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MICHAEL H. G. HOFFMANN 
JOHANNES LENHARD 

FALK SEEGER 

GROUNDING MATHEMATICS EDUCATION 

Michael Otte 's contribution 

Mathematics education has a long past, but only a relatively short history as an insti
tutional effort. Even though already Plato's "geometry" or medieval arithmetic 
books have been exceptionally "didactical" in their approach to present themselves 
to the reader, it was only in the 1960s that the institutionalization of mathematics 
education as a scientific discipline started on a larger scale. Following major 
changes of the role and place of science in society, the universities began at that time 
to change their organizational structures or added new, often interdisciplinary, or
ganizational units focusing on applied or basic problems of research. 

In a surprisingly consonant manner, this development in mathematics education 
was from the beginning an international one, crossing the then still existing bounda
ries between East and West. Without disregarding previous work of didacticians of 
mathematics in the 19^ and early 20^ century and their influence, this can certainly 
be viewed to a larger degree as the result of the work of the International Commis
sions on Mathematical Instruction (ICMI) inspired and chaired by Felix Klein work
ing from 1908 to the twenties on a survey comparing mathematics education in 
many countries of the world. The International Commissions prepared the ground 
for a worldwide attempt to reform and revolutionize mathematics education. The 
reform movement of the early seventies in a way took up the international spirit of 
the International Commissions - particularly in the form of the ICME-conferences 
taking place every four years with the 1972 Exeter conference being a signal for a 
new beginning. Most of the contributors to this volume have played a role in this 
historical period - some more central, some more peripheral. 

Michael Otte's scientific life and career is situated in this field of historical 
forces and developments. It was a founding period for systematic research and a new 
disciplinary self-image of mathematics education. Also in Germany, the institution
alization of basic research in mathematics education within university departments 
and faculties began. At that time the "new math" movement which also had been a 
truly international affaire just had run aground, and the Volkswagen foundation had 
called for a proposal to establish a central research institute in Germany to reach a 
deeper scientific understanding of the disastrous failure of the new math approach in 
German primary schools. The underlying idea was as deceptively simple as attrac
tive: finding out the reasons and reconstruct them theoretically would also provide a 
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platform or a ground to anchor a new idea of how mathematics teaching and learn
ing should look like in the future. The original design for the Institute included five 
chairs furnished with opulent financial means, in terms of manpower as well as other 
facilities. Michael Otte was to become appointed as one of the three chairs directing 
the InstitutfUr Didaktik der Mathematik of Bielefeld University in the next 25 or so 
years. ̂  

Very soon after the Institute began its work, two of his important books ap
peared. The first one was Mathematiker Uber die Mathematik [Mathematicians on 
Mathematics] in 1974, and Mathematik, die uns angeht [Mathematics Concerning 
Us] in 1977. Two ensuing volumes were on mathematics and learning from text (see 
Keitel, Otte and Seeger 1980), and on epistemology, history and science (see Jahnke 
and Otte 1981). These four volumes like landmarks claim the big territory Michael 
Otte is covering in his scientific efforts, while the programmatic volume on Das 
Formale, das Soziale und das Subjektive. Eine EinfUhrung in die Philosophie und 
Didaktik der Mathematik [The formal, the social and the subjective: An introduction 
into the philosophy and pedagogy of mathematics, see Otte 1994], in a sense, is try
ing to sum up what had been important ideas in the work of the preceding years. 

Broad coverage is, however, not the main point or intention of Michael Otte's 
work. We find his approach unique in his focus on grounding mathematics educa
tion as a discipline, including an emphasis on understanding the nature of discipli-
narity and interdisciplinarity. 

At the beginning of the 70s, it was suggestive to begin the discourse on how to 
ground mathematics education as a scientific discipline with the question of what 
exactly was the scientific nature of that enterprise. The previous roads to under
standing the idea and mission of mathematics education were blocked, partly as a 
result of the failure of the recent reform in the primary classroom, partly as a result 
of a growing demand to make teacher training more up-to-date, more "scientific." 
The reform movement of the "new math" found its final justification in the struc
tural identity or parallelism of the structure of cognition and the structure of mathe
matics and with this orientation, surprisingly enough, supported the old idea that the 
logic of teaching had to follow the logic of mathematical structure. It was a surprise 
because Piaget who was the author of the assumption of a structural similarity be
tween the INRC-group and the "mother"-structures found in algebra, order, and to
pology by the Bourbaki, was so utterly successful in creating a developmental ap
proach and a pedagogical vision on the idea of the operative nature of learning - an 
idea which in principle moved away from the emphasis on the structure of the con
tent and underlined the importance of learning activity instead. It was too ironic that 
the new math reform ultimately confirmed the old idea that the structure of mathe
matics delivered a blueprint for the teaching of mathematics. In addition, the Bour
baki and their aim to find a common grounding for mathematics in a sense rein
forced again the idea to find a common, universal grounding for all matters mathe
matical to be taught in schools. 

Geometry seemed to be the price which had to be payed in order to reach the 
summit of modern mathematics in the primary and secondary classroom. "Euclid 
must go!" voiced by Dieudonne (1961) was the battle cry of an approach which 



INTRODUCTION 3 

should among other things underestimate the role of the teacher in any kind of edu
cational reform. 

Only ten years later, on the 1972 International Congress for Mathematics Educa
tion in Exeter, Rene Thom was actually deriding the emphasis on structure in the 
teaching of mathematics in a plenary speech entitled "Modern mathematics: does it 
exist?" He claimed that rigour was not particularly important in mathematics, and 
that he would prefer "meaning" rather than "rigour." Finally, he claimed that geome
try, not algebra, is the natural and perhaps irreplaceable stuff mediating between lan
guage and mathematics. The juxtaposition of his ideas could not differ more from 
the structure-oriented "new math." With Thom's challenge the necessity became 
obvious to search for a conceptual and disciplinary grounding in mathematics educa
tion. 

Michael Otte and his group of co-workers have, in a sense, taken up the chal
lenge of grounding a new discipline of mathematics education very much in the 
sense of Thom's dictum that "teaching problems have to be solved fundamentally." 
Equally important for Michael Otte's work was Thom's famous quote: "In fact, 
whether one wishes it or not, all mathematical pedagogy, even if scarcely coherent, 
rests on a philosophy of mathematics." (Thom 1973, p. 204) 

But from the beginning this form of grounding a discipline had a perspective ex
tending beyond the pressing tasks at hand. Gaining a long-term perspective on this 
matter was made particularly difficult through the enormous complexity of the sub
ject matter of mathematics education. In the centre of this development of mathe
matics education into a scientific discipline, two huge problems could be found -
and still continue to exist. One problem has to do with finding an understanding of 
what "interdisciplinarity" could mean for mathematics education, this is the problem 
of grounding a disciplinary identity. The other problem has to do with the fact that 
the scientific study of mathematics teaching and learning has to understand and learn 
from that same form of praxis it is about to study. The grounding efforts thus have 
always to be twofold. An important part of the work has to be done to "justify" the 
autonomy and the self-image of mathematics education as a discipline. Here, the risk 
is enormous to just claim to possess autonomy in the study of that specific scientific 
subject, mathematics teaching and learning, which provides and grounds the auton
omy. From the beginning of the work of the IDM, Michael Otte has pointed out that 
interdisciplinary work in the case of mathematics education can only be grounded in 
a deeper understanding of its subject matter. From a more comprehensive, and thus 
deeper, understanding of teaching and learning mathematics it becomes obvious and 
reasonable to study this subject from a multitude of perspectives and from the angle 
of diverse disciplines. The related disciplines, however, cannot simply study phe
nomena of mathematics education through the application of their methods without 
coming to understand what they are doing. Proving a deeper understanding is the 
task of mathematics education proper. It may even be so that after having studied 
things of mathematics teaching and learning in an interdisciplinary effort, the disci
plines may go back home and start asking new questions about their own subject 
matter. The autonomy of mathematics education, thus, is not grounded in fencing its 
territory in and controlling access. It is paradoxically grounded in being dependent 
on other scientific disciplines. 
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The other major task in grounding mathematics education is to find a "secure 
base" in its attachment to the praxis of teaching and learning mathematics. The sub
ject matter of mathematics is intimately bound to the multiple ways of practical ex
perience to teach and learn mathematics. These forms of practical experience can 
not be understood as being "practical" in the sense of "not conscious" and "not theo
retical." In the contrary, these forms of experience and knowledge are in themselves 
largely organized as theories. For mathematics education it seems utterly important 
to find access to these practical forms of theoretical knowledge, to find ways to 
communicate, to exchange and to open up a discourse. Again, we find a form of 
paradoxical relation here between theory and practice. 

In the attempt to identify core ideas of mathematics education, guiding principles 
and essential problems, Michael Otte came up with a completely new and unusual 
picture of the territory of science and of the relations the disciplines have to each 
other and to that newly established discipline mathematics education. He insisted 
that mathematics education cannot survive without lively relations to the Bezugs-
disziplinen, like sociology, education, history, psychology and so on. One of the 
most attractive ideas for making these things work is the idea of complementarity as 
can be seen in Renuka Vithal's recent book (Vithal 2003) taking up Otte's idea and 
elaborating further implications. 

Complementarity in Michael Otte's work seems like a methodological heuristic. 
It is equally well known from dialectics as the coexistence and co-occurrence of 
contradiction, as from the Copenhagen interpretation of quantum mechanics by 
Niels Bohr. There we can find descriptions of the basic process either as waves or as 
particles, for example. Both descriptions are necessary; however, they exclude each 
other simultaneously. Otte has used both forms of complementarity in a lot of varia
tions, e.g., in his 1994 book where he describes mathematics as a paradigm defining 
and using the complementarity of the formal/algorithmic and the historical/cultural. 
It is important to see that the complementarity heuristic is not satisfied with elimi
nating contradictions. For Michael Otte, in the contrary, the location of complemen
tarity often seemed to indicate that a sufficient degree of analytical precision has 
been accomplished. Following from this, an understanding of grounding has been 
reached which is not guided by the idea of eliminating contradictions but finding a 
synthesis embracing truly contradictory forces, entities or concepts. 

It is, of course, interesting to ask what will be the future of this research perspec
tive and what will be possible applications in the pursuit of research questions in 
mathematics education. While we have tried in the preceding pages to sketch how 
Michael Otte's contribution to the advancement of mathematics education is histori
cally situated, we would like to give in a second section an overview on a possible 
research perspective which could emerge as a consequence from the bundle of con
tributions made to this volume. 

Only in recent years, Michael Otte and his group have started to work on a re
search perspective attempting to understand better the role of signs and representa
tions in relation to mathematical activity and communication about mathematics. 
These efforts have to be seen as related to the internationally just emerging and re
cent approach to rephrase problems of mathematics education in terms of "semiot-
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ics", the "theory of signs." A semiotic grounding of mathematics education seems to 
be a promising approach. 

Signs and Representations have an essential role in mathematics. It could even 
be said that the essence of mathematics consists in working with representations: 
Mathematization means to represent problems or facts by mathematical representa
tional means, calculation is transforming such representations according to the rules 
of a certain system of representation, proof is representing a theorem as implied by 
other theorems within a consistent system of representation, and generalization is 
restructuring such systems of representation to include new, symbolically designated 
ideal objects (not implying any ontological commitments). 

As it is impossible to directly grasp and experience the ideal objects and the ob
jectivity of mathematics, we need signs and representations. Mathematical cognition 
is mediated by representations. The latter are on the one hand the "objects" proper of 
mathematical activity, and they are means to develop mathematical knowledge fur
ther on the other. This "complementarity" of means and object which Michael Otte 
(1994, 275 ff.) speaks of in this connection, appears to be essential for the possibility 
of mathematical generalization: Introducing ideal objects by means of "hypostatic 
abstraction" - as Peirce calls it - not only creates ever new mathematical "objects," 
but at the same time new "means" for the next stage of generalization. The crucial 
element here is the recursive character of thought which is expressed in the fact that 
a thought or an action is "hypostasized" to become the object of another "thought." 

The semiotic dimension is in particular essential for learning and teaching 
mathematics. In mathematics instruction, children learn for the first time to operate 
exclusively with signs, they learn that the world of concrete objects and activities 
can be represented and understood mathematically, they are confronted with the 
problem that there are often quite different possibilities of representing the same 
situation, and they can see that a change of such representations often makes possi
ble new insights. The creativity proper of mathematics results from this very fact. 

Each representation is characterized by a richness of interpretation possibilities 
which is in principle infinite. While learning mathematics, on the one hand, involves 
taking over the conventional meanings of mathematical signs, it depends also on 
switching between different possibilities of interpretation - on seeing an "A as a 5," 
as Michael Otte (2003, 233 ff.) says. Changing the point of view is an essential pre
requisite both for learning processes and for the dynamics of theories in the sciences. 

Beyond that, communication and interaction in mathematics instruction will al
ways necessarily be mediated by signs. One learns by signs and with signs, signs are 
in focus of social interaction in the classroom. With regard to that, the crucial prob
lems of learning mathematics can be formulated in semiotic terms: How shall the 
ideal mathematical objects and situations be understood if they cannot be grasped 
without signs on the one hand, but cannot be simply identified with certain represen
tations either? How shall we deal with the problem, central for understanding signs, 
that a sign's meaning - as the only epistemologically convincing semiotics shows, 
the Peircean semiotics - , is always constituted by interpreting this sign, and not be
fore? 

The semiotic approach is leading to a wealth of new questions, partly reformulat
ing old problems. The semiotic approach offers an intriguing new way to deal with 
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complementarity, pushing forward the binary contradictory relations into the multi
tude of sign-object-interpretant triads. There is also the hope that the semiotic per
spective could offer a new promising way to an interdisciplinary grounding of 
mathematics education. Here, one can think of the disciplines as interpretants of the 
relation between activity and sign, opening up a way to see and understand the unity 
in the diversity, the constancy in the variation of the various disciplines. 

Even though the present volume was meant to be a Festschrift, a volume dedi
cated to an academic scholar by his colleagues, companions, friends and students on 
the occasion of his retirement, it turned out to be impossible to only look back at 
past achievements of Michael Otte. 

Actually, after having delved into the writings of Charles Sanders Peirce, Mi
chael Otte began a new chapter in his scholarly career dealing with semiotics, repre
sentation and sign processes. Accordingly, after presenting Otte's approach in a piv
otal paper on "Mathematics, Sign and Activity", the first two chapters of this vol
ume focus primarily on "Sign Processes" and "Sign Processes in Mathematics Edu
cation." 

The third chapter, "Mathematics Education as a Science," takes up Otte's quest 
of grounding mathematics education by asking from different vantage points what it 
might mean to speak of mathematics education as a scientific discipline. The head
ing of the fourth chapter, "Crossing Boundaries," refers mainly to contributions 
which are located in the context of learning theory and psychology, giving an exam
ple of how distant the echo of Otte's approach is carrying. The fifth and the sixth 
chapter give evidence that grounding mathematics education rests on a deepened 
understanding of mathematics as the core reference. It seems self-evident that this 
understanding includes the history of mathematics and of mathematics teaching, be
cause the view is basically an evolutionary one. While the fifth chapter links the 
"History of Mathematics and Mathematics Education", the sixth chapter, finally, 
collects different attempts of "Making Philosophy of Mathematics Relevant." 

It becomes apparent already from this short overview that this volume celebrat
ing Michael Otte as one of the founders of mathematics education as a scientific dis
cipline is not bidding farewell but attempting to define a new beginning. The per
spectives elaborated here are for the greatest part motivated originally by the im
pressing variety of Otte's thoughts and the many inputs he gave as a friend and as an 
always stimulating and challenging dialogue partner. The aim of the perspectives 
presented here is not to look back, but to find out where the research agenda might 
lead us in the future. 

Institutfiir Didaktik der Mathematik, Universitdt Bielefeld 

NOTES 

^ Heinrich Bauersfeld and Hans-Georg Steiner were the two other long-time directors at the Institut fur 
Didaktik der Mathematik 
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MICHAEL OTTE 

MATHEMATICS, SIGN AND ACTIVITY 

1. FUNDAMENTAL PROBLEMS 

The following proposes the thesis that certain fundamental problems of mathematics 
that commonly appear difficult to understand can be represented more or less 
clearly, and hence understood, from a semiotic perspective. Thinking is not just 
mental, but is realized through semiotic activity. The sign process is, however, not 
just a continuous flow of meaning, but is interrupted and broken up by catastrophes 
(Thom). For us, fundamental problems are primarily the following: first, the prob
lem of the mathematical objects; second, the paradox of proof. 

Concerning the first problem, mathematical objects are not objective in the sense 
in which we habitually speak about existing concrete objects belonging to our em
pirical environment and to our everyday experience. They are not given to us in an 
immediate way. They are always objects of mathematical activity, and beyond that, 
even cultural artifacts. On the other hand, mathematics, inasmuch it is understood as 
an activity, does indeed possess objects of its own, and is no linguistic science based 
on the continuously oscillating meaning of its concepts. In his emphatic manner, 
Cassirer has expressed this by saying that mathematical cognition "sets in precisely 
at that point where the idea breaks through the cloak of language - but not in order 
to be from now on virtually naked, without any symbolic cover, but rather to tran
scend into a principally different symbol form" (Cassirer 1977, 396). 

But while Cassirer understood the passage of cognition by language to be libera
tion from the boundaries "of intuitive representation and representability as such" 
(ibid., 398), Kant postulated a special form of intuition to characterize the mode of 
being of mathematical objects. Both authors note humanity's basic ability to distin
guish between symbols and things. However, both the process of associating mean
ings and the Kantian construction of quantity (or of function) remain properly speak
ing, within the presemiotic area, as long as they are not approached from mathe
matical activity itself as a system to be determined. This question needs to be con
sidered from the perspective of the two problems named above, or, in other terms, 
from the perspective of both the genesis and the foundation of mathematical knowl
edge. Everything we construct conceptually is distinct and preordained for distinc
tion; everything we perceive is vague or continuous, and hence something general. 
"The man who mistook his wife for a hat" (Oliver Sacks 1970) was unable to per
ceive anything, requiring specific individual characteristics or tokens even to iden
tify persons known to him. In some way, this man is similar to the pure mathemati
cian who works on the basis of definitions, rather than concepts or ideas. Conceptual 
judgments are the cornerstones of knowledge. To know means to judge, and this, in 

9 
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turn, means to relate a particular experience to a concept (a predicate) or to a rule (a 
law), as there is no reasoning from particulars to particulars. Thus, to know implies, 
in any case, to relate a particular to a general; it means to generalize, (cf. Otte 1994, 
75). 

However, regardless of whether we focus on the genesis of new knowledge or on 
questions of foundation and proof, activity will always move between the singular 
and the general, between what exists and is explicitly defined on the one side, and 
what is vague or metaphorical on the other. In mathematics instruction, there is often 
the belief that the important thing is a precise language and conceptuality narrowed 
down in its meaning. What is so rigid and fixed, however, becomes a "private lan
guage" (Wittgenstein), and completely loses its communicative function. In short, 
from a semiotic perspective, the relation between indexical and iconic signs or rep
resentations becomes a crucial question of mathematical philosophy. In fact, every 
sign has some iconic and some indexical aspects. Take, for instance, the sentence, 
"It rains." Here, Peirce writes, "the icon is the mental composite photograph of all 
the rainy days the thinker has experienced. The index, is all whereby he distin
guishes that day, as it is placed in his experience. The symbol is the mental act 
whereby [he] stamps that day as rainy" (CP 2.438). 

Linked to the discussion of this question, as a rule, is a dispute about whether 
application and problem-solving on the one hand, or proving and theoretical coher
ence on the other, are to provide the essential orientations for mathematics. There 
exist, in fact, two different "cultures" in mathematics (Gowers 2000, Otte 2003) 

Whereas Kant's ideas had been entirely repressed until the 1990s following the 
arithmetization program driven by the pure mathematics of the 19* century and the 
concurrent "crisis of intuition," and they had fallen into oblivion until recently ex
periencing a certain renaissance, there remains the question what shall form the ul
timate foundation of cognition: either the act of will and the concrete sign it sets, or 
the continuum, respectively, space, "as the primitive form of all material existence" 
(Cassirer 1977, 402). In semiotic terms, the conflict is between either constructing 
representations or recursively interlinking operative and receptive aspects of cogni
tive activity. This field of debate has recently seen, in mathematics education as 
well, an upswing of those positions emphasizing the significance of visual meta
phors. Under the influence of the cognitive sciences and of the new means of cogni
tion (computers), firstly, the belief that theory and science are also independent of 
our intuitions increases in importance, making one inclined to agree with the chem
ist H. Primas' remark that "a good theory is consistent, confirmed, and intuitable" 
(Primas 1981, 19). Secondly, however, the new intuition is recursively interlinked 
with the operative and symbolic elements of cognition, insofar as it is not directed 
toward a statically given world, or is the latter's reflex, but relates to the media of 
sign and representation themselves. Signs always have a general meaning as well, 
that is, they form a unity from the concrete thing and the general idea or perspective. 
The sign seems to represent a "contradiction" in itself, being on the one side an ob
ject - a sign after all needs to be presented as a token, that is, as a particular object 
or event - and, on the other side, having no existence, having only a meaning. 
Meanings are not things, but universals. A universal, however, has to function as a 
universal to be so considered. Thus, a sign is a sign only if it functions as such. A 
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sign is not a thing, as said above, but it is not a function or bundle of various func
tions either. This is a crucial point not recognized by the currents of analytical phi
losophy and of idealist epistemology that prevail today. As a rule, these claim that 
reasoning is a-modal. 

Now it can be said that generalization is the essential feature of the mathemati
cal, and also that, in this, the signs, in the twofold sense already mentioned, are the 
object of activity. Whereas mathematical generalization consists ultimately in intro
ducing ideal objects, the process also depends essentially on the concrete symbolic 
innovations, because ideas are indeed not given in themselves. It may even be said 
that the fundamental fact that no unmediated relation to reality is possible leads to 
the situation that theories and their languages, in the dynamics of scientific discover
ies, appear in a close and indissoluble relation to one another. This is also most 
clearly explicated in a text of the eminent physicist and Nobel laureate Richard 
Feynman. Feynman compares three different forms of presenting classical mechan
ics, noting that they are of exactly equal value: 

Mathematically each of the three different formulations, Newton's law, the local field 
method and the minimum principle, gives exactly the same consequences. ... But psy
chologically they are very different ... because they are completely inequivalent when 
you are trying to guess new laws. As long as physics is incomplete, and we are trying to 
understand the other laws, then the different possible formulations may give clues about 
what might happen in other circumstances. (Feynman 1965, 53) 

In this case, for instance, only Hamilton's formulation of classical dynamics permits 
the transition to wave theory, and this is a generalization that later became decisive 
in quantum theory (cf. Bohm 1977, 383f). In verification, be by logic, proof, or em
pirics, the double nature of the sign is often forgotten; only concrete verification and 
indexical signs being considered meaningful. We shall come back to this in present
ing the paradox of proof. Mathematics operates with special signs, and an object is 
what is being designated and presented. The question what this is will then be an
swered in the framework of the respective mathematical activity. 

Mathematical objects are at first nothing but objects of activity (e. g., problems) 
represented by indexical signs whose meaning unfolds in the elaboration of the 
structural and lawful determinations to which they are subject. Insofar, whereas 
mathematical objects are given to activity, they are "given as tasks" to understand
ing. This position is pre-established in modern axiomatics in Hilbert's sense. In this 
context, the question what a number is is answered simply by pointing to the arith
metic axioms: Number is everything that is embodied in a sign and that becomes an 
object of arithmetic activity; this activity appearing to be regulated by the axioms. 
The properties of the numbers (as objects) manifest themselves in the logical infer
ences from the axioms. 

In Hilbert's axiomatics, however, all justification of the axioms is at first absent. 
They are little more than mere indices of mathematical objects. This view seems to 
suggest that the intended applications, when we interpret axiomatic structures in 
models, contribute something essential to the objects' contents (making it possible, 
for instance, to prove their consistency). It does not make sense, however, to "illus
trate" the abstract! In the present case, that of numbers by concrete examples like pie 
charts, as in the empirical didactics of old, the important thing is rather to construct 
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artificial imaginative worlds, by means of various types of play, for instance, 
wherein numbers occur as really existent, and, in this way, to apply and embody ab
stract structures. This means that the meaning of the concepts involved is to a con
siderable part fixed in the axioms. 

How, however, shall application justify the applied, that is, the structures? To 
Kant, this seemed impossible, and for this purpose he made space and time, as forms 
of pure intuition, into subjective determinations. On the basis of similar ideas, mod
ern axiomatics and logical theory of proof emerged as completely independent of 
any semantic reference and any ontological commitments, until Godel's incomplete
ness theorems taught us to correct things, leading to re-instating the rights of the in
tended applications, or model theory. Even if the intensions of the mathematical 
concepts are in their essence established in the axioms, it does not follow that the 
same are the object, or describe it completely. Mathematical axioms do not present 
particular objects, but rather classes or types of these. An axiomatized theory, there
fore, is an intensional theory; and the theory and its language becomes indistin
guishable. It was, of course, impossible to return to a fundamentalism of classical 
character, neither to a constructivist one in Kant's sense, nor to a Platonist one in 
Bolzano's sense, but what resulted here was a so-to-say paradoxical linkage between 
condition and conditioned that can be rationally understood only from an evolution
ary perspective. Concepts are both the condition and the goal of mathematical activ
ity. 

