIz(OGo> 

= ~ ( f~  (W(s)-u(s)),p(X(s,xo))-P(y (~,Xo))).o' co)ds. 

Taking into account (1.4) we find 

13(X("x°))-f l(Y("x°)) z'~(°";L~(°~ + 2  6 

<_ , fQ w - , f - Q  u 2 fl(x(.,Xo))-fl(y(.,Xo))2L2 o L2 , 
L2(O,tiff(O)) ( t; ( 0 ) )  

which, by a standard device, yields 

IIP(x(.,Xo))- p(y(,xo))ll2,,o.,;~.(o)) + II/(t)ll;o.,o, 
(3.4) 

for a suitable constant C.  Now, by (3.3) we have for t = T 

[ X(T, xo)- y(T, xo)l_, <_llZ(T)[I,,,<ol + ~ W(T)-  ~ u(T) -, 
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and, taking into account (3.4) we get for t = T 

Ix(r ,  xo)-y(r,  xo)L <- ,,/-Ow-,f-Ou ~,o,,,~,o,, 

+14-O W(T)-4-~ u(V)l_l. 

We choose x I as in (3.1) and get therefore 

IX(T,  x o) - x I 1_, <1 y (T ,x  o) - x~ t-1 

+c2 4-0 w -  4-0 ~ 2 (oT:L.,o, +14-O w ( r ) - ~  .(T)L, 

Therefore for any r > 0 

~(I x(r ,  xo)- xl I_, > - r) 

<- ~(I 4-Q W - 4-Q u 2L2,o ~,L~,o, + I ~-Q W (T) - ~ u(T) I_,>- r - ~  ). 

It is clear that the random variable (,fQ w(.),,fQ W(T)) in 

A := L2(O,T;LZ(O))x H-t(O) 

is Gaussian. We claim that (x/-Q w('),x/-Q W(T)) is nondegenerate. This will 

imply that ~(I X(T,  xo) -xt  1-1 > r) < 1 as required. 

Let us prove the claim. Denote by ( ~ ) t h e  generic element of A andby 

Q the covariance operator of the Gaussian random variable 

(x/-O w(.),,fQ W(T)). Then we have for any ( ~ / E A  
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~o, ~o E , l - d y e ( . )  , ~o 2 l 

+2(,fQ W(T),x) jo r (,fQ W(s),(p(s))ds+l(,fQ W(t),x)12]. 

Since 

N[(,f-Q W(t),W(s))t=min{t,s} Tr Q, t,s>_O, 

and 

l~[(,4t-Q W(T),x) (x[--Q W(s),o(s))l = min{T,s}(Q~o(s),x), t,s >_0, 

(3.5) 

we obtain by (3.5), that 

(Q((P)'(~°)) x 

+2 Jor s(Q~o(s),x)ds + T(Qx, x). 
(3.6) 

AssumonowthatthoreoxistS(x~)~A suchthatQ(x~):O Wohavetoshow 
that(x~)~OIn~ct, by~36~woobtain 

Q jo r min{t,s} ~o(s)ds + tQx = 0 (3.7) Tr 

and 
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~T sQ~o(s)ds + Qx = O. (3.8) 

Eliminating x from (3.6) and (3.7) yields 

Tr Q ~r min{t,s}qg(s)ds : t  ~r sQq~(s)ds, 

that it is equivalent to 

TrQ ~ s~o(s)ds +tTr;Q Ir~o(s)ds:t ~rsQqg(s)ds. 

Differentiating with respect to t yields 

Tr Q ~rq~(s)ds = ~r sQ~o(s)ds, 

which implies ~o=0 and consequently by (3.8) x =  0 since Ker Q = {0}. 
The proof  is complete. [~i 
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ON SOME B O U N D A R Y  VALUE PROBLEMS 
FOR FLOWS WITH SHEAR DEPENDENT 
VISCOSITY 

H. Beir~o da Veiga 
Dept. o f  Applied Mathematics " U. Dini, " University o f  Pisa, Pisa, Italy 

Abstract: This notes concern the Navier-Stokes equations with gradient dependent 
viscosity and slip (or non-slip) type boundary conditions. Regularity up to the 
boundary still presents many open problems. In the sequel we present some 
regularity results for weak solutions to the Ladyzhenskaya model in the half 
space •'+'. See Theorems 3.1 and 3.2. Complete proofs of these results are 
done, and will appear in the forthcoming paper [6]. 

1. I N T R O D U C T I O N  

The Navier-Stokes equations with shear dependent viscosity has been 
studied in the last half century by a great number of researchers. A typical 
example is the Ladyzhenskaya model 

O u + u ' V u  f (1.1) v°t.u=o, -VT(u'~)= 

where T denotes the stress tensor 

T = -zrI  + v y (u)Du. (1.2) 
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Here, 

Z)U = VU + VU r, 

vT (u) : v0 + v, I :Du I '-2, (1.3) 

and v0, vl are strictly positive constants. 
Note that (1.2) satisfies the Stokes Principle, see [36]. See also the 

reference [31] page 231. 
For p = n = 3, the system (1.1) is the classical Smagorinsky turbulence 

model, see [34]. See also [14] and references therein. 
From the mathematical viewpoint, the crucial characteristic of models 

like (1.3) is the growth of the convex potential ]:Du ]' near infinity (and, to a 
minor extent, near zero). This leads us to show the main points by 
considering the classical, and more representative case (1.3), rather than risk 
hiding ideas and methods in a more general setting. 

The first mathematical studies on the above kind of equations go back to 
O.A. Ladyzenskaya in a series of remarkable contributions. See [17], [18], 
[19] and [20]. Similar results were obtained by J.-L. Lions for models in 
which 7u  + 7u  r is essentially replaced by Vu. See [23] and [24], Chap.2, 
n.5. 

Other fundamental existence, uniqueness and regularity results for 
Ladyzhenskaya type models, under the non-slip boundary condition (1.5), 
can be found in [25] and references therein. Without any claim of 
completeness, we also refer to [1], [9], [10], [21], [25], [26],[28], [30], and to 
the references given by these authors. 

Theoretical contributions (contrary to applied results) mostly concern the 
homogeneous boundary condition u = 0. However, many other boundary 
conditions are crucial in applications as, for instance, the following 
nonhomogeneous slip type boundary condition 

(u .n)l~ = 0 

~u~ + r__(u)~ = b(x), 
(1.4) 

that will be considered in the sequel together with the non-slip boundary 
condition 

Ulr = O. (1.5) 
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In (1.4) n is the unit outward normal to the domain's boundary F, fl > 0 is a 
given constant and b(x) is a given tangential vector field. We denote by 
t = T.n_ the normal component of the tensor T, by u~ = u - ( u . n ) n  the 
tangential component of u and by z- the tangential component of t_ 

E(u)= t - ( t .~ )~ .  (1.6) 

The first deep mathematical study of this type of boundary conditions was 
done by V.A. Solonnikov and V.E. S6adilov in reference [35]. 

For results and applications of boundary conditions like (1.4) see, for 
instance, [3], [4], [5], [8], [12], [15], [16], [22], [27], [29], [32], [35] [37], 
and references therein. See also [31], page 240, for a discussion of this 
subject. 

We are interested in strong regularity results, up to the boundary, of weak 
solutions. The really new obstacles to face arise due to the interaction 
between the nonlinear terms containing V u + V u  T and the boundary 
conditions. We concentrate our attention on this new point, by considering 
the following stationary problem in IR~ : 

 -v0V.(Vu+VuT)- 

V'u  =0. 

= f ,  (1.7) 

Similar, but stronger, results hold for solutions to the simplest Lions model 

-VoAU - v,V. (I Vu I "-z Vu) + Vrc = f ( x ) ,  (1 m8~ 
V . u = 0 ,  

The full non-linear evolution problem is studied in the forthcoming paper 
[7]. See the Remark 3.1 below. 

. W E A K  S O L U T I O N S .  K N O W N  R E S U L T S  A N D  
N O T A T I O N  

Let us now introduce the functional setting used in the following. 
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We set p ' =  p/(p-1)  for each p E] 1,+c~ [.If X is a Banach space we 
denote by X'  its strong dual space. We use the same notation for functional 
spaces and norms for both scalar and vector fields. The symbol I I  I1,, 
denotes the canonical norm in LP(N"+), and II II that in L2(II~+). In general, 

"integer norms", as well as "integer Sobolev spaces", relate to 1I~, and 
"fractional norms" concern the boundary F=IR "-I. For instance, 
I I  111,2 - - I1  111,2 r, and g ' /2 = HI/2 (II~"-'). 

We define D t :=DI'2(N~) as the completion of  Co(NT) (or Co(N.)  , k  , 
k >1)  with respect to the norm IM. Moreover, D~ is the completion of  
C O (Ii~:) with respect to M It is well-known that 

O' ={v'v~Lr,VvELZ}, (2.1) 

where 1/r=l/2-1/n. In particular, the norms Ilvvll and IlVvll+llvll,r are 
equivalent in D ~ and in D~. 

Since the restriction to a bounded set B of  any function in D ~ belongs to 
the Sobolev space H I(B), it follows that its trace on the boundary II~ "-1 is 
(locally) well defined as an element of  H ~ . Trace spaces in 11~ "-I may be 
studied, in a convenient way, by resorting to the Fourier transform. The trace 
space of  D I is denoted here by D ~/2 =D~/2(N"-I). Actually, it is the 
completion of  Co(ll~ "-~) with respect to the norm induced in IR "-j by the 
norm H in C O (I~).  It consists of functions (distributions)that have a 
"half derivative" in L 2 (IR "-t) (in the usual Fourier-transform sense) and that, 
actually, belong to L"(II~"-I), where s is given by the Sobolev embedding 
exponent 

1 1 1/2 
s 2 n - 1  (2.2) 

See [13], Theorem II.3 and Definition II.1. See also [2], [11], [33] and 
references. 

We set D-I/2 = (D~/2) '. Norms in D 1/2 and D -uz are denoted respectively 
by [.]u2 and [.]-1/2. Note that, by (2.2), one has / f  c D -~j2 where 
s' = 2(n - 1)In. 

We define 

D~={veD"v =Oonr} and D~ ={v~D ~ " v = 0  onF}.  

V 2 denotes the space 
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V 2 = { v ~ D ) : V . v = 0  inN:} (2.3) 

if the boundary value problem under consideration & (1.4), and denotes the 
space 

V 2 = { v e D g ' V . v : 0  onN:} (2.4) 

if  the boundary value problem under consideration is" (1.5). The above 
subspaces of D' are endowed with the norm Ilvull , Moreover, E ]-, denotes 
the strong norm in the dual space (V 2)'. 

We set 

v:{v~v2 : pvllp <~o}, 

endowed with the norm 

Ilvllv = Ilvvll2 + II~vllp. 

It should be remarked that, by appealing to inequalities of Korn's type, 

verify that V = {v ~ Vz: IIvvllp <~o} and also that IIvvll2 +ll~vllp and w e  c a n  

IIvvll~ +llvvllp are equivalent norms in V. 
Weak solutions exist under the assumptions 

f ~ (V2)', (2.5) 

and, concerning the tangential vector field b, 

b ~ D-~ (IR"-~). (2.6) 

Note that (2.5) holds if f e K', and (2.6) holds if b e L"(I~"-~). 
The following definition is well know. 

Definition 2.1. We say that u is a weak solution to problem (1.7), (1.4) if 
u e V satisfies 

l 

2 
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for all v ~ V. 
If we consider the Dirichlet boundary value problem (1.5), this definition 

applies as well, by dropping in (2.7) the terms with fl and b. 
By defining <Au, v>, for each pair u ,v~V,  as the left hand side of 

(2.7), the operator A : V --4 V' satisfies the assumptions in the Theorems 2.1 
and 2.2, Chap.2, Sect.2, [24]. This shows existence and uniqueness of the 
weak solution. 

By replacing v by u in equation (2.8) one gets 

.o IIv~ll ~ + v, Ilwl17 + Pll~ll~, --< b,. >~ + < s,~ >~, (2.8) 

where the symbols < .,. > denote "duality pairings" and the trace of u on the 
boundary is denoted simply by u. Note that the left hand side of equation 
(2.8) is just < Au,u >. This shows that the assumption (2.2) in the above 
Theorem 2.1, reference [24], holds. 

From (2.8) there readily follows the basic estimate 

2 

~-I lwl l  ~ + roe, I1~11; + pll~ll:,-~ ~.(Ess~-, + Eb1'_~), (2.9) 

where the constant c, depends only on n. 
By restriction of (2.7) to divergence-free test-functions v with compact 

support in I~  there follows the existence of a distribution rc (determined up 
to a constant) such that 

v,~ =-V.EvoV.  + v , iv~ l ,  '-~ V u l +  S. (2.10) 

Equation (2.10) shows that the first equation (1.7) holds in the distributional 
sense, 

In the sequel 

n; = {x :1 x l (  R,x. > 0}, 

and I B~ ] denotes the Lebesgue measure of B~. 
We end this section by introducing some more notation. 
We denote by D2u the set of all the second derivatives of u. The 

meaning of expressions like DZu is clear. The symbol D2.u may denote 
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any of the second order derivatives 
OZu/Ox~., if j < n.  Moreover, 

2 2 2 
2 0 u. + " 02uj 

Similarly, ~7" may denote any first order partial derivative, except for O/Ox.. 
We set 

Finally, 

and 

Hf, bll 2 : Ilfll 2 + [b]L 

[f,b]2 : [f]2_, + [b]2_~. 
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02uj/Oxi ox,-n except for the derivatives 

. NEW RESULTS. 

Now we state the two main theorems. We set, for each q > 1, 

+ + ]q p. - I  
IC.q =e.R lB. [" 2 [ f  ,b]+v, lB. []Du + 

e. IN; ]~-~ + ( p - l )  IN; i +-~ IIz~ull II/,bll. 
(3.1) 

Theorem 3.1. Assume that 2 < p and that 
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I: ~ :?,(~:) (3.2) 
Lb~D~(R" '). 

Let u,~r be the weak solution to problem (1.7) under one o f  the boundary 
conditions (1.4) or (1.5). Then the derivatives DZ.u belong to L2(IR~.) and 
satisfy the estimate 

Vo O~.u +(roy,) ~ IZ)ul ~ v'z~u[ <_collf , bll. (3.3) 

On the other hand, 

p' n D2u, V ' x  ~ L~oc (R ÷ ), 

where 

p t  P 

p - 1  

In particular, i f  p < ,._z_ then u ~ Cio c (JR+) where a - - -  n-2' 
More precisely, for  each R > O, 

1 V*rc p',R + v° [ D~u p',R <- 1C, 
1 P 

where 

~ = c . R  IB. l" 2 gf , b]+v,  llvull; + 

[ l ol :1 c. IN R I" 2 + ( p _  1) Du f,b]]. 

n-(n-2)p 
P 

(3.4) 

(3.5) 

Moreover, i f  p < 4, 
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O:c -: , 
- -  ~ Lioc(IR+), 
ax, 

169 

where 

Recall that II~ull. satisfies the estimate (2 .9) ,  

The above theorem may be improved. Merely for convenience assume 
that n = 3. For brevity, v 0 = v I = 1 and C R depends on [ B~ I. 

T h e o r e m  3.2. Assume that n = 3, v o = v~ = 1, and 

2_<p_<3. 

Let f , b , u  and :r be as in Theorem 3.1. Then, in addition to the results 
stated in this last theorem, one has 

m 

V *  I n D2u,  ~ E Eto ~ ( ~  + ), 

where l = 3 ( 4 - p ) / ( 5 - p ) .  
O , c t  n _ _  3 - p  In particular, u ~ C~o ¢ (IR+), where a - ~_, . 

More precisely, for  each R > O, 

v':~ ,,+ D'u ,.. _<K~ + ¢,, llf, bll ~. (3.7) 

Finally, 

m. -< C. IlVulI, +IlvulI7 ' 

where m = 6 ( 4 - p ) / ( S - p ) .  

llfll~ 1 +llfl[+ , 

R e m a r k  3.1. Assume that n = 3. Among the other results, in reference [7] 
we show that (under natural regularity hypotheses on the data) the solutions 
to the initial-boundary value problem (1.I), (1.4) (or (1.5)) in a regular 
bounded open set ff~ satisfy 

- 2 p  
P - 3p  - 4 (3.6) 
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u L2(o,r, w2" (n/) if 

a.d 
uEL4-p(O,T;W2'p'(n)) if 
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P ~] 2+2,4[ 

P ~] 2+2,3[. 

For the Stokes evolution problem (drop the term (u. V)u) the above results 
hold for each p > 2. 

The linear case, p = 2 ,  is well studied; see [35], [4] and [5]. 
Nevertheless, it is significant that, in this particular case, the statements and 
estimates established in Theorems 3.1 and 3.2 coincide with the classical 
results. 
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HOMOGENIZATION OF SYSTEMS OF 
PARTIAL DIFFERENTIAL EQUATIONS 

A. Bensoussan 
University Paris Dauphine, Paris, France 

1. I N T R O D U C T I O N  

In this paper, we consider the class of systems of nonlinear partial 
differential equations, which has been lengthily studied by Prof J. FREHSE 
and the A., with application to stochastic differential games with N players. 
In particular, we refer to the book, A. BENSOUSSAN, J. FREHSE [1]. The 
regularity theory is instrumental to prove the existence of equilibriums in 
noncooperative games. The objective in this paper is to show that regularity 
theory is also extremely useful for obtaining the limit of problems with small 
parameters, like in homogenization. The methods used for scalar equations 
cannot extend, and the regularity results become instrumental 

. STATEMENT OF THE P R O B L E M  AND RESULTS 

2.1 Nota t ion  

We consider a family of matrices a" (x) satisfying 

a" (x) is measurable on R" (2.1) 
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(d ) - ' ( x )~4  >- ao I ~ I~,V~ ~ R",ao > O. 

(2.2) 

(2.3) 

We shall say that a ~ belongs to the class M(~z, a0) .  Let ~ be a smooth 
bounded domain of  R".  Following the theory of  abstract homogenization 
introduced by L. TARTAR [6] and F. MURAT, L. TARTAR [5], we shall 
consider the following properties. There exists a sequence of vectors 
v ~ (x) ~ R",  such that 

v" ~ ( H ' ( ~ ) ) "  and v ~ ---> x in (H' (~) )"  weakly  

a ~ (Dv ~)* ---> a in (L 2 (~))"×" weakly  

d i v ( d  (Dv ~ )* ) ---> diva in ( H - '  ( ~ ) ) '  strongly 

Note that 

(2.4) 

(2.5) 

(2.6) 

(DvC)ij = Ov7 
Ox, 

It is a classical result that a belongs to M ( a ,  a0) .  
We also assume, for technical reasons, 

II Ov~ (x) II--- B,x ~ ~ (2.7) 

We next consider N Hamiltonians H ~'v (x, s, ~:), where 
s ~RU,~  ~RN×',V =1, . . .  , N ,  such that 

H"'V(x,s,~) I{¢v=01 -HC'V(x,s,~){~ ~ = 0,s v = 0} > fi~s ~, i f  s ~ > 0 (2.8) 

H~'~(x,s,~) Ilcv=01 -H~'~(x,s ,~){~ ~ = 0,s ~ = 0} < flVs ~, i f  s ~ < 0 (2.9) 

[H~'~(x,s,~) [{sv=o.~v=ol[_< m v (2.10) 

Writing H"  for the vector H "'~ , we also assume 
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I H~ (x , s ,~ ) -  n ~ (x,s',~)I_< w(I s - s' D(I+ I ~ 12) 

and 

In~(x , s ,~) -H~(x , s ,~ ' ) l  ~ r 
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(2.11) 

~ - ~ ' l ( l + l ~ l + l ~ ' l + l s l  +) (2.12) 

where m" R + ~ R + is continuous, increasing, w(0)  = 0. Next we assume 
a special growth assumption on the Hamiltonians 

Ig~"(x,s,~)l<-K ~ I~11~ v I+ Z X~ I~" 12 + U ( x ) , v = l , . . .  , N - 1  
{/~=I} 

IH~'N(x,s,~)I<_K~ I~1 z +kN(x) 
(2.13) 

where 

n 
KV, K~ are positive constants ,  k v > 0 ~ L q (~ ) ,  q > -~. (2.14) 

We consider the system of elliptic equations 

- d i v ( d ( x ) D u " V ) +  H ~ ' V ( x , u ' , D u ' ) = O , x  ~ f ) , u  ~'v Ion=0 (2.15) 

where u ~ denotes the vector of  components u ~''~ . The functions u ''~ belong 
to 

u ~''~ E H~(£1) x L°°(£1) (2.16) 

In our following development estimates will be proven, which will be 
uniform in c ,  so we shall assume the existence of u" so that (2. 15), (2. 16) 
hold. We can refer to A. BENSOUSSAN, J. FREHSE [2]. 

Remark  2.1. There is an additional degree o f  freedom, related to the 
ordering o f  equations in writing the system. Let F be an N × N matrix, 
which is invertible. To F we associate the transform o f  H ~ denoted H r , 
defined as follows 

H ;  ( x , s ,~ )  = FH"  ( x , r - ' s , r - '  ~). (2.17) 
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Setting 

z" = F u  ~ (2.18) 

then z ~ is the solution of(2.15),(2.16), with H ~ replaced by H~. We shall 
need that (2.8),(2.9),(2.10) hold for  some transform H r , with F satisfying 
the Maximum Principle, which means 

F s  > 0 ==> s > 0 (2.19) 

and that (2.11), (2.12), (2.13) hold for  another transfom Hl~- , not necessarily 
the same, in particular with [" not satisfying the Maximum Principle. We 
shall neeed (2.8),(2.9),(2.10) to prove that z ~ is bounded. Since F satisfies 
the Maximum Principle and is invertible, this implies that u ~ is bounded. 
This being achieved, another transformation, not necessarily satisfying the 
Maximum Principle preserves the L ® bound. It permits to show C ~ 
estimates, which are also valid for  u ~ . In the statement o f  results, this 
flexibility will be implicit. 

2.2 Statement of Results 

Our objective is to prove the following 

T h e o r e m  2.1. We make the assumptions (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), 
(2.7), (2.8), (2.9), (2.10), (2.11), (2.12), (2.13), (2.14). For the assumptions 
(2.8) to (2.14), we take into account Remark 1. Let u ~ be a solution o f  the 
system (2.15), then 

II u -< c ,  II u <- c (2.20) 

I f  we pick a subsequence, still denoted u ~'~ , such that then 

Du"~ - (Dv')* Du ~ --4 0 in L 2 (f)).  (2.21) 

Moreover there exist Hamiltonians H ~ (x, s, ~) satisfying assumptions (2. 
8) to (2. 14), with possibly different constants, such that u the vector o f  
components u v satisfies the equations 

- d i v ( a ( x ) D u  V ) + H v (x, u, Du)  = 0, x c ~ ,  u V ]~ -- 0 (2.22) 
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3. A P R I O R I  E S T I M A T E S  
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3.1 P r e l i m i n a r i e s  

We note that the solution of (2. 15) has the full regularity, namely 
•c,v E W2'p(~~)  , in particular u ~'v ~ CW(~). We prove first 

L e m m a  3.1. We have the estimates 

M v 
[u "'v (x)1_< - -  (3.23) 

PROOF: 
Note first that, from (2.8), (2.10) one has 

H"V(x ,s ,~)  ]W=ol_> ]3~s ~ - M  ~, if  s ~ > 0 (3.24) 

and from (2.9), (2.10) 

v < ~ vSV SV H "'~ (x, s, ~)[l~ =o~- + M~' if  < 0. (3.25) 

The function u ~'~ (x) being continuous in ~ attains its maximum in x ~ (we 
omit to write the dependence in v ). Suppose the maximum is strictly 
positive, then x e ~ ~ .  From the Maximum Principle, we have 

H"'V(x,u~(x~),Du"(x")) lIly=0/- < 0 (3.26) 

so, using (3.24), we deduce 

M v 
u~'~(x ~) < - -  (3.27) 

if u"~(x ~) > 0 ,  and this inequality is obvious if u"~(x ~) < 0.  A similar 
inequality is proven for the minimum, using this time (3.25). The result (3. 
23) is thus obtained, i_] 

We shall now make use of  the growth assumptions (2. 13),(2.14). We first 
notice that we can write 
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H"V(x,s ,~)=Q"~(x,s ,~) .~v + H J ( x , s , ~ )  

with the properties 

Q"~, measurable,  con t inuous  in s, ~, for ~ ~ 0 

IQ"~(x ,s ,~) l<K ~ I ~ l , e  = 1 , . . .  , N - 1  
Q~,N = Q~,N-, 

and 
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(3.28) 

(3.29) 

I Ho'~(x,s,~) I< £ K~ 1¢ ~' [z +U(x) , v  = 1, . . .  ,N  (3.30) 
{a=l} 

N where the constants not yet defined are K~, defined as follows 

u = K  u . .  (3.31) Kl, + l K u - I , , u  = 1, . , N - 1 ; K ~  = K  u + K  N-I. 
2 

Indeed, we set, for v = 1, . . . ,  N - 1 

~,~ H (x,s ,¢) 
cr (x , s ,~ )  = (3.32) 

v 
g v I~11~ v I +~/ ,=,~  K,~ I~ '~ 12 +k~(x)  

~ v 

(3.33) 
I~1 

and successively 

Q~.V (x,s ,g)  = K ~ cr ~'~ ( x , s , g )  ] ~' 1 - -  

for v = 1, . . . ,  N -  1, and Qu = QU-J. Then we set 

Ho 'v (x,s ,4)  = H", ~ ( x , s , 4 ) _ Q  ~,. (x,s,4).4 ~ (3.34) 

then, it is easy to check that (3.28), (3.29), (3.30), (3.31) are verified. 
We then proceed with a fundamental inequality. For simplicity at this 

stage, we shall omit to write explicitly ~', since all estimates will be uniform 
with respect to ~.  We call 
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M ~ 
p = m a x - -  (3.35) 

which is an L °° bound for the solution of(2 .  15), which we call temporarily 
v v u , without g .  To any solution u = ( . . . ,  u , . . . ) ,  

constant vector c ,  such that 

II c II--- p (3.36) 

and we write 

~I = U - - C .  

Let also 

_> 0 , ~  e H '  ~ L°°(~), p ' ]0n= 0 i f  c ~ 0. (3.37) 

We introduce the notation 

fl(x) = exp x - x - 1 (3.38) 

and the map X(s)  : R u ~ R N defined backwards by the formulas 

X N (s) = exp[fl(rNs N) + / 3 ( - S s  N)] 
(3.39) 

X ~ ( s )  = e x p [ f l ( r ~ s  " )  + f l ( - r v s  ~) + x TM (s ) ] ,  v = 1, . . . ,  N -  1 

where y~ are positive constants ans s = (s t, . . .  ,sN). We note the formula 

OXV - (  

Os l' y~' X ~ 

We call 

X ( x )  = x(~,(x)) 

hence clearly 

0 i f A t < v  

. . . X ~ ( f l ' ( r ~ s ~ ) - f l ' ( - y ~ s ~ ) )  i f  At -- v 

we associate a 

(3.41) 

(3.40) 
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N 

D X  ~= ~ yuX~ . . .X~( f l ' ( ru~ t~ ) - f l ' ( - yu~ ' ) )Du~ '  (3.42) 
{~=v} 

from which we deduce the estimates 

I D X  I < c(P) I  z~ II Du I 
0 <_ X ( x ) -  X o <_ c(p) I  H I ~ 

(3.43) 

where in the sequel, c(p) denotes a constant depending only of p (this 
assumes that the constants 7 ~ depend only of  p ) ,  and X 0 is the value of 
X(s )  for s = 0.  We have 

X0_>l. 

We state the 

Proposition 3.1. We assume (2.1), (2.2), (2.3), (2.13), (2.14), a solution u 
of  (2. 15), bounded by p .  There exist constants yv (p) ,  c(p) such that, for 
any constant vector c satisfying (3.36), and any ¢ff such that (3.37) holds, 
one has 

N La,  
Oxl Oxi ~,=ll 

PROOF: 
We take as a test function in (2.15) 

v 

v ~ = ~ , r ~ ( / r ( / ~ v )  - p ' ( - / ~ v ) ) l T [  x .  
,u=l 

then 

- div(a(x)Du ~ )v ~ dx 

~ v v 2 "  " ' ~ "  v ~ v  ~, v v 

v 

= ~ a,j °uvoxj a~'ox,/(P'(rV~)-P'(-/~v))I]~., x~ dx+ 
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) - f l  ( - r  U ) ) = - l - [  X dx aq..~__~y (fl (y -v , v -v 0 ~, 
,h oxj • O X i  ,u=l 

= I + II + III. 

Then, one checks easily that 

I = ~ a u OX~ a ~  dx 
Oxj Ox, 

v 

II > ot ~ v/ I Du v 12 yv 2(exp yv z7 + e x p -  y" ~tv)l-[ X ~' dx 
/a=l 

v 
~a OF~ OFV~t--IXl'dx 

III = aij Oxj Oxi ,u=l 

where 
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F ~ = log X v . 

Next, we have 

N - I  N - I  v 

X L Q  vv~ d x = X  ~Q"(DF"-DXV+')I--[  XI' dx 
v=l v=l u=l  

N - I  v N 

= Z ~n v(Q"-Q~-')DFVI-I XI' dx-  ~n P'QN-'DFNI--[ xI' dx 
v=l ,u=l kt=l 

where we have set Q0 = 0. Since QU-i = QN, it follows that 

N N - I  v 

Z ~QVvVdx=Z ~/OVDFVl-[Xl 'dx  
v=l v=l ,u=l 

where 

~=Q~_Q~-I  v = l . . .  N-1 .  

Collecting results and performing additional majorations we obtain 
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~a au OX I c3~ dx + 

Oxj Ox i 
N v 

+ay" ~v/IDu" 12 yV2(expr v~7 v + exp-r  vzY)l-I X" dx 
v=l  u=l 

N ~  v lN-la+a*_l v 

+ Z  ~'HoyV(expyVu~-exp-YVuv)l-I x"  dx<--4vZ j ~t---T-)  Ov.O~l-I X" dx. 
v=l  ,u=l = ,u=l 

Thanks to the properties (3.30), (3.31), it follows that 

OX t O~ dx + 
~ aiJ Oxj Or. i 

N v 
+a~ ~a v/lDuV 12 Yv 2(exp Yv ~Tv + exp- ;vv ~Y)I-I x "  dx_< 

v=l /t=l 

N o" 

+ ~ ' y ~ g ~  I exp y"~7~- exp-  7"ff'~ I]I- [ x "  dx+ 
o-=v ~=1 

+2 ~n~YVUlexpyVu~-exp-yVuVl Xl'dx" 
v=l .u=l 

Suppose the constants 7 'v (p)  are chosen so that 

v 

ayvz_2y~K~ > 1_[~-~ (K o + X~_,) 2 + 
4a ~=1 

N-I o" 

+ (K + l X']+ 
o-=v+l p=v+l  

+ ~ y"g2  J expy~zU-exp-y'~7~[ X" 
o -=v+ l  u = v + l  

and c(p) is such that 

v 

yv I exp yv zTv _ exp-  y~ ~ I l--I x .  < c(p) 
,u=l 

(3.45) 

(3.46) 
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then the result (3.44) follows. The constants 7 "v (p )  can be defined by the 
relations (3.45) backwards, observing that X u can be majorized by a 
number depending only on p,  7 "u . . . . .  S .  

The proof has been completed. E] 

3.2 E s t i m a t e s  

We begin by stating the following result concerning the H~ estimates 

Proposition 3.2, We have the estimate 

a ~ 1 D u  ~ ]2 dx ___ c(p) (3.47) 

PROOF : 
One just pick c = 0 and ~ = 1 in (3.44). The result follows immediately. 15 

We then proceed with the HOlder estimate, which is essential in the case 
of systems 

Proposition 3.3 For 6 < (Yo = 1 - "-- one has the estimate 
2q ' 

u "'v Id _< c~(p)  (3.48) 

We begin by introducing the Green function, with respect to a point x 0 ~ f~. 
Let (2 be a ball such that ~ c Q.  The Green function is the solution 
G = G x° of the equation 

aDfk.DG dx = qb(x o), V (k ~ C o (Q) (3.49) 

Moreover, G satisfies the estimates 

Co l X _ X  ° ]2-,< G(x)  < c, I X - X o  [2-n (3.50) 

for all x in a neighborhood of x__ 0 , whose closure is contained in Q.  In 
particular, (3. 50) holds for x ~ .  The constants Co,C I depend only on 
a , a  0 , therefore they do not depend on ~,  whereas G depends on ~.  

The next ingredient is the cut-off function. Let r (x)  be a smooth 
function such that 0 < r < 1, and 

. I r k ,  J 
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r (x )  = 1,'v'x such that I x I< 1, r (x)  = 1, Vx such that I x I> 2. 

We define 

rR(x) = r ( L - ~ )  

and we denote by B R = BR(Xo) the ball of  center x 0 and of  radius R .  We 
assume R < R 0 . An essential element in the proof of Proposition 3 is the 
following 

Lemma 3.2. We have the inequality 

is lOu ~ 121 x-x012-" dx<_ C Is,._s lOu" 121 x-x0 12-"dx + CRP(3.51) 

for  all R < R o and/~  < flo - 2 -  "- with C depending only on p .  _ _ - -  q ~  

PROOF of LEMMA 3.2: 
We apply (3.44) with 

= Gr~ 

and 

0 i f  BzR ~ (R" - ~ )  ~ Q 

c = c R = _ 1 [ u dx i f  B2R c ~2 
I BzR B R [ ~e2~-B~ 

We can also consider that u is extended outside f2 with the value 0.  
We first notice that 

a ~ Gr  2 IDul2dx >_ ac o ~8. I Oul21x-x° 12-" dx. 

Next 

{v=l} 2tc-B~' 

(3.52) 

(3.53) 
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<-- C,C(p)( I82R_sR l X-- Xo l(2-")q' dx)q4 

hence 

N 

c(p) ~ a~ Z kv dx <_ c(p)R 2-~ (3.54) 
Iv=l} 

where, of  course the constant c(p) 
(3.44) 

032 ~ OGr~ dx = I + II 
~ aiJ c3xj Ox i 

with 

I = 2 Ia GrRaiJ OXt OrR dx 
Oxj Ox~ 

and 

c3X l OG dx. 
I I = ~  r~aij Oxj Oxi 

Then, we can write 

O ( ( X  I 1 2  
- X0)rR) c~G - - - -  dx 

H = ~a a~./ c3xj Ox i 

and from the definition of  the Green function, see (3.49) 

Orl~ OG dx" 
II > -2 ~ vR(X' - X~)aij c3xj c3x-- T 

Making use of (3.43), and performing easy majorations we obtain 

is generic. We turn to the main term in 

Or R OG 
d x - Z ~  r , (X ' -X~)a , /  Oxj Ox i 
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> - c ( P ) [  f82.-8~)~n.t l u - c  R 12 - R z Gdx+.o~._~. 1+11 12 G dx + III] 

where 

I G-~[DG 121u- cR 12 2 dx. 111 = 8~R-SR)~'n rR 

Note that 

L2.-B.)~ lu-cR 12 12 
R 2 Gdx<cl  L2 _B.)~n l u - c R  - R2 Ix-x012-°dx 

-<clR2-" Is~,,-B,)~n [u-cRR 2 12 dx 

and using Poincar6's inequality, we obtain 

<-CR2-°~._B IDul2dx<-C~B~._B~ Oul21x-xol2-"dx. 

Therefore we have proven 

I + H > - c ( p ) [  Is~,-8, I Du 121 x -  x0 12-" dx + 111]. 

To estimate 111, one introduces a new cut-off function, defined as follows 

X--- 0 i f  I x I___ 2 

X--  z- i f  I xl>__ 1 

and Z smooth, 0 < Z < v.  We set 

zR = z ( L ~ )  

and note that 

ZR = z'R, outside B e. 
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We take in (3.49) 

b=G-¢ lu -¢~ 12 z~ 

noting that ~b(x 0) = 0 .  We obtain the relation 

1 ~aDG.DGG_~I u_cR[2 2 ~aD(I u -  -~ zR dr = c ~ 12 Z2R).DGG -¢ dx (3.55) 

Using now the system (2.15), testing with (u ~ - c ~'R)GkZ2R, it follows 

1 ~aDu~(u, _cv,R)G_~DGz2R dr+ aDu" .Du~ G~ Z~ dx + -~ 

2 ~aDu ~ (u ~ -c"'R)DZRG ~ dr + ~H ~ (u ~ --C"'R)G~z2R dx =0. 

Hence 

~aD(lu-c R 12 ZzR).DGG -~ dr <_ 2 ~aDzR.DGG-kzR l u - c  R I 2 -  

-8 ~aDu" (u v -c"'e)DzRG ~ dr + 4 ~H ~ (u ~ --cV'R)G¢ z2R dr 

Using the quadratic growth of H ,  one checks easily that 

~aD( lu -c  R 12 2,]).DGG -~ d r < C 6  ~I DG[ 2 G q  l u - c  R 12 x] dr + 

C I~2R-~.)~n I u - c ~ 12 , 
+ ~  R 2 G~ dr + 6 

2 

+ ~82.-8~ [ Du 12 G ~ dr + CR '-'+~ 
2 

where 6 is aribtrarily small. Combining with (3.55)we obtain 

~IDGI ~ O-~lu-cRI ~ X#dr<_C~,_,, IDul ~ O¢dr+ 
2 
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+C I8~.-8.)~n [ u -R2CR 12 G ~ dx + CR I-"+~. 
2 

Finally, we can assert that 

111 < C IB~.-B. [ DU I=l x - Xo 12-" dx + CR 2-~. 
2 

Combining results, and changing R by 2R,  the result (3. 51) is obtained. 
This concludes the proof of Lemma 2. !1 

PROOF of PROPOSITION 3.3 
Proceeding as for Lemma 2, with g /=  G and c = 0,  one obtains 

I l D u l Z l x - x o  12-" dx_< C (3.56) 

We can then use the hole filling technique of Widman (see K.O. WIDMAN 
[7]) to obtain 

~8 I Du 121X-Xo I ~--" dx <<_ C~R~,,8 < P0 = 2 - n  (3.57) 
q 

and the result (3.48) follows from the classical result of MORREY [4], with 
b" =~. E~ 

. P R O O F  O F  T H E O R E M  2.1 

4.1 S t rong  C o n v e r g e n c e  

From PROPOSITIONS 3.2 and 3.3, we deduce that we can extract a 
subsequence such that 

u ̀ ''V ~ u" in H~(~)  weakly and in C°(f i )  (4.58) 

Note also that H ' ' ( x ,  uC,Du ~) remains bounded in L~(f2) and in 
H -I (f2) and thus we can assume that 
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H "'v ~ 2 v in H-J(f~) weakly and in (C° (~ ) )  * weak star 

Let us consider functions ~b ~ such that 

Ov i~ = 0 , D e  I~,~= 0 

and set 

~,~ =¢ +m¢(v~-x). 

Note that 

D~b ~,~ =(Dv~)*Dqk ~ + m2q~ (v~ - x ) .  

From the assumptions (2.4),(2.5),(2.6), we then deduce 

~b ~'~ ~ ~b ~ in H~ ( ~ )  weakly  
D~b ~'~ - (Dv ~)* D~b ~ ~ 0 in (L 2 (~))"  weakly  

a"Dq~ ~'~ --~ aD(k ~ in (L2(~))" weakly 

diva~D~b "'v ~ divaD~b ~ in H -~ (f~) strongly 

From (2.4), (2.7), we can assert that 

v" ~ x in C o ( ~ )  

hence also 

~ '~  --> ~ in C O ( ~ )  

We then state the Lemma 

Lemma 4.1. We have the property 
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~ limsup I~-"~ ] Du"* - (Dv ' )*  De ~ 12 dx < 
V 

- I2  IaZ O .D( - # ) d x - y  < > 
V v 

(4.63) 

PROOF: 
Consider (2.15), which we test with u ~'~ - 0 " ~ .  We deduce 

Ia"D(u '*  - ~b ~'~ ) .D(u'* - qY* ) dx + 

- I d i v ( a " D ¢ ' * ) ( u ' * - ¢ " ~ ) d x  + I H  ~'~ ( u ' * -  ¢ ' * ) d x  = O. 

Using (4.61), (4.62) together with (4.59), we obtain 

a limsup I)-"~ [ Du ''~ -DcY* I 2 dx < 
V 

Idiv(aD¢~)(u ~ - ¢ ~ ) d x -  ~ < 2c~,u ~ - ¢ ~  >. 
V V 

Taking into account the second property (4.61), we obtain (4.63). f~l 

Now, we can assert that (4.63) holds also for ~b ~ ~ H~(f'2), since the 
second derivative has disappeared from the formula. Taking then ~b v = u ~ 
we deduce 

Proposition 4.1. We have the property 

Du `'v - (Dv  ~)* Du ~ --4 0 in (L 2 (f'2))" (4.64) 

4 .2  C o n s t r u c t i o n  o f  the L imi t  H a m i l t o n i a n  

Consider the sequence H~'V (x, s, (Dv ~)* ~). From (2. 8) to ((2. 12), we 
deduce 

IgC(x,s , (Dv")*~)l<_M+ar(ls l ) ( l+B2l~12)+yBl~l(a+Bl~l)  (4.65) 

where 
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M = ( ~ - ' ( M " ) 2 )  ~. 
V 

We follow the approach of  BOCCARDO-MURAT [3]. Let Z be a 
countable dense subset of  R u("+~), containing 0 and dense subsets of  the 
subspaces s ~ = 0.  There exists a subsequence such that 

H~'V(x,s,(Dv")*~) ~ H~(x,s ,¢)  weakly  in L2 (f~),Vs, ~ ~ Z (4.66) 

One checks easily that the properties (2.8) to ((2.14) are satisfied for 
H ~ (x, s, ~) on Z ,  with possibly different constants. These estimates, which 
imply a uniform continuity in Z for bounded sets, permit to extend the 
definition of  H~(x,s ,~) to  any pair s~,~ ,~, and (2. 8) to ((2. 14) are 
satisfied. Moreover one has the property 

H ~'~ (x, s, (Dv ~)* ~) ~ H ~ (x, s, ~) weakly  in L 2 (f2), Vs, ~ (4.67) 

We then asset the following result 

L e m m a  4.2. Let O ~ ~ L ~°(~) and F ~ ~ (L 2(~) )" .  Let z ~'~ be functions 
bounded in L°°(f2), which converge in L 2 (f2) to functions z ~ . Then one 
has the convergence property 

~(HC'~(x,¢(x),(Dv~)*F(x))-H~(x,O(x),F(x)))z~'~(x)dx--~O (4.68) 

PROOF: 
From (4.67), one can assert that (4.68) holds whenever 0 ~, F ~ are bounded 

• k v  k v  step functions. We can then consider approximations O , I" such that 

O *'~ ~ O ~ a.e. and [I O k'v II_< C 
F *'v --, F ~ in (L 2 (f~))" and a.e. 

O *'~, F *'v being step functions. We write 

~( H ~ (x,O(x),  ( Dv~)*r(x))  - H (x, O(x) , r (x ) ) ) z  "'v (x) dx 

= ~(H ~ ( x , O ( x ) , ( D ¢ ) * r ( x ) ) -  H ~ (x,O k (x), r* (x)))z  ~,v ( x )dx  

+ I (H ~ (x, O k (x), I 'k (x)) - H(x ,  O k (x), F k (x)))z  ~'~ (x) dx 
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+ I(H(x,  fk* (x), F* (x ) ) -  H(x,¢(x) ,F(x)) )z  ~'~ (x)dx 

= I + II + III. 

From uniform estimes, we can check that I ,  III are bounded by o(k) 
independent of ~', and o(k)--~ O, as k--~ oo. Moreover, for fixed k ,  
H ~ 0 as c ~ 0. The result follows. L1 

4.3 End  o f  P roof  

We can now complete the proof of Theorem 1. From (4.64) and the 
uniform estimates (2.11), (2.12) it follows that 

H*'V(x,u*,Du*)-H~"V(x,u,(Dv~)*Du) --~ 0 in L~ (f~) (4.69) 

Moreover from Lemma 4.2, we have 

H~'V(x ,u , (Dv~) 'Du)-H"(x ,u ,  Du) ~ 0 in L~ (ff~) weakly (4.70) 

Therefore we deduce 

H ' ' ( x , u ' , D u ' ) - H " ( x , u ,  Du) --~ 0 in L~ (f2) weakly (4.71) 

Hence, we have 

27 = H~ (x,u, Du) 

From 4.64, we have 

a~Du ~'~ - d  (Dv~)* Du ~ --~ 0 in (L2 (ff~))" (4.72) 

hence 

d i v d D u  ~'~ - d i v ( d ( D v ~ ) * D u  ~) ~ 0 in H-~(~) weakly (4.73) 

But, from the assumption (2.5) it follows 

d i v ( d  ( Dv ~ )* Du ~ ) ~ div( aDu ~ ) in H-X (f~) weakly (4.74) 
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hence finally 

d ivd  Du ~'v --~ div(aDu v) in H -I (~)  weakly 

The proof has been completed. 
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Abstract: 

Key words: 

Since a vector program has not just an optimal value but a set of optimal ones, 
the analysis of duality gap requires at least the comparison between two sets of 
vector optimal values. Relying only on a weak duality property, the situations 
that can occur are analysed in detail and some concepts of duality gap are 
proposed. Some numerical examples are also provided. 

vector optimization, duality gap 

. I N T R O D U C T I O N  

Duality is one o f  the most important topics in optimization both from a 
theoretical and algorithmic point o f  view. In scalar optimization, one 
generally looks for a dual problem in such a way that the difference between 
the optimal values is non-negative,  small and possibly zero. This difference 
is called duality gap. However, such a definition cannot be applied to vector 
optimization easily, since a vector program has not just an optimal value but 
a set o f  optimal ones. A first attempt to analyse the vector case appeared in 
[2] but it was based on scalarization techniques and the considered duality 
gap was between scalar problems. Though a large number of  papers dealing 
with duality for vector optimization have been published, to the best of  our 
knowledge, studies about the duality gap have not been carried out. The first 
difficulty to overcome is the definition of  duality gap itself." the aim of  this 
note is to address possible answers to this question and not to present new 
duality results. Therefore, we review some of  the vector optimization duality 
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schemes developed in literature and we propose some concepts of  duality 
gap, which match the known results. 

. D U A L I T Y  S C H E M E S  

Throughout all the paper we consider the following vector optimization 
problem as the primal problem: 

(P) min c f (x) subject to x ~ Xo,-g(x ) ~ Q 

where f : R" ~ R e and g" ~" --~ ~ "  are vector-valued functions, 
X 0 c_ R" is any subset and Q c R" is a convex cone; let X denote the 
feasible region, i.e. X = {x ~ X 0 : -g(x) ~ Q}. The notation rain c marks 
vector minimum: we recall that 2 ~ X is a vector minimum point of problem 
(P) if  f(2") is a minimal element of  f ( X )  with respect to the partial order 
induced by the convex, pointed cone C c_ ]~e with 0 e C,  i.e. if there is no 
feasible x such that f (2 . ) -  f (x)  ~ C \ {0}. Moreover, the minimal 
elements of  f ( X )  will be referred to as optimal values of (P) and 
mincf(X) will denote the set of  all the optimal values. Analogous 
definitions can be introduced for maximization problems. 

Many dual problems for (P) have been introduced in different ways. The 
most studied approaches rely on vector-valued Lagrangians, starting from 
the pioneering paper by Tanino and Sawaragi [8]. The Lagrangian 
L(x,A):=f(x)+Ag(x),  where A is a matrix of multipliers, has been 
employed in that paper to introduce the following dual problem: 

(DL) maxcdL(A ) sub j ec t t oA~Y L :={AER e×m : A ( Q ) c C }  

where dL(A):=minc{L(x,A):xeXo} is the dual mapping. It is worth 
stressing that d L is set-valued; therefore, (DL) is actually a set-valued 
optimization problem and it simply borrows the optimality concept of  the 
vector case in the most natural way, that is A e y, is a maximum point of  
(DL) if there exists yedL(X ) such that y ~ m a x  c dL(YL), where dL(YL) 
denotes the union of  the sets d L (A) over all A e YL. 

Another Lagrangian type approach relies on the real-valued Lagrangian 
function g(x,O,2)=O.f(x)+2.g(x) .  It has originally been proposed by 
Jahn [5] as a generalization of  the duality approach developed by Isermann 
[4] for linear vector optimization problems: 

(Dj)  maxc dj(0,2) subject to (0,2) e C + x Q" 
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where 
dj(O,Z)  := {v ~ ~ e : O. v<_ inf{g(x,O,A) : x ~ Xo} } . 

Thus, the dual mapping is set-valued also in this scheme but it does not 
involve any vector optimality concept. The dual variables 0 and Z are 
bounded to take their values in the strict dual cone of  C ,  i.e. 

C + : = { 0 e R  e : 0 . c > 0  V c ~ C \ { 0 } }  
and in the dual cone of  Q,  i.e. Q* := {,% e R" : ,% .q > 0 Vq e Q}. 

Also Wolfe type duality has been widely studied for vector optimization 
[3,10,11]. In this approach the constraints are just the Kuhn-Tucker 
necessary conditions for problem (P) : supposing for the sake of simplicity 
that f and g are differentiable functions and X 0 is an open set, Wolfe dual 
is the following maximization problem: 

m a x c f  (U) + (,%' g(u ))c 

subject to 
(Dw) 

O. V f  (u) + Z . Vg(u)  = O, 

u ~ ~{",O ~ C+,Z ~ Q ' ,O .c  = I 

where c ~ int C is a fixed vector. The dual mapping is not set-valued but it 
is worth stressing that unlike the previous schemes this one requires 
convexity assumptions on f and g even to achieve weak duality results. 

Actually, also some other duality schemes have been developed, among 
which we just recall the Mond-Weir variant of  Wolfe duality [10], conjugate 
duality [9] and the scheme based on monotone nonlinear multipliers [6]. 
Since we aim to analyse concepts of  duality gap for all schemes in a unifed 
way, we will just consider the following generic form of  dual problem: 

(D) maxc d(y )  subject to y e Y 

where Y is the set of  the feasible dual variables and the dual mapping d 
takes values in R e and may be set-valued. 

3. D U A L I T Y  G A P  

All the duality schemes we recalled in the previous section satisfy a weak 
duality property, that can be written as 

d(Y)  ~ [ f ( X )  + (C \ {0} )] = 0 (1) 

or equivalently 
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f ( X )  n [d(Y) - (C \ {0})] = O (2) 

and means that no value of the dual problem (D) is greater (with respect to 
the partial order induced by C ) than any value of  the primal problem (P) or 
equivalently that no value of  (P) is smaller than any value of  (D). 

! 

If  this weak duality property holds, then it is easy to check that 
f ( 2 ) ~ d ( y )  implies that 2- is a minimum point of  (P) and ~ is a 
maximum point of  (D) and f(2-) is an optimal value both for (P) and (D) 
(see [4,5,6,8]). Therefore, whenever the images have nonempty intersection, 
i.e. 

d(Y) n f ( X ) .  0,  (3) 

the two problems possess at least a common optimal value. It is worth noting 
that (3) is actually equivalent to the condition 

maxc d(Y) ~ m i n c f ( X )  ~ ~ .  

In order to check whether (3) holds or to give a numerical measure of its 
failure, we can consider the quantity 

A := inf {[I v - u  I]: v ~ d(Y),u ~ f (X)} .  

In fact, A = 0 if (3) holds. Unfortunately, the vice versa does not hold, 
unless suitable compactness assumptions on f ( X )  and d(Y) are made. 
Thus, A be may be zero even if no common value exists. However, A = 0 
means by definition that the two objective functions achieve values whose 
difference has arbitrarily small norm; notice that in scalar optimization (i.e. 
g = 1 ) this means exactly that the optimal values coincide but in the vector 
framework it is not so. 
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Example 3.1. Consider (P) with n = 2 ,  g = 2 ,  m = l ,  X0=R2÷, 
Q = ~ + ,  the functions f(xl,x2)=(x~,xz) and g(x t ,Xz)=l-x jx  2 and 
C = ~2÷ as the ordering cone. The set of the optimal values of (P) is 

minc f (X) = {v ~ IR2÷ : vlv 2 = 1}. 

Let us examine the Lagrangian dual (D L). Easy calculations show that 

d t ( A ) = { ~  At*'A2t)} ifif AtlA21AI,A2~ ¢=00 

and thus dL(YL)= {v ~ IR2+ :v~v 2 = 0}. Therefore, we have A = 0 even though 
(3) does not hold; this is possible since the images f ( X )  and d L (YL) are not 
compact sets. 

Generally, the results known in literature as strong duality relations are 
different from (3). In fact, they state that under suitable assumptions 
(typically convexity requirements on f and g and Slater constraint 
qualification) for any minimum point 2- e X of (P) there exists y e Y such 
that f ( g ) e  d(y) (see [5,7,8]); that is, not only (3) is satisfied but also the 
stronger conditon 

m i n c f ( X )  c d(Y) (4) 

or equivalently 

minc f (X) c maxc d(Y) 

holds. In order to check whether (4) holds or to give a numerical measure of 
its failure, we can consider the quantity 
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A p := sup {inf {ll v - u  H: v ~ d(Y)} :u ~ minc f (Y)} .  

Since (4) implies (3), we have A < A P and the inequality may be strict. 

Example  3.2. Consider (P) with n = 2 ,  g -- 2 ,  m = 1, 
X 0 = [0, n/2] × [0, 2], Q = R+, the functions f ( x i , x  2) = (x 2 cos x I, x 2 sin x,) 
and g ( x t , x z ) = l - x  2 and C=~Z+ as the ordering cone. The set o f  the 
optimal values o f  (P) is 

m i n c f ( X )  = {v e Nz+ "v, z + v 2 = 1}. 

Let us examine the Lagrangian dual (D j ) .  Standard optimization 
techniques provide 

2 i f  min{0j,02} _> 2, 
inf{g(x,O,2,):x E X0} = 2min{0~,02} - 2, if  min{0~,02} < 2,. (5) 

Choosing 0 ~ = 0 2 = 2 , ,  we get dj(O,-X)={veNZ+'v,+v2<l } and thus 
A = 0 since {(1,0),(0,1)} G dj (C ÷ x Q') n f ( x ) .  This inclusion is actually 
an equality since (5) allows to check easily that 

dj(C + × Q.)  = (N2 \ R2+) w {v e N2+ :v, + v  2 <I} 

v~ 

~ v  I 

which im_plies A e > 0 ;  precisely, we have A e =11 (x]'2/2,x/2/2)-(1/2,1/2)II = 
= ( 2 - 4 2 ) / 2 .  Notice that f is not convex and therefore not all the standard 
assumptions to achieve the strong duality relation (4) hold. 

Obviously, A e = 0 if  (4) holds while the vice versa does not hold unless 
d(Y) is a closed set. However, A e = 0 means that any optimal value o f  (P) 
is the limit o f  a sequence o f  values o f  (D) even when (D) has no optimal 
values as in the following example. 
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Example 3.3. Consider (P) with n = 2 ,  g = 2 ,  m = l ,  X 0 = ~  s, 
Q = R+, the convex functions f ( x ~ , x 2 )  = (xl,xs) and g ( x j , x s )  = (x  I + x2) s 
and C = l~z÷ as the ordering cone. The set of  the optimal values of (P) is 

m i n c  f ( X )  = {v ~ II~ s" v s = -v ,  }. 

Let us examine the Wolfe dual (D w), which turns out to be 

maxc(U, + 2.(u, + u2)S,u2 + 2(u, + us) s) 

subject to 

0 I + 22.(u I + u s) = O, 

0 s + 22'(u, +Us)=0  , 
o, + os = 1,2'_ o,o, > 0,os > 0. 

The constraints imply not only 
01=0 2=1/2 and 2 .=- l /4(u~+u2) .  
maximization problem 

2.~0 and 
Therefore, 

(u I+uz)~:0 but also 
(Dw) reduces to the 

maxc(3U, - u2,3u2 - u,) 
subject to 

U I -~-U 2 < 0 .  

Relying on a linear transformation of  coordinates, it is easy to check that 
the set of  the values of  (Dw) is dw(Yw ) = {v E ~2 : v 2 < v~} . 

v2~ 

%1 

Therefore, we have A = A P = 0 though neither (3) nor (4) holds; this is 
possible since (P) does not satisty Slater constraint qualification. 
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Exchanging the roles of  the primal and dual problem, it is reasonable to 
consider also the following duality relation 

maxc d(Y) c f ( X ) .  (6) 

Results which guarantee that this relation holds are known also as 
converse duality. We can consider the quantity 

A ° := sup {inf {11 v - u  II: u E f ( X ) } : v  e maxc d(Y)} 

to check whether or not (6) holds. Obviously,  A ° = 0 if  (6) holds while the 
vice versa does not hold unless f ( X )  is a closed set. Moreover,  A < A ° 
while no relationship between A p and A ° readily follows from the 
definitions. 

Actually, not many converse duality results have been proved for vector 
optimization (see [4] for the linear case and [5] for the duality scheme 
involving (P)  and ( D j ) ) ;  furthermore, as far as we know, no converse 
duality results have been obtained yet without actually supposing C to be a 
closed cone. 

Example  3.4. Consider (P)  with n = 2 ,  ~ = 2 ,  m = 1, X 0 = [0, 2] x [0,2], 
Q=IR+,  the linear functions f(%,x2)=(x,,x2) and g(x , , x2)=l -  % and 
C = int 1R] u {0} as the ordering cone. The set o f  the optimal values of  (P)  
is 

m i n c f ( X )  = ([1,2] x {0}) ~ ({1} x [0,2]). 

Let us examine the Lagrangian dual (D j ) .  It is easy to prove 

2, i f0 ,  > 2  
inf{g(x, 0,,~) : x e X 0 } = 20~ - 2, if  0j < 2. (7) 

Notice that C ÷ =IR] \ { 0 } ;  therefore, any dual variables such that 
0~ = 2, = 0 yield d s (0 ,2)  = R x R_ while those variables such that 0, = 2, > 0 
and 02 = 0 yield dj (0, 20 = (-0% 1] x R .  Actually, (7) allows to check that 

dj(C + x Q ' ) =  { v e N  2 :y, ___1 o r y  2 ___0}. 
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v: 6 
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Therefore, we have A = A e = 0  but A ° =  +~ .  Though (P) is a linear 
vector optimization problem, no converse duality relation holds: the only 
assumption of  the converse duality theorems presented in [4,5] which is not 
fulfilled is the closedness of  C .  In fact, just considering the problems (P) 
and (Dj) of  this eaxmple with C=R2÷, we get A = A e = A D = 0  in 
accordance with [4,5]. 

R e m a r k  3.1. Actually, many duality results have originally been developed 
through scalarization techniques, considering just proper minima and proper 
maxima. It is worth stressing that (3) does not guarantee that the common 
values are properly optimal, since the definition of  proper optimality is not 
related to any fixed partial order. Obviously, concepts of  duality gaps could 
be introduced also in this framework but relying only on the relationships 
between the set of  proper minima of  (P) and proper maxima of  (D).  

. O P E N  P R O B L E M S  

The quantities A, A P and A ~ are three concepts of  duality gap, which 
seem adequate for vector optimization: they have been introduced in 
accordance with the known duality results as a numerical measure to test 
whether or not they hold. Furthermore, notice that in the case of  scalar 
optimization they all collapse to the well-known concept of duality gap, 
since we have A = A P = A ° . 

We did not prove any new result since this was not the aim of  this paper; 
however, we want to address some research directions on this topic, which 
we believe to be interesting. Is there any relationship between A e and A°?  
Are there further relationships between A, A e and A°?  For instance, if 
A > 0 with A e and A ° being both finite, is it true that they are all equal? 
How can these quantities be estimated, relying for instance on the lack of  
convexity of  a function (see the results in [1] for scalar optimization) and/or 
on other numerical measures of the failure of those conditions, which 
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guarantee a zero duality gap? Are there any relationships between these 
concepts of duality gap and the duality gaps achieved considering scalar 
optimization reformulations of the original vector problem or considering 
scalarization methods such as the weighting and the c -constraint ones? 
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In 1958 the author proved the Maximum Principle [2]. B. Pshenichni wrote 
that the proof was sensational, using topology to obtain a result of variational 
calculus. Later the author worked out the Tent Method [3] as a general way to 
solve extremal problems. In fact, main ideas of the Method were contained in 
[2]. We give here a short survey of the Tent Method and the idea of the proof 
of the Maximum Principle. AMS 1991 Math. Subject Classification. Primary 
15AI5; 52A20; Secondary 15A18; 52B12. 

optimization, variational calculus, maximum principle. 

. CLASSICAL CALCULUS OF VARIATIONS 

We formulate problems o f  the classical Calculus o f  Variations in terms o f  
controlled objects. Note that the connection between variational problems 
and controlled objects was discovered by Graves [1 1] (see also the survey 
[12]). 

Consider the controlled object 

~ = f ( x , u ) ,  x=(x l , . . . , x" )  r ~ " ,  u=(u '  .... ,u ' )  r ~ U ,  ( 1 )  

I X U  n where the function f ( x , u ) = ( f  ( , ) .... , f  (x,u)) r is smooth, and U c R" 
is a given resource set. Every piecewise continuous function u(t), 0 < t < t~, 
with values in U ,  is an admissible control. We always assume that 
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u(r + 0) = u(r) for r < t~ and, moreover, u(t I - O) = u(t]). For every initial 
state x o ~ JR" there is a unique trajectory x(t), 0 < t < tj, with x(0) = x 0 that 
corresponds to the control. The pair (u(t), x(t)) ,  0 < t < t t , will be denoted as 
an admissible process for the controlled object. 

The Lagrange optimization problem requires to find an admissible 
control such that the corresponding trajectory starting from x 0 satisfies the 
terminal inclusion x(tj) ~ ~ and minimizes the integral functional 

j = ~, f o  (x(t), u(t)) dt. 

Here ~1 e R "  is a given terminal set and f ° ( x , u )  is a given positive 
integrable function. The terminal time tl is not fixed in advance. 

If f ° ( x , u ) =  1, then J =t t ,  and we obtain the time-optimal control 
problem: to find an admissible control that transfers x 0 to Y~] in the shortest 
time. 

The Mayer problem requires to find an admissible control minimizing the 
value g(x(t~)) of  a given smooth function g(x)  at the terminal point 
x( t~ ) ~ ~ l  . 

Finally, the Bolza problem is a combination of  Lagrange's and Mayer's 
ones. 

The four problems are equivalent, i.e., every one of  them can be reduced 
to another one with a suitable change of  variables (see the nice monograph 
[U). 

There are two main classical necessary conditions of optimality: the 
Lagrange Multiplier Rule and the Weierstrass Theorem. 

In the middle of  XX century M.Hestenes deduced the Maximum 
Principle from the Weierstrass theorem. We formulate the Principle for the 
time-optimization problem, assuming that the terminal set ~1 is a smooth 
manifold. Let us introduce an auxiliary vector ~=(v/ j  .... ,v/,), the 
Hamiltonian 

i=I 

(2) 

and the conjugate system corresponding to the process x(t),u(t), 0 < t < t t • 

~ ,_  OH i.e., ~ j :  OH(v,x( t ) ,u( t ) )  j= l , . . . , n .  (3) 
Ox ' Ox j ' 

Hestenes' Maximum Principle affirms that, if the process is time-optimal, 
then there is a nontrivial solution ~(t)  of  the conjugate system, such that 



Separation of  Convex Cones and Extremal Problems 207 

(i) for 0 < t < t~ the following maximum condition holds: 

H (~(t),x(t),u(t)) = m a x  H (~(t),x(t),u); 
uEU 

(4) 

(ii) H(g(t),x(t),u(t)) =const>0;  
(iii) g/(t I) is orthogonal to M I at the terminal point x(t~). 

Hestenes obtained this result in the framework of  the classical Calculus 
of  Variations, i.e., f (x ,u)  is smooth, U is an open set in R r , and the 
optimization is considered in the local sense, i.e., u(t) is optimal among the 
controls u satisfying II u(t)-u II< E for all t (for more details, see [12]). 

. N O N - C L A S S I C A L  C A L C U L U S  O F  V A R I A T I O N S  

In 1953 Feldbaum for the first time solved a non-classical time- 
optimization problem. His ideology came from the theory of  remote control. 
The main problem of  the theory was to ensure stability of  the closed loop 
system (controlled plant + regulator). In the linear case stability holds if and 
only if the roots of the characteristic equation (poles) belong to the left 
complex half-plane. The larger of  the absolute values of  the real part of  the 
poles shows the faster convergence of the system state to the origin. That 
was the initial understanding of "time-optimality". Then the researchers paid 
attention to "bang-bang" control lows. The fundamental difference from the 
linear control low is that the state x = 0 can be reached in a finite time. How 
to reach the origin in the shortest time is the time-optimality problem. 

The first statement of  the problem and some initial results in this 
direction are connected with the name ofA.  Feldbaum, who is undoubtedly a 
pioneer of  the mathematical theory of  optimal control. In [7] he investigated 
the system 

&l=xZ,& 2 = u ,  (x',x2) r E ~  2, - l ~ u ~ l ,  (5) 

assuming that the terminal set ~2~ consists of the only point (0,0) 7. ~ ~2. 
The problem is non-classical, because the resource set -1 _< u < 1 is closed 
(not open) in ~ .  Feldbaum often said in his talks that for engineering 
problems it is important to consider variational problems with closed 
resource sets. 

Feldbaum proved that every time-optimal control for (5) takes only the 
values u = +1 and has no more than one switching, i.e., no more than two 
intervals of  constancy. Fig. 1 shows the synthesis of  optimal trajectories. 
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Generalizing this theorem, Feldbaum established his n-Interval Theorem. In 
his talks and articles Feldbaum formulated the synthesis problem [8]. 

Being based on Feldbaum's ideology on closed resource sets and on 
some linear examples [5], L. Pontryagin conjectured that for closed resource 
set the Maximum Principle is a local, sufficient condition for the time- 
optimality: 

PONTRYAGIN's MAXIMUM PRINCIPLE. Let u(t),x(t), 0 < t < t~, be a 
process o f  the controlled object (1) with a closed resource set U c IR r and a 
f ixed end-condition x(t~)=x~. Assume that there is a nontrivial solution 
g( t )  o f  the conjugate system (3) such that H > 0 and that along the 

process the maximum condition (4) holds. Then the process is time-optimal 
( in local sense).  

This conjecture (though later proved to be, in general, incorrect) was the 
only but the most important contribution of L.Pontryagin in the development 
of the Maximum Principle. His hypothesis was very essential, since it 
signified the passing to the non-classical Calculus o f  Variations that ignores 
the openness of the resource set. Note that Pontryagin formulated his 
hypothesis as a sufficient condition under the influence of Legendre's 
sufficient condition. 

In 1957 Gamkrelidze [9] proved that, for linear controlled objects with 
convex polyhedral resource set (under a "general position condition"), the 
Maximum Principle is a necessary and sufficient condition of time- 
optimality. And in 1958 the following theorem was proved [2] which affirms 
that the Maximum Principle is a global, necessary condition of time- 
optimality (in the non-linear case this condition is not sufficient, 
contradicting Pontryagin's hypothesis): 

Maximum principle. Let u(t),x(t),O<_t <_t~, be an admissible process o f  
the controlled object (1) where the resource set U is a Hausdorff  
topological space. The right-hand side is assumed to be continuous with 
respect to x,u and smooth with respect to x. For time-optimality o f  the 
process it is necessary that there exists a nontrivial solution ~(t)  o f  the 
conjugate system (3) such that along the process H >_ 0 and the maximum 
condition (4) is satisfied. 

Today there are several dozens of different versions of the Maximum 
Principle (see [13] and Chapter I in [6]). That group of results is the kernel 
of the modem non-classical Calculus of Variations. A non-classical 
sufficient condition of optimality (as the union of the Maximum Principle, 
the Dynamic Programming in a revised form, and Feldbaum's idea of 
synthesis) was recently given in [4]. 
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. T E N T  M E T H O D  

The remaining part of  the article is, in some sense, a continuation of  the 
historical article [10]. Indeed, in [10] it is shown, how L.Pontryagin and 
R.Gamkrelidze came to the statement of  the Maximum Principle, using 
arguments close to the classical Lagrange's Multiplying Rule and 
Legendre's sufficient condition. As to the proof of  the Maximum Principle 
for non-linear case, in [10] is written that "there was no real progress until 
Boltyanski introduced the needle variation of  the control". But the needle- 
shaped variations don't work themselves; they are used in some geometrical 
and topological environments. Here we give a description of these 
environments. 

Consider the classical Lagrange conditional extremal problem: to find the 
minimum of  a function g(x),  x ~ N", under the constraints f (x) = 0 for 
i=l , . . . , s ,  i.e., to find the minimum of  g on the set ?. = f~ c ~ . . . n ~  where 
n, = {x : f,,(x) = o}. 

Theorem 1. A point x I ~ Z & a minimizer o f  the function g on Z i f  and only 

/f  f~0 ~ a l  ~ . . . C n ~ ,  :{xl} where n o ={x:  g ( x ) <  g ( x i ) } w I x l } .  

Theorem 1 leads us the following general problem: 

X" 

, , r  ~ I ~ , I / , i / / . ; ~ / / ; , 1  
, , ' - ' , . . ~ ' / / / ] / / / / / /  

t .~ ,  / l i / , , - / i / , l , ,  

• , , , i  , .  , -~.'--'~£-?/,.'~z..tz~.',//?/,v,. . . . . . .  " ^ "'),h,. 
• "  ~ "~,~,J~'..,','.,'.,',,:.,, 

Fig. 1 Fig. 2 

Abstract  intersection problem. There are sets ~ 0 , ~  ..... ff~, in R" with a 
common point xj. Find a condition under which the intersection 
ff2 o n ~  1 ~ . . . n ~  consists only o f  the point xj. 

This problem includes a wide category of extremal problems. The Tent 
Method is a tool to solve the problem. The idea is to replace each set 
ff~i, i = 0,1 ..... s, by its "linear approximation" (tent as we say in the sequel, 
see Fig. 2) in order to pass from ff~0 n ~ l  ~. . .  c~l') s = {xl} to a simpler 
condition on tents. For example, if f i l e  N" is a smooth manifold and 
xt ~ ff~, then the tangentialplane of  El at x~ is a tent of  ff~ at x,. We restrict 
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ourselves to this intuitive description (for exact definition o f  tents and 
relative topics see [3]). 

Defini t ion 1. Closed, convex cones K o , K  ~ ..... K s c N" with common apex 
xl are said to be separable if  there exists a hyperplane F c N" passing 
through x~ that separates one o f  the cones from the intersection o f  others, 
i.e., for an index i e{0,1 .... ,s} the cone K~ is situated in FI~ and the 
intersection of  other cones is situated in 11 2 where FIj and I1 2 are two 
closed half-spaces defined by F (see Fig. 3 for i = 0). 

Defini t ion 2. Let K c ~"  be a closed cone with apex a .  A vector y ~ 11~" is 
said to be a dual  vector o f  K i f  ( y , x  - a )  < 0 for all x E K .  

The following two theorems [3] form a kemel  of  the Tent Method. 

T h e o r e m  2. For  separabili ty o f  convex cones Ko,K~, . . . ,K s in N" it is 

necessary  and sufficient that there exist dual vectors" ao,a ~ .... ,a s o f  the 
cones, at least one o f  which is nonzero, such that a o + a~ +... + a s = O. 

T h e o r e m  3. Let ~ 0 , ~ t  ..... ~ be sets" in N" with a common point  x o, and  

K o , K  ~ ..... K s be tents o f  the sets" at the point  x o. Assume  that at least one o f  

the tents is distinct f r o m  a plane. I f  Ko,K~, . . . ,K s are not separable, then 

there exists a point  x' E f2 o n ~ n . . .  n f2 s distinct f r o m  x o. In other words, 

separabil i ty  is a necessary  condition f o r  f2 o n f21 ~ . . .  n f)s = {xl }. 

We show how the Tent Method works in the above Lagrange problem. 
By Theorem 1, the equality ~0 ~ f2~ n . . .  n f2 s = {x~ } is a necessary (and 
sufficient) condition that g takes its minimal value at xj. Remark that the 
half-space K 0 = {x : (grad g ( x  t), x - x t ) < 0} is the tent o f  ~0 at the point x~, 
and this tent is distinct from its affine hall in N".  Theorems 2 and 3 imply 
that the tents Ko,K~, .... K ,  are separable, i.e., there are dual vectors 
ao,a~,...,a , not all equal to 0 with a 0 +a~ + . . .+as  =0.  Here K~,. . . ,K s are 
the tangential hyperplanes o f  the manifolds ~2~,...,f2s, i.e., 
a i = Ai g r a d f  (xl), i = 1 ..... s .  By definition of  K 0 , we have a 0 = 20 gradg(x~) 
with 2 o > 0.  Thus 

2 0 grad g ( x , )  + 2 h grad f (x  l) +. . .  + 2, grad Z (x,)  = O. (6) 

Supposing that the vectors grad f (x t), i = 1,...,s, are linearly independent, 
we obtain 20 4: 0. By  homogenei ty we may suppose 2 0 = 1, and (6) gives us 
Lagrange's  necessary condition o f  extremum. 
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4. A S H O R T  P R O O F  O F  T H E  M A X I M U M  P R I N C I P L E  

In conclusion we outline the proof of  the Maximum Principle for 
Mayer's optimization problem defined in section (1) (for more details, see 
chapter I in [6]): 

Maximum principle. Let u(t),x(t),O < t < t I, be an adm&sible process with 
x(O) = x o . I f  the process solves the Mayer optimization problem, then there 
exists a solution ~(t)  o f  conjugate system (3) such that x(t),u(t),~(t) 
satisfy maximum condition and the transversality condition: 
H(~(t~),x(tt),u(tj))=O and there is a number 2>_0 such that 
~(t, ) + 2 grad g(x(t  I ))_1_ f2 t at the point x(t~ ), the vector ~(t~ ) being distinct 

f rom 0 i f  2 = O. 

To prove this theorem, denote by f2 2 the controllability region, i.e., the 
set of  all points which can be reached, starting from the initial point x 0. 
Then the problem is to minimize g(x) on f2~ n f2 2 . Denoting by fl0 the set 
as in the above Lagrange problem, we again have to solve the Abstract 
intersection problem: ~0 ~ ~ n f2 2 = {x t }. 

First we describe a tent of  ~2 at the point xl = x(t,) [2]. Let r < t~ and 
u ~ U.  Consider the solution ~(t) of  the variational system o f  equations 

4 k = afk(x(t! 'u(t ) )  e' t < t,, 
i=1 ~ X t  ~ ) - -  

with the initial condition ~(r) = f (x ( r ) ,  u) - f (x( r ) ,u( r ) ) .  
Then A(r,u) = ~(tl) is said to be the deviation vector corresponding to r 

and u. By Q denote the closed convex cone generated by all deviation 
vectors and by K the vector sum of Q and the line through the origin that is 
parallel to the vector f(x(t~),u(t~)). Then K(P)=  x~ + K is a tent of  f2 2 at 
x~ for the considered admissible process P = {u(t),z(t),o < t < t~}. 

Indeed, consider the process u c (t), x, (t), 0 _< t < t~, with x, (0) = x 0 where 
u, (t) is the following needle-shaped variation [2] of  the control u(t) : 

ti 
(t) f o r t < r ,  

u,. (t) = for r _< t < r + 6, 

(t) 

Then x,.(tl) = x(tl) + cA(r,u) + o(c) where A(r,u) is the deviation vector as 
above, (see Fig.4). Since x ~ ( t l ) ~ 2 ,  the deviation vector A(r,u) is a 
tangential vector of ~2.  Moreover, the sum of deviation vectors with 
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positive coefficients also is a tangential vector of  ~z [2]. This means that 
K ( P )  is a tent of  ~2 at x~. 

//~" J;/K, N...NK., 

Lx~ ja) 

.r(~) 

.r o 

Fig. 3 Fig. 4 

According to Theorem 1, we conclude that at optimum the final state 
x, = x(t~) satisfies the condition ~0 n ~,  ~ ~2 = {x~ }. Since ~j  is a smooth 
manifold, its tangential plane K~ at x, is its tent at %. Furthermore, the cone 
K z constructed above is a tent of  ~2 at the point x~. Finally, the half-space 
K o = {x : (gradg(x , ) ,X-Xo)< 0} is the tent of  ~0 at the point x,, and hence 
every its dual vector a 0 has the form a 0 = 2gradg(xa) where 2, > 0. 

By Theorem 3, there exist dual vectors aj,a z and a number 2 > 0 such 
that 

2.gradg(%) + a I + a 2 = 0 (7) 

where at least one of  the vectors Agradg(x~),%, a z is distinct from zero. 
Since al ± ~,  at the point %, the necessary condition (7) can be formulated 
in the following form: there exist a number 2 > 0 and a dual vector a 2 of  
the cone K z such that 2 grad g(%) + a z _1_ ~ at the point x~ and a 2 :¢ 0 
when 2. = 0.  

Denote by V(t) the solution of  the conjugate system with V(t~)=az. 
Furthermore, consider the solution of  the variational system with the initial 
condition ~(~) = f ( x ( r ) , u ) -  f(x('c),u('c)). The scalar product (V(t) ,~(t))  
keeps a constant value for ~ < t < tl. Consequently 

Thus (~ff(r),4(r)} = ( V ( r ) , f ( x ( r ) , u )  - f ( x ( r ) , u ( r ) ) )  < O. In other words, 
H(g/(r) ,  x(r), u) _< H ( g ( r ) ,  x(r), u (r)), i.e., the maximum condition holds. 
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It remains to establish the transversality condition. Since 

x~ + f(x(q),u(t~)) ~ K(P)  and xj - f(x(t~),u(t,)) ~ K(P),  

we have (a 2, f (x( t ,  ), u(t~ ))) = O, i.e., H(~(t ,  ), x(t, ), u(t, )) = 0 .  Furthermore, 
there is a number 2_> 0 such that 2gradg(x~)  + a 2 _1_ f21 at the point x(q),  
where 2 ¢ 0 i f  the vector a 2 = ~,(t~) vanishes. 
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Abstract: Using a recent variational principle of B. Ricceri, we present some results of 
existence of infinitely many solutions for the Dirichlet problem involving the 
p-Laplacian. 

. I N T R O D U C T I O N  

The aim of  this note is to investigate the following autonomous Dirichlet 
problem 

f 
- A p u  = f ( u )  in f~ 

u = 0 on c ~  

(O.,,,) 

where f~ is a bounded open subset of  the euclidean space (~",1"1) with 
boundary o f  class C ~ , p > n,  Apu = div(I V u  I p-2 V u )  and f "  1~ ---> IR is a 
continuous function having a suitable oscillating behaviour. Let us recall that 
a weak solution of  (Dn.p) is any u ~ Wd 'p (f~) such that 

Corresponding author. Because of surprising coicidence of names within the same 
Department, we have to point out the author was born on August 4, 1968. 
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f a  l Vu(z )  I p-2 V u ( z ) V v ( z )  dz - f a  f (u(z))v(z)  dz = 0 

for each v e W0 t'p (f2). 
The existence of  infinitely many solutions of the problem (D,,?) has been 

studied extensively. Many results have been obtained usually under 
sublinearity or superlinearity conditions at 0 and at +m of function f (see, 
for instance, [3]). More rarely, multiplicity of  solutions has been investigated 
when f has an oscillating behaviour, we refer to [4], [5] and [7]. 

In our results, we make use of a recent general variational principle 
obtained by B. Ricceri in [6]. The following result is a direct consequence of  
Theorem 2.5 of  [6]. 

Theorem 1.1 Let X be a reflexive real Banach space, and let dO, 
• " X --+ N be two sequentially weakly lower semicontinuous and Gdteaux 
differentiable functionals. Assume also that • is (strongly) continuous and 
satisfies limll4_,~ W(x) = +oo. For each r > inf x ~ ,  put 

¢O(x)- infiv_ , 00 
(3-~,rD) w ¢(r)  = inf 

x~,~-'(j . . . .  t) r -  ° e ( x )  

where (tp-l(]_m,r[))w is the closure o f  W-t(]-oo, r[) in the weak topology. 

Fixed A E IR, then 
(a) /f {r.}.~r~ is a real sequence with lim._,~or. =+oo such that 

~o(r,~) < A, for  each n ~ N,  the following alternative holds." either 

a9 + A~ has a global minimum, or there exists a sequence {x. } o f  

critical points o f  a9 + A~ such that lim,,__,® W(x,,) = +oo. 

(b) /f {s }.~r~ is a real sequence with lim._.oos. = ( in f  x W)+ such that 

qo(s,~) < A, for  each n ~ N,  the following alternative holds: either 

there exists a global minimum o f  q~ which is a local minimum o f  
+ A'.I', or there exists a sequence {x,,} of  pairwise distinct 

critical points o f  c~ + k ~ ,  with lim._o~ ~(x . )  = inf x ~ ,  which 

weakly converges to a global minimum o f  u?. 

Throughout the sequel, f "  ]R ~ ]R is a continuous function such that 
f ( x )  = 0 for each x ~ ] -  0% O] and F : R ~ IR is the function defined by 
setting 
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F(~) = fo ~ f ( t )d t  

for each ~ ~ N.  
We shall consider the Sobolev space W0 ~'t' (f~) endowed with the norm 

Ilull:--(f.lvu(x>l ax)'". 
We recall that there exists a constant c > 0 such that 

sup[u(x)[<cllull (1) 
xE~ 

for each u ~ W~ 'p (f2). Moreover we put co := 

dimensional unit ball. 

7-.~ n /2  

the measure of  the n- 

2. R E S U L T S  

Our first result guarantees that the problem (D..p) has infinitely many 
weak solutions that form an unbounded set in W0 ~'p (f~). 

Theorem 2.1 Assume that, for each ~ ~IR, F(~) >_ O. Moreover suppose 

that there exist x o e f t ,  a positive number 6<_d(xo,Of2 ) and four real 

sequences {rk}koN, {Tk}keN, {ek}k~N, {~k}k~N with limk_,~r k =+oo, 

0 < "/k <- dist(xo,Of~), ek E]0,')'k[ and ~k e]0,+oo[ for all k ~ N, such that 

(i) F(~  k ) = m a x F  for e a c h k e N '  
[0,crk~] 

rk 
(ii) ~k < ( % - e k )  6o(~'-e~) 

(iii) F(~k)< p(if~[lwe:)[r k 

(iv) lim sup~+oo - -  

- e k ) P  

F ( ~ ) >  2 p ( 2 " - 1 ) .  
~P p6 p 

for each k E N;  

")] for each k E N, 
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Then, the problem (D.,p ) has infinitely many weak solutions that form an 
unbounded set in W~ "p (f~). 

Proof. Let us apply Theorem 1.1. To this end choose X = Wto 'p (f2) and for 
each u e X ,  put 

and 

T(u)=llul l  ~ 

It is well known that the critical points in X of  the functional • + I T  are 
P 

precisely the weak solutions of  problem (D,,p). Clearly, the functionals 
and T are G~teaux differentiable and sequentially weakly lower 
semicontinuous; moreover T is obviously (strong) continuous and coercive. 

In our case the function ~o of  Theorem 1.1 is defined by setting 

qa(r) = inf supllvll'-<r f F(v(x))dx- ~ F(u(x))dx 

ilul:<r r-Ilull  ~ 

for each r e]0,+oo[. 

Now we wish to prove that ~o(r k) < 1 for each k e N. To this aim, it 
P 

sufficies to prove that, for each k e N, there exists a function u k e X ,  with 

Ilu, ll" < r, ,  such that 

sup f F(v(x))dx- f. F(u,(x))dx < !(r, - Ilu, ll"). 
IIvF_<~, P 

Fix k e N and consider the function u, ~ X defined by setting 
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exists a sequence {Uk}k~ N of solutions of  problem (Dn,p) such that 

l im~  Ilukll = + ® .  

L~ 
The other step is to verify that the functional • + has no global 

P 
minimum. 

By (iv) we can choose a constant h > 

k ~ N,  one has 

2 p 
P 6p (2" -1 )  such that, for each 

sup F(r/) > h 
r/_>k 77 p 

and so there exists r h > k such that 

F( rh)  > h. 
,72 

Now, if we consider a function w k e X defined by setting 

w k ( x )  = 

0 if  x E f2 \ B(xo,6) 

r/k if xeB(xo,~) 

-~(8-tX-Xo ,) if x e B(xo,6 ) \ B(xo,~) 

one has 

+ ll  ll F ( r  h )dx + 

pap ~-2-- ~_1 2" (2" . 



The Dirichlet Problem via a Variational Principle o f  Ricceri 221 

Since h > P 6p (2" - 1), it forces k--,o~lim r/~' (2" - 1) - h = -oo and so the 

previous inequality shows that the functional * +±q~ is not bounded from 
P 

below and then it has no global minimum. 
Therefore, Theorem 1.1 assures that there is a sequence {v k}kEN c_ X o f  

critical points o f  * + I v  such that limk~[Ivkl[= +oo. As previously 
P 

observed, every function v k is a weak solution of  (D,.p) and this completes 
the proof. [] 

A possible function that verifies Theorem 2.1 is the following 

E xample  2.1 Let ~ = B ( 0 , r )  the open ball o f  N 2 , p =3  and F ' N - - - ~ N  be 
the function defined by setting 

0 /f x e]-oo, O[ 
_ A(x)  / f x e [ O , e ]  

F ( x )  I Bk (x) i f  x e]e 8k-7,e 8k-3 ] 

LCk(x) / f  x ~]e8k-3,e 8k÷'] 

with k e N ,  

A(x)  = a ( - 2 x  3 + 3e x 2) 

a 
B k (x) - (e 4 _ 1) 3 - -  ( 2 X  3 - 3 e  8k-7 ( e  4 + 1)x 2 + 6 e l 6 k - I ° x  + e24k-13 ( e  4 - 3)) 

a 
C k (x) - (e4 - 1) - ' ' ' ' ' ~  (-2elZx 3 + 3e 8k+9 ( e  4 + 1)x z - 6et6k+l°x + e 24k+3 (3e 4 - 1)) 

where a is a real number such that 

64 8e 12 64 
- - < a <  
r 3 45z4r  3 15r 3 • 
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r This function satisfies all assumptions of  Theorem 2.1 taking x 0 = 0 ,  6 = -~, 

e 24k-9 r r 
rk - 2~r3r ' % = 2 '  Gk =4- and ~k = e 8k-7', in particular, the choice of  a 

makes true hypotheses  (iii) and (iv). 
It is interesting to note that, in this case, one has 

a < lim sup F ( ~ )  ~-~+~o 7 < +o0. 

I 1 
For n = l  and p = 2 ,  taking f2=]0,1[ (in this case c = - ) , 2  x° = - 2 '  

1 
6 =-1 and % = -  for each k ~ N Theorem 2.1 gives the following result. 

2 2 

T h e o r e m  2.2 (Theorem 2.1 o f  [1]) Assume that, for  each ~ ~ R ,  F(~) >_ 0 

and that there exist three real sequences {rk}k~ x, {ek}k~r~, {~k}k~r~ with 

limk__,oo r k = +oo, {¢k :k  ~ N} c_]0,1[ and {~k :k  E N} c]0,+oo[,  such that 

(i) F ( ~ k )  = max[0 ,~  1 F  ; 
t - - - - - " - - - -  

(ii) ~x k < ~/_~k~ for each k ~ IN ; 

r k - 2 for each k e IN ; 
ck J 

(iv) lim sup F(S---~) > 8. ~ + ~  ~2 

Then, the problem 

-u" = f (u )  

u(0) = u(1) = 0 

in ]0,1[ 

(DI,2) 

has infinitely many classical solutions that form an unbounded set in 
W~'z(IO,1D . 
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1 
R e m a r k  2.1 Observe that, for assuring that the functional qb +- -W has no 

P 
global minimum, in the proof of Theorem 2.1 (and similar in Theorem 2.2) 
we guarantee that the functional is not bounded from below. It would be 

interesting to find some conditions such that O + I w  is bounded from 
P 

below but without a global minimum. 
An explicit example of  function F that fits all the hypotheses of 

Theorem 2.2 is the following. 

Example  2.2 Let a a real number such that 

4 < a < 4 e  ~ - 8 : = o - .  

Let F"  N --) IR be the function defined by setting 

f 
F(x)  = ] 0 if x e ] - ~ , O ]  

ox (sinOnx l+, ) if x lo,+ E 

The function F assumes its local maxima in x = e ~+k~ , for each k e Z and 
its local minima in x = e '~+k~ , for each k e Z .  Moreover it satisfies all the 
hypotheses of Theorem 2.2 

To justify this assertion we choose, for each k e n  ( k > 0 ) ,  
4 ~,~+2k,~ ,. ~-+k,~ . r k = e , qk = e ana c k - I It is easy to prove that (i), (ii), (iii) ana -- '~,  

(iv) are satisfied: in particular, the choice of a makes true hypotheses (iii) 
and (iv). 

Note that, in this case, one has 

li~n_,~p~2~) =limsup,_,+~ a ( s i n ( l n x 2 ) + l ) = 2 a < + o o  

and 

l iminf  F(~  ) ` _ , + ~  - - ~  = l iminf a(sin(ln x2 / + 1) = 0 . g _ , + ~  

With a slight modification on function F (see Example 2.1 of [1]) it is 
possible to obtain 
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li~n ~ f  ~ 2 ~ )  > O. 

The next results are two simpler but less general form of  Theorem 2.1. With 
similar arguments utilized in the proof o f  Theorem 2.1, making use of  part 
(a) o f  Theorem 1,1, we obtain: 

T h e o r e m  2.3 Assume that, for  each ~ e l~, F(~)  > O. Moreover, suppose 
that there exist two real sequences {a k }k,N and {b k }k~N in ]0,+~[ with 
a k < b k , l imb k = +oo, such that 

k --) oo 

(i) lim bk = +oo ; 
k -¢,oo ak  

(ii) max f <  0 for  all k e N ; 
[ok,b, ] 

(iii) 2P (2" -- I) < lim sup F(~)  < +oo. 
p(supdist(x,O~)) p ~-.+® ~" 

xE~ 

Then, problem (D,,p ) admits an unbounded sequence o f  non-negative weak 
solutions in Wd'P (~ )  . 

Likewise, applying part (b) o f  Theorem i. 1, we get 

T h e o r e m  2.4. Assume that, for  each ~ e ]~, F(~)  > O. Moreover, suppose 
that there exist two real sequences {ak}k~ N and {bk}k~ N in ]0,+oo[ with 
a k < b k , l imb k = 0, such that 

k--)oo 

(j) lim bk = +oo ; 
k~oo a k  

(jj) max f < O for  all k e N ; 
[a~ ,b, ] 

2" F(~)  (jjj) (2" - 1) < lim sup < +oo. 
p(supdist(x,  Of~)) p ~-,o ~ ~P 

xe_&"~ 

Then, problem (D,,p) admits a sequence o f  nonzero weak solutions which 
strongly converges to 0 in Wo I'p (F2) . 

R e m a r k  2.2 Observe that, in the mere condition: 

0 < lim sup F ( ¢ )  < +oo 

we can apply Theorem 2.3 and 2.4 taking ~ sufficiently large. 
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An explicit example of  function which satisfies all the assumptions of  
Theorem 2.3 is the following. 

Example 2.3 Let ~ be a bounded open subset of  N" with boundary of  class 
C I and p > n. Let f : 11~ --+ R the function defined by setting 

~" 2Lhk dist(~, R \ [k!k, (k + 1)!]) 
f ( ~ )  = k! k=l 

for each ~ e R ,  where 

2 p 
L > (2" - 1) 

p(  sup dist( x, i ~  ) ) p 
xE~ 

and 

h k = 2(k!)P-'[(k + 1) p - 1] 

t 
0 

f ( ~ )  = 2Lhk min {~ - k!k, (k + 1)!- ~} 
L k~ 

if ~ e N ~ U [ k ! k , ( k + l ) !  ] 
ken 

if ~ e [k!k, (k + 1)!], k e N 

By choosing, for each k ~ N,  

a k = k! 
b k =k!k  

the hypotheses of  Theorem 2.3 are satisfied and one has 

lim sup F(~)  = L. 
~.-,+~ ~P 

In fact 

F ( a  k) _ L k-I ~2 ((i + 1)!- i!i)h~ = 
a k P 2(k!)  p i=1 

for each k ~ N. A more explicit expression of  f is 
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L k-I 
(k!) p ~,=, [((i + 1)!) p - (i!) p )] = L (k!)p(k!) p- 1 

On the other side, for each ~ e [bk,b~+ ~ ], one has 

F(4) < F(a,+,) : L ((k + 1)!) p - 1 
4 p b[ (k!)Pk p 

In a similar way it is possible to obtain an example o f  function satisfying 
Theorem 2.4. 

Note, in particular, the following corollary of  Theorem 2.3. 

Coro l l a ry  2.1 Let {ak}k~ N and {b,}k~ N two real sequences in ]0,4-0o[ with 

a, <b , ,  limb, =+00, such that lim b----* =+oo. Moreover, let g EC~(R) such 
k-->~ k---~<~ ak 

that ~nf g(¢) >_ 0 and 

and 

2 p 
(sup dist (x, 0~))  p 

x~D 

(2" - 1) < iim sup g(~)  < +oo 

max¢~ta,.b, l [ g( ~) + % g' ( ~)1 < 0 

for each k ~ N. Then the problem 

-ApU = lup - '  (pg(u) + ug' (u)) 
P 

in f2 

u = 0 on 0 ~  
(2) 

admits an unbounded sequence of non-negative weak solutions in WIo '~' (f)) . 
A similar result can be obtained using Theorem 2.4. 
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. C O N C L U D I N G  R E M A R K S  

Now we wish to recall some other results existing in literature concerning 
the existence of  infinitely many solutions for the problem (D.,p) 

The following result comes directly from a recent theorem obtained by J. 
Saint-Raymond (Theorem 3.1 of [7]). 

Theorem 3.1 Let f : ~ ~ ~ be a continuous function and let F : ]t{ ~ R 
the function defined by setting 

F(~) = fo  ~ f ( t ) d t  

for  each ~ E ]~ . Assume that 
(1) there exists M > 0 such that, for every p > O, there exists t > 0 

satisfying F(t) > p(1 + t 2) and F(s)  > -MF( t )  for  each s ~ [0,t] ; 

(2) sup{ t eN  • f ( t ) < 0 } = + m ;  

(3) i n f { t ~ ,  f ( t ) > 0 } < 0 .  
Then there are unboundedly (infinitely) many solutions o f  the problem ." 
(01,2). 

We wish to emphasize that Theorem 3.1 cannot be applied to the function 
of  the Example 2.2. In fact the hypotheses (1) and (3) of  Theorem 3.1 are 
surely not satisfied; if we consider the function F of Example 2.2 it is easy 
to observe that inf{t ~ R : f ( t )  > 0} = 0. Moreover, for each t > 0, one has 

F(t) < a(1 + b)t 2 < 3at 2 < 3o-(1 + t2). 

This means that, in particular, hypothesis (2) cannot be satisfied when 
p>3o- .  

Another comparison we wish to make is with a recent result of  Korman 
and Li (see [2]). Before dealing with this result we should state first a 
definition. 

Definition 3.1 Let f :~ - - -~  R be a function. We say that f satisfies 
Schaaf-Schmitt condition if there exist two monotone sequences {x. }.~ and 
{Y.}.~r~ with lim _,= x. = l im.® y. = +~ such that 

F ( x . ) - F ( x ) > O  for all0 < x < x. 
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F ( y . ) - F ( x ) < O  forallO<x< y. 

where F is, as usual, the integral function of f .  
Now, making use of Theorem 2 of [2] with opportune choices it is easy 

to obtain the following theorem that assures the existence of infinitely many 
solutions of problem (Di,2). 

Theorem 3.2 Assume that f ~ CZ([0,+oo[) satisfies f (0 )  = 0, f ' (0 )  > 0, 

f ( t )  > 0 for each t > 0 and lim,_,~ f(t____)) = O. Moreover the function 
t 

- ~  f ( t ) - t  satisfies the Schaaf-Schmitt condition. Under these assumptions 

the problem (DI,2) admits infinitely many solutions. 

In this result the strong hypothesis is the existence of the lim,_,+® f ( t )  
t 

and Example 2.2 shows a case in which, even if ~ f ( t ) - t  satisfies the 

Schaaf-Schmitt condition, lim,_,+~ f ( t )  doesn't exist, making the previous 
t 

result not appliable. 

Other recent results in which infinitely many solutions of the problem 

(D,.p) are assured is contained in [4] and [5]. 

In [4] Omari and Zanolin obtain the following result 

Theorem 3.3 (Corollary 1.2 of [4]) Assume that 

lim inf F(~) = 0 and lim sup F(~) = +oo (3) 

then problem (D.,p) has a sequence {u. }.~r~ of positive solutions in Wd 'p (ff~) 
with maxfi u. --+ +oo, 

In [5] the same authors replace the conditions (3) at +oo by similar ones 
at 0, in order to produce arbitrarily small positive solutions of problem 
(Dn,p). Namely, the following holds 

Theorem 3.4 Assume that 
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lim inf F(~)  : 0 and lim sup F(4)  - +oo (4) 

then problem (D,.p) has a sequence {u, },¢m of  positive solutions in W~ '1' (£)) 

with maxfiu, decreasing to zero and  f.lVu°(x)l" dx- faF(u.(x))dx 

increasing to zero. 
F(4) We note that in these results it is requested that lim sup~_.,~ ~ '  - +oo 

F(4__.__)) 
and lim sup~0+ ~P =+oo; these are stronger requests with respect of 

hypothesis (iii) of Theorem 2.3 and (jjj) of Theorem 2.4. Moreover, in our 

results, nothing is said about the behaviour of lim inf~_~ F(~) and 

lim inf,_,0. F(p~)- . In fact, as we have already observed, the function F of 

Example 2.1 of [1] doesn't satisfy any of the (3) and the function F of 
X ( ( )  

Example 2.1 doesn't satisfy lira sup¢_~+® ~3 = +oo. 
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Abstract: 

Key words: 

In Carnot-Carath6odory metric spaces related to a family of free H6rmander 
vector fields Xw.. ,X ~ , we prove that the space C "° is locally dense in VMOo, 
with respect to BMOo, norm. 

VMO spaces, spaces of homogeneous type, Carnot-Carath6odory metric 

. SOME PRELIMINARIES 

In [4] we introduced the space of the functions with bounded mean 
oscillation defined using cubes on a space of homogeneous type. We proved 
that this space is equivalent to the classical space B M O  defined using balls. 
Then we proved that, as in the euclidean case (see [13]), in Camot-  
Carathdodory metric spaces the space of the C ~° functions is locally dense in 
the space VMO of the functions with vanishing mean oscillation with 
respect to the B M O  norm. In this note we give the definition of  the space 
B M O  c of  the "multipliers" of B M O  on spaces of homogeneous type. 
B M O  c was introduced by Spanne and it is the set of  functions for which the 
mean oscillation behaves as [logr ]-I over the cubes with diameter r (for 
definition in euclidean setting see [14], [1]). Then, in an obvious way, we 
introduce the space VMO c and in Carnot-Carathdodory metric spaces 
related to a family of  free H6rmander vector fields, we prove that C ® is 
locally dense in VMO c with respect to B M O  c norm. We remark that these 
density results are fundamental to solve regularity problems for equations 
and systems with discontinuous coefficients (see [1], [3], [5], [9], [10]). 
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Let us begin by giving some basic definitions. 
A quasimetric d on a set S is a function d:SxS-->[O,+m[ with the 

following properties 
d(x ,y)  =0  if and only if x =y ;  
d ( x , y ) = d ( y , x )  V x , y ~ S ;  

d(x,y)<_Ao[ d ( x , z ) + d ( z , y )  ] Vx, y , z ~ S .  

Now we give the definition of  space of  homogeneous type: 

Definition 1.1. A space o f  homogeneous type (S,d, kt) is a set S with a 

quasimetric d and a measure kt on S such that, for  all x ~ S and r > 0 it 

results 0 </a(B(x, r)) < +m and the following doubling property holds 

la(B(x, 2r)) < A, p(B(x, r)). (D) 

The number Q = log 2 A~ (A, is the infimum satisfying (1)) is called the 
homogeneous dimension of  the space (S,d, ta). To have more details on 
spaces of homegeneous type we refer the reader to [8]. 

Definition 1.2. A Borel measure p on a quasimetrie space is said to be 

Ahlfors regular o f  dimension Q if  there exist two positive constants a and 

A such that for  all x ~ S and r > 0 it results 

ar Q </.t(B(x,r)) < Ar ° . (A) 

Let (S,d,/~) be a space of  homogeneous type with p Ahlfors regular 
measure. If f e L~(f~), ~ c S,  we denote by fa  the integral average 

:-o:'.= L :'. 
We consider the non--decreasing function co(r)=I/In-~- for r <R 0 and 

co(r) = 1 for r > R 0 . Then we can give the following definitions (see [2]). 

Definition 1.3. BMOo, is the set o f  equivalence o f  functions f (with finite 

integral on bounded sets), modulo additive constants, such that 

Ilfll..o  = - I f -  < +oo. 
• es w[r) a m , , ~ )  
r > 0  

BMOo, is a Banach space with the above norm. 
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Definition 1.4. A function f e BMOo, (S) belongs to the space VMOo, (S) if 

sup I f -L(x ,r )  l d # ~ O  as a--~0. 
xcS  B(x,r) 
O<r<_a 

In the space of homogeneous type (S,d, fl) we can give the definition of 
dyadic cubes (see [6] and [7]) and, then the definition of cubes (see [4]). 
Indeed in [6] and in [7] the following facts have been proved. 

Theorem 1.1. For all integers k there exist a numerable set I k and a 

family of  subsets Q~ c_ S, a e I k , such that 

(1) kt(s\U,,Q~):O MkeZ; 

(2) forany a,  f l ,  k, l with l > k ,  either Q~c_Q~ or Q ~ Q ~ = O , "  

(3) for each Q~+' there exists exactly one Q~ (parent of Q~+t) such 

that Q~+' c_ Q~ ; 

(4) for each Q~ there exists at least one Q~+' (child of Q~ ) such that 

Oj+, =_ Q: . 

These subsets are called dyadic cubes since they are the analogous of the 
euclidean dyadic cubes. Now we give the definition of cubes. 

Definition 1.5. Let Q and Q' be two dyadic cubes. We say that Q' is 1-step 
contiguous to Q if OQ' m OQ ~ 0 .  Moreover we say that Q' is k-step 
contiguous (k > 2) to Q if Q' is 1-step contiguous to some ( k -  1)-step 
dyadic cube contiguous to Q. 

Definition 1.6. We call cube either a dyadic cube or the union of a given 
dyadic cube with its contiguous cubes of the same generation up to some 
step k > l. 

We denote by d(Q) the diameter of a generic cube Q. Then we can 
introduce the class of the multipliers of BMO using cubes. 

Definition 1.7. BMO c is the set of equivalence of functions f (with finite 
integral on bounded sets), modulo additive constants, such that 

Ilsll. o<,: = s u p  I f-S  I +  < s 
co(d(QJ) Q 

Definition 1.8. A function f e BMOC (S) belongs to the space VMOC (S) if 
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M 0 ( f ) : =  lim M, ( f )  = 0, 
a ---)0 + 

where 

M . ( f ) : - -  sup 1 f - -  I f -- fQ I d# • 
a(Q)(_o w(d(Q)) Q 

It is possible to prove the following theorem. 

Proposition 1.1. Let (S,d,/2) be a space o f  homogeneous type with /2 
Ahlfors regular measure. Then there exists a positive constant C such that 

-~ I I  II,,~,Oo,S,-< I I  II,,~oz-,s,-< cII • II,,~,oo,x,, 

and 

VMO,o (S) : VMO c (S). 

Proof. It is similar to the proof of  the Theorem 2.2 and Theorem 2.3 in [4]. 

Variational Analysis and Appls. 

. T H E  D E N S I T Y  R E S U L T  

Now we introduce some particular spaces of  homogeneous type in which 
we prove our density result. 

Given q smooth real vector fields X I , X  2 ..... Xq on a bounded domain 

in R u ,  a Lipschitz continuous curve y : [ 0 ,T ] - - +~  is said to be X -  
subunit if there exists a measurable vector function 

q h  h=(h~,...,hq)'[O,T]---)lR ~ such that );(t)=~-~i= , ~(t)Xi(y(t)) for a.e. 

t ~[0,T] and IIhL ~ 1. Set 

d x (x, y) = inf { T > 0 : 3 y, X - subunit curve, such that y(0) = x, y(T) = y}, 

we have that d x is a metric in ~ ,  usually called the Carnot-Carath6odory 
distance associated to the system X = ( X  I, X2,..., Xq) (see [ 11 ]). 
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F r  f 177 

Denoted by where 

a = ( a t , a  2, ...,aa_j,ad) is a multi-index with l a l = d ,  we say that the 
system X satisfies H6rmander condition of  step s at some point ~0 e f2 if 

{X,,(~0)}t,,is,, spans R N as vector space. The vector fields are free of  step s 

if N=dimg(q ,s )  where g(q,s) is the free Lie algebra of  step s on q 
generators. 

In ~N the euclidean topology and the C - C  metric one are the same, 
nevertheless the two metrics are not equivalent. Moreover, Lebesgue 
measure is locally doubling with respect to dx; indeed, for any bounded set 

E ~ £ ~  there exists R > 0  such that EU(B)~r  Q for any C - C  ball B 
centered in c e E with radius 0 < r < R.  In order to work with these spaces, 
the following theorem (due to Rothschild and Stein, [12]), is crucial: 

Theorem 2.1. Let X=(XI,X2, . . . ,Xq)  be a system of q real C ® vector 

fields on an open set f) c_ •N satisfying HOrmander condition of step s and 

free up to the same order at ~o ~ ~. Then, there exist open neighborhoods 

U of 0 and W ~ V  of ~o such that, for any ~ e V ,  the mapping 

U 9  y ~ r/= exp(}-'l,l< N y~X~ )~ e V is invertible, and calling y = ®¢(r/) its 

inverse, it results." 
a) 0 ~1, is a diffeomorphhism onto the image for every ~ e V ; 

b) U c ® ~ ( V )  forevery ~eW," 

c) ® " V x V ---~ II~ N defined by ®(~,r/):=O~(r/) is C® (V × V) . 

We will assume (V,dx ,£  N) as our space of  homogeneous type in order 
to prove the density result. From the properties of  the function ®(~,r/) we 
can construct the convolution f,. of  a function f in the space (V, dx ,£  N) 
(for more details we refer the reader to [4]). 

As in [4], for the function f,, it is possible to prove the following lemma. 

Lemma 2.1. I f  f eBMO,o(V ) then fc eBMO, o(W), moreover, for e > 0  
sufficiently small it results 

f .  .Moo, , <- cllfll.Moo,v, 
where c is an absolute constant. 

Hence we prove our main result. 
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Theorem 2.2. There exists a positive constant A such that for all 
f e BMOo,(V ) there exists a function g ~ C~(W) such that 

Ilf - gL.oz<.) <- A M,,( f ) .  In particular, if  f E VMQ,(V), then there exists 

a sequence {f,} in C®(W) such that f,---) f in BMOo,(W ) . 

Proof. Fix a > 0 and l such that M , ( f )  < l .  Taken a suitable k ,  let h be 

the step function such that h takes value fol in Qj .  Now we estimate 

IIf-hlI.MoZ(.>. Let Q be a cube: we can assume that Q is union of  dyadic 

- w "  o k. Since cubes of  generation k .  Take k'>max{k,'k}" then Q -  ~=j~,,. 

d(Q) > d(Q]') for a = 1, 2,...,m and by monotonicity of  the function co, it 
results for an absolute constant 

1 I f - h - ( f  - h)Q I d~ ~ 2 I f -  h ld£ = 44Q)) f--~ 4a(Q)) f 

~z(d(Q)) l Q l .=l . . . .  - 

As in [4], for a suitable r > 0 ,  we can construct the function h,. Take 

~ W, then ~ belongs to some Q~. There exists only an absolute number 

of  dyadic cubes Q~ such that Q~ ~B(~ , r )  ~ ~ ,  from these cubes we can 

construct a cube Q' such that d(Q') < a .Since co(d(Q')) < 1, we have 

i:o , -:o. i<_ 1-.,. l:-:0, < I°-l-j--- - i:-:., 
- i Q ~ i  - 

w 

where the constant c depends only on C ,  a 0 and the homogeneous 
dimension. Then, arguing as in the proof of  Theorem 2.2 and Theorem 2.3 in 
[4] we have the thesis. D 
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LINEAR COMPLEMENTARITY SINCE 1978 

Richard W. Cottle 
Dept. of Operation Research, Stanford University, Stanford, CA., USA 

Abstract: We survey developments on the Linear Complementarity Problem (LCP) since 
1978, the year in which the International School of Mathematics on 
Variational Inequalities and Complementarity Problems took place at the 
'Ettore Majorana' Centre of Scientific Culture in Erice, Sicily. This report will 
touch on matrix classes and the existence of solutions, complexity, degeneracy 
resolution, algorithms, software products, applications and generalizations of 
the LCP. 

. INTRODUCTION 

The proceedings of the International School of  Mathematics on 
Variational Inequalities and Complementarity Problems [16] contains a 
reasonable summary of  what was known about the linear complementarity 
problem (LCP) in the year 1978. Of the 25 papers in that volume, only [9] 
deals exclusively, albeit briefly, with the LCP. Lemke's more extensive 
paper [71] has much to say about the LCP as well as the broader topic of  
Constructive Approximation Methods (CAM) by which he meant the 
reliance on algorithms rather than fixed-point theorems of the Brouwer or 
Kakutani type. 

In general, a finite-dimensional complementarity problem is expressed in 
terms of a closed convex cone K C l~" and a mapping F : It~" ~ R" .  One 
seeks a vector satisfying the conditions 

z E K ,  F(z )EK* ( thepolarofK)  and ( z , F # ) ) = O .  (1) 
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This formulation and its equivalence with the variational inequality 

Find x E K  s u c h t h a t ( F ( x ) , v - x ) > O ,  Y v e K  (2) 

were established by Karamardian [60], [61]. An important distinction 
between these problems is that the variational inequality can be posed with 
respect to any closed convex set, not just a cone, wereas the 
complementarity problem is always defined relative to a closed convex cone. 

During the last 25 years, the field of  optimization (mathematical 
programming) has seen considerable growth in research activity and the 
number of  publications dealing with theory,  algorithms, and applications of  
complementarity and related subjects. The author's own informal survey 
suggests that roughly 10% of  papers in the journal Mathematical 
Programming fall into this broad category. Scores of  doctoral theses and 
numerous monographs have been written on complementarity. Among the 
latter, we single out [81], [18], [56], [57], and [33]. In the addition to these 
contributions to the literature, there now exists computer software for 
complementarity problems incorporated within commercial optimisation 
packages. 

The standard linear complentarity problem (LPC) corresponds to the case 
where K is the nonnegative orthant R~ ~ and F is an affine transformation 
x ~ q + Mz of R" into itself. It is plain to see that the n x n matrix M and 
the n-vector q determine the LCP. For this reason we often use the pair 
(q,M) as a notation for the problem (1) where F and K are as just described. 

The aim of  this expository paper is to sketch some of the progress made 
on the LCP since 1978. A thorough treatment of the subject would be 
inappropriate on this occasion. As a consequence, many valuable 
contributions had to be omitted. Section 2 discusses some contributions from 
the traditional topic of  matrix classes with particular emphasis on the 
important questions of the existence and possible uniqueness of  solutions. 
Section 3 is about complexity issues, algorithmic developments and 
computer software for "processing" linear complementarity problems. Some 
applications of  the LCP are discussed in Section 4, and a variety of  
generalizations of  the standard LCP are reviewed in Section 5. 

. E X I S T E N C E  O F  S O L U T I O N S :  T H E  R O L E  OF 
M A T R I X  C L A S S E S  

With any affine transformation of R '~ into itself there corresponds a 
linear complementarity problem, but with the data so freely chosen, there is 
no reason to expect the LCP to have a solution. From the mathematical 
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standpoint, it is amusing to study the existence question "abstractly," and 
much of  this kind of  thing ha been done. The applicability of 
complementarity problems to satisfying first-optimality conditions in 
mathematical programming and to satisfying equilibrium conditions in 
economics and engineering justifies the attention given to finding conditions 
on the problem data that guarantee the existence of their solutions. When 
these conditions are in harmony with algorithms intended to produce 
solutions, these investigations are all the more fruitful. This section will 
highlight some contributions to the identification of interesting matrix 
classes that shed light on the question of existence. For this discussion, we 
follow the notational system used in [18]. 

Given an n x n matrix Mthere is an associated cone K(M) which can be 
defined as the set of  all q e R" such that the LCP (q,M) has a solution. This 
set can also be described as the union of  all complementary cones induced by 
M. That is, 

K(M):UPosCM(a ) (3) 
6f 

where a c {1 .... ,} and C M (a )  is the n x n matrix defined as follows: 

= ~-M.,  i f i e a  
(CM(et))'i L I.i otherwise '  (4) 

A vector x is said to be feasible for the LCP (q,M) if x > 0  and 
q+Mx>_O. The set of  all feasible solutions for (q,M) is denoted 
FEA(q,M), whereas SOL(q,M) denotes the set of  all feasible solutions 
such that x T ( q + Mx ) = ( x, q + Mz ) = O . 

At an early stage in the development of  the subject, Parsons [84] and 
Murty [79] introduced the matrix classes Q0 and Q.  The definitions of these 
classes are as follows: 

Qo =0{ M e R"×" :FEA(q,M)~ Z ~SOL(q,M)~ ~} 
r~=l 

(5) 

¢¢ 

Q =  U { M e R  ....... S O L ( q , M ) J ~  for all qeR"} .  (6) 
n = l  
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Efforts to find useful, nontrivial characterizations of the classes Q0 and 
Q have not been successful. See [9, pages 99-100] in this regard. 
Nevertheless, it is clear that M ~ Q only if M belongs to the matrix class S, 
which is to say the linear inequality system M:c > 0, z > 0 has a solution. 
Whether or not M ~ S is a question that can be answered by linear 
programming. The issue of characterizing Q0 and Q boils down to that of 
characterizing Q0 alone since Q = S n Q 0 .  As noted in [9], Eaves [27] 
showed that M e Q0 if and only if K(M) is convex. Unfortunately, this is 
not an easily tested conditions. 

The bulk of research on these questions is aimed at identifying sub 
classes of Q0- This trend was well underway in 1978. The main matrix 
classes of the time were 

-k 
-/r 
-k 
-k 

-k 

P S D  
P D  
P 
E 
R 

C p  ÷ 
S C P  
A 
Z 

positive semidefinite (not necessarily symmetric) 
positive definite (not necessarily symmetric) 
positive principal minors 
strictly semimonotone 
regular 
copositive-plus 
strictly copositive 
adequate 
nonpositive off-diagonal elements 

Classes indicated by * also belong to Q. All these classes are discussed in 
[18]. 

One notable class defined by the intersection of two classes listed above 
is K --- P n Z. This remarkable matrix class has many applications and a rich 
theory which includes about 50 equivalent definitions, most of which can be 
found in Berman and Plemmons [3]. For others see [18]. 

In some cases, membership in a matrix class defined with absolutely no 
reference to the LCP is equivalent to a property of the LCP. The class P is an 
example (the property being existence and uniqueness of a solution to every 
LCP formed with the matrix). The class K is another (here the property is the 
existence and uniqueness for every LCP of a solution that is also the least 
element of the feasible region). 

These results were well known even before 1978. Since then, some new 
matrix classes have found. One of these was identified by Cottle, Pang, and 
Venkateswaran [ 19] and shown to have intimate connections with properties 
of the LCP. Because of their strong association with both new and old 
algorithms for the LCP, we shall devote a disproportionate amount of 
attention to some developments in this topic. 
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These matrices are called sufficient I and the class of  all such matrices is 
denoted SU. This class is actually the intersection of  two others: the row 
sufficient matrices (RSU) and the column sufficient matrices (CSU). For the 
person who thinks of  n-vectors as columns, the primary definition needed 
here would be that of column sufficiency. 

Definition 1. An n x n matrix is column sufficient if for all x • R n 

xi(Mx)i<_O f o r a l l i = l , . . . , n  ~ x , (Mx) i=O f o r a l l i = l , . . . , n .  

A matrix is row sufficient if its transpose is column sufficient. A matrix that 
is both row and column sufficient it simply called sufficient. 

It is not hard to show that the class SU contains the union of P and PSD. 
(As noted above, we do not assume the symmetry of the matrix M in 
discussing positive semidefiniteness. Instead, for M to be PSI) we require 

x T M z  = E i x i ( M x ) i  >_0 for all x E R" .) It even contains A as well as the 

direct sum of  the classes A, P and PSI). 
The definitions just given make no direct reference to the LCP, and yet 

such a connect exists and is an intimate one. In fact, each of  the classes can 
be defined in terms of a property of the LCP. We state these as theorems. 

Theorem 1. The n x n matrix M is column sufficient if and only if for 
every q • M the (possibly empty) solution set of  (q,M) is convex. 

We remark that CSU ~ Q0. For instance, any 2 × 2 matrix with one zero 
column and one positive column is column sufficient but not a Q0-matrix. 
The story is different for RSU, however. 

The fact that RSU c Q0 follows from 

Theorem 2. The n × n matrix M is row sufficient if and only if for each 
q • R n , if (x, u) is a Karush-Kuhn-Tucker pair for the quadratic program 

minimize x T ( q + Mx ) 

subject to q + Mx > 0 
x > O ,  

(7) 

then z solves the LCP (q,M). 

t This name for the matrix class SU was chosen partly in jest as a parody of the name 
"adequate" for the matrix class A introduced by Ingleton [54]. 
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Thus, when M e S U ,  every feasible LCP (q,M) has a nonempty convex 
solution set. Moreover, since every row or column sufficient matrix must 
have nonnegative principal minors (and thus belong to the matrix class P0 ), 
the difference between any two solutions of  an LCP formed with such a 
matrix is zero. Hence (q + Mz) is constant for all x solving (q,M). 

The class SU nicely unifies the classes A, P and PSD in other ways. For 
example, it is "invariant" under principal pivoting. This means that, if M,~ 
is a nonsingular principal submatrix of a sufficient matrix M, then the 
corresponding principal pivot transform matrix M' is also sufficient. More 
explicitly, if 

M=IM~ M ' ~ ]  e SU 
M~,~ M ~  

then 

[ -M:oMo  
- LM'~ M ' ~  := IMp.  M~',~ M~-M~aM,~,~M~,~J" 

The question of  checking a real square matrix for membership in CSU is 
addressed in [17], [45], and [94]. We have no polynomial test for this 
property, but the ones we have are at least finite. One of  these tests is 
somewhat interesting. It is based on the fact that checking the column 
sufficiency of  2 x 2 matrices is quite easy. 

L e m m a  1. The matrix M ~ R 2×2 is column sufficient if and only if the 
following two conditions are satisfied: 

(i) M e P o ;  
(ii)no principal pivot transform or principal rearrangement of M has the 

form 

I:;] 
Definition 2. If  M E R n×" and 1 < k < n we say that M is column sufficient 
of order k if every k × k principal submatrix of M is column sufficient. 

In [17] this definition and the notion of  principal pivot transformation are 
combined to yield the following criterion for column sufficiency. It happens 
to be a generalization of  a theorem due to Parsons [84] regarding P-matrices. 
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Theorem 3. A matrix M ~ R .... is column sufficient if and only if every 
principal pivot transform of  M is column sufficient of  order 2. 

The above lemma can be used to check the column sufficiency of the 
2 x 2 matrices mentioned in the theorem. V/iliaho [94] gave some additional 
criteria for (row and column) sufficiency. He closes with the observation, 
"all the above tests are combinatorially explosive and thus practicable for 
small matrices only". This is not altogether surprising, for Coxson [21] 
showed that testing for membership on P is co-NP-complete. 

Let us now turn to another class of  matrices. This one was introduced in 
Section 3.2 of  A Unified Approach to Interior Point Algorithms for Linear 
Complementarity Problems by Kojima, Megiddo, Noma and Yoshise [67]. 
The class is cal ledP.(k)  where the parameter K is a nonnegative real 
number. The condition that a member of  this class is required to satisfy is 

(1+4a) Z xi(Mrc),+ Z x,(Mx)i>O V:r,~R" (8) 
i~l+(z) ~,~/_ (z) 

where 

I+(x)={i:xi(Mx),>O } and I (x)={i:x,(Mx)i <O} (9) 

Notice that P. t 0 ) Z  PSD and that if m, _< ~2, then P. ( t~,)c  P. ( t~) .  The 
smallest value of  ,~ . v .  which M ~ P, (~)  is denoted ~[ ,M)_The scalar is 
~ ( M )  measures the smallest "boost" that zTMx needs to become a 
nonnegative-valued function. Accordingly, ~ ( M ) i s  called the handicap of  
M. 

What we have here really is a family of  matrix classes (one for each ~ ). 
Relative to this family Kojima et al. defined the class 

Po = UP. (~). (10) 
~c>_O 

They show that for each ~ > 0 the class Po (t~) is a subclass of  CSU and 
hence is a subclass of P0. 
Recall our observation that CSU is not a subclass of Q0. Despite this, they 

observe [67, p. 39] that P. is a subclass of Q0. This inclusion leads one to 
suspect that there must be more to the class P. than meets the eye, and 
indeed this is just the case. 
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In [45] it is shown that P. c SU and that, for 2 x 2 matrices, the reverse 
inclusion holds as well. This led to the conjecture (also stated in [45]) that 
P. ~ SU and to the question [13] "Are P. -matrices just sufficient?" 

An answer to this question was not long in coming. Hannu V~iliaho's 
paper [95], with the crisp title "P.-matrices are just sufficient", provided an 
affirmative answer and did so with a beautiful proof. Notice that the equality 
of  P, and SU explains why P.-matrices belong to Q0: they are row 
sufficient as well as column sufficient. 

In a subsequent paper [96], V~iliaho introduced a method for computing 
the handicap of  a (sufficient) matrix. The calculation is not a simple matter. 
In addition, V/fliaho showed that the handicap is the same for a matrix and 
its transpose. He conjectured that the handicap of a matrix is a continuous 
function of its elements. It is also true that if M' is a principal pivot transform 
of M, then ~ ( M ) = t ~ ( M ' ) ,  whereas if M, ,  is a principal submatrix of M, 
then ~(M,~,~)<_~(M). 

The figure below indicates some inclusions among most of the matrix 
classes discussed so far. It is worth noting that the five classes along the 
bottom edge of  this figure are all subclasses of Q. 

i 

P I )  - 8 ( ; P  

Inclusions among matrix classes. All are strict. 

In the interest of  clarity, some other inclusions have been omitted from 
this figure. For example, P is a subclass of E which is also known [10] to be 
the class of  completely-Q matrices, i.e., those for which the matrix and all of  
its principal submatrices belong to Q. Moreover, Eaves [27] showed that L 
contains P and A; in his Ph.D. thesis, Stone [89] showed that L contains P1. 
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. A L G O R I T H M S ,  C O M P L E X I T Y  A N D  
C O M P U T I N G  

A few years before the period under discussion here, Klee and Minty [66] 
stunned the mathematical programming world by demonstrating that solving 
a linear programming with the standard simplex algorithm can take an 
exponential number of pivot steps. Soon, variants of the class of problems 
exhibited by Klee and Minty turned up in the world of linear 
complementarity, and it was shown that all the known pivoting algorithms of 
the day could require an exponential number of iterations to obtain a 
solution. Results of this sort can be found in [34], [80], [40], [4]. Some 
unification of these problems is available in [11] where connections 
Hamiltonian paths, puzzles and Gary code are established. 

Such exponential behavior of the simplex algorithm is at variance with its 
typical behavior. 

Decades of experience has shown that the number of iterations required 
to solve a linear program with an m-rowed constraint matrix is a small 
multiple of m.  Seeking an understanding of the behavior of the simplex 
algorithm several researchers concentrated on probabilistic analysis. (See 
Todd [92, p. 422] for some discussion and citations of the relevant 
literature.) In some of these studies, the discussion was facilitated by the 
expression of the optimality conditions for linear programming as an LCP. 
The keen interest in this line of research on linear programming tended to 
increase the optimization community's interest in the LCP as such. 

The search for a polynomial-time linear programming algorithm was on. 
Credit for the first to be discovered goes to L. Khachiyan [64], [65]. His 
ellipsoid method [64] was guaranteed to solve a linear program in 
polynomial time, but although it was a major achievement, the method 
proved disappointing because its typical behavior was much like its worst- 
case behavior. 

And then, in the year 1984, N.K. Karmarkar [63] advanced a linear 
programming algorithm that differed from the simplex method by taking 
steps through the interior of the feasible region rather than by traversing 
edges of the polyhedron. There are now many algorithms of this type: Kar- 
markar's original proposal, now called the projective method, dual and 
primal-dual path-following methods, and potential reduction methods. 
Collectively they are called interior-point algorithms. There are now several 
excellent monographs devoted to this subject. Among these are [82], [98], 
[101]. 

On the heels of interior-point algorithms for linear programming came 
natural extensions of these methods for quadratic programming and certain 
classes of LCPs. Since the casting of optimality criteria for a linear 
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programming--or a convex quadratic--programming problem as an LCP 
(q,M) leads to the formation of a positive semidefinite coefficient matrix M, 
it is not surprising that there should be interior-point algorithms for such 
problems. These are commonly called monotone LCPs inasmuch as 
xVM >_ 0 for all x implies that the mapping F(x) = q + Mx is monotone in 
the sense that 

(F (x ) -F (y ) , x - y )>O forall x,y. (11) 

In 1988, Y. Ye [99] introduced the use of interior-point methods for the 
(monotone) LCP. In that same year, studied P-matrix LCPs. He and others 
such as M.J. Todd, S. Mizuno, N. Megiddo, and M. Kojima (in various 
combinations) actively explored this line of research, and the results poured 
out. This effort provided the background for the publication of the slender 
but powerful volume [67] in which the matrix class P, was introduced. But, 
as noted above, it would be a while before the full connection of this class 
with the sufficient matrices would be revealed. 

Around this time, Ye and Pardalos [102] described a "condition" number 
~/(qM) for the LCP (q,M)that characterizes the difficulty of using a 
potential reduction algorithm to solve that instance of the LCP (q,M)it 
belongs to a class they call G. Notice that G is a class of linear 
complementarity problems, not a class of matrices. Nonetheless, they note 
that (q,M)e G whenever M e PSD.  (In this case, the choice o fq  does not 
matter.) They also point out that (i)(q,M)eG whenever M e C P  
(copositive) and q > 0 ,  and (ii) (q,M)eG whenever M -l exists and is 
copositive and M-~q < O. Problems with q > 0 or with M-~q < 0 are trivial 
(x = 0 is a solution of the first and z = q is a solution of the second), but Ye 
and Pardalos remark that the potential reduction algorithm often finds 
alternate solutions to such problems. Ye's paper [100] gives a polynomial 
potential reduction algorithm for the P-matrix LCP. 

In 1997, B. Jansen, C. Roos, and T. Terlaky [59] published a family of 
polynomial algorithms for the monotone LCP and soon thereafter [87], F.A. 
Potra and R. Sheng introduced a large-step infeasible-interior-point 
algorithm that can be used on the P, -matrix LCP. Actually, they assume that 
the matrix of the LCP belongs to P, (t~) for some n ,  as it must if it belongs 
to P,. The authors show that if a given LCP with such a matrix is solvable 
(which in this case is equivalent to saying it is feasible) then the algorithm 
converges from arbitrary positive starting points. The number of iterations 
depends on the quality of the starting point. 

While the interior-point methods and the contest to improve their worst- 
case behavior bounds were occupying peoples' attention, linear 
complementarily problems of many kinds were also being solved by the 
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more traditional pivoting methods, such as Lemke's algorithm [70], the 
principal pivoting method [23], and a procedure called the criss-cross 
method [91]. The combination of these methods with sufficient matrices 
deserves a few words. In the paper [1] it is shown that Lemke's algorithm 
will process (i.e., either solve or reveal the infeasibility of) any LCP (q ,M) 
in which M ~ P0 ~ Q0. Since row sufficient matrices belong to P0 ~ Q0, it 
follows that Lemke's algorithm will process such LCPs. It was shown in [12] 
that the principal pivoting method processes LCPs with row sufficient 
matrices. Moreover, the least-index degeneracy resolution role that was 
known [7] for LCPs with PSD- and P-matrices was extended to SU [14]. In 
this case, both row and column sufficiency are needed. Finally, in [50] it is 
shown that a matrix M is sufficient if and only if the criss-cross method 

instances of the LCPs (q,M)and (q,M~'). processes all 
Software for solving complementarity problems (including of course the 

LCP) is available. For example, the web-based NEOS server enables one to 
use T.F. Rutherford's MILES [39], and the celebrated product PATH by S.P. 
Dirkse and M.C. Ferris [26]. In 1997, the Mathematical Programming 
Society awarded Dirkse and Ferris with the Beale-Orchard-Hays Prize for 
excellence in computational mathematical programming. MILES requires 
GAMS input, whereas for PATH the input can be in Fortran, AMPL, or 
GAMS. 

. A P P L I C A T I O N S  

From the outset, the linear complementarily problem was viewed as a 
model of the KKT conditions of an inequality-constrained linear or quadratic 
programming problem, but other applications were noticed as well. These 
included the computation of Nash equilibrium points for bimatrix games via 
the Lernke-Howson algorithm [72], the solution of problems in contact 
mechanics, market equilibrium problems, and optimal stopping problems. 
Still another problem to which the linear complementarity problem applies is 
the computation of convex hulls of finite sets in the plane. 

All the applications mentioned above are briefly discussed in [18], but 
most of what is described there was already available by 1978. A much more 
comprehensive and up-to-date survey of applications of engineering and 
economic applications of (primarily nonlinear) complementarity problems is 
available in the (1997) paper [36] by Ferris and Pang. Both of these authors 
have written extensively on a broad range of applications of 
complementarity problems and variational inequalities. More on applications 
of complementarity will be found in [55] and [57]. Still more recent (2003) 
is the monumental two-volume work of Facchinei and Pang [33] which 
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opens with an impressive collection of source problems. In the latter 
presentation, the emphasis tends to be on variational inequalities, but there 
are plenty of complementarity problems in it as well. One of these is on the 
pricing of American options. In 1990, this finance problem was treated by 
Jaillet, Lamberton and Lapeyre [58] who used a combination of variational 
inequalities and a finite-dimensional discretization to an LCP. According to 
Facchinei and Pang [33, p. 119] "although not explicitly using the LCP 
framework, Brennan and Schwartz" [6] "are arguably the earliest authors 
who used an iterative LCP algorithm for solving the American option pricing 
problem". The subject is developed in [53]. 

Under favorable conditions, the solution of nonlinear complementarity 
problems becomes another application of the LCP. This, of course, is 
through linearization methods and sequential linear complementarity 
problem (SLCP) solution. The idea is to linearize the (differentiable) 
mapping F of a nonlinear complementarity problem (over the nonnegative 
orthant) at a current iterate, say x k and then solve the LCP (q,M) where 

q=F(:ck)--VF(:ck)Xk and M:VF(x~)=I.O~ k)l r (~ -] 
L J 

(12) 

This approach has been used extensively by L. Mathiesen in [76], [77] 
and (jointly with C.D. Kolstad) in [68]. The application in each of these 
publications is an economic equilibrium problem. The LCPs are typically 
solved using Lemke's algorithm. The convergence arguments given in the 
Kolstad-Mathiesen paper are based on theorems of Pang and Chan [83]. 

The recent global interest in the restructuring and design of electricity 
markets has given rise to numerous opportunities to build equilibrium and 
complementarity models, some of which are of the linear type. Such models 
aim to provide both quantities and prices for electric power generation, 
transmission and distribution systems. See [78], [52], [51 ], and [86]. 

. G E N E R A L I Z A T I O N S  

The casting of complementarity problems in abstract spaces constitutes 
one sort of generalization that dates from the previously mentioned work of 
Karamardian (some of which, incidentally, benefitted from the celebrated 
Hartman-Stampacchia theorem [49]). But this is not the sort of 
generalization we have in mind here. Instead, the title of this section refers to 
other related forms of the problem. The first of these to be called a 
generalized linear complementarity problem was introduced in 1970 by 
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Cottle and Dantzig [15]. It is now called the vertical linear complementarity 
problem (VLCP). Briefly, the problem is to satisfy the system 

mj 

x > 0 ,  y=q+Nx>_O, z~I-~v~=0 (13) 
k=l 

As may be inferred from the complementarity conditions above, the 

Z" matrix N has j=lmj rows and n columns. The rows are grouped into a 

"stack" of submatrices Nj.  With this formulation, some of the definitions 
ordinarily used for square matrices can be applied to "representative 
submatrices," that is, n x n matrices whose jth row comes from the jth 
block, Nj .  Thus, for instance a generalized P-matrix is a vertical block 
matrix for which each representative submatrix belongs to P. 

Interest in the VLCP seems to have been nonexistent until 1989 when 
B.P. Szanc's Ph.D. thesis [90] was completed. Two years later another Ph.D. 
thesis [28], that of A.A. Ebiefung, came along. He and M. Kostreva 
produced a series of papers [30], [31], and [32] involving this model and its 
applications. See also [29] and [47]. 

Although it seems to have been named after the VLCP, the horizontal 
linear complementarity problem (HLCP) can be said to date back to a 
seminal paper of Samelson, Thrall, and Wesler [88] published in 1958. (In 
this paper it was first proved that P is the class of matrices M for which the 
(standard) LCP (q, M) has one and only one solution, regardless of which q 
is used.) The underlying mathematical problem Samelson, Thrall, and 
Wesler studied was that of solving the system 

A x + B y = c ,  x,y>_O, xWy=O, (14) 

They sought conditions on the n x n  matrices A and B such that this 
system would have a unique solution for every c e R". In so doing, they 
were able to manipulate the problem into the one we think of as the standard 
LCP. 

It seems that the recent interest in the HLCP arose in the wake of the 
research on interior point methods for linear and quadratic programming. 
This literature includes [69], [93], and [42]. The last two of these are 
concerned with the question of reducing the horizontal LCP to a standard 
LCP. An infeasible interior-point algorithm for the HLCP can be found in 
[1031. 

Yet another generalization of the LCP is the so-called extended linear 
complementarity problem (XLCP) introduced by Mangasarian and Pang 
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[75]. This problem can be expressed as that of  finding a solution of  the 
system 

A x + B y e K ,  x ,y>O,  x T y = O ,  (15) 

where K is a polyhedral convex set. In this problem, the matrices A and B are 
of  the same order, but not necessarily square. In [43], Gowda studied the 
XLCP, he introduced and characterized the column-sufficiency, row- 
sufficiency, and P-properties. He then specialized these properties to the 
HLCP and VLCP. 

Another style of  generalized linear complementarity problem is given in 
[24]. In this case, the authors seek all nonnegative solutions of the system 

M x = O  and ~ l - - I x k = o .  (16) 
i = 1  keBi 

This form of the problems appears to be of  interest in electrical circuit 
theory. 

And finally, there is another extended linear complementarity problem 
(ELCP) devised by B. De Schutter and B. De Moor [25]. The problem is to 
find a solution of  the system 

m 

E1--l(Az-c), = 0  

A x - c > O  
B x  = d 

(17) 

or show that no such vector exists. The data for this model have the 
following specifications: A e R 1'×~ , B e R q×" , c e R p, d ~ R q, and 
~ ___ {1,...p} for j = 1 , . . . ,m.  The authors demonstrate the formulation of  all 
the above generalizations (and more) in terms of  the ELCP. 

They also note that the general ELCP is NP-hard since it includes the 
standard LCP which, as shown by S.J. Chung [8], is NP-complete. 
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Abstract: In this paper we investigate the links among generalized scalar variational 
inequalities of differential type, vector variational inequalities and vector 
optimization problems. The considered scalar variational inequalities are 
obtained through a nonlinear scalarization by means of the so called "oriented 
distance" function [ 14,15]. 

In the case of Stampacchia-type variational inequalities, the solutions of the 
proposed ones coincide with the solutions of the vector variational inequalities 
introduced by Giannessi [8]. For Minty-type variational inequalities, 
analogous coincidence happens under convexity hypotheses. Furthermore, the 
considered variational inequalities reveal useful in filling a gap between scalar 
and vector variational inequalities. Namely, in the scalar case Minty 
variational inequalities of differential type represent a sufficient optimality 
condition without additional assumptions, while in the vector case the 
convexity hypothesis is needed. Moreover it is shown that vector functions 
admitting a solution of the proposed Minty variational inequality enjoy some 
well-posedness properties, analogously to the scalar case [4]. 

. INTRODUCTION 

Given a map F from IR" to IR" and a nonempty set K _  IR", we say 
that a point x" e K is a solution of  a Stampacchia variational inequality 
when [13]: 
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VI(F,K) (F(x*),y-x*)>_O, Vy~K.  

Analogously we say that x ' e  K is a solution of  a Minty variational 
inequality when [ 17]: 

MVI(F,K) (F(y),x*-y)<O, VyeK.  

In particular, when the variational inequality admits a primitive 
minimization problem (that is the function f to minimize is such that 
F = f ' )  and K is a convex set, VI(f',K) and MVI(f',K) have strong 
links with this problem. Roughly speaking, VI(f',K) is a necessary 
condition for the minimization of  the function f over the set K ,  which 
becomes also sufficient when f is convex. On the contrary, MVI(f',K) is 
a sufficient condition for the minimization of  f over the set K ,  which 
becomes necessary if f is convex. Recently it has been observed also [4] 
that the existence of a solution of MVI(f',K) has some implications on the 
well-posedness of  the related optimization problem. 

Variational inequalities in the sense of Minty and Stampacchia have been 
extended to the case where F is a point-to-set map from ~" to 2 ~" (see for 
instance [ 10]). In this case a point x* E K is a solution of a Stampacchia 
variational inequality, when there exists ~*eF(x*), such that 

* * ~ >  K .  * K . . . .  said solution of kq , y -  x _ 0, Vy e Analogously x e is a a Mmty 
variational'inequality when it holds (v,x* - y) < O, '¢y~ K and 'v'v e F(y) . 

Furthermore a vector extension of Minty and Stampacchia variational 
inequalities has been introduced by F. Giannessi [8,9], who has also given 
some links between the solutions of vector variational inequalities and the 
solutions of a vector optimization problem. Roughly speaking, it has been 
proved that Stampacchia vector variational inequalities represent a necessary 
condition for optimality (that becomes sufficient under convexity 
assumptions). Analogously to the scalar case it is proved that Minty vector 
variational inequality is a necessary and sufficient optimality condition under 
convexity assumptions. But a gap with the scalar case arises, namely that 
convexity is needed also to prove that Minty vector variational inequality is 
a sufficient optimality condition. 

In this paper we introduce a generalization of scalar variational 
inequalities (of differential type) and we investigate their links with vector 
variational inequalities and vector optimization problems. The considered 
variational inequalities are obtained through a nonlinear scalarization, which 
makes use of the so called "oriented distance" function [14,15]. We show 
that the solutions of  the proposed variational inequalities coincide with the 
solutions of  some variational inequalities for point to set maps. In the case of 
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Stampacchia-type variational inequalities the links of the proposed ones with 
vector optimization coincide with those holding for vector valued ones. For 
Minty-type variational inequalities analogous coincidence holds under 
convexity assumptions. We show that if the convexity hypothesis is dropped, 
the proposed Minty variational inequalities provide a stronger solution 
concept with respect to Minty vector variational inequalities and are useful 
in filling the previously mentioned gap. 

Moreover it is shown that vector functions admitting a solution of  the 
proposed Minty variational inequality enjoy well-posedness properties 
analogously to the scalar case [4]. 

The paper is structured as follows. In section 2 we recall some known 
results about Minty variational inequalities and scalar optimization. Section 
3 presents the concept of  "oriented distance function" and its application in 
the scalarization of vector optimality concepts. Section 4 deals with 
variational inequalities and vector optimization. 

2. S C A L A R  V A R I A T I O N A L  I N E Q U A L I T I E S  

We are concerned with the following optimization problem: 

P(~, K) min ~(x),  x ~ K ___ N", 

where ¢ : IR"- -~N.  A point x ' e K  is a solution of P(qk, K) when 
~b(x) - ¢(x*) > 0, Vx e K .  The solution is strong when 
~(x) - ¢(x*) > 0, Vx ~ K / {x" }. 

In this section we assume that ~b is a function defined and directionally 
differentiable on an open set containing K .  We recall that the directional 
derivative of  O at a point x in the direction d ~ IR" is defined as: 

r,,'~'l"x" d)  = lim qk(x + td) - ¢ ( x ) ,  
t~0÷ t 

when this limit exists and is finite. We deal with the following variational 
problems: 

V/(q~',K) Find apoint  x* E K  such that ¢'(x';y-x*)>O, V y ~ K .  

MVI(qk',K) Find a point x" ~ K such that ¢'(y;x* - y) < 0, Vy ~ K .  
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Observe that the previous problems reduce to the classical Stampacchia and 
Minty variational inequalities when ¢ is differentiable, which induces us to 
use the classical abbreviations VI and MVI. 

Definition 1. 
i) Let K be a nonempty subset o f  II~". The set kerK consisting o f  all 

x ~ K  such that ( y ~ K , t ~ [ O , 1 ] ) ~ x + t ( y - x ) ~ K  is called the 

kernel o f  K. 
ii) A nonempty set K is star-shaped i f  ker K ~ O. 

In the following we use the abbreviation st-sh for star-shaped. It is known 
(see e.g. [18]) that the set kerK is convex for an arbitrary st-sh set K .  

Definition 2. A function qk defined on ll~" is called increasing along rays at 

a point x* (for short, f ~ IAR(x*)) i f  the restriction o f  this function on the 

ray IR . = {x* + a x  [ot >_ 0} is increasing for  each x ~ IR" . (A function g o f  
X ,X 

one real variable is called increasing i f  t 2 >_ t~ implies g(t 2 ) >_ g(tj ) .) 

Definition 3. Let K c l ~ "  be a st-sh set and x* ~ k e r K .  A function qk 

defined on K is called increasing along rays at x* (for short, 

¢ e l A R ( K , x * ) ) ,  i f  the restriction o f  this function on the intersection 

N . n K is increasing, for  each x ~ K . 
X ~X 

Proposition 1. [4] 
0 I fqke lAR(K,x*) ,  then x* i sasolu t ionofP(~b,K) .  

ii) ~b ~ IAR(K, x*) i f  and only i f  x* ~ ker levscq~ for  

(here lev<c qk := {x e K l¢(x ) _< c}). 

every c >_ ¢(x')  

The following result can be deduced from Theorem 2 in [4]. 

Proposition 2. 
i) Let x* be a solution o f  MVI(¢' ,K) and x * ~ k e r K .  

qk ~ IAR(K, x ')  . 

ii) Let qk E IAR(K,x*).  Then x" is a solution o f  MVI(¢ ' ,K) .  

Then 

Remark  1. If x* is a strong solution of MVI(¢',K) (i.e. 
¢'(y;x* - y) < 0,Vy E K / {x*}), in the previous Proposition we can easily 
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conclude with the same proof that ~b is strictly increasing along rays starting 
at x*. 

The following result has an immediate proof and we omit it. 

Proposition 3. 
i) Let x* ~ ke rK .  I f  x* ~ K is a solution o f  P(qk, K),  then x* solves 

VI (#',K) . 

ii) Let K be a convex set. I f  ~ is convex and x* E K solves VI(qY, K) 

then x" is a solution o f  P(qk, K).  

Proposition 4. 
i) Let x* ~ ker K .  I f  x* ~ K is a (strong) solution o f  MVI(~b', K) then 

x* is a (strong) solution o f  P(qk, K).  

iO Let K be a convex set. I f  x* ~ K solves P(qk, K) and q) is convex, 

then x" solves MVI(q~,K). 

Proof: 
i) 

ii) 

Since x* is a solution of MVI(~b',K), then ~b ~ IAR(K,x ' )  and 
hence x" solves P(~b,K). Analogously when x" is a strong solution 
of MVI(qY, K) .  

If ~b is convex and x" ~ K  solves P(~b,K), then ~b~ IAR(K,x*) and 
so x* solves MVI(qk',K). 

II 

Problems VI(qk',K) and MVI(~b',K) can be linked by the following 
result, analogous to the classical Minty's Lemma. 

Proposition 5. 
i) Let x" ~ ker K .  I f  x* ~ K solves MVI(qk', K) and qk'(.;d) is upper 

semicontinuous (u.s.c.) along rays starting at x" for  every d ~ ~" ,  
then x ° is a solution o f  VI(qk', K) .  

ii) Let K be a convex set. I f  x* ~ K solves VI(qk', K) and qk is convex, 

then x* solves MVI(qk',K). 

Proof: 
i) We begin proving that under the assumptions, if x * ~ K  solves 

MVI(qY, K) ,  then x" is such that qk'(y;y-x*) > O, Vy ~ K .  Since x* 
solves MVI(q£,K), we know that qk~IAR(K,x*) and since 



264 Variational Analysis and Appls. 

x* ~ k e r K ,  the set {lRx. y n K} is convex and hence has a nonempty 

relative interior ri {R.,y ~ K}. If y e ri {ll~.,y ~ K}, for t > 0 "small 

enough" we have y + t ( y - x ' ) = x * + ( l + t ) ( y - x * ) e l ~ .  ~ K  and 
X , y  

* > hence qk(y+t(y-x  ) ) _ ¢ ( y ) ,  from which it follows easily 

qk'(y;y-x*)>O. Let now y e  {N.y  ~K}/r i{Nx.y  ~ K } .  Hence we 

have y = l i m y k ,  for some sequence Yk e ri{Nx.y n K}, that is 

Y, =x* +tk(y-x* ) . It holds: 

0 < ~  f . * * ¢ (Yk ,Y , -x ' )  = ¢'(x* + t k ( y - x  ) ; tk (y -x  )) 

and hence: 

0 __ lim sup ¢'(x* + t, (y - x'); y - x*) < ¢'(y; y - x*), 
k --~+zo 

ii) 

where the last inequality follows since O'(.,d) is u.s.c, along rays 
starting at x". 
Let now z ~ K  and consider the point z( t ):=x*+t(z-x*) ,  

t~(0,1].  We have O<_~b'(z(t);z(t)-x*)=¢'(z(t);t(z-x*)) and 
hence ¢'(z(t);(z - x*)) > O. Passing to the limit as t --~ 0 ÷ and taking 
into account the fact that ~b'(.;y-x*) is u.s.c, along rays starting at 

x ' ,  we get ¢' (x ' ;y-x*)  > O. 

If x*~K solves VI(¢',K), then x* solves P(qk, K) and 

qk ~ 1AR(K,x*). Hence x* solves MVI(qY, K). 

[_t 

Now we recall the notion of Tykhonov well-posedness for problem 
P(¢ ,K) .  

Definition 4. A sequence x k e K is a minimizing sequence for P(¢,K), 
when ¢(x*) --* inf x ¢(x). 

Definition 5. Problem P(¢,K) is Tykhonov well-posed when it admits a 
unique solution x* and every minimizing sequence for P(¢~, K) converges to 
X . 

For c > 0 we set: 
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L*(e) = (x K :  ¢(x)  _< i n f ¢ +  

Theorem 1. [7] 
i) I f  P(qk, K) is Tykhonov well-posed, then diamL~(c)--~0 as c-->O +, 

or equivalently inf~>0diamLO(e)=0 (here diamA denotes" the 

diameter o f  the set A ). 
ii) Let qk be lower semicontinuous and bounded from below. I f  

infc> 0 diam L ~ (~') = O, then P ( f  , K) is Tykhonov well-posed. 

Theorem 2. [4] Let K be a closed subset o f  •", x* E kerK and 

f ~ IAR(K,x*).  I f  P(qk, K) admits a unique solution, then it is Tykhonov 

well-posed. 

. S C A L A R  C H A R A C T E R I Z A T I O N S  OF  V E C T O R  
O P T I M A L I T Y  C O N C E P T S  

Let C be a closed, convex, pointed cone with nonempty interior. Let M 
be any of the cones C c, C 1{0}, C and intC.  The vector optimization 
problem (see e.g. [19]) corresponding to M ,  where f :JR" --+ R ~ , is written 
as"  

VP( f ,K )  v -  min M f ( x ) ,  x e K .  

This amounts to find a point x* ~ K (called the optimal solution), such that 
there is no y e K / {x* } with f ( y )  ~ f (x*)  - M .  The optimal solutions of the 
vector problem corresponding to - C  c (respectively, C I {0}, C and in tC)  
are called ideal solutions (respectively, efficient solutions, strongly efficient 
solutions and weakly efficient solutions). We will denote the efficient 
solutions as e-solutions and the weakly efficient solutions as w-solutions. 

Let us now recall the notion of  "oriented distance" function, introduced 
by Hiriart-Hurruty [ 14,15]. 

Definition 6. F o r  a set A c l R  ~ let the oriented distance function 
A A • IR I --> IR • {+oo} be defined as." 

A A (Y) = d A (Y) - d~t,,A (Y), 

where d A (y) := inf,,~A [[y - 4 is the distance from the point y to the set A . 
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Function A A has been recently used in [20] to characterize several 
notions of  efficient point of  a given set D c 1R ~ . In [12] it has been proved 
that when A is a closed, convex, pointed cone, then we have: 

A_~ (y) = max (~', y),  

where A' := {x ~ II~' I(x,a) >_ 0,Va e A} is the positive polar of  the set A and 
S the unit sphere in 11~ t . 

In this section we use function A_ A in order to give scalar 
characterizations of  several notions of  efficiency for problem V P ( f , K ) .  

Furthermore, some results characterize pointwise well-posedness of  problem 
V P ( f , K )  [6] through function A A . 

Given a point ~? e K ,  consider the function: 

~b~(x) = max ( ~ , f ( x ) - f ( 2 c ) ) .  
~ ~ C' c~S 

Clearly ~b~ (x) -- A c ( f ( x )  - f(~c)). We consider the problem: 

P(¢~, K) min ¢~ (x), x ~ K. 

The following Theorem can be found in [11]. 

Theorem 3. 

i) The point x* ~ K is a strong e-solution o f  V P ( f  , K) i f  and only i f  x* 

is a strong solution o f  P(qkx.,K ) . 

ii) The point x* ~ K is a w-solution o f  V P ( f  ,K) i f  and only i f  x* is a 

solution o f  P(fkx., K) .  

The next result slightly extends Theorem 3. 

Theorem 4. 
i) 

iO 

The point x* ~ K is a strong e -solution o f  V P ( f  , K) i f  and only i f  
there exists a point 2c ~ K ,  such that x* is a strong solution o f  
P(q~,K) . 

The point x* ~ K is a w-solution o f  V P ( f , K )  i f  and only i f  there 

exists a point ~ E K , such that x* is a solution o f  P(q~,K) . 
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Proof. We prove only i), since the proof of  ii) is analogous. Let x* be a 
strong e-solution of  VP(f ,K) .  Then from Theorem 3 we know that x* is a 
strong solution of  P (~ . ,  K) and necessity is proved. 

Now, assume that for some J ~ K ,  x* is a strong solution of  P(~ ,K) ,  
i.e. ~b~ (x')  < ¢~ (x),Vx ~ K/{x*}, or equivalently: 

max ( ~ , f ( x ' ) -  f(Yc))< max ( ~ , f ( x ) -  f($c))= 
~eC' c~S ~eC' c~S " 

max (~ , f (x )  - f (x*) + f(x*) - f(Yc)) < 
~eC' n S  

mcaXs(~,f(x)- f (x*))+ ,,c'~smaX ( ¢ , f ( x * ) -  f(ic)),Vx e K / {x*}. 

Hence maxcEc,~s(~,f(x)-f(x*))>O, VxeX l {x*  }, i.e. x* is a strong 

solution of  P(qk. (x),K). From the previous Theorem we obtain that x* is a 

strong e-solution of  VP(f ,K) .  
[1 

Now we recall the notion of  pointwise well-posedness for problem 
VP(f ,K)  [6]. Let k ~ C ,  a > 0, v ~ K and set: 

L(v,k,a) = {x ~ K l f ( x )  ~ f ( v )  + ak - C}. 

Definition 7. Problem VP(f  ,K) is said to be pointwise well-posed at the e- 
solution x* when: 

inf~,>odiamL(x*,k,a) = 0, for each k e C. 

T h e o r e m  5. Let f be a continuous function and let x* ~ K be an e-solution 

of VP( f  , K). Problem VP(f  , K) is pointwise well-posed at x* if and only if 
problem P(~b. ,K) is Tykhonov well-posed. 

Proof.  Since x ° is an e-solution of  VP(f ,K) ,  then x* is also a w-solution 
of  VP(f ,K)  and hence (Theorem 3) a solution of  P(Ox.,K), with 

Ox" (x*) = 0. Let P ( ~ . , K )  be Tykhonov well-posed. If  for some k e C and 

a > O, x e L(x*,k,a), then, for some c ~ C ,  we have 

f ( x )  - f (x*) = -c  + ak and so: 
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¢. (x)= maXs(~,f(x ) - f (x*))= ~c':,smaX .(~,-c + ak)< 

< max ( ~ , - c ) + a  max (~,k~<a max (~,k~. 
~ e C ' n S  " " ~ e C ' ~ S  " ~ ~ e C ' , ~ S  " " 

(the last inequality follows since for every ~ e C' ~ S ,  we have (~ , -c)  _< 0 ). 

Hence we have xeLC~'(amax~c,~s(~,k)). It follows that V a > O  and 
Vk e C ,  we have: 

I5" a max ] 

and so, Vk e C : 

inf diamL(x"k'a)<-inf ~o ~(a ~c'~,smaX (~,k)). 

Since P(¢x',K) is Tykhonov well-posed, we have: 

inf,>0 diam L~" (a~maXs(4'k))=O 

and hence inf,~>odiamL(x*,k,a)=O , that is VP(f ,K)  is pointwise well- 
posed at x*. 

Assume now that VP(f,  K) is pointwise well-posed at x*. We prove that 
there exists a point k- e intC such that for every a > 0 it holds: 

L ~" (a) c_ L(x',-k,a). 

For every k e i n t C  and ~ e C ' m S  we have ( ~ , k ) > 0 .  Choose a vector 

k e i n t C  with min~c,~s<~,k-)>l .  If, ab absurdo, for some a > 0  there 

exists a point x e L ¢~" ( a ) I L( x* , k, a ) , then we have f ( x ) - f ( x" ) ¢~ -C  + a-[ . 
It follows the existence of  a point ~ - e C ' ~ S  such that 

< ~ , f ( x ) - f ( x ' ) - a - k ) > O  and so: 
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from which: 

that is {b. ( x ) -  {b. (x')  > a and hence the absurdo x ~ L ~'' (or). So we have: 

* D 

L ¢" (a) c_ L(x , k , a ) , V a  > O. 

Since VP(f ,  K )  is pointwise 
inf~>odiamL(x',k,a)=O and so 
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recalling Theorem 1, completes the proof. U 

In the scalar case it is known that if {b is a convex function with a unique 
(strong) minimizer over K ,  then problem P({b,K) is Tykhonov well-posed. 
Now we extend this property to the vector case. 

Definition 8. The function f "  K c JR" --+ ]R I is said to be C -convex when." 

f ( A x + ( 1 - A ) y ) - [ A f ( x ) + ( 1 - A ) f ( y ) ] E - C  Vx, y e K ,  VAE[0,1]. 

The following result has an almost immediate proof and we omit it. 

Proposition 6. Let f "  ~" --~ ]R ~ be a C -convex function. Then V~ ~ K ,  the 
function q~(x) is convex. 

Theorem 6. I f  f : ]R" --+ ]R I is C -convex, then f is pointwise well-posed at 
any strong e-solution o f  V P ( f  , k). 

Proof: Assume that f is C-convex and let x" be a strong e-solution of  
VP(f ,  K) .  Then, from Theorem 3 x* is the unique minimizer of  the convex 
function {b x. (x) over K and a classical result (see [7]) states that problem 

P({b.,K) is Tykhonov well-posed. The thesis then follows from Theorem 5 

Remark 2. If we consider C = ]R~. and define ~ ( x )  = max{ f  (x) - f (~c) , i  = 1 ..... l}, 

then it can be proved [4] that in the results presented in this paper, function 
~b~ (x) can be replaced by ¢~(x). 

well-posed at x*, we have 
also inf,,>0 diamL ~" (a)  = 0, which, 
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. V A R I A T I O N A L  I N E Q U A L I T I E S  A N D  V E C T O R  
O P T I M I Z A T I O N  

Vector variational inequalities (of Stampacchia type) have been first 
introduced in [8]. Later a vector formualtion of Minty variational inequality 
has been proposed as well (see e.g. [9]). Both the inequalities involve a 
matrix valued function F : IR" --~ IR ~X" and a feasible region K c N". We 
consider the following sets: 

f2 (x )  := {u e IR I lu = F ( x ) ( y - x ) , y  e K}, 

®(x) := {we IR I Iw= F(y)(y - x ) , y  e K}. 

D e f i n i t i o n  9. 

i) A vector x ' e  K is a solution of a strong vector variational 
inequality of  Stampacchia type when." 

VVIS(F,K) ~(x*) n ( -C)  = {0}. 

ii) A vector x* e K is a solution of  a weak vector variational inequality 
of  Stampacchia type when." 

VVI(F, K) f2(x*) ~ (- intC) = 0 .  

D e f i n i t i o n  10. 

i) A vector x ' e  K is a solution of a strong vector variational 
inequality of  Minty type when." 

MVVIS(F,K) ®(x')  ~ ( -C)  = {0}. 

ii) A vector x" e K & a solution of  a weak vector variational inequality 
of  Minty type when." 

MVVI(F, K) ®(x*) ~ (- intC) = 0 .  

In the sequel we will deal mainly with weak vector variational 
inequalities of  Stampacchia and Minty type (for short VVI and MVVI, 
respectively). 

The following result (see [9]) extends the classical Minty's Lemma to the 
vector case. 
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L e m m a  1. Let K be a convex set and let F be hemicontinuous and C - 
monotone. Then x* is a solution o f  MVVI(F,K)  i f  and only if  it solves 
VVI(F,K)  . 

Similarly to the scalar case, we consider a function f : ~" ~ 11~ ~ , that we 
assume to be differentiable on an open set containing K .  We denote by f '  
the Jacobian of  f .  

The following results (see [8,9]) link VVI( f ' ,K)  and MVVI( f ' ,K )  to 
vector optimization. 

Proposition 7. Let f : IR" ~ ~,~ be differentiable on an open set containing 
K .  

0 I f  x" ~ k e r K  is a a w-solution o f  VP( f ,K) ,  then it solves also 

Z Z I ( f ' , K )  . 

ii) I f  K is a convex set, f is C-convex and x* is a solution o f  

VVI(f ' ,  K) ,  then it is a w-solution o f  V P ( f  , K).  

Some refinements of  the relations between VVI and efficiency have been 
given in [2]. 

Proposition 8. Let C = JR1÷ and K be a convex set. I f  f is C -convex and 
differentiable on an open set containing K ,  then x" ~ K is a w-solution o f  
V P ( f  , K) i f  and only i f  it is a solution o f  M V V I ( f ' , K ) .  

R e m a r k  3. The previous result has been extended to an arbitrary ordering 
cone C (closed, convex, pointed and with nonempty interior) in [3], under 
the hypothesis that f '  is hemicontinuous at x*, i.e. that the restriction of  f '  
on any ray starting at x" is continuous. This assumption is not really 
additional with respect to Proposition 8, since the Jacobian of  every ~÷-  
convex and differentiable function is hemicontinuous. 

In particular, Proposition 8 gives an extension to the vector case of  
Proposition 4 (for differentiable functions). Anyway, in Proposition 8, 
convexity is needed also for proving that M V V I ( f ' , K )  is a sufficient 
condition for optimality, while in the scalar case, convexity is needed only in 
the proof of the necessary part. 

The next example shows that the convexity assumption in Proposition 8 
cannot be dropped. 
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Example 1. Let C = Rz+, K = [-~-,0] and consider a function f :N --+ ]R 2, 

f(x)=l f'(x)| defined as follows. We set." 

I ' - - ' 1  

LL(x)J' 

f ( x ) =  x2sin - x  2 x~ :0  

L0, x=0 

and observe that - 2 x  2 < f (x) < O, Vx ~ K and f is differentiable on K . 

Function f has a countable number o f  local minimizers and o f  local 
__ 1 maximizers over K .  The local maximizers o f  f are the points Yk ~+2k~' 

k=O,1 .... and f ( y k ) = O .  I f  we denote by x k, k=O,1 .... the local 

minimizers o f  f over K ,  we have Yk < Xk < Yk+l, Vk = O, 1,.... 

Function f2 is defined on K as: 

I_ f ( x k ) [ c o s  rex ~ ZC(X__kk--2__yk)l_ll ' 
2 L ~xk--Yk xk--Yk ,) 

fz  (X) = f (xk+') COS " - -  + 
2 Yk+~ -- Xk Yk+J -- Xk 

0, 

x~[yk,xk)  

X E[xk,Yk+I) 

x = 0  

for  k = 0,1, . . . .  It is easily seen that also fz  is differentiable on K .  The 
graphs o f  f and f2 are plotted in figure 1. 

2 X The points x ~ [-~-, o] are w-solutions, while the other points in K are 
not w-solutions. In particular, x* = 0  is an ideal maximal point (i.e. 
f ( x ) -  f (x*) ~ N2_, Vx ~ K ). Anyway, it is easy to see that any point of  K 
is a solution o f  M V V I ( f ' , K )  . 

In order to fill the gap between Proposition 8 and the analogous scalar 
result, we consider function ¢~ introduced in the previous section. From now 
on we assume that f is a function o f  class C ~ on an open set containing K .  
The following Theorem resumes some classical properties o f  function ¢~. 

Theorem 7. [5] 
(i) qk~ is directionally differentiable and 
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¢'~(x;d) = max ( T f ' ( x ) d ,  
~R~(x) 

where R~ (x) = {~ ~ C' :~ S : qk~ (x) = (~, f ( x )  - f(.~))}. 

r X iO qk ~( ;') is sublinear and can be expressed as: 

~b'~(x;d) = max (v ,d) ,  

where 0~b~(x) = conv{~mf'(x),~ • R~(x)} (here convA denotes 

the convex hull o f  the set A). 

Now we consider the following problems: 

VI(qk'~,K) For a given , ~ e K ,  find a point x* ~ K  such that 

q~'~(x*; y -  x ' )  > O, Vy e K . 

MVI(¢'~,K) For a given ) ? ~ K ,  find a point x ° e K such that 
~b'~(y;x* - y )  < O,'v'y ~ K 

i , /  

Y 
Figure 1. f (x )  and f~(x). 

Remark  4. Clearly, Proposition 5 provides some links between these 
i d two problems. Since, under the made assumptions, ~b~ ( . ; )  is u.s.c. [5], 

then any solution of Problem MVI (~b~,K) is a solution o fVI  (qS~,K). 
Conversely, if f is C-convex, then ~b~ is convex (see Proposition 6) and 

I K hence Proposition 5 states that every solution of Problem VI (~b', ) is 
t K  . also a solution of MVI (~be, ) 
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The next results state the equivalence betweeen the previous problems 
and generalized variational inequalities for point to set maps [10]. 

Proposition 9. Let K be a convex set. Problem VI(qk'~,K) is equivalent to 
the following generalized variational inequality of  Stampacchia type • 

VI(Oqk~,K) For some given ~ceK, find a point x* e K, such that 

3v~ a ~ ( x ' )  forwhich ( v , x ' -  y)<_O. 

Proof. VI(OO~,K)~ VI(qk'~,K) is obvious. Instead, assume that x* solves 
Vl(qk'~,K),i.e. ' * - ~k ~(x ; y x*) >_ O, Vy e K . This means: 

max (v,y-x')>O, Vy~K 
v~O(~ ( x" ) ~ 

and the result follows from Lemma 1 in [1 ]. [1 

Similarly we get the following result which we state without the obvious 
proof. 

Proposition 10. Let K be a convex set. Problem MVI(~b'~, K) is equivalent 
to the following generalized variational inequality of  Minty type." 

MVI(Oq~,K) For a given 2c ~ K ,  find a point x* ~ K such that for 
every v ~ Oq~ (y) and for every y ~ K . 

Now we prove that the solutions of problem VI(qk'~,K) coincide with 
the solutions of  VVI( f ' ,  K) .  

Proposition 11. Let K be a convex set. I f  x* ~ K solves problem 7(~b ~,K) 
for some Sc ~ K,  then x* is a solution of VVI(f', K) . Conversely, if  x* ~ K 
solves VVI(f ' ,K),  then x* solves problem VI(qYx.,K ) . 

Proof. Assume first that x* solves problem VI(~b'~,K) for some J ~ K .  

Then from Proposition 9 we know that x* solves VI(O~b~,K), i.e. there 

exists v*~O~k~(x'), such that (v',y-x*)>_O, V y ~ K .  By Caratheodory 

Theorem v* ~-~[ T , , ~ [  = Ai~ i f ( x )  with O < r _ < n + l  A i > O  A i = l  
r T 1 * * 

~i ~R~(x'). This means ~-~i=1Ai~i f (x ) ( y - x  ) > 0 ,  V y ~ K .  Ab absurdo 

assume that for some y ~ K  it holds f ' ( x ' ) ( y - x * ) ~ - i n t C .  Hence, for 
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every ~ ~ C ' ~  S ,  we must have ~v f ' ( x ' ) ( y -  x')  < 0 and this conradicts the 
previous inequality. 

Assume now that x" ~ K solves VVI(f' ,K) and observe that since K is 

convex, also ~ ( x ' )  is a convex set. Since f ) ( x * ) ~ - i n t C = O ,  then from 
the well known Separation Theorem, we have the existence of a vector 
~ E C ' n S  such that ~v f ' ( x ' ) ( y -x ' )>O.  Now, observe that we have 

~b'~.(x';y-x')=max¢~Rx.~x.)~r f ' ( x ' ) ( y - x  ") and R. ( x ' ) = C ' n S  . So the 

previous inequality implies ~b'x.(x*;y - x*) > 0. 

Remark  5. In [16] it has been proved that, under the hypotheses of the 
previous result, the set of  the solutions of VVI(f', K) coincide also with the 
set of  the solutions of  the scalar variational inequalities VI(~Tf',K), 

Now we turn our attention to problem MVI(~b'~, K). 

Theorem 8. Let x" EK solve MVI(~b'~,K). Then x" solves MVVI(f ' ,K).  

Proofi Let x" solve MVI(~'~,K) and ab absurdo assume that x* does not 

solve MVVI(f ' ,K).  Hence, for some fi ~ K we have 
f ' (y)(- f i -x*)e-intC and so ~ T f ' ( y ) ( y - x * ) < 0 ,  V ~ e C ' n S .  This 
contradicts the fact that x* solves MVI(~b'~,K), i.e. that 

max4eRAy ) f ' (y)(y  - x*) > 0,Vy e K. 171 

The converse of  the previous result holds under convexity assumptions. 

Theorem 9. Let K be a convex set and f be a C-convex function. If 
x" ~ K solves MVVI(f ' ,K),  then x* solves problem MVI(qY .,K). 

Proof. We know that, if f is C -convex and x* solves MVVI(f ' ,K),  then 
x" is a w-solution of  VP(f,K) (Proposition 8 and Remark 3) and hence x" 
is a solution of  P(qJx.,K) (Theorem 3). Since f is C-convex, from 
Proposition 6 we know that #x' (x) is convex and then ~. ~ IAR(K,x'). It 
follows that #x.(y;x'-y)<-O (recall Proposition 2) and the proof is 
complete. F] 
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The convexity assumption in the previous result cannot be dropped as the 
following example shows. Hence, when convexity assumptions do not hold 
MVI(~b~, K) defines a stronger solution concept then MVVI(f ' ,  K) .  

Example 2. Consider the function of  Example 1 that clearly is not Rs+ convex. The 
point x* = 0 is a solution of  MVI( f ' ,  K),  but there is no 2 E [_z, 0] such that x* 
solves MVI(qk'~, K), with ~b~ (x) = max {f (x) - f (2); fz (x) - f2 (2)} (recall 
Remark 2). 

The next result states that MVI(~b'~, K) is a sufficient optimality condition. 

Theorem 10. Let x* ~ kerK be a solution o f  MVI(¢'~,K) for  some 2 ~ K . 
Then x* is a w-solution o f  VP( f  , K). 

Proof. Since x* solves MVI(¢'~, K) ,  then x* is a solution of P(¢~, K) 
and hence a w -solution of V P ( f ,  K)  (recall Proposition 4 and Theorem 4). 

Theorem 11. Let x* ~ kerK. I f  x* is a strong solution o f  MVI((k'~,K) for 
some 2 ~ K ,  then x" is a strong e -solution o f  VP( f  ,K). Furthermore, i f  
x* is a strong solution o f  MVI(qYx.,K ), then VP( f ,K)  is pointwise well- 

posed at x*. 

Proof. If x' is a strong solution of problem MVI(O'~,K) for some 2, then 
x" is a strong e -solution of VP(f,  K) (apply Proposition 4 and Theorem 4). 
Assume in particular that x* is a strong solution of problem MVI(¢'x.,K), 
i.e.: 

qk'x.(y;x* - y )  < 0,Vy ~ K/{x'}. 

Then, combining Propositions 2 and 4 and Theorems 2 and 5, the proof is 
complete. [-! 

Example 3. Consider the function f : ~ __> ~2 defined as 

f ( x ) = ( x ,  l o g l x - l l ) = ( f ( x ) , f 2 ( x ) ) ,  let C=N2+ and K=[-1/2,1/2]. It is 

easy to check that x* = 0 solves MVVI( f ' ,K)  and x" is an e-solution o f  

VP( f  ,K) (and hence also a w-solution). Anyway, Proposition 8 would not 

have allowed such a conclusion, since f is not C-convex. Instead, 

considering function Cx" (x) = max {f (x), f2 (x)} one gets" that x* is a strong 



Variational Inequalities in Vector Optim&ation 277 

solution of  MVI(qk x.,K) and hence x" is a strong e-solution of  VP(f ,K) .  

Furthermore VP(f  , K) is pointwise well-posed at x" . 
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VARIATIONAL INEQUALITIES FOR GENERAL 
EVOLUTIONARY FINANCIAL EQUILIBRIUM 

P. Daniele 
Dept. of Mathematics, University of Catania, Catania, Italy 

. I N T R O D U C T I O N  

In a previous paper (see [6]), we studied an evolutionary financial 
equilibrium problem in the case of quadratic utility function 

rr~,~ol ~ , [x,~,~l_r~,~×Ex,~,~_y,~ol ~,, 
Q (')Ly,(t)J 

where Q i ( t ) = F  Q:'(t) Q/z(t)] is a 2 n x 2 n  variance-covariancematrix. 
i i 

LQj,(t) Q22(t)_J 
Now we intend to extend this particular model to a general case in which the 
utility function is given by 

U, (t, x, (t), y, (t), r( t))  = u, (t, x, (t), y, (t)) + r(t)(x,  (t) - y, (t)), 

where ui(t ,x~(t),y~(t)) is a concave and differentiable function. The 
assumption of concavity on u~ (t, x i (t), Yi (t)) is essential in order to obtain a 
characterization of the evolutionary financial equilibrium and the existence 
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of the financial equilibrium. This fact perfectly agrees with many other 
situations in which the concavity (or convexity) plays an essential role. 
Moreover, like the previous paper, also this one is devoted to the 
evolutionary case. Although equilibrium excludes time, time is, nevertheless, 
central in both the physical-technological world as well as in the socio- 
economic world. Then we cannot neglect it in our investigations. In the same 
context take place the papers [2] and [3] - [4] which discuss other time- 
dependent applications using the same approach applied to financial 
equilibrium problems. 

This paper is organized as follows. In Section 2, we develop the model, 
provide the equilibrium conditions, and give the variational inequality 
formulation. We also identify the underlying network structure of the 
problem both out of and in the equilibrium state. In Section 3, we provide 
some theoretical results, whereas in Section 4 we give the proof of the 
variational inequality formulation and establish an existence result. In 
Section 5, we summarize the results of this paper and provide suggestions 
for future research. 

. T H E  E V O L U T I O N A R Y  F I N A N C I A L  M O D E L  

In this section, we present the evolutionary financial model and give the 
variational inequality formulation of the equilibrium conditions. The 
functional setting in which we study this evolutionary model is the Lebesgue 
space L2([O,T],RP), which appears to be the appropriate setting since it 
allows us to obtain equilibrium conditions equivalent to a variational 
inequality involving the L 2 -scalar product in [0, T]. The time dependence 
of the model in the L 2 ([0, T]) sense allows the model to follow the financial 
behavior, even in the presence of possibly very irregular evolution, whereas 
the equilibrium conditions are required to hold almost everywhere (see [2], 
[3], [4] for analogous problems). In this setting, the variance-covariance 
matrices associated with the sectors' risk perceptions will be required to 
have L~([0, T]) -entries. 

Analytically, consider a financial economy consisting of m sectors, with 
a typical sector denoted by i,  and with n instruments, with a typical 
financial instrument denoted by j ,  in the period 7"=  [0, T]. Examples of 
sectors include: households, domestic businesses, banks, and other financial 
institutions, as well as state and local governments. Examples of financial 
instruments, in turn, are: mortgages, mutual funds, savings deposits, money 
market funds, etc. 

Let s~(t) denote the total financial volume held by sector i at the time t ,  
which is considered to depend on the time t ~ [0, T]. At time t,  denote the 
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amount of  instrument j held as an asset in sector i ' s  portfolio by x U (t) and 
the amount of  instrument j held as a liability in sector i ' s  portfolio by 
y u ( t ) .  The assets in sector i ' s  portfolio are grouped into the column vector 
x i ( t  ) =[X,l(t ), Xi2( t ) ,  . . . ,  x!i(t), . . . ,  Xin(t)] T and the liabilities in sector 
i ' s  portfolio are grouped into the column vector 
Yi (t)  = [Yil (t), Yi2 (t) , . . . ,  Yu (t), . . . ,  Yi, (t)] y. Moreover, group the sector asset 
vectors into the matrix 

x ( 0 =  

x,(t) 
° o °  

x,(t)  = 

° ° °  

_x.(t)_ 

x , , (O 
. , ,  

x,, (t)  

, , °  

Xml ( t )  

... x , j ( t )  

... x•(t) 

... Xmj(t) 

x , . ( O -  

xi . ( t )  

Xmn(l )  

and group the sector liability vectors into the matrix 

i y l ( t ) -  
, , ,  

i 

y ( t ) =  i y , ( t )  

I ° . ,  

-ylj(t) 
, . .  

= yi l ( t )  

, ° ,  

YmI(t) 

• .. y u ( t )  

• .. yu ( t )  

• .. ym~(t) 

... y , , ( t ) -  

• .. y i , ( t )  

• .. Y mn( l )  

We generalize the quadratic financial model and we assume that each sector 
seeks to maximize its utility, where the utility function U~(t, x i (t), yi (t), 
r ( t ) )  is given by: 

U, (t, x i (t), Yi (t), r ( t ) )  = lg i (t, x i (t), Yi (t))  + r ( t ) ( x  i ( t )  - Yi (l)). 

The quadratic financial model is a particular case of this general model 
which can be obtained again setting 

-ui(t'x'(t)'y'(t)) Ly,(t) / Q ' ( t ) L y , ( t ) ] "  

Hence -ui(t, xi(t),yi(t)) represents a general form of the aversion to the 
risk. 
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We suppose that the sector's utility function ~l i(t, x i( t) ,y~(t))  is defined 

on [0, T] x R" x R",  measurable in t and continuous with respect to x~ and 

y~. Moreover we assume that c3u~ and c3u~ exist and that they are 
Ox o. c3y v 

measurable in t and continuous with respect to x~ and yi. Further we 
require that the following growth conditions hold: 

Iu,(t,x,y)l<_ ,(t)llxllllyll, Vx, y ~ R " , a . e ,  in[O,V], V i = I  .... ,n, (1) 

and 

Ou,<t,x,y).oxu < A0)IlyII, ou,(t,x,y)ay  <- r°(t)llxll' (2) 

where ai ,  fl/j, 7"/j are non negative functions of L~([0, T]). Finally, we 
suppose that the function u i (t, x i (t), yi (t)) is concave. 

Assuming as the functional setting the Lebesgue space L2([O,T],RP),  
the set of  feasible assets and liabilities becomes: 

P~ = {(xi (t), Yi( t ) )  ~ L 2 ([0, T], R 2" ) : 
n n 

Z Xo(t) = si(t) '  Z YU (t) = si(t) a.e. in [0,T], 
j=l j=l 

x o. (t) >_ O, Yo (t) > O, a.e. in [0, T] }. 

In Figure 1, we depict the network structure associated with the above 
feasible set and the financial economy out of equilibrium. The set of  feasible 
assets and liabilities associated with each sector corresponds to budget 
constraints. 

We now can give the following definition of  an equilibrium of  the 
financial model. 
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~ C . i  ,tW, "z. • ,1 (t) .~(t) .,,,J0 Asset ~ (,~ ,.. 
S u b p r o l , l e , , ~  / ~  

Suhf,~JAe,ns (~ 
.~l(0 

~ / ~ . )  

s,,,{0 

Fig. 1. Network structure of the sectors' optimization problems a.e. in [0,T] 

Definit ion 1. A vector of sector assets, liabilities, and instrument prices 

(x* (t), y* (t), r* (t)) ~ l~I P/× L 2 ([0, T], R~) is an equilibrium of the 
i=l 

evolutionary financial model if and only if it satisfies the system of 
inequalities 

aui(t'xi(t)'Yi(t)) r](t)-/3~')(t)>_ O, (3) 
axo 

and 

au i (t, x i ( t) ,  Yi ( t ) )  t- rf ( t)  - / t ~  z) ( t)  > O, (4) 
as,+ 

and equalities 

x~(t)[ au,(t,x,(t), r~ ( t ) -  Ft~')(t)] = 0' (5) 

y~(t)[ Ou,(t,x,(t), y,(t)) r] (t)_ /z~2)(t) ] = O, (6) 
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where /.t](t), /.t2i (t) ~ L2([0,T]) are Lagrangean functions, for all sectors 
i ." i = 1, 2,..., m, and for all instruments j • j = 1, 2,..., n, and the condition 

* - * _>0, 

m 

[i~=l ( x ; ( t ) -  y ; ( t ) ) r f ( t )=O,  

a.e. in [0, T] 

r*(t) ~ L2([O,T],R:), 
(7) 

simultaneously, where a.e. means that the condition holds almost 
everywhere. 

The meaning of this definition is the following: to each financial volume 
si(t ) invested by the sector i ,  we associate the functions ,u~l)(t) and 
~2)( t )  related, respectively, to the assets and to the liabilities and which 
represent the "equilibrium utilities" per unit of the sector i. The financial 
volume invested in the instrument j as assets xo.(t ) is greater than or equal 
to zero if the j - t h  component 

au'(t'x'(t)'yi(t)) r~*(t) 

of the utility is equal to ~fi~)(t), whereas if 

aui(t 'xi(t) 'Yi(t)) r f ( t ) >  ~t~')(t), 
Ox o, 

then xu (t) = 0. The same occurs for the liabilities. It is remarkable that the 
equilibrium definition is, in a sense, the same as that given by the Wardrop 
(1952) principle which states that in the case of user-optimization on 
congested transportation networks (see [1]) the user (which is a traveller in 
that case) rejects the less convenient (or more costly) choice (which, in the 
context of a transportation network, is a path or route). 

The functions ,u~l)(t) and /,t~z)(t) are Lagrangean functions associated 

with the constraints ~'~xo( t ) - s i ( t )=O and ~-~yi j ( t ) -s i ( t )=O,  
j=l /=l 

respectively. The fact that they are unknown a priori has no influence 
because, as we shall see by means of Theorem I, Definition 1 is equivalent 
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to a variational inequality in which ~ l )  and ,u~ 2) do not appear. 
Nevertheless, by the use of Theorem 3, they can be obtained. 

Conditions (7), which represent the equilibrium condition for the prices, 
express the equilibration of the total assets and the total liabilities of each 
instrument; namely, if the price of instrument j is positive, then the amount 
of the assets is equal to amount of liabilities; if there is an excess supply of 
an instrument in the economy, then its price must be zero. 

Moreover, if we consider the group of conditions (3)-(6) for a fixed 
r(t),  then we realize (see Section 3) that they are necessary and sufficient 
conditions to ensure that (x~, y~) is the maximum of the problem: 

max .~T {ui(t, xi(t), y,(t)) + r(t) × [x, (t) - y, (t)]} dr, 
8 

V ( x,(t), yi(t) ) ~ Pi. 
(8) 

Problem (8) means that each sector maximizes his utility. The functional 
ui(t ,x(t) ,y(t)) is concave and, using assumption 1, it also belongs to 

/,I([0, T]) ,  as well as r( t)×[xi( t )-yi( t )] .  Moreover, since it is 
continuous in virtue of (1) (see [8]), it is also upper semicontinuos in the set 
Ps which is weakly compact, then such a maximum exists (see [9], Lemma 
2.11, pag. 15). 

We now state the variational inequality formulation of the governing 
equilibrium conditions, the proof of which is given in Section 4. 

m 

Theorem 1. A vector (x*(t),y*(t),r*(t))~I-IPixL2([O,T],R~) is an 
i=1 

evolutionary financial equilibrium if and only if it satisfies the following 

variational inequality." Find (x* (t), y* (t), r* (t)) E 1-~ Pi x L 2 ([0, T], R~) : 
i=1 



286 Variational Analysis and Appls. 

i=l '= 

+Z 
j=l 

7 
c~u, (t, x, (t), y,(t)) . [ . 

Oxu rj (t)A xlx°(t)-x~(t)l 

aui(t'xi(t)'yi(t))Oyij ~-rf (t)lx[Y°(t)-Y~'(t)l 

n 

+~--' (x; ( t ) -  Y7 ( t ))x Er(t ) - r f  (t)]} dt >_ O, 
j=l 

I n  

V(x(t), y(t),r(t)) • H P~ x L 2 ([O,T],R~_ ). 
i=1 

(9) 

Such an integral exists as a consequence of condition (2). 
In the subsequent section we will prove the equivalence between problem 

(8) and conditions (3)-(6). In addition, we will establish the equivalence 
between condition (7) and a suitable variational inequality. Observe, that due 
to conditions (7), in equilibrium, we have that for each financial instrument, 
its price times the total amount of the instrument as an asset minus the total 
amount as a liability is exactly equal to zero. 

. S O M E  T H E O R E T I C A L  R E S U L T S  

The proof of the equivalence between Definition 1 and the variational 
inequality formulation is obtained by showing that conditions (3)-(6) are 
equivalent to problem (8), which, in turn, is equivalent to a first variational 
inequality and that conditions (7) are equivalent to a second variational 
inequality. From these two variational inequalities, we then derive 
variational inequality (9). 

We start by establishing the equivalence between problem (8) and a 
variational inequality. This proof is standard (see [17] for a similar 
argument), but we recall it for the reader's convenience. 

Theorem 2. (x;(t),y;(t))isasolutionto(8)ifandonlyif(x;(t),y*(t))is 
a solution to the variational inequality 
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~r_~j -au,(t,x,(t),yi(t))Ox~ +r*(t)]×[xu(t)-x~(t)]dt 
+ ~_~j__~-au,(t,x,(t),y,(t))Oyu -r* (t)Ix[yij(t) - y;.(t)]dt>O, 

V ( xi(t), yi(t) ) ~ Pi, 

0o) 

where t"]. (t) denotes the price for instrument j at the time t ~ [0, T]. 

Proof: Let us assume ( ~  ~ ) isa that x, (t), y, (t) solution to problem (8). Then 
for all (xi(t),yi(t)) ~ Pi the function 

T • • 

F(,¢) = {u, (t,/],x i (1) + ( 1  - -  .~,)X i (/), 2y, (t) + (1 -- 2)y, (t)) 

+r( t )x[2x?( t )+(1-2)x , ( t ) -2y~( t ) - (1-A)y~( t ) l }d t ,  2 e[O,1] 

admits the maximum solution when 2 = 1 and F'(1)> 0. Hence, we can 
consider the derivative of F (2)  with respect to 2 and we obtain: 

a ~r {u,( t ,2x;(t)+(l_2)x,( t) , ,Cy,(t)+(l_2)yi(t)  ) 
02 

+r(t) x I,¢x~* (t)+ (1-  ,;t)xi (t) - Ay* ( t ) - ( 1 -  2)y~ (t)l } act = 
t/ * ~T {~,, cOu,(t,,Cx~ (t) + (1- ,¢)xi(t),,C y , (t) + (1- ,¢)yi(t)) (x~(t)-  xu(t)) 

j=~ Ox~ 

" • ,Z)y, ( t ) )  ( y  + ~ Ou,(t,,Cx, (t) + (1-  2)x~(t),,C y~ (t) + (1-  ~. ( t ) -  y!/(t))} aft 
j = l  OY o. 

+ ~r ~ r ( t ) x ix ; ( t )_  xi/(t)-y;.(,)+ yu(t)]dt. 
i=1 

So we obtain: 
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• n * * F'(1) = .~' {y '  aui(t'x~ (t)' y' (t)) * 
J=, Oxu (x o (t) - x o. (t)) 

n * * 

+~-, Out(t,x , (tl, y, (t)).(y~.(t)- yo.(t))} dt 
j=l Oy~j 

T m • • 

+~ ~_r(t)x[x~j(t)-x,i(t)-y,i(t)+ yo.(t)ldt>_O. V(x,(t),y,(t))~P, 
i=1 

namely, the variational inequality (10). 
Vice versa, let us assume that (x 7 (t), y/* (t)) is solution to problem (10). 

Since the function gt i (x i ( t ) ,y i ( t ) )= .~rUi(x,(t) ,Yi(t))dt is concave, 

then for all (x7 (t), Y7 (t)) ~ P/the following estimate holds: 

-Lt i ( Axi(t) + (1- A )x 7 (t),A y,(t) + (1- A )y7 (t) ) 
<- - Al.4 ( x,(t), yi(t) ) -  (1- A )Ui ( xT (t), yT (t) ), 

namely, VA ~ (0,1] : 

( x7 (t) + a(x, ( t ) -  x7 (t)), y7 (t) + .a.(y, ( t ) -  y7 (t))) - u, (x; (t), y7 (t) ) 
;t 

< -U~ (x,(t), y,(t))+ gt~ (x; (t), y; (t)). 

When )~ --+ 0, the left-hand side of(11) converges to: 

= _ * y7 (t)).(xij(t) - xu(t)) 
j=~ &~ 

&,(t ,  xT(t),yT(t)) (yii(t)_Yo.(t)) -~ 

Oy o 
+ (  (t)(xu(t)-  x~.(t)- yo.(t) + Yo" (t))} dt, 

( l l )  
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that is the left-hand side of the variational inequality (10), which is > 0 
V(xi(t) ,  yi(t)) ~ Pi and, hence, 

O<--~.(xi( t ) ,y , ( t ))+Lti(xT(t) ,yT(t)) ,  V(x , ( t ) ,y , ( t ) )~Pi .  

It means that (x 7 (t), y ;  (t)) is solution to the problem (8). :5 

Let (xT(t) ,y,( t))  be the solution to problem (8) for a given r*(t) and, 
hence, to variational inequality (10). Now we can prove the following 
characterization of the solution. 

T , * , , heorem 3. (x. (t), y. (t)) zs a solut,on to (8) or to (10) if  and only if a.e. in 
- -  I I 

[0, T] it satisfies the conditions." 

Ou, (t, x, (t), y, (t)) 

Ox o 

au i (t, x i (t), Yi (t)) 

x,j(t) 

Yu(t) 

OY U 
Ou, (t, x, (t), y, (t)) 

Ox U 

Ou,(t,x,(t),y,(t)) 

r](t)-/~¢'~(t) > 0, (3) 

t- r] (t) - ,u¢ 2) (t) > 0, (4) 

(0 - ~'> ( t ) ] :  o, ( ( 5) 
d 

: o ,  (6) 
J 

where ~](t), ll2(t) ~ L2([O,T]) are Lagrangean functions. 

Proof: The proof of this equivalence is based on the infinite-dimensional 
Lagrangean theory, which has proven to be a powerful tool in determining 
essential properties of optimization problems (see [9], [5]). This theory 
proceeds in the following way. 

Let us consider the function 

L(xi(t), Yi(t),,~') (t),,~2)(1),,U~l)(t),,tl~2) (t) ) 
n 

(2) 
= f ?, f X j:l j=l 
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where 
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q~(x,(t),y,(t)) 

: f~" "j~'l Oui(t'xi(t)'Yi(t)) r;(t) x[xij(t)-x;(t)]dt 
= Oxij 

..Jr. ~T ~.w (~l'ti(t'xi(t)' yi(t)) t-r; (t) x[Yij(t)- y;(t)]dt, 
j=l Oyu 

( x~(t), y,(t) ) ~ L2 ([O,T], R 2") and A~l (t),A~ (t), /,t] (t), ~uZ~ (t) ) E C 

= {4(')(0, A~z)(t)eL2([O,T],R"), A~')(t), A~2)(t)>0, 
/a~')(t),/a~z)(t) e L2([0, T]); i =  1, 2, ..., m}. 

By means of Lagrangean Theory (cf. [5]), it is possible to prove that there 
exist A/°)(t), 2}2)(t), ,uCt)(t), /a~2)(t), such that Ai(')(t)>O, 2i(2)(t)>0 
and 

~T ~ 2~,) (t)x~.(t) d t : O~  2~.')(t)x!~.(t) : 0 a.e. in [O,T] 
j= l  

(t)y~j(t) = 0 a.e. in [0, T]. 
j=l 

Moreover, using the characterization of the solution by means of a saddle 
point (see [5]), we obtain: 

£ ( x ,  (t), y, (t), A~ ') (t), #2)(t) ,  ,u~ ') (t), ,u~ 2) (t)) 

= &,(t,x,(t),y,(t))&,j 1 
×[xu(t)-x~(t)]dt 

+ fr L Ou'(t'xi(t)'Yi(t)) +r;(t)-A~z'(t)-/.t~2)(t ) 
j=l OYij 

x[yo(t)- y~(t)]dt > O, V(x,(t),y,(t))E L2([O,T],R2"). 

(12) 

If we set 
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e l ( t )=  cgui(t'xi(t)'y~(t)) r;(t)_2~l>(t)_kt~l)(t) 
Ox U 

and 

c 2 ( t )  = Ou'(t'x'(t)'y'(t))-r](t)-2.~.')(t)-/~')(t), 
0y,j 

by choosing 

and 

xi(t)=x*(t)+,~,(t) ,  

Yi (t) = Yi (t) + c 2 (t), 

we get: 

By choosing 

and 

2 

au'(t 'x '( t) 'yi(t))  r~(t)-2~))(t)-kt~'~(t) dt 
ax U 

c~u'(t'x~(t)' yi(t)) + r] ( t ) -  A!l.2)(t)-~u¢2)(t) dt >_ O. 

x,(t):x;(t)-c,(t), 

y , ( t )=y , ( t ) -CE( t ) ,  

we obtain: 

j=l 

2 

au'(t 'x'(t) '  y'(t)) - rf ( t ) -  2~'~ ( t ) -  /~'~ (t) dt 
~x~j 

291 
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- c~ui(t'xi(t)'Yi(t)) I-r](t)-2.~2)(t)-/.t~2)(t) dt>O. 
"= OYij 

Hence, 

Ou,(t,x,(t),y,(t)) r~(t)_/~,)(t)  = 2~'(t)>_ O 
cox U 

and 

au,(t,x,(t), y,(t)) ~ r~ (t)- p~2)(t)= 2~2)(t) ___ 0. 
Oy,j 

Moreover, taking into account that 2.i ~')(t)x 7 (t) = 0, ~/(2)(t)y 7 (t) = 0, we 
get: 

x~(t)[ aui(t'xi(t)'yi(t))Oxu r~.(t)-,u~)(t)]=o 

and 

y~(t)I Oui(t'xi(t)'yi(t)) U r~(t)-'uff)(t)l=O" 

Conversely, if estimates (3)-(6) hold, then we show that the variational 
inequality (10) holds. From (3), we obtain: 

± 
j=l 

Ou,(t,x,(t),y,(t))Oxo r~(t)_/~)(t)]×[x,j(t)_x~(t)]>__O, 

and taking into account that xu(t)=si(t ) and ~_x!j(t)=sj(t) a.e. in 
[0, T], we get: j=l j=l 

~[  au,(t,x,(t),y,(t)) r~(t)]×[x~j(t)-x~(t)]>_O, 
j=1 c~x~ 
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and then 

293 

~o T £ [  au'(t'x'(t)'Yi(t)) r](t)]×[xo.(t)_x~.(t)]dt>O. 
s:~ ax~ 

(13) 

Similarly, one obtains: 

#./ 

~-, [. Ou,(t,x,(t), y,(t)) ~_ r; (t)]×[yu(t)_ y~(t)] > 0 
j=l ~ / j  

and, subsequently, 

#7 

~T~[. Ou,(t,x,(t),y,(t)) t_rs(t)]×[yo.(t)_yu(t)]dt_O. (14) 
j=l 0Y 0' 

Summing now inequalities (13) and (14) for all i, we conclude that for 

(x*(t), y* (t)) ~ r- i  Pi : 
i=l 

i=1 j= l  C~X//' 

,T n • +.[ ~[  aui(t,x,(t),y,(t)) i_((t)]x[yu(t)_ yu(t)]d t EO, 
j=l OY O 

V(xi( t ) ,Yi ( t ) )~Pi ,  

and the proof is complete. 

We now describe the variational inequality associated with 
instrument prices rj(t). 

The equilibrium condition related to the prices of the instruments is 

the 

I "Z(: - : _~0 x,j (t) y,j (t)) 

m 

o, 

a.e. in [0, T] 

r*(t)~L2([O,T],R~). 
(7) 
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Following the same proof of [6], we get the following theorem. 

Theorem 4. Condition (7) is equivalent to 

[j~7 Find r* (t) ~ L z ([0, T], R~) such that 
, m * * * 

ZExo(,)- (,)3d, o, 
i=1 

Vr(t) ~ L 2 ([0, T], R~ ). 
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(15) 

. VARIATIONAL INEQUALITY FORMULATION 
PROOF AND EXISTENCE THEOREM 

Following the proof of Theorem 3, we can now prove Theorem 1. 

Proof of Theorem 1: From the results of the preceding section, it 

immediately follows that if (x* (t), y* (t), r* (t)) e U P~ × L z ([0, T], R~.) is a 
i=1 

financial equilibrium, then it satisfies the variational inequalities (10) and 
(15), hence, the variational inequality (9) and vice versa. El 

We now establish the following existence theorem. 

m 

Theorem S (existence). If (x" (t), y" (t), r* (t)) ~ E Pi × L2 ([0, T], R~ ) is an 
i=1 

equilibrium, then the equilibrium asset and liability vector (x* (t), y* (t)) is 
a solution to the variational inequality." 

i=l '= 

au,(t, xi( t) ,yi( t))  ]x lxu( t )  - . (t)l 
Oxu J xu 

+j~__~[ au~(t'x'(t)'y'(t)) ] ×Iy~(t)- y~(t)~}dt > (16) 
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V(x( t ) , y ( t ) )~S ,  

where 

Conversely, if (x* (t), y* (t)) 
r* (t) ~ L 2 ([0, T], R~) such that (x* (t), y* (t), r* (t)) is an equilibrium. 

m 

Proof: Assume that (x*(t),y*(t),r*(t))~I-IPixLZ([O,T],R~) is an 
i=1 

equilibrium. Then (x* (t), y* (t), r* (t)) satisfies (9). In (9) let us set: 

is a solution to (17), then there exists an 

x,(t)=x~(t), y,(t)=y~(t), r ( t )=0,  a.e. in[O,T]andVi=l,...,m, 

then we get: 

i=1 j=l  
(17) 

Let us now set in (9) r(t) = r*(t) and we obtain: 

~-~ Oui(t'xi(t)'Yi(t)) ] i 

n * 

+ Z  Oui(t 'x i( t ) 'y i( t ))-xlYi /( t )-Yi /( t ) l}dt  
j=l 0y~ 

> (t) (x o. (t) - Yo (t)) - (x~ (t) - Yo (t)) dt. 
i=l 

(18) 

But the right-hand side of inequality (19) is > 0, because of (17) and the 
constraint set S .  Thus, we have established that (x* (t), y* (t)) satisfies (17). 

Observe that u~(t, xi(t),yi(t)) is concave, then -ui(t, xi(t),yi(t)) is 
convex and its gradient is monotone. From assumption (2), it is also 
hemicontinuous along line segments and, hence, it is lower semicontinuous 
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with respect to the strong and weak topology. In virtue of Corollary 5.1 in 
[4] the variational inequality (17) admits a solution. 

Now, in order to prove the existence of r*(t) ~ L2([O,T],R~) such that 
(x*(t) ,y* ( t) ,r*(t))  is an equilibrium, let us apply the Lagrange Multiplier 
Theorem (see [5]) to the function: 

L (x(t), y(t), 2 ('> (t), A (2) (t), ,u (') (t),,u (2) (t), r(t)) 
m T rt 

(2) :*(x(,),~(,))-y f 2;~"(,)x~(,)d,-~ f 2 ~; (,),o(,)d, 
i=1 j= l  i=1 j= l  

] - . .} '>(t)  xo(t)-s,(O dr-  ,.}~>(t) yo(O-s,(t) dt 
i=[ i=l "= 

- = rj (t) (xij (t) - Yo (t)) dt 

where 

,=, Oxu x [x!~ (t) - x~i (t)] at 

and 

(4' (t), z~ (t), d(t) ,  .,2 (t), r(t)) ~ 
= {A(')(t), A(z)( t )sL2([O,T],R"m),  A~t)(t), A~2)(t)>_O, 

/J}')(t),/~¢2)(t) ~ L 2([o, T], Rm); i = 1, 2,..., m; 
r ( t ) eL2([O,T] ,R" ) ,  r ( t )>Oa .e ,  in[O,T]}.  