In founding the concept of number, for instance, there was an intense dispute at 
the end of the 19* century, respectively at the turn to the 20*, between those who 
held the view that the concern of arithmetics was to unfold the contents or intension 
of the concept of number - according to which the concept of number was to be 
erected exclusively on the notion of ordinal number - and others who held the view 
intending to obtain the number concept abstractly via the cardinality of sets, thus 
having the concept of number positioned at the beginning of all treatment of arith
metic (cf. Cassirer 1969, 67 ff). To settle this dispute reported by Cassirer, it could 
be said that the mathematical concept is always used attributively and referentially at 
the same time. Because in formal axiomatized theories, the concept's content pre
sents itself precisely as the theory developed from the axioms and models, one 
would enter into conflict with Godel's incompleteness theorem if one intended to 
advocate a purely intensional view of theory, and hence a purely attributive use of 
concepts. In case of attributive use of concepts, these appear mainly in their function 
in arguing and proving, whereas the focus of the referential use of concepts is 
mainly on the question of truth. 

It has often been held in this context that Godel's theorem shows that we are no 
machines. Machines, it is said, can only compute, whereas human thought is about 
substantial truths (cf.. Otte 1994, 221 ff., in part. 227). Webb has argued against this 
as follows: 

The incompleteness theorem shows that as soon as we have finished any specification 
of a formalism for arithmetic we can, by reflecting on that formalism (Hilbert's ''Wech-
selspiel"), discover a new truth of arithmetic which not only could not have been dis
covered working in that formaUsm, but - and this is the point that is usually overlooked 
- which presumably could not have been discovered independently of working with that 



MATHEMATICS, SIGN AND ACTIVITY 13 

formalism. The very meaning of the incompleteness of a formalism is that it can be ef
fectively used to discover new truths inaccessible to its proof-mechanism, but these new 
truths were presumably undiscoverable by any other method. How else would one dis
cover the "truth" of a Godel sentence other than by using a formalism metamathemati-
cally? We have here not only the discovery of a new way of using a formaUsm, but a 
proof of the eternal indispensability of the formalism for the discovery of new mathe
matical truths. (Webb 1980, 127) 

Webb is certainly right here. This is already shown by elementary examples like the 
fact that the assumption of the real solvability of the equation x̂  + 1 = 0 leads to a 
contradiction that can be overcome by an extension of the concept of number. 
Webb's view, however, by no means implies that we human beings did not think 
intuitively, or that we did not need intuition; it is only directed against that classical 
reductionist concept of intuition. Our intuitions, just like the reasoning of computers, 
are only means of the activity of constructing representations. 

In his famous Paris lecture on future problems of mathematics, Hilbert empha
sized that arithmetic consists of nothing but the explication of mathematical intui
tions. If we relate intuition, in contrast to the classical concept of application, to the 
signs and diagrams on which mathematicians base their activity, and which continu
ously accompany this activity, this process of explication will never come to its end. 
It can never be closed, because new intuitions are given, with new representations 
and diagrams. As Peirce says "a great distinguishing property of the icon is that by 
the direct observation of it other truths concerning its object can be discovered than 
those which suffice to determine its construction" (CP 1.179, see, also, Peirce NEM 
III, 749). Here again, the distinctive character of the icon is indicated, namely, that it 
is the only sign by which we can enlarge our knowledge. Under all circumstances 
"each Icon partakes of some more or less overt character of its Object" (CP 4.531). 
This partaking can be of a complex sort, and need not be completely determinable. 
This is nothing but a pointer to that which is implicitly and intuitively given and ob
servable in the icon and lends itself to formulation after the fact in logical relation
ships and axioms. 

Castonguay, who, like us, is in favor of a dualist theory of meaning according to 
which meaning is "an inseparable tissue of convention and fact," speaks of a "heu
ristic component" of mathematical meaning that represents a source of inspiration 

for the positing of relations between variously (and possibly referentially perceived 
mathematical concepts or entities, relations which may eventually crystallize, through 
more exact formulation and deductive corroboration, into objective relations of entail
ment between Unguistically expressed concepts (Castonguay 1972, 3). 

In our way of speaking, a mathematical theory's heuristic component would proba
bly be the totality of intended applications or possible models, inasmuch it fills, in 
the absence "of an authentic referential pole for meaning in mathematics," the role 
in the concept of meaning that is complementary to intension. 

Because we must conceive of intuition semiotically as of a means of formal in
ference, seems appropriate to treat this once more in more detail; and this is why we 
shall specifically treat mathematical deduction, as in the last section. 
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2. FOUNDING AND PROVING 

This brings us to the second question in this essay, to the paradox of proof. It can be 
formulated as follows: On the one hand, a proof can prove something only if the 
knowledge concerned possesses a firm tautological structure, and if proving ulti
mately consists in sequencing immediate identities or equalities. In doing so, proof, 
on the other hand, reduces the knowledge to be conveyed to the knowledge already 
present in the recipient, and it is not seen how new knowledge can be created in the 
learner (cf. Otte/Bromme 1978, 20f.). If proof then is meant to produce knowledge -
and mathematical knowledge cannot be obtained in any other way - it cannot be a 
tautological process that exerts a material or causal coercion, but must be a semiotic 
process instead. Proof does not characterize an interaction between reactive systems, 
but rather one between cognitive systems. Proof and cognition, then, require not 
only that general rules and procedures of proof, or logical arguments, be stated, but 
also that a certain perspective or idea be appropriated as one's own. Finally, as a 
third element, proof requires not only that a sign in the twofold sense be developed 
but also that it be applied to a situation of which the proofs recipient is perfectly 
aware. Proof thus always implies generalization, and a verification or application. 
The problem has been presented by Lewis Carroll in a most beautiful text: What the 
tortoise said to Achilles (reprinted in Hofstadter 1985, 47ff). 

Achilles and the tortoise talk about EucUd's elements and about the proofs encountered 
there. One of the examples they consider is the following: 

A) If two things are equal to a third, they are equal to one another. 
B) The two sides of this triangle are equal to another. 
Z) The two sides of this triangle are equal to another. 

Every reader of EucUd will probably admit that Z follows logically from A and B, so 
that everybody who accepts A and B must accept Z as true, Achilles claims. But in or
der to compel the tortoise accept this mode of inference, and in particular to accept Z, if 
it accepts A and B, he has no other option than to write down precisely this claim as a 
new rule. 

C) If A and B are true, Z must be true. And, further: 
D) If A and B and C are true, Z must be true, etc. 

This is where it becomes clear that the infinite regression can only be overcome if 
the rule (or the idea, respectively the concept, as a scheme of action) were to be 
identical with its own application. This is how intuitive reasoning is traditionally 
characterized. In the famous heureka! or aha moment of intuitive insight, the fact 
presents itself in immediate identity with the establishment of its truth. 

Hence, it is seen now that verification is threatened by the same regression as is 
generalization. The sentences "P" and "P is true" refer to the same judgment. They 
are different sentences, however; and Bolzano used this fact to construct an infinite 
totality of sentences. At this point, the impossibility of seeing the truth from the sen
tence itself, or of establishing a criterion of truth linguistically, leads to the tendency 
of repeating the predicate "... is true" ever more emphatically. We cannot define 
truth in a way that would permit us to decide about the truth or falseness of a sen
tence immediately upon its presentation. The sentence is a sign, too. This, however, 
is obviously a further sketchy expression of Godel's incompleteness theorem. While 
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truth is due to sentences, it cannot be established linguistically, but rather belongs to 
relations between language and the world that cannot be characterized by speech. 
Truth is unprovable and cannot be defined. This had already been stressed by Kant 
(Kant, Critique of Pure Reason, B 83). The same is true for the concept of existence 
(a finding also claimed by Kant: B 626). 

It might be concluded from what has been said on intuition, a conclusion often 
drawn by referring to Godel's incompleteness theorem, that intuition, in Kant's or 
Descartes' sense, should ultimately be the last instance of decision. Intuition and 
emotionality are doubtlessly of decisive import for the activity of cognition, which 
would not proceed at all without them. Our intuitions, however, are very misleading, 
and one may even claim that, without experience, they would err in the majority of 
cases. As we see from Carroll's parable, factual information alone, on the other 
hand, is not sufficient to correct this. One may indeed understand the above com
ment on CaroU's parable as a hint that a position purely aligned to intuitive truth and 
a deductive view, obligated merely to formal consistency, are identical. This once 
again concerns a complementarity of the attributive and referential use of mathe
matical concepts. 

Mathematical cognitions, too, even if ultimately constituted by formal proofs, are 
dependent on experience, and mathematics thus must offer an opportunity for ex
perience. Experience is obtained by the natural scientist, just as in everyday life, 
from experimental practice. In mathematics, there are no experiments, but mental 
experiments. Mental experiments, again, are signs, and not just internal imagina
tions. They are bound to certain concrete representations or models and thus permit 
certain experiences to be had when dealing with these. 

Mental experiments have again and again played a decisive role in the develop
ment of physics or of chemistry. But, as Thomas Kuhn says, it is 

by no means clear how they could ever have significant effects. Often ... they have to do 
with relationships which have not been examined in the laboratory. Sometimes, ... they 
assume situations which cannot be completely studied at all and which need not even 
occur in nature. ... The main problems in connection with mental experiments can be 
formulated as a number of questions. Firstly: The situation imagined in a mental ex
periment must obviously not be completely arbitrary. (Kuhn 1977, 327) 

Secondly, one must ask oneself how new cognitions of nature can emerge from the 
mental experiment if it does not produce any new information at all, as a real ex
periment does. 

Lastly, the third and shortest question: What new cognitions can be obtained in this 
way? (Thomas Kuhn, ibid.) 

We are unable to present Kuhn's very differentiated and manifold answer to these 
questions in detail here. One thing, however, should be clear: Mental experiments 
are situations in which general rules and cognitions must be applied to particular 
constellations, and this is precisely where experience is obtained. Experience always 
means to experience a reality's resistance, and the latter can already come about by 
it not being clear which of two possible contradictory rules should be applied here. 
Experience indeed has to do with the interchange of general representations and in
dividual perceptions, as well as with their objectiveness. In semiotic terms, indices 
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are signs compelling us to make certain determinations, whereas icons relate to our 
ideas. The result thus is that mathematics cannot only operate with concepts, but 
must also use iconic and indexical signs. 

The foundation of mathematical knowledge (i. e., proof) finds itself ultimately 
confronted with the same problematic as the genesis of mathematical cognition. This 
problematic consists in mathematical cognition being an activity, and that the point 
thus is not just to have an idea or to know a rule, but always to apply ideas, con
cepts, rules, and guesses to specific situations. This sameness of problematic is also 
illustrated by Plato's paradox of learning. Plato had formulated his argument in 
Menon from the perspective of the not-yet-knowing: how can one seek something 
when one does not even know what it is (Menon 80 d ff). The paradox is that if one 
knows what one is searching for, one no longer needs to search for it, and that if one 
does not know, the search becomes impossible. 

This presentation, however, is incomplete inasmuch as the point is to imagine 
what one seeks. But, while such an imagination is a necessary, it is by no means a 
sufficient condition for what is sought. It may well be that one has the right idea for 
conducting a proof, but does not know exactly how one is to apply it. It is known, 
for instance, that the theorem about Euler's line in the triangle, because it contains 
only projective determinations in its claim, must lend itself to be proved from the 
axioms and theorems of projective geometry. Possibly, one even knows that this is a 
special case of Desargues' theorem (respectively its inversion). One does not know, 
however, how one is to apply this knowledge in the present case and to the given 
constellation. A theorem's premises are both an indexical hint, and a presentation of 
the intended situation, albeit a very incomplete and one-sided one. Conversely: once 
one has an idea of proof at one's disposal, one might ask what can conducting the 
proof then still add to this. Nothing, is the answer, if it only repeats the idea without 
sophisticating and specifying it. The first idea can never be completely right; other
wise the problem would be solved. Ideas are "pure," and hence one-sided and not 
adapted to reality at all. 

Accordingly, one may also advocate the thesis that only a very limited role is due 
to intuition, or to the intuitive idea, or to the heureka. Intuition is as deceptive as it is 
important. It is always directed toward observing a representation, and it discovers 
something in it. What this is will only be shown in a new, transformed representa
tion, and can only be shown effectively in this way. The idea, we shall claim, always 
is the idea or basis of a representation. Ideas are things possible; they have a mean
ing, but no factual existence. What is possible cannot be identified by the totality of 
its representations, because this totality actually does not exist a priori. But the pos
sible cannot be separated from the totality of representations and understood as mere 
intuition or Platonic idea either. 

From what has been said, we now obtain: Reality that is to be understood must 
be represented. A things' idea or essence thus is itself the essence of a representation 
of the thing. A representation's essence is again a transformed representation, for to 
interpret is to represent. Whereas the essence is something relative, something medi
ated, it is also objective. This objectivity shows in the continuum of all representa
tions, for objectivity can be ascribed in an intelligible and fruitful sense only to a 
general object. The singular will, at best, operate as a constraint. 
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What has been formulated here as the central thesis of a semiotic epistemology of 
mathematics - that is to say, that signs are meaningful because they represent proc
esses of interaction between the general and the particular - has appeared in mani
fold forms in the history of philosophy. The underlying problem shows clearly how 
post-Kantian idealism (i. e., Fichte, Schelling, Schleiermacher, and Hegel, too) 
treated the Kantian concept of intuition and the duality of concept and intuition that 
had been fundamental for Kant's epistemology. One spoke in this connection of an 
intellectual intuition, of a unity of construction and constructed, of an intuition of 
intuition, or also of the hermeneutic circle of interpretation that is cognitively based 
on the fact that the fundamental concepts and basic ideas are both the foundation and 
the result of interpretation or cognition. 

It is correct that every new information, every new knowledge, must be related, 
just like every new idea, to the system of the cognitions and information already in 
existence, or - in psychological terms - must be integrable into the developed cogni
tive structure. To have experiences, to exploit information, to head toward goals, or 
to confront problems requires a frame, a perspective, and idea under which all this 
can be executed. If really new knowledge is to be acquired, however, this perspec
tive, or this idea, must, on the other hand, be furnished at least partly by the new 
content itself. If something new is to be introduced into thought, this new thing must 
to a certain degree itself provide the perspective and the foundation of its develop
ment in reasoning. The theoretical concept must, so to say, deliver the basis of its 
own explanation. If this were not possible, it would be difficult to understand how 
something new can be learned, because the sole remaining measure would be to see 
whether the new ideas and the new concepts are similar to the old or not. This is 
nothing but a variation of the two paradoxes we have formulated, namely, the para
dox of proof on the one side, and Plato's paradox of learning on the other. 

3. ANALOGY, CONTINUITY, AND GENERALIZATION 

The reports of scientists on their own work again and again stress the role of per
ceiving analogies and structural similarities as a means to obtain new things. The 
role of the concrete representations, respectively, the fact that one and the same idea 
must also be explicated and represented in a form as varied as possible, is seen more 
rarely (compare, in contrast, our above quote of Feynmann). In this respect, the dis
pute between the more traditional psychology of association from Hume across 
Helmholtz and Poincare up to Ziehen (1914 <1902>) and Ebbinghaus (1908) on the 
one hand, and the Gestalt psychology of the Wtirzburg School (BUhler or 
Wertheimer) on the other is very informative and revealing. Whereas the psychology 
of association stresses the importance of the continuity principle on the basis of 
Hume's distinction between associations by similarity versus associations by conti
guity, Gestalt psychology points out the determining character of the problem situa
tion. 

Ziehen describes the principle of continuity, which he calls the "neighbourhood 
principle," as follows: 
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Every representation calls forth as its successor either a representation that is similar to 
it with regard to contents, or one with which it itself, or with whose basic sensation its 
own basic sensation has often appeared simultaneously. The association of the first or
der is called an internal association, that of the second order also an external one. (Zie
hen 1914, 309) 

As an essential element going beyond that, Gestalt psychology has considerably 
added the hint at the determining tendencies that emanate from a task to be solved, 
showing that a task presented or a problem considerably accelerates the course of all 
processes of reasoning. Here again, we encounter a variation of Plato's paradox. It is 
well known that it is much easier to prove a theorem that one knows to be true than 
one that is entirely unclear. It is also simpler to solve a task that possesses a solution. 
Moreover, N. Ach has pointed that the determining tendencies that emanate from the 
task are sometimes more important for the course taken by the representation than 
the external stimuli and the associative connections. The determining tendencies 
emanating from the task create new associations between the representations (cf. 
Ach 1905). This, however, is obviously mediated by the respective representation of 
the problem or the problem situation. It may thus probably be said that the decisive 
aspect in the transition from the psychology of association to Gestalt theory was to 
extend the understanding of the principle of continuity effected by liberating the lat
ter from interpretations that confined it to mere representations or perceptions. 

In empirical contexts, we observe certain regularities, like distributions of values 
measured, and we seek the principle that generates them. This is not attainable in a 
purely inductive way, but also requires, alongside the data, certain ideas on the form 
of the laws sought. Eventually, what was first assumed only hypothetically must be 
verified. In mathematical contexts, particularly in arithmetic and algebra, we are fa
miliar with the transformations or constructive mechanisms, and we look for pat
terns or regularities in what is produced. Circle, ellipse, and parabola, for instance, 
are all second-order algebraic curves, and, as such, species of a genus, and this sub
sequently provides the basis for using the principle of continuity as a device of proof 
just as Leibniz used it, or later, to a larger degree, Poncelet. Here, the principle of 
continuity is at the service of a relational reasoning, of an analytic ideal of cognition 
according to which the objects are not seen in their individuality and in their distinc
tion, but rather in their similarity and their connection. Now it can be said that the 
empirical sciences aim at regularities or laws as well, and it may even be claimed 
that they obtain the same actively inasmuch as they conduct experiments, leading 
Peirce, in an early manuscript of 1878, to designate the foundation of synthetic con
clusions as follows: "Experiences whose conditions are the same will have the same 
general characters" (Peirce CP 2.692). Leibniz intended nearly the same thing when 
he wrote in 1687: 

If, in the series of the given quantities, two cases approximate one another continuously 
so that one transcends into the other, necessarily the same must occur in the series of de
rived or dependent quantities. (Leibniz HS I, 62) 

Now I do not simply insert the generating principle into an experimental context, for 
otherwise, experimental research in its entirety would make no sense at all, as it 
would amount to a mere self-affirmation, but I observe a lawful regularity whose 
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causes I seek. In the context of arithmetic, number theory, or algebra, in contrast, I 
have a formula and seek to describe what is generated by it. 

In any case, we should therefore understand the representation of the respective 
task as a sign, and apply the principle of continuity, or the principle of neighbor
hood, to the relations between signs, rather than to mere intentions. This is what we 
had already explicated in our proposal to understand intuition as a means of semiotic 
activity, that is, to interpret the idea as a basis or essence of a sign or representation. 
The process of solving a problem thus consists in a gradual correction of ideas or 
generalization involving ever new concrete representations. It is seen here again that 
intuition is expressed in applying a general argumentation to a particular constella
tion, that is, in constructing a representation, and that this representation changes the 
intuition. This is why Peirce calls perceptual judgments an extreme case of abduc-
tive reasoning: 

The abductive suggestion comes to us like a flash. It is an act of insight, although of ex
tremely fallible insight. It is true that the different elements of the hypothesis were in 
our minds before; but it is the idea of putting together what we had never before 
dreamed of putting together which flashes the new suggestion before our contemplation. 
On its side, the perceptive judgment is the result of a process, ... If we were to subject 
this subconscious process to logical analysis, we should fmd that it terminated in what 
that analysis would represent as an abductive inference, resting on the result of a similar 
process which a similar logical analysis would represent to be terminated by a similar 
abductive inference, and so on ad infinitum. This analysis would be precisely analogous 
to that which the sophism of Achilles and the Tortoise apphes to the chase of the Tor
toise by Achilles, and it would fail to represent the real process for the same reason. 
Namely, just as Achilles does not have to make the series of distinct endeavors which 
he is represented as making, so this process of forming the perceptual judgment, be
cause it is sub-conscious and so not amenable to logical criticism, does not have to 
make separate acts of inference, but performs its act in one continuous process. (CP 
5.181) 

What we propose here is to, nonetheless, decompose this process, to interrupt the 
continuum by intermediate stages, to relativize the flash character and the immedi-
ateness of insight in order to make something teachable and learnable, in other 
words, communicable, that otherwise would seem to evade every communication. 
Intuition is not eliminated by this, but it is deprived of its quasi paradoxical charac
ter, inasmuch as many things are seen or perceived more easily than others. A bold 
hypothesis or a conclusion drawn from afar is decomposed into stages just as de
scribed already by Aristotle in his Analytica posteriora II 23 as the compression of 
the mean (cf. for this Detel 1993, 302 ff.). To prove the sum of angles' theorem in 
the triangle, for instance, I draw a straight line parallel to the base through the trian
gle's top, and then conclude that the theorem results from this by saying if such a 
parallel straight line is given, then ... etc., etc. This drawn diagram is precisely such 
a middle element suggested by the principle of continuity. 

We have seen that all the problems named - object problem, problem of proof, 
problem of learning and of generalization - show the same basic structure, and that 
we encounter this problem structure already in the instant in which we try to explain 
the connection between perception and cognition, or the emergence of the perceptive 
judgment as a process in which action (representation) and reception (intuition) are 
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becoming recursively intertwined. Peirce himself observed in one of his later manu
scripts on the essence of pragmatism: 

I do not think it is possible fully to comprehend the problem of the merits of pragma
tism without recognizing these three truths: 

1. that there are no conceptions which are not given to us in perceptual judgments, so 
that we may say that all our ideas are perceptual ideas. This sounds Uke sensational
ism but in order to maintain this position it is necessary to recognize, 

2. that perceptual judgments contain elements of generahty; so that Thirdness is di
rectly perceived; and finally I think it of great importance to recognize 

3. that the Abductive faculty, whereby we divine the secrets of nature is, as we may 
say, a shading off, a gradation of that which in its highest perfection we call percep
tion. (Peirce MS 316) 

The essential thing in this transition from perception to abduction seems to be the 
generalization of the singular and factual to the general connection as it is repre
sented in an analogy or in a metaphor. In the case of a metaphor, the basis of the re
lation of similarity must be found first of all. What is more important here is the 
sameness of genus or of family, which implies a transition from the purely empirical 
to the theoretical. To begin with a simple example: parabola and catenary are em
pirically so similar that Galileo still took them to be the same; the difference being 
elaborated only by Huyghens. On the other hand, circle, ellipse, and parabola are of 
the same genus of family, but empirically quite dissimilar. In geometry, they are 
nonetheless considered to belong together. 

Conceiving of the principle of continuity in its relation to a sameness of genus or 
family type marks an essential element of the scientific revolution of the 17* to the 
19* century. This is when reasoning and intuition began to pass from the things to 
the laws determining them. The laws themselves are deemed to be anchored in logic, 
and in God's mind. Leibniz, albeit always aligned to the problem of individuation in 
his quest for cognition, considered pure mathematics to be an analytic science con
cerned with the general concepts of genus and with the laws that are to be valid in 
all possible worlds. These laws or relational structures, however, also determine the 
reasoning in analogies or metaphors, that is, they provide the aspect under which 
reasoning approximates the existing world. And this is the very purpose for which 
the principle of continuity has been conceived. In order to use the metaphorical as 
part of a mathematical-natural science methodology, one must draw on the principle 
of continuity in the sense of that Aristotelian quest for middle elements or interme
diate steps. Peirce describes the method extensively: 

When a naturaUst wishes to study a species, he collects a considerable number of 
specimens more or less similar. In contemplating them, he observes certain ones which 
are more or less alike in some particular respect. They all have, for instance, a certain S-
shaped marking. He observes that they are not precisely aUke, in this respect; the S has 
not precisely the same shape, but the differences are such as to lead him to beUeve that 
forms could be found intermediate between any two of those he possesses. He, now, 
finds other forms apparently quite dissimilar - say a marking in the form of a C - and 
the question is, whether he can find intermediate ones which will connect these latter 
with the others. This he often succeeds in doing in cases where it would at first be 
thought impossible; whereas, he sometimes finds those which differ, at first glance, 
much less, to be separated in Nature by the non-occurrence of intermediaries. In this 
way, he builds up from the study of Nature a new general conception of the character in 
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question. He obtains, for example, an idea of a leaf which includes every part of the 
flower, and an idea of a vertebra which includes the skull. I surely need not say much to 
show what a logical engine is here. It is the essence of the method of the naturaUst. How 
he applies it first to one character, and then to another, and finally obtains a notion of a 
species of animals, the differences between whose members, however great, are con
fined within limits, is a matter which does not here concern us. The whole method of 
classification must be considered later; but, at present, I only desire to point out that it is 
by taking advantage of the idea of continuity, or the passage from one form to another 
by insensible degrees, that the naturaUst builds his conceptions. Now, the naturalists are 
the great builders of conceptions; there is no other branch of science where so much of 
this work is done as in theirs; and we must, in great measure, take them for our teachers 
in this important part of logic. And it will be found everywhere that the idea of continu
ity is a powerful aid to the formation of true and fruitful conceptions. By means of it, 
the greatest differences are broken down and resolved into differences of degree, and 
the incessant appHcation of it is of the greatest value in broadening our conceptions. (CP 
2.646) 

Mathematical activity, and this is the thesis proposed here, is about transferring 
these methods to the world of the representations of mathematical facts. 