We get that, besides A{')(t),  A~R)(t), kt~')(t) and M¢2)(t), there exists an 
r* (t) ~ L 2 ([0, T], R~) corresponding to the constraints defining S .  For such 
a pattern (x*(t), y*( t) ,r*( t ))  we have: 

au,( t ,x , ( t ) ,  y , ( t ) )  _ r] ( t ) -  /.t~ ') (t) = 2~ ') > O, 
ax o 

(3) 
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£ a u , ( t , x , ( t ) , y , ( t ) )  , 
i=l j=l i"j (t)]xExij(t)--X j(t)l 

?/ * ..~Z [. Ol'li(t'xi(t)'Yi(t)).~r;(t)]xEYij(t)_Yij(t)]. ~_ 
j=l OYo" 

n • • 

+ X r; (ol  d, >_ o, 
j = l  

and the proof is complete. 

. S U M M A R Y  A N D  C O N C L U S I O N S  

In this paper, we have proposed a new framework for the modeling, 
analysis, and computation of financial equilibrium problems through a novel 
evolutionary model. In contrast to earlier multi-sector, multi-instrument 
financial equilibrium models, the new model allows for variance-covariance 
matrices to be time-dependent, as well as the sector financial volumes. We 
described the behavior of the financial sectors, derived the equilibrium 
conditions, and then established the equivalent infinite-dimensional 
variational inequality formulation. We provided the network structure of  the 
problem, both out of and in equilibrium. We also proved the existence of an 
equilibrium pattern. 

Future research will include exploring a variety of modeling extensions, 
including, but not limited to, such policy interventions as price bounds and 
taxes. In addition, it would be interesting to apply the results herein to 
financial networks with intermediation (cf. [15]). 
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Abstract: 

Key words: 

The Exact Penalization approach to solving constrained problems of Calculus 
of Variations described in [17] is extended to the ease of variational problems 
where the functional and the constraints contain a control function. The 
constraints are of both the equality- and inequality-type constraints. The initial 
constrained problem is reduced to an unconstrained one. The related 
unconstrained problem is essentially nonsmooth. Necessary optimality 
conditions are derived. 
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optimality conditions, Penalty Function, Exact Penalty Function, Nonsmooth 
Analysis. 
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. I N T R O D U C T I O N  

In the paper  a special equality- and inequali ty-type constrained problem 
o f  Calculus o f  Variations where control functions are present [1], [17] is 
treated by  making use o f  the penalty function approach. The paper  is a 
continuation and generalization o f  the paper  [8] where classical variational 

" The work was supported by the Russian Foundation for Fundamental Studies (RFFI) under 
Grant No 03-01-00668. 
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problems were studied by means of the exact penalization technique. The 
idea is to reduce the initial constrained problem to an unconstrained one 
using exact penalty functions. Such an approach was first proposed by 
[13,14] and later by [21] for solving convex programming problems (see 
[2,15,16,18] and bibliography therein). Some new conditions for application 
of  exact penalties were stated in [12,6,9]. These conditions turns out to be 
useful for solving problems of  Optimal Control and Calculus of Variations 
(see [10]). 

In the present paper we consider a special problem of Calculus of 
Variations with equality- and inequality-type constraints. The functional is 
of  the form 

T 
l ( x ) =  I ( y , u ) =  F(y ( t ) , y ' ( t ) ,u ( t ) ,u (y ( t ) ) , t )d t ,  

where 

E C'[O,T],u ~ C~[to,tt],y(O) = yo ,y (T)  = y,,  ~0 u( t )dt  = 1, Y 

l(y(t),y'(t),u(t),u(y(t)),t) = O,y'(t) > 0 Vt E [0, T], u(t) > 0 Vt E [t0,t t ], 

t o and t 1 are specified below. 
The paper is organized as follows. In section 2 the problem is formulated. 

In Section 3 an equivalent statement of  the problem is given. Local minima 
and penalty functions are discussed in Section 4. Properties of the function 
describing the constraints are studied in Section 5. An Exact penalty function 
is introduced and studied in Section 6. Necessary optimality conditions are 
established in Section 7. 

. S T A T E M E N T  O F  T H E  P R O B L E M  

Let T > 0 be fixed. By CI[0, T] we denote the class of  continuously 
differentiable functions defined on [0, T].  

Ol Ol Ol and Let a function l(y,  Yt,U,U l,t) be continuous with Oy' Oy~ ' Ou 

01 in all its arguments on R 4 x [0, T] .  
0ul 

Fix Y0 ~ R  and y~ ~ R ,  such that Y0 <Y~. Put t o =min{0 ,Y0} ,  
t~ = max  {T, y~ } and introduce the set of functions 
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= {[y ,u] ly  E C'[O,T],u E C'[to,tl],Y(O ) = yo,y(T) = y,, 

£ u(t) dt = 1, l(y(t), y'(t), u(t), u(y(t)), t) = O, y'(t) > 0 Vt  E [0, T], 

u(t) > 0 'v't e [t0,t~ ] }. (2.1) 

A s s u m e  that 

Put x = [y ,  u]  and consider  the functional  

T t 
I (x)  = I (y ,u)  = ~ F(y(t) ,  y (t),u(t),u(y(t)),t)dt,  (2.2) 

where  the funct ion F(y,  y~, u, Ul, t) is cont inuous  together  with respect  to 

OF OF 
0y'  Yl, au  and u I in all its a rguments  on R 4×[0,T]. An arc 

x(t) = [y ( t ) ,  u ( t ) ]  ~ ~ is called admissible. 
An admissible  arc x* = [y* ,u*]  E ~ is called a strong extremal of  the 

funct ional  I(x)  def ined  by (2), i f  there exists c > 0, such that 

I(x ')<_I(x)  V x ~ f ~ B ~ ( x * ) ,  (2.3) 

where  

Be(x* ) = 

= { x E C'[0,  T] x C' [t o, t, ] [ max [ y(t) - y* (t) [ + max [ u(t)  - u" (t) 1< e }. (2.4) 
O ~ t ~ T  t o ~ t ~ l  ~ 

I f  

I(x*) <_ I(x) Vx E ~ n / ~ ( x * ) ,  (2.5) 

where  

/}~.(x* ) = { x E B e (x*) [ max  [ y'(t) - y" (t) ] + max [ u ' ( t )  - u* (t) [< c }, (2.6) 
O<I<-T t o <-t<-t~ 

then the arc x* ( t )  E ~ is called a weak extremal of  the funct ional  (2.2). 
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Every strong extremal is a weak one as well (the converse is, generally 
speaking, not true). 

. A N  E Q U I V A L E N T  S T A T E M E N T  O F  T H E  P R O B L E M  

Let us refomulate the above stated problem. Let 

u°+ "~o z2 (r)dr 
y ( t )  = Yo + ~jo e~'(~ d r ,  u( t)  = e 

u( t)  > 0 Vt e [to, t. ]. 

where 

z, (t) E C[0, T], z 2 (t) ~ C[to, t, ], u o ~ R. 

It follows from (2.1) that 

y(O) = Yo, y ' ( t )  = e ~(° > 0 Vt ~ [0,T]; 

Put 

Z = {[z,,z2,Uo] Iz I ~ C[O, Tl,  z 2 ~ C[to,tj],u o ~ R, 

~T ~o Uo+ ~ z~(r)dr 
Yo + e zAt) dt = Yt, e .o dt = 1, 

11o+ z2(r)dr 
,e  "° ,t)=O^ 

'v't e [o , r ]} .  

where C[to,tt] - is the family of bounded and continuous on 
functions. 

Introduce the functional f ( z )  = 

fyo*~eZl(r) dr 

= F ( y  o+ d ' ( ° d r , e ~ ' ( ° , e  ,e  
0 

(3.1) 

[to, t, ] 

, t )dt .  (3.2) 

Set 
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ho(T,z) := Yo -YJ + ~r eZ~(~) d r ,  (3.3) 

/11 (t o, tt, z) := e -o dt - 1, (3.4) 

ryo+~eZl(r) dr 

hz(t,z) :=l(Yo + eZ'(~)dr, eZ'('), e ,e ,t). 
0 

(3.5) 

The set Z can be represented in the form 

Z : { z : [z,, z2, u o ] E C[0, T] × C[t o, t, ] x R I ho (T, z) : O, 

h~(to,t,,z ) : O, h2(t,z ) : 0 Vt  ~ [0,T]}, (3.6) 

As in [8] it is easy to show that the following holds. 

L e m m a  3.1 Theproblem 

I (x )  ) min  (3.7) 
xE~ 

is equivalent to the problem 

f ( z )  ) min  (3.8) 
z~Z 

in the following sense: /f x" = [y*, u* ] ~ f~ - is a solution of  the problem 

(3.7), then the function z* =[% (t),z2(t),Uo]= [In(y*(t)), ,ln(u*(to))] is 

a solution of  the problem (3.8); and vice versa, if z* ~ Z is a minimizer of 
the function f on the set Z, then the function 

x [Yo + ~ e~;(~' dr,  e';+~'z;(°a~ * =  ] 

is a minimizer of  the problem (3.7). 
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Proof .  Let x* ~ ~ and 

l(x*)<_I(x) V x s ~ .  

Put z* = [ln(y* (t)), , In(u* (t o))]. Take any z ~ Z .  The function 

x : [ y ,  u l : [Yo  + ~ e "~1 d r ,  e "°+~'° ~2'~)d~ ] 

belongs to the set C n [0, T] x C ~ [to, t~ ] and satisfies the conditions 

y(o) = yo, y ( T ) :  y,, 1' u(t) d t= 1, 
.to 

l(y(t),y'(t),u(t),u(y(t)),t) = o ,  y'(t)  > o v t  ~ [o ,r ] ,  u(t) > o v t  e [to,t, ], 

i.e. x ~ f~.  Therefore 

f ( z* )  : I(x*) < I(x)  = f ( x ) .  

Since z ~ Z is arbitrary, then f ( z*)  = rain f ( z ) ,  hence, z* is a solution of  
z~Z  the problem (3.8). 

Now let z* ~ Z and 

Put 

f ( z * ) <  f ( z )  V z ~ Z .  

x* =[y*,u*]=[yo + eZ;(~) dv, e ,o ]. 

Take any x ~ ~2 and put 

(2.1), (3.1) and (3.6) that 

z = [ ln(y ' ( t ) ) ,  , ln(u( to) ) ] .  It follows from 

ho(T,z ) = O, ha(to,t,,z ) = O, h2(t,z ) = 0, Vt  ~ [ 0 , r ]  
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i.e. z ~ Z ,  therefore 

I(z*) = f ( x* )  < f ( x ) =  I(x). 

Due to the arbitrariness of x ~ £) 

307 

I(x*) = min  I(x),  
x ~ f ~  

i.e. x* is a solution of the problem (3.7). 
Thus, if z* = [z~,zz,u o ] ~ Z is a global minimizer of the functional f 

on the set Z ,  then the point x* = [y*, u*],  where 

• .~ .~+ ~o z;(~)d~ 
Y =Yo + e z~(°dr ,u*=e E 

and is a global minimizer of  the functional l (x )  on ~ ,  and, conversely, if 
x* = [y*,u*] G ~ is a global minimizer of  the functional I(x)  on f'2, then 

z* (t) = [In(y" (t)), u (t) '  In(u* (t 0))] ~ Z 

is a global minimizer of  f on Z .  

. L O C A L  M I N I M A  

Consider the problem (3.8). On the set U = C[0 ,T]x  C[to,tl]× R let us 
introduce a metric p(z ,  2.), where z = [z 1 (t), zz (t), u 0 ] ~ U ,  
2 = [2"~(t),2.z(t),~0] ~ U .  As p it is possible to choose, for example, one 
of the following functions: 

p,(z,2.) = 

=max]  j~ (z~(r)--Z,(r))dr[+ max I ~ (z2(r)--Zz(r))drl+luo-~o[, 
tE[0,T] t~[t  o,t I ] 

(4.1) 

p:(z,2.) = z ,( t )-2. , ( t )  ldt + I Idt+ luo - ol, (4.2) 
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1 
p 3 ( z , - Z ) = m a x l z ~ ( t ) - 2 . , ( t ) l + m a x l z z ( t ) - 2 . z ( t ) l + - -  [ u0 - ~-0 I, (4.3) 

/E[0,T] lC[ lO.l I] tl _ to 

± 

/94 (z, 2-) = [ ~r (z, (t) - 2-,(0) 2 dt + ~ (z 2 (t) - 2-z(t)) 2 dt + (u o - h-o)2] 2. (4.4) 

The following relations exist between the metrics Pi (i ~ 1 : 4)" 

p l ( z , - f )  <_ p2 (z ,2 )  <_ (t. - to )P3(Z , -Z) ,  

p4 ( z , - f )  <- ,fq~ - toP3 (Z,-f) .  (4.5) 

Thus, the metric P3 majorizes the metrics /92, Pl 
metric Pz majorizes the metric Pl" 

The following inclusions hold: 

and ,°4, while the 

{z I p~(z,  ~)  < 

{zlp~(z,~) < - -  

B 
t, - to } c {z I p2 (z, ~) < c} c {~ I p, (z, ~)  < c}, 

c-5--} = {z I p4(z,~) < c}. 

Therefore one concludes that a local minimizer of the function f on the 
set Z in the metric pj is a local minimizer of f in both the metrics ,02 and 
/93, while a local minimizer of  f in the metric ,°2 is a local minimizer of  
f in the metric /93 and a local minimizer of  f in the metric /94 is a local 
minimizer of  f in the metric ,°3. 

It is not difficult to see that if z*~  Z is a local minimizer of  the 
functional f on the set Z with the metric ,oi, then the function 

f .o+f ,;(oa~ x * = [ y * , u * ] = [ y o  + e,;(O d r ,  e .o ] 

belongs to the set ~ and is a strong extremal of  the functional I on the set 

If  z* ~ Z is a local minimizer of  the functional f on the set Z with the 
metric /94, ,03 or /92, then the function x* = [y*,u*] is a weak extremal of 
the functional 1 on f'2 (but not necessarily a strong extremal). 
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Conversely, if x* ~ ~ is a weak extremal of the problem (3.7), then the 

function z*(t) =[ln(y*(t)), ,ln(u*(to))] is a local minimizer of the 

function f on the set Z in the metric P3. 

If  x*(t)~ ~ is a strong extremal of  the problem (3.7), then the function 

z* (t) = [In(y* (t)), , In(u* (t 0))] is a local minimizer of  the function f 

on Z in the metrics p~, Pz and ,°3 (but not necessarily in the metric ,°4 ). 
R e m a r k  4.1. It has already been observed that the metric /°3 majorizes the 
metrics P4, P2 and Pl, while the metric P2 majorizes the metric PI" It is 
not difficult to show that neither pair of metrics (Pl,P2), (Pl ,P3) ,  
(,°2, P3) and (/°4, ,°3) is a pair of equivalent metrics. 

R e m a r k  4.2. The set Z defned by (3.6) can 
equivalent form 

Z = { z = [z~, z 2, Uo] ~ U [ ~o(z) = 0 }, 

where 

1 
,7" 2 2 2 ~o(z) : [  j~ h2 (t ,z)dt + h~2(to,t,,z)+ ho (T,z)], 

and h 0 is given by (3.3), h~ - by (3.4), h 2 - by (3.5). 

We have 

~o(z) > 0 Vz ~ C[0, T] x C[to, tl] x R. 

The relation (4.5) implies that if 

~o(z) > aP3 (z, Z), 

where a > 0 ,  then 

c/ Ct 
~o(z) _ - -  p~ (z, z )  >_ - -  p, (z, z ) .  

t I - t o t, - t o 

be represented in the 

(4.6) 

(4.7) 
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If  (p(z) > ap2 (z, Z ) ,  then 99(z) > apl (z,  Z )  . 

. P R O P E R T I E S  O F  T H E  F U N C T I O N  (p 

5.1 T h e  c l a s s i ca l  v a r i a t i o n  o f  z .  

Thus, we consider the problem of  minimizing the functional f ( z )  = 

T 

0 

on the set Z c C[O, T] x C[to, t I ] X R = U ,  defined by the relation (4.6). 
Let us study the properties of the function q). Fix z 6 U .  Let us choose 

and fix an arbitrary v = [vl, v2, v o ] ~ U and for some ~" _> 0 put 

z c = z( t )  + ev( t )  = [z,c, z2~, uo~ ], (5.2) 

where 

z u, = z, (t) + ev, (t), z2~ = z 2 (t) + ev  2 (t), Uo~ : u o + ev  o. 

Then 

y c ( t ) =  yo + f e~,,(O d r  = yo + f e~,(~)+~v,(° d r  = 

= Yo + f eZ'(~)e"V'(~) d r  = 

= Y0 + f eZ'(~)[ 1 + evl (r)  + o ( e ) ] d r  = 

= Yo + f e z ' ( °  d r  + e  f eZ ' (~ )v . ( r )d r+o(e )=  

= y ( t )  + e ~ e~'(~)vl (r)  d r  + o(e),  (5.3) 

Uo~.+ [* z26, (r)dr Uo+CVO+fo(Z2(r)+ev2(r))dr 
u , ( t )  = e "' = e = 
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= u(t)  + cu( t ) (v  o + ~o v2 (r) d r )  + o(c). (5.4) 

It follows from (5.3) that 

py(I)+&" ~e zl ( r )v  I ( r )dr+o(~')  
Uo+ r ' (Oz2(r )ar  Uo+ jI ° z2 (r)dr 

u(y , ( t ) )  = e  ,,o = e  
¢y(t) . ty(t)+e~ezl(r)vl(r)dr+o(e) 

Uo+/ z2(r)ar+/ z2(r)dr 
= e ,,0 ,,~,, = 

uo + fY(') z2 (r)dr+cz2 (y(t)) ~ e *l(r)v I (r)dr+o(c) 
= e "° "0 = 

= u(y ( t ) )  + c u ( y ( t ) ) z  2 (y( t ) )  ~ eZ'(~)vl (r) d r  + o(c). 
4O 

(5.5) 

Using (5.3), (5.4) and (5.5), one gets 

uc(y~(t))  u ( y , ( t ) ) [ l+  c (v  o + [Y"<') : v2 (r)  d r ) ]  + o ( ~ )  : 
v, 0 

= u(y~ (t))[1 + c (v  o + _[Y(°+c ~ezt'%(~)a~ v2(r) dr)] + o(c)  = 

y ( t )  fy(t)+c ~ eZl(r)vl (r)dr 
: u ( y ,  (t))[1 + e(v o + ~ v 2 ( r ) d r  + v 2 ( r )d r ) ]  + o(c) = 

Jy(t) 
to 

y ( t )  t 

: u(y~ (t))[1 + c(v 0 + ~ v 2 (r )dr  + cv 2 (y(t)) f e  z'C*)v, ( r )dr  + o(c))] + o(c) = 
t o 0 

= [u(y( t))  + c u ( y ( t ) ) z  2 (y ( t ) )  ~ e ~'~)v, (r)  d r  + o(e)] x 
y ( t )  

x[l+ e(Vo + v2(r)dr)  + o(e)] + o(e) = 
% 

~Y(') z2(y( t ) )  ~ eZ'(~'v,(r)dr] + = u (y ( t ) )  + Eu(y( t ) )[v  o + v 2 (r)  d r  + 

+o(c) .  (5.6) 

The relations (3.5), (5.2), (5.3), (5.4) and (5.6) imply 

h 2 (t, z c) = l (y ( t )  + c ~ e z'(r)vl (r)  d r  + o(c), 

e z'('~ + ee  z'('~v I (t) + o(c) ,  u( t)  + cu (t)(v o + ~o v2 (r)  d r )  + o(e),  
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eyo) + z 2 (y(t)) f e z' <~)v, (r) dr] + o(~), t) u(y(t))+,~u(y(t))[v o + Jlo v2(v)dr 

= h 2 (t, z) + c H  2 (t, z, v) + o(e, t), (5.7) 

where 

H 2 ( t , z ,  v) = 

Ol(t) 8l(t) Ol(t) [ ")v, (t) + u(t)(v o + fo v2 (r) d r )  + Oy ...e~'~v'(r)dr + Oy' ez' Ou 

Oflt)y ) ~" '  z2(y( t ) ) f  e"~'v,(r)dr], (5.8) + u(y(t))[v o + v= (r) dr + 

o(e,t) ---->0. 
C ~*o 

(3.3) and (5.2) yeild 

ho(T, z c ) = y o - y , +  fre' ," '+'v '" 'dt=Yo-y1+ ~reZ'"'e~V,'"dt= 

= Yo - Yl + fr d ,m[  1 + cvl (t) + o(c)] dt = 

=Yo-Y ,  + f re"mdt+e~re"mv, ( t )d t+°( '~)  = 

= ho(r, z) + e ~T eZ, mv, (t) dt. (5.9) 

We conclude from (3.4) and (5.2) that 

hi (to, tl, G)  = 

= £' e ,,o,+ ro z~,.~)a~ dt  -1  = £ e °o+.vo+r z,.,.., r . , o  .,o d -i = 

= ~ e .o+['.o ,,,~)a~ e"~°+ fo ~,,~,a~, d r - 1  = 

e"°+fo ~(~)a~[1 + e(Vo + ~ v 2 ( r ) d r ) + ° ( c ) l d t - l =  

l~(to,t,,z)+ e fo' (v° + f,o v2(r)dr)u(t)dt + o(e). (5.10) 
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5.2 The  case z ~ Z.  

First consider the case ~o(z) > 0, i.e. z ~ Z .  
Theorem 5.1 I f  z q~ Z ,  then the function ~o(z) is Gdteaux differentiable at 
the point z . 

Proof We have (see (4.7), (5.7), (5.9) and (5.10)) 

1 

~(z , )  = [  ~r hZ(t, zc)dt  + h2(to,t, ,zc)+ h~(T, zc)]2 = 

= [ ~r (h2 (t, z) + e H  z (t, z, v) + o(c, 0)  2 dt + 

+(l~(to,t, ,z)+ e fo ~ (v o + ~o v2(r )dr )u( t )d t  + °(~'))z + 

+(h o (T, z) + e ~r e z'(')v, (t) at) 2 ]~ = 

= { ~r [h i (t, z) + 2~'h 2 (t, z ) H  2 (t, z, v) + o(e, t)] dt + 

+[lff(t° ' t l 'z)+ 2°~kl(t°'t"z)~o' (v° + ~ V2(T)dT)~t(t)dt -I- O(°C')] "~" 

+[h 2 (T, z) + 2eh o (T, z) j~r e z'(')v, (t) at + o(e)] }~ = 

= ~o(z) + e{ ~ r h2(t'z) H2(t , z ,v)  d t + 
~o(z) 

_~ hl(to,tl,z) , 
~o(z) ~ (v° + ~ v2(r )dr )u( t )d t  + 

h o (T, z) -~ _ _  ~r eZ,~,)v, (t) dt} + o(c) = 
~o(z) 

= ~o(z) + e~o'(z, v) + o(e), (5.11) 

where 

o(c) --~ O, 
c$0 

(,o'(z, v)  -- l ira  ~p(z~)  - ( p ( z )  = 
c$0 S 

fr h z (t, z) /~ (to, t,, z) , 
J0 
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ho(r,z) -t j~r e~(,)v,(t)dt. 
co(z) 

It follows from (5.8) that 

co'(z,v) = 

~r hz(t,z ) Hz(t,z,v)dt-~ l~(to,t~,z ) r,, "~o (v° + ~ko v2(r)dr)u(t)dt + 
CO(z) CO(z) 

ho(T,z)  + _ _  ~r eZ,(,)vj ( t )  d t  = 
co(z) 

h2(t,z) ~Ol(t) Ol(t) (,)v I = ~r ~ eZ,(~)v,(r)d r + e z' it)+ 
coiz) " Of ay' 

+o~iO .iOivo + ~ v:(~)d~)+ 
OU 

21; + u(y(t))[Vo+ v2(r)dv+z2(y(t))~eZ'(°v,(r)dr]}dt+ 

.+ hl(to,t,,z) , ho(T,z) 
coiz) ~ (`°+ ~o vz(r)dr)uit)dt + --co(z) ~ e"(')v'(t)dt= 

= I l +12 +13, (5.12) 

where 

h~ (t°'co(z)t~' z) ' ( h2co(z)(t' z) v .  .it)dr+ Jo [ .it)+ I1 { 

oz(t) 
+ u(y(t))] dt}v o, au(y) 

(5.13) 

i2 = ( ihz( t , z )  Ol(t) ~ eZ,(~)v,(r)dr q h2(t,z ) Ol(t) 
~o - co(z) ay ~o(z) 7y'  e~'<~>v, i t )+ 

h 2(t,z) a/(t) 
¢(z) au(y) 

- -  u(y(t))z 2 (y(t)) ~ eZ'(~)vj (r) dr + 

h°(T'z) eZ'(')v, (t)} dt, 
co(z) 

(5.14) 
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~h2 (t, z) Ol(t) 

h 2 (t, z) Ol(t) (,~ 
+ u(y(t)) [Y V 2 (~') dr} dt + 

~o(z) au(y) 
+ t~(to'tl'z) , (,o(z) ~ u(t)( ~ vz(r)dr)dt. (5.15) 

Thus, at the point z q~Z the function (,o is Dini direetionally 
differentiable. Let us transform the formula (5.12). Put 

h o (T, z) := Wo (z) ~ R, (5.16) 
~o(z) 

h, (to, t,, z) ._ w, (z) e R, (5.17) 
¢(z) 

h 2 (t, z) := WE (t, Z) ~ C[0, T]. (5.18) 
~o(z) 

Clearly, 

.k 2 2 IIw(z)II W(z)+ wo(z>; = i. (5.19) 

Integrating by parts in (5.14) and using the relation 

~r a(t)( ~ b(r )dr)d t  = j~r ( i t  a(r)dr)b(t)dt ,  

we get 

II = {WI(Z ) ~o 1 bl(t) dt -[- [Tw2(t,z)[OI(t) bl(t)-[- Ol(t) 
ao Ou Ou(y) u(y(t))] dt}v o, 

(5.20) 

I~ ~ {l ~ w,(~,z) ot(~) d~ + w~(t,z) Ol(t) = + 
Oy ay' 
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+ 

cy 
+; w2(r'z)[al~ r) + au(y)al(r) u(y(r))z2(y(r))ldr}eZ,(Ov,(t)dt. (5.21) 

It is not difficult to show that 

Now using in the first summand of (5.15) the relation (5.22), and in the third 
summand the relation (5.23), we have 

I3 = ~r( Irw2(z~,Z)~u)U(r)dr)v2(t)dt + 

+ ~ ( ~r w2(r,Z)~u) U(r)dr)vz(t)dt + 

+ ~r w2(t,z) al(t) u(y(t))( [Y(°v2(r)dr)dt + au(y) ,o 
+w,(z) ~o' ( ~' u(r)dr)v2(t)dt' (5.24) 

To transform the third summand in (5.24) we need the following property: 

~r a(t)( [Y") b(r)dr)dt = 

where the function g(t) is inverse to the function y(t) (i.e. y(g(t)) = t). 
Let us prove (5.25). Since the function y(t) is continuously 

differentiable and monotonically increasing (y ' ( t )  > 0 Vt e [0,T] (see 
(2.1)), then there exists the single-valued inverse function g(t) 
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(g'(t) > 0 Vt ~[t0,tl]), which is also monotonically increasing 
continuously differentiable. The relation y(0) = Y0 yields g(Yo) = O. 

We have 

and 

S:= ~ra(t)( I~ (0 b(r)dr)dt= f ( I[ ('' b (r )dr)d  j~ a ( r )d r  = 

= (  I~ (r) b(r )dr)(  ~r a ( r )d r )  - ~r(~a(r)dr)y ' ( t )b((y( t ) )dt= 

= I[(~'(fTa(t)dt)b(t)dt- ~(~ a(r)dr)b((y(t))dy(t). (5.26) 

In the second integral of (5.26) let us change the variables: y(t) = 7". Then 

t = g ( r )  dy(t) = dr ,  

putting t = 0 one gets y = y(O) = Yo, 
putting t = T one gets y = y(T). 

We have 

= ay0['(r) ([rjg(,) a(t)dt)b(t)dt + ~0 (j~r a(r)dr)b(t)dt. 

The relations (5.24) and (5.25) yield 

+ fo ( ~T w2(~,z)~)  u(~)d~)v2(t)dt + 

+ f w2(t,z) al(t) u(y(t))(I~"v2(~)d~)dt + 
Ou(y) 

+~,(z) ~' ( ~' u(Oa~)v2(t)at = 

= .~r ( i.r w2(r, z) O/(r) u(r)dr)v2(t)dt + 
-~ c3u 
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Put 

iy(r) r +,co ( i ~ , ) w 2 ( r , z )  Ol(r) u ( y ( r ) ) d r ) v z ( t ) d t  + au(y) 

+ l~° (j~ ~ w2(r,z) O,(r) c3u(y) u ( y ( r ) )  d r ) v  2 (t) dt + 

+w,(z) ~o' ( ~,' u(r)dr)v~(t)dt. 

G2,(,,z) = fT 

Let us in t roduce  the funct ions  

1, /f t e[0,T], 
o-,(t) := O, / f t ~ [ O , T ] ,  

1, 
°-2(0:= 0, 

1, i f  te[yo,Y(T)] ,  
o-3(t):= 0, i f t~[yo ,y (T)] ,o -4( t ) :={~ ,  

1, i f  t e[to,tl], 
o- 5 (t) := 0, / f  t ~ [t o, t, ]. 

Put 

T l : max  {t,, y(T)  }, 

(5.27) 

(5.28) 

i f  t ~ [t o, 0) and t o ~ O, 

/f t ~ [to, 0) o r  to = O, 

(5.29) 

/ f  t ~ [to,Yo) and t o ~ Yo, 
/ f  t ~ [t o, Yo ) or t o = Yo, 

(5.30) 

where  t I = max  {T, Yl }. 
Us ing  (5.27)-(5.31) one  gets the fo l lowing  relat ion for 13 : 

(5.31) 

(5.32) 
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% = ~ [0",(t)G,(t,z)+0"2(t)G,(O,z)+ 

+0"3 (t)G22 (t, z) + 0" 4 (t)G22 (Yo, z) + 

+ 0 . 5 ( t ) w ' ( z )  f ' u(r)dz]v2(t)dt = I~ G2(t'z)v2(t)dt" 

(5.33) 

Thus, the relations (5.12), (5.20), (5.21) and (5.33) show that if z ¢ Z,  
then the function qg(z) is Dini directionally differentiable at the point z and 

(o'(z,v)=(G(z),v)= (t,z)v,(t)dt + G2(t,z)v2(t)dt +Go(z)vo, 

(5.34) 

where 

G(z) = [G, (t, z), G 2 (t, z), G O (z)] e C[0, T] x C[t0, T~ ] x R, (5.35) 

O0(z) = ~,(z) ~' .(t)dt + ~ w~(t,z)L-~-.(t)+ at(t) au(y) u(y(t))] dt, 

(5.36) 

o,(,,=)=[wo(z)+ w~(t,~) ~l ,~.(;) + 
oy 

~r at(r) + (w2(r ,z )[  a ) + u(y(v))z2(y(v))]dr]e z'('~, 
au(y) 

(5.37) 

G 2 (t, z) = 0.1 (t)Gzl (t, z) + 0.2 (t)G2 J (0, z) + 0.3 (t)G22 (t, z) + 

+°'4 (t)G2z (Yo, z) + 0"5 (t)wl (z) f' u(r) dr = 

=0",(0 f Wz(r,z) Ol~-u(r)dr  +0"z(t) f wz(v ,Z)~u)  U(r)dr + 
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+cr3(t) ~g~t) WE(r'z) a / ( r )  Ou(y) u(y( r ) )  dr  + 

+°h( t )  j~r w2 (r, z) Ol(r) u(y(r ) )  d r  + 
c3u(y) 

+crs(t)w l (z) ~' u(r)  dr ,  

(5.38) 

the functions o- i (t) are defined in (5.29) - (5.31). 
Here w(z) = [w z (t, z), w, (z), w o (z)] are described by (5.16)-(5.18) and 

satisfy (5.19). The relation (5.34) means that the function q9 is Ggtteaux 
differentiable at the point z ~ Z ,  and the point G(z) ~ U can be viewed as 
the "gradient" of CO(z) at the point z .  

5.3 The  case z ~ Z .  

Now let us consider the case CO(z) = 0 (i.e. z ~ Z ). 

Theorem 5.2 I f  z ~ Z ,  then the function CO is Dini directionally 
differentiable at the point z . 

Proof. It follows from (4.7), (5.7), (5.9) and (5.10) that 

1 [ [Th~  2 2 2 
CO(z,) ( t , z , ) d t  + hl ( to, t , ,z ,)  = = + h 0 (T, z,)] 

= [ ~T (h2 (t, z) + e H  2 (t, z, v) + o(e, 0)  2 d t+ 

+(~(to,t,,z)+ ~ ~ (Vo + ~ v~(~)dr)u(t)dt +o(~)) 2 + 

+(h o (T, z) + E ~r e ~'(')v I (t) dt) 2 ]~. (5.39) 

Since co(z) = 0, then 

h o (T, z) = 0, hi (to, tl, z) = 0, h 2 (t, z) = 0 Vt ~ [0, T]. (5.40) 

Hence 

~(z~) = ~llH2(z,v);vll, 

where 
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IIH~(z,v);vll = 
T 6 T 

:E j'/-/; (,, z, v)d, + (j'[Vo + ~ v2(7)arlu(t)d') 2 +(j'eZ'"'~, (t)d')2 ?. 
0 to 0 

<p'(z,v) = lim ~(z,.) - <p(z) - I I H ~ ( ~ , ~ ) ; v l l  = 
e,t,o g 

r Wl fo ' =max[ f H2(t,z,v)wz(t)dt + [v o + IoV2(r)dr]u(t)dt + Nl-~t 

+Wo ~r eZ,(,)v.(t)dt]" (5.41) 

Here 

w=[w2,wl,Wo],W2(t)~C[O,T], w~ ~R, w o oR, 
1 

Ilql--E j~T w~(t)dt  + wt + W~of : 1. (5.42) 

Substituting (5.8) in (5.41) one gets 

~ o ' ( z , v )  = 

Ol(tv) + Ol(t) eZ,(,)v =max[[rw2(t){w~W .~ v .  ~e~'(°vt(r)dr Oy' ,(t)+ 

Ol(t) 
u(t)(v° + ~o v2 (7) d r )  + + Ou 

Ol(t) [y(,) ~ e~'(~)v,(r)drl} dt + + u(y(t))[v o + v 2 (r) d r  + z 2 (y(t)) 
au(y)  ,,o 

+w, ~' (Vo + f v2(7)dr)u(t)dt+ w o f e~'"'v,(t)dt]= 

= JI + J2 + ']3, (5.43) 

where 

J, = {w l ~ u(t) dt + w z(t)[ u(t)+ Ou(y) u(y(t))ldt}vo, (5.44) 
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J2 j~r { w 2 ( t ) ~  ) f eZ,,~,vt(r)d v+ w2(t) Ol(t) = e z'(°v,  ( t )  + Oy' 

+w2(t ) 2 1 ; u ( y ( t ) ) z 2 ( y ( t ) )  f eZ'(~)v,(r)dr+woeZ'(t)v,(t)}dt, (5.45) 

J3 = ~r {w2(t) Olo(~tu) u(t) ~o V2(v)dv + 

+w2(t) Ol(t) u(y(t)) [.y(t) V2(T) dr} dt + au(y) .~o 
+w, ~o' . (0(~ v~(~)e~)dt, 

W = { w = [ w2 , w, , wo ] l W o ~ R, w~ ~ R, w 2 ~ C[0,T], 
1 

ilwll = t ~T w~(t)dt + wg + wg; <_ 1}. 

(5.46) 

As in the case z ~ Z, integrating by 
making use of the condition 

fo~u(t)dt=l, Tj=t,, 

we have 

J, = {w, + ~r w2(t)[Ol-(t) Ol(t) u(y(t))ldt}vo ' au(y) 
r Ol(t) 

J2 = f {Wo + W2(t) Oy' + 

+ Ir w2(r)[a~y r) + au(y)a/(r) u(y(r))z2(y(r))ldr}e~,(,)v,(t)dt, 

J3 : ~r( I r w 2 ( r ) ~ u )  U(r)dv)v2(t)dt + 

+ [o ( [r w2(r) O/(r) u(r)dr)v2(t)dt  + 
-~o Jo c3u 

(5.47) 

parts in (5.44), (5.45), (5.46) and 

(5.48) 

(5.49) 
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U'  ( (  + •0 ag(,) w2 (r)  u (y ( r ) )  d r ) v  2 (t) at + 

+w, ~' ([' .(~)dOv2(t)dt = 

= ~'[o'l(t)A2,(t)+cr2(t)A21(O)+cr3(t)A2z(t)+ 

+o'4(t)A2z(yo) + w~ ;' u(r)dr]v2(t)dt = 

= ~ .42 (t)v 2 (t) dt, (5.50) 

where o5( 0 are defined in (5.29)-(5.30), and 

(5.51) 

Azz(t)=I~,)w2(r)2((;))u(y(r))dr. (5.52) 

From (5.43), (5.48), (5.49) and (5.50) one can conclude that at the point 
z e Z the function ~o(z) is Dini directionally differentiable, moreover, it is 
even subdifferentiable, i.e. 

(p'(z,  v)  = m a x  A~Oo(z) ( A' v)' (5.53) 

where 

(A,v) = ~' 4(t),,~(t)dt+ ~TA,(t)u,(t)dt+ Aovo, 
a{o(z) = {A = [A,(t), A2(t), A0] e U I 
A, (t) = 

~; az(r) 
=[Wo+W2(t)~+Irw2(r)[ a )+ u(y(r))z2(y(r))ldrle ~,('), 

of au(y) 
A2(t)=o',(t)A2,(t)+G2(t)A2,(O)+G3(t)Az2(t)+ 
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+o'4(t)A22(Yo)+ W ~ u ( r ) d r  

oo Ou 

+o3 (t)I;~o w2(r)~u(Y(r))dr+ 

+cr4(t) f w 2 ( r ) ~ u ( y ( r ) ) d r  + w, ~'u(r)dr, 

=w,+; 
w=[w2,w~,Wo]eW}, 

(5.54) 

and the set W is defined in (5.47). 

Remark 5.1. Arguing as in the prof of Theorem 5.2, one gets the following 
representation for the functional f (z)" 

f(z.) = f(z)+ c j~r [OF(t> .~ e,,,Ov,(r)dr + ~y 
0F(t) OF(t) eZ,(')vl(t)+ u(t)(Vo + v2(r)dr) + 

+ ay' aU 

+~f~;))u(y(t))(Vo+I:(')Vz(r)dr+z2(y(t))~e"(°v,(r)dr)]dt+o@) = 

= f ( z )  + e(B(z), v) + o(e), (5.55) 

where 

~, B2(t,z)v2(t)dt + .~r Bl(t,z)v,(t)dt + Bo(Z)Vo, (B(z),v)= 

B,(t,z) = I OF(t) + [.r_ [0F(r)  + 0F(r)  u(y(r))z2 (y(r))]dc}e zl(t), 
" 0y' ~ ay au(y)  

(5.56) 
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82 (t, z) = o-, (t)B2, (t, z) + o-2 ( t ) ~ ,  (o, z) + o-3 (t)~2~ (t, z) + 

+o-4(t)Bz2(yo,Z)=o-i(t ) ~ 0 F ( r )  u( r )d r  + 
OU 

+o" 2 (t) j~c 0 F ( r )  u ( r ) d r  + 
Ou 

+o-3 (t) fg~,)0F(r) +o-4(t) j~r 8F(r)Su(y) Ou (y-------) u (y ( r ) )  d r  u (y ( r ) )  d r ,  (5.57) 

Bo(z) = ~r [~u t )  U(t) + OF(t) au(y) u( y(  t ) ) ] dt, (5.58) 

o(E) 
--~ 0, 

c~ ~ o  

and o-i(t) is defined in (5.29) - (5.30). 

. A N  E X A C T  P E N A L T Y  F U N C T I O N  

6.1 P roper t i e s  o f  the func t ion  G .  

Let us consider again the case z ~ Z .  It was shown in Subsection 5.1 that 
the function (,o is Gg~teaux differentiable at a point z ~ Z ,  and the 
corresponding "gradient" G(t,z) of the function (,o G(t,z) (in the space 
U = C[0, T] x C[to, t~]x R ) is given by the relations (5.35)-(5.38). 

Since it is known that Y0 < YJ and T > 0,  the following 63 cases of 
allocation of these points (i.e. the points yo,O,T,y(T),yi)  are possible, 
namely 

lcase:  Yo < O < T <  y(T)< y~; 2case:  Yo < O < T <  y(T)=y~; 

3 case : Y0 < 0 < T < y~ < y(T);  4 case : Y0 < 0 < T = y~ < y(T); 

5 case : Y0 < 0 < y~ < T < y(T);  6 case : Y0 < 0 = yj < T < y(T); 

7 case : Yo < Y~ < 0 < T < y(T);  8 case : Yo < 0 < T = y(T) < y~; 

9 case : Yo < 0 < T = y(T) = y~; 10 case : Y0 < 0 < y~ < T = y(T);  

11 case : Yo < 0 = y~ < T = y(T);  12 case : Yo < Y~ < 0 < T = y(T); 

13case: Yo = O < T  < y (T)< y~; 14case: yo = O < T  < y (T)=  y~; 
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15case: Y o = O < T  < y~ < y(T); 16case: Y o = O < T =  y~ < y(T); 

17case: Y o = 0 < y ~ < T < y ( T ) ;  18case:  Yo =O< y ( T ) < T  < Y~; 

19case: yo =O< y ( T ) < T = y ~ ;  20case:  Yo =O< y (T )<  y~ <T; 

21 case : Yo = 0 < y(T)  = y~ < T; 22 case : Yo = 0 < y~ < y(T)  < T; 

23case: Yo <O< y ( T ) < T  < y~; 24case:  yo <O< y ( T ) < T =  y~; 

25case: Yo <O< y ( T ) <  y~ <T; 26case: Yo <O< y ( T ) =  y] <T; 

27 case : Yo < 0 < y~ < y(T)  < T; 28 case : Yo < 0 = y] < y(T)  < T; 

29case:  yo < Y~ <O< y ( T ) < T ;  30case: yo < Y ( T ) < O < T  < y~; 

31 case : Yo < y(T)  < 0 < T = y]; 32 case : Yo < y(T)  < 0 < yj < T; 

33case: yo < y ( T ) < O = y ~  <T; 34case: yo < Y ( T ) <  y~ <O<T;  

35case: Yo <Y(T)=y~  <O<T;  36case: Yo <Y~ < Y ( T ) < O < T ;  

37case:  0 < y  o < y ( T ) < T < y ~ ;  38case: 0 < y  o < y ( T ) < T = y ~ ;  

39case:  0 < y  o < y ( T ) < y ~ < T ;  40case:  0 < y  o < y ( T ) = y j < T ;  

41case: 0 < y  o < y ~ < y ( T ) < T ;  42case: 0 < y  o < y ( T ) = T < y ~ ;  

43 case : 0 < Yo < y(T)  = T = y~; 44 case : 0 < Yo < Y~ < y(T)  = T; 

45 case : 0 < Yo < T < y(T)  < y~; 46 case : 0 < Yo < T < y(T)  = yj; 

47 case : 0 < Yo < T < y~ < y(T); 48 case : 0 < Yo < T = y~ < y(T); 

49case:  0 < Y o < y  ~ < T < y ( T ) ;  50case: O < T  < yo < Y (T)<  y~; 

51 case : 0 < T < Yo < y (T)  = y~; 52 case : 0 < T < Yo < Y~ < y(T); 

53case: Yo < O = y ( T ) < T < Y ~ ;  54case: Yo < O = y ( T ) < T = Y ~ ;  

55case: Yo < O = y ( T ) <  y~ <T; 56case: yo < O = y ( T ) = y ~  <T; 

57case: Yo < Y~ <O= y ( T ) < T ;  58case: 0 < y  o = T < y ( T ) < y ~ ;  

59 case : 0 < Yo = T < y(T)  = y~; 60 case : 0 < Yo = T < y~ < y(T); 

61case: Yo = O < T = y ( T ) <  y~; 62case: yo = O < T = y ( T ) = y ~ ;  

63 case : Yo = 0 < y~ < T = y(T).  

For the cases 1-53, 58 and 60 the following proposition holds. 

Theorem 6.1 Let S i c U be a bounded set (in the metric Pi)" If the 
conditions 
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I 0/-~(t) I>_bo >0, Ol(t)l>_b, >0, IOl(t)l>__b2 >0, 
oy Oy' 
ol(0 

I~U- ~ > b  3 > 0  V t ~ [ O , T ] , V z ~ S i ~ Z  (6.1) 

hold then there exist a~ > 0 and a 2 > O, such that 

IIo(z)ll=tftS o~(,,z)dt + ~rG,2(t,z)dt +G~(z)]+ > a, Vz ~S, \ Z, (6.2) 

b(z) = sup 
t ~[ to .rl ] 

IG2(t,z) l+ sup IG,(t,z) l+lGo(z)I>__ az Vz ~ S i ~ Z .  
te[0,T] 

(6.3) 

Proof. Let z e S~ ~ Z .  First let us show that 

IIG(z)ll o. (6 .4)  

Here 0 is the zero element of the space U = C[0 ,T]x  C[to,Ti ]x R,  i.e. 

0 = [0cto,vl, 0ct,o.r~l, 0]. 

Consider the case 2, i.e. Yo < 0 < T < y ( T ) = y l ,  In this case 
T~ = t~ Cra(t ) = 0, crs(t ) = 1;'v't E [to,t~] (see (5.29)-(5.31)), since 
to = m i n { 0 , y o }  = Yo. Assume that (6.4) is not valid, that is 

G, (t, z) = 0 Vt ~ [0, T], G 2 (t, z) = 0 Vt ~ [to, t, ], 

The relations (5.35)-(5.38) yield 

G2(t , z ) :° ' , ( t )  ; w 2 ( r , Z ) ~ u ) U ( r ) d r  + 

+cr2(t) ~r w2(r , z )~_~_u(r )d  r + (6.6) 

Ou(y) u (y ( r ) )dr  + w t (z) u(r)  d r  = 0, 

Go(z) = O. (6.5) 
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where w = [w2, wl,Wo] satisfies (5.16)-(5.19). 

Differentiating (6.6) w.r.t, t for t • (T,y(T)] and taking into account 
that in this interval o- 3 (t) = 1, o-l (t) = 0 and o- 2 (t) = 0,  one gets 

Wa(g(t),z) Ol(g(t)) u(y(g(t)))g'(t)  + w~(z)u(t) = 0 Vt • (T,y(T)]. au(y) 

Since 

u(t) > 0 Vt  • [t0,t,], u(y(g(t))) = u(t), (6.7) 

then dividing the both parts by u(t), we have 

w2(g(t),z)Ol(g(t)) g '( t)+w~(z)=O V t • ( T , y ( T ) ] .  (6.8) au(y) 

Again differentiating (6.6) w.r.t, t for t • [0, T) and taking into account that 
in this interval o-~ (t) = 1, o- 3 (t)  = 1 and o" 2 (t) = 0 ,  one gets 

w 2 (t, z) Olo(~tu)U(t ) + w 2 (g ( t ) ,  z) al(g(t)) u(y(g(t)))g'(t)  + au(y) 
+ w~(z)u(t) = 0, Vt • [0,T).  

Dividing the both parts of  this equality by u(t) (see (6.7)), we have 

Wz(t, z) Ol(t) Ol(g(t)) g'(t) + w. (z)  = 0 'v't • [0, T). 3u + w2 (g(t), z) Ou(y) 

(6.9) 

Since the functions in the left-hand parts of  the relations (6.8) and (6.9) are 
continuous, then tending in (6.8) t to T from the right, and in (6.9) t - to 
T from the left, one gets 

w 2 (T, z) O/(T) _ 0. 
Ou 

However,  since (see (6.1)) 
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lOt(t, z) 
Ou I>- b2 > 0  V t ~ [ t  o ,t t], 

then 

w2(T,z ) : 0. (6.10) 

It follows from the expression for G l (t, z) (see (5.37)) at t = T that 

Wo(Z ) = -w2(T, z) ~t(7") Oy' 

It follows from this relation and (6.10) that 

w 0 (z) = O. (6.11) 

The relations (6.5) and (5.37) imply 

0l(t) 
Gl(t,z)= Wo(Z)+ Wz(t,z) + 

Oy' 
; ~yr)+ O/(r) + w2(r,z)[ O u(y(r))z2(y(r))]dr=O Vt~[0 ,T] .  

au(y)  
(6.12) 

Since wo(z ) = 0 and w2(T,z ) = O, then there exists a unique (namely, the 
zero one) solution of the homogeneous integral Volterra equation (6.12): 

wz(t,z ) = 0 Vt e [0, T]. (6.13) 

The relation (6.5) and (5.36) imply 

~o~z~ = w,~z~ f' ~ ,~ ,  + ~ w ~ , , z ~ i ~ , ~ +  ~'~'~ u ~ , ~ l ~ , - -  0 
-.o au(y)  

(6.14) 

Since 

u(t) > 0 Vt ~ [t0,t~ ] 
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~ru(t)dt > 0 and (6.14) yields then 

w,(z)=O. 

The relations (6.11), (6.13) and (6.15) imply 

± 

IIw(z)ll=[ w (t,z)dt + wt(z)+ Wo2 (z)] = o, 
2 
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(6.15) 

which contradicts (5.19). Thus, (6.4) is proved. 
Now let us assume that (6.2) does not hold. Then there exists a sequence 

{ z , }  = {z,k,z2,,Uo,}, 

such that 

z k ~ S , ~ Z  Vk, ]]G(zk)[[ ~ 0. (6.16) 
k--~Qo 

Since 

T 2 2 IIG(  )ll-- I G~( t~Zk)Nt -~ -  

= ~o [0-' (t)G2' (t, z k ) + 0- 2 (t)G2, (0, z k) + 0-3 (t)G22 (t, z k ) + 

+w,(zk) f' uk(r)dr] 2 dt + ~r G2(t, zk)d t + Go2 (zk), (6.17) 

where (see (5.35) - (5.38)) 

Go(z~)= W,(Zk) ~ uk(t)dt + ~Tw2(t, z k ) [ ~ u k ( t ) +  
(6.18) 

Olk(t) 
+ au(y) uk (Yk (t))] dt, 

Gt(t, zk) = {Wo(Zk)+ w2(t , ~ a/k(t) Zk j ~ + 

; lko~V Olk(r) + w2(r'zk){O ) + Ou(y) uk(Yk(r))zzk(Yk(r))}dr}eZ~*(')' (6.19) 
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G2,(t, zk) = I T w2 (z,zk) Olk(r) uk(r) dr , (6.20) 
Ou 

Gzz(t, zk)= ( W z ( Z ' , z k )  0lk(r) uk(yk(v))dr , (6.21) 
~g~('~ au(y) 

y, (t) = Yo + j~ e" '(° dr,  u, (t) = e "°*+f°'''(~)e~, 

a/k (t) al(yk(t),yk(t),uk(t),u,(yk(t)),t) 
ay ay ' 

then (6.16) and (6.17) for t • (T, y(T)] imply 

G22(t, zk)+w~(zk) f 'uk(r)dr  --~ 0 V t • (T ,y (T)] .  (6.22) 
k - ~  ov 

Here 

~ ale(r) 
G22 (t, z k) = w 2 (r, z k) uk (Yk (r)) dr Vt • (T, y(T)]. 

* (') au ( y )  

The relation (6.22) is valid for all t • (T, y(T)] ,  therefore integrating (6.22) 
w.r.t, t and dividing by u k (t),  one gets 

w2 (gk (t), z k) Olk (gk (t)) gk (t) + w, (z k) --) 0 Vt • (T, y(T)]. (6.23) 
au(y)  k-,~ 

It follows from (6.16) and (6.17) for t • [0 ,T]  that 

G~l (t, zk ) + Gz2 (t, zk ) + wl (zk ) f '  uk (r) dr 
k ---~ oo 

where 

= I 

o v t  • (T,y(T)], 

(6.24) 

v t  ~ [0, T]. 
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The relation (6.24) holds for all t ~ [0, T], therefore integrating (6.24) w.r.t. 
t and dividing by u k ( t ) ,  one gets 

w 2 (t, z k ) Olk (t) Olk (gk (t)) + w~ (g~ (t), zk) g~ (t) + w, (z~) ~ 0 
Ou au(y)  k-,~ 

Vt E [0, T]. 
(6.25) 

Since the functions in the left-hand sides of (6.24) ane (6.25) are continuous, 
then passing t in (6.24) to T from the right, and in (6.25) to T from the 
left, one gets 

w2(T, zk) O.~(T)l. --~ O. (6.26) 

However (see (6.1)) 

I Olk (t, z) i> b2 > 0 Vt e [to, t~ ], 
OU 

therefore (6.26) yields 

w2(T, zk) --~ O. (6.27) 
k-~ao 

Taking into account the expression for G I(t,zk) (see (6.19)) and putting 
t = T ,  we get 

Olk(T) Wo(Zk)=-w2(T, zk) Oy' 

but for t = T 

w2(T, zk) ~ O, 
k --> oo 

therefore 

Wo(Zk) --> O. (6.28) 
k---~oo 
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The relations (6.19), (6.1) and (6.28) yield the following integral Volterra 
equation: 

= + e_Z~k(t)G,(t, zk) Wz(t, zk) Old() 

+ f , O,(y) uk tYk (r))z2, (Yk (r))} dr ,  (6.29) 

whose kernel 

-1 [Olk(t) 1 ~O/,(r) O/,(r) 
L Oy, J , Oy + uk(Yk(r))Zzk(Yk(r))} au(y) 

is bounded on S i (remind that the set Si is bounded), therefore the 
properties of the solutions of integral equations show that 

w 2 (t, z k ) = f ( t ,  z , )  + ~ R, (t, r ) f ( r ,  z , )  dr ,  (6.30) 

where R , ( t , r )  is the resolvent of the equation (6.29), and its norm is 
bounded by the same constant for all k' s, 

~-z,,(,)r Ol, ( t ) l  -t 
f ( t ,  zk)=G,(t ,  zk)~ t T J  • 

Due to the continuous dependence of the solutions of integral equations on 
the right-hand sides, one concludes from the relations (6.16), (6.17) and 
(6.30) that 

w2(t, zk) --~ 0 'v ' t~[0,T].  (6.31) 
k - - ~  

Since 

u k (t) > 0 '7't ~ [to, t, ] 

~c uk (t) dt > 0, therefore (see (6.18) and (6.31)) then 

w I (z k) --> 0. (6.32) 
k---~oo 
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It follows from (6.28), (6.31) and (6.32) that 

1 

IIw(zk)ll=tJ0 2 2 w0(zk) ] ~ O, 
k - ) ~  

which contradicts the relation Ilw(zk)ll=l Vk. Thus (6.2)is proved. The 
relation (6.3) is proved analogously. In a similar way one can show the 
relations (6.2)-(6.3) in all remaining cases. 

For the cases 54-57, 59, 61-63 the following proposition holds. 

Theorem 6.2 Assume that the relation (6.1) holds and 
for the cases 54-57 and 59 at least one of the conditions 1) or 3) below 
takes place; 
for the case 61 at least one of  the conditions 1) or 2) is valid," 
for the cases 62 and 63 the condition 1) is satisfied." 
1) there exists T ~ [0, T], such that 

l(y(T), y'(T), u(T), u(y(T)), T) = 0 Vz e S~ ~ Z, (6.33) 

2) 

al(O,z) al(O,z) 
- - + - - g ' ( O ) ¢ O  , - -  

c3u Ou(y) 
Ol(T,z) Ol(T,z) , ,~ ,  

) -7: O, Ou - ~  g t l )  

Vz ~ S i \ Z, (6.34) 

m 

3) there exists t ~ [0, T], such that 

az(-i-, z) y'(T) al(T, z) 
- - ~ : 0  V z ~ S ~ Z .  (6.35) 

au Ou(y) 

Then there ex&t a~ > 0 and a 2 > O, such that 

I T 2 Ila(z)ll=tfl ay(t ,z)dt  + Gl (t,z)dt +G2(z)]+ > a, Vz e S, \ Z, (6.36) 
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b(z)= sup I G2(t,z) l + sup I G,(t ,z)  l + l Go(z) l> a2 Vz E S, \ Z. 
t E[ t o,fi ] t~[0,T] 

(6.37) 

Proof is analogous to that of Theorem 6.1. 

Corollary 6.1 I f  z" E Z is a local minimizer o f  the functional f on the set 
Z (in the metric Pi), then there exist a > 0 and ~ > 0 such that in some 
neighbourhood B i a ( z * ) = { z ~ U l P i ( z , z * ) < 6  } o f  the point z* the 
function q9 satisfies the condition 

Vz Bi,(z')\Z. (6.38) 

Theorem 6.3 Let a function f be Lipschitz on the set 
Zc = {z ~ U I ~o(z ) < £} (in the metric Pi)" I f  z* ~ Z is a local minimizer 
o f  f on the set Z (in the metric Pi), then a 2" < oo exists such that for  
~, > 2" the point z* is a local minimizer o f  the functional 
• ~ = f ( z )  + 2(p(z) on U (in the same metric Pi)" 

Proof follows from Theorem 4.1 of [7] and Corollary 6.1. 

. N E C E S S A R Y  C O N D I T I O N S  FOR A N  E X T R E M U M  

Let z* ~ Z be a local minimizer of the functional f on the set Z in the 
metric pi.  Assume that in some neighbourhood Bgs(z* ) of the point z* the 
function q9 satifies the condition (6.38) and that f is Lipschitz on BiB(z* ) 
in the metric p~. Then for 2 > 2" the point z* is a local minimizer of the 
function @a(z) in the metric Pi. Fix v = [vl,vz,Vo] ~ U and for c > 0 put 

ze (t) = z* + cv(t).  (7.1) 

Note that 

pi(zc z*) -*  0 V i E I ' 4 .  
e$0 

It follows from (5.53) and (5.55) that 

(7.2) 
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• ~(zc)=(I)~(z*)+e{(B(z*),v)+2 A~o~,(z.)(A,max v)} + o(c, v), (7.3) 

where 

o(E,v) 
0 V v e U ,  

,9 e40 

(B(z*),v) = ~' B:(t,z*)v2(t)dt + ~r B,(t,z*)v,(t)dt + Bo(z*)Vo, 

Bl(t,z, ) {OF(t,z*) ..~ . 

Oy' 

Z*) OF(r,z*) + i r [OF(r, ~ u* (y* (r))z; (y* (r))] d'c}e z;('), 
Oy Ou(y) (7.4) 

B~(t,z*) = 

= 00, (t)B2, (t, z*) + o°2 (t)B2, (0, z*) + 0" 3 (t)B22 (t, z*) + 004 (t)B22 (Yo, z*) = 

= 00, (t) I T 0F(r, z*) u*(r)dr +002(0 ~r OF(r, z*) u*(v)dv + 
0u 0u 

r OF(v,z*) u.(y.(r))dr+004(t)~r OF(r,z*) +003(t)I£'(') au(y) _v au(y) u* (y* (r)) dr, 

(7.5) 

v * OF(t, z*) [~ [.OF(t,z ) u*(t)+ u*(y*(t))]dt, B°(z*) = ao ~ Ou Ou(y) (7.6) 

(A,v) = ~' Az(t)vz(t)dt + ~v Al(t)v,(t)dt + Aovo, 

o~o(z') = {A = [ 4  (t), 4 (t), Ao] ~ U l 

4(0 :tWo + w (t) °l(to'yZ'----2 + 

+ f . .rOl(r,z*) Ol(r,z*) 
w2tr)t --~ + Ou(y) u*(y*(r))z*2(y*(r))]dv]eZ;(')' 
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A~ (t) = o, (t)A;, (t) + ~ (t)A~, (0) + o-~ (t)A;~ (t) + 

+o" 4 (t) A~2 (Yo) + wl .[" u* (r) dr  = 

= o-, ( t ) ;  w2 (z-) ,9,(z-, z ' ) .  0-)dr + o2 (t)j~T w2 (z-)0,(r,z')--~. u* (z-) dr+ Ou 

T Ol(r, z*) 
+cr3(t ) j' Wz(r ) u*(y*(r))dv+ 

g'(o au(y) 
T 

Ol(r,Z*) u*(y*(r))d.c + +w l f' u*('c)dr, +Cra(t) ywz(r) Ou(y) 
o 

~r r,,rOl(t,z*) Ol(t,Z*) u.(y.(t))]dt ' Ao =w, + w2t.lL 5u u'(t)~ Ou(y) 

w=[w2,w,,wo]~ w}, (7.7) 

W = {w=[w2,wl,Wo] Iw o ~R,  w 1 ~R,  w 2 ~ C[0,T], 
.t. 

Ilwll = c  "w (t)dt + + wg; <1}. 

Then (7.3) implies 

@~(z~) : oo~(z*)+~O~(z*,v)+o(e,v), 

max • k (z , v) = c~a%~z" (C,  v) = 

= max [~' Cz(t)v2(t)dt+ ~r C,(t)v,(t)dt+Covo], 
C~0%(z') 

where 

(7.8) 

(7.9) 

(7.10) 

o0~ (~') = {c  = [c, (t), c~ (t), Co ] ~ u I 

C~(t) =[OF(t,z*) + ~r[c3F(r,z*) 
ay ' ay 

OF(r, z*) u* (y" (r))z; (y* (r))] dr + 2w o + 2w z (t) c3l(t, z*____~) + 
au(y) ay' 

Ol(r, z*) u* (y* ('c))z~ (y* (r))] dr]e z; u), 
au(y) 
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c2 (t) = o-, (t)[B2, (t) + AA~, (t)] + o-2 (t)[B2, (0) + ;tA~, (0)] + 

+o-3(t)[Bn(t)+ tA~2(t)]+o-4(t)[B22(Yo)+ 2A~2 (yo)] + 

f, +w, u*(r) dr= 

= o-,(t)[ ~' OF(r,z*) u*(r)dr+ ; tw2(r ) 
Ou 

+o-2 (t)[ ~T OF(v,z*) u*(r)dr + ~v tw2(r) 
Ou 

+o-3 (t)[ ;~ (,)OF(r,z*) u* (y* (r)) dr + 
0u(y) 

+ Jg-fT(,) lw2 (r) O/(r, z*) u*(y*(r))dr]+ 
0u(y) 

+o- 4 (t)[ .~r OF(r, z*) u*(y* (r)) dr + 
0u(y) 

~, o,(r,z*) u* ~' * 
+ t w  2 (r) ~ - ~  (y*(r)) dr] + tw, u (r) dr, 

Co = iv [OF(t, z*) u* (t) -t OF(t, z*) u* (y* (t))] at + 
ao Ou Ou(y) 

+ z ' )  u '(t)  + °l(t '  =" Ou(Y) -----~) .* (y* (t))Jdt, 

w=[w2, w~, wo] ~ w}. 

0/(r, z*) ." (r) dr] + 
Ou 

01(r, z*) u* (r) dr] + 
0u 

(7.11) 

Since the point z* is a local minimizer of the functional ~a(z) in the 
metric Pi and since (see (7.2)) 

pi(z~,z*) ~ 0 V i e l ' 4 ,  
e,l,o 

then (see [1 1,20]) the following relation should hold: 

~z(z*,v)>_O, V v e U .  (7.12) 

It was shown in [3] that the condition (7.12) is equivalent to the relation 

0 e a ~  (z*), (7.13) 
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where 0 e U is an element of the space U.  Like in [17], it is possible to 
prove that the conditions (7.11) and (7.13) imply that there exists an element 
w = [w z, w 1, w0] e W such that 

OF(t,z*) OF(r,z*) b 
Oy' ~T{ ay 

+2Wo +,~w2(t) Ol(_~,z*) ~- 
oy 

+ ; ~w2(r){.Ol(~yZ*) + 

OF(r, z*) u* (y* (r))z; (y* (r))} d r  + 
Ou(y) 

O/(r, z*) u,(y,(.c))z2(y,(v))}dr= 0 
Ou(y) 

Vt ~ [0, T], 
(7.14) 

crl (t)[ IT ¢3F(r'Z*)u*(r)dr+ou ~r 2w2 ( r )Ol(~uZ*)u . ( r )dr ]+  

+crz (t)[ ~r OF(r'Z*) u'(r)dr ~T 2wz(r) Ol(~Z*) u,(r)dr]+ 

+0.3(0 [ i~(,)OF(r,z*) u*(y'(r))dr + 
au(y) 

~ ,  ;tw2(r ) a/(v, z*) u'(y*(r))dr]+ au(y) 

+or4 (t)[ j~r OF(r,z*) u*(y*(r))dr+ 
au(y) 

+ J~T ~tw2(r) Ol(r,z*) u*(y*(r))dr]+ 2w l ~' u*( r )d r  = 0 au(y) 
Vt ~ [t o, t~ ], (7.15) 

T * aF(t,z*) [' r aF(t'z ) u'(t)-~ u*(y'(t))]at+ 
ao " a u  a u ( y )  
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+Awl + ~r lw2(t)[Ol~z*) u.(t)+Ol(t,z*) u*(y*(t))]dt=O. (7.16) 
au(y) 

Put 

Wz(t) : A(P2(t), W1 = A(p~, ~o = tq%. (7.17) 

The relations (7.8), (7.14)-(7.16) and (7.17) yield the following 
* * * * * * 

Theorem 7.1 Let z*=[zl ,z2,Uo]•Z,x = [ y , u  ] • ~ .  Assume that in 
some neighbourhood B,a(z*)={zlPi(z,z*)<6 } of the point z* the 
function ~o satisfies the relation (6.38) and the function f is Lipschitz in 
B/8(z* ) in the metric Pi" For a point z* • Z to be a global or local 
minimizer of the functional (3.2) on the set Z in the metric p~, it is 
necessary that there exist some constants Uflo,W I ~R  and a function 
W 2 (t) ~ C[0, T], satisfying the conditions 

OF(t,z*) ( {.OF(r,z*) OF(r,z*) ~ u* (y* (r))z; (y* (r))} dr  + 
Oy' .~ ay au(y) 

8l(t,z*) +qJo + qJ2(t) - t- 
0y' 

8l(r,z*) u*(y*(r))z~(y*(r))} dr = 0 + ~r ~2(r){Ol(r~z*) + Ou(y) 

Vt • [0, T], (7.18) 

[.r 0F(r,  z*) (t)[ o "  1 0u 

+o%(0[ j~r OF(r,z') u(r)dr  + ~r qJ2(z') 
8u 

+G3(t)[ j.~r.(,)OF(r,z*) u*(y'(v))dr 
au(y) 

+ ~g.(,) Ol(r,z*) r qJ2(r) ~ u*(y*(r))dr]+ 

r Ol(v,Z*)u,(v)dr]+ u(v)dv + ~ qJz(r) c3u 

8l(r,z*) u*(r)dr] + 
Ou 
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r OF(r,Z*)u.(y.(r))dr+ ~r Ol(r,z*) +cr4(t)[f Ou(y) qJR(r) ~ u*(y*(r))dr]+ 

+q'l f' u*(r)dr =0 Vt ~[t0,q], (7.19) 

[OF(t,z*) OF(t,z*) frao, " ~ u * ( t ) - ~  u*(y*(t))]dt + au(y) 
+qJl + fr ~2(t)[c3l(~z*) u*(t)-~ Ol(t,z*) u*(y*(t))]dt=O. 

au(y) (7.20) 
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CONTINUOUS SETS AND NON-ATTAINING 
FUCTIONALS IN REFLEXIVE BANACH SPACES 

E m i l  Erns t  I and  M i c h e l  Th6ra  2' 
Laboratory of Modelisation in Mechanics and Thermodynamics, Faculty of Science and 
Techniques of Saint JOr6me, Saint Jdr6me, France ;t Laco, University of Limoges, Limoges 
Cedex, France 2 

Abstract: In this paper we prove, in the framework of reflexive Banach spaces, that a 
linear and continuous functional fachieves its supremum on every small e -  
uniform perturbation of a closed convex set C containing no lines, if and only 
iffbelongs to the norm-interior of the barrier cone of C. This result is applied 
to prove that every closed convex subset C of a reflexive Banach space X 
which contains no lines is continuous if and only if every small e-uniform 
perturbation of C does not allow non-attaining linear and continuous 
functionals. Finally, we define a new class of non-coercive variational 
inequalities and state a corresponding open problem. 

Key words and phrases: Continuous closed convex set, non-attaining functional, well- 
positioned set, non-coercive variational inequalities. 

1. I N T R O D U C T I O N  A N D  N O T A T I O N S  

Throughout the paper, we suppose that X is a reflexive Banach space 
wi th  c o n t i n u o u s  dua l  X* .  The  n o r m s  in X and  X* wi l l  be  d e n o t e d  b y  I I  II 

and  • ~1.' and  the p r i m a l  and  dual  c lo sed  uni t  ba l l s  o f  X and X ° b y  ~ x  

* The research of Michel Th6ra has been supported by NATO Collaborative Linkage Grant 
978488. 
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and ]~x., respectively. Given a closed convex subset C of X and c > 0, 

we call c-uniform perturbation of  C every closed convex set C,. which 
satisfies: 

C, c_ C+c]~ x and Cc_ C, +c]~ x . (1) 

The main purpose of  this note is to determine, when a closed convex 
subset C of X is given, the class of  all the linear continuous functionals on 
X which attain their supremum on every c -uniform perturbation C, of  C 
for a small ~'. 

The main result of  this note (Theorem 1, Section 2) claims that a linear 
continuous functional f achieves its supremum on every c-uniform 
perturbation C, of  C (~" sufficiently small) if and only if f belongs to the 
norm-interior of  the barrier cone of C, that is the cone of all the linear 
continuous functionals bounded from above on C. Using a recent 
characterization of  the interior of  the barrier cone ([1]) we deduce (Corollary 
1) that f reaches its supremum on every c -uniform perturbation C,. of  C 
(~ sufficiently small) if and only if C is well-positioned and f belongs to 
the norm-interior of  the negative polar cone of  the recession cone of  C. 

Theorem 1 gives thus a necessary and sufficient condition for a linear 
continuous functional on X to achieve its supremum not only on a given 
closed convex set C but also on any c -uniform perturbation C, of C (c  
sufficiently small). 

Throughout the paper, as customary, given a closed convex set C ,  by a 
non-attaining functional we mean a linear continuous functional bounded 
from above on C which does not reach its supremum on C. In Theorem 1 
we characterize the class of  all closed convex subsets C of  a reflexive 
Banach space X such that any sufficiently small E-uniform perturbation 
C, of  C disallows non-attaining functionals. Under theses assumptions, we 
show (Proposition 1, Section 3) that all the sufficiently small ~-uniform 
perturbations of a closed convex set C disallow non-attaining functionals if 
and only if C is a continuous set, in the sense of Gale and Klee ([6]) for sets 
in finite dimensional spaces. The reader is referred to [4]) for a definition 
and several properties of  infinite-dimensional continuous sets. 

Finally, by virtue of  a remark of Del Piero [5], we use Proposition 1 to 
define a class of  non-coercive variational inequalities for which a natural 
necessary condition for the existence of solutions is also sufficient, and this 
for every small c -uniform perturbation of  the data involved in the problem. 
This result should be applicable to variational problems as they often arise in 
finance or in engineering problems in which data are known only with a 
certain precision and it is desired that further refinement of  the data should 
not cause substantial changes in the existence of  a solution. 
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We end up this note with an open question: can we characterize the class 
of  all semi-coercive variational inequalities for which the above mentioned 
necessary condition is also sufficient? 

For the convenience of  the reader, we now introduce some additional 
notations. As usual, j :X*- -~X  is the duality mapping given by 

(f,j(f))=IIfIl~ and IIj(f)ll =lIfII., (see for example [8]), 

is the negative polar cone of  the set S of  X ,  and S ° reduces to the 
orthogonal 

S ± : { f e X * ' ( f , w ) : O V w e S }  

when S is a linear subspace of  X .  The linear subspace of  X parallel to the 
largest linear manifold contained in C will be denoted by l(C) : 

l(C) = c n ( - c  

We will use the notations IntS and BdS to denote respectively the norm- 
interior and the norm-boundary of  a set S in X or in X*. We recall that the 
recession cone (see [7]) to the closed convex set S is the closed convex 
cone S ~ defined by 

S °° = { v e X :  V >0,Vx 0 6S, xo+Av6S }, 

and that a set S is called linearly bounded whenever S ® = {0}. 
If  @ : X --~ ~ w {+oo} is an extended-real-valued function, Dom qb is the 

set of  all x e X for which @(x) is finite, and we say that @ is proper if 
Dom @ ¢ 0 .  When @ is a proper lower semi-continuous convex function, 
the recession function @® of  @ is the proper lower semi-continuous convex 
function whose epigraph is the recession cone to the epigraph of  @, i.e., 
epi@ ® -- (epi@) ~° . Equivalently 

@=(x) = lim @(x° + tx) 
l - ~  t 

where x 0 is any element such that @(x0) is finite. Given a closed convex 
subset S of  X ,  the domain of  the support function given by 
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O's ( f ) : =  s u p ( f  ,x) 
x~S 

is the barrier cone of S : 

B(S)  = { f  e X '  :O-s ( f )  < +oo} = Domo- s. 

Finally, we use the symbols "-->" and " ~ "  to denote the strong 
convergence and the weak convergence on X ,  respectively. 

. T H E  M A I N  R E S U L T  

Let us consider a closed and convex set C which contains no lines and a 
continuous linear functional f on X .  The following two lemmata collect 
conditions on C and on f allowing us to construct, for every c > 0, an c - 
uniform perturbation C, of  C on which f does not achieve its supremum. 

Lemma 1. Let C be a non-void closed convex subset of  X which contains 

no lines, and f ~I3(C), Ilfll. =1 for which there is w ~ C  ~, Ilwll=l, such 

that ( f , w ) = 0 .  Then, for every c >0 ,  there is an e-uniform perturbation 

C~ of  C such that f does not reach its supremum on C~. 

Proof  of Lemma 1: If  f does not reach its supremum on C ,  then take 
C, = C and Lemma 1 follows. Suppose now that f attains its supremum on 
C at 2 ,  i.e., 

( I , z )  >-- (I ,x)  Vx c. 

Set 

{ v} 
D= -£ + vw + / . t j ( f )  " O < v, O < /.t < -~----+ v C , 

and take C~ as the closed convex hull of  C and D (denoted by -c--6(C, D))  
C c =T6(C,D) .  Remark that D c A + c ] ~ x ,  where A=2-+l~+w is a half- 
line in C .  Accordingly, Cc c C + c ~  x . As obviously C c C,. c C, + c ~  x , 
it follows that the closed convex set C, is an c -uniform perturbation of  C .  
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On D,  the supremum of  f is ( f , g )  + e ,  while on C the supremum of 
f is ( f , 2 ) .  Hence, the supremum of  f on C~ is (f ,2-)  + e .  Let us show 
that f does not reach this value on C<. 

Suppose by contradiction that there is :7 e C~ such that 

<.  

As x ~ co(C,D) ,  select a sequence (an)n~ N. c co(C,D) norm-converging to 

:7. As obviously D is closed and convex, for every a n s co(C,D) we may 
pick d n ~ D  (that is dn=-)2+vnw+ixnj(f  ) for some 0 < v  n and 

0<ix  n < ~_-~. c) ,  c n ~ C  and A n E[0,1] such that 
, i  n 

a. =a.c. + (1- a.)d.. 

As ( f ,  w) = 0 we deduce that 

= + O -  

Since lim._>+~ a. -- :7, then 

+ 

As ix. _<< and ~.((i,<.)-(i,-~)-V.)<_O, the previous relation implies 
that 

lim ( A . ( ( f , c . ) - ( f , - ~ ) - # . ) ) = O a n d  lim #. =e .  (2) 

Using the fact that ( f , c . ) - ( f , - £ ) -  ix. < - i x . ,  we derive 

lim sup( ( f  , c . ) - ( f  ,-£)- It.)<- -e.  (3) 
n - ~ o o  

Combining relations (3) and (2) it follows that (An)--+0, while since 
(ix.) --~ e we deduce that (v.) -~ oo, Let us observe that 

A.c n = -(1 - A.)unw + a n - (1 - A n )(g + #nJ(f))  (4) 
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and that (1 - A.)v. > 0 ,  for n large enough (1 - A. --, 1 and v. --~ oo ). 
Hence, dividing by (1 - ,~.)v. we obtain 

~. a. - (1 -/~.)(2- + # . j ( f ) )  
c. = - w - ~  (5) 

( 1 -  ~ . )u .  ( 1 -  A.)u. 

Being convergent, the sequence (a.),,o~. is bounded, so the previous 

relation implies that 

C n "- '~  m W .  
(1 - A . ) u .  

~" ---, 0,  c. e C and t.c. --+ - w  as n --~ +oo, it follows that As t. :=  ( 1 - ~ ) u  

- w  e C °o , that is 0 ~: w ~ l (C) ,  contradicting the fact that the closed convex 
set C contains no lines. As a result, f does not achieve its supremum on 
the ~-uni form perturbation C~ of  C ,  i~i 

In order to state the second condition ensuring the existence o f  at least 
one ~-uni form perturbation Cc o f  C on which f does not attain its 
supremum, let us recall the concept o f  well-positioned convex sets, 
introduced by Adly et al. in a recent paper ([1]). 

Definit ion 1. A nonempty subset C o f  the normed vector space X is well- 
positioned i f  there exist x o ~ X and g ~ X" such that." 

(g,x-xo)>-IIx-xoll, vx c. 

It follows directly from the definition that when C is well-positioned, 
the sets x + A C  and B are well-positioned for every x ~ X ,  A E R  and 
O ¢ B c C .  

L e m m a  2. Let C be a nonempty closed convex subset o f  X containing no 
lines and which is not well-positioned, and f ~ 13(C), Ilfll. = 1. Then, for 
every ~ > O, there is an ~ -uniform perturbation C c o f  C on which f does 
not attain its supremum. 

Proof  of L e m m a  2: Notice first that when f does not reach its supremum 
on C it is sufficient to set C. = C ,  and when there is w e C ® , Ilwll = 1, such 
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that ( f ,  w) = 0 ,  we may apply Lemma 1. Consider now the remaining case, 
that is when 

(f,w)<o v w ~ c  =, H : l ,  (6) 

and f attains its supremum on C at 2 ~ C.  In order to achieve the proof of  
Lemma 2 we shall construct an e -uniform perturbation C~ of C on which 
f does not attain its supremum. 

Take y = x + c j ( f )  and consider 

, = {x ~ : ( ~ , c )  :(S,x) : (: ,-~)).  (7) 

Obviously, B is a closed convex set. As 6--6(y,C)® = C ®, it follows that 
B ~ c C °~ ; taking into account relation (6) we deduce that 

( f ,  w) < o vw ~ B =, Ilwll = 1. (s) 

On the other hand, relation (7) implies that 

( f ,  w) = 0 Vw ~ B °~. (9) 

Combining relations (8) and (9), it follows that B ® = {0}. Accordingly, B is 
a linearly bounded closed convex set. 

Let us now prove that B is unbounded. Indeed, by contradiction, let us 
suppose that B ~ P~x  for some p > 0. Let x ~ C ; observe that the convex 
combination 

(S, ~) - (S, x) v+  < x 

z: ~ +(s,-~)-(S,x): ~ +(s,-~)-(S,x) (lO) 

of y and x belongs to C,, and, as ( f  , z ) = ( f  ,Z), we deduce that z~B .  
Accordingly, Ilzll-< P ; in addition, as ~ ~ B,  we have M-< p ,  and therefore 
IIz-q-<2p. 

Standard calculations yield 

Z--X-- 
~((x--:)+(:,;-x):(:)) 

(:,y-x) 

from which we obtain 
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(x - "~) + (f, y -  x) j ( f )  <_ 2p 
(:,y- x} 

Hence 

,x ll+ l:x, ) 
As relation (11) contradicts the fact that the set C is not well-positioned we 
obtain the unboundedness of B. Accordingly, the set B - 2 is an unbounded 
linearly bounded closed convex set, and thus (see [2]), there is a linear 
continuous functional g such that 

inf(g,y-2")<(g,x-2")<l Vx~B. (12) 
y c B  ~ 

Now, take 

C c = {x ~ ~--6(y, C)" (13) 

< 2 +  3 f,2" . (~x+<:~ x>j(:~ ~)+~(:x> ~.< }} 
Obviously, Cc is a closed convex set is included in T6(y,C) ,  whence is 
included in C~ c_ C + e N  x . Moreover, as (see relation (10)) 

x +(f  ,2.-x)j( f)-2.=ll  + ( f  '~-x)  l(z-2.), 

we deduce from relation (12) that 

(g,x +(f ,2.- x) j ( f ) -  2.) < l + ( f  ,2.- x) (14) 
g 

Taking into account that (f,x)< (f,2.) for every x ~ C we deduce from 
(14)  that 

(g,x+(f,2"-x}j(f)-2.)+3(f,x)<l+3(f,-£). ~- __ Vxe C, 
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and therefore by virtue of Definition (13) of  C C we have C cC~.. 
Accordingly, Cc is an e -uniform perturbation of  C in the sense of ( l ) .  

Fix z ~ B ; for ~ E [0,1] put z(/~) =/~z + (1 -- A)y and define 

We have 

while 

h(1) 

As the map h :[0,1] -~ R is continuous, there is ~ E (0,1) such that 

h ( ~ ) =  2 + 3 ( f , 2 ) .  (15) 

Obviously z(~) E ~--d(y, C) and thus z(~) E C~. Relation (15) yields 

and thus 

3 1 3-inf(g,z-'£)" (16) 

On the other hand, for every x ~ C, 

(f,x)<(f,-£)+c(1 3_(g!z__£). 1. (17) 

Hence, relations (12), (15) and (17) infer that for every x e C c we have 
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I, xl l, l+ l, 3 I 3_inf  B(g,z_2.) =syup(f,y). 

Accordingly, the linear continuous functional f does not reach its 
supremum on the c -uniform perturbation C, of C, the proof of Lemma 2 is 
thus complete. E] 

The main result of this note characterizes all the linear continuous 
functionals which achieve their supremum on every sufficiently small e -  
uniform perturbation of a given closed and convex set. 

Theorem 1. Let C be a non-void closed convex subset o f  X and f a non- 
null linear continuous functional Then, there is c > 0 such that f reaches 
its supremum on every closed convex subset C,. o f  X fulfilling relation (1) i f  
and only i f  f belongs to the norm-interior o f  the barrier cone o f  C.  

Proof of Theorem 1: Consider f s Int/3(C). From Corollary 2.1 of [1] 
select R I and "Yl E R such that 

<f ,x>~ g, -~,llxll Vx~C (is) 

Using relations (1) and (18) we deduce that 

<f,x> ~ ~llfll, + R,.- ~,llxll vx~ q ,  (19) 

Remark that f~13(C,) and consider a maximizing sequence 
(x.).crr a C,, of f ,  i.e., a sequence satisfying 

( f , x )  --> sup( f  ,y). (20) 
yeC~. 

Accordingly, for n large enough we have 

(f ,x.)>_sup(f ,y)-l, 
YeCc 

and from (19) it follows that 

iixn 
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The sequence (x,),~N. c C~ is therefore bounded, and, as X is reflexive 

and C is a closed and convex (thus weakly closed) set, the sequence 
(x,),~w has a weak cluster point w e C,. From relation (20) we derive that 

lim f ,x ,  = s u p ( f , y ) ,  (S,w}= ( ) 

which means that f attains its supremum on C~.. 
In order to prove that a continuous linear functional f which achieves 

its supremum on every e-uniform perturbation C~ of a closed convex set 
C belongs to the norm-interior of  the barrier cone of  C, let us first remark 
that every such functional must be bounded from above on C.  

If  we suppose that C is a not well-positioned, from Lemma 2 we deduce 
that, for every e > 0,  there is an c-uniform perturbation C c of  C (in the 
sense of  (1)) on which f does not attain its supremum, a contradiction. If 
we suppose that there is w e C ® such that ( f ,  w) = 0,  Lemma 1 proves that 
there is an e -uniform perturbation C, of  C on which f does not attain its 
supremum, once again a contradiction. 

Accordingly, if the continuous linear functional f achieves its 
supremum on every c-uniform perturbation Cc of  a closed convex set C, 
then C is necessarily a well-positioned closed and convex set, and the 
following relation holds 

(f,w)<O VweC®,w¢:O. (21) 

In order to achieve the proof, let us prove that f belongs to the norm- 
interior of  the barrier cone of  C .  By contradiction we suppose that 
f ~ Bd C.  Since C is well-positioned, the norm-interior of  the convex set 
B(C) is nonempty. Hence, there exists some w e X** of  norm 1 such that 

(f,w)>_(h,w) Vh ~/3(C). 

Because X is reflexive we (may) consider that w E X .  The set 13(C) is a 
cone, thus 

(f,w)>O>(h,w) Vh~I3(C). (22) 

Accordingly, 

w e [ N c  n L)]  ° = ( c  n 1;) = c n v ( L ) ,  
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and from relation (22)it follows that ( f ,  w)= O. Lemma 1 implies that there 
is at least one c -uniform perturbation of  C on which f does not achieve 
its supremum, contradiction which completely achieves the proof of  
Theorem 1. ! i 

By virtue of  Proposition 2.1 in [ 1 ], we deduce the following consequence 
of Theorem 1. 

Corollary 1. Let C be a nonempty closed convex subset o f  X and f a 
non-null continuous linear functional. The following two statements are 
equivalent: 

(a) f achieves its supremum on every ~" -uniform perturbation o f  C ; 

(b) C is well-positioned and f belongs to the norm-interior o f  the 

negative polar cone o f  the recession cone o f  C,  
(f,w)<o vw C ,w 0. 

. CONTINUOUS CLOSED CONVEX SETS AND 
NECESSARY CONDITIONS FOR NON-COERCIVE 
VARIATIONAL INEQUALITIES 

The last section of  this note is concerned with a new characterization of 
continuous closed and convex sets, as defined by Gale and Klee [6] (see also 
[4])): 

Definition 2. The closed convex set C of  X is called continuous i f  its 
support functional cr c : X* ---> ]~ is continuous on X* \ {0}. 

Observe that in a Banach space X, every lower semicontinuous convex 
function h : X --> IR u {+oo}, is norm-continuous at x ~ X if and only if x 
belongs to the set ( X \  Dom h) ~ Int(Dom h).  Applying this remark to the 
support function G c : X" --> 1R ~ {+oo} of  a closed convex subset C of  X 
we deduce that C is continuous if and only if 

/3(C) = {0} k9 Int/3(C). 

The previous remark and Theorem 1 lead to the following result. 

Proposition 1. Let C be a nonempty closed convex subset o f  X .  Then every 
linear continuous functional bounded from above on C achieves its 
supremum on every e -uniform perturbation C,. o f  C i f  and only i f  C is 
continuous. 
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We recall that an operator is called semi-coercive if there exist some 
positive constant ic > 0 and some closed subspace U of  X such that if 
dist c, (x) denotes the distance from x to U,  we have 

A v -  Au, v -  u) > 2 E - tc(dis tv(v-u))  Vu, v X 

A(x + u) = A(x) Vx e X and u e U, and A(X) c_ U ±. 

The class of  semi-coercive operators contains for instance the projection 
operator onto a closed subspace of a Hilbert space. 

Let K be a closed convex subset of  X ,  f be an element in X*, A be a 
semi-coercive operator from X to X*, qb : X ~ II~ u {+oo} be a lower semi- 
continuous convex function that we assume to be bounded from below, and 
suppose that K ~ D o m q ) e  O .  We call semi-coercive variational inequality 
the problem of 

finding u E K ~DomaP such that 

( A u -  f , v -u )+@(v ) -@(u)>O,  V v e K .  
(23) 

Proposition 1 has a direct application in the theory of semi-coercive 
variational inequalities. Indeed, when the variational inequality is governed 
by an operator which is bounded, semi-coercive and pseudo-monotone (in 
the sense of  Br6zis [3], page 132), it has been noticed that if a solution to 
(23) exists, then the energy functional 

,~(x):K(distu(x))2+ IK(x )+@(x) - ( f , x  ) V x e X ,  

where I K denotes the indicator functional of  K is bounded from below on 
X and that if the energy functional is coercive on X then (23) has a 
solution (see for instance the proof of Proposition 3.1 in [ 1 ]). 

Remark that .T is bounded from below if and only if the linear 
continuous functional 

( f  , -1 ) ' (XxN)*  --> N , ( ( f  , -1) , (x ,a) )=( f  , x ) -a ,  V(x,a)eXxN 

is bounded from above in X x Ii~ on the epigraph of • defined by 

V(x) = l¢(distu(x)) 2 + I K (x) + ap(x) 
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and that .7- is coercive if and only if ( f , - 1 )  belongs to the norm-interior of 
the barrier cone of  the same epigraph. 

Thus, Proposition 1 and Proposition 3.1 from [1] imply that, if the 
epigraph of  • is a continuous subset of X x ~ then the boundedness from 
below of  the energy functional .T" is a necessary and sufficient condition for 
the existence of a solution to the variational inequality (23) for every e -  
uniform perturbation of  the data involved in the problem. As every 
continuous set is well-positioned, we use Theorem 4.1 from [1] to deduce 
that, whenever the epigraph of q~ is a continuous subset of X × IR, then the 
energy functional .T" is bounded from below if and only if 

( f ,u)<~°°(u) ,  Vu~K~° ~ U ,  u~O. 

The following result summarizes the previous reasoning. 

Proposit ion 2. I f  the epigraph of  q~ is a continuous subset o f  X × R ,  then 
relation 

( f , u } < ~ ° ( u ) ,  V u ~ K ~  ~ U ,  u~O 

(equivalent to the boundedness from below of  the energy functional .~ ) is a 
necessary and sufficient condition for  the existence o f  a solution to the 
variational inequality (23). Moreover, the existence o f  a solution is achieved 
also for every instance involving a bounded and semi-coercive operator A~, 
a linear functional f~, a proper lower semi-continuous convex function ~ 
that is bounded from below, and a closed convex set K~ such that 
K,. c~ Dom @~ ~ O,  and 

HA(x)- 4(x)ll" < Vx x 

I I f -  411. < 
K c K~ +EB x and K~ c K +cBx, 

¢(x)-6<_O~(x)<_~(x)+e,  V x ~ X .  

Finally, let us remark that Proposition 2 does not provide a complete 
characterization of  semi-coercive variational inequalities for which the 
necessary condition involving the boundedness from below of  the energy 
functional .7- is also sufficient for the existence of solutions, 
characterization which at our knowledge, remains an open problem. 



Cont inuous  Sets  a n d  Non-A t ta in ing  Fuc t iona l s  in B a n a c h  Spaces  357 

REFERENCES 

[1] S. Adly, E. Ernst and M. Th6ra, Stability of  non-coercive variational inequalities, 
Commun. Contem. Math., 4 (2002), 145-160. 

[2] S. Adly, E. Emst And M. Th6ra, On the closedness of  the algebraic d(fference of closed 
convex sets, J. Math. Pures Appl., 82(2003), 1219-1249. 

[3] H. Brezis, Equations et inOquations non-linOaires dans les espaces vectoriels en dualitY, 
Ann. Inst. Fourier, Grenoble, 18(1968), 115 - 175. 

[4] P. Coutat, M. Voile and J. E. Martinez-Legaz, Convex functions with continuous 
epigraph or continuous levelsets, J. Optim. Theory Appl., 88 (1996), 365-379. 

[5] G. Del Piero, A Condition for Statical Admissibility in Unilateral Structural Analysis, 
Theoretical and Numerical Non-smooth Mechanics, International Colloquium in honor 
of the 80 th birthday of Jean Jacques Moreau, 17-19 November 2003, Montpellier, 
France 

[6] D. Gale and V. Klee, Continuous convex sets, Math. Scand. 7 (1959), 370 -391. 
[7] R.. T. Rockafellar, Convex Analysis, Princeton Mathematical Series 28, Princeton 

University Press, 1970. 
[8] E. Zeidler, Nonlinear Functional Analysis and its Applications 11, Springer-Verlag, 

1990. 



EXISTENCE AND MULTIPLICITY RESULTS 
FOR A NON LINEAR HAMMERSTEIN 
INTEGRAL EQUATION 

F. Faraci 
Dept. of Mathematics, University of Catania, Catania, Italy 

Abstract: In this paper we study the solvability of a nonlinear Hammerstein integral 
equation by using a variational principle of B. Ricceri and methods of critical 
point theory. In particular we do not require any positivity assumption on the 
kernel of the equation. Our results can be applied to higher order elliptic 
boundary value problem with changing sign kernel. 

. I N T R O D U C T I O N  

In the present paper we deal with the following nonlinear Hammerstein 
integral equation 

x(s) = fa k(s,t)f(t,x(t))dt, (1) 

where f~ c R N is a bounded domain, k : ~ x ~ ~ • is a measurable and 
symmetric kernel and f : ~ x IR --~ ~ is a Carath6odory function. 

Under suitable hypotheses on the kernel k ,  and growth assumptions on 
the nonlinearity f ,  we prove existence and multiplicity results for equation 
(1). 

There is a wide literature dealing with the problem of  solving equation 
(1), see for instance [7,1,3,]. In these papers the authors apply a suitable 
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splitting theorem for linear integral operator and study an equivalent 
equation to (1), setting the new problem in the space of the 2-nd power 
summable functions. The solutions of  the original problem belong to Lp for 
some p > 2. 

Following an idea contained in [10], we work in a more abstract context, 
that is however the most natural one for equation (1). We prove that the 
solutions belong to a suitable energy space, compactly embedded into Lp 
for some p > 2. The idea of  introducing these spaces goes back to the theory 
of  Hilbert scales generated by linear operators (see [8]). 

We notice that no positivity assumptions are made on the kernel. In a 
previous result (see [3]), we assumed k _> 0 in order to prove the existence 
of at least two solutions to the equation 

x(s) = A fa  k(s, t)f(t ,  x(t))dt, 

where A is a positive parameter. Actually, in many concrete examples, the 
kernel k arising as a Green function of  a differential operator, is positive. In 
these cases it is possible to apply methods of positive operators to this 
equation in order to obtain information on the location of  the solution. 

Our approach is variational: since the kernel k is symmetric, it is 
possible to associate to (1) an energy functional whose critical points are the 
solutions of  the Hammerstein equation. We apply a recent variational 
principle by Ricceri ([14]), a powerful tool for the localization of  minima of 
integral functionals. We are able then to consider those cases where the 
kernel may change sign (as in higher order elliptic equations). 

The scheme of  the paper is the following. In section 2 we define the 
energy space as well as the energy functional representing our problem; in 
section 3 we prove our main existence-localization theorem. This result is 
then applied in section 4 to some concrete examples of  nonlinearities. We 
conclude the paper with an application of  the previous results to a 
polyharmonic boundary value problem. 

. P R E L I M I N A R I E S  

Let us introduce the variational setting of our problem. In this section we 
define the energy space IB and the energy functional J for the 
Hammerstein equation (1) on It~ whose critical points are precisely the 
solutions to (1). 
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2.1 T h e  e n e r g y  space  

The problem of  constructing a suitable function space where to set 
equation (1) was previously considered by Moroz and Zabreiko in [10]. 

Equation (1) can be written in the operator form 

X = K f x ,  

where fx = f ( . , x )  is the nonlinear superposition operator generated by the 
function f and K is the linear integral operator 

Kx(s) = f ~  k(s,t)x(t)dt. 

The symmetry assumption on the kernel k implies the self-adjointness 
of K in L 2 (see [11] for regular operators and [15] for general case). For 
our purposes we will need some additional information about the properties 
of  the space IB determined by specific properties of the linear operator K .  

Throughout the sequel it is assumed that K is a bounded compact 
operator from Lp, into Lp where ~ + ± = 1 and 1 < p'  < 2 < p .  p p 

K satisfies the latter condition if for example (see [7]) 

f,×,, I k(s,t)I" ds dt< 

It is further assumed that K is positive-definite o n  L 2 ,  that is (Kx, x) > 0 
for all x E L z \ {0} where we are denoting by (.,.) the scalar product in L 2 . 

Let L be the left inverse to K defined on the domain 

D(L) = {y ~ L 2 : Kx = y has as solution x e L2} 

by the formula 

where x is the unique solution of  Kx = y .  
The operator L is unbounded, positive definite and selfadjoint in L 2 and 

it satisfies 

L K x = x  forall x ~ L z. 

Let us define a bilinear form on D(L) by the formula 
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(x,y) :(x,  Ly). 

Clearly (.,.) is an inner product on D(L).  In particular we have 

> -t 2 
(x ,x ) - I I< l  Ilxl12 forall x ~ D ( L ) ,  (2) 

where IIKII stands for the norm of K in L~. 
It is well known that if L is symmetric, densely defined on 1L 2 and it 

satisfies (2), then the form (.,.) is closable in L 2 , i.e. it possesses a closed 

extension in Ib 2 . If we denote by IB the domain of  the closure of  (.,.) in 

Ib2, then IB is a Hilbert space with respect to the norm IIII = densely 

and continuously embedded in L 2 . N is called the energy space for the 
operator K .  

Lemma 1 The space I~ has the following properties: 

1. (x,x) > IIKII -' Ilxll== for all x ~ IB. 

2. The embedding It~ c Lp is compact. 

Proof. 1. If x ~ IB, by the definition of  the closure of  a form, there exists a 
sequence {x. } c D(L) tending to x in L 2 and satisfying 
( x , , - x  ,x -xm)--+O as n,m--++oo. Since Ilxll2:lim.  (xo,x.), passing 
to the limit in (2), we get our claim. 

2. The proof follows from the classical Krasnosel'skii Krein factorization 
theorem which states that under our assumptions on K ,  the square root of  
K ,  K ~ acting from L 2 into Ib is compact. The thesis follows noticing 

i P 
that IB = K 2 (L2). 

2.2 The energy functional 

Let us introduce now the energy functional on IB for the Hammerstein 
equation (1) defined by 

s(x)=½11xll:+.(x), 
where 
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O ( x ) = - f a F ( s , x ( s ) ) d s  and F ( s , x ) =  foXf(s,t)dt.  

Our main assumption is: 
( f )  there exist r~(1 ,2)  q ~ ( 2 , p )  and a ~ L z  _, b~L_e _, c ~ L .  such 

p 
t h a t  ..... "-q 

I f ( s , x )  I < - a(s) lx [r-, +b(s) lx I q-' +c(s). 

The previous assumption allows us to deduce some important properties 
of  J .  It is easy to prove the following lemma. 

Lemma 2 Let assume condition ( f ) .  Then the functional ~b is well-defined 
and sequentially weakly continuous onE .  Moreover it is continuously 
differentiable on ~ .  In particular J is continuously differentiable on ]B 
with the derivative given by 

J'(x)(h) = (Lx, h) - ~ f (s ,x(s))h(s)ds for all h E N. 

Remark  3 Any critical point of  J is a solution to the Hammerstein equation 
(1). 

We conclude this section with the statement of  our main tool, a recent 
variational principle of  B. Ricceri which provides a powerful instrument for 
the existence and the localization of  local minima of  the energy functional. 

Theorem 4 ([14, Theorem 2.5]) Let IB be a Hilbert space and 
q~, W : E --~ R two sequentially weakly lower semicontinuous functionals. 
Assume that W is strongly continuous and coercive on It~, that is 
limNl~+ ~ W(x) = +oo. For each p > inf s W set 

~ ( x ) -  i n f  I v. qb 
qg(p) := inf " v. p - W(x) ' (3) 

where W p := {x ~ I~" W(x) < p} and clwW p is the closure of  W p in the weak 
topology of  lB. Then, for each p > inf s W and each lu > ~o(p), the 
restriction of  the functional ¢b + juW to W p has a global minimum point in 
~L a" 
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. E X I S T E N C E - L O C A L I Z A T I O N  T H E O R E M  

This section is devoted to our main existence-localization theorem where 
we apply the variational principle of  B. Ricceri to the energy functional J 
which can be expressed as the sum of  two sequentially weakly lower 
semicontinuous and continuously differentiable terms. 

Before stating our result we need to introduce the best constant of  the 
embedding of  N into Lp, that is 

S:=  sup ~llxll. : x ~ ~, Ilxll -< 1}. 

T h e o r e m  5 Let assume condition (f). 
l f  there ex&ts p, > 0 such that 

r(p.) := s= llall~ p:- '  + s~ llbll~ p: - '  + sllcll ~, < p,, (4) 

then, J has a local minimum in IB whose norm is less than p, .  

Proof. Let us define on l~ the functionals 

w(x):=llxll ~ and 

dp(x) = - f z  F(s, x(s))ds. 

~F and • are sequentially weakly lower semicontinuous on It~; u? is 
clearly strongly continuous and coercive. We claim that there exists a 
positive p such that the inequality 

q~(x) - infbll_<p *(Y) 1 
(5) 

holds, in order to apply Theorem 4 with kt =-~. Then, we will have proved 
the existence of  a local minimum x for J lying in q ~e2 , i.e. satisfying 
Ilxll < p 

Following an idea contained in [2], we introduce the function 

o~(p) := sup F F(s,x(s))ds 
14 -<p" ~ 
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for p > 0. It is easily seen that 
]0,+~[. 

Let us prove now that 

ot is well defined and non decreasing in 

lim sup a ( p  + r)  - a(p )  < P (6) 
r-~O ~" 

for some p > 0. 
By direct computations, if p > 0 and 0 <1 r [< p ,  one has 

a ( p +  r ) - a ( p )  <__lsu  p .~[ [~p+r)x(.,.) 
r irl~xn~_, apx(.,.) i f ( s ' t ) [ d t [ d s <  

<__1 {[]a[]~ (p  + r ) ' - p "  ( p + r ) q - p  q q 
I~l ~P I r I IIxll% +llbll~_._. [ q Ilxll,. +ll~ll,, Ilxll,.~ 

i+TII611~ < I1~11~ I (p +~)=-p= s~ <p+~)~-p~ I I+sl l~l l , ,  • _ , / -  

Passing to the maximum limit we obtain that 

lim sup a ( p  + r) - a(p )  < F(p).  
r ~ 0  "/" 

Assuming the existence of a positive p,  such that F(p , )  < p , ,  (6) holds. 
Now, condition (6) implies the inequality 

inf inf a ( p )  - a(cr) < 1 
p>0 o'<p p 2  __ O,2 2 ' 

which is equivalent to our claim (5). [] 

. APPLICATIONS 

In this section we consider specific examples of nonlinearities in order to 
handle condition (4). Combining our existence-localization theorem with 
the Mountain Pass Theorem, we obtain a multiplicity result for the 
Hammerstein equation (1). 
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4.1 A superlinear case 

In this first application, we deal with a superlinear nonhomogeneous 
nonlinearity where a positive parameter appears: 

L (s,x) = b(s)g(x) + he(s), (f ,)  

Here 0 ~: c ~ Lp., 0 < b ~ L_e - for some q ~ (2,p) and g is a continuous 
real function such that g ( 0 ) ~  0 and satisfying the assumptions: 

[ g(x) l< k I x [ q-I for some k ~ ~ ,  k > 0 and for every x ~ R ; (gl) 

there exist r > 2, R~ > 0 such that if G(x):= fo x g(t)dt (g2) 
0 < rG(x) < g(x)x for [ x1> R~. 

Our result reads as follows. 

Theorem 6 Let assume conditions ( f ) ,  (gl) and (g2). Then, there exists a 
positive A. > 0 such that for each A C (0,A.) equation (1) has at least two 
solutions. 

Proof. We denote by Ja the energy functional associated to f~(s ,x) .  We 
are going to apply Theorem 5 to our nonlinearity that clearly satisfies ( f ) .  
We can estimate the function F(p)  given by the formula 

r ( p )  = s kllbll  + s llcll,,,. 

It is easily seen that there exists a positive A, such that for every A E (0,A,), 

2 sll'yll , 
satisfies condition 

£(p, (~,)) < p, ()9. 

Thus, Theorem 5 ensures the existence of  a local minimum x~, whose 
norm is less than p, (A). 

In the next step we prove that J~ is unbounded below. From assumption 
(g : ) ,  it follows that 
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G(x) > c, I x ] ~ - c  2 

for some q , c  2 > 0 and for every x ~ IR. 
Let us choose then a function 0 ~ x ~ I~ and cr > 0. 
One has 

Passing to the limit, for cr ~ + ~  we have that 

2 

= 2 1 1 x l l  2 - F (s, x(s))ds 

that is our claim. 
In a standard way it is possible to prove that Ja satisfies the Palais-  

Smale condition. 
Hence, all the assumptions o f  the Mountain Pass Theorem are satisfied 

(see, e.g. [5,13]), so we deduce that Ja has a second critical point y~, 
different from x A . V! 

4 .2  A n o n l i n e a r i t y  w i t h  s u b l i n e a r  a n d  s u p e r l i n e a r  t e r m s  

In this second application we deal with a nonlinearity where a 
combination of  sublinear and superlinear terms appears: 

f~ (s, x) = b(s)g(x) + Aa(s)x I x it-2. (L) 

Here, 0 < a ~ L_e - for some r ~ (1,2), b ~ L, ,  for some q ~ (2,p)  and g is 
as in the previofi~ application. "-" 

R e m a r k  7 We notice that f~(s,0) = 0 and x = 0 is a trivial solution o f ( l ) .  
For proving the next result we need to recall the following definition. A 

critical point y of  J~ is said a mountain pass type critical point of  Ja if  
there exists arbitrary small p > 0 such that the set 

{ J ~ A B p ( y ) I \ { y }  

is nonempty and not path connected, where c = J~ ( y ) ,  
J~ = {x E E:  Ja (x) < c}, and Bp (y) is the open ball of  radius p centered at 
y .  
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The following two lemmas will be useful in the sequel. 

Lemma 8 Let assume conditions (f2) , (g,) and (g2). Put 
Mp := {x • Bp (0)" Ja (x) _> 0}. Then, there exists ~ > 0 such that 

d 
J~ (o.x) [o=l > 0 (7) 

do- 

for  any x • M~. 

Proof. See [9]. 

L e m m a  9 Let assume conditions (f2),  (gs) and (g2). I f  ~ is as in Lemma 
8, then the set {jo n Bz - (0)} \ {0} is pathwise connected. 

Proof. We notice that the set jo  n Bz(0) 
origin. Let us suppose that J~ (o.0x0) > 0 
cr o • (0,1). (7) implies that 

is starshaped with respect to the 
for some x 0 C J~ n Bz (0) and 

d 
--J~(o.aoXo) I~=t> 0. 
d a  

Then, J~(o.Xo) > 0 for all cr • [or0,1 ]. In particular, we obtain JA(xo) > 0 in 
contrast with the definition of  x 0 . 

Let us prove now that { J ° n B z ( 0 ) } \ { 0 }  is a retract of  the set 
B ~ ( 0 ) \  {0}. Let x be in Mz.  Lemma 8 implies the existence of  a unique 
solution or(x)•  (0,1] solution of  JA (ax )=  O. The uniqueness follows from 
the starshapedness of jo  N B~. 

By (7) we have 

d 
(aa(x)xL= > O. 

da  

The continuity of  the function or(x) in a neighborhood of  x in Mp follows 
from the Implicit Function Theorem. In particular one has that 
or: Mz --~ (0,1] is continuous. We define then 
r: Bp(0) ~ {jo n Bp(0)} \ {0} by the formula 

I o-(x)x, x • Mp, 
r(x)= t x, x • {J° {0}. 



Nonlinear Hammerstein Integral 369 

It is possible to prove that r is a retraction of {Bz} \{0}  into 
{jo VIB~}\  {0}. In particular r is continuous as it follows from the 
continuity of  or. Moreover the restriction of r to {jo NBz(0)} \ {0} is the 
identity map. Now, {Bz} \ {0} is contractible in itself. By [12] the retract of  
a contractible in itself set is also contractible in itself. Therefore 
{jo fq By } \ {0} is contractible in itself. In particular, {jo N By } \ {0} is 

pathwise connected as we claimed. [] 

Our result reads as follows. 

Theorem 10 Let assume conditions (f2),  (g,) and (g2). Then, there exists 
a positive A, such that for  each A E (0,A) equation (1) has at least two 
nontrivial solutions. 

Proof. The scheme of  the proof follows the one of  the previous theorem: the 
first solution comes from an application of  Theorem 5 to J~ ; by using the 
Mountain Pass Theorem we are able to prove the existence of  a second 
critical point to J~. 

The nonlinearity f~ clearly satisfies ( f ) .  Let us consider the function 
F(p)  given by the formula 

r ( p ) =  s  llbll _ : - '  +  s'llall ,, p =-'. 
p--q p--r  

It is easily seen that there exists a positive A, such that for every A E (0 ,A) ,  

1 (Allall  (2-  

satisfies 

P(p, (~)) < p, (~). 

Theorem 5 ensures the existence of  a local minimum x~ whose norm is less 
than p,(A). We need to prove that x~ is different to zero. 

Fix A E (0,A,). J~ satisfies the following inequality: 

q r 
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as cr tends to zero. 
Since x~ is the global minimum of  the restriction of  J~ to a suitable 

open ball centered at zero, x A is different to zero. 
,/~ is unbounded from below and satisfies the Palais-Smale condition. 
Thus from a suitable version of  the Mountain Pass Theorem (see, e.g., 

[5]), we have the following alternative: either d'~ has a mountain pass type 
critical point y~ different to x~ or its set of  critical points is infinite. We 
know from Lemma 9 that x = 0 is not a mountain pass type critical point. 
Hence, J~ has at least two nontrivial critical points as we claimed. [] 

5. AN EXAMPLE 

In this section we give an application of  our results. Let us consider the 
following semilinear polyharmonic problem 

( -A)"x  = f (s ,x)  in f2, 

DmX = 0 on 0~. 
(8) 

where m s N is an integer, (-A) m is the m-harmonic Laplace operator, 
Dmx:=(Dkx)km, (0_< lk l<m-1)  is the boundary operator, f 2 c N  N is a 
bounded domain with the boundary cX2 of the class C 2'~÷j and 
f : f~ x IR -~ 1R is a Carath6odory function. 

We can solve the above problem by introducing an equivalent 
Hammerstein equation having as kernel a suitable Green function. Such 
Green function Gmm(S,t ) exists, symmetric and satisfies the estimate (see 
[61) 

c l s - t l  zm-N ifm<ff, 

Ia,,,N(s,t)l~ [log[s-tll+c i f m  :-N 2 '  

c if m>~-. 

It is possible to prove that the integral operator K satisfies all the 
assumptions in Section 1 with p satisfying the following estimates 

p <  
2N 

ifm<--~, 
N - 2 m  

oo if m>-~. 

Hence, we can apply the results in the previous sections. 
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Remark 11 We point out that the Green function am, N (s,t) changes sign on 
many model domains (see, e.g. [4]). So, the classical positivity methods can 
not be applied to (8) while the results of the present paper can be used to 
study (8). 
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D I F F E R E N T I A B I L I T Y  O F  W E A K  S O L U T I O N S  
O F  N O N L I N E A R  S E C O N D  O R D E R  P A R A B O L I C  
S Y S T E M S  W I T H  Q U A D R A T I C  G R O W T H  A N D  
N O N  L I N E A R I T Y  q >_ 2 

L. F a t t o r u s s o  
D.I.M.E.T. Faculty of  Engineering, University of  Reggio Calabria, Reggio Calabria, Italy 

Abstract: Let f~ be a bounded open subset of ~ " ,  let X = (x,t) be a point of IR" x IR u . 
In the cylinder Q = f~ x ( -T,0) ,  T > 0, we deduce the local differentiability 
result 

u ~ L~(-a,O, H2(B(cr),~N))~ttI(-a,O, L2(B(cr),I~N)) 

for the solutions u of the class L'~(-T,O, tP'q(ffz,~U))c~C°'a(Q,~ u) 
( 0 < 2 < I ,  N integer > 1 ) of the non linear parabolic system 

n 
i - ~  Dia (X, u, Du) + OuOt = B°(X, u, Du) 

with quadratic growth and non linearity q > 2. This result had been obtained 
making use of the interpolation theory and an imbedding theorem of 
Gagliardo-Nirenberg type for functions u belonging to W ~'q ~ C ~'~ . 

1. INTRODUCTION 

Let ~q be an open bounded subset of II~" (n > 2) of generic point 
x = ( x t , x 2 , . . . , x , ) ,  Q the c y l i n d e r  f 2 × ( - T , 0 )  ( 0 < T < + o o ) ;  he re  N is an 
in t ege r  > 1, ( ] )k  and  ]]'[Ik are  the  sca la r  p roduc t  and  the n o r m  in 1t~ k , 
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respect ively .  W e  
confus ion .  

W e  define 

will  drop the subscript  

B(x°,cr) = {x E R" :l x , -  x ° I < cr, i = 1,...,n} 
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k when  there is no fear o f  

as usual,  D ~ -  0 - ~-~-/. 

p~ ~ R N , a typical  

I f  u : Q - + N  N, we set Du=(D~u,. . . ,D,u) where,  

I n Clear ly  D u e N " N  and we denote  by  p = ( p  .... , p ) ,  

vec tor  o f  ~,N and let V ( p )  = I1 + Ilpll 2)+. 

Let  u ~ L q ( -T ,O ,H  ''q ( f 2 , ~ u ) ) n  C °'a (Q,I~ N) (0  < A < 1) ~ be a solut ion in 
Q to the second  order  nonl inear  parabol ic  sys tem o f  variat ional  type 

-~__~-- Dja' ( X ,u ,  Du) + Ou = BO ( X , u , D u )  
i=l Ot 

(1.o) 

By H "'p (f2, RN), m = 0,1,2 .... 1 < p < oo, we will denote the usual Sobolev space 

{f~2llul.,' dx} 7' M ' " " ( ~ , R N ) =  Z ( ~ , ~  N) e lUlo,,,~,nu,,, ..... : , ~ < p < ~.  

If 1 < p < ~ and m, j are integers > 0, we denote 

[ . . ~  1/,, ,,, l~ 

ifp = 2, we shall use thenotation H'.I I~,.,IHI,.,~ 
By H°'r(f~,RN),0 < 0 < 1,1 < r < oo, we will denote the Slobodeckij space of those vectors 
u ~ E(f~,R N) such that 

l u I;,,.,,,= f ,  dxf ,  Ilu(x)-u(y)l[ ~-3P *'< +oo 

By H"+O'r(f~,RN), m=l ,2 , . . . , 0<O<l , l< r<oo  we will denote the space of those 
vectors u e H m'r (fL R u) such that D~'u ~ H °'' (f~, RN), V I at I= m. 
If r = 2 we shall use the notation H "+°, m = 0,1, 2,..., 0 < 0 < 1 instead of H "+°'2 . 
By C°'a(f2,~N), 0 < 2 < 1, we shall denote the space of those vectors u e C°(~,~ N) for 

II~(x)-.(y)ll < +~ which [u]~,n = sup 
x.~.~'~ IIx-yll  ~ 

In Q the HOlder continuity is considered with respect to the parabolic metric 

d(X,y)=max{llx-yll , l t-~U }, X=(x,t), r = ( y , r )  
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in the sense that 

: fo (~°(x'"'vu)l~) ex' v~ ~ c , ; (o ,~ ) ,  

where X = (x,t) and a (X,u,p), i = l , . . . , n ,  and B°(X,u,p) 
R N 

375 

(1.1) 

are vectors of  
defined on A = Q x Ru x R,N,  satisfying the following conditions: 

the vector B°(X,u,p) is measurable in X ,  continuous in ( u , p ) ,  and, 

fo reach  (X,u,p) c A ,  with [lull-<k, p e R , N  (1.2) 

. 0 B  o 

u . IIOB o 
k~=l ~J=l ~PJk <c(k)Vq-'(P) 

the vectors d(X,u,p), i=1 ,2  ..... n ,  are of  class C I in QxRUxR "u 
and, for each (X,u,p)~ a with [lull_< k (1.3) 

" Oa i Oa' < 

k=l OUk -- 

< M(k)Vq-Z(p), i =  1,2 ..... n 
ko, ,=, IlOPk II 

i = 1, 2,..., n 

there exists v(k) > 0 such that (1.4) 
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• ~-~ Oa~(X,u,P),w,~j 
i,j=l h,k=l ~Pk 

for each ~ = (~' 1~2 [...1~,) ~ R,N and for each (X,u,p) ~ A with Ilul[ ~ k. 

In the work [4] it had been examined the local differentiability with 
respect to the spatial derivatives of the solutions 

u~Lq(-T,O,H"q(~,~N))nC°'~(Q,~N), q>_2, 0 < 2 < 1  (1.5) 

to the system (1.1), proving that, under the assumptions of monotony and 
non linearity q > 2, for each cube B(cr) = B(x°,cr) c c ~  and Va ~ (0,T) it 
results 

uELq(-a,O, HJ+°'q(B(o-),RN)), V0 ~ / 0 , 2  / 

and this result is analogous to that which I had obtained in [3] under the 
assumptions of non linearity q = 2, under the boundedness conditions for 

the derivatives oa__L and of strong ellipticity. Op,  
In the paper [5] I had considered again the problem of differentiability, 

under assumptions of monotony and non linearity l < q < 2 ,  always 
achieving results of the same type. 

The aim of this paper is to obtain for the solutions (1.5) of the system 
(1.1), under the assumptions (1.2), (1.3), (1.4) and of non linearity q > 2, the 
result of 

u ~ L2(-a,O, H2(B(cr),RN)) n H' (-a,O, L2(B(cr),]~u)) 

for each cube B(cr) -- B(x°,cr) c c  fl and 'Ca s (0,T), making use of the 
interpolation theory and an imbedding theorem of Gagliardo-Nirenberg type 
for functions u belonging to W I'q ~ C °'~ . 

This paper extends the result which had been obtained by Marino- 
Maugeri in [6] in the case of nonlinearity q = 2 and it is analogous to the 
regularity result which had been obtained by Campanato in [2] for elliptic 
systems with nonlinearity q > 2. 
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2. S O M E  N O T A T I O N S  A N D  P R E L I M I N A R Y  R E S U L T S  

In this section we list a few lemmas that will be needed in the sequel of  
the work and which are already well known in the mathematical literature. 

Let B(cr) = B(x°,cr), (x  ° e ~",cr > 0) a cube of ~" defined by 

B(cr)={xe]R": lx  i - x  °l<cr, i=1 ..... 2}. 

u:B(cr)x(-T,O)--->]R u, ( T > 0 )  and If 
v e (0,1), I h i< (1 - z')cr, then we define 

Vi.hu(X ) = U(X + hal,t) - u(X), i = 1,2,..., n 

where {e s }s=l ..... is the standard base of IR". 

Lemma 2.1. I f  u ~ Lq(-b , -p ,  Hl'q(B(o-),ll~u)), q > 1, 

Vve(0,1)  and V[h[< (1 - r ) c r  

f 7  ~L<,o) ~<, u~ ~x < ~ j~ f ;  ~L<o, ii°~ii ~ ~, 

See for instance [l], Cap. I, Lemma 3.VI. 

L e m m a  2.2. / f  veLP(-a,O,U'(B(2cr),l~N)), a, c r>0 ,  
there exists M > 0 such that 

dt dx <[ h M, V l h i < a , i = l , 2 , . . . , n .  
a (a) 

then v • L"(-a,O, HI '" (B(G) ,RU))  and 

f0 £ ii~ ir dt v dx < M, i = l,2,. . . ,n. 
(o) 

The proof is the same of  Theorem 3.X in [1]. 

L e m m a  2.3. Let N be positive integer and ~ a cube o f  ~" . I f  

u e H'÷°'q(~,~ N) n C°'~ (~,]R u) 

X = (x,t) e B(r~) × ( -T,0) ,  

O< p < b ,  then 

i = 1,2,...,n. 

l < p < + ~ ,  and 
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with l < r < o o ,  0 < 0 < 1  and 0<2 ,<1 ,  then ueW~'P(g),]R u) and there 

exists a constant c (depending on f), O, 2, n, a, q )  such that." 

< a I -a  

IluL.o - cllull,+o.~.o Ilull:.,,o.R~>, 

where 

1 l(llO 1 - ~-a + - ( l - a )  2--, V a ~  - 
p n q n 1 ~-,1. 

In particular, i f  1 - A < 0 < 1, for  a = l 2 we get 

u e W ' , " ( ~ , R  N) 

and there exists a constant c (depending on f~,O,A,n,a,q ) such that 

- I lu l l : ,o~ , ,  cllulLo~,o 
2q 2 (0 + 2 - 1) 

where p = 2q + n - q(O + 2 - 1) (> 2q) 

See [6] Theorem 2.2 for m = 1, r = q, s = 0,  j = 1. 

. D I F F E R E N T I A B I L I T Y  O F  T H E  S O L U T I O N S  T O  
T H E  S Y S T E M  (1.1)  

Let ueLq(-T,O,H~'q(f2,1Ru))nC°'X(Q, IRN), 0 < 2 < 1 ,  q > 2 ,  be a 
solution to the system (1.1) and let us suppose that the assumptions (1.2), 
(1.3) and (1.4) are fulfilled; in what follows we shall set 

k=suPllu[[, U : [ u ] a . Q :  sup []u(X)-u(Y)[[ 
q. x,r~q.,x~r d a ( X , Y )  

where d ( X ,  Y) is the parabolic metric 
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Now we show the following 

T h e o r e m  3.1. I f  ueLq(-T,O, HJ'q(f2,RN))nC°'X(Q, II~N), 0 < A < I ,  q> 2, 
is a solution to the system (1.1), if  the assumptions (1.2), (1.3) and (1.4) 
hold, then, VB(3cr) = B(x°,3cr) c c  f2 , Va, b e (O,T), a < b, it results." 

u e L2(-a,O, H2(B(cr),NN))nH'(-a,O, LZ(B(cr),NN)) (3.1) 

and the following estimate holds: 

fo  2 I u I2,~(o) + dt <_ 
- a  

(3.2) 

{+r } <_ c(u, k, U, A, a, q, a, b, n) 1 I u 11 q,(.~.) dt 
J - b  

Proof .  Fixed B ( 3 o ' ) = B ( x ° , 3 G ) c c ~ ,  a, be(O,T) ,  with a < b ,  let 

~(x) e Co(R" ) be a real function which has the following properties: 

0<g<l, g=linB(cr), p':0inN"\B(2cr), IIDg[I_< c.  (3.3) 
O- 

Let p , , ( t ) ,  with m integer > 2/a, be a function defined on I1~ by this way 

p , . ( t )  = 

0 

t+b 

b - a  

-(mt  + 1) 

- 2  if  - a < t <  I 
m 

-1 
if  t >  I or t<b  

m 

if - b < t  < - a  

- 2  -1  if  I < t < I  
m m 

(3.4) 

Finally let {9.,(0} be a sequence of  symmetric mollifying functions 
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9,(t) E Co~(R), g,(t) >_ O, 

supp 9~ C [ - 1 , 1 ]  

J g,(t)dt = 1 

g , ( t ) : g , ( - t )  

(3.5) 

Having fixed i integer, 1 _< i < n ,  and h such that [ h 1< min 1, , if  we set 

a+b 2 
b * -  , let us assume in (1.1), for each m > -  and for each 

2 a 

s > m a x { m , ~ _ b } ,  

~o : r,_ h {~/Zpm[(Pmrl,hU ) * 9~]}. 

Then we get 

f~  ~ ('r,,haJ(X,u, Du)[D~{¢2p.~[(p.ju~u)* 9~]})dX = 

: gs]}') dX + 

I T~,_,,{~b pm[(PmT<hU) 

(3.6) 

Furthermore 

r,,ha j (X ,u (X) ,  Du(X)) = 

= fo 1 -ff~aJ(x + TIhe',t,u(X)+ rrQ,,u(X),Du(X)+ rlzi.,,Du(X))dr I = 

N ~~j n N 

--h--aaJ+ Z (~, ~ (  x ))=-+~a Z Z  (~, ~D,~ (X)) __a~J 
axi k=, °uk ,=, k=l ' ap~ 

(3.7) 

where, if b = b(X,u,p) is a vector of  ~N, for the sake of  simplicity let us 
set 
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b(x) = fo x b(x + h~Te~,t,u(X) + 71T,.,~u(X),Du(X ) + 7lT~.hDu(X) )d7 I. (3.8) 

Therefore, from (3.6) we obtain that: 

fQ ¢2p m (T,,hDru~(X)) I(p,,z,,hD~u)*gs d X =  
.~,T=I k=l [ Pk 

= - 2  ¢Pm (T,.,,Druk(X))--~p,~lDjO[(P,,'r,,,,u)* 9s] d X -  

L ~ + ¢ p,,('r,.,,ul(p,,'r,.,,u)*g,)dX + 

+ fo ( BO(X'u'Du)Ir''-'{¢2p''[(p'5-~''u) * 9s]})dX 

(3.9) 

taking into account that 

Dj {~/2p., [(p,.v,.hu ) . 9.,]} = ~z 2P,. [(P.,V,.hDju) * 9.,.] + 2~p,.Dj~[(Pmr,,hu) * 9.,-] 

and that, by symmetry of  the 9.,.(t) 

fo ( T~''̀ uI¢'~p''[(p"~T~'hu) * g~]')dX = O. 

And so, from (3.9), taking the limit for s ~ +oo, we obtain that: 

A L22~N/ = ¢ P,, ~ (7,,,D,.uk(X)) I~-,,,,Dj~ d X =  
, j,r=l k=l  ( ' o P k  

f o  2 05 j - - - 2  Cp,,,~-]~ ~ (~-~.,,D,.u~(X))--v[D£~-,.hu d X -  
j,~=l k=l OPk 

I -L ~ ~ (~,,~') °~l~(~p,~ ,~) ~ -  
j,r=l k=l  OUk 

(3.10) 
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- h  .= [-~x, DJ(¢2P']"r''u) dX + 

fQ 2 d X +  + ~b p,,p,,, Ti,hU 2 

BOX D 2 2 

= B + C + D + E + F .  

By the assumption (1.4) and from Lemma 2.VI of [2], the integral in the left- 
hand side can be estimated in the following way 

A >_ u(k)f_b:/m dt L 22 (1 + IIDulr) ~ d x  >_ (2~1 ¢ Pm r~,hDu 2 

(3.11) 

>_ uC(K,q) f_:i/'dtL(2~)2~2fl2,, T,.hDU 2 (1 + HDu]] + Ti,h D u  )q-zdx 

On the other hand from (3.8) and by the assumption (1.3) it follows that 

N . a~j 
Z Z ~ -< M(k)(1 +llv.II + ~,,, Du )u-2 
k=l r=l ~Pk 

(3.12) 

a~J + ~ a~ < M(~)(I+IID~II + ~,,~ vul)~-'. (3.13) 

Then, we obtain that 

r . - l / m  p IBl<c(k,q,~r,n)J_b" dtJ,(~l Cp,],(l+lloull+ ~-,,,, Ou y,-2 ~_,,~ ~-,,,Du dX 

< c(k,q,G,n) -,/m~. dtf,(~)W~p~,(1 +llD~l[ + ~,,,, Du )q-2 r~,hDu 2 d x  • 

• 

and from this inequality it follows, Ve > 0, that 



Solutions of  Nonlinear Second Order Parabolic System 383 

C f - l / m  2 IBl_<~.,_b. dt f,(~o) ¢2p~(x +llD,ull+ "ri,,, Du )q-2 ,ri,,,Du[ dx + 

(3.14) 
. O - 1 / m  2 

+c(k,q,a,n,e)J_b" dt f,,(~) (1 +IID~I[+ ru, Du )q "ru, u dx 

Analogously, we have 

I C I< c(k,q,~,n)f£i 'm dt£mo)(1 +[[DuII + i1~-i,,, ~11)" H 

< c(k, q, or, n)f~:/m dt f~m")(1 + IIDull + i1~-,,,, De,-, ¢,,:, I1-,-,,, ~,11 II~-,,,,D,,Ir ,~ + 

+ c( k, q, d,n)f~:/m dt f,,(~o~ (1 + llDull + [['r,.,, ~[I)q-lcp~l, I1~-,,,,'¢ ~= -< 
( C-V m ~ . 

-< c(k,q,°,'~)[. L .  dtf,(2o~¢%(l+lP~ll+ '-,,,, z~ )~-2 -,-,,,z~ ax] ~ 

• [£ : ' ' d tL ( , , , )  (1 +,/~, +1~-,,,, ~"1~ ~-,,,,"' ~)'+ 
+ ~(k, q,~, n)fffmdtf~(,,,, ¢~p?,, (1 + llDul, + I1~-,,,,/~11>' II~-.,,.Ir d~. 

Then, Vc > 0 it follows: 

~ f_-Vm "ri,hDU 2 I C l <  atf.(.¢~pLO+lln~,ll+ ~-,,,, D,., ) ~< dx+ 
- -  3 -b* 

(3.15) 
-1/m 2 +c(k,q,~r,n,6)j_b" dt f , ,~ (1 +llDul l+ Tu, Du )q Tu, U dx. 

Moreover, by the assumption (1.3) and from lemma 2.I we obtain that 
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Y:? IOl<-c(k,n,q)lhl dt f~(~o) (x +llD~,ll+ ",-,,h Du ) q-'' 

• ( ¢ b .  ~, ~,.,.Dul+~(~)O~m ~,,.,, )d= < 
<_ c(k,n,q) l h I ( F :  I" dtL(2o > ~b 2p: (1 + IlDull + T,,,, Du )q-2 7,,,,Du] 2 dx) ~" 

• (f::lmdtf.(2~) ~,o~,(I +IIDulI+ r,,,, Du )qdx)½÷ 

+c(k,G,n,q) lhl _. dt f.(~o)¢p~, ~-,,,, ~dxl" 

• (f::/mdtf:(~) (1 + IlDull + % Du )qd,~) ~ql. 

Then, V~ > 0 it follows that 

[D]<cf_~i/"dtL(2=) ¢~p~(1 +[]Dun+ T,.,,Du )q-2 7_ Du 2 dx + 

+c(k ,q ,n ,s )  l h I = f~i~'~t f .( .)  (~ ÷ IID~,ll)~ax ÷ 

÷c( k, q, n,o-)[h [~(fb:/m dt L(3,,) (1 ÷ ][Du]]) q dx )~. 

( ,~- q,,, 
"[c(q)J_ b. dtL(3~) (I+IIDulD qdx) <_ 

_ < atf~(~.o) ¢~p~( l+ l lDu l l+  "T,,hDU) q-2 "r,,,,Du2dx+ 

+~(k, ,., n, z, ~) I h I ~ f f fm dtf,~(,~.)(1 + IIDdl)~dx. 

(3.16) 

Moreover we have 

IEI f Q Ti,h "u 2 = ~bpmPm dx < 

b' (2o) ~ P"P"' IID~II~ d~ _ 

< Ihl~ f [ °dt f ,  ( l+l lDull)~d~ 
- b - a  v (2~) 

(3.17) 

taking into account that 
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p f. 

-2 1 
_<0 if - - _ < t _ < - - -  

m m 

1 = 0  if  t<-b or t > _ - - -  or -a<t<_---  
m 

1 
_ < - -  if - b < t < - a  

b - a  

2 
m 

By the assumption (1.2), moreover  we have 

IF I < - fQ B°(X,u, Du) T,_,,(¢~p~,T,,,,U) cIX <_ 

(3.18) 

< c(k,q)f_~)/'ndtL(~)(1 + IlDu]lZ) ~ "r,_,,(~b2T~.h u ) d x .  

From (3.10)-(3.18), with e = v 6  in (3.14), (3.15), (3.16), it follows, for each 

{;} integer i ,  1 _< i _< n ,  and for each I h I< min 1, 

Du < 
2 

+ 

(3.19) 
p - 1/m 2 

dt (1 + l lDu l l+  Ti,hDu )qdx + +c(k,a,q,n,u)J_ b. 

IIDdl ) ",-,,-,,(¢ 

Let us consider now the last integral that appears at the right hand side of  
(3.19). From Theorem 3.III of  [4] (with o- 0 = 3o-,a = b* ) we deduce that 

and 

0 q 

b* I D u  Io,q,B(~a) d t  <_ 

(3.21) 
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<_ c(u,k,U,O,A, cr, q,a,b,n)£°b dt f,,~3~ I (1 + IID~,ll;d~ 

the assumption u eC°'a(O,~N),  it results for a.e. 

u(x,t) e Ht+°'q ( B(5cr),I~N ) ~ C°'a ( B(5cr),~u ), 

From Lemma 2.3 (with f2=B(-~cr) and 0 = 1 - - ~ )  
t e ( -b ' , 0 )  

u(x,t) e w' ' (~ ,~  ~) 

we get 

and 

for a.e. 

2 q  

Ilull, 2q.,_~o~-< 
q 

< c(k,U,A,cr, n){X+ l u I~.q.B,~, + I Du I,q,q,B,k~, }" 

(3.25) 

and 

IlulL,~,_~ -< c(~, ~,  n>llull2_~,q,~,~, Ilullco~,~,~,,~~, (3.23) 

Now, since p > 2q ,  we obtain 

W"P ( B(5o'),~N ) c W"2q ( B(5cr), ]~ u) 

and this is an algebraic and topological inclusion; from which by (3.22) and 
(3.23), * I it follows for a.e. t e ( - b  ,--~) that 

u(x,t) e Wl"Zq ( B(5cr),RN ) (3.24) 
2 

2qZA 
where p = 2q + - -  (3.22) 

2n - 2 q  
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This estimate holds in particular for a.e. t e ( -b* , -± ]  ' for such t therefore \ m] '  

we obtain, Ve > 0 

c(k)fB(~o ) (1 + IID~II2) ~ ~_,_,~(¢2 _ ,,~) dx _ 

r,,_h(¢ T,,,~U) dx c(a)f,(~o)Jh (1 +llDull2)qdx < 
- -  ( ~ o )  

- [r,,_h(¢r,,hu) dx+c(k,c)  lh (l+llDull2)qdx< 
- 2 @~) (~o) - 

+c(,~,¢)f,~(,,o)¢ ~ ~-,,,,u 2 0 + IID~,II + ~-,,,, D~ )qd~ + 
2q +c(k,a,~) l h 12 {1 +ll?.Z]il,2q,B,~a) } . 

_ v it follows that From this, for c - 7,  

c(k)fB(~ ) (l+llDull2) ~ ~_,,(¢2 u) dx < 
/2 2 

<-- --4 fB(2,~) ~b2 ri'hDU (j" +]lDull + Ti'h Dul)q-2dx + 

+ 4 ~ , ~ ) f , ( ~ )  ¢" ~-,,~ u2 (1 + iin~ll + ~-,,,~ Du )qdx + 

2q I h t 2 {1 

and, from which, by multiplicating both members for p2 and by integrating 

with respect to t in ( - b * , - ~ )  we deduce 
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_ b' f - ~  2 2 <Xj_~. dt f,(=o) ¢21ri,,,Du p,.(1 + l lDdl+ r i , , ,Du ) q-2dx + 

(3.26) 

f_:i+' f ~,,,u 2(1 + ]]OuH + T~,,, Du )q dX + 

-± 2q dx } dt. +~(,~, k, u, ~, o, n) I h I ~ f~:" {1 + Ilull,,~q,.(~o) 

Let us consider the penultimate integral that appears at the right hand side of 
(3.26) and (3.19). Using the H61der inequality and thanks to Lemma 2.I and 
the (3.25), we have, for a.e. t e (-b*,0), that z 

f~(2~,) (I + IIDdl + ",,.~ Du )q Ti,,, u 2 dx <_ 
q n Cq(O~A I) 

Du ~Pdxl [ F "r -I1,,.,,,{0.,~ ,, -< (2o1 (1 +llDull+ ~ ] [J,(~o) ~,';all dx <_ 

12 [ Du ] "+''t4" " dx <_ < c(q) 1 + (~o) ]]Dull" dx I h (~o) 

<_ c(q,a,O,n,A) 

< c(n,q, mO,;9 

< c(n,q,A,O,a) 

h 12 {z+ I q+' _ 

h I ~ {1 + Ilull~ q ' < ,,,/~(~o) J - 

h 12 {l+lu '~,q,,(~o) +lDu I~-~,q,,(~)} 

from which, by integrating with respect to t in (-b*,0) we have 

£~. dt fB0o) (1 + IIDdl + ~-,,,, Du )q T,.h U 2 dx < 

(3.27) 

_< c(q,a,n,O,A,k,U,a,b) [ h 1'2 {1 + f~° v[I u I~.q,,,(~) + [ Du ]~ ~_2,q.u~o(, )l]dt]j 

From (3.19), (3.25), (3.26), (3.27) and (3.21) (for 0 =  1--~) we deduce, for 
each integer i, l < i < n ,  and for each Ihl<min{1,ff}, taking the limit as 

2 4n 2p .÷q(~-~_j) - ~ -  < p s i n c e  2 < p - q 
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m --* oo, we get 

/2 0 2 -4c(k,q)fdtf,(~) ]~-i,,,Du ( l + l I D d l +  ~,,, D~ ;-~d~ < 
(3.28) 

< c(q,a,n,u,A,k,U,a,b) l h l z {1+  f~_b l u lL,,3o, dt} 

and then, Vh such that I h l< min{1,~-} we have 

f~: dtL(~) "ri,h Du 2 dx < 

(3.29) 

q, a, n, u, A, k, U, a,b) l h 12{1 + f : : l u  I~,,,,,,,o, d t} <_ c( 

The estimate (3.29) is trivial if min {1,~-} < h < cr and then (3.29) will be true 
for each integer i ,  1 < i < n and for each I h ]< or. 
From (3.29) and by lemma 2.2 we have that 

Ou e L 2 (-a,0,  H ''z (B(cr), ~u  )) (3.30) 

and then 

u e L2(-a,O, H2(B(o-),~N)) (3.31) 

and moreover 

l u 12,~(~) dt <_ c(,,k,U, cr, a,b,q,n) 1 + l u I~,q,B(3a) dt (3.32) 
a b 

It remains to show that u e H~(-a,O, L2(B(cr),RN)) and that the relative 
estimate holds. From (3.25) it follows, for a.e. t e (-a ,0)  

L,o, -< c(k,U,A,a,n){l+ ] u I~,o,,,(~,.) + I Du I~--f,q,.(~,.)} 

i = 1,2,...,n, from which and from (3.21), by integrating with respect to t in 
( -a ,0)  we deduce: 
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Diu eL2q(B(cr)×(-a,O),NN), i=l,2,...,n. 

f£: dtf~(,,)UDull 2q dx<_ c(v,k,U,A,a,n,a,b){1 + ff~lu I~,q,~(ao)dr} (3.33) 

Now, by assumption (1.2) 

B°(X,u, Du) <_ M(k,q)(1 +lIDff) 

and then, from (3.33) we deduce that 

B ° (X, u, Du) e L 2 (B(o-)  x ( - a ,  0), ]R n ) (3 .34)  

and 

f~ dtL~ ' ~o(x,u, Du~ ~x ~_ c(k,q~f~ ~tL,~, (l+,Du,2~)~x (335~ 

On the other hand, by assumption (1.3) we have that: 

Did(Y,u, Du ) ~ LZ(B(cr)x (--a,O),~N), i = 1,2 ..... n (3.36) 

and that: 

f) L .~ ~/~,~,~/~ dt ~ dx <_ 
a (~) i=1 

(3.37) 

~, [1 +llDull 2q ~ D 2 ] dx. 
i,j=l 

Now, taking into account that u is a solution in Q (and then in 
B(cr)×(-a,0)) of the system (1.1), we deduce that, for each 
~o ~ Co (B(cO× (-a,0),~ N) 
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from which, by (3.34) and (3.36), it results that 

3au ~ L2(B(o-)×(_a,O),~ N) 
at 

and from (3.35), (3.37) it follows that 

f;~ dtL(~) OU 2dx < 
Ot 

~ C(k,n)ffO a dtfB(a)[1 + I]Dul] 2q "~- i,j=| ~ Di'ju2 dx 

and then, by (3.32), (3.33) we deduce that 

2 
f ooe r Ou < 

a,(~) IlOtll - 

<_ c(v, k, U,,X, or, a, b, n) 1 + b I u I~,,,,~(~) dt 

Finally we deduce (3.1) and (3.2) from (3.31), (3.32), (3.38), (3.39) 3 
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(3.38) 

(3.39) 
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A N  O P T I M I Z A T I O N  P R O B L E M  W I T H  A N  
E Q U I L I B R I U M  C O N S T R A I N T  IN U R B A N  
T R A N S P O R T  

P. Fer ra r i  
University School of Engineering of Pisa Pisa, Italy 

Abstract: The paper presents a study of transport in urban areas served by a public 
transport system, as well as by private vehicles on which road pricing is 
imposed. It is supposed that the road pricing fare, the ticket price and the 
frequency of the lines of public transport are established by the Public 
Administration in such a way that the surplus of users of both the transport 
modes is maximised, under the conditions that the system is in equilibrium, the 
budget constraint of the company managing public transport is satisfied, and 
the private transport demand does not exceed a given threshold for 
environmental reasons. The theoretical model that has been devised leads to a 
problem of nonlinear programming, with an equilibrium constraint formulated 
as a fixed point problem. From an application of the model to an urban area it 
emerges that, if the proceeds of road pricing are used for financing public 
transport, the results of road pricing essentially depend on the proportion of 
demand that is captive to public transport, and on the level of congestion 
existing on the urban road network before the imposition of road pricing. 

Key words: Nonlinear programming. Equilibrium constraint. Road pricing. Urban 
transport. 

1. INTRODUCTION. 

Consider (fig. 1) a pair (i, k) of nodes connected by a road. The transport 
d e m a n d  x f rom i to k is cons t i t u t ed  b y  p r iva te  cars ,  and  is a func t ion  o f  
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transport cost y. x(y) is the demand function, and y(x) is the inverse 
demand function, c(x) is the cost function of the road connecting i and k, 
which furnishes the cost borne by each driver as a function of  traffic volume 
x on the road. The abscissa Y of  the intersection S of  y(x) and c(x) is the 
equilibrium demand. The benefit that users obtain from the transport system 
at equilibrium is measured by their surplus, that is the area under the curve 
y(x) and above the horizontal US. The demand J that maximizes the user 
surplus is less than E, and it is the abscissa of  the intersection R of y(x) 
and C(x), the marginal cost function, which furnishes the derivative of  the 
total cost borne by users with respect to x, as a function of  x. The system 
does not reach .~ spontaneously, because it is not an equilibrium demand; 
but it can be transformed into the latter if an additional cost RT is imposed, 
as road pricing, on drivers travelling the road, so that the surplus is given by 
the area above the horizontal VT. In this way the optimal social welfare is 
reached, but at the cost of  a transfer of  money from road users to society as a 
whole, which is measured by the area VTRZ in fig. 1. A similar situation 
takes place if one imposes road pricing in order to reduce the demand below 
the equilibrium value, so that the environmental damages due to traffic 
remain within acceptable limits. Even in this case there is an increase in 
social welfare, due to the reduction of  traffic pollution, but at expense of  
drivers who have to pay the amount of  road pricing. 

y,c,C y(x) ?" 

C(X) 

Z 

© 
k 

Fig. 1 - The impact of road pricing on users' welfare 
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These results, illustrated with reference to a very simple example, are 
common to all road networks traveled by private cars, and show that road 
pricing increases the welfare of society as a whole, but reduces the welfare 
of road users (see e.g. Ferrari, 1999; Hearn and Ramana, 1998; Hearn and 
Yildirim, 2000). 

However urban transport systems are constituted in general by two 
modes of transport, private vehicles and public transport. Moreover transport 
demand is formed in part by people who have a private vehicle at their 
disposal, and thus are free to choose between the two modes of transport; 
and in part by people who are captive to public transport: these may be city 
dwellers, and/or visitors arriving by train, coach or plane. Thus it is possible 
to use the revenue from road pricing for increased funding to public 
transport, thereby decreasing the cost borne by its users. Such reductions can 
be obtained, in part, by improving the quality of service, for instance by 
increasing the frequency of buses, which will reduce waiting times at bus 
stops, and, in part, by lowering fares. 

Were road pricing proceeds used in this way, it would important to know 
if there are situations in which road pricing imposition could give rise, not 
only to an increase in social welfare, but even to an increase in welfare of 
urban transport users, that is to a reduction of the overall transport cost borne 
by the users of both the transport modes, inclusive of the road pricing cost. 

The evaluation of the impact of road pricing on urban transport cost, 
when its revenue is used for financing public transport, is the purpose of this 
paper. It is supposed that the road pricing fare, the ticket price and the 
frequency of the lines of public transport are established by the Public 
Administration in such a way that the surplus of users of both transport 
modes, inclusive of the cost of road pricing, is maximized, under the 
conditions that the system is in equilibrium, the budget constraint of the 
company managing public transport is satisfied, and the private transport 
demand does not exceed a threshold suitable to maintain congestion and 
pollution due to traffic within acceptable limits. The theoretical model that 
has been used leads to a problem of nonlinear programming, with an 
equilibrium constraint which is formulated as a fixed point problem. 

The paper is organized as follows. Section 2 presents a model of urban 
transport devised with the specific purpose of answering the questions posed 
in the paper. Section 3 deals with a method for solving the problem 
formulated in the model, which is applied to an urban area, considering 
various combinations of factors on which the functioning of urban transport 
depends. The results so obtained are discussed in Section 4. Some final 
considerations are advanced in Section 5. 
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. A M O D E L  O F  U R B A N  T R A N S P O R T  S Y S T E M .  

Let us consider a square urban area, with sides of  length b, served by two 
means of  transport, private automobiles and city buses. Let A be the potential 
demand for transport, that is, the mean number of  trips that would be made 
between various points in the area over the course of  a day if transport costs 
were nil, or in any event, were perceived as such by users. A is the sum of  
two terms, A I and A 2 . A 1 is the potential demand of those who do not have 
a private auto at their disposal, and who are therefore captive to public 
transport. A 2 is the potential demand of those who instead do have a private 
vehicle, and are therefore free to choose between the two alternative means 
of  transport. 

The actual demand, that is the average number of trips that actually are 
made during a day, is a function of  the transport costs perceived by users in 
each of  the two categories: 

d l =  Al exp(-Ti Yi) d2 = A2 exp(-T2 Y2 ) (1) 

where d n and d 2 are respectively the daily transport demands of captive 
and free users, YI the mean cost of  a journey to captive users, Y2 the 
inclusive cost I of  the two means of  transport as perceived by free users, and 
T 1 and T 2 are two parameters determining the elasticity of demand, which 
is equal to T l YI and T 2 Y2 respectively. 

From (1) we derive the expressions for the inverse functions of  demand: 

YI = - 1 In dl  Y2 - 1 In d2 (2) 
TI AI T2 A2 

while the user surplus, which measures the benefits to the entire set of  
potential users from the supply of transport in the area when actual demand 
takes on the values d I and d2, is: 

P p dl d~ 
s = + t 5( )dx- = + 

, .10 
(3) 

We assume that journeys are distributed unifornaly throughout the area, 
and that the arrangement of  the bus lines is represented by the square grid in 
fig. 2, proposed by Holroyd, 1965, where a is the distance between the bus 
lines, and v the bus frequency, which is equal for all lines. This grid is the 

i The inclusive cost (Domencich and McFadden, 1975,p. 75) is the opposite in sign of the 
average of the maximum utility values attributed by users to the two means of transport. 
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optimal network among all rectangular configurations of linear routes for a 
uniform distribution of origins and destinations (Newell 1979). 

L a L  

Fig. 2 - A square grid o f  linear bus routes 

Let G be the average cost incurred by the company managing public 
transport per unit distance travelled by a bus. The number of lines is 2 b / a ,  
and the distance travelled by a bus during a return journey is 2b, by which, 
i fH  is the daily duration of service, the cost to the firm per day is: 

C = 4 b 2  HG v (4) 
a 

The public service company defrays this cost by utilising the proceeds 
from the bus ticket price, the road pricing and the per diem external funding 
TR received from the Public Administration. Let X 1 and X 2 be the ticket 
price and the road pricing paid on average for each journey by users of 
public transport and by private motorists, respectively. If d I is the number 
of daily journeys made by captive users and d 2 those made by free users, of 
which d2 b by bus, in order for the bus company to balance its budget, it must 
hold that: 
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Substituting (4) into (5), we obtain the following expression for the 
frequency that satisfies the company's budget: 

4 b2 H G  
a 

(6) 

The cost of a journey on each of the two means of transport as perceived 
by users is a random variable distributed around a central value that we 
assume to be a linear combination of the average attributes of the two 
transport means. Expressing the cost in monetary terms, the coefficients of 
this linear combination represent the mean monetary value of each unit 
attribute. 

If  buses arrive stops at regular intervals, while passengers arrive 
randomly, the mean waiting time at a bus stop is w-- 1/(2v). Let pa 
and pb be the average walking distance covered for each trip by users 
of  private and public transport, respectively. We assume pb to be 
equal to the mean distance from the journey's point of  departure to the 
bus stop plus the average distance from the arrival bus stop to 
destination: p 6 = a / 2 . 

Having assumed that travel destinations, independently of  their 
origins, are uniformly distributed throughout the area, it is easy to 
verify that the mean trip length is equal to 2b/3 (Newell, 1979). This 
is assumed to be equal (with a good degree of  approximation) to the 
average distance travelled aboard a vehicle by both users of  public 
transport and private motorists. 

The burden of transfer from one bus line to another is generally perceived 
by users as an increase r in riding time of between 5 and 10 minutes 
(Newell, 1979). Given V, the mean velocity of a bus, the cost of transferring 
is equal to an increase o f t .  V in the length of bus trip. 

Let G I be the mean monetary value of a unit of waiting time, G 2 that of 
a unit distance travelled on foot, G 3 that of a unit distance travelled aboard a 
bus, exclusive of ticket price, and G 4 that of a unit distance travelled in a 
private auto, including both travel time and vehicle operating costs. 

G 3 and G 4 depend on the level of congestion of the road network, 
because congestion increases the journey times and causes stress and 
discomfort to users. By denoting d~ = d z - d2 b the daily demand by private 
car, we assume: 
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G 3 = G o l + a  
( d . ) f l  

G4= G ' l +  aL-~-- ~ (7) 

where a ,  f l ,  K are parameters that depend on the geometric and operating 
characteristics of  the road network, G a and G b are the mean monetary 
values of a unit distance travelled in a private auto and in a bus respectively, 
in free flow conditions. Thus the mean cost of  a journey via private transport 
is: 

2 
C a = G2P a + ~G4b + X 2 (8) 

As we have assumed that trips from an any origin are equally distributed 
in all directions, if the distances travelled are large in comparison to that 
separating the bus lines, only a small proportion of bus riders will have their 
points of  departure and destination near the same bus line. It can therefore be 
assumed that all bus users will need to change lines during a trip (Newell, 
1979), and must therefore sustain the cost of  two waiting periods w, beyond 
that of  the transfer. The mean cost of a journey by public transport is 
therefore: 

C b Gl G2a 
= v + ~  + G3 + G b r g  + y l  (9) 

Since YI = Cb , from (1) we can derive the expression for the demand of 
captive users: 

d~ = AI exp ( -  T~ C b ) (10) 

Under the assumption that the utilities of a journey on each of  the two 
means of  transport are independent Weibull variables, with unit parameter 

a b • • • and averages - C  and - C  , respectively, the mclus~ve cost of  the two 
means of  transport is: 

Y2 = - l n [ e x p ( - C a )  + e x p ( - C b ) ]  (11) 

whence the expression for free users' demand: 
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d 2 : A 2 exp(T 2 ln [exp( -C" )  + e x p ( - C  b )~ = A 2 [exp(-C o) + exp(_C b )IT2 
(12) 

while the mean number  d2 b of  free users that utilise public transport is: 

d2 b = d 2 e x p ( - C b )  - d2 (13) 
e x p ( - C  a ) + e x p ( - C  b ) 1 + exp(C b - C ° ) 

where C a a}ad b C are ~txpressed by (8) and (9), respectwely. 
Let d = t d , , d 2 , d b 2 )  be the vector of demand, and X : ( X , , X 2 )  t , the 

vector of ticket price and of road pricing. The components of the ri§ht-hand 
sides of expressions (10), (12), (13) are functions of C a and C . Thus, 
given parameters, T l and T 2 of the demand functions (1), the amount of 
funding TR, and the coefficients in the expressions for C ° and C b , by 
means of (6), (8), (9), the right hand sides of expressions (10), (12), (13) are 
functions o f d  and X. Thus we have: 

d 1 = qs I (d,  X )  

d 2 = kIJ 2 (d,  X )  

= % ( d , X )  

(14) 

Now, let t P ( a , x ) = [ t P l ( d , X ) , t P 2 ( a , x ) , t P 3 ( d , X ) ] t .  The 
equilibrium demand vector that respects the budget constra_int of the 
company that manages the public transport, for each X is vector d for which 
it holds that: 

d = ,e(d ,  x )  (15) 

that is, the fixed point of function W(d,  X ) .  Since, as we will see in the 
next Section, the fixed point of W(d,  X )  in the set of feasible d is unique, 
e._quati_on (15) implicitly defines the demand vector d as a function of X: 
d = d ( X ) .  

We assume that X I and X 2 are established by the Public 
Administration so as to maximize surplus S of users of both the transport 
modes, under the constraints that the system is in equilibrium, that the 
budget constraint of the company managing public transport is satisfied, and 
that the demand d~ = d 2 - d ~ '  for private transport does not exceed a 
preset threshold level CP in order to respect the physical and environmental 
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d 1 andX, is denoted by d2(d I ,X) .  Function 
~/1 (dl) : dl -- LIJ1 Ldl, d2 (dl, X) ,d~ b (dl,4(dl,X),X),X~ 

is almost linear and has a unique nil point in the_interval [0, .41 ]" this point, 
which is a function of  X, is the component d t ( X  ) of the equilibrium 
demand vector. Taking account of  these results, d I (X)  has been computed 
for each X by applying, in the interval [0, ,41 ], the bisection method to 
function ~ , ( d , ) ,  in which d2(di ,X ) has'been'computed, for each d , ,  by 
applying the bisection method, in the interval [0,,42] , to function ~ 2 ( d 2 ) ,  
in which dbE(dl,d2,X) has been computed,~r..xfor each pair (dl,dz),r,,bv 
apply ing  the bisection method to function V a ( d ~ ) i n  the interval [0,A2J. 
And, at the same time, d- 2 and ~b have been computed. 

It has been assumed that G = 4 E/km (this is the average value borne by 
the public transport companies in Italy) and that the parameters of  the 
demand function is the same for the two different user categories, 
T l = T 2 = T ,  and two values of  T ,  0.1 and 0.2, have been considered. We 
have examined the case in which all users have a private auto at their 
disposal (A 1 = 0) ,  and the case in which the captives to public transport are 
one third of  total potential demand (A I = 100,000).  It has been supposed 
that there is no external funding to public transport: TR = O. 

Setting r = 0.125 h as the increase in journey time whose associated cost 
is perceived on average by users as equivalent to a transfer between two bus 
lines, and V= 15 km/h as the mean velocity of  a bus, we have r .  V = 1.875 
km. 

We have set a = 1 and fl  = 5 in Eqs (7), while the coefficients in the 
cost functions (8) and (9) have the following values: 

G 1 = 12 E/h G 2 = 2 E/km G" = 0.35 E/km G b= 0.30 E/km (17) 

The system has been studied considering various values of  parameter K 
in Eqs. (7), thus different levels of physical capacity of  the road network, 
and the demand constraint CP has been set equal to K. Moreover we have 
considered the case in which the road network capacity is adequate to satisfy 
the demand, K = 300,000, and a constraint CP has been imposed on private 
demand in order to reduce the environmental damage due to traffic; and 
different values of  CP have been considered. 

Problem (16) has been solved for the different situations examined, and 
for each of  them we have computed the optimal values of X I and X2 ,  
surplus S, the components of the equilibrium demand vector d ,  the 
frequency v of  the bus lines, the costs YI and I"2. Some of  the results are 
synthesised in fig. 3,...,6. 
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. A N  A N A L Y S I S  OF T H E  R E S U L T S .  

Fig. 3 refers to the case when all users are free, and it shows the 
percentage variation of  user surplus with respect to the situation in which 
road pricing is absent, as a function of parameter K, thus of  the network 
physical capacity. It can be noted that road pricing produces an increase in 
user surplus, which is particularly high when demand is rather rigid (T = 
0.1), and network capacity is low, so that there would be high congestion in 
the absence of  road pricing. For all values of K we have examined, the 
optimal surplus has been reached with inactive constraint imposed on private 
demand. This means that users reach their maximum surplus when a large 
part of  them transfers to public transport, so that the portion of  demand that 
uses private cars is less than the network capacity. This transfer is a 
consequence of  the fact that road pricing imposition causes a great reduction 
of the cost of  public transport, due in part to the fact that the utilisation of 
road pricing proceeds for financing public transport makes it possible to 
increase in a substantial manner the bus frequency, in part because the 
diminution of  private transport demand causes a decrease of  congestion, 
thereby of  the journey times of  buses. 
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Fig. 3. Percentage variation of  surplus as a function of  the road network capacity when all 
users are free 
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These results of  road pricing are not substantially influenced by the 
presence of  a portion of  users captive to public transport, even if in this case 
the increases in surplus have resulted less than the values shown in fig. 3. 

Fig. 4 refers to the case in which all users are free, the road network 
capacity is adequate to satisfy the demand (K = 300,000), and a constraint 
CP on private demand is imposed in order to maintain the pollution due to 
traffic below an acceptable threshold. The figure shows the percentage 
variation of  user surplus as a function of  CP. For all values of CP less than 
250,000 the optimal surplus has been reached with active constraint on 
private demand: this means that road pricing causes a damage to users, 
which is measured by the decrease in surplus. This decrease is particularly 
high when demand is rather elastic (T = 0.2) and the constraint is strict. 
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Fig. 4. Percentage variation of surplus as a function of the constraint on private demand when 
all users are free 
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Fig. 5. Percentage variation of surplus as a function of the constraint on private demand when 
one third of potential demand is captive to public transport (T = 0.1) 

The results of  road pricing are completely different when the road 
network capacity is adequate to satisfy the demand and one third of  potential 
demand is captive to public transport, as it is shown in fig. 5 and fig. 6. They 
show, respectively for T = 0.1 and T = 0.2, the percentage variation of  
surplus as a function of  constraint CP imposed for environmental reasons. 
The variations of  surplus are reported for the entire set of  users, and 
separately for each user category. When CP is less than 200,000, the 
constraint on private demand has resulted always active, but the figures 
show that the impact of  road pricing is in general an increase in user surplus, 
more substantial when demand is rather elastic (T = 0.2). This substantial 
difference with respect to the case in which all potential demand is free, is 
due to the fact, shown in the figures, that the loss of  surplus on the part of  
free users is balanced by the increase on the part of  captive users, who 
benefit by the reduction of  cost of  public transport, financed by the road 
pricing revenue; so that the results of  road pricing are essentially a 
redistribution of  transport costs, and therefore of surplus, between the two 
categories of users. 
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Fig. 6. Percentage variation o f  surplus as a function o f  the constraint on private demand when 
one third o f  the potential  demand is captive to public transport (T = 0.2) 

. C O N C L U S I O N S .  

The impact of  road pricing on the cost of urban transport essentially 
depends on the level of  congestion which is present on the road network 
before the imposition of road pricing. If  there is high congestion, because the 
capacity of road network is inadequate to satisfy transport demand, i'oad 
pricing causes benefits to both the transport users and the environment. In 
fact it gives rise to a new equilibrium pattern of  the transport system, 
characterised by the transfer of  a substantial portion of users to public 
transport: traffic pollution decreases substantially and at the same time, as a 
consequence of  the congestion decrease, the costs of transport diminish and 
the user surplus increases. The characteristics of  this phenomenon are not 
substantially influenced by the proportion of  users that are captive to public 
transport, even if they are more marked when all users have a private auto at 
their disposal. 

The results of road pricing are substantially different when the capacity 
of  road network is adequate to satisfy transport demand, so that users do not 
bear congestion, but traffic pollution causes damages to environment. In this 
case the imposition of  road pricing in order to maintain the volume of  private 
cars, and then the pollution it produces, below a certain threshold, has 
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consequences very different according whether there is or not a substantial 
proportion of  users that are captive to public transport (one third in the 
example considered in this paper). If all the users have a private auto at their 
disposal, road pricing causes a substantial decrease in their surplus. If instead 
a portion of  users are captive to public transport, they receive an increase in 
surplus from road pricing, which balances the loss of free users, so that the 
overall surplus increases, in a more substantial manner if demand is rather 
elastic. 

Some conclusions can be drawn from the analysis carried out in this 
paper, which seem to have general validity when demand is rather uniformly 
distributed in the urban area, because they do not depend on the particular 
configuration of the road network: 
- When private transport demand causes congestion and pollution because 

the road network capacity is inadequate, the imposition of road pricing, 
and the utilisation of  its proceeds for financing public transport, produces 
not only the reduction of pollution within the preset level, but even a 
decrease in the transport costs borne by all the user categories, and thus 
an increase in their surplus, in a more substantial measure the less is the 
road network capacity, and the greater is the percentage of users that 
have a private auto at their disposal. 

- When the road network capacity is adequate to satisfy transport demand, 
and the majority of users have a private auto at their disposal, road 
pricing produces the wanted reduction of pollution, but at the same time 
causes a remarkable decrease in their surplus. Therefore in this case, 
when the Public Administration defines the constraint to impose on 
private demand, it has to balance in a correct way the advantages this 
constraint causes to environment with the social and economic damages 
it causes to the city. When instead a remarkable proportion of users is 
captive to public transport, road pricing produces an increases in surplus, 
because the damage to the free users is balanced by the benefits to the 
captive ones. 
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SHARP ESTIMATES FOR GREEN'S 
FUNCTIONS: SINGULAR CASES 

M.G. Garroni 
Dept. of Mathematics "Guido Castelnuovo ", University of Rome "La Sapienza", Rome, Italy 

0. INTRODUCTION 

The purpose of  this paper is to present a survey of  some results contained 
in a number of  papers and two books, over the years 1984-2002, concerning 
the construction and the properties of  the Green function for parabolic 
second-order operators, under different "non-regular" hypotheses. 

In this exposition, I shall consider only the parabolic operators not in 
divergence form and only boundary operators satisfying the "regular oblique 
derivative condition". Let ~ be a (bounded) open subset of  N N , N _> 2,  we 
denote by Qr the cylinder ~ x ( 0 , T ) ,  0 < T < + ~ ,  and by Y'r =0f2x[0,T]  
its lateral boundary. Consider the following parabolic problem 

"Lu(x, t) : O,u(x, t) + Au(x , t )  = f ( x , t ) ,  (x, t) ~ Qr 

Bu(x, t )  = O, (x,t) ~ Y~r 

u(x ,  O) = O, x ~ 

(0.1) 

where I 

Throughout this paper we omit the summation symbol whenever it refers to an index that 
occurs twice and we use the same symbol c or C for different constants (depending on 
prescribed sets of arguments). 
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A =_ A(x,t,Ox) = au(x,t)Ox, x, + ai(x,t)Ox, + ao(X,t), 

ao.AiA j > # A  2, V(x,t) EQr, # >0" 
B =_ B(x,t,Ox) = b,(x,t)O~, +bo(x,t ) 

bi(x,t)n~(x ) >_ u, V(x,t) E Er, u > 0 

(0.2) 

where n = (n i (x),i = 0 ..... N) is the unit outward normal vector to c3f2 at the 
point x e i ~ .  

For this type of problems the classical hypotheses are the following: 

f i) a U eC~'~(Qr) 

ii) ai,a o ~ C~'~(Qr) 

, 0 < a < l  
(0.3) 

bi,b o ~ C'+~'~(2r) (0.4) 

o~ e C 2+'. (0.5) 

It is well known (see f.i. [21] and [22]) that under these hypotheses for any 
2+a ,  +2~. 2 - -  f ~ C"4 (Qr) there exists a unique solution of problem (0.1) in C (Qr) 

and there exists a unique Green function G(x,y,t ,r)  satisfying the heat 
kernel type estimates: 

rs   rsl,xy,  ) 
1)', D~G(x,y,t,r) _ C ( t -  r)- exp - C  

t - - Z "  

D;D;G(x,y,t ,r)  - D; D;,G(x',y,t,r)l < 

<- C l x - x ' l °  ( t - r ) -~ '~ ' °exp( -Cix" -  y'2 ) 

D;D;G(x, y, t, r) - D;',D; G(x, y, t', r) _< 

< ' ~  ' ~+~'°exp( t - r  ) '  _ C ( t  - t ) ( t  - r)- - C  I x -  y 12 

2 r + s < 2  

2 r + s = 2 ,  

2 r + s = l , 2 .  

(0.6) 

Here [ x " - y l = m i n ( l x - y l , l x ' - y ] ) ,  t > t ' > r ,  the constants C are 
independent of (x,y, t ,r) .  
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We shall present three cases. In the first case, studied in [9], we replace 
the hypothesis (0.4) by 

bi,bo ~ C"4(Zr) .  (0.4") 

In the second case, studied in [5], [6] and [8], we add to L an integral 
operator I ,  called jump operator. 

In the third case the heat equation with oblique constant conditions in a 
dihedral angle (i.e. a set which is neither bounded nor regular) is studied, see 
[12], [13], [14] and [15]. 

For all these problems we construct a Green function i.e. a function such 
that, for any "convenient" function f (y ,  r ) ,  the domain potential 

u(x,t)= f o o d r  fa G(x,y,t,'r)f(y,r)dy (0.7) 

is a "strong" solution of  (0.1). One of  the questions is in what kind of  space 
we have to fix f and in what space the solution of (0.1) exists. As usually 
the Green function is constructed in the form of a sum of  two terms: the 
principal term Go(x,y,t,r ) with the highest singularity for x = y ,  t = r (of 
the heat kernel type) and an additional term G~(x,y,t,r) (in general less 
singular for x = y ,  t = r )  which presents new singularities due to non 
"regular" hypotheses. 

. P R O B L E M S  W I T H  H O L D E R  C O N T I N U O U S  
C O E F F I C I E N T S  

We study problem (0.1) when the coefficients of the boundary operator 
have a fairly low regularity (HNder-continuity only). Under these weakened 
hypotheses it is not possible to obtain the Schauder estimates with global 
HOlder norms for upper order derivatives and to expect solutions of  problem 

2 + a , 2 ~  - -  (0.1) in C (Qr)" It is necessary to introduce weighted HOlder spaces. 

For any (x,t) ~ Qr,  let p(x) be the distance of  x to c3~ and 

K ( x , t ) = { ( y , r ) e Q r / l x - y l < l p ( x ) , t - l p 2 ( x ) < r < t } .  

We define C~'~(-Or), b <g, with a non integer g,  as a set of  functions 
u(x,t) , (x,t) E Qr , with a finite norm: 
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]p(x) 2r÷s- D;r Gu 
o v b < 2 r + s < [  e] 

(b) if b>O + lu Qr' 
O, if b < O, 

~(e) + sup t o ( x )  I-b < u--K<x,,) + 
( x,t )eQr 

where <u> (e) and l ul <b) are the usual H61der seminorms and norms 
respectively in the parabolic spaces. 

The following theorem is proved: 

Theorem 1.1 Suppose that the conditions (0,2), (0.3), (04 *) and (0.5) hold. 
ct ,~. - -  

Then for every f ~ C2_~ (Qr) the problem (0.1) has a unique solution 
~ 2 + O t ,  +2~- 2 . - -  . 

u ~ C'1+,, (QT) and 

lulc ..c )<-Clfl , 

see [9] for more general results and [18] for the analogous Dirichlet elliptic 
problems. 

We also prove local Schauder estimates for the solution near the 
boundary Y~r. Finally we construct the Green function. 

The principal term Go(x,y,t,r ) is explicitely constructed, G~(x,y,t,r) is 
obtained as a solution of a parabolic problem in a Sobolev space 
W2'l (Qr), Vp ~ ( 1 , ~ ) .  Then G, can be estimated by using a convenient 

auxiliary Lp-estimate of solutions of  our problem with an exponential 
weight. 

The main result is the following: 

Theorem 1.2 (Green function) Suppose that conditions (0.2), (0.3), (0.4") 
and (0.5) hold. Then there exists a unique Green function 
G(x, y, t, r) = G O (x, y, t, r) + G t (x, y, t, r) .  G O satisfies the inequalities (0. 6) 
and G l the following ones: 
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D2G,(x ,y , t , r )  <_ C ( t -  r)-N+;-" exp l -C [ x -  y[2/,  t ~  ) s=O,1 

IG'(x'y't'r)-G'(x'y't" r)l <- C(t- t ' )"  (t'- r)-~C exp(-cl x -  y l2 I r 

IV~ G' (x' y't'r) - Vx G'(x' y't" r)l <- C(t -t')~ (t' - r '-~ exp(-c l x -  y ( I - r 

IV~G'(x'y't'r)-V~'G'(x"y't'r)l<-Clx-x'l" ( t - r ) -~exp(-c lx"-  ylZ 

where t > t' > r ,  I x" - y H x -  y I/x I x' - y I Moreover, 

IVxG,(x,y,t,r)- VxG,(x ,y , t ' , r ) l  < 

and the higher derivatives D~D~G x , 2r + s = 2,  satisfy the inequalities 

D~ D~ G~(x, y , t , r) l  < C(t - r)_~; ( pa_l ( x) v ( l _ r)~ )exp(_C [ x-t _ r y I2 ) ]'  

r $ r s ? <~ D; D~ G~ (x , y , t , r )  - D~ Dx G 1 (x ,y , t  ,r) _ 

D~D • ~ ~. , x G ~ ( x , y , t , r ) - D  ID~G,(z ,y , t , r )  <_ 

1 if Iz-xl<-~p(x). 

The use of this Green function allows one to solve different asymptotic 
problems motivated by the control theory of stochastic processes when the 
non-divergence structure of A and the fairly low regularity of the 
coefficients do not allow a Fredholm alternative approach see [2]. 
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. P R O B L E M S  WITH I N T E G R O - D I F F E R E N T I A L  

O P E R A T O R S  

Consider the case when in the problem (0,1) L is replaced by an 
integro-differential operator L -  I associated with diffusion processes with 
jumps. Some basic material on this subject can be found in the books [1] and 
[17]. 

For each x in IR N , t ~ [0,T], T < + ~ ,  a Radon measure M(x,t, dz) on 
~ u  = iRu _ {0}, such that 

fzl<,l zl~ M(x,t, dz)+ fl ~ M(x,t, dz)<_C o <+(x~, 0<_3,_<2, (2.1) 
I_>1 

determines operator I .  
We need to describe the dependency of  the variable x in the Levy kernel 

M(x,t,dz), see [5] and [6]. Suppose that there exist a G-finite measure 
space (F,.T',;rr), two Borel measurable functions j(x,t ,() and m(x,t,() 
from •Ux [0,T] x F into Ii, u and [0,oo), respectively, such that 

M(x,t, A) = fc:j(x,,.oeAi m(x,t,¢)Tr(d~), (2.2) 

for any Borel measurable subset A of 11~. u . The functions j(x,t ,() and 
m(x,t,() are called the jump size (or amplitude) and the jump density (or 
intensity), respectively. The condition (2.1) on the singularity at the origin of  
the Levy kernel M(x,t, dz) will be assumed to hold uniformly in x, so that 
for some measurable function )=(() from F into (0,oo) and some constant 
C O > 0 we have 

IJ(x,t,¢)] -< 7(~), 

fT<,~ 7(¢) "~(d¢) + 

0 <_ m(x, t, ~) -< 1, 

f7>_,l 7r(dO < Co, 

(2.3) 

where 0 _< 3' _< 2 is the order of  the Levy kernel. Actually, we may allow 
0 <_ re(x,() <_ C if we re-define the measure ~r(d().  

Thus for any smooth function ~o the integro-differential operator has the 
form 



Sharp Estimates for Green's Functions." Singular Cases 415 

IqO=/r[~(.+j(.,.,(),.)-qo]m(.,.,()Tr(d() , 0_<'), < 1 

Iqo = IF [~(" + j(' '" ' ( )")  -- qO -- j( ' , ' ,  ()V~OIK,, ' ]m(. ,. ,()Tr(d(),l _< 3' _< 2 

(2.4) 

It is convenient decompose I in such way 

I~o = for dO j ( . , . ,~). V~o(. + Oj(.,.,~))m(.,.,~)rc(d~) + 

(2.5) 

+fT>_,[~(.+j(.,.,(),.)-~]m(.,.,¢)Tr(d(); for 0 < 7 < 1  

Iqo = / 0  ~ (1 - O)dO~7<, I j(.,. ,(). V2cp( • + Oj(.,.,(),.)j(.,.,()m(. ,.,()Tr(d() + 

(2.6) 

+fT>_,[~o(.+j(.,.,¢),.)-~]m(.,.,()rr(d¢); for 1_<7_<2, 

see [6] and [8] for examples. 
In order to study this integro-differential operator as acting on Lebesgue 

(Sobolev) spaces, we will need to perform a change of  variables. Assume 
that the jump amplitude function j (x , t , ( )  is continuously differentiable in 
x for any fixed t in [0,T] and ( in F ,  and that there exists a constant 
c 0 > 0 such that for any x,x' and 0 < 0 < 1 we have 

c0 [ x - x' I<l x - x '  + O [ j ( x ,  t,  ( )  - j ( x ' ,  t ,  ( ) ]  I< c o' I x - x ' l .  (2.7) 

This implies that the change of variables X = x + O j ( x , t , ( )  is a 
diffeomorphism of  class C I in R u , for any 0 in [0,1], t in [0,T] and ( in 
F .  

The integro-differential operator is defined a priori for functions ~o(x, t) ,  
with x in t__he whole space II~ u . However, we want to consider equations on 
a domain £2 of  IR u and here we want to treat only the homogeneous oblique 
boundary condition. For this case will use a condition on the jumps only 
in ter ior  j u m p s  are a l lowed ,  i.e. 

{ i fm (x , t , ( ) ,O ,  x e D ,  t~[0,T], ( e F  

then x+Oj(x,t ,()eff~, 'v'0E[0,1]. 
(2.8) 
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Remark  2.1 Condition (2.8) is assumed for the sake of  simplicity. Actually, 
it suffices to impose conditions (2. 7) and (2.8) only for 0 = 1, plus a (locally) 
convex condition on ~ .  For a complete discussion see [6]. Much more 
complicated is the Dirichlet problem; to study this problem we have 
introduced a "convenient" localization of  the operator I ,  see section 2.3 of  
[8]. 

Problem (0.1) becomes 

(L - I)u(x, t) = f ( x ,  t), (x, t) e Qr 

Bu(x,t) = O, (x,t) e Z r 
u(x,O) = O, x e ~.  

(2.9) 

Two basic assumptions are used for the construction of the Green function. 
The first hypothesis allows us to work in Sobolev spaces and the second one 
on H61der spaces. 

Hypothesis 2.1 (L e) Let f2 be a bounded domain in RN,L, I  and B be 
operators as above satisfying (0.2), (0.3)i, (0.4"), (0.5), (2.1) . . . . .  (2.8), 
with 0 < 7 < 2 - a .  

The condition (0. 3) ii, is weakened in 

a i , a  0 e Z °°. 

Hypothesis 2.2 (C ~) Assume Hypothesis 2.1, the smoothness conditions on 
the coefficients a~, ao, bi, b o (0.3) ii, (0.4) and that there exist a measurable 
function (again denoted by j(.)) from F into (0,oo) and some constant 
Mo>O s.t. 

• • , , < - - :  , a  , ff  [l.l(x,t,O-j(x,t,OI-s(W)Elx-x I +It-t ! ]  
 lm(x,t,O-m(x',t',ol<-Mo[lX-x'l ° +lt-t ' l ' ] ,  

for any x,x',t ,t '  and ( .  
(2.10) 

Notice that these are not minimal assumptions for the existence and 
uniqueness of  solutions of  (2.9), but are sufficient to ensure the construction 
of  the Green function, as proved in [6]. 

Also in this case the Green function is sought as the sum of  two terms: a 
principal term (with the highest singularity) and an additional one. It is well 
known (see f.i. [21]) that for differential operators, the exponential factor in 
a kernel of  the heat type plays an essential role in constructing this additional 
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term and in establishing its sharp estimates. As pointed out in Chapter II of 
[6] in a simple example, estimates of the heat-kernel type cannot exist. The 
integro-differential operator propagates the classic singularity at the origin. 
Starting with the principal term equal to the Green function of the 
differential operator L we use the method of successive approximations to 
obtain the additional term corresponding to the integro-differential operator. 
This method of successive approximations involves the solution of a 
Volterra type equation. Since we cannot make use of heat-kernel type 
estimates, we are forced to identify the key properties needed to carry over 
these successive approximations. These properties have the form of 
following seminorms of the L~,L ~ , or C 2 type which will be used to 
define a decreasing family of Banach spaces. 

For any kernel T(x,t,~) with x , ~ ) , t ~ ( O , T ] , k > O  and 0 < a < l ,  we 
define 

- :+*@ 
C(qo, k) = inf{C > 0 : I qo(x,t,~) I< Ct , Vx, t, ~}, (2.11) 

K(¢p, k) = K, (% k) + K 2 (% k), (2.12) 

K,@,k) = inf{X, >_ 0: f a  I ~o(x,t,~)ld~ < X,t -'+~, Vx, t}, 

K2(~,k ) = inf{K 2 >_ 0 : f.l~(x,t,~)ldx <_ K,t -'+~, Yt,~}, 

M(qo, k,a) = M, (qo, k,a) + Mz(qo, k,a ) + M3 (~,k,a), (2.13) 

{ M,(%k,a) = inf {M, >_ O: [ qo(x,t,~)-~(x',t,~) l< M, I x -  x' l" 

xt-'+ -~- , Vx, x',t,~ }, 

X 

[ M2(~,k,a ) = inf {M 2 >_ O: ] ~(x,t,~) - qo(x,t',~) I ~ M z It - t '  [ ~ x 

x[t -'+ -~- v / - '+  ~'] ,Vx, t,t',¢}, 

{ M 3 ( % k , a ) = i n f { M  3 >0: I ~ ( x , t , ~ ) - ~ ( x , t , ( ) l ~ M ~  I ~ - ( I  ~ x 

×t-'+ ~-%Vx, t,~,¢'}, 

N(~,k,a) = N,@,k,a) + N2(%k,a ) + N3(%k,a ) + N4@,k,a), (2.14) 
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f . l ~ ( x , t , O -  ~o(x',t,£)ld~ <_ 

< Nl Ix-- x' I ° t-t+~-~,Vx, x',t}, 

f .  l ~(x, t ,O - ~o(x,t',O I d~ < Nz It - t' I 't x 

x [ t  - ' + ~  V t '- '+~],Vx, t,t'}, 

l N3(%k ,c  0 = i n f {N  3 > 0: f~ l So(x, t ,O-~(x, t ' ,~)  l dx ~ N3 I t - t' l ~ x 

xlt -'+~ v t'-'+~l,vt,,',~}, 

{ N4(~o,k,ce ) = i n f {N  4 >_ 0: fn  l ~ (x , t ,O-~(x , t , ( )  l dx <_ 

N4 I~ - ~t [. t-,+~,Vt,~,~,}, 

R(%k,c 0 = R, (%k,a)  + R2 (qo, k,c0, (2.15) 

R,(qo, k,ce) = inf {R 1 > 0: f . l ~( Z,t,~) - ~( z',t,~) i j,, ( z ,z ' )az  <_ 

< Rtrl"t-~+-~,VZ, Z',t,~ and r /> 0}, 

{ R2(qo, k,o~ ) = inf{R 2 >_ 0: f n  [ ~(x, t, Z) - ~(x, t, Z') I J, (Z, Z')dz < 

R o.- i+~ . . . .  , 0}, < 27/ t ,VX, t ,L,L andT/> 

where the change of variables Z(z) and Z'(z) are diffeomorphisms of class 
C t in R N . and the Jacobian 

J .  (Z, Z') = I det(VZ) I/~ I det(VZ') I if I Z - Z' I_< 77 and Z, Z' e ~ ,  
0 otherwise, 

where VZ, VZ' stand for the matrices of the first partial derivatives of 
Z(z) ,  Z'(z) with respect to the variable z ,  and A,v denote the minimum, 
maximum (resp.) between two real numbers. 
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Definition 2.1 (Green function spaces). Let us denote by G~ '~, k > 0 and 
0 < a < 1, the space of  all continuous functions (or kernels) defined for x,~ 
in £2 c ~N and 0 < t < T,  with values in ~ and such that the above infima 
(semi-norms) (2.11) ..... (2.15) (of order k )  are finite. Thus the maximum of  
the quantities (2.11) ..... (2.15), denoted by 

= [.]C, , 

is the norm of the Banach space ~ '~  . When a = 0 we denote by ~ ,  k > O, 
the space of all measurable functions (or kernels) ~o(x, t, ~) de fined for x, 
in f2 c ]R N and 0 < t < T, with values in ]R and such that the two infima 
(2.11) and (2.12) (of order k )  are finite, with the norm 

[']k,0 

Remark 2.2 Note that G~ '~ c ~e 4 if  g < k . 

Definition 2.2 Let us denote by ~+~"~, for i = 1, 2, the subspace of G~ "~ of 

functions qa(x,t,y,s) such that oeg~(x,t,y,s) belongs to ~k~e for g=O,...,i 

and, M2(Oe%k-e , l+oO,  N2(Oe%k-e, l+oO for g = i - 1  are finite. 

Recall that a e means the derivatives of(parabolic) order equals to g in the 
f r s t  variables, i.e. x,t. This is similar to the definition of the H6lder spaces 

Ci+,~,~. 

Remark  2.3 Notice that all the Green functions for "regular" parabolic 

differential Dirichlet or oblique problems of  second order belong to G~ +a'~ . 

Let G~, be the Green function associated with the differential operator L. 
As mentioned before, to construct the Green function G associated with the 
integro-differential operator L - I ,  we solve a Volterra equation 

either find Qz such that Q~ = QL + QL • Q/, 

or find G such that G = G L + G L • IG, 

with the relations QL = IGL and G = G L + G L • Q~, where * denotes the 
"kernel convolution". Actually, we express QI as the following series 

Q , = ~ Q , ,  Qo=QL, Q,=Qx.Q,_,n=I,2, . . . ,  (2.16) 
n=l 



420 Variational Analysis and Appls. 

Each term of  this series belongs to a Green function space of  on appropriate 
order and the convergence is in the sense of  the above Green spaces. The 
final result is the following, see pp. 335-408 of  [6]: 

Theorem 2.3 (Green function) Under Hypothesis 2.2 there exists a unique 
strong Green function G(x,y , t ,r)  for the problem (2,9)." G = G L + G l , 

1) G>O , f G(x,y,t,'r)dy<<_l, Vx, t,r, with T<t ,  

, (7, 2+"'2-~2" 2) G L ~ G~ ÷~'~ G~ ~ ~ ( 4 - ~ ^ 3 ,  

3) the Chapman-Kolmogorov equation 

G ( x , y , t , ' r ) = f  G(x,~,t,s)G(~,y,s,r)d~ Vx, y,t,'r, r < s < t ,  

is satisfied, 
4) if  a o - 0 ,  b o=-0, then 

f G(x,y , t , ' r )dy=l,  Vx, t,r, with r < t .  

R e m a r k  2.4 G L has the unique singularity for t = r and x = y ,  whereas G t 

can have infinitely many singularities of  lower order for t= r and x 
depending on the nature of the integral operator. Anyway the behavior in the 

~2+~,~ and c?,2+""~;' singular points is controlled by the norms in =2 :~(4-3,)A3 

respectively. 

Remark  2.5. Property 4) has a probabil&tic interpretation. Let 
{w(t),t>O,w(O)=x} be the diffusion process with jumps reflected at the 
boundary associated to the operators L - I and B and let P(x,t,E,O) be its 
probability o f  transition i.e. for any Borel set E 

P(x,t ,E,  O) = P{w(t) ~ E / w(O) = x, for any t > O,x ~ E}, 

then G is the transition probability density function i.e. 

P(x,t,E,O) = fE  G(x,y,t,O)dy , Vx E E ,  t > O. 

R e m a r k  2.6 I f  in the above theorem we replace the assumption (0.4) by 

(0.4*) we can still construct the Green function for 0 <_ "/<_ 1, see [5]. 

Furthermore for any function f in C~'$ (-Qr ) the classic solution given by 
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C2+0~ 2~2 - - -  - (0.7) belongs to ~,~' (Qr) (see theorem 1.1) andproperties 1), 2), 3), 4) 

still hold, see [5] and [6]. 

R e m a r k  2.7 Under Hypothesis 2.1, with 0 < "7 < 2, the problem (2. 9) has 

solutions only in the Sobolev spaces Wt~a(Qr), l < p < o o .  Under this 

hypothesis we can construct a (weak) Green function, i.e. G is such that the 

potential as (0. 7) is the unique solution of(2.9). G belongs to the space G °, 

where only the seminorms C (control in L °°) and K (control in L I) are 
involved. Moreover properties 1) ..... 4) o f  theorem 2.3 still hold. In this case 
each term of(2.16) belongs to a space o f  type ~ .  

The Green functions constructed in [5] and in [6] are the essential tools in 
many applications to linear and non linear elliptic or parabolic problems see 
[4], [7], [ 10], [ 11 ] and [ 16]. 

3. P R O B L E M S  I N  A D I H E D R A L  A N G L E  

In this case L is the heat operator. We construct the Green function of 
the oblique boundary value problem in a dihedral angle D o c IR N , with the 
opening angle 0 e (0,2z) .  We assume that 

Do = do x R N-2 = {x e I~ ~ : x ' =  ( x , , x ~ )  e do,x" = (X....,XN) e I~N-=}, 

where d o is an infinite plane sector which can be given in the polar 
coordinates r > 0,  0 < ~o < 0, where xl = rcos%x  z = rsin~o. We denote by 
F 0 and FI the faces of De: 

F 0  = ~t0 X ]I~N-2 , I~1 = "yl X ]I~ N-2 , 

where 70 = {qo = 0, r _> 0} a n d  % = {~o = 0, r _> 0} are boundary lines of  d o . 
The problem (0.1) becames 

"(i) Otu - Axu = f 

O____Eu - Ou = 0 
(iO B°u - On ~- h° 0---7 

Ou Ou 
OiO B,u - - - +  ~ = o 

On Or 
Ov) u(., o) = o 

in Do, ~ - D O × (0, T) 

in Fo, T - F o × (0, T] 

in Fla. -- F I x (0, T] 

in Do, 

(3.1) 
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where ~ is the derivative in the direction of the exterior normal to the 
boundary of D o, h o and h 1 are real numbers. 

It is well known, (see e.g. [20] and [24]) that, because of the presence of 
the angle, the solutions of such problems (also with Dirichlet or Neuman 
conditions) and regular data have, in general, pole singularities at the edge of 
the dihedral angle. 

The solution is thus considered in special wheighted Sobolev spaces 
where the weight is the distance from the vertex with an appropriate 
exponent. It is necessary to introduce two different weighted spaces: one for 
h 0 + h I > 0  and one for h 0 + h I < 0 .  Fix the real number ¢ t>0 and the 

integer k > 0 By k,~ t("~ Ho, ~ (De, r) and (De, r) we mean the closure of the set - -  " ~0,1t 

of smooth functions, defined in D o x (-oo, T) and vanishing for t < 0, near 
the vertex of the angle and for large Ix I, with respect to the norms: 

I1"11 
/ o,'j, ( o x )  

l a ]+ 2a= k- I  

+ 2  
[~[+2a=k- I  

L . . . .  
Ix' 12'̀  dx dt I x 1)', u(x,t) - D, 1)'., u(x,s) • 

i t _ s l  2 ds]2; 

Ix'P"lD D: (x,t)l 2dx 

The most obvious difference between these two spaces is that functions 
belonging to the spaces k.~ H0. ~ (do,r) vanish at the origin, while the functions 

belonging in k.~ Eo.~,(do.r) do not necessarily vanish. This fact, connected with 

the sign of h 0 +/11, becomes clear in Section 4 and 5 of the [13]. 
For k > 0 ,  the elements of the previous spaces have traces on half 

hyperplane Fo, = %, x •N-2, 3'0, = {¢P = Ot,r >-- 0} (0 t e [0,0]), belonging to 
k-i,~-¼ k-l.i-¼ Ho,~, (F~,r) and Eo,~, (F~,r) respectively, see [23] and [24] for the 
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corresponding norms. We denote H0°, '° and E°0:°/, by L2/, and we set for any 

subset A o f  D O 

2 T 
Ilull~,<.×,o~>, = fo dt f ~ lu(x,t) :l x' :" dx. 

Consider problem (3.1) with nonhomogeneous data 0~ at the boundary 
F~.r,i = 0,1. In [13] we prove the following solvability and regularity results 
under appropriate condition for It and k with respect to the aperture 0 (see 
following conditions (3.2) and (3.3)). These conditions are, as usual, 
connected with well-known Kondrat 'ev results [19]. 

Theorem 3.1 Let It > 0,/3 t = arctan h, ~ ( -~- , f f ) ,h  0 + h~ > 0 and 

0 <  l + k - i t  < ,rio +fl~ (3.2) 
0 

For arbitrary f k,~ ~+~+, Ho, u (Do, T) and O~ E Ho,lt2"2 4 K[Fi,T,, a "i = 0,1, problem 

• r k + 2 , ~ / r ~  \ 
(3.1) has a unique solution u ~ rio, , t Z)o, r) and 

I II.0. ,o0. - c Ilfll.::~,o., + E,=0 ~'11':~0. <oo,, , 

where c & a positive constant independent o f  f , O ~ and T . 

T h e o r e m  3.2 Let It > 0,fl~ : arctan h~ s ( - f f , f f ) , h  0 + h 1 _< 0 and 

~: + ,ao + E O<1+k-it< (3.3) 
0 

Then for  arbitrary f k,~ k+±~+± Lo.,(Do.r) and Oj ~ I5o,~'2 '(Do.r),i = 0,1, problem 

rk+2,sk~ :r'-, x 

(3.1) has a unique solution u ~ Lo, . (t)o,r) and 

where c is a positive constant independent o f  f , O i and T . 
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The results o f  the above theorems are essential to obtain the following 
final results. 

Take /3~ = arctan h~,i = 0,1, G(x,y,t,O) - G(x,y,t). 

T h e o r e m  3.3 (Green function) Suppose /30 +/31 > 0 [/30 +/31 < 0], there 
exists a unique Green function G(x,y,t) of  problem (3.1), i.e. a function 
such that: 

,~+,oo +,o, 1) for any O < l - / a < - ~  [ 0 < 1 - , u < - - - - 7 - -  ] and for any 
f e L2, ~ (Dot) 

u(x,t) = / ~  d r / o  " G(x,y, t- 'r) f(y,7-)dy (3.4) 

4) 

[L~" 1. is" the solution of  problem O. 1) in HZo.'l~ o.~J, 

2) G is infinitely differentiable relative to all its arguments for 
x,y,t  e Do.r I{x" =O},x~ y,t ~ O, 

3) the function x,t---> rl(lxllY[-') r / ( l l - t [ )  G(x,y,t) lies in the space 
H k + 2 , ~ ( !  3 ,~ [rk+z,*x~z2 (13 o.~ ~or ,  t-o.u ,~or)], k=0 ,1  .... foreachfixed yeDor.  

{ ;  s<+ ands>2, 
Here r 1 e C°~ (O, +oo), rl(s ) = ¼ < s < 1. 

Moreover the following estimates hold." 
For x, yeDo, t>O andany 

a = (a, ,  a2,. . .  , a  N ), 7 = (q',,q'2,..., 7u) ,  ai ,  q'i E N tO {0}, i = 1,..., N,  b E N tO {0}. 

e t~ ~ b I D~ D~D, G(x,y,t)I < - C(o~,7,b,O ) 
(j x - y I z + t )  N+I,~I+M+2a 5 

I x'l ~,~loa~. (j l y'l 
"(Ix'l+lx-yl+47" y' l+lx-yl+~ )~2(ly'l~' 

where 

J ~ o  ~' la'i-~,, 
A'(ldl)=lminlo, Tr+~+3' [ o/I-e2] ' 

~f3o+3,  >o  

if3o+3, <0 
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(I I ) :  

0 

/f  9o + ___ 0 

/f 0+9, <0 ,  

e, > 0, i = l, 2, c,C(a,'y,b,O)>O, o~ '=(a~ ,a2) ,3 , '= (3 ' l ,3 ,2 ) .  

Remark 3.1 A similar construction & done in [23]for the Green function o f  
the Neuman problem (i. e. for  h o = h I = 0). As in [23] problem (3.1) can be 
solved also in convenient weighted HOlder spaces and the solution can be 
expressed by (3.4). 

Remark 3.2 For N = 2 our estimates are analogous to the estimates 
obtained by Kozlov in a cone [20]. 
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Abstract: For a Fritz John type vector optimization problem with C °'* data we give 
scalar characterizations of its solutions applying the so called oriented distance 
and give necessary and sufficient first order optimality conditions in terms of 
the Dini derivative. While establishing the sufficiency, we introduce new type 
of efficient points referred to as isolated minimizers of first order. We show 
that the obtained necessary conditions are necessary for weak efficiency, and 
the sufficient conditions are sufficient and under Kuhn-Tucker type constraint 
qualification also necessary for a point to be an isolated minimizer of first 
order. 

Key words: Vector optimization, Nonsmooth optimization, C °'~ functions, Dini 
derivatives, First-order optimality conditions, Lagrange multipliers. 
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. INTRODUCTION 

In this  p a p e r  w e  c o n s i d e r  the  v e c t o r  o p t i m i z a t i o n  p r o b l e m  

m i n c f ( x ) ,  g ( x ) ~ - K ,  (1) 
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where f : IR" - +  II~ m , g : N" ~ R p . Here n, m and p are positive integers, 
K c 11~ p is a closed convex cone and we assume that a partial ordering on 
II~ m is induced by a cone C which we assume to be closed, convex and 
pointed. 

Problem (1) generalizes from scalar to vector optimization the Fritz John 
problem [ 10]. 

There are different type of  solutions of problem (1). Usually the solutions 
are called points of  efficiency. We prefer, as in scalar optimization, to call 
them minimizers. In Section 2 we define different type of minimizers and 
give their scalar characterizations applying the so called oriented distance. 

We assume that the functions f a n d  g are C °'l , that i s f a n d  g are locally 
Lipschitz. The purpose of  the paper is to give necessary and sufficient first- 
order optimality conditions in terms of  Dini directional derivatives. For this 
purpose we introduce new type of  efficient points referred to as isolated 
minimizers of  first order. We show that the necessary conditions are 
necessary for weakly efficiency, and the sufficient conditions are sufficient 
and under Kuhn-Tucker type constraint qualification also necessary for a 
point to be an isolated minimizer of first order. 

We confine to functions f g defined on the whole space IK". Usually in 
optimization functions on open subsets are considered, but such a more 
general assumption does not introduce new features in the problem. 

The present paper is a part of  a project, whose aim is to establish first and 
higher-order optimality conditions for C k'~ vector optimization problems in 
terms of  Dini derivatives. Recall that a vector function is said to be of class 
C k'~ if it is k-times Fr6chet differentiable with locally Lipschitz k-th 
derivative. The functions from the class C °'l are the locally Lipschitz ones. 
The C I'l functions in optimization and second-order optimality conditions 
have been introduced in Hiriart-Urruty, Strodiot, Hien Nguen [7]. Thereafter 
Klatte, Tammer [11], Yang, Jeyakumar [20], Yang [21] and others have 
studied various aspects of  C I'l functions. For Taylor expansion formula and 
other properties of  C k'l functions with arbitrary k see Luc [14]. Dini 
derivatives and second-order necessary and sufficient conditions for C ~'~ 
Fritz John type vector optimization problems have been considered by Liu, 
Neittaanmfiki, Kfi~ek [13]. While they work with polyhedral cones and the 
sufficiency concerns Pareto efficiency, in [4] applying new tools, namely, 
isolated minimizers of  second order and the oriented distance, for the case of  
unconstrained problems we succeeded to improve this result. The result in 
[4] is related to an arbitrary closed convex ordering cone, the sufficient 
conditions are sufficient, and moreover necessary, the reference point to be 
an isolated minimizer of  second order, a stronger notion of  efficiency than 
the notion of  a Pareto efficient point. In [4] also a comparison with 
Guerraggio, Luc [6] has been done from which it is seen that the results 
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based on Dini derivatives are stronger than those based on Clarke 
derivatives. 

The present paper studies the first-order case, as a step toward 
generalization to constrained problems of  the results from [4]. First-order 
optimality conditions in vector optimization are known, see e.g. Amahroq, 
Taa [1], Ciligot-Travain [3], Pappalardo, Stocklin [18] and the references 
therein. Nevertheless, the obtained here first-order conditions for C °'~ 
functions in terms of  Dini derivatives present new features. 

In Section 2 we introduce different concepts of  optimality and their 
scalarization. In Section 3 we prove our main result. In Section 4 we apply it 
to prove some relation of the isolated minimizers of  first order and the 
properly efficient points. 

. C O N C E P T S  O F  O P T I M A L I T Y  A N D  S C A L A R  
C H A R A C T E R I Z A T I O N S  

We denote the unit sphere and the open unit ball in II~ n respectively by 
S = {x e R,  ilx] I = 1} and B = {x E IR" I]x]l < 1}. For the norm and the scalar 

product in the considered finite-dimensional spaces we write ]l" ]l and (.,.). 
From the context it should be clear to exactly which spaces these notations 
are applied. 

Let us consider problem (1). The point x is said to be feasible when 
g ( x ) e - K  (equivalently x ~ g - l ( - K ) ) .  There are different concepts of 
solutions for problem (1). In any case a solution x ° should be a feasible 
point, which is assumed in the following definitions. 

The feasible point x ° is said to be a weakly efficient (efficient) point, if 
there is a neighbourhood U of  x °, such that if x e U ~ g - ~ ( - K )  then 

f ( x )  - f ( x  °) ~ - int  C (respectively f ( x )  - f ( x  °) ~ -(C \ {0}) ). The 
feasible point x ° is said to be properly efficient if there exists a closed 
convex cone C c IR", such that C \ {0} c i n t  C and x ° is weakly efficient 

point with respect to C (that is x ° is weakly efficient for the problem 
m i n e f ( x ) ,  g(x) ~ - K  ). In this paper the weakly efficient, the efficient and 
the properly efficient points for problem (I) are called respectively w- 
minimizers, e-minimizers and p-minimizers. Finally, we call x ° a strong e- 
minimizer, if there is a neighbourhood U of  x °, such that 
f ( x ) -  f ( x  °) ~ - C  for x ~ ( U \  {x°} )~g- I ( -K)  . Obviously, each strong 
e-minimizer is e-minimizer. 