Institutfur Didaktik der Mathematik, Universitdt Bielefeld 

NOTE 

Citations from German editions were translated by Gunter Seib. 
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PAUL ERNEST 

AGENCY AND CREATIVITY IN THE SEMIOTICS OF 
LEARNING MATHEMATICS 

Abstract. Semiotics provides a way of conceptuaUsing the teaching and learning of mathematics driven 
by a primary focus on signs and sign use. It considers patterns of sign use and production, and the con
texts and social rules underlying sign use. It attends to agency in the learner's personal appropriation of 
signs and the meaning structures embodying the relationships between signs. Learner agency is mani
fested in communicative activity involving sign 'reception' (Ustening, reading) and sign production 
(speaking, writing, sketching). It is most marked in individual creativity in sign use, which is manifested 
at all levels in schooling and in the activities of the working mathematician. 

Key words: Semiotics, semi otic systems, mathematical activity, agency, creativity, teaching and learning 
of mathematics, sign transformations, appropriation, conventionaHzation . 

INTRODUCTION 

A semiotic perspective of mathematical activity provides a way of conceptualising 
the teaching and learning of mathematics driven by a primary focus on signs and 
sign use. In providing this perspective it offers an alternative to any psychological 
perspective that focuses exclusively on mental structures and functions. It also re
jects any straightforwardly assessment or performance focussed perspective con
cerned only with student behaviours. Instead it offers a novel synthesis that encom
passes but also transcends these two types of perspective, driven by a primary focus 
on signs and sign use in mathematics. Beyond the traditional psychological focus on 
mental structures and functions it considers the personal appropriation of signs and 
the underlying meaning structures embodying relationships between signs. Beyond 
behavioural performance it is concerned with patterns of sign use and production, 
including individual creativity in sign use, and the underlying social rules and con
texts of sign use. Thus a semiotic approach draws together the individual and social 
dimensions of mathematical activity which are understood as mutually dependent 
and constitutive aspects of the teaching and learning of mathematics. 

The primary focus in a semiotic perspective is on communicative activity in 
mathematics utilising signs. This involves both sign 'reception' and comprehension 
via listening and reading, and sign production via speaking and writing or sketching. 
While these are conceptually distinct, in actualisation these two activities overlap 
and are mutually shaping in conversations (semiotic exchanges between persons 
within a social context). Sign production or utterance is primarily an agentic and of
ten a creative act. For the speaker has to choose and construct texts to utter on the 
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basis of their appropriated and learned repertoire of signs. In so doing, speakers are 
taking risks in exposing themselves to external correction and evaluation against the 
rules of appropriate utterances. Text' denotes more than a piece of writing here. As 
is widespread in semiotics, it is a compound sign made up of constituent signs, and 
can be uttered or offered in a conversation in many ways. It may be spoken, written, 
drawn, represented electronically and may include gestures, letters, mathematical 
symbols, diagrams, tables, etc., or some combination. 

Texts, signs and their use need to be understood as part of more complex sys
tems. First of all, sign use is always socially located and is a part of social and his
torical practice. In Wittgensteinian (1953) terms sign use comprises 'language 
games' embedded in social 'forms of life' (Ernest 1998). Second, signs are never 
used individually. Signs are always manifested as part of semiotic systems, with ref
erence implicitly or explicitly, to other signs. The term semiotic system is used here 
to comprise the following three components: 
1. A set of signs, the tokens of which might possibly be uttered, spoken, written, 

drawn, or encoded electronically. 
2. A set of relationships between these signs based on an underlying meaning 

structure (or structures) embodying these relationships, 
3. A set of rules of sign production, for producing or uttering both atomic (single) 

and molecular (compound) signs. (These rules are in most cases implicit, ac
quired by 'case law'.) 

The social and historical embedding of semiotic systems concerns both their struc
tural dimension (Saussure's langue) and in their functional role (Saussure's parole). 
These dimensions, while theoretical separable, are woven together in historico-
social practice. The evolution of semiotic systems can be examined historically in 
terms both of these dimensions. Such developmental processes result in knowledge 
systems, such as school mathematics, that provides the underlying structure to the 
planned learning environments for students. However, just as semiotic systems 
change and develop over history, so too the semiotic systems mastered by learners 
develop and change over the course of their learning careers, becoming more elabo
rated and providing the basis for more complex and abstract systems. Mastering 
these enlarging semiotic knowledge systems constitutes learning. This feature is also 
a basis for a some learning difficulties, for the semiotic systems mastered by learners 
are never static. As they near mastery of a particular system, the teacher extends the 
system with new signs, relationships, rules or applications. For example, for a young 
child mastering elementary calculation 3 - 4 is impossible. But later 3 - 4 = - 1 . 
Similarly 3 divided by 4 (3/4) is at first impossible. Later it is not only possible but 
% names the answer. These, together with more complex changes in the rules that 
occur (are imposed) as semiotic systems are extended, and the problems they cause, 
have been named epistemological obstacles (Bachelard 1951, Sierpinska 1987). 
Thus a structural view of semiotic systems can provide only a freeze-frame picture 
of a growing and life-like entity. Indeed in practice it is difficult to clearly distin
guish and demarcate the range of semiotic systems encountered in school mathemat
ics because of their growth and their mutually constitutive inter-relationships. 

Successful mathematical activity in school requires at least partial mastery of 
some of the semiotic systems involved in schooling at the appropriate level. A num-
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ber of different but interrelated and overlapping semiotic systems are important in 
learning, and mastery of the following systems usually constitute significant stages 
in learning school mathematics the way it is currently organised: Numbers and 
counting; Numerical computation. Fractions (rational numbers) and their Opera
tions, Elementary linear algebra (solving equations), Analysis (calculus) and Ab
stract (axiomatic) group theory. Clearly, the semiotic systems chosen from univer
sity mathematics are more arbitrary than those chosen from the earlier years of 
schooling, in the sense that some university students could study mathematics but 
not analysis or abstract groups. The topic areas could be identified differently, but 
nevertheless they constitute a central part of taught mathematics straddling the years 
from kindergarten to university study. Naturally, there are further overlapping semi
otic systems in school mathematics learned in parallel with these (e. g., geometry 
and probability) and even from this perspective the mathematics curriculum could 
be 'cut up' into different semiotic systems. 

Semiotic systems are incorporated in all human communicative activities, and 
are inextricably woven into the fabric of all social activities and institutions. So the 
question can be posed: what is unique about their nature and deployment within 
school mathematics? A number of mathematically specific systems (topic areas) 
with dedicated sign systems, meanings and rules of use are mentioned above. But 
more than this, I want to suggest that there is an underlying characteristic shared by 
most if not all semiotic systems in school mathematics and more widely, by mathe
matics itself. In brief, my claim is that these systems are fundamentally sequential 
and procedural. In a sense this is an empty or superficial description, because at the 
heart of mathematics are its meanings, its purpose as a device for meaning-making, 
and this is driven by its social and human aims and context. But to treat these further 
issues in addition to its means of signification requires an in-depth discussion of his
torical and philosophical issues that are not only too complex and elaborate for the 
space here, but which are also clouded by centuries of metaphysical and ideological 
preconceptions about mathematics. However, the view of mathematical signs as se
quential and procedural in nature of helps explain a well-known pathological out
come of education in which learners only appropriate surface characteristics without 
managing to transform them into part of a larger system of personal meanings. 

My claim is that texts in the semiotic systems of mathematics are representative 
of sequences of actions (physical or textual), and the signs stand for steps (the indi
vidual results of procedures), actions on these steps (the procedures themselves), se
quences of steps linked by procedures, and collections of these entities. My descrip
tion includes the so-called entities involved themselves, whereas in mathematics and 
school mathematics we have almost nothing but the signs that stand for these steps, 
procedures and collections. Physical actions (such as enumerating a sequence of or
dinals in counting a collection of tangible objects: 1, 2, 3, 4, 5, ...) which have an 
extended temporal existence become rapidly replaced by spatially extended se
quences of signs, which themselves can become embodied into truncated 'super'-
signs (cardinal numbers in the example). Such a replacement of process signs by 
product signs in mathematics (the reification of constructions) is discussed in the 
philosophy of mathematics (Machover 1983, Davis 1974, Ernest 1998), and in 
mathematics education (Dubinsky 1988, Ernest 1991, Sfard 1993). In linguistics, 



26 P. ERNEST 

there is a well known parallel in the process of nominalisation, in which verbs des
ignating actions and activities are transmuted into nouns, which representing the 
names of entities (Chomsky 1965). What is unique in mathematics is the great 
height to which these towers of abstraction rise, with each level reifying actions on 
lower level entities and processes into new entities. My claim is that all that there is 
(above the very basic ground floor of physical actions) is signs or names, and ac
tions upon them. 

The claim that mathematics is fundamentally procedural is lent some support by 
the philosophical position of intuitionism, which regards the objects and sentences 
of mathematics as representing constructions (Troelstra and van Dalen 1988, 
Hey ting 1956). Although the intuitionist philosophy only has a minority of mathe
maticians as adherents, one of its achievements has been to translate a very signifi
cant part of mathematics including the content of all elementary (i. e., school) 
mathematics and much of advanced mathematics into transparently constructive 
(i. e. procedural) form Bishop (1967). Of course the Intuitionists do not accept that 
virtually all is signs or actions on them, for they posit some transcendent subjective 
(but universal) domain of meanings. Supporting, and in large part inspiring my ac
count, Rotman's (1993) semiotic theory of mathematics also interprets mathematical 
inscriptions as recipes, instructions, or claims about the outcomes of procedures, 
without the need to posit entities beyond our social and cultural constructions. 

What I am claiming (fully aware of the ontological implications) is that the so-
called objects of mathematics are themselves the products of sequential actions and 
procedures. However, the tendentious nature of this statement is neutralised by the 
adoption of a semiotic perspective, rather than a philosophical one (for the moment). 
For my universe of discourse here is populated primarily by signs (and the persons 
who use them) rather than any abstract objects of mathematics. 

A valuable feature of semiotics is that it is neutral towards representationalism. 
No assumption need be made that a sign must mirror the world or some mathemati
cal reality. Semiotics regards signs, symbols, texts and all of language as constitu
tively public. However, meanings and imagery can be and are appropriated, elabo
rated and created by individuals and groups as they adopt, develop and invent sign-
uses in the contexts of teaching, learning, doing and reflecting on mathematics, and 
all of the other important activities of life. Thus semiotics rejects the simple subjec
tive/objective dichotomy that consigns mathematical knowledge to 'in here' or 'up 
there.' It provides a liberating perspective from which to study mathematics and 
education. It opens a new avenue of access to the concepts that have been developed 
for mathematics education in the social sciences and the other sciences, including 
psychology, but it also allows access to the intellectual resources and methods of the 
arts and humanities. 

AGENCY AND CREATIVITY 

Learners are human beings with all the complexity and moral aspects this involves. 
Human beings are constitutively social beings and this entails a widespread range of 
capacities concerning interpretation and sense-making in social or interpersonal 
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situations. Focussing on the classroom, learners understand in their own ways the 
roles and asymmetric power relations of the teacher-student relationship, the aims 
and purposes of school mathematical activity and tasks (both espoused and enacted, 
where these differ^), and many other relevant aspects of micro-social context. Into 
the shifting and multifaceted context of the classroom learners brings their own his
torically formed subjectivity, sense of self, and capacities for meaning making. Ac
knowledging this formative background, the features I wish to focus on here are the 
central ones of agency and creativity. 

Agency is the central capacity all human beings have for initiating (and continu
ing) activities, including the possibility of inaction. In focussing on learner agency I 
am not assuming that students or persons in general are rational beings making ra
tional choices. All sorts of psychological factors can drive choices and behaviour, 
but this is irrelevant to the present discussion. In learning mathematics, the activities 
involved are primarily communicative involving mathematical sign systems, notably 
sign 'reception' (listening, reading) and sign production (speaking, writing, sketch
ing). Creativity in such activities or conversations may be conceptualised as the ul
timate expression of agency. In a minimal sense, almost any semiotic sign produc
tion can be classified as creative, because it involves first making a selection from 
the semiotic repertoire available, which includes signs and modes of expression, and 
then putting together and making a new public utterance. In practice the selection, 
combination and utterance of signs may very well be woven inseparably into a sin
gle action. By definition, any sign utterance is new because of its unique temporal 
and contextual location in conversation. However such usage trivialises the term 
creativity through making it universally applicable. By analogy with problem solv
ing (a significant analogy, especially in the domain of mathematics) routine utter
ances can be distinguished from non-routine utterances. In the latter, semiotic ele
ments (including the context) are combined in a novel and non-routinised way in the 
utterance. It is cases like this that are better characterised as creative. 
Manifestations of agency in sign system usage are understood here, based here on a 
Wittgensteinian (1953) perspective, participation in language games embedded 
within social forms of life. Thus communicative activity involving mathematical 
sign systems is always encompassed within the social. Furthermore, the component 
activities of sign reception and production involved in language games are woven 
together within the larger epistemological unit of conversation (Ernest 1991, 1994, 
1998). The way in which these two activities are mutually shaping in is shown in the 
model (Figure 1) of sign appropriation (reception) and sign use (production). 

Figure 1 is based on Harre's (1983) model of 'Vygotskian space', previously ap
plied to mathematics in Ernest (1998).̂ ^ Evidently it embodies the well known dic
tum of Vygotsky 1978, 128) 

Every function in the child's cultural development appears twice, on two levels. First, 
on the social and later on the psychological level; first between people as an interpsy-
chological category, and then inside the child as an intrapsychological category. 

In the figure these two levels are represented, at least in part, first by the top left 
corner, for the socio-cultural is both public and collective, and secondly, by the bot
tom right corner, for the (intra)psychological is both individual and private. The 
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other two corners are crossing points on the boundary between the two levels, and 
these are the locations where learner semiotic agency is acted out. 

SOCIAL LOCATION 

Individual Collective 

Collective 

Private 

Learner's public utilisa
tion of sign to express 
personal meaning (Public 
& Individual) 

Publication T 

Learner's development of 
personal meanings for 
sign and its use (Private & 
Individual) 

Conventionalization 

<-

Transformation 

Social (teacher & others) 
negotiated and convention
alised (via critical accep
tance) sign use (PubUc 
& Collective) 

I' Appropriation 

Learner's own unreflective 
response to and imitative 
use of new sign utterance 
(Private & Collective) 

Figure 1. Model of Sign Appropriation and Use 

Following the processes in the model, signs and sign systems become adopted by the 
individual learner first in the process of appropriation. This leads to the learner's 
own unreflective response to and imitative use of a single sign, be it atomic or com
pound, or of a set of sign utterances. The learner has thus appropriated a collective 
sign into something for herself that is private. This is also the route by means of 
which learners appropriate the rules of sign-use, mostly through observing their ex
emplification in practise. Agency is manifested in several ways at this stage, includ
ing attending to the public sign utterance, becoming aware, to a greater or lesser ex
tent, of the immediate context and associations of the sign use, and using the sign in 
an imitative way. The privately initiated uses of the sign, albeit possibly in response 
to another's request or command, are a public manifestation of learner agency. In 
such use the whole cycle is brought into play in miniature, because the sign as util
ised in a personal performance is manifested publicly, and would normally be sub
ject to social acceptance or correction (conventionalization ). Such use corresponds 
in great part to Skemp (1976) and Mellin-Olsen's (1981) notion of instrumentalism, 
because of the simple imitative performativity involved. I avoid the term 'instrumen
tal understanding' here, because of the commonly associated ideological assumption 
that locates knowledge and understanding 'inside' the private minds of individuals 
rather than as primarily manifested in public performances (which can also be re
hearsed in private thought). Through the conventionalization of performance (ap
plied to sign utterances) at this stage the learner also can become aware of restraints 
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and restrictions applying to sign use, that is some of the rules of sign production that 
constitute part of the overall sign system. 

When the next stage is achieved for a particular sign, which may follow a whole 
sequence of related appropriations, performances and conventionalization s in the 
mini-cycle described above, the learner will usually develop personal meanings for 
the sign and its use. This transforms it into something that is individual as well as 
private, because of the personal meanings associated with the sign. This will typi
cally include a whole nexus of associations including a sense of where and how the 
sign is to be used acceptably. Such associations are primarily tacit, manifested in us
age, but can include rationalisations and explanations about the limits, nature and 
purposes of sign usage. These may be appropriated from teacher and peer explana
tions prior to transformation into the meaning nexus, very likely tested and corrected 
by further mini-cycles involving publication and conventionalization . The success
ful appropriation and transformation of a sign, with its nexus of associated meanings 
and meta-discourse, finds a parallel Skemp's (1976) notion of 'relational under
standing' in mathematics. This involves not only being able to use the sign correctly, 
that is, mostly corresponding to conventionally accepted usage within the micro-
community of the classroom under the authority of the teacher, but also being able 
to offer a rationale or explanation for the usage. It may be inappropriate to describe 
the transformational process in which a meaning nexus is elaborated privately by the 
individual as manifestation of agency, as many of the processes are unconscious and 
involuntary. However the attention, persistence, and repeated performances in both 
sign utterances and explanatory meta-discourse evidently are manifestations of 
agency. 

The third phase illustrated in Figure 1 is that of publication. In this process the 
individual learner engages in a conversational act in publicly performing or making 
a sign utterance. Mathematically this could vary from a quick, spontaneous verbal, 
gestural or written response to a question or other stimulus, through to constructing 
an extended text elaborated and revised over a period of time, prior to offering it to 
others. A group of learners can elaborate such a text co-operatively, but this process 
will have subsumed many sub-cycles in which individuals have communicated (of
fered signs) to others in the group in an extended conversation giving rise to a 
jointly elaborated, negotiated and agreed text. 

It is in the publication stage of the overall cycle that agency is manifested most 
evidently and clearly. For the individual must initiate and produce a public sign ut
terance. At the simplest level this is an act of participation or even will, mediated 
through semiotic and social capabilities. More complex sign productions and utter
ances involve an elaborate series of meaning-attentive and meaning-driven volun
tary actions. Agency is involved in interpreting the context and in choosing the 
mode, type and particular sign response and in making it. However, many psycho
logical and social factors can inhibit, distort or enhance this performance, including 
such things as the learners self-confidence, perception of the surrounding others, 
classroom climate and so on. 

Finally, the overall cycle is completed through the process of conventionaliza
tion. In this phase learner sign productions having been fed into the social milieu 
(the classroom conversation) are subjected to attention, critique, negotiation, refor-
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mulation and acceptance, or sometimes rejection, by the teacher and others. The 
outcome is an agreed or imposed conventionalization which is both public and col
lective. Because of the power and authority asymmetry in the classroom (and indeed 
in virtually all interpersonal contexts, but especially in socially sanctioned learner-
teacher relationships) teacher approval will normally be the final arbiter of accep
tance, rather than majority or learner agreement. Typically the conventionalized sign 
that is accepted will need to satisfy the following criteria. 
1. Relevance. The sign or text is perceived to be a relevant response or putative 

solution (or possibly an intermediary stage to one) to a recognized (i. e., sanc
tioned) starting sign which has the role of a task, question or exercise. This 
might be teacher imposed or otherwise shared and authorized. 

2. Justification. The mode of and steps in the derivation of the sign from the 
authorised 'starting point' will normally be exhibited as a semiotic transforma
tion of signs, that is employing accepted or acceptable rules or means of sign 
transformations within the semiotic system, or justified meta-linguistically.^ 

3. Form. Both the signs and their transformations (where offered) will normally 
exhibit teacher-acceptable form, thus conforming to the rhetoric of the semiotic 
system involved as realized and defined in that classroom. This system could be 
that of spoken verbal comments, drawn and labeled diagrams, numerical calcu
lations, algebraic derivations, or some combination of these or other sign types."̂  

These criteria primarily apply at the object language level, that is they directly con
cern mathematical tasks or contents. However they can also be applied meta-
linguistically as comments on rather than as additions to object language level utter
ances in the classroom conversation. 

If the public sign utterance deviates in relevance, justification or form a central 
aspect of the conventionalization stage will be the criticism, rejection or correction 
of the sign for its lack of acceptability in these dimensions. Such a process may in
volve 'degoaling', i. e., switching to a new goal, target or task (Hughes 1986) which 
could be intended to serve as an intermediate step towards the original goal, or 
which might be a shift in the discourse to a new subject matter. Conversation, even 
in its formal and controlled manifestation as it occurs in the mathematics classroom 
can be fluid and shifting in its actualisation, just as it can be rigid and one-sided. It 
can be 'live' in which near spontaneous verbal responses as well as other modes of 
response are sought and encouraged by the teacher and expressed by learners, or it 
can be highly formalised and regulated with the teacher directing attention to written 
tasks and requiring (and allowing) only formal written responses to them at deter
mined moments. 

The process of conventionalization is the stage in the cycle that is most public. 
For it often acts on a sign uttered or presented by the learner and involves the critical 
acceptance, correction or rejection of the sign. This is where the teacher's agency is 
at work, directed at the capabilities involved in skilled sign production. Indeed, the 
teacher may initiate the semiotic cycle at this point by introducing her own sign or 
text. (Mostly this will refer to previously introduced signs and conversations, but it 
may have a variety of functions beyond task setting, including explanation or scene 
setting to aid learners in the creation of meaning.) Skemp (1979) has described a 
central aspect of the teachers' aim as being the development of logical understand-
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ing in the learner, to cap the instrumental (performance orientated) and relational 
(meaning elaboration and justification production) capabilities. The learner mani
fests logical understanding in this sense through being able to utilise and produce 
signs using the correct mode of expression and 'grammatical form', thus demon
strating a growing mastery of relevant aspects of the rhetoric of school mathematics. 
Through participation in and experience of conventionalization the learner first ap
propriates and then transforms into a personal aspect of her individual agency the 
capability of a critical and corrective perspective on signs. This involves not only the 
ability to produce signs in accordance with the (growing) set of rules of sign produc
tion manifested in the classroom, but also the capability to critically review and cor
rect signs to conform to these rules. Ultimately the successful learner develops and 
adopts the aspect of agency corresponding to the role of the critic; the ability to 
make judgements concerning the correctness of sign utterances (with respect to rele
vance, justification or form) as is appropriate to the context. This involves the ap
propriation of a social role, a mode of 'voice', first experienced in the actions of 
others in conversation. 

Traditionally in linguistic research two modes of sign usage are distinguished: 
listening/reading and speaking/writing. From the perspective of mathematical 
learner agency we might also distinguish two levels of functioning: lower level (re
sponsive) and higher level (autonomous). Lower level functioning involves respond
ing to signs or texts 'literally'. In listening/reading in school mathematics this means 
taking the signs as simply presenting routine tasks or instructions, or less commonly, 
as informational. In speaking/writing this usually involves simply offering an utter
ance in a response to some semiotic stimulus (spoken or written) delimited by the 
perceived constraints of the social context of utterance. In mathematics typically this 
involves simply performing a routine task. This usually necessitates applying one or 
more semiotic transformations to a sign, resulting in a sequence of signs (e. g., 
counting vocally or subvocally, performing column addition, solving a linear equa
tion) resulting in a terminal sign, the 'answer'. Underpinning this is the ability to 
make sense of mathematical signs and texts, to interpret them as tasks and to appre
hend their object, purpose and goals, within a variety of contexts, most notably, in 
the school context. Where these abilities are lacking or not fully developed it is the 
role of conversations directed by the teacher or more capable others, following the 
model in Figure 1, to further develop them. 

Higher level or autonomous functioning means responding to signs in a more re
flective way. In listening/reading this means spending time and making more effort 
to explore and create meanings for signs and also engaging in self-monitoring and 
self-reflection in the process. As the term reflection suggests, this involves elements 
of inward or self-directed dialogue. The metaphor of examining one's image in a 
mirror suggests stepping outside oneself and viewing oneself from the perspective of 
another, adopting an outsider's viewpoint. In dialogue, a person can adopt two op
posite roles. First there is the role of proponent (or friendly listener) presenting (or 
following) sympathetically a text, a line of uttered or privately rehearsed argument 
or thought experiment, for exploratory or understanding purposes (Peirce 1931 - 58, 
Rotman 1993). By 'sympathetic' I mean adopting the point of view of the proponent 
or utterer and attempting to construct and enter into the sense of the utterance as it is 
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(understood to be) intended. This is attempting to 'share' the constructor's meaning, 
rather than looking for grounds on which to dismiss it for failure of relevance, justi
fication or form (this, taken to extremes, can pre-empt fully developed and elabo
rated sense-making). However, the role of proponent is not intrinsically reflective or 
higher order, for it can also be adopted at a lower, passively attentive level. 

Secondly, there is the role of critic, in which a text, a sequence of signs, which 
could be an argument, a mathematical derivation, and so forth, is examined for 
weaknesses and flaws. This involves having appropriated and transformed into per
sonal capabilities at least some of the context-specific criteria of acceptability mani
fested by others (primarily the teacher). These criteria typically pertain to the rele
vance, justifiability or rhetorical form of the text or sign utterance in question, and 
are meta-linguistic criteria when made explicit. Being able to adopt the role of critic 
to apply to others' or one's own texts is an intrinsically reflective and higher order 
capacity. It cannot be done meaningfully in an automatic or thoughtless way. This 
fits with the tradition in educational psychology that classifies evaluation, defined as 
making judgements using internal (i. e., textual) evidence and external criteria, as 
belonging to the highest level of intellectual functioning (Bloom 1956). It also evi
dently encompasses a dimension of agency since it constitutes the adoption of a spe
cific agentic role. 

In speaking/writing, higher level or autonomous functioning means constructing 
and elaborating signs or texts in a thoughtful and reflective way. Typically in school 
mathematics this involves the transformation of tasks presented as mathematical 
texts into further more manageable representations and in doing so applying a vari
ety of textual and symbolic transformations to representations and their parts to 
complete the tasks. Different modes of representation can be employed singly or to
gether in a school mathematics text, including any combination of symbols, written 
language, labelled diagrams, tables, sketches, models and arrayed objects (and even 
gestures where the text is spoken). It is common in school mathematics for problem 
solution processes to use more modes of representation than the starting text (task), 
or the final text (answer). The procedures of problem solving include the active 
processes of imagining, writing, drawing or making sequences of representations 
(not necessarily either monotonic or single branched sequences) progressing from 
the initial text (given task) to a final (in terms of fulfilling task demands) and per
missible (derived by allowed transformations), often simple, textual representation 
(the potential task 'solution'). To carry through a multi-step process of this type suc
cessfully requires the student to be attentive to and in control of the purpose, direc
tion and outcomes of subsidiary procedures and transformations. Where the con
struction and concatenation of the sequence of semiotic actions deployed is not 
automatic, that is has not been practised on similar tasks until it has become routi-
nised for this particular student, it is appropriate to call it creative. It corresponds to 
non-routine problem solving and involves the student or person in constructing and 
combining in novel ways (new to herself, at least) different signs and procedures. 

Carrying out tasks individually or in groups may be the most common higher 
level activity in speaking/writing in school mathematics. However, other activities 
can also occur such as the students writing mathematical questions and tasks, or pos
ing mathematical problems themselves, with some sense of what the solution proc-
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esses entail. Either way, speaking/writing at this level involves the most obvious and 
explicit manifestation of learner agency, since the activities are internally initiated 
and conducted. They are, of course, also texts uttered in response to antecedent texts 
in a conversation; but then so is all semiotic and communicative activity. Once 
again, the higher level agentic functioning involved in writing questions and tasks, 
and posing problems in the mathematical classroom is creative activity since it in
volves the construction of imaginative new texts. 

Studies comparing novice and expert problem solvers in mathematics have 
shown that the latter successfully combine (and alternate between) the two higher 
level roles distinguished above, namely proponent and critic. Schoenfeld (1992), for 
example, found that novices typically spent most of their time in aimless exploration 
of problems, seeking to solve without any conscious design. This can be valuable for 
enriching understanding, but when persisted in, as in the study, it usually led to fail
ure. The expert problem solvers and mathematicians cycled through a variety of ac
tivities directed at the problem, including reading, analysing, exploring, planning, 
implementing, and verifying. Furthermore, they repeatedly asked self-directed ques
tions, typically at the points of transition between the different types of activity. 
These were higher level, critical and self-regulative questions asking what was being 
sought, what was being found, etc. This illustrates how higher level creative activity 
in mathematics needs to combine the roles of proponent and critic in an internalised, 
self-directed dialogue. Thus following the model shown in Figure 1 it is not just 
signs that become appropriated by persons, but the whole cyclic conversational 
process ultimately must become internalised for high level creative activity in school 
mathematics and in mathematics itself. 

University of Exeter 

NOTES 

^ I make this distinction, because as is well known the overt purpose of a classroom mathematical task 
and what the students come to learn is the teacher's actual focus of attention or emphasized outcome may 
differ (e. g., working an exercise vs. writing its solution in a certain style). 
^ In Ernest (1998) I utiUze this model expHcitly to account for the acquisition of language, mathematics 
and mental powers by young learners, as well as using a parallel model for the creation of shared mathe
matical knowledge in and by the mathematics research community. However, I view this model as show
ing the interplay between pubHc vs. private and collective vs. individual in the role and meanings attrib
uted to signs and texts (as well as in the construction of signs and texts) in conversation in general. This 
has particular relevance to the years of formal schoohng, which I focus on here. 
^ Sign transformations do not always mean the replacement of just one (or more) part(s) of a compound 
sign by another part(s), with the retention of the unrep laced parts. It may involve replacement of the 
whole sign complex by another. For example, in a logical proof (a classic transformational sequence in 
advanced mathematics) some proof steps involve the insertion of a new sign with no components shared 
or overlapping with the previous step, e. g., in axiom use. 
^ The rhetoric of school mathematics concerns the standards, norms and rules (possibly tacit) of gram
matical and expressional correctness, as well as stylistic and genre appropriateness, in the presentation 
and modes of expression of signs. These norms and rules are primarily appUed to formal written texts 
(including symbols, diagrams, etc.), although spoken expressions are also rhetorically constrained, but 
usually more loosely, hi contrast to logic the rhetoric of school mathematics is highly local and context-
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bound, and for contingent and historical reasons varying rules and norms are appUed across different in
stitutions and locations (as well as at different ages). 
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SUSANNA MARIETTI 

THE SEMIOTIC APPROACH TO MATHEMATICAL 
EVIDENCE AND GENERALIZATION 

Abstract. The fundamentals of Peircean semiotics have been applied by Peirce himself to the main phi
losophical questions relating mathematics. Following Michael Otte's suggestion of resorting to a semiotic 
approach to mathematical epistemology in order to understand mathematical cognition, it is possible to 
account for the chief problem of generaUzation, going beyond the traditional explanations exempUfied by 
Locke's use of abstract general ideas and Berkeley's criticism to it. Against the background of Peirce's 
main lines of departure from Kantian transcendentalism, the problem of the evidence obtained from 
proofs performed upon individual diagrams and laying claim to universaUty can be faced within a semi-
otic frame that focuses on the interplay of iconic, indexical and symbolic elements of signs. 

Key words: diagram, evidence, generaUzation, Kant, mathematics, Otte, Peirce, semiotics. 

Since the beginning of the history of philosophy, generaUzation has been the chief 
problem in the inquiry into the foundations of knowledge. There is no science of the 
individuals, said Aristotle. We have to apply our propositions to a general universe 
of things in order to obtain scientific knowledge. When we affirm that a falling stone 
has a definite acceleration, we are not referring to the particular stone that fell to the 
ground 5 min ago, but rather to each stone of a potentially unlimited set of stones 
that falls under certain conditions. In the same way, when we affirm that the sum of 
the internal angles of a triangle equals two right angles, we are not referring to the 
particular triangle drawn on the blackboard in front of us, but rather to an infinite 
number of triangles. Yet, we are not infinite creatures, and we are not able to cope 
with an infinity of cognitive acts. We cannot examine all possible triangles in order 
to verify the size of their angles. How can we then achieve that certainty which 
characterizes the geometrical theorem at issue? How can we rely on our limited 
cognitive faculties in order to gain a potentially unlimited knowledge? 
Various have been the attempts to answer these questions, which in Michael Otte's 
proposal of a mathematical epistemology from a semiotic point of view take quite a 
peculiar form. "Epistemology is about the relationship between these types of enti
ties, objects and signs," he says. "As all general phenomena are fundamentally se
miotic entities, while singular phenomena are not intrinsically signs, we could also 
say that epistemology is concerned with the relation between the singular and the 
general. In this way generalization appears as a fundamental problem of epistemol
ogy and of education. ... to know implies, in any case, to relate a particular to a gen
eral, it means to generalize." (Otte in print, 3) 
Charles Sanders Peirce, the father of modern semiotics, identifies mathematical rea
soning with diagrammatic reasoning, describing the latter as follows: 

35 
M. H. G. Hoffmann, J. Lenhard, F. Seeger (Eds.), Activity and Sign - Grounding Mathematics 
Education, 35 - 43. 



36 S. MARIETTI 

By diagrammatic reasoning, I mean reasoning which constructs a diagram according to 
a precept expressed in general terms, performs experiments upon this diagram, notes 
their results, assures itself that similar experiments performed upon any diagram con
structed according to the same precept would have the same results, and expresses this 
in general terms. This was a discovery of no little importance, showing, as it does, that 
all knowledge without exception comes from observation. (Peirce NEM IV, 47 f.) 

This brief account runs through the different steps of what Peirce found out to be the 
common structure of all significant mathematical demonstrations, which he defined 
as theorematic deductions. In theorematic deductions, the mathematician has to per
form experiments upon the original diagram constructed according to the premises. 
He must manipulate the diagram, because the major theorems of mathematics do not 
stand out immediately from it. Euclid, for instance, in proving the theorem on inter
nal angles, adds new points and lines to the original triangle. These new elements 
are not suggested to him by any previous knowledge. In choosing them, he relies 
exclusively on his sagacity. 
The original triangle and the enriched figure are both instances of a mathematical 
diagram. A diagram is always a single element, a token as opposed to a type. It is 
essential to its role that it should be an individual, in so far as the mathematician 
must experiment new strategies of demonstration upon it and observe the results of 
his or her experiments. "Thinking in general terms is not enough," Peirce says. "It is 
necessary that something should be done'' (Peirce CP 4.233). All knowledge comes 
from observation, he can then conclude. 
Although the presence of the diagram is particularly evident in geometry, all deduc
tive reasoning is, according to Peirce, diagrammatic, which means that observation 
plays a role in the whole of mathematics. No matter how easy it may be, every de
ductive inference hinges upon observation. It is only by observation that we "recog
nize that because y -y = Q^ therefore x + y-y = x + Q'' (Peirce manuscript 16, MS in 
the following; numeration follows Robin 1967). Still more, "observation is required 
in the simplest syllogism. Thus, if we reason, 'AH men are mortal, Enoch is a man, 
therefore Enoch is mortal,' we only do this by observing that the man of the first 
premise is the same predicate as the man of the second premise, etc." (Peirce MS 
17). 
I would like to leave Peirce for a while in order to read a brief passage from John 
Locke's An essay concerning human understanding. As is known, Locke solves the 
problem of generalization through the introduction of abstract general ideas. In order 
to be general, knowledge must address abstract ideas. Having defined knowledge as 
"the perception of the connection and agreement, or disagreement and repugnancy, 
of any of our ideas," (424) Locke notes that, in mathematics, the only kind of 
knowledge absolutely certain and universal, we are faced with two different degrees 
of evidence. The first one seems to be very close to that which characterizes Peirce's 
corollarial deduction (the simpler and more immediate kind of deduction, in which 
experiments upon diagrams are not required), while the other is so described: 

In this case then, when the mind cannot so bring its ideas together as, by their immedi
ate comparison and, as it were, juxtaposition or appUcation one to another, to perceive 
their agreement or disagreement, it is fain, by the intervention of other ideas (one or 
more, as it happens), to discover the agreement or disagreement which it searches; and 
this is that which we call "reasoning." Thus the mind, being wiUing to know the agree-
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ment or disagreement in bigness between the three angles of a triangle and two right 
ones, cannot by an immediate view and comparing them, do i t . . . In this case the mind 
is fain to fmd out some other angles, to which the three angles of a triangle have an 
equality; and finding those equal to two right ones, comes to know their equahty to two 
right ones ... A quickness in the mind to find out these intermediate ideas (that shall 
discover the agreement or disagreement of any other), and to apply them right, is, I sup
pose, that which is called "sagacity." (Locke 1910, 434) 

These words strongly recall the ones used by Peirce to affirm that mathematical 
theorems are not immediately evident as such, for the diagram must be modified in 
order to get to the conclusion. Like Locke, he also calls in question the sagacity of 
the mathematician engaged in choosing the suitable modifications. Furthermore, the 
use made everywhere by Locke of perception terms can create the impression that 
something similar to Peirce's insistency upon mathematical observation is at work 
here. 
I am not directly interested in Lockean philosophy here. I mention it because it is 
representative of an approach to gnosiological issues that is very important in the 
history of thought. Having observed a certain number of individual things, Locke 
says, we are able to concentrate our attention on their common characters, thus gain
ing an abstract idea with which all the individuals agree. Locke thinks that this abil
ity to create abstract general ideas is the distinctive mark of human being, as it al
lows us to communicate and to acquire true knowledge. 
Now, though Locke explicitly says that only individuals exist, whereas the idea of 
an abstract triangle is imperfect and cannot exist, it seems to me that abstract ideas 
cannot be reducible to the ability just described. They cannot be merely the outcome 
of our temporary selective attention. Locke's explicit nominalism must necessarily 
have in itself a great deal of realism. If the general triangle has to fulfil its role of 
being the object of a general knowledge, I think it must possess a definite ontologi-
cal status making it an autonomous entity independent from the single individuals 
from which it was abstracted. Indeed, if the whole matter had been really reducible 
to the psychological phenomenon of selective attention, abstract ideas would not 
have been discussed so much in the history of philosophy. 
In order to explain general knowledge, Locke has to include a sort of Platonic form 
in his ontology, so that our mind, contemplating the general idea of a triangle, could 
perceive the agreement or disagreement of the angles at issue. This kind of percep
tion, we can novv̂  see, is very different from that spoken of by Peirce in his descrip
tion of mathematical inference, in which perception is something essential to the de
velopment of the demonstration. Mathematical reasoning is diagrammatic reasoning, 
and diagrammatic reasoning takes the form outlined in the quotation above. Every
thing takes place upon a diagram, a single individual semiotic entity, and the whole 
inference consists in nothing other than observing the material relations among the 
different parts of the diagram. In Locke's description, in contrast, observation plays 
a fully accidental role. Here we find a definite object of reference beyond the sign, 
that is to say, the abstract general idea, which is the only protagonist of the infer
ence. Locke, it is true, has a propensity to conceive abstract ideas in terms of im
ages, hence his use of a large amount of perception vocabulary. But it does not be
long in an essential way to the description of mathematical reasoning as such. Ac-
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cording to Locke, the only essential aspect of mathematical reasoning is binding to
gether in thought ideas that have, in turn, an essential connection to each other. 
It is well known how Locke's conception of abstract general ideas was opposed 
strongly by Berkeley, who maintained that the idea of a triangle that is neither equi
lateral nor isosceles nor scalene is intrinsically contradictory, so that the only ideas 
that can be formed in our mind are those of particular things. Between our knowl
edge and the ideas of individual objects, we cannot find the mediation of abstract 
ideas. General knowledge, in Berkeley's view, is supported by a quite different kind 
of process. According to him, what happens is that a single particular idea is used to 
represent all particular ones belonging to the same species. Euclid proves his theo
rem upon a singular triangle determined in all details, but "neither the right angle, 
nor the equality, nor determinate length of the sides are at all concerned in the dem
onstration. It is true the diagram I have in view includes all these particulars, but 
then there is not the least mention made of them in the proof of the proposition ... 
Which sufficiently shows that the right angle might have been oblique, and the sides 
unequal, and for all that the demonstration have held good." (Berkeley 1957, 15 f.) 
As in the case of Locke, but from a different point of view, Berkeley's words also 
recall Peirce's description of deductive reasoning, in which demonstration refers to 
an individual diagram, and an analogous process seems to be responsible for gener
alization. In fact, Locke's abstract idea cannot support the experimentation on which 
Peirce bases his analysis of theorematic inference, which would be impracticable on 
a conceptual general level. Nevertheless, Berkeley's nominalism is far from Peirce's 
realist approach. A different conception of the individual must be at issue, a concep
tion that has its root in Peirce's semiotic turn. According to Peirce, a fully deter
mined individual image is inconceivable. To Berkeley's claim, he replies: 

No statement of Locke has been so scouted by all friends of images as his denial that the 
"idea" of a triangle must be either of an obtuse-angled, right-angled, or acute-angled tri
angle. In fact, the image of a triangle must be of one, each of whose angles is of a cer
tain number of degrees, minutes, and seconds. 
This being so, it is apparent that no man has a true image of the road to his office, or of 
any other real thing. (Peirce CP 5.299-300) 

Berkeley, however, is not dealing exclusively with images. According to him, even 
in thought it is not logically possible to possess an idea that is not fully determined. 
Peirce opposes resolutely the notion of such a logical atom, a "term not capable of 
logical division, ... one of which every predicate may be universally affirmed or de
nied ... Such a term can be realized neither in thought nor in sense" (CP 3.93).The 
semiotic bedrock beneath Peirce's gnosiology cannot recognize the absolute indi
vidual at all, for such an individual cannot be realized in a sign context. 
I have sketched Locke's and Berkeley's conceptions of generalization because they 
are truly representative of our main philosophical inheritance. Against such a back
ground, even with the apparent similarities that we may discern, Peirce's revolution 
in paradigm emerges in all its strength. As far as I can understand Peirce's semiotic 
explanation of mathematical knowledge, he no longer faces the question of the rela
tionship between individual and general with respect to the kind of object at issue -
general and abstract in itself or particular but interchangeable with other objects -
but deals with it on the sole level of the diagrammatic sign. Locke's abstract idea, 



THE SEMIOTIC OF EVIDENCE AND GENERALIZATION 39 

not suitable for experimentation, and Berkeley's logical atom, not even conceivable 
are, according to Peirce, both dogmatic notions inadequate to explain mathematical 
knowledge. Mathematical knowledge is now seen in terms of the manipulation of 
signs, which have become triadic entities according to Peirce's system of categories. 
Peirce's categorial analysis is the real foundation of his semiotics. Such analysis 
starts from a deep study of Kant's Critique of pure reason, but it departs from Kant
ian transcendentalism both in method and outcome. As to the former, the investiga
tion carried on by Peirce does not resemble in any way a critique. Peirce's philoso
phy - to which he gives the name of phaneroscopy - is rather a positive knowledge, 
which differs from a special science only in that the latter "seeks such truth as can 
only be discovered from peculiar experiences sought out for the purpose," whereas 
the former "seeks such universal truth as can be discovered from everyman's hourly 
experience"(NEM IV, 228). Peirce defines tht phaneron as "the collective whole of 
all that could ever be present to the mind in any way or in any sense" (ibid. 320). 
Now, as the main assumption of the semiotic approach is that "our cognitive access 
to reality is relative and mediated by signs," as Michael Otte (in print, 1) states it, 
whatever could be present to the mind always has a semiotic nature. Phaneroscopy 
thus turns into semiotics, which is conceived as the positive observation of all signs 
present to the mind. Such an observation is directed toward the ascertainment of the 
universal classes to which signs belong, which are found to be the three categories 
of firstness, secondness, and thirdness. Hence, the categories are found by Peirce 
through an a posteriori investigation. "My view is that there are three modes of be
ing," he writes. "I hold that we can directly observe them in elements of whatever is 
at any time before the mind in any way." (CP 1.23) 
It seems to me that this is to be considered as the main distinction between Peirce 
and Kant. From here, everything follows. This a posteriori method is responsible for 
the fact that not only the third category (mediation, symbol, generality), but also the 
first two already belong to sign interpretation. Otherwise, they could not be ob
served. This circumstance allows Peirce to get rid of whatever he maintained to be 
metaphysically dogmatic in Kant's conception in that it was not detectable through 
the direct observation of the phaneron: on the one hand, things in themselves, as 
what gives rise to the empiric manifold, on the other hand, the synthetic unity of 
consciousness, as what is responsible for the objectiveness of knowledge. 
Translated into phaneroscopic terms, Kantian manifold becomes the category of 
firstness (Cf. CP 1.302), which, from a semiotic point of view, is considered by 
Peirce as the icon. It provides the "matter of consciousness," or "that which is im
mediately present in consciousness" (MS 16). In a mathematical diagram, the mere 
setting down of the relations among its parts constitutes that icon which is the matter 
of the diagram itself. But such a matter, unlike Kant's manifold, is already expressed 
in semiotic-categorial terms, because the relations are embodied in a material dia
grammatic token that can be interpreted symbolically according to its formal struc
ture. 
As to the synthetic unity of consciousness, Peirce rejects from the core of his phi
losophy the Kantian conception of a mental synthesis preceding all analyses, main
taining that "something is presented which in itself has no parts, but which neverthe-
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less is analyzed by the mind," and that it is only after such an analysis that "we are 
carried in spite of ourselves from one thought to another, and therein lies the first 
real synthesis. An earlier synthesis than that is a fiction"(CP 1.384). This means that 
the constitution of the object is no more dependent on self-consciousness, but rather 
on the semiotic chain that transforms signs into other signs that are equivalent under 
some respect. We are carried from one thought to another along a train of represen
tations in which "[t]he object of representation can be nothing but a representation 
of which the first representation is the interpretant. But an endless series of represen
tations, each representing the one behind it, may be conceived to have an absolute 
object at its limit." (CP 1.339) 
The empirical sciences apply the three inferences - abduction, deduction, induction 
- in order to interpret a sign by another sign, according to a process that, in the long 
run, if research will be carried on indefinitely, will free our representations from er
rors and personal idiosyncrasies. Such a chain of interpretations is what now an
swers for the objectivity of knowledge, in which the absolute, fully determined ob
ject remains as a limit notion. This does not amount in any way to a weakening of 
the concept of real. Reality is defined sharply as "that which is such as it is whatever 
you or I or any generation of men may opine or otherwise think that it is" (Peirce, 
MS 498). Only, it is no more dependent on the synthesis of apperception that should 
bring to a conceptual unity a manifold placed beyond the system of categories. In 
other words, Peirce claimed to have overcome the residual dogmatism of transcen
dentalism by replacing the a priori principles of understanding through the unlim
ited community of researchers. Unlike Kant's, his concern is not, in Michael Otte's 
words, "with the unity of ideas (Vorstellung) in a self-consciousness, but rather with 
the socially effective unity represented by signs." (1997, 337) 
An analogous approach, it seems to me, holds for mathematical knowledge. If I am 
correct, that circumstance is responsible for the sharp difference between Peirce's 
answer to the generalization problem and the traditional ones exemplified in the 
words of Locke and Berkeley. Like the empirical case, mathematical reasoning also 
has to be conceived as a chain of interpreting signs, namely, diagrams in their per
mitted transformations. It is on this semiotic level that the constitution of the object 
is grounded. In his system, Peirce can deal neither with Berkeley's pre-semiotic ob
ject nor with Locke's wholly conceptual abstract idea. The diagram already partakes 
of all three categorial universes, which become the iconic, indexical (required in or
der to link the diagram to the mathematical hypothesis at issue), and symbolic sign. 
The diagram is in itself already particular and general. The mere suchness of 
firstness - namely, the simple presentation of concrete elements in mutual relation -
and the general mediation of thirdness are both required in its construction. In 
Kant's terminology, it is a schema. This is, in a certain sense, the only element of 
Kantian transcendental analysis to survive in Peirce's system. But here its role is no 
longer that of mediating between two different faculties and their heterogeneous 
contributions to knowledge, but rather it constitutes the very starting point of phan-
eroscopic investigation. There is nothing before the triadic sign. Peirce charges Kant 
with the fault of having drawn "too hard a line between the operations of observa
tion and of ratiocination. He allows himself to fall into the habit of thinking that the 
latter only begins after the former is complete." And he adds: "His doctrine of the 
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schemata can only have been an afterthought, an addition to his system after it was 
substantially complete. For if the schemata had been considered early enough, they 
would have overgrown his whole work" (CP 1.35). Peirce's intent was to avoid 
every dogmatic element not detectable through the direct inspection of what is pre
sent to the mind. In his a posteriori methodology, the Kantian distinction between 
two different faculties - sensibility and understanding - becomes vacuous. We can 
only deal with already formed schemata. 
Now, a mathematical diagram is a set of elements among which some mutual rela
tions hold. By manipulating these elements, we find evidence of new hidden rela
tions among them. Indeed, "necessary reasoning makes its conclusion evident'' But 
here Peirce asks: 

W^at is this "Evidence"? It consists in the fact that the truth of the conclusion is per
ceived, in all its generaUty, and in the generaUty the how and why of the truth is per
ceived. W^at sort of a Sign can communicate this Evidence? (Peirce NEM IV, 317) 

It cannot be an index, because of the brute force through which it signifies its object. 
It cannot be a symbol either, because a symbol only rests on habits, and habits are 
not evidence. It must then be an icon, the only kind of sign that can communicate 
evidence through the perception of it. An icon, in fact, is always an individual ob
ject, and thus it is capable of being observed. It signifies thanks to the concreteness 
of each single replica: "Such a sign whose significance lies in the qualities of its rep
licas in themselves is an icon, image, analogue, or copy." (Peirce MS 7) 
The mathematician can perceive the iconical sign, "the only sign which directly 
brings the interpretant to close quarters with the meaning; and for that reason it is 
the kind of sign with which the mathematician works" (ibid.). But, in the new triadic 
conception of the sign, the diagram presupposes a symbolic interpretant, correspond
ing to the third category. The iconic diagram and its symbolic interpretant "consti
tute what we shall not too much wrench Kant's term in calling a Schema, which is 
on the one side an object capable of being observed while on the other side it is 
General." (NEM IV, 318) 
Peirce explains: 

It is, therefore, a very extraordinary feature of Diagrams that they show, - as Uterally 
sliow as a Percept shows the Perceptual Judgment to be true, - that a consequence does 
follow, and more marvellous yet, that it would follow under all varieties of circum
stances accompanying the premisses. It is not, however, the statical Diagram-icon that 
directly shows this; but the Diagram-icon having been constructed with an Intention, in
volving a Symbol of which it is the Interpretant (as EucUd, for example, first enounces 
in general terms the proposition he intends to prove, and then proceeds to draw a dia
gram, usually a figure, to exhibit the antecedent condition thereof) which Intention, like 
every other, is General as to its Object, in the Hght of this Intention determines an Initial 
SymboHc Interpretant. Meantime, the Diagram remains in the field of perception or 
imagination. (Peirce NEM IV, 318) 

There is a sort of vertical interpretation in which the icon is a transitory element be
tween two symbolic ones. The diagram has been constructed according to a general 
symbolic intention - an isomorphism between the symbolic proposition and the icon 
- and it must, in turn, determine a symbolic interpretant. When we contemplate the 
diagram, we at once prescind "from the accidental characters that have no signifi-
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cance. They disappear altogether from one's understanding of the Diagram." Never
theless, this "is only an understood disappearance and does not prevent the features 
of the Diagram, now become a Schema, from being subjected to the scrutiny of ob
servation" (ibid. 317), so meeting the requirement of experimentation and being re
sponsible for the evidence that only observation can provide. 
Now, it is worth noting that such a process is not a mental one grounded on our hu
man psychology, but rather it is the very way in which diagrammatic signs signify. 
The same would happen for every quasi-mind engaged in a deductive inference. For 
the diagram itself "is an icon or schematic image embodying the meaning of a gen
eral predicate" (ibid. 238), and the relation it represents - the general predicate - is a 
rational one, an intrinsically general formal relation. It is "not merely one of those 
relations which we know by experience, but know not how to comprehend, but one 
of those relations which anybody who reasons at all must have an inward acquaint
ance with" (ibid. 316). For instance, it would be impossible, Peirce says, to represent 
in a diagram the mere relation of killer to killed, because it is something that is not 
intelligible. It is simply known as a fact. 
As to the empirical subject, Peirce does not inquire: 

That step of thought which consists in interpreting an image by a symbol, is one of 
which logic neither need nor can give any account, since it is subconscious, uncontrol
lable and not subject to criticism. Whatever account there is to be given of it is the psy
chologist's affair. (Peirce CP 4.479) 

At any rate, the process described above in Peirce's words is half of the matter. Be
side the vertical interpretation outlined, another one takes place that is, so to say, 
horizontal. This second interpretation amounts to the permitted transformations of 
the diagram in which a diagrammatic sign is interpreted by a new one. Both inter
pretations are required in order to gain the general evidence of the conclusion: 

The Schema sees, as we may say, that the transformate Diagram is substantially con
tained in the transformand Diagram, and in the significant features to it, regardless of 
the accidents ... The transformate Diagram is the Eventual, or Rational, Interpretant of 
the transformand Diagram, at the same time being a new Diagram of which the Initial 
Interpretant, or signification, is the Symbolic statement, or statement in general terms, 
of the Conclusion. By this labyrinthine path, and by no other, is it possible to attain to 
Evidence; and Evidence belongs to every Necessary Conclusion. (Peirce NEM IV, 318 
f.) 