The unconstrained problem 
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mincf(x) (2) 

should be considered as a particular case of  problem (1). 
We recall that each p-minimizer is e-minimizer and each e-minimizer is 

w-minimizer. 
For the cone M c R  k its positive polar cone M' is defined by 

M' = { (  ell~ k ( ( , ~ b ) > 0 f o r a l l C e M } .  The cone M' is closed and convex. 
It is well known that M" :=(M') '  = c l c o n v M ,  see e.g. Rockafellar [19] 
(here conv A denotes the convex hull of  the set A). In particular, when M is a 
closed convex cone we have M ' = { ( e ~  k ( ( ,  ¢) > 0 for all ~b e M} and 
M=M" = {~be R k II(,o]l_ 0 for all ( e M ' } .  

The linear span of  the cone M c I~ k , that is the smallest subspace of ]Rk 
containing M, is denoted L M . The positive polar cone of  M related to the 
linear span of  M is 

M'LM = {~" e L  M [((,~b) > 0 for all Ce  M} = M' ~ L  M . 

The relative interior r iM of  M is defined as the interior of  M with 

respect to the relative topology of the linear span L M c 11~ k of  M, that is 
r i m  = intLM M .  

When Mis a closed convex cone, then we have 

M : {~be Lu ((,~b) > 0 for all ( e M'~.M } , 

r i M :  {~beL u (£',~b) > 0 for all ( eM'LM }. 

We recall that for every nonempty convex set A ___ ~k,  we have 
riA ~ O .  

If  ~ e - c l c o n v M ,  then ~ ( , ¢ ) < 0  for all ¢ ' e M '  We set ~ - -  - - / - -  * 

M'(qk)={feM" ((,~b)=0}. Then M'(~b) is a closed convex cone and 
M'(qk) c M'. Consequently its positive polar cone M(0 )=  (M'(~b))' is a 
closed convex cone, M c M(~) and its positive polar cone satisfies 
(M(¢~))' = M'(~b). In this paper we apply this notation for M = K and 
~k = g(x°). Then we write for short K'(x °) instead of  K'(g(x°)) (and call 
this cone the index set of  problem (1) at x °) and K(x °) instead of  
K(g(x°)). We find this abbreviation convenient and not ambiguous, since 
further this is the unique case, in which we make use of the cones M'(qk) 
and M(~b). 

For  the  c l o s e d  c o n v e x  cone  M' we app ly  in the  seque l  the  
n o t a t i o n s  F ~  = e M I1 '11--1  and 
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The sets r M and 

FM.nL,, are  c o m p a c t ,  s ince  t h e y  are c l o s e d  and b o u n d e d .  

Further we make use of  the orthogonal projection. Let L c IR k be a given 
subspace of IRk. The orthogonal projection is a linear function rc L : IRk __, L 

and (( ,~b- ~r.3b)=0, that is ((,~b) = ((,rOLe) for all 
easily from the Cauchy inequality that 

if L4: {0} and IkLIl=o if L =  {0} (here S denotes 

determined by ~rL¢ ~ L 
( ~ L .  It follows 
il~r,.[I := max,os I!n~L~l[).l 
the unit sphere 

A relation of  the vector optimization problem (1) to some scalar 
optimization problem can be obtained in terms of  positive polar cones. 

Proposition 1. Let ( p ( x ) : m a x l ( ~ , f ( x ) - f ( x ° ) ) ~ C ' , l l ~ l [ = l } .  The 
feasible point x ° E IR" is a- - t , - - -  - - -  - , -  ..-,, J w _ m i n i m i z e r f o r p r o b l e m  (1), if  and only if x ° is 
a minimizer for the scalarproblem 

min (p(x), g ( x ) e - K .  (3) 

Proof  1 ° Let int C = 0 .  Then each feasible point x ° is a w-minimizer. At 
the same time C is contained in some hyperplane H =  {z eiRm @0,z) =0} 
with ~o e IR", ~o = 1. Then both ~0 e C' and _~0 e C', whence 

(,o(x) >_ max (@°,/(x) - f(x°)),-@°,f(x) - f(x°))) = 

= I ( : ,s<x>- s<:>> i>_o: 

which shows that each feasible point x ° is a minimizer of the corresponding 
scalar problem (3). 

2 °. Let intC ~ O .  Suppose x ° is a w-minimizer of problem (1). Let Ube  the 
neighbourhood from the definition of  a w-minimizer and fix 
x ~ U n g-J ( - K ) .  Then f ( x )  - f ( x  °) ~ -int C :/: 0 .  From the well known 
Separation Theorem there exists ~:x  IRo, Ilcxl=l, such that 
(~x , f ( x ) - f ( x ° ) )_>O a n d ( ~ , - y x . ) ( ) _ = -  ~X,y <0 f J a l t  y ~ C .  The latter 
inequality shows that ( e C  and the former one shows that 

x > x x ! - f ( x  ° >0  x ° Thus x > x ° x ~ U  ( , o ( ) _ @  , f (  ) )_  = ( , o ( ) .  ~o( ) _ ~ o ( ) ,  n g - ' ( - K ) ,  
and therefore x is a minimizer of  the scalar problem (3). 

Let now x ° be a minimizer of  the scalar problem (3). Choose the 
neighbourhood U of  x °, such that ~o(x)>(p(x °) for all x e U ~ g - ~ ( - K )  
and fix one such x. Then there exists ~x e C', ~x =1,  such that 
~o(x)=@~,f(x)-f(x°))>_~o(x°)=O (here we use the compactness of the 
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set {4 c'11411=1}). From 4 x e C '  it follows ( 4 X , - y ) < 0  for y e i n t C .  
Therefore f (x ) - f (x°)¢- in tC and consequently x ° is a w-minimizer of  
problem (1). r l 

If i n tC=  O ,  then each feasible point x ° of  problem (1) is w-minimizer. 
For this case the concept of  a relatively weakly efficient point (rw- 
minimizer) turns to be reacher in content. We use in the sequel the concept 
of  rw-minimizer instead of  w-minimizer in some of the results for the case 
when int C = O .  Let us say in advance that if int C @ 0 the concepts of  rw- 
minimizer and w-minimizer coincide. 

In order to define a rw-minimizer we consider the problem 

m i n c f ( x ) ,  g ( x ) ~ - K ,  (4) 

where f = ~rLc o f and g = rcL, o g .  Then we call the feasible point x ° (i.e. 

g(x°)~-K) a rw-minimizer for problem (1), if there exists a 

neighbourhood U of  x ° such that f ( x ) -  f ( x  °) ~ -ri  C for 

x e U ~ - i ( - K ) .  The following proposition characterizes the rw- 
minimizers. 

Proposition 2. 

Let lti(x)=max{@,f(x)-f(x°))~C'Lc =C' Lc, ll411=l}. The feasible 

point x ° is a rw-minimizer for problem (1), if  and only if x ° is a minimizer 
for the scalar problem 

min g(x),  g(x)~-K. (5) 

we have @,i(x)- f (x°))=@,l(x)- l (x°)) .  

Let x ° be a minimizer of  problem (5). Then there exists a neighbourhood 
U o f  x ° , such that !//(x) >_ Io,(x °) for x ~ U c~ o~-*(-K). Fix one such x. From 

the definition of  Ip, and the compactness of  Fc. Lc, there exists 40 e Fc.L¢ 

such that to,(x)=@°,y(x)-7(x°))>fs(x°)=O, whence 

f ( x ) - f ( x  °) ~ -r i  C and consequently x ° is a rw-minimizer. 
Conversely, let x ° be a rw-minimizer and let U be the neighbourhood 

from the definition of  the rw-minimizer. Fix x~Ung-J(-K). Since 
f(x) - f (x  °) ~ -r i  C 4: 0 ,  there exists 4 ° ~ Fc. Lc, such that 
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~ ° , ? ( x ) - ? ( x ° ) ) _ >  0. Then q/(x)>_(¢°,?(x)-?(x°))>_O=qJ(x°)=O. 
herefore x ° is a minimizer of problem (5~. 

We see that the proof of Proposition 2 repeats in some sense the proof of  
Proposition 1, and is even simpler, since riC in Proposition 2, being an 
analogue of  int C from Proposition 1, is never empty. While the phase space 
in Proposition 1 is R m , in Proposition 2 it is L c . 

After Proposition 2 the following definitions look natural. We call the 
feasible point x ° a relatively efficient point for problem (1), for short re- 
minimizer, (relatively properly efficient point, for short rp-minimizer) if x ° 
is an efficient (properly efficient) point for problem (4). 

We call x ° a strong re-minimizer, if there is a neighbourhood U of  x ° , 
such that 7 ( x ) - 7 ( x ° ) ~ - C  for x e ( U \ { x ° } ) n - ~ - ~ ( - K ) .  Obviously, 
each strong re-minimizer is e-minimizer. The following characterization of 
the strong e-minimizers (strong re-minimizers) holds. The proof is omitted, 
since it nearly repeats the one from Proposition 1 (Proposition 2). 

Proposition 3. The feasible point x ° is a strong e-minimizer (strong re- 
minimizer) of  problem (1) with C and K closed convex cones, if and only if 
x ° is a strong minimizer of problem (3) (problem (5)). 

Proposition 1 claims that the statement x ° is a w-minimizer o f  problem 
(1) is equivalent to the statement x ° is a minimizer o f  the scalar problem 
(3). Applying some first or second-order sufficient optimality conditions to 
check the latter, we usually get more, namely that x ° is an isolated 
minimizer respectively o f  first and second order o f  (3). Recall, that the 
feasible point x ° is said to be an isolated minimizer of  order x (z¢ positive) 
of  problem (3) if there is a constant A > 0  such that 

> 0 All °~ -' ~o(x) _ ~o(x ) + x - x for all x ~ U ~ g ( - K ) .  The concept of  an 
/ I  

isolated minimizer has been popularized by Auslender [2]. 
It is natural to introduce the following concept of  optimality for the 

vector problem (1): 

Definition 1. We say that the feasible point x ° is an isolated minimizer of  
order z¢ for vector problem (1) if it is an isolated minimizer of  order ic for 
scalar problem (3). 

Obviously, also a "relative" variant of  an isolated minimizer, and as well 
for other type of  efficient points, does exist. From here on we skip such 
definitions. 

To interpret geometrically the property that x ° is a minimizer of problem 
(1) of  certain type we introduce the so called oriented distance. Given a set 
A c R k , then the distance from y E R k to A is given by 
d(y,A) = i n f { l [ a -  yl[ a ~ A}. The oriented distance from y to A is defined by 
D(y,A)  = d ( y , A ) - d ( y , ~ k \  A). The function D is introduced in Hiriart- 
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Urmty [8,9] and is used later in Ciligot-Travain [3], Amahroq, Taa [I], 
Miglierina [16], Miglierina, Molho [17]. Zaffaroni [22] gives different 
notions of efficiency and uses the function D for their scalarization and 
comparison. Ginchev, Hoffmann [5] use the oriented distance to study 
approximation of set-valued functions by single-valued ones and in case of a 
convex set A show the representation 
D(y, A) = s ~ p , , ~ , = ~  (info., (5, a )  - (5, y)) . From this representation, if C is a 
convex cone and taking into account 

we get easily D(y,-C) = suPyl=l,iEc . ( (5 ,  y)). In particular the function p in 

(3) is expressed by cg(x) = D( f (x) - f (xO),- C) . Propositions 1 and 3 are 
easily reformulated in terms of the oriented distance, namely: 

x0 w- minimizer e D(f (x) - f (xO 1, -0 1 0 

for X E U  ng-I(-K), 

x0 strong e - minimizer e D ( f  ( 4  - f (xO), -C) > 0 

for X E ( U \  {xO})ng-'(-K). 

The definition of the isolated minimizers gives 

x0 isolated minimizer of order K a [ ~ ( f  (x) - f(xO),-(3 2 A I I X  - xOlr , 

We see, that the isolated minimizers (of a positive order) are strong e- 
minimizers. There is a relation between the p-minimizers and the 
isolated minimizers of first order, which for the unconstrained case is 
illustrated in the next proposition. 

Proposition 4. Let in problem (2)fbe Lipschitz in a neighbourhood of x0 
and let x0 be an isolated minimizer of first order. Then x0 is p-minimizer of 
the unconstrained problem (2). 
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Proof  Assume in the contrary, that x ° is isolated minimizer of  first order, 
but not p-minimizer. L e t f b e  Lipschitz with constant L in x ° + rclB.  Take 
sequences 6 k ~ +0 and ~k ~ +0 and define the cones 
~k=cone{yeRmlD(y,C)<ek,llYl[=l} (here coneA denotes the cone 
generated by the set A). It holds int Ck ~ C \ {0}. From our assumption, 
there exists a sequence of  points x k e ( x  °+fikB), such that 
f ( x  k ) - f ( x  °) e - i n t d k ,  and in particular f ( x  k ) - f ( x  °) ~ O. From the 
definition of  t~k we get 

D ( f ( x  k ) -  f ( x ° ) , -C)<-q  f ( x  k ) -  f ( x  °) <_3 k Lx k - x  ° , 

which contradicts to x ° isolated minimizer of  first order. [] 

Developing second-order optimality conditions for C I'1 functions, we 
meet with isolated minimizers of  second order. Though this trend is not 
developped in the present paper, let us mention that then the property x ° 
isolated minimizer of  second order can be considered as some refinement of  
the property x ° is p-minimizer, compare with Ginchev, Guerraggio, Rocca 
[4]. 

Let C be a closed convex pointed cone with int C ~ G .  Then its positive 
polar C' is a pointed closed convex cone. Recall that the set E is a base for 
C', if g is convex with 0 ~ E  and C' = c o n e E : = { y l y = g ~ , A > _ 0 , ~ e E } .  
The property C' pointed closed convex cone in N m implies that C' 
possesses a compact base E and 

(6) 

Further we assume that E 0 is a compact set with "~ = convE 0 . With the help 

of  E o we define the function ~Oo(X)=max{@,f (x) - f (x°) )~eEo/  and 
x 

consider the problem 

min(o0(x ), g(x) ~ - K .  (7) 

Proposition 5. Let "~ be a base of  C' satisfying (6), ~o be the function in (3) 
and 

¢,a (x)=  max{@, f ( x )  - f (x°))}  ~ e E}. 

Then a (p(x) < (Pz (x) <_ t3 (,o(x). 
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Proof I f  ~ e r c .  = {~ e ll~" ~ ~ C,ll ll = 1}, then there exists 2'¢ > 0 ,  such that 
2 ~ 4 e E .  In fact, 2'~ = 2 ' ~ ,  whence from inequality (6) we have 

= 7< 
f i x  x ~ ~ . f r o m  me compactness o f  F c. there exists ~x ~ Fc ' , such that 

1 X , 

whence aqg(x)<x~oz(x). For the other inequality, from the compactness o f  
E there exists r/ e E ,  such that ~oz(x ) = ( r l x , f ( x ) - f ( x ° ) ~ .  Put 2 = 2 /, ,. 
Then ~ / ~x ii~xl 

Proposition 6. Propositions 1 and 3, and Definition 1 remain true, if  in their 
formulation problem (3) is replaced by problem (7). 

Proof We show first, that ~P0(x)= ~pz(x), where ~oz(x ) is the function from 
Proposition 5. 

The inequality ~Oo(X ) < ~oz(x) follows directly from E o c E .  To prove 

the converse inequality, fix x and let ~oz.(x)=(~x,f(x) - f ( x ° ) ) ,  ~ e "z. Let 

~x be the convex combination ~ 2, j ~J - = ~-"j j ~ ,  where ~ ~0,  ~-~J 2,J = 1, 

2,j > 0. Then 

J J 

A consequence o f  the proved equality and Proposition 5 is the inequality 
a ~o(x)< ~o o (x)<_ fl~o(x). In order to prove the proposition, we have to show 
that x ° is a (strong) minimizer o f  problem (3) if and only if it is a (strong) 
minimizer of  (7). Assume x ° is a minimizer of  (3) so that qg(x)> ~o(x °) for 
x ~ U n g-i ( - K ) .  Then ~o 0 (x) > ~z ~o(x) > a ~o(x °) = 0 = ~o o (x), whence x ° is 
a minimizer o f  (7). Conversely, if  x ° is a minimizer o f  (7), then 
~o(x) > -~Oo(X ) _> ~o0(x  °) = 0 = cp(x°). The same proof  applies to strong 
minimizers. 
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Corol lary 1. In the important case C = 1~ + (and suitable choice of  E)  the 
function ~o o in (7) transforms into 

m ax(Z(x)- (8) 

Proof  Clearly, C' =R+" has a base E = c o n v E 0 ,  where E o ={e I ..... e"} are 
the unit vectors on the coordinate axes. With this set we get immediately that 
the function q~0 in (7) transforms into that in (8). !] 

More generally, the cone C is said to be polyhedral, if C' = coneE 0 with 
some finite set of  nonzero vectors E 0 = {~,...,~k}. In this case, similarly to 
Corollary 1 the function q~0 in (7) transforms into the maximum of the finite 
number of  functions 

max(C,Z(x)- Z(x°)). 

. F I R S T - O R D E R  C O N D I T I O N S  F O R  C °'l P R O B L E M S  

In this section we investigate problem (1) under the assumption tha t fand 
g are C °'t functions. We obtain optimality conditions in terms of  the first- 
order Dini directional derivative. 

Given a C °'~ function ~ :R" _.)~k we define the Dini directional 
derivative (we use to say just Dini derivative) ~'u(x °) of  • at x ° in 
direction u ~ ~" as the set of  the cluster points of  (1/t)(O(x ° + t u ) - ~ ( x ° ) )  
as t --~ +0, that is as the Kuratowski limit 

di)'u(x )=Lt_,+ ° o i m s u p l ( o ( x °  t + tu ) -~ (x° ) ) "  

If • is Fr6chet differentiable at x ° then the Dini derivative is a 
singleton, coincides with the usual directional derivative and can be 
expressed in terms of  the Fr6chet derivative ~ ' (x  °) (called sometimes the 
Jacobian of  • at x ° ) by 

O'u(x°) = l i m l ( o ( x  ° +tu) -C) (x° ) )=O ' (x°)u. 
t-)+O l 
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In connection with problem (1) we deal with the Dini directional 
derivative of  the function qb : ~" ~ 11~ m+p , ~ ( x )  = ( f ( x ) ,  g(x)) and then we 
use to write O ' ( x ° ) = ( f ( x ° ) , g ( x ° ) ) ' , .  If  at least one of the derivatives 
f~ (x  °) and g' (x °) is a singleton, then ( f ( x° ) ,g (x° ) ) '  =( f~(x°) ,g '  (x°)).  

Let us turn attention that always ( f ( x ° ) , g ( x ° ) ) '  c f~(x°)×gi , (x° ) ,  but in 
general these two sets do not coincide. 

In the following B denotes the open unit ball in II~". 

L e m m a  1. Let • : ~" --~ R k be Lipschitz with constant L in x ° + r c l B ,  
where x ° e R" and r > O . Then for  u, v e ~" and 0 < t < r/ ma×(llull,llvll) it 
holds 

~(*(x ° + rv) -* (x° ) ) -~ (~(x  ° + tu)-*(x°))  -< LIIv- ull, (9) 

ln particular for  v : 0  and 0 < t < r/llull we get 

~( *(x ° + tu) -*cx°) ) -~ Lllull. (10) 

Proof  The left hand side of (9) is obviously transformed and estimated by 

~( . (x  ° +tv>-~(x ° +t~>) -< LIIv-~ II. 

U 

Lemma 2. Let ~ : ~ "  __+~k be Lipschitz with constant L in x ° + r c l B ,  
where x ° e ~" and r > O. Then ~'~ (x °), u e ~" ,  is non-empty compact set, 
bounded obY sup{ll~llO~m;(x°)}_<Lllull. For each u, v e ~ "  and 
qk. e * ' . ( x  ), there exists apoint  e e* ' v ( x  ), such that Ile-~ll. ~-Lllv-ull. 
Consequently, the set-valued function u --+ 0',, (x °) is Lipschitz with constant 
L (and hence continuous) with respect to the Hausdorffdistance in R k . 

Proof The closedness of  qb'u(x °) follows from the definition of  the Dini 
derivative. Estimation (10)shows that ~ ' ( x  °) is not empty and ][~b [l< L[lu[[ 
for each ~b, e ~ ' . (x°) .  Let ~. = l imk(1/tk)(~(X ° + tku ) -- ~(X°)).  Passing to a 

0 0 subsequence we may assume that qkv=limk(1/tk)(~(x +tkv)-Cb(x  )) (to 
make this conclusion we use also the boundedness expressed in (10)). A 
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passing to a limit in (9) gives II  - ,,ll_<LIIv-ull. Now the Lipschitz 
property of  the set-valued function u --> qb' ( x )  becomes obvious. Lq 

If x ° is a feasible point for problem (I), then g(x °) ~ - K ,  which gives 
(q,g(x°)3<_O for all q ~ K ' .  Recall that the index set is defined by 
~' (x°)=l{q~K" (q,g(x°))=O} and that we put K(x°)=(K'(x°) )  '. Then 
K (x °) is the pdsitive polar cone of the cone K(x°) ,  and K c K(x °) (the 
latter follows from K' (x °) c K' ). 

Lemma 3. Let f g be C °J functions and consider problem (1). I f  x ° is a w- 
0 0 ' minimizer and(y °, z ° ) ~ ( f ( x  ), g(x )),, then (yO, z o ) ~ -(int  C x int K(x ° )). 

Proof. Suppose that (y°,z°) ~ (f(x°),g(x°))',, 
(y0, z 0) ~ - int  (C x K(x  °)) = -(int C x int K(x  °)). Let 

and 

1 _  1 .  
yO = lim--" ( f ( x  ° + tku > - f(x°>),  z ° = l i m ± ( g ( x  ° + tku)-  g(x°>). (11) 

k tk k tk 

Without loss of  generality, we may assume that 0 < t  k < r/llull for all k and 
that f and g are Lipschitz with constant L in x ° + r c lB.  

We show now that there exists k 0, such that g(x°+ tku ) ~ - i n t K  c - K  

for k > k  o, that is, x ° +tku is feasible for k > k  o. Recall the notation 

r K and The sets F K, and 

FK.~xO ) are compact as being closed and bounded sets in an Euclidean space. 

Let ~ F K . .  We show that there exists a positive integer k(~) and a 
neighbourhood V(~-) of  ~- in F K. , such that (q,g(x°+tku))<O for 
k > k(~) and q ~ V(O-). 

1 °. Let 0"~Fg,~xO ). From our assumption, we have ( ~ , z ° ) < - 6 < 0  for 

some 6 = 6(~) > 0. Then 

l i m l ( 0 - , g ( x  ° + tku)-  g(x°))= (0-,z°) < 0, 
k tk  

whence there exists k(0"), such that for all k > k(0-) it holds 

Let (~ ,g(x  ° + tku)) < - c  < 0 for some c = c(~)  > 0. Then 
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<-~  + I1'~- ~-I1( g(  x° + t , u ) - g ( x ° )  + [g( x° ) ) 

II( llll [) , l -<-~+ll~-~- Lr u + g (x  °) < - ~ + - e = - - ~ < 0  
2 2 

as far as II,~-~ll < g(2(Lrllull+ g(x °) )) (which determines V(0-)). 

2 0 . Let ~ F ~ \ F K , ( x o  ). We have @ , g ( x ° ) ) < - e < 0  for 
e = e(g)  > 0. Then 

some 

< - ~  + g (x  ° + t~u)- g(x °) + I1~- ~-II [g(x °) 
1 1 1 

< - ~  + Ltk.u..+H.-.~," " " .. ,,_ _,, g ~ x  ° " < - ~  + - , -  + - ~  = - - ~  <0  
3 3 3 

as far as t k < d(3 L[lul[) (we choose k(0-) in a way that this inequality holds 
for k > k(0-) ) and. lit/- ~-II < c/(3 Ix(x°)[]) (which determines V(0-) ). 

Since F r, Is compact, we can find r/i .... , r L e F  K, such that 
F . c V ( 0 . ) u  uV(0-  ) Let k0=max(k(0-~)u u k ( g , ) ) F o r  k > k  0 we 

K " ' "  s . . . .  , "  ' , 

have (rl, g ( x °+ tku ) )<O for all r / e F  K. (and hence for all r / e g  ). This 
shows that g(x  ° +tk'u ) ~ - i n t K  ~ - K ,  in other words the points x ° +tku for 
k > k 0 are feasible. 

According to the made assumption yO e - int  C. Since 
y0 = limk (1/t k ) ( f  (x o + tku) _ f (x o)), we see that 
f ( x  ° + t k u ) - f ( x  °) ~ - i n t C  for all sufficiently large k .  This fact, together 
with x ° + lkU feasible, contradicts the assumption that x ° is a w-minimizer. 

The following constraint qualification appears in the Sufficient 
Conditions part of  Theorem 1. 

Qo,,(x°): If g ( x ° ) ~ - K  and l ( g ( x  ° +tku°)-g(x°))---> z ° e - K ( x  °) 
tk 

then 3u k ---> u ° : 3k  o ~ N" V k > k o : g ( x  ° + t~u k) e - K .  

The next theorem is our main result. 

T h e o r e m  1. F i r s t -order  c o n d i t i o n s  Let f ,  g be C °'~ functions and consider 
problem (1). 



First Order Conditions for  C °'1 Constrained Vector Optimization 441 

(Necessary Conditions) Let x ° be a w-minimizer o f  problem (1). Then for  
each u S : {v R" I IIvll: 1 / t h e f o l l o w i n g  condition is satisfied: 

V(y° ,z  °) e ( f (x°) ,g(x°)) '  u : 3(~°,r/°) e C 'x  K ' :  

N'°"" (~° , r / ° )¢(0 ,0) ,  ( r / ° , g ( x ° ) ) = 0  and @° ,y° )+( r / ° , z ° )_>0 .  

(Sufficient Conditions)Let x° s II~" and suppose that for  each u ~ S the 
following condition is satisfied." 

V(y° ,z  °) e ( f (x° ) ,g (x° ) ) '  : 3(4°,r/°) e C 'x  K ' :  
fro.," (~o,r/o)4:(O,O) ' (r /O,g(xO))=0 and @ ° , y ° ) + ( r / ° , z ° ) > 0 .  

Then x ° is an isolated minimizer o f  first order for  problem (1). 
Conversely, i f  x ° is an isolated minimizer o f  first order for  problem (1) 

and the constraint qualification Qo.~(x °) holds, then condition So. ~ is 
satisfied. 

Proof of the Necessary Conditions 
Let u ~ S  and ( y ° , z ° ) ~ ( f ( x ° ) , g ( x ° ) ) ' .  According to Lemma 3 we 

have ( y ° , z ° ) ¢ - i n t ( C x K ( x ° ) ) = - ( i n t ( C ) x i n t ( K ( x ° ) ) ) ,  whence there 
exists 

(4°,q °) e (Cx  K(x°)) ' \ {(0,0)} = C' x K' (x°) \ {(0,0)}, 

such that (~o, I./o) (yO, z o ) = (~o, yO) + (r/o, z o) > 0, which proves N' o , (let us 
0 0 0 0 0 underline that 17 ~ K' (x  ) is equivalent to 17 ~ K' and {r/ , g (x  )} " 0). kl 

Proof of the Sufficient Conditions 
Assume on the contrary, that x ° is not an isolated minimizer of  first 

order and choose a monotone decreasing sequence ~'k --> +0.  From the 
assumptions, there exist sequences t k -->+0 and u k ~ S ,  such that 
g ( x  ° + tku k) ~ - K  and 

D ( f ( x  ° t k u k) - f ( x  °) , -C) = max (~, f ( x  ° + tku k ) - f ( x  °)) < c k t k . + 
~eV c, 

We may assume that 0 < t  k < r and both f and g are Lipschitz with 
constant L in x ° + r c l B .  Passing to a subsequence, we may assume also 
that u k ---> u ° and that equalities (11) hold with u = u ° . From them we have 
(yO, z o) ~ ( f  (x o), g(x  o))'o. 
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Denote z k = (1/t k )(g(x ° + tku k ) - g(x°)) and 
z °'k = (1/t k)(g(x ° + tku °) - g ( x  °)). We show that z k ~ z ° . This follows from 
the estimation 

We show that z ° ~ - K ( x ° ) .  For this purpose we must check that (r/,z °) < 0 
for r i n K ' ( x ° ) .  We observe that x°+tku k feasible and r l ~ K ' ( x  °) give 
(rl, g (x  ° + tkuk)) < 0,  whence 

A passing to a limit gives (7/, z °)_< 0. 
In order to obtain a contradiction, we show that S'o: is not satisfied at x ° 

for u = u  ° and (y° ,z°)  as above. Denote yk =(i / t k ) ( f ( x  o +tkuk)_ f (xO))  
and yO.k =(1/ tk)( f (xO+tkuO)_f(xO)) .  We have yk __>y0, which follows 
from the estimation 

yk_yO <_+ f ( x  o + t k u k ) _ f ( x  o +tkuo)[+ yO,k_yO 

<_L u k - u  ° + yO:_yO . 
(12) 

Let ~ ~ F c, . Then 

('~,y')=~(-~,f(x ° +tkuk)- f(x°))<_lmax(~,f(x°tk ~o%,, +t, uk)- f(x°)) 
I 

< n ~k tk = G.  
tk 

Passing to a limit with k-->oo we get (~-,y°)_<0 for arbitrary ~-~Fc, .  
Therefore (~,yO~ < 0 for arbitrary ~ e C'.  The latter for ~ :/: 0 follows from 
( , fl II, ° )<o  At the same time ( , z °3<0  forall  ~K '  x ° _~ Y .-,,-,,~(~/[l~,, Y , -  ' ,q  _ . r/ . ( ) .  
Therefore for all ~ e C '  and r l e K ' ( x  °) we hav'e {~ ,y° )+(r l , , z ° )<O,  
whence the opposite strong inequality from fro: cannot have place. - F21 



First Order Conditions for  C °'1 Constrained Vector Optimization 443 

Reversal of the Sufficient Conditions Let x ° be an isolated minimizer of 
first order for problem (1), which means that g(x  °) ~ - K  and there exists 

> 0 and A > 0 such that g(x) ~ - K  and x -  x°ll _< r implies r 
II 

D ( f ( x ) -  f ( x ° ) , - C ) = m a x ( ~ , f ( x ) -  f(x°))>_A[ x - x  ° . (13) 
~eF c, 

Let u ° e S and (y°,z°) ~ ( f(x°) ,g(x°)) '  u be determined by (11) with u = u  ° . 
We may assume that 0 < t  k < r and that f and g are Lipschitz with 
constant L on x ° + r c l B .  

One of  the following two cases has place: 

1% z ° ~ - K ( x ° ) .  Then there exists r l °~K' (x° ) ,  such that ( r / ° ,z° )>0  
(obviously, the strong inequality gives r/° ¢ 0 ). Putting ~o = 0 ,  we get the 
pair (~'°,r/°) satisfying condition ffo.~. 

2 °. z ° ~ - K ( x ° ) .  Then from the constraint qualification Qo,l(x °) it 
follows g(x  ° +tku k) ~ - K  for some sequence u k --->u ° and all sufficiently 
large k .  Taking a subsequence, we may assume that this holds for all k .  
From inequality (13) we get that for every k there exists xo,k SFc, (and 
hence ~o.k ~ C' ,  ~o,k ~ 0), such that 

Putting yk = (1/t k ) ( f  (x o + tku k ) _ f (xO)) and 
yO.k =(1/tk)(f(xO+tkuO)_f(xO)),  we have yk __>yO, which follows from 
(12). Passing to the limit we can assume ~:o.k ___>40 s Fc, and we get 
( ~ ° , y ° ) > A > 0 .  Putting r / ° = 0 ,  we get the pair (~°,r/°) satisfying 
condition ffo.i. Ii.I 

Obviously, the proved theorem is valid also for the unconstrained 
problem (2). We give this case, since then some of  the conditions simplify. 

Theorem 2. Let f be a C °'1 function and consider problem (2). 

(Necessary Conditions) Let x ° be w-minimizer o f  problem (2). Then for  
each u ~ S  and yO~f~ (x  o) there exists ~ O ~ C , \ { O }  such that 
( ~ ° , y ° ) > 0 .  

(Sufficient Conditions) Let x ° E R". Suppose that for  each u ~ S and 
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yO ~ f~ (x o) there exists C ° ~ C' \ {0} such that (~O,y O) > O. Then x ° is an 
isolated minimizer of  first order for problem (2). 

Conversely, the given condition is not only sufficient, but also necessary 
for the point x ° to be an isolated minimizer offirst order. 

The following simple example illustrates Theorem 1 in practice. 

Example 1. Consider the unconstrained problem (2) with 

I ( x , - 2 x ) ,  x > 0 ,  
f :IR--->R2' f ( x ) = L ( 2 x , - x )  , x < 0 ,  

and C=IR2+. The function f is C °: but not C ~ and thepoint x ° =0  is both 
p-minimizer and isolated minimizer of  first order. The latter can be 
established on the base of  the Sufficient Conditions of  Theorem 1. 

Here the positive polar cone is C' =IRz+. For u = l  we have 
y ° = f ~ ( x ° ) = ( 1 , - 2 )  and (C°,y°) = el° - 2C° > 0  if we choose 
sx°=(1 ,0)~R2÷\{(0 ,0)} .  For u = - I  we have y ° = f i ( x ° ) = ( - 2 , 1  ) and 
(C°,y°) =-2C~ ° +C ° >0  i fwe  choose C ° = (0,I) ~ R2÷ \ {(0,0)}. 

The constraint qualification Qo:(X °) is of Kuhn-Tucker type [12]. One 
may be astonished, that in the hypothesis of  Q0:(x °) we have z ° E - K ( x ° ) ,  
while in the conclusion g(x ° + tku °) ~ - K  it stands K instead of K(x°) .  If 
the cone K is polyhedral, we may take in the conclusion 
g(x ° + tku° )~ -K(x° ) ,  but in general with such a weaker conclusion the 
reversal of the Sufficient Conditions of  Theorem 1 is not true. This is shown 
in the next example. 

Example 2. Let f : lR --> JR, g : IR --> I~ 3 with C = JR÷ , 
K={ZE]~ 3 [z 32 >zZ+z2}- and f ( x ) = x  2, g ( x ) = ( x [ x l , - l , - 1 ) .  Then f 
and g are C j functions, x ° = 0 is an isolated minimizer of  first order, 
Qo ~(x°) does not hold, but we have similar condition with 
g(x  ° +tku °) ~ - K ( x  °) in the conclusion, instead of  g(x ° +tk u°) ~ - K .  At 
the same time, whatever u ~ R be, there is no pair (C°,r/°) ~ C' x K' (x °) for 
which ( ¢ , f '  (x°)u)+ ( ¢ , g  ' (x°)u) >0 .  

Her+ x ° is the bnl~ feasible pbint, and according to the definition x ° is 
an isolated minimizer of first order. (This means -xjL D ( f ( x ! - f ( x ° ) , - C )  >_ A x for x e U  ~ g - ' ( - K ) ,  which is true, since 
U n g -  ( - K ) = { x  }). The ind set K(x °) is a half-space determined by 
the unique tangent plane to the cone - K  at g(x°) ,  whence the modified 
constraint qualification is checked immediately. More precisely, 
- g ( x  °) = {z e R 3 [ -z  2 + z 3 > 0}. For any u ~ ]R we have 
limk(1/tk)(g(x ° +tku) -g(x°) )=(O,O,O)~-K(x°) .  At the same time 
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g(x ° + tku ) = (t~u l u 1,-1,-1) ~ - K ,  but g(x ° + tku ) e -K(x° ) .  Now, for any 
u E IR we have f ' ( x° )u  = O, g'(x°)u = (0,0,0) and therefore 
(~o,f,(xO)u}+(rlO,g,(xO)u} = 0 for all pairs (~°,r/°). 
" If g is "Fr~chet differ'entiable at x °, then instead of the constraint 
qualification Qo,~(x °) we may consider the constraint qualification Q~(x °) 
given below. 

Q,(x°): 
If g(x °) ~ - K  and g' (x°)u ° = z ° E - K ( x  °) then 

there exists 6 > 0 and a differentiable injective function 
q9 : [0,6] ---> - K  such that ~p(0) = x ° and ~d(0) = g'(x°)u ° . 

In the case of  a polyhedral cone K in Q~(x °) the requirement 
~o : [0, 6] ---> - K  can be replaced by ~o:[0,6]-->-K(x°). This condition 
coincides with the classical Kuhn-Tucker constraint qualification (compare 
with Mangasarian [15, p. 102]). 

The next theorem is a reformulation of Theorem 1 for C I problems, that 
is problems with f and g being C t functions. 

Theorem 3. Let f ,  g be C ~ functions and consider problem (1). 

(Necessary Conditions) Let x ° be a w-minimizer of  problem (1). Then for 
each u ~ S the following condition is satisfied." 

N;: 3(~°,~ °) ~ c' ×x '  \ {(o,0)} : 

(Sufficient Conditions) Let x° ~ ]R ~. Suppose that for each u ~ S the 
following condition is satisfied." 

3(~°,~7 °) e c '  × X' \ {(0,0)} : 

Then x ° is an isolated minimizer offirst order for problem (1). 
Conversely, if  x ° is an isolated minimizer of first order for problem (1) 

and the constraint qualification Ql (x°) holds, then condition •'1 is satisfied. 
We underline without proof, that Theorem 3 remains true assuming for 

f and g only Fr6chet differentiable at x ° , instead of being C ~ . 
The pairs of  vectors (~°,r/°) are usually referred to as the Lagrange 

multipliers. Here we have different Lagrange multipliers for different u ~ S 
(and different (y° ,z°)~( f (x°) ,g(x°) ) ' , ) .  The natural question arises, 
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whether a common pair (~:°,r/°) can be chosen to all directions. The next 
example shows that the answer is negative even for C ~ problems. 

Example 3. Let f :JR z --> ~z ,  f ( x l , x 2 )  = (x 1,x~ + x~), and g :]~2 ___> ]Rz, 
g(Xl,Xz)=(Xl,X2).  Define C =  { y s ( y ~ , y 2 ) ~  2 lYJ =0}, K = ~  2. Then f 
and  g are C I funct ions and the point  x °=  (0,0) is a w-minimizer  o f  
problem (1) (in fac t  x ° is also isolated minimizer o f  second order, but not 
isolated minimizer o f  f i rs t  order). At the same time the only pair  
(~°,ri°) ~ C' xK'  f o r w h i c h  ( ~ ° , f ' ( x ° ) u } + ( r i ° , g ' ( x ° ) u }  >0 all u ~  f o r  S is 
~o = (0, O) and  rl o = (0, 0). 

The point x ° is a w-minimizer, since intC = 0, whence each feasible 
point is w-minimizer. We have f '(X)U=(Ul,2XlUI+2XzU2), SO that 
f ' ( x ° ) u = ( u l , O ) ,  and g ' ( x ° ) u = u .  The positive polar cones are 
C' = {~ ~]R 21~ =0} and K' ={0}. If  ~o = (~o,~o) ~ C, and 
r i 0  0 0 = (ril,ri2) ~ K' satisfy the desired inequality, then rio = (0,0), 
~o = (~o,0) and the inequality turns into ~10Ul > 0,  which should be true for 
all u I ~ JR. This gives ~o = 0 and finally ~o = (0,0) and rio = (0,0). 

The next Theorem 4 guarantees, that in the case when x ° is a rw- 
minimizer of  the C I problem (1), a nonzero pair (~o,rio) exists, which 
satisfies the Necessary Conditions of Theorem 1 and which is common for 
all directions. In order to prepare the proof, we need the following two 
lemmas. 

Lemma 4. Let f :~"---> ]R m be a C °'l funct ion and let L c ~ "  be a 
subspace. Denote f=~rLo f .  Then f is a C °'l func__tion and  
f'u(x°)=rcL of~(x°).  Similarly, i f  f is a C l function, then f is a C l 

funct ion and  f '  (x °)u = :r L o f '  (x °)u . 

Proof  The function f is locally Lipschitz, hence C °'l , as a composition of  a 
bounded linear function and a locally Lipschitz function. 

Let y ° ~ f ~ ( x ° )  and y ° = l i m k ( 1 / t k ) ( f ( x ° + t k u ) - - f ( x ° ) ) .  Since the 
projection commutes with the passing to a limit and with the linear 
operations, we see that 

- - '  0 zc L o y0 = l i m l ( ( n ¥  o f ) ( x  ° + tku ) - (:r L o f ) ( x ° ) )  ~ f , (x  ). 
k tk 

Conversely, let y ° = l i m k ( 1 / t k ) ( y ( x ° + t k u ) - - f ( x ° ) ) .  From f locally 
Lipschitz, it follows that there exists a subsequence {t~} of {tk}, such that 
lim k. (1/t k. ) ( f ( x  ° + t k. u) - f ( x  ° )) = yO. Now y o ~ f~ (x 0 ) and 
- - 0  0 ' 0 
y : : r L ° Y  ~ X c ° f . ( x ) .  

The case of  f ~ C' is treated similarly. L] 
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L e m m a  5. Consider problem (1) with f and g being C °'~ functions. I f  x ° 

is a rw-minimizer and (y°,z°)~(~(x°),-ff(x°))', (here 7=TrL o f  and 

-~ = rCL, o g), then (yO, z o) ~ -(ri  C × ri (K(x °) ~ L x)) . 

The proof is omitted, since it nearly repeats that of Lemma 3, but relating 
the considerations to the phase space L c × L K instead of  ]I~ m × ~P.  

Theorem 4. Necessary Conditions Let f ,  g be C ~ functions and let x ° 
be a rw-minimizer of  problem (1). Then there exists a pair 
( ¢ ° , , ? ) ~ c ;  ×X'L \{(o,o)) such that ( , 7 ° , g ( x ° ) ) : 0  a n d  

0 ' 0 ' 0 x ' 0 (~ ,f ( x ) u T + ( ~  ,g(x )u)i= 0 foral l  u~IR". The latterequalitycould be 
written also as ~ f ' ( x  )+ r l g'(x )= O. 

Proof Put 7=rcL o f  and ~ = r c  L o g .  According to Lemma 5, 
- - '  0 ' 0 c 0 K n ( f  ( x ) u , ~  ( x ) u )  ~ -(ri  C x r! ( K ( x )  ~ L K)) ~ O for all u ~ ~ . Therefore 

0 0 n the convex set M = { ( 7 ( x ) u , - ~ ( x ) u ) ] u ~ I R  } c L c x L  r does not 
intersect the non-empty interior (relative to L c x LK) of the convex set 
- C  x (K(x °) n L~) .  From the Seoaration Theorem there exists a nonzero 
pair (~°,r/°)~CL~ ×K'L, such that (~°, j (x°)u)+(rl° , f f ' (x°)u)>O for all 
u ~ R".  This leads to an equality, sin6e " - - 

o_~ (~o 7 (xO~(-o~)+ (.o ~(xO~(_.~):_((~0 7(xO)~)+ (.o ~ (.o~.))_~ o 

Since ~ ° ~ L  c we have (~° , f ' ( x ° )u )=(~° , f ' ( x ° )u ) .  Indeed, applying 
Lemma 4, we get 

0 ; T  _ 0 (¢, 7'(xO)~): (~ ,( .,.o i)(xO)~)_(~, ~o i(x°)~): (¢,l,(xO~). 

Similarly, since 17 ° e L  K, we get (¢°,-ff '(x°)u3=(¢°,g'(x°)u). Finally 
0 o - ~0 o ~ ,  o x o o x o r/° E(K(x°)~LK) 'L,  gives = ( r / , g (  ) )=(77 ,  LK g( ) )=( r /  ,g (  )) .  

13 

If  intC = O each feasible point of  problem (1) is a w-minimizer and the 
Necessary Conditions are trivially satisfied. In this case a more essential 
information is that x ° is a rw-minimizer. The next Theorem 5 generalizes 
the Necessary Conditions part of  Theorem 1 to relative concepts. Obviously, 
the Sufficient Conditions part admits also a generalization, which is not 
given here. 
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Theorem 5. (First-order conditions) Consider problem (1) with f ,  g 
being C °a functions and C and K closed convex cones. 

(Necessary Conditions) Let x ° be rw-minimizer of  problem (1). Then for 
each u ~ S the following condition is satisfied." 

V(y° ,z  °) ~ ( f (x°) ,g(x°))  '. : 3(~°,q °) ~ C'L, ' x K',.~ • 

( ~ ° , ¢ ) , ( o , o ) ,  <~ ' , g (x° ) )=o  and <¢°,~0)+<¢,~°)_>0. 

We omit the proof. In principle it repeats the proof of the Necessary 
Conditions of  Theorem 1 replacing the phase space from ]R" ×II~" to 
L c x Lx,  replacing the considered problem from (1) to (4) and making use 
of  Lemma 4. 

. I S O L A T E D  M I N I M I Z E R S  A N D  P R O P E R  

EFFICIENCY 

Consider the unconstrained problem (2) with a C °'' function f .  
According to Proposition 4 if x ° is an isolated minimizer of first order, then 
x ° is p-minimizer. It is natural to ask, whether the converse is true. 
Example 4 gives a negative answer of this question. We conclude the paper 
with Proposition 7, which as an application of  Theorem 1 reverts the result 
of  Proposition 4 under some additional assumption. 

Example 4. Let t k --> +0,  k = 0,1 ..... be a strictly decreasing sequence with 
t o = +oo. Define the function h : IR ---> ~ ,  

h( t )= Imin(tk-l-tt]'[t[-tk) ' tk <ltl<tk-" 

[ 0 , t = 0 .  

Consider the unconstrained problem (2) with f : ]~ ~ ]~2, 
f (x )=(h(x) ,h (x ) )  and C=]Rz+. Then x ° = 0  is p-minimizer, but not an 
isolated minimizer of  first order. 

The function f is C °'' , since h is C °'j . The latter follows by the easy- 
to-prove inequality ] h(t') - h(t") ]<] t' - t" I, t',t" ~ ~ .  

According to Proposition 6 and Corollary 1,if x ° is an isolated minimizer 
of first order for (2), we should have, that x ° is an isolated minimizer of first 
order for the function %(x)  = min ( f ) (x ) -  f ( x ° ) , f 2 ( x ) -  fz(X°)) = h(x). 
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However, this is not the case, since for x k = t  k--->x ° =0 we have 
~o(Xk) = h(tk) =O . 

The point x ° is p -minimizer. Indeed, let C = {y ~ ]R 2 l Y, + Yz > 0}. 
Then int C = {y s ~2 l Y~ + Y2 > 0} = C \ {0} = R+ z \ {(0,0)}, 
f ( x ) -  (h(x), h(x)) ~ R2÷ = C and •2÷ is disjoint from 
-int  C = {y ~ IR 2 [ Yl + Y2 < 0}.  

By a slight modification of this example we can see, that even the 
additional assumption x ° strong e -minimizer does not guarantee that x ° is 
an isolated minimizer of  first order. 

E x a m p l e  5. Let h be as in Example 4. Consider problem (2) with 
f :R2-->]R, f ( x ) = ( h ( x ) + x 2 , h ( x ) + x  2) and C=]R2+. Then f is C °'1, 
x ° =  0 is both strong e-minimizer and p-minimizer, but not an isolated 
minimizer o f  first order. 

Here ~o 0 (x) = h(x) + x 2 has x ° = 0 as a strong minimizer, but not as an 
isolated minimizer of  first order. 

Propos i t ion  7. Let f be a C °'~ function and consider the unconstrained 
problem (2). Let x ° be a p -minimizer, which has the property that yO ~ 0 
for  each yO ~ f~ (x o) and arbitrary u E S.  Then x ° is an isolated minimizer 
o f  first order. 

P r o o f  Since x ° is a p-minimizer, therefore there exists a closed convex 
cone C', such that int C D C \ {0} and f ( x )  - f ( x  °) ~ -int C. According to 
the Necessary Conditions of  Theorem 1 (and Theorem 2), this means, that 
for each u ~ S  and y ° ~ f ~ ( x ° ) ,  there exists ~ ° ~ f f ' \ { 0 } ,  such that 
/~°, yO / -> 0. This inequality, together with the made assumptions shows that 
.~0 ~ -i'nt C' u {0}. Since C c i n t  C w {0}, we see that y0 ~ - C .  This implies, 
that there exists ~o ~ C', such that (¢° ,y°)  > 0. According to the Sufficient 
Conditions of  Theorem 1 (and Theorem 2), the point x ° is an isolated 
minimizer of first order. ~, t 

R E F E R E N C E S  

[1] T. Amahroq, A. Taa: On Lagrange-Kuhn-Tucker multipliers for multiobjective 
optimization problems. Optimization 41 (1997), 159-172. 

[2] A. Auslender: Stability in mathematical programming with nondifferentiable data. 
SIAM J. Control Optim. 22 (1984), 239-254. 

[3] M. Ciligot-Travain: On Lagrange-Kuhn-Tucker multipliers for Pareto optimization 
problems. Numer. Funct. Anal. Optim. 15 (1994), 689-693. 

[4] I. Ginchev, A. Guerraggio, M. Rocca: From scalar to vector optimization. Appl. Math., 
to appear. 



450 Variational Analysis and Appls. 

[5] I. Ginchev, A. Hoffmann: Approximation of set-valued functions by single-valued one. 
Discussiones Mathematicae, Differential Inclusions, Control and Optimization 22 
(2002), 33-66. 

[6] A. Guerraggio, D. T. Luc: Optimality conditions for C U vector optimization problems. 
J. Optim. Theory Appl. 109 No. 3 (2001), 615-629. 

[7] J.-B. Hiriart-Urruty, J.-J Strodiot, V. Hien Nguen: Generalized Hessian matrix and 
second order optimality conditions for problems with C ~'~ data. Appl. Math. Optim. I 1 
(1984), 169-180. 

[8] J.-B. Hiriart-Urruty: New concepts in nondifferentiable programming. Analyse non 
convexe, Bull. Soc. Math. France 60 (1979), 57-85. 

[9] J.-B. Hiriart-Urruty: Tangent cones, generalized gradients and mathematical 
programming in Banach spaces. Math. Oper. Res. 4 (1979), 79-97. 

[10] F. John: Extremum problems with inequalities as subsidiary conditions. In: K. O. 
Friedrichs, O. E. Neugebauer, J. J. Stroker (eds.), Studies and Essays, Courant 
Anniversary Volume, pp. 187-204, Interscience Publishers, New York, 1948. 

[11] D. Klatte, K. Tammer: On the second order sufficient conditions to perturbed C U 
optimization problems. Optimization 19 (1988), 169-180. 

[12] H.W. Kuhn, A. W. Tucker: Nonlinear programming. In: J. Neyman (Ed.), Proceedings 
of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 
481-492, University of California Press. Berkeley, California, 1951 

[13] L. Liu, P. Neittaanm~iki, M. Kt~ii~ek: Second-order optimality conditions for 
nondominated solutions of multiobjective programming with C ~'~ data. Appl. Math. 45 
(2000), 381-397. 

[14] D.T. Luc: Taylor's formula for C k'~ functions. SIAM J. Optimization 5 No. 3 (1995), 
659-669. 

[15] O. L. Mangasarian: Nonlinear programming. Society for Industrial and Applied 
Mathematics, Philadelphia, 1994. 

[16] E. Miglierina: Characterization of solutions of multiobjective optimization problems. 
Rendiconti Circolo Matematico di Palermo, 50 (2001), 153-164. 

[17] E. Miglierina, E. Molho: Scalarization and its stability in vector optimization. J. Optim. 
Theory Appl., 114 (2002), 657-670. 

[18] M. Pappalardo, W. Stoeklin: Necessary optimality conditions in nondifferentiable 
vector optimization. Optimization 50 (2001), 233-251. 

[19] R.T. Rockafellar: Convex analysis. Princeton University Press, Princeton, 1970. 
[20] X. Q. Yang , V. Jeyakumar: Generalized second-order directional derivatives and 

optimization with C ~'~ functions. Optimization 26 (1992), 165-185. 
[21] X. Q. Yang: Second-order conditions in C ~'~ optimization with applications. Numer. 

Funct. Anal. Optim. 14 (1993), 621-632. 
[22] A. Zaffaroni: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 

42 No. 3 (2003), 1071-1086. 



GLOBAL R E G U L A R I T Y  FOR SOLUTIONS TO 
DIRICHLET PROBLEM FOR ELLIPTIC 
SYSTEMS WITH NONLINEARITY q _> 2 AND 
WITH N A T U R A L  G R O W T H  

S. Giuffr61 and G. Idone 2 
D.LM.E.T., Faculty of Engineering, University of Reggio Calabria, Reggio Calabria, Italy t'2 

Abstract: HOlder regularity up to the boundary of the solutions to a nonhomogeneous 
Dirichlet problem for second order discontinuous elliptic systems with 
nonlinearity q > 2 and with natural growth is proved when n = q.  

2000 Mathematics Subject Classification. 35J65; 35J55. 

Key words: nonlinear elliptic systems, global H61der regularity, higher gradient 
summability. 

. I N T R O D U C T I O N  

In this paper we study the global H61der continuity in ~ of  a solution 
u e H ~'q (92) ~ L = (92) to the following Dirichlet problem 

u-g  ~,H~'q(n)nL"~(92) 

i~l Dia'(x,u, Du) = -B(x, u, Du) in 
( 1 . 1 )  
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where f2 is a bounded open set in ]R", n > 2 ,  q is a real number > 2 and 
g eHI'"(f~)mL°~(f~), s > q. 

For solution u to (1.1) we mean that u = g + w ,  where 
w e H~ 'q (f~) n L ® (f~) is such that 

g,Ow+ Og)lO, )dx= L (B(x,w+ g, Ow+ Og)l )dx, 
i=1 

V~ E H~ 'q (~) Fl L ~° (gt). 
(I  .2) 

I f  u,v ~ R N , (u lv )  denotes the inner product in ]R u . We set p = (p~ ..... p " ) ,  
with pi e ]R u ; p is a typical vector o f  IR "u . 

For every p E R x , K > 1, we set 

V ( p ) =  x+llpll: ~ and W ( p ) = V  2 (p)p.  (1.3) 

Let d ( x , u , p ) ,  i=1,2 ..... n ,  be vectors o f  ~ u ,  defined on ~ x l R  N x ~  "u, 
such that ai(x,u,p) are measurable in x and continuous in u, p ,  and 
d(x,u,O) =0  Vx ~ ~ ,  Vu ~ ]~N. We assume that there exist two positive 
constants M,v such that for all x e ~ ,  u e a N, p e ~.N it results 

la'(x,u,p) <_Mvq-:(p)llPl [, i=l,...,n (1.4) 

n 

~-' I a ~ (x,u, p) l p' ) >_ v V q-2 ( p ) l l p l l  . (1.5) 
i=1 

Moreover  we suppose that there exist two positive constants a,b, such that 
for all x ~ f~, u e ]R N , p e l~ "N it results 

[[B(x,u, p)[I < a + bllW (P)lr ' (1.6) 

and, if  u is a solution to Problem (1.1), also the following smallness 
condition holds 

2bllu-g L <v, (1.7) 

(for the notations see section 2). 
Condition (1.6) is called natural growth condition and the aim o f  this 

paper is to study the global H61der continuity in ~ of  the solutions to the 
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Dirichlet problem (1.1) under the above assumptions. A smallness condition 
of type (1.7) is necessary in order to obtain the regularity result of the 
solutions, in virtue of  the counter-example provided by [6]; however it 
seems that the optimal smallness condition could be b l lu-glL o < v .  

Moreover it is well known that it is not possible to obtain the global H61der 
continuity in ~ for each value of  the dimension as the counter-examples in 
[6], [9], [1 1], [16] show. Therefore, taking into account the above counter- 
examples and the general form of  the coefficients d ( x , u ,  Du) of problem 
(1.1), we can expect the global H61der continuity of solutions to the Dirichlet 
problem (1.1) only for n < q .  As for n < q the desired regularity derives 
from the Sobolev imbedding theorems, our goal remains only in proving the 
regularity up to the boundary for n = q.  We achieve this result by means of 
the following theorem on higher global integrability of the gradient: 

Theorem 1.1 Assume that conditions (1.4), (1.5), (1.6) and (1.7) are 
fulfilled. Let af2 be o f  class C z and g E Hl"~(~)nL~(f)) ,  with s > q > n . I f  
u E H I'q (~"~) ('h Z~(~ ' ) )  is a solution to Dirichlet Problem (1.1), then there 
exist a number r > 1 such that 

u ~ Hl'~r ( ~ ) .  

From Theorem 1.1 we immediately derive the following corollary. 

Corol lary  1.1 Under the same assumptions o f  Theorem 1.1, a solution u to 

Dirichlet Problem (1.1), for  q = n, belongs to C °'~ ( ~ ) ,  with ct = 1 1 
r 

An essential tool in order to achieve the global higher summability of 
Du is to get the so called "Caccioppoli type inequality", both in the interior 
case and near the boundary. 

In the general case the result we can expect if q > n is only the so called 
"partial HOlder regularity", namely there exists a closed singular set f20 
such that u is H61der continuous in f ) \  £)0 and, even if the trace of  u on 

is smooth, there exists a closed singular set Z 0 on c3~ such that u is 
H61der continuous up to the boundary except for the points of E 0 (see [3], 
[4]; for nonlinearity q =2  see [1], [2], [5], [10], [12], [15], [18]). Moreover 
in particular cases it is possible to estimate the Hausdorff dimension of both 
the singular sets f20 and Y~0 (see for example [3], [12], [15]). This behaviour 
is analogous to the one we meet when we consider elliptic nonvariational 
systems, namely we obtain global HOlder continuity up to the boundary only 
for low values of n and partial HOlder continuity in the general case (see 
[7], [14]). 
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Finally we recall that in [17] the author obtains the global HOlder 
continuity up to the boundary for n =q  in the case of  term B fulfilling a 
growth of  the type Ilpll q- '  . 

2. P R E L I M I N A R Y  R E S U L T S  

We define 

B(x°,cr)={x: x - x  ° <or}; (2.1) 

moreover, if x ° = 0, 

B + (x°,cr)= {x E B(x°,o-): x. > 0}, (2.2) 

r(x°,cr)  = {x E B(x°,o-): x. :0} ,  (2.3) 

We will simply write B+(cr), F(cr) and F instead of B+(0,o-), F(0,G) and 
F(0,1), respectively. 

Through the present paper, C~ will denote a bounded open set of  ~"  
with diameter d a and with boundary 8ff~ of class C 2 . 

The notation B(x°,•) c c  ~ means that B(x°,~) c ~ .  
Moreover if u e £ (B) and B is a measurable set with meas B ¢ 0,  then 

u~ = ~ u(x)dx 
1 f u(x)dx. (2.4) 

meas B at~ 

If u E L °° (f2), we define 

I1.11o,o = esssupllu(x)ll. (2.5) 
f~ 

If u E C° '"~),  0 < a _< 1, we set 

[u],~.~ = sup Ilu(x)-"(Y)ll (2.6) 
Ilx- yl] ° 

and we will say that u e C °'~ (ff~) if u e C °'~ (K) for every compact subset 
K e r f S .  
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For what follows we need the following Gehring-Giaquinta-Modica's 
Lemma. 

Lemma 2.1 I f  U and G are nonnegative functions on 92 such that 

U~Lr(f~),  G~LS(92), l < r < s  

and if, for  every B(x°,cr) c B(x°,2cr) c f2, it results 

then there exists c > 0 such that U ~ Ltl,,,. (92), Vt ~ Jr, r + c) and 

where k and c are positive constants depending only on c, r ,  s and n 
(see [1] p.125). 

The estimate contained in the next Lemma will be also useful in the 
sequel. 

Lemma 2.2 There exists a positive constant c(q) such that, Vp,/5 ~ 11~ N it 
results 

Vq-2(p+/5)lip +/sll<_c(q)EV,,-2(p)llpll+v,-2(/5)ll/5lll (2.7) 

Proof. 

v"-2(p ÷/5)lip ÷/511 =/1 +lip ÷/5112 l~llp ÷/511 
If Ilpll-< 11/511, then 

(1 +liP +/51[ 2/@liP +/51[ <_ 2(1 + 411/5112 )~-[1/311 

< 2 4~(1 ÷ H  2 )~11/511-- c(q)V~-2 (/5)11~11 • 

In a similar way, if H - <  Ilpll, we get 
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l1 + liP +/3[[ z )~[[p +/5[1 <- c(q)V q-z (p)[[PII. 

Then, by summing the previous inequalities, we obtain (2.7). 

Finally we recall that, if G ~ L q (f2), it results 

IIGII~,,o, --II W (G)II~= ,o,. (2.8) 

3. G L O B A L  H I G H E R  S U M M A B I L I T Y  OF THE 
G R A D I E N T  

In order to obtain the global higher summability of the gradient, we prove 
in a first step the interior higher summability of the gradient. To this end a 
crucial step is the following "Caccioppoli's type" inequality. 

Theorem 3.1 Assume that conditions (1.4), (1.5), (1.6) and (1.7) are fulfilled 
and g~Hl"~(f2) nL~(~),  with s>q>_n. Let weH~'q(f2)nL~(f~) be a 
solution of the strongly elliptic system; 

f~ ~--~(a'(x,w+ g, Dw+ Dg)lDiq°)dx= f~(B(x ,w+ g,Dw+ Dg)lq°)dx, 

Vcp E H~'" (f2) N L °° (g2). 
(3.1) 

Then for every couples of concentric balls B(cr) c B(2cr) c f~, it results 

f Jowl l  qdx 
(3.2) 

<~C o'-q£(20.) W--WB(2cr)qdx --~-C15B(2o.)(1+llogll;dx 
where c ,  c, depend on q ,  M ,  v ,  a ,  b, Ilu-gllo.o 

Proof. Let us fix B(2cr)c f2 and let 0 ~ Co(R" ) be a function with these 
properties 

0<0<1,  0=1 in B(cr), O = 0 i n I R " \  B(2cr), IIDell_<co--', 
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with C numerical constant. Let us assume in (3.1) ~O=Oq(W--WB(2~r) ) . 
Then (3.1) becomes: 

n 

~ ~-'(ai(x,w+ g, Dw+ Dg)lOq Diw)dx 
i=1 

n 

= -q ~ ~' ai (x, w + g, Dw + Dg)lOq-t DiO (w-  ws(2,,) ) dx 
i=1 

+ I (8(x,w+ g, ow+  og)lO  

(3.3) 

We may rewrite (3.3) in the equivalent way 

.~ £ ( d ( x , w +  g, Dw+ Dg)]O q (Diw+ Dig)dx 
i=1 

n 

= ,~Z(ai(x,w+g, Ow+Og)]OqOig)dx 
i=1 

n 

-q.~ Z d (x, w + g, Dw + Dg)l ~-' 0 Dfl ( w -  wB(2,,) ) dx 
i=1 

+ ~n(B(x,w+ g, Dw+ Dg)l Oq ( w -  wB(2,,,)dx = A + C  + D. 

(3.4) 

As it concerns the left hand side of (3.4), in virtue of the strong ellipticity 
condition (1.5) it results 

f ,~~(a i (x ,w+ g, Dw+ Dg)[O q (Diw+ Dig)dx 
i=1 

>_ f.llow+ Ogl[ 2 V~-2(Ow+ Og) O~dx=,~ f ,  llW(Ow + og)ll ~ O~dx. 

(3.5) 

Let us examine the terms in the right hand side of (3.4) and let us start with 
the first term A. By condition (1.4), taking into account Lemma 2, we get 
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n 

Iml~ f . ~  a'(x,w+ g, Ow+ Og) o~llO, glldx 

M f .  V~-~(Ow-+- Og)llOw+ ogllo~llOglldx 

<c(q)M f .  V~-2(Ow~llOwllO~llOglldx + c(q~M f ,  V~-2(og>llogll ~ O~ dx 

< c(q)M f~ 0 q (1 + IlowlV-~ > Ilowll IlOgll dx 

+ c ( q ) g ~ ,  Oq(1 + Iloglr) ~ (1 +llogll~)dx 

<_ c( q ) M f . 0 q ([[Dw[[ ]]Dg][ + ][Dw[[ q-' [[Dgll)dx + c( q ) M f~ 0 q (1 + [[Dg[[2) ~ dx. 

(3.6) 

Using Young's inequality in the first integral in the last line of (3.6), it 
follows 

I AI_ c(q)M~fO~llOwll ~ dx 

+Mc(e,q) f~ (1 + IIDgll; dx + c(q)M~ O q (I +llDgll~)dx 

<_ c(q)eg f .  o~llowll ~ ± + Mc(q,e) f.(~ (1 + Ilogll; dx. 

(3.7) 

Let us consider the second term C. In virtue of condition (1.4) 

ICl<q f.~-~ ai(x,w+g, Dw+Dg) O~-'lO, OI w-ws(2~ dx 
i=1 

<_qM f ,  v~-2(Dw+ og>llow+ ogllO~-'llool[ w-ws,=o,[~ (3.8~ 

< qMfn (1 + IlOw + ogll; -~ IlOw + Ogll 0~-' liD011 w -  w~,2o, dx 

< qMfn (1 + IlOwll + IlOg]l;-' 0~-' liD011 w -  w~,~o~ rig. 

Applying HOlder inequality, we get 
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ICl 

< c(q,M)e£ (I ÷llOwll÷llOgll; e~ dx ÷ c(q,M,~)£11OOIIll w -  V dx 

<_ c(q,M)e~, (1 + Ilowll; o~ dx 

+c(q,M)~f~,=o, IloglV dx +c(q,M,~),~-~ f~,=o, II w -  w ,=o,I V dx 

< c(q,M)eL(2, ° O q dx + c(q,M)ef, llOwl[~ O ~ dx 

+c(q, M)eL,=o ' (1 + Ilogll; dx + c(q,M,~>-~ f~,=o, II w -  IV dx. 
(3.9) 

Finally for the last term D, we have from condition (1.6) 

[DI~ f.llB(x,w÷ g, Dw÷ Og)[loq w -  w~(2~,, dx 

< 2 L (a ÷ bllW(Dw÷ og)ll2)o"llw[Ioo,,, dx 

= 2 a f .  ooll,qL,.,dx ÷ 2bllwL,.f, llW(Ow+ Og)ll ~ O~dx. 

(3.10) 

Taking into account (3.5), (3.7), (3.9), (3.10), we get 

(~- 2bllwlloo,~)£11W(Ow÷ Og)ll= O~dx ~ c(q,M)e~ IIo~dl ~ 0~ dx 

+c(q'M'llu-glloo.~,)e fB,=o, O~ dx + c(q,M,~) fB,2~ (1 + IIDgll) ~ dx O.11) 

+c(q,M,c)o'-qflJ(2c,) W-- Wt~(2~) q dx, 

Since, in virtue of (2.8), 

f~ o~llowW dx < c(q)f, llW(Dw+ og)ll 2 0~dx ÷ c ( q ) f  (1-+-Ilogll;0~dx, 

and 

for g sufficiently small, from (3.11) and (1.7) we obtain 
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f~,~> llDw)ll + ,~ 

<_c,+-" f+,+°,lw- w,,+> ",+ +c, f.+>(l+llmll)',+, 
(3.12) 

that is our thesis. 

We are in position to derive the interior higher summability of the 
gradient. 

Theorem 3.2 Assume that conditions (1.4), (1.5), (1.6) and (1.7) are ful f i l led 
and g ~ H j's (f2) ~ L °~ ( ~ ) ,  with s > q > n.  I f  w ~ H~ 'q (~'2) ('5 Z °~ (~')) is a 
solution o f  the strongly elliptic system 

~ ( a i ( x , w + g ,  D w + D g ) l D 3 ° )  dx 
f/ i=1 

= f~(g(x,w+g, Dw+Dg)l~o)dx V~eH~+(f~)nL°~(f~), 
(3.13) 

q~ 
then there exists a number ~ > 1  such that D u e L l o  c ( ~ )  and 
'v'B(2cr) c ~ it results 

(3.14) 

where the constant K does not depend on or. 

Proof. By Poincar6 inequality it follows 

L2+> w_w+, ( L  ii Jl )+ a -q q <_ca" - Dw" '+dx  . 
(2~) 

Hence if we set 

v--HI+++ 

G = (1 + H )  +e 

from "Caccioppoli's inequality" (3.2) it follows 
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U " d x < c  - Udx + c ~ -  G " dx. 
(a) (2a) (2a) 

Then, in virtue of  Gehring-Giaquinta-Modica Lemma 2.1, the assert follows. 

In the second step of the proof of  the global higher summability, we have 
to prove the higher summability up to the boundary for the gradient of  a 
solution to Dirichlet Problem. 

Theorem 3.3 Assume that conditions (1.4), (1.5), (1.6) and (1.7) are fulfilled 
and g ~ Hl'S (B÷(1)) n L°° (B+ (1)), with s > q > n. I f  
w ~ H t'q (B ÷ (1))~ L °° (B ÷ (1)) is a solution o f  the strongly elliptic problem 

i=1 

re+,,) (B(x ,w+ g, D w +  Dg) [¢p)dx, V~pE H~'"(B + (1))NL°~(B + (1)) 

w(x)=O onF,  

(3.15) 

then there exists a number r' > 1 such that Dw ~ L~ (B ÷ (1)) and for  all 
B + (20-) c B ÷ (1) it results 

( ')~ 
- L ,  <o, ll~,wr ~ _< ,, - L  <~o, ii~'wil ~ ~ + "  - L  ,~o> (1 + ,~,~tl; ~ d~ ~ 

(3.16) 

where K is a positive constant which does not depend on 0-. 

Proof. Let us choose 0- < ~ and a function 0 ~ C o (~")  having the following 
properties: 

0_<0_<1, 0= l inB(0- ) ,  0 = 0 i n ~ " ~ B ( 2 o - ) ,  MI_<c0--' (3.17) 

with C numerical constant. Taking into account that w = 0 on F,  in (3.15) 
we can assume ¢p = 0 q w and, arguing as in the proof of Theorem 3.1, we get 
the "Caccioppoli's type estimate" 
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f,+,~)llOw[I ~ dx ~ c~ ~ f~+,2=) llwlr dx + c, f,+,2~)(1 +llogll)~dx (3.18) 

Now, taking into account that 

w(x)  = 0 on 1-" 

we can apply the Poincar6 inequality 

wll  x<co ) 

and hence, in order to obtain (3.16) we can repeat the same arguments of  
Theorem 3.2. 

Now we may derive the global higher summability o f  the gradient. 

Theorem 3.4 Let conditions (1.4), (1.5), (1.6), (1.7) be fulfilled, let Of) be o f  
class C 2 and g e H u (D) ~ L °° ( ~ ) ,  with s > q >_ n.  I f  w e H~ 'q (~ )  n L ~° ( ~ )  
is a solution to the Dirichlet problem 

{ ~ D i d  (x, w + g, Dw + Dg)  = - B ( x ,  w + g, D w + Dg)  
i=1 

w = 0 on c3f~ 

there there exists r > 1 such that Dw e IY r ( f ) ) .  

Proof.  Taking into account that c3~2 is of  class C 2 , it is enough to use the 
usual covering procedure (see [4] Lemma 2.V, 2.VI, 2.VI1 and Section n.8 
for details). 
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Abstract: 

Key words: 

In this paper Generalized Complementarity Problems are expressed in terms of 
suitable optimization problems and some optimality conditions are given. The 
infinite dimensional Lagrangean and Duality Theories play an important role 
in order to achieve the main result. 

Generalized Complementarity Problem, Lagrangean Function, Dual Problem, 
Quasirelative interior, saddle point. 

1. I N T R O D U C T I O N  

Let S be a nonempty subset of  a real linear space X. Let Y be a 
partially ordered real normed space with the ordering cone C. Let Z be the 
set of  nonnegative measurable functions and let 

£ : S ~ Z  

B : S ~ Z  

be two operators. Let g : S -+ Y be a given constraint mapping and let us set 
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K = {v s :  g(v) (1) 

Let us suppose that 

£(v)  >>_ O 13(v) >_ O Vv ~ S 

and let us observe that the Generalized Complementarity Problem 

B ( u ) C ( u )  = o 
u ~ K (2) 

expresses many economic and physical equilibrium problems. In fact, 
starting from the classical Signorini problem, it has been observed that the 
Obstacle problem, the Elastic-Plastic Torsion problem, the Traffic 
Equilibrium problem both in the discrete and continuous cases, the Spatial 
Price Equilibrium problem, the Financial Equilibrium problem and many 
others (see [7], [8], [9], [14]) satisfy the Generalized Complementarity 
Problem (2). For example, the continuous traffic equilibrium problem fits 
very well with the above scheme assuming 
X=L~,v(f2)={ueL2(f2,R2)'divueL2(O)}, Y =L2(f2), S = L~v(O), 

By=v, £v=Ic,(x,v(x))-O~--~x~ 3,=,. 2. Problem (2)becomes 

c,(x,u(x)) °/~(X) 

u ~ K  

0 

i = 1, 2, a.e. in f) 

where/t  e H I (f~) is a given function (potential) and K is given by 

K = {u E L2d~v (f2): u,(x) > O,u,(x)1o~= %(x), div u + t(x) = 0}, 

with f~ a simply connected bounded domain in •2 with Lipschitz boundary 

In this model, u~(x) i=1,2 represent the traffic density through a 
neighbourhood of x in the direction of the increasing axis x~. u~(x) has 
nonnegative fixed trace % (x) on 0f2 which represents the entering flow. If 
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we associate to each point x e f ~  a scalar field t (x)eL2(f2) ,  which 
measures the density of  the flow originating or terminating at x, the flow 
u(x) satisfies the conservation law 

div u(x) + t(x) = 0 i.e. in g~. 

The function el (x, v(x)) represents the travel cost along the axis x i (i = 1, 2).  
The equilibrium condition is the following one: 

Definition 1 u(x) ~ K is an equilibrium distribution f low i f  there exists a 
potential/ . t  ~ H ~ (f~) such that 

O'u(x).l = 0 c,(x,u(x)) Ox, ) u i (x) 

c,(x,u(x)) Old(X) >_o 
~x, 

i = 1, 2 a.e. in f2 

The potential /z measures the cost occurred when a user travels from the 
point x to the boundary 0f2 using the cheapest possible path (see [4], [5], 
[10]). 

The same happens for the Elastic-Plastic Torsion Problem. In this case 
we have X = H 2 ( f 2 )  (or HI(f2) if we consider the weak formulation); 

Y=L2(f~);  / 3 v = l -  _"_~l/~x,/2," £v  an elliptic operator. The equilibrium 

condition is 

,:, ] 

and 

K =  veH~(~) 'v>_O,  1 -  ~x i _ 0  

(see [11], [12]). 
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The Evolutionary Financial Time Equilibrium has been considered very 
recently and also it perfectly agrees with the above scheme. In this case a 
vector of se,,gtor assets, liabilities and instrument prices (x*(t), 
y" (t), r" (t)) e 1--I P/x L 2 (o, T, 1R~), where 

i=1 

Pi = {(xi(t), Yi(t)) ~ L2 (O,T,I~Z") " £ xij (t) = si(t), £ Yij(t) = sj(t), 
j=l j=l 

xo.(t),yo(t ) > 0 a.e. in [0,T]}, 

with s~(t) the total financial volume held by sector i at the time t, is an 
equilibrium of the evolutionary financial model if and only if it satisfies the 
system of equalities: 

xO. E2[Q[ ' r • " (t)]j x, (t) + 2[Q~, (t)] r Y7 ( t ) -  r; (t)-/a~ '~ (07  = 0 

yTj [ 2[Q;2 (t)]rx; (t) + 2[Q~2(t)]ryT (t) + ~ (t) - /.t~2)(t) l = O 

£ ( "  • x,j (t) - Yo (t t) = 0 
i=1 

with all the functions 

2[Q[, (t)]~ x7 (t) + 2[Q~, (t)]~. y7 (t) - r; (t) - /~ ' )  (t), 

2[Q,2(t)]j xj (t) + ~ r • i r , 2[Q~2 (t)]j Yi (t) + r; (t) -/a~ 2~ (t), 

negative. 

xu (t), yu (t), 

m * * 

~-'~(xij(t)-y~(t)) 
i=l  

non 

The meaning of this definition is the following one: 
To each financial volume si(t ) invested by sector i there are associated 

two functions /l~l)(t) and p~2)(t) related to the assets and to the liabilities 
which represent the "Equilibrium Utilities" per unit of the sector i,  
respectively; 2[Q[, (t)]~ x 7 (t) + 2[Q~, (t)]~ y7 (t) - r; (t) is the personal utility of 
the investor in the instrument j as an asset. Then if this personal utility 
equals the equilibrium utility ,u~)(t), it results xo.(t)>O, whereas if the 

personal utility is greater than the equilibrium utility /l~)(t), it results 
xu(t ) = 0. The meaning of the second condition is analogous, whereas the 
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n * * 

third one ~., (x~.(t) - Yu (t))r] (t) = 0 states that if the price r; of the 
i = 1  

instrument j is positive, then the amount of  the assets is equal to the amount 
of  liabilities, on the contrary if there is an excess supply of  an instrument in 
the economy: 

m m • 

~-'x~.(t)> ~"yo.(t ) 
i = 1  i = l  

then rf (t) = 0 (see [61). 
In this paper we observe that the Generalized Complementarity Problem 

(2) can be written as the Optimization Problem: 

min B(v) £.(v) = 0 
v e IK (3) 

and we investigate how we can associate to Problem (3), by means of  
Lagrangean and Duality Theories, some optimality conditions. For the sake 
of  simplicity, we confine ourselves to a less general case. Let us suppose that 
X and Y are real Hilbert spaces with the usual inclusion X c Y c X*; let it 
be C the ordering convex cone of  Y and let L, B, g three functions 
defined on X with values in Y. Let us suppose that the set 
IN = {v ~ X : g(v) ~ -C} is nonempty and let us assume that the Generalized 
Complementarity Problem (3) holds in the sense of  the scalar product on Y 
and that (£v, Bv) _> 0, Vv E X. Then Problem (3) becomes 

min (£v, Bv} = O. (4)  
V E ~  ~ t 

The main result of  this paper is the following: 

T h e o r e m  1. Let the function ((£.(v),13(v)),g(v)) be convex-like. Let us 

assume that qri (g(X)  + C) = ~ and cone(qr i (g(X)  + C))is not a linear 

subspace of  Y .  In addition suppose that C is closed, C - C = Y and there 
exists V E X such that g (~) E -qr i  C. Then, if the functions L, 13, g are 
Fr~chet differentiable and Problem (4) admits a solution u ~ IK, then there 

exists an element 7- E C* such that 

Cu(u)v,B(u)) + 
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and 

(l,g(,0)_ 0, Vl~C" 

Note that, in virtue of Proposition 6 in Section 2, qri C .  0 .  Further, it is 
worth remarking that, taking into account that (f_..(u)v,13(u)), 

(£_.(u),13. (u)v), (T,g u (u)v) define three continuous linear mappings on the 

Hilbert space X, there exist three elements of X*, that we denote by 
B(u)E.(u), E(u)B.(u), -f g~(u) , such that 

(c. (.)v, ~(~)) + (c(~), e. (~)v) + (z, g,, (~>)_- 

=Q3(u)&(u)+ ~.(u)13,,(u)+ Tg,,(u),v)=O, Vv~ X. 

Hence we derive the equivalent condition: 

m 

B(u)E(u)13.(u)+ l g.(u) = O, 

Finally we observe that the above technique is complementary to the 
study of the Generalized Complementarity Problems by means of 
Variational Inequalities. 

2. T H E  L A G R A N G E A N  A N D  D U A L I T Y  T H E O R Y  

Let us introduce the dual cone C* 

c" ={l~Y"/l,~/->0, vv~c} 

that, in virtue of the usual identification Y = Y*, can be rewritten 

C* = {l c Y : (I,v) > O,'qv e C}. 

Then, using the same technique used by J. Jhan in [13], it is possible to show 
the following result: 
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Theorem 2 Let the ordering cone be closed. Then u is a minimal solution of  
(4) i f  and only i f  u is a solution of  the problem 

minsupl(Ev, Bv} + (l,g(v))} 
v e X  [ e C ,  ~ t 

(5) 

and the extremal values of  the two problems are equal 

Now let us introduce the Dual Problem 

max inf I ( £v, Bv} + ( l,g(v) ) l . 
I ~ C *  v e X  ~ s ~ ~ j  

(6) 

It is known (see Theorem 6.7 of[13]) that if int C is nonempty, if Problem 
(4) (or 5) is solvable and the generalized Slater condition is satisfied, namely 
there exists V E X with g ( V ) ~ -  int C ,  then problem (6) is also solvable 
and the extremal values of the two problems are equal: 

minsup~(£v, Bv}+( l ,g(v) )}=maxinf~(£v ,  Bv)+(l ,g(v))}.  (7) 
v e X  l e C  • ~ " l e C '  v e X  t 

However in many concrete situations the request that int C is non-empty is 
not verified: for example if X, Y are Lebesgue spaces. For this reason in 
[1], the authors develops the notation of quasi-relative interior of  a convex 
set that is an extension of  the relative interior in finite dimension. Let us 
recall the definition and some properties of quasi-relative interior of  a 
convex subset C of  a real Hilbert space Y.. 

Definition 2 Let C be a convex subset of  Y. The quasi-relative interior of  
C,  denoted by qri C,  is the set of  those x ~ C for which 

C o n e ( C - x ) = { A y : A _ > O ,  y E C - x }  

is a subspace. 

Proposition 1 Let C be a convex subset o f  Y and -~ ~ C. Then -~ ~ qri C 
if and only if  the normal cone to C at -£ 

Nc(-£ ) : {l ~ Y ' ( l , x -  "£> < O, Vx ~ C} is a subspace. 

Proposition 2 Let C be a convex subset o f  Y . I f  qri C ~: 0 ,  then 



472 Variational Analysis and Appls. 

q r i C = C  and q r i C = q r i ( q r i C ) .  

Proposition 3 Let C be a convex subset o f  Y and suppose x I ~ qri C and 

x 2 ~ C.  Then Ax~ + (1 - A)x 2 E qri C for  all 0 < ,k <_ 1. 

Proposition 4 Let C and D be two convex subsets o f  X such that qri 
X ;~ O , qri Y ~: O and let A E ]R. Then 

qri C + qri D C qri (C + D), Aqri C = qri (AC), qri (C x D) = qri C × qri D. 

Proposition 5 Let C be a convex subset o f  Y such that qri C ~ 0 and 
I c Y .  I f i n t ( l , C } ~ Q ,  then (l, qri C ) = i n t  (I,C}. 

Proposition 6 Let C be a convex closed subset o f  a separable Banach 
space. Then qri C ~ 0 .  

Proposition 7 Let C be a nontrivial convex cone. I f  C is in addition acute, 
namely C n ( - C ) =  {Or}, then O r ~ qri C. 

The proofs of  these propositions can be found in [1] and [2]. 
Using this concept  o f  quasi-relative interior more general separation 

theorems can be proved (see [3]). In fact the fol lowing statements hold. 

L e m m a  1 Let A be a convex subset o f  Y such that qri A * O  and 
0 r ~ qri A. Then there exists g ~ Y - {O r } such that (g, v) < 0 for  all v ~ A. 

Theorem 3 Let S and T be two convex subsets o f  Y such that qri S ~ 0 
and qri T ~ 0 and such that cone (qri S - qri T) is not a linear subspace o f  
Y or, alternatively, cone (qriS - qri T) is acute. Then there exists 
l ~ Y - { O r }  such tha t  ( l , s}<(l ,  tl, f o ra l l  s ~ S ,  t ~ T .  

Theorem 4 Let S and T be two nonempty convex subsets o f  Y such that 
qri S ~ 0 and qri T ¢: 0 .  Suppose that there exists a convex set V c Y 
such that V - V = Y, O r ~ qri V and cone (qri (S - T) - qri V) is not a linear 
subspace o f  Y or, alternatively, cone (qri (S - T) - qri V) is acute. Then 
there exists l ~ Y - {0 r } and "7 E ]~ such that 

(l,s}< vs a,t r. 
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Using the new separation theorems, we can show that problem (6) is 
solvable and that the extremal values are equal. 

At first we recall the definition of  a convex-like function. 

Definition 3 Let X be a real linear space and let Y be a real linear space 
partially ordered by a convex cone C. A function f : X--~ Y is called 
convex-like i f  the set f ( X )  + C is convex. 

Theorem 5 Let the function qo(v)=((E(v),B(v)),g(v)) be convex-like with 
respect to the product cone lR÷x C in R× Y. Let us assume that qri 
[g(X) + C] ~: O and cone(qr i (g(X)  + C) is not a linear subspace o f  Y or, 
alternatively, cone [qr i (g(X)+C)]  is acute. In addition suppose that qri 
C ~ 0 and C - C = Y. I f  Problem (4) is solvable and there exists V E X 
with g(V) E -  qri C, then also Problem (6) is solvable and the extremal 
values o f  the two problems are equal. Moreover, i f  u is a solution to 
Problem (4) and l ~ C  of(6), It turns out to be ( l ,g (u) )=O.  

3. PROOF OF THE MAIN RESULT 

Let us consider the Lagrangean functional L" X x C* --~ R 

L( v, l) = (c(v), B(v)) + (l, g(v)). 

Using the preceding theorems we are able to state the following 

Theorem 6 Let the assumptions o f  Theorem 5 be fulfilled, with C closed. 
Then a point (u,T) ~ X x C* is a saddle point o f  L, namely 

L(u,l) < L(u,-f) < L(v,-f), Vv ~ X ,  VI ~ C* 

i f  and only i f  u is a solution o f  problem (4) (or (5)), -I 
Problem (6) and (7) holds, namely 

minsup~(Ev, Bv) + (l,g(v))} = max inf ~(Ev, Bv) + (l,g(v))} = 
v e X  l e C  o ~ "  I~C" v e x  

(See for the proof [7]). 
From (8) we can derive a lot of  consequences. First let us take into 

account the right hand side inequality 

(8) 

is a solution o f  
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L(v,f)>_L(u,T)=o, VveX, 

namely 

<C(v), <r, _> o, 
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(9) 

V v ~ X .  (lO) 

Now let us take into account that £ : X ~ Y ,  / 3 : X ~ Y ,  g : X ~ Y  are 
Fr6chet differentiable functions. Then from (9) we derive 

(l'-..(u)v,/3(u))+(£(u),/3.(u)v)+(7-,g.(u)v)=O, V v ~ X .  (11) 

Taking into account that the three terms of the left hand side of (11) define 
three continuous linear mappings on X and that our setting is the Hilbert 
one, there exist three elements of X* that for the sake of simplicity we 
denote by/3(u)E, (u), £(u)B, (u), ~,, (u) such that 

<c. (u) v, /3(u)) = </3(u)cu(.), v) v v ~ x  

(c(u),/3.(u)v)=(c(~)/3.(.),v) v v ~ x  

Then we get 

(/3(u)C,,(~)+ c(u)/3o(~)+Tg.(~),v)=O vv~x  

and hence 

/3(u)£, (u) + £(u)/3,, (u) + Tg, (u) = 0 Vv e x .  (12) 

Now let us consider the inequality at the left hand side of(8). We get 

(c(~),/3(~)) + (l,g(~))_< o, Vl~C', 

namely 

(i,g(u)) ___ 0, W~C' .  
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So we find that if u is a solution of  Problem (4), there exists l ~ C* such 
that 

( ) - ,g(u))=O and (l,g(u))<_O, VleC*, 

namely u and )- satisfy the Variational Inequality 

(g(u),l--[)>_O (13) 

VleC*. 
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VARIATIONAL INEQUALITIES FOR TIME 
DEPENDENT FINANCIAL EQUILIBRIUM WITH 
PRICE CONSTRAINTS 

S. Giuffr6 t and S. Pia I 
D.LM.E. 7"., Faculty of Engineering, University of Reggio Calabria, Reggio Calabria, Italf 

Abstract: We study a financial evolutionary problem, when variance-covariance 
matrices, sector financial holding volumes, instrument prices are time- 
dependent. As in P.Daniele [1], but assuming the realistic condition of a lower 
constraint for the price of each instrument, we give the evolutionary financial 
equilibrium condition, prove an equivalent variational inequality formulation 
and an existence result. 

Key words: financial problem, equilibrium condition, variational inequality formulation, 
time-dependent requirements. 

. I N T R O D U C T I O N  

In the paper [I] P. Daniele studied an evolutionary model for a multi- 
sector, multi-instrument financial equilibrium problem, extending the 
important results on stationary financial equilibrium by J. Dong, M. Hughes, 
K. Ke, A. Nagumey, S. Siokos and D. Zhang (see [3] and [7]-[14]). 

In the above paper [1] the variance-covariance matrices associated with 
risk perception, the financial volumes held by the sectors, the optimal 
portfolio compositions, as well as the instrument prices, all are time- 
dependent. 

Although equilibrium excludes time, time is, nevertheless, central in both 
the physical-technological world as well as in the socio-economic world. For 
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example P. Daniele emphasize the fact that in presence of uncertainty and of 
risky perspectives, the volume held by each sector cannot be considered 
stable and may decrease or increase depending on unfavorable or favorable 
economic conditions. 

In the above paper P. Daniele provides the evolutionary financial 
equilibrium conditions, gives an equivalent variational inequality 
formulation, establishes an existence result and proposes a computational 
procedure. 

The instrument price equilibrium condition introduced by P. Daniele are 
obtained in the following way. Let, at time t ,  xo.(t ) be the amount of 
instrument j held as an asset in sector i ' s  portfolio, yu(t) be the amount of 
instrument j held as a liability in sector i ' s  portfolio, then the equilibrium 
condition for price rj (t) of  instrument j is the following: 

f m 
Z (x0 (t) - yo (t)) >- 0 
i=1 
m 

~ ,  (x,j (t) - Yo" (t))Q (t) = 0 
i=1 

a.e. in [0, T] 

r(t) ~ L2 ([O,T],IR+). 
(1.1) 

~ m 
From these conditions it derives that if x U (t) > ~ Yo (t) a.e.in [0, T], then 

i=l i=1 
Q(t)=O.  Namely, if there is an excess supply of an instrument in the 
economy, then its price must be zero. It seems to be reasonable to generalize 
the assumption of  zero prices in presence of excess supply and make it able 
to cover a larger range of  financial behaviours; then we can suppose that, as 
a result of policy interventions, a price floor r j ( t )>  0,  for each instrument 
j ,  is guaranteed. As a consequence, the equilibrium condition must be 
replaced by 

m 

Z (xo (t) - Yo (t)) >_ o 
i=l 
m 

(x o (t) - Yo (t))(rj (t) - rj(t)) = 0 
i=1 

a.e. in [0, T] 

r(t),r j(t) ~ LZ ([O,T],I~"+ ) 

(1.2) 

The meaning of  this condition is that, if there is an excess supply of  an 
instrument in the economy, then its price must be the floor. 

In this paper we intend to study this financial evolutionary problem, 
proving that the equilibrium conditions are equivalent to a variational 
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inequality and giving an existence result. It is worth mentioning that the 
presence of  the prices floor does not alter the optimal assets and liabilities 
obtained in absence of prices floor, because the corresponding varational 
inequalities are equivalent to the same variational inequality (2.9). 

. S T A T E M E N T  O F  T H E  P R O B L E M  A N D  M A I N  
R E S U L T S  

Consider a financial economy consisting of  m sectors, with a typical 
sector denoted by i ,  and of n instruments, with a typical financial 
instrument denoted by j ,  in the period [0,T]. 

Let s~ (t) be the total financial volume held by sector i at the time t.  
The assets x U in sector i ' s  portfolio are grouped into the column vector 

x~(t)=Ixit(t),xi2(t),...,x~(t),...,x,,(t)l r, the liabilities y/j in sector i ' s  

portfolio into the column vector y~ (t) = Iy, l (t), Y~2 (t) ..... y~j (t) ..... Y~, (t)l T, the 

instrument prices rj (t) into the column vector 

r(t)=[r~(t),r2(t),...,r~(t),...,r,(t)] r, the minimal instrument prices _rj(t) into 

the column vector r ( t )=  [r~(t),£2(t),...,r~(t),...,r,(t)] r . Moreover, we group 
the sector asset vectors into the matrix 

x ~ ( t )  

. ° .  

x ( t ) :  x T ( t )  : 

, . °  

S ( t )  

x , , ( t )  

, ° ,  

x,,(t) 

Xm,(t)  

... x , j ( t )  

... xo ( t )  

... xmi(t)  

... x , . ( t )  

... x,.(t) 

. . .  x m . ( t )  

and the sector liability vectors into the matrix 

y~(t) 
, , °  

y( t )=  yf(t)  = 
, ° ,  

_y~(t)_ 

-ylt(t) 
, , .  

Yil(t) 
° , ,  

Yml(t) 

y , i ( t )  

YU(t) 

y,~(t) 

y,,(t)- 

Yi,(t) 

y,,,(t) 
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Assuming as the functional setting the Lebesgue space L z ([0, T],]I~P), the 
set o f  feasible assets and liabilities becomes:  

lLy,( t )J joi 

xu(t ) > O, yo.(t ) > 0 a.e. in [0,T]} 

and the set of  feasible instrument price is: 

7¢ : {r(t) s LZ([O, TI, IR"):rj(t) > rj( t) ,  j : l,...,n, a.e. in [0,T]}. 

Moreover,  let Q~(t) be the 2 n x 2 n  variance-covariance matrix 
F - 

Qi(t)- Q[l(t) Q[z(t) associated with sector i's assets and liabilities. We 
- LQ~,(t) Q~2(t) 

assume Q~ (t) to be symmetr ic  and positive definite with L ~ ([0, T]) entries. 

[ '  1 Further, we denote by Q'~.p(t) the j-th column of  Q'~.p(t) with a =1,2 
J 

and fl  = 1,2. Then (see [5], [6]) the aversion to the risk at t ime t e [0,T] is 
given by: 

We can provide the fol lowing definition of  an evolutionary financial 
equilibrium. 

Defini t ion 2.1 A vector of sector assets, liabilities, and instrument prices 

(x'(t),y'(t),r*(t))e~-IP~xT¢ is an equilibrium of the evolutionary 
i=l 

financial model if and only if it satisfies the system of inequalities and 
equalities 

2[Q[,(t)]r x;(t)+ 2[Q~,(t)]rj y;(t)=(r~(t)-£j(t))-/.t}')(t)>O, (2.3) 

2[Q/z (t)] r x; (t) + i r • • 2[Q'22 (t)lj Yi (t) + (r~ (t) - £j(t)) - ~2)( t )  > 0, (2.4) 
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x;(t)I2[Q~ ' r • (t)]j x, (t) + 2[Q~, (t)]~ y7 (t) - (rj* (t) - r j ( t ))  - tt~ ') (t)] : 0, 

(2.5) 

y~.(t)[2[Q~2(t)] T x7 (t)+ 2[Q~2 (t)] ~ y7 ( t )+  (r; ( t ) -  r j ( t ) ) -  p~2)(t)] =0,  

(2.6) 

where kt~l)(t), tt~z)(t) ~ L2([0,T]) are Lagrangean functions, for  all sectors 
i : i = 1, 2,...,m, and for  all instruments j ,  j = 1,2,...,n and verifies 
condition (1.2) a.e., that is 

( x  o. ( t )  - yo ( t ) )  >_ o 

(x o. (t) - y~j (0)(5  (t) - £j(t)) = 0. 
k i=1 

a.e. in [0, T] 
(2.7) 

As referred in [1], the meaning of Definition 2.1 is the following: to each 
financial volume si(t ) held by the sector i ,  we associate the functions 
/ ~ ) ( t ) ,  /~2)(t), related, respectively, to the assets and to the liabilities and 
which represent the "equilibrium utilities" for unit of  the sector i.  The 

(, financial volume held in the instrument j as assets x~j (t) is greater or equal 
than zero if the j-th component 

2[Q~, (t)] T x; (t) + 2[Q~1 (t)] T y7 (t) - (r; (t) - r j( t))  

of  the utility is equal to tt~J)(t), whereas if 

2[Q[, (t)] T x 7 (t) + 2[Q~, (t)] r y7 (t) - (r~ (t) - £j(t)) > ,u~ ') (t) 

then x~j (t) = 0. The same occurs for the liabilities. 
The functions fl~J)(t), ~u~Z)(t) are Lagrangean functions associated, 

respectively, with the constraints ~ (x o. (t) - s i (t)) = 0 and 
j=l 

n 

(y~j ( t ) -  si (t)) = 0.  They are not known a priori, but this has not influence, 
j = l  

since we will prove later that Definition 2.1 is equivalent to a variational 
inequality in which p~)( t ) ,  ,u~2)(t) do not appear. 
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Conditions (2.7), that, as we said in the Introduction, represent the 
equilibrium condition for the prices, express the equilibration of the total 
assets and the total liabilities of each instrument. 

We can give the following equivalent variational inequality formulation. 

Theorem 2.1 A vector (x*(t) ,y '(t) ,r '( t))~I--IP i x ~  is an evolutionary 
i=1 

financial equilibrium if and only if it satisfies the following variational 

inequality." Find (x* (t), y* (t), r" (t)) E r-I Pi × ~ " 
i=1 

~r {~-~ I2[Q[, (t)] r x;(t)+ 2[Q~,( t )]ry , ( t ) - (r ' ( t ) -r ( t ) ) lx[x , ( t ) -x; ( t )]  
i=1 

m 
2 i r • + y'~2[O[z(t)lrx;(t)+ [Q;a(t)] y , ( t )+(r ' ( t ) -£ ( t ) )3x[y , ( t ) -  yT(t)] 

i=1 

" r?  +~"(xT(t)-y,( t))x[r(t)-r '( t)]}dt>_O, V(x(t) ,y(t) ,r(t))s P~xT~. 
i=1 i=1 

(2.8) 

For (2.8) it is possible to establish the following equivalence result, from 
which an existence result will follow. 

In 

Theorem 2.2 I f  (x*(t),y*(t),r*(t)) ~ I-I P~ x ~ is a financial equilibrium, 
i=1 

then the equilibrium asset and liability vector (x* (t), y* (t)) is a solution to 
the variational inequality." 

n • 

j~ {Z E2Eo~, ¢,)~ g¢,)+ 2to:, ¢,)~j y;¢,)]×c~o¢,)-xi,¢,)~ 
i=1 j= l  

n 

+El2to~2(,)lf " +2 ' ~ x,(t) [Q=(tllj yT(t)lx[yu(t)-y~j(t)]}dt>O, 
j = l  

V(x( t ) , y ( t ) )  ~ s 

(2.9) 

where 
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Conversely, if  (x'(t) ,y '(t))  is a solution to (2.9), then there exists an 
r" (t) e ~ such that (x" (t), y" (t), r" (t)) is a financial equilibrium. 

. P R O O F  OF T H E O R E M  2.1 

The proof of  the variational inequality formulation of the governing 
equilibrium conditions is obtained in the following way. In a first step we 
prove the equivalence between a first variational inequality and the 
following problem: 

fo T xi(t) ~i min ~d (t) - (r* (t) - 
4 yi(t) j [y,(t)J 

(3.10) 

for a fixed r ' ( t )~ 7-4. Then we obtain the equivalence between conditions 
(2.3)-(2.6) and (3.10), (let us remark that at least one solution to (3.10) 
exists, since P~ is a bounded, convex and closed set of  an Hilbert space, then 
also weakly compact, and the functional 

] U,(x,(t),y,(t)) ,So [[yj(t)J [y,(t)J ( r*( t ) - r ( t ) )x[x , ( t ) -y , ( t ) ]  dt 

is weakly lower semicontinuous (see [4], Lemma 2.11, Theorem 2.3)). 
In a second step we prove a variational formulation of the equilibrium 

condition related to the instrument prices (2.7). 
From these two variational inequalities, we then derive variational 

inequality (2.8). 
Let us start with the equivalence between problem (3.10) and a first 

variational inequality. 
P - "-I 

Theorem 3.1 | x ! ( t ) /  is a solution to (3.10) if  and only if it is a solution to 
Lyi (t)j 

the variational inequality 
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fo  r ~ [2[Q~, (t)] v x~* (t) + 2[Q~z (t)] r y* (t) - (r* (t) - £(t))] x [xi (t) - x~* (t)] dt 
i=1 

+ f o  r ~-~[2[Q(E(t)]Vx*(t)+ 2[Q~2 (t)] v y : ( t ) + ( r * ( t ) - £ ( t ) ) ] x [ y ~ ( t ) -  y:(t)]dt >_0, 
i=1 

[Y,(t)l 
(3.11) 

for  a given r* (t) ~ 7E. 

[x;(t) 1 Proof .  Let us prove the necessary condition. Assume that Ly;(t)[ 

solution to problem (3.1 0) and consider, V I x~ (t) ] ~ P~, the function Ly (t)J 

is a 

T m 

F ( A ) =  ~-]~{[Ax;(t)+(1-A)x~(t)] r i * Q,, (t)[Ax, (t) + (1 - A)x, (t)] 
i=1 

+[Ay* (t) + (1 - A)y, (t)] r Q~, (t)[Ax; (t) + (1 - A)x, (t)] 

+[Axe* (t) + (1 - A)x~ (t)] r Q(2 (t)[Ay• (t) + (1 - A)y, (t)] 

+[Ay~* (t) + (1 - A)yi (t)] r Q'22 (t)[Aye* (t) + (1 - A)y i (t)] 

-(r* (t) - r(t)) × [Ax; (t) + (1 - A)x, (t) - Aye* (t) - (1 - A)y i (t)]} dt, VA E [0,1]. 

A = 1 is a min imum point for F(A) and then F'(1) _< 0.  
After differentiating, we obtain 
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foT  F ' (A)  = * r / • [x, (t) - x,(t)] Q,, (t)[Ax, (t) + (1 - A)xi(t)] dt 
i=1 

+ f o r ~  {Ax 7 (t) + (1 - A)x, (t)] r QI, (t)[x,.* (t) - x, (t)] dt 
i = l  

+ [ y ; ( t )  T ,  , - y, (t)] Q:, (t) [Ax, (t) + (1 - A)x,  (t)] dt 
i=1 

T m 

+ f o  ~ [Ay; (t) + (1 - A)y, (t)] r Q{~ (t)[x 7 (t) - x, (t)] dt 
i = l  

7" m 

+ f o  ~ [x, (t) - x,(t)] r Q[z(t)[AyT(t) + (1 - A)y, (t)] dt 
i=1 

T m 

+ f o  ~ [Ax7 (t) + (1 - A)x,(t)] r Q~2(t){yT(t) - y~ (t)] dt 
i=1 

foT  + [y, ( t ) -  y,(t)] r ' * • Q=  ( t ) [Ay,  (t) + (1 - A)y,  (t)] dt 
i=1 

+ [Ay; (t) + (1 - A)y, (t)] r ' * Q;z (t) [y, (t) - y, (t)] dt 
i = l  

7" m 

- £  ~ (r* (t) - r_(t)) x [x; (t) - x i (t) - y; (t) + y, (t)] dt. 
i=1 

Then 
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F'(1) = fo r ~ [x: ( t ) -  x,(t)] r O:,(t)x: (t)dt + fo r ~ [x, (t)] r Q:l(t)[x: ( t ) -  x, (t)] dt 
i=1 t=l  

i= l  i=1 

+fo  r t [xi* (t)- x/(t)]r Q:2 (t) Y/* (t)dt + fo r ~ [x/" (t)] r Q:2(t)[y; (t)- y, (t)] act 
i=1 i=1 

T rn T 

+fo  E [Y~* ( t ) -  y,(t)]" Q'n(t)y: (t)dt + fo ~ [y: (t)]r Q]2 (t)[Y; ( t ) -  y,(t)] dt 
i=1 i=1 

- f o  r ~ (r* (t)- r(t))x[x/* (t)- x,( t )-  y~* (t)+ y, (,)] dr, 
i=1 

and finally, taking into account the symmetry of QJ (t), 

F'(1) : fo r ~_~[2[Qi,(t)]'rx7 (t)+ 2[Q~I (t)] 7' y; (t)-(r* (t)- £(t))] x [x 7 ( t ) -  x, (t)] dt 
i=1 

T m 

+ fo ~']~[2[Q;2(t)]r x;(t)+ 2[Q'22(t)] r y;(t)+(r*(t)-r(t))]x[y;(t)- y,(t)]dt SO, 
i=1 

that is, the variational inequality (3.11). 
The sufficient condition follows as in [1]. 

Now we may prove equivalence between problem (3.10) or problem 
(3.11) and the equilibrium conditions (2.3), (2.4), (2.5), (2.6). 

Theorem 3.2 ky~'(t)J • a solution to (3.10 or to (3.10 if and only if it 

satisfies, a.e. in [O,T], conditions (2.3), (2.4), (2.5), (2.6), where 1~}J)(t), 
/.L~ 2) (t) e L 2 ([0, T]) are Lagrangeanfunctions. 

[x;(t)] 
Proof. Let Ly~(t)J be a solution to (3.10). In order to obtain conditions 
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(2.3), (2.4), (2.5), (2.6) w e  use the inf ini te-dimensional  Lagrangean  theory  
(see [2], [4]). 

Let  us cons ider  the funct ion 

£(x~ (t), y, (t),),~')(t), A~ 2) (t), #~0 (t), #~2)(t)) 

j=l j=l 

j=l j= l  

where  

g~(x, (t), y, (t)) 

r " 2 i r • 2 i r X * : fo E[  Exo.(O-x,,(<d, 
j=l 

r , r • 2 ' r • * ( t ) - E j ( t ) ) ] x  * + £  ~']~[2[Q,2(t)],x,(t)+ [Q:z(t)],yi(t)+(r i [yij(t)-yij(t)]dt, 
j=l 

I x'(t) l ~ LZ ([O,T],IR 2") and (A~° (t),kff) (t),#l~ (t),#~=) (t)) E C = 
Yj(t)l 

= {A}° (t),Aff)(t) E LZ([O,T],R"),A~°(t),A~z)(t) >_ 0,#~')(t),#~z)(t) e LZ([O,T]); 

i = 1,..., m} 

App ly ing  Lagrange  Mult ipl ier  Theorem [2], it is poss ib le  to prove  that 
(I) (2) . (,)~t ~ ,,(2) there exist  Aj (t),Aj (t),~,~ ~ J,~*i (t) ~ C such that 

n 

f [  ~ ~'> (t)x;. (t)dt =o; 
j = l  

f rom which  it fo l lows 

fo r C A~ z' (t)y~ (t) dt = O, 
)=1 

(I) , (2) • A o. (t)xo.(t)=O, A u (t)yo.(t)=O a.e.in[0,T]. (3.12) 

Moreover ,  using the characterizat ion o f  the solut ion by  means  o f  a saddle 
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point (see [2]), we obtain 
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/Z(x, (t), y, (t),A~ ') (t), A~ 2) (t), #~')(t), #~z)(t)) 

= f o  r ~-~ [2[Q/, (t)] r x~* ( t ) +  2[Q~I (t)]~ y;  ( t ) - ( r ;  ( t ) -  £ j ( t ) ) -  A~.'> ( t ) -  #~') (t)] 
j=l 

x [ x ~ ( t ) -  x~(t)]  dt 
T n T * 2 i T * +fo ~[2te;~(,)l, x, (,)+ tQ~2(,)l, y, ( ')+(r;(')-_~,('))-#'(')-~'(')]  

j = l  

• ,  v[X,(')le/:~(to, rl,~.).  x[y  o. (t) - Yr ( )]dr >_ 0 [y, (t)J 

(3.13) 

Choosing 

x i (t) = x[ (t)  + o °, (t), Yi (t) = y ;  (t) + c~ (t), 

with 

el (t) = 2[Q[, (t)] r x 7 (t) + 2[Q~, (t)]~ y~* (t) - ( ( ( t )  - r j ( t ) )  - A~. ') (t) - #~')(t), 

e 2 (t) = 2[Q[2 (t)] r x; (t) + 2[Q~2 (t)] r y;  (t) + (r~ (t) - r j(t)) - A~ z> (t) - #~2)(t), 

(3.13) becomes 

T n r * i T * 

fo 212EQ:,(,)1, x, (,)+ 2EQ;, (,)l, y, ( ,)-  (r;(,)-_~,(,))- ~,;"(,)-,~"(,)]2d, 
j = l  

T n 2 i T * - -  2 + fo 2[2tQ;2(,)l~x:(,)+ tQ~(,)l, y,(')+(r;(')-~_,('))-V'(') ,;~'(,)]d,_>O. 
)=1 

Similarly, choosing 

x, (t) = x, (t)  - e, (t), 

we obtain 

Y , ( t ) = y [ ( t ) - c 2 ( t ) ,  
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T n . i T * --~o ~"~[ 2[Q;'(t)]r x ; ( t )+  2[Q;,(t)]j y, ( t ) - ( r j ( t ) - E j ( t ) ) -  A~.')(t) - #~"(t)]2dt 
j = l  

n 
f 0  i T * i T - "~-~[2[Q,2(t)]jx,(t)+Z[Q~2(t)] j y;(t)+(r;(t)-rj(t))-A~2)(t)-#~z)(t)]2dt >_0. 

j=l 

Then we may conclude 

T * 2 i 7" * 2[Q/, (t)]j x, (t) + [Q'2, (t)]j y, (t) - (5: (t) - £j(t)) - #~')(t) = A~ ') (t) _> 0, 

2[Q12 (t)]~ x~* (t) + 2[Q' n (t)]~ y, (t) + (rj* (t) - rj(t))  - #~2)(t) = A~ 2) (t) _> 0, 
(3.14) 

that are (2.3), (2.4). 
Moreover from (3.12) and (3.14), we get (2.5), (2.6). 
Conversely, supposing that (2.3)-(2.6) are fulfilled, 

(3.11) holds. From (2.3), (2.5) we have 
let us show that 

n ZE2[Q(,(t)]~x;(t)+2 J r • _ [Q2, (t)]j y, (t) - (rj* (t) £j(t)) - bt~ ') (t)l  x [x o (t) - x o (t)] dt > O. 
j = l  

Since ~.xo.( t )=si( t ) ,  ~ . x ; ( t )=s i ( t  ) 
j = l  j = l  

derive 

a.e. in [0,T], after integrating, we 

n • 

.[o r ~-' E2tQ:, (t)] r x;' (t)+ 2[Q~, (t)] r y; ( t ) - ( r~ ( t ) -£ j ( t ) ) ]x [xo( t )  - x~ (t)] dt >_ O. 
j=l 

(3.15) 

In a similar way we get 

j~T n 

EE [Q,  ' " ' ' " - ' > 
' (t)]j x, (t) + 2[Q n (t)]j y, (t) + (r} (t) £j(t)) 1 x [y~ (t) - Yo (t)] d t _  0. 

j=l 

(3.16) 

Summing (3.15), (3.16) for all i = 1,...,m, we obtain (3.11). 
Now we can show the following characterization of the equilibrium 

condition related to the instrument prices. 
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Theorem 3.3 r* (t) ~ R is a solution of(2. 7) if and only if it satisfies 

7" m 

~ [ x u ( t ) -  * x fo [rj(t)-((t)]dt>__O, Vr(t) E R. 
i=1  

Proof. Suppose r*(t) satisfies (2.7) and define 

E÷={te[O,T]:r;( t )>rj( t )}  and Eo={t~[O,T]:r~(t)=r_j(t)} 

(3.17) 

From condition (2.7) it follows that, in E÷, Ix~(t)-yo.(t)l=O and, in 
i=1 

m * * 

E o , ~ [x o. (t) - y• (t)] > 0, then 
i=1 

] } x a ( t )  - y ;  (t) x [rj ( t)  - r 2 (t)] d t =  x o (t) - y~ (t) x [rj (t)  - c~(t)] dt  
' =  i = l  

* * X * 

+ i=1 

that is (3.17). 
Conversely, suppose (3.17) holds. We may rewrite (3.17) as 

"= i=1 

+ [x o. (t) - y~ (t)] [rj (t) - rj (t)] dt >_ O. 
+ i = 1  

m 

If ~.,Ix~j(t)-y~.(t)l>O in E÷ (or in a subset of E, with positive measure), 
i = l  

choosing 

rj(t) inE 0 
rj(t)=Lrj~(t)-c(t) inE÷, 
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where r j( t)  < c(t) < r] (t) ,  we get 
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i=l  I i=1 

which is an absurdity. 

On the other hand, if [xu(t ) -  (t)l < 0 in E+ (or in a subset of E÷ 
i= l  

with positive measure), choosing 

£j(t) in E o 
rj(t)=Lr](t)+c(t ) inE+, 

where c(t) > 0,  we reach 

f o T ~ [ x , ~ ( t ) - y , ~ ( , ) l × [ r ~ ( t ) "  " - r, (,)1 dt = f ~ *  ~[x,,(t)-yo(t)]* * × [~(t)ldt < O, 
i=1 ; i=1 

which is also an absurdity. 
m * * 

Moreover if ~'[x~(t)-yi~(t)l<O 
i=1 

positive measure), choosing 

in E o (or in a subset of E o with 

I ~ (t) in E+ 
rj(t) = [£j( t)+c(t)  in Eo, 

where ~(t) > 0,  we get 

£ £ [  "] £ £ [ *  * xo(t)-y~(t ) x[rj(t)-r].(t)]dt= xo(t)-yo.(t)]x[e(t)]dt<O , 
i = l  o i=1 

which is an absurdity. 
Then we may conclude that (2.7) holds. 
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From Theorems 3.1, 3.2, 3.3, it immediately follows that if 
m 

(x ' ( t ) , y ' ( t ) , r ' ( t ) )  ~I -~P~×R is a financial equilibrium, then it satisfies 
i=1 

variational inequalities (3.11), (3.17) and hence variational inequality (2.8) 
and vice versa. Thus Theorem 2.1 is completely proved. 

. P R O O F  O F  T H E O R E M  2.2  

Assume that (x ' ( t ) , y ' ( t ) , r ' ( t ) )  is a financial equilibrium. Then, 
choosing in the variational inequality formulation (2.8) xi ( t )=x~(t  ), 

yi(t) =y~ (t) ,  r ( t )=r ( t )  a.e. in [0,T] and Vi =1 ..... m,  we derive 

," r ,  x ~ ( t ) - Y o ( t  x(£j ( t ) -r j ( t ) )dt>__O.  
= " =  

(4.18) 

If now we set in (2.8) (x(t) ,y(t))  ~ S ,  r(t) = r ' ( t ) ,  it follows 

[ [Q,, ( )]j x, (t) + 2[Qz~ (t)] r y; (t)] x [x 0 (t) - xu (t)] 
• = ,=  

tt 
• i r * )< Ey (t)-y;(t)J}dt (419) 

j = |  

~> (rj  (t) -- r j ( t ) )  (xij (t) - YO (t)) - (xij (t) -- YO (t)) dr. 
j = l  i=1 

The right hand side of  (4.19) is nonnegative, because the constraint set $ 
and (4.18), and then we derive (2.9). 

Conversely, if (x ' ( t ) , y ' ( t ) )  is a solution to (2.9), let us prove that there 
exists r*(t) ~ R such that (x*( t ) ,y ' ( t ) , r ' ( t ) )  is a financial equilibrium. 

Let us apply the Lagrange Multiplier Theorem to the function 
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£(x(t) ,  y(t),A °) (t),A <2) (t),#°) ( t),#<2) (t),r( t)) 
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= ~(x(t), y(t)) - A ') (t)x o. (t)dt - A 2)(t)y~j (t)dt 
i=l  0 j = l  i=l  0 j = l  

~-~fo }')(t x i j ( t ) -  si(t))dt r _ _ #}2) (t Yo (t) - s, (t))dt 
i=l - j = l  = j= t  

where 

- (% ( t )  - r j ( t ) )  (x  U (t)  - Yo ( t))  at, 
j = l  

~o(x(t),y(t)) 

+ [Q2,( )]: y;(tl]x[xi/(t)  xo(tl]dt 

+ 2[Q;2(t)] ~ x;(t) + 2[Q;2(t)] ~ yi (t)] [y0( t ) -  y~.(t)]dt, 
i=1 j = l  

m 
V x( t ) l  e ~ L z ([0, T],N 2" ) and (A°)(t),A(2)(t), #o)(/), ~(2)(t),r(t)) 
~y(t)J .= 

[ . 
= • > 0, 

i=1 

/~(')(t),#(2)(t) • L2([0, T],Nm); r(t) • L2([O,T],N"), 

r(t)-r_(t)>_O a.e. in [0,T] }. 

Note that for the Lagrangean multiplier associated to 
m 

(x~ (t) - y~/(t)) we have used the form r/(t) - ~ (t). 
i=1 

the constraint 

By means of the Lagrange Multiplier Theorem [2], it is possible to prove 
that there exist A (I) (t),)~(z) (t), #o) (t), #(z) (t), r* (t) e C such that 
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2[Q[, (t)] r x;(t) + 2[Q~, (t)]~ yT(t) - (r;(t) - rj(t)) - #~'> (t) = A~'> (t) _> O, 
(2.3) 

2[Q[z (t)]~ x; (t) + 2[Q~2 (t)]~ Y7 (t) + (r 7 (t) - r~(t)) - #~2>(t) = A~? >(t) _> o. 
(2.4) 

x~ (t)I 2tQ:, (t)]r j x 7 (t) + 2[Q2, (t)] ~ y; ( t ) -  (rj? (t)-£,(t))-/a~')  (t)] =0, 
(2.5) 

y;(t)[2[Q:=(t)]rj x; (t)+ 2[Q~2 (t)] r Y7 (t)+ (~ (t)- r_,(t))-/a~ ~) (t)]  =0,  

(2.6) 

and 

(x~ (t) - Yo" (t)) >_ 0 

L i=! 

a.e. in [0, T] 
(2.7) 

Using the same arguments as in the proof of Theorem 2.1, from 
conditions (2.3)-(2.6) it follows 

£ £ I2[QI, (t)]~ x; (t)+ 2[Q~, (t)]~ y; ( t ) - ( r ;  ( t ) -r , ( t ) )]x[xo( t )  - x; (t)] 
i=t j=I 

m n * 

+~--~ ~-~ I2[Q[2 (t)]~ xT(t)+ 2[Q~2 (t)] ~ yT(t)+(r;( t)-£j( t))]x[yu(t)-yo.( t)]>O 
i=I  j = l  

and from condition (2.7) we derive 

m n * * * 

~ [x,j (t) - y~ (t)] x [rj (t) - rj (t)] >_ O. 
i=l j = l  

After summing and integrating, it results 
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m T n 

f0 ~2  [2tQ;,(t)J~ x; (t) + 2tQ~,(t~l~ y; (t)-(r; (O- ~_,(t))]×Exo ( t)-  x,~(t)l 
i=1 j = l  

n 

+~--~ [2[Q;2 (t)l ~ x; (t) + 2[Q;z(t)] r y; (t) + ( (  ( t ) -  £j(t))]x[yo(t ) - y~. (t)] 
j = l  

n 

* t * X --r* +~-'~[x~( )-yo(t)]  [rj(t) j(t)]}dt>_O, 
j=l 

that is our equivalence result. 
Finally the existence of solution is ensured since S is weakly compact 

and for each (u(t),v(t)) ~ S the operator 

(x(t),y(t)) --+ 

f0 ~ { ~  [~tQ:, (,)~j x,(0 + ~EQ'~, (,~1~ ~(0] × Eu0 (,~- x~ (,~l 
i=1 j = l  

n 
T i 7" X +E[2te;2(t)l, x,(t)+ 2te;2(t~l, y,(t~] tu0(t~-y,,(t~l}dt 

j = l  

is weakly upper semicontinuous (see [1]). 
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REMARKS ABOUT DIFFUSION MEDIATED 
TRANSPORT: THINKING ABOUT MOTION IN 
SMALL SYSTEMS 

S. Hastings ~ and D. Kinderlehrer 2" 
Dept. of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; I Center for Nonlinear 
Analysis and Department of Mathematical Sciences Carnegie Mellon University, Pittsburgh, 
PA, USA 2 

Abstract: We describe a dissipation principle/variational principle which may be useful 
in modeling motion in small viscous systems and provide brief illustrations to 
brownian motor or molecular rachet situations which are found in intracellular 
transport. Monge-Kantorovich mass transport and Wasserstein metric play an 
interesting role in these developments. Some properties of the system that 
ensure the presence of transport are discussed. 

INTRODUCTION 

Here we describe a dissipation principle that describes transport in a 
typical molecular  motor  system, like conventional kinesin, [20], [22]. As 
background to this application, we recount that intracellular transport in 
eukarya is attributed to motor  proteins that transduce chemical energy into 
directed mechanical motion. Muscle mysosin has been known since the mid- 
nineteenth century and its role in muscle contraction demonstrated by A.F. 
Huxley  and H.E. Huxley in the 1950's. Kinesins and their role in 
intracellular transport were discovered around 1985. These nanoscale motors 

* Partially supported by the National Science Foundation Grants DMS 0072194 and DMS 
0305794. 
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tow organelles and other cargo on microtubules. They function in a highly 
viscous setting with overdamped dynamics; the Reynolds' number is about 
5 × 10 -2. The dissipation principle begins a chain of events. It suggests, in a 
natural way, a variational principle and an implicit scheme in the sense of  
Otto [14], [15] and Jordan, Kinderlehrer and Otto [9]. This determines, in 
turn, a system of  equations analogous to that proposed by Adjari and Prost 
[1] or Peskin, Ermentrout, and Oster [18]. Viewed as an ensemble, this 
system occupies configurations that are distant from conventional notions of  
equilibrium. Thismeans that to understand the stability properties of  the 
process we must discover an appropriate environment for its kinetics. The 
novelty in our development is that the dynamical process is set in a weak 
topology as described by a Kantorovich-Wasserstein metric. This owes in 
part to a result of Brenier and Benamou, [3]. It illustrates the feasibility of  
mesoscale modeling for these systems. 

The flashing rachet, a different type of Brownian motor, was discussed in 
[10]. One explanation of  this was given in [2] and it has been suggested as a 
description of  processivity in the KIF- 1A family of  kinesins, [ 12], [ 13].There 
is a discussion in [6] as well as the Parrondo Paradox, a coin toss game 
somethimes thought to mimic molecular motor behavior, in [7]. 

With a thermodynamically consistent system of differential equations in 
hand, we inquire of conditions that ensure transport. In the example we 
describe, a model for conventional kinesin, diffusion and conformational 
change collaborate with transport in periodic potentials. This model is highly 
over simplified. Asymmetry of  the potentials within their period intervals is 
critical for transport, and a particular such condition based on this property is 
explained. 

This is a description of joint work with Michal Kowalczyk, Michel 
Chipot, and Jean Dolbeault, to whom we are grateful for their collaboration. 

. A V A R I A T I O N A L  P R I N C I P L E  

Consider an ensemble of  statistically homogeneous non-interacting 
particles in a highly viscous medium, thought of simply as spring-mass- 
dashpots. For our setup, suppose we have probability densities i f ( x )  and 
f (x) ,  x C f2 = (0,1), and interpolating densities f (x ,  t), x E f~, 0 < t < 7- with 
f* (x) = f (x ,  0) and f (x )  = f (x ,  7-). For this 'Eulerian' description, there is 
a 'Lagrangian' description in terms of a family of measure preserving 
mappings, transfer functions, homeomorphisms of the interval into itself, 
¢(x, t), x E f2, 0 < t < 7- related by 
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f a  ~(y)f(y , t)dy = f ~  ~(¢(x, t))f*(x)dx. 

The velocities in the two descriptions satisfy Ct(x,t)= v(¢(x,t),t). For 
f(z,t) there is 

f, + (vf) x = 0 in ft, 0 < t < ~- (continuity equation) (1) 

and likewise in the 'Lagrangian' version 

f(¢(x, t), t)¢~ = if(x). (2) 

This is actually the Monge-Ampere Equation. For example, if v is given and 
we wish to solve (1), (2) corresponds to a characteristic equation. 

For the ensemble of spring-mass-dashpots, the viscous dissipation 
moving from f* to f via f(x, t) is simply 

3" fo ~ f~ v2 f dzdt 

for a parameter 3'. When the system moves in response to a potential ¢, its 
free energy at a density ~p is 

F(~o) = f ,  (¢~, + cr~o log ¢p)dx 

In this way, we arrive at a simple mesoscopic dissipation principle. The state 
f is admissible from f* provided 

(3) 

for some interpolating density f(x,t) with f*(x)=f(x,O) and 
f(x) = f(x, 7-). We regard 7 as a relaxation time. To connect this to a 
variational principle, we observe that [3] 

1 d ( f , f . ) 2 = i n f A l £ ,  f v2fdxdt (4) 
2T 

where A is the family of  interpolating densities and d is the Kantorovich- 
Wasserstein metric defined by 



500 Variational Analysis and Appls. 

d(f ,  f*)2 = infp f~×~ I x - y 12 dp(x, y) 

P = joint  distributions with marginals f ,  f*. 

The optimality condition for f, v in (4) is 

v t + vv x = 0 in ~, 0 < t < 7 (Burgers'Equation) 

Its 'Lagrangian' form is the geodesic equation, [3], [16], 

d 2 
dt  2 d(¢(x, t), ¢(x, 7")) = 0 

which implies 

¢(x, t) = x + t (¢(x, 7") - x), x E ~, 0 < t < 7" 
T 

The metric d delivers the weak* topology on measures, i.e., its topology as 
the dual space of C(~),  and the 'Lagrangian' form suggests that the 
optimality condition describes a geodesic path in this space. 

For convenience we set "), = ½. Our variational principle is now: given 
f*, determine f such that 

-~T d ( f , f ' ) 2  + F ( f )  = min (5) 

The variational principle (5) provides an implicit scheme: Given f(k-1), set 
f ,  = f(k-~) and determine fk from the minimum principle. Then define f(r) 

f(~)(x, t) = fk(x)  kT" < t < (k ÷ 1)7" 

The great merit of the Wasserstein metric is that it may be, in essence, 
differentiated. Thus, in the limit as 7" ~ 0, f(r) tends to the solution f of the 
ordinary Fokker-Planck Equation, [9], [14], [15], 

_ _  0 2 f  0 Of = a  + (¢ ' f )  in a , t > 0  (6) 
Ot Ox 2 
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0 
cr ~ f + ~b' f = 0 on 0f~, t > 0 (7) 

Oz 

Variational principles such as (5) above may be considered without 
discussing natural systems, of  course, and there is now a significant literature 
in this topic, and even traditional problems have unexpected interpretations, 
[21 ]. (5) establishes that the coarse graining of the microscopic system gives 
rise to weak topology dynamics at the mesoscale. For situations, like the one 
below, where equilibrium is never achieved, this may provide additional 
insight into their metastable nature. 

From the analysis point of  view, one observes that the basic variational 
principle is convex and superlinear, so existence of the iterates in the implicit 
scheme is not usually a difficulty. Convergence as 7----, 0 could be, 
especially for nonlinear problems. 

. A L O O K  A T  C O N V E N T I O N A L  K I N E S I N  

Conventional kinesin has two identical head domains (heavy chains) 
which walk in a hand over hand fashion along a rigid microtubule. This is an 
intricate process with a complicated transformation path comprising both the 
ATP hydrolysis (chemical states)and the motion (mechanical states), [8], 
[22]. For a crude reckoning, at a gross combinatorial level, each head is 
attached or in motion and is nucleotide bound or not. Assuming that a given 
motor has one head bound and one free at any instant leads to eight possible 
pathways for each cycle. We shall give a simplified description by 
considering the nucleotide binding and then the subsequent motion. Our 
dissipation/variational principle is flexible enough to accomodate this 
process. 

The ensemble of  motor heads may be divided into two sets, set 1 and set 
2; for example, the set 1 motors bind to odd fabled sites on microtubules and 
the set 2 motors bind to even labeled sites at a given time t.This permits 
distance along the microtubule to be used as a process variable. Regard the 
conformational change and nucleotide binding to be the result of  first order 
chemistry and the motion to be the result of interaction with potentials, 
diffusion, and dissipation. Let Pl and & denote the relative densities of  the 
set 1 and set 2 motors in the powerstroke state. Introduce potentials and 
coefficients for conformational change, 

cr > 0 constant 

~b i > O and u i > 0 , i = 1 , 2 ,  
1 

smooth and periodic o f  period __2_ 
N 
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with supp u 1 = supp u 2 and u I + u s _< 1. Let 

- u  x u 2 ] 
P = l + r  u~ - u  2 

where r is a relaxation time. Denote the free energy of  this system by 

F(p) = ~ ~ (~iP, + aP, log p,)dx (8) 
i=1 

We may envision a cycle starting with density p* = (p~, p~) and proceeding 
by 

p*--~ p*p--~ p 

subject to the dissipation principle: given p* with 

f a  (p; + p~)dx = 1 and p: >_ 0 in f2, (9) 

determine p by 

2 l d  -~T (p,,(p.p)~)2 + F(p)= min 
i=1 

(10) 

f a  p, dx = fa  (p'P),dx (11) 

The variational principle (10) separates the roles of  the dissipation, 
conformational change, and free energy in the system. It gives the 
incremental state of  the system in terms of  a step in a Markov chain from its 
prior state. Although there are some subtleties, (10) admits an Euler 
Equation which is the system [5] 

0/91 0 
- ( a ~ + ¢ ' ~ p ~ ) - u ~ p ~  +u~& in f~,t > 0 

Ot Ox ax 
(12) 

O& 0 (a O& 
Ot -- O----x --~z+¢'~oz)+ulpl  - - t J2p  2 in f2,t > 0 (13) 
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OPl 
a Ox +¢'1pl = O ° n  On, t > O  

OP2 
cr Ox + ¢'~°2 = 0 on 0~, t > 0 

p,(x,O)= p° >_0, in ~, i = 1 , 2  

f~ (Pl + P2)dx = 1 

and moreover this system has a solution for all time. The general program to 
obtain (12), (13) from the variational principle (10) consists of two parts. 
First there is some type of estimate of iterates and second an approximate 
Euler Equation. When estimating the left hand side of (5), we choose f* as a 
test function, which gives 

1 
d(f,f*) 2 + F(I) <_ F(I ' )  

2r 

When applied to the sequence of iterates ( i f ) ,  this provides the basic 
estimate 

O0 

--~v k~ ~ d( f f - ' , f f )  2 <_ F( f  °) and 

F( f f )<_F( f  °), k=1,2,3, . . .  

In our variational principle (10), p*P is an admissible competitor but p* is 
not. Hence 

-~Td(p,,(p*P)~)z + F(p) < F(p*P) 
i=1 

(14) 

To replace p*P by p* in (14), we use the simple property of Markov chains 
that relative entropy of successive states decreases. Namely, for a probablity 
matrix P with stationary state #~, given a vector ofnon-negative 
components #, 

(#P)il°g (#P)J 
#.I 
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For the 2 matrix P ,  the (x  -dependent) stationary state is just proportional to 
(u2, u 1) so we obtain 

1 /=, ~d(p i , (p*P) / )  ~ + r (p)  _< F(p*) + oonst.,- (15) 

This estimate is sufficient to establish the approximate Euler equation 

f ,  ((L(p,_ pT) o---" - '  " ' d x  
/=1,2 T 

< l -maxsup l~" / l (F(p*) -F(p )+Cr) ,  ¢ ~Co(a )  
= 2  

(16) 

and to prove that the sequence p(r), 

p(')(x,t) = pk(x) kT- < t <_ (k + 1)T, 

converges as r ~ 0 to a solution of  (12), (13). Along the way, we are 
assisted by a novel maximum principle. Suppose that p is the solution of the 
(10) for p*. If 

P/ < M/ 
e - ¢ , l a  - -  

then 

Pi < M i ( l+c~r )  i = 1 , 2  e-.¢,/a - -  

for a suitable a > 0. The interesting feature is that the proof is a truncation 
argument involving joint distributions. The first use of the idea was by Otto, 
[15], and new ingredients have been added to it by Petrelli and Tudorascu, 
[19]. There is a similar minimum principle. These estimates do not permit us 
to deduce the behaviour of  the system as t ~ c~, which will be dealt with 
elsewhere. 

The foregoing may be generalized easily to n species with potentials ~b~ 

and a matrix v = (%), with % > 0 for i ~- j and ~--~'~=~ % = 0. i.e., P as 

defined above a probability matrix. Allowing more complex interactions 
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among the species requires more thought about the form of the interactions 
and their statistical properties. 

3. THE STATIONARY S O L U T I O N  

There is, in addition, a unique stationary solution p~ of (12), (13) 
provided 

v I >_ 0 a n d  v 2 > 0 

and neither are identically zero. Namely, p~ is the solution of the system of 
ordinary differential equations [4] 

dP~ + ~b',p~) - u,p~ + u2p ~ = 0  in ~ (17) 
dx .a  dx 

~-~-x .a---~x + ¢'~o~) + ulp ~ -- u2p ~ = 0 in ~ (18) 

a dp[ + ' ~ ' p [  = 0 on c3a 
dx 

cr dp~ + ¢'~o~ = 0 on O~ 
dx 

f a  (p[ + p~)dx = 1 

Note that in general p~ does not minimize (8). There are two ways to attack 
this, one starting with the Schauder Fixed Point Theorem and one by a 
shooting method, based on writing (17),(18) as a first order system, [4]. 
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Figure 1. Interdigitated asymmetric potentials ~ and ~ (left) and stationary state p~ 
demonstrating about 0,9 of its mass on the left half of the interval. 

We would like to briefly discuss the origins o f  transport and the role o f  the 
asymmetry o f  the potentials. Assume that ~b~ and ~b 2 are periodic o f  period 
l/N, in fact, for purposes o f  discussion, 
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............ !1 
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Figure 2. For this pair of ~b 1 and ~b2, there is no interval where both are decreasing and 
transport to the left is anticipated 

let us take 
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1 
¢2(X) = ¢ l (X-~- f f )  

so that they interdigitate each other. Assume that ¢~ decreases monotonely 
from its maximum to its minimum and then increases monotonely to its 
maximum in each period interval. Choose a period interval, max to max, for 
¢1, say [~, ~: + 1/N] and suppose we are in the situation where 

~ < a < ~z < b < ~l + l / N  and 

¢~(~) = ¢ , (~  + l / N )  = max¢~, ¢~(a) = min¢l  = 0 

Cz (~2) = max ¢2, ¢2 (b) = min ¢2 = 0 

Think of a as very small. Now we have that 

1. in (a, ~2), ¢a > 0 and ¢2 > 0, so p~ and p~ are both exponentially 
decreasing regardless of u,. 

2. in ((1,a), there is a large population of p~, and, because of the 
equations (17), (18), some is passed to p~ because v 2 > 0. Little is 
passed from p~ to p~ because we are not close to the minimum of 

3. the net effect is movement to the left 

The condition for the balance in 2, and for similar behavior near the minima 
of ¢2, is that 

• ¢~ is increasing where ¢~ is decreasing and ¢2 is increasing where 
¢1 is decreasing. 

This means, in particular, that the minima of the ¢~s are located 
asymmetrically in their period intervals. Unfortunately, the above reads like 
just one of many plausible scenarios and so does not serve well for intuition, 
but it is the correct one. The result may be loosely formulated in this way: 

Suppose there is no interval where ¢1 and ¢2 are both decreasing, and 

v 1 > 0  a n d v  2 > 0  inf~ 

then 

1 1 p~(x + ~ ) +  p~(x + ~ )  -</<e-¢(p~(x) + p~(x)), x > _ I + N ( 1 9 )  
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To prove this result, we rewrite (12), (13) as the first order system (dropping 
the ~ superscript), with 

¢ = aP'l + ¢'1Pl, 

ap, = ¢ - ¢ ,p, (20) 

aP2 = - ¢  - ¢ 2P2 (21) 

q~! = /"lPl --/J2P2 (22) 

¢(0) = ¢(1) ----- 0 

or 

p~ = Ap, with p = and A = 0 -¢ '2  1 (23) 

aul - a u  2 

Let R((, x) be a fundamental solution to this system with R(~, ~) = 1, say. 
Write 

Pll P12 P13] 
R=IP21 P22 /)23 / (24) 

Thus, in particular, 

p(a) = R(~,a)p(~)  and P(~2)= R(a,~2)P(a) 

Since p~ > 0, the additional function ff can be eliminated from the equation 
in favor of an inequality. Indeed, 

0 < px(x) = pl,p,(~) + P,2P2(~) + P,3¢(~), x < (25) 

0 < pz(z) = Pz,P,(~) + P2zP2(~) + P2:~¢(~), x < ~ (26) 



Diffusion Media ted  Transport and  Motion in Small  Systems 509 

where the P0 are evaluated at x. Hence, 

0(~) < -  p'' P,(~) - P~2 P,2(~) and  
P,3 Pl3 

~(~) < - P~, p,(~) - P~ p~(~) 

P23 P23 

Combining this with (25), (26) and reconfiguring gives that 

,o,(x) < P, aP2, - P, JP23 p,(~) _~ P2~P,3 - P,2Pz~ p,~(~) 

- P2a - Pz:3 

P13 Pla 

A first thought is that when a typical pu varies with exp(c/~r), the fraction 
varies like exp(c /cr )2 /exp(c /cr )=exp(c /cr ) ,  that is, exponential in l/or. 
Interesting here is that the numerators in the fractions are the terms (adjR)2 a 
and (adjR)l  a and the adjugate itself satisfies an equation (variation of  Abel's 
formula) 

d 
- - a d j R  = a d j R M ,  M = ( traceA)l  - A 
dx 

which means that the numerator and the denominator are typically of  the 
same order. This is the starting point of  the proof. The details require careful 
analysis of  R and ad jR  in the appropriate intervals. 

With Bryce McLeod, we are preparing a second approach which would 
extend to an arbitrary number of  components p~ weakly coupled by matrix 
N = ( u ( ~ ) .  

At this writing, the relationship of  the supports of the conformational 
change coefficients u, and the potentials ~ is still not clear. One obvious 
situation where no transport can be expected is when the system (12), (13) 
decouples. This happens when 

u c~ (e -~, e -if) (27) 

This is sometimes referred to as detailed balance, but it only concerns the 
balance in part of the equations. However, even in this case, retaining the 
cr = cr o above in (27) but diminishing sufficiently the diffusion coefficient 
cr in (12), (13) will result in transport according to our theorem provided the 
u, are positive. 
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A more amazing result is given in the last figure. Here the potentials are 
the same as before, although there are eight periods instead of  four, but the 
support of  the v, are where one ~j is decreasing and the other increasing. 
The result istransport in the reverse, that is the "wrong" direction. Much 
remains to be studied in these problems. 
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Abstract: In this paper, we introduce an augmented Lagrangian for nonlinear 
semidefinite programs. Some basic properties of the augmented Lagrangian 
such as differentiabilty, monotonicity and convexity, are discussed. Necessary 
and sufficient conditions for a strong duality property and an exact penalty 
representation in the framework of augmented Lagrangian are derived. Under 
certain conditions, it is shown that any limit point of a sequence of stationary 
points of augmented Lagrangian problems is a Karuh, Kuhn-Tucker (for short, 
KKT) point of the original semidefinite program. 

Key words: Semidefinite programming, augmented Lagrangian, duality, exact 
penalization, convergence, stationary point. 

. I N T R O D U C T I O N  

It is well-known that semidefinite programming has wide applications in 
engineering, economics and combinatorial optimization and has received 
considerable attention in the optimization community (see, e.g., [23,11] and 
the references therein). Linear semidefinite programs are mainly solved by 
interior-point algorithms (see, e.g., [23,25,24,2,15] and the references 
therein). Nonlinear semidefinite programming arises in optimal structural 

t This work is supported by a Postdoctoral Fellowship of The Hong Kong Polytechnic 
University. 
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design (see [18]), optimal robust control (see [11]) and robust feedback 
control design (see [10]). Various applications of nonlinear (nonconvex) 
semidefinite optimization were recently summarized in [ 1,14]. 

It is worth noting that the study of nonlinear semidefinite programming, 
in particular, nonconvex semidefinite programming is very limited (see 
[ 17,21,4,9,1,14]). Recently, a class of penalty/barrier multiplier methods was 
proposed for the solution of convex semidefinite programming with a linear 
matrix inequality constraint (see [16]). More recently, a class of semidefinite 
programs have been solved by converting them into nonlinear programs (see 
[5,6]). Barrier methods were developed for nonlinear semidefinite programs 
(see [18,1,14]). However, barrier methods require a strict (interior) feasible 
solution as the starting feasible point, which is not easy to be found even if it 
exists. Augmented Lagrangian method is popular and effective in 
constrained nonlinear programming (see, e.g., [3,19,20]). An advantage of 
augmented Lagrangian method is that it is robust and need not a starting 
feasible point. 

In this paper, we propose an augmented Lagrangian approach to a 
nonlinear semidefinite program. Strong duality and exact penalization results 
are established. Furthermore, it is shown that, under certain assumptions, any 
limit point of first order stationary points of augmented Lagrangian problems 
is a KKT (stationary) point of the original semidefinite program. 

The outline of the paper is as follows. In Sect. 2, we introduce augmented 
Lagrangian for nonlinear semidefinite programming problems. We also 
investigate some basic properties of the augmented Lagrangian. In Sect. 3, 
we study necessary and sufficient conditions for a zero duality gap property 
between augmented Lagrangian dual problem and the original semidefinite 
program. In Sect. 4, conditions for the exact penalty representation in the 
framework of augmented Lagrangian are established. In Sect. 5, we show 
that any limit point of a sequence of stationary points of the augmented 
Lagrangian problems satisfies the KKT condition of the original semidefinite 
program. 

2. A U G M E N T E D  L A G R A N G I A N  

Consider the following nonlinear semidefinite program: 

(SDP) minf(x),  s.t.x ~ R", g(x)  -4 O, 

where f "  R" ~ R,  and g • R" --~ S m are continuously differentiable, S" 
is the set of m x m real symmetric matrices, and for A ~ S ' ,  the notation 
A ___ 0 means that A is negative semidefinite. 
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Let A, B ~ S " .  By A _ 0 we mean that A is positive semidefinite. We 

write A ___ ( ~ ) B  if and only if A - B ~ (_)0 .  Let A _ 0.  Denote by A ~/2 

or ~ the unique (positive semidefinite) square root of  A.  For A ~ S m , 
define I A I = (A2) I/2 . If  A is nondegenerate, denote by A -j or 1/A the 
inverse of  A. Denote A -< 0 ( A ~- 0 ) iff A is negative (positive) definite. 

Suppose that X and Y are two normed spaces. Let h" X ~ Y be a 
(Frrchet) differentiable operator. Let x ~ X .  We use Dh(x) to denote the 
(Frdchet) derivative of  h at x .  Let d e X .  We use Dh(x)(d) to denote 
the directional derivative of  h at x in the direction d .  

The matrix-valued function g(x) is said to be convex on R" iff for any 
xl, x 2 ~ R" and any 0 ~ [0,1], there holds 

g(Ox, + (1 - O)x z) -< Og(x~ ) + (1 - O)g(x 2). 

If both f ( x )  and g(x) are convex on R", we say that (SDP) is a convex 
semidefinite program. 

Denote by X 0 the feasible set of  (SDP), i.e., X 0 = {x e R" : g(x) ~ 0}. 
Throughout the paper, we assume that X 0 :~ ~ .  

Consider the following augmented Lagrangian: 

L ( x , ~ , r ) = f ( x )  2 r [  II 2 ' (1) 

where x ~ R",ff2 ~ sm,r  >_ 1 and the norm • is the Frobenius norm of  an 

m x m matrix, i.e., A = ~ ,  for any m x m matrix A. 

The augmented Lagrangian dual function is defined as 

q(f2,r)= inf L ( x , ~ , r ) ,  ~2 e Sm,r  >>_ l. 
x~R  n 

The problem of  evaluating q ( ~ ,  r)  is called an augmented Lagrangian 
problem. 

The augmented Lagrangian dual problem is defined as 

(SDD) sup q(f2,r). 
~ E S  rn,r>l 

Denote by MSD o the optimal value of  (SDD). 
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Next, we discuss some basic properties of the augmented Lagrangian 
L ( x , ~ , r )  such as monotonicity and convexity. Next lemma follows 
immediately from Proposition 4.3 of  [7]. 

Lemma 2.1. Consider the matrix valued function A • S m --+ S m defined by 
A ( X )  = X [ X I. Then for any Y ~ S m , there holds 

D A ( X ) ( Y )  = U  r ( B o ( U Y U T ) ) u ,  

where 

B : (bij)m×m, 

• &l,~l-,~fl,~jl, Ai :/: 2 j  &-~j 

0, 4=4=0 b,,= 
22,,A, = 2j >0  

-22 j ,A,  = ,¢j < 0, 

o is the Hadamard product of two matrices: 

C = (co.),,×=,D = (d•)m×=,C o D = (cud  o.),.×=, 

X = U  r d i a g [ 4 , . . . , 2 =  ]U, 

U r U = I , 2 1  > . . . A  s > 0 >  &+, > . . .  >,¢,,. 

Lemma 2.2. Let h ( Y )  = tr[(I Y I + Y ) = ]  ' S = ~ R.  Then 
(i) h is convex on S " .  
(ii) For any Y ~ S = , there holds 

Dh(X)(Y) = 2t r [ (Y+ I Y I)Y]. 

Proof. (i) The conclusion follows from Theorem 2.3.14 of [13]. 
(ii) By Lemma 2.1, we need only to show that 

D(tr[XIXI])(Y)=tr[ur(Bo(UYUr))UI=2tr[IXI(Y)], (2) 
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where X ,  B and U are as in Lemma 2.1. Indeed, we have 

trEU r ( A o ( u Y u r ) ) u I =  t r I ( U r  ( A ° ( U Y U r ) ) u ) I  1. 

By Lemma 5.1.4 of [12], we have 

t r [ ( U  r ( A o ( U Y U r ) ) u ) I ]  

=trE(Aol)(U(Y)'u') ] 
= trEA, (UYU")], 

where 

A, = 2diagI2a, . . . ,2s , -2s+, , . . . , -2 , ,  1= 2 U l X [ U  r. 

Thus, (2) follows. [] 

Lemma 2.3. Let h be defined as in Lemma 2.2. Then h is nondecreasing, 
i.e., for any A~ , A 2 ~ S m satisfying A~ _ A~, there holds h( A 2) > h( A, ). 

Proof. By Lemma 2.2, we have 

h(A~) - h(At) > Dh(A,)(A 2 - A,) = 2trace[(] A, I +A,)(A 2 - A,)] > 0 

because lAl l+Al  ~ 0 and A 2 - A  1 ,L-_ 0. tJ 
Now, we show that the augmented Lagrangian L and the augmented 

Lagrangian dual function q are concave in (~ ,  r)  ~ S"  x (0, +oo). It is also 
nondecreasing in r .  

Let A ~ S m . Define 

F(x, A) : r i f ( x ) ,  /fg(x) A, 
( +oo, else,. 

p(A) = i n f  R,,F(x,A ) (3) 
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It is clear that p(0)  is the optimal value of (SDP). We need the 
following lemma. 

Lemma 2.4. Let x E R ' ,  ~ ~ S m and r > 1. Then, we have 
(i) 

L(x, ~ ,  r)  = infA~s,, {F(x, A) + tr[DA] + r/2 A 2 }; (4) 

(ii) 

q (~ ,  r)  : i n ~ s , ,  {p(A) + tr[DA] + r/2 A 2}. (5) 

Proof. (i) Let a = i n ~ s , ,  {F(x, A) + tr[DA] + r/2 A 2 }. First we prove that 

L(x, ~,  r) < a. Otherwise, there exist 6 > 0 and A ~ S m such that 

L(x, ~,  r) > F(x, A) + tr[DA] + r/2 [A 2 + 6. (6) 

By the definition of F(x, A), we see that 

g(x) -< A (7) 

and 

f ( x )  : F(x, A). 

Thus, from (6), we deduce 

1/(8r)tr[(]~+rg(x)[+f~+rg(x))2]-l/(Zr)tr[~2]> t r [DA]+r /2  A 2+6 .  

(8) 

By Lemma 2.3, (7) and (8), we have 

tr[DA] + r/2 A[ 2 = 1/(8r)tr[(21 ~ + rA) 2 ] - 1 / ( 2 r ) t r [ ~  2 ] 

> 1/(8r)tr [(1 ~ + rA[+~ + rA)21 -1/(2r)tr[ ~2 ] 

>_ tr[DA]+ r/2[A 2 +6, 
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which is impossible. So L(x, £), r) < a. Now we prove that L(x, f2, r) > a. 
Otherwise, there exists 6 > 0 such that 

f (x) + r/8tr[([  fYr  + g(x) l +f2/r + g(x))21 -1/(2r)tr[f22 ] + 6 

= L(x, ~ ,  r) + 6 

< F ( x , A ) +  tr[DA] + r / 211A[[2 + 6. (9) 

Assume that 

g(x) + D./r = U T diag[ ;q , . . . ,  As, 2,+t,...,Am ]U, 

where 2 a > . . .  > A s > 0 > ~.+~ > . . .  > A m and UrU = I. Let 

B =Urdiag[;q, . . . ,As,O,. . . ,O]U. 

Then g(x) ~_ B - ~ / r .  Let A = B -  ~/r .  Then, g(x) ~_ A. Thus, 

F(x,A)+tr[ ]+r/2llAI] = f(x)-V(2r)[lall +r/2M (10) 

f (x) + r/8tr I(  I D.Ir + g(x) l +~/r + g(x)  )21 - l / (2r) t r[g~z ] + 6 

= f(x)- l / (2r)l lal l2+, ' /2l lBl] ' .  (11) 

The combination of (9)-(11) leads to a contradiction. 
(ii) By the definition of q (~ ,  r)  and (4), we have 

q (~ ,  r) = inf  L(x, f2, r) 
x ~ R  n 

= inf  inf  {F(x, A) + tr[DM] + r/2 A 2 }. 
x ~ R  n A ~ S  'n 

Moreover, it is elementary to show that 

inf  inf  {F(x, A) + tr[D.A] + r/2 A 2 } 
x e R "  A ~ S  m 

= inf  inf  {F(x, A) + tr[DM] + r/2 A 2 } 
, 4 ~ S "  x e R "  

= inf  {p(A) + tr[DA] + r/2 A ~ }. 
A e S "  

(12) 

(13) 
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The combination of (12) and (13) gives (5). D 
The following proposition is a direct consequence of Lemmas 2.1-2.4. 

Proposition 2.1. (i) The augmented Lagrangian L(x, C2,r) and the 
augmented Lagrangian dual function q(~,r)  are both concave in 

r)  S m x [1, +oo); 
(ii) The augmented Lagrangian L(x, f2,r) is nondecreasing in r on 

[1,+oo). 
(iii) The augmented Lagrangian L is continuously differentiable in x ; 
(iv) If f and g are convex on R", then the augmented Lagrangian 

L(x, f2,r) is also convex in x on R". 

3. D U A L I T Y  

In this section, we establish duality results based on augmented 
Lagrangian. Throughout this section, p(A) is defined by (3). The following 
proposition, whose proof is elementary, establishes a weak duality property 
between (SDP) and (SDD). 

Proposition 3.1 (weak duality). The following relation holds 

Mso o < p(O). (14) 

The next theorem presents conditions for the strong duality property 
between (SDP) and (SDD). 

Theorem 3.1 (strong duality). Assume that there exist f2 e a m and ~- > 1 
such that 

q(~,F) >_ m o (15) 

for some m 0 e R. 
(i) If 

lim inf p(A) = p(0) (16) 
A---~0 

holds, then, there holds 

p(O) = Mso D . (17) 
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(ii) If(17) holds, then (16) holds. 

Proof. (i) First, we prove that if (16) holds, then (17) holds. Suppose (by 
Proposition 3.1) to the contrary that there exists 6 > 0 such that 

q(~'l,r)<p(O)-6, V~l~Sm,r>O. 

Let 1 < r k ---> +oo. Then 

q(~,rk)< p(O)-6,  Vk. 

Consequently, by (5), there exists A k ~ S m such that 

p(Ak)+trED.Ak~+r/2 Ak z < p ( 0 ) - 6 / 2 ,  Vk. (18) 

It follows from (15) and (18) that 

Ak z < 2(p(O)-f/2-m°)_ Ak. 
rk - r 

Thus, 

l i m  A k =0 .  

Taking the lower limit in (18), we obtain 

l iminf  p ( A )  < l iminf  p(Ak)< p ( 0 ) - 6 / 2 ,  
A-~0 A ~ 0  

contradicting (16). Therefore, (17) holds. 
(ii)From Mso o =p(0 ) ,  we see that, for any 6 > 0 ,  there exist 

m * ~'I*~S , r  >1 such that 

q(~*,r*) >_ p(O)-6. 

Thus, it follows from (5) that we have 
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p (A)  + tr[f2*A] + r*/2 A 2 > p(O) - 6. 

Passing to the lower limit as A --~ 0, we have 

l imin f  p(A)  > p ( O ) - 6 .  
A--~0 

By the arbitrariness of 6 > 0, we see that 

l imin f  p(A)  = p(O). 
A ~ 0  

(16) follows. [] 

Remark 3.1. Previously, classical Lagrangian is used to deal with (SDP): 

L'(x, f2) = f ( x )  + tr[f2g(x)], ~ _ 0, x ~ R". 

Accordingly, classical Lagrangian dualproblem is formulated as follows: 

(SDD') sup inf  L ' (x ,~) .  
f~>-O x~R" 

Denote by Mso ~, the optimal value of (SDD') .  It can be shown that If the 
zero duality gap property between (SDP) and its classical Lagrangian dual 
problem (SDD') ,  p(O) = Mso o, holds, then the zero duality gap property 

holds by means of augmented Lagrangian, i.e., p(0)  = MsD D . In particular, 
if (SDP) is convex and the Slater constraint qualification holds: there exists 
x o E R" such that g(Xo) -< O, then p(0)  = Msoty (see [21]). This further 

implies that p(0)  = MsD D . 

4. E X A C T  P E N A L I Z A T I O N  

The next result is concerned with an exact penalty representation 
property via augmented Lagrangian. 

Theorem 4.1. Let ~ '  ~ S " .  Assume that there exist ~ ~ S"  and 7 > 1 
such that (15) holds. 
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(i) Suppose that there exist a 7 > 1 and a neighbourhood W of  0 • S m 
such that 

p(A)+tr[~'A]+-F A 2> p(O), V A • W .  (19) 

Then there exists r* > 1 such that 

p(0)  - '  *. = q ( f~ , r ) ,  Vr  > r (20) 

(i i)If  (20) holds, then there exist a ~' > 1 and a neighbourhood W of 
0 • S"  such that (19) holds. 

Proof. (i) First, we show that (19) is equivalent to that there exists ~ '  > 1 
such that 

p(A)+tr[~'A]+g" A z > p(O), VA • S  m. (21) 

It is obvious that if (21) holds, then (19) holds (by taking ~ = ~ ). Now we 
show that (19) implies (21). Without loss of generality, suppose to the 
contrary that there exists {A k } c S m and 1 < r k --~ +oo such that 

A k _ > a > 0 ,  Vk (22) 

for some constant a > 0 and 

p(Ak) + tr[fi,Ak ] + ~, IA k 2 >_ p(0) ,  VA • S" .  (23) 

On the other hand, by (15) and statement (ii) of  Lemma 2.4, we have 

P(Ak ) + tr[~Mk 1 + r- Ak ]2 > m0. 

(23), together with (24), gives us 

p (0 )  > m 0 + t r [ ( f i ' - f i ) ) A  k] + (r  k - 7 )  A k 2. 

As a result, 

(24) 
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Ak < p ( 0 ) -  m o - t r [ ( ~ ' -  ~))Ak/ A k ] 
r k - 7  

which contradicts (22) as k ~ +oo. So (21) holds. By statement (ii) of 
Lemma 2.4, there exists r* > 1 such that (20) holds. 
(ii) If (20) holds, then, by statement (ii) of Lemma 2.4, we have (21), hence 

(19). The proof is complete. [] 

. C O N V E R G E N C E  A N A L Y S I S  

In this section, we consider convergence of first-order stationary points 
of the augmented Lagrangian problems when the penalty parameter tends to 
-boO. 

Denote by (P (~ ,  r)) the augmented Lagrangian problem: 

i n f  R,,L(x, f2,r). 

Definition 5.1 [21]. Let x 0 E R n be feasible to (SDP). We say that the 
Mangasarian-Fromovitz constraint qualification (MFCQ in short) holds at 
x 0 iffthere exists d E R" such that g(Xo)+ Dg(xo)(d ) -< O. 

Definition 5.2. Let 2. be feasible to (SDP). We say that 2. satisfies the KKT 
optimality condition of(SDP) iffthere exists A E S m with A _ 0 such that 

c3f(2.) ~- trFA Og(-~)- = 0 
Oxi L Oxi 

(25) 

and 

Ag(2.) = 0. (26) 

It was established in [21] that if 2 is a local solution of (SDP) and the 
Mangasarian-Fromovitz constraint qualification holds at 2., then 2. satisfies 
the KKT optimality condition of (SDP). 

The next result follows immediately from Lemma 2.2. 

Theorem 5.1. Suppose that 2.(~, r) is a local minimum of (P (~ ,  r)) .  Then 
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Of(2.(~,r)) 
xi 

= 0 ,  i = 1, . . . ,n.  

The next lemma is useful for convergence analysis. 

L e m m a  5.1. Let {~k}cS  m be bounded and 
2.k E R n, V k .  Suppose that there exists M E R such that 

L(2.k,~k,rk) _< M. 

Then any limit point of  {Yk} is feasible to (SDP). 
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I Og(Y(f2,r))]Oxi v 1/2tr ( ~  + rg(-~(f~,r))+lf~ + rg(2.(f2,r))l) 

(27) 

0 < r  k ---~+oo. Let 

(28) 

Proofl Suppose that 2. is a limit point of {2.k} and assume without loss of  
generality that x-k ~ 2 .  Then from (28), we deduce that 

]~klrk + g(x k)+ i f~klr k + g(x k)12< 8[f(xo ) _ f ( xk )+  1_. L tr[f~ ]]. 
rk L 2rk J 

We have following convergence results for augmented Lagrangian. 

Theorem 5.2. Let {f2 k } c S m be bounded, 1 < r k --+ +oo. Consider the 
problems (SDP) and ( P ( ~ k , r k ) ) .  Let ~k be a local minimum of  
(P(C2 k , r k )). Suppose that there exists a constant M such that 

L(2.k,~k,  rk) < M,  Vk 

holds. Then each limit point of  {2k} is feasible for (SDP). Furthermore, if 
2. is a limit point of  {2.k} and MFCQ holds at ~ ,  then ~" satisfies the KKT 
optimality condition of  (SDP). 

Proof. By Lemma 5.1, each limit point of  {2.k} is feasible for (SDP). 
Assume without loss of  generality that gk ~ 2. as k ~ +oo. Let 

Ak =(~k +rkg(~k)+ I f~ +r,g(~k) I) >--- O. (29) 

Then (27) (wi th  r and 2.(~2,r) replaced by r k and 2.k, respectively) 
becomes 
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ag(y,)- 

Of(Y'k) t- tr A k 
Ox, Ox, =0, i = 1,...,n. (30) 

We assert that {Ak} is bounded. Otherwise, assume without loss of 
generality that [ A k --~ +0o and 

lim Ak/ A k [= A' ~ 0. 
k--~+~ 

Dividing (30) by A k and passing to the limit as k ~ +0o, we get 

t r [A'  ag(2)-  = 0, i = 1,...,n. 
L Ox, 

(31) 

Note that 

tr[A'g(2)]= lim tr l  Ak g(2k)] 
k-~+oo L Ak / 

= L ~ k-~+~lim tr [f~k L + rkg(2-k)+ I OklA~ + rkg (~k) I g (2-k) 

_> ~-liminf" ~rkg(-xk)+lrkg(-~')l ] 
L -2,- g( k) 

=½1iminftr[r, g(y*)+]g(y*)],_,+~ A k g(-#') ] 

because {~k } is bounded and A k ~ +oo. Furthermore, 

_~liminftrlrkg(Xk)+lg(-xk)l 1 
k-,~o IA~ g(~k) 

=-~liminftr[ rkg(-yk)+lg(yk)lk--,~ Ak I g(Yk) I ] 

_>0 
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because [ g(2k)[___ 0 and g(2k)+  [ g ( 2 k ) [ _  0. 
A' ~ 0 and g(~-) ~ 0, we deduce that 

tr[A'g(Y)] _< 0. 

Hence, we have 

tr[A'g(Y)] = 0. (32) 

By MFCQ at ~ ,  there exists d ~ R" such that g (2 )  + Dg(-~)(d) .-< O. It is 
obvious that A' ~ 0. It follows that 

t r [A ' (g(Y)  + Dg(~)(d)] < O. 

This combined with (32) yield 

tr[A'Dg(-Y)(d)] < O, 

contradicting (31). So we assume without loss of generality 
A k ~A___0. Taking the limit in (30) as k--~+oo,  we 
Moreover, if A = 0, then (26) holds automatically. Now 
A ¢ 0. We have 

tr[Ag(~)] = limo tr [Akg(yk)  ] 

lim" [ f2k +rkg(yk)+lnk +rkg(yk)[ k tr g(2~) 
= ~-" "'- n k  +rkg(Yk)+ I f~k +r~g(~k) I 

L f~k/rk +g(-~k)+lf~k/rk+g(Yk)+lnk/rk + g(2"k) I + g(~) I1 ] 2k~lim Ak tr[ ~k/rk (nk/rk +g(Yk)) (33) 

because {~k} is bounded. Let A s = ~k/rk + g(-xk), Vk. Assume that 

g(~-) = u  Tdiag[&,.. . ,  ;t m ]u ,  

where 2, m _< ...,_< "~'s+, < 0 = 2 s . . . .  ,21 and UrU = I, and 
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On the other hand, from 

that 
obtain (25). 
assume that 
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ilk = U[ diag[ ?q,k,'",2m,k ]Uk, 

7" where )l.m, k < " ' < 2 a ,  k and U k U  k = I .  
2i, k ---> 2~, i = 1, . . . ,m.  As a result, 

12~k+l 2/k I Ai,k l im . . . .  < l im 1 A,~ k I = 0, 
k--,+~ Ak+lAk I -k - - ,~  ' 

and 
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Since A k --> g ( ~ ) ,  we  see that 

i = 1 , . . . , s  (34) 

l im 2 i ' k + l A i ' k l ~ k = l i m 0 x ~ k = 0 ,  i = S + I , " "  m 
k-,+~ Ak+lAk l  , k-,+~ , 

The combination of  (33)-(35) yields (26). This completes the proof. 

(35) 

[] 
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OPTIMALITY ALTERNATIVE:  A NON- 
VARIATIONAL A P P R O A C H  TO NECESSARY 
CONDITIONS 

A.D. Ioffe ~ 
Dept. of Mathematics, Technion, Haifa, lsrael 

1. INTRODUCTION. THE OPTIMALITY ALTERNATIVE 

In this paper we shall discuss an approach to necessary optimality 
conditions that can be qualified as "non-variational". The essence of  the 
approach can be summarized in the following theorem. 

Consider an abstract minimization problem 

minimize f ( x ) ,  s.t. x ~ M c X, 

where X is the domain space, M is the constraint set and f is the cost 
function. 

Theorem 1 (Optimality altemative). Suppose that (X, d) is a metric space, 
-£ ~ M and f satisfies the Lipschitz condition near -Y. Let further qo(x) be 

a nonnegative extended-real-valued function equal to zero at -Y. Suppose 
finally that -£ is a local solution o f  the problem. Then the following 
alternative holds: 

i The research was supported by the USA-Israel Binational Science Foundation under the 
grant 2000157 
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- either there is a ~ > 0 such that the function )xf +99 attains an 
unconditional minimum at 2"; 

- or there is a sequence (x,) converging to 2" such that 
99(x,) < n- ld (x , ,M) .  Inparticular, if  X is complete, M is closedand 99 is 
lower semicontinuous, then there is a sequence (z,) converging to 2" such 
that z ~ M and each of  the function qg(x) + n-td(x ,z , )  attains an absolute 
minimum at z, .  

We shall speak about the regular case i f  the first possibility takes place 
and about singular case otherwise. 

Proof. Indeed, either there are a neighborhood of 2- and R > 0 such that 
R~p(x) >_ d(x ,M)  for all x of  the neighborhood, or there is a sequence (x,) 
converging to 2- with 2n99(x,,) < d(, M) .  In the first case, as f is Lipschitz 
(e.g. with constant L), we can choose for any x close to 2- a u ~ M such 
that, say d(x,u) <_ 2d(x ,M) .  Then 

f (x) >_ f (u) - Ld(x,u) >_ f (2-) - 2LR99(x). 

In the second case, if  X is complete, M is closed and ~o l.s.c., we apply 
Ekeland's variational principle to the function 99(x). As it is nonnegative, 
we have 99(x,) < inf99 + (2n) -~ d(x,,, M ) ,  so Ekeland's principle guarantees 
the existence of  (z,) such that d(x, ,z)<_ d(x , .M)/2 and 99(x)+ n- ld (x , z )  
attains an absolute minimum at z .  fl 

The theorem reduces the problem to one or a sequence of unconstrained 
problems. This means that a necessary condition to the original problem can 
be obtained by way of  analysis of  necessary conditions in unconstrained 
problems. 

We observe further that in case when cp(x)= 0 on M ,  the regular case 
conclusion that 2 is an unconditional local minimum of  f + K99 is also 
sufficient for 2" to be a solution. Therefore the optimality alternative allows 
in principle to get all kind of  necessary conditions, not just the first order 
conditions. 

To get a better look at the alternative and its relationship to the method of  
variations, let us consider a very simple example of an equality constrained 
problem in/~'" : 

minimize f ( x ) ,  s . t .F(x)=O, 

where F is defined and continuous in a neighborhood of  2- and takes values 
in R " .  
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Suppose 2 is a local solution. We first apply the optimality alternative 
(in which case f should be assumed Lipschitz continuous near 2).  Take 
 (x --ItF(x>ll • Then by the theorem 

- either there is a A > 0  such that ,Xf(x)+llF(x ll attains an 
unconditional local minimum at 2 ,  

- or there is a sequence (x.) converging to such that F(x, ,)~ 0 and 
IIF(x ll + n-' IIx- x.II has an absolute minimum at 2 " .  

Assuming that f is Gfiteaux differentiable at x and F is Gglteaux 
differentiable in a neighborhood of  2., we conclude that in the regular case 
there is a y E ~  m with IlYll_<K such that f ' ( 2 " ) + y o F ' ( 2 " ) = 0 ,  and in the 
singular case for any n there is a y. with Ily.ll = l (since F(x, , )~ 0)  such 
that Ily°o F'(x°>ll<-n-'. i f  finally we assume that F '  is continuous at 2" 
(hence F is Fr6chet differentiable at 2) ,  then for any limit point y of  (y.)  
we would get Ilyl[-- 1 and y o F'(2") = 0. 

Summarizing, we arrive at the standard Lagrange multiplier rule: there is 
a nontrivial pair (A,y) with A > 0  (actually AE{0,1}) such that 
Af'(2") + y o F'(2") : 0. 

Applying the standard variational argument (that is to say, based on 
variations of the cost function and the constraint map along curves 
x(t) = 2" + th + o(t)) to the same problem, we shall arrive at the same result 
with the help of either implicit function theorem or Brouwer fixed point 
theorem, in the latter case under a weaker assumption on F ,  just that F is 
Fr6chet differentiable at 2". Here also we can distinguish between the regular 
and singular cases, the first corresponding to Im F'(2")= R m in which case 
A > 0 .  

If  we compare both results and proofs, we have to conclude that in the 
two lines of  arguments we 

(a) consider different types of minimum; 
(b) impose different assumptions on the components of  the problem; 
(c) use different analytic apparatus in proofs. 
Indeed, regarding (a) we observe that in the proof based on the optimality 

alternative we deal with the real local minimum. It is clear from the analysis 
of  the regular case in the proof of the optimality alternative that the reduction 
to unconstrained minimization cannot be implemented if 2" is not a point of  
a local minimum in the problem. 

On the contrary, in the proof based on the method of  variations, we 
actually deal with weaker concepts, namely local minimum on each variation 
curve x(t)= 2"+ th + o(t) if we use the implicit function theorem or the 
property that the image of  a neighborhood of 2" under mapping ( f , F )  does 
not cover a neighborhood of  (f(2"), 0) if the Brouwer theorem is used. 

In connection with (b) we notice that the method of  variations may work 
under weaker assumptions (which is not surprising in view of  (a)) both on 
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f (no need to require f to be Lipschitz near 2 )  and F (e.g. in the case of 
the proof based on the Brouwer theorem). 

Finally, as far as (c) is concerned, we notice that the proof based on 
optimality alternative does not use any powerful tools of analysis (such as 
the implicit function theorem or the Brouwer fixed point theorem or, more 
generally, any kind of an open mapping theorem) which are central in any 
application of the method of variations. 

This is probably the main advantage of the optimality alternative. Indeed, 
in many cases, for instance in optimal control, there is no need in any kind of 
existence theorems for solutions of equations or inclusions involved in the 
statement of the problem when necessary optimality conditions for the 
problem are obtained by means of the optimality alternative. 

Of course, the optimality alternative subsumes many essential elements 
of the techniques developed in nonsmooth optimization starting with 
Clarke's studies of mid-70s and related to subdifferential-oriented theory of 
necessary conditions in nonsmooth optimization problems (as say 
decoupling and reduction to unconstrained minimization). One can also trace 
a (more distant) relationship with the penalty function method which was 
also occasionally used to prove necessary conditions, although the question 
about existence of solutions in approximating unconstrained minimizations, 
the most painful for applications of penalty function methods, does not even 
appear when the optimality alternative is concerned. And typically, all so far 
available proofs do relay on certain powerful theorems of analysis. 

The above observations suggest the possibility that the method of 
variations and the optimality alternative may produce different necessary 
conditions in certain situations. A stronger necessary condition can be 
expected of the optimality alternative, which may be not necessary for the 
type of a minimum analyzed by means of variational methods, and which 
therefore cannot be obtained by the latter. On the other hand, it can be 
expected that variational methods can be applied under weaker assumptions 
on the components of the problem. 

It seems that this is precisely what we observe in certain branches of 
optimal control theory, namely optimal control of systems governed by 
differential inclusions. There are two parallel theories (e.g. [1,4,12] on the 
one hand and [11] on the other) in which similar problems are considered 
under different sets of assumptions and different necessary optimality 
conditions are obtained which do not coincide even in the intersection 
settings. 

Before we pass to more detailed discussions concerning demonstration of 
the work of the optimality alternative, we need to make an excursion into 
nonsmooth analysis in the next section since meaningful applications of the 
optimality alternative always require nonsmooth function qo, so that non- 
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differentiable functionals appear in accompanying unconstrained 
minimization problems. The information collected in the next section is 
sufficient mainly to understanding the statements of  results and some simple 
steps in proofs. This is more or less sufficient to present complete proofs in 
abstract setting but many technical details concerning specific functionals, 
that appear e.g. in connection with optimal control problems, require more 
elaborate techniques which goes beyond the scope and possible size of this 
paper (which is basically a transcript of  the talk at the conference) and will 
be published elsewhere. As more specific applications, we consider two 
problems, one is rather abstract and the other more specific: optimal control 
of  a system governed by a parabolic differential inclusion. 

. D I G R E S S I O N  I N T O  N O N S M O O T H  A N A L Y S I S  

Let X be a Banach space. All definitions and results below are 
formulated under the additional assumption that X is weakly compactly 
generated (that is to say, it contains a weakly compact set whose linear hull 
is dense in X) .  This does not mean that certain definitions or propositions 
do not have counterparts valid for arbitrary Banach spaces but, on the one 
hand, some formulations are much simpler in the WCG setting and, on the 
other hand, the class of  WCG spaces is sufficient for the vast majority of  
applications of  nonsmooth analysis, in particular those considered later in 
this paper. (Perhaps this is appropriate to mention that all reflexive spaces 
and all separable spaces are weakly compactly generated.) 

So let X be a WCG space, and let f be a function on X taking values 
in (-o%00]. If  f is finite at x, then the function (of h) 

f -  (x;h) = lim inf f (x + tu) - f (x) 
t-~+O t 
u~h 

is called the Dini-Hadamard directional derivative of f at x. The Dini- 
Hadamard subdifferential of f at x is defined by 

= O-f (x) {x* e * 

(where X* as usual stands for the dual space). 
Suppose now that f satisfies the Lipschitz condition near x. Then the 

approximate G-subdifferential (to be called in what follows simply 
approximate subdifferential as no other types of approximate subdifferential 
is considered) is the upper limit of  the Dini-Hadamard subdifferentials: 
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Of(x) = lim supO- f (u). 
U-3"X 

The upper limit is considered with respect to the norm topology in X and 
the weak*-topology in X ° . As far as the latter is concerned, the limit can be 
understood either topologically or sequentially: recall that in the dual to a 
WCG space, every bounded sequence contains a weak*-converging 
subsequence Each approach has its advantages but the theories, including 
proofs and formulas are very similar. In case when the sequential limit is 
considered, the subdifferential is often called limiting. 

To define approximate subdifferential for non-Lipschitz functions, we 
need the notion of  approximate normal. Let S c X and x • S.  The set 

N(S, x) = d AOd(., S)(x) 
A>0 

is called the approximate normal cone to S at x. Observe that this cone is 
not necessarily closed even if the subdifferential is defined through the 
topological weak ° -limit. Now, given a function f which is finite at x, we 
define its approximate subdifferential at x as follows: 

Of(x) : {x* :(x*,-1) • N(ep i f ,  (x, f(x))}. 

In case of  a Lipschitz function, this definition is equivalent to the original 
definition. For Lipschitz functions the generalized gradient of  Clarke 
coincides with the convex closure (convex hull in the finite dimensional 
case) of  the approximate subdifferential: 

Ocf(x ) : cl (cony Of(x)). 

Suppose now that F is a set-valued mapping from X into Y. The 
empty set is allowed to be a possible value for F ,  so we can always assume 
that F is defined on the whole of  X .  Let y e F(x).  Then the set-valued 
mapping from Y* into X* defined by 

D*F(x,y)(y') : {x" e X" : (x* , -y ' )  e N(Gr F,(x,y))} 

is called the (approximate) coderivative of  F at (x,y) .  If  F is single- 
valued, we usually write D*F(x)(y*). If F is single-valued and Lipschitz 
near x, then 

D*F(x)(y*) = O(y* o F)(x). 
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Subdifferential, normal cone and coderivative are the three main classes 
of  objects studied in local nonsmooth analysis. Below we list some 
properties of  theirs which will be used in the subsequent discussions. As 
only approximate subdifferentials, normal cones and coderivatives will 
appear in the sequel, we do not speak here about objects of  other types. 

The sum rule: Let f , . . . , fk  be lower semicontinuous functions and all of  
them, save at most one, satisfy the Lipschitz condition in a neighborhood of  
2-. Then 

o ( f  , +... + L )(2-) c of, (2-) +... + oL (2-). 

Chain rule: (a) Let G be a continuous mapping from a neighborhood of 
2" ~ X into Y, and let f be a function on Y defined and Lipschitz in a 
neighborhood of  y = G(2-). Then 

O(foG)(2- )c  U D*G(2-)(y*). 
y'e0/'(y) 

(b) Consider the Nemytzki operator G : x(.) --> g(t,x(t)) e.g. from ZY into 
£~ over some measure space (p , s<oo) ,  where g is a Carath6odory 
function satisfying the conditions which guarantee continuity of  G (see e.g. 
[7]). Then 

[ D*G(x(.)4(.))](t) = 4(t)O(sign~(t)(t, x(t)). 

Fermat  rule: If  f attains a local minimum at 2-, then 0 E Of(2-). 
Connection with convexity: If  f is a convex function, then Of(x) 

coincides with the subdifferential of  f at x in the sense of convex analysis, 
Of(x )={x  : f ( x + h ) - f ( x ) > _ l x ' , h ) , V h  } . that is 

Connection with differentiability: I f  f is continuously (or strictly) 
Fr6chet differentiable at 2-, then af(2-) = {f'(2-)} ; if F : X  --+ Y is 
continuously (or strictly) Fr6chet differentiable at 2 ,  then 
D'F(2-) = (F'(2-))*. 

Lipschitz properties: (a) If f satisfies the Lipschitz condition near x 
* < with constant K and x* ~ Of(x), then x _ K ; 

(b) A set-valued mapping F : X ~ Y is called pseudo-Lipschitz (or having 
the Aubin property near (2-,y) ~ Gr F ) if there are e > 0 and K > 0 such 
that 

F ( x ' ) N B ( ~ , e )  c F(x)+ K l l x -  x'llg, 
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• - -  t m ~ . . . . .  provided [ x - x  , [ [ x - x  _ e .  If  F is pseudo-Lipsch~tz near ( x , y )  and 
• . , . ,~ . . < * - . x ~D f (2-, y) (y ), then J[x. _K y ' [ . .  , 

Konusmess of  the limiting subdifferential. The limiting subdifferential 
of  a function on R" is upper semicontinuous set-valued mapping: if x, ~ x 
and y,, • Of(x,) converge to some y ,  then y • Of(x). 

Subdifferential  of  the distance function. Let Q c ~ "  and 
f ( x )  = d(x, Q) Then the norm of  any element of  0f(x) is not greater than 
one; it is exactly one if f ( x )  > 0. In the latter case if y • Of(x) and v • Q is 
such that II x -  vii-- f(x , then y • N(Q,v) .  

We refer to [3,9,10] for further information and proofs. 

. A N  A B S T R A C T  I N C L U S I O N  P R O B L E M .  

Consider the following problem: 

minimize l(x), s.t. Ax • F(x), G(x) • S. (P) 

Here X , Y , Z  are WCG Banach spaces, A is a linear operator from X into 
Y, F : X ~ Y is a set-valued mapping, G : X -~ Z and S c Z .  Let ~ • X 
be an admissible element in the problem. Set y = A ( g ) , 2 = G ( 2 ) .  With 
every problem of  this type we can associate two concepts of  a local 
minimum: 

- strong minimum which is a local minimum in the usual sense: 
l(x) >_ 1(-£) for all admissible x satisfying [I x - YI[ < c ; 

- A - weak minimum: l(x) >_ l(-£) for all admissible x satisfying 
Ilx-- ll+llA(x-- )ll<  

Concerning the components of  the problem, the functional l ,  the operator 
A, the constraint set S and the set-valued mapping F ,  we shall assume the 
following: 

(Al) l satisfies the Lipschitz condition near ~ ;  
(A2) A is densely defined closed linear operator with A = Y and a 

compact inverse A : Y --+ X ; 
(A3) G is Lipschitz in a neighborhood of  ~ and S is closed and 

normally compact near 2 ,  that is 

z, ---~Y,z; • N ( S , x , ) , z ;  ---~O(weak')~ z~ ----~ 0. 

This holds in particular when S is a convex set with a nonempty interior. 
The assumptions on F depend on the type of  the minimum to be 

considered: 
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(A4)  w the graph of  F is closed and F is pseudo-Lipschitz near ( 2 , y ) ,  
(A 4 ) ,  the graph of  F is closed and for any N > 0 there are there are 

c > 0, K > 0 such that 

F ( x ' ) N B ( y , N )  c F(x)+ g l l x -  x'llg 

if IIx- <  ,llx'- < 
Both conditions can be reformulated in terms of  Lipschitz properties of 

the distance function d(y, F(x)) .  Namely, (A 4 )w means that this function 
satisfies the Lipschitz condition in a neighborhood of ( 2 , y ) ,  while (A 4 )s 
implies that for any N there is a c such that the function is locally 
Lipschitz on the product B(~, c) × B(y, N) .  

The following theorem gives a necessary optimality condition for the A- 
weak minimum in (P). 

Theorem 2. Assume (AI)-(A3), (A 4) w • I f  -~ is an A -weak local solution to 
(P), then there are A > O, y° E Y*, z* E N(S,-£) such that the following two 
relations are satisfied 

(a) 2+lly ' [  + [z*[[>O (non-tr iv ial i ty);  
(b) A'y* E AOI(-~) + D*F(-~,-fi)(y*) + D*G(-~)(z*) (adjoint inclusion). 

Proof.  We can reformulate our problem as follows: 

minimize l(x) s.t. A x -  y = O, y ~ F(x), G(x) E S. (P') 

Then (2 ,T)  is a local solution in (P'). This is obvious. Set 

~o(x,y) = d(y ,F(x))  + d((x, y), Gr A) + d( G(x),S). (1) 

This functions satisfies the requirement of the optimality alternative, so we 
can apply it to(W) with this ~,. 

Regular  case. Assume that there is a A > 0 such that the function 
ga(x,y) = Al(x) + ~o(x,y) attains a local minimum at (2-,y). Then 

(o, o) y). (2) 

As was explained prior to the statement of the theorem, the function 
d(y ,F(x))  satisfies the Lipschitz condition in a neighborhood of  ( 2 , y ) .  It 
is possible to show that in this case the normal cone to the graph of  F is 
generated by the subdifferential of  d(.,F(.)). Furthermore, the other two 
items in the right-hand part of (1) are also Lipschitz functions. Therefore by 
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the sum rule, (2) implies that zero belongs to the sum of  the (approximate) 
subdifferentials of  the three functions at (2-,y), We have 

- i f  (x* ,y  °) belongs to the subdifferential of  d(.,F(.)) at (2-,y), then 
x ° _<K, y* _<l,x , x* eD°F(x ,y ) ( -y -  - "); 

- if (x*,y*) belongs to the subdifferential of  d( . ,GrA) at (2,y), then 
x** _<1,1!,*. _<1 (if we take the /i-norm in X x Y ) ,  and 

x +A y = 0 ;  

- if x" belongs to the subdifferential of  d(G(,),S) at 2 ,  then by the 
chain rule there is a z* ~N(S,2") such that z" _<1 and 
x* ~ D*a(-Y)(z*) . 

Combining this with (2), we conclude, that there are y* and z* e N(S,2-) 
such that 

0 e AOI(2.) + D*F(-Y,y)(y*) + D*G(Y)(z*) - A'y* 

as claimed. 
Singular  ease. If  g~ does not attain a local minimum at (2-,y) for any 

positive A, the by Theorem 1 there is a sequence (x. ,y.)  converging to 
(2 ,y)  and consisting of  inadmissible vectors for (P') such that for each n 
the function 

= ( l l x -  x.ll+lly- y.]]) 
n 

attains global minimum at (x . ,y . ) .  Then (O,O)EO~b.(x.,y.). The latter 
means that there are (x;,-y*.) in the subdifferential of  d(.,F(.)), (u*,v*) in 
the subdifferential of d(. ,Gr A) at (x . ,y . )  and a w" in the subdifferential of  
d(G(.),S) at x.* such that 

lx;+.;+w..I_<l/n, y ; -¢  _<Vn. (3) 

Furthermore, by the chain rule, w~ e D*G(x.)(z~) for some z. ° in the 
subdifferential of d(.,S) at G(x.) and as follows from (A3) and (A4)w there 
is a K > 0 such that 

* < K  y ' . ,  * < * x. _ [w. _ K l z  . ,Vn. (4) 



Optimality Alternative and Non- Variational Necessary Conditions 541 

The norms of  functionals (x~),(y~),... are uniformly bounded as the 
corresponding functions are Lipschitz, so without any loss of generality we 
may assume (as both spaces are WCG) that each of  the sequences weak*- 
converges to certain vectors in the corresponding spaces: 
x,, --+ x , y,, ~ y ,u,, --+ u , ~ v ,  w, ~ w ,  z,, ~ z* . It follows from (3) 
that 

x* +u*+w'=O,  y*=v*,  w*~D*G(x)z* (5) 

Furthermore, as in the regular case, we have u~ + A'v~ = 0 which by (A2) 
means that v. = - A  u. norm converge to v' ,  hence by (3),(5) y. norm 
converge to y*. 

As neither of  (x . , y . )  is admissible in the problem, it must violate one of  
the three constraints in (P'). This means that at least one of  the three 
constraints must be violated for infinitely many n. Again, without any loss 
of  generality, we assume that a certain condition is not satisfied by all 
(x., y . ) .  Thus: 

- either y.  ¢s F(x . )  for all n, 
- or y.  ~ Ax. for all n, 
- or z. = G(x.)  ~ S for all n. 
We shall show that in either case either y * ¢ 0  or z * ~ 0 .  Indeed, if 

y.  ¢~ F(x . )  for all n, then y ; / =  1, hence y* = I, If  y.  ~: A x  for all n, then 
max{ u'.[,lv; }=1 for all n'. I~'we admit that v; ~ 0 ,  then lu; =1 for all 
n, hence Ix; + w; --. 1. But (3) and (4) imply together that x] 2_> 0, hence 
IIw~ --~ 1. By (4) the latter implies that the norms of z; ar~ bdunded away 
from zero and (Aj)implies that z" 4: 0, 

Finally, if z. ¢~ S for all n, then IIz; = 1 for all n, and as above, we 
conclude that z ' ~  0. Note also that ~ln case w ' ~  0 we have x ' +  u ' ~  0 
which would imply that y" =v" ~:0 for otherwise we would have 
X =U = 0 .  

Applying (5) along with the fact that u" =-A*v ' ,  we conclude that 
A ' y ' ~ D ' F ( - £ , y ) ( y ' ) + D ' G ( - £ ) ( z ' )  which is the desired inclusion with 
A = 0. Jill 

. R E L A X A B I L I T Y  A N D  T H E  M A X I M U M  P R I N C I P L E  

Property (As) is typical for differential operators. Many of  them, actually 
many of  the most important differential operators, have an additional 
property that allows to strengthen the necessary optimality condition of  
Theorem 2 up to a necessary condition for strong minimum in the form that 
can be naturally called an abstract maximum principle. Let us agree to say 
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that a function f ( x , y )  attains a strong local minimum at (2.,y) subject to 
Ax = y if ( A2. = y and) there is an ~" > 0 such that f ( x ,  Ax) >_ f ( -£ ,y)) ,  

provided IIx- 2.11-< 
Definition. Let f be a function on X × Y. We shall say that f is relaxable 

with respect to A at (2.,y) if there is an c > 0 such that for any (x,y) with 

IIx-2.11< , any finite collection {y l , . . . , y k }cY  and any a , > 0  .... ,% > 0  

with ~}--'ai_<~ there is a sequence (x , , y , )  such that Ax, = y , , y ,  weakly 

converge to y + ~ at i (Yi - Y) and f ( x , ,  y , )  converge to 

g(u, y, a, .... , at~) = f (u ,  y) + ~ a i ( f (u ,  Yi) - f (u ,  y)), 

where u = l i m x .  

Proposition 3. Suppose that f has the following property: 
(As) for any N > 0  there is an e > 0  such that f ( . , y )  satisfies the 
Lipschitz condition in the c -ball around 2 if Ily- Yll-< N.  

I f  A satisfies (A 2), f is relaxable with respect to A at (2.,-f) and attains 
at (-£, ~) a strong local minimum subject to Ax = y ,  then 

(a) for any finite collection Yl,'",Yk of  elements o f  Y the function 

h(x,y, ctl,...,ak)= g(2. + X,y + y, at,..., %)  

attains at (0, 0, 0,..., O) a local minimum subject to 

k 

A x = y + ~ a i ( y  , - y ) ;  a , > O , i = l  .... ,k; 
i=1 

(b) there is a y" such that 

( -A*y*,y ' )eOf(2. ,y);  f ( 2 . , y ) -  f (2 . , y )>_(y* ,y -  y) ,  V y e Y .  

Proof. Fix some Y~,...,Yk ~ Y  and let T be a linear operator from 
X x Y x R k into X defined by 

k 

T(x, y, a,,..., a k ) = x - A(y + ~ a, (y, - y)). 
i=1 
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(Recall that A is the inverse of A.) Clearly T is a bounded (even 
Fredholm) operator with T = X .  Moreover, the image under T of the 
convex closed cone K = X x Y x R+" (the latter being the positive orthant in 
R" ) is the whole of  X .  By the theorem of Robinson-Ursesku (see e.g. [5]) 
there is an M > 0 such that 

k k 

d( (x ,y ,a  I .... x - A ( y + ~ ] a , ( y , - y ) )  + y]aT) ,  
i=l i=l 

(6) 

where a + = max{a,0}. 
Observe that a common M can be chosen for all possible choices of  k 

and yl,...,yk. 
Since f is relaxable with respect to A at ( 2 , y ) ,  the function 

h(x,y,a~ ..... ak) attains at (0,0,0,...,0) a local minimum subject to 

(x,y, c t , , . . . , a k ) ~ k e r T A K .  Indeed, if A x = y ,  the norm of  x ,y  and ~-]ct~ 

are sufficiently small and Au =y+~-]a~ ( y ~ - y )  is close to x and hence to 

zero . By definition there is a sequence (x , ,y , )  such that y, converge to 

y+ ~ a i  ( y i -  y ) and f ( x  ,y , )  converge to g(-Y +u ,y  + y, aj .... ,ak). But 

x, converge to u by (A2) and therefore f ( Y + x , , - f + y ° ) > f ( - Y , y ) .  

Therefore g(-£ + u,-f + y, ctl,...,a k) > f ( 2 , y )  = g(2, y,0,...0). This proves 
(a). 

Thanks to (As), we can apply the optimality alternative to the problem of  
minimizing h(x, y , a  I ..... ak ) subject to Ax = y + ~ a~ (y~ - y), a~ > O . 
Moreover, it follows from the proof of Theorem 1 and (6) that we have the 
regular situation in this case. Thus there is an N ,  not depending on y~,...,yk 
such that (0,0,0,...,0) is an unconditional minimum of 

k k 

h(x, ..... ) + N( l lx -  A(y  + Za,(y  - y ) )ll+ Za+  ). 
i=1 i=1 

It follows that zero belongs to the subdifferential of  the function at (0, 0, 0,..., 0) 
and standard arguments show the existence of (x*, y ' )  ~ Of(Y, y ) ,  z* in the unit 
ball of  X" and ~i e[O,N],i=l, . . . ,k,  such that x* +Nz" =0,y*-NA*z*  =0 
and f ( - Y , y + y i ) - f ( - £ , y ) - N ( z ' , A ( y i ) } - £ ,  =0fo r  all i ,  that is to s a y  

f ( -£ , y+ y i ) - f ( -Y ,~ )>Iy* ,y~)  for i=l , . . . ,k .  
The proof is now completed by the following standard argument. Denote 

by Y*(Y~,...,Yk) the collection of y* e Y* such that y* < N and 
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(-A'y*,y*) e af(Y,y); f ( Y , y , ) -  f ( ~ , y )  _ (y*,y, - y ) ,  i=  1,...,k. 

Clearly, each such set is weak* compact and the sets decrease as the 
collections of Yi increase. Therefore there is an element belonging to all 
Y*(Yl .... ,Yk). ~-I 

Returning back to our problem (P), we can get the following maximum 
principle as a necessary condition for a strong minimum in the problem. 

Theorem 4. Assume (At) -(A3) , (A4) s . Suppose further that the function 
f ( x , y ) = d ( y , F ( x ) ) +  e l [y -  zII is relaxable with respect to A for any c and 
z. I f  under these conditions, -~ is a strong local solution to (P), then there 
are A >_ O, y* e Y*, z* e N(S,G(-~)) such that the following three relations 
are satisfied 

II II // (a) A +  y* + z* > 0 ,  (non-triviality!; , 
(b) O F(-~, y)(y ) + O G(-Y)(z ) 
(c) (y* ,A)= max (y*,y) (maximum principle). 

yeF('£) ~ 

The proof of  the theorem is an easy adaptation of the proof of Theorem 2 
with Proposition 3 taken into account and in view of the fact that l(x) and 
d(G(x),S) both satisfy the Lipschitz condition. 

. A C O N T R O L  P R O B L E M  W I T H  P A R A B O L I C  
INCLUSION AND STATE CONSTRAINTS 

The proofs in the previous section offer basic guidelines to the 
alternative-based approach to necessary optimality conditions in more 
specialized problems which usually require more careful analysis to get 
desired results. As an example, we shall consider in this section the 
following optimal control problem for systems governed by "parabolic 
inclusions". 

Let fl be a bounded domain in N v" with a regular boundary (e.g. C 2- 
smooth). Set Q = (0, T) x fl and let F = (0 x f2) U (0, T) x bdf~. We shall be 
interested in necessary optimality conditions for a strong minimum in the 
following problem 
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minimize 

s.t. 

0 

J(u(.)) = L(x,u(r,x))dx 

O u  - Axu E 
Ot 

uIF=0 
g(.,u(.)) E C. 

(c) 

Our purpose is to demonstrate the work of the mechanism developed in 
this paper not obscured by technical complications usually accompanying 
problems involving partial differential operators in sufficiently general 
situations. The statement of  the problem reflects this intention and so do the 
assumptions on the components of  the problem which allow to avoid main 
technical complications and to concentrate on the optimization content of the 
subsequent arguments. (I am sure that the assumptions can be substantially 
weakened without affecting the result.) The calculation of  subdifferentials, 
not directly connected with the work of the optimality alternative will also 
be omitted. 

Before stating the assumption, it seems appropriate to mention that 
optimal control problems in standard form with control equations rather than 
differential inclusions and terminal functionals as in the statement can be 
easily reduced to this form. Certain complications may appear in case when 
the cost function is defined by the area functional with integrand also 
depending on control. But in this case too, a reduction to a problem with 
differential inclusion is possible although the inclusion will be a bit different 
from the considered above. We shall not consider such problems here. 

(A6) L is nonnegative, measurable with respect to (t,x) and there is a 
k L ~ such that [L(t,x,u)-L(t,x,v)l<k L ] u - v ] ;  

(A7) • is measurable with respect to (t,x) for any u,  the graph of 
O,.x(.)=O(t,x,.) is closed for almost every (t,x) and there is a 
k .  ~N' such that the Hausdorff distance between q~(t,x,u) and 
q~(t,x,v) is not greater than k. Iu-v];  moreover, we shall assume 
that there is an r. (t, x) ~/22 such that I y [< r. (t, x) if y ~ O(t, x, u) ; 

(As) C is a closed convex set in a Banach space /21 with a nonempty 
interior, g(t,x,u) is measurable with respect to (t,x) and there are 
kg E ~ and rg (') E/22 such that 

Ig(t,x,u)j<r~(t,x); Ig(t,x,u)-g(t,x,v)l<k~ ]u-v[ (7) 

for all t,x,u,v. 
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The problem is naturally interpreted as (P) if we set X = Y = Z = Z I , 
A=(O/Ot)-A~ and weak solutions of  the heat equation A u = y  are 
considered, F is the set-valued mapping which with every u(t,x) associates 
the collection of  all measurable selections of  dp(t,x,u(t,x)) and G is the 
Nemytzki operator defined by G(u(.))(t,x)= g(t,x,u(t,x)).  With this choice 
of  X ,  fi-(.) is a strong minimum in the problem if there is an e > 0 such that 
J(u(.)) > J(h-(.)) for any admissible u(.) satisfying 

f Qlu(t,x) --  (t,x)ldxdt G 

The choice of  spaces is dictated by the desire to use relaxability at an 
appropriate stage of  the proof. However it leads to some difficulties. The 
first is that the cost function is in general not well defined for a u ~ Z ~ . This 
difficulty can be overcome by interpreting the integral in the cost function as 

£L lim inf e- '  L(x, u (t, x))dxdt. 
~ 0  --~ 

(8) 

The second and more fundamental problem is that the choice of  £~ as the 
space from which right-hand parts of  the heat equation can be taken may 
negatively affect properties similar to those established by (A2). We bypass 
it by imposing (in (A6)-(As)) conditions which effectively make the right- 
hand parts belong to £z when necessary. 

Theorem 5. Assume (A6) -(As). Suppose that ~(.) is a strong local 
minimum in the problem. Then there are A > O, p(.) ~ W 1'2 and ~(.) ~ 17. 2 
such that 

(a) A +llp()ll+ll ()ll> 0; 
Co) fQ ~(t,x)(g(t,x,~(t,x)) - v(t,x))dxdt >_ O, V v(.) E C 

(c) -p(T,x)~OcL(x,~(T,x))  a.e. on f2 ; 

(d) Op(t, x) ~- Axp(t, x) ~ conv [D'~,.  x (~-(t, x), y(t, x))(p(t, x))] 
dt 

+O(~(t,x)g(t,x,.)(~(t,x)) a.e. on Q; 
(e) p( t ,x)y( t ,x)= max p(t)y a.e. on Q. 

ye~(t,x,~(t,x)) 

(Here of  course L is subdifferentiated w.r.t the second variable.) 

Proof. 1) We start by reformulating the problem. Let .M p denote the 
closure in / :Px/Y of  the collection of all pairs (u(.),y(.)) such that 
u(.) ~ C ®, ((O/Ot)-Ax)u = y and u vanishes in a neighborhood of  F.  Then 
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.A/[ p is a linear subspace of  E p x E ~' which can be considered a graph of  a 
linear operator A from £P(Q) into itself. 

We shall be interested here only in p =1 and p = 2 .  Observe that 

.hi 2 c .M ~ and for any y e £2 there is a unique u such that (u,y) ~ .M 2 . 

This u is a solution of  the equation ((O/Ot)- Ax)u = y subject to u Iv= 0 and 

actually belongs to I~" 1.2. Moreover the mapping t --+ u(t,.) from [0,T] into 
o 

E 2 is continuous as well as the mapping £2 ~ W 1.2 which associates with 
y ~ 12 2 the corresponding u; hence it is a compact mapping from £2 into 
itself(see e.g. [8]). 

The problem can now be reformulated as follows 

minimize J (u) 
s.t. y ( t , x ) ~ ( t , x , u ( t , x ) ) ,  a.e. ,G(u)~C; ( u , y ) ~ . M  l, (CI) 

where G is a mapping (into £2 see (As)) defined by 
G(u(.))( t ,x)  = g ( t , x , u ( t , x ) ) .  

As h- is a strong local minimum in (C), (h-,y) is a local minimum in 
(C t) in the following sense: J(u(.))>J(~(.)) for any admissible pair 
(u,y) ~ A41 such that u is £~ -close to fi-. By (A6) J satisfies the Lipschitz 
condition on £J, hence we can apply the optimality alternative with 

qg(u,y) = fQ d(y(t,x),gg(t,x,u(t,x))dxdt ÷ d(g(.,u(.)),C). 