This labyrinthine path is the answer that Peirce proposes to the problem of mathe
matical evidence and generalization. It is a path grounded on the whole of his semi-
otic system of categories. I would like to stress once again that it does not amount in 
any way to Berkeley's solution. Berkeley was concerned with an absolute object be
yond the sign, while, according to Peirce, it is on the level of the sign itself that we 
must work. There is a wholly different ontological approach. Nor does Peirce have 
to commit himself to the ontological assumption of Platonic forms, as Locke's ab
stract ideas appear to do. 
Peirce's philosophy of synechism, based on the concept of continuity, brings a com
pletely different ontological commitment. Signs confer reality to the relations stud
ied by mathematics. 'T believe I may venture to affirm," Peirce writes, "that an intel
ligible relation, that is, a relation of thought, is created only by the act of represent-
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ing it" (ibid. 316). As Michael Otte puts it, "the diagram in mathematics is a ma
chine which permits us to confer reality to certain relations ... From a continuum of 
real possibilities, some of these are being actualized by means of distinctions" 
(1997, 362). This being the case, we can see that a great gulf separates Peirce's un
derstanding of mathematical cognition from all previous philosophies, a gulf that is 
worth exploring in order to clarify all features of his semiotic approach. 

Universita di Milano 
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SIGNS AS MEANS FOR DISCOVERIES: 

Peirce and His Concepts of ''Diagrammatic Reasoning, *' ''Theorematic De
duction, " ''Hypostatic Abstraction," and "Theoric Transformation'' 

Abstract. The paper aims to show how by elaborating the Peircean terms used in the title creativity in 
learning processes and in scientific discoveries can be explained within a semiotic framework. The essen
tial idea is to emphasize both the role of external representations and of experimenting with those repre
sentations ("diagrammatic reasoning"), and to describe a process consisting of three steps: First, looking 
at diagrams "from a novel point of view" ("theoric transformation") offers opportunities to synthesize 
elements of these diagrams which have never been perceived as connected before. Second, by forming 
those observed syntheses to "new objects" of thinking, and by signifying these objects through new signs 
("hypostatic abstraction"), new means of thinking and acting are created (to be used for "theorematic 
deductions"). And finally, by applying these new means - in proofs, for instance - the "inteUigibility" of 
new discoveries and their power to explain problematic facts must be tested. 

Key words: diagrammatic reasoning, hypostatic abstraction, mathematics, Peirce, semiotics, synthesis, 
theorematic deduction, theoric transformation. 

Semiotic theories agree that "signs" are basically means of signifying an object or 
means of representing something for somebody. The crucial point of Charles S. 
Peirce's epistemologically based semiotics, however, is his emphasis on a second, 
more fundamental function of signs, namely, signs as means of thought, of under
standing, of reasoning, and of learning. From this point of view, signs are, as in 
Kant, conditions of these activities. Unlike Kant, however, signs are no transcenden
tal, subjective, or mental conditions of possible experience for Peirce, but conditions 
for which the difference between internal and external plays no role: "All our think
ing is performed upon signs of some kind or other, either imagined or actually per
ceived. The best thinking, especially on mathematical subjects, is done by experi
menting in the imagination upon a diagram or other scheme, and it facilitates the 
thought to have it before one's eyes." Thus, for any "concept" or mental state, "ex
ternal signs answer every purpose, and there is no need at all of considering what 
passes in one's mind" (Peirce, NEM I 122). 

In this paper, I shall elaborate some details of this semiotic approach. The goal is 
to clarify, firstly, the role of external representations in processes of learning and of 
scientific discoveries; and secondly, the problem of interpreting those representa
tions.^ The starting point is Peirce's concept of "diagrammatic reasoning," by which 
one can explain the development of knowledge on the basis of a three-step activity: 
constructing representations, experimenting with them, and observing the results."^ 
The idea is that by representing a problem in a diagram, we can experiment with our 
own cognitive means, and thus develop them. "The diagram becomes the something 
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(non-ego) that stands up against our consciousness," as Kathleen Hull puts it; "rea
soning unfolds when we inhibit the active side of our consciousness and allow 
things to act on us" (1994, 287). 

In order to explain, however, the genuine creativity necessary for each of these 
three steps, one has to go beyond this concept of diagrammatic reasoning. The thesis 
of this article is that there are two further concepts developed by Peirce that can of
fer deeper insights into the possibility of learning and of discovering: Firstly, the 
concept of "theorematic deduction" by which the "hypostatization" of new proof 
elements is described; and secondly, the concept of "theoric transformation" by 
which Peirce described changing the point of view on a problem or a representation. 
Peirce did not distinguish either concept until after 1907, as far as I can see, a few 
years before he died (in 1914). In spite of its obvious relevance for understanding 
creativity in mathematics, the difference between "theorematic deduction" and 
"theoric transformation" has not been noticed in Peirce scholarship before my recent 
study on "Knowledge Development."^ 

DIAGRAMMATIC REASONING 

Understanding Peirce's notion of "diagrammatic reasoning" presupposes knowing 
something about what he called a "diagram." The use of this concept is in no ways 
restricted to "images" or "graphical representations." Based on his highly differenti
ated semiotic terminology,"^ Peirce defines a "diagram" as "a representamen which is 
predominantly an icon of relations and is aided to be so by conventions. Indices are 
also more or less used. It should be carried out upon a perfectly consistent system of 
representation, founded upon a simple and easily intelligible basic idea" (Peirce, CP 
4.418, 1903). 

Thus, a diagram is a complex sign in which "indices," whose function is to direct 
attention to something (also variables in equations are "indices"), and "conven
tional" signs also play a role (i. e., "symbols," the only signs that have a "meaning" 
for Peirce; i. e., a law-like relation between the symbol's object and its interpreta
tion). Most important, however, is the iconic character of diagrams. An "icon" is 
defined as a sign that - based on a certain "likeness" to its object - "excites an idea 
naturally allied to the idea that object would excite" (Peirce, EP II 13). Its function is 
most of all to represent relations, so that not only photos and footprints are icons, 
but also for example, sentences and algebraic equations. The latter however, belong 
to a certain subgroup of icons, namely, the diagrams we are looking for. The spe
cific difference of "diagrams" in relation to other icons can be seen in the fact that 
they are "carried out upon a perfectly consistent system of representation," as quoted 
above. If we are confronted, for example, with the complex sign "Theaetetus-
Socrates-stands-sits-and," we could interpret this sign as an icon, because it repre
sents a certain relation. But if we read "Theaetetus stands and Socrates sits," we 
have a diagram, because this sign represents a relation that is carried out upon our 
grammatical "system of representation" as defined by syntax. 

This definition of "diagram" has some essential consequences for each of the 
three steps of diagrammatic reasoning mentioned above. Let us begin with the first 
two steps: Any construction of a diagram is carried out by the means of a given rep-
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resentational system, and any experiment we perform on it is determined by the rules 
of that system. Thus, the representational systems of our natural or artificial lan
guages offer all kinds of words and a certain syntax; axiomatic systems like Euclid
ean geometry formulate definitions, postulates and axioms; neural systems like our 
brain are defined by electrochemical states and a complex order of connectivity; and 
so forth. 

Representational systems are more or less "consistent," ranging from axiomatic 
systems in mathematics to the stylistic means of art, whose history for itself might 
be conceived as a development from very strict regulatory rules to plurality and 
freedom. Nonetheless, even if representational systems are only partly consistent, 
their rational and normative character is essential for what happens in the experi
ments we perform on diagrams. The inference rules and conventions the mathemati
cian submits to in acting on diagrams define the limits of possible transformations, 
and they define constraints that determine - sometimes within a range of possibili
ties ~ the outcome of experiments. 

These are the first two steps of diagrammatic reasoning. However, the consis
tency of representational systems plays its most fundamental role in the third step: in 
observing what happens in diagrammatization. In a manuscript titled "Pragmatism" 
written circa 1905, Peirce highlights as a core idea of this philosophy that all reason
ings - and especially mathematical reasonings - "turn upon the idea that if one ex
erts certain kinds of volition, one will undergo in return certain compulsory percep
tions. Now this sort of consideration, namely, that certain lines of conduct will entail 
certain kinds of inevitable experiences is what is called a 'practical consideration'" 
(CP 5.9, c. 1905). Such an "inevitableness" depends obviously on the given rules 
and conventions of the representational system in which such reasoning is per
formed, as is evident from mathematics: That 2 plus 2 equals 4 results from the rules 
and conventions of arithmetic as the chosen representational system. The point, 
however, is that one needs to have really "internalized" the normativeness of repre
sentational systems in order to experience this inevitableness. We have to be quite 
sure about the rules and conventions of a chosen representational system to feel in
consistencies, for example, or to be surprised by what our experimentation with dia
grams generates. 

This "inevitable experience" resulting from rule-driven activity is the most im
portant precondition of discovering something new by diagrammatic reasoning. To 
demonstrate this, we can distinguish, first of all, two possible cases: On the one 
hand, we can gain something new by unfolding new implications of constructions 
within a given system of representation; and, on the other hand, there is the process 
of developing representational systems themselves that can open up new horizons 
and possibilities. 

The first case is based on the consideration that we never can have a complete 
overview of all the implications of what we know already. Only experimentation 
with representations in concrete situations reveals what might already be given im
plicitly in our own systems of knowledge. Peirce described this case of discovering 
something new by saying that a diagram constructed by a mathematician "puts be
fore him an icon by the observation of which he detects relations between the parts 
of the diagram other than those which were used in its construction" (NEM III 749, 
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1901-2). By experimenting upon the diagram and by observing the results thereof, it 
is possible, as Peirce says, "to discover unnoticed and hidden relations among the 
parts" (CP 3.363, 1885). 

Even more important are "inevitable experiences" that result from the rationality 
of our representational systems with regard to the second form of discovering some
thing new. It might be that a rule-driven experimentation with diagrams brings to 
light inconsistencies or undecidable situations within our chosen representational 
system. In that case, we are forced either to doubt the correctness of the diagram
matic transformations we have performed, or to question the representational system 
we have used. If we have reasons to follow the latter course of thought, a genuine 
creativity is demanded. 

In this situation, the compelling character of diagrams and the "inevitable experi
ence" we make in diagrammatic reasoning are decisive. The results of experiments 
have to "stand up against our consciousness," as Kathleen Hull (282) puts it, be
cause only in that case can a diagram "compel us to think quite differently," as 
Peirce said (CP 1.324, 1903). It is only if we have already certain expectations con
cerning what should happen in processes of diagrammatization that there is a need to 
develop something new when those expectations are frustrated. This form of "resis
tance" of diagrams to what we think about them is the most important difference 
distinguishing the semiotic approach of learning from all sorts of "constructivism."^ 
Peirce called the necessary experience of "resisting objects" an experience of "sec-
ondness."^ This secondness is responsible for the fact that, in perception, there is an 
"effect" of "other things" outside ourselves on us that "is overwhelmingly greater 
than our effect on them" (CP 1.324, 1903). It guarantees the possibility of learning, 
because it is only if the "realities compel us" (CP 1.383) that we can transcend what 
we already know and what was in the past an undoubted fundament of our "con
structions" of the world. 

But precisely how can we react on those compulsions? In which way might 
learning and new discoveries be possible in a situation in which we are "bumping up 
against hard fact;" in which we "expected one thing, or passively took it for granted, 
and had the image of it in our minds, but experience forces that idea into the back
ground, and compels us to think quite differently" (CP 1.324, 1903)? 

THE HIGHEST KIND OF SYNTHESIS 

While the previous considerations have emphasized the normative and compelling 
character of the logic of representational systems as a condition to overcome our 
prevailing and undoubted expectations, it seems obvious that we need a ctxidin free
dom for the genuine creative aspects of learning and discovering. Peirce called this 
"the highest kind of synthesis," when the mind - "in the interest of intelligibility" -
introduces "an idea not contained in the data, which gives connections which they 
would not otherwise have had." He compares such acts of synthesizing with the 
creativity of an artist: 

The work of the poet or noveUst is not so utterly different from that of the scientific 
man. The artist introduces a fiction; but it is not an arbitrary one; it exhibits affinities to 
which the mind accords a certain approval in pronouncing them beautiful, which if it is 
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not exactly the same as saying that the synthesis is true, is something of the same gen
eral kind. The geometer draws a diagram, which if not exactly a fiction, is at least a 
creation, and by means of observation of that diagram he is able to synthesize and show 
relations between elements which before seemed to have no necessary connection. The 
reahties compel us to put some things into very close relation and others less so, in a 
highly compHcated, and in to^ sense itself uninteUigible manner; but it is the genius of 
the mind, that takes up all these hints of sense, adds immensely to them, makes them 
precise, and shows them in intelligible form in the intuitions of space and time. Intuition 
is the regarding of the abstract in a concrete form, by the reahstic hypostatization of re
lations; that is the one sole method of valuable thought. (CP 1.383, 1888) 

In this quote we find a very dense sequence of crucial points regarding what happens 
in discovery processes. Thus, to begin with a first point, the "intelligibility" of syn
thesis hints at a certain teleological moment. As it is clear in mathematics that any 
creative act of developing the plan of a demonstration, of transforming diagrams, or 
of formulating adequate lemmas is successful only when, "in the end," a strict proof 
is possible, the success of any discovery has to be measured by its power to explain 
problematic facts within a holistic system of beliefs. The "interest of intelligibility," 
thus, is fulfilled when the synthesis of a creative mind is successful in that sense. 

A second important point concerns Peirce's identification of the act "to synthe
size" with the act to "show relations between elements which before seemed to have 
no necessary connection." The central point of constructing diagrams and of ex
perimenting with them is that these are the only activities through which we gain 
"elements" and "relations" to observe. We need something before our eyes in order 
to discover something "new" in the constructions of what we already presume to 
know. Any construction of a diagram is, in itself, a creative act in which we express 
a certain interpretation of the problem at hand. And any such representation of a 
problem puts signs before our eyes that, once again, can be interpreted in different 
ways. Thus, we might observe "new" relations in this representation that had played 
no explicit role in its construction. 

The third point I would like to highlight following the quote above concerns 
Peirce's talk about the creative mind's showing interpretations "in intelligible form 
in the intuitions of space and time." This seems hard to understand, even when 
Peirce explains his use of "intuition" here as "the regarding of the abstract in a con
crete form, by the realistic hypostatization of relations." These few words, however, 
touch a central point in Peirce's theory of knowledge development: "Hypostatiza
tion" (from the Greek TjjtoataaLc;) or ''reification" (in Latin) consists in creating a 
thing out of what is not a thing; an entity out of an abstraction. This process (Peirce 
discussed it mostly under the heading of "hypostatic abstraction") is indeed the core 
of any abstract science like mathematics. Our "natural" numbers are already prod
ucts of hypostatization, for you do not find "twoness" anywhere but only pairs of 
things, and coining the term "two" is nothing other than perceiving pairs of things 
only with regard to their being two or pairs (for more details see below). 

Based on this analysis of the quotation above, we can identify three essential as
pects within the creative act of synthesizing disconnected elements in a diagram that 
still require further attention. To put them in chronological order, the first step is 
observing new and previously unnoticed "relations" between those elements; the 
second step is "the regarding of the abstract in a concrete form," that is the creation 
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of a new sign - an "intelligible form in the intuitions of space and time"^ - that can 
represent now what we have observed so far; and the third step is testing whether 
the newly created hypostatic abstraction is really an "intelligible" one, in the sense 
of the teleological element mentioned above. 

In the remainder of this paper, I shall discuss the first two of these three points, 
because they seem to be central for discovering something new. Following a very 
late development in Peirce's terminology, I shall discuss them under the heading of 
''theoric transformation" and ''abstractional theorematic deduction" respectively. 
Before this, however, we have to reconstruct Peirce's differentiation of four kinds of 
deduction as the framework in which he locates both concepts. 

KINDS OF DEDUCTION 

A first, and most famous distinction formulated by Peirce is the distinction between 
"theorematic" and "corollarial" deduction. He defined both, for example, as follows: 

A Necessary Deduction is a method of producing Dicent Symbols^ by the study of a 
diagram. It is either Corollarial or Theorematic. A Corollarial Deduction is one which 
represents the conditions of the conclusion in a diagram and finds from the observation 
of this diagram, as it is, the truth of the conclusion. A Theorematic Deduction is one 
which, having represented the conditions of the conclusion in a diagram, performs an 
ingenious experiment upon the diagram, and by the observation of the diagram, so 
modified, ascertains the truth of the conclusion. (Peirce CP 2.267, c. 1903; cf. CP 7.204, 
1901) 

Besides the fact that "theorematic deduction" seems to be more creative for Peirce 
than "corollarial deduction," it is not really clear what the essential difference be
tween both kinds of deduction should be. In this situation, Hintikka formulated a 
very clear interpretation suggesting that "theorematic inference is characterized by 
the introduction of auxiliary individuals into the argument" (Hintikka, 1983 <1980>, 
113, cf. 109 f.). Peirce himself hints, for example, at "subsidiary lines or surfaces, 
that are not mentioned either in the proposition to be proved nor in previously 
proved propositions" (NEM III 172, 1911), or at the need to formulate a lemma 
"when it comes to proving a major theorem" (EP, II 96, 1901). A most general defi
nition speaks of introducing "something not implied at all in the conceptions so far 
gained, which neither the definition of the object of research nor anything yet known 
about could of themselves suggest, although they give room for it."^^ Thus, there are 
good reasons to follow Hintikka when he uses modern quantification theory in order 
to gain a precise criterion for Peirce's theorematic-corollarial distinction: "What 
makes a deduction theorematic according to Peirce is that in it we must envisage 
other individuals than those needed to instantiate the premise of the argument. ... a 
valid deductive step is theorematic if it increases the number of layers of quantifiers 
in the propositions in questions" (110). 

This interpretation, however, was criticized by Kenneth L. Ketner (1985) who 
claimed Hintikka had neglected the importance of the "visual observation" empha
sized by Peirce for theorematic deductions. This is true, but the point Ketner missed 
is that "visual observation" is just as important for corollarial reasoning, so it cannot 
be a criterion for distinguishing the two. On the other hand, observation is, accord-
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ing to Peirce, indeed of greatest relevance when discussing the problem of learning 
and discovering. But neither Hintikka nor Ketner has seen that Peirce attempted to 
clarify just this point a little further in 1907.1, at any rate, would suggest to use these 
later writings and to sharpen the distinction between "theorematic deduction" and 
"theoric transformations" that Pierce formulates only in these writings. This can jus
tify, on the one hand, Hintikka's argument concerning "new individuals," and, on 
the other hand, that of Ketner regarding the relevance of observation. 

Based on a more careful study, I shall distinguish not just "coroUarial" and 
"theorematic deduction" as Hintikka did, but four kinds of deductive inference in 
all:" 

Deductive Reasoning 

(1) Uncritical Self-critical 

(2) Corollarial Theorematic 

(3) Non-abstrac- (4) Abstractional 
tional 

Figure 1. Four kinds of deductive inference 

The standard case of "uncritical" deduction is the operation of what Peirce called a 
"Logical Machine," that is, a machine that processes input-output transformations 
only on the basis of fixed rules without any freedom to decide between different 
possible procedures. "Corollarial reasoning" is based only on the definitions of the 
terms in a proposition to be proved, and uses, besides those definitions, only general 
principles of logic. In contrast to "uncritical" reasoning, "corollarial" deduction in
volves a careful analysis of the propositions from which something should be de
duced. Therefore, it is possible only as a kind of "self-critical" deduction. But there 
is no "use of any other construction" than that is implied already in the proposition 
to be proved (NEM IV 288 f., 1903). "Theorematic deduction," now, goes beyond 
this limitation of corollarial deduction by introducing "other individuals than those 
needed to instantiate the premise of the argument," as Hintikka puts the point. 

In his "Carnegie Application," Peirce called his distinction between corollarial 
and theorematic reasoning his "first real discovery about mathematical procedure ... 
I show that no considerable advance can be made in thought of any kind without 
theorematic reasoning. When we come to consider the heuretic part of mathematical 
procedure, the question how such suggestions are obtained will be the central point 
of the discussion" (NEM IV 49, 1902). 
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To grasp this "central point" he hints in a few further sentences at the relevance 
of what he usually called "hypostatic abstraction:" 

Passing over smaller discoveries, the principal result of my closer studies of it [i. e., "the 
central point"] has been the very great part which an operation plays in it which 
throughout modem times has been taken for nothing better than a proper butt of ridi
cule. It is the operation of abstraction, in the proper sense of the term, which, for exam
ple, converts the proposition 'Opium puts people to sleep' into 'Opium has a dormitive 
virtue.' This tums out to be so essential to the greater strides of mathematical demon
stration that it is proper to divide all Theorematic reasoning into the Non-abstractional 
and the abstractional. I am able to prove that the most practically important results of 
mathematics could not in any way be attained without this operation of abstraction. 
(NEMIV49, 1902) 

Here we have the last distinction I mentioned in Figure 1. Before one can understand 
its relevance, however, it is necessary to discuss what Peirce meant by the operation 
of "hypostatic abstraction." This concept is the core of what Peirce calls here "ab
stractional" theorematic deduction. 

HYPOSTATIC ABSTRACTION 

Whatever we discover or learn as something "new" can become a subject of our 
considerations only in the form of "hypostatic abstraction" - to use Peirce's termi
nology. In the operation of hypostatic abstraction we generate new signs signifying 
objects that were never mentioned before as objects. Thus, all concepts in our lan
guages are outcomes of hypostatic abstraction performed at some time in the long 
history of our cultures. When we teach our children concepts, we usually try to give 
them opportunities to repeat this creative operation of hypostatic abstraction; they 
discover the world by generating their own hypostatic abstractions out of experi
ences and observations for which they did not have adequate concepts before. 

Operations of hypostatic abstractions are particularly important for us in the 
genesis of mathematical knowledge: 

In order to get an inkling - though a very sUght one - of the importance of this opera
tion in mathematics, it will suffice to remember that a collection is an hypostatic ab
straction, or ens rationis, that multitude is the hypostatic abstraction derived from a 
predicate of a collection, and that a cardinal number is an abstraction attached to a mul
titude. So an ordinal number is an abstraction attached to a place, which in its turn is a 
hypostatic abstraction from a relative character of a unit of a series, itself an abstraction 
again. Now, ... what you mean by a concept is a predicate considered by itself, except 
for its connection with the word or other symbol expressing it, and now regarded as de
notative of the concept. Such a concept is not merely prescissively abstracted, but, as 
being made a subject of thought, is hypostatically abstract."^^ 

The most important point of hypostatic abstraction is that a sign that is generated as 
a new object, and as referring to a new object, can be used, in turn, as a means for 
further operations - also in different contexts. Michael Otte discusses this point in 
terms of the "complementarity," or the "dialectic of means and objects" as the es
sence of mathematical activity (1997, 360). He understands "by 'object' any prob
lem or any kind of resistance of reality against the subject's activity, and by 'means' 
anything which seems appropriate to achieve mediation between the subject and the 
object of cognition" (ibid.). 
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Learning, from this point of view, means creating new objects by hypostatic ab
straction, and using them as new means for mediating between the subject and the 
object of cognition. These new objects - as "independent" from the subject's activ
ity - are the starting point for further hypostatic abstractions, so that we gain a proc
ess that can be grasped as a process of generalizing our representational means. A 
generalization that "echoes" the history of our cultures, as we can learn from Salo
mon Bochner's considerations concerning what he called "full-scale symbolization" 
in contrast to mere "idealization": 

... full-scale symbolization is much more than mere ideaUzation. It involves, in particu
lar, untrammeled escalation of abstraction, that is, abstraction from abstraction, abstrac
tion from abstraction from abstraction, and so forth; and, ail-importantly, the general 
abstract objects thus arising, if viewed as instances of symbols, must be eligible for the 
exercise of certain productive manipulations and operations, if they are to be mathe
matically meaningful. (Bochner 1966, 18) 

With regard to the distinction between "abstractional" and "non-abstractional" theo
rematic deduction mentioned in Figure 1, we can conclude that any theorematic de
duction in which a new hypostatic abstraction is created in order to formulate a nec
essary inference can be called "abstractional," whereas a theorematic deduction that 
uses hypostatic abstractions already given in other contexts is "non-abstractional." 

The question that arises at this point, however, is how to explain the possibility 
of finding adequate hypostatic abstractions, or of creating new ones. What are the 
conditions of that very creative act? One most important condition I shall discuss 
now was "hypostatized" by Peirce in his concept of a "theoric transformation of a 
problem." 

0.?. 

Figure 2. Peirce's diagram ofDesargues' theorem (NEMII212) 
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THEORIC TRANSFORMATION 

Peirce takes the term "theoric" from the Greek "OecoQia" (our "theory," original 
meaning: "vision"), which he translates as "the power of looking at facts from a 
novel point of view" (MS 318: CSP 50 = ISP 42, 1907). "Theoric" reasoning con
sists "in the transformation of the problem, - or its statement, - due to viewing it 
from another point of view" (ibid., CSP 68 = ISP 225). Thus, a "theoric transforma
tion," or a "theoric step" in a deductive argument, means changing the perspective. 
The relevance of this transformation for all kinds of creativity in mathematics can be 
seen in the fact that it is the precondition for perceiving something new in a certain 
well-known representation. Peirce hints, for example, at the moment when the "plan 
of a demonstration ... spring up in the mind . . . . The thought of the plan begins with 
an act of dyxtvota [ready wit] which, in consequence of pre-existent associations, 
brings out the idea of a possible object, this idea not being itself involved in the 
proposition to be proved" (CP 4.612, 1908). 

As an example, he often hints at the famous proof of Desargues' theorem about 
two triangles in a projection. According to Figure 2, the theorem can be formulated 
as follows: Given two triangles XiYiZi and XjY^Li, if the straight lines X1X2, F1F2 
and Z1Z2 meet in O, then the intersection points C of X\Y\ and X2F2, B of X{L\ and 
X2Z2, and A of Z\ Yx and 22^2 lie on the same line ABC, 

It seems to be remarkable that these points belong to the same line, but if you 
change the point of view, and perceive the triangles as planes intersecting a pyramid 
with O as apex, then the situation is quite clear, as Figure 3 shows. At least in an 
intuitive manner, Desargues' theorem can be proved easily by saying that any two 
planes in space intersect in a line (in the case of parallel planes, the situation is dif
ferent, of course). In this proof, as Peirce said, everything "is coroUarial except the 
single idea that the plane figure is a projection of a figure in three dimensional 
space. That is certainly not coroUarial, since there is nothing in the problem to sug
gest it, - no reference to a third dimension" (MS 318: CSP 53 = ISP 45, 1907). 

Figure 3. A three-dimensional representation of Desargues' theorem (Hilbert and Cohn-
Vossen, 1973 <1932>, 107) 

Theoric transformations are the key elements in all kinds of creative reasoning. New 
ideas do not emerge from nowhere in our minds, nor can we generate them out of 
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nothing in acts of pure contemplation. The only way we can discover something new 
is by constructing a diagram to represent a problem, experimenting with it according 
to the rules of the chosen representational system, and observing what happens. A 
constructed diagram might be well-known, but by changing the point of view, and 
by interpreting it in a new way we can gain new insights. If this is the case, a hypo
static abstraction of what we can see from such a new perspective produces a new 
object, and thus a new means for further discoveries. 

Georgia Institute of Technology, Atlanta, Georgia 

NOTES 

^ The background is a more detailed study in German, Hoffmann, 2003a. 
- Peirce, NEM IV 47 f, 1902. Cf. Stjemfelt, 2000, Hoffmann, 2003b, and in print. Attempts to apply this 
concept to problems of mathematics education are also formulated by Dorfler, 2004, and by Bakker, in 
preparation. 
^ Hoffmann, 2003a, Chapter 6.4. 
' Cf. Hoffmann, 2001a, b, and 2003c, 48-69. 
^ Cf. also my criticism of constructivist approaches in Hoffmann, 2001c, 247 f. 
^ He distinguished three fundamental modes of how something is present to us and called them 
"firstness," "secondness," and "thirdness." A fuller description is given in Hoffmann, 2001a, b, and 
2003c, 59-62. 
^ "to" according to the editors of CP (instead of "the"). 
^ In spite of this formulation's similarity to Kant's "a priori forms of pure intuition" (space and time), 
Peirce obviously means just the opposite here: the concretization of pure or "intelligible forms" in a cer
tain (empirical) space and time. 
^ According to Peirce's 1903 classification of signs that means that the conclusion of a deduction is a 
"Dicisign," i. e., a proposition, that is read on the basis of certain conventions; cf. CP 2.250 f., c. 1903. 
^̂  NEM IV 42, 49, 1902. Cf. NEM IV 289 f., 1903. 
^̂  Cf. Hoffmann, 2003a, chap. 6.2 - 6.4 for further argumentation and references. A different reconstruc
tion was developed by Levy, 1997, 103. 
^̂  Peirce CP 5.534, c.1905. In the last words, Peirce hints at his distinction of two forms of "abstraction": 
"In geometry, for example, we 'prescind' shape from color," while hypostatic abstraction means "the 
creation of ens rationis out of an £7rog Trrspoev a [winged word] - to filch the phrase to furnish a name 
for an expression of non-substantive thought" (CP 5.449). 
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WILLIBALD DORFLER 

DIAGRAMMATIC THINKING 

Ajfordances and Constraints 

Abstract. For arriving at a better understanding of the Peircean notion of diagrammatic reasoning there 
appear to be two complementary ways. One way is to substantiate its impact and relevance by interpret
ing actual mathematical reasoning as being diagrammatic. This in fact can be done in a great variety of 
cases. Another way is to exhibit cases of mathematical notions, concepts and arguments which inherently 
do not lend themselves in a direct way to diagrammatic reasoning. Analyzing those examples will again 
sharpen and refme the notions of diagram and diagrammatic reasoning. Or, it might possibly point to the 
necessity of widening those notions to comprise also the manipulation of words and linguistic terms ac
cording to specific rules. The latter two topics are the main issues treated in the paper. 

Key words: actual and potential infinite, diagram, diagrammatic reasoning, mathematical existence, rep
resentation, visuaHzation. 

INTRODUCTION 

The American philosopher Ch. S. Peirce has proposed that mathematical thinking, 
reasoning, and argumentation consist widely in the manipulation of and operation 
with various kinds of diagrams. A number of his statements on this topic can be 
found in Hoffmann (2002) and, among others, he says: 

It has long been a puzzle how it could be that, on the one hand, mathematics is purely 
deductive in its nature, and draws its conclusions apodictically, while on the other hand, 
it presents as rich and apparently unending a series of surprising discoveries as any ob
servational science. Various have been the attempts to solve the paradox by breaking 
down one or other of these assertions, but without success. The truth, however, appears 
to be that all deductive reasoning, even simple syllogism, involves an element of obser
vation; namely, deduction consists in constructing an icon or diagram the relations of 
whose parts shall present a complete analogy with those of the parts of the object of rea
soning, of experimenting upon this image in the imagination, and of observing the result 
so as to discover unnoticed and hidden relations among the parts. . . . As for algebra, 
the very idea of the art is that it presents formulae, which can be manipulated and that 
by observing the effects of such manipulation we find properties not to be otherwise 
discerned. In such manipulation, we are guided by previous discoveries, which are em
bodied in general formulae. These are patterns, which we have the right to imitate in our 
procedure, and are the icons par excellence of algebra. (Collected Papers 3.363) 

This far-reaching thesis about diagrammatic reasoning should be analyzed in two 
ways: The positive one is to look for and study within mathematics instances that 
can be interpreted as substantiating and explicating Peirce's claim. The negative one 
is to scrutinize this view by exhibiting kinds and means of mathematical reasoning 
that cannot be categorized readily as being of that diagrammatic character. The 
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power of diagrammatic reasoning is supported by the study of specific examples in 
Dorfler (2003). The present chapter is devoted to finding mathematical concepts, 
theorems, and proofs that do not lend themselves in a direct way to the use of dia
grammatic means. Or, to put it differently, the notion of diagrammatic reasoning is 
used to analyze different forms and ways of representation in mathematics. 

For both research projects, it will be necessary to have at hand a good under
standing and conception of what is or can be taken as a diagram in the sense of 
Peirce. One kind of clarification is offered in the above-mentioned paper from Dor
fler (2003). It is very likely the most important point thereby that a diagram lends 
itself to highly specific operations (like transformations, combinations, construc
tions) according to conventional rules. Thus, in this context, diagrams are not just 
static structures that only have to be perceived, but the objects of operations. And it 
is the latter that determine the meaning of the diagrams. One might therefore think 
of a diagram as a (type of) inscription together with a system of operations on it. In
scriptions plus system of operations present the core of the respective mathematical 
concept. An example is the concept of a matrix that is essentially a rectangular 
schema (of some kind of numbers) together with a system of conventional opera
tions (addition, multiplication, scalar multiplication, transposition, etc.). 

For our purposes here, it is very important to make a clear distinction between 
"diagrams" and all kinds of representations, visualizations, drawings, graphs, 
sketches, and illustrations as widely used in professional mathematics and in 
mathematics education as well. Although these might be diagrams in the specific 
sense used here, this is mostly not the case. This is due to the lack of the constituting 
operations by which an inscription or visualization becomes only a diagram. These 
kinds of visual means might be useful in suggesting certain properties of an intended 
mathematical concept. But mostly this calls for a metaphorical interpretation of the 
visualization and its complementation by some kind of idealization. Diagrams, in 
contrast, have to be taken verbally in a strict sense; they are not open to interpreta
tion or metaphoric use as long as one wants to stay with the mathematical concept or 
method under direct consideration. For instance, in this view, the graphic visualiza
tion of notions like continuity or differentiability by Cartesian graphs of functions 
cannot have the quality of a diagram (just try to carry through a proof of a theorem 
on these notions by using graphs alone): Neither of these notions is a graphic or op
erative property of the function graphs as such. There are no operations defined on 
or for Cartesian graphs that truly express continuity or differentiability. Thus, in this 
sense, recourse to the usual arithmetic definitions is unavoidable. These 8-5 defi
nitions, by the way, can be translated on their part into graphic diagrams by using 
appropriate straight lines enclosing the graph with arbitrarily close approximation. 
At many places in mathematics, one takes recourse to verbal illustrations instead of 
graphic or visual ones, like "... approaches the limit indefinitely." These texts, of 
course, also cannot play the role Peirce ascribes to diagrams, because they again 
lack those operations or transformations of which the observation of their outcome 
and regularities appears to be constitutive for Peircean diagrammaticity. 

A certain kind of limitation to diagrammatic reasoning is the complexity of the 
diagrammatic inscriptions and the operations with and/or on them. Nowadays, this 
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can be overcome in part through the use of computers (CAS). Traditionally, it is 
handled in mathematics by introducing notions presenting certain regularities in the 
diagrams and their transformations. Afterwards, one no longer argues directly with 
the diagrams but with their verbally described properties (for which one might in
vent another diagrammatic expression). This leads to the development of a language 
(or theory) in which it is possible to express the results of (observing) the diagram
matic operations and deduce on a conceptual level new properties of the latter. Take, 
for example, the section on polynomials in any algebra text-book: Basic properties 
of polynomials (= diagrams) are obtained diagrammatically in the sense of Peirce. 
But, sooner rather than later, the definitions and proofs make direct use of those 
properties without referring explicitly to the diagrams. Thus, one obtains that 
P{x)-P{a) is divisible by {x-a) through diagrammatic reasoning (i. e. calcula
tions) and directly from this: If a is root of P{x), then P{x) is divisible by [x-a), 
and, therefore, P{x) has a maximum of n roots (n = degP). 

For another example, consider the theory of (combinatorial) graphs (see Bondy 
& Murty 1976). Here, many concepts stand for possible diagrammatic properties of 
graphs (like being connected, regular, Hamiltonian, Eulerian, etc.), and theorems 
state (general) relationships between them. Again, proofs of basic theorems will de
pend almost exclusively on diagrammatic reasoning; but, in due course, the concepts 
and their established relationships themselves will be used directly by arguing ver
bally and conceptually. I will no longer consider this as diagrammatic reasoning, but 
as reasoning about diagrams and their properties and operations. Other kinds of dia
grams might be invented for this purpose (like Q{X) \ P{x)) that can then be used for 

another level of diagrammatic reasoning. The basic rules for operating with these 
new diagrams result from and express regularities in the operations with the lower-
level diagrams. 

But this deliberate shift from diagrammatic to conceptual-verbal reasoning is not 
our topic here. This is because it does not reflect an inherent limitation to diagram
matic reasoning, but rather an economic substitute for it, which, at least in principle, 
could be dispensed with. In the following, I shall consider instances in which, in my 
view, there is an inherent impossibility of diagrammatic reasoning as understood 
here. 

In a sense, the article endeavors in this way to offer a specific interpretation of 
the notion of diagram, and it is open to debate to which degree this interpretation is 
in accordance with the stance taken by Peirce. What comes clear, I think, is that dif
ferent kinds of signs are used in mathematics; diagrams being but one very impor
tant one of them. It is not the intent of this article to study the use of other kinds of 
signs, such as indices, in mathematics. But I shall point to many instances of 
mathematical reasoning based on linguistic signs (words) and the highly specific 
discourse with them that I call conceptual-verbal (in contrast to diagrammatic). The 
study of conceptual-verbal reasoning; its operations, rules, and strategies (in mathe
matics); and its specific semiotic character and usage of words as signs will be the 
objective of further research. 
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To repeat the objective of this article, I should like to point out again that the op
erative aspect of diagrammatic reasoning is considered to be of central relevance 
here. This means the transformations of diagrams within a system of conventional 
rules that also include the inventive construction of new diagrams or of parts of them 
(see, again, Dorfler 2003). When Peirce emphasizes that all thinking occurs in terms 
of signs, he nevertheless explicitly warns against conceptions that are not amenable 
to diagrammatic presentations. Thus, diagrams are rather special signs that permit 
conclusive and apodictic reasoning. As long as conceptual-verbal reasoning refers to 
diagrams and their general (diagrammatic) properties, this quality appears to be 
maintainable. But it might be lost in at least some of the cases analyzed in the fol
lowing. In these cases, it is the chosen perspective on and the interpretation of the 
diagrammatic observations that can no longer be based on diagrammatic reasoning 
and presentations. I pose this positively as the research problem of analyzing these 
transitions between very different sign systems (like diagrams in a strictly operative 
sense and verbal-conceptual presentations) and their impact on learning and under
standing in mathematics. 

For a comprehensive presentation and analysis of the writings of Peirce on the 
topic of diagrammatic reasoning, the reader is again referred to Hoffmann (2002). 
Michael Otte deserves the credit for having brought the ideas of Peirce to the atten
tion of mathematics educators through papers like Otte (1997a, 1997b, 1998). 

IMPOSSIBILITIES 

There is a standard proof that the square of no fraction can be equal to 2. One as

sumes to the contrary that (p/ q) —2 where (p,^) = 1. Then one observes a se

ries of diagrammatic transformations: p^ = 2q^ implies 21 p^, which implies 2 | p 

(this was a result of earlier diagrammatic reasoning); thus p = Ip^, and so 

2-2' PY' Pi = 2q , and therefore 2\q , which implies 21 q and thus \p,q) >1. This 

is a contradiction to what was assumed. In other words, among all diagrams piq 

with the usual operation rules, there is no such diagram the square p^ Ic^ of which 
is equal to 2 (again according to the agreed rules of equality of these diagrams). I 
think it is perfectly in accordance with Peirce's statement to consider fractions as 
diagrams that can be subjected to certain operations (manipulations in Peirce). Thus, 
this theorem first of all expresses a property of these diagrams. But for that very im
possibility, we do not possess a diagram on which we could perform operations that 

would reflect that impossibility. There are names for that impossibility like or, 
more generally "irrational number." These names, that is, the symbols for specific 

irrational numbers like e, or 71, are not diagrams in the sense used here, because 
they do not permit manipulations and transformations that lead to an exploration of 
the notion of irrationality. Observe the difference to the fraction-diagrams with 
which one can derive a great many properties. There are also other expressions of 

this impossibility: There is no finite or periodic decimal fraction d with d^ = 2; the 
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lengths s,d for the side and diagonal of a square have no common measure, that is, 
there are no natural numbers m,n with ms - nd. Again, this states the impossibility 
of certain diagrams as long as one obeys specific transformation rules. But here as 
well, no diagram is available for the stated impossibility as such. Infinite decimals 
are clearly not diagrams in our sense, because they do not admit operations and ma
nipulations that can be observed even in imagination in a virtual sense (contrary to 
finite decimals of any length or periodic decimals). This lack of (specific and ge
neric) diagrams for irrational numbers or relations might be a cause for the fact that 
comparatively few notions and theorems have been devised in mathematics for these 
numbers. Perhaps this is not surprising when one takes into account that one can 
speak and think about mathematical objects mainly through their diagrams (or more 
generally through their representations). Much of what has been said about irration
als is about "approximation" by rationals; sometimes in a special form (continued 
fractions), but not directly about irrationals. The latter could be considered as reified 
or hypostatized impossibilities. Having no diagrams available also means that one 
cannot calculate with irrationals in the way we do with whole and fractional num
bers. One can write V2+V3, but we cannot calculate its decimal expansion. Here 

V2+V3 as a sum receives meaning from the "representation" on the number line 

(which is highly metaphoric and virtual and certainly not diagrammatic) or again via 

approximating rational sequences (^nM^^J f̂^ "v^ and v3 as 

V2 + V 3 = lim(a^ + ^n) • Thus one takes recourse either to fractions and thus to dia
grams or to conceptual-verbal language. The lack of diagrams is also related to a 
lack of guidance for finding or devising interesting properties and problems about 

the respective mathematical objects. In a different context, inscriptions like can 
be ascribed a diagrammatic quality. This occurs when they are subjected to the rule 

system of arbitrary exponentiation whence relations like result. In any 
case, such "formulae" are of a diagrammatic quality but not the "irrationality" of, 

say, V2 . 
A similar situation occurs in the case of transcendental numbers. These irration

als are defined as not being roots of algebraic equations with rational coefficients. 
This is again the (postulated) impossibility (or in a more ontological jargon, the non
existence) of diagrams of a certain kind (polynomials). For algebraic numbers, the 
respective algebraic equation presents a diagram for that number which corresponds 
to the diagrams m/n in the case of fractions (or to the polynomial nx-m = P[x)). 
Manipulations and transformations of these diagrams lead to invariants and regulari
ties that are considered to be properties of the algebraic numbers. For instance, sum 
and product of algebraic numbers are algebraic numbers. For transcendental num
bers, there are no diagrams in this sense, and they can only be "studied" by using 
that lack. Here again, one has no intuitive or empirical-observational source and 
guidance for devising properties or qualities of transcendental numbers. 
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Another case of impossibility is the notion of linear independence in vector 
spaces. Linear dependence of vectors Vi,...,v^ is defined by the possibility of a dia
gram of the form â Vj +... + â v^ (linear combination) which equals the zero vector 
and in which not all coefficients a^ are zero. And it is by manipulating these dia
grams that theorems about linearly dependent vectors are derived. Linear independ
ence, in contrast, as the impossibility of such a diagram, has no direct diagrammatic 
expression, although it is related (negatively) to diagrams. And it can only be inves
tigated by studying this negation. In other words, one can show or point to linearly 
dependent vectors but not (directly) to linearly independent ones. Linear dependence 
is observable (directly); linear independence is not. This might be (one) reason for 
the documented difficulties students have with linear independence, for example, 
with proofs in linear algebra. It is illuminating that diagrammatic expressions for lin
ear independence could also be found successfully in linear algebra, for instance, 
through the Gauss algorithm or determinants. It is through manipulating the respec
tive diagrams that one can decide about linear independence and turn it into a visible 
and observable property of diagrams. 

This striving for diagrams that reflect nondiagrammatic impossibilities occurs in 
many places in mathematics. The invention of the fraction symbols is already of this 
kind, because a (proper) fraction denotes the impossibility of solving mx = n by a 
whole number x {m,n whole). Just one more example is the famous Kuratowski 
Theorem in graph theory that characterizes nonplanar graphs by the existence of 
subgraphs of a certain kind (essentially K^ and K^i,). Here again, the impossibility 

of diagrams of a given type is shown to be equivalent to the occurrence of specific 
diagrams that at least in principle, is observable. 

ALL AND EVERY 

In the mathematical discourse, it is a common practice to speak of all possible or 
conceivable instances of a mathematical concept and to consider this virtual or ideal 
totality as a new entity or structure. This is expressed by the common meta-
mathematical terminology that uses verbs such as: "we form," "we construct," "we 
build," and so forth. The set or structure Â  of all natural numbers already furnishes 
an example of such a speech act. There are generic diagrams like lists of strokes or 
tokens or decimal numbers by which either an arbitrary natural number or the for
mation of the successor to a number can be presented diagrammatically. This is done 
by giving a rule that leads from a given diagram (for n say) to the diagram for 
n-\-l. But the notion of "all natural numbers" cannot be expressed in a diagram
matic way: Â  has no diagram. Or, in other words, infinity as a never-ending proc
ess (of counting on) is amenable to diagrammatic thinking and reasoning but not the 
actual infinity of all the steps of that process. The potential infinite has a diagram; 
the actual accomplished infinite does not. The latter can be conceived only in a con
ceptual-verbal way. One could think of the number line as a diagram of infinity. Yet, 
here again, only the potential continuation or extension of any finite part has dia
grammatic quality, but not the totality of the infinitely long number line. 
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Another example of this kind is the well-known statement that there are infi
nitely many prime numbers. Let us first look at Euclid's proof, which runs as fol
lows. If p^,p2,...,Pf. are all prime numbers, then calculate /7i/?2---Pr "̂ 1 • This 
number is either prime or divisible by a prime number. In both cases, we find a 
prime number p that differs from pi,...,p^. This argument can be interpreted per
fectly well to be of a diagrammatic character, because all its steps can be justified by 
manipulations of appropriate diagrams. For instance, that each number, viewed as a 
list of strokes, has a prime divisor, is a diagrammatic property of arranging the 
strokes (or better the dots for that matter) in a rectangular array: It is the smallest 
side (^ 1) in any such array. Thus, the statement that there are arbitrarily (finitely) 
many prime numbers is accessible to diagrammatic reasoning. Yet, jumping to the 
actually infinite totality of "all" prime numbers has no diagrammatic expression and 
can be expressed only in conceptual language. This is a qualitative leap that might or 
might not be accepted, as shown by the widespread discussion over the acceptability 
of the actual infinite in mathematics (see, also, Dorfler 2002). On the other hand, the 
conceptual-verbal (discursive) formation of Â  or the set of all primes is of little 
consequence in mathematics. Possibly because of the lack of appropriate diagrams, 
there are no theorems about these totalities (as totalities). Apparently, they have no 
properties. Essentially, all pertinent theorems are limit theorems like the Prime 
Number Theorem, which could also be formulated and proved in a framework that 
restricts itself to the potential infinite. The totality of all natural or prime numbers is 
not needed anywhere as a whole but only their unlimited succession. 