It follows that 
- either there is a A > 0 such that AJ + ~ attains an unconditional local 

minimum on .M I at (g, y)  (in the above defined sense); 
- or there is a sequence (u.y. ,)  ~ .hi I converging to (h-,y) such that each 

(u.y. ,)  is not admissible in (CI) and each function 

g.(u,y) = q o ( u , y )  + n-'(llu-u.ll, +IlY- YlI,) 

attains absolute minimum at (u , ,y , ) .  (The subscript refers to the fact that 
we consider here the £' -norms). 

It follows from (A7) that y belongs to £2. Therefore we conclude that 
- in the regular case AJ + ~, attains an unconditional local minimum on 

.hal z at (ft ' ,y); 
- in the singular case g ,  attains a (finite) absolute minimum on .h/[ ~ at 

(u , ,y , ) .  



548 Variational Analysis and Appls. 

2) Next we show that in either case the functions to be minimized are 
relaxable with respect to A. This will follow from the lemma below. 

L e m m a  6. Consider the funct ional  

I(u(.), y(.)) = f ~  m(t, x, u(t, x), y(t ,x))dxdt  

assuming that m is a Carathdodory funct ion (measurable with respect to 
(t ,x) and  continuous with respect to (u ,y) ) .  Suppose that f o r  given pair  
(Uo,Yo) f o r  which I(uo,Yo) well defined and f ini te  

I m( t , x ,u , y )  - m ( t , X ,  Uo,Yo)I < p(t,x)([ u - u  o [ + [ Y-Y01) 

with some p ~ L 2 . 

Then f o r  any Yl .... y k , ~ .  z a n d a n y  ct I >O,.. . ,a k >0  with ~-~ct i <1 there 

is a sequence ( w . , z . ) ~ . h 4  z such that z.  converge weakly to 

Yo + ~-'a~ (y~ - Yo) and  

k k 

I(u o + Wo,y o + z ) - ~  I (u  o + ~ a,u, ,Yo)+ ~"a , ( I (u  o + ~-'a, u , , y , ) - I ( u  o + ~ " a ,  u,,Yo) ), 
i=l i=| 

where Au i = Yi. 
Proof. Let a~, ( t , x ) , ( i=l , . . . , k ,n=l ,2 , . . . )  be functions on Q with the 
following properties: a,, ~{0,1}, ~-" a~, <I  (which means that for any 

n a~, are characteristic functions of  a certain collection of  disjoint subsets of 
Q ) and for each i the sequence (a~,) weakly converge (e.g. in £2 ) to the 

function identically equal to a~. Set z, =Y0 + ~ a ~ . ( y ~ - Y o ) ,  and let w, be 

the corresponding solution of A w  = z, (which as z ~ £2 is well defined). 
Then 

I ( w . , z  ) = fQ[m( t , x ,w . ( t , x ) ,Yo( t , x  ) 

+ ~ik=, a,. (t, x)(m(t, x, w. (t,x), y, (t, x)) - m(t, x, w. (t, x )y  o (t, x)))]dxdt, 

and the result follows since w. norm converge to ~--'a i ui (as all z.  ~ E 2 ). L] 
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3) Set 
mo(t,x,u,y)) = d(-f(t,x) + y, Cb(t,x,~,(t,x) + u)) ; 

m, (t,x,u, y) = d(y,( t ,x)  + y, ~(t ,x ,u,( t ,x)  + u)) + n -1 l yl; 
go(t,x,u) = g(t,x,~(t,x) + u); g,(t ,x,u) = g(t,x,u,(t ,x) + u), 

and let for n -- 0,1,... 

M,(u(.),y(.)) = f o  m,(t,x,u(t,x),y(t,x))dxdt. 

Then each m~ satisfies the condition of  Lemma 6, thanks to (Av), with 
p = k . .  Set further for given Y~,...,Yk in £2 

Jo(u(.),y(.),ol,,...,otk) = AJ(fi  + u) + d(Go(. ,u(.)),C) + Mo(u(.),y(.)) 
k 

+ ~ a, (M o (u (.), yg (.)) - M o (u (.), y(.))) 
i=l 

and for n > 1 

J,(u(.),y(.),a~,...,ak) = d(G,(.,u + u(.)),C) + M (u(.),y(.)) 
k 

+ Z a,(M,(u(.) ,y,( .))-  M,(u(.),y(.)))+ n-' ][u(.)lL, 
i=1 

where (7,, n = 0,1 .... is the Nemytzki operator u(t,x) ~ g,(t ,x,u(t ,x)) ,  and 
consider the following problems for n = 0,1, 2,.... 

minimize J ,  ( u , y , a  i .... a k), 
(P.) 

s.t a~ > 0  ..... a k >0; (u,y+~-]ai(y ~ - y ) ) ~ . M  ~, 

Lemma 6 and the first part of  Proposition 3 together with the result 
obtained at the first step o f  the proof  imply that 

- either (0,0,0 ..... 0) is a local minimum in (P0); 
- o r  (0,0,0,...,0) is an absolute minimum in each of  (P,) (n  = 1,2 .... ). 
On the other hand, the second part o f  Proposition 3 guarantees that 

whenever  (0,0,0 ..... 0) is a a local minimum in a certain (P,), there is a 
p ,  ~ E 2 such that 

( -A*p,  (.), p, (.)) E OM, (0,0) + A,0J(0) + Od(G(.), C)(0)) + 6,B °° (9) 
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where by B °o we have denoted the unit ball in E ~ , and 

M.(0,y(-)) - M.(0,0) > fo p.(t,x)y(t,x)dxdt, Vy(.) E Z; 2. (10) 

Here we have set A 0 = A,A = 0,n = 1,2,... and 6 0 =0, 6. = n-~,n = 1,2,,... 
4) We need to decipher (9), (10). The standard application of measurable 
selection arguments allows to conclude that (10) implies that 

m.(t,x,O,y)-m.(t,x,O,O)>p.(t,x)y, Vy, a.e, on Q. (11) 

To decipher (9) we have to understand the general form of  of  each of  the 
four suddifferentials in the right hand part of  (9) and the action of  A*p. The 
latter is straightforward: action of A*p on any smooth u(.) satisfying 
u Ir = 0 is defined by 

(A*p,u)=- fe[(O+ Ax)p]udxdt + f~ p(T,x)u(T,x)dx. (12) 

By the chain rule the approximate subdifferential of d(G.(.),C) at zero 
consists of  vectors belonging to D*G.(O)(~.), where ~. belongs to the 
subdifferential of the distance to C (in the 12'-metric) at G.(O), that is 
14'. (t, x) l< l a.e. on Q and 

t ' *  O 
s u p  CjQ ¢o (t, x)v(t, x))d~dt: v ~ C~ = Jo ~" (t, x)g° (t, x, O)d~dt - d ( a .  (0), C) 

(13) 

On the other hand, as G is a Nemytzki operator satisfying the Lipschitz 
condition by (A8), r/~ D*G.(O)(~.) means that 

rl(t,x) ~O(~.(t,x)g.(t,x,.))(O) a.e. on Q, (14) 

This is a complete description of D*G. (0). The analysis of  the structures 
of  first two subdifferentials in (9) is much mure involved and goes beyond 
the scope of  this paper for it actually uses the entire power of the modem 
subdifferential calculus. We can refer to [2] and [6] for the guidelines of the 
techniques which is in the basis of calculation of subdifferential of  integral 
functionals. The important point that should be taken into account is that 
(A7), together with the fact that r/.,~, and p. are bounded, implies that 
r.=((O/Ot)+Ax)p.~£ ~° (and moreover that the L~-norms of  r are 
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uniformly bounded) and consequently, that all p. are continuous on the 
closure of  Q.  

The results of  the calculations based on these techniques can be 
summarized as follows: 

-p . (T,x( t ) )  ~ OcL(T,u.(T,x)) , a.e. on f2; (15) 

r. (t, x) e conv {q : (-q, p.)  ~ Om. (t, x, O, O) } + q. (t, x)~. (t, x) + p. (t, x), 

(16) 

where p.( t ,x)< 6. for almost all (t,x) and subdifferentiation is considered 
with respect to u in (15) inclusion and with respect to (u,y) in (16). 

We shall further consider separately the regular and the singular case. 
The regular  case corresponds to n = 0 and A > 0. Then the part (a) of  

the theorem is automatic, (b) follows from (12), (c) is established in (15) and 
(d) is a consequence of  (16) in view of the definition of  m 0 . Finally, (e) 
follows from (11). Indeed, for n = 0 (11) means that 

d(y(t ,x)  + y,~(t ,x ,~(t ,x))  > p( t ,x)y  

for all y a.e. on Q (recall that ~(t ,x)~O(t ,x ,~( t ,x)) .  Fix such (t,x). Then 
for any y E rb(t,x,u(t,x)) - y(t,x) we have p(t ,x)y  < 0 which implies (e), 

The singular case, when zero is a solution to each (Pn), requires a bit 
harder work. First we note that as A = 0, the terminal term disappears and 
we get p ( T , x ) -  0 by (16). Hence (c). Furthermore, as all r. are uniformly 
bounded, the sequence (p.)  is relatively compact in the space of  continuous 
functions and we may assume that p. converge uniformly to some p which 
is a continuous function on the closure of  Q. As all u. are not admissible in 
the problem then for infinitely many n either (Au.)(t ,x)~ O(t,x)) on a set 
of  positive measure or G(u,)¢~ C. In the latter case 1[~,[[~o = 1 for infinitely 
many n and, as C is normally compact any weak*-limiting point ~ of  the 
sequence is distinct from zero. 

If ~, =0  for all but finitely many n, then p , ( t , x )=l  at least at one 
point. As Q is a bounded domain, it follows that p must be equal to one at 
least at one point. Thus either the limiting ~ or the limiting p is different 
from zero. This completes the proof of  (a). The second statement (b) follows 
from (12) and (7) as u, converge to h- in E 1 , hence almost everywhere, and 
d(G, (0), C) ~ O. 

The adjoint equation (d) as in the regular case as a consequence of  (15). 
Indeed, as r, are uniformly bounded, we may assume that they converge 
weakly in £Y and the limit function r must be ((O/Ot) + A x)p.  On the other 
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hand, u. and y .  converge almost everywhere to ~ and y and (e)follows 
from Lemma 3 of [6]. Finally,it follows from (11) and the definition of m. 
that for every n 

d(y .  (t, x) + y,,~(t, x, u. (t, x)) - d(y.  (t, x), O(t, x, u. (t, x)) >_ p. (t, x)y, Vy 

for almost every (t,x)E Q. Using again the fact that u. ,  y .  and p. 
converge almost everywhere to u , y ,  and p respectively, we get (e), [] 
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Abstract: 

Key words: 

The existence of an equilibrium in an extended Walrasian economic model of 
exchange is confirmed constructively by an iterative scheme. In this scheme, 
truncated variational inequality problems are solved in which the agents' 
budget constraints are relaxed by a penalty representation. Epi-convergence 
arguments are employed to show that, in the limit, a virtual equilibrium is 
obtained, if not actually a classical equilibrium. A number of technical hurdles 
are, in this way, surmounted. 

variational inequalities, Walras exchange equilibrium, virtual equilibrium, epi- 
convergence, penalization, equilibrium computations 

. I N T R O D U C T I O N  

Mathemat ical  models  o f  equil ibrium in economics  at tempt to capture the 
effects o f  compet ing interests among  different "agents"  in face o f  the limited 
availabil i ty o f  goods and other resources. They  typically revolve around the 

" Reserach supported by MI Nucleus Complex Engineering Systems. 
'* Reserach supported by the U.S. National Science Foundation under grant DMS-104055. 
'*" Reserach supported by the U.S. National Science Foundation under grant DMS-0205699 

and Office of Naval Research under grant MURI N00014-00-1-0637. 



554 Variational Analysis and Appls. 

existence of prices for the goods under which the optimization carried out by 
these agents, individually, leads collectively to a balance between supply and 
demand. 

Although the fundamental ideas go back to Walras and others, the work 
of Arrow and Debreu [1], [3], initiated the solidly mathematical form of the 
subject, still continuing in its development. Notions from game theory, such 
as Nash equilibrium and its counterpart for generalized games (where each 
agent's strategy set can depend on the other agents' actions), have entered 
strongly too. Nowadays, influences are also coming from applications 
beyond the academic, for instance to traffic equilibrium and the practical 
consequences of deregulation of markets in electrical power. 

In the economics literature, fixed-point theory has long provided the 
environment for establishing whether an equilibrium exists. Fixed-point 
approaches to calculation were promoted by Scarf [15], [16]. The emphasis 
on the theory side, though, has largely been on broadening the models so as 
to encompass preference relations expressed by set-valued mappings that 
satisfy weakened semicontinuity assumptions and the like. The question of 
how agents might discover an equilibrium through a Walras-type procedure 
of tatonnement has been of interest as well, but economists have not devoted 
much effort to achieving a structured format conducive to large-scale 
numerical computation. General fixed-point algorithms are notoriously slow 
and unpromising in anything but simple, low-dimensional situations. 

Alternative approaches have been opening up, however, in the 
optimization literature in connection with variational inequality 
formulations, including "complementarity" models; see [2], the 1990 survey 
of Harker and Pang [9], and the 2003 book of Facchinei and Pang [6] for 
background. Such approaches offer ways of tying the computation of 
equilibrium into the major advances that have been made in numerical 
optimization, although this kind of computation is nevertheless much more 
difficult than mere minimization or maximization. 

The task of setting up a variational inequality model for equilibrium 
involves not only challenges but compromises for the sake of tractibility. 
Some levels of generality have to be abandoned, at least within present 
capabilities. For example, the expression of preferences by abstract relations 
has to be dropped in favor of expression by utility functions, which 
moreover may need to satisfy assumptions like differentiability. Certain 
constraints need to be handled with Lagrange multipliers. Such maneuvers 
run into some serious technical issues, however, two of the main ones being 
the existence of an equilibrium and the existence of a solution to the 
proposed variational inequality. 

The question of whether an equilibrium exists can be very subtle, even in 
a purely economic framework. The Arrow-Debreu model [1], as applied to 
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pure exchange, for instance, effectively requires that each agent start out 
with a tradable quantity of every possible good. Much effort has successfully 
gone into weakening that sort of provision, but the techniques appear, at 
least on the surface, to conflict with the features desired for a readily 
computible representation. The constraint qualifications ordinarily invoked 
to ensure access to Lagrange multipliers can fail, in particular. On the other 
side, the variational inequality models achieved by introducing Lagrange 
multipliers have the drawback of leading to problems in which the 
underlying convex sets are unbounded and adequate coercivity is absent. 
They tend then to fall outside the domain of the standard criteria for 
confirming that a solution exists. 

Our aim in this paper is to demonstrate how these difficulties can be 
overcome in the fundamental case of a Walras equilibrium, which we take 
for simplicity (rather than technical necessity) to be a pure exchange 
equilibrium among consumers, with no producers. We carefully introduce 
assumptions that enable us to prove the existence, at least, of a "virtual" 
exchange equilibrium, which might have some agents just barely surviving 
without optimizing, but can be approximated arbitrarily closely by an 
exchange equilibrium in the classical sense. Moreover, we show that a 
virtual equilibrium can be computed in principle by solving a sequence of 
variational inequality problems in which the underlying convex sets are 
actually compact. 

A key contribution lies in showing how the iterative truncations needed 
technically in order to achieve compactness in the variational inequality, for 
existence of solutions, can be interpreted as corresponding to penalty 
representations of the agents' budget constraints, which surprisingly, 
however, furnish classical equilibrium relative to nearby endowments in 
place of the original ones. In verifying that the equilibrium sequence from 
the truncated problems yields, in the limit, a virtual equilibrium, we develop 
detailed progress estimates and break new ground in utilizing arguments 
about epi-convergence. 

We do not try to answer, here, the question of how the truncated 
variational inequalities can, themselves, be solved. Some guidance toward 
the future prospects is available, though, in the recent papers [10], [11], 
which deal with generalized games, and of course in the book [6], which 
addresses variational inequalities more generally. 

Beyond computation, it should be noted that variational inequality 
representations of equilibrium are able also to take advantage of the 
extensive theory on how solutions to variational inequality problems respond 
to data perturbations, as for instance in [14], [5]. Our work can be viewed as 
contributing also in that direction. 
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. E Q U I L I B R I U M  M O D E L  

The space of goods is ~ ' J ;  the goods are indexed by j = 1,...,l. Each 
agent a ~.,4 has an endowment eo ~/~'+~ and a utility function u, to be 
applied to consumption choices. The consumption vector x, must belong to 
a certain subset Xo c RJ .  The condition x, ~ X, is the survival constraint, 

and X, is the survival set. In elementary models, X,, = R J .  

Subject to survival and the feasibility of exchanging the goods j at 
appropriate prices p j ,  which are not given but have to be determined from 

the data elements eo, Xo and u, ,  the agents seek individually to arrange 
their consumption so as to maximize their utility. The focus is on relative 
price vectors, i.e., vectors p that belong to the price simplex 

P =  {P = (P~ ..... P/) ~ g '  Ipj >0,p, +...p~ =1}. (1) 

Definition 1 (exchange equilibrium). A classical exchange equilibrium 
consists o f  a price vector i and consumption vectors, ~, , such that 

(a) Za,.42oj < Z,~e,j  for all goods j ,  with equality holding if i j  > O, 

(b) -~o ~ argmax{uo(x,)l xa ~ X , , i .  x,, <if.e,,)}, and p .  x, =if.e, , .  
A two-tier exchange equilibrium is the same, except that some of  the 

agents a may satisfy as a substitute for (b) the condition 

(b-) 2-, ~ argmin {i" x,,I xo ~ X,, }, and p .  x,, = i "  e,. 

An agent satisfying (b) will be called an optimizing agent, whereas an 
agent satisfying (b - ) will be called a barely surviving agent. 

The requirement that f i . x  a < i . ea  is the budget constraint for agent a .  
In a two-tier equilibrium, the barely surviving agents have their budgets so 
tight that they can only choose cheapest possible consumption vectors from 
their survival sets, and that uses up all their wealth. 

If the argmin in (b-) consists of a unique vector, that is what must be 
chosen. In that case, (b-) trivially entails (b), so the situation special interest 
in (b-) is mainly the one where the argmin isn't just a singleton. It's 
conceivable then that a small amount of freedom may be left for utility 
optimization while keeping to lowest cost. No such secondary optimization 
is claimed in the definition, but we don't exclude the possibility that an 
optimizing agent might also be a barely surviving agent. However, we will 
really be concerned with a sharpened form of two-tier equilibrium, defined 
next, in which the barely surviving agents, if any, are "arbitrarily close" to 
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being optimizing agents and fall short only because of a slightest lack of  
resources. 

Definition 2 (virtual exchange equilibrium). A two-tier exchange 
equilibrium, with price vector ~ and consumption vectors -£, is a virtual 

exchange equilibrium i f  (when not itself actually a classical equilibrium) it 
includes at least one optimizing agent and can be approximated arbitrarily 
closely by a classical equilibrium in the following sense. There are price 
vectors pV and consumption vectors x, ~, v = 1,2 ..... with 

! im p ~ = -~, ! im x ~ = -~ . , 

which for  each v furnish a classical exchange equilibrium with respect to 

the same sets X ,  and functions u, but possibly different endowments e~ 

satisfying 

e~, >__ e a, lim e ~ = e~. 
V--~oo O 

Although any classical equilibrium is a virtual equilibrium in particular 
(and fits the sequence prescription with p V = f f ,  x,~ = ~ ,  e~ = e ) ,  the 
converse is false. Likewise, not every two-tier equilibrium is a virtual 
equilibrium. Examples of  these differences will be provided in the final 
section of this paper. 

In the economic literature, what we are calling a classical exchange 
equilibrium in Definition 1 is a special case of  a Walras equilibrium, namely 
one in which preferences are expressed by utilities, free disposal is assumed, 
and "production" has not been introduced. Production is omitted here mainly 
for the sake of  simplicity. The results that will be described can be extended 
in that way, but we wish to avoid the notational complications in order to 
focus here on the newer features more clearly. 

What we call a two-tier exchange equilibrium in Definition 1 
corresponds, under the same specializations, to a model first developed by 
Debreu [4] as a quasi-equilibrium. We prefer to speak of  a two-tier 
equilibrium because the term quasi-equilibrium has shifted over the years to 
mean something different from what Debreu originally indicated. It regularly 
refers now, in a utility context like ours, to substituting for (b) the condition 
that 2 ~ X~ with p .  x~ = ~.e~,  but there is no x,, ~ X ,  satisfying both 

f f .x ,  < ff .e ,  and u,(xo) > uo(-£,,). This property is not as sharp as Co- ); it is 
implied by (b-)  but is insufficient to yield (b-)  in return. 
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The notion of a virtual exchange equilibrium in Definition 2 does not 
seem to have been introduced or explored previously in economics. Beyond 
its potential in the theoretical understanding of equilibrium, it has natural 
significance for numerical work, where limits of computed sequences of 
approximations to a desired equilibrium may inevitably need to be 
contemplated anyway. 

In our variational approach to equilibrium, each agent's utility 
maximization problem will be translated into optimality conditions involving 
a Lagrange multiplier. It is partly for the extra benefit accruing from such 
conditions, but also for enhancing the computational possibilities when 
given specific data, that we concentrate on utility functions (instead of 
abstract preference relations) and furthermore make the following 
restrictions. Although these restrictions could be relaxed in several ways, 
they will assist us here in getting some basic ideas across without too many 
technical complications. 

Ongoing Assumptions (utility and constraint structure). 
(A 1) X ,  is convex and closed, with nonempty interior. 

(A2) u, is concave and continuously differentiable on X . 

(A3) u, does not attain a maximum on Xa. 

Because we are operating in an environment of free disposal, there is no 
real loss of generality in stipulating in (A1) that X,, ~ ;  we could 
harmlessly replace X~ by ~ =X,  +A~/. while extending uo to the 
nondecreasing utility ~ defined by fi,,(xo) = sup{u~(£ca)lYc,, <- x,,}. The 
continuous differentiability in (A2) can be interpreted merely as continuous 
differentiability on intX, with the mapping Vu,, having a continuous 
extension from int X to the boundary of X,. 

Definition 3 (utility scaling). By an equilibrium with utility scaling will be 
meant an equilibrium in the sense o f  Definition 1 or Definition 2 in which 
condition (b) is replaced by the existence o f  a coefficient ~,,, called a utility 
scale factor for  agent a,  such that 

(b*) xa c argmax {u, (x~) - ~ -~ .  (x,, - e,,) l x,, ~ X~ } with 

~- e[O, oo) and ~ . ( 2 . - e . )  O~X,, >0, 

and, in Definition 2, this also to the sequence o f  approximate equilibria. 
Proposition 1 (status of utility scale factors). Condition (b ' )  implies 
condition (b) always. Thus, an exchange equilibrium with utility scaling 
(whether classical or two-tier) in the sense o f  Definition 3 always entails the 
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corresponding equilibrium in Definition 1 or Definition 2. Conversely, (b) 
implies (b*) in particular when there exists x . ~ X . such that -ft. x . > -ft. e . . 

Proof. In fact, (b ÷ ) gives the Kuhn-Tucker conditions for the maximization 
problem in (b), inasmuch as X. is convex by (AI) and u. is concave by 
(A2). These conditions are always sufficient for optimality, and they are 
necessary under a Slater assumption, which by virtue of (A3) comes out here 
as the existence of an x. ~ X satisfying the budget constraint strictly. U 

The point is that (b*) is, in general, an enhancement of (b), so that in 
establishing the existence of an equilibrium with utility scaling, we will be 
accomplishing more than just proving the existence of a equilibrium by 
itself. 

Proposition 2 (positivity of utility scale factors). Because o f (A3) ,  condition 

(b") can only hold with ~ > 0 and ~ .  (-~ - e .)  = O. 

Proof. If we had 2. =0  in (b ' ) ,  the maximum of u. over X. would be 
attained at "~,,, in contradiction to (A3). I ! 

The reason for calling 2-,, a utility scale factor is that it acts as a 
coefficient for converting the price ffj for a good j into to a price 2-,,.~j 

measured in the utility units of agent a .  According to (b ÷ ), once such utility 
prices are available they can be brought into play by maximizing 
u ~ ( x ~ ) - ~ - ~ . ( x  a -e~)  instead of u ( x ) ,  with the original budget 
constraint pushed into the background. This alternative maximization 
converts the cost ft. ( x . - e . )  of passing from e,, to x. into an adjustment 
of the utility associated with x. ,  as compared to %, 

If u,, were strictly concave, the maximization in (b ' )  would by itself 
determine ~. uniquely, and the budget constraint would therefore turn out to 
be satisfied automatically. Even when the maximization in (b ' )  doesn't 
determine ~. uniquely, however, the budget constraint is not invoked 
directly in this maximization and is only needed, if at all, in the aftermath, 
for the purpose of eliminating some of the vectors in the argmin set. 

Theorem 1 (existence of virtual equilibrium). A two-tier exchange 
equilibrium that is a virtual exchange equilibrium with utility scaling is sure 
to exist under the fo l lowing  assumptions on the initial endowments: 

(S 1) f o r  every agent a there is a vector x . ~ X . such that x . < e . ,  
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($2) there are vectors x o ~ X o such that ~" 4x, < ~" 4e,. 

The proof of Theorem 1 will come later and, in a major respect, it will be 
"constructive" (as elaborated in Theorem 3). In contrast to Theorem 1, the 
existence result of  Debreu [4] for this sort of  model, although posed in a 
somewhat broader setting, was not constructive and didn't provide utility 
scaling. It didn't confirm the presence of  at least one optimizing agent or 
yield the approximation property that distinguishes a virtual equilibrium. 

Of course, any agent a for which there exists xo e X such that x, < e,, 
must in particular be an optimizing agent, since this strict vector inequality 
precludes (b - ). Other, more subtle criteria for an agent to be optimizing are 
known as well; cf. [7], [8], and their references. In combination with 
Theorem 1, such criteria immediately lead to conclusions about the existence 
of a classical equilibrium in our setting. We omit the details, because our 
interest centers on the proof of  Theorem 1 by way of  a variational inequality 
formulation having computational potential. 

Nonetheless, it's worth noting that both of  our survival assumptions (S 1) 
and ($2) automatically do hold when every agent a has some x, E X, with 
x, < e  (which amounts to the main case treated in [1] by Arrow and 
Debreu). 

. V A R I A T I O N A L  R E P R E S E N T A T I O N  

The variational inequality representation of  an equilibrium with utility 
scaling will now be set up. In general in a space z~ L of vectors v, the 
variational inequality problem VI(C,F) associated with a nonempty, 
convex set C c R L and a mapping F : C ~ •L consists of  finding 

V ~ C such that - F(V) ~ N c (V), 

where N c(V) is the normal cone to C at V: 

w~Nc(V)< : , w . ( v - V ) < O f o r a l l v ~ C .  

It's well known that if C is compact and F is continuous, a solution V to 
problem VI(C,F)  exists. 

In our formulation of  equilibrium, the variational inequality we set up 
will have C closed and F continuous, but C unbounded, so this criterion 
for the existence of  a solution to VI(C,F) will not be applicable directly. 
That will oblige us to introduce truncations to create compactness. Such 
truncations will be construed as corresponding to penalty formulations of the 
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budget constraints in the agent's maximization problems. In obtaining an 
equilibrium through an iterative process of  truncation, we will employ an 
argument crucially based on epi-convergence, which is a concept of  
variational analysis associated with the convergence of solutions when 
optimization problems are approximated. 

Theorem 2 (variational inequality format for classical equilibrium). A 
classical exchange equilibrium with utility scaling is furnished by 
.v, {2-,,}~.4 and {2"o}a~.4, if  and only if the variational inequality VI(C,F)  
in the form 

-F( f f ;  .... 2o,...;...,~-,,...)~ Nc(P;...,-£ ..... ;...,2 ..... .) (2) 

holds for the nonempty, closed convex set Cc.~/x[FI,,.,.~'/]x[Fl,,~.~.,~] 
defined by 

c = (3) 

and the continuous mapping F" C ~ ~ l  x [ I - I 4  R/] x [I-I,,~.4~ ] defined by 

F(p;... ,x ..... ; .... 2,,..) 

= (2,,,..4[e, - x,l;...,2~p - Vu,,(x,) .... ;..., p .  [e,, - x,,l,...) 
(4) 

Proof. The closedness and convexity claimed for C and the continuity 
claimed for F are evident from (A1) and (A2). The variational inequality in 
question decomposes into the conditions 

Z.~A [~a - e,,] ~ Ne(ff), 
Vua (£~) - ~ ~ Nx. (~.) for all a e A ,  

ft.  (~,  - ea) e Nt0.~ ) (2-~) for all a e ..4. 

(5) 

The second condition means that the function x a ~ u , , (x , ) -  2"off" ( % - e , , ) ,  
which is concave, has its maximum over X at ~o, whereas the third 
condition refers to the complementarity relations 

fi.(y,,-e,)<_O, ~a>O, ~,,-fi.(yo-e,)=O. (6) 

Those two conditions together, therefore, are equivalent to (b*) holding for 
every a ~ A. 
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The first condition in (5) is not, on the surface, the same as the market 
condition (a) in Definition 1, which in principle would be stronger. We will 
see, however, that in the presence of  the other conditions, the first condition 
in (5) implies (a). In terms of  

( : ~ a x  {2.~.4[20J - e.j ] } , _  ,... (7) 

the first condition in (5) says that 

fij = 0 unless Z.~.4 [2-.j - e.j ] = ( ,  (8) 

so that in particular 

fi" E.~.4[Y.- e.] = ( .  (9) 

Now we bring in Proposition 2: we actually must have f f . [2 - , , - e ]  = 0 for 
all a e A .  Then (9) implies ( = 0 ,  hence Z ~.4124-eoj]<0 for every j in 

(7), and we are able to conclude through (8) that (a) holds. ~? 

Although the unboundedness of  the set C in our variational inequality 
representation of  classical equilibrium is an unavoidable consequence of  the 
multiplier conditions we have introduced, a partial kind of  boundedness, at 
least, can be achieved under our assumptions by a trouble-free truncation of  
the survival sets X .  

Proposi t ion 3 (underlying boundedness of  consumption). Under (S1) and 
($2), there exist bounded subsets X b c X~ still satisfying these assumptions 

and such that a classical exchange equilibrium with utility scaling is 
furnished for {xb}.~.4 by ~ ,  {~.}.~.4 and {2,,}.~. 4 , if  and only if these 

elements give such an equilibrium for {X },,~. 4 . Specifically, this is true 

when 

X b,, = { x  e X o  [x~ <_b}for any b>~"  4 e., (10) 

in which case there definitely exist elements x,, ~ X b satisfying x~ < b, 

whereas any elements x o ~ X~ satisfying ~'~.4 xc, < ~-'~o~.4 e,, must satisfy 

x, <b.  
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Proof. Take b and X b as in (10). Clearly X b is still convex and closed, but 
also bounded, and ($2) is preserved. Since e, > 0 for every a ~ ..4, the strict 
inequality in (10) implies that eo < b for every a ~..4.  The condition that 
e, ~ X o , from (S1), thus carries over to having e, ~ X b and in particular 
informs us, by taking x, =e , ,  that there exists x, ~ X,  ~ satisfying x, < b.  
Indeed, in the background of  e, belonging to {xo Ix,, < b} ~ X , ,  we get from 
(A1) that in tX b ={x,  lx " < b } ~ i n t X , ,  4:O (cf. [12,Theorem 6.5]) and can 
conclude that (A1) holds for X b . Trivially, (A2) persists when Xo is 
replaced by the truncation X b . 

Because X~ c R/.,  the conditions x~ ~ X,  and ~-'~o~.4 x,, <_ ~'~.4 e,, in 

the definition of  an equilibrium imply x < b.  Hence any equilibrium with 
respect to the sets X is an equilibrium with respect to the sets X~, and 
conversely as well, the constraints x, < b necessarily being inactive in either 
case. L] 

According to this observation, we can replace the sets X o by bounded 
sets X b in the formulation of  the variational inequality in Theorem 2 
without undermining the equivalence with the desired equilibrium. This still 
leaves the unboundedness caused by the multiplier conditions, however. To 
handle that, our approach is to truncate the interval [0,oo) to [0,r] for a 
value r > 0,  which will turn out to act as a penalty parameter. 
Proposi t ion 4 (truncated variational inequality). Consider the variational 
inequality VI(C~,F) for  the same mapping F as in Theorem 2 but with the 
set C there replaced for  r > 0 by 

C~ = Px[n~.4x,~]×[n,,o.4[O,r]], 

the sets X~ being defined as in Proposition 3. Then C b is nonempty, closed 

and convex, but also bounded, and a solution to VI(C~ °, F) therefore exists. 

A solution to VI(Cf ,F)  is comprised o fa  relativeprice vector ~ along with 

{Z~}o~A and {2-~}~.4 for  which there is a value ( E ~ such that 

(a r ) Z ~  ~ j  _< Z ~Ae ,g + ( for  all goods j ,  with equality when ~ j > O, 

(b ~ ) ~-~ ~ argmax{ u o (x~) - ~ .  (x,, - e,,)[x,, ~ X, b, }, with 
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i /f2-° = °' A-, • [ 0 , r ]  and  f f . (2"~-e , )  0 / f 0 < A - ,  < r ,  
0 i f ~ , , = r .  

Proof.  The standard existence criterion for variational inequalities, invoked 
for the compact set C b , produces i f ,  {2-0},,.4 and {2-,},~.4 for which the 

corresponding v- = (if;. . . ,2 ..... ;..., 2-a, ...) solves VI(C b , F ) ,  i.e., has 
- F ( V )  • Nc~ " (V). Adopting the pattern in the proof of  Theorem 2, we 

decompose this variational inequality into the conditions 

Vu ~ (y~) - ~ . ~  • N x~ (y . )  for all a • ..4, 

f t .  [2-. - e~ ] • Nto,d (2-.) for all a • ..4. 

The fact that the first o f  these conditions is equivalent t o  (a r ) was effectively 
argued already in the proof of  Theorem 2. The second and third o f  these 
conditions is (b;  ). 

In working with the truncated variational inequality and understanding its 
meaning, it will be helpful to have the notation 

[t]. = max {0, t} for t • R.  

We use it to set up a linear penalty approximation to the budget constraint 
p .  (x, - e~) < 0 in terms o f  the expression 

0 
r[p .(x,  -e,,)].  = 

rp .(x,, -ea) 

when p .  (x, - e , )  < 0, 
when p .  (x , - e,) > O. 

Proposition 5 (penalty interpretation). Condition (b ~ ) o f  Proposition 4 holds 

with respect to ~ f o r  2-~ and  some ~,, i f  and only i f  2-, satisfies 

(b r )  2 ,  s argmax{ u, (x,)  - r i f t .  (x,, - e,)]~ I xo • X b }. 

Proof .  The equivalence can be seen by thinking o f  (b  r ) as referring to the 
minimization o f  ~p, + ~,, over R 1 , where 
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when x. ~ X b 
X b when xo ~ . ,  

~ .  (x.) = r[fi. (x, - e.)].. 

Here fp, is a lower semicontinuous, proper, convex function, while ~ ,  is a 

finite convex function on ~1.  The subgradient condition both necessary and 
sufficient for the minimum of  (oo + p '  to occur at 2-,, namely 
0 ~ 0((,o, + ~ , ) (x , ) ,  comes out therefore as the existence of  a subgradient 
z~ ~OV,,(2-~) such that - z  ~0~o(2 - , ) ,  where moreover (cf. [12, Theorem 
23.8): 

0(o. (2-~) = - V u .  (-d) + N x~ " (2-=) . 

The necessary and sufficient condition thus refers to the existence of  
V u  o (2-.) - z .  ~ U x~ " (2-0). 

By a basic chain rule in convex analysis (cf. [12, Theorem 23.9]), we 
have z. ~0~. (2- . )  if and only if z =~-.ff for some ~-= satisfying the 

conditions in (b; ). In this manner, we have Vu. (2-,,) - z ~ Nxg (2-.) if and 

only if Vu. (2- . ) -~- f ieNx2(2- . )  for some such ~-,,, and this can be 

recognized as the necessary and sufficient condition for optimality in the 
maximization in condition (b r ). [i 

. ITERATIVE SCHEME 

The existence result in Theorem 1 will be derived by an iterative scheme 
based on the variational inequality representations of  equilibrium we have 
been developed above. In this scheme, we replace the survival sets X,  to the 

bounded sets X b specified in 10 and consider for v = 1,2 ..... a sequence of  

penalty parameter values r v / oo, denoting by C v the set C 2 of  Proposition 

4 in the case of  r = r v . For each v we solve the variational inequality 
VI(CV,F),  which is possible by Proposition 4 in principle (and moreover 
should be approachable numerically by methods developed along the lines of  
those in [6], [10], [11], as mentioned in the introduction). 

This way, we generate a sequence of  price vectors p~ ~ P together with 

sequences of  consumption vectors x~ ~ X b , multipliers 2~, ~ and values (~ 
satisfying 
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Z ~ <Z...4e.j + ( ~  for all goods j ,  with equality when (a rV ) a¢,,4Xaj -- 

p~. > 0 ,  

( b ~ )  x,~ ~argmax{u.(xo)-A.~p ~ .(x,, - e . ) l x  . sX~} with 

l <0 if 2~=0 ,  

2 ~ e [ 0 , r  " ] a n d p  ".(x, ~ , - e )  = 0  if 0 < 2 : < r  ", 

[ > 0  if 2 ~ = r  v. 

F Note that because the components pj  of  p~ are nonnegative, but not all 

zero, condition (a rv ) means that 

(~ = max ~-". [x: - e.j ]. 
j=l,..J ~ 

(11) 

Condition (b ;. ), on the other hand, can be interpreted through Proposition 5 
as the condition 

(b rv ) x~ ~ argmax{ u,, (x~) - r ~ [p~ . (x. - e.)]+ Ix,, ~ X b }, 

which relaxes the budget constraint pV . ( x . - e . ) < 0  by allowing it to be 
exceeded at a penalty rate which is increased in each iteration, 
Theorem 3 (limits in the iterative scheme). Once r ~ is higher than a certain 

threshold value, pV and x~ furnish a classical equilibrium, with utility 

scaling, respect to the same sets X .  and functions u. but possibily different 

endowment vectors e~ > eo with e~--> e., The sequence o f  these nearby 

classical equilibria (p~, {x~o }.~.4) is bounded, and every cluster point 

(P, {x.}.E.4) furnishes a virtual equilibrium for  the original data. Hence i f  

only one virtual equilibrium exists, the entire sequence must converge to it. 

Obviously, in proving Theorem 3 we will have proved Theorem 1, so we 
can concentrate on Theorem 3, Since the sets P and X b containing pV and 
x~ are closed and bounded, the sequences of vectors pV and x~ are 
bounded, as claimed in Theorem 3, and cluster points do exist. Note, 
however, that no such claim is made about the sequences of multipliers 2.. ~ . 
The possible unboundedness of such a sequence is exactly what can lead to 
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an agent a being only a barely surviving agent. The following facts will be 
crucial, in view of the definition of a virtual equilibrium, 

Proposition 6 (convergence estimates). For each a c A ,  choose any 

Yc.~X.  with Sca<e., as exists by (S1), and let /z~ =max{u,,(xo)lx,, ~X~}. 
Then /.tb. > u. (Yea), and one has 

pV . (x~ - e.) < kt~ - Ua (SO.) for all a ~ .,4, (12) 
r v 

This implies that 

x~ < b for all a ~ ¢4 when r ~ is sufficiently large, (13) 

as is true specifically when 

N 
r ~ > ? for ~ =--max{/.t~ -u.(~.)},  (14) 

. c A  

where N is the number of  agents a e .,4 and fl is any positive number 

small enough that ~.~.4 % < bj - fl for every good j .  Thereafter, one will 

have 

p~ "(x~. -ea)>-O fora l l  a~ .A ,  (15) 

and the vectors p~ and x~ will furnish a classical equilibrium with respect 

to the sets X,,, functions u ,, , and the endowment vectors" e, ~, defined by 

e,~ :e . j  +(~ with (~ = p~ .(x~ -co), (16) 

in which the multipliers 2 ~, are positive and serve as utility scale factors. 

Thus, one will have 

(a v ) Z.~Ax ~ < Z~.4e ~. for all j ,  with equality holding if p; > O, 

(b v" ) x~ ~ argmax{u.(x.)-2,,~p ~ .(x, ,-e~)lx, ,  E Xo} with 

>0, pV = 0 .  
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Proof. Because ~ . < e . ,  we have 2c. eX~' with p~.(~c.-e . )<_O. Hence 
/.t b _> 0 and 

u.(Yc. )=u.(Yc. ) -r~[p ~ • (~L,- e.]+ 

< u.(x~.) - r~[p ~ • (x~ - e.]+ < /~  - r~[p ~ • (x: - e.]+, 

so that rV[p~.(x~.-ea]+</.tb-u, ,(;c.) .  This inequality guarantees (12), 
From ( a . )  we have ~" ¢.4p ~ .(x~ - e . ) = p  ~ "~'~,,~A (x,~, - e . ) = ( ~  with (~ 

expressed by (11), and therefore ~"~,,~.4 [x~-e .J  ]<(~"  It follows that 

~.~.4 x.~. < )-" ~ e.j +/3 when (v _< f l ,  and in particular 

x~ _< bj - fl when (~ < fl with fl _< bj - ~,,~.4 %'  (17) 

Thus, x. ~ <b  as claimed in (13) when r v is beyond the value ~: in (14). 
Once we have x~ < b,  the maximum over X~ b in condition (b ~v ) is the 

same as the maximum over X ,  due to convexity, Then necessarily 2,[ > 0 ,  
since otherwise our nonsatiation assumption (A3) would be violated. In 
(b ~v ) we then have pV. (x~ - e.) > 0 for all a e ..4. In that case, by taking 

( ~ = p ~ . ( x ~ - e . )  and defining e. ~ as indicated, we get e,~>e, and 
p~.  (x. ~ - e~) = 0,  so that conditions (a rv ) and (b ;v ) have been converted to 

(a~) and (b v" ), That implies by Proposition 1 that the elements p~,  x. ~ and 
2~ furnish a classical equilbrium with respect to the endowments e~. r_] 

These estimates immediately reveal key properties of  our iterative 
scheme. As r ~ ~ oo, we eventually have (14) and, in the augmentation rule 
in (16), 

b 

O_<(~_<~t.-u.(~.)  ~0, sothat  e. ~ -~e . .  
r v 

By taking limits of  in (a v ) and (b v" ), we see then that cluster points fi and 
2 must satisfy the market clearing condition (a) and the budget condition 
~ . ( 2 . - e . )  =0 ,  The extent to which they satisfy ( b ' )  or (b-) ,  however, 
remains to be established. 
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The key to further analysis lies in the utility scale factors 2~. For 
simplicity of  notation in this analysis, we can suppose we have passed to 
subsequences so that actually p~ --+ fi and x~ ~ g ,  for every agent a e .4,  
and that (b ~" ) and (15) hold for all v ,  furthermore with 2-, < b ,  as comes 
out of  the uniformity of  the bound derived in (17). We look at 

..4+ = {agents a ~ .4 such that ~2 ~,® is bounded}, t a ) v = l  

_ ~A v~°° is unbounded}, ..4 = {agents a ~ .,4 such that t . J~=j 

By a further reduction to subsequences if necessary, we can arrange that 

for each a e .At, actually 2.2 ~ ~-  _> O, 

for each a ~ .4_, actually2. ~ --~ oo. 

Consider now an agent a e ~ .  Define the functions ~,~ and (p, on the 
entire space z~ ~ by 

l - . ° (x°)+ LV - 4 )  (xo ) I too 

ifxo eX~, 
ifx. CX. b, 

ifxo e X~, 
if x. ¢ X~, 

these functions being convex and lower semicontinuous by virtue of (A1) 
and (A2). Conditions (b v. ) and (b" ) correspond respectively to 

v X x~ ~ argmin q~. ( . ) ,  2". e argmin q~,,(x.), (18) 
XaER t x a c R  t 

inasmuch as x~ < b and 2-, < b, along with 2S > 0 and pV. (x,~ - e~) = 0, as 

well as 2_>0 and f i . ( 2 - , - e , ) = 0 .  Therefore, if we can show that the 
second condition in (18) follows in the limit from the first condition as 
v ~ oo, we will be able to conclude that p ,  x, and Xo satisfy ( b ' )  and 
thus that agent a is an optimizing agent. 

This is an issue addressed, in general, by the theory of"epi-convergence" 
of sequences of  functions and its role in minimization, as expounded for 
instance in [14, Chapter 7]. Here, the circumstances are especially simple 
because the functions are convex and all have the same effective domain, 



570 Variational Analysis and Apph'. 

namely X b , which moreover has nonempty interior. As v---> oo, we have 
~o~ ( x )  ---> ¢, (x,) for each x, e X,  b , and that guarantees the epi-convergence 
of ~p: to ~Pa by [14, Theorem 7.17]. Then by [14, Theorem 7.33], because 
these functions are lower semicontinuous with their effective domains 
uniformly bounded, the first condition in (18) yields the second, as required. 

Next, consider instead an agent x • .A(. Define the functions ~,,~ and ~,, 
on the entire space ~ by 

x t -(1/2~)u"(x")+ o)= Loo 

"(x.-e°) 

pV "(x, - e : )  if x,, e X b, 

if x. ~X~,  

if x. eX,~, 

i f x .  ~X~. 

Again, these functions are convex and lower semicontinuous by virtue of 
(A1) and (A2), so ~,~ epi-converges to ~ ,  for the reasons already 
mentioned, coming from [14, Theorem 7.17]. On the basis of (b  v÷ ), we have 
x ~ •  argmin~S,  and can conclude through [14, Theorem 7.33] that 
2- , •a rgmin~ '  a . That tells us that 2-, minimizes ~ . x ,  subject to x,, e X  b , 

and since 2 < b ,  it establishes that (b-)  holds. Thus, agent a is a barely 
surviving agent. 

Finally, we confirm that the agents can't all be just barely surviving. If  
indeed A_ = ..4, we would have 

inf{~. ~_~.4x~ Ix, e X ,  } = ~.  ~,~Ae, .  

But that's incompatible with our assumption ($2), inasmuch as ,~ ¢ 0. 
In summary, we have demonstrated that ff and {Y,,},,~.4 provide a virtual 

equilibrium as in Definition 2, in which moreover the agents a • ..4_ are 
barely surviving, whereas the agents a • A are optimizing and have the 
limits 2-,, as utility scale factors. L1 

5. E X A M P L E S  

Illustrations will now be provided of the distinctions between the various 
equilibrium concepts in Definitions 1 and 2 and how they relate to the 
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existence result in Theorem 1 and the iterative scheme addressed in Theorem 
3. 

In these examples, we have just two goods and two agents: here l = 2 
and ..4 = {1, 2}. Price vectors have the form p = (p~,p2) with Pt > 0,  P2 -> 0 
and p~ +P2 =1.  Agent a = l  has an endowment vector el =(e~l,elz ) and 
chooses a consumption vector x I = (Xl,,X,2) with utility U1(%1,%2 ) from a 

survival set X l c N'z+, whereas agent a = 2 has an endowment vector 

e 2 =(ez,,e22 ) and chooses a consumption vector x 2 =(x2~,x22 ) with utility 

Uz(X2,,x2z ) from a survival set X 2 c R+ 2 . 

Example 1 (a classical equilibrium without strict feasibility). Let Xt = ~2. 

and X 2 = Rz., and take 

e I =(1,1), %(Xll,%z )=%1, 

e 2 = (1,0), u2(Xzt,X22 ) = x21 + x22. 

In th• case there & an x~ ~ Xt with x t < e~, but no x 2 ~ X 2 with x z < e 2 . 

Nonetheless, a classical equilibrium exists, given by 

~ : (1 /2 ,1 /2 ) ,  2-1:(2,0), ~2: (0 ,1) .  

There is no other equilibrium, even two-tier. The iterative scheme, applied to 
this data, would necessarily converge to the unique classical equilibrium. 

Detail. Here P2 = 1 - p~, so p = (Pl,1 - Pl) with 0 _< Pt -< 1. For agent a = 1 
the utility maximizing set is 

M 1 = argmax{% (xt) I x I ~ X,, p .% _< p .e, } 

= argmax {xll[xjl > 0,xl2 _> 0, 

pjxll +(1--p~)x,2 <1} 

'13 i f  Pl = 0, 

: if , >0, 

whereas for agent a = 2 the utility maximizing set is 
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M 2 = argmax {u 2 (x 2 ) I x2 e X 2, p .  x 2 < p .  e 2 } 
= argmax{xzl + X22 IX21 ~ 0, X22 ~ 0 

plXzj + (1 - Pl )xz2 < PJ } 

"O ifpl = 0, 
{(1,0)} i f0  < p, < 1/2, 
{ ( r , l - r ) [ 0 < r < l }  ifp =1/2, 

{(0,(I-  p,)-')} if 1/2 < p~ <1, 
O ifpl = I. 

The total endowment e, + e 2 is (2,1), so the condition for market clearing is 

{x,t + x2~ < 2, with equality if p~ > 0, 
(19) 

x,2 + x22 < 1, with equality if p~ < 1. 

Having p, =0  or p~ = 1 in a classical equilibrium is excluded by the 
emptiness then of  m2, so any candidates would have to have 0 < p~ < 1 and 
obey both of the inequalities in (19) as equations. In choosing (%~,x~2) from 
M~ and (x2~,xz2) from M2, it's impossible to get the second of  these 
equations satisfied when 0 < p~ < 1/2, or to get the first satisfied when 
1/2 < pl < 1. Hence the only available candidate is p~ = 1/2. And indeed, for 
ff=(1/2,1/2) we can take ~ =(2,0) from M 1 and and 2- 2 =(0,1) from M 2 
and have x I + x z = (2,1), as required for a classical equilibrium. 

This is the only possibility for a classical equilibrium, but what about a 
two-tier equilibrium more generally? The investigation of  that requires us to 
look at the set of  cheapest consumption vectors, which here happens to be 
the same for both agents: 

M_ = argmin{p.% I% eXi}=argmin{p 'x2  Ix2 eX2} 

"{(r,O)lr >_0} if p, =0, 
= {(0,0)} i f O < p ,  <1, 

{(O,r)l r _  0 } if p, =1. 

In a two-tier equilibrium with both agents barely surviving, both 
(x11,%2) and (Xzl,X22) would be selected from M _ .  Thus, both would have 
0 in the first component if pt > 0, or both would have 0 in the second 
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component if p~ < 1, which would be inconsistent with (19), no matter how 
Pt is selected. 

For a two-tier equilibrium with agent a = 1 barely surviving and agent 
a = 2  optimizing, we would need to satisfy (19) with a choice of 
(x l l , x t2)~M and (X21,X22)EM2. Again, the cases p~ =0 and p~ =1 are 
excluded by the emptiness of  M 2 for those values, but on the other hand, 
when 0 < p~ < 1 we are forced to take (xt~,xl2) = (0,0), and yet both of  the 
conditions in (19) are required to be fulfilled as equations. But there is no 
way to choose Pt to get (x2,,x~2) s M s with (x2~,Xz2) = (2,1). 

For a two-tier equilibrium with agent a = 1 optimizing and agent a = 2 
barely surviving, we would need (19) to hold for some (x~ ,x~)sM~ and 
( x 2 1 , x 2 2 ) E m  . Because M~ = 0  when p, = 0 ,  we are limited to 0<p~ <1 
and (x~,Xtz) = (p~-~,0), with at least the first condition in (19) holding as an 
equation. Since x2~ has to be 0 when p~ > 0, we can only get this equation 
with pl = 1/2, but then the second condition in (19) must hold as an equation 
too, even though xz2 has to be 0. Thus, this mode of  equilibrium is 
impossible as well. E3 

Example 2 (a nonclassical virtual equilibrium along with other 
equilibria). Let X~ = •z and X 2 = ~2  and take 

e. = (1,1), U.(Xt,,X,2)=XII, 

e 2 =(0,1), u2(x21,x22)=x21 +x22. 

In this case there is no classical equilibrium, but two-tier equilibria in which 

agent a = 1 is optimizing and agent a=2 is barely surviving are furnished 
by 

fi=(1,0), y.=(1,0),  ~2=(0,0),  f o ranyO~[0 ,2] .  (20) 

These are the only two-tier equilibria, and among them, only the one for  
0 = 2 is a virtual equilibrium. That unique virtual equilibrium, with utility 

scaling, must be the limit o f  any sequence o f  vectors pV and x~ generated 

by the iterative scheme. 

Detail.This is close in many respects to Example 1, having the same sets M~ 
and M and only a coordinate-switched version of  M2, namely 
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M% = argmax{u2 (xz) I x2 ~ X2, P '  xz -< P" e2 } 
= argmax{xzl +x22 Ix2, > 0,x22 >0, 

PlX2, + (1 - p~ )x22 _< 1 - p, } 
0 if Pl = O, 

{((p?l-1,0)} if O<pl <1/2, 
{(r , l-r) lO_<r_<l} if p = 1/2, 
{(0,1)} if 1/2 < Pl < 1, 
0 if Pl = 1. 

The total endowment e I + e  z is (1,2), so now the condition for market 
clearing takes the form 

{ Xll + X2I < 1, with equality ifpl > O, 

%1 + x21 < 1, with equality ifpl < 1. 
(21) 

A classical equilibrium requires 0 < p ,  <1 because of the emptiness 
otherwise of  M'z,  and therefore two equations in (21). That can't be met; no 
choice of  (x,1,%2) ~ M~ and (x2~,x22) ~ M'z can yield xlz + x22 > 1. 

A two-tier equilibrium with both agents barely surviving is impossible 
for the reasons already explained in Example 1. A two-tier equilibrium with 
agent a = l  barely surviving and agent a = 2  optimizing is likewise 
impossible for the reasons seen earlier. 

A two-tier equilibrium with agent a = 1 optimizing and agent a = 2 
barely surviving does turn out to be possible, however. For this, we need 
0 < p, < 1 in order to avoid M, being empty. But 0 < p~ < 1 would make the 
choice of  (x2,,x22) ~ M_ reduce to (0,0) while requiring two equations in 
(21), which doesn't work. In taking pj =1, we merely have to satisfy the 
first condition in (21) with equality. The only vector in M~ is (1,0), whereas 
M consists of  the vectors (0,r) with r_> 0. We have (21) fulfilled when 
0 < r < 2 .  

In view of  Theorem 2 (and Theorem 3), at least one of these two-tier 
equilibria must be a virtual equilibrium, but which? To sort that out, we have 
to inspect the possibilities for having a classical equilibrium when the 
endowment vectors e~ and e 2 are perturbed to 

e~ =( l+c , , ,1  +c,2 ), e~ =(c21,1+c22), 
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where the increments are all > 0. The calculations focus then on the set 

M (  = argmax{ul(xl)l  x I ~ X i , p .  x ~ <_ p .  e~} 

= argmax{xtl Ix,, _> O, xl2 >_ O, 

p~x~ + (1 - p~ )x~2 < 1 + p~e~ + (1 - p~ )~'2t } 

= ~'O if p, = 0, 

l {(p~"(1 + p,c,, + ( 1 -  p,)c2~),0)) } if p, >0 ,  

for agent a = 1 and the set 

M~" = argmax {u 2 (x 2) I x2 ~ X2, P '  x2 -< P '  e~ } 

= argmax{x2~ + x22 I x2~ >_ 0,x22 > O, 

p~x2t + (1 - pt )x22 _< p~e2~ + (1 - p~ )(1 + ~'2z )} 

0 

((~z, + p~-' (1 - p,)(1 + cz2),0)} 
{ ( r , l - r )10_<r_< l}  

{(0,1 + p , ( 1 -  p,)- '  e2, + c2z)) } 
Q 

if Pl =0,  

if  0 < p~ < 1/2, 

if  p = 1/2, 

if 1/2 < pj < 1, 

if  Pl = 1, 

575 

for agent a = 2.  The perturbed total endowment  is 

e~ + e~ = (1 + cl, + czl , 2 + ciz + e2z), 

and the market clearing conditions come out therefore as 

{ x,~ +x21 <l+~tl-]-E21 , with equality if  pt >0,  
(22) 

xj2 + x22 < 2 + c~z + Czz, with equality ifp~ < 1. 

Once more the cases where Pt = 0 or pt = 1 can be eliminated because o f  
emptiness in M~,  so we must have 0 < p~ < 1 along with equality in both o f  
the conditions in (22). This can be achieved with 
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p~ = (1 + 0o,2 + c2,)-' (1 + elz,e2,),  

x~ = (1 + e,, + e,~, 0), x;  = (0, 2 + e2, + q 2 )  

when c2, >0 ,  but not otherwise. As the increments tend to 0, the only 
possible limit of  such classical equilibria is the two-tier equilibrium in (20) 
for 0 = 2. Hence that is the unique virtual equilibrium, and the iterative 
scheme must converge to it. [ I 

Other insights can be gleaned from Example 2 as well. The utility scale 
factors associated with agent a = 2 in the perturbed equilibria must tend to 
oo as the increments go to 0, specifically as c2~--~ 0. If that were not the 
case, the virtual equilibrium obtained in the limit would actually be a 
classical equilibrium. This feature of the iterative scheme came out in the 
proof of  Theorem 3. The interpretation is that, as the amount of  good 1 
available to agent 2 shrinks to nothing, the interest of  agent 2 in acquiring 
some of good 1 increases without bound. The scaling between utility for 
agent 2 and the relative prices at equilibrium blows up. This emerges as the 
essential reason why agent 2 ends up barely surviving without optimizing, 
even though, with an infinitesimal amount of  good 1, optimization would be 
possible. 
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Abstract: 

Key words: 

We consider the time dependent traffic equilibrium problem in the case of a 
vector valued cost operator. The motivation for this approach is that users can 
decide to choose a path according to several criteria. In fact, they may want to 
choose a minimum delay path as well as a minimum tax path. Other criteria 
can be introcuced in the model, depending on the particular problem under 
consideration. Thus, we are led to a multicriteria equilibrium problem which 
can be related to vector variational inequalities. The functional setting is the 
space L~([O,T],R" ). The extension of the definition of weak equilibria in such 
a space is not straightforward due to the fact that the cone made up of the non- 
negative functions has empty interior. We overcome this problem by using the 
notion of quasi interior of a closed convex set of a Hilbertspace and give 
sufficient conditions for the existence of weak equilibria. 

Time Dependent Traffic Networks,Vector Variational Inequalities, Pareto 
optimization, multicriteria equilibrium problems, quasi interior. 

. I N T R O D U C T I O N  

M a n y  prob lems  o f  physics ,  e conomics  and applied mathemat ics  can be 
fo rmula ted  as equi l ibr ium prob lems  [8]. Depend ing  on the par t icular  
s tructure o f  the problem,  the search for  equil ibria can be pe r fo rmed  by  us ing 
opt imiza t ion  techniques ,  var iat ional  inequalit ies,  pro jec ted  dynamica l  
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systems and other methods. In this note, by using the paradigmatic example 
of  the traffic equilibrium problem, we present a formulation of time 
dependent vector equilibrium problems. In particular, we extend the concept 
of weak equilibrium (see below) and overcome the difficulty due to the fact 
that the cone of nonnegative functions has empty interior by using the notion 
of quasi interior of a closed convex subset of a Hilbert space. We also 
connect our vector equilibrium problem to the theory of vector variational 
inequalities. The concept of vector variational inequality has been introduced 
by Giannessi [6] in finite dimension and successively extended in infinite 
dimension by several authors (see for instance [7]. By using the concept of 
quasi interior we can also formulate a general variational inequality in the 
weak case which, in a special case, can be used to give sufficent condition 
for the existence of weak equilibria. The general analysis of this new 
variational inequality is object of future research. 

The plan of the paper is the following: we complete this introduction by 
establishing some notations and definitions. In section 2. we give some 
existence results for the vector variational inequality in the weak case. Then 
we consider in detail the time dependent vector traffic problem and give 
sufficient conditions for the existence of weak equilibria. 

Let us introduce some ordering relations between vectors of ~r .  

• 4 < q <----> 71 - 4 E i n t ~  
• 4 ~ r l <  >rl-4C-intR~+ 

where ~_  is the non negative orthant. 
In view of our time dependent extension we generalize these relations to 

the Hilbert space £ := L2([0,T],II~r): 

• #(t) _< rl(t) ~ v ( t ) -  4 ( 0  ~ z:+ 
• ~(t) < rl(t) < > r l ( t ) -  4(t) ~ & \ 0 
• ~(t) ;~ ~(t) ,: :, ~7(t)- 4 ( 0  ~ z:+ \ o 
• ~(t) < rl(t) < :, r l ( t ) -  ~(t) E qiC÷ 
• 4 ( 0  ~ q(t) < :, q ( t ) -  ~(t) ~ qi£+ 

where /2+ denotes the subset of £ made up of the (vector) functions whose 
components are non negative almost everywhere on [0,T], {0} represents 
here the null vector function (almost everywhere on [0, T] ), and Qi£+ := £++ 
denotes the subset of 12 made up of the (vector) functions whose 
components are positive almost everywhere on [0,T]. The notion of quasi 
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interior enables us to overcome the problem that the topological interior of 
£÷ is empty. Thus, let us then recall some further definitions of  convex 
analysis: if Z c £ is convex and closed, the tangent cone to Z at point 
x(r) is defined as: 

Sz(x(r)) :=Cl{a~ ° 2 . (Z-  x(r)) t 

Following Borwein and Lewis [15], let us introduce the quasi relative 
interior of Z ,  qriZ as the set of  those x(r)~ Z for which S z(x(r)) is a 
subspace. In the particular case when S z (x(r)) = £ we shall denote the same 
set as the quasi interior of Z ,  qiZ.  The set Z \ qiZ will be denoted as the 
quasiboundary of Z ,  qbdryZ. These concepts have been used quite recently 
by Gwinner [12] to extend the notion of a projected dynamical system [10] 
to an abstract Hilbert space and by the author [13] in order to establish the 
connection between projected dynamical systems and the time dependent 
variational inequalities presented in [1]. 

Definition 1.1 A (finite dimensional) vector variational inequality represents 
the following problem: 

find x ~ C : F(x)(y - x) f O, Vy ~ C (1) 

where C is a closed convex subset of II~" and F : C ~  ]~r×n is a matrix 
valued function. 

Definition 1.2 A (finite dimensional) weak Variational Inequality represents 
the following problem: 

find x ~ C : F(x)(y - x) ~ O, Vy ~ C (2) 

Definition 1.3 A weak variational inequality in L represents the following 
problem: 

find x s K : (T(x), (y - x)) ~ O, Vy s K (3) 

where T :/2 ~-~ L(£ ,£) ,  the natural ordering cone is £ . ,  and the symbol 
is the one defined above. In view of  the application to the traffic equilibrium 
problem it will be useful to consider the particular case where 
T :/2 ~--~ L(/2,R"). 
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. E X I S T E N C E  R E S U L T S  

In this section we recall and generalize some definitions and results due 
to [14]. 

Definition 2.1 Let X be a real Banach space and (Y ,P )  an ordered Banach 
space, where P is a convex ordering cone. The mapping T : X ~-~ L ( X ,  Y) is 
called monotone if: 

(T(x)  - T ( y ) , x  - y )  > O, Vx, y ~ X 

Definition 2.2 Let X,Y be normed spaces. T : X  ~ L ( X , Y )  is called v- 
hemicontinuous if Vx, y ~ X the map t ~ (T(x  + ty) ,y)  is continuous at 0 ÷ . 

Lemma 2.1 (see [14]) Let (X,C) and (Y,P) be ordered Banach spaces with 
ordering cones C and P ,  respectively. Let T be monotone and v- 
hemicontinuous. Then, the following two problems are equivalent for each 
convex subset K of  X : 

(I) x e K (T(x), y - x) g O, Vy e K 

( I I )  x ~ K (T(y) ,  y - x) ¢~ 0, Vy ~ K 

Remark  2.1 In this Lemma we understand that a ~ 0 means that - a  e intP 
if  intP is non empty, - a  ~ q i Y ,  otherwise. Thus, the equivalence between 
the original vector variational inequality (I) and the so called Minty 
variational inequality (H) can be generalized to spaces whose ordering 
cones have empty interiors. 

In view of  the application to the traffic problem it will be convenient to 
specialize the existence theorem in [ 14] to our functional setting. 

Theorem 2.1 Let K a nonempty closed, convex and bounded subset o f / 2 .  
Let T : K  ~ L ( £ , I { " )  be a monotone and v-hemicontinuous map on /2. 
Then, the vector variational inequality (1) has a solution. 

3. T H E  S C A L A R  A N D  V E C T O R  T R A F F I C  E Q U I L I B R I U M  

The traffic assignment problem has a relatively recent history. For a 
variational inequality formulation of  equilibrium conditions we refer to the 
influential paper by Smith [5]. For an interesting survey on models and 
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methods we refer to [8] and to the reach bibliography therein. In the last 
years some authors have tried to enlarge the classical traffic assignment 
problem. For instance, in [1] a time dependent formulation has been 
proposed, while in [2] a vector model has been put forth (see also [3]). In the 
first part of  this note we combine these two approaches and consider time 
dependent vector equilibria. While the extension of the strong vector 
equilibrium definition is quite straightforward, in order to extend the 
definition of  weak vector equilibrium given in [2] we shall use the notion of  
quasi interior of  a convex closed set. Then we formulate two variational 
inequalities which imply each type of  equilibrium, respectively. Let us first 
introduce the notation commonly used to state the standard traffic 
equilibrium problem. 

A traffic network consists of  a set W of origin-destination pairs and a set 
7~ of  routes. The set of  all r e 7~ which link a given w e W is denoted by 
R.(w). In our analysis we are not interested on the link structure of the 
routes. A route-flow vector is an element F e ]~R. Feasible flows are flows 
which satisfy the capacity constraints and demands, i.e., which belongs to 
the set: 

K:={FelI~nIA<F<p) ~bF=p } 

where 2 _< p and p are given, and ~ is the well known pair-route incidence 
matrix whose elements (¢)w.r are set equal 1 if route r connects the pair w, 
0 else. A Mapping C := K ~ ]~n is then given which assigns to each flow 
F e K its cost C(F) e ~n. 

Definition 3.1 A flow is called an equilibrium flow (or Wardrop 
Equilibrium) iff: H e K and 

Vwe W, Vq,s e ~(w), there holds: 

Cq(H)<C,(H)~Hq=Itq or H s =2,  

that is equivalent to say that: 

HeXand(C(H),F-H)>_O V F e K  

Let us notice that we are considering capacity constrained network as done 
by some authors [1]. Roughly speaking, the meaning of  Wardrop 
Equilibrium is that the road users choose minimum cost paths, and the 
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meaning of  the cost is usually that of  traversal time. However, in many 
situations users behave according to more than one criteria, and this can be 
expressed by introducing, for each path, a vector cost whose components 
represent the various criteria in the choice of  the path. In [2] the scalar 
weights Ck[F ] are generalized to vector weights. In order to keep notation 
as compact as possible we shall use the same notation of the scalar case. 
Now, for each k ,  Ck[F]~R r, and a matrix C[F] is built, having as 
columns the vectors C k[F]. In the spirit of  Pareto optimization [2] proposed 
the following strong and weak vector equilibrium principle: 

Definition 3.2 A flow H ~ K is a strong vector equilibrium if 

V w  ~ W, Vq, s ~ 7~(w), there holds: 

Cq (H)  - (H)  0 Hq = 0 

Definition 3.3 A flow H ~ K is a weak vector equilibrium if 

V w e  W, Vq, s ~ TS(w), there holds: 

C q ( H ) - C ~ ( H ) > O ~ H  z =0 

The following strong and weak variational inequalities are 
condition for H to be a strong and weak equilibrium, respectively. 

H ~ K : C ( H ) ( F  - H )  ~ O, V F  ~ K 

sufficient 

(4) 

H ~ K : C ( H ) ( F  - H)  ~ O, ~/F ~ K (5) 

. T H E  T I M E  D E P E N D E N T  V E C T O R  M O D E L  

The traffic network is now considered at all times t e v, where r = [0, T]. 
For each time t ~ r there is a route-flow vector F ( t ) ~  IR ~ . Feasible flows 
are flows which satisfy the time dependent capacity constraints and 
demands, i.e., which belongs to the set: 



On Time Dependent  Vector Equilibrium Problems 

K := {F e LI 2(t) < F( t )  </z( t )  OF(t)  = p ( t )  a.e. on r} 
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where 2 (0  </~(t) and p( t )  are given, and 0 is the well known pair- 
route incidence matrix whose elements (0)w,r are set equal 1 if route r 

connects the pair w, 0 else. F : r  ~ R ~ is the flow trajectory over 
time. Flows trajectories are supposed to be elements of 
£ := L 2 ( [ 0 , T ] , ~ ) .  A matrix C[F(t)] : K ~-> L 2 ([0,T],R rXR) is then 
given whose columns are the vector costs for each path in 
correspondence to each flow trajectory F ( t ) ~ K .  For the sake of 
simplicity we prefer to consider the simpler feasible set: 
K := {F ~/~l 0 < F ( t )  qkF(t) = p ( t )  a.e. on r} 

and give the following definitions: 

Definition 4.1 A flow H ~ K is a strong dynamical vector equilibrium if 

V w  ~ W, V q, s ~ 7~( w), there holds: 

Cq [H(t)] - C, [H(t)] ~> 0 ~ Hq (t) = 0 

Definition 4.2 A flow H ( t )  ~ K is a weak dynamical vector equilibrium if 

V w e W , V q, s ~ ~(w),  there holds: 

Cq [H(t)] - C s [H(t)l > 0 ~ Hq (t) = 0 

Let us now consider the following two problems: 

Problem 4.1 Find H ( t )  ~ K : 

C[H(t ) ] (F( t )  - H( t ) )d t  ~ 0 VF(t) ~ K 

Problem 4.2 Find H ( t )  ~ K : 
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f C[H(t)](F(t) - H(t))dt ~( 0 VF(t) e K 

Theorem 4.1 A solution to problem 4.1 is a strong equilibrium 
Proof  Let us suppose, by contradiction that 3w ~ W and k, j ~ Td(w), and 
E c [ 0 , T ] ,  I E I > 0 :  

Ck[H(t)] - Cj[H(t)] >>: 0 and H(t) > 0 a.e.t e E (6) 

an Then, if we choose a feasible flow F(t) such that: F~(t)=Hi(t  ) if 
i 4: k, j ,  ~ (t) = 0,  F k (t) = H k (t) + Hj  (t) we get: 

f e  C[H(t)](F(t)- H(t))dt = f e  Hi(t)(Ck [H(t)] - C i[H(t)])dt 

But the first factor in the integrand is a positive scalar function, and the 
vector function (Ck[H(t)]- Ci[H(t)] ) >>: O. As a consequence it can not be 

f e  C[H(t)l(F(t) - H(t))dt : f e  Hj (t)(C k [H(t)] - Cj [H(t)]) ~ Odt 

and we get the absurd. 

Theorem 4.2 A solution to problem 4.2 is a strong equilibrium. 

Proof  The proof is analogous to that of  theorem 4.1. 

As our time dependent vector model extends the approach of  [2] we inherit 
here the same conclusion that variational inequalities are only sufficient for 
equilibria. For a different approach which yields equivalent conditions see 
[3]. 
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Abstract: The present report indicates an array of nonstandard target problems of control 
under state constraints. The problems are solved through dynamic optimization 
techniques where the systems are optimalized under nonintegral costs. In the 
general case this leads to new classes ofHJB - type variational inequalities. In 
the linear case these problems may be treated through duality methods of 
nonlinear analysis and minimax theory. 

INTRODUCTION 

The recent activities in advanced automation and navigation as well as in 
scientific computation have motivated new interest in various target 
problems of  control theory, [15], [20]. A particular question is whether a 
certain target set or group of  sets representing, for example a safety (unsafe) 
zone or configuration could be reached (avoided) by a controlled system 
despite the acting state and control constraints. The posed question is 
obviously not an optimization problem. However here we indicate 
variational techniques that give some answers to the question. 

These techinques reduce to control problems under nonintegral 
optimality criteria. The value functions for such problems, if  solved in 
backward time, produce level sets which are the sets of  states from which 
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various target problems are solvable (the "backward" reach sets). In 
"forward" time they also define some sets of  states reachable under various 
types of  constraints on the system trajectories. 

Rather than investigating reachability sets only for given instances of 
time, the interest here is also in sets reachable at some instances of  time 
under state constraints true either for some instances or for the whole time 
interval. We then introduce some variational inequalities or generalized 
Hamilton-Jacobi-Bellman (HJB) equations for such value functions which 
grasp the required properties. These equations and inequalities allow to treat 
classes of problems with nonsmooth parameters and solutions. For linear 
systems explicit formulas for the value functions are given in terms of 
duality relations of  nonlinear analysis. (Such explicit solutions are mostly 
confined to convex optimization problems, however they are also available 
for some types of problems with complementary convex constraints yielding 
nonconvex solutions). 

A direct calculation of  value functions and possibly nonconvex reach sets 
through either exact HJB equations or through duality relations is 
complicated. For linear systems a parametrized sequence of HJB equations 
may be suggested which approximates the exact ones and allows to avoid 
calculation of  generalized (viscosity) solutions. The level sets for such 
approximate equations could produce ellipsoids whose intersections allow to 
externally approximate convex reach sets and whose unions allow to 
internally approximate nonconvex reach sets. 

1. T H E  S Y S T E M  

Consider a controlled system described by an ordinary differential 
equation: 

~c= f ( t , x , u ) ,  (1) 

which in particular can be linear, 

Jc = A(t)x  + B(t)u + C(t)v(t), t o < t < r, (2) 

Here x ~ IR" is the state,  u ~ ]I~ m is the control, v(t) - a given disturbance, 
while f ( t , x , u )  is continuous in all the variables and satisfies conditions of  
uniqueness and extendability of  solutions for all starting points and all t > to, 
whatever be the control u(t) restricted by hard bounds 

u(t) ~ 79(0, t > t o. (3) 
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Here 79(0 is a compact set-valued function, continuous in t in the 
Hausdorff metric. 

We also require set f(t,x,79(t))= F(t,x) to be convex and compact and 
differential inclusion (DI) 

~c ~ F(t,x) 

to have a Caratheodory solution extendable within the intervals under 
consideration. The tube of  solutions to the latter DI which start at set X" at 
time r is denoted as X[ t ]=X( t ; r ,X ' ) .  This is the "reach set" of  system 
(1). 

For linear systems we require the n× n matrix function A(t) as well as 
nx p -  and n x q -  matrices B(t),C(t) to be continuous and 79(0 to be 
convex. Next are the topics discussed in this paper. 

. B A C K W A R D  R E A C H A B I L I T Y  A N D  T H E  T A R G E T  
PROBLEMS 

In this section we present some target problems together with closely 
related problems of  reachability analysis. 

Denote x[t]=x(t;r,x) to be the system trajectory which starts from 
position {r,x}, x = x[r], x e N", set .A,4 = {x e N" : ~ol (x) < 1} to be the the 
target set and Y( t )=  {xeN"  :q~(t,x)<l} to be the state constraint. 
Functions ~o(t, x), ~ol (x) are assumed to satisfy the inclusions 

qg(t, .) E @, t ~ [t 0, ~9], ~ (.) ~ qb, (4) 

where • = {~b(.)} is the class of proper closed convex functions ~b(x), x ~ •", 
whose Fenchel conjugates ~b" are such that O Eintdom~*. ( Here 
dom~b = {x : ~b(x) < ~} and int7 9 is the set of  interior points of  set 7 9). 
Function ~o(t,x) is assumed continuous in both variables and inclusion (4) 
for this function is satisfied in the second variable for each t. 

Class • ensures that the level sets of  functions (o(t,x),~o~(x), when 
nonempty, are convex and compact. 

Problem 2.1. Given time interval [r,~9] and functions ~o(t,x),~ol(x ), f ind 
W~[r] - the set of  points x, such that 

w~ Iv] = (x : {3u(.), v t  ~ [r, O] : x[t] ~ y( t) ,  x[O] ~ M.}  } 
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Here W I [r] = {x : V I ( r )  _< 1} is a level set of  the value function 

v , ( r , x )  = 

= min max {max {q~(t, x[t])lt ~ It, 8]}, ~Pl (x[,9])} Ix[r] = x}. 
u t 

W~[r] is the backward reach set relative to M under state constraints 
Y(t) ,  namely, the set o f  points {x} for each o f  which there exists some 
control u(t) which steers the trajectory x[t]=x(t;r ,x)  to M under state 
constraint y ( t ) .  

If  ~o(t,x) - ~oj(x), then Y(t) - . M ,  and W~[r] is the set o f  points x each of  
which generates some controlled trajectory x(t, r, x) = x[t] ~ .A/l, Vt ~ [r, ,9]. It 
is the set of  so-called "viable" states relative to state constraint 
. M  - y ( t ) ,  V t  ~ [ r , , 9 ] .  

Prob lem 2.2. Given time interval [r,'9] and functions ~o(t,x),qgl(x ), f ind  
W 2 [r] - the set o f  points x, such that 

W2[r ] = {x E R" : {Vu(.), Vt ~ [r, 8]:  x[t] ~ Y(t), x[~9] ~ M }  }. 

Here W2[r ] = {x: V2(r,x ) < 1} is a level set of  the value function 

V 2 ( r , x )  = 

= max max{max{~o(t,x[t])lt E [r, 8]}, ~Pl (x[8])}lx[r] = x}. 
u t 

W z [r] is the set o f  points from which all the controlled trajectories reach set 
.M at time ,9 and also satisfy the state constraint y ( t ) ,  V t e  [r, '9]. 

I f  ~( t ,x)  - ~pj (x) ,  then y ( t )  -- .M,  and ]/V 2[r] is the set o f  points x for 
each o f  which the reach tube X[ t ]=X( t ; r , x )  without state constraint 
satisfies the inclusion X[t] c .A4, Vt ~ [r, '9].  

Problems 2.1 and 2.2 respectively reflect the properties o f  weak and 
strong invariance of  the backward reach set W~[r],i=I,2, relative to 
equation (1) and the state constraint y ( t ) .  Therefore these sets W~[r] may 
also be referred to as invariant sets, ( see [ 1 ] ). 

P rob lem 2.3. Given time interval [r, '9], and functions ~o(t,x),qg~ (x), f ind  
W3[r ] - the set o f  points x, such that 

W 3[r] : {x E R" : {3u(.), 3t s [r, 8] : x[t] s Y(t), x[8] ~ M}  }. 

Here W3[r ] : {x: V3(r,x ) < 1} is a level set o f  the value function 
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V3(r,x ) = min max {min{~o(t,x[t]) ] t ~ [v,O]},~ol(x[ 8])} [ x[r ] = x}. 
U f 

This is the set o f  all points x such that some controlled trajectory 
x[t] = x(t;v,x),  which starts from x at time r ,  reaches set .A4 at time t = 8 
and also satisfies the state constraint y ( t )  at some instant t ~[r,O]. If  
~o(t,x)-~oj(x), then y ( t ) - A 4 ,  and W3[r ] is the set o f  all points x that at 
time v eject some controlled trajectory x[t]=x(t;r,x) which satifies the 
inclusion x[t]~.A/l, for some t~[r ,8] .  This is the union 
W3[r]=w{W(r;t,.A4)[t~[r,8] } of  backward reach sets from set-valued 
position {t,.A4}, (without state constraints), over the time interval [r, 8] .  

P rob l em 2.4. Given time interval [v,8] and functions ~o(t,x)dol(x), f ind 
W4[v ] - the set of  all points x, such that 

W 4 [v] = {x ~ •" : {Vu(.), 3t E [r, 8] : x[t] ~ y(t), x[8] ~ .A4} }. 

Here W4[r ] = {x: V4(r,x ) _< 1} is a level set of  the value function 

V 4 (r, x) = max max {min {~o(t, x[t]) I t ~ [v, 8] }, ~p, (x[8])} [ x[z-] = x}. 
U ! 

This is the set o f  all points x such that all the controlled trajectories 
x[t]=x(t;r,x) which start from x at time r reach set .A4 at time t = 8  and 
also satisfy the state constraint y ( t )  at some instant t ~ [ r , 8 ] .  If  
~o(t,x)-~o~(x), then y ( t ) - . M ,  and W4[r ] is the set of  of  all points x for 
which each of  the controlled trajectories x[t]=x(t;r,x) satisfies the 
inclusion x[t] ~ .A4, for some t ~ [r, ~9]. 

Problems 2.3 and 2.4 respectively reflect the weak and strong 
possibilities o f  reaching the target set at some instant o f  time within the 
interval [z-,8]. 

The sets W~, Wz, I4:3, W 4 are the possible types o f  backward reach sets or 
solvability sets for target problems. Other options for such problems are 
beyond the scope of  the present paper. Note that in general, for a linear 
system (1.1), the sets W~,W 2 are closed convex, while W3,W 4 are closed, but 
need not be convex. 

Problems 2.1, 2.3 and 2.2, 2.4 are related to the description o f  positions 
from which the target set .A4 is reachable at given time or at some time (in 
the strong or weak sense respectively). It may also be necessary to specify 
the positions from which it is possible to avoid the target set. 

Assume D c (t) = {x : ~o(t, x) < 1 + e}, D O (t) = D(t).  

Prob l em 2.5. Given time interval [r, 8], set D(t),  and number ~ > O, f ind 
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Ws[r,~] = {x: {3u(.),Vt ~ [r,~9]:x[t] ~ intD~(t)} }. 

W 5 [r, ~'] = {x : V 5 (v, x) > 1 + ~}, where 

Vs(r,x ) = max{ {min~o(t,x[t])]t ~ [r,~9]} I x(r  ) = x} 
u t 

Here W 5[r,e] is the set o f  all points x for which there exists some control 
u(t) which ensures the trajectory x[t] to lie beyond intD~(t) for all 
t ~ [r, ~9]. 

Problem 2.6. Given time interval [v,~9], set D(t), and number ~ > O, f ind 

W 6 [r, ~'] = {x : {Vu(.), Vt ~ Iv, ~9] : x[t] ~ intD~ (t)} }. 

W6[v, ~" ] = {x: V6(v,x ) > 1 + ~}, where 

V6(r,x ) = min{ {min~o(t,x[t])Jt ~ [r,,9]} [ x(r )  = x}. 
U ! 

W6[r ] is the set o f  all points x for which all the controls u(t) ensure the 
respective trajectories x[t] to lie beyond intD~(t) for all t ~ [ r , 8 ] .  Such 
trajectories avoid the "tube" D(t). In general the backward reach sets are 
nonconvex. 

The next section deals with forward reachability and with the so-called 
"reach-evasion" set. 

. F O R W A R D  R E A C H A B I L I T Y  A N D  T H E  R E A C H  - 
E V A S I O N  S E T  

In this section, when dealing with forward reachability, we denote 
x[t] = x(t, t o, x* ),  also taking ~o o (x) ~ ~ .  

P rob l em 3.1. Given time interval [to, ~9] and functions ~o(t, x), ~o o (x), f ind the 
value function 

V I (~9, x) = min max {max {~o(t, x[t])it ~ [t o, 8] }, ~o 0 (x*) I x[0] = x}. 
U t 

Then 
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X(~9;t0,X0) = X~ [~9] = {x : ~(~9,x) < 1} 

is the set o f  all points x for each o f  which there exists some controlled 
trajectory x[t]=x(t, to,X" ) which starts at time t o from a certain 
x" ~ A" 0 = {x" : ~P0 (x ' )  < 1} and ensures x[t] ~ Y(t),  Vt ~ [t 0, ~9] with x[8] = x.  
It is the union u{X(~9,to,X')lx* ~ X0}. 

And this is the conventional reach set under state constraints 

X~[O] = {x : {3u(.), Vt ~ [to,8]:x(t ) ~ y( t ) ,x [0 ]  = x}}. 

An analogy o f  this problem with min u substituted by max u usually leads to 
degenerate types o f  reach sets. 

P rob lem 3.2. Given time interval It0,8 ] , and functions ~o(t,x),~Oo(X ), f ind  
the value function, 

)22 (~9, x) : min {max (m!n (~o(t, x[t]) I t ~ [r, ~9]}, ~o 0 (x')} I x[~9] = x}. 

Here X2(8;to,Xo) = X2[~9 ] = {x : ~2(~9,x ) < 1} is the set of  points x for which 
there exists a control u(.) and a starting point x" ~ A' 0 which ensure the 
respective trajectory x[t] = x(t;to,x* ) to satisfy the inclusion x[t] ~ y ( t )  for  
some t ~ [t 0, 0] and x[O] = x .  Here X 2 [~9] = u { X  2 (~9;t0,x')]x' ~ :co}. 

An analogy o f  the last problem with min,, substituted by max,  uaully 
leads to degenerate situations and will not be discussed. 

Note that in general, for a linear system (1.2), the sets ,¥1 are closed 
convex, while X 2 are closed but need not be convex. 

The given array o f  problems may also include backward reachability for 
linear systems under complementary convex constraints. Here is an example 
o f  a reach-evasion set. 

Prob lem 3.3. Given time interval [v,8] and functions ~o(t,x),~oj(x), f ind  
YV[r] - the set o f  points x, such that 

W[r] = {x: {3u(.),V t ~ [to,8] : x[ t ] ~ Z(t),x[~9] ~ A4} }. 

where Z( t )=  R" /y ( t )  and ~ is the closure o f  set Y. 

Here W [ t ] = { x : V ( t , x ) > l }  is the complement of  the open level set 
{x: V(t,x) < 1} of  the value function 

V(r,x) = max{min{min{q~(t,x[t])lt ~ [z-, ~9] },-~o I (x[~9]) + 2} ] x[r] = x}. 
U t 
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W[r] is the set of points {x} for each of which there exists a controlled 
trajectory x[t] = x(t ,r ,x) which ensures the inclusion x[t] ~ Z(t), Vt ~ It, `9] 
and x[`9] ~ .M. Therefore, it is the set of points from which it is possible to 
avoid the domain intY(t) for all t while reaching the target set .M (which 
is assumed to lie beyond y ( , 9 ) : . M ~ Y ( , 9 ) = O ) .  In general 14;[r] is a 
nonconvex set. 

The calculation of value functions described in this section is not simple. 
We now indicate some approaches to its solution. 

. S O L U T I O N  M E T H O D S .  T H E  H J B  E Q U A T I O N S  

In the general case the respective value functions may be calculated 
through the generalized HJB equation. We shall indicate such equations for 
problems 2.1, 3.1. 

Suppose ~'0 (x) = d 2 (x, 2(0), ~ol (x) = d 2 (x, .M), ~o(t, x) = d 2 (x, y( t ) ) ,  where 
d 2 (x,Q)= min{(x-  q , x -  q) lq ~ Q)} is the square of the Euclid distance of 
point x from compact set Q.  

Starting with problem 2.1, denote V I (t,x) = V~ (t,x I V~ (t 0,x °)), 
emphasizing the dependence of V~ (t,x) on the boundary condition - the 
function V I (t0,x °).  

Theorem 4.1. Value function V~ (t, x) satisfies the principle of optimality, 
which has the semigroup form: 

v,(,9,x I v, (r , .))  : v, x I v,(t,.  I v, (5) 

with r <_ t <_ ,9. 

This property is established through a conventional argument [6] and its 
consequence is a similar property for respective reach sets. Namely, if we 
redenote W l [r] = W 1 (r;,9,.M), then we have: 

Wt (z,`91 .A/t) = ~ (z,t I W~ (t,`9 1M)). 

Relation (5) yields for the value function V~(t,x) 
relation (the "variational inequality") of the HJB-type: 
when Vl(t,x ) ¢ ~ol(t,x ) it is 

the next "backward" 

Vt, (t, x) + min(VEx, f (t, x, u)) = O, u ~ 79(0 (6) 
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and when Vl(t,x ) = ~fi(t,x) it is 

H(t,x,V~,u) > O, u ~ 79(0 ~ {u : 7-[(t,x,~o,u) < 0}, (7) 

where 

~ ( t ,  x, V, u) = V, (t, x) + (V x (t, x), f (t, x, u)), 

is the total derivative of function V(t ,x)  due to equation (1) under control 
U .  

Here V,,V, stand for the partial derivatives of V( t , x ) ,  if these exist. 
Otherwise (6), (7) is a symbolic relation for the generalized HJB - type 
relations which have to be described in terms of subdifferentials, Dini 
derivatives or their equivalents. But the typical situation is that V is not 
differentiable. The treatment of relations (6), (7) then has to be worked out 
within the notion of generalized "viscosity" - type solutions or their 
equivalents, [14], [6], [19], [2], [3]. However, for linear systems with convex 
constraints, as those of Section 5, the value functions are indeed 
differentiable. 

Relation (7) further yields ( when V~ (t, x) =q~l (t, x) ): 

0 = H( t ,x° ,V t ,u  °) > H(t,x°,~o,u°). (8) 

Here u ° =u°( t , x )  is the minimizer in (7), x ° =x°(t) - the vector of the 
respective optimal trajectory. (In the sequel the upper index 0 in u ,x  will 
denote the respective optimalizer and the phase space vector which it 
generates). 

Note that the boundary condition for V~ (t, x) is 

V l (8, x) = max {¢,(~9, x), ~o I (3, x)}. (9) 

Taking Problem 2.2 we will have 

V2, (t, x) + max(V2x, f (t, x, u)) = O, u ~ 79(0, (lO) 

when V2x (t, x) ~ qg(t, x) 
and 

max {H(t ,x ,  Vzx,U),7-l(t,x,~o,u)} < O, Vu ~ 79(0, 

when V 2 (t, x) = ~o(t, x). Here the last relation also yields 
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0 = 7-[(t,x°,V2x,U °) > ~(t,x°,~o,u°), 

The boundary condition is 

V 2 (t o , x) = max {~p(O, x), ~. (~9, x)}. 

Variational Analysis and Appls. 

(11) 

and 

Theorem 4.2. Value function ~(t ,x)  satisfies the principle of optimality, 
which has the semigroup form: 

V , ( r ,  x : x I V, (t0,'))), 

with t o < t < r .  

This property is established through a conventional argument [6] and its 
consequence is a similar property for respective reach sets. Relation (12) 
yields the next "forward" HJB-type relations: 
when V~ (t, x) 4: ~o(x) we have 

Vl, (t, x) + max(Vix, f (t, x, u)) = O, u ~ 79(0, 

min {~(t, x, V I , u) I u E 79(0 ~ {u : ~( t ,  x, ~, u) < 0} } = 0, 

when V~(t,x) = ~o(t,x). Here the last relation further yields 

0 = ~(t,x°,V~x,u °) > ~(t ,x°,~o,u°)}.  

The boundary condition is 

V l (t 0, x) = max {~(t 0, x), ~P0 (to, x) }. 

Finally we indicate the HJB equation for Problem 3.3. Then 

V(t ,x)  + min(Vx, f (t ,x,u)) = O, u ~ 79(0 

(13) 

(14) 

(15) 

(12) 

Functions V 3 (t 0, x), V4(t 0, x) may be described along the lines of  the previous 
two and of the forthcoming decription of  the reach-evasion set. 

We now pass to reach sets of  the forward type (Problem 3.1). 
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when V(t, x) ~e ~o(t,x) and 

min {7-/(t, x, V~, u) [ u ~ 79(0 n {u" 7-/(t, x, (p, u) > 0} } = 0, (16) 

o r  

7-((t,x, Vx,u ) > O, u ~ 79(t) ~ {u : 7-t(t,x, ~o,u) > 0} 

when V(t, x) = ~o(t, x).  Under this condition one further has 

0 = 7-((t,x°,V~,u °) < 7-[(t,x°,~o,u°)}. 

The boundary condition is 

V(3,x)  = min {~o(3,x),-~pl (~9,x) + 2}. 

The HJB equations for the other problems of Section 3 are produced in a 
similar way. They follow from respective versions of the Principle of 
Optimality. The calculation of solutions to these equations in the general 
case is not simple and requires additional investigation. A promising 
approach seems to be emerging along the lines of so-called level set 
methods, [18], [16]. 

However, in the case of linear systems the value functions 
V~-V4, V~,V2,I) may be described through duality relations of convex 
analysis and related branches of optimization theory. 

. SOLUTION METHODS. DUALITY TECHNIQUES 
OF OPTIMIZATION THEORY 

In this section we indicate solution methods for linear systems, where the 
value functions could be found through techniques of convex analysis, 
semidefinite programming and minimax theory, [7], [9], [17]. We describe 
the approach through the formula for calculating V(r ,x) ,  which allows to 
find the reach-evasion set. This shows the type of relations encountered 
here. 

Suppose y = Kx, y ~ ~k,  ~o(t, x) = (y, N(t)y), 
~o l (x) = ( x -  m, M ( x -  m)), N(t) = N'(t) > 0, M = M' > 0. Here M, N(t) are 
positive definite, symmetric matrices of respective dimensions n,k, with 
N(t) continuous; the prime stands for the transpose. 
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Denote set g(p( t ) ,P( t ) )  = { x -  p, P-~ (t)(x - p)) < 1 to be an ellipsoid with 
center p(t)  and shape matrix P = P' > 0,  taking the bound on control u as 

u(t) ~ P( t )  = $(O,P(t)), (17) 

and presuming therefore the target set 

All = g(m, M )  = {x : (x - m, M ( x  - m)) < 1}, 

and the state constraint 

y ( t )  = $(0, N(t))  = {y : (y, N( t )y )  < 1}, 

to be ellipsoidal as well, with N(t)  being continuously differentiable. 
Let p( l  [ 2() = max {(l,x) [ x ~ 2(} stand for the support function o f  convex 

compact set 2(.  Then pZ(dl$(O,P))  = (d ,P- ld ) .  
In order to find V(r ,x) ,  we shall start by looking at solvability in the 

class of controls (17) of  the system of inequalities 

(y[t],N(t)y[t]) >/.t > O, t ~ [r, tg], ( x ( O ) - m , M ( x ( O )  - m ) )  < 2 -/.t, (18) 

where y[t] = Kx[t], x[t] = x( t ;r ,x ) .  
The first inequality in (18) is equivalent to the following (see [7]): 

3q(.) ~ Q : (q(t), y(t)) - 1/4(q(t), N- '  (t)q(t)) > 1, t ~ [r, 0]. (19) 

Here Q is a compact set of  functions q(.) defined on [r,0] and taken here 
a s  

Q = {q(.)}, q(t) = 2N(t)z(t) ,  t ~ [z-,0], 

where z[t]=Kx[t]} and x[ t]=x( t ;r ,x)  is any trajectory of system (17) 
generated by any u( t )~g (p ( t ) ,P ( t ) )  and any x : ( x , x ) < r  z with r 2 
sufficiently large. Relation (19) in its turn is equivalent to the next one: 

3q(.) E Q:  ~ o  ( (q ( t ) , y ( t ) ) -  1/4(q(t),U-1(t)q(t)))dA(t) > # ~  dA(t), 

(20) 
VA(.) ~ Zar+[r,O], 
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where scalar function A(t)eVar+[to,O ] the space of  nondecreasing 
functions of  bounded variation on [to, 0]. 

The second inequality in (18) is equivalent to the following: 

(l, x[3]) - 1/4(l, M-'I) < 2 -/.t, V l e  1R", 

or 

-a((l,x[,9]) -1/4(l,M-ll) + 2) > a/a, g l  e IR",Vet > O. (21) 

Combining (20), (21), we come to an equivalent system, observing that (18) 
is solvable iffthere exists a function q(.) e Q ,  such that 

-a((l, x[tg]) - 1/4(l,M-'l) + 2) + ~o ( (q(t),y(t) ) - 1/4(q(t), N<(t)q(t) ) )dA(t) >_ 

f r ° ~"., 
> p(a + dA(t)), V1 e Va > 0, VA(.) e Var+[r, tg]. 

The last relation may be rewritten as 

maXq(.) min. min min{-(s[r], x) + ~e  ((s[t], B(t)u(t) + v(t))dt - 

-a (1 /4  f f  (q(t),N-X(t)q(t))dA(t)- 1/4(l,M-~l) + 2)} _> #, 

(22) 

under condition 

f r  o e + a ( t )  = 1}. 

Here s[t] is the row-vector solution to the adjoint equation 

ds = -sA(t)dt - q'(t)KadA(t), s(O) = al'. 

To get the value function V(t,x) 
side of  (22) over u(.). Applying 
finally have 

we now have to minimize the left-hand 
a standard minimax theorem ([5]), we 

Theorem 5.1. The value function V(,9,x) is given by the following formula: 
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fr o ]2(~9, x ) =  max min mil'n mi~n{(s[-r], x ) + ((s[t]B(t)P(t)B'(t)s'[t]) 1/2 + v( t ))dt-  
q(.) h(.) 

(23) 
- a ( 1 / 4 f  ° (q(t),N-'(t)q(t))dA(t) - (1, M- ' l )  + 2) }, 

where the maximum in q(.) is to be taken over all functions q(.) ~ Q and the 
minimums over l e •", {a,A(.)} ~ 79. 

The generally nonconvex level set 

W[r]  : {x: V(r,x) > 1} 

is the set of points from which it is possible to avoid the interior inty(t) 
while reaching the target set A/[ at prescribed time ~9. 

6. C O N C L U S I O N  

This paper presents some basic solution schemes for nonstandard 
dynamic programming problems motivated by new trends in control for 
automation and navigation. The solutions are given in the form of 
generalized HJB-type relations or, in the linear case, through duality 
relations of convex analysis and minmax theory. 
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Abstract: 

Key words: 

The purpose of this paper is to investigate differential properties of a class of 
set-valued maps and gap functions involving vector variational inequalities. 
Relationship between their contingent derivatives are discussed. A formula 
computing contingent derivative of the gap functions is established. Optimality 
conditions of solutions for vector variational inequalities are obtained. 

Contingent derivative, gap function, vector variational inequalities 

. I N T R O D U C T I O N  

The concept o f  a gap function is well-known both in the context o f  
convex optimisation and variational inequalities. The minimization o f  gap 
functions is a viable approach for solving variational inequalities. In this 
section we generalize the gap function for variational inequalities to set- 
valued functions o f  vector variational inequalities (in short, VVI). The 
convexi ty  o f  gap functions is studied. 
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Let X and Y be Banach spaces, and let C c Y be a closed and convex 
cone with a nonempty interior intC. Thus, Y is an ordered Banach space 
with the ordering cone C. 

Given ~, 7/E Y, we consider the following relationships: 

{ -%\{0} v ~ ~ - { e c \ {o}; 

Since intC --/: 0 ,  the following partial ordering can also be defined: 

{ <-i,tc ~1 ~ rl - ~ E intC; 

{ ->~,,tc r /¢ : :~  { - r / E  intC; 

{ ~i, tc rl ~ 7! - { ~_ intC; 

{ ~ V ~==~ { - r l  ¢ intC. 

Given two subsets of Y, say A and B, the following ordering 
relationships on sets are defined: 

A <_ c B ~ ~ <_ c {, 

A <c\{o} B ¢ : : ~  rl <-c\{o} {, 
A ¢;~ B ~ ,~ ¢1~ {, 

V~/E A, { E B; 

V~ E A, { E B; 

V~/E A, { E B. 

Since intU 7~ o,  the following partial ordering relationships on sets can also 
defined: 

A <-i.tc B ¢=:=~ ~ <-,.~c {, 

A ~,,,tc B V=~ ~ ~,,tc ~, 

Vr/E A, { E B; 

Vr/E A, { E B." 

2. G A P  F U N C T I O N S  OF V E C T O R  V A R I A T I O N A L  
I N E Q U A L I T Y  

Consider following vector variational inequality problem consists in 
finding y E K such that 

(VVI) (F (y ) ,x  - y) ~cx{o} O, Vx ~ K, 
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where K is a closed and convex subset of  X and F : X ~ L (X, Y) is a 
function. 

The weak vector variational inequality problem consists in finding 
y E K such that 

(WVV I) ( F ( y ) , x -  y) ~i,~,c O, Vx E K. 

Definition 2.1 Let C be convex and closed cone in Y with a nonempty 
interior, say int C, and K be a subset of  X .  

(i) A set-valued function ¢ : X ~ Y is said to be a gap function of  VVI 

iff 
1. 0 E ¢ (y) if  and only if  y solves VVI; 

2. o ;~\(o~ ¢(x),  z e K. 

(ii) A set-valued function ¢ :  X ~ Y is said to be a gap function of  
WVVI iff 

1.0 E C/~v (y) i f  and only if  y solves WWI;  

2.0 ~,,,~ o e ~ ( x ) , v x  e K. 
Let 

( F ( x ) , x -  K ) =  U { ( F ( x ) , x -  z) : z E K}. 

Definition 2.2 (First gap function for VVI) Let C andK be as in 
Definition 2.1. Consider the set-valued function q5 : X ~ Y, defined by 

(;b(x) := Max c (F(x ) , x  - K ) ,  x E K. 

where MaxcA is the set o f  minimal elements of  A.  

Let 

do~(¢) := {~ ~ K: ~(~) :/: ~}. 

Theorem 2.1 Let be C a convex and pointed cone in Y. The set-valued 
function 

¢(x) = Max c (F(x) ,x  - K) i s  a gap function for VVI. 

Proof. We first prove that 0 E ¢(y) if and only if y solves VVI. 
Suppose that y solves VVI. Then 
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( F ( x ) , y -  x) ~6c\{o } O, Vx E K. 

In particular, let x = y, then 

( F ( y ) , y -  y) = 0. 

Thus 0 E ¢(y),otherwise if there exits some z E Ksuch  that 
( F ( y ) , y - z )  >-c\(o} ( F ( y ) , y - y ) = O ,  then this contradicts that y solves 
VVI. 

Conversely, suppose 0 E ¢(y). If y does not solve VVI, Sx E K, such 
that 

(r (y ) ,x -  y) -<c~o, 0, 
(r (y),y- x) >c~(0/0 = (F(y), ~ -  y>. 

Thus 0 • ¢(y). 
Moreover, taking x -- y, then 

( F ( y ) , y -  y) = 0, 

thus 

0 ~c\{0} ¢(x), Vx E K. 

The proof is completed. ! i 

Definition 2.3 (First gap function for WVVI) Let C be as in Definition 2.1 
and intC --/: 0. Define the set-valued function ¢,, : X ~ Y : 

¢,~ (y ) :=  Max,,tc (F(x) ,x  - K) ,  Vx e K. 

where Maxintc A is the set of  weakly minimal elements of  A. 

Theorem 2.2 The set-valued function ~o(x) is a gap function for WV V I. 

Proof.  The proof is similar to that for Theorem 2.1, but with all occurence of  
¢. C and Max c replaced by ¢~, in tC and Max,,to, respectively, i~i! 
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It is also possible to meaningfully interpret the meaning of "gap" 
function if we consider the duality of vector variational inequalities in a 
slightly more general context. Subsequently we shall relate the gap function 
to the generalized Young's inequality for Fenchel conjugate duality. 

Consider the following general VVI: 

Definition 2.4 Let C be a closed and convex cone in Y. The general vector 
variational inequality (for short, G VVI) consists offinding y E X such that 

(GV VI) (F(x),x - y) - f ( y ) -  f(x) ~e\(,,~ O, x E X, 

where F : X ~ L(X ,Y)  is assumed to be injective, and f : X ~ Y is 
assumed to be a C - convex function. 

Definition 2.5 Let f : X --~ Y be C -convex function. The Fenchel 
conjugate of f is a set-valued function g : L(X, Y) ~ Y, such that 

9(u) := Max c { ( u , x ) -  f(x) : x E X} .  

Remark  2.1 Note here that in order to be consistent with definition of  
Fenchel conjugate, f is assume to be a function from X into Y. Thus, in 
general, VV! is not a special case GVVI. However, if we adjoin an abstract 
" c ~ "  to Y and C, written as Y = Y U {c~}, then GVVI includes the 
previous VVI as a special case where f is just the following indicator 
function for the set K : 

0 E 12, i f  x E K; 

f ( x ) = [ o c E y ,  i f x C K .  

Since F is injective, we may also define the following function: 

Definition 2.6 L e t F  : X --~ L ( X , Y )  be injective. Let G : L ( X , Y )  ~ X be 
defined by 

G(u) = - F - l ( - u ) ,  Vu E Dom(G)= -Range(F). 

The dual general vector variational inequality (for short, DGVVI) consists in 
finding u E Range (F) C L(X, Y), such that 

(DGVVI)  ( v - u , G ( u ) ) - g ( u ) + g ( v ) ~ c \ ( o  ~ O, VvE-Range(F) ,  
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where g is the Fenchel conjugate of  f. 

Thus, a generalization of  Young's  inequality follows immediately: 

Lemma 2.1 (Generalized Young's inequality) 

f(x) + 9(u) - < u,x >~c\(o) O, Vx E X and Vu E L(X,Y). 

We now present a result for the DGVVI. It is a generalization of  Mosco's 
result [ 10]. 

Theorem 2.3 (Partial  duality of GVVI and DGVVI) Let C be a closed 
and convex cone in Y. 

(i) I f  y solves GVVI, then u = - F ( y )  solves DGVVI; 

(ii) I f  y solves GVVI and u solves DGVVI, then 

0 E  f ( y )+ 9 (u ) - (u , y ) .  

Proof. Suppose that y solves GVVI, then we have 

(F (y ) , y ) -  f ( y )  ~c\(o) ( - F ( y ) , x ) -  f(x), Vx E X; 

or form G(y) = -F- l (u )  andu  = -F(y) ,  we have 

( - F ( y ) , y ) -  f (y) E M a x c { ( - F ( y ) , x ) - f ( x ) : z E X } ;  

= g (  - F (~)) 

= 9 ( ~ )  

Now, if u = - F ( y )  does not 
exists v E -Range(F),  such that 

(v -  ~,e(u))-  o(u) + (gv) ~c~(0~ 0; 

solves DGVVI, 

o r  

(1) 

then there 
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Since ( -F(y ) , y )  - f (y) = - ( u , y )  - f (y) E 9(u), we have 

611 

f(y)+9(v) - (v,y) <-c\to~ O, 

which contradicts the generalized Yong's inequality in Lemma 2.1. 
Furthermore, from (1), since u = - F ( y ) ,  it follows that 

o • f(y) + (u,v). 

We call the above a partial duality result, because the converse of either 
of (i) or (ii) may not hold. The converse will hold if we further assumed that 
C is connected in the sense that C U ( - C ) =  Y (See Y. Sawaragi, H. 
Nakayama and T. Tanino [11]). 

We may now extend the definition of gap function to the problem GVVI 
as follows: 

Definition 2.7 A set-valued function Cr: y ~ X is said to be a gap function 

of  the GVVI iff f is such that." 

1. 0 E Cr(y) if and only if y solves GVVI; 

2. 0 ~c\(0~ ¢'(x), Vx E X. 
Set: 

¢ ' (x )  = Max c {< F (x ) , x  - y > +f ( x ) -  f (y): y G X} 

It follows immediately that 

¢'(y) : f(y) + g( - (F(y) )  + (F(y) ,y) ,  

where g is the Fenchel conjugate of f. We now have a much simpler proof 
that Ct is a gap function for GVVI, and the meaning of "gap" is now 
apparent. 

Theorem 2.4 Cr is a gap function for problem GVVI. 

Proof. The fact that¢'(y) ~c\~0~ 0 follows directly from Young's inequality 
of Lemma 2.1. Furthermore, by Theorem 2.3, y solves GVVI implies that 
u = - F ( y )  solves DGVVI, together they implies that 0 ~ ¢'(y). 
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Conversely, suppose 0 E ¢'(y), if y does not solves GVVI, then there 
exists some x E X, such that 

(F(y ) ,x  - y) - f (x)  + f(y) ->c\c0} 0 = ((F(y) ,y  - y ) -  f(y) + f(y),  

then 0 E ¢1(y), a contradiction. Furthermore, taking x = y, then 

( ( f ( y ) ,  y - y ) -  f (y)  + f ( v )  = O, 

thus 0 ~c\~0} ¢'(x), Vx E X, and the proof is complete. 
The above generalization of VVI is trivially extenable to WVVI. 

Definition 2.8 The general weak vector variational inequality (for short, 
G WVVI) consists off inding y E X such that 

((F(y),x - y ) -  f(y) + f(x) ~,,,,e O, Vx E X, 

where F :  X --+ L(X,  Y) is assumed to be injective, and f : X --~ Y is 
assumed to be a C - convex function. 

Definition 2.9 A set-valued funct ion¢ ',v: X ~ Y :  is said to be a gap 
function o f  the GWVVI i f  f 

1. 0 E ~o' (Y)if and only if y solves GWVVI; 

2. 0 ~,,,tc ¢,o', Vx E X. 

We set 

~Z(y):= M a x , , , t e ( F ( x ) , x - K ) ,  V x E  K. 

Theorem 2.5 The set-valued function ¢',o : X ~ Y is a gap function for  
GWVVI. 

Under some appropriate conditions, the gap function for both the 
(general) vector variational inequality and (general) weak vector variational 
inequality can be shown to be convex. 

Definition 2.10 Let K be a closed and convex subset o f  X.  The function 
F : K --o L(X,  Y)  is monotone on K i f  f 
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(F(z') - F ( x " ) , x ' -  x") >-c O, Vx',x" E K. 

The function F is affine i f  f ,  Vx',x" E K,  V a i l  E R, with a +/3 = 1 we 
have 

F(ax '  +/3x") = aF(x')/3 + F(x").  

The notion of  convexity is well-defined for single-valued functions using 
ordering relationships. However ,  this definition cannot be extended in a 
straightforward way  to set-valued functions, and inclusion type relationships 
must be used. It appears that the notion of  convex set-valued function is 
slightly more complicated and more care is needed to deal with it. 

Definition 2.11 Let C be a closed and convex pointed cone in Y with the 
nonempty interiorintC, K be a closed and convex subset o f  X.  Let 
x,y E K and let t E (0,1).  A set-valued function G : X ~ Y is said to be." 

(i) Type I C -  convex iff  G(tx + (1 - t)y) c tG(z) + (1 - t)G(y) - C; 

(i 0 Type II C -  convex iff  tG(x) + (1 - t)G(y) c G(tx + (1 - t)y) + C; 

(iiO Type I C -  concave iff  tG(x) + (1 - t)G(y) c G(tx + (1 - t)y) - C; 

(iv) Type II C -  concave iff G(tx + (1 - t)y) c tG(x) + (l - t)G(y) + C; 

R e m a r k  2.2 Type II convexity and concavity have been used previously in 
the literature, where it was acknowledged that i f  G is type II C -  convex, 
then - G  is not necessarily type II C - concave. However, it is not difficult to 
see that 

(i) G is type I C - convex i f  f ,  - G  is type II C - concave; 

and similarly, 

(ii) G is type H C - convex i f  f ,  - G  is type I C - concave. 

I f  G is a single-valued function, then both type I and type II convexity 
(concavity, respectively) are equivalent to that usual C -  convexity (usual 
C - concavity, respectively). 

Lemma 2.2 Let F : K  ~ L ( X , Y )  be a function. I f  F is affine and 
monotone, then the function (r(.),.): K L(X,Y) is type I e-convex.  

Proofi Given t E (0 ,1) ,x / ,x"  E K, 
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(F(tx'  + ( 1 - t ) x ' ) , t x '  + ( 1 - t ) x ' ) - t ( F ( x ' ) , x ' ) - ( 1 - t ) ( F ( x ' ) , x ' )  

= t" (F(x ' ) ,x ' )  + (1 - t) 2 ( F ( x ' ) , x ' )  + t(1 - t ) ( (F(x ' ) , x ' )  + (F(x ' ) , x ' )  

- t (F(x ' ) , x ' )  + (1 - t ) (F(x" ) , x" )  

= - t (1  - t ) ( F ( x ' -  x " ) , x ' -  x") 

<c O. 

It is well-known that the Fenchel conjugate o f  a scalar valued function is 
convex in the usual definition. With the above definition o f  convexity for 
set-valued functions, this notion is now affirmative for a vector-valued 
function. 

L e m m a  2.3 Let f :  X --* Y be a C -convex function and let for any 
u E L ( X , Y ) t h e  set { ( u , x ) -  f (x ) :  x E X} satisfy the domination property. 
Then Fenchel conjugate of  f is type I C - convex. 

Proof.  By the definition, the Fenchel conjugate o f  the vector-valued 
function f is a set-valued function 9 : L(X, Y) ~ Y such that 

g(u) = M a x  c { ( u , x ) -  f ( x ) : x  E X}.  

We have, Vt E (O,1) ,u ' ,u"  E L ( X , Y ) ,  

g( tu' +(1 - t )u") 

= Max c {(tu' + (1 - t ) u " , x ) -  f (x) :  x E X}. 

C {(tu' + ( 1 -  t ) u" , x ) -  f ( x ) : x  E X}  

= {t((ut, x ) -  t(x)) + (1 - t ) ( ( u ' , x ) -  f ( x ) ) : x  E X}  

= { t ( (u ' , x ) -  f(x)) + (1 - t ) ( ( u ' , x ) -  f(x))  : x E X} 

c t {((~', ~) - f(~)) : • e x}  + ( 1 -  t) {(~", ~ ) -  f(~)) : • e x}  

C tMax e {((u', x) - f (x))  : x E X} - C + (1 - t) Max c {((u' ,x)  - f (x))  : x E X} - C 

= tg(u')+(1 - t)g(u") - C. 

Then g is type I C - convex. Ill 
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Lemma 2.4 I f  g : L ( X , Y )  ~ Y  is type I C-convex,  andF : K ---* L ( X , Y )  
is affine, then the composite 9 o F : X ~ Y is type I C - convex. 

Proof. Given x', x" E X and t E (0,1). 

g o F ( t x '  + ( 1 - t ) x " )  = g(F(tx' + ( 1 - t ) x " ) )  

= g ( t F ( x ' ) + ( 1 - t ) F ( x " ) )  

C tg(F(x')) + (1 - t)9(F(x")) - C 

= tg o F(x') + (1 - t)g o F(x") - C. 

[2 

Theorem 2.6 Let C be a closed and convex cone in Y and let for  any 

u E L ( X , Y )  the s e t { ( u , x ) -  f ( x ) : x  E X }  satisfy the domination property. 

Consider the problem GVVI. I f  F is affine and monotone, and f : X ---* Y 

is C - convex, then the gap function ¢' is type I C - convex. 

Proof. By the definition the gap function ¢'(x) can be rewritten as, 

¢'(x) = g o ( -F ) ( x )  + (F(x) ,x )  + f(x) ,  

where the Fenchel conjugate 9 of  f is type I C -  convex by Lemma 3.3. 
Since F is affine, so is - F .  By Lemma 2.4, g o ( - F )  is type I C - convex. 
By Lemma 3.2 (F(.),.)is type I C-convex,  and hence ¢' is type I 
C - convex. [I 

. D I F F E R E N T I A L  A N D  S E N S I T I V I T Y  OF G A P  
F U N C T I O N  

Let 

N(x) = M a x  c (F(x) ,x  - K ) ,  x E K, 

W(x) =Max,,tc ( F ( x ) , x -  K) ,  x E K, 

respectively. 
Note that (VVI) is equivalent to the following set-valued optimization 

problem: 
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MincN(x), subject to z E K, (2) 

and (WVVI) is equivalent to the following set-valued optimization problem: 

Mini,,cW(z), subject to x E K. (3) 

If F is a vector-valued function from X into X*, then, (VVI) and (WVVI) 
become the ordinary variational inequality problem and the gap functions N 
and W reduce to Auslender's gap function [3]. Thus, set-valued 
optimization problems (2) and (3) reduce real mathematical problems: 

mimp(z) subject to x E K, 

where ~p(z)= max (F( z ) , x -  K). If ~ is differentiable, then the above 
mathematical programming may be solved by a descent algorithm which 
possesses a global convergence property [7]. Therefore, it is a very important 
and valuable to discuss differential properties of gap functions N and W in 
vector variational inequalities. In sequel, we let X and Y be two real 
Banach spaces. Let 0 and {9 denote the origin points of Y and L (X, Y), 
respectively. For any A E L (X, Y), we introduce norm: 

IIAIIL = s u p  {IIA(x)IIL :ll x 1}. 

Since Y is a Banach space, L(X,Y),  is also a Banach space with the norm 

II, IlL, 
It is easy to verify the following lemma. 

L e m m a  3.1 Let sequences {a s } and {~,, } C R+ \ {0} such that a~ 
and 13, ~ O. 

Then, there exist subsequences {e% } and {/3 } such that 

~ 0  

lim ak' = 1. i~oo & 

Let G : X  ~ Y be a set-valued function. We denote the contingent 

derivative of G at (~-,ff) E X × Y  as DG(~-,ff),which is a set-valued 
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function from X to Y, whose graph is the contingent cone (tangent cone) 

T (graph G, (~, ~) ). 

Proposition 3.1 y e DG(~,~)(x)  i f  and only if, for any {o~k} C R+ \{0} 

and ol k ~ O, there exist subsequence {a~. } C {a k } and sequence 

{(x,,yi) } C X × Y, such that ak, ~ O,(x,,yi) ~ (x,y) and 

ff +ak ,  y , EG(~+akx,)foral l  i. 

Proof. Obviously, we only need to prove the necessary condition. Suppose 
that y ~ n G ( ~ , y ) ( x ) .  Then, there exist { h , , } c R + \ { O }  and 
{(x.,yn) } C X x Y, such that h a -~ O,(x,,,y,,)~ (x,n) and 

ff +h.y,, eG(~+h,,x,,), V,,. 

Take any sequence {ak} C R+ \ (0} and a~ ~ 0. By Lemma 3.1, there 

exist subsequences {hn, } and {ak, } such that 

& 
lim '" = 1. 

Set 

xi = h.., x.  and Yi = h., Yh," 
OLk~ OLk, 

Thus 

(x,,y,) ~ (x,y). 

It follows that 

and this completes the proof. 
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N o w  we  let X be a finite dimensional space and K be a compact subset 
in X ,  F : K ~ L(X, Y) be continuous Frdchet differentiable and 

G(x) = (F(x) ,x - K )  = U (F(x),x - z). 
zEK 

T h e o r e m  3.1 Let ~,,~ E K,~I ---- (F(~,),~-'~) E G (~) and 

lim,,~,,~ (F(:~),x) = oo. Then 

DC(~,~)(~) = ( V F ( ~ ) , ~ -  ~> + 

Proof .  Suppose 
{ ( x . , , , y , ) } c X x Y a n d  
and 

U (F(~),~-x'}. 
x'cT(/~) 

y E DG (~, ~1) (x). There exist sequences 
{h.} C R+ \ {0}, such that x,,,h,, ~ (x,n),h. ~ 0 

and 

( F ( 2 , : 2 - ~ ) ) - ( F ( ~  +h~x , , ) ,~-~ , , )=(F(2  +h.x..),h,,x,,.)-h.y,,. (4) 

Since F is continuously dfferentiable, by the Taylor expansion, 

F(2 + h.x,,)= F(2)+ h, yF(:~)x,, +o(h,,x..). (5) 

It follows from (4) and (5) that 

(F(2) ,x- , , -~)=(h.VF(2)x.  +o(h,,x,O,2-5.,)+(F(:~ +h,~x~),h,,x.-h,~y.) 
(6) 

Hence 

Therefore, there exists g,, E K such that 

~ + h.y,. e c ( ~  + h,,x,,) = ( . ( ~  + h~x,,),~ + h,,x,,),~ + h,,x, - K) 
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(~(~),(~,,-~)/h,~)=(VF(~)x,~ +o(<~,~)/h,,,~-~,,)+(F(~ +<x,,),x,,)-~,, 
(7) 

As K is compact set, we can assume, without loss of  generality, that 
~, ---* x' E K. Obviously, 

! im((VF (~)x,, +o(hox,,)/<,xo)+(F(~ +<x,,),~,,>-y,,) 
(8) 

= ( v F  (~)~, ~ -  ~ ' )+  ( F ( ~ ) , ~ ) -  v. 

Thus, it follows form ( 6 ) t h a t  sequence {(F(:~),(:~-~)/h,,)} is a 

convergent sequence. Let us consider two possible cases for the sequence 
{(~,,- ~)/h,,}. 

Case I. There exists a subsequence {(~-~)/h,,}, such that 
(~,,, - ~)/h,, ~. 

By the given assumption conditions, (F(:~),(~,e-~)/h,,) ~cx),, 
which contradicts (8). 

Case II. There exists M > 0, such that 

(w. - ~) / h. I ___ M, Vn (9) 

Since h. ~ O, by (9), we have 

x ' =  ~-. (10) 

Since X is a finite dimensional space, we can assume that 
(~-,, - x) /h ,  ~ ~. Thus, 5: C T(K,~) and it follows from (9) and (10) that 

<F (~), ~> = < w ( ~ ) x ,  ~ - ~> + <F (~), 4 - ~, 

and so 

= ( v F  (~)x,~ - ~) + (F (~), ~ - ~) 

~(vr(~)~,~-~>,+ U (F(:~),~'-x'). 
z" eT(h~) 

Thus 
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DG(~.,~I)(x)c (VF(:~)x , :~-Z)+ ~.J (F(:~) ,x-x*) .  
x'ET(K~) 

Conversely, we suppose that x* E T (K, Z) and 

= < v F ( ~ ) x , ~  - ~> + <r ( ~ ) , x -  x*>. 

Thus, there exists {~,, } C K and {h, } C R+ \ {0} such that 

~,~--* ~,h n --* 0 and ( ~ n - Z ) / h n - - ~  x*. 

Take sequences {~-n } C X and {y, } C Y such that x,, -+ x and 

~,, ((F(~ + h,,x,,)- F(~))/h,,,~- ~> +<F(~ + h,,x,,),x,, - (~,  -~)/h,,) .  

It follows from (11) that 

y,,---~y 

and 

(11) 

Then 

+ h,,~,, = ( . ( ~  + h.z,,), ~ + h,,~,,- ~,,) ~ a(~ + h,,~,,). 

So that 

and this completes the proof. [1 

Now we discuss the relationship among contingent derivatives D W and 
DG. 

Theorem 3.2 Let fc, g C K and ~ = (F(:~,)~- ~) E W (~). Suppose that 

lim II < F (:~), x >lI = oo. 
IIxH~oo 
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DW (:~,~))(x) C Max,,,cDG ( ~,~)(x). 

Proof. Let y E DW(Y:,~/)(x). Clearly, y E nG(:~,~l)(x). If 
y ft Max~,teDG(~.,~))(z),then there exists ~ E DG(:~,fI)(x) such that 

- y E intC. (12) 

Since y E DW(:~,~))(x), there exists sequence {(x,,, y,, )} C X x Yand 

{h,} C R+ \ {0},such that (x,,,y,,) ~ (x,y),h,, ~ 0 and 

w .  

It follows from ~ E DW(:~,fI)(x), and Proposition 3.1 that, for the above 

given sequence {h,,} C R+ \ {0}, there exist a subsequence, without loss of 
generality, we still write as {h. } and sequence {(x,,, y,,)} C X x Y such that 

(x, , ,y . )  ~ (x ,y)  and 

~ + hn~, , E G (:~ + h,,~,~), Yn. 

Thus, there exists x~,, E K such that 

9 + h,,~,, = ( F ( 2  + h,,~,,),2 + h,~- - x',,) (13) 

F being continuously differentiable at :~, we have 

F(:~ + h,,~,,) = F(:~) + h,,VF (:~) ~, = o (h,y,).  
F (~  + h,,~,,) = F ( ~ ) +  h,,VF (~)x. = o(h,,X. ). 

Since {~,, } and {x,, } are two convergent sequences, o(h,y) /h, ,  ~ @ and 

o(h.x)/h.  --*e. Thus, (o(h,y)--~o(h,,x))h. --*0. By o(h,,), we denote 

o(h,,x)). Thus, we have 
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(F (~ + h.~.),~ + h,,x,, - < )  

= ( r (~  + h,,x,,),~ + ho~,, - < )  + 
(h,,VF (~)(~ - ~,,)+ o (h,,,) ~ + h,~,,- x',~) 

(F(~ + h,,~,,), h~ (~  - ~,,))(h, y p  (~)(~,,- x,~)+ o(h,~,) ~ + h,,~,,- ~',,) 
(14) 

Set 

~(n)  -- ( ~ ) ( r ( ~  + h,,~,,),~,, - ~,,) + v . ( ~ ) ( ~ , ,  - z,,) + 

(o(h,,))/h,,,~+h,~x,,x',,. 

Since (~ -x~)---*Oxand o ( h , , ) / h , , ~ e , o , O . , ) ~ e .  
(14), we have 

+ h,,~,~ = (F(~  + h.x,,), ~ + h,,x, ,-  ~',,) + h,,~(n), 

and so 

+ h,, (~,, - , ~  (n))~  G(~ + h,,z,,). 

It follows from the definition of W that 

(~ + h,, (~ , , -  ~ ( n ) ) ) -  (~ + h,,y,~)¢ ~ntc, 

and 

Thus by (13) and 

7) - a(n)  - Yn f[ intC. 

Hence, 

~) - y f~ intC. 

which contradicts (12) and this completes the proof. 

Theorem 3.3 Let ~c, ~ e K and ~ = (F(~), :~ - ~) E N(~). Suppose that 

i] 
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lim I1< F(2) ,x  >11--+ oo. Ml~oo 

Then 

DN(~, fl)(x) C Max,,.cDG(:~,fl)(x ). 

Proof. Since N C W, 

DN(?c, fl)(x) C D W(~, ~1)(x). 

Thus, by Theorem 3.2, the conclusion follows readily. 

Lemma 3.2 Let fl be a maximal point of G(~) and C have a compact base. 
Suppose 

DG(:~,fg)(Ox) CI C = {0}. (15) 

Then 

D (G - C)(:~,~))(x) = DG (:~,~)) - C ,  

where (a - c)(x)  = G(z) - C. 

Proof. Lety E D ( G -  C)(~.,~))(z). Thus, there exist 
{(z,,, y, )} C X x Y, {h,, } C R+ \ {0} and {d,, } c C, such that 

(x,y), h,, o 

and 

~)+h,,y,,. +a,, eG(:~+h,,x,,),  Vn (16) 

Therefore, there exists ~-,, E K, such that 

+ h,,y,, + d,, = <(~? + h,~x,,),~ + h,~x,~ - g,~>. (17) 

sequences 
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K being a compact set, we can assume, without loss of generality, that 
~-, ~ x ' E  K. By (17), sequence {d,,} is a convergent one. Suppose 
d.~ ~ d. Then, we have 

If  d ;~ 0, then this contradicts the fact that ~ is a maximal point of G(~). 
Therefore, d, ~ 0. Let us consider two possible cases for sequence {d,, }. 

Case I. There exists n o such that d,~ = 0, for n _> n 0. By the definition 
of the contingent derivative, y E DG ( :~, [1) (z). 

Case II. There exists a subsequence, without loss of  generality, we still 
write as d, such that d, ~ 0, for all n. 

Now, we assert that the sequence {]] d, [ [ /h ,}  is bounded. Indeed, 
suppose that the sequence {[I d,, [[/h,,}is unbounded. Without loss of 
generality, we assume that [1 d,, [[/h,, -~ o0. Since C has a compact base, 
by Lemma 3.1 in [13], we may assume that 

d. /lld,,.ll -~ d' ~ c \ {o) .  

Thus, we have 

and 

(h./lld.ll)Y,, + d./lld,,,ll -~ d', 

(h.llld,~ll)x. ~ Ox. 

It follows from (16) that 

(;~ + Ild,,ll(h,~/I1~,11) Y,~ + d,Y IId,,.ll)~ C(~ + Ildoll(h, Ylld,~ll) xo). 

Therefore, 

d 'EDG(~,~) (Ox) ,  

which contradicts (15). 
Thus, the sequence {lla,~ll/h.) is bounded and we can assume 

(18) 
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lid.I[/h,, ~ a _> 0. (19) 

By (16), we have 

+ h,,(Y~(lld,,ll/h,,)+ (d,,/lld,,ll) ~ C(~ + h,,x,,), W 

By (18), (19) and the definition of contingent derivative, 

y + ad' e DG (:~,~))(x), 

and so 

D(G - C)(:~,9)(x) C DG (~,fl) - C, 

Conversely, by Proposition 2.1 of Tanino [12], 

DC(Yc, O ) ( x ) - C  c D(G-C)(: f : ,9)(x) .  

Thus, the conclusion follows readily. I7] 

Theorem 3.4 Let ~1 be a maximal point of  G(~) and let C has a compact 
base. Suppose 

DG(~,~)(O~)nC = {0}. 

Then 

Max c (G -C)(:~,~])(x) = MaxcDG(:~,~l)(x ). 

Proof. It follows from Lemma 3.2 that 

D ( G - C ) ( ~ , ~ ) ) ( x )  = DG(:~,~))(x)-C. 

Therefore, 

MaxcD(G - C)(:~,~/)(x ) = Maxc(DG ( ~,~/)(x) - C ) 

=MaxcDG (:~,~l)(x), 

and this completes the proof. 
i 
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Theorem 3.5 Suppose that the following conditions are satisfied: 
(i) ~) E N (:f:); 
(iO C has a compact base," 

(iiO I[< F(c~),x >11 
(iv) DG(:~,~))(Ox)NC= {0}. 

Then 

MaxcDG (~c,~l)(x ) C DN (2, ~))(x)C Maxi,,cDG (:~, ~))(x ). 

Proof. Since N(x) C G(x) for all x E K, it follows from (iv) that 

DN(:L f l ) (Ox )nC= {O}. 

K being a compact set, G(x) is also a compact set for any x E K. Thus, by 
Lemma 2.3 in Li, Chen and Lee [8], G(x) - C = N(x) - C. It follows from 
Theorem 3.4 that 

MaxcDN (2,~)(x) = i a x c D ( i  -C)(:?,~/)(x) 

= MazcD(G-C)(:~,#)(x  ) 

= MaxcDG(:~,~))(x ). 

Obviously, 

MaxcDN (:~, ~))(x) c DN (~, ~)) (x). 

On the other hand, we have 

DN (~?,~)) (x) C Maxi,,cDG (~2,~)) (x), 

by Theorem 3.3. Thus, the result of this theorem holds. C] 

Lemma 3.3 Suppose that C has a base, and C is a nonempty closed and 
convex cone with C \ {0} c C. Then, C is also a base. 

Proof. By Lemma 3.1 in Shi [13], this result holds. 

Theorem 3.6 Suppose that the following conditions are satisfied." 
(i) ~1 is a maximal point of  G(~); 
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(iO C has a compact base and there exists a nonempty closed convex 
cone C such that C \ {0} c intC; 

(iii) lim,,~,,~oo I1< >ll-  oo; 
(iv) DG( :?, ~l) ( O x ) Cl intC = 0. 

Then 

DN(~,~)(x)= DG(:~,~)(x) 

= Maxi,.cDG(~,~l)(x ) 

= (VF(~c)z,~- ~)+ Max,,.c[ .cU )F(~c)x- x* I. 

Proof  Since N(x) C W(x), by Theorem 3, I and Theorem 3.3 we only need 
prove that 

Max,,.cDG (~,t))(x) c DN (~?, ~)) (x). 

It follows from (ii) and (iv) that 

nN (fc, ~))(Ox ) C C = {0} 

K being a compact set, G(z) is also a compact set of  any x E K .  Thus, by 
Lemma 2.3 in Li, Chen and Lee [8], G(x) - C = N(x) - C. It follow from 
Lemma 3.2 and Theorem 3.4 that 

MaxoDU (~, ~))(x)= MaxeD(N -¢)(:~,~))(x) 

= M a x e D ( G - C ) ( G - C ) ( : ~ , 7 ) ) ( x  ) 

= MaxoDG(£,~/)(x ). 

Since d \ {0} c intO, 

Max,,.cDG (2,~l)(x ) C MaxeDG (2,~)(x ). 

Therefore, 

Uax,,.cDG (~,~) (x) C MaxeDN (~,~))(x)C DN (~,~)), 
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and the result of  this theorem holds. [13 

Corol lary  3.1 Suppose that the following conditions are satisfied." 
O) 
O0 

OiO 

Ov) 
Then 

~1 is a weakly maximal point of  G(:~); 
C has a compact base and there exists a nonempty closed convex 
cone O such that O \ {0} C intC; 

lim,,,,~oo II<F(e), x>ll = ~ ;  

D G ( 2 , ~ ) ) ( O x ) n i n t C  = 0. 

( ) 
DW(:f:,~))(x) = :  ( V F ( : ~ ) , Y : -  ~ ' ) +  Maxi,,c/ U 

' D.eT(K~) ) 

Proof. By Theorem 3.2, this result holds. , l  

4. CHARACTERIZATIONS OF SOLUTIONS FOR 
(VVI) AND (WVVI) 

In this section we consider characterizations of solutions for vector 
variational inequalities and weak vector variational inequalities in terms of 
gap functions. 

Theorem 4.1 Let ~ E K and lim,.,,~oo [[(F(~),x)[[ = c~. I f  ~ is a solution of 
(WVVI). then 

DG(:~,O)(Ox)NintC = o 

Proof. Obviously, we have 

( F ( 2 ) , x -  2) f{ - intC,  Vx e K e* (F(2),x) f~ intC, 

vx ~ ~l [u l (K- ~)} ' t , , .  h 

and 

T(K,  2) C c l IU l (K - 2)}. 
(,,~o h 
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It follows from Theorem 3.1 that 

Da(~,o)(ox)= U (F(~)x-x'>. 
x*er(m) 

Thus, this conclusion follows readily. I I 

Remark  4.1 I f  K is a compact and convex set, then, by Proposition 5 in 
Aubin and Ekeland [1], we have 

T(K' ~) = cl[U I(K - ~ ) / ' t , , > o  h 

Thus, under the conditions of  Theorem 4.1, 27 is a solution of (WVVI) if and 
only if 

DG(~,O)(Ox)NintC=o.  

Theorem 4.2 Suppose that the following conditions are satisfied." 
(i) £c is solution of  (WVVI); 
(ii) C has a compact base and there exists a closed and convex cone 

such that d {0} C intC; 

(iiO lim,,~,~oo <F(~),x) = oo. 

Then 

D W  (~,O)(x) = Max,,cDG(fc, O)(x ) 

= Max,,,c (U~.~(K.~) (F(~), x - ~*)). 

Proof. Since ~ is a solution of (WVVI), 0 is a weakly maximal point 
G(~). If follows from Theorem 4.1 that 

DG(~ ,O) (Ox)A in tC=o  

Thus, by Corollary 3.1, the conclusion follows readily, il; 

Theorem 4.3 Suppose that the following conditions are satisfied." 
(i) fc is a solution of  (VVI); 
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(iO c 
such that C {0} c intC; 

(iiO lim,~n_, ~ [(F(:~),x) = c~. 

DN(:~,O)(x) = DW(~,O)(x) 

= Max,,,cDG (:~,O)(x) 

: Max,,,c U ( F ( ~ ) , x -  x* 
~* ET( K,Y: ) 

Proof. Since ~ is a solution of (VVI), 0 
follows from Theorem 4.1 that 

DG(Yc, O)(Ox)NintC= O. 

Thus, by Theorem 3.6, the conclusion follows readily. 

Variational Analysis and Appls. 

has a compact base and there exists a closed and convex cone 

is a maximal point of  G(~). It 
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ZERO GRAVITY CAPILLARY SURFACES AND 
INTEGRAL ESTIMATES 

G.M. Lieberman 
Dept. of Mathematics, Iowa State University, Ames, Iowa, U.S.A. 

INTRODUCTION 

Let ~ be a bounded domain in R" and write 7' for the unit inner normal 
to c3f~. In [1], Finn showed that the capillary problem in zero gravity 

d iv ( . \  ti+ I' ~D---U-u z"/2 ] = K in ~ ' L m  ) 

Du 
(1+[ Du ]2)1/2 'Y = (P on c3f~ 

has a solution 
Klnl=-~olOn[ 
vector field w such that 

div w = K in f2, 
w. y = (p on 0£'2, 
sup lw l< 1. 

(0.1a) 

(0.1b) 

for constants K and (p satisfying IcPl <1 and 
(otherwise there can be no solution) provided there is a 

(0.2a) 
(0.25) 
(0.2c) 
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Finn's goal was to simplify a geometric condition (due to Giusti [6]) 
which implies the existence of  a solution to this problem. In [1, Section 2], 
Finn showed that the vector field w can be constructed explicitly when ~ is 
a suitable polygon (or polyhedron); however, his trapezoid example (see 
pages 8 and 9 of  [1]), which shows that the geometric condition for existence 
is quite subtle, was not described in terms of  this vector field. This approach 
was quickly replaced by one closer in spirit to Giusti's original condition: 
the introduction of  a subsidiary variational problem (see [3, Theorem 5.1] 
and [2, Chapter 6]). 

Here we revisit the vector field approach from a different point of  view. 
We shall show that the vector field criterion is an easy consequence of a 
uniform L t estimate for a related family of problems (see (1.2) below), and 
this uniform estimate is our main concern. We show that a corresponding 
result holds in a more general setting (for example, with nonconstant ~o and 
K ) and we derive some useful consequences. We prove this uniform L ~ 
estimate in Section 1 and thus infer the existence result, which follows also 
from the method of  [2, Chapter 7]. Some corollaries of  this estimate, 
motivated by results in [1] are discussed in Section 2. We also examine the 
L ~ estimate and a corresponding E ° estimate for more general boundary 
value problems in Section 3. In particular, we improve the corresponding 
estimates in [11 Section 3]. The examples given in Section 4 illustrate the 
nature of  our results, and some related existence theorems are given in 
Section 5. 

A crucial tool is Poincar6's inequality which we shall use in the following 
form. (See [15, Lemma 1.65] for a proof in this general setting.) If ~ is a 
bounded Lipschitz domain, then there is a constant k ,  determined only by 
f~, such that 

~ I u I dx ~ k f~ I Du I dx 

for any function u • W 1'~ (f~) with 

f udx = 0. (0.3) 

In fact, this theorem is true for a more general class of  domains, but we shall 
not be concerned with generality. In addition, there is an analogous 
statement if u • W 1'" which we shall refer to in a later section. 
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. THE MAIN THEOREM 

In this section, we prove the following result. 

Theoreml .1  Let ~ be a bounded domain in ~" with O ~ E C  2, 
K ~ C I (fl), and let ~o e C ~ (0~) with I cp I< 1 on Of 2. Suppose also that 

let 

f~ K d x  + fon ~ods = O. (1.1) 

I f  there is a vector field w satisfying (0.2), then there is a classical solution 
to (0.1). 

Proofi Let u, be the solution of 

Du~ 
div (1+[ u~. ) ) -~u z,l/2l = eu~ + K in f), (1.2a) 

O n  c 
(l+lDu~ [2),:2 ? '=¢ponc3~ (1.2b) 

given by [17, Theorem 1] or Theorem 7.2 and example 1 of  [11]. (Note that 
these references assume more smoothness for 0f~ and ~ than we assume 
here. An easy approximation argument gives the result in exactly the form 
required here.) It suffices to show that the set {u~. } is uniformly bounded in 
C TM (~)  for some a > 0. 

We first note that Lemma 3.3, Example 1, and Lemma 5.2 of  [11] reduce 
this problem to a uniform L 1 estimate on u~, which we now prove. For 
brevity, we define 

A~ - Du,. 
(l+IDuc 12),:2 W, 

Then divA c = cu~ in f~ and A,..y = 0 on 0 ~ .  We multiply the differential 
equation by u~ and integrate over f) .  Applying the divergence theorem 
along with the boundary condition, we infer that 

f A~ • Du~ dx + c f u  2 dz = O, 

SO 
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f A , .  Du, dx < O, 

N o w  we observe that, for cr = sup] w I, we have A, .  Du,. >_ ( 1 -  cr) lDu ,. l - l ,  
and hence 

f .  I Du, I d= < I 
- - 1 - - o  

Next, we integrate the equation divA~ = cu t. over f)  and apply the 
divergence theorem and the boundary condition to see that 

f u~ dx = O. 

Poincar6's inequality then yields the L ~ bound on u , .  [i 

Note  that there is no restriction on the signs of  K and (p other than the 
obvious one that they can' t  both be everywhere positive or everywhere 
negative. Moreover,  if  w 0 is a smooth vector and if  K 0 = d i v w  0 and 
tp0 = w. 7 ,  with W = sup I w0 l, then for any r/~ (-1/W, 1/W), the functions 
K = r /K  0 and q9 =r/~p0 satisfy all the hypotheses of  this theorem with 
w= Wo/r 1 . Because the vector field w is often difficult to determine in 
practice, we give an alternative sufficient condition for (0.1) to have a 
solution in Section 3. 

. C O N S E Q U E N C E S  OF THE M A I N  THEOREM 

In fact, the existence o f  w is also a necessary condition for the existence 
o f  a capillary surface in zero gravity under the additional hypotheses that 
c ~  is smooth and sup [ ~o I < 1. Such a result is already known (Theorem 2 in 
[1]) for constant K and (p. Here, we also obtain a regularity result for this 
surface. 

Co ro l l a ry  2.1. Let f)  be a bounded domain in 1~" with O f ) e C  2, let 
K ~ C I (f)), and let q) ~ C ~ (Of)) with I (P I < 1 on OF). Suppose also that (1.1) 
holds, l f  there is a bounded weak solution u o f  (O. 1), then there is a function 
w satisfying (0.3). Moreover, u e CL"(F)) for  any a e (0,1). 

Proof.  We start with a simple maximum estimate for ]u,. I (see, for example, 
[ 17, Lemma] or [4, Theorem 1 ]). Let v 1 = u - inf u and v 2 = u - sup u.  Then 



Zero Gravity Capillary Surfaces and Integral Estimates 637 

the comparison principle [2, Theorem 5.1 ] gives us v~ _> u,. > v 2 . From this 
uniform bound, we infer a uniform (for each fixed a ~ (0,1)) C I'' estimate 
for u,, and hence there is a convergent subsequence with limit u 0 , which is 
a solution o f  (0.1). The uniform estimates on uc imply that I Du01 is 
bounded,  so 

Duo 
W =  

( I + 1 0 u  012) '/z 

satisfies (0.2). 
The comparison principle implies that u -  u 0 is constant, so u has the 

same regularity as u 0 . In particular, u ~ C ~''~ . F] 

The uniform gradient estimate on u c can be used to correct a 
misstatement in [9]. In that work, the author asserted that the gradient bound 
in [17, Theorem 2] for a solution o f  the capillary equation 

l Du I div (1+ I Du 12)~/2 = ku in ~ ,  (2.1 a) 

Du 
(1+ i Du 12),,l "7 = ~ on af2 (2. lb) 

is independent o f  the positive constant k and the maximum of  u.  In fact, 
this theorem gives a bound which is independent o f  k but does depend on 
the maximum of  u.  However ,  if there is a solution of  the zero gravity 
problem (0.1) with constant K and ~ ,  then the uniform gradient bound 
from Corollary 2.1 shows that the gradients o f  the functions labeled z and v 
in [9] are bounded independent o f  k (because z = u and v = u,. with E = k ,  
in our notation). 

In addition, our results apply to various nonsmooth domains. Such 
domains have been studied intensively using variational methods, and we 
refer to [2], particularly Chapters 6 and 7, for a survey of  results up to 1985. 
Here, we consider only a simple situation in which the method described 
here can be applied easily. Let f2 c IR z be a piecewise smooth domain 
satisfying a uniform exterior circle condition. It is not difficult to see that the 
gradient estimates in [14] can be rewritten with our vector field w in place 
o f  the product ~ there because ¢p is a function of  x alone. Therefore 
Theorem 1.1 and Corollary 2.1 hold in this case as well. 
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. R E S U L T S  F O R  O T H E R  B O U N D A R Y  V A L U E  
P R O B L E M S  

For a large class of  boundary value problems, it is well known that 
existence questions are reduced to appropriate a priori estimates. Here, we 
consider a class of  problems modeled on the capillary problem in zero 
gravity. Specifically, we look at the problem 

div A(x,u,Du) + B(x,u, Du) = 0 in ~ ,  (3.1a) 

A(X,u,Du) "7 + V(x,u) = 0 on 0ff~ (3.1b) 

under various hypotheses on the functions A, B, and V.  The theory 
developed in [17] and continued in [11] and [13] provides a large list of  
combinations of  hypotheses that imply C TM estimates in terms of L 1 
estimates, so (as in Theorem 1.1) our main concem will be with the L ~ 
estimate. Thus, we use the weak form of(3. I) with the test function u : 

fa Du.A(x,u, Du)dx= fa uB(x,u, Du)dx + foauV(x,u)ds. (3.2) 

To state our hypotheses, we use z and p as dummy variables for u(x) 
and Du(x). We assume that there are constants a 0 > 0 and a 3 along with 
functions a I eL®(F~), a 2 eLl ( f ) ) ,  Vi ~ L°~(O~), Vz ~ Ll(~),  and f~C(R)  
such that 

P'A(x,z,P)-zB(x,z,P)>ao [P[-a,(x)f(z)-az(x)+a3 Izl, (3.3a) 

zv(x, z) < V, (x) f (z) + V2 (x), (3.3b) 

f~ a,(x)dx + foa ¢,(x)ds = O. (3.3c) 

We also assume that f is uniformly Lipschitz on R .  (The cases f(u)= u 
and f(u) =[ u[ will be those of  most interest.) We also set 

Ao = f n a2 dx + f on ¢2 dx 

Further restrictions on the structure will be made presently. 
We then have the following estimate. 
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Theorem 3.1 Let c ~ e C  0'1 and let u eW*'*(f2) satisfy 0.2). Suppose (3.3) 
holds and that Du.A(x,u,  Du) and uB(x,u, Du) are in Ll(~). Suppose 
also that there is a vector field w I e L~ ( f2 ) m WU(~) satisfying 

div w l = a I in ~,  (3.4a) 

gl = wl " Y on Of~, (3.4b) 

a 0 - sup l wl I sup I f '  I >-/z ( 3 . 4 c )  
n R 

for  some nonnegative constant tt . I f  la >-ka  3 and f u dx = O, then 

f ~ l u l d x <  k - # + ka-----~ 4 ,  ( 3 . 5 )  

Proof. Define 

"A(x,z,p) = A(x,z ,p)+ f ( z )  Wl(X), 
z 

B ( x ' z ' P ) = B ( x ' z ' P ) - a l ( x ) f ( Z ) - P ' W l ( x ) ( f ' }  z ) z  

~(x, z) = g/(x, z) - f ( z) g/t (x). 
z 

f(z)  
7 ) '  

Then div-A(x,u, Du) + B(x,u, Du) = 0 in ~ and -A(x,u, Du) "Y + ~(x,u) = 0 
on 0 ~ .  In addition, we have 

p . -A(x, z, p)  - zB(x, z, p)  >/z [ p ] - a  2 (x) + a 3 [ z 1, 

z¢(x ,  z) <_ ~/~ (x). 

I 

From (3.2)(with A replacing A, B replacing B and ~g replacing g/), we 
see that 

~ f ~ l O u l d x + a 3 f ~ l u [ d x ~ A o .  (3.6) 

The proof is completed by using Poincard's inequality and simple algebra. I_-~ 
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In general, we have no reason to expect the mean value of  u to vanish. 
When a 3 is positive, we can obtain an L ~ estimate by only slightly varying 
the preceding argument. 

T h e o r e m  3.2 Let Of) e C 2 and let u satisfy (3.2). Suppose (3.3) holds with 
a 3 > O. Suppose also that there is a vector f ie ld  w I satisfying (3.4) with 
/2>0.  Then 

f n  l u ldx <~ A° . (3.7) 
a3 

Proof .  Just as in Theorem 3.1, we infer (3.6), which immediately implies 
(3.7). [I 

As the main reason for deriving L I estimates is to infer an L ® estimate, 
we now derive an L ~ estimate under slightly stronger regularity hypotheses 
on u. These hypotheses will allow equations like 

Du 1 12)t,2 u div (l+lDul2),,2. +bo(l+JDu ~-ku=f(x)l+u2 

for any positive constants b 0 and k .  Specifically, we assume that there are 
positive constants q > 1, a o , a3, and M ; a function f which is uniformly 
Lipschitz function on R with f ( O ) =  O ; a n d  functions %, b~, and ~ such 
that 

p" A(z ,x ,  p)  > a o [ P l -% (x) f (z), (3.8a) 

zB(x,  z, p)  < b o (p .  A(x, z, p)  + a, ( x ) f ( z ) )  + b I ( x ) f ( z )  - a 3 [ u i2-q, (3.8b) 
zg (x ,  z) < ~, (x) f (z) (3.8c) 

for I z I_> M .  We also assume that there is a vector field w such that 

div w = b I + q% in f), 
gt  = w .  y o n  Of),  

a o - sup I w l sup I f '  I > bo/q. 
g2 R 

(3.9a) 
(3.9b) 
(3.9c) 

We then have the following estimate. 
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Theorem 3.3 Let O~ • C °'~ and let u satisfy (3.1) with I u I q-j Du. A and 
[u[q-l uB in Ll(~).  Suppose(3.8)holds with a l, b~ and ~/~ bounded 

functions. I f  there is a vector f ield w such that (3.9) holds, then 

fnluldx~qMq~ aadx+Ml~2[. 
a~ d f~ 

(3.10) 

Proof. Now we use the test function ([ulq-Mq)+sgnu and we set 
f2(M) = {x e ~ :l u(x)1> M} to see that 

f~(M) qlul~-' Du. Adx= f .  ( lu l  ' -Mq)+sgnuBdx + fo~ ([ulq -Mq)+sgnuCds" 

On f2(M),  we have 

[q-ll Du I < ( q [ u [q-' ao (q ~ bo ~ I U ~ b  0 

and then applying (3.8) gives 

for 

I u [q - M  q [u [ ) (Du. A + a,f(z)),  

f,(M) a°(q --b°)[u I~-11 Du [dx + a 3 f~(M, l u [dx 

<_ f .  9(u)(bl +qal)dx + foog(u)¢ as 
M q 

+qMq f .  a 1 dx + a~ f.(M) [ u [ q-''''--Tdx' 

g(z) = (I z I q -M u)+ f (z) 
Iz l  

It follows from (3.9a,b) that 

An elementary calculation shows that I g'(z)I < q [ z I q-t sup l f ' l  and hence, 
due to (3.9c), we see that 
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a3f2(M) l u l d z < q M ~ f a a l d z + a 3  ft(M) I M. 

The result now follows by adding to this inequality the obvious inequality 

aa fz\,~(M) l U Idx <_ a3 I a \  f~(M) I M. 
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Theorem 3.4 Let a o be a positive constant, let a~, b o , fl~, and M be 
nonnegative constants, and let bj and Vt be bounded functions. Suppose 
that A,  B,  and V satisfy the structure conditions 

p . A ( x , z , p ) >  ao IDul-cq Izl, 
zB(x,z, p) < bo[P . A(x,z, p) + a, I z l] + b, (x) l z l + P, Izl, 
z~,(x,z) <_ ~, (x) I z I. 

Suppose also that there is a vector f i e ld  w such that 

div w = bj in £2, 

w y = Vt on Of~, 

sup I w I< a0. 
f~ 

I f  u is a bounded weak solution of(3.1),  then 

sup [ u I_< C(a o, a,, b o, ~a, sup I w I, f l ) ( f  I u ]dx + M). 
~2 ~'2 2 

Proof. Now we define 

-A(x, z , p )  = A(x ,z ,  p )  + (sgn z)wj (x), 

B(x ,  z, p )  = B(x,  z, p )  - b I (x)sgn z, 
~(x, z) = p'(x, z) - (sgn z )v  I (x). 

Then div "A(x,u, Du)  + B(x ,u ,  Du)  = 0 in f) and -A(x,u, D u ) . y  + ~ ( x , u )  = 0 
on c~f2. In addition, we have 

We can also use these ideas to prove an L °~ estimate similar to the one in 
[11, Lemma 3.3]. 

(3.11 a) 
(3.11 b) 
(3.11 c) 

(3.12a) 
(3.12b) 
(3.12c) 

(3.13) 
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p .  "A(x, z, p)  >_ ,u [ p I - %  [ z 1, 

zB(x , z ,P)<-bo[P 'A(x , z ,P)+a ,  I zl]+P, Izl, 
z (x, z) <_ O, 

with ,u = a 0 - sup[ wl> 0 ,  so the result follows from [1 I, Lemma 3.3]. 111 

Note that the requirement that u be bounded can be relaxed by an 
approximation argument to l u]q-~ D u . A  and l ul q-I uB in L ~ for some 
sufficiently large q .  

. C O M P A R I S O N  TO P R E V I O U S  R E S U L T S  

We now show how our results improve previously known ones via some 
examples. 

We first consider the case that A ( x , z , p ) = p / ( l + l P l Z )  '/2 and 
f2 = {x :l x [< 1}. Let k be a positive integer and set K = (2k + 1 ) # 2 ,  let 
cr e (0,1) and define 

a I (x) = cr[n sin(K [ x [ 2 ) + K I x 12 cos(K I x 12)1. 

Suppose B(x , z ,p )  satisfies 

zB(x, z, p)  <_ a, (x) [ z [ - I z I 

and I vl-<cr on cOf~. Then conditions (3.3) and (3.4) are satisfied with 
a 0 = l ,  a2---1, % = 1 ,  ¢ t = 0 ,  g l = o - ,  g z = 0 ,  and wt=crs in (Klx l2 )x .  
Thus we obtain an L ~ estimate for u,  independent o f  K ,  from Theorem 3.2. 
In addition, we can apply Theorem 3.4 with a t = 1, M = 1, fl~ = 0 ,  and 
b~ = a~ to infer an L ~ estimate, independent o f  K .  It is not difficult to show 
that the L I norm o f  a~ is greater than C(n)k and that zB(x , z ,p )  can be 
positive for some x e f~ regardless of  the value o f  u at that point. Thus the 
L ~ norm o f  the coefficient a~ is not the crucial factor in obtaining an L ~ 
estimate for u.  This situation is quite different from the usual version of  this 
estimate in, for example, [5, Section 10.5] or [10, Section 4.6]. 

Next, we suppose that there are nonnegative constants % ,  b0, c o , and 
M along with a positive function b 3 defined on II~÷ such that 

b3 ( z ) --> oo as z --> o % 
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and 

p .  A(x,z,p)>_i P l - a ,  Izl, 

zB (x , z ,  P)  < bo (P " A (x , z ,  P) + a, I z l) - b3 (I z l) l z l, 

z ~ ( x , z )  <- Co Izl 

for I z l > M .  We also assume that 0 9 2 ~ C  2 and that c 0 < l .  Because 
0f2 ~ C z , there is a C ) extension 7" of  the unit inner normal into all o f  92 
with I?' I -< 1 in 92. Thus conditions (3.8) and (3.9) hold with a 0 -- 1, a~ - a~, 
a 3 = l ,  q=max{1 ,bo/ (1-Co)} ,  bl =codiv ? ' - q a t ,  f ( z ) = l z l ,  ~1=-Co, 
w = Co?', and M > 1 chosen so that 

1 + sup( -b  t ) _< b 3 (I z D for [ z 1_> M. 

Hence our results include the L t estimate of  [1 1, Lemma 3.4]. 
As a complement  to this last estimate, we finally derive an L = bound if 

zB is al lowed to be positive but z~  is negative. For nonnegative constants 
a~ and flu (to be further specified), and positive constants a 0 and q ,  
consider the structure conditions 

p .  A(x, z, p)  > a o [ p [ - a ,  [ z 1, 

zB(x , z ,  p )  < bop " A(x ,z ,  p)  + fl~ I z [, 

z~ (x ,  z) <_ -c, I z I. 

For simplicity, we again assume that a92~ C 2 . We first observe that 
Theorem 3.4 provides an L °° bound in terms o f  an L ~ bound, so we only 
need to examine the L 1 bound. For this bound, we fix q > 1 so that aoq > b o . 
Next, we write v for the solution o f  the boundary value problem Av -- 1 in 
92, D v . y  =-1921/1 0921 with mean value zero. This solution exists by 
virtue o f  standard linear elliptic theory, which also guarantees that 
I Dv I_< C(92). We now set w~ = (qa~ + ,8 I)Dv and note that sup I w~ I < 1 if 
(qc~ 1 +/3 I)C(92) < 1. I f  we further restrict the size o f  qa  I + ,Bj by assuming 
that q > (qa~ + fl~)l £2 1 / 1 092 I, then (3.4) holds with Cj (x) = w~. y ,  so 
Theorem 3.2 gives an L ~ bound. When q is sufficiently large, we can alter 
this argument somewhat. Specifically, we suppose that there is a constant a 2 
such that 

I A(x ,  z, p )  I < _ a., 

for all ( x , z , p )  and that there is a constant M such that 
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Ig/(x,z)l>a2 

for all (x,z) with ]z I>_ M .  From the boundary condition, we see that 
l u I < M on 0£'2 and then an L ® bound follows from the corresponding 
estimate for solutions to the Dirichlet problem. For example, [5, Theorem 
10.9] gives such a bound if  

p . A ( x , z , p ) > _ l P l - a ,  [ z l - a 2 ,  sgnzB(x,z,p)<13o 

for some nonnegative constants a l ,  a 2 , and /30 provided a~ and 13o are 
sufficiently small. 

5. E X I S T E N C E  R E S U L T S  

We can also use our estimates to prove that the problem 

divA(x,  D u ) + B ( x ) = O i n ~ ,  A(x, Du) . y+g / (x )=OonOf2  (5.1) 

under the obvious necessary condition 

f + ¢(x)dx = 0 (5.2) 

is solvable. (Further assumptions will be made below.) When A is linear 
with respect to p ,  then this solvability is usually proved via Fredholm 
theory. Here we give a general result for the nonlinear problem (5.1). 

T h e o r e m  5.1 Suppose there are constants a 0 , a 2 , b o , and ~'o such that 

P ' A ( x , p ) > a o l P l - a 2 ,  IB(x)l<-bo, I~'(x)l---~'o. (5.3) 

Suppose also that the gradient estimate 

[Ou I_< C(sup I u [,A,B,~,~,) (5.4) 

is satisfied for  any solution of(5.1). Finally, let w o be a C I vector f ieM such 
that w o • y > 1 on ~ and set c t = sup [ w 01 and c 2 = sup I div w 01. I f  

k[b o + c 2 g / 0 ] + c l ~  0 < a0, (5.5) 
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then (5.1) has a solution. 

Proof .  Let u,. solve 

div A(x, Du , )  - eu c + B(x)  = 0 in f2, A(x, Duc).  / + g ( x )  = 0 on 0fL 

Then u,. has mean value zero, so we can apply Theorem 3.1 with f ( z )  =[ z l, 
a 2 ( X )  -= a2, a I = gd iv  w0, q3 = -b0 - Czg0, gl -- g0 ,  and g2 - 0 .  This gives 
a uniform estimate on the L I norm o f  u,., and then Theorem 3.4 gives a 
uniform estimate on the L ~° norm. The uniform gradient estimate (5.4), 
along with Theorem 2.1 o f  [10, Chapter 10] and the Arzela-Ascoli theorem, 
shows that some subsequence (U~(j)) converges in C I (f2) to a function u ,  
which is the desired solution o f  (5.1). U 

Note that any solutions of  (5.1) must differ by a constant under the 
simple assumption that 

(p  - q).  [A(x ,p)  - A(x,q)] > 0 whenever p ~: q. (5.6) 

In addition, (5.5) and the first inequality in (5.3) hold (for a suitable choice 
of  a~) if  p .  A~ I p [--~ oo as I p 1--~ oo, and the other conditions just  quantify 
the assumptions that B and g are bounded. In fact, if we strengthen the 
growth condition in (5.3) with respect to p ,  then we can relax the 
hypotheses on B and g .  

Theorem 5.2 Suppose there are constants a o > O, a z > O, and m > 1 such 
that 

p .  A(x, p)  > a o [ p [m _a2. (5.7) 

Suppose also that 

B ~ L "/("-~) (f~), g ~ L m/("-~) (Of2), (5.8) 

that A is C ~ with respect to x and p ,  and that there is a positive constant 

a 4 such that 

[A(x ,p )  I_ a4[l+ I p l] m-' . (5.9) 

Suppose finally that A satisfies (5.6). Then there is a solution of(3.1). 
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P r o o f .  First, for z e ( 0 , 1 ] ,  we define the operator q~, : W t'" ---> W -~'"' by 

(k~ (u), w) = fa  Z(x, Du). Dw + (cu - B(x))w dx + :o~ ¢(x)w ds. 
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Then ug  is monotone, coercive, and continuous on finite-dimensional 
subspaces of  W ~'- , so the usual theory of  monotone operators (for example 
Corollary 1.8 of Chapter 2 in [7] with K - - X  = W ''m ) shows that, for any 

> 0, there is a unique solution u~ to the problem 

div A(x, Du,) - cu, + B(x) = 0 in f~, A(x, Du,) .y  + ~(x)  = 0 on Of L 

With 0 > 0 to be further specified, we have 

f~ Du e • A(x, Du~)dx < :n u,B dx + foa u,¢~ cls 

0 ~  I ~  I "= dx + O-'/<'~-I'f~IB I "~/<m-'> dx 

+o f~,~ I ~ I" ds + 0 -'/<m-'> fo,, I¢ I °'/<m-l, dx. 

With Wo, q ,  and c 2 as in Theorem 5.1, we have 

foa I u~ I mds < foa[ u, I" Wo "7 ds 

= f~lu~ I m div w. dx + m r .  O l u .  I'[w0 I'lu~ I °'-' dx 

(C 2 -~- mc1)~ ,  l Ue I 'n dx .3f_ mcl~ ' I Du, I" dx. 

Combining these two inequalities with (5.7) and setting 

W o = f o l B  [m/,m,, ax + fo .  I¢ I '"/('n-'' as 

yields 

~l Du, im dx <mc, O ~l Du, I m dx +011 +c2 + mcl] ~]u, ]m dx a o 

+0-~"-°~' o + a~ I f2 I . 

Again, u, has mean value zero, so Poincar6's inequality (in the form 
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if (0.3) holds) implies that 

ao f ,  I Du~ I" dx <_ O[mq + kin(1 + c 2 + mcl)] f .  l Du~ I m dz + O-'/l'"-ll~o. 

Choosing 0 = ao/2[mc j + k m (1 + c 2 + mc 1)] gives 

which implies that u c is uniformly bounded in L m and that a suitable 
subsequence converges weakly in W I'm to a function u,  which is the desired 
solution of  our problem. [1 
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ASYMPTOTICALLY CRITICAL POINTS AND 
MULTIPLE SOLUTIONS IN THE ELASTIC 
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. I N T R O D U C T I O N  

A quite natural way to face the problem of the elastic bounce in a 
"billiard" with perfectly rigid walls is to pass to a sequence of approximating 
problems, where the walls are replaced by some repulsive force field which 
gets stronger and stronger outside the billiard. 

This approach, however, poses some major difficulties, which are at least 
of two kinds. First of all one usually needs that a sequence (3',,)of solutions 
of the approximating problems admits a subsequence converging to a bounce 
trajectory. 

A second issue arises when looking for multiplicity results, for instance 
when one wishes to estimate the number of elastic bounce trajectories in the 
ideal billiard, with assigned end points. In this case indeed, multiple 
solutions of the approximating problems could converge to the same limit 
trajectory. 

The fact that the approximating problems have a variational structure, 
since they verify the Hamilton principle, is quite helpful in both the above 
mentioned respects, especially in the former one. Actually if one chooses the 
approximating problems in a suitable way and adds the property that the 
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Lagrange integrals 1('7,) are bounded, then it is possible to prove that a 
subsequence of ('7,) converges to a bounce trajectory '7. 

The variational nature of the problem also suggests the first approach one 
can try for facing the second difficulty, that is trying to distinguish different 
limit solutions 3' by the value 1(7). It may happen indeed that different 
sequences ('7,,) of approximating solutions provide different limits of 
I , ( % ) ,  hence the limit solutions remain distinct, provided again that 
1('7,) ~ I('7). This is not always the case, however. There are several 
meaningful problem where one expects multiple limit solutions possibly 
with the same value of the Lagrange integral. In this case it is clear that the 
previous approach fails. 

To treat this kind of problems a very useful tool turned out to be the 
notion of "asymptotically critical points" for a sequence of functions f, and 
a "limit" function f .  In that notion '7 is "critical" provided that there exists 
a sequence ('7,) such that '7, --~ '7, f, (%) ~ f('7) and grad L (%) --~ 0. 
Roughly speaking "asymptotically critical points" are limits of "almost 
critical points" for f,. It is worth noting that the underlying metric influences 
both the meaning of the gradients and really determines the properties of '7. 
For this kind of points a multiplicity "asymptotic theorem" was proven (see 
[11, 12] for the case of smooth f,~ and [15]), which gives an estimate of the 
number of asymptotically critical points in terms of the topological structure 
of the f, 's. Such a theorem was inspired by [1, 9]. We remark that this 
theorem seems not to hold, if one considers only the limits of critical points 
for f,. 

This approach has revealed particularly effective in the problem of the 
elastic bounce with fixed end-points, taking f,, to be the Lagrange integrals 
of the approximating problems. First of all, with suitable choices of the 
approximating force fields and of the underlying metric (with respect to 
which we are going to consider the gradients) it turns out that the 
asymptotically critical points are actually bounce trajectories. Moreover the 
"compactness like" assumptions which are required in the multiplicity 
asymptotic theorem are fulfilled. We may therefore say that also theproblem 
of elastic bounce trajectories with fixed end-points in an ideal billiard 
verifies a Hamilton principle suitable for multiplicity problems: a sensitive 
asymptotic Hamilton principle. We remark that the metric we are induced to 
choose to obtain such a principle (the L 2 metric ) is such that the Lagrange 
functionals I,, are not smooth, so we need to use some tools of 
subdifferential analysis. 

Using this setting we can prove some multiplicity results, which are 
described in section 2. We point out that for the main result (see Theorem 4) 
the expected multiplicity is proven by means of a suitable adaptation of the 
x7 -theorems, introduced in [ 13, 14], to the asymptotic framework. 
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We conclude by recalling some different approaches which were used, by 
different authours, for treating the bounce problem. 

Among the known results concerning the number of bounce trajectories 
with fixed end points the first to be mentioned is the "Penrose 
counterexample" (see [17, 19]): in a "mushroom-shaped" billiard there are 
pairs of points A and B which are not connectable by any bounce 
trajectories. This counterexample poses some basic questions on which kind 
of assumptions one should consider for having multiplicity results. 

On the contrary if the billiard is convex, then it was shown in [7] that for 
any pair of points A and B there are infinitely many bounce trajectories 
joining A and B. Also for proving this result a sequence of variational 
problem is used; the functionals however are very different from ours and 
the technique is very specifically related to the convexity of the billiard. 

Some other results, concerning existence of bounce trajectories with few 
bounce points, were obtained in [2, 10]. 

Finally we recall that the problem of bounce trajectories with assigned 
initial position and velocity was studied in [3, 4, 18]. 

. SETTING OF THE ELASTIC BOUNCE PROBLEM 
AND SOME RESULTS 

Let ~ be a bounded subset of R ~v with C 2 boundary. Moreover let 
U o : ~ U ~  R be a C 2 potential. For x in Of~ let v(x) denote the unit 
inward normal to Of~ at x. 

2.1 Definition. Let a,b with a < b be real numbers. Let "7 E Wl'2(a,b;IIUV). 
We say that y is an elastic bounce trajectory in f~, with respect to the 
potential f ieM Uo, if 

"7(t) E f~ Vt E [a,b] and there exists a positive Radon measure # such that 

spt(#) Q C("7):-- {t E [a,b]l"7(t ) E Of 2} (Eqn) 

f) f) f "~6dt - VUo('7)6dt + v('7)6dtt = 0 

[a,bl 
1 12 E(t) := ~] '~(t)  +U0('7(t)) is constant on [a,b] 

V6 E W~'2(a,b;lR ~) 

(EC) 
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(Eqn) means that the equation ~; + V U o (3') = #u('7) is verified in the weak 
sense. C('7) is the contact set. 

We say that Z is a true bounce trajectory, if # ~ 0. 

2.2 Remark .  Notice that the Energy Conservation law (EC) does not follow 
from the equation (Eqn). Actually the reaction given by # could be too 
weak (not perfectly elastic walls) or too strong (pinball like behavior). 
If t is an isolated contact point, then the conditions above imply 

~/(t-)t~n = ~/(t+)tan , "Y(t-),~o,~, = --~/(t+)n ..... 

where we are denoting by tan and norm the tangential and normal 
components to the boundary 0f2 at the point '7(t). 

The multiplicity results we are going to present concern, for keeping this 
exposition simple, the bounce problem in the following situation: 0 E f2, 
Uo(z ) = Aq(z), where A E R and q: lI~ u ~ R is a symmetric quadratic 
form, a = 0, b = 1 and we look for bounce trajectories which start and end 
at the origin: '7(0) = '7(1) = 0. 

To treat this problem we consider the "eigenvalues" A of  the problem: 

f0' f0 ~6dt = A q ' (e)(6)dt  V6 E Wo~'2(O,I;RN), (EP) 

for a suitable nontrivial function e (the eigenfunction) in W0~'2(0,1; RN). It is 
simple to see that such eigenvalues do exist and that, if q is not trivial, there 
are infinitely many of  them. We can describe theA's  as (A~)~ and the 
corresponding eigenfunctions as (e~)~l, where I C Z with A, > 0 for 
i>_O, A~<O for i < O ,  A~_<A~+~ for all i in I, A, , - -*+co as n- - -*+co 
(whenever s u p / =  + c o )  and A,, ~ - c o  as n ~ - c o  (whenever 
inf I = - c o  ). 

For the main result we need f2 to be stricly star-shaped, with respect to 
zero, that is 

Vz in Of~ (x, u(x)) > O. (f~*) 

Now we can state the existence results we are able to prove. 

2.3 Theorem (preliminary).  Let 0 E f~. For  any A there exists a true 
bounce trajectory y in f~ with respect to the potential  f i e ld  Aq such that 
"7(0) = "7(1) = O. 
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The previous result actually holds under much more general assumptions 
on the potential. 

2.4 Theorem. Let 0 E f~. Let ~ be a positive (resp. negative) eigenvalue of  
EP. Then there exists ~7 > 0 such that for all ~ in ]Ai-  ~,/~[ (resp. 
]A~,A~ + ~/[), there exist two true bounce trajectories "yj in ~, with respect 
to the potentialfield Aq such that "~j (0) = "~j (1) = 0 j = 1, 2. 

2.5 Theorem (main result). Let 0 E f~ and assume that f2* holds. Let A~ be 
a positive (resp. negative) eigenvalue of  (EP). Then there exists ~7 > 0 such 
that for all A in ]A~ - ~,A~[ (resp. ]A~,A i + 7[), there exist three true bounce 
trajectories 7j in f2, with respect to the potential field Aq such that 
7~(0) = 7j(1) = 0 j = 1,2,3. 

. A S Y M P T O T I C A L L Y  C R I T I C A L  P O I N T S  A N D  
T H E I R  M U L T I P L I C I T Y  

As we said in the introduction it will be useful to us to deal with suitable 
sequences of functionals. This section is devoted to a general notion of  
asympotical critical points for sequences of  functions and to a corresponding 
asymptotic multiplicity theorem. 

The metric we are induced to use in the application, to have that the 
asymptotically critical points are bounce trajectories, forces us to consider 
function which are not smooth in the classical sense. Therefore we need to 
recall some notions of  subdifferential and some classes of  nonsmooth 
functions. For all details we refer the reader to [8, 16, 5, 6]. 

Let H be a Hilbert space with inner product (.,.) and norm. Let 
f : H ~ ~ U {+c~}, be a function. 

Weset  D(f )  := t u [ f (u )<  + c ~ } ; D ( f ) ;  will be called the domain of  f. 

3.1 Definition. Let u E D(f). We say that c~ in H is a subdifferential for 
f a t u  if 

lim inf f ( v ) -  f ( u ) - ( a , v -  u) > 0 
~-~ IIv - ull 

We denote by O-f(u) the set of  all a ' s  with the property above and we 
shall also say that O-f (u) is the (FrecMO subdifferential of f at u. Notice 
that O-f(u) is a (possibly empty) convex set. So if O-f (u )~  ~J we can 
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define the (lower) gradient of f at u, denoted by grad-f(u), as the element 
of  minimal norm in O-f(u) .  

3.2 Definition. We say that a point u in 79(f) is (lower) critical for f, if 
0 E O - f  (u) (i.e. g rad- f  (u) = 0). 
We say that a real number c is a (lower) critical value for f, if there exists a 
(lower) critical point u such t h a t f ( ( u ) (  c. } 

As usual, for c in 1~, we set := u If(u)  < c . 

3.3 Definition. Let p, q : 79(f) ---. ~ be two continuous functions. We say 
that f is in the class C(p,q) ,  if  

f (v)  > f (u )  + (a, v - u) - (q(u) + p(u) II ~ II)II v - u II 2 

Vu, v in 79(f), Va in O - f  (u). 

In the sequel we often say that some function f is of  class C(p, q), if there 
exist p and q such that the above conditions hold. 

From now we consider a sequence (f,,), of  functions, 
f,~ : H ~ II~ U {+c~}. For the sake of  simplicity we shall assume that all the 
domains 79(f,,) are equal to a fixed set D. 

Moreover we consider a function f : D --~ ~ U {-oc}.  

3.4 Definition. Let u C 79. We say that u is asymptotically critical for the 
sequence ((f,,),, f ) ,  if there exist a strictly increasing sequence (kn)" in N 
and two sequences (u,),,, (c~,),, in H such that 

Vn u,, E D(fk,,) , %, -~ u, fk, ,(u,,) -~ f ( u ) ,  Vn a.  E O-fk,,(u,,) , a,, -~ 0 

We say that a real number c is an asymptotically critical level for ( ( f , ) , , f ) ,  
if there exists an asymptotically critical point u such that f (u )  = c. 

3.5 Definition. Let c C R. We say that (u.),, is a nabla sequence for 
((f, ,) . ,f) ,  at level c, briefly a V (f,, , f ,  c) -sequence, if there exists a strictly 
increasing sequence (kn)" in N such that: 

Vn u,, E D ( L  ), f,,, (u,,) -~ c, Vn O-fk,, (u.)  ¢ O, grad-f,(u,,) -~ O. 

We say that ((f, ,)n,f) verifies the nabla condition at level c, briefly 
V(f , , , f ,c )  holds, if any V (f, , f ,  c) -sequence admits a subsequence which 
converges in H to a point u in 79 such that f (u )  = c. 



Asymptotically Critical Points in the Elastic Bounce Problem 657 

3.6 Theorem (Asymptotic Multiplicity Theorem). Assume that for all n in 
N f,, is lower semi-continuous and of  class C(p,q) (withp, q depending 
on  f~). 

Let a,b E II( with a < b and assume that V ( £ , f , c )  holds for all c in 
[a,b]. 
Then 

# {u asymptotically critical for ((£).,f),f(u) E [a,b]} _> lim sup catv(f,~,f,,a ). 
7t ~ O 0  

For the notion of relative category catx(A, B) we refer the reader to [9] 
and the references therein. 

3.7 Remark.  In the proof of  the previous theorem a key fact is that, if D is 
the domain of  a C(p,q) function, then each point of D admits a 
neighborhood U which is contractible in 79. 

. A V A R I A T I O N A L  S E T T I N G  F O R  T H E  B O U N C E  
P R O B L E M  W I T H  F I X E D  E N D  P O I N T S  

As announced in the introduction we now present a variational 
asymptotic setting for the elastic bounce problem with fixed end points. 

Let f~ be a bounded subset of  N N with C 2 boundary and let A, B be 
two given points in ft. We set 

N(A,B) := {3' E W~'2(0,1;NN)]"/(0)= A,')'(1)= B} 

Let U0 : R u ~ R be of  class C 2. 
We can introduce a C 2 function G:IR u --~ R such that 

= {xlG(x) < 0} and I V G ( z ) [ >  c o > 0 for all x in a neighborhood f~ of 

0fL Then u ( x ) . -  V G(x) is well defined in a neighborhood of  0f l  
I VC(x ) l  

and u(x) is the unit inward normal if x is a boundary point. We set 
U(x):=(C(x)+) v, for a given p > 1. 

For w > 0,, we define 9,fo~ : L2(0,1; IRu) --* 1R U {+ec} and 
f~ :X(A,B)--~ N U { - o o }  by 
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9('7) : =  I'~ '7 

otherwise 

f~('7) := g ( ' 7 ) - w  U('7)dt 

{9(7o~ ) i f 'TEX(A,B) ,7 ( t )E~2VtE[0 ,1 ]  
foo('7) := _ otherwise 

For techical reasons we also need (in some cases) another constraint: let 
R C R; We set 

XR(A,B) := {1' ~ X(A,B)Ig(h') < R} 

and define fR,~: L2(O,1; RN) ~ R U {+oe}, fn,oo : XR(A,B) ~ R U {-oo} 
by 

fR,~('7): 9 ( ' 7 ) - w  U('7)dt i f ' T e X n ( A , B )  

[ +c¢ otherwise 

[ :  - g( if  "TeXR(A,B) , ' 7 ( t )E f~Vte[O,1]  
fR,~('7) := 

- otherwise 

The main fact we are going to discuss now is that bounce trajectories are 
asymptotically critical points for ((fR,~)~, fR,o~). 

4.1 Proposition. Let R E • and "7 E ~(n(A,B) be an asymptotically 
critical point for ( (fR,~)~, f~,oo)" Then "7 is a bounce trajectory with respect 
to the potential U o. 

4.2 Proposition. The following alternative holds." 
• either there exists "7 such that # + V 0"o('7 ) -- 0, 9('7) = R and 

'7([0,1]) C ~; 
• or the condition V(fR,~, fR,oo, c) is verified for all c in ~. 
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4.3 Remark.  In the case when f~ has no holes we can avoid using 
((fR.~),~, fl~.o~) and directly consider (f~, fo~ ),~ : assume that 

IV  G(x) I> ~0 > 0 Vx e ~t¢ \ f2, 

then for a suitable p > 2 the two propositions above hold replacing 

((fn,~)~,fn,o~) by ((f~)~,fo~). 
Such a condit ion is true if ~2 is convex or more generally star-shaped. 

4.4 Remark .  The validity of the propositions above relies on the fact that we 
choose the asymptotically critical points in the L2([0,1])-sense. If one takes 
W ~'2 (0,1; R u) as the underlying space, then asymptotically critical points are 
not, in general, bounce trajectories. In particular the energy conservation law 
can be lost when passing to the limit. 

We conclude this section giving the idea for the proof of the three 
solutions theorem. 

Sketch of  proof of  Theorem 2.5 First notice that under the given assumptions 
we have 

X(A,B)  = Wg,2(O,1;~N),9(7) _= -2 I ~/ 
dt if 7 e Wo'2(O,1;R N) 

otherwise 

We shall denote B~ and S r the closed ball and sphere, centered at zero, with 
radius r in the L 2 ([0,1]) metric. 

We consider the case ~ > 0. We may suppose ,X i < ~+~ and we can 

take j < i such that .X~ < )~j+l = )V We set 

X 1 := span(e0,...,ej) (X1 := {0}, if j = -1),  

X z :--- span(ej+l,,.., e~), 

:= (x,  cD 1. 

In what follows we take )~ in [)~j, )~[. 

• For all w we have 
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sup L (X1) = 0. 

• If  we set b~ := sup supf~,(X 1 ® X2), then one can show that 
w>0 

l imb A = 0 

• There exist r and w o positive such that for w _> ~o 

supL (S, n(Xa ® X2)) < 0 

• There exists a positive ~1 such that for all R >_ R o 

Br n(x ,  • x2) c ×R(o,o). 

If  R o is large we also get that XR(0,0 ) and X 1 ® X:~ are not 
tangent at any "7 with 9(')')= R. 

We take R > R 0. Since R > 0 there are no '7's in XR(0,0 ) with 

# + VU0(7  ) = 0, 9(7) = R and ")'([0,1]) C ft. 
Then, by 2, V(fR.~, fR,o~, c) is verified for all c in N. 

• At this point we can find p > 0 such that 

V'y "y e Sp n ×t,(0,0) ~ X[0,1]) c ~ 

which implies 

a~ : = i n f  inf f.,,~(Spn(X.2®Xa))>O w>0 

Now, if 

T := (B~ N X~) U (S~ N (Xl @ X2)), $23 := S o n (X2 ® X3) , 

B12 ;=  B r n ( X  1 ® X 2), 

then for A in [A~A~[ we have precisely the inequalities required in Theorem 
4, uniformly with respect to w large. Moreover it is possible to show that 

• V(fR,~, f~¢,oo, X1 @ X3, c) holds for all c in ~;  
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,, possibly taking A closer to A, there are no 3' 's  with 3' 
asymptotically constrained on X 1 ® X 3 for fR,~ ,  with 
fe,,~ (3') C]0,bA]. 

Then by Theorem (5.4) there are two asymptotically critical points 3'1,3'2 
with 9(%) E [a~,,b),] h = 1,2. 

We point out that the assumption f~ strictly star-shaped is only needed to 
prove V(fR.~,,fR,oo,X 1 {9 Xa,c). If  this assumption fails then we cannot 
prove that there are two solutions in the given interval. Nevertheless, due to 
the linking inequality found, we can prove that there is at least one solution 
3' with 9(3')E [aA,b~] for any A in [Aj,A,[. 

Finally the existence of the third solution can be proved by considering 
the splitting given by Xq := span(e0,...,ei), )(2 := span(ei+l,...,ek) and 
X 3 := (X1 @ X2) ±, where A,+ 1 = A k < Ak+ 1 and taking A possibly closet to 
Ai. [] 

. V A S Y M P T O T I C  T H E O R E M S  

In this section we present an asymptotic version of  the V-theorems 
introduced in [13,14]. As we already showed, these theorems are used in the 
proof of  Theorem (2.5). 

As in section 2 we consider here a sequence (f,,),, of functions from a 
Hilbert space H into R U {+oo} with a fixed domain 79 and a function 
f : D --, R U {-co} .  Moreover all f,, are taken to be of  class C(p,q) (with 
p, q depending on n ). 

5.1 Definition. Let X be a closed linear subspace of H a n d  let c E N. We 
say that a sequence (%),  in H is a V(f, ,  f, X, c) sequence if 

there exist (k,) in N strictly increasing and 

Vn u,, E D , dist(%, X) -* 0 ,  fk,, (%) ~ c 

Vn % E O-fk.(% ) , Px.t~.la,~ ~ 0 

(a,,),, in H such that 

where Pxo[~,,,I denotes the orthogonal projection onto the space 
X @ [%] := X ® span(u,).  

We say that the V(f,~, f, X, ¢)-condition holds if any V(f, ,  f ,  X, c)- 
sequence admits a subsequence which converges to some point u in D 
such that f (u)  = c. 
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5.2 Definit ion.  Let X be a closed linear subspace of  H and u E X. We say 
that u is an asymptotically constrained-critical point for ( ( f , ) , , , f )  on X, if 
there exist a strictly increasing sequence (k,,),, in N and two sequences 
(u.) . ,  (a,,)n in H such that 

Vn u,, E D(f~,,) ,u,, --~ u, fk,, (u . )  --~ f (u )  ,Vn o~,, E O-f~,, (u,,) , 

Pxet~,,la,, ~ 0 

5.3 Definit ion.  Let 1/1, V 2 be two subsets of  H and u E 171 N V 2. We say that 
171 and V 2 are tangent at u, if there exists a such that c~ :fi 0, a E O-Iv,, 
-o~ E O - I v .  Here we are denoting by I v the indicator function such that 
1 v (u) = 0 whenever  u E V and I v (u) = +c~  outside V. 

5.4 Theo rem.  Assume that H = X 1 @ X 2 ® X.3, where X i are closed 
linear subspaces and  dim(X 1 ® X 2) < +c~.  Let R > p > O. Set 

T := S,2 U B 1 

Assume that a ~ < a < b < b ~ and f o r  all n large 
• the fo l lowing  inequalities hold." 

sup f,, (T) < a '  < a < inf  L (Sz3) sup L (B,2) < b; 

* D a n a  X 1 @ X  3 a r e n o t t a n g e n t a t a n y  u with L(u) 6[a',b']; 
• V(f , ,  y, c) ho lds for  all c in [a, b]; 
• V ( f . ,  f ,  X t @ X3, c) holds f o r  all c in [a, b]; 
• there are no points  u such that f ( u ) E  [a,b] and  u is 

asymptotically constrained-critical f o r  ((f,,)., f )  on Xt  ® X 3. 

Then there exist two asymptotically critical points  u,, u 2 f o r  ((f,,),, ,f) such 
that f (u , )  E [a,b] i = 1,2. 
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1. I N T R O D U C T I O N  
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Multicast networks are used to send information from one or more 
sources to a set of  destinations. This type of  networks has become 
increasingly important for applications that need to share resources in private 
networks, as well as in the Intemet [2, 4, 9]. One useful formalization of  
multicast networks is provided by the point-to-point connection problem 
(PPC) [3,8,11 ]. In this problem, a set of  source nodes must be connected to a 
set of  destinations with minimum cost. 

We are concerned with providing an optimal solution to the nonfixed 
PPC problem, which can be defined as follows. Let G = (V,E) be an 
undirected connected graph, S = {Sl,...,sp} C V a set of  source nodes, and 

D = {di,... ,d r } C V a set of  destination nodes, such that S fq D = ~. Let 

us define a nonnegative integer weight % for each edge (u, v )E  E. A 

point-to-point connection is a subset E ~ C E such that each source s i is 
connected to at least one destination dj, and conversely each destination dj 

is connected to at least one source si, by an (s  i -dj )-path in E ~ (see Fig. 1). 

The cost of  a point-to-point connection is defined as ~(,,,)~E' C,,. The 

objective of  the PPC problem is to find a minimum point-to-point connection 
E t C E. The PPC problem has additional applications in circuit switching 
and VLSI design [11]. 

[ 

:w.  
7 t5 6 t 5 

D '3~at*¢e node 

Destfnafion fiode 

Figure 1. An instance of the PPC problem. A feasible solution with objective cost 8 is given 
by the edge set {i,m}. The edge set {a,d,e,f,h} is an alternative solution to this 
instance. 

We can derive four variants of  the problem, depending on the type of  
graph (directed or undirected) and whether the source-destination pairs are 
fixed or nonfixed. That is, if s~ is required to be connected by a path to a 
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specific destination dj, i , j  E {1,...,p}, then we have the fixed destinations 
case; otherwise, we have the nonfixed destinations case. Throughout the text, 
given an input graph G = ( V , E ) ,  we adopt n = ] V ] ,  m = [ E ]  and 
p=ISI=IDI. 

In [1 1], Li et al. proved that all four versions of the PPC problem are NP- 
hard, when p is given as input. In the same paper the authors gave a 
dynamic programming algorithm with time complexity O(n ~) for the fixed 
destinations case on directed graphs when p = 2. Natu and Fang [13] 
proposed another dynamic programming algorithm for p = 2 with overall 
time complexity O(mn + n21ogn), and they also showed an algorithm with 
time complexity O(n u) for the fixed destinations case when the graph is 
directed and p = 3. Goemans and Williamson [7] presented an 
approximation algorithm for a class of forest constrained problems including 
the PPC problem that runs in O(n21ogn), and gives its results within a factor 
of 2 - 1/p of an optimal solution. 

Metaheuristic algorithms have also been proposed to PPC. An example is 
the Asynchronous Team (A-Team) metaheuristic, which is used to combine 
a number of fast and simple heuristics with the purpose of improving a pool 
of solutions. In [8] an A-Team was proposed for the PPC, and demonstrated 
to give near optimal results. The same methodology was extended in [3] to a 
parallel environment, where the constituent heuristics could run in separate 
processors. 

In this paper we propose and implement a branch-and-cut approach for 
solving exactly the PPC problem. The algorithm is based on a particular 
integer formulation for the problem, presented in the next section. We derive 
some cutting-plane inequalities for this formulation, and the inequalities are 
used to define the branch-and-cut algorithm. 

The remaining sections are organized as follows. In Section 2, we 
formulate the PPC problem as an Integer Programming (IP) problem and 
prove results concerning the facet structure of the polyhedron defined by this 
formulation. In Section 3 we present a branch-and-cut algorithm based on 
this formulation. In Section4, computational results of the proposed 
algorithm are presented. Finally, concluding remarks are given in Section 5. 

. MATHEMATICAL MODEL 

In this section we give an Integer Programming formulation for the PPC 
problem and show that the associated polyhedron is full dimensional. We 
also present facet defining inequalities for this polyhedron. 
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A solution to the PPC problem can be described as a forest in G where, 
for each connected component the number of sources and destinations is 
equal. Also, if a set U C V has a different number of  sources and 
destinations, there must be an edge e going from U to V \ U. We note that 
in a feasible solution this condition must be satisfied by each subset U C V. 

These conditions are expressed by the following model. Let 

10 if e d g e e E E  t 
x~ = otherwise 

The IP formulation is given by 

min ~ c~x~ 
e~E 

subject to 

~-'] xe > 1 
ee6(u) 

O < x < l  

x integer. 

for all U IUnSI IUnDI (1) 

By 6(U) we denote the set of  edges (u,v) E E such that u E U and 
v E V \ U, i.e. 6(U) is a cut set. The inequalities (1) are subsequently called 
point-to-point cut inequalities. The theorem below establishes the 
correctness of  the previous formulation. 

Theorem 1 The system above defines an 1P formulation for the PPC 
problem. 

Proofi This is equivalent to showing that z satisfies inequalities (1) if and 
only if E t is a solution to an instance of the PPC problem. If x satisfies 
inequalities (1), then in each connected component of  the forest defined by 
x, the number of  source nodes is equal to the number of  destination nodes. 
Therefore, according to the observations in the beginning of  the section, z 
defines a solution to an instance of  the PPC problem. Conversely, if E '  is a 
feasible solution, then each connected component in E t has the same 
number of  sources and destinations. Hence, z satisfies inequalities (1). r l 
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2.2  P o l y h e d r a l  R e s u l t s  

Consider an instance of  the PPC problem and let PC(G) be the convex 
hull of the incidence vectors of point-to-point connections, i.e., 
PC(G) := Conv{z ~ E z~mlE ' is a point-to-point connection }. PC(G) is 
called the point-to-point connection polyhedron. 

As we wish to analyze the quality of  the inequalities in the formulation, 
we need to know the dimension of  "Pc (G). We denote by G \ {e} the graph 
obtained from graph G = (V, E) when the edge e E E is removed. Let Q 
be the vertex set in G \ { e } ,  e = (u ,v )E  E, reachable from u. Edge 
e = (u,v) in G is called a point- to-point  br idge if it is a bridge that 
separates nodes u and v such that I Q N S Q n D I. 

Let z ~ = (1,1,...,1) and z ~\(4 denote the incidence vector obtained 
from z E by setting the e -th component of  z ~ to zero for some edge e E E. 

Theorem 2 Let G = (V, E) be a connected graph, S a source-vertex set, 

D a destination-vertex set and B(G) the point-to-point bridge set o f  G. 

Then 

dim(pc(G)) =l E l - I  B(G) I. 

Proof: If  edge e E B(G), then every point-to-point connection of  G has 
z~ = 1, i.e. dim(Pc(G)) <l E l - I B ( G ) I .  On the other hand, since by 

assumption G is connected, z ~" E PC(G) and z r\~':l E "Pc(G) for some edge 

e ~ B(G), so dim(pc(G)) ->l E l - I  B(G) I • 
By Theorem 2, we infer that pc (G) is full-dimensional if and only if G 

has no point-to-point bridges. Next, we present results concerning the facial 
structure of  pc (G). Theorems 3 to 5 summarize these results. 

Theorem 3 The inequality z, > 0 for  all e E E defines a facet  o f  PC(G) i f  
and only i f  G \ {e} has no point-to-point bridges. 

Proof: The validity follows from the observation that all variables are 
nonnegative. To show that this is a facet defining inequality, we need to 
show that the face F = {z E PC(G) I zo = 0} has m affinely independent 
points. Note that if G \ {e} has no point-to-point bridges, then for every 
edge f E E, f 5~ e, the points x ~'\~} and x E\te'I~ belong to PC(G). These 
points also belong to F and satisfy x~ = 0, and are affinely independent. 
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Thus, z, _> 0 defines a facet of Pc (G). Conversely, suppose that f E E is a 
point-to-point bridge in G \ {e}. Then, the inequality z~ + z: > 1 is valid 
for all :c E Pc (G). Thus, z e > 0 can be obtained by adding z, + z: > 1 and 
z/ < 1, and hence does not define a facet of  Pc(G). If 

Theorem 4 Let G = (V, E) be a connected graph. I f  G has no point-to- 
point bridges, then the inequality z., < 1 for all e E E defines a facet o f  
PC(C). 

Proof: Since all z, are binary variables, we must have z e < 1. Let 
F := {z E ~ G )  I :c = 1} be the face defined by z, < 1. Since the points 
ze and z E\u~, for every f E E, f =~ e, are affinely independent and they 
belong to F,  then dim(F) =1 E l - 1 .  Therefore z, _< 1 defines a facet of 
PC(c). 

Theorem 5 Let G = (V, E) be a connected graph. I f  C has no point-to- 

point bridges, then for all 6(U), O ~ U C V, I U f) S I~1 u n D I, the 

inequality ~"~,c~{u) :c~ > 1 defines a facet of  pc (G). 

Proof: The validity follows from the sufficiency condition of Theorem 1. To 
show that the inequality defines a facet, let us denote by corx >__ coo the 
inequality ~e~,(u)x~ >_ 1 and let F~ := {z E pc(G) lcorz = coo} be the 

face defined by it. We note that F,, ;~ PC(G), since the point x e is in Pc(G) 
but not in F because, assuming that there are no bridges in G, there must 
be more than one edge between any set U and V \ U ,  U c V  (see 
Figure 2). Assume that 7rrx >_ % is a valid inequality for Pc(G) such that 

F~ g F~ := {x E Pc (G)[ 7rrx = % }. We want to show that 7r = c~co and 
% = c~co 0 for some positive real number o~. Let x, = 1 for some edge 
e E 6 ( U ) ,  x , = 0  for all i E 6 ( U ) \ { e } ,  and x j = l  for all j E E \ 6 ( U ) .  
We note that x E F,, and by hypothesis x E F~. Then 

7rlx 1 + ... + 7r, x~ + ... + 7r,, :c = 7r o (2) 

Let $ be obtained from z by setting x i = 0 
i n A : = { ( u , v )  e E I  u, v E f } U { ( r , t )  E E l r ,  t E V \ U } .  

Observe that 5 E F~, and by hypothesis 5 E F,. Thus 

for some 

7q~1 + . . .  + 7ri~i + . . .  + 7r,,~,, = % . (3) 
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By subtracting equation (3) from equation (2) we obtain 7r~z~ = 0. Since 
z~ = 1, it follows that 7r~ = 0. Since i E A is arbitrary, we infer that 
7q = 0 for all i E A. As z~ = 0 for all 6 ( U ) \ { e } ,  z, = 1 and 7rj = 0 for 
all j E A, it follows from equation (2) that 7r~ = % for all e E 6(U). LI 

Figure 2. Subsets of graph G used in Theorem 5. 

..O ........... ~O., .® 

;.,~:.\. .'.," ......... ;17 .. 1---:;i • .......... 

,',, -.<\ / /  
3. " i5  / C:. 0 

.0 

i .o,  

(a) (b) 

Figure 3. (a) Problem instance. (b) Linear relaxation solution for instance in (a). The dotted 
lines in (b) have values 0.5, whereas solid lines have values 1.0. Nodes 1, 2 and 8 
are sources, and nodes 3, 5 and 6 are destinations. 

We shall now present another class of  inequalities for the PPC problem. 
Let G = (V, E)  be a connected undirected graph and P = (V~, V2,... , V~) be 
a k-partition of  nodes o f  V satisfying I v, n s 14:1 v, n o I with 
I ~ n S l : / : 0 ,  IV, n O l : / : 0  for i = 1 , . ,  k, and U k • , ~=IV, = V. In other 
words,  the number o f  source nodes is not equal to the number of  destination 
nodes in V, and V, has at least one source node and at least one destination 
node. A k-partition defines a multi-cut in G. We note that if  k = 2, then P 
is a 2-partition cut. Figure 3 shows an example o f  a k-partition. 

T h e o r e m  6 Given a k -partition P ,  the k -partition inequality 
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eeA(P) 

is valid for  Pc(G), where A ( P ) = { u v E E ] u E V ~ , v E V j  and 
i C j, l < i , j  <_k}. 

Proof." Construct the graph G 1, by shrinking each subset V~ into one node 
V~i. Note that @, has k nodes and its edge set is A(P).  Now let T' be the 
restriction of any feasible solution of G onto A(P).  Then, @, is a forest 
and each component has the same number of source and destination nodes. 
This proves that inequality (4) is valid for PC(G). Ell 

As an example of a k-partition consider instance in Figure 3.a. We note 
that there is no 2-partition inequality violated by the linear relaxation 
solution in Figure 3.b. However, that linear relaxation solution violates the 
3-partition inequality given by P = (V~,V~,V3) , V~ = {6}, V z = {3,4,5,8} 
and V 3 = {1,2,9,10}, since ~--]~e~A(l,/xe = 1.5 ~ 2, where 

A ( p ) :  {(5, 6), (5,10), (6, 9)}. 

2.3 Separation Procedures 

One of the difficulties in applying valid and facet defining inequalities to 
integer formulations is to define a proper routine capable of finding these 
inequalities, when given a feasible point for the linear relaxation of the 
problem. We present some of the separation procedures that can be used to 
find the described valid inequalities. We will use the following notation in 
the two separation heuristics described below. Let U C V and T C V. We 
define [U: T] = {(u, t )E E lu E U, t E T}. In other words, [U: T] is the 

set of edges in the cut defined by node sets U and T in G. We also use 
x([U: T]) to denote )--~ectv:7"l x~. 

The first separation procedure is described in Algorithm 1. We observe 
that a k -partition obtained by the Separation Procedure 1 may not produce a 
k-partition inequality that is violated by the vector x'. Note, however, that 
if at the end of the first iteration of step 3 we have a partition P that violates 
a k-partition inequality, then we can keep P for the case when the final 
partition does not yield a violated k -partition. 