In a similar way, discourse about arbitrary and arbitrarily finitely many fractions 
and all operations with them is backed up by and based on diagrammatic reasoning, 
because we have generic diagrams and rules for all that. A qualitatively very differ
ent and nondiagrammatic level of discourse is introduced by speaking of Q as a 
ready-made and completed structure. I do not think that this is more than a (feasi
ble!) way of speaking that is still monitored and regulated by the diagrams it pur
ports to speak about. 

As we have seen, the conceptual-verbal "formation" of entities comprising all 
exemplars of objects of a given kind cannot be supported directly by diagrammatic 
reasoning. We find cases in which one speaks of the totality of all diagrams of a 
specified sort, as in the case of all natural numbers, whole numbers, fractions or also 
all triangles, all connected graphs, and so forth. In these cases, it is typical to have a 
generic diagram (decimal numerals, p/q, etc.) or a generic description of how to 
produce any diagram of the given sort (as for graphs or triangles). But in mathemat
ics, the discourse about "building" new totalities goes much further. Already in the 
case of real numbers, we have, strictly speaking, no diagrams for the mathematical 
objects. Although decimal expansions are a substitute, they lack many important 
characteristics of diagrams because we can never determine them and use them in an 
operative way. Considering how irrationals are defined in mathematics (Dedekind 
cuts, Cauchy sequences, etc.), one could even say that irrationals already depend on 
actually infinite totalities of fractions and thus of diagrams. Even farther away from 
diagrammatic thinking are those discursive formations in which there is no diagram 
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of any kind for the objects lumped together. This, in my view, occurs when speaking 
about, for example, the ''space" c[fl,Z7] of all real functions continuous on the inter
val [a,b]. Compare this situation with, for example, the vector space of all polyno
mials over Q. 

This leads us to analyze the concepts of limit and continuity with regard to dia-
grammaticity. Consider the standard definition: / is continuous at XQ if for 

every £>0, there exists a J>Osuch that |/(jc)-/(;co)|< ^ for all x with 
\X-XQ\<S . Here we find diagrams like | /(^)~/(-^o)l'^ f that also play a pivotal 
role in all pertinent proofs in that these proofs consist to a large extent of manipula
tions and transformations of inequalities of this kind. Just inspect any textbook of 
basic calculus. This constitutes the diagrammatic part of the definition and the 
proofs and theorems depending on it. But the essential feature of this definition is 
how to interpret the phrases "for every 6* > 0 " and "there exists a ^ > 0." They re
fer to all (arbitrarily small) positive reals, and I take the view that this reference is 
highly nondiagrammatic. The arbitrariness of f > 0 has no diagram in the sense of 
Peirce that is amenable to manipulations. The intervals on the number line are, at 
best, vague visual hints to the intended meaning. It is an idealizing discourse (a lan
guage game according to Wittgenstein) that has to be added to the diagrams in the 
definition of continuity and that, in this respect, consists in the nondiagrammatic in
terpretation of diagrams. The nondiagrammatic character of this definition is under
scored by the postulate that € varies over an actual-infinite set of even uncountably 
many values. Constructive approaches to real analysis try to avoid this by sticking to 
the construction of diagrams of a specific kind. But classic analysis is a very com
plex interplay of diagrammatic operations (with the inequalities) according to estab
lished rules and ideal, nondiagrammatic interpretations in purely verbal formulations 
(speech acts). It is possibly this that makes it so difficult in the learning process. The 
usual visualizations (e.g. through Cartesian graphs) are not diagrammatic and do not 
reflect the very essence of continuity: Continuity and differentiability do not have 
diagrams. Just try to prove that differentiable implies continuous by using graphs 
alone. It will be impossible, because we do not have a generic "arbitrary" differenti
able or continuous graph as a generic diagram for these concepts. What the visuali
zation can offer is, at best, to guide the interpretations of the e-Sdefinition. More 
important for mathematical practice is the availability of a calculus that operates on 
diagrams (function terms) and permits the evaluation of derivatives, antiderivatives, 
and integrals according to established diagrammatic operation rules (like sin' 

= cos, \x'^y = nx^~^, etc). Here again, we find the striving for manipulable dia
grams that can be taken to be an accurate reflection of the related nondiagrammatic 
structures and processes. 

The construction of a (formal) axiomatization in the sense of Hilbert's formalist 
program can be considered as another method of translating a mathematical notion 
into diagrams. Thus, for instance, there is an axiom system available for the whole 
structure of all real numbers that, of course, consists of finite formulas together with 
a logical formalism (first-order predicate logic). These can be viewed as diagrams in 
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the sense intended by Peirce; and proofs, arguments, and theorems are then obtained 
by manipulating these diagrams and observing the outcomes of the manipulations 
(the logical deductions). One could therefore interpret (formal) axiomatization as a 
kind of diagrammatization. 

A very informative example of that sort is axiomatic set theory (see Klaua 1979). 
For the intended objects, the infinite sets, of course, no diagrams are available (not 
even any visualization or the like) whose analysis could be taken as the study of 
these objects, as conceivable, at least in principle, for finite sets. The terms and for
mulas of, say, ZFC then constitute diagrams that do not correspond to sets but to 
certain relations between them and their basic (postulated) properties. Thus it is a 
deception to consider that mathematics in any way studies the infinite directly; it 
only interprets the study of certain diagrams as research into the properties of infi
nite sets. 

THERE EXISTS 

In mathematics, one finds very different proofs of the so-called existence of some 
mathematical object. There are constructive proofs that exhibit a diagram with the 
postulated properties or show the possibility of constructing such a diagram. Such a 
construction can be found within a given collection of already available diagrams: 
For instance, exhibiting a fraction (rational number) that lies between two given 
fractions is a construction of this kind. A different form of diagrammatic construc
tion starts from a given collection of diagrams and goes on to construct new dia
grams with a desired property. The formation of fractions out of natural numbers is 
of this kind, or, more generally, the construction of a field K^ containing K in 
which one can exhibit a root for a given polynomial over the field K (see Dorfler 
2003). A special case of this construction is the complex numbers. In constructive 
mathematics, these are the only existence proofs that are considered to be feasible or 
reasonable. Generally speaking, all existence proofs based on proofs by contradic
tion are, in my view, of a nondiagrammatic character, this may be why they pose 
problems to a student's understanding. In the case of infinite sets, this situation is 
exacerbated dramatically. The countability of the algebraic numbers is still based on 
diagrammatic reasoning (as long as it is not viewed as talking about an actual infin
ity). But to conclude from this that there are infinitely many (or even uncountably 
many) transcendental numbers cannot be based on diagrammatic reasoning, because 
it presupposes the actual infinity of all real numbers (and their not being countable). 
This is not to refuse those arguments, but to point out essential differences and fea
tures from the point of view of diagrammatic reasoning. Thus, both of Cantor's "di
agonal" methods can be viewed as a kind of diagrammatic reasoning as long as one 
interprets them within a potentially-infinite stance. The first one shows in a dia
grammatic way that any fraction can be reached by this specific counting process. 
For this, the finite inscriptions (there are no other ones of course) suffice; everything 
else is discursive interpretation or conventional speech. Similary, the second diago
nal argument can be interpreted in a processual way as successively constructing a 
decimal expansion different from the given ones. 
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CONCLUSION 

Peirce has made it clear that a great and important part of mathematical reasoning is 
of a specific empirical form based on observing the behavior and the properties of 
inscriptions considered as mathematical diagrams. This shifts mathematics from an 
esoteric, abstract, or purely mental activity "down" to a material activity on perceiv
able and therefore also communicable objects, that is, the diagrammatic inscriptions. 
Learning mathematics therefore must consist to a great extent in becoming inti
mately acquainted with these diagrams and their manipulations ("calculation"). Yet, 
as I have tried to show, there are limitations of different kinds to these activities, and 
diagrammatic thinking has to be substituted and complemented by conceptual-verbal 
reasoning. But again, this does not consist in studying abstract objects directly, but 
in arguing verbally according to agreed upon ways. A main thesis is that an intrinsic 
lack of diagrams related to a mathematical notion poses what can be called an epis-
temological obstacle to learning that notion. 
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FALK SEEGER 

NOTES ON A SEMIOTICALLY INSPIRED THEORY OF 
TEACHING AND LEARNING 

Abstract. The present text starts from the assumption that "mediating" and "weaving" are two core con
cepts that can grasp the still young relationship of educational theory and semiotics. The distinction of 
these two concepts can be seen as an elaboration of the idea that relations within a signs differ from rela
tions between signs, an idea that runs parallel to the distinction of the coherence and correspondence of 
sign systems. The thrust of the present paper is to overcome the confrontation of "learning as acquisition" 
vs. "learning as participation." The complementarity of mediating and weaving can be helpful in formu
lating roads out of this fruitless confrontation. These concepts may also be helpful to elucidate how the 
semiotic-psychological approach of L. S. Vygotskij is related to the semiotics of C. S. Peirce 

Key words: abduction, acquisition, learning, mediating, participation 

Le signe est une fracture qui ne s'ouvre jamais que sur le visage d'un autre signe (Barthesf 

In this chapter, I would like to take a simple exploratory idea and see how far one 
can go with it in the theoretical reconstruction of certain pervasive problems in 
mathematics teaching and learning. I shall not get very involved in this math-
education-related discussion here, as I have expanded on this elsewhere (see, e. g., 
Seeger 2003). For reasons of brevity, I shall focus on some speculative thoughts re
garding the relative positions of Peirce and Vygotskij. The idea is that Peirce and 
Vygotskij each have delivered an approach based on the central role of sign proc
esses. Although there are lots of commonalities between the two approaches, one 
can also find fundamental differences. These will be explored on dimensions of a 
theoretical perspective on learning that are, admittedly, relatively well known. How
ever, it is hoped that well-known things may appear in a new light. 

Talking about Peirce and Vygotskij will lead us to mediating as opposed to 
weaving as core concepts from semiotic. These two concepts are more or less 
loosely related to some fundamental positions of Peirce and Vygotskij. I am dis
criminating here between a level that is intra-semiotic, that is, concerns processes 
within the very core of the sign, and a level that is inter-semiotic, that is, concerns 
processes between signs. 

This happens to be a distinction that I found could serve as a starting point to 
elaborate the differences between the semiotic approaches of Lev Semenovich Vy
gotskij and Charles Sanders Peirce. In reverse, when trying to improve my under
standing of the different orientation of their respective approaches, I found it helpful 
to give a certain substance to mediating and weaving as semiotically inspired con-
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cepts. Ultimately, this discussion should hopefully be fruitful for a new perspective 
on the old discussion on the nature of learning known as the learning paradox and 
discussed in more modern terms as the contradiction between a view of learning as 
appropriation versus participation. 

From the perspective of a complementarity of contradictory terms, often advo
cated by Michael Otte (see, e. g., 1984, 1990, 1994), it strikes me that appropriation 
and participation cannot be separated but seem to form the basic terms of a theory of 
learning. If we look at the philosophical "schools" or orientations to which appro
priation and participation are usually attributed, we find, roughly speaking, that ap
propriation is typically attributed to a cultural-historical approach, whereas partici
pation is attributed to constructivism, at least as it is related to the construction of 
taken-as-shared meaning. Whereas, under close scrutiny, this sketch certainly will 
appear to be much more differentiated it points our attention to the two major ap
proaches in the philosophy of signs: Plato's instrumentalism and Aristotle's repre-
sentationalism. I shall come to the complementarity of instrumentalism and repre-
sentationalism at the end of this chapter, pointing out that this complementarity 
could only be of benefit to the theory of teaching and learning. 

What I shall do is to take a number of questions that make it possible to compare 
the Vygotskian and the Peirceian approach. I shall begin with a discussion on what 
might be central concepts for Peirce and for Vygotskij. In this discussion, I am not 
striving to cover all the important topics and grounding concepts of Vygotskij and 
Peirce. 

One important topic is related to signs as means and the ubiquity of signs. 
Veresov (1999) argues that Vygotskij's understanding of the sign is essentially 

connected to his work on children with learning and developmental handicaps. Be
cause Vygotskij understood being handicapped in learning and development as a 
collapse of the structure of behavior, the goal of helping and therapeutic intervention 
was the reconstruction of that behavior. Vygotskij's approach was characterised by 
the idea that the relation of stimulus and response^ has to be re-mediated, that is, 
new means have to be found for mediating between the social and physical envi
ronment and the activity of the subject. These means are signs. If new signs mediat
ing stimulus and response can be integrated successfully into the structure of behav
ior, the handicap becomes more or less obsolete - and simultaneously this means 
that "higher functions," the specifically human functions, are back in operation 
again. In a sense, it is also the attempt to give back to the handicapped their self-
image as humans. 

For higher functions, the central feature is self-generated stimulation, that is, the crea
tion and use of artificial stimuU (Vygotskij 1978, 39) 

Vygotskij's approach to the role of signs could not be more mean-related, more in
strumentalist. Culture, in a sense, is also the aggregate of means, means to develop 
and to foster higher psychological functions. In a sense, even the social side of Vy
gotskij's main metaphor for appropriation, the "zone of proximal development" can 
be seen as a means for appropriation: Adults or "more capable peers" form the zone 
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of proximal development in which learning and development meet (see Vygotskij 
1987). In this light, adults and peers appear only as instrumental for appropriation, 
because they display the next step in the development of an ability and of knowl
edge. The "power of the sign" for Vygotskij does not so much spring from the sign 
itself but from using it as a means, from creating new signs arbitrarily to be used as 
means in novel situations.^ 

Contrary to Vygotskij, Peirce was not primarily interested in signs as means -
neither was he overconcerned with the construction of signs. Sign processes for him 
are the ground of being human expressed in the words "Man is a sign": 

... it is sufficient to say that there is no element whatever of man's consciousness which 
has not something corresponding to it in the word; and the reason is obvious. It is that 
the word or sign which man uses is the man himself. For, as the fact that every thought 
is a sign, taken in conjunction with the fact that life is a train of thought, proves that 
man is a sign; so, that every thought is an external sign, proves that man is an external 
sign. That is to say, the man and the external sign are identical, in the same sense in 
which the words homo and man are identical. Thus my language is the sum total of my
self; for the man is the thought (Peirce CP 5.314) 

It is claimed that the semiotic of Peirce is primarily a theory of reading signs (Tra-
bant 1996). In the process of reading and understanding signs, abductive processes 
are essential. 

Peirce is dealing with the "new" in development and in thinking primarily as it 
appears in connection with a form of logical conjecturing. This logical form does not 
codify the successful past of human thinking and observation but is directed toward 
the anticipation and development of the new. But abduction is not only directed to
ward the discovery of totally new entities. It is the essence of language that abduc
tions are necessary for understanding, just because language and speaking are and 
remain ambiguous. 

What is an abduction? Peirce introduces such a form of logical conjecture as ab
duction, a third form in addition to deduction and induction (cf., e. g.. Shank 1998, 
Hoffmann 1999). In an abduction, the relation between the facts in the premise and 
the conclusion is not necessarily only singular; but manifold relations are imagin
able: 

An originary Argument, or Abduction, is an argument which presents facts in its Pre
miss which present a similarity to the fact stated in the Conclusion, but which could per
fectly well be true without the latter being so, much more without its being recognized; 
... For example, at a certain stage of Kepler's eternal exemplar of scientific reasoning, 
he found that the observed longitudes of Mars, which he had long tried in vain to get fit
ted with an orbit, were (within the possible Hmits of error of the observations) such as 
they would be if Mars moved in an elHpse. The facts were thus, in so far, a Hkeness of 
those of motion in an elUptic orbit. Kepler did not conclude from this that the orbit 
really was an eUipse; but it did incline him to that idea so much as to decide him to un
dertake to ascertain whether virtual predictions about the latitudes and parallaxes based 
on this hypothesis would be verified or not. This probational adoption of the hypothesis 
was an Abduction. (CP 2. 96). 
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While induction shows the factual given-ness and deduction the logical necessity, 
abduction expresses only a possibility: 

Deduction proves that something must be; Induction shows that something actually is 
operative; Abduction merely suggests that something may be. ... Abduction is the proc
ess of forming an explanatory hypothesis. It is the only logical operation which intro
duces any new idea; for induction does nothing but determine a value, and deduction 
merely evolves the necessary consequences of a pure hypothesis. (CP 5.171) 

Now, it is interesting to ask how the idea of an abduction is connected to another as
pect of Peirce's thinking characterized by Roman Jakobson in admirable simplicity 
as follows: 

One of the most fehcitous, brilHant ideas which general Unguistics and semiotics gained 
from the American thinker is his definition of meaning as 'the translation of a sign into 
another system of signs' (4.127). (Jakobson 1985, 251) 

Jakobson is pointing to the elaboration of the notion of Interpretant by Peirce that is 
closely related to Jakobson's view of the importance of translation: 

The problem of translation is indeed fundamental to Peirce's views and can and must be 
utihzed systematically. Notwithstanding all the disagreements, misunderstandings, and 
confusions which have arisen from Peirces's concept of "interpretants," I would Hke to 
state that the set of interpretants is one of the ingenious findings and effective devices 
received from Peirce by semiotics in general and by the linguistic analysis of grammati
cal and lexical meanings in particular. The only difficulty in the use of these tools Ues in 
the obvious need to follow Peirce's careful delimitation of their different types and "to 
distinguish, in the first place, the Immediate Interpretant, which is the Interpretant as it 
is revealed in the right understanding of the sign itself, and is ordinarily called the 
meaning of the sign" (4.536): such an Interpretant of a sign "is all that is explicit in the 
sign itself apart from its context and circumstances of utterance" (5.474). I do not know 
of a better definition. This "selective" Interpretant, as distinguished from the 'environ
mental' one, is an indispensable but all too frequently overlooked key for the solution of 
the vital question of general meanings in the various aspects of verbal and sign lan
guages. (Jakobson 1985, 251) 

Distinguishing between an immediate, "selective" and a "contextual," "environ
mental" interpretant in a way reflects an old problem in the conceptualization of 
learning, that is, the notion that learning has to be understood also as learning about 
learning. I shall not go into the details of discussing whether Peirce actually was dis
criminating between an "immediate" and a "contextual" interpretant. As we shall see 
below, he was thinking about the role of "collateral experience" in semiotic proc
esses. 

In what follows, I would like to present a diagram that tries to capture the idea of 
a contextual interpretant as a variation. This variation attempts to picture an aspect 
of learning situations that is of such fundamental importance that it can be called a 
necessary and critical feature of human learning. I am talking here about metacogni-
tion, metaknowledge, decentering - something that makes learning possible in the 
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first place and thus can be called a fundament for education in schools. With his vi
sion of "deutero learning," Gregory Bateson (1972) drew attention to a characteristic 
feature of learning processes, namely, that progress in learning always aims at 
"learning to learn." Or, in other words, progress in learning is made possible because 
the learner can act from a higher or meta-level on to a previous level of learning. If 
one tries to imagine how climbing to a "higher" level might be achieved, it seems 
plausible to assume that this works according to a "metaphoric" principle as "some
thing is seen as something else." This, in a certain sense, can be understood as a link 
to Peirce's idea of abduction. 

What conceptual development has to achieve here is, basically, to show that the 
sign perspective or the semiotic view or, in Merlin Donald's terms (1991), the view 
of culture as representational make it possible to describe the centered, basic, ele
mentary process of meaning making as well as the secondary process operating on 
the elementary process and thus express "the meaning of meaning." 

If one understands, as is suggested above, the abductive process as a metaphor 
that includes viewing abduction as managing to translate something, as managing to 
"see something as something else," then it seems possible to view context as a deci
sive moment enabling metaphorical reflection. Here, too, Bateson (1972) has pre
pared the ground for understanding "higher" forms of learning or the development 
of the new in terms of the "development of contexts." 

In Peirce's thought, we find context in relation to the Interpretant primarily con
nected to what he called "collateral experience," as he writes in a letter to William 
James: 

Now let us pass to the Interpretant. I am far from having fully explained what the Object 
of a Sign is; but I have reached the point where further explanation must suppose some 
understanding of what the Interpretant is. The Sign creates something in the Mind of the 
Interpreter, which something, in that it has been so created by the sign, has been, in a 
mediate and relative way, also created by the Object of the Sign, although the Object is 
essentially other than the Sign. And this creature of the sign is called the Interpretant. It 
is created by the Sign; but not by the Sign qua member of whichever of the Universes it 
belongs to; but it has been created by the Sign in its capacity of bearing the determina
tion by the Object. It is created in a Mind (how far this mind must be real we shall see). 
All that part of the understanding of the Sign which the Interpreting Mind has needed 
collateral observation for is outside the Interpretant. I do not mean by "collateral obser
vation" acquaintance with the system of signs. What is so gathered is not COLLAT
ERAL. It is on the contrary the prerequisite for getting any idea signified by the sign. 
But by collateral observation, I mean previous acquaintance with what the sign denotes. 
Thus if the Sign be the sentence "Hamlet was mad," to understand what this means one 
must know that men are sometimes in that strange state; one must have seen madmen or 
read about them; and it will be all the better if one specifically knows (and need not be 
driven to presume) what Shakespeare's notion of insanity was. All that is collateral ob
servation and is no part of the Interpretant. But to put together the different subjects as 
the sign represents them as related - that is the main of the Interpretant-forming. Take 
as an example of a Sign a genre painting. There is usually a lot in such a picture which 
can only be understood by virtue of acquaintance with customs. The style of the dresses 
for example, is no part of the significance, i.e. the deliverance, of the painting. It only 
tells what the subject of it is. Subject and Object are the same thing except for trifling 
distinctions. [—] But that which the writer aimed to point out to you, presuming you to 
have all the requisite collateral information, that is to say just the quality of the sympa
thetic element of the situation, generally a very familiar one - a something you probably 
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never did so clearly realize before - that is the Interpretant of the Sign, - its "signifi
cance" (The Essential Peirce, Vol. 2, 493-494) 

What would the well-known triad of sign-object-interpretant (see Figure 1) look like 
if we were to try to incorporate context into the diagram for that triad? 

If we were to try to incorporate "context" into that diagram, we would be want
ing to express the specific quality of the interpretant to become the object of another 
triad. This seems to be exactly the point characterizing a learning meta-perspective 
because learning is made an object of learning. 

Object Interpretant 

Figure 1. The semiotic triad according to Peirce 

A diagram capturing this specific situation might look like Figure 2. 
The diagram illustrates that a meta-perspective can primarily be taken because 

the interpretant is changing its position: Now, it has become the object of another 
contextual triad with yet another interpretant. However, if we look closely at the fol
lowing excerpt from Peirce, we can see that this quality of the "meshing" of triads 
seems to be an effect of the fact that, ultimately, the "meaning of a representation 
can be nothing but a representation": 

Object 

Context 

Figure 2. A ''metaphorical triad 
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A sign stands for something to the idea which it produces, or modifies. Or, it is a vehi
cle conveying into the mind something from without. That for which it stands is called 
its object; that which it conveys, its meaning; and the idea to which it gives rise, its in-
terpretant. The object of representation can be nothing but a representation of which the 
first representation is the interpretant. But an endless series of representations, each rep
resenting the one behind it, may be conceived to have an absolute object at its Umit. The 
meaning of a representation can be nothing but a representation. In fact, it is nothing but 
the representation itself conceived as stripped of irrelevant clothing. But this clothing 
never can be completely stripped off; it is only changed for something more diapha
nous. So there is an infinite regression here. Finally, the interpretant is nothing but an
other representation to which the torch of truth is handed along; and as representation, it 
has its interpretant again. Lo, another infinite series. (A Fragment, CP 1.339, Not dated) 

Something important becomes apparent when the original Peircian triad is extended 
as in Figure 2. It shows only the first step of an endless spreading of these meshed 
triads: The triads are woven together in infinite processes of semiosis. An end of the 
actual and potential weaving cannot be determined. 

This web-like structure, this weaving, surprisingly echoes much of the idea of a 
rhizome put forward by Gilles Deleuze."^ For the present discussion, only the follow
ing features of rhizomatic structures should be briefly mentioned: Each point of a 
rhizome can be connected to any other point; a rhizome starts to grow from the mid
dle, but it has no center; if a rhizome is cut or interrupted, it continues to grow at any 
given place. The rhizomatic form of representation par excellence is the map: repre
sentations are no longer layered and hierarchically organized, but spread over on the 
flat surface of the map. 

In contrast to centered (even polycentric) systems with hierarchical modes of communi
cation and pre-estabHshed paths, the rhizome is an acentered, non-hierarchical, non-
signifying system without a General and without an organizing memory or central 
automation, defined solely by a circulation of states. (Deleuze & Guattari 1987, 21) 

In conclusion, I would like to come back to the problematique mentioned at the out
set. It seems that the dichotomy of the reception and production of signs closely con
nected to the antagonistic approaches of representationalism and instrumentalism 
ultimately does not make sense. Obviously, it is not so exciting to continue the age-
old discussion between a Platonic approach, emphasizing the instrumental character 
of signs and the Aristotelian approach, emphasizing the representational nature of 
signs (see, e. g., Keller 1995). It would be more interesting to find and define per
spectives, that build on the complementarity of these two paradigms. Here, these 
paradigms have been closely connected with the work of Vygotskij and Peirce; Vy-
gotskij building his approach of semiotic mediation on the idea of thinking and act
ing as fundamentally mediated by signs, and Peirce putting forward the idea of an 
endless semiotic web based on the incessant activity of the interpretant. 