A second separation procedure for the k-partition can be described as 
shown in Algorithm 2 (the idea is similar the one described in [5]). 
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Algorithm 1: Separation procedure 1. 
Input: 
Step 1: 

Step 2: 

Step 3: 

Step 4: 

G = (V,E),  x' E [0,1]'" 
Let P = (V0,V~,...,V2p) be a (2p+l) -partition of the nodes of the 
graph G = ( V , E )  such that V 0 = V \ ( S U D ) ,  V,=S~,  
i = 1,. . . ,p and Vp+~ = D,, i = 1,...,p. Here, S~ and D~ 
correspond to the i th element in S and D. 
Compute ~--]~A(v)x~. 

If  ~-'~zx(e) z~ < [ - ~ ] ,  then for each node u E V~, find a set V, 

of P that maximize x'([v : V,]), and insert this node in V v 

If ~ ( ~ , ) x ~  - I  2 /, >[2~+1] then find an edge e E A(p)  that 

maximize x~. If e joins sets V~ and V i , for i , j  >_ 1, then 
construct partition P' obtained from P by removing sets V, and 

and inserting set V~ U Vj, replace P by P',  and go to Step 2. 

If edge e joins anode u in V 0 and a set Vii, then assign P to P '  
and construct partition P' = (V o \ {u},V1,...,V ~ U {U},...,Vk), 
and go to Step 2. 

. T H E  B R A N C H - A N D - C U T  A L G O R I T H M  

In order to derive an algorithm to solve the given IP formulation, we start 
by noting that the number of point-to-point cut inequalities (1) is exponential 
in n. Thus, to solve even instances of medium size using this formulation is 
impracticable. However, the facet defining inequalities in the proposed 
formulation can be used in a branch-and-cut framework to solve the PPC 
problem. 

Branch-and-cut algorithms for combinatorial optimization problems have 
a vast literature (see [12] for a starting point). The basic idea is to combine 
branching rules, as in branch-and-bound algorithms, with cutting plane 
inequalities. By adding new valid inequalities to the problem the size of the 
original polytope is reduced in most cases, improving computational 
performance. 

For the PPC problem, inequalities can be generated as needed in 
polynomial time by using an algorithm for the maximum flow problem. This 
is done as follows: let z '  E [0,1] 'n be the solution vector in the current node 
of the branch-and-cut tree. Construct a graph G' = (V, E) with a capacity 
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function h associated with the edges of  E such that h(e)= x', for all 
e E E .  Now for each pair of nodes (u,v) EV,  with u E S  and v E D ,  
compute the maximum flow, denoted by f(u, v), between u and v. 

Algorithm 2: Separation procedure 2. 
Input: 
Step 1: 

Step 2: 

Step 3: 

Step 4: 

InputG = (V,E), x' E [0,1] m 
Let P = (V) and k = 1; that is P has just one set, the node set of  
G. 
Compute ~--~c~,,)x~. 

If  ~--~,e,,<e/X'~ <[~], then this partition induces a violated 

inequality. Return the violated inequality. 
If  ~-'~,e,w')x: _>[-~], then choose iE{1 , . . . , k}  such that 

[V~NSI  > 1  and I V ~ N D [ > I ,  compute, in the induced graph 
G[V~], a minimum capacity cut from a source node to a destination 
node, where the edge weights are those in the current x'. Suppose 
[V,I:V, z] is the cut that was found. Then replace P by 
P' = (V,...,V~,V,Z,Vk) and go to Step 2. 

Let G n be the residual network corresponding to the maximum flow 
f(u ,v) ,  and Y the set of  nodes in G R reachable from u. By the Minimum 
Cut/Maximum Flow Theorem [6], there exists a cut ~5(Y),Y C V with 
capacity f(u,v) that separates u and v. Now if f (u ,v)<l  and 
I Y M S I~l Y M D l, given that all edges in E have integral weight, there 
can be no edge going from Y to V \ Y. This implies that 

~'~ x, > 1 
ee6(Y) 

is a point-to-point cut inequality violated by the current fractional solution 
x I. On the other hand, if f(u, v) _> 1 for all pairs (u, v), u E S and v E D, 
there are no point-to-point cut inequalities violated by x t. It is clear that the 
above checking can be done in O(p~n'~), using a standard preflow-push 
algorithm [ 1 ]. The branch-and-cut algorithm can be described as follows. 

. Start with an initial formulation consisting of  2p point-to-point cut 
inequalities, one for each u E S U D. Note that these inequalities are 
always necessary in the formulation, since they must be valid for 
each feasible solution. Initialize the branch-and-cut tree to one node 
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with this formulation. 
2. If the tree is not empty, take one of the available nodes and solve the 

LP relaxation using a LP solver. If  all variables are integer and they 
define a feasible solution, we have an upper bound. Store the 
solution with smallest upper bound. Else, run the separation 
procedure. 

3. If  there is any violated inequality, include it in the formulation and 
continue on step 2. Else, branch on one of the fractional variables in 
the current solution of  the relaxation. 

Note that in the previous algorithm we can avoid to insert new nodes in 
the tree every time that the cost of the relaxation is greater than the upper 
bound. We summarize next some of the implementation decisions taken in 
the implementation of  this branch-and-cut algorithm. 

Node Selection Strategy We use the best first search strategy to choose the 
next unexplored node to process, i.e. we select the unexplored node with 
minimum objective function value. 

Branching Strategy We adopt the traditional branching strategy: choose a 
fractional variable z~ with value closest to 0.5 and generate two new 
subproblems, one with z i = 0 and another with z~ = 1. 

Tailing-off Detection Tailing-off is a phenomenon that can appear in the 
cutting-plane phase in a branch-and-cut algorithm when, although violated 
inequalities are included to the problem, the profit in the objective function 
is very small. Some authors suggest that instead of trying to find new cuts, it 
is better to proceed with the branching phase [12, 14]. 

We detect the tailing-off phenomenon in each node of the branch-and-cut 
tree by checking the total improvement in the linear relaxation value during 
the last 10 iterations. If the total improvement is less than 0.01 percent, we 
force a branch, instead of  generating new cuts. 

Fixing variables by reduced cost If we know an upper bound for the value 
of  an optimal integer solution, then it may be possible to set the values of  
some variables. This can be done by using the reduced costs of  non-basic 
variables in the current linear relaxation, as shown in the following 
paragraph. 

Let z ~ be the current optimal solution of  the linear relaxation and z ~ its 
associated value. Suppose that x ~ is non-degenerate. Let ej = cj - % B - 1 N  
be the reduced cost of  the non-basic variable zj, where B is a basis matrix 
and N is the matrix consisting of  the coefficient columns associated with 
the non-basic variables. Recall that the reduced cost of  a variable gives the 
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improvement in the solution value when that variable enters the basis. Let z 
be an upper bound on the value of  an optimal integer solution. Then, for 
each non-basic variable zlj do: 

• If zlj = 0 and z ~+ cj > z, then insert cut 0 < z j < 0. That is, if 
variable xj enters the basis, then the value of the linear relaxation 
would exceed z. 

• If xlj = 1 and z ~ - c j  > z, then insert cut 1 ___ xj < 1. 

Fixing Variables by Logic Implications Right after we apply the procedure 
for fixing variables by reduced cost, we may use the following ideas to fix 
some other variables. Let G'(V, E) be the graph obtained from the graph 
G'(V, E) by deleting the edges fixed at zero. Then we do: 

• If there exists v E  S UD with degree ( v ) =  1 in G', then fix 
x e = 1  where e = (v, u) o r e = ( u , v )  for some v E V ;  

• If there exists v E V \ (S U D) with degree (v) = 1 in G', then fix 
xe = 0 where e = (v, u) or e = (u, v) for some v E V ; 

• If there exists a bridge joining two vertices v E S, u E D with 
e = ( v , u )  E E ,  then f i x x  e = l .  

Selection of Violated Inequalities Let p be a parameter for the branch-and- 
cut algorithm. Then among all violated inequalities found by the separation 
procedures for the inequalities classes 2-partition and k-partition, we select 
the p most violated. By violation of  an inequality we mean, given an 
inequality arx < o~ and a vector x', the violation of  x with respect to 
a T x ~ O~ is the value a - a T x ' .  

Pool of Inequalities The inequalities found by the separation procedures are 
kept in a data structure called the inequality pool. The policy used in this 
pool of  inequalities is the following. Each inequality receives a time stamp, 
representing the time it entered the memory. Whenever k new inequalities 
are found, then the k oldest inequalities in the pool are deleted and the new 
inequalities take their places. 

. COMPUTATIONAL RESULTS 

In this section we present results of  computational experiments 
performed with the algorithm discussed. The algorithm was implemented in 
the C programming language and run in an IBM RISC 6000 system using 
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the AIX operating system, version 4.3. In the branch-and-cut 
implementation, the CPLEX 7.0 [10] linear programming solver was used. 

The test instances were generated as follows: we construct a random 
Hamiltonian path over a vertex set of cardinality n. Further edges are then 
included in the graph at random. To each edge we assign a random weight 
chosen uniformly in the interval [1,10]. 

Tables 1 to 3 summarize the tests done with the branch-and-cut. The 
columns GW, LB, Optimal solution, Nodes, LPs, Cuts and CPU time 
represent, respectively, the upper and lower bounds obtained by the 
Goemans-Williamson algorithm [7], the optimal solution value, the number 
of nodes in the branch-and-cut tree, the number of linear programs solved, 
the number of point-to-point cut inequalities and CPU time in hours, minutes 
and seconds needed in order to prove the optimal value of an instance. 

The results presented in Tables 1 to 3 demonstrate the effectiveness of 
the proposed procedure for medium sized networks, with up to 400 edges, in 
a relatively small amount of time. 

. C O N C L U D I N G  R E M A R K S  

In this paper we described and tested an exact approach to solve the 
point-to-point connection problem. This problem has interesting applications 
in routing, particularly for package delivering in multicast networks. We 
presented an IP formulation for the problem and proved the existence of 
cutting plane inequalities defined by this formulation. The cutting plane 
inequalities were used to describe a branch-and-cut algorithm to the PPC 
problem. 

As questions for future research, other facet defining inequalities could 
be proposed for our formulation of PPC problem. Current work is being 
done on identifying and proving the validity of such additional cutting plane 
inequalities. Other formulations could also be employed to explore different 
aspects of the structure of the PPC polytope. It would also be interesting to 
develop exact or approximate algorithms for especial cases of the problem. 
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instance 

m p 

tO0 8 
100 7 
100 6 
tO0 5 
100 '4 
100 3 
200 8 
200 7 
200 6 
200 5 
200 4 
200 3 
300 8 
300 7 
300 6 
300 5 
300 4 
300 3 
400 8 
400 7 
400 6 
400 5 
'400 '4 
400 3 

GW branch-and-cut 
Value LB 

40 18 
51 21 
,48 22 
35 10 
24 9 
23 14 
32 17 
30 12 
23 1,4 
31 16 
18 8 
6 ,4 

24 10 
22 ii 
13 7 
17 9 
1,4 9 

12 '4 
21 13 
16 9 
17 9 
12 8 
11 ? 
6 5 

OptimM Nodes LPs Cuts CPU 
solution t ime 

29 208 184 349 [m24s 
25 i 30 119 6s 
30 90 112 288 35s 
21 140 176 293 50s 
18 6 21 57 2s 
23 8 37 75 4s 
21 96 123 340 2mO5s 
19 1426 1066 1098 38m12s 
18 i0 31 88 12s 
22 [2 60 194 29s 
9 1 13 14 Is 
6 i 14 13 Is 

13 352 380 671 12m45s 
13 36 919 281 2mO5s 
11 80 132 367 2m49s 
11 46 79 2 [ 6 I mO6s 
12 [4 48 158 35s 
7 ].0 32 36 9s 

14 t2 22 57 40s 
14 638 719 [ 142 50m20s 
12 162 204 523 8mils 
10 8 36 125 52s 

8 l 2'4 37 12s 
6 1 7 6 Is 

Table 1. Results for instances with n : 30. 
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instance 

D~ 

tot 
tO0 
tO0 
100 
2OO 
2OO 
2OO 
2OO 
2OO 
2OO 
300 
300 

500 3 

GW broach-a.nd-cut 
\,'~lue LB Optima.l Nodes LPs Cuts UPU 

solution time 
76 32 
54 27 
35 22 
26 15 
38 23 
25 t3 
25 t5 
t9 t3 
19 12 
12 5 
33 17 
t8 I t  
22 tO 
26 lI 
t2 6 
t2 7 
29 16 
18 It 
25 t2 
t4 9 
13 5 
10 6 
28 15 
25 tl.5 
18 I t  
t6 9 
13 6 
T 5 

,50 60 183 519 im38s 
48 118 1,59 451 im4£~ 
:34 8 73 264 16s 
26 i 19 22 is 
30 302 307 679 6m31)s 
19 20 44 121 2,15 
23 28 77 201 4['~ 
16 '2 23 50 r~s 
19 2 30 103 
12 2 '29 67 [% 
20 6 63 280 im2&~ 
14 32 59 194 ]-mO~ 
14 20 56 242 hnOTs 
20 168 216 :124 5mOt'e 
tO 4 18 4.5 Ts 
12 8 51 140 2,.~ 
22 298 402 l.tTl 3hn4Ts 
[4 I. 02 L T 1 495 6m3~ 
1.7 38 v',~ 203 tm4ts 
1.1 18 58 243 t m2t~s 
10 '22 86 230 tm36s 
7 l 12 it 

17 24 55 266 3ml.~-_, 
].6 38 74 280 3m44s 
14 30 75 233 2m51s 
12 106 196 460 8m44s 
l]. 74 169 397 6m37s 

7 l 30 77 2 ~  

Table 2. Results for instances with n = 40. 
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inst&nce GW braach-&nd-cut 

n m p Value LB OptimM Nodes LPs Cuts CPU 
solution time 

50 100 12 
50 100 11 
50 100 10 
50 100 9 
50 200 12 
50 200 11 
50 200 10 
50 200 9 
50 300 12 
50 300 11 
50 300 10 
50 300 9 
60 100 12 
60 100 11 
60 100 10 
60 100 9 
60 200 12 
60 200 11 
60 200 tO 
60 200 9 
60 300 12 
60 300 11 
60 300 10 
60 300 9 

134 51 
126 45 
].38 53 
80 33 
67 29 
77 35 
63 32 
58 25 
64 28 
60 28 
56 23 
53 24 

140 61 
132 47 
132 53 
114 37 
75 27 

84 716 647 1703 23m49s 
78 390 540 1358 12m57s 
85 4170 2643 1855 2h06m23s 
55 58 96 434 44s 
44 492 471 1337 20mO6s 
43 34 85 494 2m14s 
48 320 :312 905 t0m39s 
38 310 415 12.t tTm36s 
38 466 436 1233 31m58s 
38 2228 1782 2025 3h56,n5is 
32 488 .172 i061 26m38s 
36 490 554 1550 46m42s 
95 532 456 1330 13m34s 
90 1516 1271 1877 thtOm57s 
89 178 273 1185 6m33s 
65 834 775 20:31 51m5Ts 
46 2176 2010 2780 4hShnOSs 

99 52 72 
73 37 44 
58 22 39 
51 29 39 
50 20 28 
62 28 43 
45 21 29 

96 187 71 t 6ml0s 
40 85 324 Im17s 
14 105 647 2m29s 

252 31.1 1:109 24mbgs 
32 48 217 h n t 6 s  

440 498 1428 45mS9s 
666 555 1476 47mO6s 

Table  3. Results for instances with n = 50.  



VARIATIONAL INEQUALITY AND 
EVOLUTIONARY MARKET DISEQUILIBRIA: 
THE CASE OF QUANTITY FORMULATION 

M. Milasi and C. Vitanza 
Dept. of Mathematics, University of Messina, Messina, Italy 

Abstract: We consider a time-dependent economic market in presence of excess on the 
supplies and on the demands and we assume that the demand and supply 
prices depend on the quantity of supplies and demands. This model generalizes 
the classic spatial price equilibrium problems and adopts, unchanged, the 
concept of the equilibrium, namely that at the same time the demand price is 
equal to the supply price plus the cost of transportation, if there is trade 
between the pair of supply and demand markets. The equilibrium conditions 
that describe this "disequilibrium" model are expressed in terms of a time- 
dependent Variational Inequality for which an existence theorem is shown. 
Moreover by means of the Lagrangean Theory we find the dual variables 
which have a remarkable economic meaning. 

. INTRODUCTION. 

In this paper we are concemed with the spatial price equilibrium problem 
in the case of  quantity formulation and in presence of  excess on the supply 
and on the demand. We assume that the quantities of  supplies and of  
demands evolve in the time and, as consequence, the supply prices and the 
demand prices, as well as the transportation costs and the commodity 
shipments, in turns depend on the time. The motivation for this time 
dependent approach is that, as in [5] P. Daniele writes, "we cannot avoid to 
consider that each phenomenon of our economic and physical world is not 
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stable with respect to the time and that our static models of  equilibria are a 
first useful abstract approach" (for other contribution on this matter see [6], 
[7], [8], [4]). The case in which the excess on the supply and on the demand 
are not present has been studied by P. Daniele in [5]. The author gives the 
definition of  time dependent market equilibrium and shows that it is 
equivalent to a Variational Inequality problem. Moreover the author 
provides existence theorems and performs a stability analysis of the 
equilibrium patterns. In this paper we follow a suggestion by P. Daniele (see 
Remark 1 in [5]) and consider a model with supply and demand excesses and 
with capacity constraints on prices and on transportation costs. The presence 
of the capacity constraints makes the model more realistic, because it is clear 
that the prices of supply and of  demand are bounded by minimal and 
maximal prices. Also in this general case we give a time dependent market 
equilibrium definition and we show that it is equivalent to a Variational 
Inequality in a suitable Lebesgue space. Moreover we characterize the 
equilibrium solution by means of  Lagrangean multipliers applying the 
Duality Theory in the case of  infinite dimensional spaces. 

. S P A T I A L  P R I C E  E Q U I L I B R I U M  P R O B L E M .  T H E  
C A S E  O F  T I M E  D E P E N D I N G  Q U A N T I T Y  
F O R M U L A T I O N .  

Let us consider n supply markets P~, i= l , 2 , . . , n ,  and m demand 
markets Qj, j = 1,2,..,m involved in the production and in the consumption 
respectively of  a commodity during a period of time [0,T],T > 0 .  Let 
9i(t),tE[O,T],i=l,2,. . ,n denote the supply of  the commodity associated 
with supply market i at the time t ~ [0, T] and let pi (t), t E [0, T], i = 1, 2,.., n 
denote the supply price of  the commodity associated with supply market i at 
the time t~ [0 ,T ] .  A fixed minimal and maximum supply price 
p~(t),p~(t)>O, respectively, for each supply market, are given. Let 
f j ( t ) ,  t e [0,T], j = 1,2,..,m denote the demand associated with the demand 
market j at the time t ~[0,T] and let qj(t),t  ~[O,T],j=l,2, . . ,m, denote the 
demand price associated with the demand market j at the time t ~ [0,T]. 
Let qj( t) ,qj( t )>O, for each demand market, be the fixed minimal and 
maximum demand price respectively. Since the markets are spatially 
separated, let x o. (t), t ~ [0, T], i = 1, 2 .... n, j = 1, 2 ..... m denote the nonnegative 
commodity shipment transportated from supply market P~ to demand market 
Qj at the same time t~ [0 ,T] .  Let co.(t),t~[O,T],i=l,2 .... n , j=l ,2 , . . ,m  
denote the nonnegative unit transportation cost associated with trading the 
commodity between (P~, Qj) at the same time t ~ [0, T]. Let we suppose that 
we are in presence of  excesses on the supply and on the demand. Let 
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s i (t), t ~ [0, T], i = 1, 2 ..... n denote the supply excess for the supply market P~ 
at the time t ~ [0,T]. Let rj(t), t E [0,T], j = 1,2,..,m denote the demand 
excess for the demand market Qj at the time t ~ [0, T]. We assume that the 
following feasibility conditions must hold for every i=l ,2 , . . ,n  and 
j = l , 2 , . . , m  a. e. in [0,T]: 

9, (t) = ~.~ x o. (t) + s i (t), (1) 
j = l  

n 

f j  (t) : ~ xl/(t) + rj (t). (2) 
i=1 

Grouping the introduced quantities in vectors, we have the total supply 
vector 9(0  ~ L2 ([0, T], JR") and the total demand vector 
f ( t )~L2([O,T] ,W") .  Furthermore in order to precise the quantity 
formulation, we assume that two mappings p(9(t)) and q( f ( t ) )  are given: 

p : L2([O,T],~ ") ~ L2 ( [ 0 , T ] , ~ " ) ,  

q : L2([O,T],~. m) --~ L2 ([0, T ] , ~ ) .  

The mapping p assigns for each supply 9(t) the supply price p(g(t))  and 
the mapping q assigns for each demand f ( t )  the demand price q ( f ( t ) ) .  
Analogously x(t) ~ L 2 ([0, T], ~,m) is the vector of commodity shipment and 
the mapping 

c : L2([O,T],]I~ nrn ) ~ Z2([o,r],]l~ nm) 

assigns for each commodity shipment x(t) the transportation cost c(x(t)) .  
Moreover let s( t )eL2([O,T] ,N") ,r ( t )eL2([O,T] ,N ") be the vectors of 
supply and demand excess. Denoting by w(t) = (g( t ) , f ( t ) , x ( t ) , s ( t ) , r ( t ) ) ,  we 
set 

L, = {w( t )  = (g ( t ) ,  f ( t ) ,  x(t), s(t), r ( t ) )  • 

w(t)~L2([O,T],R")xL2([O,T],~m)xL2([O,T],R'")xL2([O,T],~")xL2([O,T],~)},  

and 
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2 2 2 

IIw<t>lL --(llg(t)llL.,~0 T,.,., + IIT<011L2,,0.T,,-, + Ilx(t>L,,oTy., + 
2 2 

+lls<t)L,,o.~,R.> + II~<t)L,,0 ~, R°,~ 

Furthermore we assume that the feasible 
w(t) = (9(t), f (t),x(t),s(t), r( t))  satisfies the condition 

vector 

w(t)>O a.e.in[0,T] (3) 

Taking into account conditions (1), (2) and (3), the set of  feasible vectors 
w(t) is: 

K" = {w(t) = (9 ( t ) , f  (t),x(t),s(t),r(t)) ~ L" w(t) > O, 

m 

9i (t) = ~ '  xu (t) + s i (t) i = 1, 2,..., n 
j=l 

£(O=~xo.(t)+~j(O~=, j=l,2,...,m a.e. in[o,r]}. 

is a convex, closed, not bounded subset of  the Hilbert space L,. 
Finally the presence o f  the capacity constraints on p, q,c  

expressed in the following way: 
can be 

m 

p(t)  < p(9(t)) < p(t), 

q(t) < q ( f  (t)) < q(t), 

c_(t) <_ c(x(O) <- c(t), 

for each w(t) = (9(t), f ( t ) ,  x(t), s(t), r( t))  e K ,  where 

p ( t )  = (p,(t) ,P2(t)  .... ,p , ( t ) )  and q(t) = (q,(t),qz(t),...,qm(t)). 

Then the t ime-dependent market equilibrium condition in the case of  the 
quantity formulation takes the following form: 

Definition 2.1. Let w'( t )=(9"( t ) , f ' ( t ) , x ' ( t ) , s*( t ) , r ' ( t ) )  in K .  w'( t)  is a 
market equilibrium if and only if for each i = 1,2,..,n and j = 1,2,..,m the 
following conditions hold a. e. in [0, T] : 
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if  p~(t) < P~(9 (t)) ~ s, (t) = 0 
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(4) 

f 
if r~ (t) > 0 ~ qj (f* (t)) = qj(t) 

if qj ( f*  (t)) < qj( t )  ~ r~ (t) = 0 

(5) 

t , * 

if xu (t) > 0 ::> Pi (9 (t)) + c~ (x* (t)) = qj (f* (t)) 

if pi (9* (t)) + e o. (x* (t)) > qj ( f*  (t)) ~ xu (t) = 0 

(6) 

Condition (4) states that if in the supply market P~ there is supply excess 
in the time t ,  then the supply price in P~ must be equal to the supply 
minimal price in P~ at the time t.  If  the supply price in P~ is not equal to the 
minimal price at the time t ,  then in P~ at the time t there is not supply 
excess. 

Conditions (5) have similar meaning. Condition (6) states that if the trade 
between a pair (P~,Qj) at the time t is greater to zero, then the supply price 
at supply market P~ plus the transportation cost between the pair of  markets 
at the same time t must be equal to the demand price at demand market Qj 
at the time t ; whereas if the supply price plus the transportation cost at the 
same time t exceeds the demand price at the time t ,  then the trade between 
the supply and demand market pair at the time t will be equal to zero. Now 
let us consider the following Variational Inequality: 

N 

"Find w* (t) ~ K such that." 

ojo T (p(g*(t) )(g(t) - g*(t) ) - q(f* (t) ) ( f ( t )  - i f ( t ) )  + c(x*(t) )(z( t)  - z* ( t) ) + 

-p ( t ) ( s ( t )  - s" (t)) + q(t)(r(t) - r* (t)))dt > 0 (7) 

V w(t) = (g(t), f ( t ) ,  x(t),  s(t), r(t)) e K." 

If  we denote 
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L = L ~ ([0, r ] ,  e " )  x L~([O,T],e  ") × L ~ ([0, r] ,  ~ ) ,  
K = { u ( t )  = (x(t),s(t),r(t)) e L : u ( t )  >_ 0}, 

and 

m m m 

p(x ( t ) , s ( t ) )  = P ( Z  x,j (t) + s, (t), Z x , j ( t )  + s2(t) ...... , Z x. j( t)  + s.  (t)), 
j=l  j= l  j = l  

n t f  n 

q(x(t), v(t)) = q ( ~  x,  (t) + r, (t), ~ X,z (t) + v 2 (t),. .... , ~ x,,~ (t) + % (t)), 
i=1 i=1 i=1 

taking into account the feasibility conditions, Variational Inequality (7) can 
also rewrite in the following form: 

"Find u* (t) e K such that." 

Ojo T {(p(x*(t),s*(t))-q(x*(t),  "r*(t))+ c(x*(t)))(x( t)-  x*(t)) + 

+(p(x* (t),s" ( t ) ) -  p( t ) ) (s( t ) -  s ' ( t ) ) -  (q(x* (t),r* ( t ) ) -q( t ) ) ( r ( t ) -  r*(t))Idt > 0 

v u ( t ) :  (x(t),s(t), r(t)) e X." (8) 

In fact the following result holds: 

Lemma 2.1. Under assumptions (1) and (2), Variational Inequalities (7) and 
(8) are equivalent. 

Proof. Let w* e K a solution to the problem (7). Taking into account the 
conditions (1) and (2) we have: 

m 

9 i ( t )=Zxo( t )+s i ( t )  Vi = 1,2,...,n 
)=1 

n 

f j ( t ) = ~ x i j ( t ) + r j ( t  ) Vj = 1,2 ..... m. 
i=1 

N 

Then from (7) for all w e K we have: 

ojov {p(g*(t) )(g(t) - 9" (t) ) - q(f*(t) )(f(t) - f ' ( t )  ) + c(x* (t) ) (x(t) - x* (t)) + 

- p ( t ) ( s ( t )  - s" (t)) + q(t)(r( t)  - r" ( t))Idt  = 
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r{~-~p,(g*( t ) ) (~-~x~j( t )+s~(t )  x ~ j ( t ) - s ~ ( t ) ) +  
i=l j=l  j=l  

£ . ± .  . . 
- q j ( f* ( t ) ) (~ - ' xu ( t )+v j ( t  ) -  x ~ ( t ) - r ; ( t ) ) + ~ " c i j ( x  (t))(xo.(t)-xo.(t))+ 

j = l  i=1 i=1 ioj 

n m - -  , 
- ~ "  pi(t)(s~ (t) - s? (t)) ~" qj(t)(rj  (t) - rj (t))}dt = 

i=1 j = l  

f 0 r { ~  (p,(g*(t)) q~(f*(t))+cij(x '( t)))(x~j(t  ) x~( t ) )+  
i,j 

+ £ (p,(g* ( t ) ) -  p,(t))(si ( t ) -  s: ( t ) ) -  £ (q j ( f*  ( t ) ) -  q j ( t ) ) ( r j ( t ) -  r; (t))}dt = 
i=1 j = l  

= fo  r { ( p ( g * ( t ) ) - q ( f * ( t ) ) +  c (x* ( t ) ) ) ( x ( t ) -  x*(t)) + (p (g*( t ) ) ) -  p ( t ) ) ( s ( t ) -  s*( t ) )+ 

- ( q ( f *  (t)) - q(t))(r( t )  - v* (t)) }dt = 

= o j o T { ( p ( x , ( t ) , s , ( t ) ) - - q ( x * ( t ) , ' r * ( t ) ) +  c ( x * ( t ) ) ) ( x ( t ) - -  x * ( t ) ) +  

+(p(x* (t),s* ( t ) ) ) -  p(t)(s( t)  - s* (t)) - ( q(x*(t), r* (t)) - q( t))(r( t )  - r* (t))}dt. 

Then the above inequality holds for u e K. If  we find 
w* = (9*,f*,x*,s*,r*) e K such that: 

{P(9* (t))(9(t) - 9" (t)) - q( f*  ( t ) ) ( f ( t )  - f*  (t)) + c(x* (t))(x(t) - x* (t)) + 

-p( t ) ( s ( t )  - s ° (t)) + q(t)(r(t)  - r* (t)) }dt > 0 

k~ w(t) = (9(t), f ( t ) ,  x(t),s(t),  r(t))  e 

then u * = ( x * , s * , r * ) ~ K  verifies Variational Inequality (8) for all 
u = (x , s , r )  e K .  i~1 

If  we consider the function: 

v 'L--> L 

defined setting for each u e L : 

v(u) = (p(x*, s ' )  - q(x ' ,  r*) + c(x') ,  p(x*, s*) - p, q - q(x*, v*)), 

Variational Inequality (8) can be rewrite as: 
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"Find u* ~ K such that: 

< v ( u ' ) , u - u "  >>0,  V u ~ K . "  

Now let us characterize time dependent market equilibrium as a solution 
to Variational Inequality (8) (and hence (7)). In fact the following result 
holds: 

Theorem 2.1. u" = ( x ' , s ' , r ' )  ~ K & a time dependent market equilibrium i f  
and only i f  u" is a solution to Variational Inequality (8). 

Proof. Let u" ~ K be a market equilibrium. 
For every x(t) > 0 we have: 

fo  7" (p(z'(t) ,s*(t)) - q(z*(t), "r*(t)) + c(z*(t)))(z(t) - z*(t))dt >_ 0 

* > In fact: if  xo.(t ) 0, by (6) we have 
Pi ( x° (t),s* (t)) - qj (x ° (t), r" (t)) + cu (x" (t)) = 0 and the product vanishes. 
Otherwise, if  x U (t) = 0 then, from (6) we have 
p~ (x* (t), s" (t)) - qj (x ° (t), r" (t)) + c o. (x ° (t)) > 0 and the product is 
nonnegative a. e. in [0, T].  Then the integral is nonnegative. 

By similar case distinctions, one obtains that each product in the second 
and third sum is nonnegative. Then second and third integral are 
nonnegative. This proves that u ° is a solution to Variational Inequality (8). 

Conversely, let Variational Inequality (8) holds. Let us prove that 
equilibrium conditions hold. First let us suppose that (6) is not verified, that 
is there exists a set E c [0, T] such that m(E) > 0 and there exist i ° and j* 
such that for each t e E : 

Pc (x" (t), s" (t)) - q ;  (x" (t), r" (t)) + ecj. (x" (t)) < 0. 

Then if we choose 2 ~  L2([O,T],II~ "") such that 

x ( t )  = x ' ( t )  v t  [0,T] \ E, 

and : 

-Y~(t) x o., (t) V(i, j )  4: (t , j ), t E E 

Xcj. (t) t E, 
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assuming in (8) x(t) = x(t), s(t) = s" (t), r( t )  = r" ( t ) ,  we get 

£ < v ( u * ) , u - u * ) > =  ( p ( z ' ( t ) , s * ( t ) ) - q ( x * ( t ) , ' r ' ( t ) ) + c ( z ' ( t ) ) ) ( ~ ( t ) - z * ( t ) ) d t =  

= f[0.rl\~ (p(:c ' ( t ) ,s*( t ) ) -q(z*( t ) , ' r*( t ) )+ c ( z ' ( t ) ) ) ( ~ ( t ) -  x*(t))dt + 

+ f ~ (p(:c* (t) ,s '( t)  ) - q(z'(t),  ~-'(t) ) + c(z" (t)))(~(t)  - z ' ( t )  )dt = 

= f ~  (p , . ( z ' ( t ) , s* ( t ) ) -q j . ( z*( t ) , - r ' ( t ) )+  c~.i.(z*(t)))(~,.j.(t ) - z~.~.(t))dt < O. 

So we have proved that 

p i ( x ' , s * ) - q j ( x ' , r ' ) + c o ( x ' ) > O  Vi, j a.e. in[O,T]. 

Now let us prove that if x~j > 0 then 

Pi (x" (t), s* (t)) + c o (x" (t)) = qj (x* (t), r" (t)) a. e in [0, T]. 

To this and, let us suppose ab absurdum that there exist a set E c [0,T], 
i ' ,  j* such that m(E) > 0 and 

Pi" (x' ,s*) -q j .  (x* , r ' )  + ci. j. (x*) > O. 

Then if we choose 

r = xo (t) in [0, T] \ E V(i, j)  ~ (i', j ' )  

-Yo(t)J=x~(t) V ( i , j ) * ( i ' , j ' ) ,  I c E  
[ ,  < xcj. (t) t ~ E, 

assuming in (8) x(t) = x(t), s(t) = s*(t), r( t)  = r" (t) 

<v(u',u-u')>= 
( . .  (pc(z*( t ) , s*( t ) ) -q j . (x ' ( t ) ,  T*(t)) + c,.i.(x*(t)))(5,.~.(t ) - x,*.j.(t))dt < 0 

It remain to prove that if, a. e. in [O,T] 
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Pc (x* (t),s* (t)) + cc f (x" (t)) > q f (x" (t), r" (t)) 

then xo.(t)=O Vi, j .  To this and, let us suppose ab absurdum that there 
exist a set E c [0, T] and i*, j* such that m(E)  > 0 

Pc (x'(t),s*(t)) + Ccj. (x '( t))  > q;  (x*(t),r*(t)) in E 

and x*.. > 0. 
t j  

Using the previous arguments it is easily to get a contradiction and hence 
x o must be zero for all i and j .  

Now, let us prove that condition (4) is verified. Let us suppose ab 
absurdum that there exist a set E c [0, T] and i* such that m(E) > 0 : 

*t  S* s* >0  and p~.(x ( ) ,  (t))>p~.(t) in E 
i* 

If we choose the chooses: 

sT(t V t ~ T \  E Vi=l ,2  n 

s;(t) vi  c, vt E 
/ 

. 

[<  s c (t) i = i*, ~/t ~ E, 

assuming x(t) = x*(t), s(t) =s(t),  r ( t )=  r*(t),  from (8) we get 

< v(u*,u - u*) > = f E  (Pi. (x* (t), s* (t)) - p_,.)(~. - s c )dt < O. 

Let us suppose ab absurdum that there exist a set E c [0,T] and i* such that 
m(E) > 0 and: 
if s*., > 0 ~ Pc (x* (t),s* (t)) > pc( t )  in E .  Analogously we proceed in order 
to obtain the another equilibrium conditions. [:1 

. EXISTENCE THEOREMS. 

Let us recall some concepts that will be useful in the following. Let E be 
a real topological vector space, K c E convex. Then v : K ~ E* is said to 
be: 

1. pseudomonotone if and only if 

2. hemicontinuous if and only if 
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Vu e K the function z ~ (v(z),u - z) 

is upper semicontinuous on K ; 

3. hemicontinuous along line segments if and only if 

691 

Vu,,u 2 ~ K  thefunction z- - ) (v(z) ,u2-u , )  

is upper semicontinuous on the line segment [ul,u z ]. 

Adapting a classical existence theorem for the solution of a variational 
inequality to our problem, we will have the following theorem, which 
provide existence with or without pseudomonotonicity assumptions. 
Moreover, since the convex K is unbounded, we need coercivity 
assumptions. 

Theorem 1. Each of  the following conditions is sufficient to ensure the 
existence o f  the solution of(8): 

1. v(u)= v(x(t),s(t),r(t)) is hemicontinuous with respect to the strong 

topology and there exist A c K compact and B c K compact, 

convex with respect to the strong topology such that 

Vu, ~ K \  A 3u 2 ~B:(v(u,),u z-u,)<O; 

2. v is pseudomonotone, v is hemicontinuous along line segments and 

there exist A c K compact and B c K compact, convex with respect 

to the weak topology such that 

V p ~ K \  A 3f)eB:(v(p) ,[2-p)<O; 

3. v is hemicontinuous on K with respect to the weak topology, 

3A c K compact, 3B c K compact, convex with respect to the weak 

topology such that 

V p ~ K \ A  3D~B:(v(p) ,[J-p)<O. 
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4. L A G R A N G E A N  T H E O R Y .  

Now, our pourpose is to give a characterization to evolutionary market 
equilibrium conditions in terms of  the Lagrangean multipliers, which, as it's 
very well know, play a very important role in economic theory. To this and 
we can prove the following result: 

Theorem 4.1. Let u" ~ K be a solution to problem (8). Then there exist 
• 2 .m f l ,  7 ,  three functions et ~L([0,T] , ]~  ), ~Lz([O,T],~"), ~L2([0,T],I~ ") 

such that." 

et'(t),fl'(t),y'(t)>_O a.e. in[O,T]; 

a ' .x"  =0, f l ' .s" =0, 7 " r ' = O ;  
I p ( x ' , s ' ) -  q(x ' , r*)  + c(x') = et', 

p(x ,s )-_p =p ,  
[ ~ - q ( x ' , r * ) = y ' .  

In order to prove theorem (4.1) we need the following tools. We observe 
that if u" ~ K is a solution to problem (8) then 

min < v(u'), u - u" >= 0. 
u ~ g  

Let us introduce the functional 

~ . (u )=<v(u ' ) , u -u '> ,  V u e K  

Let us observe that 

~ . (u )>_0  

and 

min ~,. (u) = 0. 
u e K  u 

We associate to Variational Inequality 
function: 

Vu E L, l =(ct,fl,7) ~ C" 

(8) the following Lagrangean 
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where 

C* = {l(t) = (a( t ) , f l ( t ) , r ( t ) )  • L : a( t )  >_ O, t~(t) >_ O, y(t)  >_ O) a. e. in [O,T]} 

is the dual cone of L. We observe that the dual cone of L, from Riesz 
theorem is equal to the ordering cone of L : C ° = C.  

For infinite dimensional convex optimization problems often the 
underlying constraint set has empty interior, so that the Slater constraint 
qualification condition cannot be applied. Following a suggestion by 
Borwein and Lewis [1], it is possible to overcome this difficulty replacing 
the Slater qualification condition by generalizing the notion of relative 
interiors as follows. 

Definition 4.1. The quasi relative interior of  a convex set K ,  which we 
denote by qri K ,  is the set of  those x for which 

Cl Cone( K - x) 

is a subspace, where 

Cone(K - x) = {2y : 2, > 0, y • K - x}. 

Then the generalized condition is the following 

qri K = 0 .  

In our case, the quasi relative interior of  K is 

qri K = {(a(t),fl(t),r(t)) • K :a( t )  > O, fl(t) > O, r(t)  > 0 a.e. in [0,T]}. 

Now, the infinite dimensional Lagrangean and duality theory follows from a 
separation theorem, proved in [2], in which the classical interior is replaced 
by the quasi-relative interior. 

Then the Lagrangean and the duality theory can be adapted in the 
following way. 

Proposition 4.1. The problem 
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min ~ .  (u). 
ueK 

is equivalent to the problem 

m i n s u p l C u . ( u ) - I f f  ol( t)x(t)dt+ fo  T 
uEL lEK ( 

Proof. See [3]. 

Let us consider the dual problem 

Variational Analysis and Appls. 

(9) 

(10) 

( (l  y: ~; )} m a x  inf ¢ .  (u) - a( t ) z ( t )d t  + ~( t )s ( t )d t  + 7(t) 'r( t)dt  . (11) 
lcK uEL 

and the associated problem 

max A. (12) 
AEA 

where 

~__ {~ ~ :  ~ ,~, (~/o,~,~,~,~ + ~; ~,~,~,~,~ + ~0 ~ ~,~,~,~,~)~_ ~} 

It results: 

Proposition 4.__2. (a',  fl*, 7"') e K is a maximal solution to dual problem (11) 
if and only if  A is a solution to (12). 

Proof. See [3]. 

Proposition 4.3. I f  the problem (9) (or (lO))is solvable, then dual problem 
(11) is also solvable and the extremal values of  the two problems are equal. 

Finally, from the previous results easy follows: 

Proposition 4.4 u* is a solution to (9) if and only if there exists l* ~ K such 
that (u',l ') is a saddle point of  L(u,l) ; namely." 
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L ( u ' , l ' )  < L(u, l*)  Vu  e L 

L (u* , l* )>L(u* , l )  V I ~ K  

Furthermore  we are: 

L(u*, l ' )  = min V .  (u) = 0 
u e K  u 

Proof  of  theorem (4.1). 
Let u ° be a solution to minimal problem (9). Because ( a ' , / T , f ) e  K it 

follows that 

a ' ( t ) > O ,  f l ' ( t ) > O ,  7*( t )>O a.e. in[O,T]. 

Moreover  taking into account that L(u, l*)  = 0, we get 

fo ~ L ~ f0~ 0 = L ( u ' , l ' ) =  ¢ ( u * ) -  o~*( t )x*( t )d t -  t3*( t ) s* ( t )d t -  7*( t ) ' r ' ( t )d t  = 0 

-L ~o'(,/~'(~/~-£ ~'(,'/~/~,-£ ~'(,/~'(~/~,: 0. 

Being a ' ,  x ' ,  f l ' ,  s ' ,  f ,  r* nonnegative functions, we derive: 

a ' x"  = O, f l ' s"  = O, 7*r* = 0 a.e. in [0,T]. 

Finally, for all u in L we have: 

L ( u , l ' )  =< v(u*),u - u* > - < l*,u > + < l ' ,u"  >= 

=< v ( u ' ) - l ' , u - u "  > 

Assuming: 

u I = u ' + c ,  u 2 = u * - ~  V ~ e D ( [ 0 , T ] )  

we get, for all e ~ D([O, T])  : 

L(ut,l* ) =< v(u') - l ' , u  I -u" >=< v(u') - l* ,e  > 

L(u2,1" ) =< v(u*) - l ' , u  2 - u" >=< v (u ' )  - l * , -~  >, 
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hence 

v ( u ' ) - r  = 0  

namely: 

p(x*, s ' )  - q(x*, r*) + c(x ' )  = a" 

p ( x ' , s ' ) -  p_(t) : p" 

~'(t) - q (x* , r*)  = y" 

(13) 

Remark. The importance of  functions a*,fl*,y* derives from the fact 
that they are able to describe the behaviour of  the evolutionary market. In 

* > fact the set A~ = {t ~[O,T]:ao( t  ) 0} indicates the time when there is not 
trade between the supply market i and the demand market j .  Analogously 
B~ = {t ~[O,T] ' f l~( t )> 0} indicates the time when there is a zero supply 
excess of  the market i .  The same holds for yj which indicates when the 
demand market j has not demand excess. Moreover it is easy to show that if 
u ~ K and there exist a ' ,  f l ' ,  y* as in theorem (4.1) such that conditions 
(13) are fulfilled, then u verifies Variational Inequality (8). 
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NUMERICAL APPROXIMATION OF FREE 
BOUNDARY PROBLEM BY VARIATIONAL 
INEQUALITIES. APPLICATION TO 
SEMICONDUCTOR DEVICES 

M. Morandi Cecchi and R. Russo 
University of Padova, Dept. of Pure and Applied Mathematics, Padova, Italy 

Abstract: In this paper we treat problem arasing in semiconductor theory from a 
mathematical and numerical point of view, in particular we consider a 
boundary value problem with unknown interfaces arising by the determination 
of the depletion layer in the most basic semiconductor device namely the p-n 
junction diode. We present the numerical approximation of free boundary 
problem with double obstacle treated with quasi-variational inequalities. We 
deal with the L '~ convergence of the standard finite element approximation of 
the system of quasi-variational inequalities. 

. I N T R O D U C T I O N  

Problems in which the solution of  a differential equation has to satisfy 
certain conditions on the boundary o f  a prescribed domain are referred to as 
boundary-value problems. In many important case, as free boundary 
problems, the boundary o f  the domain is not known in advance but has to be 
determinated as a part o f  the solution. Typically, a free boundary problem 
consist o f  a partial differential equations o f  elliptic type to be satisfied within 
a bounded domain together with necessary boundary conditions; one section 
of  the boundary, the free boundary, is unknown and must be determined as 
part o f  the solution. These problems have been popular subject for research 
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in recent years, leading to a collection of new mathematical methods. Flow 
through porous media is an important source of free boundary problems [1], 
most frequently in relation to seepage phenomena that occur in nature. 
Examples are seepage throught earth dams; seepage out of  open channels 
such as rivers, canals, ponds, and irrigation system. Practical interest in free 
boundary problems, however, is not confined to natural seepage but extends 
for example to topics in plasma physics, semiconductors, and 
electrochemical machinary. This work analyses a free boundary problem in 
semiconductors field, in particular the modelling of  reverse-biased devices. 
In fact for the steady-state case of p - n junction diode under reverse bias, 
after a singular perturbation analysis, the determination of  the depletion layer 
leads to a free boundary problem. 

For the case of  p - n  junction diode under strong revers bias, an 
approximating problem which includes the same free-boundary for the 
potential and a mixed elliptic-hyperbolic problem for the analysis of current 
flow, has been derived and analyzed in a series of  papers by Schmeiser 
[26],[27]. 

Without being derived as a limit of  a singularly perturbed system, the 
double obstacle problem has already been formulated as a model for the 
potential distribution by Hunt and Nassif [16]. The free boundary model 
presented here differs from the previous, by the definition of the obstacles 
which are equal to the quasi-Fermi level, obtained as a solution to the 
continuity equations; we give a quasi-variational formulation of  the model. 

Then we deal with the L ~ convergence of  the finite element 
approximation of  the system of  quasi-variational inequalities. The L ~-  error 
estimate is of  particular interest not only for practical reasons but also due to 
its inherent difficulty of  convergence in this norm. Moreover, the interest in 
using such a norm for the approximation of obstacle problems is that they 
are types of  free boundary problems. This fact was validated by the paper of  
F. Brezzi; C. Caffarelli, [8] and later by that of Nochetto [20], on the 
convergence of the discrete free boundary to the continuous one. 

A lot of  results on error estimates for the classical obstacle problems and 
variational inequalities were achieved in this norm, (cf., e.g [2], [19], [12], 
[21 ]). However, very few works concerning quasi-variational inequalities are 
known on this subject. (cf., [14]), [6]), Under a W2'P(f~) - regularity of  the 
continuous solution, a quasi-optimal L ~- convergence of  finite element 
method is established, involving a monotone algorithm of Bensoussan- 
Lions type and standard L °% error estimates known for elliptic variational 
inequalities. 
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. R E V E R S E  B I A S E D  p - n  J U N C T I O N  

One of the basic properties of semiconductors is the controlled 
implantation of impurity atoms into a semiconductor crystal; this process is 
usually called doping. It is possible to introduce into the crystal dopant 
atoms which can produce one or more excess conduction electrons (called 
donors), or dopant atoms which can accept electrons and thus produce holes 
(called acceptors). This process increases the conductivity significantly, and 
thus the electrical properties of the crystal can be controlled by doping. The 
performance of a semiconductor device is mainly determined by the 
distributions of donors and acceptors. 

__.fi 

14 
B D~2 D 

F 

Figure 1. p-n junction 

In the p-n junction the p-side, doped with acceptors, is positively charged 
and the n-side, doped with donors, is negatively charged. As a result of the 
tendency of holes to diffuse into the n region and of electrons into the p 
region, a nonconducting region is set up along the junction, called a 
depletion layer. 

When a positive bias is applied to the junction, a large current flows 
through the diode, even if the voltage is small; a negative applied voltage 
widens the depletion layer. The unknown or free boundaries limiting the 
depletion layer are interfaces with another, dielectric region. The interfaces 
are determined by the concentrations of donors and acceptors and the 
potentials applied. 

As in Fig. 1, let D 1 be the open boundary by the contour OEFGG, D 2 
the one bounded AHFE, and D 3 the triangular domain bounded by 
HBG : D consist of the whole rectangular domain OABC, while f21 and 
f~2 are the open sets which define the depletion layer. We also let 
~l' = D~/fil, ~2 = Dz/•2; r,  = D~ N ~tl, r2 = D2 N fi2. 

The model which describes potential distribution u(x,y) in 
semiconductor device is the drift-diffusion one 
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[ V 2u = q (n - p - C)  

V .  ( D . W  - ~U,,V¢) = R. 

V .  (DpVp + pppV¢)  = Rp 

(1) 

where q and e are the charge density and the dielectric permittivity, n and 
p are the concentrations of  free carriers of  negative and positive charge, 
electrons and holes, C is the predefined doping concentration, R,, and Rp 
the recombination-generation rate for hole and electron. We suppose 
R,, = Rp = 0. We rewrite the model for the two region remembering that 
f21, f22 are space charge regions, C 2 = D2/ft 2 are charge neutral regions 
F1 = ~1 f3 C 1 e F 2 = ~2 f-1 C~ are the free boundaries. In DI we have: 

A u  = q ( ~  - g ~ )  
c 

J. = D~Vn - n # . V ¢  

V J., = 0 
(2) 

Jp = 0  

while in D 2 

A u  = q(No - p )  
c 

Jp = DpVp + p#p~7¢ 

VJp = 0 

J . = 0  

(3) 

with the mixed boundary conditions 

u = u~ on r~  

Ou~=O on F~ 
On 

t ~ = u~ on V~ 

Ouz =0 on F~ u 
IOn 

where F D , i =  1,2 are the Dirichlet part of boundary, F~U,i= 1,2 
Neumann ones. 

At this point we use the quasi Fermi potential 

(4) 

the 
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n = N d e ;-+(~-~') p = N~ e ~(~'' -~) 

I f  ~TT = k, inserting the last in (2), (3) we obtain 

A u = q ( n - N d ) = q ( N ~ e  k(~-~') - N d ) = q  Nd(e k(~-~') - 1 )  i n n j  

A u  = q ( N  a - p) = q ( N a  - N~ e k(*'-:)) = q N :  (1 - e k(:-~'')) in D 2 
C C 

To simplify the model  we see that D 1 = f21 U C~ and in the charge neutral 
region C1, n - -  N d ho lds ,  so: 

A u  = 0 

and using the quasi Fermi potential we obtain 

n = N d e k(~-~') = N~ 

from the relation above follows that 

e k(~-~') = 1 ==> u = ¢,~ 

On the other hand in the space charge region f21, n = 0 so 

A u  = - q N d = - ~ 1  

and using the quasi Fermi potential 

n = N d e k(~-~') = 0 

therefore 
e k(~-~') = 0 ~ u < ¢,, 

In the same way for D 2 = f~2 U C2, since p = N a in C,~, we get 

A u = O  

and 
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P = Na ek(%-u) ---- N. 

therefore 

e k(o'-~) = 1 =~ u = Cp 

Since in ft~ we have p = 0, then 

n u  = -qNo = ~2 
C 

and 

p = N d e k(*'-") = 0 

As a result we obtain 

e k(*'-~) = 0 ~ Cp < u. 

Then we have a free boundary problem with double obstacle, with the free 
boundaries 

and the obstacle are represented by the quasi Fermi level Cp and ¢,,. 

. Q U A S I - V A R I A T I O N A L  I N E Q U A L I T Y  
F O R M U L A T I O N  

This section is devoted to define the functional spaces and variational 
• 2 problems• If  O is an open bounded set of  euchdean__plane ~ , we shall 

denote by C°(0)  the set ofcontinu_ous functions on O, Ck(O)(k  = 1,2,...) 
the set of  all function defined on (.9 with continuous derivatives until the k 
order. 

We denote by D(O) the space of the functions of  G~¢((9), which are 
zero in a neighbourhood of 0(9, the space D~(O) of  the distribtions on O is 
the dual of  D(O),  and we denote by LP(O)(1 < p < +c~) the usual space 
of  the real functions, defined a.e. on (9, measurable and p- summable on O 
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(or a.e. bounded on (9 if p = c~); Wk'P(O)(k = 1,2,...;1_< p_< c~) 
denotes the Banach space: 

p DhDI~ _ _ { f • L ( O ) ;  x uf  • Lp(O) p e r h , l > 0 , h + l < k }  

We have the following relations 

(Au + ~l)(u - ¢.)  = 0 in D 1 

because 

A u + ~ , = 0  e u<¢ ,~  inf , ,  

A u > ~ ,  e u = ¢ .  inC,  

In equal manner in D 2 we will write 

(Au - ~2)(¢p - u) = 0 in D 2 

since 

A u - ~ 2  = 0  e u > ¢ p  i n f t  2 

Au_< 2 e u=¢p inC2 

Let now consider the following set: 

U = {v • H ' ( D ) , v  = g on OD}, 

where D = D~ U D2 U D3, e g : O D - ,  N 
OD which satisfies the mathematical 
conditions: 

g = u[ ) on F~ g = u2 ~ on r~  

on ( H B ) U ( B G )  

sup 9 < 0 < inf 9 
rf rf 

(5) 

(6) 

a function with costant value on 
expression of  the reverse biased 

(7) 

The potential u is related to ¢., Cp and the relation between u, ¢. and Cp is 
given by a non linear operator which maps u in Ml(u  ) and M2(u ) . This 
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operator is defined by logarithmic transformations of  the solutions 
w I = %(u) and % = %(u) of the following mixed boundary value 
problems in the Slotboom variables: 

f V" (e~Vw,) = O, 

w, = e ~, on r ,  ° ,  OwJOn = 0 on r ~  (S) 

V" (e-k~gw2) = O, 
(9) 

w s = e  -k~2 o n F ~ ,  0 % / a n = O o n V ~  v 

where the values 9i = 9 Iv.o, i = 1, 2 are related with the potential at ohmic 
contacts;  w e  set  

V =  { v E H i ( D ) , v = e  -k9 onOD}.  

We may write the quasi Fermi potentials as: 

¢ , , = - k l n % ( u )  = M~(u) e p =  ~ l n % ( u )  = M2(u ) 

In order to give the classical formulation of  the problem, we set 
.T = (~3=~ HS(D~)tO C~(D,), and we have: 

Problem 1. Find (u,~ol,~os) such that u = (Ul,US,U3) e , 7 ,  g91 e ~02 
monotone nondecreasingfunctions (representing F 1 e P,,) satisfyng 

Aul = {2 in f~l where u < Ml(u ) (10) 

Au  l = 0  i n C  I w h e r e u = M l ( u  ) (11) 

A% = {5 in f~2 where u > Ms(u ) (12) 

Au  s = 0  i n C  s where u = Ms (u ) (13) 

Au  3 = 0  i n D  3 (14) 

with the free interface conditions 
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Oui = 0  o n F i ,  i = 1 , 2  (15) 
On 

as well as interface conditions 

O U 1 O ~Z 2 
u 1 ---- u z - -  - -  - -  o n  (EF), (16)  

On On 

OU 1 OU 3 u~ = u 3 - on (FG), (17)  
On On 

OU2 (~3 u 2 = u 3 - on (HF), (18)  
On On 

and boundary conditions 

u = u~ on F~ ° (OC), u = u~ on r2  ~ (AH). (19)  

Ou = 0 on F~ u Ou = 0 on F~  (20)  
On On 

Let  the  c o n v e x  set  

K(u) = {~ E U,~ < ¢, = M~(u) in D,, ¢p = M 2 ( u  ) < ~ in D2) (21)  

W e  have  the fo l l owing :  

T h e o r e m  3.1 I f  u is a solution of Problem 1, then u E K(u) must satisfy 
the quasi-variational inequality 

f f oVu u)dxdy + f f o u)dxdy- f f u)dxdy > o, 
V~o E K(u) (22)  

P r o o f .  Le t  ~ E K ( u ) ,  b e i n g  D = f 2 U C  wi th  f 2 = f 2  l U f ~ 2  e 
C = C l U C 2 , w e  have  
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but for (11) and (13) we have 

f f  /Xu( o-u)dxdy= Au( o-u)dzdy + f f  
(23) 

moreover  from (10) and (12) it follows 

f f  Au( o-u)axdy=-ff., ,,( o-u)dxdy+ f f    ( o-u)dxdy 
(24) 

being cp E K(u) will be ~p < ¢,, = Ml(u ) and qo _> Cp = Ms(u ) therefore 
again thanks ( 1 1 ) a n d  (13) u = M~(u) in 6'1 and u = Ms(u ) in C2 then 
qo < u in C~ and ~o > u in C 2 ; this gives 

~1 (~ - u) _< 0 in C, ~2 (~ - u) _> 0 in C~ 

therefore in C~ will be 

1 I 1 2 

in equal manner for G~ 

f f ,  ~(~o-u)dxdy=ff c~ ~:(~o-u)dxdy+ f f  ~,~(~o-u)dxdy > f f  ~(~o- 

From (24) we obtain 
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ffo 
1 2 

For Green's theorem we have 

f oAu (~ - u) dx dy = 

-ffDVuV@-u)dzdy+ fo~ (~-U)~nds=-ffDVuV(qo-u)dzdy 

for the boundary conditions because ~o E K(u). 
Therefore 

then is satisfied the quasi-variational inequality 

v~ e K(~) 0 

Let now 

a(u,v) = f f o V u V v d x d y  u,v e U 

we can rewrite the problem as 

Problem 2. 

~2(qo - u)dx dy > O, 
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t 
Find u • K(u) such that 

a ( u , ~ -  ~) >_ (¢, ~ - ~), v~  • K(u) 

w i t h 4 = - ~ a i n D  1 ~ = ~ 2 i n D  2 ¢=0 inD:~  

(25) 

We can say that the (25) in general is not a variational inequality; it is a 
variational inequality only when 'v'~p • U, K(~o) = K,,  with K being a non- 
empty closed convex set of  Ha(D). In fact it is a new type of entity, we will 
call it, according with Bensoussan-Goursat-Lions [3], a quasi-variational 
inequality. To the quasi-variational inequality (25) we can associate in a 
natural way a family of  variational inequalities: for z fixed in U we will 
call variational section of  the quasi-variational inequality (25) along z, the 
variational inequality 

a(w, ~ - w) >_ (~,~o - w), v~o e K(~)  (26) 

under the hypothesis (which is standard in the variational case, and which we 
will make here too) of the coerciveness of  the form a 

a(v, v) ~ % II v Ila2D ~ > 0 (27) 

l a(u, v ) I ~  ~'a II u I1,,~11 v I1,,~ u, v • f (28) 

we can say that (26) has one and only one solution. 
Therefore if z E U, the application S : U ~ U, such that u z 

a solution of  (26), 
= S(z) is 

~,~ e K ( , ) :  a(u,,  ~ - ~ )  >_ (~, ~ - u~), VV e K ( z )  

We will call this application the variational selection associated with the 
quasi-variational inequality (25); under the hypothesis (27), (28), this 
selection is well defined. 

It follows immediately that a solution of (25) is a fixed point for S. 
Therefore the basic idea to solve the Problem 2 is to consider the variational 
selection of  (25) and to find its fixed points; an inportant question is what 
type of fixed point theorem we can use. We do not expect a Lipschitz 
continuos or a monotonic situation, and thus the classical theorems are 
useless, more usefull is Schauder's theorem or the results of  Joly and Mosco 
[22]. 
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. N U M E R I C A L  A P P R O X I M A T I O N S  

We have seen like some free boundary problem very complex in their 
structure can be solved through opportune modifications tied to the physical 
characteristics of  the problem by means of variational and quasi-variational 
inequalities. From a numerical point of view the quasi-variational 
inequalities can be solved with the Bensoussan-Lions iterative scheme, 
which is a sequence of  iterative variational inequalities, for a fixed obstacle. 
Quasi-variational inequalities and their applications in different areas have 
been investigated since the early eighties notably by Bensoussan, Lions, 
Mosco and Baiocchi. However, very little was known about the numerical 
methods for such problems till recently [10]. We show a technique for the 
approximation of  quasi-variational inequalities. 

To determinate the depletion region in a p - n junction we have to solve 
the following model 

Find u c K(u) such that 

~(~, ~ - ~) > (¢, ~ - u), v ~  e K(~)  

w i t h ~ = - ~ i n D , ,  ~ ' = ~ 2 i n / 9 2 , ~ = 0 i n D  3 

(29) 

with 

K(u) = (~o e U, ~o < ¢. = Ma (u) in Dr, Cp = M 2 (u) < ~o in D 2 } 

Where the obstacles M 1 (u) e M 2 (u) are defined resolving the two mixed 
boundary value problems 

V .  (e~"Vw,)  = 0, 

w , = e  -k:' onV~,  0 % / O n = O o n V  N 
(30) 

V .  ( e - k " V % )  = 0, 

w~ = e ~'~' on F~', OwJOn = 0 on r~ u 
(31) 

by a maximum principle we obtain wl, w 2 > 0,  thus we can compute the 
obstacles as follow 

Ml(U ) = - l l n w , ( u )  M2(u ) = 1 I n  w2(u) 
k k 
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Consider a regular triangulation T~,, established over the open polygonal 
D c I~ 2 such that 

D = U T  
T~Th 

Let T a triangle in ~, ,  and ]P1 (T)  the space o f  all polynomials o f  degree 
_> 1 restricted to the set T .  We associate with ~,  the usual finite element 
spaces: 

X h = {V h E cO(D),Vh IT ~ Fj (T) ,VT E Th}, V0, , = {v h E Xh,v h = 0 on ON}, 

U,, = {% E X,,, % = 9,, on OD}, V h = {v,, e X,,, v,, = e ~''' on OD}. 

Then we define the obstacles as 

1 
M,,,: u,, c u , , - - ~  M,,,(u,,) = ~ , , ( -~  In w,,,) 

1 
U2h : % E U h , M2h(u,, ) = r~,(~ In Wzh ) 

with wah , w2~ , E V h which satisfy 

V .  (e~"Vw,,,) = 0, Vu;, E 14,, 

V . ( e - ~ " V % , , )  = 0, V% ~ V h 

We introduce the convex set 

K,,(,,,,) = {~h c U~,~o,, < M,,,(~), U~,,(u) < <,}. 

We have the following finite element formulation of  the problem 

t 
Find u,, E Kh(uh) such that 

a(uh,~o,, - %) >_ (¢,¢p,, - %), V% e K,,(uh) (32) 
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To update the obstacles the continuity equations can be solved and then we 
have a system of  quasi-variational inequality and we use a Bensoussan-Lions 
iterative scheme to solve the problem. We shall recall some result related to 
elliptic variational inequalities that are necessary to prove some useful 
qualititive properties. 

. A S S U M P T I O N S  A N D  N O T A T I O N S  

In this section we are concerned with the standard finite element 
approximation of  the system of quasi-variational inequalities (QVIs): Find a 
vector U = (ul,...,u u) satisfying 

a ' (u ' , v -u ' )  > ( f f , v - u  ~) Vv E n l ( ~ )  

u ~<g,u~; u i > 0 ;  v < ¢ u  ~ 
(33) 

where fl is a bounded smooth domain of ~N with boundary 0f2, a~(u,v) 
are bilinear forms defined on Hl(f~) × Hi(f2), (.,.) is the inner product in 
L ~(f2) and f '  are ¢ regular functions. For sake of  simplicity we will treat 
the case of  one obstacle, considering the two obstacle problem a 
generalization in which we replace the constraint set of (21) with the 
following: K = {v E H~(~2) such that v _< ¢} 

We are given functions 

a i i i C 2 - jk(x),a~(x),ao(X) E (~), x E f2, l < k, j < N, I < i < M ,  

sufficiently smooth such that: 

II II 2, E ~ u ;  a > 0 (34) 
l< j , k<N 

ajk = ak~, a~(x) _> c o > 0 ;  (35) 

We define the second-order, uniformly elliptic operator of the form 

o2 
A' = ~ al.k(x ) OxjOxk ~ b~(x) + a~(x) (36) 

l<j,k<_N k=l  

and the bilinear forms associated with ,,4 i" for any u, v E H 1 (~)  
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ai(u,v)= a~,(x) ~ + a,(x) v+a~(x)uv dx 
l<_j,k<_N k = l  

(37) 

that we assume to be coercive, i.e., there exist 7 > 0 such that 

2 a'(v,v) >_ "~ II v I1,,,(,~), Vv e Hi(f2). 

The right hand sides f ' , . . . ,  fM are also given such that 

f '  E L°~(~2); f '  _> 0 

We shall also need the following norm: 

M 

V W  = (wl, . . . ,w M E I - I  L°°(f2)' 
i=1 

II w IL= max II w' IIL~, 
1Si<M 

where I1" IIL~ denotes the classic L ~ norm. 

5.1 E l l ip t i c  V a r i a t i o n a l  i nequa l i t i e s  

(38) 

(39) 

(40) 

(41) 

Let f be a function in L °° and "(2 an obstacle in W 2'~ such that ¢ _> 0 
on 0fL Let also ,,4 be an elliptic operator and a(.,.) its associated coercive 
bilinear form of  the same forms as those defined in (36) and (37), 
respectively. We consider the following elliptic variational inequality (VI): 
Find u E K such that 

a ( u , v - u ) _ > ( f , v - u )  ' v ' vEK (42) 

where K = (v E HI(Q) such that v < ¢ a.e.} Thanks to [23,5], the VI (42) 
has one and only one solution. Moreover, u E W 2'p, 1 < p < 0o and satisfies 

II u I1~.,, ~ C(ll f IL + II A ¢  IL) (43) 

Definition 1. z E K is said to be a subsolution for 111 (42) if 
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a(z, v) < (f, v) Vv e K, v > 0 (44) 

Let X denote the set of  such subsolutions, then (see [5]) the solution of  VI 
(42) is the maximum element o f X .  

Consider now the following mapping: 

~ :  L°~(a) , L°~(~) 

¢ , a ( ¢ )  = u 

where u is the solution to VI (42). The mapping a is increasing, concave, 
and Lipschitz continuos with respect to ¢ [7]. 

Existence of  a unique solution to system (33) can be proved, adapting the 
approach developed in [4]. 

Indeed, let H + = (LT(~)) M = {V = (vl,....,V M ) such that v' e L~. (~)}, 

equipped with the norm: II Y IIo~= max II vi IIL~(~) where L~(C2) is the 
l<i<_M 

positive cone of L °° (~) .  We consider the mapping 

T :  H + , H + 

w , T W = ¢ = ( ¢ , , . . . , ¢ - )  

where if' = cr(¢w ~) E H'(f2) is solution to the following VI: 

{ ai(¢',v-¢)> ( f ' , v -  ¢') Vv 
¢ < _ ¢ w  ; v < _ ¢ w  ~ 

(45) 

Problem (45) being a coercive VI, thanks to [23], [5] has one and only one 
solution. 

Consider now D ° =  (~l,0,...,~-M.0), where ~,0 is the solution to the 
following variational equation: 

a'(~' ,° ,v) = ( f ' , v ) V v  C H'(f/) (46) 

Due to (39), problem (46) has a unique solution. Moreover, 
~,o E W 2'p (f~); 2 _< p < c~ 
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Proposi t ion 5.1 Let C = { W E H + such that 0 < W < D ° }, then T maps 
C into itself. Moreover is T increasing, concave and Lipschitz continuous 
on H +. 

We notice that the solutions U = (ul , . . . ,  u M) of system (33) correspond 
to fixed points of  mapping T, that is U -- TU. In this view it is natural to 
consider the following iterative scheme. 

5.2 A C o n t i n u o u s  I t e ra t ive  S c h e m e  o f  B e n s o u s s a n - L i o n s  T y p e  

An iterative scheme for the solution of system of QVIs is given as 
follows. 

Starting from D ° defined in (46) (resp. U ° = (0,..., 0)), we define the 
sequences 

D "+1 = TDn;  n = 0,1,... (47) 

respectively 

U '~+' = TU"; n = 0,1, .... (48) 

Making use of  properties of  mapping T we have the following convergence 
result. 

Theorem 5.2 The sequences (U") and (U") are monotone and well defined 
in C. Moreover, they converge respectively from above and below to the 
unique solution of  system (33), (of [4]p.453). 

The following estimations provide a rate of convergence for sequences. 

L e m m a  5.3 There exist a constant C independent of  n such that for any 
i = 1,2,.. . ,M, [151 

max ([[ ~-i,,, [[w2.,,(a/,[ [ u__i., [Iw~.,,(a)) -< C ; 2 < p < c~ 
n>0 

Theorem 5.4 Assume a!k(x ) in Cl"~(fi), ai(x), aio(x) and fi  in C°'o(f2). 
Then (ul, . . . ,u M) ~ (W'~'P(f2))M; 2 _< p < c~. 

Proposit ion 5.5 There exist a positive constant 0 < # <_ 1 such that 

1[ D '~-  U [1oo< #" 11D ° 11~o (49) 
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II ~_" - u Iloo_< u" II ~o Iloo (50) 

5.3 The Discrete Problem 

Let f~ be decomposed into triangles and let T h denote the set of  all those 
elements; h > 0 is the mesh size. We assume the family T h is regular and 
quasi-uniform. 

Let V h denote the standard finite element space, W, 1 < i < M be the 
matrices with generic coefficients a ~(¢p~, %), where %, s = 1, 2,...m(h) are 
the nodal basis functions. Let also r h be the usual interpolation operator. 

In the sequel of  the paper, we shall use the discrete maximum assumption 
(d.m.p.). Under the d.m.p., we shall achieve a similar study to that devoted to 
the continuos problem, therefore the qualitative properties and results stated 
in the continuous case are conserved in the discrete case. 

The discrete system of  QVIs is then defined as follows: Find 
= (Uh,...,u M) E (Vh) 'u such that Uh 

[a ~ z i i (uh ,v -u , , )> ( f ' , v -u , , )  VveV  h 

' v<h,¢uj, u,,<_h,¢u,, ;u/,>O; _ 

(51) 

Existence and uniqueness of  a solution of system (51) can be shown 
similarly to that of the continuous case provided the discrete maximum 
principle is satisfied. Indeed, the idea for proving that consists of  associating 
with the system (51) the following discrete fixed point mapping: 

Th: H + , (Vh)  M 

w ,ThW=¢,,=(q,...,~,,~) 

where ~';, = a h (¢w ~) is the solution of the following discrete VI: 

a ' ( q , v - q ) > _ ( f ' , v - q )  VvEV h 

~ <_h,¢w ~ , v<_rhCw ~ 
(52) 

Under the d.m.p the mapping T h possesses analogous properties to that of  
mapping T. 

~-u.0~ be the discrete analogue to the solution of Let ff0=(~-~.0,..., ~ J 
problem (46) : 
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i - - i ,0  a (Uh ,V) = ( f i ,v)Vv C V h 1 < i < M (53) 

Proposition 5.6 T h maps C h into itself, where C h = {W E (L°°(f~))M such 
that 0 < W < -fro}, moreover T h is increasing, concave and Lipschitz 
continuous on H ÷. 

It is not hard to see that the solution of  system of  QVIs (51) is a fixed 
point of  Th, that is U h = ThU h. Therefore, as in the continuous problem, one 
can define the following discrete iterative scheme. 

Starting from D ° solution of  (53) (resp. from U(~), = (0,..., 0)), one can 
compute 

- - n + l  ~ n  Uh =Th Uh n = 0 , 1 , . . .  (54) 

(resp.) 

u n + l  n h = ThU,, n = 0,1,... (55) 

Theorem 5.7 Under the d.m.p, the sequences (-f;:) and (U_;I) are monotone 
and well defined in C h. Moreover, they converge respectively from above 
and below to the unique solution o f  system (51) 

Using the above result, we are able to establish the geometric 
convergence of  sequence (-fi~) and (U2). 

Proposition 5.8 There ex&t a positive constant 0 <_ # <_ 1 such that 

II U ; : -  u,, II U o (56) 

(57) 

5.4 The Finite Element Error Analysis 

We recall some known L ~ -error estimates result and introduce an 
auxiliary problem. From now on (7 will denote a constant independent of  
both h and n. 

Theorem 5.9 Let ~i,o (respectively, -i,o Uh ), be the solution o f  problem (46), 
(respectively (53)). Then (see [11,19] 



Approximation of  Free Boundary Problem by Variational Inequalities 717 

II ~,,0_ ~ 0  i1~(.)_ < Ch ~ I log h I ~/: Vi = 1, 2,. . . ,  M (58) 

Theorem 5.10 Let the d.m.p, and regularity result (43) hold. Then (see [14]) 

II u - uh I1~=(~)_< Ch ~ I log h I ~ (59) 

We introduce the following discrete sequence 

= Thu , n = 0 , 1 , . . .  

[with -0  u,, : ~o (60) 

where -0 Uh is defined in (53) and for any n > l ,  - '  .... _ uh is a solution to 
following discrete variational inequality: 

[ i [  ~ h n + l  ~ i a t + l x  ~ / ei  
Uh ) l akuh h,V--uh )/"_(J,V---~'"+l~ VV E V h 

(61) 

•,, = (~-1.,,,..., ~M,,) being the sequence defined by (48). Again, thanks to 
[5], (61) has one and only one solution. 

We notice that ill; " solution of  (61) represents the standard finite element 
approximation of  ~-~,". Therefore, using the regularity result provided by 
Lemma 4.2 and next adapting [12], we have the following uniform error 
estimate. 

Proposition 5.11 

II ~" - U,: Iloo~ Ch~ 11o9 h 12 (62) 

with the use of  the result seen above we introduce the following : 
L e m m a  5.12 

II ~ " -  U,~ L < ~ II ~P - '  - - u h l L  
p = 0  

(63) 

Now guided by Propositions 5, 8, 11, Lemma 12 Theorem 9 we are in a 
position to demonstrate the main result. 

Theorem 5.13 
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I1 u - uh I1~ c h~ I log h 13 (64) 

II u - uh Ih,o~ Ch I log h 13 (65) 

where." II u II1,~= m a x  II u~ IIw,~¢,~) 
l<_i<M 

Proof. Using estimations (49), (56) we 
II u - fh I~_<11 u - U" I1~ + II U" - U;: II + II U,': - u,, I• 

n 

-< II u - U" I1~ +~-~'~ II U" - U~ IL + II U;:- u,, I[~_< 
p=0  

T~ 

IIU U"II~+IIU ° -0 ~ Up - - u,~ I1~ + II - ~7~ I1~ + II u,~-" - f h  I1~ 
p = l  

-< #" II U ° I1~ + # "  II U, ° IL +Ch2 [log h 13/2 +nCh 2 I log h 12 

have: 

Finally, letting #'~ = h 2 we get the desired result. 
The Wl'~-error estimate (65) follows immediately from the standard 

inverse inequality (cf. [11]). It is important to notice that the error estimate 
obtained contains an extra power in (log h) than expected, due to the 
approach followed. 

. R E S U L T S  A N D  C O N C L U S I O N S  

The variational method presented is an alternative approach to the 
classical drift-diffusion model which can be described by a nonlinear 
Poisson equation for the electrostatic potential coupled with a system of 
convection-diffusion equations for the transport of charge 

[i~i + = R(¢, p) 

¢ = q (n - p - C) 

( - ~ . . v ¢  D.Vn) n, 

(p#pV¢ + PpVp) = R(¢, n, p) 

In the context of semiconductor device modelling, the presence of strong 
variation of the convection term V ¢ is a source of numerical troubles since 
it give rise to sharp internal layers. 
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This equations can be solved with Gummel like process to decouple the 
system and Newton's method to obtain the resulting sequences of linear 
systems. 

The Poisson problem leads to a symmetric, positive definite system 
which can be solved iteratively using BCG. 

The transport equation leads to nonsymmetric indefinite systems; 
moreover their solutions exibit steep layers and are subject to numerical 
oscillation and instabilities if standard Galerkin-type discretization strategies 
are used. 

We present numerical result for Variational Method and Drift Diffusion 
model for a two dimensional p-n junction with the following parameters: 
~, = - ( 2  = 4 ,  uo =lVol where V~ is the applied potential with value 
- 5 V , - 4 V , - 2 V .  

V a r i a t i o n a l  M e t h o d  [1 Dri f t -Dif l ' lmion 
h. = l/'{i = 0,16 
A,,~,~..oe.(V) II -'~ 1 ~ _ _ _ 1 - 2 ~ _ _ - ~ - _ _ 1 : ~  ' 1 ~  1-2 _ 

D qoh:tion layer i.-i-8-" 
.,i,,,~ ( m " )  . . . . . . . . .  

Table  1. Numerical results with h = 1/6 

V a r i a t i o n a l  M o t l m d  
h. = 1 /12  • 0.083 

Ap~,l.l'ot.(W II -'~ I 4 I -~ 
lter. rmm. 61fi ,52.4 392 
E~,~.  224 192 133 
time(.~,~') 
DtTletiou fay,-r 1.22 1.0O 0.76 
sizeO,,, Q 

D r i f t - D i t ~ t ~ a i o n  

II I-5 I-a I-2 
712 6't8 45"~ 
370 321 235 

1.1~ 1.01 0.80 

Table  2. Numerical results with h = 1/2 
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Figure 2. Varational Method. Numerical solution and depletion layer V,, = - 5 V , - 4 V , - 2 V  
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SENSITIVITY ANALYSIS FOR VARIATIONAL 
SYSTEMS 

B.S. Mordukhovich 
Dept. of Mathematics, Wayne State University, Detroit, Michigan USA 

Abstract: The paper mostly concerns applications of the generalized differentiation 
theory in variational analysis to Lipschitzian stability and metric regularity of 
variational systems in infinite-dimensional spaces. The main tools of our 
analysis involve coderivatives of set-valued mappings that turn out to be 
proper extensions of the adjoint derivative operator to nonsmooth and set- 
valued mappings. The involved coderivatives allow us to give complete dual 
characterizations of certain fundamental properties in variational analysis and 
optimization related to Lipschitzian stability and metric regularity. Based on 
these characterizations and extended coderivative calculus, we obtain efficient 
conditions for Lipschitzian stability of variational systems governed by 
parametric generalized equations and their specifications. 

Key words: Variational systems, Lipschitzian stability, variational analysis, generalized 
differentiation. 

Mathematics Subject Classifications (2000): 49J52, 49K27, 90C48. 

. I N T R O D U C T I O N  

This paper presents new results on sensitivity and stability analysis for 
parametric variational systems based on the application o f  generalized 
variational tools o f  variational analysis. Variational analysis has been 
recognized as a fruitful area o f  mathematics, which is mostly oriented on 
applications to optimization-related problems and also provides powerful 
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tools for the analysis of a broad spectrum of problems that may not be of a 
variational nature; see the book by Rockafellar and Wets [35] for a 
systematic exposition and thorough developments of the key feature of 
variational analysis in finite dimensions. 

In this paper we concern the analysis of robust Lipschitzian stability for 
parametric variational systems described by perturbed generalized equations 

0 ~ f ( x ,  y) + Q(x, y) (1.1) 

in the sense of Robinson [32], where f : X x Y - - ~ Z  is a single-valued 
mapping while Q : X x Y ~ Z is a set-valued mapping between Banach 
spaces. For convenience we use the terms base and field referring to the 
single-valued and set-valued parts of (1.1), respectively, with the decision 
variable y and the parameter x. It has been well recognized that (1.1) 
provides an appropriate model for sensitivity analysis in a broad framework 
of constrained optimization and equilibria. In particular, generalized 
equations (1.1) cover classical variational inequalities 

find y ~ ~ with ( f (x ,  y), v - y) > 0 for all v ~ f2 

and hence complementarity problems corresponding to the normal cone field 
Q(y) =N(y;f~) in (1.1). Note that, in contrast to the standard framework, 
model (1.1) includes the case when the field Q may depend on the 
perturbation parameter x. The latter model is particularly convenient for 
describing stationary point maps and stationary point-multiplier maps in 
optimization problems with parameter-dependent constraints; see, e.g., [ 12]. 

By robust Lipschitzian stability we understand Lipschitzian behavior of 
the solution map 

S(x) := {y e Y I0 e f ( x , y )  + Q(x,y)} (1.2) 

to (1.1) around a reference point, which is stable with respect to 
perturbations of the initial data. The classical (Hausdorff) local Lipschitzian 
property of set-valued mappings is a good example of such behavior, but it is 
restricted to mappings with compact values. An adequate and non-restrictive 
property of  this type was introduced by Aubin [1] under the name of 
"pseudo-Lipschitz" property, which concerns robust Lipschitzian behavior 
of a set-valued mapping around a given point (Y,y) of its graph. In our 
opinion, it would be better to use the terms of Aubin property suggested in 
[7] and/or Lipschitz-like property emphasizing its Lipschitzian nature (while 
"pseudo" means "false"; see the discussion in [35]). Aubin's Lipschitz-like 
property is probably the most proper extension of the classical Lipschitz 
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continuity to set-valued mappings. On the other hand, for any F : X ~ Y it 
is equivalent to metric regularity and linear openness of the inverse 
F -1 : Y ~ X .  

The main tools of  our analysis involve coderivatives of set-valued 
mappings that extend the classical concept of adjoint derivative operator to 
nonsmooth and multivalued frameworks, enjoy a comprehensive calculus, 
and play a crucial role in characterizations of Lipschitzian behavior, metric 
regularity, and covering/openness properties of general multifunctions; see 
[20] and the references therein. Applications of coderivative analysis to 
various problems related to Lipschitzian stability of variational systems in 
finite dimensions are given in [7,9,12,13,15,18,19,29], and other 
publications. The recent paper [22] contains coderivative-type results for 
robust Lipschitzian stability of solution maps (1.2) in infinite-dimensional 
spaces. 

In this paper we develop another approach to Lipschitzian stability of 
parametric variational systems. In contrast to the one in [22], which is based 
on computing/estimating coderivatives of solution maps (1.2) and then on 
using coderivative criteria for the Lipschitz-like property, the approach of 
this paper involves a preliminary first-order approximation of the original 
variational system in the spirit of Robinson [33,34]; see also [6] and [5] for 
more recent developments. Then applying coderivative criteria for the 
approximation system, we derive characterizations as well as workable 
sufficient conditions for Lipschitzian stability of the original variational 
system. The latter approach is more efficient for the class of canonically 
perturbed variational systems given in the form 

Z(x,q) := {y e Y Iq e f (x ,y )  + Q(x,y)} (1.3) 

with the pair of parameters p := (x,q), where the canonical parameter q 
corresponds to the perturbation of the left-hand side of the generalized 
equation (1.1). One clearly has S(x)= Y~(x,0) for the solution map (1.2). On 
the other hand, (1.3) can be viewed as a special case of (1.2) with respect to 
the parameter pair p = ( x , q ) .  The stability results obtained below are 
generally independent of those in [22] even in finite dimensions. 

The rest of the paper is organized as follows. Section 2 contains some 
preliminary material widely used in what follows. In Section 3 we derive 
characterizations and sufficient conditions of Lipschitzian stability of 
canonically perturbed variational systems (1.3). Section 4 is devoted to 
problems with composite subdifferential structures of the set-valued part in 
(1.3). It contains stability results expressed in terms of second-order 
subdifferentials of extended-real-valued functions that are derived on the 
base of second-order subdifferential calculus. 
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Throughout the paper we use standard notation, with special symbols 
introduced where they are defined. Unless otherwise stated, all spaces 
considered are Banach whose norms are always denoted by I1' I1' For any 
space X we consider its dual space X* equipped with the weak" topology 
w °, where (.,.) means the canonical pairing. For multifunctions 
F : X ~ X* the expression 

l i m s u p F ( x ) : = { x * e X ' [  3sequences x k--+2 andx~ w >x 

with x~eF(xk) for all keN} 

signifies the sequential Painlev6-Kuratowski upper/outer limit with respect 
to the norm topology in X and the weak '  topology in X °, where 
N := {1,2,...}. 

. B A S I C  D E F I N I T I O N S  A N D  P R E L I M I N A R I E S  

This sections contains basic definitions on Lipschitzian stability and 
generalized differentiation and review necessary preliminaries. 

We say that a set-valued mapping F : X ~ Y has the Aubin Lipschitz- 
like property (or it is Lipschitz-like) around (2",y)e g p h F  if there are 
neighborhoods U of 2 and V of  7 ,  and a number g > 0 satisfying 

F ( x ) n  V c F(u) + gllx-ullB r for all x,u E U, (2.1) 

where B r stands for the closed unit ball in Y. If  V = Y and the values of  F 
are compact, the above property reduces to the local Lipschitz continuity of 
F around 2 with respect to the Pompieu-Hausdorff distance on 2r ;  for 
single-valued mappings F = f : X ~ Y it agrees with the classical local 
Lipschitz continuity. For general set-valued mappings F the (local) 
Lipschitz-like property can be viewed as a localization of  Lipschitzian 
behavior not only relative to a point of the domain but also relative to a 
particular point of  the image y e F(~-). 

We are able to provide complete dual characterizations of the local 
Lipschitzian and Lipschitz-like properties of set-valued mappings using 
appropriate constructions of  generalized differentiation. Let us recall the 
basic definitions referring the reader to [20,24,35] for more details, history, 
and discussions. 

Given a nonempty subset f~ of  a Banach space X and a number c > 0 ,  
we first define the collection of c -normals to ~ by 
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~ , . ( x ; ~ )  := {x" e X * l l i m s u p  (x',u-x) <6] 
.O,x I lu-x l l -  

and by N,(x ; f2) :=O for xCf2.  Then the basic normal cone to f~ at 
2" ~ f2 is defined by 

N(2";f)) := lim sup/V, (x;f2) (2.2) 
x--'-~" 
c$o 

as the sequential Painlev6-Kuratowski upper limit of c-normals at nearby 
points. When the space X is Asplund (i.e., its every separable subspace has 
a separable dual; see [31] for more information) and the set f2 is closed 
around 2", one can equivalently replace Ar,(.;f2) in (2.1) with 
/Q(x;~) :=/V0(x;~) ; see [24, Theorem 2.9]. 

Given a set-valued mapping F : X ~ Y, the (normal) coderivative of F 
at (2" ,y)~gphF is defined is a set-valued mapping D*F(2",y)Y* ~X* 
with the values 

D'F(2.,y)(y*) := {x" ~ X'l(x*,-y*) ~ N((2.,y);gph F)}. (2.3) 

When F = f "  X ~ Y is single-valued and strictly differentiable at 2", the 
coderivative D*f(2.)(y') reduces to the adjoint derivative operator 

D*f(2")(y *) = {Vf(2")* y'} for all y" ~ Y'. 

A mapping F :X ~ Y is graphically regular at (2",y) if 

^* - - * X *  O*F(2.,y)(y')=O F(x,y)(y ):={x* ~ I(x',-y*)~N((2",y);gphF)}, y* Y*. 

This class includes, in particular, strictly differentiable mappings and set- 
valued mappings with convex graphs, and it is stable with respect to various 
compositions. 

Given an extended-real-valued function ~p : X ~ ~' := [ -c~,c~]  finite at 
2 ,  we define its (first-order) subdifferential at 2" by 
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099(2) := D*E~ (2, 99(2.))(1) (2.4) 
= {x* E X* [ (x*,- 1) E N((2,99(2));epi99)}, 

and the singular subdifferential 
O~(o(g) := D*E~ (g ,~o(g)) (0)=  {z' ~ X~ [ ( z ' , 0 ) e  N ((g,~o(~-)): epiep)}, 

where E~(x) := {v E z~ I v > 99(x)} is the corresponding epigraphical 
multifunction. Our basic subdifferential (2.4) is smaller than Clarke's 
generalized gradient 099(2.) [4] for every lower semicontinuous (1.s.c.) 
function on a Banach space. If X is Asplund and 99 is Lipschitz continuous 
around 2 ,  then we have the exact relationship [24, Theorem 8.1 1 ]: 

099(2.) = cl 'co 099(2.), 

where cl *co stands for the the convex closure in the weak'  topology of 
X*. Recall also the relationship between the basic subdifferential and 
coderivative via the scalarizationformula 

D'f(2.)(y*)=O(y',f)(2.)•O forall y '  ~Y* (2.5) 

established in [24, Theorem 5.2] for strictly Lipschitzian mappings 
f : X  --~ Y on Asplund spaces X.  The latter subclass is proved [36] to agree 
with compactly Lipschitzian mappings introduced earlier by Thibault; it 
reduces to the class of all locally Lipschitzian mappings when Y is finite- 
dimensional. 

The second-order subdifferential of 99 at 2. relative to y E 099(2.) is 
defined as the coderivative of the first-order subdifferential mapping by 

a299(2.,y)(u):= D*(O99)(2,y)(u), u ~ x**. (2.6) 

If the function 99 is twice continuously differentiable around 2,  then 

0299(2.)(u) = {V299(2.)*u} for all u E X**, 

where V2~(2) stands for the classical second-order derivative operator. 
The above first-order and second-order generalized differential 

constructions enjoy fairly rich calculi in both finite-dimensional and infinite- 
dimensional settings; see [3,10,11,16,20,21,23,24,27,28,35,37], and the 
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references therein. These calculi require certain qualification conditions and 
the so-called "normal compactness" conditions needed only in infinite 
dimensions; see [2,10,11,14,24,25,30] for the genesis of the later conditions 
and various applications. The following two properties formulated in [25] 
are of particular interest for applications in this paper. 

A mapping F : X  ~ Y is sequentially normally compact (SNC) at 
(2,y) ~ gph F if for any sequences 

(ek, xk, Yk, x'k, Y'k) E [0, oo) x (gph F)  x X" x Y* 
satisfying 

e k ~, O, (xk,yk) --~ (-£,y), (X'k,y'k) e iVE~ ((xk,Yk);gphF) (2.7) 

I(" one has (x~,y~) w >(0,0)~ xk,y k -->0 as k--->oo. A mapping F is 
partially sequentially normally compact (PSNC) at (2-,y) if for any above 
sequences satisfying (2.7) one has 

[x~ w" >0 and [y~ - -+0]~  x~ -~0 as k ~ o o .  

We may equivalently put c k = 0 in the above properties if both X and Y 
are Asplund while F is closed-graph around (2-, ~). Finally, a set ~ c X is 
SNC at 2 ~ ~ if the constant mapping F(x) - £) satisfies this property. 

Note that the SNC property of sets and mappings are closely related to 
the compactly epi-Lipschitzian property introduced by Borwein and 
Strojwas [2] but the latter may be more restrictive in both Banach and 
nonseparable Asplund spaces; see the recent papers [10] and [8] for 
comprehensive studies in this direction. Note also that every Lipschitz-like 
mapping F : X ~ Y between Banach spaces is PSNC at (2,y) ,  and hence it 
is SNC at this point when dimY<oo ; see [20, Theorem 3.3]. We refer the 
reader to [26,27] for extensive calculus results ensuring the preservation of 
the SNC and PSNC properties under various combinations and compositions 
of sets and set-valued mappings in general Banach and especially in Asplund 
spaces settings. 

. L I P S C H I T Z I A N  S T A B I L I T Y  U N D E R  C A N O N I C A L  
P E R T U R B A T I O N S  

First recall the concept of strong approximation due to Robinson [34]. 

Definition 3.1 Let f : X x Y--> Z be a mapping between Banach spaces. 
The mapping h:Y--> Z STRONGLY APPROXIMATES f in y at (~,y) ~f 
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h(y) = f(2",y) and for each E > 0 there are neighborhoods U of -~ and V 
of y such that 

II[f(x,y,)- h(y , ) ] - [ f (x ,  y2)-  h(y2)][I-< EIIY, - y2ll 

whenever x ~ U and Yl,Y2 E V. 
This definition actually means that, although both f and h may not be 

differentiable in any sense, its difference g(x,y):= f ( x , y ) - h ( y )  is strictly 
differentiable in y at (2-,y) in the sense of 

lim[ g(x, y) - g(x, v) - Veg(g, y) (y  - v)] 
Ily - vii 

=0 (3.1) 

with Vyg(Z,y)=0 .  Observe that (3.1) holds, in particular, when g is 
(Fr6chet) differentiable in y around (2-,y) and Vyg is continuous in (x,y) 
at this point. 

Note that any mapping f in the separable form 

f (x ,  y) = f (x) + ]'2 (Y) 

admits an obvious strong approximation in y given by f2. If f itself is 
strictly differentiable in y at (2,y) in the sense of(3.1), its efficient strong 
approximation can be obtained by the linearization 

h(y) := f ( 2 , y )  + Vyf(-£, y ) ( y -  y). (3.2) 

Also one can check that the composite mapping p(x,y)= f(x ,s(y))  admits 
a strong approximation in y at (2,y) if f (x , z )  is strictly differentiable in 
z at (2",2) with 2 :=s (y )  while s is Lipschitz continuous around y .  

Let h:Y--+Z strongly approximate f in y at the point (2,~) in the 
sense of Definition 3.1. Along with the original canonically perturbed 
generalized equation (1.3) we consider the following approximating system 

E(x,q) := {y ~ Y lq ~ h(y) + Q(x,y) }. (3.3) 

The next result, proved by Dontchev [5, Theorem 2.4] employing the 
Lyusternik-Graves iterative procedure, shows that the Aubin Lipschitz-like 
property is preserved under first-order approximations. Recall that 
f : X x Y --+ Z is locally Lipschitzian in x uniformly in y around (2-, ~) if 
there are neighborhoods U of ~- and V of ~ and a number g > 0 such that 
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[If(xl,y)- f(x , y)]]_ ellx,- 

whenever xl,x 2 e U and y e V. 

L e m m a  3.2 Let X , Y , Z  be Banach, let Y, and E be given in (1.3)and(3.3), 
and let y~Y,(fi) with f i := (2 ,~ ) .  Assume that both Z and E are closed- 
valued around fi, that f is locally Lipschitzian in x uniformly in y 
around (Y,-~), and that h strongly approximates f in y at this point. Then 
the following are equivalent: 
(a) .~. is Lipschitz-like around (~ ,y) .  
(b) Y. is Lipschitz-like around (~, ~). 

The above relationship between the Lipschitz-like property of  Z and E 
allows us to obtain efficient coderivative conditions for Lipschitzian stability 
of the solution map (1.3) from those for the (apparently more simple) 
approximating system (3.3). Let us first derive in such a way necessary and 
sufficient conditions for Lipschitzian stability of  the original system (1.3) in 
the case when f is strictly differentiable in y at the reference point. The 
following theorem unifies two results of  this type. The first result concerns 
canonically perturbed generalized equations with parameter-independent 
fields Q = Q ( y ) ,  while the second one applies to the case of regular 
equations with Q = Q(x,y).  To formulate the first result, it is convenient to 
introduce the partial adjoint generalized equation to (1.1) involving the 
adjoint partial derivative of  f and the coderivative of Q : 

0 e Vyf(2-, y)* z" + D*Q(y,~-)(z*), (3.4) 

where ?- e Q(y) and z' e Z*. 

Theorem 3.3 Let ~ Y ~ ( 2 , ~ )  for E : X x Z ~  Y given in (1.3), where the 
spaces X , Y , Z  are Asplund. Suppose that f : X x Y - - ~ Z  is strictly 
differentiable in y at (-~,~) and locally Lipschitzian in x uniformly in y 
around this point, and that Q : X x Y ~ Z is closed-graph and SNC at 
(Y,~,~) with ~ := ~ - f ( Y , ~ ) .  The following hold." 

(i) Assume that Q = Q(y). Then Z is Lipschitz-like around (-£,~,y) if  

the partial adjoint generalized equation (3.4) has only the trivial 

solution z* = O. This condition is also necessary for the Lipschitz-like 
property of  Z when either dim Y < oo or Q is graphically regular at 
(y,~-). 

(ii) Assume that Q = Q(x,y) is graphically regular at (2 ,~ ,? ) .  Then the 

condition 
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( x* , -Vy f  (-~, y ) ' z ' )  ~ D'Q(-Y, y,-~)(z') ~ x" = z" = 0 (3.5) 

is necessary and sufficient for the Lipschitz-like property of  E around 
(~',~,y). 

Proof. As mentioned above, if f is strictly differentiable in y at (2,T), 
then its linearization h(y) defined in (3.2) strongly approximates f in y at 
(2,y).  Note that Vh(y)= Vyf(~-,y). We know from Lemma 3.2 that the 
Lipschitz-like property of Z around (2-,~) is equivalent to this property of 
E in (3.3) with h defined by (3.2). Denoting p : = ( x , q ) e P : = X x Z ,  we 
observe that the approximating mapping E : P  ~ Y can be written in the 
form 

E(p) = {y ~ Y I 0 ~ h(p,y) + Q(p,y)}, (3.6) 

where h : P x Y ~ Z and Q : P x Y ~ Z are given by 

h(p , y ) :=h(y ) -q  and Q(p,y):=Q(x,y). (3.7) 

Clearly the strict derivative of h at (if, y) is surjective and the adjoint 
derivative operator is 

Vh(~,y)*z* = (O,-z ' ,VJ(-~,y) 'z*)  for all z" ~ Z'. 

Now we apply to (3.6) the results of [22, Theorem 4.2] based on the 
coderivative characterization of the Lipschitz-like property from [20, 
Theorem 3.3] and computing the coderivative of E in terms of h and Q~ via 
coderivative calculus. Taking into account the structures of h and Q in 
(3.7), we arrive at the conclusions of the theorem. [~J 

Note that Theorem 3.3 can be derived directly from [22, Theorem 4.2] in 
the case of canonical parameters provided that f is strictly differentiable at 
(2,~) with respect to both variables x and y ,  while the preliminary strong 
approximation allows us to justify this result when f is strictly 
differentiable only in y .  Taking into account the explicit coderivative 
representation 
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for convex-graph mappings F : X ~ Y that are graphically regular at every 
point of their graphs, one can deduce from Theorem3.3 efficient 
characterizations of Lipschitzian stability for variational systems (1.3) with 
convex-graph fields Q.  

Next we obtain sufficient conditions for Lipschitzian stability of 
canonically perturbed variational systems (1.3) with nonsmooth and 
nonregular data. In what follows the symbol D'yF(-£,y) stands for the 
partial coderivative of F = F ( x , y )  with respect to y ,  i.e., for the 
coderivative (2.3) of the mapping F(2-,.) at y .  

Theorem 3.4 Let y ~ E ( 2 , ~ )  for Z given in (1.3) with s = q - f ( - Y , y ) .  
Assume that X ,Y ,Z  are Asplund, that f admits a strong approximation in 
y at (-£, y),  and that the following hold." 

(a) f is continuous in (x,y) and locally Lipschitzian in x uniformly in 
y around (-~,y). Moreover, f(-£,.) is PSNC at -fi, which is 
automatic if  f (-~, .) is Lipschitz continuous around -ft. 

(b) Q is closed-graph around (-£,y,T) and SNC at this point. 

Then E is Lipschitz-like around (~ ,q ,~ )  provided the qualification 
condition 

[y" (x ' , -y*)  e x" = y" = z* = O, 

(3.8) 

which is equivalent to 

[y*ea , ( z ' , f ) ( -£ ,y ) ,  (x*,-y*)eD'Q(-y,-y,g)(z ' ) l~x" " = z = 0 (3.9) 

if f (-£,.) is strictly Lipschitzian around y .  

Proof. Let hY--> Z strongly approximate f in y at (Y,y). By Lemma 3.2 
it is equivalent to consider the Lipschitz-like propert~ of the solution map E 
defined in (3.6) in terms of the mappings h and Q from (3.7). Applying 
[22, Theorem4.3]  to (3.6), we ge t tha t  E is Lipschitz-like at (if, y) 
provided that Q is SNC at (~,y,~') ,  h is PSNC at (~ ,y ) ,  and one has the 
qualification conditions 

[(p*, 0) ~ D* h(~, y)(z*) + D* L)(P, Y,T)(z*)] ~ p* = 0, (3.10) 

(p*, y* ) ~ D* h(fi, y)(z* ) ~ ( -D '  Q(~, y, ?-)(z*))] ~ p* = y* = z* = 0. 
(3.10) 
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It follows from the scalarization formula (2.5) that the latter conditions are 
equivalent to 

[(p ' ,O)eO(z ' ,h)(~,y)+ D*Q(fi, y,~-)(z')] ~ p" =z" =0 (3.11) 

when h is strictly Lipschitzian around (,~,~). It is obvious that the SNC 
property of Q at (fi,~,~-) is equivalent to the one for Q at (2,~,~-). Since 
h strongly approximates f in y at (2,~), the mapping 
g ( y ) : = f ( x , y ) - h ( y )  is strictly differentiable at ~ with Vg(y )=0 .  
Elementary rules ofcoderivative and SNC calculi ensure that 

D*h(y)(z*) = D~f(-£,y)(z') for all z" e Z* 

and that h is PSNC at y in and only of f(~, . )  is PSNC at this point. 
Furthermore, it follows from the structure of h and ~) in (3.7) that the 
qualification conditions in (3.10) and (3.11) are equivalent to (3.8) and (3.4), 
respectively, which completes the proof of theorem. [~l 

To conclude this section, we present two consequences of Theorem 3.4 
that give simplified sufficient conditions for Lipschitzian stability of 
canonically perturbed variational systems (1.3) in some settings important 
for applications. The first corollary concerns the case of perturbed 
generalized equations with parameter-independent fields. A mapping 
F : X  ~ Y is said to be strongly coderivatively normal at (Y,y)~ gphF if 
the coderivative (2.3) agrees with the so-called mixed coderivative 
D'MF(2,y) of F at this point; see [22] for more details and sufficient 
conditions for the latter property, which always holds, in particular, when 
either dimY<oo or F is graphically regular at (2,y),  and also in various 
broad settings listed in [22, Proposition 3.2]. 

Corollary 3.5 Let Q = Q(y) under the assumptions of  Theorem 3.4 Then Z 
is Lipschitz-like around (-£, ~, ~) provided that 

[0 ~ D'J(2,y)(z') + D*Q(y,-g)(z*)] ~ z* = 0 (3.12) 

and that one has 

D'yf(-~, y)(0) ~ (-D*Q(y,T)(O)) = {0}. (3.13) 
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The latter condition is automatic when either f(2-,.) is strictly Lipschitzian 
around ~ or Q is Lipschitz-like around (y,-~) and strongly coderivatively 
normal at this point. 

Proof. It is easy to check that that for Q = Q(y) the qualification condition 
(3.8) of Theorem 3.4 is equivalent to the fulfillment of both qualification 
conditions (3.12) and (3.13) of the corollary. The last statement of the 
corollary follows from the coderivative scalarization (2.5) and from [20, 
Theorem 3.3], which ensures that the Lipschitz-like property of Q around 
(y,~-) yields the mixed coderivative conditions D'MQ(y,-g')(O ) = {0}. KI 

The next corollary gives sufficient conditions for Lipschitzian stability of 
solutions maps to canonically perturbed generalized equations with smooth 
bases. They are in the same form as in Theorem 3.5(ii) without imposing the 
regularity assumption on Q. E1 

Corollary 3.6 In addition to the common assumptions of  Theorem 3.3 
suppose that the qualification condition (3.5) holds. Then X in (1.3) is 
Lipschitz-like around (-~, ~, y) . 

Proof. Follows from Theorem .4 taking into account that the base mapping 
f smooth in y always admits a strong approximation of form (3.2). E] 

Observe that for Q = Q(y) the qualification condition (3.5) reduces to 
the triviality of solutions to the partial adjoint generalized equation (3.4), the 
sufficiency of which for the Lipschitz-like property of Y, has been 
established in Theorem 3.3(i). Note also that, since S(x)=X(x,0) for the 
solution map (1.2), Corollary 3.5 unreservedly improves the sufficient 
conditions for the Lipschitz-like property of (1.2) in the case of smooth 
mappings f assuming the strict differentiability of f only in y but not in 
(x,y). In general the sufficient conditions for Lipschitzian stability of (1.2) 
obtained in Theorem 3.3 and [22, Theorem 4.3] are independent. Indeed, one 
can check that the qualification condition (3.4) always implies the one in 
[22, Theorem 4.3] for strictly Lipschitzian mappings. On the other hand, the 
results of [22] do not require the existence of strong approximations of f as 
in Theorem 3.3. Furthermore, Theorem 3.3 imposes the Lipschitz continuity 
of f in x, which is not generally assumed in [22, Theorem 4.3]. 

4. C O M P O S I T E  V A R I A T I O N A L  S Y S T E M S  

In the concluding section of the paper we consider two classes of 
canonically perturbed variational systems (1.3) that are probably the most 
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interesting for applications. Such variational systems involve first-order 
subdifferentials o f  extended-real-valued functions to define fields of 
generalized equations in (1.3). In particular, variational and hemivariational 
inequalities, complementarity problems, and related models can be described 
in this way involving often the classical subdifferential and normal cone of 
convex analysis. 

Let us first consider a broader class of variational systems defined via the 
basic subdifferential (2.4) of  composite functions with no convexity 
assumptions: 

E(x,q) := {y C Y lq E f ( x , y )  + O(~o o g)(x,y)}, (4.1) 

m 

where g : X x Y --~ W, ¢p : W ---* ~ ,  and f : X x Y ~ X" x Y" act generally in 
Banach spaces. Mappings (4.1) are a special case of  (1.3) with the 
subdifferential fields Q = O((p o g ) .  Employing the results of  Section 3, we 
get conditions for Lipschitzian stability of  (4.1) in terms of the second-order 
subdifferential (2.6) of  compositions 

05 (~o o g)(-~,y,-ff) = D*O(qo o g)(-Y,y,-ff). (4.2) 

Thus one can derive efficient results for Lipschitzian stability of  the 
composite systems (4.1) applying second-order chain rules available for 
(4.2); see [21,23,27]. Let us present some results in this direction. The next 
theorem gives necessary and sufficient conditions for Lipschitzian stability 
for the case of  parameter-independent mappings g = g ( y )  in (4.1) with 
surjective derivatives. 

Theorem 4.1 Let ~ E E ( 2 , ~ )  for E given in (4.1), where Y = ~ m ,  X and 
W are Asplund, and where f is strictly differentiable in y at (2-,~) and 
locally Lipschitzian in x uniformly in y around this point. Assume that 
g = g(y) is C 2 around ~ and the derivative operator Vg(~) is surjective. 
Denote s := q - f(2",~),  ~ := g(~)  and take a unique functional V ~ W* 
satisfying the relations 

Vg(y) '7 ,  v e oqo( ). 

Then Z is Lipschitz-like around (-~, ~, ~) if  and only i f  the adjoint system 

0 e v y f ( y , y ) ' u  + v 2 (V,g)(y)u + u e R m, 
(4.3) 
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has only the trivial solution u = O. 

Proof. Employing Theorem 3.3(i) with Q(y) = O(qo o g)(y) ,  one has that the 
mapping 2; in (4.1) is Lipschitz-like around (2 ,g ,y)  if and only if the 
adjoint generalized equation 

0 ~ V~f (g ,y )*u  + 0260 o g)(y,?-)(u), u 6 /~m (4.4) 

has only the trivial solution u = 0. The second-order subdifferential chain 
rule of  [21, Theorem 4.1] gives, under the assumptions made, that 

02 (~p o g)(y,3)(u) = V 2 (7 ,g)(y)*u + Vg(y)*O2~(~,7)(Vg(y)u).  (4.5) 

Substituting (4.5) into (4.4), we arrive at the triviality of  solutions to (4.3) as 
a criterion of Lipschitzian stability for the canonically perturbed system 
(4.1). [l 

Our next theorem concerns sufficient conditions for Lipschitzian stability 
of composite systems (4.1) with a smooth inner mapping g that may depend 
on both variables (x, y) and whose derivative Vg(y)  may not be surjective. 
For simplicity we present an efficient result in the finite-dimensional setting 
in the case of  amenable potentials ~b := ~p o g in (4.1). 

Recall that a function ~Z  ~ ~ is strongly amenable at 2 if there is a 
neighborhood U of 2- on which ~b can be represented in the composition 
form ~b = qo o g with a C z mapping g : U -* R "  and a proper l.s.c, convex 
function qo : ~m --* R satisfying the qualification condition 

O°°~o(g(2-)) N ker Vg(2)* = {0}. 

Such functions, which are extensively studied in [35], play a major role in 
finite-dimensional variational analysis and optimization. 

Theorem 4.2 Let y ~ E ( 2 , ~ )  for  E given in (4.1), where 
f :Z~" x z~ m --~ R" x ~ "  is Lipschitz continuous around (-£,y) and admits a 
strong approximation in y at this point. Assume that the potential 
~b = 4) o g in (4.1) is strongly amenable at this point with 
g : ~ "  x A? m --~ z~ I , ~ := g(-£, y) ,  and s := q - f ( 2 ,  y) .  Denoting 

M ( ~ , y ) : =  {76z~' 1760~o(~), Vg(2,y)*7=?-},  

we assume the following second-order qualification conditions." 
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O2qo(N,F)(0) n kerVg(ff, y)* = {0} for all ~- E M(2,y), (4.6) 

[y" E0y(u,f)(ff ,  y), (x*,-y*)E U [V2(g'g)(ff'Y)(u) 
7eM(~,y) 

-+-Vg(-x,'fi)* O210(w,V)(Vg(- .~ , 'y)u)]]  =~ x* = u = O, 

(4.7) 

where the latter reduces to 

[OEOy(u, f ) ( -Y ,y)+ U [V2(V'g) (y)(u) 
~'eM(~',y) 

+Vg(y)* 0210(V~,V)(Vg(y)u)]] ~ u = 0 
(4.8) 

if  g = g(y) .  Then Z is Lipschitz-like around (Y,~,y). 

Proof. Apply Theorem 3.4 with Q(x,y) = 0(¢ o g)(x,y) taking into account 
that the mapping Q is closed-graph around (-£,y,g), since 10og is 
amenable. The latter theorem, applied in finite-dimensions, ensures the 
Lipschitz-like property of (4.1) around (g,~,y) if the qualification 
condition 

[y* E D*~ f (-Z, y)( z* ), ( x ' , - y* )  E 02(!o o g)(Y,y,?')(z*)] ::~ x* = y* = z* = 0. 
(4.9) 

holds. Employing now [21, Corollary 4.3], one has the inclusion 

02(10° g)(ff, Y,~)(u)c U [v  2 (v, g) (x, y)" u + Vg(X, y)" y)u)] 

(4.10) 

for all u e R m provided the second-order condition (4.6). Substituting (4.10) 
into (4.9), we ensure the Lipschitz-like property of (4.1) with strongly 
amenable potentials under the conditions (4.6) and (4.7. The equivalence 
between (4.7) and (4.8) in the case of locally Lipschitzian functions f into 
finite-dimensional spaces follows from the scalarization formula (2.5). [I 

Finally in this paper we consider a class of canonically perturbed 
variational systems with another type ofsubdifferential compositions: 

E(x,q) := {y E Y Iq E f ( x , y )  + (010 o g)(x,y)}, (4.11) 
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where g : X x Y --+ W, cpW --~ R ,  and f : Y x Y --+ W*. The next theorem 
contains sufficient conditions, as well as necessary and sufficient conditions, 
for Lipschitzian stability of  systems (4.11) in infinite-dimensions via their 
initial data. 

Theorem 4.3 Let y~E(2",~)  with s :=q - f ( 2 - , y )  and ~:=g(2- ,y )  for Z 
given in (4.11), where X ,  Y, W are Asplund and where O~o is SNC at 
(~,-g-). The following assertions hold." 

(i) Assume that g = g(y)  is strictly differentiable at -~ with the surjective 

derivative Vg(y) ,  and that f is strictly differentiable in y at (-~,y) 

and locally Lipschitzian in x uniformly in y around this point. Then 

the condition 

[0 • Vyf (E ,  y ) ' u  + Vg(y)* O2v)(~,~-)(u)] =~ u = 0 (4.12) 

is necessary and sufficient for the Lipschitz-like property o f  Z around 
(-~,-Z) provided that the space Y is finite-dimensional. 

(ii) Assume that W" is Asplund, that g is continuous around (-~,~) and 

PSNC at this point, that the graph of  Oq) is norm-closed around 

(~,~'), and that f is strictly Lipschitzian around (-~,~) and admits a 

strong approximation in y at this point. Assume also the qualification 

conditions 

2 - - - -  * - -  - -  0 ~o(w, s )(0) N ker D g(x,  y) = {0} and (4.13) 
[y* • Oy (u,f)(-~,y),  ( x* , - y ' )  • D*g(~,y) o OZqa(~,,-g)(u)] ~ x" = u = O, 

where the latter reduces to 

[0 • Oy (u,f)(-~,#) + D*g(-~,-y) o O2qo(~,~-)(u)] ~ u = 0 (4.14) 

when g = g ( y ) .  Then E is Lipschitz-like around (2,~' ,y).  

Proof. To prove (i), we first conclude from Theorem 3.3(i) with Q = 0 ~  o g 
and d imY<oo that the mapping Z in (4.11) is Lipschitz-like at (2 ,~ ,y)  if 
and only of  the adjoint generalized equation 

0 E Vyf(Y,y)*u + D*(Oqo o g)(y,Y)(u), u e W**, (4.15) 
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has only the trivial solution u = 0,  provided that the composition 0~o o g is 
SNC at (y ,~) .  It follows from the coderivative chain of [27, Theorem 3.10] 
that 

D* (0~o o g)(y,-~)(u) = Vg(y)" O2~(V,,'~)(u). (4.16) 

Furthermore, by [27, Corollary 5.4] the SNC property of Oqo o g at (~,3-) is 
equivalent to the one of 0qo at (~,?-). Substituting (4.16) into (4.15), we 
justify that (4.12) is necessary and sufficient for the Lipschitz-like property 
of(4.11) under the assumptions made in (i). 

To prove assertion (ii) of the theorem, we use Theorem 3.4 and Corollary 
3.5 with Q = Oqo o g .  Then applying the coderivative chain from [25] to 
D*(&p o g)(-£,y,-~) and the result of [26, Theorem 5.4] on the preservation 
of the SNC property of the composition O~oog, we conclude that the 
variational system (4.11) is Lipschitz-like around (-~,g,T) under the 
assumptions made in (ii). This completes the proof of the theorem, i_ I 

Let us present an efficient corollary of Theorem 4.3(ii) in the case when 
g is strictly differentiable at (2,y)  in both variables while f is strictly 
differentiable at this point in y .  

Corollary 4.4 In the notation of  Theorem 4.3, assume that the spaces 
X,  Y,W, W" are Asplund, that the subdifferential mapping O~o is SNC at 
(N,-g) and its graph is norm-closed around this point, that g is strictly 
differentiable at (-Y,y), and that f is strictly differentiable in y at this 
point. Then the mapping (4.11) is Lipschitz-like around (-~,~,~) provided 
that (4.13) holds with D'g(-~,y)=Vg(-Y,y)* and that one has the 
qualification conditions 

02qo(N,T)(0) C kerVxg(Z,y)* and (4.17) 

- - - -  * - - - -  * 2 - - - -  [0 E V y f ( x , y )  u + Vyg(x ,y)  0 ~o(w,s)(u)] =t. u = O, (4.18) 

Proof. Since f is strictly differentiable in y ,  the PSNC and strict 
approximation assumptions of Theorem4.3 are automatic. Taking into 
account the coderivative representation for strict differentiable mappings, it 
is easy to observe that condition (4.14) is equivalent to the simultaneous 
fulfillment of conditions (4.17) and (4.18) in this case. I-_] 

Since the Lipschitz-like property of (4.11) obviously implies the one for 
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S(x) := {y E Y I0 E f ( x , y )  + (Oqo o g)(x,y)}, 

the result of  Corollary 4.4 gives a corrected version of  [23, Theorem 5.1 ] in 
finite dimensions. 

R e m a r k  4.5 The property of  solution maps to parametric generalized 
equations to be single-valued and Lipschitz continuous around a reference 
point is known as Robinson strong regularity [33]. The results presented 
above allow us to obtain sufficient as well as necessary and sufficient 
conditions for this property in the case of  monotone fields Q = Q(y) in the 
original generalized equation (1.1), which particularly covers subdifferential 
operators Q =  0~p with a proper convex function qo (e.g., the classical 
variational inequalities and complementarity problems). This relates to the 
well-known fact that a monotone map has to be single-valued and 
continuous wherever it is lower/inner semicontinuous. Thus the above 
conditions for the Aubin Lipschitz-like property of  solution maps to the 
variational systems under consideration ensure actually their strong 
regularity provided monotonicity. Such a monotonicity of solution maps 
follows from the monotonicity of  Q and the corresponding monotonicity of  
a strong approximation to f in the sense of Definition 4.1; cf. [19, Section 
7] for more discussions and coderivative conditions for strong regularity 
obtained in this way for generalized equations in finite dimensions. Note that 
in the case of  mappings f strictly differentiable in y the monotonicity of  
strong approximations corresponds to the positive semidefiniteness of  the 
partial derivative Vyf(2- ,y) .  

If  Q = 6(y;f2) is the indicator function of  a convex polyhedron ~ c ~" 
and f is smooth in y ,  efficient characterizations of strong regularity for 
canonically perturbed variational inequalities are obtained by Dontchev and 
Rockafellar [7] with no positive semidefiniteness assumption on V y f  (-~, y) .  
Their main result establishes the equivalence between strong regularity of  
the original generalized equation and the Aubin property of the solution map 
to its linearization, for which a verifiable "critical face" condition is derived 
on the base of the coderivative criterion from [ 17]. 

REFERENCES 

[1] Aubin, J.-P.: Lipschitz behavior of solutions to convex minimization problems, Math. 
Oper. Res. 9 (1984), 87-11 I. 

[2] Borwein, J.M. and Strojwas H.M.: Tangential approximations, Nonlinear Anal 9 
(1985), 1347-1366. 

[3] Borwein, J.M. and Zhu, Q.J.: A survey of subdifferential calculus with applications, 
Nonlinear Anal. 38 (1999), 687-773. 



742 Variational Analys& and Appls. 

[4] Clarke, F.H.: Optimization and Nonsmooth Analysis, Wiley, New York, 1983. 
[5] Dontchev, A.L.: Chararacterization of Lipschitz stability in optimization, In: Well- 

Posedness and Stability of  Optimization Problems and Related Topics (R. Lucchetti and 
J. Revalski, eds.), Kluwer, Dordrecht, 1995, pp. 95-116. 

[6] Dontchev, A.L. and Hager, W.W.: Implicit functions, Lipschitz maps, and stability in 
optimization, Math. Oper. Res. 19 (1994), 753-768. 

[7] Dontchev, A.L. and Rockafellar, R.T.: Characterizations of strong regularity for 
variational inequalities over polyhedral convex sets, SlAM J. Optim. 7 (1996), 1087- 
1105. 

[8] Fabian, M. and Mordukhovich, B.S.: Sequential normal compactness versus topological 
normal compactness in variational analysis, Nonlinear Anal., 54 (2003), pp. 1057-1067. 

[9] Henrion, R. and R6misch, W.: Metric regularity and quantitative stability in stochastic 
programming with probabilistic constraints, Math. Programming 84 (1999), 55-88. 

[10] loffe, A.D.: Coderivative compactness, metric regularity and subdifferential calculus, 
In: M. Th6ra (ed.), Expremental, Constructive, and Nonlinear Analysis, CMS 
Conference Proc. Vol. 27, American Mathematical Society, Providence, R.I., 2000, pp. 
123-164. 

[11] Jourani, A. and Thibault, L.: Coderivatives of multivalued mappings, locally compact 
cones and metric regularity, Nonlinear Anal 35 (1999), 925-945. 

[12] Levy, A.B. and Mordukhovich, B.S.: Coderivatives in parametric optimization, Math. 
Programming, in press. 

[13] Levy, A.B., Poliquin, R.A., and Rockafellar, R.T.: Stability of locally optimal solutions, 
SIAMJ. Optim. 10 (2000), 580-604. 

[14] Loewen, P.D.: Limits of Fr6chet normals in nonsmooth analysis, In: Optimization and 
Nonlinear Analysis (A.Ioffe et al., eds.), Pitman Research Notes Math. Ser. 244, 1992, 
pp. 178-188. 

[15] Lucet, Y. and Ye, J.J.: Sensitivity analysis of the value function for optimization 
problems with variational inequality constraints, SlAM J. Control Optim. 40 (2001), 
699-723. 

[16] Mordukhovich, B.S.: Approximation Methods in Problems of Optimization and 
Control, Nauka, Moscow, 1988. 

[17] Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and 
Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc. 340 (1993), 1-35. 

[18] Mordukhovich, B.S.: Lipschitzian stability of constraint systems and generalized 
equations, Nonlinear Anal. 22 (1994), 173-206. 

[19] Mordukhovich, B.S.: Stability theory for parametric generalized equations and 
variational inequalities via nonsmooth analysis, Trans. Amer. Math. Soc. 343 (1994), 
609-658. 

[20] Mordukhovich, B.S.: Coderivative of set-valued mappings: calculus and applications, 
Nonlinear Anal. 30 (1997), 3059-3070. 

[21] Mordukhovich, B.S.: Calculus of second-order subdifferentials in infinite dimensions, 
Control and Cybernetics 31 (2002), 557-573. 

[22] Mordukhovich, B.S.: Coderivative analysis of variational systems, J. Global Optim., 
28(2004). 

[23] Mordukhovich, B.S. and Outrata, J.V.: On second-order subdifferentials and their 
applications, SIA MJ. Optim. 12 (2001), 139-169. 

[24] Mordukhovich, B.S. and Shao, Y.: Nonsmooth sequential analysis in Asplund spaces, 
Trans. Amer. Math. Soc. 348 (1996), 235-1280. 

[25] Mordukhovich, B.S. and Shao, Y.: Nonconvex differential calculus for infinite- 
dimensional multifunctions, Set- Valued Analysis 4 (I 996), 205-236. 



Sensitivity Analysis for  Variational Systems 743 

[26] Mordukhovich, B.S. and Wang, B.: Calculus of sequential normal compactness in 
variational analysis, J. Math. Anal Appl. 282 (2003), 63-84. 

[27] Mordukhovich, B.S. and Wang, B.: Restrictive metric regularity and generalized 
differential calculus in Banach spaces, Preprint No. 15 (2002), Dept. of Math., Wayne 
State University, Detroit. 

[28] Ngai, N.V. and Th6ra, M.: Metric regularity, subdifferential calculus and applications, 
Set-ValuedAna1.9 (2001), 187-216. 

[29] Outrata, J.V.: A general mathematical program with equilibrium constraints, SlAM J. 
Control Optim. 38 (2000), 1623-1638. 

[30] Penot, J.-P.: Compactness properties, openness criteria and coderivatives, Set-Valued 
Analysis 6 (1998), 363-380. 

[31] Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd 
edition, Springer, Berlin, 1993. 

[32] Robinson, S.M.: Generalized equations and their solutions, part I: basic theory, Math. 
Programming Study 10 (1979), 128-141. 

[33] Robinson, S.M.: Strongly regular generalized equations, Math. Oper. Res. 5 (1980), 43- 
62. 

[34] Robinson, S.M.: An implicit-function theorem for a class of nonsmooth functions, 
Math. Oper. Res. 16 (1991), 292-309. 

[35] Rockafellar, R.T. and Wets, R. J.-B.: Variational Analysis, Springer, Berlin, 1998. 
[36] Thibault, L.: On compactly Lipschitzian mappings, In: P. Gritzmann et ah(eds.), Recent 

Advances in Optimization, Lecture Notes in Econ. Math. Syst. Ser. 456, Springer, 
Berlin, 1997, pp. 356-364. 

[37] Vinter, R.B.: Optimal Control, Birkhauser, Boston, 2000. 



STABLE CRITICAL POINTS FOR THE 
GINZBURG LANDAU FUNCTIONAL ON SOME 
PLANE DOMAINS 

M.K. Venkatesha Murthy 
Dept. of Mathematics, University of Pisa, Pisa, Italy 

We shall present a survey of some new developments in the study 
concerning the stable critical points for the Ginzburg - Landau energy 
functional in two dimensions. We shall consider only vortex free solutions of 
the problem. The Ginzburg - Landau functional is defined on the space of  
pairs (u,A), where u is a scalar complex valued function in H I ( X , C )  and 
A is a vector field in H ~ (R 2 R z toc~ , ) such that rotA is a square integrable 
field on R 2 , by 

(GL) ~(u,A) = 2 L  ]] ( V - i A ) u  ][2 dx + ~24 a x ( V(u)dx 

where V(u) = ([ u [2 _I)5. The interesting feature of this functional is that the 
underlying topological and geometric structures of  the domain play 
important and crucial roles in this study. 

If  X is a multiply connected domain in IR 2 or IR 3 it has been shown by 
Jimbo and his collaborators (see the references) that there is a stable critical 
point in each homotopy class of  X .  Infact, if X is a bounded domain in N 3 
with a Lipschitz boundary, which is topologically equivalent to a 3 - 
dimensional solid torus 'If "3 then each 1-homotopy type of  maps from X to 
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the unit circle S l contains a nontrivial critical point. Since these maps are a 
priori only H I -maps, in order to make precise this notion, we recall the 
following fundamental approximation theorem of Sobolev maps between 
compact manifolds due to Bethuel: 

Suppose M and N are two compact manifolds where N is a manifold 
without boundary. We assume that N is isometrically embedded in some 
Euclidean space IIU. We introduce the space of  Sobolev maps between M 
and N as follows: 

W l'p (M, N) = {u e W I'p (M, R u);u(x) e Na.e.} 

and this space is provided with the strong and weak topologies inherited 
from those of  WI'P(M,R J) 

If u : X ) C is a continuous map then its l-homotopy type is defined 
as the 1-homotopy type of  the restriction of  u to the one dimensional 
skeleton (set of  all simplices of  the triangulation of dimensions < 1 ) of  any 
triangulation of  the space X .  This, in the case of  the bounded Lipschitz 
domain topologically equivalent to the torus "I[ ̀3 , is the same thing as the 
winding number of  the restriction of  u to any closed rectifiable curve which 
loops once around the hole in X (image of  the hole in '11 ̀3 by the 
homeomorphism of  the equivalence). 

Theorem 1. (Bethuel) Density o f  smooth maps in Sobolev maps: Suppose 
M and N are two compact Riemannian manifolds where N is a manifoM 
without boundary. I f  1 < p < dimM = n then the set o f  smooth maps between 
M and N is dense in the Sobolev space o f  maps WI'P ( M , N )  i f  and only i f  the 
[p] - th fundamental group zc~pj( N) = O. 

In particular, taking p = 2 and dimM = 3 the set of  smooth maps from 
M to S ~ is dense in Ht(M,S~) .  For example, we can take M = T  3 and 
N = S  I c C = I R  2 . 

Now if u is a map belonging to H~(X,S  ~) then in view of the result of  
Bethuel on the density of  smooth maps in this space we define the 1- 
homotopy type of  u as the 1-homotopy type of  any approximating smooth 
map. 

The result recalled above seems to suggest that, if X is a simply 
connected bounded domain then there might not be any non trivial critical 
points. However, it has been proved recently that there exist non trivial 
stable critical points in multiply connected domains and also in some simply 
connected domains which are in some sense perturbations of  multiply 
connected domains. However, these critical points contain vortices, namely 
the zeros of  the order parameter while in the multiply connected domains 
case there are no vortices. 
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Hence the question of  existence or otherwise of non trivial critical points 
seems to be related not only to the underlying topological structure but also 
to the differential geometric properties of the domain. The existence of 
stable critical points therefore seems to be related to the geometry of  the 
domain much more closely than with its fundamental group. 

This survey is to illustrate one such connection. 
Remarks  on the physical interpretation - The Ginzburg - Landau 

functional is related to modelling superconducting materials in physics 
literature - super conductors are materials which have almost vanishing 
electrical resistivity (the resistivity is effectively zero). It is known that if a 
ring shaped superconducting material is subjected to an applied magnetic 
field which induces a current and the if the temperature is lowered below a 
certain critical value, the current persists even after the external field is 
removed for a very long time (even for some years). This phenomenon is 
known as persistence of  permanent currents. 

Mathematically, the stable critical points of  the Ginzburg - Landau 
functional correspond to the existence of permanent currents. 

In the funcional (GL) introduced above, u(x) is the density of  super 
conducting electron pairs,  A(x) denotes the magnetic vector potential and 
V(u) is the energy density due to interaction. Since the electrons are 
confined to the super conducting material represented by the domain X the 
integral over the domain X represents the energy associated to the electron 
pair density u(x) while the magnetic field is defined over the entire space 
the energy due to the current generated by the magnetic field is defined by 
the integral over the whole space I~ 2 . 

The method of  proof used is an extension of  a known method in the study 
of  critical points in the scalar case: If X is a bounded convex open set with 
smooth boundary, consider a functional of  the form 

' f x  [11 v u  II 2 +F(u)]dx 

In order to study the critical points one explicitely computes the second 
variation about the critical points and then reduce the expression for the 
second variation to an integral over the boundary 0X of the domain X .  
This allows one to use the convexity assumption on X .  

In the case of  the functional (GL) the explicite computation of  the second 
variation and the reduction to boundary integrals leads to an expresion 
depending on the mean curvature of OX. 

Infact, an identity involving the mean curvature of  the boundary is 
proved from which, in particular, it follows that if the domain is smooth and 
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convex then the only stable critical point is the trivial pair (1, 0) upto gauge 
transformations. 

1. N O T A T I O N  A N D  D E F I N I T I O N S  

Let X be a bounded open set in the plane ~2 with C 5'~ smooth 
boundary a X ,  and let x = (xl,x 2) • X .  Let v be the exterior normal vector 
field on 0X and K(x) be the mean curvature of  a X .  Consider the function 
space 

E = H ' ( X , C )  x {A • H]oc(l~2,I~z); rotA • Lz(II~z,R2)} 

The Ginzburg - Landau energy functional ~ : E  > ll~ is defined by 

= 1 dx  n 2 1 G(u,Z) ~ II ( V - i A ) u  II 5 + V(u)dx + L2 I] r o tA  II 2 dx  T 

where 

V(u) -- (I u j z -1)  2 

It is immediately seen that the functional G is invariant under the gauge 
transformations (u, A) > (e~u, A + V fp) in the sense that 

G(e' u, A + V¢o) = A) 

for all (a • H~c(R2,N)  such that Vq9 E Lz(N2,II~ 2) 
For the purposes o f  calculations it is convenient to make a suitable choice 

o f  the gauge: 
First o f  all we may assume divA = 0 in II~ 2 . Infaet, given A • H]oc(N z) 

consider the Poisson equation 

-A~o = divA • L~o~ (N 2) 

There exists a solution ~o • H~oc(R2). With this ~o we have 

div(A + V~o) = divA + A~o = 0 

Similarly, in the case o f  a bounded open set X we may assume 
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divA=0 in X and < A , v > = 0  on OX 

Infact, since the boundary is asumed to be sufficiently smooth, the 
Neumann problem 

-Acp0=divA in X,  O~°° =< V ~oo, V >= - < A, v > on OX 
Ov 

has a solution fo 0 ~ H~oc(X,~ ) and then we can take ~o to be an extension of 
rp0 in H2c(R2,R) in the gauge transformation. 

Critieal points of G : 
A pair (u, A) ~ E is said to be a critical point of  the functional G if 

(DG)(u, A) = d G(u + tv, A + tB) I,=0 = O, where(v, B) e E 

A critical point is said to be non trivial when 
(DG(u,A)=O and (u,A) is not equivalent to (c,O) for any c ~ C ,  a 

constant, under any gauge transformation; that is, (u,A) is not of  the form 
(cei~',Vfo) for any rp ~ H2c(~2,R) and any c ~ C.  

Ginzburg Landau system of differential equations 
Writing down explicitely the condition satisfied by a critical point of  G 

we find the following coupled system of  differential equations, satisfied in 
the weak sense: 

(i_iA)Zu+irZ(lul2 l)u= 0 } 
If2 12 (GL) rot(rotA)+ i - T ( u ' V u - u V u * ) + l u  A Zx 

in X 

=0  inIR 2 

together with the following natural system of  boundary conditions 

[< (V - iA)u, v >= 0, on OX 

(BC)~ v ^[rot~I] = 0 on OX 

where Zx denotes the characteristic function of X and [rotA] denotes the 
jump of  rotA across the boundary aX.  

Since 

rot(rot,l) = -AA + V(divA) -- -AA 
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because, by the chioce of  the gauge namely, divA = 0, the second system of 
equations can be written as 

-AA + {iK-~2 (u'Vu -uVu')+]u [2 A}Zx = 0 in~ 2 

Thus (GL) is an elliptic system for (u, A) 
Choosing the gauge as indicated above, namely 

d ivA=0 in X and < A , v > = 0  on 02[ 

the first boundary condition becomes 

0u 
=< Vu,v >= 0 on OX 

Ov 

Since rotA - (0,0, 0a2 -Oal) - -  OX 1 OX 2 where A = (a~,a 2) we have 

_ [-Oa 20x 1 0 x  20al ] [rotA] = (0,0, L - ) where A = (aj,a2) 

Oa 2 Oa 1 Here [0xl-Ox2] ) denotes the jump of the real valued function 

¢Oa 2 Oa 1 . 
Ox I - -  Ox 2 ) 

Definition 1. Stable critical point. A critical point (u,A) e E of G is 
said to be a stable critical point if the second variation of ~ is non-negative. 
that is, 

(DG)(u,A)=O 

(D2G)(u,A;v,B)= (u+tv, A+tB)]t=o>O forall(v,B) e E  
dt 

An explicite computation shows that the second variation is given by the 
following expression 
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1 fx 12 (D2G)(u,A;v,B) = -~ {I lVvl  +i < Vu,  Bv* > +i < Vv,  Av* + Bu* > 

- i < V u ' , B v > - i < V v ,  A v + B u > + l l A l 1 2 1 v l  2+11BII21ul 2 
K -2 

+2 < A , B  > (uv" + vu*)}dx + - -  ~x 
4 

Two basic lemmas 

{(uv* + vu*) 2 - 2(] u ]z -1)]  v [2}dz 

1 
+ -  f~ l[ ro tB  ]12 dx 

2 

We recall without proofs the following two properties of  critical points of  
G in plane domains, which we shall use in the proof of the main result: 

L e m m a  1. I f  (u, A) e E is a criticalpoint of  G then we have 

[u [_< 1 in X and rot,'/= 0 in ll~ z \ X 

This follows from the fact that the system is elliptic and the boundary 
condition is of  Neumann type, using the first equation in (GL) to get a 
differential inequality for [u [2 and t h e n  applying the maximum principle. 

In R 2 , rot(rotA)= 0 in II~2\  X implies that 

"0 00a2 Oal" rotA = ( , ,-b-~x - 0-~-2) 

is a constant. Since rotA e L2(IIU,IIU) this constant should be zero. 

L e m m a  2. I f  a vector field F e C I ( X , R  2) satisfies <F,v>=O and 
rotF = 0 on OX then 

0([[ F [[2) = -2)-" Or(k) F(*)F u) = -2K(x)[[ F [[2 
Ov j,, Oxj 

In particular, if u e C2(X) and ~- =< Vu, v >= 0 on OX then 

__0_0 ([1Vu l[ 2) = -2K(x)II Vu II z 
Ov 

where we recall that K(x) denotes the mean curvature of  OX 
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. R E G U L A R I T Y  O F  C R I T I C A L  P O I N T S  - 
P R E L I M I N A R Y  R E S U L T S  F R O M  E L L I P T I C  
R E G U L A R I T Y  T H E O R Y  

In the proof of the main result we shall use for (v, t3) in the second 

variation the pair of derivatives ( .~ j ,  gx~ ) ( j  = I, 2). For this end we require 

that this pair belongs to the space E ,  which is a regularity property of the 
critical point. In order to prove this crucial regularity of the critical point 
(u,A) we need the following regularity result which is a consequence of 
Schauder estmates for elliptic boundary value problems due to Agmon, 
Douglis and Nirenberg [ 1 ]. 

A critical point is a weak solution of the elliptic boundary value problem 
for the system (GL) with boundary conditions (BC). First of all, the system 
being elliptic the interior regularity for elliptic systems implies that such a 
weak solution (u, A) is infinitely differentiable in the two open sets X and 
~2 \ X and thus it is a classical solution of the system in the two open sets. 
However we shall need some kind of regularity upto the boundary. In view 
of the discontinuity across the boundary OX in the second set of equations 
in (GL) due to the presence of the characteristic function Zx the boundary 
regularity is rather delicate. We do not have smoothness of high orders 
across the boundary. We have the following: 

T h e o r e m  2. Suppose X is a bounded open set in R 2 with the boundary OX 
o f  class C 5'~ with some 0 < ~z < 1. I f  we choose the appropriate gauge 
name_.~l, div A = O, then any critical point (u, A) ~ E belongs to the  space 

3 a  2 C3(X,C)× l.,, 2 2 C)o c (]~ , ~  ). Moreover, A belongs to the space C ' ( X ; ~ ) ,  in 
the sense of(one sided) regularity from the interior o f  the domain X .  

Remark. The regularity properties remain invariant under gauge 
transformations 

(u, A) > (ue ~°, A + V ~o) 

because the function ~ ,  being a solution of a regular elliptic boundary value 
problem, is a smooth function and hence the gauge transformations are 
smooth. The first equation in (GL) is an elliptic equation for u with 
coefficients in L 2 ( X ,  C) . 

Sketch of proof. We first note that as mentioned earlier, in view of the 
choice of the gauge div A = 0, we have the identity 

rot(rotA) = -AA + V(divA) = -AA 
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so that A satisfies an elliptic system 

"-xZlm(uVu*)-lul 2 A i n X  
- ~  = 9 ( x )  = 

0 in ll~ 2 \ X 

753 

First of  all we use the fact that the critical pair (u,A) belongs to the 
space E and has the minimum regularity. Writing the first equation of the 
system in the form 

(v -iA)2u = -x2(I u 12 -1)u 

we have a scalar elliptic (nonlinear) equation for u.  The right hand side and 
the coefficients on the left hand side have a certain regularity which enables 
us to apply the elliptic regularity theorem to improve the regularity of  u in 
X .  Then we use this in the system satisfied by the vector field A to obtain a 
further regularity of  A. We continue this boot strap argument. In this 
procedure, we flatten the boundary locally and in neighbourhoods of  
boundary points we apply the regularity results of Agmon, Douglis and 
Nirenberg [1] on Schauder estimates and then patching up these we obtain 
first estmates for (u,A) on X and putting back into the system of equations 
(GL) we recover further regularity of  the pair. 

More precisely, we proceed as follows: 
We first observe that, using the gauge such that divA = 0 in X and 

< A , v > = O  on OX 

( v  - iA) 2 .  = - x  2 (1 - I  "12 )" 

<(V-iA)u,v>=O, that is 3-d0u=0 on OX 

is the Neumann problem for a second order semilinear elliptic equation. 
However, since u ~ H~(X,C) and dim X = 2 ,  we have in view of the 
Sobolev embedding theorem that u ~ L ® (X, IR). We therefore consider this 
as a linear equation with L 2 coefficients in X with the nonlinear term on the 
right hand side as a known function in L2(X,C). It follows from the the 
regualrity theory for elliptic boundary value problems that u ~ H 2 (X, C) 

Similarly, it follows from, applying the regularity theory for elliptic 
systems and using the regularity of  u already obtained to consider the non 
linear term as a known vector field, to the following elliptic problem 
satisfied by the vector field A,  
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rot (rot)A + {)x2(u'Vu - uVu' )+  l u 12 A}ZA = 0 

v/x[rotA]=0 on OX 

we have A e H~c(~2;]~ 2) 
We have already remarked that due to the discontinuity of the vector field 

9(x) across the boundary OAr we are constrained to restrict the discussion 
of further regularity of the vector field A on X only from the interior of  the 
domain X .  

We flatten the boundary0X locally: i fx 0 e OX, then in some spherical 
neighbourhood B(x o, R) ofx  0 e OX we may assume 

X ~ B ( x o , R  ) c {(x,,x2); [ x I ]< l, x 2 > 0} 
and 

OX n B(xo,R ) c {(x,,x2); I x I ]< l, x 2 = 0}. 
We still denote by 9(x) the vector field 

{ -x2tm(uVu')-lul 2 A in B(xo,R)~{lx , [<l,x 2 >0} 
9(x)= 0 in B(xo,R)~{lxt l<l,x  2=0} 

Now take a test vector field F e H~(II~2,~ 2) with supp F c B(xo,R ) and 
multiply the equation -AA = 9 by 0B and integrating by parts we get 

f ~  < ~7(~xA1),VF > d x = f ~  < O~l (x) ,F > dx 
(xo,R) (xt.R) 

that is, 

- A (  0.4] = 0 g ,  weakly in L °° (B(xo,R);~ 2) 
(Ox,) Ox, 

Here -~xl~E (B(xo,R),]~ )cLZ(B(xo,R);]~ 2) and hence 

Ox_._~eoA C,.~(X nB(xo,R);~2) 

i.e. the tangential derivative of  A along the boundary belongs to C I'' . 
Then it follows that 9 e CJ'¢ and A satisfies -AA = 9 in X n B(x o,R) 

and on the boundary A e C 2'~ (OX n B(x o, R); R2). Again by the regularity of 
solutions of  the Dirichlet problem for the elliptic system -AA = 9 we find 
that A e C2'~(X ~B(xo,R);I~2) . 
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Next we differentiate the first equation for u in (GL) with respect to x, 
and also the corresponding boundary condition to obtain 
u eC3"~(OXr~B(xn,R);C) and once again the regularity theory gives 
U ~ C3'a(Xf'~B(xo,R);C) 
Similarly, differentiating the system - A A = 9 with respect xj and once 

again using the above argument we find that A E C 3"~ (OX ~ B(x o, R);I~ ~) 
and the regularity for elliptic systems shows 

A~C3'a(Xr~B(xo,R);R2), with 0 < a < l  
This completes the proof. 
Remark. Taking into consideration of local flattenning of  the boundary 

OX and the number of  the local representations of  OX we find that we 
require that OX should be of  class C 5''~ , (0 < a < 1 ) in order to be able to 
apply the Schauder estimates for elliptic boundary value problems for 
elliptic systems due to Agmon, Douglis and Nirenberg. 

Remark. In view of  the above theorem we obtain the following important 
fact: 

If  (u, A) ~ E is a critical point of the functional ~ then the pair 

I 0.  , 0 A ]  
Oxj ) ~ E, for j = 1,2 

I,a 2 2 Infact, by the theorem we have u~C3'~(X,C) and AeCIoc(N ,N ),  
which imply that 

Cio t, (~ ,Nz),for j = 1,2 

Since u ~ HZ(X,C) we find 0x-~-. e H t ( X , C )  
We use a similar argument to show that A satisfies the required 

assumption. For this we first of  all flatten the boundary locally: if x o ~ OX 
suppose that there is a ball B(xo,R ) such that 

a x  ~ B ( x o , R )  = {(x,,x2) E ~2;I x, I< Z, xz = 0}, 

Define the vector field 9(x) in B(x0,R) by setting as before 

in in  Xo ,  x2 
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Hence, because ~ e L ® (B(xo, 1R 2)) c L z (B(xo, N 2)) it follows that 

~Tx, e C'"~(B(xo,R);N 2) 
[ . . . .  

Again using the elhptm system -AA = 9 we find 
0,4 C"~(X;N 2) sothat 0'4 _~J  z~z %e - -  -~ je  ntoct~ ;IR 2) and moreover we have 

( 0 Oa 2 Oa l 
rot( 0..~__A )= t~-Txj (0, 0,-g~-i- o-~-2 ) i n  

oxj L0 in 11~2\~ 

Hence 0,4 e H]oc(N2;ll~ 2) and rot 0'4 e L 2 (N2;IR 2) 
O X  ; O X j  ~ , 

We also fiote that the trace on OX of rot(~-?) from the interior of X is 
well defined by the elliptic regularity theo~ of Agmon, Douglis and 
Nirenberg. 

/ _ _ _ _ \  3. CALCULAT,ONO  2 / ,A; , ) 

[ou 0'4 We can now take I Oxj,Oxj ] E to compute the second variation of the 

functional • at the critical point (u, A). 
Differentiating the system (GL) with respect to x~ and x 2 and then using 

the Green's formula we get 

£ I 1 0 [  Ou 1 OA 
x Ozj 

i f x  OA [ O___u_u_Ou" 
+4" < ~ x ~ . ' u > d i v  u* oxs u ox~ 

om} 
,rotff~-xj > da 

dx f o r j = l , 2  

Applying the divergence theorem to the last integral we obtain the 
following 

Theorem 3. Suppose (u,A)e E is a critical point o f  G and that the 
boundary OX is C 5,u , 0 < a < 1 . Then 
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D2G(u,A; Ou 0.4) 
Oxj' Oxj 

fox  1 0 Ou 1 OA OA = {]~---~ I ~ I ~ + ~ < . A  ,rot 
Ozj Oxj 

i 0.4 Ou Ou" 
+ - < - - , v > ( u ' - - - u  )}dcrfor j = 1,2 

4 Oxj Oxj Oxj 

> 

Thus the second variation of  G is expressed as a sum of  boundary 
integrals. 

We deduce from this the following theorem expressing the second 
variation of  ~ about a critical point (u, A) involving the mean curvature of  
the boundary OX. 

Suppose (u ,A)e  E is a critical point of  G. We subdivide the boundary 
OX into two parts, namely OX = Z, w ~]2 where 

Z~ = {x e OX;u(x) ¢ 0} and Z 2 = {x e OX;u(x) = 0} 

Now if x o e Z 1 then, in some contractible neighbourhood V of  x 0, we 
can write 

u(x) = w(x)exp(iqg(x)) in V ~ X 

where ~ and w are real valued functions (w(x) > 0 ) on V n X .  

Theorem 4. Assume OX is C 5"~ (0 < a < 1) and let K(x) denote the mean 
curvature of  OX. I f  (u,A) e E is a critical point for G then we have 

2 Ou OA 
D2G(u,A; ) - 

j=x Oxj ' Oxj 

-- - ½ f ~ ,  {ll Vw II ~ + w  ~ II v ~  - A []2)K(x)da 

_If, 2 ~, I lVu 11 ~ K(x)da  

We evaluate the term (since A(x) = (a I (x), as(x))) 

2 OA,ro taA>=£Oa_LAal  
Q= ~j=l < V ̂  ox j Ox j i=, a v 
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Infact, by explicite calculation we have 
in X .  Then we get from the system (GL) 

aA=lul2A+2(u'Vu-uVu*) in X 

and hence 

/=1 ON k /=1 

Since ro t / /=  0 on OX we find from the lemma 1 (section 2) that 

Oal x-, Oal Oa k -< 0.4 v 
OV = + OX---~Vk = ~k ~xI Vk - OX---~ ' > 

Variational Analysis and Appls. 

rot(rot)A = -AA since divA = 0 

We then obtain from theorem 3, (summing over j = 1, 2 ) 

~_ (D2G)(u,A;. 0.4 
oxj ' Oxj ) 

0 12 = i fox N l do 

+xfo I 12° 12 -~u [I A I d a  

2 * OA 
• - - - u  ~ < ~ , u > ] d o  + 4  fo j~=l (u Ou Ou ) Oa~ 

x Ozj Ozj Iv. + Ozj 

We calculate the integrand here seperately on the two subsets Z, and Z 2 
seperately: 

Let x o e Z~ and V be a contractible neighbourhood o f  x 0 where we write 
as before u(x) = w(x)e i~'(x) . Then, we have, on V m X ,  

II Vu(x)I12=11Vw(x)112 +w(x) 2 II v~o II 2 

and 

, Ou 
U - u Ou" = 2iw(x) 20q9 

Oxj Oxj Oxj 



Stable critical point for  the Ginzburg Landau functional 759 

Moreover u and ~o satisfy the Neuman condition on V ~ Z I .  
We can flatten V~Z~ locally and take VnZ~ ={(xj,x2);x 2 =0} 

assume V(Xo) = (O,1) and since < A,v >= 0 we find 

0w 
&~ (x°)=O-~-~(x°)=a2(x°):Oox~ 

and 

OV O) 
- - ( X o )  = K(x)  

Oxl 

After some elementary calculations together with these conditions the 
integrand becomes 

-2g(x)[llVwll 2 +w 211v~o-AII 2] in V ~ Z ,  

and on Z 2 where u(x) -- 0, the integrand becomes 

0---~ II Vu 112= -2g(x)I I  Vu II 2 

The assertion follows from these considerations. 

. T H E  M A I N  R E S U L T  

We obtain from the crucial identity proved in the previous paragraph our 
main result: 

Theorem 5. Suppose X is a bounded convex open set in ~2 with the 
boundary OX o f  class C 5'' for  some 0 < at < 1. I f  (u, A) is a (non vortex) 
stable critical point for  the Ginzburg - Landau energy functional then (u, A) 
is gauge equivalent to the trivial one (1,)). 

i.e. there does not exist any non trivial non vortex stable critical points for 
the Ginzburg - Landau functional. 

A sketch of the proof 
By definition, if (u, A) is a stable critical point then the second variation 

gives 
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(D2G)(u,A;OU OA 
oxj' ~xj ) >- 0 

On the other hand, if K(x)>_ 0 then the expression in terms of the 
boundary integrals given by the theorem 4 for the second variation 

(D2g)(u,A; ' Oxj) <- 0 

and hence we find that 

(D2g)(u,A; OU OA 
ox~ ' axj ) = 0 

This means that the pair I, axj, axj ] is a minimizer for the second variation 

(D~) for both j = 1,2. In particular, each is a critical point of (DG) and 
hence satisfies the associated Euler - Lagrange equation and the natural 
boundary condition, namely, 

<V(~-~-u)-iua-~-A,v>=0 on aX for j = l , 2  
oxj Oxj 

Consider the subset A of aX : 

A = {x ~ OX;K(x) > 0} 

Once again (D2~)=0 and K(x)>O together imply, in view of the 
expression given by theorem 4, that, writing as before 

u(x) = w(x)exp(iq~(x)) with w(x) > 0 and ¢(x) e 11~ on A 
[[Vu-iAu[[2=[]Vw[[ 2 +w ~[[V~o-A[[2=O and []Vu][2=0 

In particular we have 

Vu- iAu  =0 and [[Vw][=0, that is Vw=0 .  

Decomposing further A = AI u A 2 where 



Stable critical point for the Ginzburg Landau functional 

A I = {x • A;u(x)  4: 0} = {x • OX;K(x) > O,u(x) ¢ 0} 

and 

A 2 = {x • A;u(x)  = 0} = {x • OX;K(x) > O,u(x) = 0} 
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Differentiating V u - iAu = 0 
r = (rl ,r2) = ( -v2,vl )  we find that 

Gq2W 
- - - 0 ,  on OX~B(xo,e),Vj,  k=l ,2 .  
OxjOxk 

For this, we calculate the normal and tangential derivatives: 

Vt o,, ~ _ iu oA . ~-~ °2w v = 0, < ~0xjJ  0-~;,v>=0 implies that ,..-,~jax~ k 
on OXnB(xo,C ) 

along the tangential direction 

02w r k = 0 ,  on OX~B(xo,e) ,Vj=1,2.  
Ox jOxk 

This proves our claim. 
Now the Ginzburg - Landau system (GL) 

(V-iA)2u+tcZ(lul2-1)u=O in X ~ B ( x o , e  ) 

and the boundary condition 

<(V-iA)u,v>=O on OXnB(xo,e ) 

together lead to the second order nonlinear elliptic equation for w with the 
Neumann boundary condition: 

for j = l , 2 .  

we consider the two subsets Aj and A 2 seperately. 
_ Suppose A I ¢ O and let x 0 • A l . Writing again u(x) = w(x)exp(i~o(x) in 
X~B(xo,C ) with w and ~o real valued, we find in view of  lemma 1 
(section 2 ) t h a t  lu(x)l---1 and hence Iw(x)l---1 in XnB(Xo,e  ). Since 
V w = 0  on A t we have w(x) = c ,  a constant with 0 < c  < 1 in 
OX c~ B(xo, e). 

Next  we claim that 
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{ Aw-IIV~o-AIl2 w+xZw(1-wZ)=O in X ~ B ( x o , C  ) 

~ = 0  on OXnB(xo,C ) 

By the elliptic regularity theorem on Schauder estimates o f  Agmon, 
Douglis and Nirenberg, it follows that u ~ C 2 upto the boundary. 

We next show that w(x) = 1 on A z ~ B(xo,e ) . For this, we observe that 
letting b(x) = -tc2w(1 + w) we have the inequality 

A(I- w) + b(x)(1- w) =-IIv o- 4 2 0 in X ~ B(xo,e ) 

where since 0 < w(x)< 1 we have 1 -  w_> 0. Now by the strong maximum 
principle applied to the non negative function 1 -  w on the smooth bounded 
open set X ~ B(xo,6 ) we conclude that either 1 - w(x) = 0 or 1 - w(x) > 0 
everywhere in X ~ B(xo,C ) . 

But, in view of  the Neumann boundary condition ~ = 0  on 
OX~B(xo,e  ), we can apply the maximum principle o f  Hopf  and exclude 
the possibility that 1 - w(x) > O. 

Hence w ( x ) = l  in X ~ B ( x o , ~  ) (and so lu(x)12=l). 
Then the system of  equations (GL) implies that we have 

IIV~o-all=0 i.e. V~o=A on X ~ B ( x o , e  ) 

Since X is simply connected these relations extend to the whole of  X 
by continuation. We have thus proved that 

(u,A)=(ei~',V~o) in X 

that is, (u,A) is gauge equivalent to (1,0). 
There remains to consider the case wherein A~---0 and hence 

A = A 2 = {x ~ aX;tc(x) > 0, u(x) = 0}. In this case we write 
u(x) = f ( x ) +  i9(x) and we find that the real valued functions f and 9 
satisfy near a point x 0 ~ A 2 the elliptic system of  equations 

f 
Af  +2<A,  Vo>- I IAI I  z f + t f z ( f 2 + 9 2 - 1 ) f  =O 

A 9 - 2 < A ,V f  > -11A [I 2 9 + t¢2 ( f2  + 9 z _ 1) 9 = 0 

in X~B(xo,,r, ) 

(with some e > 0 ) and the initial conditions 



Stable critical point for the Ginzburg Landau functional 763 

_ _  O9 f =9=O, <Vf, v>=Of =0,  <Vg,  v > = - - = O o n O X ~ B ( : c  o,~) 
av Ov 

Using the theorem on uniqueness in the Cauchy problem due to Calderon 
[7] we find that f(x)=9(x)=O, that is, u (x )=0  in XnB(xo,C ). Once 
a_g.ain using the assumption that X is simply connected we find that u = 0 in 
X .  

Finally using the system (GL), we have 

rot(rotA)=0 in II~ 2 

which implies, by the lemma, that rot,4 = 0 in ~2. Hence A is of the form 
A = V h  for a smooth real valued function h : ~ 2 ~ ;  that is 
(u,A) =(0,Vh), which means that (u,A) is gauge equivalent to (0,0). On 
the other hand (0,0) is not a stable critical point for •, which contradicts 
the assumption that (u,A) is a stable criticl point. This completes the proof 
of the main theorem. 
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THE DISTANCE FUNCTION TO THE 
BOUNDARY AND SINGULAR SET OF 
VISCOSITY SOLUTIONS OF HAMILTON- 
JACOBI EQUATION 

L. Nirenberg 
Courant Institute, New York, New York, USA 

This is a report on joint work with YanYan Li [4], concerning viscosity 
solutions of Hamilton-Jacobi (H J)equations of  the form 

H(x,u, Vu)=l  in~, (1) 

a C z'~ bounded domain in IR". One usually treats an initial value problem 
for u or a boundary value problem. We consider the latter, and seek positive 
solution u satisfying 

u=O onOfl. (2) 

For definitions and properties of  viscosity solutions see [5] and [ 1 ]. 
Near the boundary 0 ~ ,  one may determine u using the method of 

characteristics, but these may then collide, and solutions develo__p 
singularities. Under rather standard conditions on H(x, t ,p)  for x ~ f 2 ,  
t • IR, p ~ IR", such as convexity in p etc., one expects that the ( n - l ) -  
dimensional Hausdorff measure 

/-/"-'(x) 
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of  the singular set Z of a viscosity solution u is finite. We prove this for 
H(x,p)  independent of  t ,  - -  under suitable conditions, and also treat a 
number of cases where H also depends on t. 

We came to this problem by first studying the singular set Z of  the 
distance function u(x) from x in f2 to Of). It satisfies 

IVul=l  inf2 

u = 0  on O f  2.  

These equations have, of  course, many solutions. For instance, if f2 is an 
interval (-a,a) in IR, then any jagged line with slopes +1, which vanishes 
at end points, is a solution. But the distance function, u - - a - I x  I, is the 
largest; it is the unique viscosity solution. 

The singular set Z of  u is sometimes called the ridge, medial axis, or 
skeleton of  f2. We define E in the following way. Let G be the largest 
open subset of  f2 such that every x in G has a unique closest point on af2. 
We set 

2 : = f 2 \ G ;  

so E is closed. It is easily seen that in G, the distance function u to the 
boundary is smooth--as smooth as the boundary permits (C ~'~ in our case, or 
C ® if af2 is C oo ). It is well known that Z is connected. We proved 

Theorem 1. H"-~(Z) is finite. 
This follows directly from the following result 

Theorem A From any point y on Of 2, go along the inner normal to Of) 
until first hitting a point m(y) on Z. The length 3-(y) o f  the resulting 
segment is Lipschitz continuous in y.  

Remark  1 For Theorem A to hold the condition that af2 • C 2'1 is sharp. This 
surprised us. 

For an unbounded domain f~, with Of 2 in CiZo~, and G and Z defined as 
above, the following form of Theorem A holds. 

Theorem A' For y e Of), let -~(y) be defined as in Theorem A: it may be 
infinite. For any N > O, min(N,~(y))  is locally Lipschitz in y .  

We then extended these results to any complete Riemannian manifolds 
(M",g):  
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Theorem A" For any domain f2 in M ,  with O~ in C 2'1, the conclusion of 
Theorem A ' holds. Here -g(y) represents the length of  the geodesic going 

from y to Of), normal to Of 2 there, until it first hits E. 

Corollary 1 For f) as above in (M", g), H "-~ (X ~ B) < oo for any bounded 
set B. 

Li and I then discovered that Theorem A" had been proved in 2001 by J.I. 
Itoh and M. Tanaka [3]. 

Cut  point. In Theorem A" we considered a geodesic from a point y on 8f2 
going into ~ (in a normal direction) until it first hits E at some point 
x = m(y). The point x is called the cut point of  y because if we go beyond 
it on the geodesic to any point x' then x' has a closer point on 8f~ than y 
(this is not difficult to see). Thus E is the cut locus of  0f2. 

Walter Craig suggested to us that we try to extend Theorem A" to HJ 
equations. From now on we consider viscosity solutions u of  (1), (2). First, 
we wish to stress that the function H does not matter much. What really 
matters are the sets where H(x,t ,p)  = 1. For every x in f~ we define 

V~ = {(t, p) l H (x,t,p) < 1} (3) 

and 

S~ = {(t,p) lH(x, t ,p)  = 1}. (4) 

In treating the problem we are free to change the function H provided the 
sets V x are preserved. It is easy to verify that a viscosity solution for such a 
changed H is also a viscosity solution of  the original H .  

At this point we may formulate a general conjecture. We assume the 
following 

(a) For every x in f2, Vx is a convex set lying in a fixed downward 
c o n e  

X={( t ,p ) l  Ipl<_k(C,-t),t<C,}, k,C,>O, (5) 

and for some fixed r > 0,  the ball 

B~(O) = {(t,p) ltE+[p 12< r 2} (6) 

lies in V x . 
(b) For t>_-I  assume that the S x are smooth and have positive 
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principal curvatures bounded away from zero. 

Conjecture  1 Under conditions (a), (b), any viscosity solution o f ( l ) ,  (2) is 
in C u (or smoother i f  i ~  is smoother) on an open set G c f2, and, for  
Z = ~ \ G ,  

H"-' (Z) < oo. 

We have proved this under various additional conditions. These results 
are derived using our principal result, Theorem B; it concems viscosity 
solution u for H = H ( x , p ) ,  independent of  t ,  

H(x,  Vu) = 1. (7) 

m 

Here we assume that Vx in f~, the set 

V = {p ~ 1R ~ I n ( x ,  p) < 1} 

is a bounded closed convex set with smooth strictly convex boundary Sx, 
i.e. its principal curvatures are all positive - -  uniformly in x. In addition we 
assume that Vx, the ball 

B (0) = {[ p [< r}, 0 < r fixed, 

lies in V x . 
Under the conditions above there exists a viscosity solution (see Theorem 

5.3 in [5]), and the Conjecture holds for it: 

Theorem B The singular set E o f  the viscosity solution satisfies 

H "-t (Z) < oo. 

Theorem B is proved using the explicit formula for the viscosity solution 
given in Theorem 5.3 in [5]. It involves the support functions of  the convex 
sets V x . For fixed x ~ ,  the support function of  the set { p l H ( x , p )  = 1} is 
defined, for v ~ IR" by 

cp(x;v) = sup v.p.  (8) 
H(x,p)=l 
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Properties.  ~o is convex in v, positive homogeneous of  degree 1 in v,  and 
smooth in ( x , v ) f o r  v ~ O. Furthermore, cp satisfies the triangle inequality 
in v,  and ' v ' x ~ ,  

{vlqo(x;v ) = 1} 

is strictly convex with positive principal curvatures - -  uniformly in x. 
For curve ~x(t), 0 < t < T lying in f~ 

is a Finsler metric and the v&cosity solution u(x) & given by the shortest 
distance from 0~ to x in this metric, i.e. 

(9) 

Note. Since qo(~;v) may not be symmetric in v,  the length of  a curve ~x(t) 
depends on the direction it is transversed. 

Thus the solution is given by a distance function - -  but in a Finsler 
metric - -  and we extend Theorem A' to this situation. As before we set 
G = largest open subset of  f)  such that for any x in G,  there is a unique 
point y on ~ which is closest to x in the metric. In G ,  u is smooth. We 
consider the singular set 

Z = f ~ \ G ,  

and for any y E 0f2 we consider the geodesic of  the metric, going into f~, 
"normally at y "  until it hits a first point m(y) of Y,. 

Theorem A'".  The length -g'(y) of  the geodesic to m(y) is locally Lipschitz 
continuous in y.  

The condition that the geodesic be "normal" at y is simply that for x 
lying on the geodesic, close to y ,  y is the closest point from 0f2 to x. 

Theorem A ' "  implies Theorem B. 
We do not give here our proof of  Theorem A'". It is not very simple - -  

even in the case of  Theorem A. It is of  greater interest, I think, to describe 
our attempts to attack the general H depending also on t. But first we 
should mention that there are a number of  papers treating the singular set 2; 
and the map y ~ m(y). References may be found in [4]. Here we call 
attention only the paper [6] of  A.C. Mennucci in which it is shown that for 
viscosity solutions o f ( l ) ,  (2), with H independent of  t ,  the singular set Z 
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is a countable union of  smooth ( n -  1)-dimensional hypersurfaces and a set 
having zero ( n -  1) -dimensional Hausdorff measure.See also C. Mantegazza 
and A.C. Mennucci [7]. In A. Cellina and S. Perrotta [2], the map y ~ m(y) 
enters. 

Let us now consider the general problem (1), (2). What we try to do is to 
reduce it to a problem with a new H which is independent of  t. We 
consider the situation described earlier, with conditions (a), (b). 

We now make use of  the fact that it is only the V x that count, not the 
function H .  But first, since we seek positive solutions, we alter the V x 

- I by cutting it off and smoothing it out so that Sx is still below t - - - f  
uniformly convex, and lies in t > _3 Next, keeping the new V, fixed, we 

- -  4 " 

change H by requiring that it is positive homogeneous of  degree one in 
(t, p ) .  For the new H ,  the equation still takes the form 

H ( x , u , V u ) = l .  (10) 

Now comes the main trick: We introduce a new independent variable 
r ~ IR, and set 

z(r,x)=e~u(x).  

Multiplying (10) by e -~ .e r and using the homogeniety we obtain the 
following equation for z 

e-~H(x, zr,Vxz) = 1. 

This is an equation of  the form (7), but in a cylinder Z := IR× f) .  The 
boundary condition is 

z=O on OZ. 

The formula (9), with the suitable support function gives a viscosity 
solution z.  Furthermore, by our construction, 

z(r,x)=e~z(O,x), 

and our desired solution is u = z(0,x). The singular set Z of the solution z,  
say for It!---1 consists of  vertical segments over the singular set Z of u. 
Thus if H (~c~{Ir I---1}) < oo it would follow that H"-I (Y.) < oo. 
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Thus we would like to apply Theorem A '"  to the problem in the cylinder 
Z .  This is, indeed, posible if the (reverse) geodesics from points (O,x), 
x ~ f~ all remain bounded in the r -  direction. Then we can cut down the 
cylinder to make it finite, and round it off. But this need not be the case - -  
and when it is not, our method does not work. 

Here are a few cases where the geodesics are bounded and thus for which 
the conjecture is true: In these, h(x,p) is assumed to satisfy the conditions 
of  Theorem A"' .  

(i) There exists A 0 > 0 depending on h and on f~ such that for any 
0 < A < A  o for 

H(x,t,p) = At + h(x,p), 

the conjecture holds. 
(ii) The same is true for 

H(x, t ,p)=At z +h(x,p), O < A < A  o. 

(iii) For H satisfying the earlier conditions (a), (b), the conjecture holds 
for narrow domains, i.e. there exists a number d o > 0 depending on H ,  such 
that if  f~' is a bounded subdomain of  f~, with o~ '  ~ C 2'~ , and such that the 
Euclidean distance of  any point x in fl '  to 0£2' is less than d o then the 
conjecture holds for f~'. 

(iv) Suppose H is independent of  x, 

H = H(t,p) 

satisfying the condition above: Br(0) c V c K .  Let "/- be the positive 
number satisfying 

HC, o)=I. 

The conjecture holds in case 

T<  max t=:t'. 
H(t,p)=l 

In general, 7-< t .  In case of  equality our method of  proof must fail. In 
fact, if 
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H(t,p) = (tZ+lp 12) + 

the corresponding Finsler metric is Riemannian. But in case n = 1 and 
f 2 = ( - R , R ) ,  for R>~r ,  there is no (reverse) geodesic starting at (0,0) 
going to the boundary of the strip ~ x f2. Neverthless for this H and f2 
bounded, the function 

u(x) = 1 ifd(x)_>~-, 

sin(d(x)) if d(x) < 2 '  

here d(x) = Euclidean dist(x, 0f~), is a viscosity solution and for its singular 
set Z,  H "-I (Z) < oo. 
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: E u : = a  (x)D,ju+b (x)D,u ' c (z )u  = f ( x )  a.e.f), (79) 

where £ is a uniformly elliptic operator with low regular coefficients and 
/3 is prescribed in terms of  directional derivative with respect to a unit vector 
fieldg(:c)=(gl(x),...,g,(:c))defined on0f2.  Precisely, we are interested in 
the Poincar6 problem (79), that is, a situation when g(z)  becomes 
tangential to 0~2 at the points of  a non-empty subse t$o f  0fL This 
way, (7 9) is a degenerate oblique derivative problem because the Shapiro- 
Lopatinskii complementary condition is violated on g (cf.[8, 3, 1 1, 1 2, 1 7, 2, 
5 ,6 ,7 ,  15, 13]. 

It is worth noting that (79) arises naturally in problems of  determining 
gravitational fields of  celestial bodies. In fact, it was Poincar6 the first to 
arrive at a problem of  that type in his studies on tides([14]). The theory of  
stochastic processes is another area where (79) models real phenomena. 
Now /2describes analytically a strong Markov process with continuous 
paths in f2 (such as Bronian motion), while Ou/Og corresponds to reflection 
along g on 0f~ \,~ and to diffusion at the points of  $, and ~ru describes 
absorption phenomena. 

The general qualitative properties of (79) depend strongly on the 
behaviour of  g neat the tangency set g. Let 7 ( z )  be the scalar product of 
g(:c) and the outward normal u(z) to 0f~. Depending on the way 3'(z) 
changes or no its sign on the trajectories of g when these cross g, (79) may 
have either a kernel or a co-kernel of infinite dimension (see[8,3,1 1]). We 
are dealing here with the simplest case when 7 preserves the sign on 0f~ 
which means g is either tangent to 0f2 or directed outwards f2. It means 
g is of neutral type and, at least in the case of  G '~ data, (79) is of quasi- 
Fredholm type. In other words, (79)has zero index, but the solution "loses" 
regularity from the data near the set g ,  whence (79)is a problem of  sub- 
elliptic type. That loss of  smoothness has been measured in terms of order of 
contact between g and 0f~ in case Sis  a sub-manifold of 0f2, of  co- 
dimension one with g transversal to ~f (cf.[2,5,6,7,]). We deal here with the 
general situation when $ can be a subset of 0f2, of  positive surface measure 
subject to a kind of  non-trapping condition that all trajectories of g through 
points of  $ leave g in a finite time. 

The problem (79) (with zero lower order terms in £ )  has been studied in 

W z'p -framework in case of  low regular coefficients(see[10]). Indeed, the 
loss of smoothness already mentioned, imposes some more regularity of  the 
data near the set $. The approach used in [10] is based on elliptic 
regularization of  (79). That is, perturbing the boundary condition to 
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Ou/O(g + eu) + au  = qo one gets a regular oblique derivative problem for 

any e > 0, which admits a unique strong solution u, E W 2'p (f2). The non- 
trapping condition ensures the possibility to estimate II u~ I~v2,,,(~) in terms of 

II u~ IIL~(~) independently of e and therefore letting e ~ 0 would give a 

solution of (7 9) once one disposes of a uniform estimate [1 u~ IIL~(~)< C. This 

last bound can be easily obtained from a variant of Aleksandrov-Bakelman- 
Pucci (ABP) maximum principle when p > n, and this naturally restricts 

solvability and uniqueness of (79) ([10, Theorems 1.1,1.2])to W2'P(f2) 
with p > n. 

Our main purpose here is to improve the existence and solvability results 
from [10] extending them to WZ'P(f~) for any p ~(1,oo). For this goal, we 
employ an approach completely different from that already used in [10], 
which fits better in the W2'l'-framework than elliptic regularization. In 
contrast to the a'posteriori estimate (see (1.5)) in [10]), we derive here an a' 
priori estimate (Theorem 4) for any W2'p(f2) solution to (79)VpE(1,oo). 
To get uniqueness of solutions in W 2,p (f2) for any p > 1, consider a strong 
solution u to the homogeneous problem(79) (i.e., f = 0, ~, - 0). Now, if (79) 
was a regular problem with smooth coefficients, the regularity of the right- 
hand sides would increase regularity ofu  at a level to be able to apply ABP's 
maximum principle. Unfortunately, this is not our case due to the above 
mentioned loss of smoothness near C and low regularity of the coefficients. 
However, even if (79) is degenerate problem it behaves like an elliptic one 
for what concerns the degree of integrability p. It means the second 
derivatives of u have the same rate of integrability like f and ~ (Proposition 
8). For the solution u of the homogeneous problem this automatically 
implies u E W ~'q (f2) for any q > 1 and this suffices to get u = 0 through 
ABP. With the a'priori estimate and unicity at hand, it remains to apply 
Riesz-Schauder's theory in order to get strong solvability in W 2'p (f2) for any 
p > l .  

To complete this introduction it should be noted that, for the sake of 
conciseness, an additional assumption (1 1) is imposed to the non-trapping 
condition (4) that all arcs of g-trajectories contained in £are  of small 
enough length (which is, for instance, the case of codim 0,£ = 1 and g 
transversal to £) .  It is only a technical assumption which brings to light the 
non-local character of (79)near £and  simplifies the proofs. Anyway, the 
results hold true under the sole non-trapping condition (4) and the 
corresponding proofs will be published elsewhere. 
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. A S S U M P T I O N S  A N D  A U X I L I A R Y  R E S U L T S  

Let f~cll~", n > 3 ,  be a bounded domain with reasonably smooth 
• ( )  (, (). . .  ())  boundary Denote by u x = u 1 x , ,u,, x the unit outward normal to 

(0  ( ... ( ) )  (3f~, at xe0f~ ,  and let g x = g~(x), ,g, x be a unit vector field 
defined on 0f2. Decompose it i n t o g ( x ) =  "r(x)+"/(x)u(x)Vx eOf2, where 
T:0f2---~ R" is the projection of  g (x)on  the tangential hyperplane to 8f~ 
at x E ct~ and 3, : a f ~  ~ ~. Set 

for the subset of  c3f2 where the field g(x) is tangential to the boundary. 
Hereafter we set iV" C f~ to be a closed neighbourhood of  g in f~. 

Suppose L; is a uniformly elliptic operator with measurable coefficients, 
satisfying 

a ~' (x)=a~i(x), 3A = const> 0such that 

)~-'l~12<_a'J(z)¢,£j <_Al¢l 2 a.a.x~f~,  V ¢ ~ " ;  
a '~ ~VMO( f f t )NC° , I (N ' ) ;  b ' ,ceL~( f f t )nO° , ' ( jV ' ) .  

(1) 
(2) 

Here VMO(f~) stands for functions of  vanishing mean oscillation and C °'1 
is the class of  Lipschitz continuous functions. It is to be noted that (2) and 
Rademacher's theorem ensure the coefficients of  £ belong to W TM (A/'). 
Moreover, a 'J e L ~° (f~) as consequence of ( l ) .  

Concerning the boundary operator B ,  we suppose 

e,, o ~ c ° " ( m ) n c ' " ( m n N ) ,  (3) 

The geometrical meaning of  3'(x) >_ 0 is that g(x) is either tangential to af2 
or is directed outwards f2 at each point x E af2. According to the physical 
interpretation of  the problem (i°) in the theory of Brownian motion, that 
means e is of neutral type on 0f2 (cf. [2], [15], [13]). Finally, we impose a 
kind of  non-trapping condition on the set of  tangency 

the arcs OfT- trajectories lying in g are 
all non-closed and of  finite length, 

(4) 
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which simply means the "r-trajectories (coinciding with these of g one  !) 
leave the set of tangency C in a finite time in both directions. 

In what follows, we will use a suitable extension of the field g in a 
neigh-bourhood of 0~. For this goal, for any point x sufficiently close to 
0f~ set d(x)=dist(x,0f2),  ~ = { x ~ : d ( x ) > _ d o > O  } with d o small 
enough. It is well known (see [4]) that to each x E f~ \ f~ there corresponds a 
unique y(x) E Of~ closest to x, d(x) has the regularity of af~ at y(x) E 0f~ 

and V d ( x ) =  u(y(x)).  This way, defining 

L(,) = e(y(z))+~(x)V.(~) V e ~ \ ~ ,  

it is clear that LEC°,'(f~\f~)nC~,'((f~\~)nAf). Moreover, the 
following result holds true (see [10, Proposition 2.1], [15, Proposition 
3.2.5]): 

Proposition 1 Assume (3) and (4). Then the field L(x) is strictly transversal 
to O~ o and any point of  f~ \ ~o can he reached from O~ o through an L- 
trajectory of  length at most n = const > 0. 

Set further ~b(.,x):]l( ~ ]~" for the parameterization of  the L-integral 

curve passing through x and define ~ --= ~o U { ~b ( s, x ) : s E [0, t ] , x E 0 R }. 

Then {~}t>o is a non-decreasing family and to each 6 > 0  there 

corresponds a 0(6)>0,  independent of t, and such that dist 

(~,  f~ \ ~+6) >- 0 whenever Q \ ~+~ ~: ,I~, 

In what follows we will employ local a'priori estimates of special kind 
for the strong solutions to Dirichlet problem which take precise account of 
the distance to the boundary. 

Proposition 2 Assume (1), (2) and O~ 6 C U. Let ~ C ~ be open subsets of 
f) with dist (f~, 0~  \ 0~) _> 0 > 0 /f ~ ~" f~ and dist (f~, 0~2) >_ 0 > 0 
when f2 - ~. Then VueW2'"(~) ,  pe(1,oo), one has 

it D~  I1.,(~)< ¢' (ii Zu il.,(..) + II ~ il:-,,,,.,,(~ o~)) 

+c,,(o )(, u +, ) 

where the constant C' depends on n,p,A,~and the coefficients of the 
operator £. and C" depends on 0 in addition. 
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Proof. Taking a cutoff function r/(x) e C®(~) such that r/-1 in 
supp 7/C f~z, max~ I D°r/ l -  < CO-I<,°ne gets 

,C(rIu)=~?E.u +(a'JD~/i +biDffl)u + 2a~JDjiD, u=: F(x) a.e.a. 

The choice of r/ and [1, Theorem 4.2] imply 

l[ D2u IIL,,(~ )= II D2 (r/u)IIL,,(~)-<II D2 (r/u)llL,,+) 

< C(ll F II:,(,,, +II ~u Ilw,-.,,,.,,(~)). 

Further, 

I IFI I~<~)<1 InZ:~l I~,,<~) 
+ll(a Dorl+b D, rl)u+2a D/TO, ull~,,(~) 
-<1 IZ, ul I,,,<,~> +c  (o)1 I,-,l I,,,,-,,<~), 
II ~,~ I1,,,,-,,,,,,,<~)- < g II ~ IIw:-,,,,.,,<o,~ ~ )  +g(o)II ~ IIw,-,,,,.,,<o,~, oo,,) 

and these give the desired estimate. [] 
The following Gronwall-type inequality (proved in [17, Proposition 4.1]) 

will be useful in the forthcoming consideration. We propose the proof here 
for reader's convenience. 

Proposition 3 Let (:[0,m)--. [0,oo) be a bounded and continuous function 
and let there exist positive constants 6, A and C such that 

~ ( t )<_A+C ( ( s + 6 ) d s  

If 6 is so small that C6e < 1 then 

et/~ 
((t)  < A(1-t- 2q~-z~zr (1 _ C6e) 1 

Proof. Induction in N E N gives 

V t>0 .  

Vt>0. 
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c N ( t + N S )  ~ , ,  ~--~C~(t+k6) k 
if( t)< sup~[t) ±,,~Z. ~ 

/~, R+ k=0 

Apply now the Stirling formula ( k ! = x / ~ e k k k ( l + a k )  with a k --->0 + as 
k ~ oo ) in order to get 

Ck(t +kS)k Ck6ke k 1-r--~-) (C6e)~eq, 
< < 

Thus, CSe < 1 implies 

C N (t + NS) N < (CSe)Ne q' 
---~0 as N---~oo 

and therefore 

~ C k ( t + k 6 )  k e'/' . ,  .~  

~ < 1 + ~ - k ~ l ( e 6 e  ) = l S  
eq~C6e 

,J2-~ (1 - CSe)" 

2. L p -A  P R I O R I  E S T I M A T E S  

Consider the Banach spaces 

5 vp (~2,Af) = {f E L p (~) :  Of/OL E LP (Af)} 

equipped with the norm []/[[~-,,(~,~v) = [[/[[L"(~) + [[Of/OL[[L,,(~V) , 
fractional Sobolev space 

(I)P ((~r'~,,i/f) : {(pE WI'I/p'P(O~'~):~OE W2-1/p'P(O~'~r).]~f)} 

normed by I1~11~,,(~,~) = Mw,,,,,,,(o.) + Mw2,,,,,,(0.o~). 
Our first result concerns W 2,p -estimates for solutions to (7'). 

and the 
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Theorem 4 Suppose (1)-(4) and let u e W 2,p (f~) be a strong solution of  
('P),pe(1,~), with f e f " ( f~ ,A; )  and ~e~"(af~,A/'). Then 
au/OL E W 'p (.A/') and there is an absolute constant C such that 

--- o (114.(.) + + 

(5) 

Proof. Let .Af 'c  .N'" c .Af be closed neighbourhoods of £ in f2. Bearing in 
mind (1)-(3) and 7 ( x ) > 0  VxEOf~\A/"~, we obtain that (7 9) is a regular 
oblique derivative problem in f2\ A/"t and therefore the LP-theory (see [9]) 
implies 

-< c(llull.,<.) + Ilfll.,(.) + (6) 

Further, (2) ensures that Ou/OL e W 2,v (A/') and it verifies 

C(Ou/OL):O#OL 
-(Oa'i/OL)D,ju-(Obi/OL)D,u-(Oc/OL)u 

+2a~JDjLkD~U + a~D, jLkDku +biD, LkDku 

Ou/OL = ~ -  au on 0fL 

a . e . .A/" , 
(7) 

To estimate the W 2,p -norm of u in A/", take arbitrary x c A/" and let 
¢( t , x )  be the parameterization of the L-trajectory through x. Surely 
¢ ( t , . ) e C U ( N ' ) .  Without loss of generality, we may choose Af" with 
C l'a smooth boundary and in such way that for any x in the interior of Af" 
there corresponds a unique [ ~(x)>0'~EC~'a(A/")0.t~] such that 
¢(-~(x) ,x )eO.Af" \ .A f ' .  Thus, VtE and a.a. x ef~ A.Af" we have 

f_ 
0 

~,(x) = u o ¢ ( - ~ ( z ) , x ) +  o u  o ¢ ( , , x ) d ,  

P' Ou 

The first term at the right-hand side regards values of u out of .Aft and (6) is 
applicable to it, while the integrand concerns values of Ou/aL in f2 s fq Af". 
Therefore, taking second derivatives and then L p -norm lead to 
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U p P D2u ;'(,~nJ¢") -< 6'(11 IIw,,,,<,,\.)+ Ilo~/oLIl~,,,,<o,.~) 
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F t L L,'(~ n~v,,) p ds). +Jo D2 (Ou/O ) (8) 

Let sE[0,t] be arbitrary. By Proposition 1, for each 6 > 0  there exists 
0 (6 )>0  such that dist (f~s,f2\f2~+~)>0 whenever f~\f~+~.~,~'. 
Employing the fact that Ou/OL solves locally the Dirichlet problem (7) and 
using Proposition 2 with f~ = f~ 71Af" and f~ = ~+~ fq .Af", we obtain 

D~(Ou/OL) :,'(~,n~',) <C D2ul:, n~v, (9) '(~, ') 

+c'(o)(K" + 114,,,,(.) + liar/o LII;,.,,(~) ) 

with C independent of 5 and K = II:II,,,(o.,:) + II:IIo,,(~,,:>. Further, 

lieu/a LII$,.,,(..) -< liar/a LII$,,,,(..,., + liar/a LII$,.,,:> 
_ P P L p < I1~11:.,,(o,,:) + ~llo~/oLIIw2,,,(.,.~, > + o(~)llo~/o IIw,.,,(,I,\,v,) 

after interpolating the L p -norms ([4, Theorem 7.28]) with arbitrary e > 0 to 
be specified later. Remembering (7), we have 

and therefore (9) becomes 

D2(Ou/OL) ;(,~,nff") <C Dzu ;'(~,.,n~v") 

+o'(o)(K' + +11;.,(.))+ c"(o:)114,,,,<.), 

after applying (6). This way, (8) reads 

¢(t) < c J~¢(~ + ~)ds + c'(o)(~,' + +ILL.,(.)) + o"(o,~)HL,,,,(.) 
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with ~ ( t ) =  D2u " for t E [0,~]; ( ( t )  = 0 i f ~ N A P '  = ~ and L' (r~n]¢") 

~(t)  = D2u ~,,(.,) when t > ~. The multiplier C of the integral above is 

independent of 6 and c and therefore taking 6 > 0 (cf. Proposition 3) 
sufficiently small, we get 

which, coupled with (6), gives 

;,(,,, _< + + 

To get (5), it remains to choose ~ so small that C~ < 1 and then interpolate 
P once again in order to move IlUllw,.,,(n) on the right. [J 

R e m a r k  5 It is clear that the Lipschitz continuity in A/" of  the coefficients 
of  / :can  be relaxed to essential boundedness in.N" of their directional 
derivatives with respect to the extended field L. Moreover, instead of  
b', c E L °° (f2) one can ask b ~ E L q (fl) with q > n if p < n, q = p otherwise 
and c E L" (f2) with r > n/2  if  p < n/2,  r = p otherwise (see [9, Section 
2.3]). 

. U N I Q U E N E S S  R E S U L T S  

We start with the simpler case p > n. 

L e m m a  6 Suppose (1), (2), (3) and assume c(x)<Oa.e ,  in f~ and 
a ( x ) > 0  on 0~2. Let p > n and let u, v E W2'" ( f2 ) be two solutions o f  ( 7 9) 
with fEf'P(12,.N'),qoE(bP(af~,./kf). Then u=-- v in f2. 

Proof. The difference w : = u -  v E W2'p(f2) C C](f2) (note p > n!) solves 
the homogeneous problem 

{ / : w - - 0  a.e. f2, Ow/Og+cr(x)w=O on0f2. (10) 

Suppose w assumes positive values in fi and set w(x 0 ) = max~w(x) > 0. 
Then x o ,~' f~ as consequence of the strong Aleksandrov maximum principle. 
In fact, x 0 E f~ and [4, Theorem 9.6] imply 
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w(x)  = const = w(z  o) > 0 Vx E f2 which is impossible in view of the 
boundary condition in (10) which holds in a classical sense. 

Further, assuming x0E0f2, one has (Ow/Oe)(xo)>_ 0 (precisely, 
" >  0" if x0 E Of 2 \ ,~ as it follows from the boundary point lemma (see [4, 
Lemma 3.4]), and "=0" when x 0 E g ). Anyway, 

(ow/oe)(xo) + (Xo)W(Xo) > o 

m 

which contradicts the boundary condition in (10). Therefore w ( z ) <  0 in f2. 
Similarly, one obtains w(x) >_ 0 in f] whence w - 0. 11] 

R e m a r k  7 Let us point out that Lemma 6 holds in a general situation when 
(4) is not necessarily verified. If, in addition, the non-trapping condition (4) 
holds then Lemma 6 remains still valid (see [13]) for cr > 0 on Of 2 and such 
that either c ~" 0 or cr ,~ 0. 

To cover the case p < n we will employ the regularizing properties of the 
couple (/3,/3). Roughly speaking, it means that even if (79) is a degenerate 
problem and therefore the solution "loses" derivatives from the data, (79) 
behaves like an elliptic BVP for what concerns the rate of  integrability. That 
is, higher integrability of  ( f ,~ )  implies higher integrability of  the second 
derivatives of  solutions to (79). We will restrict, however, (4) to the 
following small non-trapping condition 

the arc-lengths of  the T-trajectories lying in £ 
are bounded by a sufficiently small number n0. 

(11) 

For instance, (1 1) is surely verified when ,f is a submanifold of  0f~ of  co- 
dimension one and g is transversal to it. 

Proposi t ion 8 Suppose (1)-(3), (11) and let uEW2'p(f2), pE(1,oo), be a 
solution of (7 9) with fE.T'q(f2,.N'), ~,Ecbq(c3f2,.M) and q>_p. Then 

' 

Proof.  Take the neighbourhoods .M r C .M"C .M of  L" in f2 as in the proof 
of  Theorem 4 and let .M" be so "narrow" that .M"C f ~ \ ~  (see Proposition 
1). Employing the LP-theory ([9]) of regular oblique derivative problems 
(g (x). u (x) > 0 V x E Of 2 \ .M~), we get immediately u E W 2,p ( f2 \ .M~). 

This result and forthcoming Theorems 9, 10 and 1 1 remain valid in the general situation 
when (4) holds instead of (1 1). The corresponding proof of Proposition 8, however, is 
rather technically complicated and will be published elsewhere. 
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To obtain higher integrability of the second derivatives in Af" we will use 
the fact that Ou/OL solves locally the Dirichlet problem (7) but first of all we 
need to modify the original problem (7)), For, according to Proposition 1 for 
any x E ~ \ f ~  there is a unique rl(x)EC°"(~\~)MCI'I(.Af) such that 
¢ ( - r / (x ) ,x )E  0 ~ .  Suppose the function a is extended in l ) \  ~ such that 
o E C °'1 ( ~'~).(~ ) ["] C 1'1 (Af) and define 

; ~l(X) 

~..]0 

Indeed, (OE/OL)(x)=a(x)VxE~\f~ and E,OE/c')LEC'"(Af). At this 
point, the function ~)(x)---" u(x)e ~(~) E W2'P(.Af)MW '~'q (Af\ Af') solves the 
problem 

"a~D~jU + B~D~U + C U =  ](x):= f (x)e  ~(=) a.e. Af , 

~U/OL:+(z)::V(~)e ~(=) on 0an0Af ,  

with 

, '  (~) = b' (~) -  2+' (~) D y  (~), 
C(x)= c (x ) -a  ij (x)Dij~( x) + a ij ( x)D,~(x)Dj~(x)-b~ (x)DiE(x). 

Moreover B',C, OB~/OL,OC/OLEL~(Af),f, Of/OLELq(Af) and ~,E 
W 2-~/q'q (OQ M OAf). It follows from Theorem 4 that and it satisfies 

"a'JDi~V + S 'Dy +CV= F(x):=Off/OL 

-(  Oa *j/OL )D~iU -( OB~/OL )D,U-( OC/OL )U 

+ 2a~iDjLkDaU + aiJDijLkD, V + BiDiLkDkU a.e.Af, 
V=~5 on o~nOAf 

(12) 

We have, frst of all, FEff(Af\./V") and V=~EW2-1/q'q(Of~NO.N ") 
whence V E W 2-1/q'q (ON"). Later on, for any x E A/" there is a unique 

(x) E C '" such that ¢ ( -~  (x), x) E 0Af" and 

f 
( ( x )  

U(x) = Uo¢(-~(x) ,x)+ Vo~( t -~(x) ,x )d t  (13) 
t ] O  
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for a.a. z e a l " .  Since U o ¢ ( - ~ ( x ) , x ) i s  a W2'q-function 
(~ ( -~ (x ) , x )EA f ' )  we take the derivat ives o f  U(x) up to second 
order  and subst i tute  them into the r ight -hand side of  the equat ion in 
(12), obta in ing  that V solves the non-local Dirichlet  p rob lem 

I j[o Ux) a'JD#V+= ff~(z)+ f~ (V)o~b( t -~ (x ) , x )d t  a.e. Af" 

[ vlo~oo~,, = ~ ~ w2-l/q'q, vlo~,,,~, E W2-1/q'q~, 
(14) 

~ f t t where F(x):=ai/aL+ r.:i(v)(x)+ ~(U)oV(-~/(x),x), and Z:~ and 
are linear differential operators with L °° coefficients, ord £i = i, ord ~ = 2. 
Therefore, V EW2'P(.Af ") and Sobolev's imbedding theorem imply 
FELq'(Af ") with q'=min{q, n p / ( n - p ) }  if p<n ,q '=q  otherwise. 
Indeed q~ > p. 

We will prove now V E W 2'q' (A/ ' )  by means of  the contraction mapping 
principle. If  q '=p  then we are done. Otherwise, take any r ep,  q' and 
define the operator T :  W2'"(Af")--+ W2'"(A/') follows: for any 
w E W 2,r (JV') the image Tw E W ~'~ (.N") is the unique solution of  the 
Dirichlet problem 

I t+,f  ' a'~D,j (Tw) = £2 (w) o ~b(t - ~ (x),x)dt E L" 

[(Tw) = V E W "-/ '  on OAf". 

a.e..A/" 

Indeed, for any w~, w 2 E W 2,r ( .N')  the difference 7-w I -7"w 2 solves 

f ~(x) a'~D(j(Tw,-Tw:)= ~ ( w , - w 2 ) o ~ b ( t - ~ ( x ) , x ) d t  a.e.Af" 
. . .]0 

[ (Tw, -  Tw2)= 0 on OAf" 

and [ 1 ] implies 

I Lf°°~(x) L' (N") 
]]Tw,-Twz[[w~.,(~¢,)<C ~ ( w , - w 2 ) o ¢ ( t - ¢ ( x ) , x ) d t  

< C max ~ ( x )  I1,,,, - - -  
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with a constant C depending on the coefficients of E, and their derivatives 
in direction of L. It is clear now that if both n 0 from (11) and 
d o = dist ( ~ ,  0f~) were small enough, then C max~  ~ (x) can be made less 

than 1 and therefore T will be a contraction from W 2'~ (.N") into itself for 

any r E [p, q']. In particular, there is a unique fixed point of T lying in 

W~'"(JV ") for any r E  [p, qV]. Since V E W2'P(A/") solves (14) and thus is 

already such a point, we conclude V E W 2'q' (.N"). Hence, U E W 2'q' (.IV") in 

view of (13) and therefore uEW2'q'(Af"). To complete the proof of 
Proposition 8 it remains to repeat the above procedure finitely many times 
until q' becomes equal to q. 

I] 
The general uniqueness result is contained in the following 

Theorem 9 Under the assumptions of  Lemma 6, let p E (1, oo) and suppose 

(1 1) in addition if p <_ n. Let u, v E W 2'p (f~) be two solutions of  (79) with 

f E UP (f~,Af),~ ECbP(Of~,.Af).rhen u -  v in ~. 

Proof. We have to treat only the case p _< n. The difference w = u - v  
solves the homogeneous problem (10) with zero, and therefore C °°, right- 
hand sides. According to Proposition 8 one has w E W 2'q (f~) for any q > 1 
and therefore application of Lemma 6 is possible. El 

. REFINED L v - A PRIORI ESTIMATE AND 
EXISTENCE 

Under the uniqueness hypotheses of previous section we are able to drop 
out the norm II u I1~,(~,) from (5). 

Theorem 10 Suppose p E (1, oo), (1)-(4) and (11) in addition if p <_ n. 
Assume moreover c<_O a.e. ~ and cr>O or ion .  Let u E W  ~'p(~) be a 
strong solution of  (7 9) with f E U p (~,  Af)  and ~o E ¢b F (0~ ,  iV'). Then 
there is a constant C independent of  u and such that 

II u I1~,,(.)< C(ll f I1~,,(.,~) + II ~ I1~.(o~,~)). (15) 
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Proof.  Note first of all that if p > n then (15) follows immediately from (5) 
and [16, Theorem 2.6.2]. In fact, uEL~( f l )  and Ilull~:(.), and therefore 

II u I1.,(~) also, is estimated in terms of  the respective norms of  qo and f. 

Thus, let p < n and suppose (15) is false. Then there exists a sequence 
{u k } E W~'P (f l) such that 

II u, I1.,+)= 1, II z:~. I1:,,<.,~>--+ o, II u ~  I1+.<o.,~)--+ o as k ---+ oo. 

By means of the a'priori estimate (5), [1% II:,,(.) is bounded and therefore 

there is a subsequence, still denoted {u k }, such that u k ---, u E W 2,p (fl) 
weakly as k ---+ oo. Therefore, 

whence £u=O a.e. in 12. Moreover, the compactness of  the imbeddings 
W 2'" (fl) ---+ W"" (12) ---+ L' (12) ensures Bu = 0 on 0f~ and II u I1.,+/= 1. This 

last is, however, impossible in view of  the uniqueness assertion (Theorem 9) 
which gives u = 0. G 

We are in a position now to prove solvability of (7)) for any p > 1 
generalizing thus [ 10, Theorem 1.1 ]. 

Theorem 11 Let pE(1,oo) and assume (1)-(4) and (11) in addition when 
p<n .  Suppose further c(x)_<0 a.e. in12, a ( x ) > 0  on012. Then the 
Poincard problem (7)) is uniquely solvable in W2'P(12) for any 
f ~m,(r~,:v), : ~¢.(012,/). 

P r o o f .  Fix q > n if p _< n and q = p otherwise, and consider sequences 

{fk}Ewi'q(fl), {~ok}EW2-'/q'q(012)such thatf~--+f in $r" (~, A/'), 
~o k --+qo in (bP(O12,.Af) as k-+oo. Noting that [10, Theorems 1.1, 1.2] still 
hold true for the operator C with lower-order coefficients satisfying (2), we 
get from these results and [10, Remark 1.I] that there exists a unique 
solution {Uk} E W 2'q (12) of  the problem 

{c,~=S~(~) a.e.r~, O u / O ~ + , ( ~ ) ~ , ~ = : ~ ( ~ )  on Or~. 
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Further, p _< q anyway,  and therefore Theorem 10 implies 

It follows {u~} is a Cauchy sequence in W2'P ( ~ )  and therefore converges to 

a strong W2'P(f2) solution o f  (7~). The unicity o f  that solution is a 

consequence o f  Theorem 9. I~] 
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Abstract: Pairs of compact convex sets naturally arise in quasidifferential calculus as 
sub- and super-differentials of a quasidifferentiable function (see [1 ]). Since 
the sub- and superdifferential are not uniquely determined, minimal 
representations are of special importance. In this paper we show that the 
problem of finding minimal representatives for the elements of pairs of 
compact convex sets is a special case of the more general problem of 
determining minimal fractions in ordered commutative semigroups which 
satisfy the order cancellation law. All the material of this paper is taken from 
the recently published textbook on pairs of compact convex sets ([11]). 

Key words: quasidifferentiable function, pairs of compact convex sets. 

AMS(MOS) Subject Classification: 26A27, 90C30. 

. NOTATIONS AND PRELIMINARIES 

For a topological vector space X = (X,~-) let us denote by A(X) the 
set of all nonempty subsets of X, by /3*(X) the set of all nonempty 
bounded subsets of X, by C(X) the set of all nonempty closed convex 
subsets of X, by /3(X)=/3*(X) A C(X) the set of all bounded closed 
convex sets of X and by /E(X) the set of all nonempty compact convex 
subsets of X. For A,B E.A(X) the algebraic sum is defined by 
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A + B = { x = a + b I a E A  and bEB} and for A E R  and AEA(X)  
the multiplication is defined by AA = {x = Aa [ a C A}. 

The Minkowski sum for A, B E ,A(X) is defined by 

A + B = c l ( { x = a + b l a E A  and b E B } ) ,  

where cl(A) = .4 denotes the closure of  A C X with respect to r. With 
relint (A) we denote the relative interior of  A C X with respect to 7-. 

For A, B E ,A(X) we define: 

A ~/B = c o n v  (A tO B), A V B = A ~/B = cl conv(A tA B) and by 

A _v B = U~.~_>0.,~+a=l (aA + 13B) the skeleton of A and B. It is easy to 

observe that A V B C A ~ / B c A V B .  In the case when A and B are 

convex sets then A v B = AV B. For two elements a,b E X the interval 
with end points a and b will be denoted by [a, b] = {a} V {b}. 

For compact convex sets, the Minkowski sum coincides with the 
algebraic sum, i,e., for A, B E/~(X)  we have A 4- B = A + B and also 

A ~/B = A V B. We will use the abbreviation A + B V C for A 4- (B V C) 

and C + d  instead of  C + { d }  for all bounded closed convex sets 
A, B, (7 C ,A(X) and a point d C X. 

A convex subset B of  convex set A C_ X is called an extreme subset if 
for every x, y E A  and some t c ( 0 , 1 )  the condition t x + ( 1 - t ) y E B  
implies that x, y E B. An extreme subset which consists of  a single point 
only is called an extreme point and £(A) denotes the set of  extreme points of  
A. 

A convex set which is the convex hull of  finitely many points is called a 
polytope. The set of  all polytopes of  a vector space X is denoted by P(X). 
An extreme subset of  a polytope is called a face and a one-dimensional 
extreme set o f a  polytope is called an edge. 

If (X, 7-) is a topological vector space and X* its dual space, then we 
denote for A c /C(X)  and f C X* by 

HI(A)= {zE Alf(z)= m~x f(y)} 
the (maximal)face of  A with respect to f. 

Finally, we will call a set A E/3(X) a summand of  B E 13(X) if there 
exists a set C E B(X) such that A 4- C = B. 
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The following statements hold for convex sets: 

Addition of maximal faces: 

Proposition 1.1. Let X be a topological vector space, f E X* and 
A, B E E(X). Then 

Hs(A + B) = HI(A) + Hs(B ). 

Proof: Assume that x = a + b E H s ( A +  B) with a E A and b E B. Then 
a E HI(A ) and b E Hs(B ). Indeed, assume for instance that a ~ Hs(A ). 
Since A E K:(X) is compact, there exists an element a t e  A with 
f(a) < f(a'). From this it follows that 

f(x)  = f(a) + f(b) < f(a') + f(b) = f(a' + b) < sup f (u  + v) = f(x) 
ueA  

uE B 

because x E H s (A + B). This implies the inclusion 

Hs(A + B) C_ Hs(A ) + Hs(B ). 

The reverse inclusion can be proved in the same way. Assume that 
a E HI(A ) and b E Hs(B ). Then x = a +b E Hz(A + B). Let us assume 
that this is not true. Then there exists an element x J = a ~ + b ~ E A + B with 
f(x) < f(x'). But this implies: 

f(a) ÷ f(b) = f(x)  < f(x ')  -= f(a') ÷ f(b') 

and hence f(a) < f(a') or f(b) < f(b') which completes the proof. 

The additivit~, of the convex hull: 

Proposition 1.2. Let X be a vector space and A, B C X. Then 

conv A + c o n v  B = c o n v  (A + B). 

Proof: First observe that 
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cony A + B = U (conv A + b) = [.J [conv (A + b - b )  + b] 
bEB bEB 

C_ U (conv [conv (A + B ) -  b] + b) = cony (A + B). 
bcB 

Since A + B c c o n v A + c o n v B  we have c o n v ( A + B )  c c o n v A +  
cony B. Now it follows from the above observation that 

conv (A + B) c_ eonv A + c o n v  B 

c_ cony (A + conv B) 

C_ cony [cony (A + B)] = cony (A + B). 

E] 

. T H E  O R D E R E D  S E M I G R O U P  O F  C O N V E X  S E T S  

We state two fundamental properties about closed bounded convex sets 
in topological vector spaces, namely the order cancellation law [13], [16] 
and Pinker's formula [ 12]. 

The order cancellation law: 

Theorem 2.1. Let X be a topological vector space. 
A C .A(X), B E 13*(X) and C E C(X) the inclusion 

A + B _ C C + B  implies A C C .  

Then for any 

(olc) 

Proof: Let H be a base of neighborhoods of zero in the topological vector 
space X. Given any neighborhood U C H we define a sequence (V,,),,~ N 
such that: 

Vo+VoC_U and V,,+,+V.+, C ~ r  

From A + B C_ C -[- B it follows that for every V C H we have 

A + B G C + B + V ,  
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and hence for every n E N we have: 

A + B C _ C + B + V , .  

Now let a E A and b 1 E B. Then 

a + b  1 = c  l + b  2 + v  1 for some 

a + b  2 = c  2 + b  3+v~ for some 

and in general, for every n E N : 

a + b,, = c, + b,+ 1 + v, for some 

Hence 

a l ( q  + + cn ) 1 
. . . .  + -- (b,,+l 

n 

and thus by the convexity of C 
sufficiently large n E N that 

a E C + V o  +V~ +...+V,, C_C+U. 

Thus A C_ C + U for every U E b/, and therefore, A C C. 

795 

q ~C,b~ EB, v~ cV~, 

c 2 EC,  b 3 EB,  v 2 E V  2, 

c n ~ C, bn+ 1 E B,  v n e K,. 

-b,)+L(v, +...+v,), hen  
n 

and the boundedness of  B we get for 

the order 

AUB + C = ( A  + C)U(B + C). 

Lemma 2.2. Let X be a vector space and A, B, C C X subsets. Then 

Next we prove an identity for bounded closed convex sets, which was 
first observed by A. G. Pinsker [12] for locally convex vector spaces and 
will be called the Pinskerformula. For its proof we need the following three 
lemmas: 

T h e  P i n k e r  f o r m u l a :  

The implication A + B C _ C + B  :::> A C C  is called 
cancellation law and the weaker implication A + B = C + B =~ A = G is 
called the cancellation law. 
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Proof: For z E A u B + C ,  there exist c E C  and d E A U B  such that 
z = c + d .  Hence x E ( A + C ) U ( B + C ) ,  i.e. A U B + C c _ ( A + C ) u  
(B+C). 

Conversely, for z E (A + C) U (B + C) there exist elements e E C and 
d E A  or d E B  such that z = c + d .  Hence z E A U B + C ,  i.e. 
(A + C)U(B +C) a_ AU B +C. 

[E 

Lemma 2.3. Let X be a vector space and A, B, C E .A(X) and C a convex 

set. Then 

conv(A U B) + C = conv[(A + C) U (B + C)]. 

Proof: From Lemma 2.2 and Proposition 1.2 it follows that 

conv[(A + C) U (B + C)] = conv[(A U B) + C] = conv(A U B) + C. 

Lemma 2.4. Let X be a topological vector space, and A, B, C E A( X) and 
C be a convex set. Then 

((A -i- C) V (B -i- C)) = C -i- (A ~/B). 

Proof: By Lemma 2.3 we have: 

C -i- conv(A U B) = el (el (conv(A U B) + cl(C)) 

= cl (conv(A U B) + C) 

= el conv((A + C) U (B + C)) 
= cl conv(cl ((A + C) tO (B + C))) 

= cl conv(cl (A + C) U cl (B + C)), 

since for every D C_ X we have cl conv(D) = cl conv(cl O). 
L1 

This implies the Pinsker formula: 

Proposition 2.5. Let ( X, 7-) be a topological vector space, A, B, G E A(  X) 
and G be a convex set. Then 
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(A -i- C) V (B -i- 6') = 6' -i- (A V B) (Pinsker formula). 

From the algebraic point of  view the set 13(X) of all nonempty closed 
bounded convex subsets of  a real topological vector space (X, T), endowed 
with the Minkowski addition is a commutative semigroup with unit 1 = {0} 
(i.e. a set endowed with a group operation, without having inverse elements) 
with cancellation property which contains E(X),  i.e. the set all nonempty 
compact convex subsets, as a sub-semigroup. With respect to the order 
which is given by the inclusion,i.e, for A, B E B(X)  holds A _< B if and 
only if A C_ B, both semigroups B(X) and /C(X) are ordered. Obviously, 
the maximum of two elements A , B  E B(X) exists and is given by 
A V B = el conv (A U B). All together we have 

Theorem 2.6. Let (X,  T) be a topological vector space. Then (13(X), -i- , <) 
is a commutative ordered semigroup with unit 1 = {0} which satisfies the 
order cancellation law and contains 1C( X)  as a sub-semigroup. Moreover 
the distributivity law holds for maximum operation and the Minkowski 
addition. 

3. S E M I G R O U P S  W I T H  C A N C E L L A T I O N  P R O P E R T Y  

Let (S, . ,<) be a ordered commutative semigroup. We say that S 
satisfies the order cancellation law if 

a s < b s  for some s E S ,  then a < b  (S1) 

holds. 
The weaker condition that for a, b, s E S the equation as = bs implies 

a = b is called the the cancellation law. For a, b E S we call a a divisor of 
b if there exists an element c E S with ac = b. 

Since we will only consider commutative semigroups in this book, the 
word "commutative" will be omitted. 

A pair of  elements of S, i.e. an element (a, b) E S 2 = S x S is called a 
fraction and we write a/b or ~ for the order pair (a,b) i.e. 
a/b = ~ = (a, b). We call two fractions a/b and c/d equivalent 

a c 
m y  

b-~d 
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(a /b  ~ e/d for short), if ad = be holds. Note that this is an equivalence 
relation on the set S 2 and we denote by 

[a/b] = {c/d e S 2 l a l b  ~ c/d } C_ S 2 

the equivalence class which contains ~. 
It is well known that 

= $2/. = {[a/b] lalb e S ~} 

is a commutative group with the multiplication defined by 

[a/b][e/d] = [(a/b)(c/d)] = [aelbd ]. 

The inverse element of  [a/b] E S is [b/a]. 
Moreover, the ordering " < "  on S can be extended to an ordering on ,~ 

by: 

[a/b] <_ [c/d] ,', :, ad < bc. 

These definitions are independent of the choice of represcntatives. We have: 

Proposition 3.1. Let (S,., <) be an ordered semigroup which satisfies the 
order cancellation law. Then for every c C S, the mapping 

h : S ~ S = $21~ with s H [sc/c] 

is an isomorphic order preserving embedding of  S into S. 
For the investigation of  minimal representatives we have to introduce a 

further ordering "-<" on S 2. For a' /b ' ,a/b E S 2 we define: 

a'/b'  ~_ a / b  .', '.. <_ a andb'_<b. 

We denote by a V b = sup{a,b} and a A b = inf{a,b}. 

Definition 3.2. An ordered semigroup (S,., <) which satisfies the order 
cancellation law is called regular if the following conditions are satisfied: 

If a _< b, then ac <_ bc for every c E S, ($2) 
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if a < s ,  a n d b _ s  for s o m e s E S ,  then a V b  exists, 
if s < a, and s < bfor some s E S, then a Ab exists, 
if a V b, exist, then (a V b)c < ac V bc for every c E S. 

(s3) 
($4) 
(ss) 

For an ordered semigroup (S,., <) which satisfies the order cancellation law 
we define: 

Definition 3.3. A fraction a/b E S ~ is called minimal, if for any fraction 
c/d with c/d ,',., a/b and c/d -'< a/b it follows that a = c and b = d. 

. AMOUNT OF MINIMAL FRACTIONS 

Let (S, . ,<) be an ordered semigroup which satisfies the order 
cancellation law. By re(S) we denote the set of  minimal elements in S and 
by n(S) the set of  non-minimal elements. Moreover, by m(S 2) and n(S 2) 
the set of  minimal fractions in S 2 and the set of  non-minimal fractions is 
denoted respectively: 

re(S) = {a E S la is minimal in S}, 

n(S) = S \ re(S), 

m(S 2) = {a/b E S21a/b is minimal fraction), 

n(S ~) = s 2 \ m(S ~). 

For a nonempty T _C S 2 and an element x E S let us define the mapping 

by 

£ : T -~ (x /x)T 

f~(a/b) = ax/bx, where (x /x)T = {ax/bx l a/b ~ T}. 

Note that the mapping £ is injective, since f~:(a/b)= £(c/d) implies 
ax/bx = cx/dx and, by the cancellation law we have a = c and b = d. 

Proposition 4.1. Let (S,.,_<) be an ordered semigroup, which satisfies the 
order cancellation law. I f  the set n(S) of  non-minimal elements of  S is 
nonempty, then for every a/b ~ S 2 holds 
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card re(S) <_ card n(S) <_ card n([a/b]) = card [a/b], 

card m([a/b]) < card n([a/b]). 

Proof: Since n(S) • ~J there exists x E S which is not minimal. Since 
(x/x)[a/b]C[a/b], it follows from the injectivity of  the function 
f, : [a/b] ---* [a/b] that card [a/b] < card n([a/b]). But n([a/b]) C [a/b], 
hence card n [a/b] < card ([a/b]) and therefore, cardn [a/b] = card ([a/b]). 

Define the function 9,/b : S ~ [a/b] by 9a/b(x) = fx(a/b). Since g,/~ is 
injective, we have card (S) < card [a/b]. If m(S) = 0, then the inequality 
card m(S) < card n(S) is obvious. Now assume that m(S) = 0. Then for 
any c E n(S) the function hc(s ) = cs maps re(S) injectively into n(S). 
Hence card m(S) < n(S). 

The second inequality can be proved similarly. If m([a/b]) = ~, then the 
inequality is obvious. Now suppose that m([a/b]) = 9. Take any x E n(S). 
Since for T = m([a/b]), we have (x ,x)T C n([a/b]) the mapping f~ maps 
m([a/b]) into n([a/b]). Since f, is injective we obtain 
card m([a/b]) <_ n([a/b]). 

Proposition 4.2. Let (S,., <) be an ordered semigroup, which satisfies the 
order cancellation law. l f  the sets re(S) and m([a/b]) are nonempty and i f  
m(S) is a group, then 

card re(S) < card m([a/b]). 

Proof: We can assume that a/b is a minimal fraction. Take any s E re(S) 
and consider the fraction as/bs E [a/b]. Suppose that there exists a fraction 

'/b' ~ -< as/bs holds. This implies that a ' <  as a as/bs such that a'/b' _ 
and b' <_ bs. By assumption m(S) is a group and therefore, s- '  E m(S). 
Hence we obtain a's -1 < ass-' = a and analogously bs-' < b. It follows 
from the minimality of  the fraction a/b that a ' s - ' =  a and b ' s - '=  b. 
Hence a' = as and b' = bs and the fraction as/bs is minimal. 

The above calculation show that by go/b (s) = as/bs an injective mapping 
ga/b : m(S) ---* m([a/b]) is defined. Hence card m(S) < card m([a/b]). 

Theorem 4.3. Let (S,. ,<) be an ordered semigroup, which satisfies the 
order cancellation law. If the sets of  minimal and of  non-minimal elements 
of  a semigroup S are nonempty and if card S ~ N, then the sets of  
minimal and non-minimal fractions are of  equipotential. 

Proof: Take any x E n(S) and put T = m(S~). Since (x / z )m(S  2) c n(S2), 
the assignment fx (a/b) = ax/bx defines an injective mapping 
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£ : m(S 2) --~ n(S 2) and therefore, card m(S 2) <_ card n(S2). Since 
n(S 2) C S 2 one has card n(S 2) < card S 2. 

Now given any c E re(S). The assignment go(s) = s/c defines an injective 
mapping gc :S ~ m(S 2) and therefore, card S < card re(S2). Since 
card S ¢ N, we have card S = card S 2 (see for instance [5]; Theorem 1 p. 
267). Therefore, card S = card n(S z) = card m(S 2) = card S 2. 

. P A I R S  O F  C L O S E D  B O U N D E D  C O N V E X  S E T S  

We will now consider the ordered commutative semigroup (/3(X), -4-, <) 
with unit 1 = {0} of  pairs of nonempty closed bounded convex sets in 
locally convex topological vector spaces (X,r) .  Let us recall that an 
equivalence relation between pairs (A, B), (C, D) E/32 (X) of closed 
bounded convex sets is given by the relation (A, B) ,-~ (6, D) if and only if 
A-i-D = B- i -Gand  the ordering in /3(X)is extended to pairs by 
(A, B) < (6, D) with A C_ C, B C_ D. From the order cancellation law it 
follows that ",~" is a relation of equivalence in /32 (X).  The equivalence 
class (A, B) E/32 (X) is denoted by [A, B]. 

For compact convex sets we have the following result: 

Theorem 5.1 Let (X, r) be a topological vector space. Then for any pair 
(A, B) E IC2(X) there exists apair (U, D) E [A, B] which is minimal. 

Proof.' Using the Kuratowski-Zorn Lemma it is sufficient to show that for 
any totally ordered subset E = {(C,D) E [A,B]I(G,D) < (A,B) } of 
[A,B] there exists an element (A*,B*)E [A,B] such that for any 
(G, D) E T the relation (A*, B*) < (C, D) holds. 

For any cr = (G, D ) E  T we will denote by A~ the set C and by B, the 
set D. The ordering on T yields that cr 1 < cr 2 if and only if A~, C Ao2 and 
B~,cB~,.  

Now we fix cr 0 ET and define the sets A* =["]~E~:, A~ and 

B* = ["]~z0 B~, where T 0 = {cr E E]cr  _< ~ro}. By Cantor Intersection 

Theorem the set A* is nonempty. Moreover A* is a closed subset of A~,, and 
hence it is compact. The convexity of A* follows immediately from the 
convexity of A~ for tr E P'0. Since the same arguments hold for B* it 
follows that (A*, B*) E I(. z (X). 

It remains to show that (A*,B*)E [A,B]. By definition of the 
equivalence relation, for any pair (C', D) E [A, B] and for any cr E T 0 the 
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equation A o + D = B o + C holds. This implies that A* + D C B ° + C for 

every a E ~0 Hence for any z E A* + D and any cr E E 0 we can find a 
representation of  the form z = b o + co, where b o E B o and c o E C. Since 
the net {bola E E0} is contained in the compact set Boo there exists a 

subnet {bo, 16 E A} converging to some b 0 E Bo0. Hence for any 

neighborhood U(bo) of  b 0 E Boo there exists an index 60 E A such that for 

any a 6 _< he,, we have bo, E U(bo) and therefore B~, A U(bo) ~: 2f. Now let 

a E E 0 be an arbitrary element. Since the set 2, 0 is totally ordered we have 
a6, <_ a or a _< he0. In the first case ere0 < a we have Bo~ ' C_ B ° and hence 

B o N U(bo) :x: ,~. In the other case where a _< he,. we can find an index 

61 E A such that a6, _< a and for any cr~ < cry, we have B~, fq U(bo) :x= 

and hence B o M U(bo) :x: ,~. Thus we have shown that for any neighborhood 
U(bo) and any cr E E 0 the set B o M U(bo) is not empty. Since the sets B o 
are compact, it follows that b 0 E B~ for any a E E 0 and consequently 
b 0 E B*. The subnet {c~, 16 E A} converges to the point z -  b 0 which by 

the compactness of  C belongs to C Thus A * + D C B * + C  and by a 
similar argument we get B* + C  c A* + D .  Hence it follows that 
(A', B*) E [A, B]. The Kuratowski-Zorn Lemma yields now that [A, B] has 
a minimal element. [-I 

This is not longer true for closed bounded convex sets. Here we have: 

Theorem 5.2 Let (X,  7-) be a reflexive locally convex vector space. Then 

every class [A, B] E 13~(X)/_ contains a minimal element (C, D) E [A, B]. 

Proof:  In the case of  finite-dimensional vector spaces, bounded closed sets 
are compact, and the theorem follows from Theorem 5.1. Let us denote by 
7-*= a (X ,X*)  the weak topology for X To avoid confusion, we will 
indicate during this proof the topology under consideration by an index at B 
and /C. In a relexive locally convex vector space every bounded closed 
convex set A E 13T(X ) is compact in the topology 7-* and consequently 
belongs to /C. (X). Observe that every A E K:,. (X) is also closed in 7- 

since r* C 7-. Take any (A,B) EI3z~(X)cIC~.(X). Then 

A + B E i U . ( X )  and A ~ - B E / C ~ ( X ) .  
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Therefore, the convex set A + B is closed in 7- and contained in A ~- B, 
which is a bounded set in X with respect to 7-. This implies that 
A + B E/3~ (X) and consequently A 4- B = A + B holds in all reflexive 
topological vector spaces (X, 7-). Hence [A, B] C [A, B] .  E/C~ ~. ( X ) / ,  where 

[A, B] .  is the class of  equivalent pairs of compact convex sets in the space 
(X, 7-*) which contains (A, B). According to Theorem 5.1, the equivalence 
class [A,B].  contains a minimal element (C,D)E/G~.(X),  such that 
(7 C A and D C B. Since C, D are closed in 7- convex and contained in 
bounded sets it follows that ((7, D) E B~(X). Moreover, 
(C,O) E [A,B] C [A,B]. .  Therefore, (C,D) is a minimal element in 
[A, B] and, of  course, ((7, D) < (A, B). 

Example  5.3 Let l °° be the Banach space of  all bounded real sequences 
endowed with the supremum-norm II(x.)ll = sup  I x,, I and let c and c o be 

the subspaces of  all convergent sequences resp. all sequences convergent to 
zero of  l °°. Obviously c o C c C l °°. Note that all three spaces are Banach 
spaces and that none of  them is reflexive. 

Let ~(0,1) be the unit ball in c o and A = {a E ~(0,1) la,, > 0, 

for a l lnEl~l}.  Put B = - A  and A,. = { a E A [ a j  . . . . .  a,,, =½} and 

B m = - A  m for m E I N .  Then (A,,,,Bm)EB=(co) and A + B  m = A , ,  + B  
for all m E N and A + B = B(0,1). Thus (A,,,, B,,~) is a chain of  decreasing 
pairs in [A, B] i.e. 

(A,B)  > (A~,B,) >_ ... >_ (A,,,,Bm) >_ ... 

with an empty intersection, i.e. Nm Am = tim Bm= ~" Now observe that 

the proof of  Theorem 5.1 on the existence of  minimal pairs of  compact 
convex sets is based on the Cantor intersection property for compact sets. 
Therefore, we have: 
Theorem 5.4 For each o f  the spaces X = Co, c, and l °° there exists a class 

[A, B] E •2(X)/~ which contains no minimal element. 

Open question: 
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The following question remains open: Given any non-reflexive 
topological vector space X Does there exist an equivalence class 
[A, B] E 132 (X)/~ which contains no minimal elements? 

Next we present sufficient conditions for minimality: 
Let (X, T) be locally convex topological vector space. For A E/C(X) 

we consider a set S c_ X* \ {0} such that 

conv(U HI (A) ) = A. 
I tS  

The sets S C_ X* \ {0} of this type can be ordered by inclusion. A minimal 
element will be called a shape of  A and will be denoted by S(A). For a 
shape S(A). we consider subsets 

Sp(A) := {f E S(A) lcard(H~(A))= 1} 

which may be empty and 

S~(A) := S(A) \ Sp(A). 

The criteria presented here are of two different types: The first type of 
criteria uses conditions which ensure that a two compact convex sets are in a 
certain "general position '" while the second type of criteria uses information 
about exposed points of the Minkowski sum of compact convex sets. 

We begin with a criterium for minimality which is of the first type: 

Theorem 5.5 Let X be a locally convex vector space, and let A, B C X be 
nonempty compact convex sets. Let us assume that there is a shape S(A) of  
A which satisfies the following conditions: 

i) for every f E S(A) ,  card (H s (B)) -- 1, 

ii) for every f E ~(A) and every b E B, the condition 

S,(A) + (b - HI(B)) C_ A implies b = H/(B), 

iii) for every f E Sp(A), H I ( A ) -  HI(B) E E(A - B) 

or conversely, by interchanging A and B. 
Then thepair (A, B) E IC2(X) is minimal. 

Proof: Let us assume that A'C_ A and BtC_ B are nonempty compact 
convex sets such that 
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A + B I = B + A  I. 

Choose an element f E S(A). Since 

HI(A)+ H/(B')= HI(B)+ H/(A') 

and since H/(B) = {b}, this can be written as 

HI(A ) + HI(B' ) = b + HI(A' ). 

Now choose an element b ~ E HI(B ~) and determine, for every extreme point 
e E E(HI(A)), an element a e E H:(A') such that 

e+b~=b+ae. 

Now the following two cases are possible: 
p) Let us assume that fc,Sp(A). Then e - b = a  e - b  ~. Since, by 

condition iii), e - b e C ( A - B ) ,  we have a e = e  and b ~=b .  

Hence HI(B') = HI(B) = b and therefore, 

H/(A') = HI(A). 

l) Now we assume that f C $1(A). In this case we have for an 

arbitrary b' C H/(B') that 

HI(A) + b' C b + H/(A'). 

Therefore, 

H/(A)+(b'-b)C_A' c A  

and condition ii) gives b = b( Hence 

H/(A') = HI(A). 

Thus for all f e $(A) we have 
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H](A') = HI(A ) 

and therefore, 

A' _D el conv H I(A') = el conv H I(A) = A, 
kIES 

i.e. A r = A. Now from the equality A + B ~ = B + A ~ we get by 
the cancellation law that B ~ = B, which completes the proof. [I 

The next criterium for minimality is based on a sufficient condition on 
the indecomposability of  a nonempty compact convex set and is formulated 
in terms of  its exposed points. It uses a modified version of the Krein- 
Milman Theorem [4]. 

Theorem 5.6 Let X be a Banach space and let (A, B) E 35~(X). Iffor every 
exposed point a + b E go(A + B) with a E g0(A), b E go(B) there exists 
b 1 E Co(B ) or a, E Co(A ) such that a + bl E 8o(A + B) and 
a - b  1 E S ( A - B )  or a , + b E C o ( A + B )  and a ~ - b E C ( A - B ) ,  then 
(A, B) is minimal. 

Proof: Let (A, B) E 35 2(X). By Proposition 1.1 for every f E X* holds 

HI(A + B ) =  Hs(A ) + HI(B ). 

This implies the unique representation of  every exposed point of  A + B as 
the sum of  exposed points of A and B. 

Let us show that the pair (A ,B)E 352(X) is minimal. Therefore, we 
choose a pair (A r, B r) E 352 (X) with A ~ C_ A, B ~ C_ B and 
A + B ~ = B + A( For a + b E ,fo(A + B) we can assume without loss of  
generality that for a EL'0(A ) there exists b0EL'(B ) such that 
a + b  0 E C 0 ( A + B )  and a - - b  0 E L ' ( A - B ) .  Hence there exists a 
continuous linear functional f0 E X* such that 

HI. (A + B) = {a + b o }. 

By Proposition 1.1 we have HI0 (A) = {a} and Hs0 (B) : {b o }. From 

A + B I = B + A I = y  
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it follows that 

HIo(A)+ HIo(B') = HIo(B)+ HIo(A'). 

Hence there exist elements a '  E HIo (A') C_ A 
that 

a+bl=bo +a I. 

Since a - b o E ~e(A - B) it follows that 
a = a '  it follows that 

B + a C _ B + A ' = Y .  

Hence 

a + b E Y ,  

807 

and b' E HI , (B ' )  C_ B such 

a = a', b 0 = b'. From the equality 

Therefore, (A, B) E/C2(X). is minimal. 
Example  5.7 To illustrate these criteria, we will give two typical examples 
for X = I R  2 . 

and 

A + B = A + B ' ,  i.e. B=B' .  

and since a + b E Eo(A + B) it follows from V. Klee 's  modification of  the 
Krein-Milman Theorem (see [4]) that A + B = Y. 

Hence by the cancellation law we have 

A + B= AI + B, i.e. A= A I 
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i) Let R be 
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Figure 5.1 

a positive real number and put 
a t = (0, R), a 2 = (x , -y ) ,  a 3 = ( - x , - y )  and let 

A -- a~ V a 2 V a 3 and B = -A.  It follows from Theorem 5.5 that the 
pair (A, B) i.e. the Star of David(see Fig. 5.1) is minimal. 

ii) Let R > 0 be given and define the linear map 

T :  ]R 2 , ll~ 2 by T(x],xz) = (-x2,xl). 

For x o = (½ff2R, 0 ) t a k e  the balls K 1 = ~(x0,R), g 2 = ~ ( - x o ,  R ). Put 
A = K  tnK2, B=T(A). Then A + B  A - B = B ( ( 0 , 0 ) , R ) .  It is easy 
to see that the conditions stated in Theorem 5.6 give the minimality of  the 
pair (A, B) oforthogonal lenses (see Fig. 5.2). 

( J 

Figure 5.2: 

1 
It was proved by S. Scholtes and J. Grzybowski that minimal pairs in the 

two-dimensional space are unique up to translation. This is not true for 
higher dimensions as shown by a counter-example of  J. Grzybowski ( cf. 
[2],[15]). 
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In December 2000 S. Rolewicz posed the question, whether the set of  
equivalent minimal pairs, which are not related by translation may be finite 
and greater than one. 

Recently J. Grzybowski and R. Urbafiski gave a negative answer to this 
question. 

Theorem 5.8 Let ( X, 7-) be a topological vector space and 
(A1,B1),(A2,B2) E/C2(X) be two equivalent minimal pairs which are not 
related by translation. Then there exists a non-countable family 
(AA,Bx), A E A of minimal pairs that are all equivalent to (AI,BI) and no 
(A~, Bx) is a translate of (A,, B,) for A :~ #. 

6. E X A M P L E S  

i) Let X = (X, 7-) be a topological vector space and 13(X) be the set of  all 
nonempty closed bounded convex subset of  X endowed with the 
Minkowski sum -i- given by A + B = c l ( A + B )  and ordered by 
inclusion, i.e. A _ B ..' ;. A C_C_ B. Then S = (B(X), + ,  5) is a regular 
semigroup with unit 1 -- {0). For A, B E/3(X) we have 
A V B = c l c o n v ( A U B )  and A A B = A N B i f A M B ~ 9 .  Moreover, 
re(S) = {z Ix E X} and n(S)= {AIA E B(X) with card A _> 2}. 

ii) Lets = N be the semigroup ofintegers with theustml addition+ andthettsualordefing 
< .  For every n, m E N we have n V m = max{n, m}, n A m = min{n, m}, 
and n + m = max{n, m} + min{n, m}. The fraction n/m is minimal if and 
only if n = 1 or m = 1. 

iii) Let S = N the semigroup of  integers endowed with the usual 
multiplication. For n, m E N we define n < m if n divides m, i.e. n ] m 
holds. In this case n V m = w(n, m) and n A m = d(n, m), where w(n, m) 
is the least common multiple and d(n, m) is the greatest common divisor. 
Observe that for every n, m E N the equation n m =  w(n, m)d(n, m) holds. 
A fraction n/m is minimal if and only if d(n, m) = 1. 

iv) Let S = N be endowed with the usual multiplication. For n, m E N 
we define n _ < m  if m = n + 2 k  for some k E N U { 0 } .  If n / m E  
(2N) × ( 2 N -  1), then the fraction n/m is minimal. If n/m E ( 2 N -  1) 2, 
then the fraction n/ra is minimal if and only if d(n, m) = 1. 

v) Let us now consider the Hilbert semigroup given by (SH,.), where 
S ,  = {4k + 1 ] k E N} and • denotes the usual multiplication of  numbers. It 
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is clear that (SH,.) is a semigroup which satisfies the cancellation law. Now 
we introduce on S H the following ordering: 

a - < b  if  and only if there ex i s t sa  c E N s u c h t h a t b = a . c  i.e. a l b .  

Let us denote by m(Sn)  = {a E S u I a is minimal with respect to -'<} the 
-minimal elements o f  S/~ and put P = {p E N I P ~ 2 and prime}. It 

follows from a straightforward calculation that P is the union o f  the following 
disjoint sets P0 = P M S ,  and P~ = P \ P0 = {P E P [ p = 41 - 1, l E N}. 
Let us note that card P0 = R0. Again by a straightforward calculation we get 
that for all p, q E P~ the product p .  q E S H , and that for all p E P0 and q E P~ 
we have p . q  ~ S n. The reader can verify that re(Sit ) = Po U P1 "PI, where 
PI" P1 = {P" q [ P, q E P1 }. The inclusion P0 U P~. P~ C re(St1 ) is clear. Now 
suppose that 4k + 1 E m ( S  H). Then let 4k + 1 = Pl "P2 "..." Pr be a prime 
factor decomposition of  4k + 1. Observe that from the decomposition of  
P = P0 U P1 it follows that for r _> 3 the element 4k + 1 is not minimal. For 
r = 1 it follows that 4k + 1 E Po. Now assume that r = 2. In this case one 
factor is in P0 and the other factor is in P~ and therefore, the product can not be 
in S H . Hence 4k + 1 E P1 " Pr  

N o w  let p, q E P~ and assume that p ~ q. Then obviously 

( p . p ) . ( q .  q) = (p . q) . (p . q). 

Next observe that p .  p, q. q, p .  q E Pa ' P~ C m ( S  u). Hence 

P ' P  p ' q  
p . q  q .q  

and we see that both fractions are minimal and that there does not exist an 
s E S ,  such that 

p . p  s . p . q  

p . q  s . q . q  

This means, for example that for p = 3 and q = 7 the equivalent fractions 
9 21 2-r " -~ are minimal. Analogously,  this holds for the fractions ~ ~ ~ or 
774"-'99 ,.~ 1~1 etc. 

Open question: 
It is not known whether for every pair o f  polytopes there exists also an 

equivalent minimal pair o f  polytopes. For instance, it is known that if  
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(A,B)  E K2(II~"), n = 1,2, is a minimal pair, which is equivalent to a pair 
o f  polytopes, then the sets A and B are also polytopes. Is this still true for 
dimension n > 2? 
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. I N T R O D U C T I O N  

Competitive phenomena in diverse disciplines are often characterized by 
the specific equilibrium state. Some well-known equilibrium problems are 
oligopolistic market equilibrium problems, traffic network equilibrium 
problems, general economic equilibrium problems, spatial price equilibrium 
problems and so on. In recent years, variational inequality theory has 
emerged as a very useful tool for the qualitative analysis and computation of 
various equilibrium problems. The other traditional approach for solving 
equilibrium models is differential inclusion (DI), in particular when we look 
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for the constant trajectory. This paper proposes to study the relationships 
between different mathematical models used for the study of equilibrium 
theory and in particular the relationships between existence theorems for 
GVI and for stationary points of  DI. 

The paper is organized as follows. In Section 2 we present definitions 
and notations needed in addressing our study. In Section 3 we introduce GVI 
and complementarity. In Section 4 we state a general existence theorem for 
GVI and a general existence theorem for inclusions, In Section 5 we explore 
the connections between these two results. In Section 6 we introduce the 
projected differential inclusion and relationships with GVI and in Section 7 
we deal with algorithms for GVI. 

. P R E L I M I N A R I E S  

We give in this section some important facts and results which will be 
needed. The inverse of  any multivalued operator always exists and is 
denoted by A-~(y) := {x E R" ] y E A(x)}. The domain and range of A are 
taken to be the sets 

domA := {x I A(x) ~ 0}, rgeA := {y I with y E A(x) }. 

The graph of  A is 

graph(A) = {(x,x*) I x* E A(x)}. 

Definition 2.1. A set valued map A: N " ~  R" is called upper 
semicontinuous at x E dora(A) if for each open set V 2 A(x), there exists a 
neighborhood U of  x such that A(x) c_ V for all x E U. 

Definition 2.2. A set valued map A : II~" ~ ~"  is said to be monotone on 
K C _ ~ "  if 

(x[-x~,x 1-x2)>_O Vx[EA(x,),xjEA(x2), V:c,,x 2EK; 

where (.,.) denotes the usual inner product in ~".  

Definition 2.3. A set valued map A:II~"~  ]~" is said to 
pseudomonotone on K c_ R" if for all x~, x 2 E K, x 1 E A(x~), x~ E A(x 2), 

be 
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( x ; ,  - x l )  _> o . ( x ; ,  x2 - _> o. 

A monotone operator is said to be maximal if its graph is not properly 
contained in the graph of  any other monotone operator, in other words, if the 
following statements are equivalent: 

1. For every (x,x*) E graph(Z),(y* - x * , y - x )  > 0 

2. y* • A(y). 

The following properties [2] will be useful: 

Theorem 2.1. 

1. A -1 is maximal monotone if and only if  A & maximal monotone. 
2. Let A1,A 2 be maximal monotone, then A 1 + A 2 is" also maximal 

monotone if  ri( d o m 4  ) n ri( dom& ) ~ ~, where ri stands for relative 

interior. 
3. I f  A is maximal monotone, the images of  A,  A(x)Vx, are convex and 

closed, and the graph of  A is closed. 

If K is a closed convex set, consider the normal cone operator 
N K = 06(" I K) where 6(. ] K) is a closed proper convex function definited 
by 6 ( x l K  ) = 0 if  x E K and +c~ otherwise, and Oh denotes the 
subdifferential of  a proper closed convex funcion h. It is well known that 
N~ is a maximal monotone operator on ~" .  In particular, if K is a closed 
convex subset of  a finite dimensional space, then x ~ N~ (x) has a closed 
graph. 

We recall now some definition of  convex analysis. 

Definition 2.4. Let h be a convex function from R" to R U {oc}. The 
epigraph of  h is the convex set 

epi(h):= {(x,A) e ~" x R ,  such that h(x) < A}. 

Definition 2.5. The tangent cone TK (z) to a convex subset K at x E K is 
the closed cone spanned by K - x, which is convex: 

h>O 

The polar cone of  the tangent cone T K (x) to a convex subset K ,  is called 
the normal cone to K at x and is denoted by 
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NK(x  ) := (T~(x) )+ = {d E R'~ : (d , z  - x) <_ O, Vz E K}. 

Definit ion 2.6. For a convex set K,  the recession cone Koo is a convex 
closed cone 

Ko~ = {d E R '~ : ~ + td E cl(K) Vt_>O}, 

with 5 any element o f  K and where cl(K) is the closure of  K.  

For a closed and proper convex function h : ~ "  ~ R U {+c~}, epi(h) is 
a convex closed set and (epi(h))oo is a closed convex cone of  ~ "  × ~ and it 
itself an epigraph: 

( epi( h ) )o~ = epi( ho~ ) 

with hoo(x ) = i n f { a :  (x ,a )  E (epi(h))oo }. h~ is called the recession 
function of  h. 

Theo rem  2.2. [7] Let K be a closed convex cone. For  the three element 
x, xx,x 2 in ~ " ,  the properties below are equivalent." 

1. x = x l + x 2 with x 1 E K,  x 2 E K + and  (x l , x  2 ) = 0 ,  

2. xl = Pr~ (x) and x~ = P r ~  (x), 

where P r  K is the operator projection onto the set K.  

. G V I  A N D  C O M P L E M E N T A R I T Y  

The variational inequality problem V I ( K ,  F)  is a problem of  finding 
x* E K such that 

( F ( x ' ) , y  - x ' )  >_ 0 for all y E K,  

where F is a map from ~ "  into ~ " , a n d  K is a nonempty, closed and 
convex subset o f  R".  In what follows, we consider the case where the set 
K is defined by 

u = {x e R":  g(x) _< 0 ,h(x)  = 0}, (1) 

where the given functions g : lI~ '~ ~ I~ m, h : lt~ '~ ---* R 8 are continuously 
differentiable. To solve V I ( K ,  F)  there are several approaches. One of  them 
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transforms VI(K,  F) in a system of nonlinear equations, via a generalization 
of the KKT conditions, or in a complementarity problem. Let us show this 
briefly. A KKT-system similar to the KKT optimality conditions for the 
standard non linear program has been formulated for VI(K, F) [7], under 
mild constraint qualification. 

So, from now on, we suppose that Mangasarian-Fromovitz constraint 
qualification (in short, MFCQ) holds. 

Theorem3.1. I f  x E K solves VI(K,  F) then there exist multipliers (#, A) 
such that 

F(x) + A r v g ( x ) +  #r  Vh(x) = O; 
> O, ,,kTg(x) = O. 

Definition 3.1. Let C be a convex cone in ]R '~ and let T be a mapping 
from ]R '~ into itself. The complementarity problem, denoted by CP(C, T), is 
to find a vector x* E K such that 

T(x*) E C* and (T(x*),x*) = O, 

where C* denotes thepolar cone of  C ,  i.e. 

c" = {v e R": (y,~)  > O, Vz • C). 

VI (K ,F)  can be converted into a complementarity problem. The 
following result which summarizes this conversion has been used in 
different contexts by several authors. 

Theorem 3.2. I f  x solves VI(K,  F) then for some A E R m and # E R s, x 
solves the CP(IR" × I~'~ × JR', H) where H : ~"+"+~ ~ IlV '+m+'~ is defined 
by 

I 
F(x) +/kTVg(x) + #TVh(x)' 

H(x, A, #) = -9(x) 
h(z) 

Now we pass to GVI. 
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Definition 3.2. Given F : ~ " - - *  79(~"), the GV1 problem denoted by 
G VI(K, F) consists of  finding x E K such that there exists x* E F(x), 
satisfying 

(x',y-z)>_O, VyeK. 

From now on F denotes a multivalued function. The KKT conditions for 
VI have been generalized to GVI. 

Theorem 3.3. I f  x E K solves GVI(K,F)  then there exist multipliers 
= (Ax,'", ~,n) and # = (l~,". ,  #~) such that 

o e F(x) + ~ ~,vg,(~) + ~ ,~%(~), 
i j 

/ ~ ig i ( x )  = 0 i = 1,'", m, ~, >_ O. 

Proof. We note that GVI(K, F) is equivalent to the problem 

min J(y), J(y) = ( x * , y -  x) 
yEK 

We observe that J is linear in y so, applying Kuhn-Tucker theorem, 
necessary condition of  minimality of  J on K, is that there exist vectors 
A = (A~,..., A m) and # = (#~,..., #.~) such that 

o = x* + ~ v 9 ( ~ )  + ,~Vh(~) ,  

where x* e F(x), and then 

0 E F(x )+  )~TVg(x) ÷ # tVh(x) .  

We can also generalize Theorem 3.2. 

Definition 3.3. Given T :  ~"  ~ 79(R'~), the generalized complementarity 
problem (GGP(C,  T) ) over a convex cone C consists of  finding x e R" 
such that there exists x" e T(x) satisfying 

z*ec*, z e c ,  (z',z)=o 
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GVI(K, F) can be converted into a GCP. 

Theorem 3.4. I f  x E K solves GVI(K, F) then, for some A and #, x 
m solves GCP(R '~ x ]~ + × ]~ , H) where 

F(x) + ATVg(x) + #rVh(x)] 

H(x, A, #) = -9(x) • 

h(x) 

Proof. GCP(~" × II~ ~'~ z I~', H) consists of  finding (z, A, #) with A > 0 
such that there exists (u*, z*, w*) E H(x, A, #), i.e. 
u* = x* + ArVg(x ) + #rVh(z ) ,  with x* E F(x), z* = -g(x),w* = h(x), 
satisfying 

m m (~,*,z',w') e (R" ×R+ x ~ )  ' = {0} ×R+ × {0}, 

i.e. 

and 

i.e. 

0 E F(x) +ATVg(x) + #TVh(x), g(x) <_ O, h(x) = O, 

( (< ,  z ' ,  w" ), (x, .x, .)> = o, 

~ g(z) = o. 

Thesis follows from Theorem 3.3. 

One drawback with the conversion of a GVI into a GCP is the increase in 
the number of  variables from n to n + m + s. 

4. E X I S T E N C E  T H E O R E M S  F O R  G V I  A N D  DI  

We denote by S the set of  vectors x that are solutions of  GVI. The 
following classical result holds: 
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Theorem 4.1. [6] Assume that: 
1. K is a nonempty, compact and convex set in ~ ,  

2. F is an upper semicontinuous set valued map on K,  

3. F(x)  is a nonempty, compact and convex set in I~ n, V:c E K,  Then 

S is nonempty. 

In the case where the set K is not bounded, in order to establish the 
existence of  a solution, we have to consider some additional properties for 
F ,  Now we recall an existence result under monotonicity condition. 

Theorem 4.2 [5] Assume that: 

1. K & a nonempty, closed and convex set in ~ ,  

2. F is an upper semicontinuous set valued map on K,  

3. F(x)  is a nonempty, compact and convex set in ~ ,  V:c E K,  

4. F is pseudomonotone on K. 
Then S is nonempty and compact i f  and only i f  

Koo M(F(K))  + = {0 } .  

Let F : R" zz~ l~"; fixed x 0 E K consider the following DI(F,  K,  :c o) 

[ x'(t) c F(x(t)) 
z(0)  = z0 

In what follows we shall deal with the existence of  an equilibrium ( or a 
stationary solution ) of  the dynamical system, i.e., a solution ~ E / (  to the 
inclusion 

o c F(~). (2) 

Theorem 4.3 [1] Let 

1. K be a nonempty, convex and compact set in ]~'~, 

2. F be an upper semicontinuous set valued map on K,  

3. F(x)  be a nonempty, closed and convex set in ~ " ,  Vx E K,  

4. the viability condition 

w,  E K F(x) n TK(~) = ,6 

hold true. 
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Then, there exists a solution ~ E K to (2). 
So, under the above assumptions, viability implies the existence of  an 

equilibrium. Since a GVI problem can be reduced to an inclusion (see 
section 5) the following theorem will be useful: 

Theorem 4.4. [2] Let 
1. K be a nonempty, convex, compact set in I~ '~, 
2. 1;' be an upper semicontinuous set valued map on K, 

3. F(:c) be a nonempty, compact and convex set in 11~ ~, Vz E K. 

Then there exists a solution ~ E K to the inclusion 

o F(5)- N,,(5). 

When K is no longer compact, we consider some monotonicity 
assumption and we have the following theorem: 

Theorem 4.5. Given a maximal monotone operator A : ~" ~ ~'~, the 
solution set A-I(O) o f  the inclusion 0 E A(z) is closed and convex. 
Moreover A-I ( O ) is nonempty and bounded i f  and only i f  
0 E int(domA -~) = int(rgeA). 

We can observe that when A is a maximal monotone map, then 
F = - A  satisfies the viability condition when K is the domain of  A. 

. R E L A T I O N S H I P S  B E T W E E N  G V I  A N D  DI  

In this section, we investigate a way of establishing the existence of  a 
solution to GV1 via the DI and viceversa. 

Lemma 5.1. The problem G V I ( K , - F )  i.e.: 
I. S E K ,  

2. 35* E F(5) such that (5", y - 5> <_ O, 

is equivalent to the inclusion 

V y E K .  

~ ~ K such that 0 ~ F(-~)- NK(5 ). 

Proof. It follows from the definition of the normal cone to K at 7, N K (5). 
EJ 

Since TK(z ) is the polar cone of Nu(z), Theorem 2.2 implies that any 
element z" E F(z)  decomposes into the form z* = t + n where t E Tu (z), 
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n E NK(z ) and (t,n) = 0. Thus, for any x" E F(x), the element 
z * - n  = t belong to ( F ( x ) -  NK(z) )n  TK(z ), which shows that the set 
valued map F - Nu satisfies the viability condition. 

The only trouble is that when F is upper semicontinuous, F - N K does 
not inherit this property; hence we cannot apply Theorem 4.3 to deduce the 
existence of  solutions of  GVI(K,F).  We can overcome this drawback, 
considering the following theorem, considered in [10] : 

Theorem 5.1. Let K, F as in Theorem 4.1. Let m(F(x)) denotes the 
element of  minimal norm of F(x), i.e. 

m ( F ( x ) )  = 

and 

c = s u p l l m ( F ( x ) ) l l  
x~K 

Let B the unit ball and 

H ( x ) =  F ( x ) - ( c B N N K ( x ) ) .  

Then, there exists an equilibrium x* E K such that 0 E H(x*). 

But H(x) c_ F(z) - N g (z), Vx, so under condition of  Theorem 4.1 there 
exists z* E K, such that 0 E F(z*) - NK (x*), i.e. z* solves 
GVI(K, F). So this theorem gives us a direct relationship between Theorem 
3.1 and Theorem 3.3. 

Now we investigate the relation between Theorem 4.2 for GVI and 
Theorem 4.5 for DI. 

In what follows we consider the case where - F ( z )  is a maximal 
monotone set valued map. This includes the case where F(z) = - 0 f ( z )  is 
the subdifferential of  a convex lower semi-continuous function. We are, 
obviously, interested in the inclusion 0 E F ( z ) -  NK(Z ). The following 
theorem [10] gives us the desired relationship: 

Theorem 5.2. ( - F  + N u )-1(0) is nonempty and bounded if and only if 

Zoo n (F(K) )  + = {o}. 
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. P R O J E C T E D  D I F F E R E N T I A L  I N C L U S I O N  

Relationships between VI and dynamical systems have been recently 
developed in literature (see [8,9,11]). If we want to study dynamical 
behaviour in the framework of GVI we propose, in this section, to consider 
projected differential inclusions. Consider the DI(F, K, x0); it is known [1] 
that a necessary and sufficient condition for a trajectory of this differential 
inclusion to remain in K is that F satisfies the viability condition 

V x  e K, F(x) r-I T K (x) =x: ~. 

When this assumption is no longer satisfied we can replace F(x) by its 
projection onto the tangent cone TK(x), and we consider the so called 
projected differential inclusion (see also [ 12]): 

x'(t) e PrT~(x)F(x(t)) 

z ( 0 )  = z0  

where Prr~(x)(F(x)):= U Prr~(~)(x')" 
x'c,~'(x) 

Theorem 6.1. The solutions to the inclusion 0 E PrrKix)F(x ) 
solutions to the inclusion 0 E F(x) - N u (x) and conversely. 

are the 

Proof. It is known that Prr~(~)(F(x)) C F(x) - Ntc(x ). So solutions to the 
projected inclusion are solutions to the differential VI. 

It remains to prove that any solution to the differential VI is a solution of 
the projected inclusion. 
__Supp°se ~ E K  __is such that 0 E F ( 5 ) - N  K(~) then, there exists 
x* E F(5) such that x* E N K (~). Since the normal cone is the polar of the 
tangent cone, 

x'7 C NK (5) if and only if (x;-, z) < 0 VzETr(5 )  

i.e. ( ~ -  0 , z -  0) _< 0, hence 0 is the projection of ~ onto TK(~), i.e. 
o 
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. COMMENTS ON METHODS AND ALGORITHMS 

An important problem in GVI is the development of  an efficient iterative 
algorithm to compute solutions. 

Looking at Theorem 3.3 we will see that we are interested in solving the 
inclusion 

0 E A + B  (3) 

where A =  F and B =  ~ i A i V g i ( x ) + ~ - ~ j # j V h j ( x ) .  We shall assume 

that A and B are maximal monotone on K. A is maximal monotone if and 
only if its resolvents J ;  = (I  + A A )  -~ with A > 0 is a single valued 
nonexpansive map from H into H. 

In the case of  linear operators A and B, there is a standard algorithm [4] 
for solving (3): 

zk+ , = (I + AB)-' (I  - AA)zk, (4) 

which converges to the solution for A sufficiently small if A is Lipschitz 
continuous. When A and B are set valued map we can try to generalize this 
procedure letting: 

zk+ 1 = (I  + A k H i l B ) - I ( I  - AkHilA)zk ( 5 )  

i.e. 

Zk+l = (H[a(Hk + A , B ) ) - I H ~ ( H k  - AkA)z k = (H e + A~B)-'(H k - A,A)z, .  

First we observe that if H k = I,  we have (I + AkB) -~, which is a single 
valued map. But in general, ( I  + A~H-1B) -1 has not this property. 

Because A and B are set valued map, we need to make precise the 
definition of  the algorithm (5). 

For z o E dora(A) given, we choose a o E A(z  o) and set 
w o = Hoz o - Ao%, then z I = (H 0 "~- /~0B) - l /0 ,  i.e. w o E Hoz , + AB(z,), 
and so on. 

When, for simplicity we choose H~ : 0, A k = A, we have: 

zk, ~ = (I + ANu)- ' ( I  + AF)z  k. 
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We can observe that ( I  + ANK) -1 = Pr K. In effect (I + ANK)-Iy = x 
which is equivalent to y E x + ANK(x ), i.e. ( y -  x , v -  x) <_ O, for all 
v E K i.e. x = PrKy. So z~+ 1 = Prg(I + AF)z k. 

R e m a r k  7.1. When F = V f ,  we have zk+ ~ = PrK(z k - V f ( z k )  ) and we 
obtain the projected gradient method. 

R e m a r k  7.2. For the general case when A = O, 

zk+l = (I  + AB) -~ zk 

which is the classical proximal point algorithm. And i f  B = 0 
zk+ a = (I + ,kA)z k. So, i f  A is single valued and A = V f ,  
zk+ ~ = (I - ,kV f ) z  k, i.e. the steepest decent method. 

R e m a r k  7.3. I f  we consider the typical Fenchel problem: 

minf(x)  + g(Dx) 

we can write optimality condition 

0 E Of(~) + DrOg(D'~). 

Putting ~ E O9(D~) we have 

0 E Of(~) + Dr~ 

and therefore 

D~ E Og-~(y) 

o r  

(g" 

D~ E gg*(y) 

is the Fenchel-conjugate o f  g ). 
The inclusion is." 

(6) 
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Putting -£ = (~, ~),from (6) we get 

o (-e) + (-e), 

I °  o1 o, w h e r e  T 1 = - D  r a n d  T 2 = 09 

Variational Analysis and Appls. 
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. I N T R O D U C T I O N  

It is the purpose o f  this paper  to survey some properties o f  a convergence 
on sets and functions which has received a great deal o f  interest during the 
last two decades. We review some o f  its applications and show why this 
convergence  is convenient.  However ,  we leave apart the application to 
Hami l ton - Jacob i  equations which are dealt with in [63]. W e  also observe  
that when restricted to the space o f  continuous linear functions on a normed 
vector  space X the convergence we consider reduces to convergence for the 
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dual norm; this fact (and the abundance of  terminologies) suggests to call 
this convergence "bounded convergence" or, in short, "b-convergence". 

One of  the reasons of  the success of this convergence lies in its 
compatibility with the usual operations, provided some technical 
assumptions reminiscent to constraint qualification conditions in 
mathematical programming are satisfied. Such conditions already appeared 
in [44] in the finite dimensional case and in our very first investigations 
about this question which motivated our interest ([19], [53]); see also [4], 
[22], [25], [26], [38], [55], [56], [69], [72]. These assumptions involve 
openness or boundedness conditions. This fact justifies the focus we give to 
such questions. 

The main novelty of  the present paper is in the use of a concept of  
asymptotic cone introduced in [60] which bears some uniformity with 
respect to directions in a way reminiscent of the uniformity with respect to 
directions which is involved in the notion of  Fr6chet derivative (or semi- 
derivative [45], [50], also called B-derivative) or in the notion of Fr6chet 
cone in the sense of  [31], [33]. This concept replaces asymptotic 
compactness conditions which were used in [62]. 

As in [62], our methods are essentially geometric. Given an operation * 
and some sort of  variational convergence, in order to prove that 
(f ,  * g,) --~ f * g whenever the sequences of  functions ( f , )  and (g,) are 
such that ( f , )  ~ f ,  (g , )  ~ g ,  we reduce this question to several problems 
of set convergence: images, intersections, products. Each of  these set- 
theoretical results yields a rule for convergence of  functions. In particular, 
convergence of  performance functions and of infimal convolutions are 
deduced from convergence of  images (or sums) of  sets. Such a study may 
have been conducted for other convergences, for instance the ones 
considered in [4], [9], [20], [24], [38], [42], [70], [72]. However, we believe 
bounded convergence is appropriate in such a respect and we do not look for 
completeness. 

Other applications could benefit from our analysis. Regularization 
properties and well-posedness results are already considered in [26], [57]- 
[59], [61]; more attention could be given to nonconvex cases and to 
asymptotic methods. 

The paper is organized as follows. The next section is devoted to 
preliminary material about convergences. The main novelties are contained 
in Section 4: conical enlargements, an expansion property and a notion of  
disjointness at infinity for non convex sets. Section 4 is also focused on the 
new notion of  firm asymptotic cone to a subset of  a normed vector space 
(n.v.s.). There this tool is applied to boundedness properties. These 
properties may play a role in obtaining a priori estimates for solving 
equations. They are crucial for ensuring that convergence properties of 
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families of sets or functions are preserved under usual operations; a short 
account of  this topic is given in section 5. Such properties are used in [63] to 
obtain stability and persistence properties of  explicit solutions to first order 
Hamilton-Jacobi equations. Other applications to the convergence of  
functions are presented in [62] and in [73] where integral functionals and 
well-posedness questions are considered. In section 3 we evoke some other 
applications. 

. B O U N D E D  C O N V E R G E N C E  

Throughout this paper, unless otherwise stated, X and Y are real 
normed vector spaces (n.v.s.), U x (resp. B x ) is the open (resp. closed) unit 
ball of  X and S x is the unit sphere in X .  The closed (resp. open) ball with 
center x and radius r is denoted by B(x,r) (resp. U(x,r)) .  For a subset A 
of  X ,  intA, tea stand for the interior and the closure of  A respectively. 
The product space X x Y is equipped with the max norm. In particular, one 
has Ux× r = U x x Ur , Bxxy = B x × B r . The distance of  x ~ X to a subset E 
of X is d(x ,E)  := inf{d(x, w) : w ~ E}, with d(x ,O)  := oo. The remoteness 
of E is d(O,E). We denote by I? (resp. IR÷) the set of  positive (resp. 
nonnegative) numbers. 

Recall (see [3], [13], [24], [69]...) that a sequence (A.) of  subsets of  X 
is said to converge to a subset A of X in the sense of  Painlev~-Kuratowski 
if lim sup..4. = A = lim inf. A., where lim sup..4, is the set of  limits of  
sequences (x.) such that x k ~ A k for k in an infinite subset K of N and 
lim inf.A, is the set of  limits of  sequences (x.) such that x. E .4. for each 
n ~ 1~. We write (A.)--~ A. Here we focus our attention to a somewhat 
stronger notion, It requires the definition of the excess of  a subset A of X 
over another subset B of  X which is given by 

e(A,B) := sup d(a,B) if A,B ~ O, 
aEA 

with e(A,O) =oo if A ~: O and e(O,B) = 0 for any B. Then, for p e 17, we 
set 

ep(A,B) := e(A n pUx ,B) ,  d~,(A,B):= max(ep(A,B),ep(B,A)). 

It is convenient to write symbolically A a b - lim inf, A if, for each p e P ,  
(e , (A,A, ) )  ---~0 as n--~oo and A D b - l i m  sup, A, i f (eF(A, ,A))---~O for 
each p e ~ .  We write (A,) h )A and we say that (A,) boundedly 
converges (or b-converges) to A or that (A,) converges to A for the 
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bounded (HausdorfJ) topology if A c b - lim inf. A. and 
b - l i m  sup. A. c A. Let us note that cgA c lim inf..4, whenever 
A c b - l i m i n f . A  since then A c l i m i n f . A .  and since l i m i n f . A  is 
closed, On the other hand, when A D b -l im sup..4, then 
cgA D lim sup..4. .  Thus, we get that (A.) --~ cgA when (A.) b ) A. If  X 
is finite dimensional, the reverse implication holds. The choice of the open 
unit ball of  X in what precedes, rather than the closed unit ball, enables one 
to use the equalities 

e r (cgA, B) = ep (A, B) = e (A, cgB) = ep (cgA, cgB). 

These equalities show that we could restrict our attention to the case the 
limit set is closed; then we get uniqueness of  the set A such that 
(.4.) h ~ A and we can write A = b-l i ra .  A.. 

As for other variational convergences, one can pass from these 
convergences of sets to convergences of  functions. Denoting by e p i f  the 
epigraph of  f ,  we set ep(f ,g):=ep(epif ,  epig), Accordingly, for a 
sequence ( f . )  of  functions from X to I~ := 11~ w {-~,+oo} and a function 
f on X ,  we write f > b - l i m  sup . f ,  if e p i f c b - l i m  inf. (epi f . )  and 
f<_b- l im in f . f ,  if e p i f ~ b - l i m s u p ( e p i f . ) .  Of course, writing 
( f . )  b ) f  when (epif . )  b ) e p i f  means that f < b - l i m i n f . f ,  and 
f > b - l i m s u p . f . ;  we say that ( f . )  b-converges to f .  This type of  
convergence which has been thoroughly studied in [4]-[6], [8]-[12], [18]- 
[26], [32], [38], [43], [54]-[58], [68]-[72]... is also called the Attouch-Wets 
convergence, the bounded Hausdorff convergence and the epidistance 
convergence; this last term is justified by the fact that b-convergence on the 
space ~ ( X )  of  closed nonempty subsets of X arises from the distance d 
given by 

d(A,B):=~_,~=2-Pmin{dp(A,B),l}, A, B E ~ ( X ) ,  

where dp (A,B) := max(ep (A, B),ep (B, A)) (see [5], [24]). This convergence 
has been studied (in Hilbert spaces) in analytical terms through the Moreau 
regularization in [8]. Pioneering contributions in this vein are due to 
Choquet, Moreau [46], Mosco [47]; the case of  cones is considered in [28], 
[31], [33], [35]. 

A convenient way of  expressing that a sequence (A.) of  subsets of X b- 
converges to A is: for any bounded sequence (a.) of  A one has 
(d(a., A.)) ~ 0 and for any bounded sequence (a.) of  X such that a. ~ .4. 
for n large enough one has (d(a.,A))---~0 (see [71]). 
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The following result shows how natural bounded convergence is; it also 
justifies the simplification of  terminology we suggest. 

Proposition 1. Let f , f .  ~ X* (n ~ N). Then 

epi f c b - l im inf(epi f )  <::> Ilf - L II ~ o <:> epi f = b -lim(epi f .  ). 

Proof. Assume that e p i f  c b - l im in f ( ep i f . ) ,  Let 0 < c < p < 1. For every 
n ~ N  there exists x. ~U x such that plLl<_(x.,f.). Because the sequence 
((x.,(x.,f))) is bounded, it follows that d((x . , (x . , f ) ) ,ep i f . )~O.  Hence 
there exists n. ~ N such that for every n > n. there exists (u.,t.) ~ epif .  
with Ilxo -u.M-< ~ and I<x.f)-t°l_~ ~ It follows that 

pnf.ll<_(x.,L) <_(x. , f . ) - (u. , f . )+ t. - ( x . , f ) + ( x . , f )  
-< I l o l l x . -  u.l+ < +llfll-< ~llf.ll+ ~ +llfll, 

and so ( p -  ~)llf.ll-< ~ +llf l l  for n > n,. Hence ( p -  c)lim supllf:ll-< ~ +l l f l l .  
As e and p are arbitrary such that 0 < 6 < p < l ,  we obtain that 
l imsuplf .~<l[f]  1. Now, let ( p . ) l " l  and ( x . ) c U  x be such that 
p . [ [ f . - f [ [ <  ( f . -  f ) (x . )  for every n, Once again, because the sequence 

( ) ( ) ((x., x . , f  )) is bounded, we have that d((x., x . , f  ),epif.)---~0; there 
exists ( (u . , t . ) ) cX  such that (u.,f.)<_t. for every n, ( [ [ x . - u . ] ) ~ 0  and 
( ( % , f ) - t . ) - ~ O . B u t  

p. I1:. -s l l<-(x°, : .  - f )<_ (x . , : . ) - (u . , : . )+ , . - ( ,<o , f )  
-< II/o11. IIx. -uoll + t. -(x.,f). 

Since ( f . )  is bounded, it follows that (IlL- f[I)->o. Assume now that 
( l [ f . - f i l ) - ->o .  Let ( (x . , t . ) )cepi f  be bounded; in particular, (x,,) is 
bounded. Let s. := max {t,,,(x., f.)}; of course, (x.,s.) ~ ep i f . .  Then 

d((x.,t.), epi f .)  _< [[(x., t . ) -  (x.. h. )ll: s~ - t ~ :  (<x. f.>-,.)+ 
_<(<x.,fo>-<x.,f>)++(<x.,f>-,.)+-<ll/-f.ll.II xoll -~° 

Hence e p i f c b - l i m  in f (ep i f . ) ,  Let now ((x.,s.)) be bounded such that 
(x. ,s .)~epif .  for every n; in particular (%) is bounded, Let 
t. :=max{s.,(x.,f)}; of course, (x.,t.)Eepi f . Then 
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d ( (x . , s . ) , ep i  f )  < II(x., s . ) -  (x., t.)ll = t. - s. = (( ~., f ) -  s. ). 

< - ( ( x . , : ) - I x . , : . } ) + + ( ( x . , : . ) - s . ) < -  : - : .  x . l -~0  

Hence e p i f  ~ b - lim sup(epif . ) .  [] 

The preceding result can be transposed to a somewhat more general (and 
in fact different) case, Here b-convergence of a sequence of  operators 
means b -convergence of  their graphs and ep (S, T) := ep (gph S, gph T). 

Proposition 2. Let X , Y  be normed vector spaces and T , T . ' X - - ~  Y 
(n ~ N) be continuous linear operators. Then 

gph r c b - lim inf (gph T.) ¢:> []T. - TI[ -~ 0 <=> gph T = b -lim(gph 7".). 

Proof, As elsewhere in the paper, the product space X x Y is endowed with 
the box norm. Assume that gph T c b - lim inf(gph T.). Let 0 < e < p < 1. 
For every n ~ N  there exists x. ~ U  x such that p[[T.[[<[[T.x.[]. Because the 
sequence ((x . ,Tx.))  is bounded, it follows that d( (x . ,Tx . ) ,gph  T.)--~O. 
Hence there exists n~ ~ N such that for every n > n~ there exists u. E X 
with IIx. - u.I-- ~ and IVx. - V.u.ll ~_ ~ .  It follows that 

PlIT.II-< IIT.x. II-< liT:. - T.u. II ÷ IIT.u. - Tx, II ÷ IITx. II 

and so (R-~)IIT.II_< ~ ÷ M  for n >n~. Hence ( p - e ) l i m  supI[T.]< e ÷VII. 
Since e and 1 - p  are arbitrarily close to 0, we obtain that 
limsuPllToll_~llTl[. Now,  let (po) l"l  and ( x . ) i n  U x be such that 
P . l l v . - T I l ~ _ l l ( v . - r ) x . t  for every n.  Once again, because the sequence 
((x,,,Tx.)) is bounded, we have that d((x,,,Tx,,),gph T . ) - ~ 0 ;  there exists 
(u.) c X such that (llx. - u ° l ) - ~  0 and (llTx° - Tou.ll) ~ 0.  But 

p.  liT. - TII ~ II(T. - T>x.ff <_ l iT:.  - Y~u. II ÷ [IY~u. - Yx.II 
< T .[x. - u. + T.u. - Tx. , 

Since (T.) is bounded, it follows that (liT. - TII)-~ 0 
Now assume that (lIT. - TI[ ) --~ 0. Let ((x . ,Tx.))  

equivalently, (x.) be bounded), Then 
be bounded (or 
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d((x.,Tx.),gph 1") < II(x.,Tx.)- (x.,T.x.)ll = IITx. - T.x.I I < liT- T.I I , IIx.II ~ O. 

Hence gph T a b - l i m i n f ( g p h  T.), Let now ((x.,T.x.)) be bounded (or 
equivalently, (x.) be bounded). Then 

d((x.,Lx.),gph r) <_ II(x,,ux,)-(x,,rx,)ll = Ilrox, - rx°ll <-lit. - r l l .  IIx, II o. 

Hence gph T D b -l im sup(gph T,). [] 

As noted in [62], b-convergence is a stringent condition. Therefore, it 
may be advisable to use compromises with weaker convergence notions, as 
done in [53], [4], [38]. For simplicity, we do not do that here. 

. A P P L I C A T I O N S  

We devote the present section to some illustrations of the uses of 
bounded convergence; we just give a sample. We refer to [6], [7], [22], [24], 
[30], [49], [63], [73] for other applications. 

3.1 R e i n f o r c e d  t a n g e n c y  

In [2] and its references, approximations of  a subset E of  a n.v.s. X 
around one of its points are considered. Outer firm approximations C of E 
at e ~ E are obtained in requiring that 

1 
C D b - l im sup : ( E  -e ) .  

t ~o .  t 

Clearly, such a set C ,  when closed, contains the tangent cone 
T(E,e) = lim sup,~o.t-~(E-e); but it enjoys better properties. In [17] (see 
also [16]), a notion of  equicirca-tangent cone is introduced in order to prove 
open mapping theorems for multimappings. It involves a notion akin to 

b -  l imin f  l ( E _ e , ) .  
(t,e')--~(O.,e), e'eE t 

Reinforced asymptotic approximation properties which bear some 
analogy with the preceding reinforced tangency will be considered later on. 

Similar notions of  approximations for functions can be defined and used. 
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3.2 Non l inea r  cond i t ion ing  and per turbat ions  

It is not difficult to see that the functional f w-~ my : = i n f f ( X )  from 
~x to ~, is upper semicontinuous when ~x is endowed with the topology 
associated with b-convergence. A more precise and quantitative result can 
be given. Given f : X ~  such that m : : = i n f f ( X )  elR and 
S/ := arg min f u: 0 ,  a nondecreasing function ~o: N+ ~ N+ to {m} is said 
to be a conditioner for f if ~o(0) = 0 and 

Vx e X : d(x, S / )  < (p(f(x) - m:). 

f is said to be well-set if it has a conditioner which is a modulus (i.e. 
~o(t)~0 as t ~ 0 ) .  

The following statement shows that one only gets a one-sided 
perturbation result for the set of minimizers. Other results are given in [ 11 ]. 

Theorem 3. ([57]) Suppose S: is nonempty and bounded Suppose f is 
well-set, with an usc conditioner ~o. Then there exists r > 0 and 6 > 0 such 
that for  any function g : X ~ R u {oo} whose sublevel sets are connected 
satisfying dr ( f ,g)  < 6 one has 

m g - m  z < d ~ ( f , g ) ,  e ( S g , S / ) < d ~ ( f , g ) + ( p ( 2 d ~ ( f , g ) ) .  

3.3 C o n v e r g e n c e  o f  f ixed points 

Following Aubin, given 2 e/?, a complete metric space (X,d), and a 
nonempty subset U of X, one says that F : X ~ X  is pseudo-2-  
Lipschitzian with respect to U if 

e(F(x) n U ,  F(x')) <_ 2d(x ,x ' )  Vx, x' e U. 

The following existence result is close to the Nadler fixed point theorem 
[48]. However, here we use the preceding weakening of the notion of 
Lipschitzian multimapping. 

Proposition 4. ([21]) Let F : X ~ X be a multimapping with closed values 
which is assumed to be pseudo-2-Lispchitzian with respect to some ball 
U(xo,r ) with 2, ~ (0,1), r > (1-2)-td(x0,F(x0)). Then the set ~F of f ixed 

points o f  F is nonempty and 
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d(Xo, ~ F ) <- (1 -- 2)-' d(xo,F(x o)). 

The following result gives a measure of the variation of the sets of fixed 
points of multimappings in terms of the variation of the graphs. Again it is a 
one-sided result. In [21] this result is applied to the variations of the sets of 
solutions to a differential inclusion. 

Proposition 5. ([21]) Let F : X ~ X be a multimapping with closed values 
which is pseudo-2-Lispchitzian with respect to U(xo,r), and 2E(O,1). 
Then for  any s ~ (O,r) and for  any G : X ~ X with 
es(G,F ) < (1- 2)(1 + 2)-I(r - s) , one has 

es (q%, @e) < (1 -- 3,)-' (1 + 2)e~. (G, F). 

3.4 Continuity of the Fenchel transform 

In the sequel we denote by .T(X)  the set of proper lsc functions on X 
with values in ~ u {+oo}. The Fenchel-Legendre conjugate of f e ,T(X) is 

- ( ) f* :X* --~IR, f*(x*)=SUxP ( x*,x - f ( x ) ) ,  

where X" is the topological dual of X .  The continuity of the transform 
f ~ f "  is important for a number of applications ( [22], [27], [32], [63]...). 
It has been mostly studied under convexity assumptions. 

Theorem 6. ([23], [54], [64])Let f , f , , g , g ,  ~ . T ( X )  (neI~) ,  with f , ,  g 
c o n v e x .  

(a) f < b -l im inf'. f .  ~ f "  > b - lim sup.f.* /f sup. d((O,O),epif.) < oo. 
(b) g > b - lim sup. g.  ~ g" < b - lira inf. g.'. 

(c) ( f , ) ___L_> f ~ ( f ~ ) __L_> f "  . 
However some conclusions can be drawn without convexity 

assumptions; note that the following statement can be converted into a 
continuity result in terms of uniform convergence on bounded subsets of the 
transforms. 

Theorem 7. ([64]) Let f ~ .U(X)  be hypercoercive (i.e. 
limlxl]_,~ f ( x ) /  x - oo) and bounded below. Then, for  all q, e E IP there 
exist r, 6 ~ I? such that 
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e r ( f , g ) < a ~ [ V x *  ~ q U  x. g*(x*)> f * ( x ' ) - c ] ~ [ e q ( g * , f * ) < c ] .  

In particular, i f  f < b -l im inf. f .  then f* > b -l im sup. f . ' .  

. B O U N D E D N E S S  PROPERTIES 

We devote the present section to some concepts which will be used as 
key ingredients in some boundedness properties we need. 

4.1 Apart subsets 

Given a nonempty subset E of X and 6 e ~ ,  the conical c -  
enlargement o f  E is the set 

C~ (E )  := {x ~ X : d ( x , E )  < c ll x ll} ~ {O}. 

For a ,f le]O,l[  and y : = a + f l + a f l  one has, whenever OeE ,  

cp (ca (E)) c C~ (E). (1) 

When E :~ {0} is a cone, for a, f l  ~ (0,1), one has the following inclusions: 

~,+ (E c~ S x + aU x ) c C(,_,)_, (E), (2) 

Cp(E) c N + ( E m S  x + f l (1- f l ) - 'Ux) .  (3) 

The notion of  conical enlargement is thus especially useful when dealing 
with cones; for such subsets it is related to the notion of plastering due to 
Krasnoselski ([37]; see also [28], [31], [33], [35]). But it can be used for any 
subset. 

The following definition recalls a notion introduced and used in [41], 
[60] which will be much used in the sequel. 

Definition 8. Two nonempty subsets E, F of  X are said to be 
(asymptotically) apart i f  there exists e ~ ~ such that C c (E) ~ Cc (F) is 
bounded. 

Equivalently, the nonempty subsets E, F of  X are apart if, and only if, 
there is no sequence (x,) such that (llxoll)- oo, (llx.-' II d(x.,E))--, 0, 
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-I (]]x,I d(x,,F))--~O. In the case E and F are cones, several other 
characterizations are given in [41] and [60]; we recall them for the reader's 
convenience. Their simple proofs are consequences of  relations (1)-(3). 

L e m m a  9. ([41]) Given two cones" P,Q in X ,  the following assertions are 
equivalent and hold if and only if P and Q are apart: 

a) thereexist a,f l>O such that C~(P)~Cp(Q)={O}; 

b) there exists y > 0 such that P n C r (Q) = {0}; 

c) thereexists 6 > 0  such that P n ( Q n S  x +6Ux)=O; 

d) there exists g > O  such that (P mS  x + gUx )n(Q n S  x + g U x ) = e ;  

e) there exists i c>0  such that max(d(x,P),d(x,Q))>xiixi[ for each 

x E X ,  

These assertions are satisfied when P, Q are closed, P n O = {0} and one 
of  the following conditions is satisfied." 

0 P (or Q) is locally compact (in particular if span P is finite 
dimensional); 

ii) P (or Q) is weakly locally compact and P and O are convex. 

When P and Q are convex, dual properties can be given in terms of 
polar cones. 

4 .2  B o u n d e d n e s s  a n d  e x p a n s i o n  p r o p e r t i e s  

The preceding notions can be used for studying boundedness questions. 
Let us recall that a multimapping M : W ~ X between two n.v.s, is said to 
be bounding if it transforms any bounded set into a bounded set (sometimes 
M is said to be bounded, but we prefer to avoid any confusion with the case 
the image of M is bounded). Let us say it is quasi-bounding if the 
remoteness of  M is bounded over any bounded subset of  its domain. It is 
easy to give examples showing that the latter condition is less exacting than 
the former one; in particular, the notion of bounding multimapping cannot 
be used when the values of  M are unbounded, in particular when they are 
epigraphs. The following concepts have been used repeatedly but implicitly 
in [53], [62] and explicitly in [60]. In this last reference, by analogy with the 
case of proper maps, a quasi-expanding map was called boundedly proper 
on E .  There is also a certain analogy between expansive maps and 
expanding maps as any expansive map is expanding (but the converse is not 
true). 
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Definition 10. A map F from X to a normed vector apace Y & said to be 
expanding (resp. quasi-expanding) on a subset E o f  X i f  the multimapping 
M : y ~ F -I (y) n E is bounding (resp. quasi-bounding)from Y to X .  It is 

said to be linearly expanding on E i f  there are a ~ ]?, p ~ ]R÷ such that 

IIF(x ll- Ilxll for  all x E \ pU  x . 

It is said to be linearly quasi-expanding on E i f  there are a ~ ~ ,  p E ~+ 
such that 

F(E)  n a r U  r c F (E  n rU x) for  all r > p. 

Let us state easy characterizations of these properties. 

Proposition 11. The map F : X --> Y is expanding on E c X if, and only if, 

Vr ~IP,3q E ~ : E n F - l ( r U r ) c  qU x. 

It is quasi-expanding on E if, and only if, 

Vr ~ ~,3q ~ IP : F(E)  n rUy c F ( E  n qU x). (4) 

Moreover, the mapping F : X ---> Y is expanding on a subset E o f  X if, 
and only if, any sequence (x.) in E is bounded when (F(x.))  is bounded 
It is quasi-expanding on E if, and only if, for  any bounded sequence (y.)  
in F(E)  there exists a bounded sequence (x.) in E such that y. = F(x . )  
for  each n ~ N. 

We also have the following immediate implications. 

Proposition 12. 
(a) I f  F is expanding on E then it is quasi-expanding on E .  
(b) I f  F is linearly expanding on E then it is expanding on E and 

linearly quasi-expanding on E ,  
(c) I f  F is linearly quasi-expanding on E then it is quasi-expanding on 

E .  

For positive homogeneous maps, more can be said. 

Proposition 13. Suppose E is a cone and F is positively homogeneous. 
Then 
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(a) F is linearly expanding on E if, and only if, it is expanding if, and 
only if, there exists some c e ~  such that E n F - I ( U r ) c c U x  if, 

and only if, there exists some u e IP such that IIF(x)ll > _ ~llxll for  all 

x ~ E.  In such a case one has F -I (0) ~ E = {0}. 
(b) F is linearly quasi-expanding on E if, and only if, it is quasi- 

expanding if, and only if, there exists some c e It ~ such that 

F(E)  ~ U r c F (E  n cU x).  

Moreover,  when 0 e E, F is linearly quasi-expanding if, and only if, F 
is open at 0 at a linear rate from E onto F(E) .  

Example 1. The preceding notions can be illustrated by the case 
X -- Y = R .  In such a case, F is expanding if, and only if, F is coercive in 
the sense that IF(x)l ~ when Ixl-  ~ 

Example 2. Suppose A" X --~ Y is a linear isomorphism, h" IR+ --> ~, is a 
function and F(x)  = h(llxll)A(x) for  x e X .  I f  lim inf,_,® h(r) > O, then F 
is linearly expanding on X .  

The linear expansion property enjoys a useful stability property detected 
in [41] and [60]. 

Lemma 14. I f  F : X --~ Y is Lipschitzian and linearly expanding on a subset 
E o f  X ,  then there is a positive number 6 such that F is linearly 
expanding on C a (E). Moreover, for  any ~ > 0 there exist 6,cr > 0 such 
that F(Ca (E) \ crU x) c C c (F(E)) .  

Let us quote some criteria from [41] and [60, Lemma 8]. 

Lemma 15. Let P be a cone in X and let F be a continuous linear map 
from X to Y, with N : = k e r F .  Each o f  the following conditions is 
sufficient for  F to be linearly expanding on P: 

a) F is open onto its image and N and P are apart; 
b) F is quasi-expanding on P and N and P are apart; 
c) F is quasi-expanding on P, P is closed and N is finite 

dimensional with N n P = {0}; 
d) P is closed, locally compact and N ~ P = {0}; 
e) P is closed, P has a weakly compact base and N n P = {0}. 
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Another connection between the two concepts introduced above is the 
following one (see [41, Lemma 2.2 c] for a quantitative proof in the case E 
and F are cones and [60] in the general case). 

Lemma 16. The subsets E and F o f  X are apart i f  and only i f  the map 
L : (x, y) ~ x - y is linearly expanding on E × F .  

We also need a notion which is a global variant of  a property which has 
been widely used in nonsmooth analysis since its introduction in [34] and its 
use in [50], [52] in which the terminology has been coined. 

Definition 17. A mapping F : X ~ Y between two normed vector spaces is 
said to be metrically regular (resp. asymptotically metrically regular) on a 
subset E o f  X i f  there exists 7 > 0 such that d(x ,N)  <_ YllF x)ll for x E 
(resp for x with Ilxll large enough), where N := F-J(0).  

When the closure of  N contains 0 (in particular when N is nonempty 
and F is positively homogeneous), F is asymptotically metrically regular 
on E whenever F is linearly expanding on E .  When X and Y are 
Banach spaces and F is linear, continuous and surjective F is metrically 
regular on X .  Let us note the following simple facts which clarify some 
relationships between the preceding concepts. 

Lemma 18. Suppose F : X --+ Y is positively homogeneous. Let 
N := F -I (0) and let C be a cone o f  X .  

(a) F is metrically regular on C if, and only if, (d(x, ,N))--~ 0 

whenever (F(x,))  --+ 0 with x, ~ C for  each n. 

(b) Suppose C - N c C and F(x  - w) = F(x) for  any w ~ N, x E C. I f  

F is metrically regular on C then F is linearly quasi-expanding 
on C.  

(c) Suppose C -  N c C and x' - x ~ N whenever x, x' ~ C and 

F ( x ) = F ( x ' ) .  I f  F is quasi-expanding on C then F is metrically 

regular on C.  

Proof. 
(a) If F is not metrically regular on C there exists a sequence (x,) in 

C such that d(x , ,N)  > nllF(x.)ll for each n. Since F is positively 

homogeneous and F ( x , ) ~  O, we may suppose that nllF(x. ll = 1 
for each n. Then (F(x,))--~O and (d(x , ,N))  does not converges 
to 0. The converse is obvious. 
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(b) Suppose there exists y > 0 such that d(x,N) < rl lF(x)ll  for x ~ C. 

Then for any q ~ I?, y ~ F(C) ~ qU r and any x ~ F -I (y) n C one 

can find w e N  such that IIw-xll<rq, so that 
y = F ( x -  w) E F(zqU x n C) by the assumption C - N c C. 

(c) Suppose F is quasi-expanding on C.  Let p ~ I ?  be such that 

F ( C ) n U y  c F ( C n p U x ) .  For each x ~ C  and each q>llF(x)ll 
one has F(q-~x)=F(pu) for some u E C n U x ,  hence 

q-ld(x,N)=d(q-tx ,  N)< q - J x - ( q - l x - p u )  < p as q - l x - p u ~ N ,  

and one gets d(x,N) < PllP(x)ll  . 
[] 

Part (a) of  the preceding lemma can be used to show that if F : X ---> R 
is positively homogenous and if N_ := {x ~ X : F(x) <_ 0}, then F satisfies 
d(x ,N)<yF(x )+  for some y > 0  and each x e  C if, and only if, 
(d(x,,N_))-->O whenever (F(x,)+)-->O with x, e C  for each n, where 
r+ := max(r,0) : it suffices to replace F(.) by F(.)+. 

4.3 F i r m  a s y m p t o t i c  c o n e s  

Let E be a nonempty subset of  the normed vector space X .  We recall 
that the asymptotic cone (sometimes called the recession cone) of  E is the 
cone Eoo := limsup,_,~o t-rE, consisting of all limits of  sequences (t2~x), 
where x, e E  and t, eI? with (t,)--->oo (see [14], [15], [39]-[41], [69], 
[75] for the study of  related properties). 

The following definition, which is the central concept of  [60], will be 
used here instead of  the concept of  asymptotic compactness used in [62] as a 
boundedness criteria. Recall that E is said to be asymptotically compact if 

- I  
for any sequence (x,) of  E such that (llx.ll)-,  the sequence (Ix.II x°) 
has a converging subsequence (see [29], [51], [76] for preliminary 
definitions). 

Definition 19. A cone C o f  X & a firm (outer) asymptotic cone o f  a subset 
E o f  X i f  for  any c>O there exists some r>O such that 
E ~ r U  x c C c(C). 

The following characterizations may be convenient. 

Proposition 20. For a subset E o f  X and a closed cone C in X,  the 
following assertions are equivalent: 

a) C is a firm asymptotic cone o f  E; 
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b) d(x,C /llxll- o as Ilxll   with xeE; 
c) there exists a map h: E--+ C such that d(x,h(x ;llxll-  o as 

I l x l l - ~  with x ~ E. 
Proof. The implications a ) ~ b ) ,  c ) ~ a )  are direct consequences of  the 
definitions. To prove that b) ~ c), given c > 1, for x ~ E we pick h(x) e C 

such that Ilk( x ) -  xll-< cd(x, c) (considering separately the case d(x, C) = 0 

and the case d(x, C) > 0 ). [] 

An interpretation of  the preceding conditions in terms of  bounded 
convergence can be given. 

Proposition 21. A cone C of  X is a firm asymptotic cone of  a subset E of  
X if, and only if, b -lim supt_,o o t-rE c C.  

Proof. Suppose C is a firm asymptotic cone of  E .  Given p e ]P we have 
ep(t-JE, C)---~O as t---~oo: otherwise, we could find c > 0 ,  a sequence 
(t,)---~oo and x, e E  such that -' < p  and -' cl(x II d(t, x,, C) > c and then we 
would have IIx°ll_> ct° -~o% and )>ct ,  >cp-'llx, I, a contradiction. 

Conversely suppose ep(t-'E,C)---~O as t -+oo  for each p e ] P .  Given 
>0, let t , > 0  be such that e j ( t -~E,C)<e for t > t , .  Then, for 

x e E \ 6 U  x and for t>llxll we have t - ' x e U  x hence d<t-'x,C)<e and 
d(x,C)<et. Since t is arbitrarily close to Ilxll, we get d(x,C><- llxll and 
x e c , ( c ) .  []  

Of course, the preceding definition does not determine C uniquely: any 
cone D containing C is also a firm asymptotic cone. Thus, one is led to 
take as a firm asymptotic cone a cone which is as small as possible. The 
following result shows a limitation in this direction. 

Proposition 22. I f  C is a closed firm asymptotic cone of  E, then C 
contains the asymptotic cone Eoo of  E .  I f  E is asymptotically compact, 
then E is firmly semi-asymptotable in the sense that E® is a firm 
asymptotic cone of  E .  

Proof. Let v e Eoo \ {0}" there exists a sequence (e,) in E and a sequence 
(t,)---~oo in /P such that (t~'e,)---r v. Then ( l ie .b- ,® and 

d(v, C) : lim d(t ; 'e , ,  C) : lim t : 'd(e, ,  C) : Ilvlllimle.ll-'d(e., c)  = 0, 

so that v e C .  Suppose E is asymptotically compact and the asymptotic 
cone E® of  E is not a firm asymptotic cone of  E .  Then there exist ~ > 0 
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and a sequence (e.) of  E such that (lle.b and d(e.,l:.~)> ckll, Since 
E is asymptotically compact, taking a subsequence if necessary, we may 
suppose that (e./[e.)  has a limit v. Then v~E® and we get a 
contradiction: d ( H - ' e  ., v)>__ d(le.]-'e.,E~o ) > ~ . [] 

Thus, in any finite dimensional space, the asymptotic cone is a firm 
asymptotic cone. On the other hand, in any infinite dimensional normed 
vector space X there exists a set E whose asymptotic cone is not a firm 
asymptotic cone. 

Example 3. Let E be the epigraph o f  a function f : W -~ ]R with nonempty 
domain in a n.v.s. W which is bounded below on bounded sets, and let 
X = W  x R .  I f  f is hypercoercive (i.e., f(x)/llxll oo as Ilxll-  o), then g 
isfirmly asymptotable and E~ = {0} x ~+. 

m 

Example 4. Let E be the epigraph o f  a function f : W--~ IR which is 
bounded below on bounded sets, such that 
liminfll,l_~o~(f(w)-p(w))/llwl[>o, where p 'W- - -~R  is a positively 
homogeneous function and let C be the epigraph o f  p in X = W x R . Then 
C is a firm asymptotic cone o f  E .  In particular, i f  
e= :=lira infiH = the set C :=epi c, llll is a firm asymptotic" 
cone o f  E .  When co~ ~ l? w {+oo}, f is said to be super-coercive. 

Example 5. Suppose there exist a bounded subset B o f  X and a closed 
cone C such that E c B + C. Then C is a firm asymptotic cone to E . 

Some calculus rules can be given (see [60, Prop. 13]). 
A connection between the concept of  firm asymptotic cone and the 

notion of  apart subsets is as follows. 

Proposition 23. ([60, Prop. 17]) Let P and Q be firm asymptotic cones o f  
subsets E and F o f  X respectively. I f  P and Q are apart, then E and 
F are apart. 

4.4 Applications to boundedness properties 

Let us now show that the preceding concepts can be used for the study of  
boundedness properties. We only deal with mappings; boundedness 
properties of  correspondences could be dealt with similarly. The first result 
we give is a simple consequence of  Lemmas 12-14. 

Lemma 24. Let F : X ~ Y be a Lipschitzian, positively homogeneous map 
between two normed vector spaces and let E be a subset o f  X . Suppose K 
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is a f irm asymptotic cone o f  E and that F is expanding on K .  Then F is 
linearly expanding on E .  

The following proposition is closely related. 
Proposition 25. Under the following assumptions, a positively homogeneous 
mapping F : X --~ Y is expanding on a subset E o f  X : 

(a) E has a f irm asymptotic cone K; 

(b) K and N := F -~ (0) are apart; 

(c) F is asymptotically metrically regular on E . 

In fact assumption (a) can be replaced with the following weaker 
condition: 

(a') there exists a e ]? such that E n C~ (N) has a firm asymptotic cone 
K .  

Proof. If  the conclusion does not hold, one can find r e ]?, a sequence 
(x.) of  E such that IIF(x°)ll < r  and (llx.ll)--, oo. In view of  (c), we have 
(lIx.I-Xd(x.,N)) --~ O. Then, dropping a finite number of  terms if necessary, 
we have x. e E n C~, (N) for each n e N.  Then, by assumption (a'), we have 

-X 
(lIx.I d(x . ,K) )  --. O. In view of the characterization given after Definition 8 
of  the property that K and N are apart, we get a contradiction. [] 

The preceding result can be specialized to the case E is a sub-level set 
[ f  < q] of  some function f on X .  It can also be adapted to the case the 
function f has a f i rm asymptotic approximation q9 on some subset S of  
X ; by this we mean that lim infEs, ll+~ o (f(x)- o(x);llxll>_ o 

Corol lary 26. Under the following assumptions, the map F is expanding on 
the sub-level set [ f  < q] : 

(a) there exists f i e ]?  such that f has a f irm asymptotic 

approximation (p on [ f  < q] n Cp(N) which is positively 

homogeneous; 

(b) there exists y el? such that q~(x)> yllxll for each x e f , ( N ~ ,  

(c) F is asymptotically metrically regular on [ f  < q]. 

Proof.  Let a e (0,min{fl, y}) and let 

g := {x e C~(N)'qg(x)< ~llxll~ 

Since K n Cy (N) = {0} the sets K and N are apart. It remains to show that 
K is a firm asymptotic cone to I f  < q] ~ C,~(N). If  it is not the case, one 
can find 6 e ] ?  and a sequence (x,) in [ f  < q] n C, (N) such that 
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and x. f~Cs(K ) for each n e N .  Then, by (a) and (b), there 
exists a sequence (c.) --~ O+ such that 

q > f ( x . )  > ~o(x.)- c. Ix.II (y-  ~ . )k l l ,  

a contradiction. [] 
The preceding proposition can be applied to the case of the sum 

S : X 2 ~ X given by S(x ,y)  = x+ y .  We note that S is metrically regular: 
for any (x,y) ~ X 2 we have 

d((x, y ) ,N)< d((x, y), 1 ( x -  y, y - x ) ) =   llx + yll =  lls( x, y)ll 

Since when P (resp. Q ) is a firm asymptotic cone of  A (resp. B),  the cone 
P × Q is a firm asymptotic cone of  A × B, and since P × Q is apart from 
N := ker S when P and - Q  are apart, as easily seen, we get the following 
result. Another (simple, direct) proof is provided in [60, Prop, 20]; still 
another proof can be derived from Lemmas 14 and 16. 

Proposition 27. Let A and B be two nonempty subsets o f  X and let P 
(resp. Q) be a firm asymptotic cone o f  A (resp. B ). I f  P and - Q  are 
apart then the mapping S : (x, y) ~ x + y is expanding on A x B ,  

5. C O N T I N U I T Y  O F  S O M E  O P E R A T I O N S  

We are in a position to give some persistence and stability results for 
usual operations on sets and functions. 

5.1 C o n t i n u i t y  o f  s o m e  o p e r a t i o n s  w i t h  sets  

The most obvious results concern products and unions for which a direct 
easy analysis leads to the following statement. 

Proposition 28. ([62, Lemma 21 (e)]) Suppose (A ) b > A, (B.) b > B. 

Then (A. x B.) b > A x B.  I f  A, B, A ,  B. are subsets o f  the same space 

then ( A , ~ B , )  b > A ~ B .  

For intersections, a convexity argument and a qualification condition 
([50], [53], [66], [67], [75]) have to be used. 
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Proposition 29. ([62, Prop. 27 (e)]) Suppose (A, )  b > A, (B, )  b > B 
where A , A , , B , B ,  are closed convex subsets o f  a Banach space X and 
X = R + ( A - B ) . T h e n ( A  r iB , )  b > A n B .  

In fact a quantitative result can be given. Assuming that 

s U  x c A n r U  x - B n r U  x (5) 

for some r , s  ~ ]? (what occurs when X = IR+(A - B ) ) ,  we will show that for 
each p ~ ~ and any A',B' c X we have 

e p( A ' ~  B ' ,A  n B) < p + r + s 
s + max(ep (A', A), ep (B', B)) (ep (A', A) + el, (B', B)), (6) 

and that if p > r and if ep (A, A ') + ep (B, B ') < s, we have 

d.  (A'n 8', A n 8) <_ s-' (p + r + s)(d.  (A ', A) + d,, (8', 8)) (7) 

Proof.  Let x' ~ A '~ B ' n  p U  x and let t > ep (A ', A) + el, (B', B) .  We can find 
y ~ A, z ~ B such that IIy- x'll + II z -  x'l[ < t .  Relation (5) ensures that there 
exists ( a , b ) ~ ( A n r U x ) × ( B n r U x )  such that 

st-l ( z - y ) = a - b. 

Then x := (s + t) -j (sy + ta) = (s + t) -~ (sz + tb) belongs to A c~ B and since 
Ila - x'i < P + r 

IIx- x'! ~ (s + t ) - ' s I y -  x'll + (s + t ) - ' t l la-  x'll < (s + t) ' t(s + p + r). 

Since t is arbitrarily close to ep(A ' ,A )+  ep(B' ,B),  we obtain (6). 
Now let us suppose A' and B' are such that ep (A, A ') + ep (B, B') < t < s .  

Then, for s ' ~  ( t ,s)  we have 

s ' B  x c A n r U  x - B n r U  x c A ' n ( r  + t )U  x - B ' n ( r  + t )U  x + t U  x. 

Using the R~dstrOm's cancellation rule, we get 

(s ' -  t )B  X c cI(A '~  (r + t )U X - B ' ~  (r + t )U x ). 

Then the openness result of  [67, Lemma 1.0] ensures that 
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( s ' -  t)U x c A '~ (r + t)U x - B ' n  (r + t)U x . 

Thus the first part of  the proof can be applied with A, B interchanged with 
A', B' and r, s replacedby r + t  and s ' - t  respectively: 

%(A ~ B,A'c~B') < P + r + s' 
s ,_ t  +ep(A,A,)+ev(B,B,)  (ep(A'A')+% (B'B'))" 

Since s' and t can be chosen arbitrarily close to s and %(A,A')+ %(B,B')  
respectively, we get (7). [] 

Using the diagonal mapping, and the product rule, the preceding 
statement can be considered as a special case of a result about inverse 
images under a continuous linear map (see [62, Lemma 24]). On the other 
hand, the inverse image by a linear continuous map L : X --~ Y of  a subset 
D of Y is obtained as the projection on X of the intersection L n (X x D), 
where L is identified with its graph and Px ]L is an isomorphism from L 
onto X .  In fact, a direct analysis yields a quantitative result which reveals a 
kind of  Lipschitzian behavior. 

Proposition 30. ([19, Cor. 2.4], [62, Lemma 24]) Let D be a closed convex 
subset o f  Y .  Assume 

sU r c L ( r U x ) - D  

for  some r,s > O; this condition is satisfied when X ,  Y are complete and 
Y = R+ ( L ( X ) -  D). Then, for  t E (O,s), p > O, q > max(p[[Ll[,rllL}]+ s) and 
D',D" closed convex subsets o f  Y with dq(D,D')<t ,  du(D,D ) < t  one 
has 

dp(L-'(D'),L-'(D"))<_ P+rs_t dq( D' ,D" ). 

In particular, for  a sequence (D,) o f  closed convex subsets o f  Y one has 

(19.) b >D ~ (L-t(D.)) ~ >L-~(D). 

The study of  b-convergence of images can be eased by the use of the 
criteria for the expansion property we displayed above. Here we introduce a 
slight refinement of  condition (4), and of  conditions (14) and (15) of  [62]. 
We say that a map F : X ~ Y is approximately quasi-expanding on a 
sequence (E,) of subsets of  X if for each s > 0 and each q e 1P there exist 
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p e I ?  and k e n  such that F ( D m ) n q U  Y c F ( D  m n p U x ) + c U y  for each 
m >_ k ,  where D m := U,>_m E,.  This condition is satisfied if F is expanding 
on (E,) in the following sense: for each q e I? there exist p e I? and k e N 
such that D k n F-J(qUv)c  pU x . We also need an extension of  the notion 
of  firm asymptotic cone: we say that K is a firm asymptotic cone to a 
sequence (E,) o f  subsets of  X if for each c > 0  there exist r e l?  and 
k e N such that E, \ rU x c Cc(K ) for n >_ k.  When the sequence (E,)  is 
constant, we recover the definition above. 

Proposit ion 31. Let E ,  E, (n E N) be subsets o f  X and let F :X  --> Y be 
Lipschitzian on bounded sets. 

(a) Suppose that b- l im sup, E, c E.  Then b- l im sup,F(E,) c F(E) 

provided that the map F is approximately quasi-expanding on 
(E.). 

(b) Suppose that E c b - l im inf. E, . Then F(E) c b- l im inf~ F(E.)  

provided F is quasi-expanding on E .  
(c) F(E) c b- l im inf, F(E,)  provided that E c b- l im inf, E,, F is 

positively homogeneous, asymptotically metrically regular on E 
and E has a firm asymptotic cone K which is apart from 

N := F -t (0).  

(d) I f  E = b- l im.  E. and i f  F is positively homogeneous, metrically 

regular on U . E .  and E ,  if  E and (E.) have a firm asymptotic 

cone K which is apart from N := F -I (0), then 

F(E) = b -lim. F(E.) .  

Proof.  (a) (Compare with [62, Prop. 8 (d)] when F is linear,) Let q e I? and 

e > 0 be given. Since F is approximately quasi-expanding on (E.), setting 

Dm:=h~,. Era'we can find p e F  and some k e n  such that 

F ( D m ) n q U r c F ( D m n P U x ) + ½ e U  r for each m>_k, Let n: be the 

Lipschitz rate of  F on (p+l)U x and let 6:=min(c/21¢,l). Let m>_k be 

such that E ~ pU x c E + 6U x for n > m. Then, for n _> m we have 

F(E.)  n qU r c F(D,.) n qU v c F(D,. n pU x) + l e U r  

c F  ( E + f U  x )+leUv c F  ( E)+ eUr . 
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The proof of  part (b) is simpler and is omitted (see [62, Prop. 1 (b)]). Part (c) 
is a consequence of  part (b) and of  Proposition 25. 

(d) It is a consequence of  parts (a) and (c) and of an adaptation of 
Proposition 25 which consists in proving that under the assumptions of  (d) 
the map F is expanding on (E,), and of  course, on E .  If  the conclusion 
does not hold, one can find q e l P ,  a sequence (Xp) of X such that 
xp e E . ( p ) \ p U x ,  F(xv) <q for each p e N ,  with n(p)-->oo as p--->oo, 
Let a e (0,1) be such that C~ (K) ~ C a (N) = {0}. Since F is metrically 
regular on U E., we have (IXpl-'d(Xp,N))--->O, hence xp eC . (N)  for 
p e N large enough. On the other hand, since K is a firm asymptotic cone 
to (E.), we have x. eC~(K) for p e n  large enough. This is a 
contradiction. [] 

The convergence of  sums of  sets is a special case of  the preceding 
statement. 

Corollary 32. Let A, 
(A.) (B.) 
to A and (A.) (resp. 
(A.+B.) >A+B. 

.4., B, B. ( n e N )  be subsets of X such that 
) B. Suppose P (resp. Q) is a firm asymptotic cone 

B and ( B ) )  and P and -Q are apart. Then 

5.2 Continuity of  some operations on functions 

The preceding results can be adapted to epigraphs of  functions in order to 
get results about usual operations. The most immediate application concems 
composition. 

Proposition 33. Let W,Z be two Banach spaces, let A:W--+ Z be a 
continuous linear map and let g be a closed proper convex function on Z 
such that Z = N+dom g + A(W). I f  (g,) is a sequence of closed proper 
convex functions on Z which b-converges to g, then (g, o A) b-converges 
to g o A .  

Proof.  Let X : = W x l ~ ,  Y : = Z × I R ,  let D (resp. D,) be the epigraph of g 
(resp. g , )  and let L : X - ~  Y be given by L(x,r) :-- (A(x),r). Then the 
epigraph of  goA (resp. g, oA) is L-'(D) (resp. L-'(D,)). Since the 
qualification condition of  the statement easily implies that Y = ]R+D + L(X) 
there exist r,s>O such that s U v c L ( r U x ) - D .  Thus the conclusion 
follows from Proposition 30. [] 

The case of  marginal functions can be deduced from the case of  images 
of sets; in particular the convergence of  the infimal convolution of  two 
functions can be derived from the convergence of the sequence of  the sum of  
two sets. 
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As a sample of what can be obtained with functions, let us give a result 
for infimal convolutions and recall the following result for sums (see [18], 
[19], [26], [53], [62], [74], [77]..,); in the finite dimensional case such a 
result has been obtained by McLinden-Bergstrom [44], 

Proposition 34. Suppose that f ,  f . ,  g, g. are closed proper convex functions 
on the Banach space X satisfying 

X = ]R+ (dom f - dom g). 

Then, if ( f . )  b ) f , (g.) b > g one has (f .  + g.) b > f + g . 

For the infimal convolution of  two functions given by 
( fog)(x)  := infw~ x ( f (w)  + g ( x -  w)) we devise a direct proof inspired by 
Corollary 32. 

Proposition 35. Let f , f . , g , g .  be functions on the normed vector space X .  
Suppose that f ,  g are bounded below on bounded subsets and have 
asymptotic firm approximations p, q respectively which are positively 
homogeneous and for which there exist at, fl ~ 17 such that 

p(u)  + q(v) > at min<llull,llvll)- PlIu + vii v u ,  v x (8) 

If f > b -lim sup. f .  and g > b -lim sup. g. ,  then f o g  > b -l im sup . f  ng. . 

Let us note that relation (8) is satisfied whenever there exist y,2. e 
such that q is 2-Lipschitzian and 

p(u)+q(-u)>_Yllull vu x 

In fact, in such a case, for any u, v ~ X we have 

p(u) + q(v) >_ p(u)+ q ( - u ) -  2[lu + vii-> y Ilull- 21lu + vii 

Proof. Let F,F. ,G,G. be the strict epigraphs of f , f . , g , g ,  respectively, so 
that F + G (resp. F. + G. ) is the strict epigraph of f o g  (resp. f Dg.). The 
assertion amounts to show that F + G c b -lim inf. (F. + G.) .  In view of  
Proposition 31 it suffices to show that S:(x,r ,y ,s)~--)(x+y,r+s)  is 
expanding on F x G. Suppose, on the contrary, that there exist s ~ ~ and a 
sequence ((x.,r. ,y. ,s.)) in F × G  such that and 
(l[(x. + y.,r. + s.)ll ) is bounded, Since f and g are bounded below on 
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bounded subsets, 
subsequence. Thus 
such that 

r. + s. > f ( x . ) +  g ( y . ) >  p ( x . ) + q ( y . ) - ~ . l l x . l l - ~ . l [ y . I  I 

>amin(  x. , y . I ) -  f l  x. + y.  - ~  x. - ~  I .1 
Because IIx.ll/llY.ll-~ 1 we obtain the contradiction (r. + s.)---> ~ . 

851 

the sequence (l(x.,yo)ll) cannot have a bounded 
(Ix.I) --> oo and (y.[)  oo .  Then there exist (e.) ---> 0+ 

[] 
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CONTROL PROCESSES WITH DISTRIBUTED 
PARAMETE R S IN U N B O U N D E D  SETS. 
APPROXIMATE CONTROLLABILITY WITH 
VARIABLE INITIAL LOCUS 

G. Pulv i ren t i ,  G. Santagat i  and  A. Vi l lan i  
Dept. of  Mathematics and Computer Sciences, University of  Catania Catania, Italy 

Abstract: We consider the following distributed parameter linear control system 

z~u + A(x,y)z:, + B(x,y)zy + C(x,y)z = F(x,y)U(z,y).  (E) 

Here (x,y) ranges over the unbounded set 

L j = U l(u,v), 
( u , . ) 6 l x J  

where 

l(u, v) = ([u, +oo[×{v} ) U ( {u} × [v, +ooD, (u, v) 6 IR 2, 

and I, J are two non-degenerate intervals of R. The state vector function z 
belongs to the Sobolev type functional space 

w,,:,o~(L,,, w') = {z • z~;o(s ,w'):zo,~,z~,, •/~,: (s,,,~")} 

p m and the control vector function U is in L[~(L j , R  ). Moreover, for every 

(u,v) T I × J ,  the trace of z on l(u,v) is taken as the system state 

corresponding to the values x = u, y = v of the parameters. All these traces 
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belong to a functional space of Sobolev type, which does not depend on 
(u,v). 

In this setting, given a point (a,b) E I × J, we study the controllability of 
system (E) from a given initial state, to be taken on the variable initial locus 
l(%,bo),(%,bt~ ) E I x J, % <_ a,b~ <_ b, to an arbitrary final state, to be taken 
on the fixed final locus l(a,b). We get a characterization of the approximate 
controllability when the set of the available controls is the unit ball of 
L~(Lt,s, R"). 

. I N T R O D U C T I O N  

We first introduce the notation for the unbounded subsets o f  ~ that we 
will use• 

For every (u, v) E ~ we put 

l(u, v) = u ({u} × [v, 

also, fixed any two non-degenerate intervals I,  J o f  ~ ,  we put 

L = U l(u,v). 
(u,v)ElxJ 

We consider the following distributed parameter linear hyperbolic control 
system: 

z~ + A(x,y)z~ + B(x,y)z~j + C(x , y ) z  = F(x , y )U(x , y )  a.e. (x, y) E L 
1,,!  

(E) 

, oo L n.m Here, A, B, C, A~, B~ E C °(L J, II~"'"), F E E~o¢( ~,.~, ~ ), the control 

p ;qt vector funct ion U belongs to L~oc ( L j , ~ ) and the state vector funct ion z 

is an element o f  the Sobolev type functional space 

W;loc(nlj,]l~n),, , : {Z E LPoc(nl,d,~n)'Zx,Zy,Zxy E nToc(n I,.],]l~n)}. 

We take the trace o f  z on l(u,v),  (u,v) E I x J, as the system state 
corresponding to the values z = u, y = v o f  the parameters. All these 
traces belong to the same functional space o f  Sobolev type 
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1,p =(")-.,,oo -- wL"([0, R")x W oc ([0, v(0) = W(0)}, 

which does not depend on (u, v). 
In the previous papers A. Villani [11], G. Pulvirenti - G. Santagati [4] we 

allowed the control U to range over the entire space L~o¢(Lt,j,~m ) and 

assumed that the initial locus l(ao, bo) and the f inal  locus l(a, b), where 
(ao,bo),(a,b) E I x J, a o < a, b o < b - that are the loci where the system is 
required to take its initial state and f inal  state, respectively - were both 
fixed. In that framework we provided conditions in order that for every 
initial state the corresponding set of  final states (attainable set) be equal to 
the whole space =(") (exact complete controllability problem) or to a dense ~p, loc  

subspace of  it (approximate complete controllability problem). 
In this paper, taking an analogous controllability problem for a lumped 

parameter control process (see R. Conti [1], Sections VI. 4 and VI. 5) as a 
model, we no longer let the control U range over the whole space 
/-~Poc (LI, J , ]l~m), but assume that U is constrained within a proper subset /d 

of  that space. On the contrary, we do not consider a fixed initial locus 
l(ao, b o), but we suppose that 1(%, b o) may vary with 

(ao,bo) E I × J, a o < a, b o <_ b. 
We first introduce the functional spaces that will be used in the paper 

(Section 2) and study a linear hyperbolic system related with (E) (Section 3). 
Then, we give a representation formula for the solutions of  (E) (Section 4) 
and show a characterization of the attainable set (Section 5). 

Next (Section 6), assuming a given element (~o0, ~b0) of  =(,0 ~p.~o~ as the 
initial state, to be taken on the variable initial locus l(ao, b o), we consider the 
subset of  =(n) which is the union of  all corresponding attainable sets on the ~p, loc  

fixed final locus l(a, b). We focus about two main problems related to the 

above mentioned set: if such a set coincides with the whole space =(n) or ~p, loc  

if such a set is a dense subset of  =(") Regarding the second problem we ~p, loc  ' 

establish (Section 7), by means of  the adjoint map of a suitable functional 
transformation, a necessary and sufficient condition of  solubility in the case 
that (~o0,~b0) is the null element of =(") and b/ is the unit ball of  ~p,]oc  

L°~(LI.j,Rm ). In this way we get a complete approximate controllability 

type result, which is of  use when the whole space of  controls is not available, 
but it is possible for the initial state to be taken on a variable initial locus. 
The above mentioned solubility condition is formulated by means of  the 
integral of  a functional constructed from the data. Also, this condition 
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presents some analogy with the necessary and sufficient condition for the 
complete approximate controllability, with fixed initial locus l(ao,bo) and 
fixed final locus l(a, b), established in the paper G. Pulvirenti - G. Santagati 
[4], already cited. 

. F U N C T I O N A L  S P A C E S  

In this Section we introduce the functional spaces that we will make use 
of  in the course of  the paper, along with their main properties. The reader is 
referred to Section 2 ofA.  Villani [10] and Sections 2 and 3 ofG.  Pulvirenti 
- G. Santagati - A. Villani [5] for more information on these topics. 

Henceforth, we shall assume that p and pt are conjugate exponents in 
[1, +oo] and that X is a measurable subset of  ~d, with positive measure. 

p 8 Definition 2.1. Lloc(X,]~ ) is the complete l.t. space ~ of  all [classes of] 
measurable functions l :X--~ ~ whose restrictions to every compact set 
K c_ X belong to LP(K, ~'),  endowed with the topology defined by the 
seminorms: 

p s 

where K ranges in the collection of  all compact subsets of  X. 
p s It is worth to remind that Ltoc(X,~ ) is a metrizable space (hence a 

Fr6chet space) if and only if there exists a sequence {Cr} of  compact 
subsets of  X having the following property: for each compact set K C X 

there is some Cr for which m(K \ C,.) = 0. If the set X is such that )( is 

a dense subset of  X, then the preceding metrizability condition notably 
simplifies, namely we have that L~'oc(X , ~s) is a metrizable space if and only 
if X \ X is a closed set. By means of  this simplified condition the space 

p s L~oc(X,~ ) is easily seen to be metrizable in all cases considered in this 
paper. The reader is referred to A. Villani [12] for the above mentioned 

p s metrizability conditions for L~oc(X, ~ ). 

Definition 2.2. L~'(X,]~ ~) is the 1.t. space of  all [classes of] measurable 
functions a : X  ~ R '~ which belong to LP'(X,~ s) and vanish outside of 

I By an l.t. space we mean a locally convex Hausdorf topological vector space. 
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some compact subset of  X, endowed with the topology defined by the 
seminorms: 

pt S zrv(a) = sup ( a*(x)l(x)dx VcreL~(X ,~  ), 
IEY "1 X 

where Y ranges in the collection of all bounded 2 subsets of Lto¢(X,~ p ' ) .  

Consider the map a ~ l'(o), from L~'(X,~*) to (L~o°(X,R'))', 
strong dual space of  L~o¢(X, R ' ) ,  defined as follows: 

the 

< l,l'(a) > = f x  a*(x)l(x)dx V l e  L~'o¢(X,~). (2.1) 

Then we have the following theorem. 

Theorem 2.1. The map cr ~ /'(a), which assigns to each a E L~'(X,~ ~) 

the element l'(a) of  (L~'oc(X,R')) ' given by (2.1), is an algebraic and 

topological isomorphism between L~'(X,R ~) and the linear subspace 

l'(L~' (X, R ' ) )  of  (L~o¢(X, ~ ' ) )  ' . Moreover, for p E [1, +c~[, we have 

I'(L~'(X, R~)) = (L~oc(X, ~ ) )  ' 

Definition 2.3. Let f~ be an open subset of It~ ~. Then W[(f~, R") is the 
Banach space of  all [classes of] measurable functions w : f2 ~ II~" which 
belong to L"(f2, I~ '~) along with their weak derivatives w~, w~, w~.~, with the 
following norm: 

II w II~:(~,R,,)= [11 w IIZ,,(,~,~,,) + II w~ II~%,(~,R,,) + II % I1~%,(~,~,,) + II w~ IIL;,i~,r)] '~', 
p e [1, +c~[, 

The spaces W;(f~,/I~"), already studied in R. Di Vincenzo - A. Villani 
[2] and in M.B. Suryanarayana [9], play a role in the forthcoming definition, 
which is concerned with the space of  the solutions to (E). 

2 Here, of course, boundedness has to be understood according to the theory of topological 
vector space. 
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Definition 2.4. Let I, J be any two non-degenerate intervals of  IR.. Then 
* L Wp, t°~( t,J' ~ ' )  is the Fr6chet space of  all [classes of] measurable functions 

t13 : LI, J ~ ~ n ,  whose restrictions to every open bounded set f2 such that 

_ w* (f) R") endowed with the topology defined by the C LI, J belong to _ ~ ~.., ~, 

seminorms: 

* L .n % (w) =11 w w • w;,,oc( ), 

where f~ ranges in the collection of  all bounded open set such that 
fiCL 

- -  l , J "  

It is apparent that the elements of W~to~(L .i, ~" )  are precisely those 
p ~ 1 1  xt functions w such that w, w~, wu, w~u • Lloe(LI. J ,ll~ ), where w~,%,w~ are 

._3_. 
weak derivatives on L . Moreover, denoting by I °° [resp. joo] the union 

l , J  

of the interval I [resp. J ] and the set of its upper bounds (possibly empty), 
if we consider the product Fr6chet space 

Sv,lo~(L,j,R" ) = L~oc(L, J ,l~") × L,o~(I , ) × L,oc(J , ) x ~ , 

we can show by similar arguments to those used in in A. Villani [10] 
(Theorem 2.1 and Proposition 2.2) that the following theorem holds. 

Theorem 2.2. Let ('d,'b) be any fixed point in I x J . Then we have. 

1) the elements of  W~,Ioc(L, J , R  ) are precisely those functions w 

which can be written in the following form: 

v(z, v) e r 
l , J  ~ 

(2.2) 

with (h, ha,1½,A) E Sp.,oc( , j ,  ); 

2) the linear map (h, ha, lh, A) --~ w, established by (2.2), is an 

algebraic and topological isomorphism between Sp.lo c ( LI.j , ~" ) and 

W;,oc ( L , ,  r~" ). 
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Corol lary  2.1. W~.loc(Lt.j,R")* is embedded in C ° ( L , j , R " )  3, both 

algebraically and topologically. 

* n Since functions w C W~,Loc(L,j,~ ) are continuous, it is possible to 

consider their traces on every set l(u, v), (u, v) E I × J .  

It is noteworthy that such traces can be regarded as elements of  a unique 
~¢") already considered in the functional space ~p,loc--'~(n) (that is, the space .-p 

previous papers; see, e.g., G. Pulvirenti - G. Santagati - A. Villani [6]) which 
does not depend on (u, v). 

To the aim of reminding the definition of  the space =(,0 and some ~p , [oc  

useful properties of  it, for the sake of  completeness we start by setting the 
following definition. 

Definition 2.5. Let G be any interval of It(. Then ~'P " W~o c (G, ll~ ) is the 
Frdchet space of  all [classes of] measurable functions ~, : G ~ lt(" whose 

restrictions to every open bounded set A such that A C_ G belong to the 
Sobolev space W~'P(A,]R"), endowed with the topology defined by the 
seminorms: 

l,p ~[~n 
~A (~) =11 ~ IIw,,'(n.~,,) V~ ~ W~o ~ (G, ), 

where A ranges in the collection of  all bounded open set such that A C_ G. 

Similarly to what we noticed about W~o¢(Lt,j, ~") ,  we have that the 

elements of  1,p II(" Wlo ¢ (G, ) are precisely those functions cp which belong to 

L~Po¢(G,R ") together with (p' (the weak derivative on G).  Also, the 
following theorem holds. 

Theorem 2.3. Let t be any fixed point in G. Then we have." 

1) the elements of  ~'P ]R" ) Wlo ¢ (G, are precisely those functions ~o which 

can be written in the form 

3 CO(L ~") endowed with the topology of Ljo~(L 1J IR") 
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~ t 
~(t)  = k(~)d~ +,~ Vt • G, (2.3) 

2) 
with (k, 5) • L~o c (G, ~")  × ~"; 
the linear map (k, 5) ~ ~o, established by (2.3), is" an algebraic and 

topological isomorphism between the product Frdchet space 
L~Oo¢(G, R")× R" and W~o ¢''p (G, R n) 

Theorems 2.2 and 2.3 imply, in an obvious way, 

Corollary 2.2. For every w • W~[,o c (LI.j, ~")  we have." 

l ,p  oo n w~'Ptr°~ ~ " ~ V y • J ,  w(x, . )•W~o ¢(J  , ~  ) V x • I .  w( ' ,y)  • "'1oc ~- ,~" / 

Also, for each y • J [resp. x • I ], we have that 

w ~ w(.,y)[resp.w---* w(x,.)] 

is a continuous linear map from the space W~lo ¢ (L ..,, ~") onto the space 

Wll,p (1"oo W~o~ (J ,~  )]. 

Obviously, Theorem 2.3 ensures that every element of l.p ,~ W~oc (G,I~) i sa  

continuous function in G. Hence, the following definition is meaningful. 

Definition 2.6. --(') is the Fr6chet space ~ p , l o c  

{(~,¢) e w~¢ ([o,+~[, × w,~ ([o, +~[,~°)  : ~(o) = ¢(o)}, 

closed linear subspace of the product Fr6chet space 

W~o? ([o, +~[, w') × w ~  ([0, +~[, ~°) 

endowed with the topology given by the seminorms: 

~A.~ (~' ¢) = L (~) + % (¢)' 
1,p v(~, ¢ ) e  W~oc ([o, +~[, w')× ''~ W,o~ ([0, +~[, w') 
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where A and B range in the collection of all bounded and open subsets 

of ]0, +~[. 

Another consequence of Theorem 2.3 is: 

Theorem 2.4. The elements of  ~p,to~=(n) are precisely those pairs of  functions 

(~o, ~b) which can be represented as follows: 

f: £ T(t) = k(s)ds + 6, ¢(t) = l(s)ds + (5 Vt E [0, +c~[, (2.4) 

where 

(k,~,6) e LL([0, +~[, ~")× got(J0, +~[, ~") × ~"; 

the linear map (k, l, 6) ~ (~o, ¢) ,  established by (2.4), is an algebraic and 
topological isomorphism between the product Frdchet space 

/~Poc ([0, +c~[, IR") × L~'oc ([0 , +cc[, ~")  x R" 

and =(") ~p,|OC " 

Since the inverse isomorphism of (k,l, 5 ) ~  (%~b) is the map which 
associates 

(~o', ¢ ' ,  ~o(0)) e L~'oc ([0, +c~[, ~")  x L~o c ([0, +c~[, R " ) x  ~" 

to each (% ¢) E =(") taking into account Theorem 2.1 we obtain: ~ p , l o c  

Theorem 2.5. Let p E [1, +cx)[. Then the map which transforms each 

(p, u, ~) e L~' ([0, +c~[, R'*) × L~' ([0, +c~[, R '~) × R'* 

into the element Q ~ "- (")  " " - ( " )  oJ (~p,lo~) , the strong dual space oj =p,lo~, given by 

< (% ¢),O > =  f0 +°° #*(t)T'(t)dt + f+oo u'(t)¢'(t)dt + ~'~(0) 
(2.5) 

v(~, ¢) e =(') p,loc 
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is an algebraic and topological isomorphism between the product Lt. space 

w )  x w )  x w 

and (--(") ~t k~p,loc ] " 

The above theorem implies that (see G. Pulvirenti - G. Santagati - A. 
Villani [6]). 

Theorem 2.6. For p E]I, +cxz[ the space =(,o is reflexive. ~p,loc 

Now, in order to regard the traces of the functions w C I,V~,~oc (L ,.j, IR" ) 

on l(u, v), (u, v) E I x J, as elements of the functional space _~/,,/ ~p,loc ~ w e  

notice that, given (u, v) E I × J, by Theorems 2.2 and 2.4 the restriction of 
each w E W~,o~(L ,a, II~ ~) to l(u, v) individualizes an element 

of --(") by means of the following equations: ~p,loc 

~o(.,.),,o(t)=w(u+t,v), ~p(.,v),w(t)=w(u,v+t) Vt C[O,+c~[. (2.6) 

Consequently, the following definition is meaningful. 

Definition 2.7. For each w C W ~ o c ( L j , ~ " )  and each (u, v) E I × J, we 

call trace of w on l(u, v) the element 7(,,v/w of =(") given by (2.6). ~p,loc 

Furthermore, the following theorem is true. 

Theorem 2.7. For each (u, v) E I × J, the map w --~ "7(,,,,)w is a continuous 

linear map from W~loc(L, J , N" ) onto "~(") p,loc" 
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. EXISTENCE,  U N I Q U E N E S S ,  C O N T I N U O U S  
D E P E N D E N C E  A N D  R E P R E S E N T A T I O N  F O R M U L A  
FOR THE S O L U T I O N S  TO A L I N E A R  H Y P E R B O L I C  
S Y S T E M  

We henceforth suppose that I, J are two non-degenerate intervals of R 
and that the coefficients A,B and C of (E) satisfy the following 
assumption: 

A,B,C,A~,B~ E C°(L a,~"'" ). (3.1) 

We denote by P the continuous linear differential operator, from 
W£:lo ~ (L a, ~" ) to L~o ~ (L j, N"), defined by putting: 

Pw = w~ + Aw~ + Bwy + Cw Vw E W;,~oc(L j,ll~ ). (3.2) 

Fixed a point (~,b) E I × J, let us consider the problem: 

w E W~:Io~(L a,R" ), 

Pw = f ,  

w ( . , ~ )  = o , w ( ~ , . )  = ~ ,  

( 3 . 3 )  

l , p  c~  l , p  oo 71. wheref E L~oc(Lt.j,l~" ), a E W~o c (I ,~"),  ~- E W~o ~ (J ,~  ), cr(~) = T(b). 

By a similar argument to that used in A. Villani [10], Theorem 3.1, one 
proves that the following theorem holds tree. 

Theorem 3.1. Let (5,-b) E 1 × J.  Then, for each fixed element ((or, "r), f)  of  
the product Frdchet space 4 

¢. 
t ' J r  w , , . r r o o  W ' )  a. oo . - ~t , , xW~=(J ,N ):a(a)=~-(b XLlo c (LJ ,N  ) (3.4) 

Problem (3.3) has a unique solution w 
(a , r ) , f  

The map 

L p  ~ n I , p  4 closed linear subspace of  w~o~ (, ,R )× ~o~ (J%~") × L~,,. (L,~,R"). 
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is an algebraic and topological isomorphism between the space (3.4) and 
W;:,o¢ ( L .j , ~"  ). 

Remark  3.1. In order to prove Theorem 3.1 the above assumption (3.1) may 
be weakened; indeed, the already mentioned argument used in A. Villani 
[10] simply requires that the coefficients A , B  and C belong to 
E~o~c(L/,j, R"");  moreover, it is well known that further generalizations are 

possible (see for instance G. Sturiale [8]). However, assumption (3.1) allows 
us to get also a representation formula for the solutions to Problem (3.3), 
through an evolution matrix, which is constructed by means of the 
coefficients of the operator P. 

To define such an evolution matrix, we start by reminding the following 
result (see A. Villani [10], Theorem 4.1). 

Theorem 3.2. Let D = [u',u"] × [v',v"] be a closed rectangle o f  ~2 such 

that D C L 
l,J" 

Then, for  each (x,y) E D, there exists a unique function 
(u,v) ~ VZ~(u,v;x.y), from D to ~ ..... , continuous in D together with the 
derivatives V~ ° , V, D, V,~, solution to the following problem: 

V . .  - ( V A ) .  - ( V B ) .  + VC = 0 V(u, v) E D, 

V -VB=O v=y,  Vue[u',u"], 
V ~ - V A = O  u = x ,  VvE[v' ,v"],  

V(z,  y; z, y) = I. 

(3.6) 

Also, we have that the function (u,v;x,y) ~ VO(u,v;x,y) ,  f rom D x  D to 
R .... , is continuous in D x D  together with the derivatives 

D D D V o v D v  D v;  ,Vv , 

Clearly, Theorem 3.2 also implies that if (x, y) E L 
1,,1 

two closed rectangles such that 

and Dl, D 2 are any 

(x, y) E D 1 (-1 n2, D 1 U D 2 Q Lt,j, 
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then we have 

vo'(~,v;x,v)= v'(u,v;.,v),  V(~,v) e D, nD~. 

Denote by T. j  the subset of R4 consisting of all points (u, v; x, y) for 

which there is some closed rectangle D of ~2 such that D c_ L and that 
1,,1 

(u, v), (x, y) E D. Then, thanks to the previous remark, we are allowed to set 

the following definition. 

Definition 3.1. We call evolution matrix, associated with the differential 
operator P, the function (u, v; x, y) --, V(u, v; x, y), from T,. 1 to ~ .... , that 

assigns to each (u,v;x,y) the value V~(u,v;x ,y ) ,  where D is any closed 
rectangle of R 2 which is contained in L,.I and contains both points (u,v) 

and (x, y). 

Then, by a similar argument to that in Section 4 ofA. Villani [10], we get 
the following representation result for the solutions of Problem (3.3). 

Theorem 3.3. For each (-d, -b) E I x J, each 

lJTl,v (too ~, , )  1,1, oo n (o',',-) ~ " ,oo,*  , xW,  o¢ (g , R  ), 

such that a(-5) = "r(-b), and each f E L~o ¢ (L ,.,, R") , we have that function 

w the unique solution to Problem (3.3),/s represented by means o f  the 
( ~ , , r ) , I  ' 

following formula: 

~,(~,~),~ (z, v) = v ( <  ~; x, ~)~(-~) + 

+f"  v(u, ~; x, v)[~'(,,) + B(u,~)o(~)]du + 

+ ~ Y  V(-d, v;x,y)[r'(v) + A(-d, v)r(v)]dv + 

+£ f~ V(u,~;x,,j)f(u,v))d,,dv, v(x,~)e L 
[ , , ]  
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4. S O L U T I O N S  O F  (E) 

Keeping assumption (3.1), from now on we further suppose that 

O0 n l m  F E L~o ~(L,J,ll~ ). 

Let the initial locus l(ao, b o), with (ao, b o) E I × J, the initial state 
p m =(,o and the control U E L~oc(L j , R  ) be fixed. Then, it (:o, %)  e -,,,oc 

follows from Theorem 3.1 that there exist functions z ,  elements of 
W~loc(Lt,j,]~"), which are solutions of (E) and, in addition, satisfy the 

following condition 

= %). 

They are precisely all functions 

1.o 
(o,r),FV 

where (a, ~-) is any element of Wtlof(I°°,]~ ") × Wl~f(S°°,]~ ") such that 

a(x)=qOo(X-%) Vx>_ao, T(y)=¢o(y--b,,) Vy_>b,,. 

Thus, excluding the case a o = i n f I  and b o = i n f J ,  the set of such 
functions z is infinite. 

Moreover, if a o < sup I and b 0 < sup J ,  all the restrictions of the above 
mentioned functions z to the set 

L 
t,,o,s~, ' 

where I~o = I M [%, +oo[, Jbo ---- J N [b0, +c~[, coincide with a unique 
element 

z(. ;(ao, bo) , (qo0, ¢o), U) (4.2) 

of the space W~lo¢ (Lt,~,.j, ]~" ) and the map 

((~Oo, ¢o), U) ~ z(.; (a0, bo) , (cpo , ¢o), U), (4.3) 
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P Lx. J , R  m * Loj~  " from =(') x "~/loc ( ) to W~,to c ( , ~ ), is linear and continuous. ~ p , l o c  . , 

By Theorem 3.3, function (4.2) can be represented by the formula 

z(x,y;(ao,bo),(~o, ¢o),U ) = ff(x,y;(ao,bo),(qpo,¢o) ) + 
(4.4) 

+ V(u ,v ;x ,y )F(u ,v )U(u ,v )dudv  V(x,y) e L 
o o I,, o ,,lt~t 

where V is the evolution matrix, associated with the differential operator P ,  
and 

~(x, y; (ao, b o), (~Vo, ¢o )) = V(ao, bo; x, y)~v o (0) + 

f f  ' + V(u, bo;x,y)[qPo(U - ao) + B(u, bo)qVo(U - ao)]du + (4.5) 
o 

+ fbo' Y (a° ' v ;x 'Y ) [¢~(v -b° )  + A(a° v)¢°(v-b°)]dv '  V(z,y) e L 
la 0 ,,]t~ 

R e m a r k  4.1. It is apparent that the function 

(x,y) ~ ~(x,y;(ao,bo),(~o,¢o) ) = z(x,y;(ao,bo),((po,¢o),O), (x,y) e L t,,o,g~ ' 

is the unique solution to the problem below: 

ff C W~:to¢ ( LI,¢.j~ ,R"),  

Pff = O, 
= %).  

Likewise, the function 

(x,y) --~ V(u ,v ;x ,y )F(u ,v )U(u ,v )dudv  = z(x,y;(ao,bo),(O,O),U), 

(x,y) e L  
I,~ n ,J~} 

is the unique solution to the following problem • 
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z C Wp:to¢(Lt,,,,,j ,~" ) ,  

Pz = F U ,  

7(a,,,b,,)Z = (0, 0). 

5. T H E  A T T A I N A B L E  S E T  

Now we assume that, besides the initial locus l(%,bo), also the final 
locus l(a,b), with (a,b) E l x J  such that a o < a ,  b 0 <b,  and the set 
/4 C_ L~'o¢(LI,.I,N m) of the available controls are given. Moreover, just to 

simplify our exposition, we henceforth suppose that a < sup I, b < sup J 5. 

Definition 5.1. Let (%,bo),(a,b) E I x J, with 5 

a o _< a, b 0 _< b, (¢Yo,¢0) E -p.toc=(") and b/c_ LtPoc(L .~,~m) 

be given. We call attainable set on l(a, b), from the initial state ((P0, %) on 
l(ao,bo), by means of the controls U E U, the set 

A(  (ao,bo),(a,b);(qVo, g,o),/4 ) = {'y(~,b)z(.;(ao,bo),(~o, ¢o),U) : U e/4},  

that is, the set consisting of all final states on l(a, b), which are obtained as 

U ranges in U.  

From (4.4) and Remark 4.1 it follows 

A((ac,, bo), (a, b); (~o, ¢0),/4) = ")'(a,b)ff('; (ao, bo), (To, %))  + A(o,,,~o),(a,~)L/, 

where A(.o,~),(a,b) is the linear map specified in the definition below. 

Definition 5.2. (The map A(.,,,<),(.,b). ) Given (ao,bo) , (a ,b)EI×J , with 
a o_<a, b o <b ,  wedeno teby  

5 We refer the reader to the forthcoming paper G. Pulvirenti - G. Santagati - A. Villani [7] to 
see how this assumption can be removed. 
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A(%,~,),(a,b) 

the map, from L~'o¢ (LI,.I , ]R" ) to -Z~",~oc , which assigns to each U E L,Po¢ ( L . I ,  ]R 'n ) 

the following element of  the space -z(,,) ~ p , l o c  : 

A(~,b.),(a,b)U = ")'(.,b)z(" ;(ao, b0), (0, 0), U). 

Having in mind that map (4.3) is linear and continuous,  we have, as a 
particular case, that also 

u --, z(.;(ao,bo),(0, 0), u)  

p m * is a continuous linear map from Llo o ( L  ,j, R ) to W~.lo c (L t,:, R ' ) ;  hence, by 

Theorem 2.7, we get the fol lowing proposition. 

P ropos i t ion  5.1. A(%,~,),(~,b) is a continuous linear map f rom LI'o¢(L : ,R  'n) 

t o  ~ ( n )  
~ p , l o c  ' 

Let 

: (~p.loc) -"* , ~ 

be the adjoint map of  A(%,~,),(,.~). By a general result concerning the 
description of  the closed convex hull of  a set by means o f  its support 
function (see, for instance, G. Pulvirenti - G. Santagati - A. Villani [5], 
Proposit ion 5.1), we have the fol lowing characterization of  the set 
c-5(A(%,~),(o,b)b/) • 

T h e o r e m  5.1. Let ( a o , b o ) , ( a , b ) E I × J  , with a o <_a, b o <_b, and 
p m U C_ LIo ~ (L l,J, R ) be given. Then 

c6(A(%,~),(a,b)U ) = 

= {(X,r/) E -,,,o¢ :< (X,r/),Q >_< sup  < A(o°,~0),(a,b)U, Q > VQ E ,-.,~ocJ J = 
U6bt  

= {(x,r/) E -.,,o¢ :< (x,r /) ,Q >_< sup  < U, A(%,~,),(.,b)Q > VQ E ~-p,~ocJ 1. 
U e b /  
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If p E [1, +c~[ it is possible to obtain an explicit representation of the 
[--(") /' adjoint map A (.o,b,,),(~,b) by identifying the dual space t-p,~oc/ with the 

product space 

I pJ ]~7~ 
L~ ([0, +cx)[, W') x L~ ([0, +c~[, W")x 

i 

(Theorem 2.5) and the dual space (/5~o c (L, , ,  ~ " ) )  with L ( (L , j ,  ]l~ m) (Theorem 
p~ 2.1). Indeed, for each (# ,u ,¢)E L~ ([O, +c<)[, ]R") x L~'([O,+c~[,~")x W 'and 

each U E L~oc(Lm,Wn ) , by a similar argument to that used in Section 6 of G. 

Pulvirenfi - G. Santagati [4], one proves that 

t 
< U,h(o~,~),(o,b)(U, v, ~) > = <  h(°o,~,),(.,b)U, (U,v,~) > =  

= f f  Hi*~,b)(u,v;(P,u,~))U(u,v)dudv, 
L lao ,,Ibo 

where 

(u, v) - ,  H(o,b)(u, v; ~, ~,, ¢) 

is the measurable function, from L to I~ m , defined according to the rule: 
1,.I 

H/:,b)(u, v;(#,~', ~)) = 
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+ o o  

{ { * V ( u , v ; a , b ) +  [#*(t)V=(u,v;a + t , b ) +  

+u*(t)V~(u,v;a,b + t ) ]d t }F(u ,v )  

a.e. (u ,v)  • L .j N ( ] -  o o , a [ x ] -  oe,b[), 

f,+o  { # * ( u - a ) V ( u , v ; u , b ) +  _ #*( t )Vz(u ,v ;a  + t , b ) d t } F ( u , v )  

a.e. (u, v) • L . j  n ([a, + c ~ [ x ] -  oc,b[) ,  

- u*( t )Yy(u ,v;a ,b  + t ) d t } F ( u , v )  + 

a.e. (u,v) • n.., n ( ] -  ce,a[x[b,+oo[),  

0 a . e . ( u , v )  • L . ,  n([a,- I-oe[x[b,÷oo[).  

(5.1) 

It is easy to check that for every (%,bo) • I x  J, with a 0 < a, b 0 < b, 
the restriction of H(~,b) (. ; (#, u, () ) to L is an element of 

l,,t) ,Jt~) 

L((L,,°,j~ Rm), hence the function 1 H(.,b )(.;(#, u, ()) (where 
' L~,,o .A, 

1 is the indicator of the set L ) belongs to L~ (L t ~, N '~). Thus, we 
L t.o,Ji,o I'~1 'y% '" 

have the following theorem. 

Theorem 5.2. Let pE[1,+c~[ .  Given (ao,bo),(a,b)EI×J, 

a o <_a, b o <b, for each 
t pt 

(#,u,~) • L~ ([0, +co[, N") x L c ([0, +c~[, N") x N" 
we have 

with 

t 

1 H(o,b)(';(.,",¢)). 
LI.o.J,o 

=(") and each Since for each (X, 77) E -p.,o¢ 

(#,u, ~) e LcP'([0, +co[, R ") x L~'([0, +oe[, R") x It~" 
we have 

< (X,r/),(#,u,~) > = f0 +~ #*(t)x'(t)dt + fo ÷°° u*(t)r]'(t)dt + ~*x(O), 
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it follows that also the following theorem holds true. 

Theorem 5.3. Let p E [ 1 , + o o [ .  Given (ao ,bo) , (a ,b )EIxJ ,  with 
p m a o < a, b o <__ b, and Lt c_ L, oc(Lw,N ), we have." 

5-6(A(a0,b0),(o,b)U ) = 

= • --(. ,  f f  fo -,,:oc : #*(t)x'(t)dt + u*(t)zl'(t)dt + ~*x(O) _< 

< sup f f L ,  ~ H(*,b)(u, v; (#, u, ~))U(u, v)dudv 
UEL( '*o' ~o 

V(p, u, ¢) • L~' ([0, +cxD[, R n) x L~' ([0, +c~[, R " ) x  R"}. 

6. C O N T R O L L A B I L I T Y  P R O B L E M S  W I T H  
V A R I A B L E  I N I T I A L  L O C U S  

Let the final locus l(a, b), (a, b) E I x J, the initial state (¢Po, ¢o) E =(") ~ p , l o c  

and the set U C L~o¢(Ll,.1,]~m ) of the available controls be assigned. In 

connection with the control process (E), we consider the following two 
controllability problems, where the initial locus l(ao, bo) is allowed to vary. 

Problem 6.1. (Exact controllability with variable initial locus). 
=(") and b /C  L~o c(L,.1 ~,n) be given. Let (a,b) E I x J, (qpo,~bo) E -p,,o¢ - , 

For each (x, r/) E =(") find(ao,bo) E l x J ,  a o < a ,  b o < b ,  a n d U E b /  ~ p , l o c  - -  - -  

such that 

7(,.b)z(. ;(a0, bo), (qo0, ¢,,), b/) = (X, 7/). 

Of course, we have the following proposition. 

Proposition 6.1. Problem 6.1 is soluble if  and only if  

U ¢d t ( (ao ,bo) , (a ,b ) ; (~ ( l ,¢o) ,U)  :'~(n)- p, loe ' (6.1) 
(ao,bo)E l x J  
a 0_<a,b 0_<b 



Control Processes in Unbounded Sets 875 

Also, it is obvious that a sufficient condition in order that (6.1) hold true 
is the existence of some point, (ao,bo) E I × J,  a o <_ a, b o <_ b, such that 

.4((ao, b o), (a, b); (qoo, ¢0), b/) = =(") (6.2) ~p,loc 

while one expects that this condition is by no means necessary. The next 
example confirms this. 

Example 6.1. Let I = J = ~ ;  n = m = l ;  A = B = C - - = 0  (hence 
V(u ,v ;x , y )  = 1 in l~ 4); F = 1. In other words, we are considering the 
scalar control process: 

z~ = U(z, y) a.e. (x, y) E It~ ~. (6.3) 

Also, let (a,b) --= (0,0), (qa0,¢0) = (0,0), the null element of =(1/ and ~p,loc ) 

U = {U E L~o~(~):l U ( x , y ) l -  1 a.e. (x,y) c ] -  c~ ,0[×]-  c~, 0[}. (6.4) 

Let us show that Problem 6.1 has solution. 

Given (~,~) E -p.to~, we choose (ao,bo) C R 2, a o < 0, b o < 0, in such a 
way that aob o ---13(0) 1. 

We remember that for each U E L~o c (~2) we have 

v(x, y) e [ao, 

Also, to be concise, we put 

7(o,o)z(. ;(ao, bo), (0, 0), U) = (% ~p), 

that is, 

f:  U(u,v)dudv 

(6.5) 

Vt C [0, +c¢[. (6.7) 

Vt E [0, +c¢[, (6.6) 
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Then, it is immediately  checked that, if  the control U • / g  is chosen in such 
a way that 

U(z, y) = 7(0) a.e. (x, y) • [a 0, 0[x[b 0, 0[ (6.8) 
hobo 

(this is possible, since 7(o) < 1), we have ¢p(0) = ~(0) = ¢(0) = ~-(0) - -  

It follows that, in order to get T = 7 ,  it is sufficient that ~o' = X' , that is 

f~ JU(t,v)dv = x ' ( t )  a.e. t • [0,+co[. (6.9) 

The validity of  (6.9) is ensured if the control U • / 4  is taken such that 

U(x,y) = 7'(x) a.e. (x,y) • [0,+oo[x[bo,0 [. (6.10) 
bo 

Likewise,  to obtain also 4 '  = - '  T/ , it is enough that U E b/ is taken such 
that 

U(x,y) = ~'(Y) a.e. (x,y) E [ao,0[x[0,+co [. (6.11) 
a 0 

In conclusion,  if  we choose U E/ , /  in such a way that (6.8), (6.10) and 
(6.1 l) hold (this is possible), we get ( % ¢ )  = (7 ,~ ) .  

Finally, let us prove that there is no point (ao,bo)E]- co, 0]x] - co, 0] 
for which (6.2) is satisfied. To this aim, we notice that, if  (a0,bo) is an 
arbitrary point of  ] - co, 0]x] - co, 0], then (6.4) and (6.6) imply 

I (o) %50 ¢) e A((ao,bo),(0,0);(0, 0), U) 

and hence .A((ao, bo) , (0, 0); (0, 0), U) ~ =(1) ~ p , l o c  ' 

As usual for a distributed parameter control process, in which the space 
o f  the states is infinite-dimensional,  it is important to consider, besides the 
controllability problem of  exact type, also the corresponding approximate 
problem. 
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Problem 6.2. (Approximate controllability with variable initial locus). 
Let(a,b)  E I x J ,  (qo0,¢0) E =(") and /4C_ ,R m) ~p,loc L~o ~ (L s be given. 

For each (X, r/) E _-(,/ each seminorm 7r on =(,,) and each ¢ > 0 ~p, loc  ~ A,B ~p, loc  

find (ao,bo) E I × J, a o <_ a, b o <_ b, and U E/4  such that 

7rA,t~ (7(~.b)z(';(ao,bo),(q°o,¢o),U)-(x, rl)) < ~. 

Owing to the nature of  the seminorms 7rA, ~ , it is apparent that Problem 

6.2 can be rephrased as follows: for each element (x,r/) of  the space =In) ~ p 3 o c  

and each neighbourhood O of (x,r/), find a point (ao,bo)E I ×  J, 
a 0 < a, b0 < b, and a control U E/4  such that 

7(a,b)z(" ;(ao,bo),(¢flo, ¢o),U) E O. 

Hence, we have the following proposition. 

Proposition 6.2. Problem 6.2/s soluble i f  and only i f  the set 

U 
(a0,b0)cl×J 
% _<a,b o _<b 

A( ¢o),U) 

is dense in =('~) ~ ' p , l o c  " 

Of course, the solubility of  Problem 6.1 implies that also Problem 6.2 is 
soluble. The next example shows that the vice versa is not true. 

Example 6.2. Let us consider the same scalar control process (6.3) as in 
Example 6.1. Again, let (a,b) = (0,0) and (¢P0,¢0) = (0,0), while the set of  
the available controls now is 

/4 = {U E L~'o¢(ll~2):[ U(x,y)I_< 1 a.e. (x,y) E ~2}. (6.12) 

We first show that Problem 6.1 is not soluble. To this aim we notice that, 
for each (ao,bo) E ] - c ~ , O ] × ] - c ~ , O  ] and each 

e 0);(0,0), U), 
from (6.6) and (6.12) we get 
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a.e. t E [0, +co[. 

such that 

a X' v'(10 t,l) 
- < p  , 

I 

- < p  , 

a(t) = 0 a.e. t _> t~ 

/ 3 ( t ) = 0 a . e . t > _ t  2 , 

and denote by (X~, r/1 ) the element of  ~p.loc=(1) defined as follows: 

L 
t 

Xa (t) = ~(0) + a(s)ds 

fo' ~, (t) = ~(0) + /3(s)ds 

vt [0, +co[, 

Vt E [0, +co[. 

Now, we select (a0, b 0) E ] -- co, O[x] -- co, O[ such that 

aobo _>l ~(0) l, 

I% I->13(t)[ a.e. t E]O,+co[, I b0 ]_>la(t) l a.e. t E]O,+co[ 

and choose a control U E / d  satisfying the following conditions: 

I~'(t ) < f [ I U ( t , v )  idv<ibo I t 

It follows that 

U A((ao, bo), (O, O); (O, O), U) = ~ p , l o c '  
% <o,b o <_o 

Next, we prove that Problem 6.2 has solution. Let an element 
(~ ,~)  E _,~(1) "~'(1) and a number ¢ > 0 be given. ~p,to~, a seminorm 7r on -p,,o~ 

A,B 

We notice that we can assume, without loss of  generality, 

A =]0, t1[,B =]0, tz[ , 

for some tl, t 2 > 0. 
Given an arbitrary p > 0 , we pick two functions a, fl E L~(]0,+co[)  
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U(x, y) - ~(0) a.e. 
ao bo 

(x,y) • [ao,0[×[bo,0[, 

u(x,y) "(x) - a.e. (~,y) • [o,+~[×[bo, O[, 
bo 

U ( x , y )  - ~(Y) a.e. (x,y) • [ao,0[×[0,+cc [. 
a o 

Then, keeping the same notations (6.5), (6.6) and (6.7) as in Example 6.1, 
we have 

(~, ¢) = (xl,  ~1) 

Let k be any positive constant such that A,B 

X' .U'(A) 7]' U'(B) I ,~(1) 7rA, ~(X,v) --- k Ix(0) l +  + , v(x,,7) • -p,,oc. 

Then, we have 

.~,~ (~(o,o)~(.;(%,bo),(o, o), u ) -  (~,~))= ~A,~((x,,,,)- (~,~)) -- 

<_ kA,n [ a - - ~ '  /2(A) -~- ~ - - ~ '  L,,(B)] < 2pkA,B, 

thus, choosing p > 0 in such a way that 2pka,t~ < e, we have completed the 

argument. 

Remark  6.1. Similarly to Problem 6.1, an obvious sufficient condition for 
the solubility of Problem 6.2 is the existence of (ao,bo) E l x J  , 
a 0 < a, b 0 < b, such that the attainable set A((ao,bo),(a,b);(~po,%),bl ) be a 
dense subset of =(,,) This condition is not necessary. To see this, one can ~p,loc " 
consider, for instance, the preceding Example 6.2 and take into account 
inequality (6.13). 
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. ON T H E  S O L U B I L I T Y  OF P R O B L E M  6.2 

In this Section we establish a necessary and sufficient condition for the 
solubility of  Problem 6.2 in the case that (%,¢~) is the null element of 

~p.loc--(') and H is the unit ball of  L~°(L,j, N") 

It is an interesting remark that the above mentioned condition is 
somewhat analogous to the necessary and sufficient condition for the 
complete approximate controllability with fixed initial locus l(ao,bo) and 
fixed final locus l(a,b), that has been established in G. Pulvirenti - G. 
Santagati [4], Theorem 6.1. This is similar to what happens in the case of a 
lumped parameter control process (compare Theorems II.2.1 and VI.5.1 of 
R. Conti [ 1 ]). 

Theorem 7.1. Let 1 < p < +c~. Also, let (a,b) E I x J, (%,¢o) = (0,0), 

the null element oj =p.lo¢ , and 

/.4 = {U e L~'o¢(Lj, Rm):] U(x, y) l< 1 a.e. (x, y) e L .., }. 

Then, in order that Problem 6.2 be soluble, it is necessary and sufficient 
that the following condition be satisfied." 

ffL, jI H(.,b)(u,v;(#,u,5)) l dudv = + ~  

V(#,u,~)EL~'([O,+cc)[,R')×L~([O,+oc[,R')× \ { 0 } .  (7.1) 

Proof.  We first show the necessity of the condition. 
Assume that Problem 6.2 has solution and, arguing by contradiction, that 

" " L~ ([0, + ~ [ ,  W' rr" there exists (~,~,~) E LPc ([0,+c~[, ll~ ) × ' ) x \ {0} such 
that: 

ffL I H(.,b)(u,v;(~,P,~)) I dudv= k < + ~ .  
I,d 

Owing to the continuity of  the linear functional (~, P, ~) and to the nature 
"=('~) and a "~(") there exist a seminorm 7r on ~p,loc of  the seminorms on ~p,loe, 

positive constant c such that: 
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I< (x,n),(~,~,~) >1_ < c~-(x,n) v(~,,7) e :,,.,o~. 

Let r > 0. Since the linear functional (~, 7, 7) is not zero, there exists 

=(-) such that (2, ~) e -p.lo¢ 

< (~,~),(~,V,~) > >  r +  k. (7.2) 

Moreover, since Problem 6.2 has solution, in correspondence of the element 
(7, ~) E =(") of the seminorm 7r and of the positive number -~, there are a ~p,lo¢ 

point (ao,bo) E I x J  , ao<_a , bo<_b , and an element (X,~) of the 
attainable set 

.A((a0, b0) , (a, b); (0, 0),/../) = A(,,,,b,,),(a,b ) bt 

such that 

1" ~( (x , , 7 )  - (~,  ~ ) )  < - .  
C 

It follows, by Theorem 5.3, 

< (~,~),(~,~,~) > = <  (2 ,~ ) -  (x, ,7), (~, v, ~) > + < (:~, ~),(~,v,~) >_< 

_< c,~((2,  ~)  - (~, ,7))  + s u p  Hia.~)(~,~;(~,~,~))U(~,~)dudv < 
UEU I,~),.t~l 

< r + / ~  I * - - -  Hi~,b)(u, v; (u, u, {) ) I dudv <_ 
la 0 ,db O 

< r + I H(ib)(u,v;(-fi, V ,~ ) ) Idudv  = r + k, 
I.J 

but this contradicts (7.2). 
Now, we prove that the condition is sufficient. 
Let condition (7.1) be satisfied and, again by contradiction, let Problem 

=(") such that 6.2 be not soluble, that is, there exists an element (~, ~) E ~.loc 

(X'~) ¢ U A(o,,b.),(,,b)/g" (7.3) 
(o~,~)eIxJ 
a, _<aA) _<b 
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Since U is a convex set and A(.o,Oo),(o,b ) is a linear map, each set 

A(,o,bo),(,s) U, (ao,bo) E I x J, a o < a, b o < b, is convex. 
t t t  t Is 

We also notice that (a'o,b'o),(ao,b~) E I × J, a o <_ a o <_ a, b o <_ b 0 <_ b 
imply 

A(.;,¢o),(o,b ) b/_3 A(~£,),(o,b ) U. 

To see this, let (X,r/) E A(~Lb~,),(as)/.4 , that is, 

(X,~I) = 7(~.b)z(.;(ao,bo),(O,O),U") 

ftt  for some E U. Then, taking 

0 a.e. 

U'(x, y) = U" (x, y) a.e. 

(x, y) E L1..I \ LI  ,,,,,,%,,, 

(x, y) e L 1,~; ..z~,; ' 

w e h a v e U '  E U and 

z(x ,y;(a 'o,bo) , (O,O),U')  

0 'if(x,y) e Li;,j(~ ' \ L ,,%' 

z(x,y;(ao,bo),  V(x,y)  e L.;.j~, 

hence 

= u ' ) e  ) u .  

The above remarks easily imply that the union 

U A(..,~),(~,b)/// 
(aoA)e/xJ 
% _<a,/~ 5b 

is a convex set, and the same is true for its closure. 
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From (7.3), by the strict separation theorem (N. Dunford - J.T. Schwartz 
[3], Theorem V.2.10), it follows the existence of some 
(~,~,~) E L~ p'([0, +c~[, R") × L~' ([0, + ~ [ , R  '') × R" \ {0} such that: 

< (z, ,7) ,(~,v,~) > < < (2 ,~) , (~ ,v ,~)  > 

V(X, 7]) E U A(~o,bo),(~,b)/'/" (7.4) 
(o~,bn)e/xJ 
a o _<a,bo _<b 

On the other hand, we shall verify that for each (ao,bo) E I x J ,  
a o _< a, b o _< b, there exists (xo,rk) E A(~o,b,,),(o,~) b/ such that 

< (~o,,~0),(~,v,~) > = fYL, IH("'b)(u'v;(fi'V'~))Idudv (7.5) 

and hence, by (7.4), 

__ff,,o~ ]H(~,b)(u,v;(-fi,-P,-~))]dudv < <  (~,~),(~,~,~) >; 

since (ao,b o) is arbitrary, we get 

f f  L I H("'~)(u'v;(-fi'-~'~))ldudv -<< (X'~)'(P'V'~) > '  
I , J  

but this contradicts condition (7.1). 
To complete the proof, we are left to check (7.5). We have 

f f , [ H(~,~ ) ( u, v; (-fi, "P, ~) ) I dudv = [H(,,b)(.;(~,P,~)) L' ( L,,,,.,~ ,ll~" ) 

• = sup H(,,b ) (u, v; (~, ~, ~))U(u, v) dudv = 
l) c L ~ ( L I,,O ' J~l "Rm ) I,,O 'Jbo 

IJOIII2°(LI~,j~] ,R " )  -q 

= sup. H(*,,b)(u,v;(-fi,-~,~))U(u,v)dudv = 
t ~  ,Jb o 
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H ,  m = s u p / ' / "  1 L (u,v) (.s)(u,v;(#,-~,~))U(u,v)dudv 
UEIX ,d ,J Lt, J l"o'dbo 

and hence, by Theorem 5.2, 

f f %.~ I H(..n) (u' v; (-~'-~' ~) ) I dudv = 

= sup < U, A',o~,b.),(.,,,)(~,~,~). - -  - > =  sup < A(.,,,~,),(~,b)U, (~,~,~) __ _ > .  
UEU UE/X 

Moreover, since L/c_ L~'o¢(L,./,]R" ) is a bounded closed convex set 

(hence it is also weakly closed), we have that lg is a weakly compact set 
(see G. Pulvirenti - G. Santagati - A. Villani [5], Proposition 2.6), hence also 
A(o~,bo),(a,b)lg is weakly compact. It follows that the linear and [weakly] 

continuous linear functional (~,~,~) attains its maximum value in the set 
A(o~,t~),(os)lg, that is, there exists (X0, %) E A(ao,~o),(~.b)L/ such that 

sup < A(,o.~o),(,,n)U,(~,P,~) > = <  (X0,%),(~,P,~) >,  
U&d 

so that (7.5) holds. 

The above theorem can be applied, in particular, to the scalar control 
processes of the type 

z~u = F(x,y)U(x,y) a.e. (x,y) e ]R 2, 

that have been already considered in the previous papers (G. Pulvirenti - G. 
Santagati [4]; G. Pulvirenti - G. Santagati - A. Villani [5], [6]) and in 
Examples 6.1 and 6.2. 

Corol lary  7.1. Let I = J = R ;  n = m = l ;  A = B = C = 0 .  Also, 
suppose that 1 < p < +c~. 

Given (a,b) E N 2, (%,¢0) = (0,0), the null element of  ~(1) and ~p,loc 

(likewise in (6.12)) 

p 2 u = {u  e ):1 1 a.e. e 

we have that the following conditions (7.6) - (7.8) are necessary and 
sufficient in order that Problem 6.2 be soluble." 
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(7.6) 

f f  IF(u,v) ldv=-q-~ a.e. u_> a, 
O0 

(7.7) 

f ]  IF(u,v) ldu = -t-c~ a.e. v ~ b. 
oO 

Proof, We have V(u, v; x, y) = 1 in N 4 and hence 

(7.8) 

H(o.b)(u, v; (#, u, ~)) = 

eF(~,~) ~.~. (u,v) ~ ] -  o~,a[×]- ~,b[,  
#(u-a)F(u ,v )  a.e. (u,v) E [a,+c~[x]- (x~,b[, 
u(v - b)F(u, v) a.e. (u, v) E] -  (x~, a[x[b, +c~[, 

0 a.e. (u, v) E [a, +cx~[x[b,c~[ 

for each (#, u, ~) E L¢([0, +c~[) × L~'([0, +c~[) × R. 
Assume that Problem 6.2 is soluble. Then, from (7.1), taking 

(#, u, ~) = (0, 0,1), we immediately obtain that condition (7.6) is satisfied. 
Again from (7.1), taking ( # , u , ~ ) =  ( I t ,0 ,0) ,  where T is an arbitrary 

bounded measurable subset of [0, +c~[, with re(T) > 0, we get: 

f r f ~b~ I F(a + t, v) l dtdv = + ~ ,  

from which, owing to the arbitrariness of T ,  by means of an easy argument 
by contradiction it follows that also condition (7.7) is satisfied. The proof of 
(7.8) is quite analogous. 

Vice versa, suppose now that conditions (7.6) - (7.8) hold and let (#, u, ~) 
be an arbitrary non zero element of 

z~' ([o, +~[)  × r~'([o, +~[)  × R. 

If ~ ¢ 0 , from (7.6) we deduce: 
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If  # ~ 0, that is, /z(t) ~ 0 in a set T _c [0,+c~[ of  positive measure, 
from (7.7) we get: 

ff. l ¢))lauav >_ fro fo l.(u-a)F(%v)lauav >_ 

>- f [I "(u-a) l f_b J F(u,v) ldv] du = 
a + T  

Similarly, if u ~ O, condition (7.8) implies that 

ffR2 I H(°,b)(u'v;(#'v'~)) Idudv = ÷oo. 

In c o n c l u s i o n ,  w e  h a v e  tha t  c o n d i t i o n  (7.  l )  is s a t i s f i e d  in e v e r y  c a s e ,  t ha t  
is,  P r o b l e m  6 .2  is s o l u b l e .  
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Abstract: 

Key words: 

This contribution is in the field of Game Theory and Nash equilibria. The 
property of Tihkonov well posedness is analyzed in relation to other well 
posedeness properties which are ordinal, a very important property for games 
because it emphasizes the fact that players' decisions are expressed by 
preferences and not by a special choice of utility function. 
Relations between Twp of an exact potential game and Twp of potential 
function as maximum problem are considered too. 

well-posedness, approximate equilibria, non cooperative games. 

. I N T R O D U C T I O N  

The development of Game Theory in the last decade has had a great 
interest in the economic theory, where mathematical tools are used very 
much. 

At the beginning of '50s, John Nash, a young American mathematician, 
gave two important contributions to Game Theory: he developed the notion 
of equlibrium for non-cooperative games, so we call it Nash equilibrium 
(NE for short) and he studied a method to analyze bargaining games [13]. 

Today many economists have given an interesting contribution to Game 
Theory but this new theory is frequently taught not only in many economic 
courses, but also in operational research, engineering, mathematical 
economics and mathematical analysis courses. 
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So this contribution is in the field of  mathematical analysis but with an 
eye to economic application. 

The problem of  well posedness was born for minimum problems. A 
minimum problem is said Tihkonov well posed if : 

- there is a unique minimum point 
- every minimizing sequence converges to the minimum point. 

For more details see [2] and [5], [18]. This notion was generalized to 
other contexts: saddle points [1], Nash equilibria [5], [7], [15],[16], 
variational inequalities [4]. 

In all the cases the idea is an extension of  the idea of minimizing 
sequences seen as approximate solutions. Given a game G=(X,Y , f ,g )  
where X and Y are topological spaces, we shall say that G is Tikhonov 
well-posed ( ( T w p )  for short) if there is a unique NE(-Y,y) and every 
aNE(x,,y,,) converges to (2 ,y) ,  where (x,,,y,,) is a NE if 

sup~.x f ( x , y . ) -  f (x . ,y . )  --~ O, supy~r g(x.,y) -g(x . ,y . )  --~ 0 

For problems arising from economic theory it was investigated if Twp is an 
ordinal property [17] that is if the well posedness does not depend on the 
payoff of  player but only on the total preorder represented by the function 
f :X- -~ l l~  which induces a preorder _-Zr on X defined as 

x-'<I Y ": :, f (x)< f ( y ) .  An interesting case is given when the preorder 
cannot be represented by any real valued function (as lexicographic order) 
and this problem was studied in [3]. 

Starting from the definition of  (c,k) equilibrium as the point where 
every player either guarantees at least k or he/she does not loose more then 
c it has been selected a class of  Twp games with the property of  ordinality 
[10]. 

This (e.k)well posedness is studied in relations with the more known 
Twp. This class of  (c ,k)wel l  posedness games has the property of 
ordinality if the payoff  functions are bounded from below. This study is 
considered in sections 3 and 4. In section 5 we speak about a new criterion 
of  well posedness: Owp. This is an ordinal properties, it is better then TVwp 
of [7] because it seems to be the smallest ordinal extension of  Twp, it does 
not pretend to taste the Nash equilibria and it has an interesting 
characterization of  ordinal sequences. 

In section 6 we speak about an interesting class of  games introduced in 
[14]: exact potential games. We investigate about Twp of these games and 
relations with Twp of the potential function P as maximum problem; being 
a potential game the sum of  a coordination game and a dummy one, we 
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prove that a foundamental role is given by dummy game.., so the dummy 
game is not so dummy. 

There are many open problems: is a metric characterization of Owp 
possible? The property of  Twp as maximum problem of  potential function 
has relations with ( e , k )wp  and with Owp ? Perhaps for ordinal potential 
function ([14]) there is a strict relation with Owp.  

Works are in progress about these issues. 

. D E F I N I T I O N S  A N D  P R E L I M I N A R I E S  

Let X , Y  be Hausdorff topological spaces. By G = ( X , Y , f , g )  we 
denote a game with two players, where X, Y are nonempty sets denoting the 
players' strategy spaces, 
f , g : X  × Y ~ R are real valued functions representing the utility functions 
of the players. 

The most accreditate solution for non cooperative games is the Nash 
equilibrium ( NE for short). 

Definition 2.1. Given a game G = (X, Y, f ,  g)  a Nash equilibrium ( NE  )for G is 
apair(-Y,y)  • X x  Ys.t. f ( 2 , y )  >_ f ( x , y ) v x  • X ,  g(2 ,y )  >__ g(-Y,y)Vy • Y .  

In other words a NE is a couple of  strategies such that each player's 
strategy is an optimal response to the other players' ones. 

We now remind an alternative definition of equilibrium: (~,k) 
equilibrium. We start from the definition of (e,k)-equilibria introduced in 
[6] and define (e,k) sequences as approximate equilibria that definitively 
guarantee to every player at least k or that he/she does not lose more than 
e .  We remind that 

Definition 2.3. Given c > O, x • X & an c - best reply to y i f  

f ( x , y )  >_ sup f ( t , y ) -  e 
t~X 

Given k • IR, x • X is a k - guaranteeing reply to y • Y i f  

f ( x , y )  >_ k 

I f  x • X is either an c - best reply or a k - guaranteeing reply (or both) to 
y then x is called 
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(c,k) best reply (to y )  

Furthermore, we say that (-£, y) ~ X x Y is an (c, k) equilibrium i f  ~ is an 
(c, k) best reply to y and conversely. 

A minimum problem is said well posed if there is a unique minimum 
point and every minimizing sequence is converging to minimum point. So in 
[1],[5] were introduced the asymptotic Nash sequences to generalize the 
criterion of  well posedness to Nah equilibria: 

Definition 2.4. Given a game G = ( X , Y , f  ,g) we shall say that a sequence 
(x . , y . )  ~ X x Y is an asymptotically Nash equilibrium (aNE for  short) i f  
supx~x f ( x , y . )  - f ( x . , y . )  ~ O, supy~r g(x . , y )  - g ( x . , y . )  ~ O. 

Notice that this implies that 3g e N s.t. 

sup f (x, y . )  < +oo and sup g(x. ,  y) < +ooVn > 
xEX yEY 

So a sequence ( x . , y . ) e X x Y  is an asymptotically Nash equilibrium if 
Ve  > O,(x. ,y.)  e f~. for n sufficiently large. 

Definition 2.5 We shah say that a property (P) is ordinal if." (P) is true for  
G implies  that (P) is true for  G too. Where G = ( X , Y , f , g )  and 

= (X,  Y, f ,  ~,) with f = qkf, ~, =g/g for  all qk, ~ continuous and strictly 
increasing functions s.t. 

¢ : I --~ •, I D f ( X  x Y), I interval 

g : J --~ IR, J D g(X x Y), J interval 

G and G are called ordinally equivalent, 

Definition 2.6 (x . , y . )  is called ordinal asymptotic Nash equilibrium i f  it is 
aNE for  G then it is the same for  G, 

Definition 2.7. Given e > 0 and k ~ ]R we denote by ~,. the set o f  e - 
equilibria (~ - NE for  shorO. 

f2 c = x x Y:  supxox f(x,-fi) - f ( -Y,y)  < E, 
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supy~r g(-~,y) - g ( 2 , y )  _< c} 

We denote by O k the set o f  k -equilibria 

O k = {(2,y) E X × Y : f ( ~ , y )  _> k,g(~, y)  _> k}. 

By f2k, we denote the set of  (~, k) equilibria, that is." 

f2k, = {(2,y) ~ Y x  Y:(-Y,y)verifies [a) or b)] and [c) or d)]} where 
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a) SUPx,x f ( x , y )  - f (~- ,y)  < e 
b) f(-~, y) >_ k 

and 

e) supy~, g(-Y,y) - g(-Y,y) < c 

d) g(2 ,y )  >_ k. 

Remark  2.8 We note that ~0 is the set of  Nash equilibria and a sequence 
(x . ,y . )  is an e-sequence or asymptotically Nash equilibrium, if Vc > 0 , 
(x., y . )  ~ f ~  definitively, 
(x . , y . )  is a k -sequence if Vk ~ ~ ( x . , y . )  ~ O k definitively, 
(x . ,y . )  is an (6,k) -sequence if ~'c > 0,Vk > O,(x.,y.)  ~ ~ definitively. 

Definition 2.9 Given a game G = (X,  Y, f ,  g),  we shall say that G & 
(i) Tikhonov well-posed (Twp) if there is a unique NE (-~,y) and 

every a NE (x . ,y . )  converges to (~-,y) (see [2], [1], [16]). 
(ii) Tikhonov well-posed in value (T~wp) if there is at least one NE 

and every aVNE (x . ,y . )  converges to a NE 
where a sequence (x . ,y . )  is called aVNE if it is aNE and it converges in 
value to a Nash equilibrium that is f (x . ,y . ) - - - )  f (~ ,~ )  and analogously for 
g ,  with (Yc, ~) Nash equilibrium ([8], [9]), 

3. ( c , k )  W E L L - P O S E D N E S S  

We have proven in previous papers [7], [17] that Tihkonov well 
posedness is not an ordinal property, that is i f a  game G ( X , Y , f , g )  is Twp 
then it is not so for the game G(X,y,)c,~.) ,  where f and ~ are the 
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composite of  f and g with increasing functions as in definition 2.5. This 
is a bad thing for games. 

For example let us consider G(X,Y , f , g )  with f ( x , y ) = g ( x , y ) = x y  
and G(X,Y,f ,~,)  with j ? = ~ = a r c t a n x y .  G is Twp but G is not in fact 
the sequence (n,n) is an aNE for G but not converging to the unique 
NE = {(0,0)}. 

We have so located a class of  Twp games which has this important 
property introducing the following definition: 

Definition 3.1. We say that a game G is (c,k) well-posed ((c,k)wp for 
short) if: 
- there exist at least one Nash equilibrium (NE); 
- every (g,k) sequence converges to a NE. 

This definition guarantees the uniqueness of NE, otherwise the sequence 
which alternates two NE is (c,k) sequence non converging. 

We remark that the definitions given of c -sequence, k sequence, (c,k) - 
sequence and (c,k) well-posedness (definitions 2.3, 3.1) clearly do not 
depend on e and k ,  but we choose this terminology since it is more 
expressive. 

Proposition 3.2. I f  G = ( X , Y , f , g )  is (~',k) well posed then G is Twp. 
Moreover if the payoff functions f ,  g are bounded from above, the converse 
is true as well. 

Proof. If G is (g,k) well posed then it is Twp. The converse, in general, 
does not hold: it is sufficient to consider example 3.3, where the game is 
Twp but not (c,k)wp. 

On the other hand, if f , g  are bounded from above, then 
Twp =-(~,k)wp; in fact if (x,,y,) is a (g,k) sequence and we consider 
k > max{supf ,  supg},  then only conditions a) and c) of  definition 2.7 can 
be satisfied, thus (x, ,y,)  is a c - sequence. ~t 

Let us show by two examples that Twp ~: (e,k)wp ¢: 0 

Examples 3.3. G I = (•z,R2, fj, g,),  f (x, y) = gl (x, y) = xy is Twp but it is 
not (c ,k)wp.  

G 2 =(R2,~2,f2,g2),  f z (x , y )=xy ,  g2(x ,y)=-xy is (e,k)wp. 

There is a nice metric property of  (e,k)wp as shown in the following 



Well Posedness and Optimization Problems 895 

Theorem 3.4. Let X, Y be metric spaces. G is (c,k) well posed if and only 
if there is a Nash equilibrium and 

lim diamf~kc = 0 
c- - -~0 ,k  ---~+oo 

(for details of proof see [ 10]). 

Example 3.5. 
Let G = ( X , Y , f , g )  be defined as follows: X = Y = [0,1], 

f ( x , y ) = g ( x , y ) = { ~ ( x 2  + y 2) i f x :~0 ,y4 :0  
i f x = 0 o r y = 0 )  

then G is (c,k) well posed. 
There is a unique NE :(0,0) ; the (e,k) sequences are those converging 

t o  (0,0). 

~ c ( f )  = {(x,y) e IR2s.t.x < ~/ey4/(1- ey2)}. 

I f  ~ < 1/2 then ~ ,  = {(0,0)} so G is Twp. 
f2k = {(x,y) ~ R2s.t.x2 +y2 <l/k}=~k(f)=~2k(g); ~ ~ f 2  but 
diamf~kc---)0 so G is (~,k) we l l  posed .  

. ORDINALITY PROPERTY OF (e',k) WELL- 
POSEDNESS 

Our intention is to study ordinality of well-posedness for games and, as 
already said, this property is very important: in fact the problems' data are 
the preferences of the players, not a special choice of the utility function. 

If f , g  are functions bounded from below , (c,k)wp is an ordinal 
property as follows from the theorem 4.4: 

Lemma 4.1. Let (x . ,y . )  be a sequence in X x Y .  (x . ,y . )  
sequence if  and only if the following are satisfied definitively." 

f ( x .  ,y,, ) a) s u p x ~ x f ( x , y . ) - f ( x . , y . ) < e  o rb )  1 i+ls(x.,y.)~-<e 
and 

c) supy~rg(x . , y ) -g(x . , y . )<e  ord') 1 g(x.,y.) ,<e 
l + l g ( x . , y , ,  )l - -  

is an (~,k) 
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Proof. => Let us choose O < e < l ,  k = I / c - 1 ,  Then f ( x . , y . ) > l / s - 1  

implies 1 i~x.,y.) _< c .  
I +]i(xn ,Yn )1 

Given e , k > O ,  let us choose c ' < l  such that 1 / e ' - l > k .  Then 
f ( x . , y . )  > 1/e' - 1 > k definitively. ~1 

P r o p o s i t i o n  4.2. Let a = (x . ,y . )  be a sequence in X × Y. Then it is an 

(c,k) sequence for  the game G, if  and only i f  there exist four disjoint 

indices sets: SI,S2,S3,S 4 such that their union is N and such that 

S I is finite or determines a subsequence cq o f  a ( made by all the 
terms with indices in S t), a t is an c -sequence 

S 2 is finite or determines a subsequence ct 2 o f  a (made by all the 
terms with indices in $2), t~ 2 is a k sequence. 

S 3 is finite or determines a subsequence a 3 o f  a ( made by all the 
terms with indices in $3), a 3 is an c sequence for  f and a k 
sequence for  g 

S 4 is finite or determines a subsequence a 4 o f  ct (made by all the 
terms with indices in $4), a 4 is a k sequence for  f and an E 
sequence for  g .  

Proof ,  ~ : trivial. 
~ :  let (x . ,y . )  be an (e,k) sequence for G. Then for the previous lemma, 
a) or b) and c) or d) hold. This is equivalent to 

m i n I s u p f ( x , y . ) _  f ( x . , y . ) , l  f ( x . , y . )  ] 
\x~x l+t f (x" 'Y")  [ <e 

and analogously for g .  This is true if and only if max{~,~bz}<c 
definitively, where 

q~t(x.,y.) = min {supx~x f ( x , y . )  - f ( x . , y . ) , l - f ( x . , y . ) / [ l + [ f ( x , y . )  ]]} 

and 

q~2 (x . , y . )  = min {SUPe.r g(x. ,  y) - g (x . ,y . ) , l  - g(x. ,y .) /[ l+ I g (x . , y . )  I]} 

if  and only if 

lim.max{Ol(x.,y.),O2(x.,y.) } = 0 if and only if 
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l im.  #t (x., y . )  = 0 and l im.  ~b 2 (x., y . )  = O. 

Let  us def ine  Si,i = 1,2,3,4 in the fo l lowing  way:  

S I = {n e N : SUPx~x f ( x ,  y .  ) - f ( x . ,  y . )  < 1 - f ( x n , y .  ) l+[f(x.  ,Y . ) I '  

supy~r g(x . ,y )  - g ( x . , y . )  < 1 

then 

qkl(x.,y.) = supx.x f ( x , y . ) -  f ( x . , y . )  

qk 2 (x., y . )  = supy.r  g(x. ,  y) - g(x. ,  y . )  

S~ is finite or S t de te rmines  a subsequence  
sequence.  

Ana logous ly :  

then 

aj o f  a 

S z = {n e N : supx~x f ( x ,  y .  ) - f ( x . ,  y .  ) > 1 f(~" 'y" ) I+[f(xn.yn)  [ ' 

supy.r  g(x ,y) - g ( x . , y . )  > 1 

$3 = {n e N : supx.x f(X, Yn)-- f ( x . , y . )  > 1 -- f(x.,y.) I+ [ f (x . , y , , ) [ '  

supy~r g(x. ,  y) - g(x. ,  y . )  < 1 

S 4 = {n e N : SUpxox f ( x ,  y .  ) - f ( x . ,  y .  ) < 1 r~x,, ,y. ) l+lf(xn ,Yn )1 ' 

supy~r g(x. ,  y ) -  g(x  , y . )  > 1 

g(x.,y.) 
l+lg(x,, .Y,, )l J 
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and it is an 

g(Xn'Yn) } 
l+[g(x.  ,y.  )[ 

g(x.,y.) 

P r o p o s i t i o n  4 .3 .  If (x.,y.) is an c sequence for f then it & an ( e , k )  
sequence for ¢~f . I f  (x . , y . )  is a k -sequence for f ,  then it is also an (c,k) 
sequence for ~b f , 

Summar iz ing ,  each sets S i is e i ther  finite or de termines  a subsequence  % o f  
ot ( i=1,2,3,4)  which  turn out  an ~ sequence,  a k sequence ,  a k sequence  
for  f and E sequence  for  g ,  c sequence  for  f and k sequence  for  g 
respect ively ,  i i 

g(x.,y.) 
I+lg (x.  ,y .  )1 ~ 
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Proof_. We must consider the cases: ~b bounded, and ¢ unbounded with the 
subcases f bounded and unbounded. /~; 

Finally we have the so much waited result: 

Theorem 4.4. Let G = (X,  Y, f ,  g), G = (X,  Y,.f, ~,) be two games s.t. 
G - G f , . f ,g ,~ ,  are bounded from below and f = C f .  ~, = ~/g. I f  (x , ,y , )  
is an (e,k) sequence for  G then it is an (e,k) -sequence for  u G  as well. 
So i f  G is (e,k)wp then G is too. 

Example  4.5 The duopoly Cournot model with the hypothesis considered in 
[9] is an (c,k) well posed game. 

. VALUE BOUNDED WELL-POSEDNESS 

In this section we introduce a new criterion of well-posedness, it is a 
variation of  Tihkonov well-posedness: Owp (for more details see [11] ) To 
introduce it, let us define the sequences which must approximate the 
eqilibrium. 

Definition 5.1 A sequence (x , ,y , )  ~ X x Y is" value bounded i f  there are four 
numbers: a,b,c,d ~ N s.t. 

a< f ( x , , y , ) < b ,  c< g ( x , , y , ) < d ,  V n ~ N  

a,b~ f ( X x Y ) ,  c , d ~ g ( X x Y )  

So we call (x,, y,)  a value bounded asynptotically Nash i f  it is aNE and it 
is value bounded 

A sequence (x , ,y , )  is "definitively N E "  i f  its elements are all Nash 
equilibria for  n large enough. 

The following theorem gives an interesting property of value bounded 
sequences: 

Theorem 5.2 Let (x , ,y , )  be an aNE. Then (x , ,y , )  /s ordinal i f  it is 
definitively NE or its elements, which are not NE,  form a value bounded 
aNE. 

Proof:  Since two ordinally equivalent games G and G have the same NE,  
it is sufficient to prove that a value bounded aNE (whose elements are not 
NE ) is ordinal too. 
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Let (x. ,y.)  be a value bounded aNE. Let (2,y),(~,)5) be s.t. 

f ( 2 ,  y)  _< f ( x . , y . )  < f(Yc, y) 

and further 

V e > O  3~. s.t, f ( x , y . ) - f ( x . , y . ) < c  Vn>~. ,  V x ~ X  (analogously 
for g ) .  (5,1.1) 

Fixing c~, we choose c according to the following cases: 
i) if f ( ~ , ~ ) = s u p f  then c is the modulus of uniform continuity of  

~b(.) in the interval [ f (2 ,y ) , f ( .~ ,  ~)] 
ii) if f ( . ~ , . ~ ) < s u p f ,  let (x ' ,y ' )  be s,t. f (Yc ,~ )<f (x ' , y ' ) ,  so we 

choose c = min { f ( x ' , y ' ) -  f(J , )~) ,6 '  } where 6'  is the modulus 
of  uniform continuity of  ~b(.) in the interval [f( 'Y,-~),f(x' ,y ')].  
After the choice of c ,  from hypotheses we must distinguish two 
cases: 

(1) f ( x , y . )  < f ( x . ,  y . ) ,  and so 

qkf(x,y .)<q~f(x. ,y .)<qkf(x. ,y .)+e,  or 

(2) f ( x . ,  y.) < f ( x ,  y.) < f ( x . ,  y.) + c 

if  f ( ~ , ~ )  = s u p f  then 

f ( 2 , y )  _< f ( x . , y . )  < f ( x , y . )  < f(Yc,~) 

So f ( x . , y . )  and f ( x , y . )  are in the interval of  uniform continuity and their 
difference is less than c ,  so after applying ~b, their difference is less than 
e~. 

Instead if f (~ ,  ~) < sup f then 

f (2 ,y)_< f ( x , y . )  < f ( x , y . )  < f ( x . , y . )  + c < f(~,.~) + c < f(x*,y*) 

so we are again in the interval of  uniform continuity of ~b and we can 
conclude about this sufficient condition, [] 

Now we can introduce a new criterion of well-posedness: 
Definition 5.3 A game G is ordinally well-posed ( Owp for shorO if: 

1) there is a NE(-Y,y) 
2) every value bounded aNE converges to a NE. 
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It follows that the NE is unique (as in Definition 3.1). 

Proposition 5.4 
The followings properties are true: 
1) Owp ~ Twp 
2) Owp=Twp if  the payoff  functions f , g  attain maximum and 

minimum points 
3) Owp is ordinal 
Considering the previous well-posedness properties the following 

inclusions are true: 

(~, k)wp c Twp c Owp c TV wp 

By the following example and example 3.2 we see that the previous 
inclusions are proper. 

Example 5.5 Let G = ( X , Y , f , g )  be a game. X = Y = [0,+oo) 

farctan xy if  x e Z or y e Z 
f ( x ,  y) = g(x, y) = (xY otherwise 

The unique NE is (0,0)and (x , , y , )  is a aNE if it is equal to (0,0) 
definitively, so G is TVwp. G is not Owp because (n,n) is value bounded 
aNE but non convergent. 

. POTENTIAL GAMES AND WELL POSEDNESS 

In general it is not trivial to find Nash equilibria for a strategic non 
cooperative game but the class of  potential games introduced by Monderer 
and Shapley is a special one, because the problem of  equilibria is reduced to 
study a unique function called Potential function. 

We shall call G = ( X , Y , f , g )  a game with exact potential P ,  if it exists 
a function P : X x  Y---> IR s.t. the increase of P along x is equal to the 
increase of f and the increase along y is equal to that of  g ([14],[20]) that 
is: 

Definition 6.1 A game G = ( X , Y , f  ,g) is said an exact potential game if  it 
exists a function P s.t. 

f (x,, y) - f (x2, y) = P(x,, y) - P(x 2, y) 



Well Posedness and Optimization Problems 

g(x ,y , )  - g(x, Y2) = P(x ,y , )  - P(x, y2) 
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Vx, xl,x 2 ~ XeVy, y l ,y  2 ~ Y. The function P is called an exact potential 

function for  G. (see [14],[20]) 

Example 6.2 

A 
B 

5 7 2 3 all potential functions are P = A k k-4 
4 3  4 4  B k-1 k 

k ~ R  

Remark  6.3 If  G is an exact potential game then it has the same Nash 
equilibria of  G p = (X, Y, P, P). 

Each finite game with exact potential function has at least a NE and it is 
the maximum point of  potential. If  X or Y are infinite this fact is not true, 
it is sufficient consider 

X = Y = R , f = g = x + y  

Definition 6.4A game G = ( X , Y , f  ,g)  is a: 
- coordination game i f  f ( x ,  y)  = g(x, y)  = P(x, y)  
- dummy game i f  there are two functions h : Y ~ IR, k : X --~ ~, s.t. 

f ( x , y ) = h ( y )  and g ( x , y ) = k ( x ) .  In a dummy game the payoff of  one 
player depends only by the strategies of the other. 

Theorem 6.5 Let G be a strategic game. G bs an exact potential game i f  
and only i f  G = G c + G d where G c is a pure coordination game (sometimes 
we call it G p = ( X , Y , P , P ) )  and G d is a dummy game. 

It is very interesting the identification between an exact potential game 
and a congestion game (a special class of  games which consider utilities or 
machines used by players). These games are important for traffic problems, 
but this argument is fast from our goal, so we invite the interested reader to 
Rosenthal's paper [ 19land Voomeveld's book [20]. 

Theorem 6.6 Let G = (X, Y , f ,  g)  be an exact potential game. P potential 
function has a maximum point. I f  G e = ( X , Y , P , P )  is TVwp then P is 
Twp. Further i f  the NE is unique, P is Twp as maximum problem i f  and 
only i f  G e is TVwp 
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Proof. At first, we remark that P has only one maximum point, in fact, if  by 
absurd, there were two maximum points, these would be two repeated NE 
then G were not T"wp. Let (~-,y) be a maximum point for P and let us 
suppose, by contradiction that P is not Twp (as maximum problem) so 
there is (x,,y,) maximizing sequence that is P(x,,y,)--+P(-Y,y) but 
(x,,y,) does not converges to (~-,y). 

So we can choose: 

(a.,b.):={ (x.,y.) fo rneven  
(g ,y)  for n odd 

So (a, ,b,)  is a"NE but it is not converging. This is absurd. 
For the second part of  theorem, we note that the a"NE coincide with 

maximizing sequences of  P .  El 

Generally there is no relation between Twp of  a game and Twp of a 
potential function P ,  as we learn by the following examples: 

1) f ( x , y )=g(x ,y )=xy=P(x ,y ) ,  G(IR, IR, f ,g)  is Twp but P has no 
maximum point. 

2) 

P has maximum point and it is Twp as maximum problem. 
G = G P is not Twp because there are two NE. But 

Theorem 6.7 Let G be an exact potential game. G is Twp and P has 
maximum point, then P is Twp as maximum problem. 

Proof. for details see [12]. 

Example 6.8 Let D be the dummy game: 
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Ioollo 
D :  0 2  1 2  

P is a potential function for D which is TVwp but D e is not TVwp 
because there are repeated Nash equilibria. So dummy game preserve Twp 
instead of  TVwp, so dummy game is not so dummy... 
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. I N T R O D U C T I O N  

The semismooth Newton method was initiated in 1993 by Qi [31 ], Qi and 
Sun [37]. It has found applications in nonlinear complementarity problems 
[27,7,22,14,45,8,26], variational inequality problems [13,33], civil 
engineering problems [5] and data mining problems [16]. In [16], a 
semismooth Newton method was used for solving a 60 million variable 
support vector machine problem successfully. A survey on the semismooth 
Newton method can be found in [23]. Some developments after [23] can be 
found in [17,33,18]. The applications of semismooth Newton methods on 
nonlinear complementarity problems and variational inequality problems can 
be found in the recent book of Facchinei and Pang [15], where several 
hundreds of references on semismooth Newton methods were given. 
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Recently, semismooth Newton methods have been applied to the shape- 
preserving interpolation problem, the option price problem, and the semi- 
infinite programming problem. We survey these appplications in this paper. 

. S E M I S M O O T H  N E W T O N  M E T H O D S  

Let G:9~"---~ ~m be a locally Lipschitz function. By the Radamacher 
theorem, G is differentiable almost every where. Denote the set on which 
G is differentiable as D c . Clarke [6] defined the generalized $acobians of  
G at x as 

OG(x)=conv{ lim VG(xJ)}, 
X j --~XIXI~oG 

which is a nonempty compact convex set. 
Suppose that F:9~"--~9~" is a locally Lipschitz function. We aim to 

solve 

F(x)  = 0. (I) 

A generalized Newton method is naturally available, i.e., given x k , if it is 
not a solution o f ( l ) ,  solve 

F(x  k ) + vka = 0, (2) 

where V k E OF(x k) .  Let d k be a solution of (2). Then we find x TM by: 

x TM = x k + d k. (3) 

The subproblem (2) is a system of  linear equations. So we may expect it is 
efficient. But counterexamples are available to show that the generalized 
Newton method (2-3) may be divergent if F is merely locally Lipschitz. 

The superlinear and quadratic convergence of the generalized Newton 
method (2-3) can be established under the condition of semismoothness and 
strong semismoothness. 

The concept of  semismoothness for vector valued functions [37] is as 
follows. 

Definit ion 2.1. Let G : R" --~ 9~ m be a locally Lipschitz continuous function. 
Then G is said to be semismooth at x ~ R" i f  for  any h ~ R" the limit 
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lim {Vh' I V • O G ( x + r h ' ) }  
h '---~h,r,[,O 

exists. 
It was proved in [37] that a vector function G is semismooth if and only 

if all its components are semismooth. Also, if G is semismooth at x,  then 
the directional derivative of  G at x along a direction h,  denoted G'(x;h), 
exists for any h • R".  A function G is said to be semismooth if it is 
semismooth at each point of  its domain. 

A function G : R" --~ R m is said strongly semismooth at x [31,34] if it 
is locally Lipschitz and directionally differentiable at x,  and for all h - ~  0 
and V • OG(x + h) one has 

C(x + h)-  C ( x ) -  Vh = o(llhl12) ( 4 )  

The following local convergence result was established in [37]. 

Theorem 2.2 Let x* be a solution o f  the equation (1), F(x)  = O, and let F 
be a locally Lipschitz function which is semismooth at x*. Assume that all 
V • OF(x*) are nonsingular matrices. Then the generalized Newton method 
(2-3) is well defined and converges superlinearly to x* i f  the initial point x ° 
is sufficiently close to x*. I f  furthermore F is strongly semismooth at x ' ,  
then the convergence rate is quadratic. 

Another method which is closely related to the semismooth Newton 
method is the smoothing Newton method [3,19,4,17,18,36]. 

. SHAPE-PRESERVING INTERPOLATION 

The constrained approximation problem comes from practical 
applications in computer aided geometric design where one has not only to 
approximate data points but also to achieve a desired shape of  a curve or a 
surface. This is also called shape preserving approximation.  

Examples of  a desired shape property include convexity and 
monotonicity. A special case of shape preserving approximation is shape 
preserving interpolation.  That is, to find a function, whose graph has a 
desired shape, to interpolate given points. 

Consider the following convex best interpolat ion problem: 

minimize llf"ll2 
(5) 



908 Variational Analysis and Appls. 

subjectto f(t~)=yi, i=1,2,...,N+2, 

f is convex on [a,b], f e WZ'2[a,b], 

where a = t I < t 2 <.. .< tN+ 2 = b and y~, i = 1 .... , N +  2 are given numbers, 
JJ" ]Is is the Lebesgue LZ[a,b] norm, and WZ'2[a,b] denotes the Sobolev 
space of functions with absolutely continuous first derivatives and second 
derivatives in LZ[a,b], and equipped with the norm being the sum of the 
L2[a,b] norms of  the function, its first, and its second derivatives. 
Employing the normalized B-splines B~ of order two associated with (t~, y~) 
and the corresponding second divided differences d r , the interpolation 
conditions can be equivalently written in terms of the second derivative of  
f ,  

f b B,(t)f"(t)dt = d~, i = 1,2,...,N, 

and then the problem (5) becomes a problem of projection of  the origin in 
LZ[a,b] on the intersection of finitely many hyperplanes and the cone of 
nonnegative functions: 

minimize Ilull= 

subject to ,,jb B,(t)u(t)dt = d~, i = 1,2,. . . ,N, 

u > 0 a . e . [ a , b ] ,  u e L  2[a,b]. 

(6) 

This problem is a well-known optimization problem; it can be viewed as a 
version of  the moment problem. In order to derive optimality conditions, e.g. 
from the Lagrange duality theory, we need certain regularity of  the 
constraints. For this purpose, we take the positivity of d i as a blanket 
assumption. 

According to the Lagrange multiplier rule, u" is the unique solution of 
(6) if and only if there exist numbers Ai, i=  1,2,...,N such that u is a 
solution of  the problem 

minimize 
N N 

i=1 i=1 

subject to u e LZ[a,b], u >_ 0 a.e. [a,b]. 
(7) 
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The minimum is attained at a function whose value at t gives the minimum 
at t of the integrand, hence 

u ' ( t )  = (8) 

where a+ := max{0,a}. 
By duality, substituting the solution (8) in (7), we obtain that the value of 

the Lagrange multiplier vector A* = (A~,...,Au) E ~u is a solution of the 
dual problem which in our case is an unconstrained finite-dimensional 
concave program of the form 

max - AiB,(t ) + 
AEN N 

i=1 i = l  

(9) 

By the first-order optimality condition and concavity, the latter problem is 
equivalent to the system of nonsmooth equations 

F(x) = d, (10) 

where d = (dt,...,dN) and the i th component of F is defined by 

/=1 j +  

(11) 

Irvine, Marin and Smith [20] proposed in 1986 a Newton-type method 
for solving the equation (10). By monitoring the decrease of the norm of the 
residual F()O-d,  they observed fast convergence in their numerical 
experiments and raised the question of theoretically estimating the rate of 
convergence. They wrote: "Although we have not established rigorous 
convergence results for Newton's method we have been very encouraged 
by numerical experiments....". 

The conjecture of Irvine, Marin and Smith remained unproved for 15 
years. In 2001, Dontchev, Qi and Qi [9] proved this conjecture by viewing 
the method of Irving, Marin and Smith as a semismooth Newton method. 
They added line search to the method and established global convergence. 

To apply the superlinear (quadratic) convergence theory of the 
semismooth Newton method to the system of nonsmooth equations 

F(x)  = d, (l 2) 
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where d = (d~,...,dN) and the i th component of F is defined by 

f F,(z) XtBl(8 ) B,(s)ds, (13) 

Dontchev, Qi and Qi [9] proved that an integral functional of a semismooth 
function is semismooth; in particular, the function F in (12) is semismooth: 

Proposition 3.1. Suppose that Of(h) ,  viewed as a joint mapping o f  t and 
A, is" upper semicontinuous, i.e., for  every e > O, there exists 6 > 0 such 
that 

of,,(,,,') c + ev, for all A' C U()LS),t' E Ul(t, 8 ), 

where 

U, (t,8) = {t'll t ' -  t I< 8} ~ [a,b] 

and 

(A'I _< 8) 

Then q~ is semismooth at ~ i f  f ( . )  is semismooth at ~ for  every t e [a,b]. 

Theorem 3.2 The function F in (12) is semismooth. 

Dontchev, Qi and Qi [9] proved that near the solution the elements of the 
generalized Jacobian of F are positive definite. Based upon these, they 
established superlinear convergence of the nonsmooth Newton method 
applied to F .  As a special case, they obtained that the Newton-type method 
proposed by Irvine, Marin and Smith [20] is locally superlinearly 
convergent. They further globalized the nonsmooth Newton method by 
employing the dual problem (9). 

However, there are two questions from here: 
(1) Is F pieeewise smooth? If so, the semismoothness theory may be 

not necessary. 
(2) Is F strongly semismooth? If so, we may get quadratic 

convergence of the Newton-type method of Irvine, Marine and 
Smith. 
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These two questions are answered in Dontchev, Qi and Qi [10]. The 
answer to the first question is "no". The answer to the second question is 
"yes". 

In [10], the following results were established: 

Proposition 3.3 .  The function F is not differentiable at A i f  and only i f  A 
belongs to the set 

f~=  {A E R zv I)h = 0  orA u =Oor~ i = A~+ 1 = 0  for  some i E {1 , . . . ,N-1}} .  

Proposi t ion 3.4 F is LC' (smooth with a Lipschitz gradienO in the 
complement o f  ~ ,  and C ~ in the interior o f  each orthant o f  R N . 

It was observed by Pang and Ralph [29] that if G is piecewise smooth 
then the B-subdifferential of  G at x in the sense of Qi [31] contains finitely 
many elements. Dontchev, Qi and Qi [10] showed that the B-subdifferential 
of  F~ at the origin contains infinitely many elements. Therefore, by the 
above mentioned observation of  Pang and Ralph, F~ is not piecewise 
smooth. This answered the first question. For the second question, recall that 
the B-spline B~ is given by 

= 

a ~ ( t - t , )  fortE[t~,t~+~] 

ff~(t~+ 2 -- t) for t E [t,+a,t,+2] 

0 otherwise, 

where we denote 

a, = 2/((ti+ 2 - t i)(t,+, - t,)), if,, = 2/((t~+ 2 - t,)(t,+ 2 - t m )). 

In the sequel we study the following functions: 
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• ,()~) = ft, ~ (A,B~(t))+Ba(t)dt, 

• 2(AN) = ft~:i ~ (AuBN(t))+Bu(t)dt, 

F~(A~_~,A~) = f t,+, (A~_aB~_~(t)+ A~B~(t))+B~(t)dt, 

• ,(A~,A~+a) = (t,.,, (A,B~(t)+ A~+~B~+~(t))+B~(t), 
t /  tl+l 

i = 2,...,N, 

i = 1 , . . . , N -  1. 

Then 

= + 

FN(A ) = FN(AN_,,AN) + (I)2(AN). 

i = 2 , . . . , N -  1, 

Dontchev, Qi and Qi [10] proved the following theorem. 

Theorem 3.5 
(a) ~ and ~2 are piecewise linear; 
(b) F i and Ti are LC ) away from the origin, they are not piecewise 

smooth, but are strongly smooth; 
(c) F is not piecewise smooth, but strongly semismooth. 

Based upon this result, Dontchev, Qi and Qi [10] established quadratic 
convergence of the Newton-type method for convex best interpolation. 

The one-dimensional shape-preserving spline interpolation problem 
preserves the function to be convex for subintervals between nodes if the 
successive second-order divided differences are positive, and to be concave 
for subintervals between nodes if the successive second-order divided 
differences are negative. Irvine, Marin and Smith [20] also proposed a 
Newton-type method for nonsmooth equation reformulation of this shape- 
preserving interpolation problem. Again, there were no convergence results 
for the method. Dontchev, Qi, Qi and Yin [11] proved the nonsmooth 
equation reformulation is strongly semismooth and established quadratic 
convergence of the generalized Newton method for solving this problem. 
They also established global convergence for a modification of the 
algorithm. 
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. T H E  O P T I O N  P R I C E  P R O B L E M  

Recently, Wang, Yin and Qi [44] developed an interpolation method to 
preserve the shape of  the option price function. The interpolation is optimal 
in terms of minimizing the distance between the implied risk-neutral density 
and a prior approximation function in L 2 -norm, which is very important 
when only a few observations are available. 

Since the seminal paper of Black-Scholes [2], numerous theoretical and 
empirical studies have been done on the no-arbitrage pricing theory, see 
Duffle [12] and the references therein. I f  the uncertainty of nature can be 
described by a stochastic process q,, then the absence of  arbitrage 
opportunities implies that there exists a state-price density (SPD) or risk- 
neutral density, which is denoted by p(q,, [F,, ) ,  where t z is any time after 
time tl, F,, is all the information available at time 6. The price of  any 
financial security can be expressed as the expected net present value of 
future payoffs, where the expectation is taken with respect to the risk-neutral 
density. In the call option pricing case, the underlying asset price S, can be 
used as the state variable, the risk-free rate is considered as constant. So the 
price at time t is 

C(S,, s,-,-, %.) = e-~"'~fo°° (S~, -s)+p(S,. I S,,T,r.)dS~., (14) 

where ,7, is the underlying asset price at time t ,  s is the strike price of  the 
option contract, r is the time-to-expiration, T = t + r is the expiration time, 
r,.~ is the risk free rate from time t to T = t + v. No matter what kind of  
process of  the underlying asset price S, is, and whether the market is 
complete or not, the equation above always holds. 

By taking the first derivative with respect to s for equation (14), we 
have: 

f$oO 0 C(St, s, T, rt, ~ ) = _e_~,,, ~ p(S  T ] S,, T, rt~ )dS r. (15) 
Os 

It is obvious that the right-hand side of  above equation is negative. Thus the 
call option price must be a decreasing function of strike price x. 

For any strike price values s~ and s 2 with sl < s 2 , we have: 

I 
Os Os "~ ~, 
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OC The density function p is non-negative. This shows that is 
nondecreasing. Hence, the option price function is convex with respec~'~o the 
strike price s .  

Without loss of  the generality, we assume that 
0 < a = s o < s I <.. .  < s,+ 2 = b < +0o and consider the following constrained 
interpolation problem: 

min Ilf"(s)-~(s)ll2 

s.t. f ( s i ) = y ~ ,  i = 1,2, . . . ,n+ 2, (16) 
f " ( s )  > Oa.e.[a,b],f e W~[a,b], 

where 

h(s) = e -~'''~ 1 (logs - logS t - r~,Tr + crZr/2) z 
xcr2.Vt~ ~ exp {- 2cr2 r }. (17) 

Similar to Section 3, by using the duality theory and Lagrange 
multipliers, Wang, Yin and Qi [44] converted the minimization problem (16) 
to a system of  nonsmooth equations 

F(x)  = d, (18) 

where d (dt ,d2, . . . ,d , )  r F (F~,F2,. F r R" R" = , -- .., , )  : --+ and the i - t h  
component of F is defined by 

~a b n 
F~(x) = (~-~ x, Bt(s ) + h(s))+B,(s)ds. (19) 

l=l 

Based upon Proposition 1, Wang, Yin and Qi [44] obtained the following 
theorem. 

Theorem 4.1 Suppose h is continuously differentiable on [a,b](a>O). 
Then the function F defined by (19) is semismooth f o r  any x E R" . 

With this theorem, Wang, Yin and Qi [44] established superlinear 
convergence of  the Newton-type method for solving (18). 

May the Newton-type method for solving (18) have quadratic 
convergence? This needs to show the function F defined by (19) is strongly 
semismooth for any x e R".  The answer is negative in general. 

Qi and Yin [39] extended the strong semismoothness result of  F defined 
by (10) to a more general integral function class. 
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T h e o r e m  4.2 Suppose that p is a continuous function on [a,b] 
(--oo < a < b < ~ ) and u, v are two strongly semismooth functions on R" . 
Then the integral function G : R" ---> R defined by 

G(x) = fab (su(x) + v(x))+p(s)ds (20) 

is strongly semismooth on R".  

Andersson, Elfving, Iliev and Vlaxhkova [ 1 ] converted the edge convex 
minimum norm network interpolation to a system of  nonsmooth equations, 
and proposed a Newton-type method for solving the system. They could not 
prove the convergence of their method. By using Theorem 2, Qi and Yin 
[39] established quadratic convergence of  the Newton-type method of 
Andersson, Elfving, Iliev and Vlaxhkova. 

Qi and Yin [39] also gave an example that G,  defined by 

G(x) = f b [g(x, s)]+ p(s)ds, (2 l) 

where a+ := max{0,a},  may not be a strongly semismooth function, even if 
p ( s ) -  1 and g is a quadratic polynomial with respect to t and infinitely 
many times smooth with respect to x. The example is as follows: 

In (21), let n = 2,a = -1,b = 1,p(s) - 1 and g(x , s )  = s 2 + x d + x z . Let 

u : x~ - 4x 2 and w = x/'U-~-+. 

Assume that Ilxll_< +. Then 

1 
f ( x )  =2+3 2x2 +-~q(x), 

where 

q(x)=w 3. 

Then 

(x,) 
Vq(x) = 3w -2  ' 
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i.e., q is smooth. This implies that f is smooth. However, 

Vq(x) r x-q'(O;x) = 3w(x 2 - 2x2) = o(llxll'"). 
By (4), q is not strongly semismooth. This implies that f is not strongly 
semismooth. 

Hence, in general, the function F defined by (19) is not strongly 
semismooth, and the Newton-type method for solving (18) is not 
quadratically convergent. 

Recently, Ling and Qi [25] showed that the function F defined by (19) 
is at least ~-order semismooth in the sense of Qi and Sun [37], and the 
Newton-type method for solving (18) has at least 4-order convergence rate. 

. S E M I - I N F I N I T E  P R O G R A M S  

Consider the following semi-infinite programming (SIP) problem: 

minimize f(x) 

subjectto hj(x)<O, j= l ,2 , . . . ,p ,  

gj(x,s)<O, se[a,b] j=l ,2, . . . ,m,  

(22) 

where hi(x) <0, j= l ,2 , . . . , p  are conventional inequality constraints, 
while gj (x,s) < 0, s e [a,b] j = 1,2,...,m are infinite functional 
constraints, g is continuously differentiable (smooth) in x and s. 

Such a SIP problem has wide applications [30,40]. Recently, Qi, Wu and 
Zhou [38] and Li, Qi, Tam and Wu [24] proposed a semismooth Newton 
method and a smoothing method to find a KKT pont of (22) respectively. 
However, It is possible to have another semismooth approach to solve (22). 

In 1989-1993, Teo and his collaborators [21,41,42,43] proposed to 
aggregate the functional constraints to 

fa 
b 

Gj(x):= (9(x,s))+ds=O, j = l , 2 , . . . , m .  

Then the SIP problem (22) is converted to a nonlinear programming 
problem: 

minimize f ( x )  
(23) 
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subject to hj (x) < 0, j = 1,2,..., p, 

Gj(x)<O, j = 1,2,...,m, 

where Gj may be nonsmooth. Teo and his collaborators [21,41,42,43] 
proposed a smoothing method to solve (23). 

A function is called an SC ~ function if it is smooth and its gradient 
function is semismooth [32,28]. Recently, Qi and Shapiro [35] gave 
conditions under which G defined by 

G(x) := f b(g(x,s))+ds, 

is SC I . Therefore, by [32,28], we may establish superlinear convergence of 
the SQP method for solving (23). This gives another semismooth approach 
to solve (22). 
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I. Introduction 

In this paper we consider a linear parabolic operator of second order with 
coefficients belonging to the closure, in the parabolic BMO norm, of 
uniformly continuous functions. Aim of this note is to study some properties 
of the solution of the parabolic equation and extend the regularity results 
contained in [ 12] in order to allow operators to have lower order terms. 

If the coefficients are discontinuous neither in elliptic case nor in the 
parabolic case there is a general theory, thus we wish to mention the study 
made by Di Fazio in [7] where the well posedness of a Dirichlet problem for 
divergence form elliptic equations is obtained in the case that the coefficients 
of the principal part belong to the Sarason class. 

The technique used in this paper is inspired to that one used in [5], [6], 
where the authors consider an elliptic second order equation in 
nondivergence form and study the well posedness of the associated Dirichlet 
problem. 

Let f2 C ~" be an open bounded set with Of~ E C 1'1 and T > O. 
We set in the sequel 
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M u  - -  u, -(a,~(X)u~,)~j 

and the linear parabolic operator 

£. u = .Mu + b,u~, + cu - (d,u)x ' 

in the cylinder Qr = f~ x ( -T ,  0), where X = (x, t) = (x~,.., x,, t) ~ R "+~ . 
We are interested in the study of the Cauchy-Dirichlet problem 

? u  + b~u~, + cu - (diu)~. = d i v f  in QT 

= 0 o n  Of~ × ( - T ,  O) 

[u (x , -T )  = 0 in f~. 

We consider~ '~+1 (n >_ 3)with the following parabolic metric that was 
first defined by Fabes and Rivi6re in [8] d(X, Y) = p(X - Y), where 

p ( X )  = I I x [5 +~/]2x 14 +4t  2 

We define parabolic cube centered at X = (x, t) with radius r the set 

Q:Q~,x(y)={Y:(y,T)e~"+~:lx-yl<r; It--Tl<r"}. 

Let us assume the coefficients aij such that 

a~j (X) = % (X) VX e Qv Vi, j = 1 . . , n ;  

3s > O: s-' I~ I ~< a,j (X)¢& < s l~ I ~, V~ ~ ~ "  a.e. x ~ o ~ .  

We also suppose that a~j belongs to the following class of vanishing mean 
oscillations functions. 

Let us first define the more general class of functions of bounded mean 
oscillations. 

Definition 1.1 Let f be a locally integrable function defined in ]I~ n+l  The 
function f is in the Parabolic BMO(]Kn+l)(see [9]) i f  
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if  sup - -  I f ( Y ) - f q  I dy < 
Q=R"" I Q I Q 

where Q run over the class of  all parabolic cubes of  R '~+' and f Q is the 

integral average fo = ~ fO f (y)dy. 

Let us consider a function f E BMO(II{ "+~) and r>O. We set the 
Parabolic VMO modulus of f 

= suP l f l f (Y) -  f a,, I dy 
T<_r r 

where Q~ is a parabolic cube with radius r,  r < r. 
BMO is a Banach space with the following norm ]]fl]. = supr>0~(r). 

Definition 1.2 We say that a function f 6 BMO & in the Sarason class 
VMO(~ "+1 ) (see [13]) if 

lim r/(r) = O. 
r..-~O + 

In the sequel we denote by r/,~ the VMO modulus of a~, 

and we define r/(r) = i,j=l r/0(r) . 

Let us assume that the known term f 
[LP(Qr)]"+I,1 < p < +co. 

The lower order terms satisfy the following hypothesis: 

i , j  = 1,...,n, 

belongs to 

bi, d , E Lq(@,),c e L~(Qr) where 

i = n + 1, q =  > n + l ,  
~-- p ~  

l < q < n + l  

q = n + l  

p > n + l .  

Definition 1.3 A weak solution of  the equation 

(1.1) 

Mu + b,u~, + cu - (d~u)~, = divf 
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2 is a function u : QT ~ • such that u,%j E Lioc(Qr),V j = 1,...,n and is true 
the equality 

L (ai~(z , t ) (u~,¢. j ) (z , t ) -b , (z , t ) (u . ,¢)(z , t ) -c(z , t ) (u¢)(x , t ) )dxdt-  

- fo,. u(x,t) O¢(o~'t) dxdt = 

=-L(Y,(z,t)¢,,(z,t)dzdt+d,(z,t)u(z,t)¢~,(z,t))dzdt, V¢ e c~(O~). 

Definition 1.4 (see [11_/). We say that a function k & a Parabolic Calderdn- 
Zygmund kernel(PCZ kernel) on l~'~+lwe respect to the above defined 
parabolic metric p if." 

1. k is smooth on ]~"+~ \ {0}; 
2. k(rx, r2t) = r-C'~+~)k(x, t), Vr > O, (homogeneity condition); 

3. F k(X)&r(X) = 0, V > 0 ,  (cancellation property on ellipsoids). ap (x)=,- 
Let us consider the fundamental  solution of  the parabolic operator. 

Definition 1.5 (see [1]). We denote by F ° ( X ) =  F(Xo,~) the fundamental 
solution of  the constant coefficient operator A/~, obtained from .M by 
freezing the coefficients at a fixed point Xoc-Q T 

r(Xo,~) = 

1 [ 
(47r (t - T)) (~t) ~/det{aij (Xo)} ezp - 

E':,=, ] 
4 ( t - T )  ' 

t - T > O  

(1.2) 

O, t - T  <O 

where ~ are the entries of  the inverse matrix of  {% }i.j=l ....... • 

The first derivatives of  the function will be denoted in general by 

0 r i (x ,~)  = r (x ,¢) ,  
o~, 

and the second derivatives by 
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o r , j ( x ,  ~) - - -  r ( x ,  ~). 

D e f i n i t i o n  1.6 (see [11]). Let us denote by a, ( x, t)= ( % ( x, t))i= 1 ....... the last 

column (row) of the matrix {aij }i,j=l ....... and define the following operator 

T(x,t;y,t) = x -  2x,  - -  
a.(y,t) 

a..(y,t) 
n Vx, y E N+ 

and any fixed t E ~+. Let us define 

T(X) = T(x,t;x,t)  Vx E ~+ 

for any fixed t in N+. 
We point out that if k(X,.) is a variable PCZ kernel, k (X, T (X) - Y) 

is a nonsingular kernel for every point X and Y. 

A C K N O W L E D G E M E N T S  

The author takes this opportunity to thank prof. A. Maugeri for useful suggestions. 

. M A I N  R E S U L T S  

The main goal of  this note is to prove the following theorem. 

T h e o r e m  2.1 (Main ResulO. Let a~j E VMOAL°~(_qR"+I),i,j...,n, be 
symmetric and uniformly elliptic, b~,d i ~ Lq(Qr),c ~ L2(Or) where q is 
defined in (1.1) and the known term f E f f  (QT), 1 < p < c~. 
Then the Cauchy-Dirichlet problem 

f 
Lu = divf in QT 

u = 0 on Of 2 × ( -T ,  O) 

u (x , -T)  = O in f~ 

(2.3)  
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has a unique solution u such that i f  p > n + l, belong to 
_ ,~+1 . . , d  C°'~ (~r-r), c~ = 1 "--F,-- also exists a costant C > 0 indipendent o f  f 

such that 

_< c II/IIL"(QT) " (2.4) 

We need some properties before proving the above theorem. 

Theorem 2.2 (see [1]). Let us consider k a variable PGZ  kernel and 

K f ( X )  = P.V.f , , . , ,  k(X,  X - Y ) f ( Y ) d Y .  

Then, f o r  every f E LP(QT),I < p < oo, there exists C = C(p,k) 
independent o f  f such that 

IIKflIL,'¢QT) --< CIIflI,,'¢OT)" 

Theorem 2.3 (see [1]). Let k be a variable P C Z  kernel and K as in the 
previous theorem. For a E VMO M L °° (N n+l), we consider the commutator 

C[a, f] (X) = P.V. f r . ,  k(X,  X - Y)[a(X) - a(Y)]f(Y)d Y = 

= a ( X )  ( K ( f ) ) ( X )  - K (a  f ) ( X ) .  

Then, for  every e > 03c > 0 and also ~ r o > 0 depending only on ~ and 
the VMO modulus ~1, o f  a such that 

IIC[a,f]II ,,(Q,) <- IIflI ,,(Q,), My E LV(Qr), with r <_ r o. 

The following two results are established in [1], respectively they are 
Theorem 3.1 and Corollary 3.8. 

Theorem 2.4 Let k be a P C Z  variable kernel and T the operator 
considered in Definition 1.6. We consider the operator 

f f f ( X )  = fw,,  k ( X , T ( X ) -  Y) f (Y)d(Y) .  

Then, for  everyl < p <  c~3C = C(p ,# ,k )  such that for  f E L~ (N~ +1) we 
have 
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/ ( f  L,(R+.+, ) < C f L,(~:.~). 

Theorem 2.5 Let k (X, Y)  be a variable P C Z  kernel, T as in Theorem 
2.4, aEVMO oo ,+1 rt£ (N+ ) and 

C[a, f] = f R u k ( X ,  T ( X )  - Y)[a(X) - a(Y)]f(Y)d Y. 

Then, for  every e > 03ro, depending only on ¢ and the VMO modulus 77. 
P + = with o f  a such that for  every f E L (Qr ) 1 < p < oo, Q+ Qr M ll~ "+1 

r < to, yields 

[C[a,f] L"(Q: ) <- c(P' #' k ) E llfllv'(e,' ) " 

Theorem 2.6 (see [14]). Let 13 E]0,n +1[ and let V E C°°(R "+' \ 0 )  be a 
homogeneous function o f  degree - 3 .  I f  g c L"(R ''+1) then the operator 

Jg(X) = F_ .... V ( X  - Y)g(Y)d Y 
, J  K 

is defined almost every where and 3 c = c(p, #) > 0 such that 

Ilggll~,,(~:+,) < cma,  xlxll=, IV(X)l.llgll<.~,...,) ~.+ 1=~-~ ~ - -  ~ n + l  • 

Let Q be some parabolic cube Qo C C  QT, e E C°°(QT) a standard cut- 
off  function, O(x) = 1 in Qw, 0 < "7 < 1. 

If  u is a solution of Lu = d iv f  on Qr with zero boundary data, we may 
consider u as a solution, with support in Qo, of the equation 
.M(Ou) = S + div9 c, where 

and 

f = - ( a , j e . , u  - ( e f j  + d ,u) ) ,  

s=-(a,,e,u,, + e,,(~ + ¢~)+ eb,,,x, + ~eu) + e,,,. 

Theorem 2.7 (Interior Representation Formula). Let the hypotheses o f  
symmetry and ellipticity for  a o C G °° (II~ n+l) r-1 L °~ (]~n+a) hold, let 
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oo oo r ..?- E [Co(Q)] TM, S ~ C O (Q) and v=~)u  C C O (Q),,fo some Q CC Qv, 
as a solution of  A4(Ou) = S + div.T'. Then 

v~ = (Ou)~ = P.V. f o  F,~(X,X - Y)([a,, j(X) - a,, j(Y)](eu),,(Y) - 

- ~ ( Y ) } d Y  + fQ S(Y)r,(X,X- Y)dY + ~ ( x )  f ~  .... r',(z,t)v~dcr, 
(2.5) 

where 71 ~ stands for the j -th component of  the outer normal to the surface 
Y]n+l" 

Proof. Let X o E Q. We have 

A4o(eu)( x )  - (eu), - ( % ( X o ) ( e u L ( X ) ) ,  = 

= . , % ( e ~ o - o M u  + e ( ( f j  + ¢¢,)~, - (b,,,~, + ~,,)} = 
= - [  (ao(X0)- %(X))(O U)x~ ( X ) -  ~.(X)]x.j + S(X) = 

~o s ( x ) .  =-( .~ (x)),, + 

Since (Ou), f" and S are compactly supported in Q, we have 

(Ou)(X) : f e  V j ( X ° ' X -  Y)w;°(Y)dY + fQ F ( X ° ' X -  Y)S(Y)dY,  v x e e .  

Differentiating twice yields 

(Ou)~(X) = P.V.~Q Fij(Xo,X - Y ) { [%(Xo) -  %(Y)](Ouk,, (Y) - ~ ( Y )  }dY + 

Xo . , + fo  F ' (X° 'X - Y)S(Y)dY  + %wj (X), %(X) = rE,,. F~(z,t)tjda,. 

This relation is true for every X 0 E Q Letting X = X we obtain the interior 
representation formula for v~. 

In the sequel we will consider the L" estimates only for p > 2 because 
the case p = 2 is a classical result by Campanato and the case 1 < p < 2 
will be recovered by duality. 

Theorem 2.8 (Interior Estimate). Let % satisfy the hypotheses of  Theorem 
2. 7, and let u E C~(QT) be a solution of Lu = divf, with 
f E [C~(Qr)] "+1. Then 3cr, c depending on n,p, rlo, # and dist(Q,OQr ) 
such that 
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Ilwll,.,(,~.~) < (llwlb(oo) + llfll~.<oo)+ "~"~'(~o)), 

929 

v¢o c c  ¢~.. 

(2.6) 

Proof.  Let us first examine the assertion if 2 < p < 2*. Using the above 
obtained interior representation formula, Theorems 2.2, 2.3, 2.6, and taking 
the p -norms of  • ( O u )  over the cylinders Qo, we find that 

IIv(eu)ll..,,o  <_ c[ll a I1.11 v(eu)II.,(qo) +11711.,(~o) + Ilsll.,.(,~.)}, 

where ~=¢+..a_,+,.  I f  a is chosen for which Ilall.<¢ then 3c  
independent of  O, u, .T" and $ such that 

II v(e,.,)I1.,(,~o)_< ~[11711.,(oo) + Ilsll.,.(.o)}. 

From the definition of Y and S we have 

Ilsll.,.(oo) -< IIw'll.,.<oo) + IIflI...<Qo) + II u I1~,.~o)--- 

-Ilvulk..(~o) + Ilfll.,(qo) + II ~' II~.(oo), 
and 

llTll.'.<Qo> ~ C{IIflIL,'<Qo> + II u ll.<Qo>}. 

Let us observe that, if 2 < p _< 2*, 1 _> ½. It follows that p, < 2 and we 
have: 

II Vu II..(Qo>_< c II Vu Ib(~o> • 

Hence 

II Vu II~.(q~o)< c{ll u I1.,(.0) + II f II.,<..> + II Vu IIt<oo)). (2.7) 

If  2" < p < 2"* (with 2** such that ~ = ~ - ,,z-~ ), it follows that p. _< 2*. 
Letting 0 be a cut-off function identically equal to 1 in Q,2, and supported 
in Q~, such that 0 < O < 1 and I VO I< ~(~-_~), we obtain 
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II Vu II~,,(Q~,o)~ c[ll u II~,'(Q~.> + II f II~,,(Q~o) + II Vu II~,,.(Q~.)) 

___ c[II u IIL,'(Q~o) + II f II.,(Q.o, + II Vu Ile'(Q~o)]" 
(2.8) 

Using (2.7) with p = 2' we see that (2.8) reduces to the inequality 

II v u  II~,,(Q,,.)~ c[ll u II~,(Q~) + II f II.'(Qo) + II VU [I~(Q~)]" 

If  .),2 = ½ we obtain (2.6). 
Finally, iterating this method with various exponents p > 2 we will find 

.A_. 
h C 1~, an exponent 2*** < p < 2*** so that .),h = ½ concluding with (2.6). 

We set Q+ = { (xr.x ., t) E Q~ :x ,  > O, t > 0}, where Q, is a parabolic 
cube. 

Theo rem 2.9 (Boundary Representation Formula). Let us assume the above 
hypotheses about the coefficients % and, in addition, that 

%cC°~(R"+'),b,,d,,cEC~(Q+~). Let .T E [C~(O+)] "+~ and 
• ," " ~ n + l  $ E C°~(-Q+), vanish inaneighbourhoodoj a~+ NOQ.  

I f  u is a restriction to Q+ of some function in Cc~(Q~) vanishing in 
- - +  

{{x, = 0}x]0,T[} N Q  + and satisfies the equation £ u  = 8 + dive" in Q~, 

then 

ux, : P.v.f~+ F i j ( X , X -  Y){[a,~j(X)-a,~j(Y)]ux, ' ( Y ) -  ~ ( Y ) }  dY  + 

fQ F , ( X , X -  Y)$(Y)dy + I,(X), VX E Q+, +c,j(x)~(x) + : 

where % (X) = J E,,. F, (x, t)~Tflcrt are bounded functions arising from (2.5), 

-fQ~ F,(X, T(X) - Y)S(Y)d Y, i = 1,..,n - 1 

and 
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I,(X)-= fQ: Bh(Y)Fhj(X,T(X ) - Y){[%(X)-ahj(Y)]ux, ' ( Y ) -  ~ ( Y ) } d Y  

where B h are bounded functions having L °° norm estimated in terms of the 
ellipticity constant s. 

Proof .  Let us consider the Green 's  function Go(X,Y ) for the halfspace 
R.+I and u as in the above hypothesis,  then + 

u(X) = fQ, Go(X,Y)Mou(Y)dY. 

We claim that for fixed X o E ~,,+1 

Go(Z,Y ) = r ° ( X  - Y ) -  F°(T(Xo,X)-  Y) 

thus 

u(Z) = fQ: r°(Xo,X- Y) .Mou(Y)dY-  ..fQ: F°(T(Xo,X)-  Y)./~)u(Y)dY = 

= --fQ: F o ( Z o , X  - Y)(wXo(y))xdY + fQ, r ° ( X , , , X  - Y ) S ( Y ) d Y -  

-{-f~: r ° ( X ' T ( X ° ' X ) -  Y)(wf°(Y))xJdY + fo: r ° ( X ° ' T ( X ° ' X ) -  Y)S(Y)dY};  

this means that 

u(X) = fQ, F~(Xo,X - Y)(wX°(y))dY + fQ: F ° ( Z o , X -  Y ) $ ( Y ) d Y -  

- F~ 2~,~ r~(Xo,T(Xo,Xo-  Y)(w.Xo(Y)) d y  - ...oF"' F°(X,,,T(Xo, X - Y)8(Y)dY 

and it is easy to see that 

(x)=fQ: r ° (xo, x - Y)(w x. (Y))d Y + c,j (X)w x" (X) + fQ~ r~ (Xo, x - Y)$(Y)d Y + I~ (X) Ux~ 

(2.9) 

where, for i = 1,.., n - 1, 

I,(X) = fQ: r°(Xo,T(Xo,X- Y)(wXo(y))dY, 



932 Variational Analysis and Appls. 

and 

I . (X)  = fo:  Bh(Y)Fhj(X° 'T(X° 'X)-  Y)(wXo(y))dY" 

By our smoothess assumption, (2.9) equality is true for any fixed X 0 and, in 
particular, for X = X 0. 

Then we have proved the boundary representation formula. 

Theorem 2.10 (Boundary Estimate). Let % C O~(N"+~)nLCC(W TM) be 
symmetric and uniformly elliptic. Let also be 

oo - - +  n + a  oo + i f e[C o (Oo)] ,b , ,d , ,ceC (Q;),V = l , . . . , n .  
Then there exists a > 0 such that for every u E C~(Q +) such that 

- - +  

i u  = div f in Q:, which vanishes on {{x,, = 0}×]0,T[} n Q~, we obtain 

II w II~,,CQ, i=)~ ~{11 Vu lie(o,) + II f II~,,(Q:) + II ~ I1,,,,(~,)}. 

for a suitable constant c independent of  u and f. 

Proof. Using the boundary representation formula (Theorem 2.9) and 
applying Theorems 2.4 and 2.5 we have the requested inequality. We point 
out that the terms B h are not relevant because are bounded functions. 

We are now ready to prove the main result, following the lines of [12]. 
First we obtain that 3 c >  0 independent of u and f such 

that II Vu II~,(oT)< c II f II~,(QT)with res t r ic t ive  hypo theses  that 

% E C°°(~n+l)NL°°(]~n+l), f E [C°°(Qr)]"+a, b,,d,,c E C°°(Qr). 

Interior and boundary estimates allow us to have 

II w II~,,(Q~)_< ~{11 v~  Ile(QT) + II f II.(oT) + II ~ Ik"(qr)), Vp > 2. 
(2.10) 

Let us suppose 2 < p _< 2*, using the Sobolev theorem we obtain 

(2.11) 

Making use of the last inequality, (2.10) and the L ~ theory we write 

1] Vu IL,,(oT)_< c[I I Vu  ]]L'(QT) + 1] f IL"(Q~)} <-- C H f IlV'(O~) (2.12) 
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which gives 

II w, ll.,(qT><_ ~ II f II.,(Q.,,). 

From this relation we have 

II w ,  II:(oT)_< C II f II:(oT) • (2.13) 

Further, is 2* < p < 2"*, the Sobolev lemma ensures 

II ~' ll.,(oT)--- c II w II...<Q=)_< c II f II:(o=) < - c II f II.,(oT). (2.14) 

Making use of  (2.10) and (2.14) we conclude that 

IIVulI.,(QT)<_C[IIVulle<~,.) +[[fl[.,<QT)}<_cllfll.,<oT), V2 < p < 2"*. 

After a finite number of  steps the required estimate Vp > 2 is true. 
Let us set aijEVMOAL°~(~'"~I),{a~}~cNa sequence of smooth 

functions converging to % in the BMO norm, {f~}kcr~ a sequence of 

functions in [C°~(QT)]"+I converging to f E [LV(QT)]"+~,{b~},(d~}, and {c k} 
sequences of  functions in C ~ (Qr) converging respectively to b~, d~, c and by 
u k the solution of  the Dirichlet problem 

[ u,-(a~Ux,), ' +b~u~, +cku-(d{u)z, = d i v  fk, Qv 

u = o O~ × ( - T ,  O) 

u(x,-T) = 0 in fL 

Therefore, we have 

II Vu~ II~.(oT)_< c II A II.'(QT), Vk e N 

where c is indipendent of  k E N. From the above inequality there exists a 
function u such that 

II V u  I1.,(o=)_< c II f II.,(Q=) • (2.15) 
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and moreover u verifies the original Dirichlet problem. 

Using this L p estimate and the Sobolev imbedding theorem we have that, 
i f p > n + l ,  uEC°'"(Qr), w i t h a = l  "+~ p • 
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SURVEY ON THE FENCHEL PROBLEM OF 
LEVEL SETS, 

T. Rapcs~ik 
Computer and Automation Research Institute, Hungarian Academy of Sciences, Budapest, 
Hungary 

Abstract: The Fenchel problem of level sets was formulated by Roberts and Varberg in 
their book titled "Convex functions" (1973, p. 271) is as follows: "What 
"nice" conditions on a nested family of convex sets will ensure that it is the 
family of level sets of a convex function?" The aim of the paper is to draw 
attention to this structural question of convex analysis and to survey some 
results in different directions. 

. INTRODUCTION 

The problem o f  level sets, formulated and discussed first by Fenchel in 
1951, is as follows: Under  what  conditions is a nested family o f  closed 
convex sets the family o f  the level sets o f  a convex function ? 

Fenchel  (1951, 1956) gave necessary and sufficient conditions for the 
existence o f  a convex function with the prescribed level sets, furthermore,  
the existence o f  a smooth convex function under the additional assumption 
that the given subsets are the level sets o f  a twice continuously differentiable 
function. In the first case, seven conditions were deduced, and while the first 
six are s imple and intuitive, the seventh is rather complicated.  This fact and 
the additional assumption in the smooth case, according to which the given 

" This research was supported in part by the Hungarian National Research Fund, Grant No. 
OTKA-TO43241 and CNR. 
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subsets are the level sets of  a twice continuously differentiable function, 
seem to be the motivation for Roberts and Varberg (1973, p. 271) to draw up 
anew the following problem of  level sets among some unsolved problems: 
"What "nice" conditions on a nested family of  convex sets will ensure that it 
is the family of  level sets of  a convex function?" 

The aim of  the paper is to draw attention to a structural question of  
convex analysis raised by Fenchel (1951) which contains several open 
subproblems, and to survey some results in different directions. The second 
part is devoted to the original Fenchel result (1951) in the continuous case, 
because it cannot be found in textbooks and research monographs. The third 
part is only a short summary of  some results in the smooth case, because a 
detailed review can be found in Avriel et al. (1988) (Section 8.2, about 40 
pages), and the concluding remarks contain some open problems. 

. T H E  C O N T I N U O U S  C A S E  

Leve l  sets o f  a funct ion 

Let A C_ R" be a subset and f : A ~ R an arbitrary, not necessarily 
convex function. Then, the level sets of  the function f are 

lev_<J = (x e A i f ( x )  ~ ~ ) ,  c~ E R. (2.1) 

Clearly, lev <_o f is empty for a < x C Ainf f(x).  Therefore, a will be 

restricted to the smallest interval J containing the whole range Im s (A) of  
f. This interval may be finite or infinite, open, half open or closed. To 
exclude the trivial case of  a constant function we assume that J has interior 
points. In the following space, all numbers a, 13,... are supposed to belong 
to J. On observing that f (x) _< a, x C A, is equivalent to f(x) < 13 for all 

13 > a, it is immediately seen that the family of level sets lev <o f has the 
following properties: 

a E J U lev<_J = A, 
if  a,/3 E J and a < t3, then lev<_J C_ lev<ff, 

i f  a, 13 E J, then 13 > a M lev_<J = lev<J,  

(2.2) 
(2.3) 

(2.4) 
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i f  J does not contain a lower bound, then a E J fq l e v < j  = o .2 .5  

(2.5) 

So far, our steps have been reversible, i.e., given a set A in R" and a 
family {L,,} of  sets indexed by the real numbers of  some interval J and 
satisfying (2 .2) - (2 .5) ,  we may construct a function f :  A ~ R having 
L, ,  a E J ,  as its level sets. If f is defined by 

f(x) = inf{a  E J [ x E L,}, (2.6) 

then, by Fenchel (1951, p. 116), 

L~ = {x c A lf(x)_< a}.  (2.7) 

If  follows that the function f is finite for all x E A, because for every 
x E A, property (2.2) ensures that some L, contains x ,  while (2.5) 
ensures that if J is unbounded below, there is some L, which does not 
contain x .  

The level set corresponding to a of this function consists of  all x such 
that int /3 < a .  Thus, x is in this level set i f f f  for every e > 0,  there is a 

xeL~ 

/3 < a + c such that x E L B . Because of (2.3), this means that x E L,+~ 

for all e > 0 ,  and hence, by (2.4), x E L, .  A further consequence of  (2.4) 
is that f (x) - - -  m i n a . .  This equation establishes a one-to-one 

x~Lt~ 

correspondence between the function f defined over A and the indexed 

families of subsets satisfying (2.2)- (2.5). 

It is known well that a function f : A ~ R with level sets L,, a 6 J, is 
lower semicontinuous iff 

L. is closed relative to A for  every a E J. (2.8) 

The condition for upper semicontinuity is 

tA La is open relative to A for  every a E J 

will not be used explicitly. 
Let t = cp(a) be a strictly increasing continuous function defined for 

c e E J .  Denote the range ~p(a), a E J ,  by Jr ,  and let a = q o  - l ( t ) ,  
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t E Jr ,  be the inverse of  qo. Then, the family of  the sets L_,(t), t ~ Jr '  is 

the family of  the level sets of the function ~,(f(x)), x E A, and satisfies 
conditions (2.2)-(2.5) and (2.8) if Lo, a E J,  does so. For the sake of  

brevity, two families such as {L,,} and [L_,(t)] obtained from each other by 

a strictly increasing and continuous index transformation t = ~(a), a E J, 
is said to be transformable into each other. 

Figure 1 shows some of  the level sets for a function f : R 2 ~ R that has 
a surface of  revolution as its graph. 

I , ' | 

I , . - 2 - - T - . ~ l  1 

I ~ I I I I I t 
I i I I l I I I 
i I T"--~ ~ I 
l , > .  
I I i I I 

I I I 

Figure 1. 

L e v e l  se ts  o f  a c o n v e x  f u n c t i o n  

With f now constructed from the sets {L~,} satisfying (2 .2) - (2 .5)  and 

(2.8), it is natural to wonder what additional knowledge about the sets {L~} 

will enable us to draw conclusions about f. By (2.8), if the sets {L~} are 
all closed, then f is lower semicontinuous. 

The Fenchel problem of  level sets was formulated on page 117 as 
follows: 
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"Under what conditions is a family o f  sets (L,} satisfying (2 .2) - (2 .5)  

and (2.8) transformable into the family o f  level sets o f  a convex function? 

To avoid inessential difficulties the domain A will henceforth be assumed to 
be convex and open." 

It is well-known that if f is convex, then lev_<~,f is convex for each 

c~ E J. De Finetti (1949) asked the obvious question: What about the 
converse? The question of  de Finetti, an inverse problem, is of the above 
type, and it led him to study the class of  functions that are now called 
quasiconvex. If  we add the obvious necessary assumption 

L is convex for each c~ E J, (2.9) 

what can we say about the corresponding function? It is clear from Figure 1 
where all the level sets of  a nonconvex function are concentric circles that 
we cannot conclude the convexity of f. It is well-known that the level sets 
of a function defined on a convex set are convex iff the function is 
quasiconvex. Both de Finetti (1949) and Fenchel (1951, 1956) gave further 
restrictions on the family {L~} which, together with (2.9), guarantee the 
convexity of  f. 

The class of  the quasiconvex functions seems to be considerably larger 
than the class of the convex functions, because it contains, in addition to the 
convex functions, all functions illustrated in Figure 1, all monoton functions 
f : I ---, R, and many other ones. However, there remains an open question, 
namely, how big the difference is between pseudoconvex and convex 
functions. 

A family of subsets {L,} of  A with the range J satisfying (2 .2 ) - (2 .5 )  

and (2.8), (2.9), i.e., the family of  the level sets of a lower 
semicontinuous, quasiconvex function f defined on A with the range J, is 
briefly called a quasiconvex family. Suppose now {L~} is transformable into 

the family of  level sets L_,lt/, t E Jr ,  of  a convex function ~o(f(x)), 

x E A, briefly called a convex family. Then, both f and qaf are continuous. 
The interval J~,, the image of J by (p, is open to the right, since a convex 
function in an open domain has no maximum. Hence, J must have the same 
property. This implies that all sets L~ = L,~t  ) are proper subsets of A.  If  

Jr  is closed to the left, then J is closed to the left. 
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Let the interior of  J be denoted by int J. A rather obvious necessary 
condition which a quasiconvex family {L,} must satisfy in order that it be 
transformable into a convex family is 

U L a = L~, Vc~ E intJ. (2.10) 
fl<a 

This property expresses that a convex function cannot assume a constant 
value except, possibly, its minimum on a relatively open subset of  its 
domain. This condition will not, however, be used explicitly. 

The further discussion of the problem stated above will be based on the 
following characterization of  a convex family: 

Lemma 2.1. A quasieonvex fami ly  L~, a C J, is a convex fami ly  i f f  

(1-O)L,~o+OLo, C_L , (2.11) 

where 0 < 0 < l , a  o E J ,  a 1 E J ,  o~ o = ( 1 - 0 ) a  o + 0 a ~ .  

Proof. Suppose that L,, a E J, are the level sets of  the convex function 
f(x), x E A .  Let x 0 = ( 1 - 0 )  x 0 + 0 x ~ ,  where x o EL~,, x a EL~,, be an 

arbitrary point of  (1 - O) L,o + OLd. Then, 

f ( X o ) < _ ( 1 - O ) f ( X o ) + O f ( X l ) < _ ( 1 - O ) a  o +Ooq =o~ o. 

Hence, x 0 E L o. 
Conversely, let (2.1 1) be satisfied and define f (x) = x E L, min a, 

c~ E J. As mentioned above, this function has the level sets L,, c~ E J. Let 
x 0 and x~ be arbitrary points of  A, and put f ( x 0 ) =  a0, f ( x ~ ) =  a~, and 
x 0 = ( 1 - 0 ) x  0 + 0 x  a. Then, x o EL~o, x~ EL~,, and x 0 EL,, because of  
(2.1 1). Hence, 

f(x0) = x 0 E L~,mina < a 0 = (1 - 0) f (Xo)+ 0f(xl) ,  

which proves the statement. 
Let A be a point set. The cone with vertex at the origin consisting of  all 

directions in which A is bounded will be denoted by B (A). The following, 
rather obvious properties of  cones B will be used: 

for any two point sets .41, A 2 
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B(4)2 B(4) ¢ 4c4, 
B(AA) = B(A) for A > O, 

B(A, + 4 )=  B(4)n B(4). 
(2.12) 

Lemma 2.2. For a quasiconvex family L, ,  o~ E J, transformable into a 
convex family, all sets L~, c~ E J, are bounded in the same directions, i.e., 
B = B (L,), c~ E intJ,  is independent o f  ol. I f  J is closed to the left, then 

BCBIL ]cB. 
- -  l l l i l l  o t  - -  

a E J  

(2.13) 

Proof. Since this statement is invariant under index transformations, it is 
sufficient to prove it for a family L_,m, t e J~,, satisfying (2.11). Let 

t E i n t J ~ ,  t 1EintJ~,, t ~ > t ,  be given and choose t o < t  in Jr" With 

0 = (t - to)/(ti - to), relation (2.11) yields 

( 1 - 0 ) L  % ) +  0 L  ,(t,)C L_, (t). (2.14) 

Hence, because L e_%) c_ L_,( o c_ L e_%) , 

T h u s , .  (~_,.,}-- -~ I~-,,.,/,,~. w , ~ h  provos ,he .rs,  par, oftho ~tatomont. 
( ) 

i f . ,  is closed to t h e n ,  , ccause Lmi.. C_ Lo, 
( Ot~,] J n~J 

[ I  c~ E intJ. It only remains to prove that B L C B. 
r a i n  a - -  

aC,I 

Let ~7 ~ 0, 11,7 II % be in B (L~) and let H be the supporting hyperplane 
of L,~ with the normal direction r/. In L,~, there is some point ~ whose 
distance from H is less than a given e > 0. Let H~ denote the hyperplane 
parallel to H at distance e which is separated from R by H. In H~, 
consider the (n - 1)-dimensional closed (solid) unit sphere whose center is 
the orthogonal projection of :~ on H~. Because the compact unit sphere has 
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a positive distance from L,,  by (2.4), there is some L_,/t ~ such that L '¢t) 

and the unit sphere are disjoint. By a separation argument, there is a 
hyperplane H' separating L_,¢t ) and the unit sphere. The normal vector r/,  

I] r/]l =1, of  H'  which is directed towards H, belongs to B because L _,~,) 

is bounded in this direction. The tangent of  the angle formed by 77 and 7/ is 
less than 2e, since H separates ~ from the unit sphere. Hence, the ray r/ is 
a limit ray of  rays ~' E B, which proves that B(L~) C_ -B. [3 

Let us introduce the assumption 

all sets L, ,  o~ G J, are bounded in the same directions. (2.16) 

The recession cone of  the set L, for every c~ E J is the set of vectors 
E R" such that L~ + ~ C_ L,~. 

Corol lary  2.1. All level sets o f  a convex function have the same recession 
cone. 

The function h ( L , r / )  : R" ~ R U {+oe} defined for every ct E J by 

h (Lo, ,7)= x e Losup,TTx, ,7 e n", 

is called the support function of  L, for every a E J and its effective 
domain 

e R" I h(ro, ) < +oo} 

is called the barrier cone of L~ for every a E J The support function of  
L,~, c~ E J, describes all the closed half-spaces which contain L,,  a E J. 

From Lemma 2.2, it follows that h(L,,~7), o~ E J, with a finite value is 

defined over the cone B and nowhere else. 

L e m m a  2.3. Let L~, a E J, be the family o f  the level sets o f  a lower 
semicontinuous, quasiconvex function f :  A ~ R such that the cone 
B(L,,) = B is independent o f  a for  a E intJ.  Let h(Lo,r/),  r/E B, 
II r / ] l :  1, be the support function o f  L, ,  a E J,.  Further, let t : %o(a), 
a E J, be a strictly increasing continuous function and ol = qo- 1 (t), 
t E Jr'  its inverse. Then, ¢F(f(x)), x C A, is convex i f  f h ( L . ,  (t), 77) is a 
concave function o f  t E Jr for  every f ixed 7 l E B. 
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Proof. The family of level sets L,, o~ E J, satisfies conditions (2.2)-(2.5)  
and (2.8), (2.9). By (2.3), h (L , , r / ) i s  an increasing function of a E J. 
I. Suppose that there is a strictly increasing continuous function t = ~p(a), 

a E J, such that ~( f (x) ) ,  x E A, is convex. Then, the sets L_,(,), 

t E Jr ,  satisfy (2.11), and hence, by the properties of support functions, 
we obtain that 

(2.17) 

where t o = ( 1 - O ) t  o +Otl, which means that h(L_~(,),r/), t E J ~ ,  is a 
concave function of t for every fixed r / E B. 

II. Conversely, suppose there exists a strictly increasing continuous function 
t = qg(o~), c~ E J, such that for a family L,, o~ E J, the function 

h (L_,,,), r / ) , t  E Jr ,  is a concave function o f t  for every fixed r/E B. It 

follows from this hypothesis that ~, (f(x)), x E A, is a convex function. 
To prove this it is sufficient to show (2.11). Now, (2.17) is valid, and for 

two point sets A~ and A2,, h(Aj,~)_< h(A2,r/)implies .41 C A 2. Hence, 

L_,(,,) _~ ( 1 - 0 ) L % ) +  0L_,I,,)D ( 1 - 0 ) L  ,it, i + 0 L % ) .  (2.18) 

Condition (2.8) implies that 

L_,~t ) N A = L 'It)' t E Jr '  

thus, 

L-,(t,, ) 2 A A[ (1 -  0)L_,(,o) --~-OL_t{t,) = ( 1 -  0)L_.,(to)+ 0L_,(t,).(2.19 ) 

The latter equality follows from the inclusions L_%) C C_. A, L ,(t,/ C_ A, 

and the convexity of A, which completes the proof of the statement. 

In terms of slopes, the concavity of h (L_,c,/, ~7), t E Jr,  for every fixed 
r /E/3  is equivalent to 
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t 2 - t~ t 3 - -  t 2 

V t 1 < t 2 < t~ , tl , t2 , t 3 E J ~ . 

(2.20) 

This condition may be given in the different form of 

_> h(Lo,, ,)-  
VO~ 1 < Ol 2 < 0~3~ a l , a 2 , a  3 E J, 

where the right-hand side is interpreted as 0 whenever the denominator 
vanishes. Let 

¢ = sup ~0~ I ~ OL 2 ~ 013,~ 0/1,0L2~0{ 3 ~ J ,  

(2.21) 

The function ¢ : j3 + R only depends on the family L~, a E J, thus it is 
used for stating the necessary condition as follows: 

There is a strictly increasing continuous function qo(o~), ol E J, such that 

Va~ < c~ 2 < a 3 , al, c~ 2, a 3 E J. 
(2.22) 

From the preceding lemmas and reasoning, the following statement 
follows: 

F e n e h e l  t h e o r e m  (1951). A family  o f  subsets o f  an open convex set A c_ R" 
suitably indexed by real numbers forms the family  o f  the level sets o f  a 
convex function defined on A i f f  (2 .2)-(2 .5) ,  (2.8), (2.9), (2.16), 
(2.22) hold. 

Fenchel (1953)remarked that while (2.2)-(2.5) ,  (2.8), (2.9), (2.16) 
are simple and intuitive, condition (2.22) is rather complicated. He added 
that there was no simple test to decide whether the function ¢ : j3 _~ R is 
such that can admit a strictly increasing continuous solution of the functional 
inequality (2.22), and both local and global properties of ¢ entered 
decisively. When he compared it with the original problem, there seemed to 
be no progress, however, condition (2.22) had the advantage of leading to a 
nice construction of the required function ~, : J --~ R. 
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In the theory of economics, Debreu (1954) proved his famous theorem on 
the representation of a continuous and complete preference ordering by a 
utility function. It is obvious that the utility function, whose existence is 
given by the Debreu theorem, is quasiconcave if the preference ordering is 
convex. Crouzeix (1977) and Kannai (1977, 1981) studied the problem of 
the concavifiability of convex preference orderings, i.e., the problem of the 
existence of a concave function having the same level sets as a given 
continuous quasiconcave one, and they improved the Fenchel results. This 
problem can be important in several economic and bargaining situations. The 
conditions provided for the cases of continuous, differentiable and twice 
differentiable quasiconcave functions are intimately related to constructions 
of special (least concave) utility representations. (By Debreu (1976), a utility 
function is said to be least concave on a convex set if every concave utility 
function defined on the same set can be represented by a concave 
transformation of the given utility function.) Crouzeix (1977) and Kannai 
(1981) introduced auxiliary functions, observing that the concavifiability of 
a quasiconcave function is essentially a one-dimensional phenomenon, and 
that if the convex preference ordering is concavifiable, then a suitably 
constructed auxiliary quasiconcave utility function has to possess finite and 
non-vanishing one-sided directional derivatives. 

An unusual feature of concavifiability theory, as presented in Kannai 
(1977), was the use of Perron's integral in expressing concavifiability in 
terms of second-order (one-point) conditions involving a twice differentiable 
quasiconcave utility function. It turns out that in case a function like this 
exists at all, the auxiliary function is also twice differentiable, and the 
associated function, whose Perron integrability is equivalent to 
concavifiability, has a constant sign, hence Perron integrability is equivalent 
(in the term of auxiliary functions) to Lebesque integrability (Crouzeix, 1977 
and Kannai, 1981). 

. T H E  S M O O T H  C A S E  

In the smooth case, the original problem is divided into two parts. The 
first one is to give conditions for the existence of a smooth pseudoconvex 
function with the prescribed level sets, while the second one is to 
characterize the smooth convex image transformable functions. 
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E x i s t e n c e  o f  a s m o o t h  p s e u d o c o n v e x  f u n c t i o n  w i t h  the  
p r e s c r i b e d  l eve l  sets  

By formula (2.4), the existence of  a smooth pseudoconvex function with 
the prescribed level sets can be studied, subject to the prescribed equality 
level sets, thus in the smooth case, differential geometric tools can be 
applied. Based on this idea, Rapcs~.k (1991) gave an explicit formulation of 
the gradient of  the class of  the smooth pseudolinear functions, which results 
in the solution of the first part of the Fenchel problem in the case of  a nested 
family of  convex sets whose boundaries are of  hyperplanes defining an open 
convex set. This result was generalized by Rapcs~tk (1997) for the case 
where the boundaries of  the nested family of  convex sets in R '~+1 are given 
by n-dimensional  differentiable manifolds of  class C 3 and the convex sets 
determine an open or closed convex set in R "+1. Here, the first results is 
recalled. 

Theorem (Rapcsfik, 1991) Let a C a function f be defined on an open 
convex set A C R" and assume that V f :~ 0 on A. Then, f is pseudolinear 
on A i f  f there exist C 2 functions l(x), r/i(f(x)) , i =  1,. . . ,n,  x E A, 
such that 

Of(x)Ox,  = /(x)r/i ( f  (x)), i = 1, . . . ,n,  x E A. (3.1) 

Koml6si (1993) proved the statement without the C '~ property of  the 
functions l, r/i ( f ) ,  i = 1,..., n, on the set A under the continuous 
differentiability of  the function f.  Pseudolinear or pseudoaffine maps were 
characterized in the n -dimensional Euclidean space by Bianchi et al. (2000), 
and the general form of  the pseudolinear maps defined on the whole n -  
dimensional Euclidean space was represented by Bianchi et al. (2003). 

C h a r a c t e r i z a t i o n  o f  the  s m o o t h  c o n v e x  i m a g e  t r a n s f o r m a b l e  
f u n c t i o n s  

In Fenchel (1951, 1956), the problem discussed in the preceding section 
was studied and solved under the additional assumption that the prescribed 
subsets of  A are the level sets of  a twice continuously differentiable 
function f(x), x E A. The second part of the Fenchel problem of level sets 
in the smooth case is to find necessary and sufficient conditions for the 
convex image transformability of  a twice continuously differentiable 
function f over the open convex set A c C_ R n , i.e., the problem is the 
existence of  a twice continuously differentiable strictly increasing function 
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qo(a), a E J, such that the function ~p(f(x)), x E A, is convex. A first 
complete set of  necessary and sufficient conditions for the convexifiability 
of C 2 functions was derived by Fenchel (1951, 1956). Following Fenchel 
and Avriel et al. (1988), it can be formulated in two steps via a hierarchy of  
four conditions. In the first step, two local conditions are discussed that must 
be satisfied at every point of A. The second step consists of  global 
conditions that must hold, taking the entire domain A c_ R" into account. 

Definition 3.1 A nonconvex function is convex image transformable i f  it can 
be transformed into a convex function by a one-to-one increasing 
transformation o f  its image. 

Let A c_ R" be an open convex set and the augmented Hessian matrix of  
the function f E C 2 (A, R) be given by 

Hf(x ; r )  = Hf(x) + rV f ( x ) rV f ( x ) ,  X E A, r E R. (3.2) 

Definition 3.2 Let H, H c and HtL be the family o f  C 2 functions for  which a 
positive semidefinite augmented Hessian matrix with a function • : A --~ R, 
a continuous function ~ :  A ~ R and a locally Lipschitz function 

: A ~ R exists at every x E A, respectively. 

The family H of C 2 functions was introduced by Fenchel (1951) as a 
necessary condition for the convexifiability of f on a convex set A. In his 
original work, this condition consists of two properties the characterization 
of which can be found in Avriel et al. (1988). The family of the functions 
H c was introduced by Avriel and Schaible (1978) and characterized by 
Schaible and Zhang (1980), see, Avriel et al. (1988). The family of  the 
functions HtL was introduced as a new pseudoconvex subclass originated 
from analytical mechanics and characterized by Rapcs~ik (2003). 
Alternatively, if the function P0 defined by 

Po(X) = in f [y  x H f ( x ) y / ( v f  (x)y) 2 II Y II =1, Vf(x)y ~: 0, y E R '~ } (3.3) 

satisfies p0(x) > - c ~  for every x E A, then the matrix function 
H(x ;~ (x ) )  is positive semidefinite for every function kv: A ~ R 
satisfying tI, _> -P0 on A. 

Let us introduce the following conditions: 

xTf(x) 7~ 0 f o r  all x E A, except for  the global minimum points in A 

i f  such points exist; (3.4) 
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f &pseudoconvex over A; 

f E H ;  

the function g defined on the open interval int J by 

9(t) = inf{p0(x) lx E A,f(x)  = t} 
is finite for  every t E int J; 
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(3.5) 

(3.6) 

(3.7) 

there exists a differentiable positive function h on t E int J satisfying 

a ln(h(t))  < g(t) ,  t E intJ.  (3.8) 
dt 

Fenehel-Avriel-Diewert-Schaible-Zang theorem (1988). If A C_ R" & an 
open convex set and f E C 2 (A, R), then, f is convex image transformable 
on A i f  f conditions (3.4), (3.6), (3.7), (3.8) hold. 

A new geometric necessary and sufficient condition was obtained for the 
existence of a smooth convex function with the level sets of a given smooth 
pseudoconvex function by Rapcs~tk (2003), which is a new solution for the 
second part of the Fenchel problem of level sets in the smooth case. This 
approach provides ageometric characterization of the new subclass of 
pseudoconvex functions HtL originated from analytical mechanics, an 
extension of the local-global property of nonlinear optimization to 
nonconvex open sets, and a new view on the convexlike and generalized 
convexlike mappings in the image analysis (see, e.g., Giannessi, 1984; 
Mastroeni et al., 2000). 

The main statements are as follows: 

Theorem 3.1. Let A C_ R" be an open convex set, f E C 2 (A,R) and 
~b : A ~ R a locally Lipschitz function. Then, f E HIL i f  f for  every 
x E A there exists a convex neighbourhood U(x) c_ A such that for  every 

pair  (x, y = z - x), z E A, the single variable function 

f (x + ~o{x,y) (t) y), x + p(xz) ( t )y  E U(x) , t E [0,1], (3.9) 

is convex where ~(x,y) :[0,1] ~ R, Cp(x.y ) (0) : 0, ~(x,y)(0) : 1, is a strictly 
increasing function given by the following differential equation: 
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_ [ 1 }  
~,(,.; (t)" = ¢ ( x  + ~o(.,y) (t) y) V f  (x + ~O(x.y > ( t )y)y ,  
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t E [0,11. 

Moreover, if ¢ :  A ~ R+, and 

V f  (x) y > 0, (3.10) 

then, qO(x,y ) is strictly convex. 

Theorem 3.2 Let f E HlL be a real-valued function defined on an open 
convex set A C R'. Then, f is convex image transformable by a one-to-one 
increasing function¢ C C 2 (ImI(A),R)  iff for every x E A, there exists a 
convex neigbourhood U (x) c_ A such that for every pair 
(x, y = z - x), z E A, the single variable function 

f (x + ~(xz) (t) y), x + ~(x.,) ( t )y e U (x), t e [0,1], (3.11) 

I is convex where qo(~,y) :[0,1] ---+ R, qo(~,y)(0) = 0, ~o(~,y / (0) = 1, is a strictly 

increasing function given by the following differential equation: 

, 1 ¢ ' ( f  (x + (t) y)), 

Moreover, if ¢ : A ~ R+, and 

Vf(x)y  > O, 

then, qo(~,y) is strictly convex. 

t E [0,11. (3.12) 

(3.13) 

. C O N C L U D I N G  R E M A R K S  

In the paper, a survey is given on some results of the Fenchel problem of 
level sets. It is emphasized that this problem is an important structural 
question of convex analysis which is related to economics and analytical 
mechanics. Some open questions are as follows: 

1. How large is the difference between pseudoconvex and convex 
functions? 
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2. 

3. 

4. 
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How to solve the Fenchel problem of level sets in the case of  a nor 
open neither closed convex set? 
How to solve the Fenchel problem of  level sets in the case of (71 
functions? 
Whether the necessary and sufficient conditions obtained in the 
smooth case can be preserved under milder conditions? 
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INTEGRAL FUNCTIONALS ON SOBOLEV 
SPACES HAVING MULTIPLE LOCAL MINIMA 

B. Ricceri 
Dept. of Mathematics, University of Catania, Catania, Italy 

If (X, r )  is a topological space, for any W : X  ---~]-oo,+oo], I denote by 
r v the smallest topology on X which contains both r and the family of  

sets {q~-' (] - 0% r[)}r~R. 
In [2], I have established the following general result: 

Theorem A. Let (X,v) be a Hausdorff topological space and 
~:X---~]-oo,+oo],  ~:X-+II~  two functions. Assume that there is 
r > inf x h u such that the set ~-~ ( ] -  0% r]) is compact andfirst-countable. 
Moreover, suppose that the function • is bounded below in ~F -~ (] - 0% r]) 
and that the function • + A~b is sequentially lower semicontinuous for  each 
A >_ 0 small enough. Finally, assume that the set o f  all global minima o f  
has at least k connected components. 

Then, there exists A* > 0  such that, for  each A E]0,A*[, the function 
k~ + Acb has at least k rv -local minima lying in ~-J (] - 0% rD. 

In the context of  a systematic series of  applications of  Theorem A, I 
intend to present here two multiplicity results about local minima of  integrals 
of  the calculus of  variations. 

In the sequel, ~ will denote a bounded, open and connected subset of  
IR" with sufficiently smooth boundary. 

Recall that a function f : ~ x IR m -~ IR is said to be sup-measurable if, for 
each measurable function u : f) --~ ]R m , the composite function 
x---~f(x,u(x)) is measurable. Following [3], f is said to be a normal 
integrand if it is £(~)®/3(1Rm)-measurable and f (x , . )  is lower 
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semicontinuous for a.e. x e f t .  Here £ (~)  and B(R m) denote the Lebesgue 
and the Borel cr-algebras of subsets of ~ and IR", respectively. Also, f is 
said to be a Carath6odory function if f ( x , . )  is continuous for a.e. x e f~ and 
f ( . , y )  is measurable for every y elR". Note that any Carath6odory 
function is a normal integrand and that any normal integrand is sup- 
measurable ([3], pp. 174-175). 

The aim of the present paper is to establish the following two results, in 
the conclusions of which the space W ~'p (f~) is considered with the topology 

(y, ; induced by the usual norm = ~ ( I v u ( x ) l  ~ +lu(x)l~) dx ': 

Theorem 1. Let 1 < p < n. Let ~o : 11~" --~ N and ~ : N" --~ [0, +oo[ be two 

functions, with ¢(0)  = 0 and ¢(rl) > 0 for  all r 1 e IR" \ {0}, such that, for  

every A >__ 0 small enough, the function ¢ + A~o is convex in N". Let 

g : 1R ~ IR be a continuous function such that the set g-~ (inf~ g)  has at 

least k connected components. Furthermore, let fl : f~ x 1~ --~ IR be a 
r p n  r normal integrand. Assume that there are c > 1, q e tp,.---yt and 6 e L ~ (f2) 

such that, Jbr a.e. x e f2 and for  every (~ , r / ) e~x~" ,  one has 

1(I r/[ p +l~]t' - c ' 2 ) ~ b ( z l ) + g ( ~ ) ~ c ( I r l l  p q-t~[" '-% +l )  
C 

(1) 

and 

-c(l~ I" +l~l ~ + 6 ( x ) ) ~ ( , ) + f l ( x , ~ ) ~ c ( l ~ l "  +1~1 ~ +6(x)). (2) 

Then, for  every a ~ L °° (f~), with ess inf~aa > O, for  every sequentially 

weakly closed set X c W ~'p (~ )  containing all the constant functions and for  

eve,y r > inf~ gll~llL,~.~, there exists ~" > 0 such that, for each ~ ~]O,A'[, 
the restriction to X o f  the functional 

u ~ f .  (¢(Vu(z)) + ~(x)g(u(z)))dx + A f ,  (~(Vu(x)) + Z(x,u(x)))dx 

has at least k local minima lying in the set 

{u E X: fa  (¢(Vu(x)) + a(x)g(u(x) ) )dx  < r}. 
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Theorem 2. Let 2 < n < p.  Let X be the space of  all u ~ W~'P (f2) which 
are harmonic in f~. Let ~b:f2×N×~'---~[0,+c~[ be a Carathdodory 
function, with ~b(x,(,0) = 0 and ~(x,~,~) > 0 for a.e. x ~ f~ and for  every 
(~,r/) e N x (N" \ {0}). Let g : N ~ N be a continuous function such that 
the set g-~ (inf~ g) has at least k connected components. Furthermore, let 
fl  : ~ x R x ~," ~ ~ be a normal integrand. Assume that, for some c > 1, 
o n e  h a s  

1(I 77 J p +J~ [P -c2)  < min{¢(x,(,T/),g(~)} 
c 

(3) 

for a.e. x ~ f2 and for  every (~,rl) ~ N x ~",  and that, for each s > O, there 
exist G > 0 and M s ~ L j (~ ) ,  such that 

-M~ (x) <_ min {~b(x, G rl),fl(x, Grl) } <_ m a x  ('4,(x,~,r/) , f l (x,~,r/)}  

< M , ( x ) +  G Jr/l" 
(4) 

for  a. e. x • f)  , for every r 1 ~ IR" and for every ~ e IR satisfying J ~ I <- s . 

Then, for  every a e L  l (~ ) ,  with es s in fna>0 ,  and for every 

r > inf a gML,,o,, there exists A* > 0 such that, for  each A E]0,A*[, the 

functional 

u - ,  f .  (¢(x,u(x),Vu(x)) + ~(x~g(u(x~l& + A ~  fl(x,u(x~,W(x))&, u e x 

has at least k local minima lying in the set 

{u x:  (;,(x,u(x),Vu(x)) + < r}. 

Let us start proving the following 

Proposition 1. Let zb:f~xII~x~" ~ [0,+c~[ be a sup-measurable function 
with O(x,~,0)=0 and ~b(x,~,r/)>0 for a.e. x ~  and for  every 
(~,q) ~ N x (JR" \ {0}). Let g : IR --~ N be a Borel function such that the set 
g-I (inf R g) has at least k connected components. Let a ~ L ~ (~)  be a non- 
negative function. For each u ~ W I"1 (f~), put 

¢(u) = f~ (~(x,u(x), Vu(x)) + c~(x)g(u(x)))ax. 
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Then, for every set X c Wl'l(f2) which contains the set R of all 
(equivalence classes oJ) constant functions, one has 

inf W : inf gll~lL,,., 
and the set 

{u X 
is contained in R and has at least k connected components in the 
Euclidean topology of  R. 

Proof. For each u ~ X ,  we clearly have 

V(u) >-- i~f g ]I~IIL,~, 

and that equality holds if u is almost everywhere equal to a constant c such 
that g(c)=infRg.  On the other hand, if u~W~'3(f2) is not almost 
everywhere equal to a constant, then [Vu[>O in some set of  positive 

measure (recall that f~ is connected), and so / "  ~b(x,u(x),Vu(x))dx> O. 
J ,  

From this, it clearly follows that 

/u G X :  ~ ( u ) =  inf g II IIL,,,, t = 3'(g-' (iq g)) 

where 3' denotes the mapping that to each r ~ IR associates the equivalence 
class of functions almost everywhere equal in f~ to r .  If  one considers on 
R the Euclidean topology, the mapping 3' is a homeomorphism between 1~ 
and R, and from this the conclusion follows. D 

Proof  of Theorem 1. Fix a > 0 such that the function ~b + A~ is convex in 
IR" (and hence continuous) for all A E [O,a[. This, of  course, implies that 
is continuous too. Now, for each u s W I'p ( ~ ) ,  put 

• (u) = f ,  (¢(Vu(x)) + ~(x)g(u(x)))dx 

and 
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• (u) = f .  + 

p n  

From (1) and (2), since WI'P(f~) is continuously embedded in L"-' (f)) ,  it 
follows that qJ and • are well defined, with finite values, and that ud is 
II • ]lw,., ,a) -continuous, since g is continuous. Fix A 6[0,a[ .  We show that 

the functional kv + Aq5 is sequentially weakly lower semicontinuous. Since 
the functional u ~ J'a (~b(Vu(x)) + A~(Vu(x)))dx is weakly lower 

semicontinuous, being convex and continuous, it is enough to prove that the 
functional u ~ f~  (o~(x)g(u(x)) + Afl(x,u(x)))dx is sequentially weakly 

lower semicontinuous. To this end, let u ~ WI'P(f~) and let {Uk} be a any 

sequence in W~'~(f2) weakly converging to u.  Since q <  P-~"p, by the 

Rellich-Kondrachov theorem, there is a subsequence {uk~ } strongly 

converging to u in Lq(F2). Of course, we may assume that 
limh_,~Uk~(X)=U(X ) and that suph~N lUk~(x) Iq<-CO(X) for a.e. x ~ f ~ ,  for a 

suitable co ~ L ~ ( ~ ) .  Clearly, we have 

e~(x)g(u(x)) + A/3(x,u(x)) <_ lim inf (ce(x)g(uk~ (x)) + Afl(x, uk. (x))) 
h~+oo 

for a.e. x ~ ~ .  On the other hand, by (1) and (2), there is a suitable b > 0 
such that 

-b(w(x)  + 6(x) + 1) < Ol(X)g(uk, ' (X)) + Afl(X, Ukh (X)) 

for a.e. x ~ ~ and for every h E N.  So, by Fatou's lemma, we get 

Ya (a(x)g(u(x)) + A/3(x,u(x)))dx < f lim inf (a(x)g(Uk~ (X)) + A/3(X, Ukh (x)))dx 
- -  d [~ h +oo 

< lim inf F (a(x)g(Ukh (X)) + Al3(X, Uk~ (x)))dx, 
- -  h - - - ~ + o o  O 

as desired. Again by (1) and (2), there is a suitable 0 > 0 such that, for 
every u ~ W t'p (f2), one has 

W(u)-> min{1,essinfaa } ,, 
C U wt.p(n)--0 
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and 

I¢(u) I -  < O(fn (I Vu(x)I v + I u(x)I"-e-~ )dx + 1). 

So, • is bounded in each bounded subset of Wt'P(fl), and the set 
{u ~ X : tF(u) < r} is weakly compact and metrizable, being a bounded and 
sequentially weakly closed subset of the reflexive and separable space 
W~'P(f2). Finally, by Proposition 1, r > inf  x W and the set of all global 
minima of the functional tPix has at least k connected components in the 
weak topology, since the relativization of this to R is the Euclidean 
topology. So, if r is the relativization to X of the weak topology, we 
realize that ~lx and tFtx satisfy all the assumtpions of Theorem A. 

Therefore, there exists A* > 0 such that, for each A E]0,A*[, the functional 
~lX +AcglX has at least k rv-local minima lying in qJ-~(]-oo, r [ ) n X .  

But, since tF is II" IIw,.,m)-continuous, the topology r v is weaker than the 

relative 1[. I[rv'.,',n)-topology, and so the above mentioned r v -local minima 

of ~tx + A~lx are local minima of this functional in the latter topology, as 

claimed. 1_~ 

Proof of Theorem 2. For each u ~ X ,  put 

O2(u) = fn (~b(x,u(x), Vu(x)) + o~(x)g(u(x)))dx 

and 

e;(u)  = u(x) ,  XZu(x)))dx. 

Since p > n, WI'v(Q) is compactly embedded in C°(~) .  From this and 
from (4), it follows that W and • are well defined, with finite values. We 
are now going to apply Theorem A taking as r the topology induced by the 
norm [lUllc0,fi)= maxfi lu I. We prove that tF and * are sequentially lower 

semicontinuous. We do that for • only, the other case being analogous. So, 
let u ~ X and let {u k } be a sequence in X converging to u. By a classical 
property of harmonic functions ([1], p. 16), the sequence {Vu+(x)} 
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converges to Vu(x) for all x el '2.  Moreover,  one has supsoN Ilusllc0, , < +®. 

Thus, if we apply (4) taking s - - s u p ~  Ilusll=0, ,,we get 

-M, (x) _< ¢~(x, us (x), Vus (x)) 

for a.e. x e f~ and for every k e N.  Thus, we can apply Fatou's lemma, 
obtaining 

g/'(u) _< f ~ lims~+ooinf/3(x, u s (x), Vu k (x)) _< limk~+ooinf (b(u s ), 

as desired. Let us also prove that qJ is I1" IIw,,,, ,'c°ntinu°us' So, let w e X 

and let {wk} be a sequence in X with lims_,+~llwk-wll~,,,,o, = 0 .  Hence, 

lims--,~ IIw  - wllc, , = 0 and there are co ~ L ~ (f2) and a subsequence {wk, } 

such that {Vwk~ (x)} converges to Vw(x) and suph~N I wk, (x)V'< co(x) for 

a.e. x e f~. By continuity, we get 

lim (~b(x, wk, (x),Vwkh (x)) + c~(x)g(wk~ (x))) = ¢(x, w(x),Vw(x)) + c~(x)g(w(x)) 
h~+oo 

for a.e. x e f2. On the other hand, applying (4) with s = sup~,N wk,[ cO(~) ' 

we get 

I ¢(x, wk~ (x), Vwk~ (x)) + a(x)g(wk, (x)) ]<_ M, (x) + cy(x)  + a(x) sup [ g ( ( )  I 
N_<s 

for a.e. x ~ f2 and for every h E N.  Hence, we can apply the dominated 
converge theorem, obtaining limh_,~ q~(wk~ ) = T ( w ) ,  as desired. Now, we 
prove that q~-I(]-oo, r])  is compact. Since we are in a metric setting, this is 
equivalent to prove that q~-I(]-oo, r]) is sequentially compact. Thus, let 
{v k } be any sequence in T -~ ( ] -  o% r] ) .  By (3), we get a suitable v > 0 such 
that 

vllull ,,,o  -±-< 
V 
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for all u ~ X .  So, the sequence {v k} is bounded in W ~'p(f2). This implies 
that there is a subsequence {Vkh } weakly converging in W ~'p (~)  to some v. 

Consequently, by compact embedding, the sequence {Vkh } converges 

strongly to v in C O (f~). By another classical property of harmonic functions 
([1], p. 16), the function v turns out to be harmonic in f2, and hence v~ X .  
On the other hand, by the lower semicontinuity of  qJ, we have 
T(v)  < lim inf W(vk~ ) < r ,  and so v ~ T -t ( ] -  0% r]) ,  as desired. Also, note 

h-~.~o 

that qb is bounded below in h v-~ (]-oo, r]) as it is lower semicontinuous. 
Finally, by Proposition 1, r > inf x T and the set of  all global minima of  the 
functional q-' has at least k connected components, since the relativization 
of  r to R is the Euclidean topology. At this point, all the assumptions of 
Theorem A are satisfied, and hence there exists A* > 0 such that, for each 
A E]0,A*[, the functional ~ + A(b has at least k r v -local minima lying in 
q~-'(]-oo, r[). But, since q~ is ]l. Uw,.,,(n)-continuous, the topology r v is 

weaker than the I1' IIw,..o,-topology, and so the above mentioned r+-local 

minima of  ',I, + Ae9 are local minima of this functional in the latter topology, 
as claimed. !il 

Remark .  In both Theorems 1 and 2 the key assumption is that the set of all 
global minima of g has at least k connected components. Knowing simply 
that this set is infinite is not useful in order to the multiplicity of  local 
minima of  the considered functionals. In this connection, for p > 1, consider 
the function g defined by 

{ ~  I" if ~ < 0 
g(~) = if 4 ~ [0,1] 

(~ - 1) p if ~: > 1 

So, g-I( infRg)=[0,1 ] and liml¢l_,~ g(¢) > 0  Nevertheless, for each A > 0 ,  
i~1 I, 

the functional 

u (I Vu(x)  I +g(u(x)))dx +  f lu(x)l" dx 

is strictly convex, and so its restriction to any convex subset of W I'p (~)  has 
at most one local minimum. 
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I N T R O D U C T I O N  

This paper deals with results about projectors on the important class of  
closed, prox-regular sets in R". These sets include all closed convex sets 
but also many nonconvex sets. However, they preserve some very important 
properties of  convex sets, and in so doing they substantially extend the 
usefulness of  those properties. 

One of  the best known results about closed convex sets in R" is that for 
such a set, say C ,  the projector on C (that is, the function taking a point 
x ~ R" to the (necessarily unique) point Flc(x ) in C that is closest to x) is 
single-valued and Lipschitz continuous with modulus 1. For a discussion see 
[5, Example 2.25]; the Lipschitz property is an easy extension of  this. 

However, for closed sets that may not be convex these properties may 
well fail. An obvious example is a circle S in R2 ; this is a closed set, but if 
x is the center of  the circle then FI s (x) = S : that is, 1-I s is multivalued at x 
and indeed every point of  S is closest to x. A less trivial example, also in 
IR 2 , is provided by the parabola S = {(x I,x 2)Ix z = (I/2)x~}. For points x(~) 
of  the form (0,~) with ~ >1, the two points (+[2(~-1)]1/2,~-1) are closest 
to x in S,  so that the projection of  x(~) on S does not consist of  a single 
point. Moreover, if we consider the point x(~)= (0,1) corresponding to the 
value ~ = 1, for which these two points coalesce into one at the origin, and 
then increase ~ slightly, the points of  x(~) move away from the origin at a 
rate faster than linear. Thus, U s fails to display not only Lipschitz 
continuity but even upper Lipschitz continuity (sometimes called calmness) 
at that point. 

However, this unpleasant example also furnishes us with a clue to what 
we might do to remedy the problem. The critical value of  ~ in this simple 
example was ~ = 1 ,  and it is easy to verify that for ~:~[0,1] the value of  
Hs(x(~) ) consists of  one point only. Thus, we might conjecture that if we 
constrained the point x to be close enough to the set S,  I-I s would retain 
the good properties that we want. 

Even this is not quite true, though, as we can see by modifying this 
example slightly. Let p be a real number in (0,1) and for small nonnegative 
a define ~(a)=(l+p)-Ja l+p+ct I-p, x+(cr)=(a,(l+p)-Iat+P), and 
x_(a) = (-a , (1  + p)-Ial÷'). One can then verify that x÷(a) and x_(a) are 
projections of  ~x(a) on S={(x~,Xz)lX2=(l+p)-Ilxu II+P}. This example 
and other like it show that the properties we are looking for require that the 
boundary of  the set in question display a certain amount of  good behavior. 
We shall give a precise definition later, in the form that we will need for the 
work of  this paper, but first we discuss some previous work that has 
identified the condition and some of its properties. 
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As far as the author is aware, Vial [7] first identified the property 
expressing this good behavior. He called it weak convexity, and in addition 
to technical descriptions he gave an excellent geometric depiction of  this 
property as the requirement that one could roll a suitably small ball along the 
boundary of  the set while maintaining contact with the set at one point only. 
This geometric view makes it easy to see why outward corners (such as one 
finds on many convex sets) make no difficulty, but inward corners do, as do 
boundaries that are concave outward and not sufficiently smooth, like the 
one in the last example above. Vial analyzed several properties of such sets. 

In 1994 Shapiro [6] gave a definition of  this property in terms of  what he 
called "0(2)-convexi ty ."  He proved the important fact that the property 
implied that, near a point x 0 ~ S where this property held, the projector I-I s 
was single-valued and Lipschitzian [6, Theorem 2.2]. Clarke, Stern, and 
Wolenski [1] developed a similar idea under the name of  "proximal 
smoothness," and obtained results about its consequences for projection. 
Subsequently Poliquin and Rockafellar [3] developed a number of  properties 
of this basic geometric idea, in substantial generality, under the name of 
"prox-regularity." More such work has since taken place, for example that of  
[2], of  which we make substantial use later in this paper. Much of  this work 
is summarized and extended in [5, Section 13.F]. In this latter work, the 
basic prox-regularity property is defined for a function, and the application 
to sets then follows by letting this function be the indicator of  the set in 
question. 

The present paper was motivated by the need to establish some results 
about projectors as a foundation for the work carried out in [4]. That paper 
introduced a localized version of  normal maps, which are single-valued 
functions that encapsulate important properties of the solutions of  variational 
conditions. Through this localization it was possible to extend the normal- 
map concept to deal with variational conditions posed over nonconvex sets, 
and thereby to draw conclusions about the existence and continuity of 
solutions of  the underlying variational conditions. 

As part of  the work of  [4] we investigated solutions of  variational 
conditions in which the underlying set, as well as the function appearing in 
the condition, may vary continuously. In order to deal with these varying 
sets it was necessary to establish some basic results about projectors on 
perturbed sets, and the class of  sets for which this could be done turned out 
to be the prox-regular sets. However, the exact results required seemed not 
to be available in the current literature, and the aim of this paper is therefore 
to establish these results and, moreover, to do so using the most elementary 
methods possible. 

In the following sections we first define precisely the class of  sets we will 
use, employing a definition due to Levy, Poliquin, and Rockafeller [2], and 
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then establish the main result about single-valuedness and continuity of the 
projector. These are done in Section 1. Then, in Section 2, we establish a 
quantitative bound that we subsequently use to show that the projector is 
jointly continuous when considered as a function of the point being projected 
as well as a perturbation parameter defining the set on which the projection 
is done. 

. P R O X - R E G U L A R I T Y  A N D  T H E  P R O J E C T O R  

This section establishes the notation and underlying hypotheses we use, 
then proves the main theorem about properties of the projector. We employ a 
variable set, given by a multifunction S : 1~ m --~ IR". For a parameter u ~ IR", 
we will project points x in IR" onto the set S(u).  Our interest will be in 
properties of  the projection when considered as a function of  x and u 
together. 

The property we require of  the set S(u) is prox-regularity in x with 
compatible parametrization by u, in the terminology of Levy, Poliquin, and 
Rockafellar. This property is stated for functions in the following definition, 
adapted from [2, Definition 2.1]. 

Definition 1. Let f be a lower semicontinuous extended real-valued 
function on R"xIR m, and let (Xo,Uo)~R"xlR" with Vo ~Oxf(Xo,Uo). We 
say that the function f is prox-regular in x at x o for v o with compatible 
parametrization by u at u o i f  there exist neighborhoods U, V, and X o f  
u o, v o , and x o respectively, with ~ > 0 and p >_ O, such that whenever 
(x, u, v) belongs to the intersection o f  X x U × V with the graph o f  Oxf and 
f ( x , u )  < f(Xo,Uo) + e, one has for  each x' ~ X the inequality 

i ( x ' ,u )  >_/(x,u) + (v, x ' -  x } -  (u2) l l x ' -  xll 2 . (1) 

For our application we want the function f ( x , u )  to be the indicator of  
S(u) evaluated at x. We will require the multifunction S to be continuous 
at each point of  U ,  which implies in particular that f is lower 
semicontinuous. As the indicator takes only the values 0 and +m, the 
statement in (1) becomes the assertion that 

(v,x'- x) -  (u2)llx'- xl[ 2 (2) 

whenever ( x , u , v ) ~ X x U × V ,  x ~ S ( u ) ,  x ' ~ X ~ S ( u ) ,  and v~Ns( , ) (x  ). 
The situation where a prox-regular function f is an indicator (that is, where 
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we are dealing with geometric properties of  a set) has been studied 
previously. 

The next theorem provides information on the properties of  the projector 
on a prox-regular set that also satisfies a continuity condition. In dealing 
with the projector we employ the notation Ns~,)(x ) for the normal cone to 
S(u)  at x in the sense of  [5, Chapter 6]. 

Theorem 2. Let X and U be open subsets o f  IR" and R "~ respectively, 
and let S be a multifunction from U to ~"  that is continuous on U. Let x o 
be a point o f  X and u o a point o f  U,  such that x o ~ S(uo). Let v o = O, and 
suppose that the indicator o f  S is prox-regular in x at x o for  v o with 
compatible parametrization by u at u o. Then for  each real number ~ >1 
there exist an open neighborhood U o o f  u o and closed neighborhoods X o 
o f  x o and Z o o f  the point z o :=x 0, such that 

a. The localization to (Uo×Zo)×X o o f  the multifunction taking 
( u , z ) ~ U × Z  to (I  + N s ~ ) ) - ' ( z ) c R "  is a single-valued function 7t 
that coincides with the localization to (Uo×Zo)×X o o f  the 
multifunction taking (u, z) ~ U × Z to the projection I-lso,) (z) (the set 
ofpoints in S(u)  closest to z) .  

b. For each u ~ U  o the function ~t(u,.) is Lipschitzian on Z o with 
modulus ~. 

Note that in the statement of  Theorem 2 we require a special choice of  
z0: namely, the point x 0, so that z 0 - x  0- -0 .  For the application to 
variational conditions this presents no difficulty, as we can always multiply 
the function f by some positive scalar qb to ensure that f(Uo,Xo) is as 
close to the origin as we wish. 

Proof. The proof employs two arguments. In the first, we use the machinery 
of  prox-regularity to show that for each 13 > 1 there are neighborhoods X 0 of  
x 0, UI of  u o, and Z t of  z 0, with X 0 closed, such that the localization to 
( U I x Z ~ ) x X  o of  the multifunction, say Q ,  taking ( u , z ) ~ U × Z  to 
(1+ -t , Ns~u) ) (z) has desirable continuity properties. We will use the symbol 
7t, for this localization, and will show that for each u ~ U,,  n,(u,.) is 
Lipschitz continuous on ZI with modulus 13 (hence, in particular, its values 
contain no more than one point). Then, in the second argument we employ 
the continuity of  S to show that by further shrinking the neighborhoods U~ 
and Z~ to an open neighborhood U 0 of  u 0 and a closed neighborhood Z 0 of  
z 0 , we can ensure that for each (u,z) ~ U o x Z o the set X 0 contains a point 
of  I-Is~u)(z ) . We then combine the two arguments to prove claims (a) and 
(b). 

For the first argument we recall that because of the prox-regularity, if we 
take v 0 = 0 ~ Ns<,,o)(Xo) then there exist neighborhoods U,, V', and X' of 
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Uo, Vo, and x 0 respectively, with e > 0  and p > 0 ,  such that whenever 
x ~ S(u) and (x,u,v) belongs to X '  x U  t x V' and satisfies v ~ Ns(,)(x) , one 
has for each x' ~ X '  n S(u) the inequality 

o~<v ,x ' - x>- (o /2 ) l l x ' - x l l  = (3) 

By making X '  and U~ smaller i f  necessary, we may suppose them to be 
contained in X and U respectively. 

Choose a real number [3 > 1. The interiors of  the neighborhoods V' and 
X '  contain closed balls of  radius o > 0 around v 0 and x 0 respectively. Let 
X o = B(xo,Y), where 0 < y max {1, 29(1 - [3 -I)-I} < o ,  and take Zj = X 0 . Fix 
any u ~ UI and suppose that for i = 1,2 we have z i ~ ZI and xi ~ X 0 with 
z~ ~ Ns(,) (xg) for i = 1, 2. Define v~ = z~ - x i . I f  we suppose for the moment 
that 9 > 0 ,  then we have 

IIv, II-< II(z, - x0)+ (Xo - x,)ll-< 2v, 

p(1-[3-')-'v,..[ _<o and accordingly [p(1-[3-1)-']v, ~ V  ' .  . As the SO that 
points x~ belong to XI ~ S ( u )  we conclude from (3) that for i--1,2 and for 
any x' ~ X '  n S(u) we have 

o >_ Eo(1- [3-')-' ](~,, x ' -  x,>-(o/2)llx'- x, II ~ , 

and therefore 

0 >- ( v , , x ' -  x , ) - (1 /2 ) (1 -  [3-')llx'- x,  II ~- . (4) 

On the other hand, i f  9 = 0 then (4) follows afort iori  from (3), so that in 
fact (4) holds for any p > 0. 

For each i replace x' by the other point xj ( j  ~ i )  in (4) and add the 
two inequalities to obtain 

<v,-v~,x,- x=> ~- (1- [3- ' ) l lx , -x=l l  = 

Recall that v i = z i - x i ,  so that we can rewrite this inequality as 

< z , - z = , x , -  x2> ~ [3-' IIx,-x=ll = , (5) 
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which shows that for fixed u ~ UI the function Z~ m (I  + Ns~u))(. ) is strongly 
monotone on X o with modulus [3 -~ . By applying the Schwarz inequality to 
the left side o f  (5) we can derive the bound 

IIx,- x211-<  llz,- z211, 

which shows that for each u ~ U l , ~t I (u,.):= X o m (I  + Ns~,))-I(.) is in fact 
Lipschitzian on its domain Z~, with a modulus [3 that does not depend on 
u ~ U~. In particular, then, each value ~t~ (u, z) contains no more than one 
point, and this concludes the first argument. 

For the second argument, choose positive numbers e and 8 small 
enough so that X 0 contains the ball B(x0,28 + e) .  We have assumed that 
x o ~S(uo) ,  so S(uo) meets the open ball of  radius e about x o. Use the 
inner semicontinuity o f  S at u 0 to choose an open neighborhood U 0 o f  u 0 
contained in U~ and small enough so that for each u ~ U o the set S(u) 
meets that ball. Let Z o := B(zo,min{y,8}) ,  so that Z o c Zj,  and choose any 
z e Z 0 . Then if  u ~ U 0 the distance from z to S(u) is less than 

Ilz - z0 II + IIz0 - x0 II + = IIz - z0 II + -< 8 + 

where we used the fact that z 0 = x 0 . The prox-regularity assumption requires 
the indicator o f  S to be lower semicontinuous, so S has closed values. Thus 
there is a point x o f  Fls(,~(z ) in the ball B ( z , 8 + e ) .  But this ball is 
contained in B(z  o, 28 + e) --= B(x  o, 28 + e) ,  which by hypothesis is contained 
in X 0 . This concludes the second argument. 

Now we put the two arguments together. For any (u, z) E U o x Z 0 the first 
argument shows that ~ ( u , z ) = X  o n Q(u,z)  is at most a singleton. The 
second argument shows that X 0 contains a point x e rls(,~(z ) . But we 
always have Fls(,)(z ) c Q(u , z ) ,  so in fact x = zt(u,z),  and we have 

X 0 ~ I-Iso,)(z ) = {x} = X o n Q(u,z). 

This shows that rt is a single-valued function on U 0 x Z 0 , which is 
simultaneously the localization to (U 0 x Z0)x X 0 o f  the multifunction taking 
( u , z ) ~ U x Z  to (I+Ns~u))-~(z)clR" and of  the multifunction taking 
(u,z) ~ U x Z to the projection rls~,)(z ) , and it proves the claim in (a). The 
claim in (b) follows from what we showed in the first argument about ~tl, of  
which rt is a restriction. El 

Theorem 2 showed that for fixed u the function ~t(u, z) was continuous 
in z ,  but we actually need joint continuity. Therefore in the next section we 
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first establish in Theorem 3 a quantitative bound on the difference between 
~t(u',z) and ~t(u,z) for two points u and u' close to u 0 . Then we apply 
that bound in Corollary 4 to establish the required joint continuity. 

. Q U A N T I T A T I V E  B O U N D S  

Here we first prove that for points u and u' close to u 0 we can bound 
the distance between the projections of  a point z on S(u)  and on S(u') 
respectively by a quantitative expression involving the Pompeiu-Hausdorff 
distance between the intersections of  these two sets with a neighborhood 
X 0 . We use the symbol d[P,Q] for the Pompeiu-Hausdorff distance 
between subsets P and Q of  •". 

Theorem 3. Assume the notation and hypotheses o f  Theorem 2, let ~ > 1, 
and determine the neighborhoods U o , X o , and Z o whose existence that 
theorem guarantees. For each u ~ U o define T(u) := S(u)  ~ X o . Let z ~ Z o 
and u ~ U o . Then for  each u' ~ U o one has 

II=(u',=>- =(u,=>ll -< 8([3/2)+ 8 '/2 {2 llz- =(u,z>ll 

+6[[32/4 + [3 - 1]} ''2, 
(6) 

where 8 = d[T(u'),T(u)].  

Proof.  Write x = :rt(u, z),  x' = rt(u', z) ,  8 = d[T(u), T(u')], and 
v:=llz- (u,z)ll We have x E T ( u )  and x ' ~ T ( u ' ) .  Moreover, 
z - x ~ Ns(,) (x) and z - x' ~ Nsc,, ) (x ' ) .  The multifunction S is continuous 
on U and hence has closed values; as X 0 is closed the values of  T(u) are 
also closed. Therefore there exist points y E T(u) and y'  e T(u') with 

y ' =  x + r, Ilrll ~ 8, y : x' + r', M ~ 8. 

Applying (4) to the triples ( z - x , x , y )  and ( z - x ' , x ' , y ' )  we obtain the two 
inequalities 

0 >_ 2, 

0 >__ 2 

(7) 
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We have y - x = r' + (x' - x) ,  so 
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I ly-  xll ~ = 1 7  + ( x ' -  x>ll 2 =114 2 + 2(r',x'- x> + IIx'- xll ~ • 

Writing similar equations for y ' - x ' =  r + ( x - x ' ) ,  substituting a l l  of  these 
into (7), and adding yields 

>>_ (z-x,r')÷<z-x',r)÷llx'-xll ~ 
- (1/2)(1-[3-')(11r11 ~ +llr'll=> 

-O-~-')(<r'-r,x'-x>+llx'-xll=). 
(8) 

By observing that 

( z - x , r ' ) + ( z - x ' , r )  = < z - x , r ' +  r > - < x ' - x , r >  

_> - 2 8 v - < x ' -  x,r), 
(9) 

and that 

- ( 1 / 2 ) ( 1  - t3-' )(llrll = + II,-,ll~) ___ -e~ = o - t3-' >, 

and by combining some terms, we can obtain from (8) 

_> - 2 8 v - < x ' -  x,r)+]lx'- xll ~ - 8 2 ( 1 - [ 3  -') 

-(1-~-')(<r'-r,x'-x)+[[x'-x[[ 2) 
: - 8 1 2 v + 8 ( 1 - [ 3 - ' ) ] - @ - ' r  +(1-~-')r',x'-x) 
+ ~- ' l lx ' -xl l  ~2 

> - 812v + 8(1 - [3-')] - 8 [Ix'- x[[ + [3-' [[x'- x[[ 2 . 

(10) 

By applying the quadratic formula to (10) we obtain (6). IJ 

Observe that in the special case z ~ S(u) (i.e., v = 0 ) ,  (6) provides a 
bound of  the form 

, < 
II~<u,z>-~(u,g>ll-~der<u'>,T<u>a, 
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so that as we would expect ~t(.,z) obeys a Lipschitz condition in the 
Pompeiu-Hausdorff metric applied to T(.). In the general case we only have 
a H61der condition with exponent 1/2, as the form of  the bound is 

, < II (u ,z)- z ll- Xa[T(u'), r(u)] ''2, 

as long as u' remains near u. 
With this result it is now easy to show the joint continuity of  the function 

~t in the arguments (u, z).  We do this in the following corollary. 

Corol lary 4. Assume the notation and hypotheses o f  Theorem 2. Fix ~ > 1 
and determine the neighborhoods U o, X o, and Z o whose existence is 
guaranteed by that theorem. Then the function ~t is continuous at each 
(u , z )  ~ Uo × Zo . 

Proof. Choose any (u ,z)~ U 0 x Z 0 and any e > 0. Theorem 3 shows that 
rt(.,z) is continuous at u,  so we can find a neighborhood V of  u,  contained 
in the open set U 0, such that if u '~  V then zt(u,z)-~t(u',z) < e/2. Now 
choose any ( u ' , z ' ) ~ V × Z  0 such that z ' S z [  <(213)-e" B~, using the 
Lipschitz continuity of  ~(u',.) established in Theorem 2, we obtain 

II <u,z)- z'>ll II <u, z) -   (u',z)ll + 
< e/2+ e /2=  e, 

from which we see that ~t is continuous at (u, z).  E7 
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Abstract: Optimal control theory is applied as a method for determining the minimum 
wind strength required for dynamic soaring of seabirds. Dynamic soaring is a 
flight technique by which seabirds extract energy from shear wind existing in 
an altitude layer close to the water surface. Mathematical models for 
describing the soaring motion of a bird and for the shear wind are presented. 
Optimality conditions are formulated using the minimum principle. Switching 
conditions are introduced to deal with a state constraint. Numerical results of 
high accuracy are generated using an efficient computational procedure based 
on the method of the multiple shooting for an albatross as a representative for 
seabirds performing dynamic soaring. 

NOMENCLATURE 

aki 

Co 
CL 
D 
g 

H 

abbrevia t ion  factor  

drag coeff ic ient  

lift coeff ic ient  

drag 
accelera t ion due to gravi ty  

Hami l ton ian  
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altitude 
J performance criterion 
k drag factor for describing lift effect 
L lift 
m mass of bird 
S reference area 
t time 
U xg ,v Kg , wKg speed components 

V airspeed 
V K inertial speed 
V w wind speed 

xK,Y,r,ZK geodetic coordinate system 
Za flight azimuth angle 

y,  flight path wind angle 

~i Lagrange multiplier 
/~  flight bank wind angle 

. I N T R O D U C T I O N  

Dynamic soaring is a flight method by which an object in gliding flight 
(bird, sailplane) extracts energy from horizontally moving air. The 
possibility of extracting energy for continuous dynamic soaring requires that 
the horizontally moving air is non-uniform. This means that the horizontal 
wind speed changes with altitude. Such a type of wind is called shear wind 
or shear flow. 

Dynamic soaring is observed with seabirds which utilize the shear flow 
in an altitude region close to the water surface. Here, the wind speed rapidly 
increases in a small altitude interval termed boundary layer, from zero to the 
value of the free air flow. There are several seabirds that perform dynamic 
soaring. Among these, the albatross is the most famous and considered the 
master of dynamic soaring (Ref. 1). 

The possibility of utilizing shear wind for soaring flight and the basic 
mechanism of the energy transfer from the moving air to the bird have been 
early considered and clarified, Refs. 1-4. Since then, dynamic soaring is an 
issue of continuous interest and the knowledge has been continually 
increased, Ref. 5. Investigations on energy estimations and numerical 
simulations were performed, yielding an improved understanding of 
dynamic soaring. The research includes papers which are concerned with 
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mathematical treatments of dynamic soaring, Refs. 6-11. Other papers are 
more dealing with ornithological aspects, Refs. 12-14. Modem optimization 
techniques have been applied to the dynamic soaring problem, yielding 
results on the minimum required wind strength, Refs. 15-17. Recent 
experimental research is concerned with tracking of albatrosses, providing 
results on their enormous flight performance, Refs. 18-23. 

It is purpose of this paper to present a rigorous mathematical treatment 
concerned with dynamic soaring of seabirds. This relates to the mathematical 
model for describing the motion of the birds and to the optimization method 
to generate solutions for the minimum wind strength required for dynamic 
soaring. Numerical results are presented showing the form of the optimal 
dynamic soaring trajectory requiring minimum wind strength and the 
properties of state and control variables for achieving this goal. 

2. B A S I C  C O N S I D E R A T I O N S  ON D Y N A M I C  S O A R I N G  

Dynamic soaring comprises a rather complex and a highly dynamic flight 
maneuver involving a complicated control structure and a corresponding 
behavior of the state variables. Consequently, no simple and direct access to 
this problem is possible to yield closed-form solutions. By contrast, there are 
other soaring techniques which consist of rather simple flight maneuvers to 
enable an energy gain for the bird. These problems can be solved with direct 
approaches. Such soaring flights are thermalling and hang gliding in up-wind 
fields which are utilized by birds or sailplanes. An illustration is given in 
Fig. 1 which shows flight conditions in up-wind fields. Basically, the flying 
object is moved upwards by the air, resulting in a corresponding energy 
increase. This energy source can be utilized with rather simple maneuvers, 
like circling or even straight motions representing basically steady-state 
flight conditions. Correspondingly, comparatively simple solutions are 
known for such problems, Ref. 24. 

By contrast, dynamic soaring consists of a complex and unsteady flight 
maneuver for transferring energy to the flying object from the moving air 
which is not moving upwards, but horizontally. A dynamic soaring flight 
maneuver is illustrated in Fig. 2. There is a horizontal wind which shows a 
shear flow characteristic. The wind rapidly increases from very small values 
immediately above the sea surface to the free air flow speed. For transferring 
energy from the moving air to the bird from such a shear wind, a complex 
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Thermalling Slope Soaring 

Moving Air ~ F l i g h t  Path Flight Path 

Figure 1. Flight paths and energy transfer in up-wind regions 

flight maneuver as illustrated in Fig. 2 is necessary. It basically consists of 
four phases 1 to 4, yielding: 

1) Phase 1 
Lower curve close to sea surface (change of flight direction from 
leeward to windward) 

2) Phase 2 
Climb (windward flight) 

3) Phase 3 
Upper curve (change of flight direction from windward to leeward) 

4) Phase 4 
Descent (leeward flight) 

Phases 1 to 4 form a cycle which is the basic constituent of dynamic 
soaring. By periodically repeating the dynamic soaring cycle, the bird can 
perform a range flight without flapping its wings. 

With a dynamic soaring flight maneuver as shown in Fig. 2, it is possible 
for the bird to attain an energy gain from the moving air. This enables it to 
achieve an enormous flight performance. An example for the achievable 
performance is given in Fig. 3 which presents the trajectory of an albatross 
tracked by satellite measurements. The length of the trajectory shown in Fig. 
3 is 6479 km which the bird has traveled in 8.15 days. 

Focus of  this paper is on the minimum shear wind strength required for 
dynamic soaring. There are dynamic soaring trajectories which show the 
same energy state of the bird at the end of a dynamic soaring cycle as at its 
beginning. These trajectories can be designated as energy-neutral. The 
designation "energy-neutral" means that the energy gain from the moving air 
is just sufficient to compensate for the energy loss due to drag after 
completing a dynamic soaring cycle. There is a great variety of energy- 
neutral trajectories. One of these is of particular concern: It is the one which 
requires the minimum shear wind strength. Having knowledge of this 
energy-neutral trajectory, it is possible to judge whether or not the shear 
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Figure 2. Dynamic soaring trajectory and energy transfer 

55'w 5o°w 4 5 -w  4 o 'w  ~ s ' w  

Figure 3. Flight path of an albatross (from Ref. 19) 
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wind strength in the areas of the seabirds in mind is sufficient for dynamic 
soaring. 

. M A T H E M A T I C A L  M O D E L  F O R  D E S C R I B I N G  T H E  
M O T I O N  OF T H E  B I R D  

The dynamics of birds in soaring flight can be described using a point 
mass model. Reference is made to an earth fixed coordinate system, and the 
moving air is appropriately accounted for. Fig. 4 shows the earth fixed 
reference system and the speed vectors describing the moving air and the 
motion of the bird. The equations of motion may be expressed as 

du xg D 
- -  . a u  I - -  - dt m 

dV Kg D 
- -  - - a v l  - -  _ dt m 

dwxg _ D 
a w l  - -  _ 

dt m 

dxxg 

dt  - u rg 

dyKg 
dt - v xg 

dh 

dt  -wKg 

L 
~u2 - -  m 

L 
av2 - -  

m 

L 
aw2 - -  + g 

m (1)  

where the coefficients a~ denote functions of the path angles Z . ,  ?'. and 
/2.,  given by the following relations 

au l  = c o s ? '  a c o s x a  

auz = cos/2, sin 7. cos Z .  + sin/2, sin Z .  

a~l = cos?',  s i n z .  

av2 = cos/2, sin 7.  sin Zo - sin/2, cos Z .  

awl  = - s i n ? ' .  

(2) 

aw2  = COS,Ida COS ?'a 
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V (Airspeed) 

VK e r t i a l ~ _ . . . , . ~  

Figure 4. Coordinate system xg, yg, zg and speed vectors VK, V, Vw for describing the flight 
in a horizontal shear wind (VK: inertial speed measured relative to the ground, V: 
airspeed of the bird relative to the moving air, Vw: wind speed). The x~ axis is 
aligned with the wind speed vector Vw, the zg axis points vertically downward. 

The aerodynamic forces are drag and lift which read 

L = C  L(p/2)VzS 

D = Co(p /2)VzS  
(3) 

The drag characteristics may be modeled as 

C D = Coo + kC 2 (4) 

where the lift coefficient C L is a control which is determined by optimality 
conditions described in a subsequent section. 

The aerodynamic forces are dependent on airspeed I 7 , while the motion 
of  the bird with regard to the earth is described by the inertial speed 
Vx =(Uxg,VKg,Wxg) v" They are related to each other by the following 
expression 

With the use of  I7 w = (-Vw, 0, 0) T , Eq. (5) yields 
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= (u~g + Vwv~gw~) T 

2 V=~/(uK~ +V.,) 2 +v2K~ +uK~ 
(6) 

Two angles of the aerodynamic coordinate system used in Eqs. (I) and (2) 
are given by 

sin y,, - wxg 
V 
VKg 

tan Z,, - 
U xg + Vw 

(7) 

The remaining angle flu which describes the banking of the lift vector is a 
control. It is determined by optimality conditions described in a subsequent 
section. 

For a cycle of an energy-neutral trajectory, the following boundary 
conditions implying periodicity hold 

uxg(O ) = uKg(t~yc), vKg(O ) = vxg(t~y¢), wxg(O ) = Wxg(t~y~), h(O) = h(tcy~) 

(8) 

where t~y~ describes the time at the end of a cycle. With an appropriate 
choice of the coordinate system, the boundary values of the longitudinal and 
lateral coordinates read 

Xg (0) = O, Xg (toy c)" free 

yg (0) = O, yg (tcy~)" free 
(9) 

Control variables are the lift coefficient C L and the bank angle /~ .  The lift 
coefficient is subject to the following constraint relation 

CLmin --~ C L ~_ CLmax (10) 
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. M A T H E M A T I C A L  S H E A R  W I N D  M O D E L  

The dynamic soaring of seabirds is possible because there is a shear wind 
at the sea. The shear wind is due to boundary layer effects of the moving air. 
This is illustrated in Fig. 5 which shows the shear wind profile (wind speed 
vs. altitude) for the altitude region of concern for the dynamic soaring of sea 
birds. From zero or very small values immediately above the sea surface, the 
wind speed rapidly increases and approaches the value of the free air flow. 

There are various models for describing the shear wind characteristics. 
For the shear wind above the water surface, logarithmic or exponential 
models are used (Refs. 6,7,13,25). They may be expressed as 

- -  ln(h / h o) 
V w : V w ln(~/ho)  

( l l )  

The quantities Vw~f, hr4 andp  as well as V w, h o and h ,  denote 

reference values which are used for indicating the strength of the shear wind 
and for taking properties of the surface into account. The exponential model 
is applied in this paper, with p = 0.143. 

5. O P T I M A L I T Y  C O N S I D E R A T I O N S  

For the performance criterion, designated by J ,  the quantity V~,re f can 
be used. This is because Vwref is a measure for the shear wind strength, 
yielding 

J=Vw~er (12) 

The optimal control problem can then be formulated as to determine the 
controls, the initial conditions I7 x (0) = (Uxg (0), Vxg (0), wxg (0)) r and h(0) 

and the optimal cycle time tey c which minimize the performance criterion 

J = Vw~i subject to the dynamic system Eq. (1), the boundary conditions 

Eqs. (8), (9) and the control constraints Eq. (10). 
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I L 

1.0 V~ /w~  

Figure 5. Model for describing shear wind in boundary layer above sea surface. The quantity 
Vw ref denotes the wind speed at the reference altitude for which a value of h = 10 
m is chosen. 

The optimal control problem described is solved with use of  the 
minimum principle. For this purpose, the Hamiltonian is introduced 

H -  a~lD + a~2L A~ amiD + a,o2 L ) a°lD + a"zL ,k,, + 9 Aw + 
m m m (13) 

uK~j~x + vK,j,~ - wu~A h 

with Lagrange multipliers 

x = ( L , L , % , x , , ; t , , ; t h )  T (14) 

adjoined to the system Eq. (1). The following relations hold for the Lagrange 
multipliers 
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dA. __ 0 
dt OUK~ 

dA._  0 
dt Ov m 

dA w 0 
dt Owu~, 

dA~ __ 0 
dt 

d ~  = 0  
dt 

dab = [ 0__0___(a.1D 
dt [OV w 

- - ( a ~ l D  + a~2L)-~ + O---Q---(a.ID + a.2L)-~ + 
OUKg 

O--~(aw,D + a,v,2L) A~ - A~: 
OUKg m 

0 (a,,iD + a.2L)~ + ( a ~ l D + a ~ 2 L ) ~ + <  

o--o---(awlD +a,v2L)-~- I ~ 
OVKg 

- - ( a , l D + a , 2 L ) ~ +  O---~--(a,,1D+a,,2L)-~+ 
0 WK9 

O--~(a,olD + a,o2L) A" - A h 
0 WK~ m 

+ a. L)A + + a  L)A + 
m OVw m 

0 (aw,D+aw2L)-~]dVw 
0 V W dh 

(15) 

Because of periodicity properties, the following boundary conditions hold 

~.(0) = 2..(t¢yc), A~(O) = A~(t~y~), Aw(O ) = 2.~(t~y~) (16a) 

Further to the boundary conditions 

Ax(tcy¢) = O, Ay(tcy¢) = 0, ~h(t~y¢) = -1  (16b) 

The Hamiltonian is constant because the system described by Eq. (1) is 
autonomous (i.e., not explicitly dependent on t). Furthermore, the time at 
the end of a cycle, toy c , is treated as free, yielding 

H = 0  (17) 
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The optimal controls are such that the Hamiltonian is minimized. From 
OH / 0/t  o = 0 ,  it follows for the optimal bank angle control 

3,. s in  Zo - 3,v cos  Z .  

tan(/to )opt -~ ~'u sin 7'0 cos Zo + 2v sin Yo sin Zo + 2w cos Yo 
(18) 

Similarly from OH / c3C L = 0 for the optimal lift coefficient 

1 [ 2 u (cos/to sin Yo sin Zo - s in/ to cos Z,,) 

(CL)opt = - 2k 3 .  cos Yo cos Zo + 2v cos Yo sin Zo - 2w sin 7'0 

3.~ (cos/.t o sin Yo sin Zo - s in/ to  cos Z,, ) + 3.w cos/ to cos 7/0 
Z, cos Yo cos Z ,  + 2v cos Yo sin Zo - 2w sin Yo 

(19) 

Otherwise, the constraining bounds given by CLmin and CLmax , Eq. (10), 
become active. 

. ALTITUDE CONSTRAINT AND SWITCHING 
CONDITIONS 

The altitude range for the dynamic soaring maneuver has a lower limit 
given by the water surface. Therefore, it is necessary to introduce an altitude 
limit described as hmi n . This results in an altitude constraint given by 

h >_ hmi n (20) 

As a consequence, there are additional optimization conditions which are 
presented in the following according to Ref. 26. 

Basically, the altitude constraint can become active in two ways. First, a 
point of  contact can exist at which the dynamic soaring trajectory touches 
the altitude limit hm~ . . Second, there can be an arc on which the dynamic 
soaring trajectory stays for a finite interval. The second possibility occurred 
in the computational treatment of the optimization problem so that it will be 
considered in the following. 

For treating the altitude constraint problem, the relation 

G(h) = hm~ . - h < 0 (21) 
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is introduced. Calculating successively the time derivatives of  G until an 
expression is obtained which is explicitly dependent on the control variables, 
the following result is obtained 

o(')(wK.) = wK. 
D L (22) 

G (2) (urn, vK~ , w~,  h, Q ,  #, ) = -%1 ~ - %2 - -  + g 
?It m 

Accordingly, the altitude constraint is of  second order. 
For incorporating the altitude constraint in the 

Hamiltonian is changed to yield 
optimization, the 

H* = H + lt(t)G (2) (uxg, vxg, wxg, h, C L, At.) (23) 

with addition of  an Lagrange multiplier denoted by ~t(t). 
As a consequence, the following relations result 

dA~ _ OH 0 #(t) G (~) 
dt OUl~ OUK,j 

dA____z_,_ OH #(t) 0 G(2) 
dt OvK: j Ov~(~ 

dA,......~= OH #( t ) 0 a(2) 
dt OwK, J OWK q 

dA/_____z~ _ OH It(t) c9 G(2) 
dt Oh Oh 

(24) 

The expressions dA x / dt = 0 und day / dt = 0 remain unchanged, because 
G (2) is independent of Xg and yg.  

For ,u(t), the following relations hold: 
a) / t ( t )  = 0 on the unconstrained arc. 
b) ,u(t) > 0 on the constrained arc. From OH/aCi .  = 0 and 7", = 0 it 

follows that 

#(t) - 
2kCL (A~ cosx~ + A, sinx~) 
COS ~a 

-- A~ tan #~ sin X~ + A, tan #. cos X. - Aw 
(25) 
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c) /2 can be discontinuous at the entry point of  the constrained arc. At 
the exit point of  the constrained arc, /2 is continuous. Using a), it is 
given by /2(t 2) = 0 where t z denotes the exit point. 

From Eq. (22), the following relation is obtained for the optimal control 
of  the lift coefficient on the constrained arc ( G (2) = 0 with Ya = 0 ) 

1 m g  (26) 
(CL)°P'= cos,u,  (p/2)V2S 

This relation describes the aerodynamic lift required for an (unsteady) 
horizontal turn, i.e. L = mg/cos/2,. 

The optimal bank angle on the constrained arc can be determined, using 
OH~O/2, = 0 with Eqs. (25) and (26), to yield 

tan(#.)o~t = _ ( p / 2 )  V2S A. sin X. - A~ cosx .  
2km9 A~ cos X~ + A~ sin X~ 

(27) 

In regard to the entry point of the constrained arc, 
following relations apply: 

a) Eqs. (21) and (22) can be used to yield 

denoted by t~, the 

h(tl) = hmi" 

wK~ (t,)  = 0 
(28) 

b) Some of  the multipliers are discontinuous. Denoting by t t- the time 

just before the entry point and by t~ + immediately after, the 
following relations hold 

~th(t,+) = ~th(t,-) + v0 

Aw ( t? )  = Aw (t,-) - v, 
(29) 

where v 0 > 0 und vt > 0 are additional unknowns. The other 
multipliers are continuous at the entry point. 

c) The controls are continuous at the entry point. This results from 
v~ =/2(t~) and H = cons t .  

The introduction of switching functions is appropriate for the numerical 
treatment of  constrained arcs. These functions may be specified for the entry 
and exit points as 
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S t := h(t l) - hmi n = 0 

S z := F(t2) = 0 (30) 

In case that the control and state constraints, Eq. (10) and (21), become 
simultaneously active, the optimal bank angle can be determined with the 
use of Eq. (26) to yield 

1 mg 
COSCUa)°Pt = xfLma-- (P / 2) 2S (31) 

For the Lagrange multiplier ,u, Eqs. (25) remains valid with C L = CLmax 
and ,u a = (,ua)opt from Eq. (31). 

. N U M E R I C A L  RESULTS 

Numerical results have been achieved treating the optimization of 
dynamic soaring of seabirds as a boundary value problem. The numerical 
difficulties in determining optimal dynamic soaring trajectories require 
powerful computational procedures and efficient computer programs. These 
problems include the precise treatment of switching conditions, internal 
point and jump conditions, etc. The computer code applied is based on the 
method of multiple shooting and provides results of high accuracy (Refs. 27 
and 28). 

In the numerical treatment, data of an albatross is used as a representative 
for the seabirds performing dynamic soaring. Reference is made to albatross 
data given in Refs. 1,12,13. The model data applied in the present 
investigation are given in Table 1. 

m [kg] 
S [m s] 

Model Data 
9.0 

0.65 
b [m] 3.47 
(?Do 0.033 

k 0.019 
(L/D)m ~ 20 

Table 1 Albatross data 

The optimal dynamic soaring cycle which requires minimum wind strength 
is presented in Fig. 6 which provides a perspective view on its form and 
shows its extensions in the three dimensions. The dotted arrows denote the 
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begin and end of  the optimal cycle, referring to flight conditions of  the same 
energy state and the same direction corresponding to an energy-neutral 

~ n  

Figure 6. Optimal dynamic soaring cycle requiring minimum wind strength 
Optimal cycle time: ( t~yc)opt = 7.2 sec 
Wind speed: 9.4 m/s at highest point (h =19.7 m) 

5.6 rn/s at lowest point (hm~, = 0.5 m) 

cycle. As a basic issue, the results concerning the required wind speed and 
the altitude region compare well with observations and empirical data. 

Figs. 7 and 8 present the time histories of state variables, providing more 
quantitative information about the motion. The altitude range of  an optimal 
cycle, depicted in Fig. 7, extends to about 20 m. The lower altitude limit 
becomes active for quite a part of the optimal cycle. It is related to the lower 
curve close to the water surface. The speed behavior is shown in Fig. 8. 
During the windward climb, the airspeed is larger than the speed relative to 
the earth while the opposite holds for the leeward descent. The highest speed 
level is attained in the lower curve. 

Results for the optimal controls are presented in Figs. 9 and 10. Fig. 9 
shows that the lifting capability is utilized to a large extent. In both the upper 
and lower curve, the lift coefficient reaches its maximum limit. 
Correspondingly, the constraint in the lift coefficient becomes active 
(straight line segments). The unsteady character of dynamic Soaring also 
manifests in the behavior of  the bank angle the time history of  which is 
shown in Fig. 10. The greatest bank angle amounts to about 75 deg. 
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8. CONCLUSIONS 

Dynamic soaring which is a flight technique of seabirds for extracting 
energy from horizontally moving air in a shear flow is treated as an optimal 

2O 

10 

3O Vk 
V 

20 
[rn/s] 

10 

0:2 0~4 016 018 1 0 
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Figure 7. Altitude 

V: Airspeed ,/,..-- 
Vk: Speed Relative 

to the Earth 
012 014 016 018 1 
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Figure 8. Speeds 
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Figure 9, Lift coefficient 
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Figure 10. Bank Angle 

control problem. It involves a rather complex and highly dynamic maneuver 
consisting of  a sequence of  climbing, turning and descending flight phases in 
order to achieve an energy gain from the shear wind which exists in an 
altitude layer above the water surface. The basic objective of  this paper is to 
determine the minimum wind strength required for dynamic soaring of  
seabirds, using optimal control theory. Mathematical models for the motion 
of  a bird in horizontally moving air and for the shear wind are presented. 
Optimization considerations are applied based on the minimum principle, 
yielding necessary optimality conditions. Furthermore, switching conditions 
are introduced in order to deal with an altitude constraint of  the dynamic 
soaring trajectory. Numerical results of  high accuracy are generated using an 
efficient computational procedure based on the method of  multiple shooting. 
The results which concern an albatross as a representative for seabirds 
performing dynamic soaring concern the minimum shear wind gradient and 
properties of  the related optimal trajectory. 
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ON THE C O N V E R G E N C E  OF THE MATRICES 
ASSOCIATED TO THE ADJUGATE JACOBIANS 

C. S b o r d o n e  
Dept. of Mathematics and Applications "R. Caecioppoli" Napoli, Italy 

Abstract: For any n x n matrix D ~ R .... let adjD denote the transpose of  its cofactors. 
I f  de tD > 0 then there exists a symmetric matrix .,4 =.A(D) with det.A = 1 
such that 

adjD = (det D) '~' AD'  

Where D'  is the transpose of D. 
For n = 2 ,  K > 1, the set of  K -quasiconformal matrices is denoted by 

Kdet } 
Furthermore define 

{ I < A ' = A < K I ' d e t A = I }  ~'~(x)-- A E R ~ :  K _ 

For variable matrices D=D(x)eg2(K ) for a.e. x e f ~ c R  2X2, f~ a simply 
connected and bounded domain, a natural question is to see how does 
A = A(x,D) change with D(x). 

Theorem 0.1 Let Dj, DeL2(f2,R~X2), D j(x)eQ2(K) a.e. x~f2.  Assume 
CurlDj = 0 (resp. DivDj = 0 )  and Dj ~ D ~ 0 weakly in L2(f~,R~2). Then 
D(x)eQ2(K) fora.e, x ~  and 

,A(x, Dj) c >A(x,D) (resp. A-'(x, Dj) c >A-'(x,D)) 
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. I N T R O D U C T I O N  

For any n xn  matrix D~JR "×" let adjD denote the transpose of  its 
cofactors, defined by the algebraic identity 

D adj D : (det D)I 

where I is the unit matrix. If D is invertible then 

adj D = (det D)D-'. 

However, if D ~ JR"×" is an arbitrary matrix with det D > 0 we point out the 
following representation: 

adjD = (det D) ~ AD' (1.1) 

by means of  a symmetric matrix .A = A(D)  with det~l = 1. 
In the following we supply jR,x, with the operator norm 

Iloll=maxtD~l 
I~1=1 

Proposition 1.1 For any matrix D ~ JR"×" with det D > 0 there ex&ts a 
symmetric matrix ,A=,A(D),  with de t .A=l  such that (1.1) holds. 
Moreover, the sharp ellipticity bounds 

(detD) z" IladjDll ~ 
IIDII ~ I¢1 ~ _< (A¢,¢>_< (detD)~c"-" I~1 ~ 

(1.2) 

for  any ~ ~ JR", hold. 

Remark 1.1 Notice that .A(D) = I if and only if D is a conformal matrix in 
CO+(n).  Our next objective is to show that, in general, A(D) measures 
how far D is from being conformal. 

For n = 2, we can make precise statements. For K _> I, let us introduce 
the set Q2 (K) of  K -quasiconformal matrices, i.e. 

Q2<K)={D~JR 2×2 : IIDII 2 _< KdetD} 

and the set 
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~2(K) = ( fit E N2×2 : L <  fitt K =fit<KI, detfit=l} 

We have the following 
Theorem 1.1 A matrix D e ~2×2 belongs to Q2 (K), if and only if the matrix 

/f  d e t D > 0  

/f  de tD = 0 

(1.3) 

belongs to g2(K). For D ~ Q2(K), detD > O, fit(D) is the unique matrix in 
gz(K) such that 

adjD = AD' (1.4) 

We refer to fit(D) as the inverse distortion tensor of D.  See [1], [3] for 
analogous results in different settings. 

Now we are interested in variable matrices D = D(x)e Q2 (K),  for a. e. 
x e £2 where ~ c IR z is a simply connected bounded domain. If D(x) is 
measurable then the pointwise distortion tensor fit(x)=fit(x,D(x)), 
associated with adjD(x), i.e. satisfying 

adjD(x) = fit(x)D(x)' (1.5) 

is a measurable matrix field which is uniformly elliptic with detfi t(x)=1 
a.e.. An important point here is that a converse statement is also true. By the 
so-called measurable Riemann mapping theorem, given any measurable 
symmetric matrix field fit(x) in f2 c IR 2 such that fit(x) e ~2 (K) a.e. x e 
we can find D e LZ(f2,R 2×2) such that D(x)~ Q2(K) a.e., Cur lD(x)=0 ,  for 
which (1.5) holds. A natural question is to see how does the pointwise 
inverse distortion tensor fit = fit(x,D) change with D(x). 

We are particularly concerned with the continuity properties of  the 
operator 

D e L2 (f2,ll~ 2 ) >fit(x,D)eL®(~,~ 2 ) 

when we supply L2(C~,IR 2) with the weak topology. Weak convergence of  
Dj to D,  does not guarantee the convergence of  matrices fit(x, Dj) to 
fit(x,D) in any familiar sense. Note that the condition detfit(x, Dj)--1 is 
not necessarily preserved under the weak *convergence of  fit(x, Dj). The 



998 Variational Analysis and Appls. 

right notion of  convergence to be considered here is the G-convergence, at 
least in the case CuriDj = 0 a. e. in ~ (see also related ideas in [13]). Let 
Aj = Aj (x) be a sequence of  measurable matrix valued functions 

Aj : F~ > IR 2×2 

satisfying the ellipticity condition 

__ X i 2 (1.6) 
K 

for a.e. x ~ £1 and 'v'~ x ~ l~ z , with K > 1. Assume that 

detAj(x) =1 a.e. x~F~ (1.7) 

We are ready for the definition of  G -convergence of  Aj to a matrix valued 
function A = A(x) satisfying (1.6) and (1.7). 

Definition 1.1 The sequence {Aj} G-converges to A if and only if, for 
Dj ~ L~oc (F~,lR z×~) satisfying 

{ Div(Aj(x)D~(x)) = 0 

CurlDj (x) = 0 

the conditions 
(z) Dj(x)--~ D(x) 

(zz) A i (x)D~ (x) ~ A(x)D' (x) 

are equivalent to each other. 
Here, the Div operator is defined as 

( D i v M ( x ) ) , = £  OMk~(x) i=1,2 
k=l OX k 

M 

We will prove the following 

Theorem 1.2 Let ~ be a simply connected bounded open set in ~2 . Let Dj 
belong to L2(~,R 2) and Dj(x) ~ Qz(K) a.e. (K  > 1). 
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Assume 

Dj --~ D ~ 0 weakly in L 2 (~, N z×2) 

Then (i) and (ii) hold true: 
(z) /f  Curl Dj = 0, then O(x)~ Q2 (K) a.e. and 

.A(x, Dj) c ).A(x,D) 

(z*) /fDiv Dj = 0, then D(x) ~ Q2(K) a.e. and 

.A(x, Dj) -l 6 ).A(x,D) -I 

We can prove that such a result does not hold in all dimensions n > 2 
(See [13]). 

2. Q U A S I C O N F O R M A L  M A T R I C E S  

In the following we supply the space I~ "×" of real n x n matrices with the 
operator norm 

[]D[[ = max [ D~[ 
I~1=1 

Sometimes •"×" will be equipped with the Hilbert-Schmidt norm 

I D 12= TrD'D 

where Dt is the transpose of  D and TrC denotes the trace of  matrix 

C eI~ "×" , C=(%) ,  that is T rC=  ~'7=c,i. 

The adjugate matrix of D is the transpose of its cofactors and is denoted 
by adjD. Therefore we have a non linear multiplicative mapping 

adj :N .×. >R .×. 

which is a matrix valued homogeneous polynomial of  degree n -  1 (linear if 
n = 2 ). The adjugate matrix satisfies the rule 
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Oadj O = (det D)I 

where I = (6u) is the unit matrix. 
To any D~IR "×" with d e t D > 0  

symmetric matrix 

A ( D )  = D'D 1-' 
(detD) z- 3 

Variational Analysis and Appls. 

(2.1) 

we associate the positive definite and 

(2.2) 

called the inverse distortion tensor of D which clearly 
det,,4(D) = 1. 

Proposition 2.1 [ l l ] Let D~ , D 2 ~ IR "X" with detD i >0 .  Then 

A(D,)  = A(D2) (2.3) 

i f  and only i f  there exist an orthogonal matrix 0 and "~ E IR such that 

D 2 = "yOD, (2.4) 

We will give now the 

Proof (of Proposition 1.1). By (2.2) we obtain immediately 

(detD) " .AD'= 

= (det D) ~z (det D) z" D-' [O' ]-' D' = 

= (det D)D-' = adjD 

For the (sharp) ellipticity bounds (1.2) see [7] p. 112. 
The set of two-dimensional K-quasiconformal matrices 

defined as follows 

a2(g) = {O R2x2:110112 _< g detO} (2.5) 

Let us introduce now the set 

E2(K)={ A~R2×2 :I-<A'K =A_<KI, d e t A = l )  (2.6) 

satisfies 

( K _ l )  is 
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If  .A ~ Ez(K ) and D ~ R 2×2 with positive determinant are related by the 
identity 

adjD = .AD' (2.7) 

then it is easy to check that D ~ Q2 (K).  
To show this, notice that D belongs to Q2 (K) if and only if 

(K + 1 )  det D, TrD'D < 

(see the forthcoming proof) 
Hence by (2.7) we have 

TrD'D = Tr(A-'  (adjD)D) = 

= Tr(A-'  (det D)I) = 
= Tr(A-l)det  D 

Now, for any A ~ gz (K) the inequality 

1 Tr.A -I < K + - -  
K 

holds true. 
Let us now pass to the 

Proof (of Theorem 1). First of all let us prove that a matrix D belongs to 
Q2 (K) if and only if 

]D] 2 -< ( K  + l ] d e t D  (2.8) 

If D = (do), the conformal and anticonformal part are represented by the 
matrices 

O_+ 1 [dl 1 "~-d22 d, 2"~-d21 ] 
= 2 [  d2,-T-d,2 d=+d,,J 

It is then immediate that 
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H = D- 

[D] 2 = T r ( D ' D ) = Z ( D  +2 + D- 2) 

d e t D = ] D  ÷ 2_  D- 2 

Hence the distortion inequality 

[[D][ 2 -< K det D 

is easily seen to be equivalent to 

K - 1  + 
D- < - ~ - ~  D 

This, in turn, is equivalent to (2.8). Now let D e Q 2 ( K  ) . If  d e t D = 0  then 
A(D) = 1 and therefore A(D) belongs to g2(K). If  de tD > 0, consider the 
inverse matrix of ,,4 

D'D 
det D 

Then, obviously det~ = 1 and the distortion inequality (2.8) is equivalent to 

1 Tr(~) _< K + -  
K 

Let A and 1 be the eigenvalues of ~ .  Then the last inequality means that 
A 

l 

A -  K 

hence ~ < A < K and the first statement of the theorem is proven. From 
previous considerations the identity (1.4) follows immediately. The 
uniqueness of  the matrix .4 in the class C2(K ) satisfying (1.4) is obvious. 

R e m a r k  2.1 If D' = D then it is easy to check that the following conditions 
(i) DeQ2(K ) 
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A(x) : 

~f(i) (x,) 
0 

of  (I) - - ( x , )  
Oxl 

0f  (2) - - (x2)  
ax2 

unless Dfj ~ D f  strongly in L z. On the other hand, by means of a 
characterization of  G-convergence of diagonal matrices whose entries are 
products of functions of  one variable (due to L. Tartar [15]) we deduce that 

a >.A 

This is consistent with Theorem 1.2 whose proof we present below, which 
relies on a deep result of  G -compactness. 

Proof of Theorem 1.2. (i) Let f j , feW"2(~,]R 2) satisfy Dfj=Dj, 
Df = D. By our assumption : 

Dfj--~Df (3.1) 

we obtain, via a classical result of Reshetnyak [11 ],[7] 

det Dfj ---, det D f  weakly in Ll/oc (f2) 

and so Df(x) E Qe (K), a.e. in f~ in virtue of  the lower semicontinuity of  the 
norm. By the G-compactness theorem [13] (see also [4], [8] for more 
general cases of  degenerate elliptic equations) we may assume 

A(x, Dfj)  Ao(x) 

Since 

Div(.A (x, Dfj)Dfj') : Div(adjDfj) : 0 

by definition of  G -convergence we have 
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A(x, DL.)Df; --~ Ao(x)Df' 

But (3.1) and the definition of  .A(x, Dfj) imply 

,A(x, D f  j )Df j! --~ A (x, Df)Df '  

and so 

A(x, Df)Dff  = Ao(x)D f '  

Since Df' ~ 0 a.e., we deduce 

A(x, Df) = .4 o (x). 

(ii) Taking into account that ~ is a simply connected open set in R ~ ,the 
condition D i v D j = 0  implies Dj=adjDgj for some gj~WI'2(~;IR2). 

Hence, by the definition of  A(x, Dgj) 

Dj = A (x, Dgj)Dg'j 

which, of  course can be rewritten as 

D -1 D t Dgj = A(x, gj)  j 

Now, the hypothesis Dj ~ D in L2(~,I~ 2~2) 
and so, by part (i) we have D(x) ~ Qz(K) a.e. in ff~, and 

A(x, Dgj) a > A(x, Dg). 

Note that 

,A(x, Dgj) = ,A(x, Dj)-' 

Actually (3.2) is a consequence of  the equivalence 

C = a d j D  ¢~ D = a d j C  

which holds for all 2 x 2 matrices C, D ~ I~ z×z . 

is equivalent to Dg j -~ Dg 

(3.2) 
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The results of  this paper have been partially announced in [ 12]. 

A C K N O W L E D G M E N T S  

Research supported by MIUR and GNAMPA-INdAM. 

R E F E R E N C E S  

[1] C C. Capone. Quasiharmonic fields and Beltrami operators. Comment. Math. Univ. 
Carolinae 43 (2) (2002), 363-377. 

[2] R. De Arcangelis and P. Donato. On the convergence of Laplace-Beltrami operators 
associated to quasiregular mappings. Studia Math. 86, (3) (1987), 189-204. 

[3] L. D'onofrio and L. Greco. A counterexample in G-convergence of nondivergence 
elliptic operators. Proc. Royal Soc. Edinburgh, 133A, (2003), 1299-1310. 

[4] M.R. Formica. On the F-convergence of Laplace-Beltrami operators in the plane. 
Annales Academice Scientiarium Fennicce. Mathematica 25 (2000), 423-438. 

[5] G.A. Francfort and F. Murat. Optimal bounds for conduction in two dimensional, two 
phase, anisotropic media. Non Classical Continuum Mechanics. London Math. Soc. 
Lecture Notes Ser. 122, Cambridge Univ. Press (1987), 197-212. 

[6] T. Iwaniec, P. Koskela, G. Martin and C. Sbordone. Mappings of finite distortion: 
L" logZL -integrability. J. London Math. Soc. (2) 67 (2003), no. 1,123-136. 

[7] T. Iwaniec and G. Martin. Geometric function theory and non-linear analysis. Oxford 
Mathematical Monographs (2001). 

[8] F. Giannetti, T. Iwaniec, L.Kovalev, G. Moscariello and C. Sbordone. On G- 
compactness of the Beltrami Operators', NATO Adv. Res. Workshop on Nonlinear 
Homogenization, Kazimierz Dolny, June 2003. 

[9] P. Marcellini and C. Sbordone. An approach to the asymptotic behaviour of elliptic- 
parabolic operators. J. Math. Pures Appl. (9) 56 (1977), no. 2, 157-182. 

[10] F. Murat and L. Tartar. H-convergence. Topics' in the mathematical modelling of 
composite materials. Progr. Nonlinear Differential Equations Appl. Birkhtiser Boston. 
31. (1997) 2143.  

[11] Yu G. Reshetnyak. Mappings of bounded deformations as extremals of Dirichlet type 
integrals Sibirsk. Mat. Z 9 (1968) 625-666. 

[12] C. Sbordone, On the F-convergence of matrix fields related to the adjugate Jacobian, 
Comptes Rendus, Ac. Sci. Paris Ser I 337 (2003) 165-170. 

[13] C. Sbordone, On the Convergence of the Associated Matrix to the Adjugate Jacobian, 
(2004) to appear. 

[14] S. Spagnolo. Some convergence problems. Symposia Mathematica, Vol. XVIII 
(Convegno sulle Transformazioni Quasieonformi e Questioni Connesse, INDAM, Rome, 
1974). (1976) 391-398. 

[ 15] L. Tartar. Convergence d'operators differentials. Analisi Convessa Appl. Roma (1974) 
101-104. 



QUASI-VARIATONAL INEQUALITIES APPLIED 
TO RETARDED EQUILIBRIA IN TIME- 
DEPENDENT TRAFFIC PROBLEMS 

L. Scrimali 
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Abstract: 

Key words: 

We present a time-dependent and elastic model of transportation networks. We 
also take into consideration the presence of delay effects and propose a 
variational approach to the corresponding traffic equilibrium problem. 

Quasi-variational inequalities, delay, dynamics of flows. 

. I N T R O D U C T I O N  

In this paper we deal with equilibrium problems in time-dependent and 
elastic traffic networks. The presented model explicitly depends on time and, 
in order to allow for possible congestion effects, some capacity restrictions 
on flows are imposed. Moreover, we adopt the assumption of elastic travel 
demands, in the sense that they are affected by the equilibrium pattem. 

We are mainly interested in studying delay effects in the distribution of 
flows through the network. In fact, the finite speed of the information which 
travel through the network and the time that the users spend to choose the 
best route slow down the propagation of flows. Hence the conservation of 
flows condition is required at a certain instant, but it is satisfied only later; 
consequently we have to cope with a retarded equilibrium pattern (Raciti, 
2001). In addition, we suggest a variational approach to the problem, 
showing how the retarded equilibrium flow solves a quasi-variational 
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inequality, for which we are able to ensure the existence of solutions. In 
particular, we adopt an integral formulation of  the problem (Daniele et al., 
1999; Friesz et a1.,1993; Gwinner, 2003; Raciti, 2001; Raciti and Scrimali, 
2003), which is the most suitable since we want to focus our attention only 
on a particular interval of  time. 

Moreover, we are concerned with considering the dynamics of  flows. It 
results indeed that, under some regularity conditions, the distribution of 
flows follows the first-in-first-out queue discipline (Friesz et al., 1993). 

. T H E  V A R I A T I O N A L  F O R M U L A T I O N  

Let us consider a time-dependent and elastic traffic network model 
where: 

W is the set of  Origin Destination (O/D) pairs wj, j = 1,2 ..... l ; 
Rj is the set of  routes Rr, r = 1,2,...,m, which connect the pair wj ; 

= (~Ojr)i=~...jr= ~ ..... is the incidence matrix, where (oj, = 1 if R,. e Rj and 

(Ojr = 0 otherwise. 

Let us suppose that the functional space for the trajectories of  route 
flows is Lz(I ; IR"~) , Ic_R.  Thus, the vector of  flows is given 
b y F ( u ) = ( F j ( u )  ..... F, ,(u))eL2(I;N"~).  We also suppose that the flow 
Fr(u) , r=l , . . . ,mis  nondecreasing in I and bounded by some capacity 
restrictions, denoted by 2(u) = (2 a (u),..., 2 m (u)) and/.t(u) = (/~l (u),...,/.t,, (u)),  
where 0<2~(u)<,u~(u) ,  r = l  ..... m. Moreover, let us assume that 
C :[0,T]x R~' ~ R~' is the cost function on routes. 

Since we want to take into consideration the propagation of flows 
through the network, the presence of  delay effects can not be neglected. In 
fact, the information travel through the network at a finite speed, hence it is 
reasonable to suppose that users take a certain time before evaluating the 
best route and consequently adjusting their route choices. Therefore, it is 
plausible to expect that demand requirements imposed at time t are satisfied 
after a delay, namely after that the distribution of flows is complete. Now, let 
us introduce the delay vector d(t,l)=(d~(t,l~),.. . ,d,,(t, lm))elR"~, where 
t e [0 ,T ]  is the departure time and l r is the length of  the route R~, 
r = 1,..., m. 

In our model, we assume that all the components of  the delay are 
nonnegative, thus we do not deal with the case of early arrivals. We also 
suppose that d~(t , lr) ,r=l , . . . ,m is a nondecreasing linear function with 
respect to t. Hence we want to cope with the most unfavorable case of a 
bottleneck in [0, T] where the delay increases. 

Now, letus define the function V(t)  as V(t)  = t + d(t, l)  , t e [0,T], with the 
image covered by I ,  i.e. V([0 ,T] )c  I .  We are then entitled to consider the 
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retarded flow F(t + d(t,l)) = (F, (t + d¿ (t, 1,)),..., F.~ (t + d,. (t,l,.))) : [0, T] ~ R7 
and, analogously, the retarded capacity constraints 
2(t + d(t, l))  = (A~ (t + d, (t, l,)) .... , 2  (t + d m (t, l,,))) and 
p ( t  + d(t ,  l)) = (~, (t + d, (t, l, )),...,/~m (t +dm (t, lm))) . 

R e m a r k  1. We want to highlight that d(t , l)~L2(O,T;R~),  it is indeed a 
nonnegative, nondecreasing with respect to time and bounded function and 
hence it is measurable and Lebesgue-integrable. Therefore, since 
F(t  + d(t, l)) is in turn nonnegative, nondecreasing with respect to time and 
bounded, it results that F(t  + d(t,l)) ~ L2(0,T;IR+~). 

Thus, we are able to introduce the following definition of  retarded 
equilibrium flow (Raciti, 2001). 

Definition 1. A flow H(t+d(t,l))eL2(O,T;ll~+) is said to be a retarded 
equilibrium f low if and only i f  Vwj ~ W, VRq, R ~ ~ j  and a.e. in [0, T] : 

Cq(t,H(t + d(t,l))) < Cs(t,H(t + d(t,l))) 

H, (t + d~ (t, l~)) = ~ , ( t  + d~ ( t , l , ) )or  
I-I (t + ds(t,l,) ) : 2s(t + d,(t,l~)). 

(1) 

To describe better the behavior of  flows, we assume that each flow F(t) 
fulfills the following uniform integral continuity condition: 

f0 T lim [ F ( t + h + d ( t + h , 1 ) ) - F ( t + d ( t , 1 ) ) l  2 d t = O  
Ihl~O (2) 

uniformly in F ,  namely Ve > 0 36  > 0 such that Vh e N,  [ h [< 5 and VF 

foT" l F(t + h + d(t + h,l)) - F(t + d(t,1))12 dt < ~, 

provided that F(t + d(t,l)) = 0 if t + d(t,l) ~ [0,T]. Let us introduce (Friesz 
et al., 1993) the flow rate v(t)=(v~(t) ..... vm(t)), which represents the 
derivative of  the route flow which enters the first link of the route at time t : 
~7 Fr (t + d(t,l  r ) ) = vr (t), r = 1,..., m,  a.e. in [0, T].  Condition (2) is obviously 
satisfied if, for instance, we require that 3r /~  It~÷ :[[v(t)[L, < 7/ Vv(t) or if we 
asTsume that flows verify an integral HOlder condition: 

[ F ( t + h + d ( t + h , l ) ) - F ( t + d ( t , l ) ) l  2 d t < L l h l  ~, 0 < a < I , L ~ R + .  It is 
,~brth noting the importance of the uniform integral continuity condition 
which allows us to take under control the flow rates. 

Thus we can introduce the following set: 
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E = {F(t + d(t,l)) e L2(O,T;R+'): A~(t + dr(t,l~) ) < F~(t + dr(t,l~) ) < 

< #~(t+d~(t,l~)) a.e. in [0,T], r =  1,2, . . . ,m; 

F,.(ta + dr(tl,lr) ) < F~(t z + d~(t2,1~) ) Vt~,t 2 a.e. in[0,T], r = 1,2, . . . ,m, 

lim f ~  l F(t + h +  d(t + h , / ) ) -  F(t + d(t,l)) I s dt = 0 
[hl~O ,3 0 

uniformly in F , F ( t  + d( t , l ) )= Oift + d(t,l) q[ [O,T] }. 

The set of feasible flows is then the set-valued function K : E  ~ 2 ~' 
given by: 

,o l f ,  T Ka(H) = {F(t + d(t,l)) E E:  EqojrFr(t + dr(t, lr)) = pj(t,H('r))d'r 
r = l  

a.e.in[0, T], j = 1, 2,. . . ,  l}, 

where p ( t , H ) ,  defined in [0,T] x E--~ ~+, is the elastic demand depending 
on the equilibrium pattern. We also suppose that the condition 
• 2(t + d(t,l)) < ~F( t  + d(t,l)) < ~/.t(t + d(t,l)) is satisfied a.e. in [0,T], so 
that the set K a (H) is nonempty. 

Now, we present the following theorem, which gives a complete 
characterization of  the retarded equilibrium flow (Maugeri, 1998; Raciti, 
2001). 

Theorem 1. A feasible f low is a retarded equilibrium flow i f  and only i f  it 
solves the following retarded quasi-variational inequality (R. Q. KL)." 

n ( t  + d(t,l)) ~ Ka(H ) 

f j T c ( t , H ( t  + d(t, l)))(F(t + d( t ,1))-  H(t + d(t,l)))dt >_ O, (3) 

VF(t  + d(t, l)) e K a (H). 

Proof. We argue by reductio ad absurdum and suppose that (3) does not 
hold, so that there exist wj e W ,  Rq R s e TCj and a set G = [ 0 , T ]  with 
positive measure such that a.e. in G it results that: 

Cq (t, H(t  + d(t,l))) < C s (t, H(t  + d(t, l))) 

H q (t + du (t, lq) ) < Itq (t + d q ( t, l q))or 

Hs (t + > + 
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Let us set: 

6 ( t + d ) :  min {,u ( t + d  (t,l ) ) - H  (t+dq(t, lq)),H,(t+d~(t,l~.))-2s(t+ds(t, ls))} , 
t¢[O,T] q q q q 

with 5(t + d )  > 0 a.e. in G .  We construct the following flow F ~ K a (H)" 

~ H q (t + dq (t, lq)) + 6(t + "d) F, (t + d, (t, )) L Hq(t-.~-dq(t, lq)) 
{ - F,(t +d~(t, ls)) = H, ( t  +d~.(t , l~))-6(t  + d )  

• Ss( t+d~(t , l~))  

F ( t  + d(t,l~)) = g (t + d(t,l~)) r 4: q,s Vt e [O,T]. 

V t ~ G  

Vt ~ [0, T] \ C 

V t ~ G  

Vt ~ [ O , T ] \  G 

F ~ K a ( H ) ,  therefore we can write: 

foTC( t ,H( t  + d(t,l) ) ) (F(t  + d(t,1) ) - H( t  + d(t,1) ) )dt = 

y f 6 ( t  + d ) ( C q ( t , H ( t  + d ( t , l ) ) ) - C ~ ( t , H ( t  + d(t , l))))dt < O. 

Now we suppose that H is a retarded equilibrium flow and prove that it 
solves the (R.Q.V.I.) It results that Cq (t, H( t  + d(t,l))) < C, (t, H( t  + d(t,l))) 
implies that Hq (t + dq (t, lq)) = ktq (t + dq (t, lq)) or 

H (t + = ; s(t + ds(t , l , . ) ) .  
Vwj ~ W let us set: 

A : {Rq ~ T~ i : Hq(t + dq(t, lq)) < #q(t + dq(t, lq))) 

B = { R  s ~ j  "H~(t+d.,(t,  ls))> A~(t+d~(t,l~))}. 

It follows that: 
Cs(t ,H(t  + d(t,l))) <_ Cq(t ,H(t  + d(t,l))) VRq E A, VR s ~ B.  

Thus, there exists Yw,., e ]R such that: 

sup8 Cs (t, H( t  + d(t, l))) _< Y,vj., < infA Cq (t, H (t + d(t,l))) . Let us consider 

F(t  + d(t , l))  ~ K a ( H ) ,  VR, ~ 7~j, we have that if: 

Cr( t ,H( t  + d(t,l))) < y~j,, 
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then R r ~ A, hence: 

Hr(t + dr(t, lr) ) = ftq(t + dq(t, lq)); 

Therefore, we obtain that: 

(cr (t, H ( t  + d(t ,  l))) - rw,., ) ( £  (t + dr (t, lr)) - H,  (t + dr (t, lr))) >-- O. 

If 

Cr(t,H(t + d(t , l ) ))  > rwj,, 

then 

(cr (t, H ( t  + d(t ,  l))) - r~,., ) ( E  (t + dr (t, lr)) - Hr (t + dr (t, lr))) >- O. 

We conclude that: 

cr (t, H ( t  + d(t ,  I ) ) ) (E (t + dr (t, 6))  - Hr (t + dr (t, lr))) --> 0; 
e, ET~j 

summing up Vwj ~ W and integrating, we find that: 

f o C ( t , H ( t  + d(t,l)))(F(t + d ( t , t ) ) - H ( t  + d(t,l) ) )dt >_ O. 

Variational Analysis and Appls. 

E ( t  + dr (t, l r ) ) - g r ( t  + dr (t, lr )) <- O. 

. A N  E X I S T E N C E  R E S U L T  

In this section, we provide a theorem for the existence of solutions to the 
retarded model, generalizing previous results (De Luca, 1997; De Luca and 
Maugeri, 1992 A; Raciti and Scrimali, 2003). First, let us recall the 
following result adapted to our case (Tan, 1985): 
Theorem 2. Let X be a locally convex, Hausdorff topological vector space, 
E a nonempty compact, convex subset o f  X, C : E - ~  X* a continuous 
function, K : E ~ 2 e a closed lower semicontinuous multifunction with 
K ( H )  c E nonempty, compact, convex VH ~ E .  Then, there exists a 
solution for the quasi-variational inequality." 
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H e X ( H ) ,  (F -H ,C(H) )>_O V F e K ( H ) .  

Now, let us consider the L 2 -version of Ascoli's theorem, due to Riesz, 
Fr6chet and Kolmogorov (Brexis, 1983) adapted to our case: 

Theorem 3. Let F be a bounded set in L 2 ([0, T]). Let us suppose that 

ibis0] Ilim F(t + h + d(t + h , l ) ) -  F( t  + d(t,l)))[IL2 =0 uniformlyin F e . T ,  

provided that F(t  +d(t , l))=O if  t +d(t,l)~[O,T]. Then F has compact 
closure in f f  ([0,T]). 

Now, we are able to prove the following result. 

Theorem 4. Let us assume that the functions 

X m I C:[0 ,T]xR~-->R~ andp ' [0 ,T]  R+ -->R+ 

satisfy the following conditions: 

a) C(t ,v)  is measurable in t Vve]R+, continuous in v for  t a.e. in 

[O,T], 

3r L 2(0, T) :l C(t,v) I_< y(t)+ I v I; 

b) p(t,v) is measurable in t Vve]~"+', continuous in v for  t a.e. in 

[o,r], 

3 ~' e L' (0, T) :l p(t, v)]_< ~(t)+ I v 12; 

c) 3h(t)>O a.e. in [0,T], heL2(O,T). • 

Vv~, v 2 e R m, ] p(t, v,) - p(t, v2) I < h(t) l v. - v 2 [; 

Then the R.Q. V.L admits a solution. 

Proof. At first we can observe that under the hypotheses a), b) and since 
H(t  + d(t, 1)) e L 2 (0, T; ]R~'), it results that 

C(t ,H (t + d(t,l))) e LZ (0,T;R~ ') and p( t ,H  (t)) e L ~ (0, T;II~/+). 
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Moreover, by a) and b) it follows that C and p belong to the class of 
Nemytskii operators, therefore if {H"} > L2 H then 

C(t, H" (t + d(t,l))) - C(t, H(t + d(t,l))) ~ --* O, p(t, H" (t)) - p(t, H(t)) L' ~ 0 

and the functions C, p are L z and L ~ -continuous respectively. 
Now we prove that Ku(H ) is a closed multifunction, for this aim we 

show that: 

V{H"} >t: H, V{F"} ~ L2 F wi thF"  EKd(H"), V n e N ,  

then F • K d (H). 
Let {H"} , {F"} •L  2 be two arbitrary convergent sequences. Since 

F" • Kd(H" ) we have that: 

2r(t + dr(t,l~)) <_F~"(t + dr(t, lr)) <_ ~r(t + dr(t,l~)) a.e. in [0,T], r= l,2,...,m, 

and the convergence of the sequence {F"} in L 2 implies that even F 
satisfies capacity constraints. It can be easily proved that F verifies (2), 
since F" satisfies the above assumption and L 2 -converges to F .  

Moreover, the following relationship holds: 

£ F"(t  1 L r  
r = ,  r ,  + a.e. in [0,T], j = 1,2,...,l. 

The left-hand side converges almost everywhere to ~';"=, ojrF:(t + 4 (t,4)); 

the right-hand side, meanwhile, results in: 

I LTpj(t,H"(T)) d'r - LTp3(t,H('r)) dT I 

< for lP~( t ,H"(T)) -  p j ( t ,H(T)) ldT 

< h ( t ) f f I H " ( T )  -- H(T))IdT. 

By applying c) and considering that the convergence of {H"} in L 2 implies 
the convergence also in L ~ , we achieve the assertion. 

In order to show the lower semi-continuity of  Kd(H ) , we prove that 
V{H"} ) L~ H, VF • K u ( H  ) thereexists {F"} suchthat: 
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{F"} > L2 F w i thF"  ~ K a ( H "  ) V n E N .  

Let  us consider  an arbitrary {H"} >L2H, F ~ K j ( H )  and 
n ~ N, t ~ [0, T] .  We  introduce the fol lowing sets: 

A t = {r ~ {1, 2 ..... m} : ~otr = 1} 

Bt (n,t)  : {r ~ A t : ~ t ( t )  - ~ ( t )  _< 0} 

C t (n, t) = {r ~ A t • 0 < ,~t(t) - , ~ ( t )  < F r (t + d r (t, l r)) - 2 r (t + d r (t, l r)) } 

Dj(n, t) = {r ~ A t : F r (t + d r (t ,  l r )) - / ~ ,  (t  + d r (t ,  l r ))  <~ p j ( t )  - / o ~ ( t ) }  

where j ~ {1,2 ..... l} and 

l f o r  l ~ r  -fij(t) = --ff p~(t, H(7"))d'r, -fil;(t) = --~ pj(t, H"('r))d'r. 

Let us construct  the fo l lowing sequence {F"} : 

Fr(t+dr(t,lr)) 

F ; ( t + < ( t ,  tr))= E ( t  + a~(t, lA) P t ( t ) -  p~(t) 

sEC i 

i f ~  u D t , t  ~ [0 ,T]  

r~Ct , t~ [O ,T] .  

1015 

fix 

I f  r s B t w D t ,  then Fr"( t+d( t , l ) )=Fr( t+dr( t , l r )  ) a.e. in [0,T] and, 
since F ~ K a ( H ) ,  it results that: 

3,r(t + dr(t, lr) ) < F~ (t + dr(t, lr) ) <_/Zr(t + dr(t, lr) ) a.e. in [0,T]. 

I f  r ~ C t , then it is easy to show that a.e. in [0,T] : 

< /~r(t + dr(t, lr)). ;tr(t + dr (t, lr)) < F,"(t + dr(t, lA) : E( t  + dr (t, lr)) 
~t( t ) -~7(t)  

sECj 

Therefore,  Fr" satisfies the capaci ty restrictions Vr = 1, 2 ..... m, Vn ~ N.  
Moreover ,  
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q~Jr F~"(t +d~(t'l~)) : Z ~oj~Ff(t +d~(t,l~))= 
r = l  reAj 

+ Z  ~°Jr(F,(t+d,(t, lr)) Pi(t)-p~(t)') 
,ecj Z ~J~ 

seC i 

= ~ ~ojF(t + d,(t,l,)) - (~i(t) - ~(t))  = ~(t) .  
r e a  I 

Z ~OyrF~(t+d~(t,l~))+ 
rEBiuD l 

As demand requirements are verified and assumption (2) 
deduce that F" belongs to K d(H") Vn e N. To show that {F"} 
to F in L 2 , we proceed as follows. Let t be in [0,T] 

holds, we 
converges 

T m T 

fo ( E  ~J~(Frn( t + d~(t,l~))- Fr(t + dr(t, lr)))) 2dt = fo (-fiJ(t)--fii~(t))2dt = 
r = l  

1 T 
= - ~  fO (fO [pj(t,H(~-))- pj(t,H'~(T))]dT)2dt <_ 

<_ T I pj(t ,H('r))- pj(t,H"@)) I ~ dTdt <_ 

< L(ffh2(t)~t)(fo~rH(~)- H"(~)t ~ d~). - T  

Additionally, it results that: 
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m 
( E  ~oj~(Fff(t + d~(t,l~)) -F~(t  + d~(t,l~)))) 2 : ( E  ~Oj.(ffff(t + d~(t,l~))+ 

r=l rEAj 

-F ,  (t + d r (t, 0))) 2 = ( ~ (Fr" (t + d r (t. l r)) - F r (t + d r (t,l r))) + 
r~BikdD i 

+ Z ( FT (t + d. (t,lr ) ) - F. (t + d~ (t,l~ )))) 2 = 
rcCj 

Z / t ) -  Z (t) .,-, .Z / t ) -  Z (t) 
: (r~C/( "" Z ~ J  '~" ) ) :  ('rE2~C' (" i ~ " - -  ~ /  (PJ$ ')) ~> 

seC i seCj 

> ,-, . p j ( t ) - ~ ( t )  2 1 F" d,(t , l ,))) 2 
-'~c.(C, ~--2~ P/, )>-  m2 ~c,~( ~ ( t + d ' ( t ' l r ) ) - F ' ( t +  = 

s~C! 

= 1 Z ( F r . ( t + d . ( t , l . )  )_F~(t+d~(t,l~)))2 = 
m 2 reAj 

1 
m 2 I f , " ( t+dr ( t , l , ) ) -Fr ( t+~( t , l ~ ) ) l  2' 

Therefore, 

1 T 
0 ~ _ - - ~ £  ]F"( t  + d ( t , l ) ) - F ( t  +d(t ,1))]  ~ dt 

T m 

< fo  ( E  "F'~lt _ ~oj~ ~ ~ +d~( t , l~ ) ) -F~( t+d~( t ,  lr))))2dt 
r=l  

_ _  T 2 

< 1 ( L  h ( t ) d t ) ( f o r l H ( T ) -  H'~(T)I~ &-) 
- T  

and, due to the fact that {H"} >~2 H ,  we obtain the convergence of the 
sequence {F"} to F .  It is easy to show that Ka(H ) is a closed, bounded 
and convex set. By assumption (2) and Theorem 3, it follows that K, (H) is 
compact. Thus, all the hypotheses of  Theorem 2 are satisfied and the 
existence of at least one solution is ensured. 
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. RETARDED EQUILIBRIUM MODELS AND FIFO 
A P P R O A C H  

In this section, we want to apply the FIFO queue discipline to our 
retarded model. In fact, it is reasonable to suppose that the distribution of  
flows through the network have a first-in-first-out behavior. The FIFO 
discipline requires that, on average, the traffic which enters the first link of a 
route will exit first, or equivalently that vehicles do not pass each other. It 
has recently been proposed (Friesz et al., 1993) a dynamic equilibrium 
model which fulfills Wardrop's user equilibrium principle and establishes 
that users can choose their own routes as well as departure times. Thus it is 
possible to cope with more realistic dynamic models and study different 
behaviors of  the users. In the above mentioned paper, the authors have also 
shown that the no overtaking requirement is equivalent to the invertibility of 
exit time functions. 

Now, let us denote by Dr(t)=art+flJr(t,l ), a,fl~R"+' the traversal 
time for the route R r , assuming that the departure time from the origin 
occurs at time t = 0. Let also r~(t)= t + D r (t) be the exit time function for 
the route R r . It results that for any linear traversal time function the 
resulting exit time function is strictly increasing and hence invertible (Friesz 
el al., 1993). Since we are considering linear delay functions, we are entitled 
to deduce that the invertibility of  exit time functions is ensured and FIFO 
requirements are satisfied. 

Throughout our paper we deal with route-flow variables, they are indeed 
the most suitable tools to examine problems with multiple destinations or in 
case of  non-additive cost functions. But, in order to discuss the dynamic of  
flows, we should take into consideration the network topology and the 
distribution of  flows through the links. Nevertheless, the route traversal 
functions can be expressed in terms of  link traversal functions. In fact, let us 
denote by 0 r (t) the exit time function on the link i ,  then we have: 

8,r[o,(t)- o,_, (t)], 
i=1 

where 6 is the link-route incidence matrix whose entry 6it is 1 if  link i is 
contained in route r and 0 otherwise. Therefore, we can directly use route- 
flow variables, which can be derived from the link-flow variables. 
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5. A N  E X A M P L E  

In this section, we present an example of  a retarded model. Let us 
consider a network where N={P~,P2,P3,P4}is the set of  nodes and 
L =  {(P1,P2),(P1,P3),(~,P4),(P3,P4),(Pz,P3)} is the set of  links. 

PI 

P.~ / ~ ~  P3 

P4 

We assume that the origin-destination pair is represented by (P~,P4), so 
that the routes are the following: 

R, : PiP2 wP2P4 

Let us assume that the route costs are the following: 

C I (F(t))  : a F  l (t) + fl  

C 2 (F(t))  : ctF 2(t) + y 

C 3 (F(t))  : a F  3(t) + 6 

where a, fl, y, 6 > O. 
Now let us introduce the delay vector d=(dl(t,l.),d2(t,12),d3(t,13) ) 

where l~ = l  2 =5,13 =5(2+x/2)  are the lengths of the routes, 
d.(t , l~)=(rl+ 5)t + 2 ,  dz(t,12)=(O+ 5)t + 2 ,  d3(t,13)=(t+ 5(2 +,J2))t + A,  
with rl, O,t,3, > O. 

For the sake of  simplicity, we suppose that no capacity restrictions are 
active on flows. Let us introduce the following set: 
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E = {F(t + d(t,l)) E LZ(O,T;R3+): F~(t + 4(t,l~)) >_ 0 a.e. in[0,T], r = 1,2,3; 

F~(t, + d~(t,, lr)) <_ Fr(t z + d~(t2,1,)) Vt,, t z a.e. in [0, T], r = 1, 2, 3, 

l i m i T  [ F(t  + h + d ( t  + h , l ) ) - F ( t  +d(t, l))l  2 d t = O  
Ihl--,o d o 

uniformly in F, F(t + d(t, l)) = 0 if t + d(t, l) ¢ [0, T] }; 

the set of  feasible flows is then given by: 

Ka(H) = {F(t + d(t,1)) e E :  Fa(t + dl(t,l,) ) + Fz(t + d~(t,12) ) + 

+Fa( t + d3(t, 13) ) = 1~T(¢  t + ~Hl(r))dT_ a.e. in [O,T]}, 
2 '  .-I0 

where e > 0 and ( ~ [0,3[. 
The equilibrium flow is the solution of the quasi-variational inequality: 

H(t  + d(t, l)) e K a (H) 

for~-e'~ Cr(H(t + d(t,1)))(FT(t + dr(t, l r ) ) -  Hr(t + dr(t, lr)))dt __>0,(4) 
r = l  

VF(t  + d(t,l)) e Kd(H ). 

Following the procedure shown in (De Luca, 1995; De Luca and 
Maugeri, 1989; Maugeri, 1987) we set: 

F~(t + d3(t,/3)) = F3((~ + 5(2 + 4~))t +,~)= ~ f((~t + ~HI(',)),tT + 

- F~(t + d , ( t ,  t l ) )  - F~(t  + d~(t,/~)); 

= {ff'(t + d(t,l)) E L2(0,T;N2+): Fr(t + dr(t,/r) ) __> 0 a.e. in [0, T], 

i =  1,2;Fr(t ~ + dr(tl,lr) ) < Fr(t 2 + d~(t2,1r) ) Vt~,t 2 a.e. in [0,T], 

r = 1,2, lira ( r l F ( t  + tt + d(t + h ,1) ) -  F(t + d(t,l))I s dt = 0 
N~o d o 

uniformly in F , F ( t  + d(t,1)) = 0 if t + d(t,l) ¢ [O,T]}; 

R , ( H )  = {F(t + d(t,1)) e E, : F~(t + d,(t,l,)) - F2(t + d=(t,12) ) < 

l ~ T ( e t  +~Hl(r))dw a.e in [0, T]}. < 
l o u  
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Let us consider: 

r , ( f i ( t  + d(t,l)),[-I(t + d(t,l))) 

F~(k(t + d(t,1)),H(t + d(t,l))) 

1021 

= Q(F( t  + d(t,1)),H(t + d(t , l)))+ 

- C ~ ( k ( t  + d(t, l)) ,[I(t  + d(t,l))) = 

= 2aF~(t + da(t,l~)) + a ~ ( t  + dz(t,12) ) + 

fo ( t + ~H~(~-) )dT +/3 - 6. 
T 

= C2(F(t +d(t,1)),[-I(t + d ( t , l ) ) ) +  

- C 3 ( F ( t  + d(t,1)),~I(t + d(t,l))) = 

= aF~(t + d~(t, l~)) + 2aF~(t + d~(t, 12) ) + 

~fo ~ T (et + 5Ha(~-))dT- + "y - 5. 

Thus, the problem can be written as: 

~I (t + d(t, l))  e K ( ~I) 

f f ~  L(h(t + d(t,1)))(ff,~(t + d~(t , l~))-  [-I,.(t + d,.(t, lr))dt >_ 0 
r = l  

v ;F(t + d(t,l)) e K .  (iI). 

It is immediate to show that if H satisfies the system: 

(5) 

Ft (H, H)  = 0 

r~(//,/:/) :o 
H e K ( H )  

it solves the retarded variational inequality (5). We find that: 
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8l 
H,  (t + d I (t, l , ) )  = H I ((I? + 6)t  + )~) = - -  + 

3 

~t 
H 2 (t + d 2 (t, l s)) = H 2 ((0 + 6)t + 2)  = - -  -~ 

3 

, 6 ' - y  

O~ 

1 e 4 " ( T - 2 ~ )  2 f l - y - 8  
6 (r /+ 6 ) ( 3 - 4 - ) a ( 3 - 4 " )  

1 c 4 " ( T - 2 2 )  2 f l - y - 6  

6 (r /+ 6 ) ( 3 -  4-) a ( 3 - 4 " )  

H 3 (t + d 3 (t, 13)) = H 3 ((t + 11 + 5xfl2))t + zt 2)  = - - -~  
3 

( 2 p - y - a ) ( 2 - 4 " )  p - y  

a ( 3 - 4 " )  a 

I ~ 4 " ( r - 2 A )  + 
6 (r/+ 6 ) ( 3 - C )  

under the condition: 

l f i r (¢ t  + H~(t + d,(t,l~)) + H2(t + dz(t, 12) ) <_ CH~(r))dr.  

A numerical example can be obtained by choosing: a = 100, 13_T#,_ 3 
__1 ~ _ _ 3  __4 I __2 

Y - 5 - ,  - 7 ,  ~ = 1 ,  4" r/=~- - 7  • - 5 ,  2 and T = I  

R e m a r k  2. We observe that we have obtained the equilibrium solution in 
such a way that the retarded f lows on the routes R 2 and R 3 depend, 

implicitly, on 0 and l respectively and, explicitly, on the delay parameter o f  
H l . We are then led to draw the conclusion that, due to the constraints, the 

delay on the f low Hj affects the delays and the distributions o f  f lows on the 

other two routes. 
We also want to highlight how the f low rate is finite, it results indeed 

that: 

d H  (t+dr(t ,  lr))=Vr(t)= -- r = 1,2,3. 
dt r 3 
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Abstract: In this article, we present a family of models which approximate the full 
primitive equations (PEs) of the ocean, with temperature and salinity, as 
introduced in [9]. We consider asymptotic expansions of the PEs to all orders 
with respect to the aspect ratio 6. At first order, we recover the well-known 
barotropic quasi-geostrophic (QG) equations of the ocean. At higher orders, 
we obtain simple linear models that share the same mathematical structure but 
different right-hand sides. From the computational point of view, there are two 
advantages. Firstly, all the higher-order expansions are linear so that they are 
easy to implement. Secondly, the same numerical code can be used to compute 
all of them. From the physical viewpoint, we expect that higher-order 
corrections to the first-order barotropic QG equations will capture the vertical 
dynamics and the thermodynamics correctly. We will address these delicate 
physical issues as well as the convergence of the asymptotics in a forthcoming 
work. 
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. I N T R O D U C T I O N  

Large-scale geophysical oceanic flows can be considered in a first 
approximation as 2-D incompressible geostrophic flows, i.e. the balance is 
predominantly between the horizontal pressure gradient forces and the 
Coriolis force. However, over long timescales, typically of the order of 
several years to several decades and more, one must take into account 
thermodynamics processes as well as the vertical dynamics of the oceans, 
which is still far from being understood. Indeed, this vertical dynamics is of 
primary importance for explaining the pole-to-pole ultra-low frequency 
thermohaline circulation. This circulation plays a crucial role on the climate 
and is related to a subtil balance between salinity and temperature surface 
fluxes between the poles and the equator. In order to understand the low- 
frequency dynamics of the oceans, their spatial-temporal structures, as well 
as the impact of the oceans on the climate, a hierarchy of models exists that 
help to predict and understand the oceans behavior. We will consider here an 
intermediate model between the quasi-geostrophic (QG) equations and ocean 
general circulation models (OGCMs) which is often refered to as the 
Primitives Equations (PEs). These equations have been introduced and 
analysed in [5]. They are obtained from the Boussinesq equations (BEs) by 
replacing the vertical momentum equation by the hydrostatic equation, 
thanks to the fact that the ratio H/L between the vertical and the horizontal 
scales is very small, [5, 9, 6, 7, 8, 15]. In our study, we consider seawater as 
a slightly compressible fluid whose equation of state involve the salinity and 
the temperature. Our main objective is to determine high-order corrections to 
the balanced QG equations, when the vertical aspect ratio 6 is small, by 
considering systematic asymptotic expansions of the PEs with respect to 6. 

There are two essential characteristics of the ocean which are used in 
simplifying the PEs or the BEs. The first one is that, for large-scale 
geostrophic flows, the ratio 6 between the vertical and the horizontal scale 
is very small, typically of the order of 10 -2 . Another small parameter of 
primary importance is the Rossby number c, which corresponds to the ratio 
of the typical (horizontal) oceanic current velocity to the speed of rotation of 
the earth around the poles axis. This ratio is known to be smaller in the 
ocean, than in the atmosphere, typically 10 -2. It is precisely the small value 
of the Rossby number which is responsible for the constrained QG dynamics 
in the oceans. 

In [9], the authors considered the asymptotic expansion of the PEs of the 
ocean with respect to the Rossby number and obtained at first order the QG 
equations. In this article, we consider the PEs of the ocean presented in [9] 
and use asymptotic expansions with respect to 6 =  H2/L 2. We are able to 
derive the QG equations at first order as well as higher-order linear 
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corrections of  the vertical dynamics. More precisely, we write the unknown 
functions (v,T,S),  namely the velocity, temperature and salinity, in the 
form 

v = v ° + 6v ~ + 62v 2 + 63v 3 + . . . ,  

T = T O + 6T x + 62T 2 + 63T 3 -4-'", (1.1) 

and we derive a simple equation for the k t~̀  terms. 
As in [11], the main idea is to properly decompose the flow (v e, T e, S k) 

of the k th order approximation; we write: 

v e = Vk + ve,b, T e = Te + Te,~, S ~ = fie + Sk,~, (1.2) 

where ff corresponds to the vertical average of  ~o and ~o b to the deviation 
- ~. It immediately follows that 

v = 0, = 0, = 0. (1.3) 

In the decomposition (1.2), (v k'~ , T k'~ , S e'b ) correspond to the baroclinic flow 
and (V e, •e, fie) to the barotropic flow. As we will see later on, the key point 
here is that the baroclinic flow (ve'~,T e'b, S e'~) is given by lower-order 
approximations solution of  a simple linear ordinary equation, while the 
barotropic flow (V k, T e, fie) satisfies a simple linear system for k _> 1 and 
reduces to the barotropic QG equations for k -- 0. 

Although the derivation procedure is somehow involved, the final 
equations for determining (V e, T e, ffk) and calculating (v e'~, T e'~, S e'~) are 
surprisingly very natural and simple. The equations obtained are linear and 
are all of  the same form. They are therefore very easy to implement and the 
same numerical code can be applied to all level k > 1. 

The article is organized as follows. In section 2, we present and properly 
reformulate the PEs of  the ocean. The third section introduces the asymptotic 
expansions with respect to the aspect ratio and presents the approximate 
models. We start with the zeroth and the first order approximations and we 
generalize the procedure to obtain the higher-order approximations. 
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. THE PES OF THE OCEAN AND THE GEOSTROPHIC 
S C A L I N G  

In this section, we study the geostrophic asymptotics of the PEs with 
double diffusions, i.e., with the diffusion equations for both the temperature 
and the salinity functions. 

2.1 T h e  spa t ia l  d o m a i n  

Before we introduce the governing equations, let us first describe the 
spatial domain .AS/ occupied by the ocean. As in [9], we assume that the 
space domain A74 is given by 

= < z < o } ,  (2.1) 

where the surface region is given by a simply connected open set kS'l s c S j ,  
So 2 being the 2-D sphere of  radius a. 

For simplicity, we assume like in [9] that 

(o, o)es ;IO-Ool< ,1 o- oo1< , (2.2) 

such that .£4 and O have the same horizontal length scale L in both the 0 
and cp directions. 

Let us recall that (0, 99, r) stands for the spherical coordinates, where 0 is 
the colatitude (0 < 0 < 7r), qo is the longitude (0 < ~ < 27r), r is the radial 
distance and z = r - a is the vertical coordinate with resp_ect to the sea level. 
Here (0o,%) and (0",7) are given and fixed, such that A,4 corresponds to a 
midlatitude domain. 

The boundary of  .Ad consists of the following three parts. 

pi(z = 0) = upper boundary of  the ocean (interface with air), 
['1 = lateral boundary, 

f-'b(Z ---- --/~) = bottom of  the ocean. 

(2.3) 

For simplicity, we assume that /~ > 0 is constant. Let L be the horizontal 
scale of  the motion. We are interested here in the mesoscale or synoptic 
scale motions of  the ocean for which 

L = 0(1 O0 km). (2.4) 
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Thanks to (2.2), we obtain 

g =--L < <  1. (2.5) 
a 

We make the following coordinate transformation that yields the so-called 
/3 - plane approximation, namely 

x = a sin 0 0 (qo - ~P0), Y = (0 - 0 0)a. (2.6) 

The variables (x, y) correspond to the Cartesian coordinates on the /3 - plane 
and the space domain (2.2) is replaced by the following domain in the 
(x, y, z) Cartesian coordinates 

= < < o} ,  

.~  c {(x,Y);[ x ] < L~,I y I< L}. 

(2.7) 

2.2 Mean temperature and salinity distribution and the PEs 
with double diffusions 

In order to obtain a proper geostrophic scaling of  the PEs, we need to 
consider the standard temperature and salinity profiles, i.e., the mean 
temperature and salinity distributions. For the mesoscale ocean, it is 
legitimate to consider the vertical profile of these functions. Let Ts(z) and 
Ss(z ) be the vertical stratification profiles of  the temperature Ttot and the 
salinity Sto t respectively, which can be considered as the mean values of  Ttot 
and Sto t at the level z. We refer the reader to [1, 12] for some typical 
profiles of the temperature and salinity functions. 

As in [9], we write the temperature and salinity functions as follows: 

(2.8) 

7' and S being the deviations of  T~o t and Sto t from T, and S., respectively. 
We also assume that the following equation of state is satisfied 

p = Po(1 - / 3 ~ ( T  - Tr~i) +/3s(S - Sr~i)), (2.9) 



1030 Variational Analysis and  Appls. 

where /3~ and /3s are expansion coefficients, Tre I and J'~re] a r e  the reference 
values of T and S respectively (see [9]); in particular (2.9) is satisfied by 
p,,  T, ,  S s and by Ptot, Trot, Stot , where Ptot is the total density. 

We assume that the ocean is approximately hydrostatic and the vertical 
mean pressure p,(z)  then satisfies 

cg~(~p~,z...........__z j _ ps(z)9,  (2.10) 
Oz 

where 9 is the gravitational constant. We also write the total density Ptot 
and total pressure Ptot in the form 

D = Ptot  - -  P , ,  P = Ptot  - P s '  (2.11) 

The dimensional form of the PEs using the /3 -plane approximation reads 

Ov c02v Ov 
- ~ - - # A v - u - - + ] k o × v + l g r a d i S + ( v . V ) v + w - - = O , o z  2 Po Oz 

o_~ = _#, 
Oz 

Ow div v + = O, 
Oz 

o~ 02T + (v. V)~ + w o ~  oT~ O~Ts 
- ~ A  ~ - v~ Oz---- T -~z + w Oz = v~ Oz---- ~ ,  

o g  _ # s A g  - °~g w o g  o s .  O~Ss 
- ~  .~ Oz--- v + (v.  v)~ + - ~  + w Oz = "~ Oz ~ ' 

~, = po(-/3Tt + Z~g). 

(2.12) 

The boundary conditions are given by 
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Ov Of" = 6~T(f'* -- T),and 
poU~z = ~ ,  w = O, CppoU r Oz 

o# 
c ,  p0.  = - o n  

0 2 OS 0 on 1~ 
-~--~=0, w = 0 ,  ~ - z - 0 ,  Oz = 

v = 0 ,  O T = o ,  OS 
[ On ~ n  = 0 '  w = O o n F t .  

(2.13) 

Here T* and o 6" are given functions representing the apparent temperature 
and salinity distribution on the upper surface of the ocean, while ?v is the 
(given) wind stress, which accounts for the mechanical motion of the ocean; 
n is the outward normal on f'~ and k 0 is the vertical unit vector. 

The initial conditions are given by 

(v, 2r, S) = (v0, T0, g0) at t = 0. (2.14) 

In (2.12)-(2.14), the unknown functions are the horizontal velocity 
v = (u, v), the vertical velocity w, the temperature deviation T, the salinity 
deviation S and the pressure deviation /5. The positive constant Cp 
corresponds to the heat capacity of the ocean, f0  is the reference value of 
the density, 9 is the gravitational constant and f is the Coriolis parameter. 

Here the differential operators V,A and div are 2-D horizontal 
operators acting on the variables z and y. The dimensional domain is 
. M = . M  sx( -H,0)  , where 2Qscll~ 2 is bounded and / t > 0 .  The 
positive constants u and # are the viscosity coefficients, u r > 0 and 
# T > 0  are the thermal diffusivity, and u s > O  and # s > 0  are the 
diffusivity coefficients of the salinity. 

The PEs (2.12)-(2.14) are derived from the Boussinesq equation using the 
fact that the aspect ratio 5 (square of the ratio between the horizontal and 
the vertical length scales) is small, [5, 9, 12]. For more details on the PEs of 
the ocean, the reader is referred to [3, 12, 13, 16] for the physical aspect, and 
to [5], in which the existence and uniqueness results of the system (2.12)- 
(2.14) are studied; see also [14]. 

2.3 Geos t rophic  scal ing 

Here we first recall from [9] a standard scaling for the PEs of the ocean. 
We set 
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(x, y, z, t) = (Lx', Ly', Hz', L t'), (2.15) 

where U is the reference value of  the horizontal velocity. 
We also set 

v = UvP, w = __H Uw',f~ = Hh, (2.16) 
L 

Pro, = p,(z) + LPofoUP',p,ot = p.,(z) + eFPoP', ]o = 2acos 0o, 
(2.17) 

] = ] o ( l + e , ) , f  = l c ° s O - c ° s O °  = O ( 1 ) , / = l + e f ,  
e cos 0 o 

where 
Rossby number and f~ is the angular velocity of the earth. 

We scale T, and S, by 

t t 

(T~,S~) = (Tr4T ~ ,Sr4S ~ ). (2.18) 

For the temperature and salinity deviations, wc set 

= eFTr4T ', T = eFSr4S '. (2.19) 

Variational Analysis and Appls. 

F = fdoL2/gH is the Froude number, ~ = H 2/L 2, c = U/f0L is the 

Other nondimensional parameters are given by 
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1 # 1 v 

Re, LU 'R., L U '  

1033 

1 #T 1 v. r 
R~ LU ' R~ LU ' 

1 IZs 1 v s 

R~, LU 'R,, L U '  

& = 3.:v~.,Z~ = / ~ , s  :, (2.20) 

T. T * , s . _  S* 
eFT,.~: eFS~c: ' 

Og T .-~ 

LSr  LSs 
CpHUpo 'as - CpHUpo ' 

L 
rv PoU2H f~" 

We introduce the nondimensional functions 

= vTgH 02~ vsgH O~S, 

q' ]oUZTref Oz 2 ,q, = ]oU,Sr,j Oz ~ " 

Hereafter, we assume that 

ql : 0(1),q2 = 0(1). 

The nondimensional space domain .Ad becomes 

M = {(~,y,~);(~,y) ~ M ~ , - h  < z < o}, 

Ms c (z,y);I x I< :-,I y I< 

(2.21) 

(2.22) 

(2.23) 
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We denote by F+, F~ and F~ the corresponding boundaries of A/[ and we 
assume for simplicity that h = 1 ; F~ is the same as .M+. 

Substituting these expressions, variables and parameters in the PEs 
(2.12), we obtain the following nondimensional form of the PEs of the ocean 
(see [9] for more details): 

- ~ + ( v . V ) v +  OzJ Re, Av ~Re, Oz 2 

Op = - p ,  

O W  div v + = 0, 
Oz 

 [oT +(v.v)r +10°rl- Ar 
t - ~  Ozl R~ 

e + (v. V)S + w ~ -  z - R+, 

[p : -Z T + Zss. 

- - - -  + Jk 0 x v +  grad p = 0, 

6R,+ Oz 2 

e 02T ~_F_lOT+w 
- -  = 6ql , ~R++ Oz 2 Oz 

__02S + F_l OS.+ 
10 = eq2~ 

Oz 

(2.24) 

The boundary conditions (2.13) become 

- - - -  T 1 0S 1 0 v  1 0 T  _ a T ( T ,  ), 6Rs, Oz 
6Re20z - %' w = O, ~R~ Oz 

0v = 0,w = 0 , 0 T  = o, OS = 0 on Fb, 

~ z  0 , w =  0 , 0 T 0 t  0 , 0 T 0 t 0 o n  F v 
On On 

- -  - -  - as(S* - S)  on Fi, 

(2.25) 

The initial conditions are 

(v,T,S) = (v0,T0,S0) at t = 0. (2.26) 

Formal asymptotic expansions of the PEs with respect to the Rossby 
number yield the QG equations that correspond to an a priori O(c) 
approximation to the PEs model (see [9]). 
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In the next subsection, we derive an 0(6  k) approximation to the PEs of 
the ocean (2.12)-(2.14), where k is any positive integer. Let us recall from 
[12] that for oceanic synoptic scales, 0(6)  ~- 0(4.10 -4). 

. Q U A S I - G E O S T R O P H I C  A N D  H I G H E R  O R D E R  
A P P R O X I M A T E  M O D E L S  F O R  T H E  P E S  

3.1 Q u a s i - g e o s t r o p h i c  a p p r o x i m a t i o n s  

We expand the unknowns v, w, p,  T and S with respect to 6 as 

v = v ° + 6 v  1 +62v  2 + 6 3 v  3 + . . . ,  

T = T O + 6T 1 + 62T 2 + 63T 3 + . . . ,  

S = S O + 6 S '  + 6 2 S  2 + 6 3 S  3 + . . . ,  

w = w ° + 6w 1 + 62w 2 + 3"~w 3 + . . . ,  

p = pO + 6pl + 62p2 + 63p3 + . . . ,  

P = pO + 6pl + 62p2 + 6,~p3 + . . . .  

Hereafter, we use the notations 

F = u dz, u ~ = u - ~ ,  
1 

(3.1) 

(3.2) 

for a given function u. In oceanography, the vertical average ~ is usually 
referred to as the barotropic flow and u ~ is called the baroclinic flow [3, 16]. 

The zeroth order approximation. 
Replacing (3.1) in (2.24)-(2.26), at the level O(1) we find 

I0~v ° 02T ° 02S ° Op ° _ 

= o, oz----- r = o, o z  

[div v ° + - ~ z °  = O , p ° = - / 3 w T ° + / 3 s  S°, 

pO 
(3.3) 

with the boundary conditions 
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1 OV ° 1 O T ° 1 O S  ° 
- - - - - O , w  ° = O , - - - O , -  
Ro~ Oz R~ Oz R~ Oz 
0v  ° O T  ° OS ° 

= 0 ,  w ° = 0 ,  - 0 ,  = 0 o n F ~ ,  
Oz Oz Oz 

O T ° O T ° 
v ° = O , w  ° = O , - - O , - - O o n F  l. 

On On 

- -  - -  0 on  Fi ,  

(3.4) 

This amounts to say that 

0v  ° O T  ° OS ° 
- O, - O, 

Oz Oz Oz 
= 0 ,  w ° = 0 , d i v v  ° = 0 .  (3.5) 

The first  order approximation. 
At the level 0(6) ,  we find using (3.5) 

v 1 = ~1 + vl,b, T 1 = T1 + TI,~ and S' = ~1 + Sa,~ 
and the decomposit ion 

ov V)vO 
Ot + (v°" - Re, 

£ 

OP___~ 1 _ f ,  
Oz 

Ow ~ 
div v 1 + -  = O, 

Oz 

e OT° + 
Ot (v°" V)T° 

OS ° , o 
,I ~ - - g y  + ~v • v ) s  ° - 

pt = _3rT~ + 3sSa, 

A v  ° 

£ 
A T  ° 

Rt~ 

A S  o 
Rs I 

02V 1'~ 
R~ Oz 2 + ]k° × v° + g r a d p °  = 0 ,  

e 02T ''~ 

R~ Oz 2 

e 02S 1'~ 

Rs2 Oz 2 - -  £ q 2 ,  

(3.6) 

with the boundary conditions 



Approximation and Primitive Equations of  the Ocean 1037 

1 O v  ~'~ 1 O T I'b 
- % , w  j = 0 , 7 - - -  - -  - -  O~T(T* - T ° ) , a n d  R,~ Oz ~gz 

1 cOS 1'~ 
R,~ Oz - as(S* - S O ) onr , ,  

Ovl,~ O T~,, O Sl,~ 
Oz = 0 ' w ' = 0 '  ~zz - 0 ,  ~ - - 0onF b ,  

OT I OT I 
v' = 0 , w  ~ = 0 , - - 0 , - = 0 o n F ~ .  

On On 

(3.7) 

Taking the vertical average of (3.6),, (3.6)3and (3.6)4and using the 
boundary conditions (3.7), we derive the following quasi-geostrophic 
equations of the ocean 

0 v  ° , vo ~o  
Ot + (v°" V)v° - Re, Av° + f k° x + grad = eTv, 

div v ° = 0, 

OT°cot + (v°" V)T° - e--~--A T ° R t ,  + c°~:~T° = e~, +eaTT* , 

c Os° V ) S  ° - ~ Ot + (v°" R,, AS° + easS° = eq~'+easS*' 

(3.8) 

with the boundary and initial conditions 

Iv ° = 0  0 T ° = 0  0T° = 0  onF~ 
' O n  ' On 

(vo,To,So) at t 0. [(vO,TO,SO ) = - o  - o  - o  = 
(3.9) 

We can easily determine (v °, T °, S °) from (3.8)-(3.9); note that, by (3.3) and 

(3.5) pO = - z p °  ,so that ~ o = _ 1 ~ o = _ 1 ( / 3 7 . y o  +/3sffO).Now the 

baroclinic components vl'~',Tl'b,Sl'b can be solved using the following 
proposition. 

Proposition 3.1. The ordinary differential equation 
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• d2u 
dz 2 a in (-1, 0), 

f_ o udz = O, 
1 

du 0 du 
"-'~z (0) = ' dz (-1) = O, 

(3.10) 

possesses a unique solution u given by 

(3.11) 

provided that 0 and the function a satisfy the compatibility condition 

f o a(z)dz = e.  (3.12) 
1 

Proof. Taking the vertical average of (3.10)~and using the boundary 
conditions (3.10)2 ,we obtain that a and e must satisfy the condition (3.12). 
Under the condition (3.12), the unique solution to (3.10) is therefore given 
by (3.11). U 

Remark 3.1. If the function a in (3.10) is constant, then (3.11) reduces to 

(3.13) 

Remark 3.2. The compatibility condition (3.12) is automatically verified 
using (3.8) and (3.9) so that the baroclinic components are well defined. For 
the computation of the pressure p0 that appears in (3.6), see the 
explanations given in Remark 3.6 for the general case with k _> 1. 

The second order approximation. 
Before we generalize the process to the U h order approximation, we 

consider first the second-order approximation (whose equations have a 
distinct form). The second-order expansion is indeed needed to recover the 
barotropic components ~l,y~ and ff~. At the 0(62) level, we find using 
(3.5) 
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[ O v '  

I o t  + ( v °  V)v' + (v'. V)v ° 

_ e exv' ~ °'v--~ 
Re, Re~ Oz 2 + f k  0 x v  I + g r a d p l  = 0 ,  

OW 2 
d i v  v 2 ~ - -  - -  0 ,  

Oz 

e 0 T  z V)TO _ e A T '  
ot  + (v°" V)T' + (v'. R,, 

lOS' V)S0 e ' --aT + ( v °  V)S' + (v'. - R,, AS' 

p' = - ~ r T  I + /3 s S  l, 

e 02T  2 
- - + F - ~ O T ' w  I = 0 ,  

R,, Oz 2 Oz 

e 02S 2 
- -  - -  + F - '  OS, "W I = O, 
Rt, Oz 2 Oz 

(3.14) 

with the boundary conditions 

1 Ov 2 1 O T  2 1 

R e 7 0 ~  - O, w 2 = O, R' 70-- - - -z  - a TT' '  R~ - -  

OqV 2 O T  2 O S  2 
= O,w z = 0, - 0, = 0 on F~, 

Oz Oz Oz 

g 2 = O , W  2 = O, O T z  - -  0,  (~$2  = 0 on Yr. 
On On 

OS 2 

Oz 
- -  O~s S l  o n  I~i, 

(3.15) 

First notice that div V 1 = 0 by taking the vertical average of 

OW I 
div v I + -  = 0, 

Oz 
(3.16) 

and using the boundary conditions (3.7). 
Finally, we obtain from (3.14) that 

satisfies 
the barotropic flow (VI, TI,~ l) 
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0V 1 V)v o --if/- + (v °. v)v'  + (v'. 

- -  ~ A V  I ( 02V 2 

Re, Re 2 0 z  2 

OP____~ l _ .p l , 

Oz 
div V' = 0, 

- - - - + f k  0 x v  I + g r a d p t + K  I = 0 ,  

¢ + (v °.  V)•' + (V'. V)T ° - Rt, A y '  

V ) S  o - c + (v ° • v )~ '  + (v'. ~ a ~ '  

pl = _ f l rT I  + flsS~, 

£ OZT 2 

Rt2 Oz 2 

O:S 2 

t~2 OZ2 

~- K 2 = 0, 

~ - K  3 = o ,  

(3.17) 

where K1, K2 and K 3 are known at this stage and are given by 

0vl, ~ 1 
(v,.~ / e Avl, b W f k o x  K'='-YF+(v°V)v"~+ V)v°/- v"~' 

Re, 

Kz = ~ O T  ''b +(vO.V)T,.~ + ( v , . b . V ) T  o _ e A T , ,  ~ + F - '  O----~T~ w',  
l o t  R~ Oz 

K 3 - ~ o s l ' b  .~_ ( v  0 , V ) S  I,) .q.- ( v  1,I~ , V)~,c 0 

lot 

w I = div vl'~d(. 

_ e ASI,~ + F_l  OS, w l, 
R~, Oz 

(3.18) 

Taking the vertical average of  (3.17) and using the boundary conditions in 
(3.15), we obtain the following system for (V 1, T 1, ~-~) : 
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OW ] 
-if/- + (v °. v )v '  + (v'. V)v ° - Re~ 

div VI = 0, 

+ (v °. V ) f '  + (V'. R~ AT'  + e a r l '  + K2 = --eaTT"b(O), 

00~' " V)s°  ~ + (v °. v )~ '  + (v' - ~A~' + ~ '  + R~ = -cc~S"~(0), 

(3.19) 

AV 1 + f k o x V 1 + grad ~l + / (1  = O, 

with the boundary and initial conditions 

v ' -  o oy__~' _ o °g--2' - - 'On - 'On -O°nF~'  

(V', Tt, ~-,) = (%, y~, ff~) at t -- 0. 
(3.20) 

Remark  3.3. Since v ° is independent of z ,  it is easy to check that 

Ka = 0. (3.21) 

Moreover ,  i f  OT~/Oz = OS,/Oz = 0 then 

R~ = K3 = O. (3.22) 

Therefore (V', ~a, ~,) = (0, 0, 0) if (V~, T~, S~}) = (0, 0, 0) and 
OTffOz = OSffOz = 0. Furthermore, since (v°,T°,S°) is independent of 
the vertical variable z, Remark 3.1 and equations (3.6)-(3.7) show that the 
baroclinic flow (T ~'~, S a'~) takes the form 

z2 ½ 
(T)'~,S"~) = (-~-+ z + )(a',a2), (3.23) 

where a = (a 1, a ~) is an explicit function of (v °, T °, S °) easily derived from 
(3.6)-(3.7). 

The k th order approximation. 
We now generalize the process described above to the k t~' order 

approximation. Although the steps are very similar to the derivations of the 
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second order approximation, we repeat them for the sake o f  clarity. We first 
compute the baroclinic components v k'b, T k'b, S k'~ by considering Proposition 
3.1 and the equations for (v ~-1, T k-l, S k-l),  

[Ov ~-' (v~_2 (v ~-' + w k-' Ov k-~ Ov k-' ] 
~[-W- + .vW-' + .v)v ~-2 o 7  +~-~ Oz 

__ £ Avk-¿  ~ 02V k'b 
R~, R~ Oz 2 ~- f k° × vk-I + grad pk-I = O, 

Opk-I 

Oz 
,D k-I ) 

OW k-I 
div v k-I -~ - -  - 0, 

0z  
[ ~ T ~ _ i  0 T  ~-2 ,I~iC + (v~-~. v)r~-' + (v~-'. v)r~-~ + wk-, 

Oz 
L 

_ e___ATk-I ~ 02T k'~ +F -~ ~z w~-l 
R~ R~ Oz 2 = O, 

lOS ~-' (v~_, w k-, OS ~-2 ~ 1-55- + (v~-2 v)s~-' + ' v)sk-~ + 
Oz 

_ e AS~_~ ! 02S~'~ 
Rs, R~2 Oz ~ Jr F - '  OSSOz wk-I = O, 

[ pk- = __flTTk-! + flSS~-|, 

_ _  + wk_2 0 T k-~ 
Oz 

- -  + w ~ - 2  O S  ~ - j  

Oz 

(3.24) 

and the boundary conditions: 

1 cgv k'~ 1 0 T  ~'~ 
- -  - -  - -  O ,  w k = O, 
R~ Oz R~ Oz 

Ov k'~ O T k'b O S k'~ 
= O, w k = O , -  - O, - 

Oz Oz Oz 

O T  ~ 
v k = O , w  k = O , - = O ,  

On 

aT Tk-1, _ _  
1 OS k'b 

Rs2 OZ 
- - - -  O~s Sk-1 o n  F i ,  

- -  0 o n  F~, 

OS ~ = 0 on F t. 
On 

(3.25) 
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In order to recover the barotropic components (V k, T ~, ~k), we then need to 
consider the (k +1)  'h order. We derive the following equations for 
(vk,Tk,Sk) 

[ O t  + " v)v~  + (vk" V)v~-' + wk 

e A v  k e 02v TM 

Re, &, Oz ~ 

O p__~[ _ p k , 

Oz 
Ow k 

div v k + - O, 
Oz 

£ O T k  , ,vk-I. ,-- , ,T ~ . w k 
Ot ± ~ v )  -~- (vk " V)Tk-' + Oz 

[ e A T  k e 02T TM 

e[OSk OS ~-' 
t-o-7 + (v~-' ' v)s~ + (v~ v)s~-' + w~ 

[pk {Z /~sk {[ 02S TM 

Re. R~--[ Oz - - - - - -~  + F- '  OSsoz w k = O, 

= - ~ r  Tk + 3s Sk, 

a__7_ + l 
Oz] 

- - - - + f k  o x v  k + g r a d p k  = 0 ,  

O T  k 
- -  + w k-I 

Oz 

- -  + w k-~ OS ~ 
Oz Oz 

(3.26) 

with the boundary conditions 

1 Ov TM 1 O T  TM 
- -  O, w TM = O, 

R~ Oz R~ Oz 
Ov TM 0 T TM OS k+' 
- - - - O , w  k + ' = O , - - O , -  

O z  Oz Oz 

v k+' O, w TM O, 0 T ~+l OS TM 

On On 

oerTk I OS TM 

'R~ Oz 
- - - - -  eesSk on Fi, 

- 0 on Fb, 

-- 0 on F~. 

(3.27) 

We rewrite (3.26) like 
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e Ovk (v ~-I ]_ e 
I-O7- + • v ) w  + (w .  V)v ~-' Re, AW 

__% 02v TM 

I Re, COz2 + f k  o x v  k + g r a d p k + K l = 0 ,  

l div V k = 0, 

-~-°f~ -~ (v ~-'. v ) y  ~ + (w. V)T ~-' - ~R,,/xF 

lc]~]  +(v ~-i .v )~  +(w.v)s  ~-' _ e----A~, 

¢ cO2Tk+I 
Rt~ COz2 + K 2 = 0 ,  

e 02S TM 

R, 7 cOZ2 -b K 3 O, 
z - -  

(3.28) 

where K1, K,~ and K 3 are now given by 

/Ov w 
[ 

K, = t--if/- + V ) v ~ '  + ' V)v~-' + 

- e A v  ~ ' ~ + f k  0 x v  k'~, 
Re, 

[ 
, OTk-I K 2 = el OT~'b + (vk-'.V)Tk'~ +(vk.~.V)Tk-,  + w k 

[ at 

_ c ATk,~ + F - '  OT~wk,  
R~ Oz 

K 3 = el OS~'b + (v k-' • V)S k,~ + (v k'~ • V)S k-' + w k 
f 

COS ~-I 

[ ot 

_ e ASk,~ + F_ I cOS, w~ ' 
R,, cO z 

_ e ASk,~ + F_ I cOS_._._~wk, 
R~, Oz 

w k = div vk'~d~. 

OV k-I OV k, t' 

Oz + w~-~ Oz 

+ Wk_l 0 T k'b 
Oz Oz 

+ w k-l OS k'~ 
Oz Oz 

(3.29) 

Taking the vertical average of  (3.28) and using the boundary conditions 
(3.27), we derive the following system for (gk, T~, ffk) 
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[ 07~ (V~-, ] - e [ - ~  + . V)Vk + (Vk. V)V~_, e AV k + f ko x Vk + grad ~k + ~ ,  = O, 
Re, 

div V k = O, 

e + (v~_,. V)f~  e - ~ ,  '~T ~ + " ~  + f 2  =- '~ ,T~ ' (0) ,  

/~s t 

(3.30) 

with the boundary and initial conditions 

I rk = O, OT* = O, Off* = 0 on F,, 
O'?), O'?Z 

- -k  - -k  - -k  - - k  - - k  - -k  [(v ,T  ,S ) =  (vo, To, So) at t =  O. 
(3.31) 

R e m a r k  3.5. For k >__ 2 and Kx, K 2 and K 3 given by (3.29), equality 
(3.21) is not necessary satisfied since v k-l, T ~-~ and S ~-1 are now 
functions of the vertical variable z as well. 

R e m a r k  3.6. Note that in the equations (3.19) or (3.30) for the barotropic 
flow V k, the vertical average ~k of  the pressure pk appears as a Lagrange 
multiplier for the constraint div V k = 0. Hence the first two equations in 
(3.30) and the conditions on Vk in (3.31) determine at once V ~ and ~ .  
However, at each level k >__ 1 we need to recover the whole pressure pk-1 in 
order to compute the baroclinic component (v k'~, Tk'~,S ks) (see equations 
(3.24)). This is achieved as follows. Using the following relations (which are 
satisfied at each level) 

Op k-1 
_ _pk-1, p~-i = _grT~-1 + gsSk-1, (3.32) 

Oz 

we obtain 

f 
Z 

pk- ' (x ,y , z )= - , p~-'(x,y,s)ds + pk-'(x,y,-1). (3.33) 

Let us recall that 
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f_ 
0 

-ffk-I = pk-I (x, y, z)dz.  
1 

(3.34) 

From (3.33)-(3.34), we obtain by integration in z from -1  to 0: 

s°7: / p k - l ( x , y , _ l )  = ~k-x + pk-~(x ,y , s )ds  dz. 
1 

(3.35) 

Hence we have 

p k - ' ( x , y , z )  = - f _ *  
1 

p~-' (x, y, s)ds  + ~k-1 + 

(3.36) 

where pk-1 known at this stage is given by (3.32). Thus pk-1 is now fully 
known and we can proceed with the resolution, l] 

R e m a r k  3.7. The existence and uniqueness of  solutions v ° to the QG 
equations (3.8)-(3.9) is easily proved using the same idea as for the Navier- 
Stokes equations in two- dimensional space, [4, 10]. Now, assuming enough 
regularity on the velocity v °, one can then prove the existence and 
uniqueness of  solutions T o and S o to (3.8)-(3.9). 

For k >_ 1, the existence and uniqueness of  the solutions V k to the 
system (3.19)-(3.20) or (3.30)-(3.31) is easily proved (provided that K 1 is 
regular enough) using the same method as for the linearized Navier-Stokes 
equations, [4, 10]. Assuming enough regularity on the velocity V k and the 
data KI, K 2 and Ka, one can then prove the existence and uniqueness of  
solutions T k and ffk to (3.19)-(3.20) or (3.30)-(3.31). The regularity of  the 
solution ¥k to (3.19)-(3.20) or (3.30)-(3.31) and of  the data K1, K2, and K~ 
given in (3.18) or (3.29) depends on the regularity of  the solutions at the 
lower level. The mathematical analysis of  the models presented in this article 
as well as the convergence of  the asymptotics will be addressed elsewhere. 

R e m a r k  3.8. The coefficients c~ r and % appearing in (2.25) should also be 
expanded with respect to 6,  namely 

° 6 4  (5 ce r a r = %,  + + + . . . ,  
o 6a~ ~ 2 

6 (~s a s = a s + + + . . . .  
(3.37) 
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o o In this work, we have assumed that a 7, ~ 0 and a s : x  0, but different 
situations where the first components of a r and a s vanish may occur 
depending on the corresponding physical problem. Other surface flux 
boundary conditions for 5' and T may also be used, see [2]. These issues 
will be addressed elsewhere. 
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HAHN-BANACH THEOREMS AND MAXIMAL 
MONOTONICITY 

S. Simons 
Dept. of Mathematics, University of California, Santa Barbara, USA 

1. I N T R O D U C T I O N  

In this paper, we discuss new versions of the Hahn-Banach theorem that 
have a number of  applications in different fields of analysis. We shall give 
applications to linear and nonlinear functional analysis, convex analysis, and 
the theory of  monotone multifunctions. All vector spaces in this paper will 
be real. 

The main result appears in Theorem 2.8, which is bootstrapped from the 
special case contained in Lemma 2.4. 

In Section 3, we sketch how Theorem 2.8 can be used to give the main 
existence theorems for linear functionals in functional analysis, and also how 
it gives a result that leads to a minimax theorem. We also discuss three 
applications of  Theorem 2.8 to convex analysis, pointing the reader to [26] 
for further details in two of  these cases. One noteworthy property of proofs 
using Theorem 2.8 is that they allow us to avoid the problem of  the "vertical 
hyperplane". 

In Section 4, we show how Theorem 2.8 can be used to obtain 
considerable insight on the existence of  Lagrange multipliers for constrained 
convex minimization problems. The usual sufficient condition for the 
existence of such multipliers is normally found using the Eidelheit 
separation theorem. In Theorem 4.5, we use Theorem 2.8 to derive this 
sufficient condition, with the added bonus that we obtain a bound on the 
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norm of the multiplier. Here again, the proof using Theorem 2.8 allows us to 
avoid the problem of the "vertical hyperplane". More to the point, the results 
leading up to Theorem 4.5, namely Lemma 4.1 and Theorem 4.2, use 
Theorem 2.8 to obtain a necessary and sufficient condition for the existence 
of Lagrange multipliers, with a sharp lower bound on the norm of the 
multiplier. 

Section 5 is motivated by the theory of monotone multifunctions. 
Theorem 5.1 is an existence theorem without any a priori scalar bounds in 
normed spaces that has proved very useful in the investigation of these 
multifunctions, and will be used in Theorem 6.5. A new feature of the result 
as presented here is a sharp lower bound on the norm of the linear functional 
obtained. Theorem 5.3 is a two-stage result obtained by combining 
Theorems 5.1 and 2.8, and will be used in the proof of Theorem 7.4. 

In Section 6, we discuss the free convexification technique, which has 
many applications to the theory of monotone multi functions. We list several 
of these without proof. We also use Theorem 5.1 to derive Rockafellar's 
surjectivity theorem for general (i.e., not renormed) reflexive spaces, with a 
sharp lower bound for solutions of the problem. Apart from its intrinsic 
interest, we have given this result here to introduce the techniques that are 
used in the more difficult problem treated in Section 7. 

Maximal monotone multifunctions of "type (D)" were introduced by 
Gossez in order to generalize to nonreflexive spaces some of the results 
previously known for reflexive spaces (see Gossez, [10, Lemme 2.1, p. 375] 
and Phelps, [15, Section 3] for an exposition). Maximal monotone 
multifunctions of "type (FP)" were introduced by Fitzpatrick-Phelps in [8, 
Section 3] under the name of "locally maximal monotone" multifunctions. 
The motivation for their introduction was as follows. If E is reflexive then 
every maximal monotone multifunction on E can be approximated by 
"nicer" maximal monotone multifunctions using the Moreau-Yosida 
approximation. If E is nonreflexive then every subdifferential can also be 
approximated by "nicer" subdifferentials by using the operation of inf- 
convolution. So the question arises whether a general maximal monotone 
multifunction on a nonreflexive space can also be approximated by "nicer" 
maximal monotone multifunctions in some appropriate sense. Fitzpatrick- 
Phelps defined an appropriate sense of approximation in [8], and showed 
that the multifunctions of type (FP) can be approximated by "nicer" maximal 
monotone multifunctions in their sense. There has been considerable 
speculation for the past several years about the relationship between 
multi functions of type (D) and multifunctions of type (FP). The main result 
of Section 7 (in Theorem 7.4) is then that every maximal monotone 
multifunction of type (D) is necessarily of type (FP). 
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In the final section, we return to our consideration of abstract Hahn- 
Banach theorems. Noting a certain formal similarity between the statements 
of  Theorem 5.1 and Theorem 2.8, we ask the question whether these two 
results can be unified. Indeed, they have a common generalization, which is 
given in Theorem 8.1. 

2. T H E  M A I N  R E S U L T  

Theorem 2.8 contains the new version of the Hahn-Banach theorem that 
forms the main topic of this paper. Theorem 2.8 is proved by bootstrapping 
from the special case contained in Lemma 2.4 - most of  the work is actually 
done in Lemma 2.3. 

We start by recalling in Lemma 2.2 the classical Hahn-Banach theorem 
for sublinear functionals. 

Definition 2.1. Let E be a nontrivial vector space. We say that S : E H 
is sublinear if 

x, y E E ~ S(x  + y) <_ S(x) + S(y) 

and 

x E E and )~ > 0 =:v S(/~x) = )~S(x). 

Lemma 2.2. Let E be a nontrivial vector space and S : E ~-~ ~ be 
sublinear. Then there exists a linear functional L on E such that L <_ S on 
E .  

Proof. See Kelly-Namioka, [11, 3.4, p. 21] for a proof using cones, Rudin, 
[20, Theorem 3.2, p. 56-57] for a proof using an extension by subspaces 
argument, and K/3nig, [12] and Simons, [21] for a proof using an ordering on 
sublinear functionals. [] 

Lemma 2.3. Let E be a nontrivial vector space and S : E ~-* ~ be 
sublinear. Let D be a nonempty convex subset o f  a vector space, 
a : D ~-~ E be affine and 13 := infDS o a E R. For all x E E, let 

T(x)  := inf [S(x + l a ( d ) ) -  A13]. (2.3.1) 
dED, A>0 
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Then T : E ~-* R,  T is sublinear, T <_ S on E and 
- T ( - a ( d ) )  >_/3, Vd e D,. 

ProofiIfxEE, d E D  a n d A > 0  then 

S(x + Aa(d)) - A/3 _> - S ( - x )  + AS(a(d)) - AI3 >_ - S ( - x )  > -oo. 

Taking the infimum over d E D and A > 0, T(z) >_ - S ( - z )  > -c~ .  Thus 
T : E H ~.  It is now easy to check that T is positively homogeneous, so to 
prove that T is sublinear it remains to show that T is subadditive. To this 
end, let z l ,z  2 E E .  Let d l , d ~ E D  and A,,A 2 > 0  be arbitrary. Write 
x := xl + xz, A := A~ + ),2, & := AJA and d := #1dl + #2d2. Then, using 
the fact that ~a(da) + #2a(d2) = a(d), 

[s(~, + :~,~(d,)) - :~/3] + [S(z~ + & a ( 4 ) )  - XA] 

> S(~ + :~,~(d,) + & ~ ( 4 ) )  - :~/3 

= AS(x /A + #,a(dl)  + / . h a ( 4 ) )  - A/3, 

= A S ( z / A  + a(d))  - A/3 

= S ( x  + Aa(d)) - A/3 

>_ T ( x )  = T (x ,  + x2). 

Taking the infimum over d~, d2, Aj and .k 2 gives 

T(x,) + T(x2) >_ T(x, + x2). 

Thus T is subadditive, and consequently, sublinear. Fix d E D. Let x be 
an arbitrary element of E. Then, for all A > 0, 

T(x) < S(x) + A[S(a(d)) -/3]. 

Letting A--+O, T ( x ) < S ( x ) .  Thus T < S  on E. Finally, let d be an 
arbitrary element of  D. Then, taking A = 1 in (2.3.1), 

T(-a(d))  <_ S(-a(d)  + a(d)) - 13 = -/3, 

h e n c e - T ( - a ( d ) )  >_/3, which completes the proof of  Lemma 2.3. 

Lemma 2.4. Let E be a nontrivial vector space and S : E H ]~ be 
sublinear. Let D be a nonempty convex subset of  a vector space and 
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a : D ~ E be affine. Then there exists a linear funct ional  L on E such 
that L < S on E and  

i n fL  o a = i n f S  o a. 
D D 

Proof.  Let /3 := infoS o a. If 13 = --cx~, the result is immediate from Lemma 
2.2 (take any linear functional L on E such that L _< S on E ). So we can 
suppose that /3 E ll~. Define T as in Lemma 2.3. From Lemma 2.2, there 
exists a linear functional L on E such that L _< T on E. Since T _< S on 
E, L _< S on E, as required. Let d C D. Then 

L ( a ( d ) ) = - L ( - a ( d ) ) > _ - T ( - a ( d ) ) > _ ~ .  

Taking the infimum over d C D, 

i n fL  o a _>/3 = i n f S  o a .  
D C 

On the other hand, since L < S on E, inf L o a _< inf S o a. 
D D 

[] 

Definition 2.5. Let C be a nonempty convex subset of  a vector space and 
PC(C)  stand for the set of  all convex functions k : C ~ ( - c% c~] such that 
dom k :~ ~, where dom k, the effective domain of k, is defined by 

domk := {x E C :  k(x) E 1~}. 

(The "P"  stands for "proper", which is the adjective frequently used to 
denote the fact that a function is finite at least at one point.) 

Definition 2.6. Let E be a nontrivial vector space and S : E  H R be 
sublinear. Let C be a nonempty convex subset of  a vector space and 
j : C H E. We say that j is S-convex  if 

Xl,X 2 E C , # 1 , # 2  > 0 l 
and Pa + th =1 ] =~ S(j(#~x~ + #2x~) - #aj(x,)  - #2j(x2)) < 0. 

Note that if  we define an ordering "_<s" on E by declaring that y -<s z if 
S(y - z) _< 0 then j is S-convex if, and only if, 
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Xl,X 2 E C,]J,l,P2 > 01 
and #' + # z = l  I =v j(#~x~ + #zx~) <-s uaj(x~) + #~J(xz). 

An affine function is clearly S-convex. 

R e m a r k  2.7. Suppose that C s is the level set {y E E: S(y) <_ 0}. It is clear 
that the ordering <s on E is determined solely by C s (though the proof of 
Theorem 2.8 depends on the other values of S ). Now let us consider the 
special case when E = IR. Since C s is a convex cone with vertex at the 
origin, there are exactly four possibilities for Cs, namely {0}, 
(-c~,0],[0,(x~) and ]R. These can be realized by S(y):=l Y I, S(y):= y, 
S(y) := - y  and S(y):= 0, respectively. In these four cases, "S-convex" 
means "affine", "convex", "concave" and "arbitrary", repectively. In 
general, when E ~ II~, there is no analog of  convex or concave function 
from C into E, and it makes sense to ask the question when a function 
j: C ~ E is S-convex with respect to some nontrivial sublinear functional 
S on E. A solution to this problem has been provided by Giandomenico 
Mastroeni (personal communication). 

Theorem 2.8. Let E a nontrivial vector space and S: E ~ ]R be sublinear. 
Let C be a nonempty convex subset o f  a vector space, k E PC(C) and 
j: C ~ E be S-convex. Then there exists a linear functional L on E such 
that L < S on E and 

inf[L o j + k] = in f[S o j + k]. (2.8.1) 

Proof. L e t / )  := E x 1~, and define S: E ~ R by 

s(v, s(y) + ((y, e k). 

Then, as the reader can easily verify, S is sublinear. Let 

D :={(x,y ,A)  E C × E × ~ :  S ( j ( x ) - y ) <  O, k(x) < A } ,  

and a: D H / ~  be defined by 

a(x ,y ,A):=(y ,A)  ((x,y,A) ED) .  
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Then D is a nonempty convex set and a is an affine function. Lemma 2.4 
with E re p l a c e d b y  E, S by S, and C by D now gives a linear 
functional L on E such that 

/ , _ < S o n / ~  and i n f / , o a = i n f S o a .  
D D 

Since i, < S on/~, there exists a linear functional L on E such that 

L < S  o n e  and (y,A) E / ~ : = > / , ( y , A ) = L ( y ) + A .  

The result follow since, by direct computation, 

infD/' O a = incf[L o j + k] and info ~ o a = incf[S o j + k]. 

. A P P L I C A T I O N S  T O  F U N C T I O N A L  A N A L Y S I S  A N D  
M I N I M A X  T H E O R E M S  

In this section, we mention without proof a number of  applications of 
Theorem 2.8 that were discussed in [26].We then state and prove in Theorem 
3.5 a (necessary and sufficient) criterion for the Fenchel duality condition to 
hold. 

Theorem 3.1 is the sandwich theorem (see [12, Theorem 1.7, p. 112]). It 
follows immediately from Theorem 2.8 with C := E and j (z)  := z. 

Theorem 3.1. Let E be a nontrivial vector space, S: E ~ ~ be sublinear 
k E PC(E) and - k  < S on E. Then there exists a linear functional L on E 
such that - k  < L < S on E. 

Theorem 3.1 implies in turn two other well known existence results: the 
extension form of  the Hahn-Banach theorem, Corollary 3.2, (see [12, 
Corollary 1.8, p. 112]) and the Mazur-Orlicz theorem, Corollary 3.3, (see 
[12, Theorem 1.9, p. 112]). 

Corol lary  3.2. Let E be a nontrivial vector space, F be a linear subspace 
o f  E, S: E ~ ~ be sublinear, M: F ~ ~ be linear and M < S on F. 
Then there exists a linear functional L on E such that L < S on E and 
LI~,=M. 
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Corol lary 3.3. Let E be a nontrivial vector space, S: E H ~ be sublinear 
and C be a nonempty convex subset o f  E. Then there exists a linear 
functional L on E such that L < S on E and infcL = infcS. 

Theorem 3.4 below was essentially proved by Fan-Glicksberg-Hoffman 
(see [6,Theorem 1, p. 618]), and leads to a short proof of the minimax 
theorem proved by Fan in [5] (see [23, Theorem 3.1, p. 17] for details of  
this). Theorem 3.4 follows easily from Theorem 2.8 with E := R "~, 
~.~(~ l ,O. . ,#m)  : :  ].L 1 V . . .  V # ,n ,  j ( c ) :=  (fl(c),...,f,,~(c)) and k(c):= 0. 

Theorem 3.4. Let C be a nonempty convex subset o f  a vector space and 
f , . . . ,  fm be convex real functions on C. Then there exist A1,... , A m >_ 0 
such that A 1 + . . .  + A m = 1 and 

inf[f~ V ... V fm] = inf[A, f l  + "" + Amfm]" 

Let E be a nontrivial Hausdorff locally convex space with dual E*.If  
f E PC(E) ,  the Fenchel conjugate, f* ,  of f is the function from E* into 
( - c o ,  co] defined by 

f*(x*) : =  sup(x*  - f ) .  
E 

It follows easily from the definitions above that, for all y E E, 

f (y)  > su.p(y - f*). (3.4.1) 
E 

It was proved by Moreau in [14, Section 5-6, p. 26-39] that if f is lower 
semicontinuous on E then, for all y E E, we have equality in (3.4.1). If f 
is lower semicontinuous at y E E but not on E then it does not follow that 
equality holds in (3.4. I) (see [26, Remark 3.1 ]). On the other hand, Theorem 
2.8 can be used to find a necessary and sufficient condition for equality to 
hold in (3.4.1) for a given y E E (see [26, Theorem 3.2]). This provides a 
proof of  Moreau's original result with the advantage that we do not have to 
deal with the elimination of  the "vertical hyperplane". 

We now show how Theorem 2.8 leads to a version of  the Fenchel duality 
theorem. 

T h e o r e m  3.5. Let E be a nontrivial Hausdorff  locally convex space with 
dual E*, and f ,  9 E PC(E).  Then 
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there exists z* E E* such that f*( -z*)  + 9*(z*) <_ 0 (3.5.1) 

if, and only if, writing $(E) for  the family of  continuous seminorms on E,  

there exists S E S(E)  such that z, y E E ~ f(x) + 9(Y) + S(x - y) >_ O. 
(3.5.2) 

Proof.  Suppose first that (3.5.1) is satisfied. Then, for all x, y E E, 

( x , - z * ) -  f(x) + ( y , z * ) -  g(y) < f*(-z*) + 9*(z') < O, 

consequently, 

f(x) + g(Y) + (x - y,z*) >_ O, 

and (3.5.2) follows with S :=1 z*l .  Suppose, conversely, that (3.5.2) is 
satisfied. Then we apply Theorem 2.8 with C := E × E, j(x, y) := x - y and 
k(x,y) := f ( x ) +  9(Y), and obtain a linear functional L on E such that 
L < S and 

x,y E E ~ f(x) + 9(y) + L ( z -  y) > 0, 

or equivalently, 

z, y e E ~ ( -L)(x)  - f(z)  + n(y) - 9(y) < O. 

(3.5.1) now follows (with z* = L ) by taking the supremum over x and y. [] 

In the normed case, Theorem 3.5 takes the following form: 

Corol lary 3.6. Let E be a nontrivial normed space with dual E*, and 
f, g E PC(E). Then 

there exists z* E E'such that f*(-z*)  + g*(z*) < 0 (3.5.1) 

if, and only if, there exists M > 0 such that 

x, y c E ~  f ( x ) + g ( y ) + M l l x - y l l  >__ O. 

Corollary 3.5 leads easily to proofs of  thc versions of the Fenchel duality 
theorem and the formula for the subdiffcrential of a sum due to Moreau- 
Rockafellar (see [17, Theorem 3, p. 85]) and Attouch-Brezis (see [1, 
Theorem 1.1, p. 125-127] and [1, Corollary 2.1, p. 130-131]). Yet again, we 
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do not have to deal with the elimination of the "vertical hyperplane". We 
emphasize that Theorem 3.5 and Corollary 3.6 give a necessary and 
sufficient condition for the existence of  the linear functional, and not merely 
sufficient conditions. 

In [19], Rockafellar develops a theory of dual problems and Lagrangians 
that gives a very large number of  results in convex analysis. It was shown in 
[26, Theorem 3.6] how Theorem 2.8 can be used to give an efficient proof of 
[19, Theorem 17(a), p. 41], one of  the main existence results in [19]. 

. A SHARP RESULT ON THE EXISTENCE OF 
LAGRANGE MULTIPLIERS 

This section is about Lagrange multipliers for the constrained convex 
optimization problem outlined below. The main result is Theorem 4.2 which, 
combined with Lemma 4.1, gives a necessary and sufficient condition for the 
existence of  a Lagrange multiplier, with a sharp lower bound on its norm. 
We also show in Theorem 4.5 how Theorem 4.2 implies the classical result, 
with an upper bound on the norm as a bonus. The analysis in this section 
depends only on Theorem 2.8 - -  it does not depend on Section 3 in any way. 

Let (E, II'II) be a nontrivial normed space, C be a nonempty convex 
subset of  a vector space, k: C ~ R  be convex, j: C H E ,  and _ be a 
partial ordering on E compatible with its vector space structure. Let N be 
the negative cone {y E E: y ___ 0}. Suppose that 

Xl,X 2 E C,#~,I~ > 0 ] 
and #1 + #2 = 1] ~ => J(Plxl + #2x2) -< IzlJ(xl) -[- #2j(x2) (4.0.1) 

(i.e., j is convex with respect to -< ), and 

inf k = inf {k(x): x E C, j(x) -'< 0} = #0 E R. 
j-I N 

(4.0.2) 

A Lagrange multiplier for the problem is an element z 0 of E such that 

sup z o < 0 
N 

(4.0.3) 

(i.e., z o is positive with respect to -<), and 

infc[(J(x),z;) + k(x)]-- #o" (4.0.4) 
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Clearly 0 is a Lagrange multiplier ¢* infck _> #o. In order to exclude this 
trivial case, we shall suppose that infck < #0. Let 

A := {x E C: k(x) < #0} and B := {v E C: j(v) -< 0}, (4.0.5) 

where we write j(v)-< 0 to mean that j ( v )E  int N.Yhe above conditions 
imply that A ~ ~. We start off with a simple consequence of  the existence of 
a Lagrange multiplier. 

Lemma 4.1. Let z o be a Lag, range multiplier, and A be as in (4.0.5). Then 

0 < sup # o - k ( x )  < ]lzo II <cx~. 
xea dis t( j (x) ,U) - 

Proof. Let z E A, and u be an arbitrary element of N. Then, from (4.0.3) 
and (4.0.4), 

II j ( x ) -  u IIII Zo II > ( j ( x ) , z ; ) - ( u , z , ; )  > (j(x) ,z~) > #o - k(x) > O. 

Taking the infimum over u E N, 

dist(j(z), N)II zo II > #o - k(z) > O. 

The result follows on division by dis t ( j (x) ,N)  and then taking the 
supremum over x E A. 

[] 
The main result of  this section is the following partial converse to 

Lemma 4.1. 

Theorem 4.2. Suppose that 0 < M := sup Po - k(x) • ~A dist( j(x),N) < cx~. Then there 

exists a Lagrange multiplier z o such that II z0 II <- M. It then follows from 

Lemma 4.1 that M = min {tl zo II: zo is a Lagrange multiplier}. 

Proof. Let S: E H [0, c~) be defined by 

S ( y ) : = d i s t ( y , N ) = i n f ~ e  g I l y - u l l  ( y E E ) .  

It is easily checked from this definition that 

S is sublinear, (4.2. l) 
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s_< I1.11 

and 

on E, 

y E N  =~ S(y)  = 0. 
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(4.2.2) 

(4.2.3) 

The definition of  M gives 

x E A ~ M S  o j (x )  + k(x)  > p,,. 

Since k > _ _ # 0 o n C \ A a n d S > 0  on E, infact  

x E C =~ M S  o j (x )  + k(x) > it0, 

that is to say 

inf [ M S o j + k ]  >_ #o. c 

Let xI,x.~,E C, #1,#2 > 0 and #1 +#2  = 1.Then it follows from (4.0.1) 
that 

j(#ax 1 + #2x2) - #~j(xl) - #~2j(x2) E N,  

and so (4.2.3) implies that j is MS-convex. Thus (4.2.1) and Theorem 2.8 
give a linear functional L on E such that L < M S  on E and 

inf [ L o j + k] = inf [ M S  o j + k] >_ #o. (4.2.4) 
C C 

We now derive from (4.2.2) and (4.2.3) that L E E*, II L I1_< M and 
s u p ~ L < 0 .  Since x E j - I ( N ) ~ j ( x ) E N ~ L o j ( x ) < 0 ,  (4.0.2) now 
gives 

#0 = inf k > inf[L o j + k] _> inf[L o j + k]. 
3-IN .7-1 N 

Thus we have equality in (4.2.4), which gives the required result (with 
z0 = L ) .  [] 

R e m a r k  4.3. At this point, we make some comments about the formulation 
of  the preceding analysis in terms of Lagrangians. Let 
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P := {z* E E*: supuz* _< 0}, 
and define L :  C x T' ~ II~ by L(z,z*):= (j(:c),z*) + k(z). Then z o is a 
Lagrange multiplier exactly when infxceL(z, Zo)= #o. Arguing as in the 
final few lines of  Theorem 4.2, if z* E P then infx~eL(x,z* ) _< #o, so in 
fact 

sup inf L(x, z*) = inf L(x, z o) = #o. 
z" E~P zEC zEC 

In the event that there exists z o E j - iN such that k(xo) = #0 then (zo, zo) is 
a saddle point of  L. See [13, Corolla• 8.3.1, p. 219] for details of  the 
argument. 

We recall from (4.0.5) that B := {v E C : j (v)  --~ 0}. The classical 
sufficient condition for the existence of  Lagrange multipliers is that B ?~ 0. 
(See [13, Theorem 8.3.1, p. 217-218].) This will be improved in Theorem 
4.5. We first give a preliminary lemma. 

L e m m a  4.4 .  
(a) Let x E A,u E N,v E B, 0 < 7/< dist(j(v),E \ N ) a n d a  := [[ j(x)-  u[[. 
Then 

j +~  )~_o. 

(b) Let x E A and v E B. Then 

dist(j(x), U)(k(v)-  #o) -> dist(j(v), E \ N)(~o - k(x) ) > O. 

P r o o f .  (a) I f  a = 0 then j ( x )  = u and so 

J [ ~  +a-v]= ) 

which gives the required result. If  a > 0 then 

-~ (j(z) - u) = ~ < dist(j(v), E \ N) 

and so 



1062 

(j(x) - u) + j(v) • N, 
OL 

from which 

7?j(x) + o~j(v) -< ~u -< O. 

( 4 . 0 . 1 )  now gives 

j '~?z+_~v}_<rl+ ~lj(x)+o~j(v)rl+o~ 
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0, 

II z; II < inf k(v) -  #o 
- ,,cB dist(j(v), E \ N) 

Proof.  Let x • A and v • B. From Lemma 4.4(b), dis t( j (x) ,N) > 0 and 

,o-k(x)  < k(v)-,o 
dist(j(x), N) - dist(j(v), E \ N) 

z o such that 

which completes the proof of (a). 
(b) Let u c N and c~ and 71 be as in (a). Using (a), the convexity of k 

and (4.0.2), we obtain 

~k(x)+o~k(v) kl~X-+---~vl>-#°'~ ~+ 

from which 

~ ( k ( v )  - ~0)  > ,7(~0 - k ( x ) ) .  

If  we now let r / ~  dist(j(v), E \ N) and then take the infimum over u E N ,  
we obtain that 

dist(j(x), N)(k(v) - #o) > dist(j(v), E \ N)(#o - k(x)), 

and (b) follows from (4.0.5). EJ 

Theorem 4.5. Suppose that B ~: ~. Then there exists a Lagrange multiplier 
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Taking the supremum over x E A and the infimum over v E B, 

sup # 0 - k ( x )  < i n f  k(v) -#o  . 
~c-a dist(j(x), N) - ,cB dist(j(v), E \ N) 

The result now follows from Theorem 4.2. 
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[_J 

. EXISTENCE THEOREMS WITHOUT A PRIORI 
SCALAR BOUNDS FOR NORMED SPACES 

The main result in this section is Theorem 5. I. The equivalence of  (5.1.1) 
and (5.1.2) actually first appeared in [23, Theorem 7.2, p. 27-28], and was 
used in [23] to obtain a number of  criteria for a monotone multifunction on a 
reflexive Banach space to be maximal monotone (including Rockafellar's 
"surjectivity theorem", which we revisit in Theorem 6.5), to obtain 
conditions for the sum of  maximal monotone multifunctions on a reflexive 
Banach space to be maximal monotone, and to obtain some results on 
maximal monotone multifunctions of  Gossez's type (D) on an arbitrary 
Banach space. For more information, see the introductions to Sections 5 and 
6 of  [26]. This equivalence was also used in [25] to prove other results on 
maximal monotonicity. We will revisit the least technical of these in 
Theorem 7.4, but this time using Theorem 5.3, obtained by combining 
Theorem 5.1 and 2.8. 

The proof of  the equivalence of (5.1.1) and (5.1.2) given in [23, 
Theorem 7.2] was quite nonconstructive, and a more contructive proof was 
given in [26, Theorem 5.1], together with the bound 

inf~c c [[[ j(c)[] + 4 k ( c ) +  ][ j(c)I[ 2 ] 

on the norm of  [[ y* [[ (see [26, Remark 5.6]). We now give a new proof of  
this equivalence, which relies on the direct Dedekind section argument 
(5.1.6)-(5.1.7) and is much simpler than the proofs given in [23] and [26]. 
Furthermore, as is clear from (5.1.4), the bound 

sup~ec [[] j(c)[[-~]k(c)+ ][ j(c)][2]V 0 

on the norm of  [[ y* [[ found in Theorem 5.1 is sharp. The analysis in this 
section depends only on Theorem 2.8 - -  it does not depend on Sections 3-4 
in any way. 
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Theorem 5.1. Let C be a nonempty convex subset of  a vector space, F be 
a nontrivial normedspace, j: C H F be affine and k C PC(C). Then 

c e c ~ k(c)+ II j(c)112>__ 0 (5.1.1) 

if, and only if, 

3y* E F 'such that c E C ~ k ( c ) - 2 ( j ( c ) , y * )  >-I] Y* ][2. (5.1.2) 

Furthermore, if 

M := s up[[I j(c)[[-4k(c)+ [I j(c)I12 IV 0 (5.1.3) 

then 

min {IVII :  *isas in (5.1.2)} -- M. (5.1.4) 

Proof. Since the values of c in C \ dom k have no impact on (5.1.1), (5.1.2) 
or the definition of M, we can and will suppose that k: C H N. We first 
prove the implication (5.1.2) =~ (5.1.1). Suppose that y* is as in (5.1.2). 
Then 

~ e c  ~ k(~)> 2(j(~),y*)+lly*lr 

k(c) + IlJ(c)ll2 > IlJ(c)ll2 + 2(j(~),y*)+lly'll 2 

k(c) + IIJ(~)ll 2 _> IIJ(~)ll ~ - 211Y(~)lllly.II + liy*ll ~ 

k(c) + IIJ(~)lr -> (llY(c)ll-IlY*II) 2 -> 0 (5.15) 

~/k(~) + IIJ(~)ll 2 _ IIJ(~)ll- Ily'll 

Ily*ll-> IIJ(~)ll- ~/k(~) + IIJ(~)l[ 2, 

(5.1.5) gives (5.1.1) and, since Ily'[I- 0, this also establishes that Ily*ll-> M. 
w e  now prove the implication (5.1.1)o (5.1.2). So suppose that (5.1.1) is 
satisfied. We first show that 
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a,b E C ~ IlJ(b)ll- 4k(b) + IlJ(b)]l 2 

To this end, let 

1065 

< IIJ(a)ll + ~/k(a)+ [IJ(a)ll~. (5.1.6) 

Thus, from (5.1.1) applied to c - - -  

(.)~, 

a,b E C, A > ~/k(a) + IiJ(a)]] 2 _> 0 and # > 4k(b) + ]]j(b)]I 2 _> 0. 

Write a := IlJ(a)ll + A and 13 := ][j(b)]l- p. Then, since j is affine, 

0 <  j[.~-a+~b.l= .#j(a__) +__AA___j(b).I < #llJ(a)ll+ Ailj(b)II _ # a  +Aj3 
- [ # +  # +  - # + , ~  # + A  

#a + Ab 
# + A  E C, and the convexity of k and 

[ ~ + ~ b / + / , ~  +~z/~ < ,k(a) + ~k(b) + , ~  + ~Z ~ 

Multiplying by # + A gives 

0 < #k(a) + Ak(b) + #a 2 + AZ 2 

= #(k(a) + o~ 2) + A(k(b) + ~2) 

= , (k(a)  + ]lJ(a)lr + 2~ ]lj(a)i] + A ~) + ~(k(b) + ]]j(b)l] ~ - 2~ ]]j(b)]l + ,'~) 

< , ( 2 ;  + 2~ ]]j(a)]])+ ~(2~ ~ - 9,  ]]j(b)]])= 2,A(~ + ]lJ(a)ll + ,  - ]]J(b)l]). 

On dividing by 2#A, we obtain IlJ(b)]]- # < ]lj(a)II + A, and (5.1.6) follows 

by letting # ~ 4k(b)+ IIJ(b)lr and A ---* ~/k(a)+ IlJ(a)I] 2. Now (5.1.3)and 
(5.1.6) imply that, for all c E C, 

]IJ(c)] I - 4k(c) + ]]j(c)II '~ _< M and M _< IlJ(c)l ] + 4k(c) + ]]j(c)]l ~ ,(5.1.7) 

from which 
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~ c ~ IIJ(c)ll- M < 4k(c) + IIJ(~)lr 
(llJ(c)ll- M) ~ <- k(c) + IIJ(c)ll ~ 
k(c)+2M j(c) >ML 

It now follows from Theorem 2.8 that there exists L E F ' s u c h  that 
IILII _< 2M and 

k + L o j > _ M 2 o n  C. 

Thus (5.1.2) is satisfied with y* : = - L / 2 .  This completes the proof of  
(5.1.2), and also shows that we can find y* satisfying (5.1.2) with Ily*ll -< M, 
establishing (5.1.4). E3 

R e m a r k  5.2. We note that y* = 0 satisfies (5.1.2) exactly when k >__ 0 on 
C and, in this case, M = 0. In all other cases, M is given by the simpler 
formula 

s~p [llJ(~)ll- Jk(c) + IlJ(~)ll~ ]. 

Theorem 5.3. Let C be a nonempty convex subset o f  a vector space, F be 
a nontrivial normed space, Q: F ~ ~ be sublinear, h: C H F be Q -  
convex, j: C ~ F be affine, k C PC(C) and 

c E C ~ k(c) + Q o h(c) + IIJ(~)ll" -> o. (5.3.1) 

Then there exist a linear functional A on F such that A < Q on F, and 
y* E F* such that 

~ c  ~ k ( c ) - 2 0 ( c ) , ~ * ) + A  o h(~) _> y'l  ~. (5.3.2) 

Proof. Since k + Q o h i s  convex, we first apply Theorem 5.1, with k 
replaced by k + Q o h, and obtain y* E F* such that 

c 

k(~)- 2(j(~),y') + Q o h(~) _> y" ~. 
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The result now follows from Theorem 2.8, with E, S, k, and j replaced by 
F, Q, k - 2y" o j, and h, respectively. El 

6. T H E  F R E E  C O N V E X I F I C A T I O N  T E C H N I Q U E  

The main idea introduced in this section is a technique, the free 
eonvexification technique, which we will discuss in Definitions 6.1 and 6.2, 
Lemma 6.3 and Corollary 6.4. If  we combine this technique with Theorem 
2.8, Theorem 5.1 or Theorem 5.3, we can obtain a large number of  results on 
(or related to) monotone multifunctions on a Banach space. (Specifically, 
Lemma 11.1, p. 41, Lemma 18.1, p. 65-66, Lemma 20.1, p. 77-78, Corollary 
29.2, p. 114, Lemma 36.1, p.141-142, Theorem 38.2, p. 146-147 and 
Theorem 38.3, p. 147-149 of  [23] fall into this category, as well as some of  
the results of  [24] and [25].) These results had been obtained previously 
using the minimax theorem of Fan referred to before Theorem 3.4. Since 
Theorem 2.8, Theorem 5.1 and Theorem 5.3 use the sublinear functional 
(nearly always, a scalar multiple of the norm) directly, this alternative 
method of proof is not only shorter, but it also avoids the need for the 
Banach-Alaoglu theorem, required to establish the compactness needed for 
the minimax theorem. As an illustration, we gave in [26, Theorem 4.1] a 
proof using Theorem 2.8 that a maximal monotone multifunction on a 
normed space with bounded range necessarily has full domain. This result 
can also be established using the Debrunner-Flor extension theorem (which 
depends on Brouwer's fixed-point theorem, see Phelps, [15, Lemma 1.7, p. 
4] and the comments preceding), or the Farkas Lemma (see Fitzpatrick- 
Phelps, [8, Lemma 2.4, p. 580-581]). In Theorem 6.5 of this section, we will 
show how Theorem 5.1 leads to a proof of Rockafellar's surjectivity theorem 
for reflexive Banach spaces, with a sharp lower bound on the norm of  
solutions. For more details, see the discussion preceding Theorem 6.5. In 
Theorem 7.4 of  the next section, we will show how Theorem 5.3 leads to a 
proof of  a more recent result on maximal monotone multifunctions on 
nonreflexive Banach spaces. The analysis in this section does not depend on 
Sections 3-4 in any way. 

Definition 6.1. Let X ~ ~ andS(X) be the direct sum of  X copies of  ~,  
the vector space of  functions #: X H ~ such that 

{z C X: #(z) @ O} is finite. 

Define the injection 6x: X H I~ (xl by 
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i ,  (y = x);  
6x(x) (v)  := 

o, ( v=z ) .  

(R(x),6x) is the free vector space over X. Since 5 x (X) is a Hamel basis o f  

]R (x), if  V is any vector space and f:  X ~ V is any function whatsoever 

then there exists a linear map 9: ll~(X) ~ V such that g o 6 x = f. We define 

CO(X) :=  eO6x(X), the convex hull o f  5x(X ) in ~(x). I f  h = 9 Ico(x) 

then h is affine and h o6 x = f. We call (CO(X),Sx) the free 
eonvexification of X. We can give the following explicit description of  h : 
if  c E CO(X) then there exist uniquely determined a l , . . . , a  m > 0 and 

Xl,..., x,, E X such that ~-~, a i = 1 and c = ~--]-i a f x  (x,). In this case, 

h(c) = ~ ,  o~,f(x,). 

Defini t ion 6.2. Let E be a nontrivial Banach space with dual E*, and 
T: E ~ E* be a multifunction with 

G(T) := {(t,t*): t e E,t* E Tt} --/= O. 

We say that (C, 5, p, q, r)  is an (E, E*, ]~)-convexifieation of T if C is a 
convex subset o f  a vector space, p : C H E, q : C H E* and r: C H lt~ 
are affine, 5: G(T) ~ C with 

C = c o S ( G ( T ) )  (6.2.1) 

and 

(t,t') E G(T) 

P°5(t ,  t l )= t :  

qoS(t , t  ) =  t , 

and  r o 5(t, t*) = (t, t*). 
(6.2.2) 

It is clear from Definition 6.1, applied with V = E, V -- E" and V = ~ in 
turn, that there always exist (E, E*, R)-convexif icat ions o f  T. 
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L e m m a  6.3. Let E be a nontrivial Banach space, T: E ~ E* be a 
multifunction with G(T)?~O, and (C,5,p,q,r)  be an (E ,E* , IR) -  
convexification o f  T. Then T is monotone if, and only i f  

c • C => r(c) >_ (p(c),q(c)). (6.3.1) 

Proof. (=v)  Let c • C. From (6.2.1), c = ~-~' a~5(ti,t~), where 

a l , . . . ,% ,  > 0, ~-']~a i = 1, and (t,,t;),...,(tm,t,*,) • G(T). Then 

r(c)-(p(c),q(c)) = E a, (t,,t:)-(E a, t,,E a t:} 

= E i . j  aiaJ ( t~ , t ; ) -  E i . j  aiaJ (ti , t;) 

=E,,ja, 
= E , < j a , a j ( t , , t 7 - t ; ) +  E ~ < a , a j ( t ~ , t : - t ; )  

= * t* - * E ~ < j a , a ~ ( t , , t ~ - j ) + E ~ < j a ~ a ~ ( t j , t ;  t ,)  

---- ~-~-i<j aiaJ ( ti - tj, ti* - t*j ) _> 0, 

where the final inequality follows from the monotonicity of  T. 
(~=) Let (x,x*),(y,y*) • G(T). Then ½6(x,x*) + ½6(y,y*) • C and so, from 
(6.2.2) and (6.3.1), 

2(x,x*)  + 2(y,y*)  = 2 r o 6 ( x , x * ) +  2roS(y , y* )  

= 4r(½5(x,x*)+½6(y,y*)) 

>_ 4(P(½5(x,x*) + ½5(y,y*)),q(tS(x,x*) + ½5(y,y*))) 

= 4(½P o 5(x,x ')  +½p  o 5(y,y*),½q o 6(x,x*) +½q o 6(V,y*)) 

4(½x ' ' * +-~y ) = ( x + y , x  = + ~ y , ~ x  J * *+y*) .  

It follows from this that T is monotone. 

Corol lary  6.4. Let E be a nontrivial Banach space, T: E ~ E* be a 
monotone multifunction with G ( T ) ~ ,  and (C, 5,p,q,r) be an 
( E, E*, 1R ) -convexification o f  T. Then: 
(a) c • C ~ 4r(c) + (1] p(c)1] + 11 q(c)[I) ~ > 0. 
(b) ( r , r ' ) • G ( T )  and c G C ::v r(c) >_ (p(c ) , r ' )+( ' r ,q (c ) ) - ( ' r , r* ) .  
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Proof.  (a) Let c E C .  From Lemma 6.3, 

4r(c) + (11 p(c)I1+ II q(c)II) 2 ~ (11 p(c)I1+ II q(c)II) 2 + 4(p(c),q(c)) 

-> (11 p(c)II + II q(c)II) 2 - 4  II p(c)III1 q(c)11 

= (11 p(c)II- II q(c)II) 2 _> 0 

(b) Let (r,~-*)E G(T) and c E C. From (6.2.2) and the monotonicity of  
T, for all (t, t*) ~ G(T), 

r (6( t , t* ) ) - (p(5( t , t ' ) ) ,  ~-*)-(-r,q(6(t,t*))) + (T, T*) = 

( t , t ' ) - - ( t , r* ) - - (T , t * )  + ( T , T ' ) =  ( t - -  T,t" -- T*) > 0. 

Thus, from (6.2.1) and the affineness of  p, q, and r, 
~(c)- (p(~), ~*)- (~,q(c)) + (% ~') > o. 

Rockafellar proved in [18, Proposition 1, p. 77-78] that if E is a non-  
trivial reflexive Banach space with dual E* and duality map J: E ::¢ E*, J 
and J-~ are single-valued and T: E ~ E* is a monotone multifunction 
then T is maximal monotone ,~ ',- T + J is surjective. Now (¢=) of the 
above statement fails if J or J-~ is not single-valued (see [23, Remark 
10.8, p. 39] for a discussion of this), while ( 3 )  remains true (see [23, 
Theorem 10.7, p. 38]). It follows from a simple translation argument that, in 
order to prove that T + J is surjective, it suffices to prove that there exists 
y C E such that Ty + Jy ~ O. In Theorem 6.5 below, we give a proof of 
this result with a sharp lower bound on 11 y 11 obtained from Theorem 5.1. 
(See also [23, Theorem 10.3, Corollary 10.4 and Theorem 10.6 p. 36-37] for 
characterizations of  maximal monotonicity that are valid in general reflexive 
spaces with no restriction on J .) We mention parenthetically that the result 
of  Rockafellar mentioned above depends on results of Browder, [3], which 
depend, in turn, on Brouwer's fixed-point theorem. We note for future 
reference that 

* E*: z* (x,x*)}. G(J) = {(z,x ) e E × II z II 2 V II II 2= 

Theorem 6.5. Let E be a nontrivial reflexive Banach space, T: E ~ E* be 
a maximal monotone multifunction, (C, 6, p, q, r) be an (E, E*, ~) - 
convexification of  T and 
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M := ½soup[I[ p(c)[[ + [[ q(c)[]-44r(c) + (][ p(c)[[+ [[ q(c)[[)2 ]VO. (6.5.1) 

Then there exists x e E such that Tx + Jx 9 O, and 

M = min {]] x [[: x E E, Tx + Jx ~ 0}. (6.5.2) 

Proof. Write F : = E x E * w i t h  II(x,x')ll:=llzll+llx'll and, for all 
c E C,k(c):= 4r(c)and j(c) := (p(c),q(c)). It follows from Corollary 
6.4(a) and Theorem 5.1 that there exists y* E F* such that 

y* = sup[i] p(c)]] + ]l q(c)II-x/4r(c) + (I] p(c)II+ II q(c)II) 2 }VO l 
ccC J (6.5.3) = 2M 

and 

c E C => 4 r ( c ) -  2(j(c),y*) >_ II y* II 2. (6.5.4) 

Now we can write y * =  (2x*,2x) for some (x,x*) E E x E * , a n d  
II y* II = 2 II x II v2 II x* II. (This is where we use the reflexivity of E.)  
Dividing (6.5.4) by 4, we obtain 

c E C ~ r ( c ) - (p ( c ) , x* ) - ( x , q ( c ) )  ~11 • II 2 v II x* II 2. 

If now (t, t*) E G(T)and we substitute c = 5(t, t*), we obtain from (6.2.2) 
that 

( t , t * ) cG(T)  ~ ( t , t * ) - ( t , x * ) - ( x , t * ) >  I lx l l2vI Iz* l r ,  

( t - x , t * - x * ) > _  I lx l l2vl lx*l l  2 +(x,z*>. 

N o w  I lx l l ' ~v I l~* l l  2 + ( ~ , ~ * ) >  11~112VI1~*112-11~1111~*11 > 0 ,  and 
so the maximal monotonicity of T implies that (x, x*) E G(T). Substituting 
(t,t*) = (x,z*) yields II z II 2 v II z* II 2 + ( z , z * )  _< 0, from which -x* E Jx. 
Since 0 = z" + (-x*),  it is now immediate that Tz + Jx 9 O, and it follows 
from (6.5.3) that II z II = M. 

Suppose, conversely, that x E E and Tz + Jx 9 0. Then there exists 
x" c Tx such that II z II 2 v II z* II 2 + ( z , z ' >  = 0. Since T is monotone, 
using (6.2.2), 
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(t,t*) e G(T) ( t - x , t * - x * ) > _  I l x l l~v l l x * l l  ~ +(x,x*) 
( t , t*) - ( t ,x*)- (x , t*)>_ IIx I1~ v l l~*  IlL 
r(5( t , t*))-(p(5( t , t*)) ,x ' ) -  (x,q(5(t,t*)),x*) 

-> II x ff v II x* f t .  

It follows from (6.2.1), the affineness of  p, q and r on C and the fact that 
II z" I1=11 z II that 

c e C  ::~ r(c)-(p(c) ,x*)-(x,q(c))>_ I l z l l ~ v l l z  * II ~ 

~(c)+ II p(c)IIII x" II + II • IIII q(c)II >- II • II ~ v II ~" II ~ 

r(c) + ( +  II q(c)II)II z II > II x II ~ . 

Or completing the square, we obtain that 

c E C  => I ix11>1111p(c)[ l+] lq(c) l l -44r(c)+( l lp(c) l l÷l lq(c)11)  2 1" 

Since II x [I ~ 0, it is immediate from this that II z 11 ~ M, completing the 
proof of  Theorem 6.5. [] 

Remark  6.6 It was shown by ZAlinescu that the existence of  x E E such 
that Tx + dx ~ 0 in Theorem 6.5 can also be established by an argument 
using the Fitzpatrick function on E × E* (see [7]), a technique due to 
Burachik and Svaiter (see [4]), and the Moreau-Rockafellar formula for the 
subdifferential of  a sum, though it is not clear that this argument leads easily 
to a sharp lower bound on II z II • See [27] for details. 

7. T Y P E  (D)  I M P L I E S  T Y P E  (FP)  

In Theorem 7.4 of  this section, we show how Theorem 5.3 and the free 
convexification technique introduced in Section 6 lead to a proof that every 
maximal monotone multifunction of type (D) on a (possibly nonreflexive) 
Banach space is of type (FP) (i.e. locally maximal monotone), thus settling a 
question that has been open for some time. Yet again, the analysis in this 
section does not depend on Sections 3-4 in any way. 

We now proceed to the definitions of the terms introduced above. In 
order to define maximal monotone multifunctions of type (D), we must 
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introduce a concept due to Gossez: if W: E ~ E*, we define the 
multifunction W: E** ~ E* by: 

x* E W--x** < ',- inf(w,w.)ea(w) (w* - x * , ~ -  x*') _> O, 

where ~ is the canonical image of w in E**. In what follows, 
R(w) := 

Definition 7.1. Let W: E ~ E* be maximal monotone. W is said to be of  

type (D) if, for all (x**, x*) E G(W), there exists a bounded net { (w~, w.~)} 

of elements of G(W) such that 
(w-'~,w;)-~ (x**,x*) in w(E**,E*)×~II(E*), 

where ~ II(E*) is the norm topology of E*. Clearly 
• if E is reflexive then every maximal monotone multifunction 

W: E ~ E* is of  type (D). 
It was essentially proved by Gossez in [10] (see Phelps, [15, Theorem 3.8, p. 
221] for an exposition) that 

• if  W is maximal monotone of  type (D) then R(W) is convex. 
It was proved by Gossez in [10, Th6or6me 3.1, p. 376-378] that 

• if f: E H (-co,  col is proper, convex and lower semicontinuous 
then Of: E ~ E* is maximal monotone of type (D). 

Definition 7.2. A monotone multifunction W: E ~ E* is said to be of type 
(FP) or locally maximal monotone provided the following holds: for any 
open convex subset U of E* such that U M R(W) :~ ~, if (v, v*) E E × U 
is such that 

(w,w*)EG(W)andw* E U  ~ ( w - v , w * - v ' ) > _ O  

then (v, v*) E G(W). (If we take U = E*, we see that every multifunction of  
type (FP) is maximal monotone.) It was proved by Fitzpatrick and Phelps in 
[8, Proposition 3.3, p. 585] that 

• if E is reflexive then every maximal monotone multifunction 
W: E ~ E* is of  type (FP). 

It was proved by Fitzpatrick and Phelps in [8, Theorem 3.5, p. 585] that 
* if W is maximal monotone of  type (FP) then R(W) is convex. 

It was proved in [22, Main theorem, p. 470] and [23, Theorem 30.3, p. 120] 
that 

• /f f: E H ( -co ,oo]  is proper, convex and lower semicontinuous 
then Of: E ~ E* is maximal monotone of type (FP). 
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Finally, it was proved by Fitzpatrick and Phelps in [9, Theorem 3.7, p. 67] 
that 

• if W is maximal monotone and R(W) = E* then W is of  type (FP). 

Most of the work for Theorem 7.4 will be done in the rather technical 
Lemma 7.3, below. 

Lemma 7.3. Let E be a nontrivial Banach space, S: E ~ 1~ be sublinear, 
T: E ~ E 'be  monotone and such that, for some 7* E R(T) and c > 0, 

Write 

x E E = ~  ,s'(:~) _> (x,7-*) + ~ II x II. 

B : = { x *  E E * : x *  < S o n E } .  

Then there exists (z*,z**,y**) E B x E** × E**sueh that 

inf ( t ' - z ' , [ - z ' * + y * * ) >  IIz*li~vllz**II2+(z*,z**)+] 
(t,t*)eG(T) ~ 

sup(B-z*,y '*)>_O. J 

(7.3.1) 

(7.3.2) 

- 1  * Proof. We fix 7 -ET 7-, and then write M : =  117- [[ V [] 7-* 11 and 
N := 3M2/e. Now let (C,6, p,q, r) be an (E,  E*, ~ )-convexification of 
T and D := C x E × B. We first prove that, for all (e, x, x* ) E D, 

r(c) + S(x) + U [[ q(c) - x* [[ +¼(11 p(c) + x [[ + [[ q(c)II) 2 _ 0. (7.3.3) 

So let us suppose that (c, x, x* ) E D. If II z I1_< N then, from Lemma 6.3 and 
the definition of D, 

r(c) + S(x) + g II q(c)-  x* II +¼(11 p(c) + z II + II q(c)II) 2 

>_ r(c) + (x,x*) + N II q(c) - x* II + II p(c) + z IIII q(c) II 

>_ r(c) + (x,x*) + (x ,q(c)-  x ' ) - ( p ( c )  + x,q(c)) 

= r ( c ) -  <;(c),q(c)) _> o, 

which gives (7.3.3). Suppose, on the other hand, that [[ x ]1 > N. Then, from 
(7.3.1), 
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s ( z )>_(x ,<)+e l l x l l  _>(x,T*)+ZM 2, 
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(7.3.4) 

and, from Corollary 6.4 (b), 

r(c) >_ (p(c), T*) + <T, q(c)) -- <T, T') _> <p(c), 7") -- M II q(c) II -M2.  
(7.3.5) 

Using (7.3.4) and (7.3.5), we have 

r(c) + S(x) + +(11 p(c) + x II + II q(c) II) 2 
>_ [(p(c), T * ) -  M II q(c)[[-M 2 ] + [(x, T*) + 3M 2 ] + 

%[11 p(c) + x II 2 + II q(c)II 2] 
= 2M 2 + (p(e) + x, r * ) -  M II q(c)II +% II p(c) + x II 2 +% II q(c)II 2 

_> 2M 2 - M II p(c) + x I I -M [I q(c)II +% II p(c) + x 112 +% II q(c)II 2 

= (½ II p(c) + z II-M) 2 + ({  II q(c ) I I -M)  2 -> 0, 

and (7.3.3) 
normed by 

II(x,x*)ll := I lz l l+ l lz* l l ,  

and define, Q: F H R, h: D H F, 

Q(x,x*) := S(x) + N II x* II, 
h(c,x,x*) := (x,q(c)- x'), 

j(c,x,x*) :=½(p(c)+  x,q(c)), 

and 

follows, since N[I q(c)- x* II ~ o. Write F := E x E*, 

j: D ~ F  andk:  D H N  by 

((~,~*) e F) 
((c,x,x* E D) 

((c,x,x* e D) 

k(c,x,x')  := r(c). ((c,x,~* 

We note then that (7.3.3) can be written in the form 

eD)  

(c,x,x*) e D ~ k(c,x,x*) + Q o h( c,x,x*)+ ]l j(c,x,x*) [[2> O. 
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We now apply Theorem 5.3 with C replaced by D, and obtain a linear 
functional A on F such that A _< Q on F, and y* E F*, such that 

(c,x,x*) C D ~ r (c ) - ( (p (c )  + x,q(c)) ,y*)+ A(x , q ( c ) -  x ')  _> IlY* II 2. 

Now there exists (z*,z**) E E* x E** such that y* = (z*,z**). Furthermore, 
the form of Q implies that there exist a linear functional L on E such that 
L < S on E, and y** E E** with II y** II --- N such that A = (L, y**). 
Consequently, 

( c , x , z * ) E D  

r ( c ) - ( p ( c ) +  x , z * ) - ( q ( c ) , z ' * ) + L ( x ) + ( q ( c ) - x * , y * * )  _> Ily" II 2 

¢* (L - z*)(x) + r(c) - (p(c),z*) - (q(c),z** - y**) - (x*,y**) _> IlY* II ~ 

thus, adding (x*,y**)to both sides of the above, and then taking the 
supremum over z* E B, 

(c,x) E C x E ~ ( L -  z*)(x) + r (c ) - (p (c ) , z* ) - (q (c ) , z**  - y**) _> 

Ily" II 2 +sup (B ,y* ' ) .  

For the moment fix c. It follows by taking the infimum over x E E that 
L = z*, thus z * <  S on E, and so z*E B, as required. Substituting 
L = z* in the above, we have 

c e C ~ r (c ) - (p (c ) , z* ) - (q (c ) , z**  -y**) > Ily* II 2 +sup(B,y**) .  

It follows by taking c = ~(t, t*) and using (5.2.2) that 

( t , t * ) cG(T)=v  ( t , t * ) - ( t , z * ) - ( t * , z * * - y * * ) - >  Ily'll 2 +sup (B, y** ) . 

( t ' -  z',Z + y'*)-(t',z**) -> Ily* II 2 + s u p ( B -  z',y"). 

We obtain the first inequality in (7.3.2) by adding (z*, z**)to both sides of 
the above and observing that II y* 112=11 z* I]2v II z** II 2, and the second 
inequality follows since 

IIz* II 2 v II z** II 2 + (z ' , z ' * )  _>llz" II 2 v II z** II 2 - I Iz*  IIII z** 11_>0(7.3.6) 
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and 

s u p ( B -  z',y*') >_ (z* - z',y'*) >_ O. (7.3.7) 

This completes the proof of  Lemma 7.3. [] 

Theorem 7.4. Let W: E ~ E* be maximal monotone of type (D). Then 
W is of  type (FP). 

Proof. Let U be an open convex subset of  E* such that U fq R(W) --/: ~J and 
(v, v*) E E × U be such that 

(w,w*)EG(W)andw" EU ~ ( w - v , w ' - v ' ) > _ O .  

We want to prove that (v,v*)E G(W). Now define T: E ~ E* by 
G(T) := G(W) i (v ,v*) .  Further, writing V := U - v*, we have that V is 
an open convex subset of  E* such that V 9 O, V A R(T) ~ ~ and 

(t,t ') ~ G(T) and t* E V ~ (t,t*) >_ 0 (7.4.1) 

and now what we must prove is that 

(0, 0) E G(T). (7.4.2) 

We first find T* E V M R(T) and choose e > 0 so that 

[O,~-']+{z*eE': I1~'11 _<~}cv. 

We define the sublinear functional S: E ~ R by 

,.9(x) := (x,-,-') v o +  ~ II x II, 
and B as in Lemma 7.3. It is then easy to see that 
B = [ 0 , T * ] + { x * E E * :  Ilx*ll < e } c V .  Lemma 7.3 then gives us 
(z*, z**, y**) E B × E** × E'*, such that 

inf ( t * - z * , t - z * *  + y " )  > 
(t,t*)cG(T) • 

II z* II = v II z** II ~ +(z* ,z** )  +1 
[ s u p ( B -  z*,y**) > O. (7.3.2) 
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It follows from this that (z** - y**,z*) E G(T). Since W is of type (D), the 
same is true of T and so there exists a bounded net {(tv, tv)} of elements of 
G(T) such that (~,t;)-~(z**zg**,z*) in w(E**,E*)x (E*). This 
lmphes that (t~ - z , t~ - z + y ~ 0, ~11 II " " ~ * ( t , t*)=(t~, t~)  
and passing to the limit in (7.3.2), ) and so putting 

o_> IIz* II 2 v l l ~ * *  II 2 + ( z * , z * * ) + s u p ( B - z * , y ' * ) .  

(7.3.6) now implies that 

0 _> s u p ( B -  z*, y " ) ,  (7.4.3) 

and (7.3.7) that 

0 2 II z* II 2 v II z*" I1" +(z*,z**). (7.4.4) 

Since B D {x* E E* :  II x* II ~ c}, (7.4.3) gives 

(z*,y**) ~ sup(B,y**) 2 ~ II Y** I1. (7.4.5) 

Z* Now z* E B c V  and t.~---, in ~I I (E*) ,  so by truncating the net 

{(t~,t.~)} if necessary, we may suppose that, for all % t~ E V. Using 
¢^) ( ' )  (7.4.1), we now derive that, for all 7, ~,U = t~,t~ >_ O. Passing to the 

limit in this, (z*,z**-  y**)_> 0 and, combining with (7.4.5), we obtain 
(z*,z**)>_elly** It .If we now substitute this into (7.4.4) we obtain 
0>_ [[z*[[ 2V[[z**I] 2 +e[[y**]], hence z* = 0  and z** =y** = 0 .  

Substituting back into (7.3.2) yields inf(t.t.)ea(r)(t* - 0 , t ' - 0 )  _> 0, that is to 

say, 

inf ( t - O , t *  - O )  > O. 
(t,t*)EG(T) " 

Since T is maximal monotone, this gives (7.4.2) and completes the proof of 
Theorem 7.4. [] 

We note that it was proved in Bauschke and Borwein [2, Theorem 4.1] 
(see also [16, Theorem 8.1, p. 327]) that every continuous single-valued 
linear maximal monotone multifunction of type (FP) is necessarily of type 
(D). However, we do not know the solution to the following problem: 
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Problem 7.5. Is every maximal monotone multi function of type (FP) 
necessarily of type (D) ? 

. AN EXISTENCE THEOREM WITHOUT A PRIORI 
SCALAR BOUNDS FOR SUBLINEAR 
FUNCTIONALS 

We note that (5.1.1) can be written i n f c [ k + ~ b o S o j ] > _ O  , where 
¢ : R ~ - - ~ N  is defined by ¢:=(.)2 and s:=ll,ll,  and i n f c [ S o j + k  ] in 
(2.8.1) can be written infc[k + ~b o S o j ] ,  where ¢ : ~ ~ N is defined by 
~b:= (.). Thus it is natural to ask whether there is a result that 
simultaneously generalizes Theorem 2.8 and Theorem 5.1. Theorem 8.1, 
which is such a result, is the topic of this section. The equivalence of (8.1.3) 
and (8.1.4) was first proved in [26, Theorem 5.4] using a rather technical 
product space argument and giving a weaker bound on N than that given 
here. We give here a new proof of this equivalence, which relies on the 
much simpler Dedekind section argument (8.1.7)-(8.1.11). Furthermore, as 
is clear from (8.1.6), the bound on N found in Theorem 8.1 is sharp. We 
refer the reader to [26, Remarks 5.5 and 5.6] for the details of how Theorem 
8.1 implies Theorem 2.8 and Theorem 5.1. 

We first discuss the conditions (8.1.1) and (8.1.2) on the function ¢ .  
(8.1.1) is to ensure that the quantity M defined in (8.1.5) is finite, while 
(8.1.2) is needed in (8.1.8). Of course, (8.1.1) is automatically true if ¢ is 
real-valued, as is the case with the two examples mentioned above. As for 
(8.1.2), if ¢:=(.), ~/, is increasing on N and so (8.1.2) is automatic while, if 
¢ := (.)2 and S :--II II, (8.1.2) is true since 

S o j(c) <_ "7 ~ S o j(c), "7 E [0, c~) 
and ¢ is increasing on [O, cx~). (We note that (8.1.1) was described in [26] 
by saying that ¢ is "S, j-  compatible".) 

Theorem 8.1. Let C be a nonempty convex subset o f  a vector space, E be 
a nontrivial vector space, S : E H N be sublinear, j : C ~ E be 

S-convex ana k E 7:'C (C). Let ¢ E 7~C (R) satisfy 

(S o j(dom k) + (0, c~)) M d o m ¢  ¢ 0 (8.1.1) 

and 
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c E C  a n d S o j ( c ) < _ ' 7 ~ o S o j ( c ) < ¢ ( ' 7 ) .  (8.1.2) 

Then 

k + ¢ o S o j > o  on C (8.1.3) 

if, and only if, 

there exist N >_ 0 and a linear functional L on E such that] 

L < NS on E and k + L o j > ~,*(N) on C. I (8.1.4) 

Furthermore, if 

M := sup k(c) + ¢(S  o j(c) + #) V 0 (8.1.5) 
cC:C,l~<O # 

then 

min {N: N is as in (8.1.4)} = M. (8.1.6) 

Proof.  Suppose first that (8.1.4) is satisfied, from which ~b'(N) E IIL Then, 
for all c E C and u E ~,  

k(c) + g,(S o j(c) + u) > k(c) + N(S  o j(c) + u) - ~* (N) 

= k(c) + NS o j ( c ) -  ¢* (g)  + g u  

> k(c) + L o j(c) - ¢* (U) + Uu > Nu. 

If  we put u = 0 in this, we obtain (8.1.3). On the other hand, we also derive 
that 

c E C  a n d # < 0  ::* k ( c ) + ¢ ( S o j ( c ) + p ) < _ N  
# 

and, since N _> 0, this also shows that N > M. Suppose, conversely, that 
(8.1.3) is satisfied. We first show that 
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a,b E C a n d #  < 0 < A =¢- 
k(b) + ¢(5" o j(b) + p) < k(a) + ¢(S o j(a) + A) 

# - A 

(8.1.7) 

To this end, let a, b E C a n d p < 0 < A .  Write a : = S o j ( a ) + A  and 
/3 := S o j(b) + #. Then, from the S-convexity of  j and the sublinearity of  
S, 

5 ' o 3  . ~  < 5 '  - L A - #  
AS o j ( b )  - # S  o j ( a )  A/3 - # a  < 

A - #  A - #  

Thus, using (8.1.2) with 

Ab - #a A/3 - # a  e : = - -  and "y:= 
A - #  A - #  

(8.1.3) and the convexity of  k and ¢ ,  

_ _ ~ . 2 ~  ,(8.1.8) 

and (8.1.7) follows on multiplication by A - # > 0 and substituting in the 
values of  a and/3. From (8.1.2) and (8.1.3), for all c E C and A > 0, 

k(c) + ¢(S  o j(c) + A) > 

A - A 
k(~) + ¢ o 5' o j(~) > o, (8.1.9) 

and (8.1.1) provides a E dom k and A > 0 such that 

S o j(a) + A E d o m e ,  

from which 

k(a) + ¢(5" o j(a) + A) 

A 
< cx). (8.1.10) 

(8.1.7) and (8.1.10) imply that M E [0,oo), and (8.1.7) and (8.1.9) that, for 
a l l c E C  and # < 0 < A ,  
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k(c) + g,(S o j(c) + I.t) <_ M < k(c) + ¢ ( S  o j(c) + A) (8.1.11) 
# A 

Combining this with (8.1.3), we obtain 

c E C a n d u c ] R  =v k(c)+¢(Soj(c)+u)>_Mu 
** k(c) + M S  o j(c) >_ M ( S  o j(c) + u) - ¢(S o j(c) + u). 

Taking the supremum of the right-hand side over u E N: shows that 

c E C ~ k(c) + M S  o j(c) > ¢*(M)  

and (8.1.4) (with N replaced b y M )  now follows from Theorem 2.8. This 
completes the proof of Theorem 8.1 

Variational Analysis and Appls. 
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CONCRETE PROBLEMS AND THE GENERAL 
THEORY OF E X T R E M U M  

V.M. Tikhomirov 
Moscow State University, Moscow, Russia 

. I N T R O D U C T I O N  

Mathematics consists of general theories and concrete facts. In the books 
[1]-[5] (written by myself in cooperation with my colleagues and students) 
general concepts and principles on which the general theory of extrema is 
based are accompanied by solutions of many concrete problems. In this 
paper intercommunication between general principles and concrete problems 
will be illustrated by the example of the so-called Landau-Kolmogorov-type 
inequalities on the real line and the half-line. These problems are discussed 
in my papers [6]-[8] (written jointly with A. Buslaev, G. Magaril-II'yaev, 
and A. Kochurov). 

Extremal problems are formulated initially in terms of the science or the 
field of applications which gives rise to them, i.e., in terms of engineering, 
physics, geometry, etc. In order to provide for their mathematical treatment, 
one has to translate them into analytic terms. Such translation is called 
formalization. 

To formalize an extremal problem, one has to specify a function f 
(along with its domain of definition X ,  f : X --~ ~,= ~, u +~ ) to be 
minimized or maximized, as well as a constraint C o X .  As a rule, 
constraints are specified by equalities and inequalities. 

The problem: "minimize (maximize) f under the constraint C "  is 
written as 
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f ( x )  ---> min (max), x e C. (P) 

When writing f(x)---> extr we mean that both the problems for maximum 
and minimum may be considered. 

The theory of  extremum consists of the following four parts: necessary 
conditions for extremum, perturbations of  the problem and sufficient 
conditions, existence, and algorithms. The principal parts of  the 
mathematical basis for the whole theory are calculus and convex analysis, as 
well as non-smooth calculus, actively developed nowadays. 

. L A N D A U - K O L M O G O R O V  I N E Q U A L I T I E S  

• Here we set up a family of concrete problems which will be considered 
as a testing ground for the general theory of extrema. 

Landau-Kolmogorov-type inequalities on the line and the half-line have 
the following form: 

| - a  

I x,*,(.) <_ gllx(.)ll7,(  , 
( 1 . 1 )  

n _ k _ r  -| +q-| 
T = R o r • ÷ ,  a =  >0, 

n _  r -~ + p-~ 

where n ~ N,k ~ Z+ = N w {0}, 0 < k < n -  1, 1 < p , q , r  < oo. Inequalities 
(1.1) are considered in the space W~(T) of functions x(.)~ Lr(T) with 
(n - 1) th derivative locally absolutely continuous on T and x (") (.) ~ L, (T). 

For fixed T inequalities (1.1) depend on five parameters: n ,k ,p ,q , r .  
We denote the best possible constant in this inequality by K r (n, k, p, q, r). 

The first work dealing with such a problem is due to E. Landau (1913) 
who proved that KR.(2,1,oo, oo,oo)= 2.  Kolmogorov (1938) determined the 
constant KR(n,k, oo, oo,oo ) for n > 2,0 < k < n.  This result remains the most 
remarkable one for this type of  problems, and this is the reason why the 
exact inequalities of  type (1.1) are often called Kolmogorov or Landau- 
Kolmogorov inequalities and the constant Kr(n ,k ,p ,q , r  ) is called the 
Kolmogorov constant. 

The determination of  the Kolmogorov constant is equivalent to the 
following problem: 

max, IIx(.)llL ,,, Y,, Lr,,, Y=' (1.2) 
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where 3'1 and 3'2 are arbitrary positive numbers. Such problems are called 
isoperimetrical ones. 

. T H E  L A G R A N G E  P R I N C I P L E  F O R  N E C E S S A R Y  
C O N D I T I O N S .  

In solving the problems (1.1), (1.2) and others we will use a unified 
approach which we call the Lagrange principle. It may be formulated as 
follows: to solve an extremal problem with constrains, construct the 
Lagrange function of the problem, then write down the necessary 
condition in the similar problem on the extremum of  the Lagrange 
function "as if the variables were independent" (in Lagrange's own 
words), and finally investigate the relations thus obtained. This idea is 
the main principle of the first part of the theory of extremal problems. In 
this section we demonstrate its application to some important classes of 
extremal problems. 

2.1 P r o b l e m s  w i t h o u t  const ra ints .  

The simplest extremal problem is a problem without constraints 

f (x) ~ extr. (Pl) 

The first general method of solving (smooth) problems (P~) in case of 
one variable was described by P. Fermat (even before calculus was 
developed). In the modem language it reads: the main linear part of  the 
increment of  f at an extremum point equals to zero. In this form it remains 
valid also in the infinite-dimensional case: if ~2 is a local minimum point of  a 
function f differentiable at the point 2c then the following equality holds: 

f ' ( J ) = 0 .  (2.1) 

2.2 T he  s imples t  p r o b l e m  o f  the  ca lcu lus  o f  var ia t ions .  

After Fermat the theory of extremum made a sudden transition from one 
variable to infinitely many variables. This happened in 1696 when 
J. Bernoulli stated the problem on brachistochrone, where the argument was 
an infinite-dimensional object, viz., a smooth curve joining two given points 
of the plane. Later J. Bernoulli proposed to his student L. Euler to find a 
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general approach to problems of  brachistochrone type. Euler summarized his 
results in the memoir "Methodus inveniendi..." published in 1744. 

Euler considered the problem 

f~' L(t,x(t),ic(t))dt ~ extr, z(to) = z o, z(ta) = x~, ( 5 )  

which is referred to as the simplest problem of the calculus of variations. 
Here L = L(t, x, y) is a function of  three variables called the integrand of the 
problem. A necessary condition for extremum at 2(.) in the problem (P2) is 
the following Euler's equation: 

+Lx=O - + Lx(t, Yc(t),x(t)) = 0. (2.2) 

2.3 T h e  L a g r a n g e  m u l t i p l i e r s  rule .  

A general principle for investigation of  problems with constraints was 
first stated by J.L.  Lagrange. In his book "Th6orie des fonctions 
analytique", Paris, 1813, he wrote: 

" On peut les r6duire b. ce principe g6n6rale. Lors qu'une fonction de 
plusieurs variables doit ~tre un maximum ou minimum, et qu'il y a entre ces 
variables une ou plusieurs 6quation, il suffira d'ajouter b. la fonction 
propos6e les fonctions qui doivent 6tre nulles, multipli6es chacune par une 
quantit6 ind6terminee, et lb. chercher ensuite le maximum ou minimum 
comme si les variables 6taient ind6pendanbes; les 6quation qu'on trouv6es 
serviront b. d6terminer toutes les inconnues." 

Lagrange considers here a finite-dimensional problem 

f0 (x) ~ extr, f (x) = 0, 1 < i < m, A = (A 0 . . . . .  "~m)"  (P3) 

His idea is as follows: compose the function £ ( x , A ) = S "  A f ( x )  (we Z,,,.ai=0 i d  i ". ~" 

somewhat change Lagrange's formulation multiplying the functional itself 
by an indefinite factor too) and write down the necessary condition in the 
problem without constraints £(x,k)---~extr, i.e., apply equation (2.1) to 
obtain the relation 

m 

= 0 = o. ( 2 . 3 )  
i=0 
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(The function £(x, X) is called the Lagrangefunction, while the numbers 
{X~}i~ 0 are the Lagrange multipliers.) The result is as follows: if the problem 
(P3) satisfies some smoothness conditions then equality (2.3) holds at a 
local extremum point 2¢. This result is referred to as the Lagrange 
multipliers rule. 

Lagrange himself applied the idea of  elimination of  constraints by means 
of the Lagrange function (not only in finite-dimensional problems, but also 
in problems of  calculus of  variations) at least since 1750-th. 

In the books [1]-[5] me and my co-authors tried to demonstrate the 
universal applicability of  (somewhat extended) Lagrange's approach, 
according to which a meaningful necessary condition in a problem with 
constraints can be obtained by writing down the Lagrange function and 
deriving then the necessary condition for its extremum "as if the variables 
were independent". (In [1]-[5] this approach is called the Lagrange 
principle.) 

We illustrate the application of the Lagrange principle by two examples. 

2.4 Lagrange's problem in calculus of variations. 

Consider the problem: 

f £ '  f( t ,z(t) ,u(t))dt  ~ ~ = ~o(t,:c,u), :c(to) = :co,z(tl) = extr, Xl~ 

where x e IR", u e IR ~ , f is a function of n + r + 1 variables and q9 is an n - 
dimensional vector function of the same variables. The variables x are 
called the phase variables, and u are the control. The problems of  the form 
(P4) are called the Lagrange problems of  calculus of  variations. Let us 
apply to them the Lagrange principle. 

The Lagrange function here has the form 

L = / ] ' L ( t , z ,  Jc, u)dt, L =  Xof(t,:c,u)+ p(t).(:~-qn(t,:c,u)) 

(and it has been written in this form since Lagrange's time). 
Obtaining the necessary condition in the problem for extremum of 

Lagrange's function without constraints reduces to writing down the Euler 
equation in x and u. As a result, we arrive at the equations 

d 
- - - L ~  + L x = O, L,, = O, (2.4) 

dt 
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In the second case we get the problem 

f ~  L(t,~,(t),~(t),u(t))dt ---+ min in u(.), (P~) 

with u(t) ~ U. It is easily seen that (under very mild assumptions) a criterion 
for minimality of z?(.) has the form of the following "minimum principle": 

min L(t, Yc(t), x(t), u) = L(t, it(t), ~(t), h(t)). 
uEU 

(2.5') 

Changing signs we arrive at the form in which a necessary condition for the 
problem (P~) was stated by Pontryagin's school: 

max (p (t). q)(t, ~(t), ~(t), u) - X 0f(t, J(t), x(t), u)) = 
uc~U 

max(p(t) • (,o(t ,.~(t), x(t), h(t)) - Xof(t, 2(0, x(t), h(t)). 
u~U 

(2.5") 

The combination of relations (2.5) and (2.5") is known as Pontryagin's 
maximum principle. 

An application of the maximum principle to the simplest variational 
problem leads to Legendre's and Weierstrass' necessary conditions, while its 
application to the second variation of the functional yields Jacobi's 
necessary condition. 

The Lagrange principle will be the main device in the subsequent 
treatment of concrete problems. 

. T H E  L A G R A N G E  P R I N C I P L E  A N D  L A N D A U  - 
K O L M O G O R O V  I N E Q U A L I T I E S .  

• Now we begin to treat concrete problems on inequalities for derivatives 
of Landau-Kolmogorov type (see (1.1)) applying the Lagrange 
principle. 

In all cases we proceed according to the following scheme: 
1. Formalization of the problem. 2. Application of the Lagrange principle 

to the problem. 3. Investigation of the equations and/or inequalities resulting 
from the Lagrange principle. 4. Statement of the final result. 

As a rule the investigation of necessary conditions leads to an identity 
(usually we call it the general identity). We obtain it heuristically, but after it 
has been obtained the identity can be verified directly. 
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3.1 Example .  

Let us begin with the simplest situation: T =II~÷, p = r  = 2, q =oo, 
k = 0 ,  n = l .  This example is connected with the names of  two 
mathematicians: B. Sz.-Nagy who found the Kolmogorov constant 
Ks. (1, 0, p, q, r) for arbitrary p ,q  and r ,  and V.N.  Gabushin who 
investigated the case p = r = 2,  q = oo, n e 1~, 0 < k < n.  

1. Formalization. 

x(O)--~ max, f a  x2(t)dt <_ 52 , f~  22(t)dt <_ 1. (i) 
4. 

This is an isoperimetric problem of  the calculus of  variations. 
2. Lagrange principle. The Lagrange function of  the problem (i) is 

£(x(.),X) = -Xox(O ) + klfR+ x2(t)dt + X2fR, 22(t)dt, 

where X = ( k 0 , k l , k z ) ,  k i >0,  i=0 ,1 ,2 .  
According to the main idea of  Lagrange we have to use the Fermat 

theorem for the extremum of  the Lagrange function "as if the variables were 
independent", i.e., for the problem 

E(x(.),X) = -kox(O ) + x, f k  ' x2(t)dt + X2f~, 22(t)dt -~ min. 

Hence (denoting by J(.) a solution of the problem (i)) 

L~(.) (~(.),),) = 0 ¢ ,  

--)~oX(O) -4- 2~kl ~R. ~ 2, (tyc(t)dt O, Vx(.). (/0 ~,(t)x(t)dt + 2X~ R~ = 

Integrating by parts we obtain the Euler equation and the transversality 
condition (the Euler equation could be obtained directly, see (2.3) : 

-2X z ~(t) + 2X,J(t) : 0, 2X z ~(0) = -X 0. (iii) 

3. Investigation. All Lagrange multipliers are positive (for example, if 
)k 2 = 0 then X, = X 0 = 0, which is impossible). So we can put X 0 = 1. The 
general solution of the Euler equation vanishing at infinity has the form: 
x(t,C, Xt,X~)=Cexp(-X~/X~t ). We determine C, Xj,X 2 from the 
isoperimetrical conditions: 
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C2f~,exp[-2~-~)~t} )~C2f~)~ R, exp[-2~t]d t=l  

and the transversality conditions: 2 X 2 x ( 0 ) = - l .  Therefore we obtain: 
2(t) = x / ~ e x p ( - t / 6 ) ,  X, = (28) -3/2 , ;k 2 = 2-' (6/2) ./2 . Substituting J(.),  h , ,  
and h 2 in (ii) me obtain the general identity: 

1 z(O) = -~ fR+ e-'/Sz(t)dt - /~ ,  e-t/82(t)dt. 

It is easy to verify (integrating by parts) that this identity holds true for all 
x(.)~W2~¥(_~÷). From the Cauchy-Bunyakovskii inequality we have 
Ix(0) I -< 426 for all admissible x(.) in the problem (i), and for .~(.) we 
have the equality: l J(0)1= ,4 t~ .  Thus 

4. The function J(.) -- .~(., 6) is the solution of the problem (i) and 
K~(1,0,2,oo,2) = .~(0,1) = x/-2. 

Our reasoning here was heuristic, so, without justifying that X 0 is non- 
zero, we will put X 0 to be some fixed number (usually 1 or 1/2). Moreover, 
we had no need deduce the Euler equations and transversality conditions as 
in the example. We could use directly the relations of  Section 2 and then 
write down the general identity. In all cases this identity may be derived as it 
was done in the example. This appointment gives the possibility to solve 
almost all problems of type (1.1) (see [7] - [8]). We will comment this in a 
few words. 

3.2 P r o b l e m s  o f  smal l  s m o o t h n e s s .  

The largest amount of  exact solutions were obtained for the cases when 
n = 1 or 2. It was found about twenty such solutions, and the most part of  
them can be derived in a routine manner based on an application of the 
Lagrange principle (in a similar way to Section 3.1). We will describe briefly 
some arguments helpful in obtaining the solution. (The case of small 
smoothness is exposed in more detail in the book [4] and the paper [8].) 

For n = 1 the integrands of  the isoperimetric problem do not depend on 
the independent variable, hence they admit the energy integral, which yields 
integrable equations. Moreover, if q = oo then the problem is convex, and 
the necessary conditions in this case coincide with sufficient ones, which 
implies immediately that the extremals thus obtained are solutions of  the 
problem indeed. The case q ~ oo will be discussed later on. 

Some remarkable solutions were obtained for n = 2, q = oo. In this case 
the solutions depend (for each of the domains R and IR+) on two 
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parameters, p and r ,  and we can associate with each solution the point 
(1/p,1/r), 0 < 1/p,1/r < 1, of  the unit square. So far the solutions have been 
obtained for the center of  the square and for the points lying on its sides. 

The center of  the square will be discussed separately because in this case 
the "general solution" can be found for n > 2 for any 0 < k _< n - 1. Here we 
briefly describe the solutions corresponding to the sides of  the square. In all 
cases an application of  the Lagrange principle yields the "general identity", 
which in principle solves the problem. For the left-hand side of  the square, 

2 '÷' (~J-,~)"+~ (found for r = oo by E. Landau the solution K=.(2,1,m,oo, r ) =  ± ' ~- 
and for r < oo by V. V. Arestov; of  course, by another methods) may be 
obtained because the application of  the Lagrange principle leads to the 
general identity written down explicitly. The upper side of  the square is dual 
to the Landau-Arestov case, which again enables one to write down the 

-3- -  

general identity and to obtain the solution: KR. (2,0, p, oo,1)= (p + 1) p÷' . For 
the lower side of  the square, the solution (found without using Lagrange's 
approach by A. Fuller and V. N. Gabushin) is obtained because the equations 
resulting from the Lagrange principle, besides the energy integral, admit one 
more integral, which reduces the problem to a system of  two nonlinear 
equations in two unknowns. The right-hand side of  the square is studied 
using its duality to the Fuller-Gabushin case. 

Now it is natural to ask the following question: can the solution found, 
say, Jbr the lower side of the square be regarded indeed as a solution? 

For p = 2 the equations resulting from the Lagrange principle can be 
solved explicitly, and the Kolmogorov constant is 
KR.(2,0,2,oo, oo ) = 5~/s2-3/s(3x/~+ 3) '/'o . It is quite reasonable to consider 
this expression as a solution. But in order to compute, say, KK.(2,0,4,oo, oo ) 
one has to solve the equation 
56x 5 +412x 4 -11599x 3 + 59220x z - 9 8 0 0 0 x -  78400 = 0, and the 
computation of  KR.(2,0,3/2,oo,m) requires solving the equation 
-4x + 3(re + 2arc tgx+ x÷J logTzr_~) -- 0 May we consider the reduction to such an 

x 4 - 1  " 

equation as an exact solution of  the problem? (The "terrible" equations 
stated above were obtained by myself and my colleagues, while Fuller and 
Gabushin who studied the problem with parameters n = 2, k = 0, 1 < p < m,  
q = r = oo stopped even at an earlier stage.) 

Thus the problem of  specifying what should be regarded as an exact 
solution requires discussion. One can put forward the following judgement: 
the computer age will lead to essential modifications in the prevailing style 
of  a huge number of  mathematical studies. 
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3.3 General solutions. 

In some cases the so-called "general solutions" were obtained giving, for 
fixed (p, q, r ) ,  the answers for any n and k .  Relying again on the Lagrange 
principle, we will explain the reasons for this success (for more details, see 
the book [4] and the paper [7]). 

In the Hardy-Litt lewood-Polya case (T = IR, p - - q  = r = 2)  the Fourier 
transform enables us to reduce the problem of  finding the Kolmogorov 
constant to a linear programming problem. This gives a possibility to solve 
the following generalization of  the problem (1.2): 

D':x(.) ~(~R ~) -~ max, D"'x(.) ~(~R ~) < y j,I < j < N. 

Here ~ J  j j j d = ( a l , a 2 , . . . , a a ) ~ R + ,  O<j<_N,  y j > 0 ,  I < j < N ,  79~'x(.) for 
a E R+ a is the a -th Weyl derivative of  a function x(.) ~ L z (l~u). It is defined 
as follows: D"x(.) = (F -~ o g ~ o F)x(.),  where F and F -I are direct and 
inverse Fourier transforms in L z (ll~a), and C" - an operator of  multiplication 
to function r - ~  (irt) ~' ...(ira) ~ ,(ir~) ~' =l q I ~" exp(~-a :gnr~) ,  sgn = 0,  
1 < s < d (see [4] or [8]). 

In the Taykov case ( T = ] R , p = r = 2 , q = o o )  the Fourier transform 
reduces the problem to a linear-quadratic programming problem. In the 
Gabushin case ( T = IR., p = r = 2, q = oo ) ("center of  the square") one obtains 
a linear system of  equations, which may be solved effectively. In the 
Kolmogorov case the general identity may be written down. In all of  these 
four cases the problem is convex, therefore the necessary conditions coincide 
with the sufficient ones. 

The Lyubich-Kuptsov case ( T = ~ , . , p = q = r = 2 )  also reduces to a 
linear system of  differential equations, and one can use the basic Weierstrass 
identity for the proof of  sufficiency. 

The only case where the Lagrange principle fails is Stein's 
( T = ~,  p = q = r = 1 ). It reduces to the Kolmogorov case. 

. CONCLUSIONS AND OPEN PROBLEMS. 

The Lagrange principle is the main device in the subsequent treatment of  
concrete problems. But now we will briefly describe the other fundamental 
principles of  the theory of  extremum problems. 
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4.1 Per tu rba t ions  o f  ex t r ema l  p r o b l e m s  and  the  p r inc ip le  o f  
c o m p l e t e  e l im ina t i on  o f  const ra ints .  

A perturbation of a problem is its inclusion into a parametrized family of 
problems. The first mathematician who realized usefulness of perturbations 
in the calculus of variations theory was W. R. Hamilton. He wrote: "One has 
to compare dynamically feasible motions by variation of extreme states of 
the system". His interests were in optics, he studied the light propagation in 
nonhomogeneous media. Considering a beam of rays going from the same 
point, Hamilton (1836), along with trajectories of the rays (satisfying 
Fermat's variational principle), started to treat the wave fronts, i.e., the level 
curves of the S-function, which is the time needed for light to achieve a 
given point. 

"Varying extreme states of the system" he derived a partial differential 
equation for the S-function in optics. In a year C. G. Jacobi applied 
Hamilton's approach to general problems of calculus of variations. The 
equation for the S -function of the simplest problem 
S(r,~) = inf{J(x(.))lX(to) = Xo,X(r ) = ~}, which has the form 

OS (t,x) + ~(t,x,O-~-S (t,x)) = 0 
Ot ox 

(where ~( t , x , y )  = sup{yu-L( t ,x ,u) [u  ~ IR} is the Legendre transform of 
the function L), is known now as the Hamilton-Jacobi equation. The 
Hamilton-Jacobi equation enables us to express the increment of the 
functional J on the extremal in terms of the Weierstrass function. This leads 
to sufficient conditions in calculus of variations, which, subject to a 
regularity condition on the integrand (its convexity in the last argument), 
amount to strengthened Legendre's and Jacobi's conditions (when the 
inequality in Legendre's condition is strict and there is no conjugate point on 
the entire interval [to,t t ]). 

But we can in fact formulate some general statement not only for the 
simplest problem, but also for any extremal problems of type (2.1)-(2.5) and 
others. The method of perturbations in nondegenerate cases leads to a 
generalization of the Lagrange principle, which can naturally be called the 
generalized Lagrange principle or the principle of  complete elimination of  
constraints. It may be stated as follows: for nondegenerate (in a 
neighborhood of  a local extremum poinO extremal problems with 
constraints, one can "slightly" modify the Lagrange function so that it will 
attain a local extremum without constraints at the extremum point. ("The 
general identities" we spoke about in the section 3 and Weierstrass formula 
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in the calculus of variations are an realization of the principle of complete 
elimination of constraints.) 

4.2 T he  c o m p a c t n e s s  p r inc ip le  and  the ex i s tence  o f  solut ions .  

"I am sure that it will be possible to prove the existence theorems by 
means of a general principle whose idea is suggested by the Dirichlet 
principle. May be this general principle will help us to find an answer to the 
following question: does any regular variational problem have a solution if 
we assign an extended meaning when necessary to the very concept of 
solution?" 

This deep view was expressed by D. Hilbert when formulating his 20th 
problem on the Paris Congress in 1900. The general principle that Hilbert 
had in mind was, of course, the Weierstrass-Lebesgue-Baire compactness 
principle according to which a lower semicontinuous function on a compact 
set attains its minimum. 

We will illustrate the application of this principle in the simplest problem 
repeatedly discussed above. 

In case of one-dimensional argument t it is natural to consider the 
problem (P2) on the maximal in a certain sense space on which the very 
problem may be posed. This space may be taken to be the space of 
absolutely continuous functions (or the space Wtl([t0,t~ ]). Regularity of the 
integrand guarantees lower semi-continuity, while the growth condition (the 
integrand must grow faster than a linear function) and the condition that the 
integrand is bounded from below insure compactness, hence, by the 
compactness principle, the existence. In this way numerous existence 
theorems, starting with works by L. Tonelli in the 20-s of the last century, 
were formulated. 

But in multidimensional problems there is no natural "broadest" space. 
This difficulty was overcome by constructing appropriate spaces to the 
integrands of various problems. For example, such a space for the Dirichlet 
problem on a domain f2 is, of course, the Sobolev space W2 ~ (f2). This led to 
the concept of generalized functions (distributions). And to provide for the 
possibility to solve variational problems by direct methods (which will be 
briefly discussed in the next section), the theory of embedding of functional 
spaces was worked out. But the very style of existence theorems remained 
the same: if the space is constructed according to the integrand L which 
guarantees semicontinuity and compactness then the existence of a solution 
can be proved. In many important cases semicontinuity follows from 
regularity, compactness follows from the grows of integrand, and the 
boundary conditions are determined by the space embedded into the initial 
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one (in the Dirichlet problem on a circle (disk) D this is the space W~/2 (OD) 
on the circumference). 

4.3 T he  p r inc ip les  o f  op t imiza t i on  a lgo r i thms  

"Thus the problem reduces to the simple one: given two points A and C 
and a horizontal line passing between them, find the point B on this line 
such that the route ABC be the fastest one." 

This is a quotation from the letter of Leibniz to J. Bernoulli of July 31, 
1696, regarding the brachistochrone. 

This citation from Leibniz returns us to the origin. As was pointed out, 
calculus of variations arose "from brachistochrone", the problem to which J. 
Bernoulli "invited" his contemporary mathematicians. Apart from Johann 
Bernoulli himself, solutions were given by his brother Jacob, his pupil de 
l'Hospital, as well as by the founders of the contemporary mathematics 
Newton and Leibniz. These solutions contained the ideas which have 
influenced the theory of extremum from its origin till now. Johann Bernoulli 
solved the problem using an optico-mechanical analogy, which inspired 
Hamilton and then Jacobi to develop their theory. This principle was 
exploited by Huygens who also made a very important contribution to the 
Hamilton-Jacobi theory. On the other hand, as seen from the above 
quotation, Leibniz laid the foundations of "direct methods" by replacing an 
infinite-dimensional object, a curve, with a finite-parametric one, a broken 
line. 

Leibniz was followed by Euler who derived his equation replacing a 
curve with broken lines. Nowadays the reduction to finite-dimensional 
problems is the main approach to numerical solution of extremal problems. 
Having done such a reduction, a (minimization) problem is treated by 
methods of descent (gradient methods and its modifications, the method of 
conjugate directions, and so on; this class includes also Danzig's simplex- 
method), various penalization methods, barrier methods; in convex problems 
section methods are applied. It is impossible to present all this in detail. 

4 .4 P rob l ems .  

The Lagrange principle not only enables us to examine completely (in a 
unified way) the majority of problems for extremum for which exact 
solutions have been found, but also provides for diverse and far-reaching 
generalizations. (This is demonstrated to some extent in [1]-[5] and [7], [8], 
as well as in a paper, now in preparation for publication, entitled 
"Inequalities by Hardy, Littlewood, and P61ya in 70 years".) 
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But the diversity of concrete problems (in particular, exact inequalities) 
allows us to review thoroughly the underlying theory and poses many open 
problems. We will discuss them in the context of Kolmogorov-Landau 
inequalities. Here are some open questions (from my point of view). 

All the problems about inequalities on the real line and half-line are 
defined on non-compact sets (• and IR+ ). The theory of such problems has 
not been developed adequately. For example, me and my colleagues could 
not use any available general theorems for the proof of the existence 
theorems in problems on inequalities for derivatives, and we had to prove 
such a theorem ourselves (see [6]). In this proof the compactness principle, 
which is actually involved in the most proofs of the existence theorems, 
required some refinement: our proof was based on the idea that it is 
"disadvantageous" for the functions of the sequence to be minimized to 
spread out over the entire unbounded domain. Thus, 

1. The existence theory in the problems with arguments running over 
non-compact (especially, multidimensional) sets has to be 
substantially completed. 
There are a number of other questions regarding multidimensional 
problems which still have to be examined in more detail. This 
concerns, for example, 

2. Transversality conditions "at infinity" for variational problems with 
non-compact domains. 
When integrating the Euler equations or the maximum principle 
relations (for example, in the Fuller-Gabushin case discussed 
above) many additional difficulties arise, which are related to 
instability of the solution to the Cauchy problem decreasing at 
infinity. Therefore it is desirable 

3. To develop effective algorithms for integrating Cauchy problems and 
other important problems with ordinary and partial differential equations 
in unbounded domains. (Using some homemade methods we calculated 
in [8] the Kolmogorov constants in some cases of small smoothness. For 
example, K~. (2,0, 4,oo,4) = 1.52178, KR. (2,0, 2,oo,4 ) = 1.64115, 
KR.(2,0,4/3,oo,4)=1.63751 .... Is it possible to consider such 
calculations as solutions of the corresponding problems?) 

4. Even for the simplest isoperimetric problems it is desirable to have 
a well elaborated theory of sufficient conditions. 
The meaning of the words "well elaborated theory" may be as 
follows: it must be applicable at least to problems on inequalities 
with small smoothness, for example, for the problem 
T=~÷,n=l,k=O,q~oo (to allow for obtaining general results 
without using ad hoc properties like explicit integrability). 
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A purpose o f  a good theory is to solve the majority o f  concrete 
problems, isn't  it? When the questions 1 - 4 are answered, would it 
be possible to say that allproblems (1. I) are solved?. 

5. And finally I want to mention the huge, fantastic world of problems 
in several variables, for which the Lagrange principle itself can 
hardly be regarded as justified. 

As examples o f  such concrete problems one can consider the 
multidimensional problems of  Landau-Kolmogorov-type: 

D"°x(') L,(R") --->max, [D"'x(.) Lq,(R") <_ y j,l <_ j <_N. 

I am grateful to Prof. Giannessi for the invitation to attend the conference 
"Variational Analysis and Applications" in Erice. I could not take part in the 
conference, so I considered it inappropriate to submit a paper in the 
conference proceedings. I am very thankful to Prof. Giannessi for his 
proposal to write such a paper. 
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NUMERICAL SOLUTION FOR 
PSEUDOMONOTONE VARIATIONAL 
INEQUALITY PROBLEMS BY 
EXTRAGRADIENT METHODS' 

F. Tinti  
Dept. of Pure and Applied Mathematics, University of Padua, Padua, Italy 

Abstract: In this work we analyze from the numerical viewpoint the class of projection 
methods for solving pseudomonotone variational inequality problems. We 
focus on some specific extragradient-type methods that do not require 
differentiability of the operator and we address particular attention to the 
steplength choice. Subsequently, we analyze the hyperplane projection 
methods in which we construct an appropriate hyperplane which strictly 
separates the current iterate from the solutions of the problem. Finally, in order 
to illustrate the effectiveness of the proposed methods, we report the results of 
a numerical experimentation. 

1. INTRODUCTION 

W e  cons ider  the classical  var iat ional  inequal i ty  p rob lem VIP(F ,C) ,  wh ich  
is to f ind a point  x" such that 

x ' ~ C  <F(x ') ,x-x '>>_O V x s C ,  (1) 

' Italian FIRB Project, Grant n. RBAUO1JYPN 
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where C is a nonempty closed convex subset of  9t", < .,. > the usual inner 
product in 91" and F : 9t" --+ ~fl" is a continuous function. Let C* be the set 
of  the solutions. 

In the special case where C=~tl~, the problem (1) is a nonlinear 
complementary problem (NCP): 

x*>_O, F(x*)>_O and <x*,F(x')>=O. (2) 

If F is affine, F ( x ) = M x + q  where M~9~ "×" and q e g t " ,  then the 
problem (1) is an affine variational inequality problem and (2) is a linear 
complementary problem (LCP). 

Many methods have been proposed to solve VIP(F,C). The simplest of  
these is the projection method, which, starting from any x ° e C ,  iteratively 
updates x according to the formula 

xk+' = Pc ( xk - ctF( xk )), 

where Pc(.) denotes the orthogonal projection map onto C and a is a 
judiciously chosen positive steplength. Here, Pc(x k - a F ( x k ) )  is the 
solution of the following quadratic programming problem 

m i n l x r x  _ ( x  k _ a F ( x  k ))r x. 
x~C 2 

The projection method is based on the observation that x* ~ C is a solution 
o f ( l )  if and only if 

x* = Pc(x* - aF(x ' ) ) .  (3) 

This method is very simple; indeed it uses only function evaluations and 
projections onto C ,  then it is easy to implement, uses little storage, and can 
readily exploit any sparsity or separable structure in F or in C .  
Furthermore, the projection is easy to be obtained where C is defined by 
linear and/or box constraints. However, the projection methods require 
restrictive assumption on F for the convergence. The convergence analysis 
for the projection methods is based on the contractive properties of  the 
operator x ~ x - aF(x )  : 
if F is strongly monotone (with constant l ), i.e. 

3 l > O  <F(x)-F(y),(x-y)>>_lllx-Yll Vx, yeC xg:y, 
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and F ( x )  Lipschitz continuous on C (with Lipschitz constant L), i.e. 

3 z . > o  : IIF( )-F(Y)II<_LII -Yll VX,.V C, 

and if a ~(O,21/LZ), the projection method determines a succession {x k} 
convergent to a solution o f ( l )  (see page 24 [15], [16]). 

Marcotte and Wu [11] have shown that the projection algorithm 
converges for cocoercive variational inequalities. We recall that the mapping 
F is cocoercive on C if there exist a positive constant 1 such that 

< F ( y ) -  F(x), y -  x >> [ l lF (y ) -  F(x)ll 'q'x, y ¢ C. 

Any strongly monotone (with constant l)  and Lipschitz continuous mapping 
(with Lipschitz constant L ) is cocoecive with the constant [ = ± 

Furthermore, any cocoercive mapping is monotone, that is 
< F ( x ) -  F ( y ) , x -  y >> 0 Vx, y ~ C ,  and Lipschitz continuous (L = ~- ), but 

the converse in not true. If  C* ~ O and a ~ (0,2[),  the cocoercivity of the 
operator F is sufficient to assure the convergence of  the projection 
algorithm. 

To relax the strong hypotheses required by the projection method 
enlarging the class of the problems that we can solve, the extragradient 
method was proposed; because of  (3), x* ~ C is a solution o f ( l )  if and only 
if 

x* = Pc (x* - a F ( P  c (x* - aF(x*))));  

then the basic idea of this method is to update x according to the double 
projection formula 

xk+' = Pc ( xk - aF(Pc  ( xk - a F (  xk))))" 

The extragradient method was proposed in the first time by Korpelevich [9] 
as follows. Given x ° ~ C ,  we generate a succession {x k } such that 

x -k  = Pc(x k _ a F ( x k ) )  xk+, = Pc(x k _ aF(-~k)). (4) 

where a is constant for all iterations. In [1] and [19] the convergence of  the 
extragradient method is proved under the following hypothesis: C" ~ O ,  F 
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is a monotone and Lipschitz continuous mapping and a ~ (0,l/L) where L 
is the Lipschitz constant. 

A drawback is the choice of a when L is unknown. Indeed, if a is too 
small, the convergence is slow; when a is too large, there might be no 
convergence at all. This remark is confirmed by the numerical results shown 
in Table 1 where we report the number of iteration (iter), the number of 
function evaluations (n 0, and the number of projections (np) for different 
choice of  a when the extragradient method is applied on some test 
problems. The test problems are described in Table 3 of  the Section 3. 

10 -2 

10 -1 76/76 

1 -/- 

U s e r  O P T  
10 -3 1326/1326 

10 -2 184/184 
10 -1 _/_ 

Braes s  Ne t  
10 -2 472/472 

10 -1 80/80 

1 -/- 

np/nf [ iter 
Kojima-Shindo 

442/442 221 
38 

663 
92 

236 
40 

Table 1. Analysis of the convergence of the extragradient method (4) for different values of 
O~. 

Then, Khobotov in [8] introduces the idea to perform an adaptive choice of  
a ,  changing its value at each iteration as described in Section 2. If C' ~ 0 ,  
F ( x )  is a monotone mapping and a choice suitable (see Section 2), then, 
the convergence of  the scheme is proved. 

The hypothesis on the Lipschitz continuity of  F is removed and an 
automatic (algorithmic) rule is devised to make easy a convenient choice of 
the steplength. 

Furthermore, as we see in the following, we can generalize the results on 
the convergence of the scheme to pseudomonotone VIPs, enlarging the class 
of  the problems that we can solve. 

Consequently, the general scheme of the algorithm becomes: 

x -k  : Pc(x k _ a k F ( x k ) )  x TM = Pc(x k - rAF(2k)), (5) 
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where x ° ~ C is the starting point. In addition to the scheme in [8], we have 
analyzed other variants of  (5) (see [10], [7]), in which the values of  %,r/k 
are found using backtracking schemes similar to that of the Armijo 
steplength rule. The aim of  these variants is to accelerate the convergence. 

In [8], [10], the choice of the steplength rules follows an adaptive rule but 
they assume that a k = r/k, while in [6] and [7], the extragradient method uses 
a k ~ r/k with different backtracking procedures to determine the steplength 
a k . In the first case [6], one projection is required for any tentative step of 
the search, while in [7] only one evaluation of  function is performed for any 
tentative step of  the search. The last method is advantageous especially when 
the projection is computationally expensive. 

Another class of  the extragradient methods is the so called projection- 
contraction methods [17], where in the second projection a more general 
operator is used. 

The idea of these algorithms is to choose a symmetric positive definite 
matrix M ~ R "×" and a starting point x ° ~ C ,  and to iteratively update x k , as 
follows: 

x TM = x k - "TM-'(To (x k ) - T,, (Pc ( xk - aF(xk ) ) ) ,  (6) 

where "7 E N+ and T~ = ( I - a F )  in which I is the identity matrix, a is 
chosen dynamically (in according to an Armijo type rule), so T,~ is strongly 
monotone. 

The geometric interpretation of  the methods in [6] and [7] has been 
further on developed recently by Solodov in [18], devising an effective 
method. It consists of  two steps per iteration: in the first step, an appropriate 
hyperplane is found which separates the current iterate from the solution of  
the problem; in the second step the next iterate is determined as the 
projection of  the current iterate onto the intersection of the feasible set with 
the halfspace containing the solution set. 

In all the algorithms with structure as in (5), (except that in [17], that 
requires the monotonicity of  F ) ,  the convergence is stated under the 
assumptions that C* ~ O  and the continuous mapping F is 
pseudomonotone. This is shown in the theorems reported in Section 2 that 
generalize to pseudomonotone case the results of  the convergence obtained 
in [8], [6], [7]. See also [15] and [3]. 

It is not required F to be Lipschitz continuous. 
We recall that the mapping F is pseudomonotone when the following 

condition holds 

< F ( y ) , x - y > > _ O - + < F ( x ) , x - y > > _ O  Vx, y e C .  (7) 



1106 Variational Analysis and Appls. 

The paper is organized as follows. 
In the Section 2 we give a survey of  the above methods, pointing out its 

numerical features and we describe the different adaptive choices of a k . 
To evaluate the effectiveness of the proposed methods, we have 

implemented them as M-script files ofMatLab, downloadable at the URL 
http://dm, unife, it/pn2o/software.html. 

Since we assume that C is defined by linear equalities and inequalities, 
in order to compute the projection Pc(x), the quadratic program solver 
quadprog, m is used (see the MatLab optimization toolbox [13]). 

In the last section we report the numerical results obtained by running 
these codes on a set of  test problems arising from the literature and collected 
at URL 

http ://dm. unife, it/pn2o/software.html. 

. N U M E R I C A L  F E A T U R E S  OF  T H E  C L A S S  O F  
E X T R A G R A D I E N T  M E T H O D S  

2.1 K h o b o t o v '  s m e t h o d  

In [8] Khobotov proves that if F(x) is a continuous monotone function 
and a suitable choice of  the steplength is performed, the extragradient 
method (4) is convergent to a solution of (1). The proof is interesting since it 
includes a discussion about the choice of  a k . 

We extended the Khobotov's theorem to a function F(x) 
pseudomonotone. 

For completeness, we report the convergence theorem: 

Theorem 2.1 (see [8]) Let the set C* of solutions of(l)  be non-empty, let C 
be a closed convex set, F(x) a continuous pseudomonotone operator in x. 
Then, from any initial point x ° ~ C, if et k is such that 

X k - - k  

[ff, - x 0 < a k < m i n l  fl F(xk ) -  F(Yk) (8) 

with fl ~ (0,1) and ff is equal to the maximum value of the step, then the 
extragradient method (4) is convergent to a solution x* of(l), i.e., 

lim min Ix* - x* 2 = 0 x* ~ C*.  
k .-~.oo x ° 
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Proof .  The proof  o f  the theorem is based on the following condition 

X TM X* 2_~ x k _ _ x , ] 2  xk__..~k[2.[_ 2 - - ct k F ( x  s) - F(-~k) 2 (9) 

We proof  that this condition (9) holds under the pseudomonotonici ty of  the 
operator F(x )  ; 
we see that, Vu,v  ~ C ,  

I1~ - vii ~ = I1~ - Pc (u) + Pc (~) - ~11 ~ 

= u - P c ( u )  2+ v - P c ( u )  z-2<u-Pc(u) ,v-Pc(u)>; 

by the properties o f  the projection onto the convex set C 

< u - P c ( u ) , v - P c ( u ) > < _ O  V v e C ; V u e 9 t " ,  (10) 

we obtain: 

Ilu- vii 2 -> Ilu- Pc(u)ll 2 + l l v -  Pc(~)ll 2. 

Taking v = x ' ,  u = x s - a s F ( g S ) ,  (with x TM = Pc ( xs - as F(2-s)) ), we have 

[Xk_akF(_ES)_X , =>ix s _asF(_yS)_xS+, 2+ x * - x  TM 2, 

which leads to the inequality 

x TM - x" 2 < xS _ a s F ( y S ) _  x" 2 _ xS _ % F ( y S ) _  xk+, 2 

= x s-x•] 2 +[asF(2"s)] 2 - 2 < a s F ( - y s ) , x  k - x "  > -  x s - x  s+'2 + 

_ [akF(~_s ) 2 + 2 < asF(-yS),x s - x TM > 

=l;-x'l =- xS-x'+'l=+2<awGS),x'-xS+'> (11) 

Recalling that the operator F(u)  is pseudomonotone,  since x* e C* c C,  

< F ( x * ) , x - x "  >>O---><F(x),x-x* > > 0  x e C  

--k * _ -~k Con sequently, if x = 2k ,  < F ( x  ),x >< 0 and we have 
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< F(-5*),x" - x  TM > 

Then  we  have  f r o m  (11): 

IX TM --  X* 2 

_< 

Variat ional  Analys is  a n d  Appls.  

< F ( x - * ) , x * - - 5 *  > +  < F ( -5 ' ) , - 5 '  - x*+l > 

< F ( -5 ' ) , - 5 '  - x TM > 

_< x* - x *  2 _ x* - x  TM 2 + 2 6 ,  < F ( x * ) , x *  - x  TM > 

_< x* - x* 2 _ x* - x TM 2 + 2 a ,  < F ( 2 ' ) , 2 '  - x TM > 

_< X * - X *  2 _  x* _ ~ . , 2 _  ~. ,_X,+l  2 +  

- 2  < X* - X--*, X--* - X TM > +  

+2or, < F ( -5 ' ) , - 5 '  - x TM > 

: X k - -X*  2 _ x k  _ -sk 2 _ -sk xk+l 2 "}- 

+ 2 < X * - 6  ~-r--*~ _ ,  ~*+1 ~., , l " ~ , X  ) - - X  , .~  - -  > 

< X * - X *  2 _ [ X , _ ~ ,  2 _  ~. ,_X,+l  2 +  

+2 < x* - 6 , F ( x * )  - -£* , x  TM _.-5k > + 

+2 < 6k F ( x * )  - 6 ,  F(-5*), x *+j - -5' >. 

U s i n g  (10),  wi th  v = x T M , u  = x* - 6 , F ( x k ) ,  w e  obtain:  

< x* - 6 , F ( x k  ) -- -5*, X TM - -5* ><_ O. 

Then,  it fo l lows  

X TM - -X* 2 ~ IX* - -X*  2 _ x k  _ - s k  2 + -sk xk+l 2 + 

+ 2 a ,  F ( x * )  - F(-S*) x TM - - 5 '  . 

Fo r  any  *+~ * - *  ~- x ,x  , x  , u k ,  we  have:  

x TM --5 '[  2 + 6~ F ( x * ) -  F(-~*) 2 >_ 26 ,  F ( x  k) - F(-5*) x TM - - 5 '  ; 

then  w e  obta in  f r o m  (12): 

x,+,_x. 2 x, .12 F(x*)-P(-5*) 2 

(12) 
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Furthermore, the proof runs as in [8]. FI 

In the proof of  the Khobotov's theorem, at each k-th iteration it is 
possible to find a compact subset of  C ,  Ck, where the function F is 
Lipschitz continuous; we denote by L k the locally Lipschitz constant. 
Since Ck D Ck÷l D. . . ,  it follows that 

L o _>L, _>...>_L k >_.. (13) 

and it must a k s (0,1/L k ) .  

Then, if {L k } are known, the succession {a k } could be nondecreasing. 
In the practice, estimates [,k for L k must be used; then for Zk, (13) does 

not hold and a k is found from the following rule 

O<&<~z,<min ff, fl F(~k-)~_ F(_£,) j 

where E is the maximum value of  the step, 0 < fl < 1 (usually fl ~ 0.8,0.9 ) 
and & = min(E, fl/L o). 

From the proof of  the theorem, we can state the following Algorithm 
(Algorithm choice- a ) for the choice of  the steplength a k. 
Al.qorithm choice- a 

a a = ctk_ I "(initial step) 

b c o m p u t e F ( x  k) 

c compute -~k=Pc(Xk-ctF(xk)) and F ( ~  k) 

d if F (E  k) = 0 then Ek ~ C* 
x k _ ~-k 

else if  a > f l  F(xk)_F(_~k) (14) 

a reduction rule of  a is applied 
and go to (c) 
else a k = a ,  and x TM = Pc(X k - akF('~k)) 

endif  

endif  

At the initial iteration a = 
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We enumerate several techniques for the reduction of  ak; the following 
reduction rule at the step (e) is suggested by Marcotte, in [10]: 

a = m i n {  2 [[xk--2~ l 
' ql~ F ( x  k ) _ F(z,)l j (15) 

We note that this rule is not always effective: this arises when, at the initial 
iterations, % assumes a small value and, because of the initialization step 
a = otk_ 1 , this value does not change in all the next iterations. 

Figure 1 shows the behavior of the stepsize % ,  as k increases, when we 
use the reduction rule (15); this rule does not exploit the opportunity of an 
adaptive alteration of  the initial value of ~z k . 

A variant of  Marcotte's algorithm consists in to modified the 
initialization rule at the step (a) of  the Algorithm choice-a  as follows: 

[ xk-~ _ ~-k-I 
c~=ak_  , + /3 F(x-~_,)~ F(_yk_, ) - a ~ _ ,  "3', (16) 

where 3' E (0,1),/3 E (0,1), 
By this rule we enable the increase of  the value of a with respect to 

%_,. Then we devise the following reduction rule at the step (e) 

 =m x{ minf   (17) 

where ~ • (0,1). 
Figure 2 shows the behavior of  a k for different test problems when the 

formulas (16), (17) are used, with/3 = 0.7,~ = 0.8,3' = 0.9. 
We observe that in general, the number of  iterations decreases, since the 

rules (16), (17) enable to exploit the possibility to use convenient values of 
% at any iteration. 

Since a k is an estimate of the inverse of the local Lipschitz constant we 
can substitute the AI9orithm choice-  a with the following rule 

X'-- ~-k -I 

a k = f l  F ( ' ~ )  ~ F(-£ k-') ' (18) 
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avoiding the loop of  the algorithm. 
In this case, for the same test problem in Fig. 2, the behavior of  a k 

defined by (18), is similar to that observed for a s stated by (16), (17) (see 
Fig. 3). 

Nevertheless, in this case the convergence is not assured. The sequence 
x k is convergent if a k defined by (18) is such that 

X k --k II:-:ll 
cts - r" I F (xs  ) - F(-xS) 

m 
where /3 >/3 .  This is not true in general, but in all the examined test 
problems the convergence is obtained. 

2 .2  T h e  E x t r a g r a d i e n t  m e t h o d  w i t h  ak ~ rtk 

In [6], the author proposes the iterative scheme as in (5), where a k > 0 is 
<F(~),x t~ - ~ >  

located through a bracketing search and r/k - ~F<~)}l 2 

The idea behind the algorithm is the following. 
Let OHk={x~9~" l<F( -~k ) , -~k -x>=O}  be a hyperplane normal to 

F ( y  k) passing through 2-k; all solutions x* of  VIP(F,C) lie on one side of  

OHk; indeed for the pseudomonotonicity of  F ,  for any x ° ~ C*, we have 

< F(x*),-~ k - x ° >> 0 and, consequently, < F(~-k),y k - x" >> 0. 

If x k is on the other side, i.e. < F(yk) ,2  k - x  k >< 0,  then OH s separates 

x s from the solutions of  VIP(F,C) (see Prop. 6, [6]). 
<F(2.~),x~ _~.k> xk  If r/s - ilr<r,)12 , - r / sF (2  "k) is the orthogonal projection of  x k onto 

OH k . Then x TM , obtained by the second equation of  (4), is the orthogonal 

projection of  x s onto this hyperplane OH k and onto C .  
Iusem's algorithm requires three constants: c ~ (0,1) and &,t2 such that 

t ~ > & > 0 ;  the sequence a s is computed so that <F('~s) , -~S-x  k >~0, 
which is guaranteed to happen when ct s s [&,t~]. 
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Figure 1. Behavoir of a k with reduction rule (15). 
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F i g u r e  2. Behaviour  o f  a k with rules (16) , (17);  f l  = 0 .7 ,~  = 0.8,7" = 0.9. 
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Figure 3. Behavior of  oe k with rule (18); fl = 0.7,/~ = 0.9 
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Then the algorithm can be stated as follows [6]: 
Al,qorithm I 

a given x ° ~ C ,  k = 0 ,  rx=e+; o ~ ( 0 , 1 ) ,  

b if Ilrxll < ToL* then stop 
else 
chosen the initial value of  the bracketing procedure 
~k ~ [a ,&] ,where ~k denote certain "candidate" o f  the steplength 

t ~  k . 

e compute .~k =pc(x  k _(~kF(xk)) and F ( ~  ~) 

d if F(~c k) = 0 then .~k ~ C* stop 

else (selection o f  a k trough a finite bracketing procedure:) 
]~k _ x k 2 

if F(xk) - F(x~) < 2~ F(x  k) 

then ~-k = ~k 

else find a s s (O,~k), such that 

~ k _ x  k 2 < F(Pc( x k - a k F ( x k ) ) - F ( x k )  < yck_x k z 
C 2 ~z F(x  k) 2~t~ F(x  k) a k 

(19) 

endi f  

x -k = Pc ( xk - akF( xk )) 
endi f  

if  F ( ~  k) = 0 then ~k ~ C* stop 

else compute xk+I = Pc I xk < F (-xk)' xk -- -~k F(2.k)] 2 > F(Yk) 
\ 

F X  .= X TM - -  X k " 

k = k + l ;  
and go to (h). 

endi f  

endi f  

(20) 

* e is a vector with entries equal to one 
TOL is a final tolerance 
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In the step (b) o f  the Iusem's  algorithm, one possible rule to choose the 
initial value ~k is 

dt k = median(de, Ok, ~ ), 

where O k is suitably chosen. 
In order to determine the stepsize a satisfying the required inequality 

(19), it is necessary to evaluate Pc(x k - a F ( x k ) )  at any step o f  the search 
procedure. 

This means that the projections at the k-th iteration are those required for 
the bracketing search to determine a ,  plus one more in the computation of  
X TM • 

In [6] (see Prop. 7), Ius em proves that if  C* ¢ 0  and F(x) is a 
continuous monotone function then this method is convergent to a solution 
o f ( l ) .  

We extended the Prop. 7 to a function F(x) continuous 
pseudomonotone, as follows: 

Proposition 2.2 (in [6]) Let the set C* of  solutions o f ( l )  be non-empty, let 
C be a closed convex set, F(x) a continuous pseudomonotone operator in 
x. Then, from any initial point x ° E C, the sequence {x k } generated by 
Algorithm / is convergent to a solution of(l).  

Proof. The proof  o f  this proposition is based on the following condition 

x._xk+ , 2< x . _ x  k 2_ pa~(Xk)_xk z_  Xk+,_p.~(Xk) 2 ' (21) 

where x* ~ C*,H k = {x ~ 91" ]< F (2k ) ,2  k - x >> 0}. 
We proof  the condition (21) under the pseudomonotonicity of  the 

operator F(x).  
From (7) with x = 2k,y  = x* we obtain 

< F(x*) ,2  k - x* >> 0 --+< F(-~k),-£ k - x ° >> 0; 

then x* ~ C n Hk,  so Pc (Pnk (x')) = PH, (x') = x*. 
Let Vk=Xk--rlkF(-~ k) the orthogonal projection of  x k onto the 

hyperplane OHk, where OH k separes x k from the solution of  VIP(F,C); by 
Prop. 6 in [6], we obtain x k ¢ H k , then v k = Pnk (xk). 

It follows from (20) that x k+~ = Pc(P., (xk)), then 
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x" - x TM 2 : [ Pc (P,,, (x ' ) )  - Pc (P. ,  (x ~))2.  

We apply the propriety of  the projection onto the convex set C (Prop. 2(ii) 
in [6]): 

I I P c ( x ) - P c ( y ) l l  2 <_llx-d-IIPc(x)-x+ y-Pc(y)ll 2 Vx, y~I I"  (22) 

first with Pc (.) and then with P~t, (.) as follows 

Ilx*-x~÷'ll = ~ II~, <x*>-~ <x~>[l~ + 

-II~ <~, <x'>>-~ <x*> + ~ <x~>-~ <~  <x~ >>ll = 

_<ll x" - ; l l  ~ -II~, <x'>-x" +x'-2,~, (x~ll~ + 

-< IIx'-x~ll ~ -lie,, (x' ~-x~ II ~ -II ; + ' -  e,, <x' >ll ~ 

Then, the proof runs as in Prop. 7 in [6]. !3 

In [7], Iusem and Svaiter present a method with the scheme similar to the 
previous algorithm but that requires just one projection onto C for the 
computation of  2 k and another one for x TM , i.e. only two projections per 
iteration, as in Korpelevich's method. 

The algorithm requires the following parameters: c ~(0,1) and f i ,~ 
such that t~>fi  > 0 ;  the sequence % must be contained in [~,c7]; the 
scheme of  the algorithm is: 
Algorithm I-S 

n given x ° e C ,  k = 0 ,  rx=e; 

b i f  II,xll < w L  then stop 
else 

take an arbitrary stepsize a k ~ [fi, d ] ,  
c compute z k =x k - % F ( x k ) ,  v k =Pc(z k) 

d if F(v k)=O then vk~ C* stop 
e else 

• compute 
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7 = min.< F(2-JPc(zk)+(l-2-/)xk),x k -Pc(z k) >>_el._ xk _pc( z )1 (23) 
J~Z* L ak 

• compute /3 k = 2  -7 

• compute yk = f l k v  k +(l_ /3k)x  , 
<F(yk ),x k _yk > 

• compute • k -  iF(yk) I, 

• compute the orthogonal projection 
hyperplane OH k : 

of x k onto the 

w k = x k - r l k F ( S  ) (24) 

• compute 

xk+' = Pc" ( wk ) (25) 

r x  : x TM - x k ; 

k = k + l ;  
then go to (b). 
endif 

endif 
In [7], Iusem and Svaiter observe that ak_~flk_ ~ is an upper bound for the 
actual stepsize of  the whole step from x k-~ to x k , and they suggest that ak_ j , 
in the step (b), should be taken as 

ctk_ l = m e d i a n  { f , Oflk_ lock_t, & } 

where 0 > 1 but not too large (for example 0 = 2). 
Note that along the search for the appropriate ilk, the right hand side of  

(23) is kept constant; then we evaluate F at several points in the segment 
between v k and x k , no orthogonal projection onto C is required during the 
search, besides the computation of  v k and x TM. 

We observe that a too small value of  c might induce a loss of  precision 
of  the algorithm; on the other hand, a value of  c close to 1, make the 
inequality in (23) too tight, increasing the value of  j ,  and therefore 
decreasing /3 k , and lengthening the bracketing search. It follows that e 
should not be close to either 0 or 1. 

In [7] (see Prop. 4), Iusem and Svaiter prove that if C* ~: 0 and F ( x )  is a 
continuous monotone function then this method is convergent to a solution 
of(1). 
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We extended the Prop. 4 to a function F(x) continuous 
pseudomonotone, as follows: 

Proposition 2.3 (in [7]) Let the set C" o f  solutions o f  (1) be non-empty, let 
C be a closed convex set, F(x) a continuous pseudomonotone operator in 
x. Then from any initial point x° e C, the sequence {x k } generated by 
Algorithm I-S is convergent to a solution of(l).  

Proof. The proof of  this proposition is based on the following condition 

x -x" I (26) 

where x" e C'. 
Let L k = {x e ~fl" l< F ( y ) , x -  y k >< 0} ; using the pseudomonotonicity of 

F ,  

< F(x'),  yk _ x" >> 0 -->< F(y  k ), yk _ x* >> 0, 

we obtain that x* e L k ; on the other hand, Pc (x°) = x*. 
By Prop. 3(iii) in [7], x k does not belong to Lk; then using (24), it 

follows 

~ (x  k ) = e0,,,  (x  k ) -- w ' 

Then, from the propriety of  the projection (22) and from (25) we obtain 

IIx~+, _x, II ~- =llP~<w~>-ecCx,~ll ~ 

~11 w* -x*ll ~ - I1~ (w* ~- w~ II 

= IIP~ <x'~- P~ (x'~ll = -IIP~ ( w ~ -  w~ll = 

_~ IIx'-x'll ~ -[IP~ (x'~-x'l l  ~ -IIP~<w'~-w'll ~ 

Then, the proof runs as in Prop. 4 in [7]. 

From the computational point of view this method appears not effective 
since the convergence is very slowly, then we do not report in Section 3 the 
numerical results of  this method, because they were rather poor. Indeed, we 
observe that frequently the hyperplane OH k is near to the point x k and the 
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next iteration x TM =Pc(2 k) is not much different from x k and the 
convergence of  the algorithm is very slow. 

The interest forward the methods in [6] and [7] is justified by the fact that 
they are based on the same idea of  the method of  Solodov and Svaiter, 
discussed later in 2.4. 

2.3 Solodov and Tseng (S-T) method 

In [17], Solodov and Tseng propose a new class of  methods for solving 
variational inequality problem, ca l l edpro j ee t i on -eon t rae t i on  methods ,  where 
the second projection is a more general operator: 

x-k = P c ( x  k _ a k F ( x k ) ) ,  Xk+. = X k _ , , / M - . ( T ~ ( x  k) _ T (Pc(Ek)) ,  

where ,), E ~+ and T~ = (I - a F )  ; here I is the identity matrix, a is chosen 
dynamically (in according to an Armijo type rule), such that T~ is strongly 
monotone. 

Unlike the classical extragradient method (5), these methods require only 
one projection per iteration, rather then two, and they have an additional 
parameter, the scaling matrix M ,  that can be chosen to accelerate the 
convergence. 
M must be a symmetric positive matrix. 

The scheme of  the method is the following. 
Al,qorithm S-T 

a choose x ° ~9~",a_,  > O , O ~ ( 0 , 2 ) , p ~ ( O , 1 ) , f l ~ ( O , l ) , M ~ 9 ~  "x" 

b - £ ° = O , k = O ,  r x = e  

c if M < ToL then stop 
else 

a = ak_ ~, f l a g  = 0 ; 

d if F ( x  k) = 0 then x k E C* stop 
else 
while 

k 2 
( a ( x  k - 2-k)r (F(x k) - F(yk)) > (1 - p )  x k - -y ) o r ( f l a g  = 0) (27) 

if f l a g  ~ 0 then a = ak_l/3 endif; 

update 2 -k = P c ( x  k - a F ( x k ) ) ,  compute F(2 -k) 
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f l a g  = f l a g  + 1 ; 

endwhi l e  

f update t~ k = at ; 

g compute 7 : 0 p  x k - ~  2 /  M_l /2(xk  _~k ~ k F ( x k ) + a k F ( _ ~ k ) )  2 

h compute x TM = x* - 7 M  -j (x  k - yk  _ a k F ( x , )  + a ,F(-£*))  

r x  = X TM - -  X k , 

k=k+ 1; 
go to (e) 

i end i f  
endi f  

In this algorithm the condition (27) may be viewed as a local approximation 
to the condition a < 1/L,,  where the local Lipschitz constant L k is given by 

Lk = (x  k _ -£k)r ( F ( x  k) _ F(-£ , ) ) /  x k _ -~, 2" 

Then (27) reduces to ct < (1 - p ) / L  k . 
The convergence is proved under the assumption that a solution of  (1) 

exists and that the operator F is monotone. 
The rule (27) requires one projection and one function evaluation for any 

step of  the search procedure. Another function evaluation is required to 
complete any iteration. 

In Table 2, we shown, for ,8=0.3 and M = 1 ,  the behavior of  the 
method as 0 and p assumes different values. In general, the choice of  these 
parameters significantly affects the effectiveness of  the method. 

Parameters 

fl = O.3,M = l 

0=1.5 p=0.1 
p=0.5  

0=1.9 p=O.1 
p=0.5  

0=1.0 p=O.1 
p=0.5  

Test Problem 

Kojima-Shindo 

np/nf iter 
533/1064 530 

84/166 81 
416/830 413 
59/116 56 

808/1614 805 
146/290 143 

User-OPT 

Tranf. Pattern 

np/nf iter 
71/140 68 
90/117 86 
55/108 52 
21/40 18 

107/212 104 
158/313 154 

Table 2. Results for Projection-Contraction Methods 

Braess Network 

np/nf tier 
61/121 59 
89/176 86 
48/95 46 
67/132 64 
45/89 43 

150/298 147 
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2 .4  S o l o d o v  a n d  Sva i t e r  (S -S )  m e t h o d  

Finally, we have analyzed a projection algorithm that was proposed by 
Solodov and Svaiter, in [18]. 

This algorithm allows a geometric interpretation as in [6] and [7] (see 
Fig. 4): let x k be the current approximation of  the solution of  VIP(F,C); 
first, we compute the point Pc(x k- /~kF(xk));  next, we search the line 
segment between x ~ and Pc(x k -/~kF(x~)) for a point z i such that the 
hyperplane 

OH,={xe9]"I<F(z'),x-z' >=O} 

strictly separes x k from the solution of  the VIP(F,C) x". 
To compute z k, an Armijo-type procedure is 

Z k X k k = -rlkr(x,/ . tk) where r / k=7 '#~  with [ being 
nonnegative integer i satisfying 

used, i.e., 
the smallest 

< F( xk - "/i#kr(xk, #k )), r( xk , #k ) > >-- ~ r( xk, #k ) z 

and r(xk,/~k)=x k - P c ( x  ~ --/ukF(xk)) is the projected residual function; 
after the hyperplane OH k is constructed, the next iterate x TM is computing 
by projecting x k onto the intersection between the feasible set C with the 
halfspace H k = {xeg~" l< F ( z k ) , x - z  k >< 0} which contain the solution set 
C*. 

The scheme of  the Solodov and Svaiter algorithm is reported in the 
following. 
Al.qorithm S-S 
a choose x ° E C,T/_~ > 0,3' E (O,l),cr E (0,1),0 > 1,k = O, rx = e 

b if M < r o L  then stop 
else 

compute At k = min{Orlk_t, 1} 
c if r(xk,/tk):=X k - P c ( x  k --/ukF(xk))=O then x k EC* stop 
d else compute 

T = min{< F(x  k i k k -~k - " / # k r (  x ,#k)),r( x , # k ) > -  > r(x~,#k) 2} 
iEZ 

where r/k = 77#k 
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e compute z k = x  k -rhr(xk,/.tk) 

f compute the halfspace H k = { x ~ " l < F ( z k ) , X - - Z k > < O }  

g compute x TM = Pc,-,tl, (xk)  

I"X = X TM - -  X k 

k = k + l ;  
go to (b) 

h endif 
endif  
Also in this method are needed only two projection per iteration. 

This method should be especially effective when feasible sets are "no 
simpler" than general polyhedra; in this case, adding one more linear 
constraint to perform a projection onto C ~ H  k doesn't increase the cost 
compared to projecting onto the feasible set C.  In Figure 4, we analyze the 
differences between the Iusem and Svaiter method in [7] and the Solodov's 
method. 

.'"" "5 
. . /  :..~ ~ z ~+'=Pcn~,[zq 

.'" ~ ~ z' 'F z ~ ~ • ' .y.- ~ . , c [  - ( )1 = z -,-(~) 

Figure 4. Comparison between Iusem Svaiter method [7] and Solodov and Svaiter method 
[18l 

In [7], x k is projected first onto the separating hyperplane OH k and then 
onto C.  If x* near OH k , Pc(-£ k) can computationally are equal to x k and 
the algorithm does not converge. 

In [18], the second projection step in our method is onto the intersection 
C c~ H k . We can observe that the iterate x TM is closer to the solution set C" 
than the iterate computed by the method in [7]. 

In [18] it is shown that this method is convergent to a solution of  the 
variational inequality problem under the only assumption that F is 
continuous and pseudomonotone. 



1124 Variational Analysis and Appls. 

. C O M P U T A T I O N A L  E X P E R I E N C E  

In order to evaluate the effectiveness of  the extragradient methods 
discussed in the previous section, we consider a set of  test problems arising 
from the literature (see the list in Table 3). 

The M-function files implementing the considered test problems are 
downloadable at URL (http://dm.unife.it/pn2o/software.html). 

We report in Table 4 the numerical results obtained by the MatLab M- 
script files implementing the considered methods. These codes can be 
downloadable at the URL (http://dm.unife.it/pn2o/software.html). 

For the test problems with the suffix 'box' in the name of  the input script 
files, the feasible region is given by the nonnegative orthant x e 9t~ ; they are 
NCPs. The other test problems are VIPs. 

We choose very simple feasible regions so that the solver for inner 
quadratic programming problem has a low cost. 

The starting point for all methods are feasible. 
But, if we start from an unfeasible point, the first projection enables us to 

determine a feasible point that can be used as initial iterate. 
All MatLab codes are run on a Notebook personal computer (ACER 

TravelMate 435LC, P-IV 3.06GHz) under MatLab version 6.5.0.180913a 
R13. 

The following remarks can be drawn: 
• between the three variants of  the extragradient method, those related 

to (16)-(17) and (18) are more effective; the scheme related to (18) 
has near the same number of  iterations with respect that related to 
(16)-(17) but the number of  the projections and the number of  the 
function evaluations are smaller; we remark the effectiveness of  the 
extragradient method combined with (I 8) when we have to solve an 
NCP; 

• the convergence of  the S-T method is holds for monotone maps; the 
method has a better performance with respect the extragradient 
methods and it is very efficient for an affine VIP (see the test 
problem HPHard); for several test problems the number of  iterations 
of this method appears convenient with respect to the S-S method; 
nevertheless the execution time of the S-S method can be smaller 
than that of  the S-T method; but half of  the projections of the S-S 
method has a different feasible region and then the number of 
projections are not comparable. Furthermore, the behavior of  the S-T 
method strongly depends on the choices of its parameters (see Table 
2). 
For monotone VIPs, we can be find convenient parameters so that 
the method is competitive with the others. 

• For pseudomonotone VIPs, the S-S method appears in general very 
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effective (only for the test problem HpHard the behavior of the S-S 
method is poor); indeed, the numbers of iterations of the S-S 
method is less than those of all the other methods (except for the S- 
T method, however, that requires the monotonicity of F ); but the 
complexity of each iteration can be larger of that of the other 
methods. Indeed the number of function evaluations can be greater 
than those of the extragradient method combined with the rule 
method (18) or (16) (17) and half of the projections has a different 
computational complexity since the feasible region is complicated 
by an additional (linear) constraint. 
Then the effectiveness of the S-S method can depend on the 
structure of the feasible region, on the performance of the solver for 
the inner quadratic programming problem and on the analytical 
form of the mapping F .  
We remark, in particular, the loss of the efficient for the NCPs, 
where the feasible region given by the nonnegative orthant 
significantly changes by the addition of a linear inequality. 

4. C O N C L U S I O N  

In this paper we reported a numerical analysis of the behavior of a set of 
extragradient-type methods that enable us to solve pseudomonotone VIPs 
and NCPs. In particular, we devised a convenient variant of the Khobotov's 
extragradient method that appears numerically effective above all for NCPs 
where one projection on the nonnegative orthant is very simple. 

We compared other two extragradient-type methods: the first proposed 
by Solodov and Tseng can be very convenient for monotone VIPs while the 
second proposed by Solodov and Svaiter and called hyperplane projection 
method can be solve also pseudomonotone VIPs. This method appears very 
effective when the addition of a linear inequality constraint to the original 
feasible region does not increase too much the computational complexity of 
the special projections required by the scheme. 

All the numerical results are reproducible by the codes available on the 
web site URL(http://dm.unife.it/pn2o/software.html). 

This work is in progress, since we intend to update in the site by adding 
new significant test problems and by collecting further numerical results on 
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np is the number of projection 
nf  is the number of evaluation function 
iter is the number of iteration; the stopping criterion is r ( x  k)  = x k - x  k-1 < 10 -4 
- denotes that the method does not converge. 
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the considered schemes and on 
extragradient-type methods. 
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REGULARITY AND EXISTENCE RESULTS FOR 
DEGENERATE ELLIPTIC OPERATORS 
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University of Messina, Dept. of Mathematics, Messina, Italy; t University of Catania, Dept. oJ 
Mathematics, Catania, Italy 2 

Abstract: In the first section of this paper we study the H,31der-continuity of solutions of 
the Schr6dinger degenerate equation 

n / ", '= ai jux,  xj 

assuming the potential c belonging to appropriate degenerate Morrey spaces. 
In the second section we obtain the existence and the uniqueness of the 
solution of a variational inequality associated to the degenerate operator 

n n 

Lu=-Z(a (x).x,+dju) x (**) 
i,j=l J i= 1  

assuming the coefficients of the lower terms and the known term belonging to 
a suitable degenerate Stummel-Kato class. In both cases the weight w, which 
gives the degeneration, belongs to the Muckenoupt class .42 . 
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. R E G U L A R I T Y  R E S U L T S  F O R  D E G E N E R A T E  
E L L I P T I C  O P E R A T O R S  

It is known that the regularity theory of linear, as well as of quasilinear 
second order elliptic equations in divergence form, with lower order terms 
and the known term in L p spaces, was settled in the sixties by the 
contributions of many Authors (see e.g. [6],[21], [11], [19]). Ladyzhenskaya 
and Ural'tseva claim that: the necessity o f  the restrictions indicated below 
should be understood in the sense that if  one o f  the restrictions is weakened, 
then the class o f  equations in question will include one with a solution not 
possessing the property in question (see e.g. [11] p. 10). 

To be more specific, let us consider the following equations in f2 
bounded open set of 1R" (n > 3) 

-Au+cu  =0 (1.1) 

-Au = f .  (1.2) 

It is known that the solutions of (1.1) and (1.2) are locally HOlder 
continuous under the following assumptions 

n 
c, f eLP(f~), p>-- .  

2 

The above recalled results are sharp in the classical L p theory. Indeed 
both equations (I.1) and (1.2) have solutions which are unbounded if the 
assumptions 

c, f eL~(~) 

hold (see e.g. [11]). 
We also wish to recall the paper [15], where it is obtained the H61der 

continuity of the solutions of (1.2) assuming 

f ~ L ~ (~)  

and 

f, n ,xr, I f ( y )  1~ dy <_ Kr" Vx E f2, Vr > 0 (1.3) 
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for some positive constants K and a .  Here B(x,r) denotes the ball 
centered in x and radius r .  

At this time it may be convenient to recall the definition of  the Morrey 
spaces. 

Definition 1.1 Let 1 <_ p < oo, 0 < A < n.  We say that f ~ L p (~) belongs to 

the Morrey space L p'A (~) if 

sup f  J :(.,,> l" + -  
x~, r QAB(x.r) 
r > 0  

Here and in the sequel, C a n d c  will denote inclusion and strict inclusion, 
respectively. 

Remark  1.2 The condition (1.3) means that f e L~'a(~). Also it is known 
that LP(~)cL~'a(~), for some opportune positive a if p > ~  (see e.g. 
[18]). 

Now we can consider the question if it is possible to find some subspace 
of  L ~ to which the known term and the coefficients of  the lower order terms 
must belong so that the previous regularity results continue to hold. The first 
regularity result obtained under not L p assumptions is due to H. Lewy and 
G. Stampacchia in [12], where it is proved that the solutions of  equation 
(1.2) are H61der continuous if 

f E L l'~ (f~) 

for some A > n - 2. 
The greatest contribution, after Lewy and Stampacchia, in the direction 

outlined above, seems to be given by Aizenmann and B. Simon in [1], where 
they were able to prove the Harnack inequality for positive weak solutions of 
equation (1.1) assuming c in the so called Stummel-Kato class defined as 
follows 

Definition 1.3. We say that f E L 1 (f~) belongs to the Kato-Stummel class 
S(~) if 

s u p f .  [ f (Yl,!2 d Y -  77(f ,r) < +oe, Vr > O 
.,,ca ns(x.,) ] x - y 
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and 

l i m  r / ( f , r )  = O. 

R e m a r k  1.4 It is worth to note that 

L ~ ' ~ C S C L  ~'"-z, A > n - 2  

(see e.g. [7]). 
In 1986 F. Chiarenza, E. 

previous result to the equation 
Fabes and N. Garofalo in [3] extended the 

where the coefficients ao are such that 

a o. : aji 

3A > 0: A-' I t  12_< ao~i~ j --<;~1 ~ 12 v~ c R", 

and the potential c is in S ( ~ ) .  
A further step in the study of (1.4) was done by Di Fazio in [7] (see also 

[20]), where it is shown that if c is taken in L ~':' , with A > n -  2, then u is 
holder continuous. 

The results obtained in the previous works show that the L p assumptions 
are not the best possible if other classes (like the Morrey spaces or the 
Stummel Kato class) different from L p spaces, are taken in consideration. In 
fact it is worth to note that 

n L r c S  i f p > ~ ,  

L P C L  ~'~ for s o m e A > n - 2  i f p > n .  
2 

In the degenerate case, the regularity of  solutions of equation 

-±(a,,..,I. =O 
i , j= l  

i,j=l 
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was studied by E. Fabes, C Kenig and R. Serapioni in [8]. There the operator 
is assumed to be degenerate in the sense that the uniform ellipticity condition 
is substituted by the following 

3A>0:A-'wI  ] ~ aq~i~ j ~ A W ] ~  ] 2 V~ E ]I~ n. 

The weight w is assumed to belong to the Muckenoupt class A 2 (see 
[16], [5] and [9]). 

Subsequently C. Gutierrez gave an extension of the previous result for 
the degenerate Schr6dinger equation 

n 
-ZIo ux )x +cu--0 

i,j=l 

(see [ 10]). 
In his work Gutierrez obtained the Hamack inequality, assuming ~ in the 

degenerate space S(~ ,  w) whose definition is given below. 

Definition 1.4. We say that f E L ~ (f2, w) belongs to the Kato-Stummel class 
S(f~, w) if  

f~e(~ r) l f (Y)  ~ 'R  s 2 ds 
sup~ea , I -yl w(B(x,r)) s 

w(y)dy = r / ( f , r )  < +c~,  Vr > 0 

and 

lim rl(f, r) = O, 
r ---~0" 

where f~ is a bounded open set in II~ " , £)___B(0,R) and 

w(B(x, r)) = f ~(x,r) w(x) dx 

R e m a r k  1.5. S(~,  w) is an appropriate modification of  the Stummel-Kato 
class. Indeed S(f2,1) - S .  

We refer to the survey [2] for more details on this matter. 
Now we present some results obtained in our note [22] which extend to 

the degenerate case the analogous ones contained in [7] and [20]. 
In [22] we consider the equation (1.4) where the coefficients ai/(x) are 

measurable functions such that 
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a~(x)=aj,(x) 

and 

i , j=l ,2 , . . . ,n  
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3v >O'v-'w(x)l~lZ~ ~ a,j(x)~,~ <_vw(x)141 ~ V4 ~R", 
i,j=l 

with the weight w belonging to the A 2 class. 
The first problem one has to face is to understand what a "degenerate" 

Morrey space is. We introduce two such notions o f  degenerate Morrey 
space, M,~ (f2, w) and L t'" (ff~, w),  whose definitions are the following 

Definition 1.6 Let cr > O, C > 0 and 0 < r < 2R. We set 

M~ (f2, w) = { f  ~ L I (f2, w)" 

~ j  R s 2 ds 
sup I f ( Y )  I - -  w ( y ) d y  < Cr ~ }. 
xcFt YCft:[x-yl<r} -Yl w ( B ( x , s ) )  S 

Definition 1.7 Let c ~ •. We set 

L I'~ (f2, w) = { f  ~ L' (ff~, w)" /,.2-e ~{ 
Ilfllt.~ = sup, c, w(B(x,r))  yE~:ix-yl<,} I f ( y )  lw(y )@ < +c~}. 

0 < r < 2 R  

R e m a r k  1.8 We note that in the nondegenerate case, i.e. w = 1, M~(f'2, w) and 
L L" (~ ,  w) coincide with the classical Morrey space L j 'a for some opportune A ; 
in particular for cr = ~ > 0 we obtain M,~ (~,  1) - L t '~ (~q, 1) - L ~'"-2+'~ . 

It is also interesting to note that if 2 < c  then LL"(f~,w)= {0}. If  
e < 2 - 2 n  then LL'( f ) ,w)=L~(f ) ,w) .  

We wish now to compare the spaces introduced above. 

Proposition 1.9. (see [22] We have ~ 
/) M,~ (f2, w) _ S(f2, w) ; 

ii) M ~ ( ~ , w ) c L " ~ ( f ) , w ) , o - > O ;  

J With K we denote the so called reversed doubling constant. We recall that a weight 
w e A 2 satisfies the following property: 

30 </ti" < 1 : w(B(x, , ' / )  _ Kw(B(z,2, ' ))  
(see [22]). 
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1 
ii 0 L' ' (~,w)c_M~(ff2,w),e>O, i f  K < - . 

4 
In [22] we prove the following result 

Theorem 1.10. Let u be a local weak solution of(1.4) in ~ . I f  c ~ S(~ ,  w), 
W 

then there exist positive numbers a ,  r o and C, independent o f  u, such that 

for  any ball B(xo, r), with B(x o, 16r) c f~, 0 < r < r° and any x ~ B(x o, r) 
8 

we have 

l u (x ) -u (x  o) I < C(\ 8¢x0,4r)suplu I)II x-x01 s r-ffr/(2r) + 

+ [ x - x  o I ~ r -~ +rl(r ~ I x - x o  I + + l x - x  o I) 1. 

By the inclusion M~(f2,w)___ S(f2,w) and Theorem 1.10 we obtain the 
following h61der-continuity result for the local solutions of  equation (1.4) 
that extends to the degenerate case the analogous result contained in [7] and 
[20]. 

Theorem 1.11 Let u be a local weak solution o f  (1.4) in ~2. I f  
c 

- -  ~ M~ (~,  w) then u is locally hOlder-continuous in ~ .  
w 

Finally we wish to stress that the space L~'~(w) in turn gives some 
interesting necessary conditions for h01der-continuity of solutions of  (1.4). In 
fact it holds the following result 

Theorem 1.12 (see [22]) Let c<O, c~I) ( f~)  and let u~C°'~(f)) ,  

ct ~]0,1[, 0 < l < u, be a local weak solution o f  equation (1.4). Then 

c 
- -  E L ''~ (f~, w).  
w 

We wish to point out that in general the spaces M,~ (f2, w) and L I''~ (~,  w) 
are different even if they are the same in many non trivial situations. 
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2. U N I Q U E N E S S  A N D  E X I S T E N C E  R E SU L T S F O R  
D E G E N E R A T E  E L L I P T I C  O P E R A T O R S  

In this section we provide some results concerning a variational 
inequality associated to a degenerate elliptic operator. These results are 
contained in the note [23]. 

Let ~ be a bounded open set in IR". We consider the linear differential 
operator 

Lu = -  a o (x)ux, + dju + ~ b, Ux + cu 
i,j=l xi i=1 i 

where a U , dj ,  b i and c (i,j---1,...,n) are measurable functions such that 

a U = aji (2.1) 

3 v > O ' v w l ~ 1 2 < _ a ~ j  ___lwl ~ ( a.e. inf2, V ~ E N ' , w ~ A  2 (2.2) 
V 

, - ~ s ( ~ ,  w) (2.3) 
\ w j  \ w )  w 

f~(d/p~ +c99)ax>O VqoECo(f2),~p>Oina (2.4) 

Under assumptions (2.1), (2.2) and (2.3) it is possible to prove that the 
bilinear form 

a(u, v) =< Lu, v > 

is continuous in /-/01 '~ (~, w) x H~ 'z (~, w). 
Given ~b E H~'Z(f~,w), ~b <_ 0 in 0~  and T ~ H-I'z(~,w),  in the convex 

1K= v E Ho' (f~, w) : v >_ ~ a.e. in f~ 

let us consider the following problem 

u e l K : a ( u , v - u ) _ > < T , v - u >  V v e K .  (2.5) 
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Under L p assumptions on the coefficients, variational inequality (2.5) 
was studied in [14] and [4], 

In [14] the weight w giving the degeneration was assumed under 
convenient hypothesis such as Murthy-Stampacchia (see [17]). In [4] 
instead, w ~ A 2 . 

R e m a r k  2.1 We can observe that if we consider w(x)=[ x[ '~, the results 
obtained in [4] hold if a ~ ] -  n,n[, n _> 2 ,  instead, it is worth to note that in 
[14] the correspondent results hold if a e [0, 2[. 

Our existence and uniqueness result needed various basic properties 
concerning a subspace of  S(f~, w) defined as follows 

Definition 2.2 We say that f C S (f2, w) belongs to S '  (f2, w) i f  

r / ( f )  - sup r / ( f , r )  < +oo. 
r>O 

We wish to recall some basic properties for functions belonging to S' ,  
which will play a crucial role in our proofs. 

Lemma 2.3 Let - ~ S ' ( f ~ , w ) .  Then Ve>O,  3tx>O "Ec_f~, [E]<o- 

r l ( f  ZE) < ~" . 

Lemma 2.4 Let -~ ~ S' (f~, w) and e > O. Then there exist two functions f 

and f2 such that f = f  + f z ,  f2 ~L®(~),  r / ( f ) < e .  

Lemma 2.5. Let -~ ~ S" (f2, w), then Ve > 0, 3c~ > 0, depending on 
e, f~, w, n, c such that 

£u2pcldx<_~£1Vul2wdx+c, fou2wdx 
Vu ~ H~ '2 (f2, w). 

Using the previous properties we get the following 

Theorem 2.6 Let u ~ K be a solution to problem (2.5).Then 

1 

I ~ u  I~ ~_< ~ I1~11, ~ + {11~11 ~ ~ + I1~11~ w / ~ 
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where c is a positive constant depending on n, v and ~ Ib'-dA" 
W 2 

i=1 

The uniqueness of solution of variational inequality (2.5) is proved by 
the following 

12 Theorem 2.7 Let u ~ K be a solution to problem (2.5) .Let u~ e H o' (f2, w), 

u~ >~b a.e. in ~ ,  a(u,q~)><T,q~> VqkeH~'2(f2,w),qk>O. Then u < u  I a.e. 

in f) .  
Our existence result follows from the previous estimate and the following 

compactness embedding theorem 

Theorem 2.8 Let w ~ A 2 . There ex&t a constant C a, depending on u, the 

A 2 constant o f  w, and e >-~ such that for  some u e H~ '2 (~, w) and 

l < k < ,_-z~ = n' we have 

lul2kw-<llull, w 

For 1 <_ k < n' the embedding o f  H~ '2 (f~, w) in L zk (f), w) is compact. 
Precisely we obtain 

Theorem 2.9 Under assumptions (2.1), (2.2), (2.3) and (2.4) there exists the 
solution o f  variational inequality (2.5). 

Proof Using Lemmas 2.3,2.4 and 2.5 we have that there exists a positive 
constant/.t, depending on the previous arguments, such that 

2 > V  2 12 
a(v,v)+ /.tlvlz,w_-~llvllM?.~(n,w ), V v ~ H  o' (~,w). 

Then (see e.g.[13]) V¢ ~ L2(f~, w) the problem 

u C I K : a ( u , v - u ) + #  ~ 

have unique solution u = S(O) 
In this way we have defined the operator 

S:LZ(f2,w) > L2 (f), w). 
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that results continuous and compact. Moreover, if we consider a e [0,1] and 
such that ~ = a S ( ~ ) ,  assuming u = S(~) ,  we get 

a(u,  v - u) + #(1 - o~) f a  u ( v  - u ) w  dx >_ < T ,  v - u > 

From the apriori estimate 

constants independent from 

from Leray-Schauder theorem. 

V v E K .  

we can estimate IIs< )ll,,w and 1~12,w with 

and a .  Then the desired conclusion follows 
El 
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VECTOR VARIATIONAL INEQUALITIES AND 
DYNAMIC TRAFFIC EQUILIBRIA' 

X.Q. Yang I and H. Yu 2 
Dept. of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong 
Kong; t School of Economics and Management, Tsinghua University, Beo'ing, China 2 

. I N T R O D U C T I O N  

Variational inequality problems were first investigated in the study of 
elliptic problems and obstacle problems etc. The pioneer work was 
summarized in the book by Kinderlehrer and Stampacchia [10]. One 
important feature of variational inequalities is that many practical problems 
are firstly formulated as variational inequalities, and only under further 
conditions, they are formulated as optimization problems. 

The vector variational inequality (VVI, in short) problem as a 
generalization of scalar variational inequalities was firstly introduced by 
Giannessi [6]. This problem has received extensive attentions in the last two 
decades. Many important results of various kinds of vector variational 
inequalities have been established, such as existence of a solution, relations 
with vector optimization, gap functions, stability, characterizations of 
solution sets, duality theory and applications. The research of vector 
variational inequalities has been advanced by the recent book Giannessi [8]. 

i This research is supported by the Research Grants Council of Hong Kong (Poly U 5141/01 
E). 
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As a generalization of  Wardrop's principle [ 12], the multiple criteria (or 
vector) Wardrop's principle is formulated as: the traffic flow along a path 
joining an origin node and a destination node in a road network is greater 
than zero only if the resulting multiple criteria cost is efficient amongst all 
the paths that join the pair of  nodes, see [2,13]. However, the corresponding 
vector variational inequality problem is of  finite dimension as the path vector 
as the variable for the problem is of  finite dimension. 

This paper will review some recent results on the existence of a solution 
of  VVI and relations between a solution of VVI and that of  a vector 
optimization problem. A new gap function for VVI will be introduced. To 
illustrate the application of  VVI in infinite dimensional spaces, a vector 
dynamic traffic equilibrium principle is introduced. As a result, a new VVI is 
formulated. Finally the existence of  a vector dynamic traffic equilibrium 
flow is obtained. It is worth noting that scalar dynamic traffic equilibrium 
problems have been investigated in [4] and [5]. 

. E X I S T E N C E  O F  A S O L U T I O N  O F  V V I  

Let X be a Banach space and (Y, C) an ordered Banach space with the 
orderings defined by the closed and convex cone C as follows: 

Yl <c Y2 "~ : ' Y 2 - Y I E C .  

Assume furthermore that i n t C  ~ ~. The weak orderings in Y are 
defined by 

Yl <-~,tc Yz ", :" Y~ - Yl E in tC .  

It is worth nothing that the partial ordering ~,~tc is closed in the sense 
that if 

y, ~ y as n ~ cx~, y,~i,,teO, 

then y~ntcO. But the partial ordering ~c\/0t is not closed. 
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Let L(X,  Y)  be the set of  all linear and bounded operators from X to 
Y.  The value of  I E L ( X , Y )  at x E X is denoted by (l, x). 

Let K C X be a closed and convex set and T : X --* L(X,  Y) .  
The Weak Vector Variational Inequality problem (WVVI, in short) is 

defined as: finding x E K such that 

(T(x), y - x)~,~tcO , Vy E K. (1) 

The Vector Variational Inequality problem (VVI, in short) is defined as: 
finding x E K such that 

(T(x) ,y  - x)/~c\{o}0, Vy E K. (2) 

Definition 2.1 Let X be a Banach space, and (Y, C) an ordered Banach 
space with intC* ~ 9. Let K be a nonempty unbounded, closed and convex 
subset o f  X and T : X ~ L(X,  Y).  

(i) T is said to be weakly coercive on K if  there exist x o E K and an 

s E intC" such that 

(s o T(x)  - s o T(xo),x -  o)/II  - xoll-  + ~  

whenever x E K, and II x II 4 ~ ,  see [3]. 

(ii) T is said to satisfy the v -coercive condition i f  there exist a weakly 
compact subset B C X and go E B fq K,  such that 

(T(x),yo - -<,,,,c 0, W E K \ B. 

(iii) T is said to satisfy the s-coercive condition i f  there exist an 
s E intC*, a weakly compact subset B C X and z o E B N K, such 

that (s o T(x), z o - x) < O, Vx E K \ B. 

(iv) T is said to be monotone i f  

( T ( x ) -  T(y) ,x  - y) >c O, Vx, y E K. 

Remark 2.1 In Definition 2.1, weak coercivity o f  T ~ v -coercivity o f  T 
s-coercive. I f  Y = ~ ,  so intC* = {r E l~ l r  > 0}, weak coercivity o f  

T ~ s -coercivity o f  T .'. ~. v -coercivity o f  T .  

Definition 2.2 Let X and Y be Banach spaces and T :  X ~ L(X,  Y) .  T 
is said to be v-hemicontinuous i f  one o f  the following two conditions is 
satisfied." 
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(i) for  every x, y E X ,  the map t ---~ (T(x  + ty), y) is continuous at 

0 + ; 
(iO for  every x, y, z E X ,  the map t ~ (T(x  + t(y - x), z) is continuous 

at 0 + . 

R e m a r k  2.2 In Definition 2.2, condition (ii  ) & stronger than (i) ,  i.e.,(ii ) 
(i). 

Theorem 2.1 [3] Let X be a reflexive Banach space, (Y, C) an ordered 
Banach space with in tC  :x: ~ .  Let K be a nonempty closed and convex 
subset o f  X ,  and let T : X--~ L ( X , Y )  be a monotone and v-hemi- 
continuous map on X .  Assume that 

(i) K is bounded, or 
(ii) intC* • ,ff and T is weakly coercive on K .  

Then WVVI(1) is solvable. 

This result is proved as follows: Define the closed and convex set 

K(y)  = {x E K :  (T(x) ,y  - x)~,,,teO}, y E K. 

Since the partial ordering ~i,tc is closed, K(y)  is a closed set. Every x E K 
satisfying 

is a solution of  the problem WVVI(1). This nonemptiness is established by 
applying the Knaster-Kuratowski-Mazurkiewicz Theorem and a Minty 
linearization lemma. 

Theorem 2.2 [3] Let X be a reflexive Banach space, (Y, C) an ordered 
Banach space with intC* :x: ~. Let K be a nonempty, bounded, closed and 
convex subset o f  X ,  and let T : X ~ L( X,  Y)  be a continuous map on X .  
Then WVVI(1) is solvable. 

The existence of  a solution of  a vector variational inequality problem 
with a set-valued mapping can be established via that of  a vector variational 
inequality problem with a single-valued mapping. 

Let T :  K ~ L ( X , Y )  be a set-valued mapping. T : K ~ L ( X , Y )  is 
said to be a selection of T if 

T(x)  E T(x) ,  x E K. 
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Consider the problem of finding x E K such that there is a )- E T(x)  
satisfying 

(L y - vv  e K, (3) 

and the problem of finding x E K such that 

(T(x),y - x)~,.tcO, Vy C K. (4) 

Lemma 2.1 [13] Every solution of(4) is a solution of(3). 

This lemma allows us to derive existence results of a solution of (3) by 
that of (4) as long as certain selection of T exists. 

3. R E L A T I O N S  W I T H  V E C T O R  O P T I M I Z A T I O N  

Consider the following vector optimization problem: 

Mini. ,cf(x ), subject to x E K, (5) 

where Mini,to means that x C K is a solut ion i ff  

f(y)~,,,tcf(x), Vy E K. 

Theorem 3.1 [3] Let f be continuously Gdteaux differentiable on an open 
set containing K and T(x) = V f (x ) .  Then x is a solution of  WVVI(1) if  
and only if  x is a solution of(5). 

Consider the following vector optimization problem: 

Minc\{o}f(x), subject to x E K, (6) 

where Mine\{01 means that x E K is a solution i f f  

f ( y )~e \ (J (x ) ,  Vy G K. 

Theorem 3.2 [3] Let f be continuously GSteaux differentiable on an open 
set containing K and T(x) = V f ( x ) .  Then x is a solution of  VVI(2) only if  
x is a solution of(6). 
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The following example shows that a solution of (6) is not necessarily a 
solution of  VVI(2). 
Example 3.1 [71 Let K = [ - 1 , 0 ] , ,  f ( x ) = ( f l ( x ) , J ~ ( x ) ) = ( x , x  2) and 
T(x) = (1, 2x). Then every x • K is a solution o f  (6), but x = 0 is not a 
solution o f  VVI as, for  y = - 1, 

( f f ( x ) ( y -  x ) , f f ( x ) ( y -  x)) T = [-1 0] T <R2,\{o} [0 0] T. 

The following result provides a necessary and sufficient condition 
between a solution of (6) and that of  a Minty VVI. Consider the Minty VVI: 

T ( y ) ( y -  x)~\{o}O , Vy • K, (7) 

where T:  ~"  --> R e×" . 

Theorem 3.3 [7] Let K C R" be a closed and convex set with nonempty 
interior, f : R"---~ R e be differentiable on an open set containing K ,  
T(x) ---- Vf(x)  and C = Re+. Then x is a solution o f  Minty VVI(7) if  and 
only i f  x is a solution of(6). 

4. G A P  F U N C T I O N  A P P R O A C H  

The gap function was first introduced in Auslender [1]. Let 
T = [T,...,Te] T : R" ~ R e×" and K C 1~" be a closed and convex set. 
Consider the following WVVI of  finding x E K such that 

T ( x ) ( y -  z)~,,,R~O , Vy • K. 

Let y • K .  Note that, 

T ( x ) ( y -  x)2~,.m,+0 

if and only if there is an index i such that 

T , ( x ) ( y -  x) ___ 0 

(8) 

if and only if 



Vector Variational Inequalities and Dynamic Traffic Equilibria 1147 

max T~ (x) (y - x) >_ 0. 
l_<i<e 

So 

min max T/(x) (y - x) >_ 0. 
yEK l<_i<_e 

It is clear that 

min max T~(z) (y -  x) <_ O. 
yEK l<i<_g 

A function G is called a gap function for WVVI (8) on the set K if (i) 
G(x) < 0,Vx E K and (ii) G(x) = 0 if and only if x is a solution of  WVVI 
(8). 

Define the following gap function 

G(x) = min max T/(x)(y - x) 
yEK l<_i<_g 

Thus G(z) <_ O, Vx E K . So we have 

Theorem 4.1 x E K is a solution of  the WVVI(8) if and only if  G(x) = O. 

Now we study the gap function properties for the following VVI of  
finding x E K such that 

T ( x ) ( y -  x)~R~\{o}O , Vy E K. (9) 

Logically, we can prove that if G(x) > 0, then x is a solution of VVI 
(9). But, by definition, G(x)<_ 0, Yx E K .  So we need to modify the 
definition of  G(x) as follows: 

GI(x ) = min m a x T i ( x ) ( y -  x). 
y~:K,y~x l<i<~ 

Then we have 

Theorem 4.2 x E K is a solution of  VVI(9) if G 1 (x) > O. 

But this is only a sufficient condition as shown by the following example. 

Example 4.1. x E K is a solution of  the VVI(9), but Gl(x ) = O. 
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Let K : [-1,0],  T(x) : (T~(x),T2(x)) : (l, 2x). Then x : - 1  E g is a 
solution of  (VVI)." for any y E K,  

(T~(x)(y- x ) ,T2(x) (y -  x) ) v = (y + 1,-2(y + 1)) v ~a~\(o)[00] v. 

But 

GI(-1  ) = min max{(y + 1) ,-2(y + 1)) 
ue[- 1,ol,v~- 1 

= m i n  y + 1 
ye[- 1,0],y~- 1 

= 0 .  

In the same way, we can define a gap function for the Minty VVI (7): 

G2(x) = min max T~(y)(y-  x). 
yEK,y~x l<i<g 

Theorem 4.3 x E K is a solution of Minty YYI (7) if G2(x ) > O. 

5. A P P L I C A T I O N :  D Y N A M I C  T R A F F I C  E Q U I L I B R I U M  

This section formulates dynamic vector equilibrium principles as an 
infinite dimensional VVI. 

5.1 N o t a t i o n  

Let • = (A/',.,4) be a directed graph, I denote the set of  given origin- 
destination (O-D) pairs in G and, P~ (i E 2-) denote the set of available 
paths joining O-D pair i. 

Let f2 = [0, t;] be the time period under consideration. For i E 2 and a 
given path k E P~, let hk(t ) denote the traffic flow on this path at time t E f2 

and M = ~-~ic, I Pi I. Then, at time t ,  

h(t) = [hk(t): k E P,,i E 2-] 

is a M-dimensional column vector. 
For technical reasons, we only take account of the functional setting for 

the set of  flow trajectories. This set is assumed to be a reflexive Banach 
space LP(f~,ll~ u) with p > 1. The dual space of  LP(f~,~ u) is Lq(f~,ll~U), 
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where l ip + 1/q = 1. On Lq(f2,N M) x L~(f2, RM), we define the canonical 
bilinear form by 

(G,h) = f ,  G(t)h(t)dt, G E Lq(f2,]~M),h E LP(f2,~ M) 

For i E 27, the demand d~(t) >_ 0 on this O-D pair i depends on the time 
t E f~. At time t E f~, let 

d(t)=[d,(t):iEI].  

Also, for technical reasons, we think of  the demand trajectories in 
L p (f~, ~lzl). 

A flow trajectory, for convenience, a flow h E LP(Ft,~ M) satisfying the 
demand, is called a feasible flow. Let 7-/ be the set of  feasible path flows, 
i.e., 

75 = {h E LP(f~,]~M) l h(t ) >_ 0 and ~ hk(t ) = d~(t) a.e. on f2, Vi E Z}. 
keP, 

A path flow vector h(t) induces an arc flow column vector 
V ( t )  = [v~(t)]~,ea , where, for each arc a E ,A, 

vo(t) = ~ ~ 5o~hk(t) 
ie~ keP, 

where 

is the arc path incidence matrix with 6.k = 1 if arc a belongs to path k and 
0 otherwise. Hence 

v(t) = Ah(t). 

Let P be the set of  feasible arc flows, i.e., 

v = {v e / p ( f ~ , ~ )  I v(t) > 0, v(t) = / ' ,h( t )  and 

hk(t ) = di(t ) a.e. on a,  'v'i E 2-}. 
kC-l~ 
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Let (IIU, Re+) be an ordered space with the ordering cone II~e~ and, for 
each t ,  c~(v(t)) E IIU be a vector cost functional on arc a (arc weight); let 
c(v(t)) = [c,(v(t)):a E .A] be a /x [ ¢4 I-matrix. The vector weight along a 
path k E P~ is assumed to be the sum of  all the arc weights along this path; 
thus 

= 6o co( (t)) 
aE.A 

Set 

T(h(t))=c(v(t))A 

which is an l × M matrix with columns given by "r~(h(t)). 
So we know that, for each h E 7-t, T(h(.)) is a functional from ft to 1~ *×M . 

We assume that, for all h E H,  T(h(.)) is in Lq(~, ll~ t×u) where 1/p + 1/q = 1. 
Define a multi-cost path functional U : LV(~2,1t~ u) ~ L(LP(~,I~M),I~ e) by 

(U(h),-h) : ,~(~ T(h(t))-h(t)dt, h,'h E L"(~,l~u). 

And define a multi-cost arc functional S : LP(f~, ~l.41) __~ L(LP(~, l~l.4t), llU) by 

(S(v),Y) = f ~  E c~(v(t))V,(t)dt, v,~ E LP(~,~ial). 
aEA 

Assumption 5.1 T is one-to-one, that is, if ha,h 2 E ~ and T(ha) = T(h.2), 
then ha(t)= h~(t) a.e. on ~. 

Note: It can be shown that if S is one-to-one and A is a square and 
nonsingular matrix, then the assumption 5.1 holds. 

Proposition 5.1 If  the assumption 5.1 holds, then the multi-cost path 
functional U is one-to-one on ~ .  

Proof. Proving U is one-to-one on 7-/ is equivalent to show that if, for 
ha,t h E 7-/ and ha(t ) ~ h.~(t) a.e. on f~, then U(ha) ~ U(/~).  Suppose 
U(ha) = U(h2). Then, from the definition of  functional U ,  we have 
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a ( r ( h a ( t ) ) -  T(th(t)))h(t)dt  = O, V h  E LP(12,NM). 

From the Hahn-Banach theorem, 

T(ha( t ) ) -  T(h2(t)) = O, a.e. on f2. 

From the assumption 5.1, 

ha(t ) - lh(t ) = 0 ,  a.e. on f~. 

1151 

5.2 Vector dynamic traffic equilibria 

Definition 5.1 Given an h E 7-(, we say that a path k E P~ for  an O-D pair 
i is efficient i f  there does not exist another path k~E P~ such that 
Tk(h(t)) - %,(h(t)) E Re+ \ {O},a.e. on f 2 .  

Given an h E 7-t, let F,(h) = {rk(h(t)): k E Pi} denote the (discrete) set 
of vector cost functionals of all paths for O-D pair i ,  and 
:T.~(h) = {k E P~ I -G(h(t)) - -G,(h(t)) ¢ Re+ \ {0}, a.e. on f2 Vk t E P~} C__ P, 
denote the index set of all efficient paths for O-D pair i .  

We define the efficient frontier for O-D pair i to be the set of efficient 
points in the cost-space of O-D pair i : 

MinR;\C0} (Vi(h))= {%(h) E Re lp  E I~(h)}. 

Note that Mina,\{0} (F,(h)) is a discrete set because Z,(h) is a discrete set. 

Definition 5.2 (Dynamic vector equilibrium principle) A continuous path 
f low vector h E 7-[ is said to be in dynamic vector equilibrium if, 

V i e  I,  Vk, k t E P~, 

hk(t ) = 0 whenever Tk(h(t)) -- "G,(h(t)) E Re+ \ {0}, a.e. on f2. (lO) 

A flow h in dynamic vector equilibrium is often referred to as a dynamic 
vector equilibrium flow. 



1152 Variational Analysis and Appls. 

Definition 5.3 (Dynamic weak vector equilibrium principle) A continuous 
path f low vector h(t) E ~ is said to be in dynamic weak vector equilibrium 
if, Vi ~ I, Vk, k' ~ P~, 

hk(t ) = 0 whenever 7~(h(t)) - %,(h(t)) e intNe+, a.e. on ft. (11) 

A flow h in dynamic weak vector equilibrium is often referred to as a 
dynamic weak vector equilibrium flow. 

Remark 5.1 
(i) I f  g = 1, (10) is reduced to the dynamic (scalar) Wardrop 's principle 

in Daniele et al [4]. 
(iO The dynamic vector equilibrium principle can be stated in an 

equivalent form as: the path f low vector h is in dynamic vector 
equilibrium if, Vi C I, Vp C P~, 

hp(t) = 0 whenever "rp(h(t) ) ~ MinR:\{o} (Fi(h)) , a.e. on ~. 

The following are infinite dimensional versions of the assumptions used 
in [9]. 

Assumption 5.2 Let h E ~ . Assume that 

MinR~\~o~(V~(h)) c Mina~\(o~(Co(Pi(h))), a.e. o n  f~. 

Remark 5.2 Assumption 2 is equivalent to assert that there exists a null set 
E 1 such that, f o r  any t E ~ \ E 1 , 

Min~,\{o} (F~(h)) C Min~\(o/(C°(Fi(h)))" 

Definition 5.4 We say that the vector cost function c,, is conservative if 

Oc lOvo, = O41aVa, a.e. a ,  Va' Vk = 1,...,Z. 

Assumption 5.3 The cost c o is conservative f o r  all a E ,,4. 

Assumption 5.4 Each row ck(v(t)) o f  the cost matrix c(v(t)) is monotone, 

i .e. , for all k = 1,2,...,l, vl(t),v2(t ) E N IAI, 

(c~(vl( t ) ) -c~(%(t)) ) (v l ( t )  - vz(t)) >_ O, a.e. on f~. 
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Remark 5.3 Assumption 5.4 is to say that there exists a null set E 2 such that 

for any t E f~ \ E~, ck(v(t)) is monotone. 

5.3 N e c e s s a r y  a n d  s u f f i c i e n t  c o n d i t i o n s  o f  a v e c t o r  d y n a m i c  
f l o w  

We need the following definition in the proof of  our main result. 

Definition 5.5 (Static vector equilibrium principle) [9] Let d~ be the 
demand for the O-D pair i E 5~ and 

H =  {hEN MI h>Oand ~ hp =d,,ViEZ}. 
peP, 

A flow vector h E 7-l is said to be in vector equilibrium if 

Vi E Z, Vk, k' E P~,h k = 0 whenever 7~(h) -  7-~,(h) E intlRe+. 

In the following, an infinite dimensional VVI problem is established as a 
necessary condition of  a vector equilibrium flow. 

Proposition 5.2 (Necessary condition) If Assumptions 5.2, 5.3 and 5.4 hold 
and h is in dynamic vector equilibrium, then h is a solution of  the 
following WVVI of  finding h E ~ such that." 

(U(h),g-h)4z, , ,R~O , V g  ~ 7-~. (12) 

Proof. Since h is in dynamic vector equilibrium, then there exists a null set 
E a such that, for any t E f~ \ E a , 

Vi E Z, Vk, k' E P~,hk(t ) = 0 whenever rk(h(t)) -- %,(h(t)) E Re+ \ {0}, 

and h(t)>_ 0 and hi(t ) = d~(t),Vi E Z .  That is to say, h(t) is in vector 
equilibrium in the sense of [2]. So, for any t E f2 A (E 1 U E 2 U Ea), h(t) is 
in vector equilibrium, and all the assumptions of Theorem 3.3 in [9] are 
satisfied. Hence, T(h( t ) ) (g( t ) -h( t ) )~ , tR,  O holds, for every g E H ( t ) ,  
where 

H(t) = {g E N U l g  > 0 and ~ gp = d~(t),Vi E Z}. 
peP, 
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Since the union o f  finitely many null sets is a null set, El U E 2 U E a is a null 
set. So, 

T(h(t) )(g(t) - h(t) ):~,,ta~ 0 

a.e. on f~, for any g E 7-/. That is to say, 

(U(h),g - h} = fa T(h(t) )(g(t) - h(t) )dt~,,,~;O. 

Proposi t ion 5.3 (Sufficient  condit ion)  The flow h E 7-/ is in dynamic 
vector equilibrium if  h solves the following VVI of  finding h E 7-/ such 
that: 

(U(h),-h-h)~!,\{oiO, Vh e 7-/. (13) 

Proof. Let h E 7-/ satisfy (13), choose h E LP(E~,IR M) to be such that 

h~(t), if  j ;~ k or k I 

~-j(t) = 1 0, if  j = k 

l hk(t ) + hk,(t), if  j = k' 

a.e. on f t .  Clearly, h E 7-/, since h(t) >_ 0 and Ah(t )  = d(t) a.e. on f~. 
Now, 

{U(h),-h-h} = f a  T(h(t))(-h(t)-h(t))dt 

= f a  E E (-~j(t)-hj(t))Tj('R(t))dt 
ie~  r jel'~ 

P 
= Ja  (-hk(t)- hk(t))%(h(t)) + (-hk'(t)- he(t))'rk'(h(t))dt 

= f ~  h k (t)(?-k' (h(t)) - (h(t))dtf~ \{o} O" T k 

(14) 

If  
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Tk(h( t ) ) -  7"e(h(t)) >-~\~o~ O, a.e. on ~, 

then (14) implies that hk(t ) = 0 a.e. on ~ .  Thus h is in vector dynamic 
equilibrium. 

Proposition 5.4 (Sufficient condition) The flow h E ~ is in dynamic weak 
vector equilibrium if  h solves the WVVI(12) 

Proof: The proof is similar to that Proposition 5.3 and omitted. 

5.4 E x i s t e n c e  o f  a v e c t o r  d y n a m i c  t ra f f ic  f l o w  

In this subsection we apply the results in [3] to establish the existence of 
a dynamic weak vector equilibrium flow. 

Proposition 5.5 Suppose the multi-cost arc functional S is monotone and 
v-hemi-continuous, then there exists a path f low h E 7-(, which is in 
dynamic weak vector equilibrium. 

Proof: Note that 

7-[ = {h 6 LP(f2,~M) l h(t ) >_ 0 and ~ hk(t ) = 4(t)  a.e. on f~, Vi E Z}. 
k6P, 

It is clear that 7-I is bounded, convex and closed, i.e. weakly compact. 
For any h,h- E 7-[, set v = Ah ,~  = Ah-. Then, from the monotonicity of  

the multi-cost arc functional S ,  

(U(h) - U(-h) ,h-  -h} = f ~  (T(h(t)) - T(-h(t)))(h(t) - -h(t))dt 

= f a  (c(v(t))A - c(~( t ) )A)(h( t ) -  h(t))dt 

= f a  (c(v(t)) - c(g(t)))(Ah(t) - A-h(t))dt 

= fo (c (v ( t ) ) -c (g ( t ) ) ) (v ( t ) -  g(t))dt 

- -  < s ( v ) -  v -  ->c 0, 

i.e. the multi-cost path functional U is monotone on 7-(. Similarly, 
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(s(v + tv),v) : (u(h + 

So, from the v -hemi-continuity o f  S ,  

lim (U(h + th-), h-} = lim (S(v + t ~ ) , ~ ) =  (S(v),~} = (U(h),-h). 
t---*O ~ t ~ O '  

So from the v -hemi-continuity of  S ,  we have the multi-cost path functional 
U is v-hemi-continuous.  Then from theorem 2.1, the WVVI  (12) has one 
solution h C 7-/. So by proposition 5.4, h is in dynamic weak vector 
equilibrium. 

Proposition 5.6 Suppose the multi-cost arc functional S is continuous. 
Then there exists a path f low h E 7-[, which is in dynamic weak vector 
equilibrium. 

Proof .  From the continuity of  S ,  U is continuous. By using theorem 2.2, 
there is h C 7-/ solving the following WVVI: 

v en. 

Then by proposition 5.4, h is in dynamic weak vector equilibrium. 
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A NEW PROOF OF THE MAXIMAL 
M O N O T O N I C I T Y  OF THE SUM USING THE 
FITZPATRICK FUNCTION' 

C. Z~.linescu 
Faculty of Mathematics, University "AI. 1. Cuza" Ia~i, la~i, Rumania 

. I N T R O D U C T I O N  

A classical result of  Rockafellar [7] states that the sum of two maximal 
monotone multifunctions on a reflexive Banach space is maximal monotone 
when the interior of  the domain of  one of  them intersects the domain of  the 
other. The original proof of  Rockafellar [7] uses some results of  Browder 
[1]; put together, the proof is quite involved. Rockafellar's theorem is the 
companion of  the result stating that the subdifferential of  the sum of  two 
lower semicontinuous convex functions on a Banach space is the sum of 
their subdifferentials when the interior of  the domain of  one of  them 
intersects the domain of  the other. In fact one could observe that the 
conditions under which these two important results were stated developed in 
parallel: having a new (more general) condition ensuring the result on the 
subdifferential of  the sum of  convex functions in short time a similar 
condition was used for the maximal monotonicity of  the sum. (Note that the 
conditions imposed for the functions ensure that the conjugate of  the sum is 
the exact convolution of  the conjugates; as observed for a long time by 
Hiriart-Urruty [3], when such a formula holds for the conjugate of  the sum, 

" The results of this paper were obtained during author's (Spring 2003) stay at University of 
Pau, France. 
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the subdifferential of  the sum is the sum of the subdifferentials.) However, 
for deriving the maximal monotonicity of  the sum specific methods were 
used. The natural question is if one could use the results for convex 
functions in order to deduce those for the maximal monotone multifunctions. 
Simons in his book [8] uses convex functions associated to monotone 
multifunctions, but not the result on the subdifferential (or conjugate) of  the 
sum (in fact he uses minimax theorems). It is our aim to give a proof of 
Rockafellar's sum theorem for monotone multifunctions using a result on the 
conjugate of  the sum. This will be possible using the Fitzpatrick function 
associated to a monotone multifunction. We also show that several 
conditions met in the literature are equivalent. In a similar way we obtain a 
result on the maximal monotonicity of  the composition of maximal 
monotone multi functions with continuous linear operators. As a by-product 
of  one of the results we furnish another proof for Simons' version of 
Rockafellar's characterization of  maximal monotone multifunctions. 

. N O T A T I O N  A N D  P R E L I M I N A R Y  R E S U L T S  

We recall first some notation and results related to convex analysis. For 
this propose, consider a separated locally convex space E and E* its 
topological dual; we get so the dual system (E,E',(.,.}), where 
(x ,x ' ) :=  x*(x) for x ~ E and x* ~ E*. We endow E* with the weak-star 
topology w" := cr(E', E), and so the topological dual of  E* is identified with 
E .  As usual, having a subset A of  E ,  we use the notation int A, cl A or 
A,  co A, E6A and affA for the interior, closure, convex hull, closed 
convex hull, and the affine hull of A, respectively; moreover, A i and 'A 
denote the core (algebraic interior) and the intrinsic core of A, while i"A is 
J A when affA is closed and iCA is the empty set otherwise. The domain, 
the epigraph and the conjugate of  f : E ~ R are introduced by 

d o m f  := {x ~ X l f ( x  ) < co}, 

ep i f  :={(x,t)~X×IR l f ( x ) < t }  

and 

respectively; the function f is proper if d o m f  ~ O and f does not take 
the value --~. We denote by A(E) the class of proper convex functions 
defined on E and by F(E) the class of  those functions in A(E) which are 
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lower semicontinuous (lsc for short). We also consider the convex hull of 
f : E --~ 11~ as being the function 

c o f ' E - - >  ~,, cof(x)::inf{t eIR (x,t)eco(epif)} 

with the convent ion in fO:=oo.  We have that 
co(epif)  c epi(cof)  c T6(epif)  =: epi(2-6f), 

and so "6"6f<cof_<f; moreover  (-C6f)*=(cof)*=f*. For the 
funct ion g'E*---~IR we take always its conjugate with respect to 
(E,E*,(.,.)), and so g* is defined on E .  Having f : E - - - ~ ,  it is 
wel l -known that f** := ( f* )* =-C6 f whenever  E-6f is proper, and 
E-6f is proper  if and only if T 6 f  is finite somewhere.  The 
indicator function of  A c E  is tA:E---~R defined by tA(x):=0 for 
xeA  and.jA(x):=oo for x e E \ A .  The convolution of  the functions 
f ,g:E--~R is defined by 

f Iqg:E--~, ,  (fZ]g)(x):=inf{f(u)+g(x-u) ]ueX}; 

the convolution is exact when the infimum is attained for every x e E. 
From now on, let (x,l].[D be a reflexive Banach space and X* its 

topological dual endowed with the dual norm 1[.1[.. Recall that the duality 
mapping of X is the multifunction 

ix, x.l=ilxil : 4:} 
For notational convenience, the coupling function of the dual system 
(X,X*,(.,.~] will be denoted by c ;so 

The dual space of  X x X" is identified with X ° x X by the coupling 

((x,x'l,(.',.)) 

for (x ,x ' )eXxX* and (u*,u)eX* xX.  
Consider the multifunction T : X ~ X * ,  whose graph, i.e. 

gph T :=((x,x')[x* ~ T(x) / ,  is nonempty; of  course, the domain of  T is 
the set domT:'=lxeX [ JT (x )¢Q/ .  As usual, we say that T : X ~ X *  
is monotone if  (x -y ,x  - y  )>_g for all (x,x ),(y,y ) e g p h T ;  of  
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course,  T is maximal monotone 
m o n o t o n e  and gph T c gph S .  

With T : X ~ X* we associate 
Fitzpatrick function (see [2]) 

f r : Y × Y ' - - ~ ,  

Therefore, 

Variational Analysis and Appls. 

i f  T = S  whenever  S ' X ~ X "  is 

the function e r := c + lgphT and the 

i~<x.x') := suxo{(j)+ (,~.x')-(,,.,,')<,~..':~ ~ ~ph :,.} 

f r ( x , x ' )  = (Cr)'(x',x) = (-6-6 er) ' (x ' ,x  ) V(x,x*) e X x X ' ;  (1) 

f r  is convex and lower semicontinuous. It is obvious that 

" > ( x , x ' )  V ( x , x ' ) ~ g p h  T. f r  (x, x ) _ (2) 

The next characterization o f  the monotonicity o f  T is established by Penot 
[5, Prop. 3]; we furnish its proof  for readers convenience. 

Proposi t ion 1. Let T : X ~ X* have nonempty graph. Then 

T is monotone ~ fr  < Cr ¢:> c < coe r . (3) 

P r o o f  Assume that T is monotone and fix (x,x ')  E gph T. Because 

( x , x ' ) > ( x , u ' ) + ( u , x ' ) - ( u , u ' )  V ( u , u ' ) ~ g p h  T, 

we obtain that f r ( x , x ' ) <  (x , x ' ) .  Therefore f r  < Or. 
Assume now that fr  < er. Because f r  is convex, f r  < ~P := co c r . Using 

(1) we get 

. . . .  ~ (<x.x.~.<x .x~)= ~(x.x ) 2¢,(x,x')>-¢(x,x')+fr(x,x )=  ~(x,x )+~o (x , x )_  " " 

for every (x ,x ' )  ~ X x X ' .  Hence co c r _> c.  
Assume now that ~o := co c T > c.  Consider (x ,x ' ) , (y ,y ' )  ~ gphT.  Then 
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Hence ~p(x ,x ' )=(x ,x ' )and  (p(y,y*)=(y,y*).  Because q~ is convex, it 
follows that 

( l ( x  + y ) , l ( x '+  y*))<(,o(l(x + y),~(x* + y'))=(p(~(x,x*)+~(y,y*))  

< I . ^ t X X * ' ~ + l . ~ z .  . * , ,  I /  * \  I / * \  --7~'~. , ) 7g ) tY ,  Y )=-~IX ,  X 2+71y, y ], 

whence ( x - y , x "  - y ' )  > O. Therefore T is monotone. [] 

Because c is continuous for the product o f  the norm topologies on 
X x X*,  to the characterizations in Proposition 1 we can add the following 

T is monotone ¢::> c < E-6 c r. (4) 

Note that Proposition 1 is true for X a general normed vector space (or 
even a locally convex space). Taking into account (2), the first equivalence 
in (3) can be written as follows: 

T is monotone <=> gph T c  { (x ,x* ) [ f r (x ,x* )=(x ,x* )} .  

It follows (see also [2, Th. 3.8, Cor. 3.9]) that 

T is maximal monotone ~ f r  >_c and gph T : { ( x , x * ) I ~ . ( x , x ' ) : ( x , x ' ) } .  

(5) 

It is useful to observe that when T , S ' X ~ X "  are such that 
S(x) = T(x + v) - v" for every (x, x*) ~ X × X* and for some 
(v, v ' )  ~ X x X ' ,  one has that 

gph S = gph T - (v, v*), dom S -- dom T - v, 

+v,x" 

+v,x" 

for all (x,x*) ~ X x X ' .  In particular 

dom(co c s) = dom(co c r) - (v, v*), dom(T6 c s) = dom(~--6 c r)  - (v, v*). (6) 
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3. T H E  R E S U L T S  

The conclusion o f  the next result is that of  [10, Th. 3.11.4] (which 
corresponds to some results in Simons [8]), but the hypothesis is different. 

Theorem 2. Assume that Tt, T 2 : X ~ X* are monotone multifunctions. I f  

0 ~ ic pr x (dom(T6 cr, ) - dom(E-6 cr2 )), (7) 

then there exist x ~ X and  x~, x~ ~ X* such that 

f,, (x,x,)+ f,, (x,4) +-ilxll~ + • x; + 43_0.  

Moreover, i f  T I and  T 2 are maximal monotone, then there exist x ~ X and 
x~, x~ ~ X* such that x 7 ~ T i (x) f o r  i = 1, 2, and 

, 2 

Ilxll 2 + x; + x2 .+  2(x, x; + x2) = o; 

in particular,  dom T~ ~ dom T 2 ~ 0 .  

P r o o f  Let gl, g2 : X x X* x X* ~ ~, be defined by 

• * - -  * 1 2 , 
gl(  x , x  ,Y ) : c ° c r , ( x , x  )+ : l lx l l ,  g2(x,x , y*)=-d-dcr2(x ,y*)+l  x'+y'i~. 

It is obvious that gj and g2 are proper lsc convex functions. Moreover,  

dom g, = {(x , ,x ; ,y ; )  I (%,x;)  ~ dora c(-6-d Cr. ),y, ~ X*}, 

dom g2 = {(x2,x~,y2) I (x2,y2) e dom(g-d Cr2 ),x z e X ' } ,  

and so 

dom gl - dora g2 = Prx (dom(T6 Cr~ ) - dora(T6 % )) x X* x X*. 

Therefore (0 ,0 ,0)~ * C ( d o m g j - d o m g = ) .  Using [10, Th. 2.8.7], it follows 
that (g~ + g2)* = g~l-qg2 and the convolution is exact. Using (4) we get 
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. . . . .  > /  *>_[_ <X, , 2  gl(x,x,y )+gz(X,x,y )_~x,x -~llxll~+ y*)+½x* + y ] ,  

• n-xn • y , i >  0 
>_kllxll 2 -  x • x'  + y g.2u x + 

for all (x,x*,y*)eXxX*xX*; this proves that (gl+g2)*(0,0,0)_<0. It 
follows that there exists (x*,x,y)e(XxX*xX*)* = X * x X x X  such that 
g~( -x* , -x , -y )  + g; (x*,x,y) < O. Let us compute g~ . As g~ is the sum of 
two convex functions, one of them being continuous, we have that 

[+oo 

u*)+~-u*~[u*eX*}  i f y  =0,  

if y ¢ O, 

and 

* * * I 2 g~(x ,x,y)= :T2 (y -  x,x ) + + 1 1  • 

Hence, there exists (x, x* ) e X × X* such that 
* * * * 

g~ (-x ,x,O)+g2(x ,-x,O)_O, and so there exists also u* e X "  such that 
~.-x.)++u.i+:,.(x,x.)++llx • and 

4 wo tho oon lus on II x, :--. -x 

Assume now that T i and T 2 are maximal monotone. Then, by (5), 
fr, > c, and so 

<-A(x,,~.)+A(x,x~)+~llxll~+~ x; + x; ~. _< o. 

It follows that fr,(X, XT)=c(x, xi); using again (5), we get (x,x~)egph T~ 
for i e {1, 2}. [] 

Taking T I = 0  (that is T I(x)={0} for every x E X )  and T 2 = T  or 
gph T 2 := gph T -  (v, v*) in the preceding theorem one obtains immediately 
the first part or the necessity of the second part of the next result, 
respectively; the proof of the sufficiency of the second part follows directly 
(and easily), and can be found in [8, Ths. 10.3, 10.6], [10, Ths. 3.11.5, 
3.11.6] or [91). 

The result in the second part of the next theorem is nothing else but 
Simons' version of  Rockafellar's surjectivity theorem [7, Cor. 1]. For 
another proof of this theorem using Fitzpatrick's function see [9]. 
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T h e o r e m  3. Let T : X ~ X ° be a monotone multifunction with nonempty 
graph. Then there exists" (x, x*) ~ X × X" such that 

( y - x , y  -x*)>ffllxll ~ ' . 2  * • _ +7Ix  + ( x , x  ) v ( y , y * ) ~  gph T. 

Moreover, M is maximal monotone i f  and only i f  f o r  every (v,v*) ~ X x X* 
there exists (x, x*) ~ gph T such that 

l l lx-vll2++ x'-v* +<x-v,x" -v'>:o, 

or equivalently, M is maximal monotone i f  and only i f  
gph T + g p h ( - J  x) = X x X*. 

The preceding two theorems yield the following criterion for the 
maximality o f  the sum of  two maximal monotone multifunctions; the proof 
is similar to that o f  [10, Th. 3.11.9]. 

Coro l l a ry  4. Assume that T~,T2:X ~ X* are maximal monotone and 
condition (7) is satisfied. Then T~ + T 2 is maximal monotone. 

Proo f  Set T := T~ + T 2 ; from Theorem 2 we have that 
dom T = dom T~ c~ dom T 2 ~: 0 .  Take (v, v*) e X x X* and S | ,S  2 : X ~ X* 
defined by S t ( x ) :=T  i ( x + v )  i . .  -~-v , S t is maximal monotone for i --1,2.  
Moreover,  by (6), 

dom(E'6 Cs, ) - dom(E-6 Cs~ ) = dom(T6 cr, ) - dom(T6 cr~ ). 

Hence S| ,S  2 satisfy the conditions o f  Theorem 2. Therefore, there exists 
z ~ X and z~, z 2 ~ X" such that (z, z t ) E gph S t and 

1142+ ]4  + z; + 2(z,z;  + z;) = o. 

* * | * * 

Taking x := z + v and x t := z t + 7v , we obtain that (x ,x  t ) e gph T~ and 

IIx- vii2+ Ix7 + x; - v* ~ + 2 ( x -  v, x7 + x; - v')= 0 

Using now Theorem 3 we obtain that T is maximal monotone. [] 

Note that condition (7) is satisfied if 0 ~ ( d o m  T~-dom T2) i because, 
obviously, 
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dom T I - dom T 2 c co(dom T 1) - co(dom T 2) 
c Pr x (dom(E-6 cr, ) - dom c(-C6 er~ )). 

(8) 

T h e o r e m  5. Let Tj, T z : X ~ X* be maximal monotone multifunctions. Then 

i~(dom T I - d o m  T2)= i~(co(dom Ti ) -  co(dom T2) ) 

-- '  r,(dom (10) 

Therefore i"(dom T I - d o m  T2) is a convex set and the following statements" 
are equivalent: 

0 ~ ic Prx (dom(-6- 6 cr ' ) - dom(T6 cr. ' )), (11) 

0 ~ i~(co(dom T l ) - c o ( d o m  T2) ), (12) 

0 ~ i~(dom T~ -dom T~), (13) 

dom T I - d o m  T 2 is neighborhood o f  the origin in lin (dom T I - d o m  T 2 ), 
(14) 

U~_,oA(dom T~ - d o m  V2) is a closed linear subspace, (15) 

each o f  these conditions ensuring that T I + T 2 is maximal monotone. 
Furthermore, i f  ic (dom T 1 - dom T 2) ~ 0 then 

,c (dom T 1 - dom T 2 ) = dom T~ - dom T 2 = Pr x (dom(-U6 cr, ) - dom(T6 Cr2 )), 

and dom T I - dom T 2 is a convex set. 

P r o o f  Taking into account that the inclusions in (8) hold, let us prove that 

(9) 

Hence Corollary 4 covers the classical Rockafellar 's result [7, Th. 1] which 
is obtained under the hypothesis that dom T~ ~ int(dom Tz) ~e Q .  In the next 
result, similarly to [8, Th. 23.2] and [10, Th.3.11.11], we give several 
equivalent conditions which ensure the maximal monotonicity of  T~ + T~. 
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i~. pr x (dom c(-6--6 cr, ) - dom(T6 cr2 )) c dom T l - dom Tz. 

Consider v • ~ Pr x (dom(T6 cr, ) - dom(E-6 cr2 )) 

multifunction T I' defined by T I' (x) := T I (x + v). By (6) we have that 

dom(T6 cr. ) = dom(T6 cr, ) - (v, 0), 

w h i c h  p r o v e s  that  

Variational Analysis and Appls. 

(16) 

and take the 

0 e ~c Pr x (dom(E-6 cr. ) - dom(E6 cr2 )). 

As T~ and T 2 are maximal monotone ,  using Theorem 2, we  obtain that 
dom T~' n dom T 2 ¢ 0 ,  and so v e dom T t - dom T 2 . We  obtain that (16) 
holds.  F rom (8) and (16) we obtain that (9) and (10) are satisfied when 
ic pr x (dom (E-6 cr, ) - dom(E-6 cr2 )) is nonempty.  

Observe now that 

a f f (dom T I - dom T z) c aff(Pr  x (dom(E6 cr, ) - dom(2-6 c7~ ))) 

c a f f (dom T I - dom T 2). 
(17) 

The first inclusion is obvious. For the second one set 
V := a f f (dom T~ - dom T 2).  We have that 

{(x,,x~,y'~) l ( x , , x l ) egph  T~, y, eX*}-{ (x2 ,x2 ,y2)  l (x2,y2)~gph "1"2, x 2 eX*}  

c ( d o m  T I - d o m  T2) x X '  ×X" c V x X "  x X ' .  

As for subsets D,E ,  F c X  with D - E c F  one has that 
c--6 D - 2 - 6  E c - 6 - 6 F ,  and taking into account that V is convex, from the 

preceding inclusion we obtain that 

Pr x (dom(T6 cr, ) - dom(T6 cr2 )) x X* x X* 

c P r  x c(-6-6 (gph T~) - E-6 (gph T 2)) × X '  x X" 
( • . ) ={(~q,x~,YO [ (x~,x~) e -6-6 (gph Tj), y, e X*} 

-{(x~,x~,y~)l(x2,y;)e-d-d (gph T2), x; e X ' }  

c V x X ' x X ' .  
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The desired inclusion follows. 
From (8), (16) and (17) we obtain that (9) and (10) hold, that conditions 

(11), (12) and (13) are equivalent, and that iC(dom T, - d o m  T2) is a convex 
set. 

It is obvious that (14) ~ (15) ~ (12). Also, because the relative 
interior of  dom gl - dom g2 coincides with ~c (dom g~ - dom g2) when this is 
nonempty, we have that the relative interior of  dom T~- dom T 2 coincides 
with ~C(dom T~ - d o r a  Te) when this is nonempty. Hence (13) ~ (14). 

Using Corollary 4 and what was proved before we get that everyone of  
conditions (11)-(15) is sufficient for the maximal monotonicity of  T t + T 2 . 

Because 

,c ( c o ( d o m  T~) - co(dom T 2 )) = '~ (dom T~ - dom T 2 ) c d o m  T~ - dom T 2 

cco(dom T0-co(dom T2), 

and for a convex set A with ~CA ~ O one has that A = 'CA it follows that 

dom T I - d o m  T 2 is convex when 'C(dom T I - d o m  T2)~ ~ .  [] 

The next result refers to composition with linear operators and 
corresponds to Theorem 2. The maximal monotonicity of  A*oTo A was 
obtained by Pennanen [4, Cor. 4.4(c)] under the same condition (using the 
result for the sum) and by Penot [6] under the condition 
0 e core(dom T - ImA) with a different proof. 

Theorem 6. Let Y be another reflexive Banach space, T : X ~ X* a 
monotone multifunction and A" Y --~ X a continuous linear operator. I f  

0 ~ ic (Prx(dom g-6 c r)  - ]m A), (18) 

then for  every (w,w') ~ Yx Y',  there exist v ~ Y and x* ~ X* such that 

TTCAv, x')-(Av, x')++IIv-wlI2++ +(v-w,A*x*-w*)<<_O.(19) 

Moreover, i f  T is maximal monotone then A" o T o A is maximal monotone. 

Proof  Fix ( w , w * ) ~ Y x Y * ;  consider g ' X x X *  xYxY* ---~ ~, defined by 
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g(u,u',y,y'):=-e-dcT(u,u*)+-~lly+ wl12 ++ y*+ w*i+(y,w*)+(w,y*+ w*), 

and B:X* xY---~ XxX*  xYxY* defined by B(x*,v):=(Av,-x*,-v,A*x*). 
Then 

g* (x*,x, v*, v~ = f~ (x,x*~ + +llv- wl12+ ff v*- w* Ii-(v, w*)-(w, v*- w*) 

and B*(x*,x,v*,v)=(Av-x,A*x*-v*). 
Because T is monotone, using (3), we have that 

* * I (goB~(x , v > = ~  c~(Av,-x >+~llv- wl(+ 
+.  +w. 

>_-IIv-wll2 +-~ A'x* +w" ~-(v-w,A'x*+w')>_O, 

for all x* e X* and v e Y. It follows that (g o B)* (0,0) < 0. In order to use 
[10, Th. 2.8.3] (with f = 0 ), we need to calculate D := dom g - Im B.  So, 

D=dom(-d-6 cr )x Y x Y* -{(Av,-x*,-v,A*x*) I ve Y,x* eX*} 

= (dom(T6 c r) - Im A x X*) x Y x Y* 

=(Pr x (dom(g-d c r)) - Im A)xX*x Yx Y*. 

Hence 0 e iC(domg- Im B).  Applying [10, Th. 2.8.3] mentioned above, we 
get some (x*,x, v*, v) such that B*(x*,x,v',v)=(Av-x,A'x*-v*)=(0,0) 
and g'(x*,x,v',v)<O, that is, we find v e Y  and x* e X *  such that (19) 
holds. 

Assume now that T is maximal monotone. Taking (w, w*)E Y x Y*, we 
find v~Y  and x" s X* such that (19) holds. Because T is maximal 
monotone we have that f r  > c ,  and so we obtain that fr(Av, x*)=(Av, x'l  
and 

 llv_wll +. 

The f i r s t  r e l a t i o n  imp l i e s  tha t  x*~T(Av) and the s e c o n d  
r e l a t i o n  implies that w*-A'x" e - J r ( w - v  ). It follows that 
(w, w*) ~ gph(A* o T o A ) -  g p h ( - J r ) .  Using now Theorem 3 we obtain that 
A* o T o A is maximal monotone. [] 
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The p roof  o f  the next theorem is similar to that o f  Theorem 5, so we omit 
it. 

T h e o r e m  7. Let X ,  Y be reflexive spaces, A" Y --+ X a continuous linear 
operator and T" X ~ X" a maximal monotone multifunction. Then 

iC(dom T - I m A ) =  iC(co(dom T ) - I m A ) =  iC(Prx(dom co c r ) - I m A  ). 

Therefore '~ (dom T - Im A) is a convex set and the following statements are 
equivalent." 

0 ~ i~ (Prx (dom co c T) - Im A), 

0 E i~ (co(dom T) - Im A), 

0 ~  i~(dom T - I m A ) ,  

dom T -  Im A is a neighborhood o f  the origin in lin (dom T -  Im A), 

[,.Ja,_02 (dom T - Im A) is a closed linear subspace, 

each o f  these conditions ensuring that A" o T o A is maximal monotone. 
Furthermore, i f  ~ (dom T - I m  A) ~ f~ then 

~ (dom T - Im A) = dom T - Im A = Pr x (dom co c r - Im A, (20) 

and dom T - Im A is a convex set. 
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