If we manage to stop being trapped in the familiarity of the juxtaposition of rep
resentation and instrument, of the reception and production of signs, we can begin to 
ask new questions and do research in new fields. It is quite obvious that abduction, 
to take an example, is not only a passive process of correctly "reading" the signs. 
Already here we can see that "producing" new elements, new approaches, also plays 
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a role - and it is certain that abduction cannot fully be understood until the interplay 
between the productive and the receptive, the representational and the instrumental 
character of signs is better understood. 

I would like to illustrate this aspect with another example. This example will also 
touch upon another aspect that seems to be of key importance for a semiotically in
spired theory of teaching and learning. Briefly, this aspect comes into focus if one 
takes into account that the semiotic relations, the complementarity of mediating and 
weaving and of producing and reading signs, have to be brought alive by real per
sons. It will not be enough to point out that everything is connected to everything 
else; it is the quality of the relation that will be decisive. 

This point can be illustrated by taking an example from developmental psychol
ogy and psychopathology. With the development of his theory of attachment, John 
Bowlby (1969, 1973, 1980) has laid the ground for a very fruitful exploration of the 
reasons why socialization sometimes fails. It seems that being closely and securely 
attached to a family is the decisive factor for growing up positively. More recent 
studies are increasingly asking how this attachment relation is perceived by children 
and adults. The "secure base" that children can attach to and the attachment relations 
themselves have to be represented by a corresponding "internal working model" 
(see, e. g., Bretherton & Mulholland 1999). It is obvious that neither is independent 
from the other: Good attachment relations co-occur with a good internal working 
model and vice versa. 

In his work, Michael Otte has often pointed out that the mathematics teacher has 
to be, as Gramsci coined it, an exemplary intellectual (see, e. g., Otte 1994). This 
imperative is another expression of the necessity for a "secure base": for the rela
tions of students to their teachers as well. I do not want to say that there has to be an 
attachment to teachers like the attachment to parents and family - although in the 
first grades, attachment-like relations to teacher tend to be the rule rather than the 
exception. The relation of the teacher to the students should be one in which the 
teacher takes over responsibility for providing orientation in the endless weaving by 
importing authentic "collateral experience" as Peirce would say. It seems a far cry 
from a "secure base" in learning, if students are taught to construct their own mean
ing all the time. The assumption that this might be possible at all, underestimates the 
creativity of the sign processes operating even in the reception of signs. 

At the same time, mediating and re-mediating the relations to the "secure base" 
by using signs as instruments, seems essential. I feel that it would be most rewarding 
to put more efforts into research designed to reveal the semiotic processes, the com
plementarity of mediating and weaving. 

Institutfur Didaktik der Mathematik, Universitdt of Bielefeld 

NOTES 

' Barthes 1981,76 
" Although Vygotskij uses the two classical categories of behaviorism here, he is nothing less than a be-
haviorist. For historical reasons and for reasons lying beyond the scope of this article, Vygotskij is using 
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here the categories of Pavlovian reflexology while simultaneously criticizing the approach (for more de
tail cf. van der Veer & Valsiner 1991; Veresov 1999) 
^ It is interesting to note that from this vantage point, Vygotskij's educational-psychological approach has 
a very strong "constructivist," productive orientation. This is surprising, because the dominant tone of the 
constructivist critique on Vygotskij had been that his conception of appropriation was too much based on 
the notion of a "reception" of knowledge instead of its construction. 
"̂  But also other approaches could be mentioned here, such as the concept of dissipative structures put 
forward in the context of a theory of self-organization by Prigogine (see NicoHs & Prigogine 1977; 
Prigogine & Stengers 1981) or similar ideas on the manufacturing of social order without a central steer
ing ordering power formulated by Bourdieu (1979). 
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SEMIOTIC MEDIATION IN THE PRIMARY SCHOOL: 

DURER'S GLASS 

Abstract. "During the seventeenth century geometrical perception became separated, so to say, into two 
relatively distinct forms of geometry, into two different geometrical styles. One of these is represented by 
the work of Descartes: the geometry of mechanical-metric activity. The straight line in Cartesian 
geometry corresponds to an axis of rotation or to the stiffness of a measuring rod. The other geometrical 
style is represented by the work of Desargues. The straight line of Desarguesian geometry is the ray of 
Hght or the Une of sight." These sentences were written by Michael Otte in 1997. Aim of this paper is to 
present the rationale, design and early findings of a teaching experiment, where the Desarguesian form of 
geometry was approached at by 5^ graders, through the use of a cultural artifact and guidance of the 
teacher. 
Key Words: cultural artefacts, Durer's glass, embodiment, geometry, polyphony, polysemy, primary 
school, semiotic mediation, teaching experiment, visual pyramid. 

1. INTRODUCTION 

The experiment presented in this paper concerns the Desarguesian form of 
geometry. 

As found in a previous experiment (Bartolini Bussi 1996) replicated several 
times, this field of experience (Boero et al. 1995) allows even younger pupils to 
construct a germ-theory within which they may produce examples of theorems 
(Mariotti et al. 1997): in this case, the theory is based on a single axiom, i. e. the 
conservation of straight lines in the projections from one plane to another. Aim of 
this paper is to present the rationale, design and early findings of a new teaching 
experiment in a 5* grade classroom: the activity developed in the previous 
experiment is enriched with the introduction of a big-size model of Durer's glass, i. 
e. an instrument for perspective drawing, reconstructed by Marcello Pergola, in the 
Laboratory of Mathematical Machines of the Department of Mathematics of the 
University of Modena (Bartolini Bussi et al. 1999 b). 

The theoretical framework draws on works by Vygotsky and Bachtin with 
additional elements coming from activity theorists (such as Engestroem and 
Wartofsky). The above elements are, however, filtered so as to meet the needs of 
designing and analysing effective teaching experiments in the mathematics 
classrooms. 

77 
M. H. G. Hoffmann, J. Lenhard, F. Seeger (ed.). Activity and Sign - Grounding Mathematics 
Education. Festschrift for Michael Otte, 11 - 90. 
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2. THEORETICAL FRAMEWORK 

In this section we shall sketch very briefly (a longer version is in preparation) the 
main elements of a theoretical framework of classroom activities centred on 
artifacts. The crucial issue is given by the transposition of the theoretical construct 
of semiotic mediation (Vygotsky 1974; 1987; 1992) into educational design and 
classroom implementation. 

Three different poles are to be considered in a didactic application of the 
Vygotskian construct of semiotic mediation: 
- the cultural-historical pole, to describe the features of technical and 

psychological tools which have the potentiality of creating "new forms of a 
culturally-based psychological process" (Vygotskij 1987, 64). 

- the didactic pole, to describe the way of designing, implementing and analysing 
processes of semiotic mediation; 

- the cognitive pole, to describe the process of internalisation of interpsychological 
activity, that creates the plane of individual consciousness. 

2.1. First pole: the cultural historical perspective 

Vygotskij distinguishes between the function of mediation of technical tools and 
that oi psychological tools (or signs or tools of semiotic mediation), discusses on 
their relation and offers a list of examples: 

language, various systems for counting, mnemonic techniques, algebraic symbol 
systems, works of art, writing, schemes, diagrams, maps, and mechanical drawings, all 
sorts of conventional signs and so on (Vygotskij 1974, 227). 

However, as Engestroem (1987) writes, "the exciting relations between technical 
and psychological tools were not elaborated concretely by Vygotsky." To deepen the 
discussion, Engestroem explicitly refers to Wartofsky's (1979) discussion about 
cultural artifacts (i. e. primary, secondary and tertiary artifacts), with an explicit 
identification of technical tools with primary artifacts and of psychological tools 
with secondary artifacts (Engestroem 1987, 62). 

What constitutes a distinctively human form of action is the creation and use of 
artifacts, as tools, in the production of the means of existence and in the reproduction of 
the species. Primary artifacts are those directly used in this production; secondary 
artifacts are those used in the preservation and transmission of the acquired skills or 
modes of action or praxis by which this production is carried out. Secondary artifacts 
are therefore representations of such modes of actions (Wartofsky 1979, 200 ff.). 

There is also another class of artifacts {tertiary artifacts) 

... which can come to constitute a relatively autonomous 'world,' in which the rules, 
conventions and outcomes no longer appear directly practical, or which, indeed, seem to 
constitite an arena of non-practical, or 'free' play or game activity. This is particularly 
true ... when the relation to direct productive or communicative praxis is so weakened, 
that the formal structures of the representation are taken in their own right as primary, 
and are abstracted from their use in productive praxis (Wartofsky 1979, 208 ff.). 

Mathematical theories are examples of tertiary artifacts, organizing the models 
constructed as secondary artifacts. Mathematical theories have the potential of being 
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expanded to create something anew, that maintains links with practical and 
representative activities. Cartesian Geometry and Desarguesian Geometry are 
examples of tertiary artifacts which, as Otte clearly discussed (1997) because of 
their origins, constituted two mutually exclusive theoretical systems for nearly two 
centuries. 

However, the links with the origins can be neglected and mathematical theories 
correspond to a monological form of knowledge, as defined by Bachtin, who 
distinguishes between the case of exact and human sciences, as monological and 
dialogical forms of knowledge. 

Exact science is a monological form of knowledge: the mind contemplates a thing, on 
which pronunciation is performed: here there is only a subject: he who knows 
(contemplates) and speaks (pronounces). In front of him there is only the dumb thing 
(Bachtin 1988, 377). 

This statement can certainly be applied to most of the 20^-century mathematics 
treatises (in Bourbaki's style). A different experience is made when the origins of 
some pieces of mathematics can be reconstructed, together with the primary and 
secondary artifacts that have characterised their historical development. In this way 
mathematical activity loses its monological feature and acquires 

[....] the specific task of re-establishing, transmitting and interpreting other people's 
discourse (Bachtin 1979, 160). 

In this perspective, the practical, representative and theoretical aims are supposed to 
be (at least potentially) embodied in the activity with the same artifact which, in this 
way, acquires polysemy or multivoicedness (Engestroem 1990). This has two 
consequences for education. On the one hand, the presence of an artifact does not 
mechanically determine the way in which it is actually used and conceived of by the 
students; on the other hand, the presence of an artifact may call to life different aims 
of the activity, through specific tasks and guidance of the teacher. 

2.2 Second pole: the didactical perspective 

The polysemy or multivoicedness of cultural artifacts makes them good candidates 
to rouse and sustain mathematical discussions in the classroom. The term 
mathematical discussion has been introduced by Bartolini Bussi (1996): 

A mathematical discussion is a polyphony of articulated voices on a mathematical 
object (e. g. a concept, a problem, a procedure, a structure, an idea or a beUef about 
mathematics) that is one of the motives of the teaching-learning activity. The term voice 
is used following Bachtin, to mean a form of speaking and thinking, which represents 
the perspective of an individual, i. e. his/her conceptual horizon, his/her intention and 
his/her view of the world. 

Different activities can be designed, which are centred on an artifact, whose 
introduction defines the teacher's role as follows: exploiting the (potential) polysemy 
of the artifact, by constructing occasions and supporting the articulation of different 
voices. 

The teacher's role in exploiting the artifact polysemy may be rephrased also in 
terms of semiotic mediation. This process is started when the teacher intentionally 
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articulates a primary artifact (e. g., a concrete instrument to be handled in the 
solution of a problem, like abacus, compass, drawing instrument, gear, 
perspectograph) and a secondary artifact (e. g., a text or a system of signs, 
describing how and why it should be constructed and used). Whilst the primary 
artifact is initially a technical tool (oriented outwards), the secondary artifact may 
become a psychological tool (oriented inwards): 

The use of signs leads humans to a specific structure of behaviour that breaks away 
from biological development and creates new forms of a culturally-based psychological 
process. (Vygotsky 1987). 

In this way, conditions are created for the appropriation of those tertiary artifacts, 
historically rooted in the praxis with those primary and secondary artifacts. 

2.3 Third pole: the cognitive perspective 

From the individual perspective, the appropriation of tertiary artifacts may be 
described as the construction of mathematical meanings and ways of thinking. The 
most powerful Vygotskian instrument for analysing individual cognitive processes is 
internalisation (Vygotskij 1974, 200 ff.) Elsewhere, the same author emphasizes the 
need to combine three different contributions: 

Children solve practical problems helping themselves with language, eyes and hands. 
This unit of perception, language and action, which in the end produces interiorization 
of the visual field, constitutes the central theme for all types of analyses regarding the 
origin of exclusively human forms of behaviour (Vygotskij 1987, 45). 

This internal visual field is a part of the student's internal context where to carry on 
mental experiments, also supporting the production of mathematical reasoning. This 
emphasis on the body (eyes, hands and action) is consistent with a recent position in 
cognitive science, according to which mathematical ideas are, to a large extent, 
grounded in sensory-motor experience (Lakoff & Nunez 2000). 

3. TOWARDS CLASSROOM EXPERIMENTS ABOUT DESARGUESIAN 
STYLE: A PRIORI ANALYSIS 

The pivot of our analysis is a primary artifact, i. e. Diirer's glass, that is considered 
as the germ from which secondary and tertiary artifacts have been historically 
produced. 

3.1 Diirer's glass as a primary artifact 

Since the 15* century, the production of illusionistic plane (2-D) representation of 
objects (3-D) has often been realised by means of physical instruments that help the 
painter to use one eye only, keeping it fixed when painting. The simplest 
perspectograph was composed by an eyehole and a transparent screen (Figure 1) 
where the painter traced directly the apparent contour of the object. This simple 
device is the ancestor of a rich family of instruments for perspective, which 
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Figure 1. Diirer's glass. 

introduced additional equipment to expand its potentialities or to solve some 
practical problems (Bartolini Bussi, & Mariotti 1999; Field 1997). 

3.2 From Diirer's glass to secondary artifacts 

This early specimen of perspectograph was described in Alberti's and Diirer's 
treatises. The descriptions are mixtures of rules for construction, rules for use and 
justifications of its functioning. From the ancient treatises (Piero della Francesca, De 
Prospectiva Pingendi, 1460; A. Diirer, Underweysung der Messung mit Zirkel und 
Richtscheit, 1525; L. B. Alberti, De Pictura, 1540). texts may be easily extracted, 
speaking different voices, representing 
- The need from which the production of primary artifacts is generated. 

It is necessary to be able to align on the plane in its own form everything man intends to 
do (Piero della Francesca). 

I don't believe infinite labour is required on the part of the painter, what one expects is a 
type of painting which looks raised and faithful (L. B. Alberti). 

- The explanation of the ways in which the instrument can be built and used: 

A hole where you can place an eye, and this will allow you to see better (A. Diirer). 

What you see through the glass inside the frame will be represented on the glass with 
the aid of a brush. This is advisable to all those wishing to portray somebody without 
being sure about their competences (A. Diirer). 

- Justification of functioning, by means of a mathematical model: 

Thus painting will be nothing more than intersection of the visual pyramid [...] in a 
surface[...] (L. B. Alberti). 

Very often, the texts contain multivoiced utterances, as in the following example. 
The realization of the instrument is explained referring to a mathematical model 
which is however conceived as a physical object. 
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I place a veil between the eye and the object, so that the visual pyramid can penetrate 
owing to the subtle veil (L. B. Alberti). 

The orthogonal projection of the painter's eye on the plane of the 'veil' (glass). 
defines a point (the centric point, also called 'eye' in ancient treatises) that is going 
to acquire a special status in the code for perspective drawing (Rotman 1987). 

However, Durer's glass leads to the genesis of at least two mathematical models, 
related to each other: the plane section of a pyramid (or cone) for a plane 
representation and the centric point, as representation of the meeting point (infinitely 
far) of a pencil of parallel lines, orthogonal to the picture plane. 

3.3 From Diirer's glass to tertiary artifacts. 

Modern projective geometry is rooted in the tradition of perspective practice. 
Actually, the definition of conies as projective invariants (a manifestation of which 
are circles) draws on the projection from one plane to another, allowing conies to be 
considered as anamorphoses of circles (Bartolini Bussi & Mariotti 1999; Bartolini 
Bussi et al. 1999b). 

4. A CLASSROOM EXPERIMENT IN A 5™ GRADE CLASSROOM 

4.1 The design 

The new experiment has been designed for a 4* - 5^ grade classroom. The original 
design (not given here owing to space constraints) is structured in three phases, 
related to primary, secondary and tertiary artifacts. The three phases are not rigidly 
separated; in fact, the presence of the teacher, as orchestrator of classroom activities, 
introduces a teleological element that makes each phase a base for the following 
one. Moreover, from the very beginning, the teacher is aware of the polysemy of 
each artifact: the intentional choice of the problems and management of the 
collective interaction aim at introducing and developing polysemy for all the pupils. 

In particular, a hypothesis can be stated, concerning the two kinds of artifacts 
(primary and secondary), intentionally introduced into classroom activities. 

V^ Hypothesis (Polysemy): The intrinsic polysemy of the artifact supports the 
production of the polyphony of voices, in classroom activities (Polysemy 
hypothesis). 

This hypothesis is expected to shape the design and analysis from two perspectives: 
the teacher's perspective (how the teacher introduces and supports polysemy) and 
the pupils' perspective (how the pupils internalise polysemy). 

There is, however, another intention in the time devoted to the exploration and 
use of the concrete artifact. The experience of the concrete simple structure of a pair 
of objects (a point, materialised by the eye-hole, and a plane, materialised by the 
glass) should produce, when the artifact is no longer available, gestures like closing 
one eye, or tracing a plane in the air with a flat hand. The latter, which substitutes 
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the presence of a concrete plane in a fixed position, has a generaUsing feature, as the 
gesture may allude to a plane in whatever position. The central function of body 
experience is witnessed also by the rich metaphors in the historical sources. We thus 
have the following hypothesis: 

-,/ij 
2^ Hypothesis (Embodiment): The concreteness of the artifact supports the 
production of gestures and metaphors, that are maintained also in the step of 
secondary artifacts and beyond, 

The data collected in the classroom are expected not only to test the above 
hypotheses, but also to allow an exploratory analysis to describe the role of both 
polysemy and embodiment in the individual construction of mathematical meanings 
and ways of thinking. 

4.2 Implementation of a classroom experiment 

Table 1. Description of the first (A) and second (B) phases of the teaching experiment with the 
start of the third ( C) phase 

Session 
1 
A 

A 
3'̂ ' 
B 

B 

B and C 

6 
B 

[ 7 
B 

Tasks 
Discussion 

Individual 
drawings 
Discussion 

Individual 
drawing and 
Discussion 
Discussion 

Small group 
work and 
spokesman's 
presentation 
Individual 
text 

Short description 
Interpretation of a primary artifact: a Diirer's glass that 
shows the skeleton of a cube and its perspective drawing 
(Figure 2). 
Free drawing of the primary artifact (Figure 3) 

Recall with the observation of individual drawing of the 
previous year. Interpretation of secondary artifacts (the 
voices given in § 3.2 above) 
Real life drawing of a table with some objects. 1 
Construction of the table of invariants in the shift from 
reality to representation (see Bartolini Bussi, 1996). 
Focus on the transformation of rectangular shapes. \ 
Construction of the definitions of several types of 
quadrilaterals. 
Design of a tool for effective real life drawing 

Written report on the previous task 

The experiment was started at the end of the 4^ grade (May 2002) and continued in 
the 5^ grade (from October 2002). The teaching experiment was articulated into 
three phases (see the table 1). 
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Figure 2. Looking at Dilrer glass Figure 3. Drawing DUrer glass 

The third phase was planned following the design of a previous experiment 
(Bartolini Bussi 1996). The first two phases are centred on primary and secondary 
artifacts (Diirer's glass and texts about its use). In the third phase, the main objective 
concerns pupils' appropriation of styles of mathematical reasoning: in particular, 
producing definitions and 'theorems' within a 'germ theory' of Desarguesian 
Geometry, based on transformation and invariants. A first approach to Desarguesian 
Geometry, emerged during a mathematical discussion (Session 5): it was concerned 
with the 'general' definition of quadrilaterals as anamorphoses of rectangles. 

4. 3 Some data from the classroom 

Several kinds of data have been collected: 
- individual protocols (texts, drawings); 
- audio-recordings (and sometimes video-recordings) of classroom activities; 
- photos of the pupils at work; 
- teacher's and observer's notes. 
All the collective verbal interchanges have been transcribed and analysis is in 
progress. In the following, owing to space constraints, only some short excerpts of a 
discussion (session 3) will be discussed, to illustrate the Polysemy and the 
Embodiment Hypotheses. 

The discussion is centred on the interpretation of a collection of short sentences, 
drawn from different manuals on painting (see § 3.2 above). The text has a central 
role and is used by the teacher as a tool of semiotic mediation. It is given as a 
stimulus, a sign to be interpreted. The task ('read and interpret') is introduced by the 
teacher and repeatedly recalled over time. The model of Diirer's glass is no more 
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available in the classroom. The sentence that introduces the first mathematical 
model is the following: 

Thus painting will be nothing more than intersection of the visual pyramid [...] in a 
surface [...] (L. B. Alberti). 

Surprisingly, the word pyramid seems to be easy to interpret, with the help of the 
reference to Egyptian monuments. There is a shift towards the description of the 
shape of the pyramid by means of the number and shape of its faces. Then a very 
interesting exchange takes place. 

Alessandro B.: If the base is triangular it has 4 [faces], if the base is square it necessarily 
has 5. It depends on the base. The one we are talking about has either a square or a 
rectangular base, because we imagine a painting or a piece of glass and the point of the 
triangles reaches the eye. 
Federica: Yes, but Leon Battista Alberti's is not a real solid, it's an imaginary soUd 
which takes shape while you're looking at it. We can't see it, we can see it only when 
we think of it, if we want to see it. For example we can see it now because we have just 
read it. 
Assia: Of course it's imaginary, otherwise it would harm you and then it wouldn't even 
allow you to see. 
Voci: Can you imagine a soHd getting into your eye! 
[Many gestures, funny ones as well! A moment of confusion and jokes about the visual 
pyramid with participation of the entire class]. 

What Alessandro B. says gives an example of a multivoiced discourse, where the 
pivot element is the pyramid. Although the word 'pyramid' does not appear 
explicitly, there is cross reference to the school pyramid, to the vision pyramid and 
to its origin in Durer's glass. Other pupils take part in the discussion. 
Communication is possible because, although different interpretations rise from a 
particular sign, they find a shared context in the common experience of the use of 
Durer's glass. Moreover, meanings can evolve because each context contributes to 
enriching the interpretation given in the other. 

The emergence of the joke confirms that the multi voiced discourse is mastered 
by many pupils. The joke witnesses the 'pleasure of absurdity' given by wavering 
between two different contexts and, at the same time, as Freud (1972) tells us, it may 
relieve the tension caused by 'critical reasoning' which, under this circumstance, 
reveals a conflictual interpretation of the term pyramid. 

A new example is offered by the interpretation of an everyday word. Pupils 
guess that the word 'intersecazione' (the ancient spelling for 'intersezione,' i. e. 
intersection) is related to the word 'segare' (i. e., to saw) and interpret the excerpt as 
follows: 

Alessandro B.: [...] If you saw the visual pyramid you obtain the painting. 
Luca: How can you possibly saw the visual pyramid which is a soHd that does not exist? 
Alessandro B.: Exactly how you imagine it. If you see it because you imagine it, you 
can saw it as well. You have to work with the mind. 
Elisabetta: It's Uke working with imagination: you have to imagine things and then they 
seem true. 
Marcello: It's not as it is with imagination, but with the mind because you have to saw 
well where you want, in order to draw what you want to do. 
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Federica: Yes, all right, but in any case you have to imagine it. I understood this, if you 
saw it near the object you obtain a large image, if you saw it near the eye you get a 
smaller image. 
[With gestures, many children cut, saw the visual image. They trace many imaginary 
planes which are parallel to an imaginary painting.] 
Alessandro B.: If you go down straight, because with our hands we form a kind of plane 
parallel to the one of the objects [With his hands he traces two parallel planes in space]. 
In this way you certainly obtain a figure which is exactly the same as the base of the 
pyramid, but smaller. 
Luca: Franca [the teacher], try to draw it on the blackboard so that we can understand 
better. 
Teacher: I'll try, but I can't guarantee that you will understand better, [the teacher 
draws, see the Figure 4] 
Marco: Now we can understand better why it comes out with the same figure .., 
Alessandro B.: That's because you're sawing it in parallel. If you saw it obUquely, you 
obtain another figure, but I don't know what it is. Leon Battista Alberti tells us painting 
is only what there is if you saw the visual pyramid where you want. And then Federica 
is right when she says that if you saw the visual pyramid near the eye your drawing 
becomes very small. 
Federica: Franca if you read what is written afterwards, written by Diirer, it teaches you 
what you have to do to saw the visual pyramid. Wlien he says that you have to paint on 
glass, it's as if we went to the glass of the window and on a Uttle piece of glass, sort of 
on a triangle, it's as if we were drawing what we see outside, right inside that Uttle 
painting. [She gets up, goes towards the glass, where she traces a rectangle with her 
finger and then pretends to draw inside what she sees]. It's as if the glass had 
sawn/intersected the visual pyramid. 

As in the previous excerpt, a dialogue takes place between the concrete referent and 
the ideal model. They support each other: Durer's glass may be used to interpret the 
mathematical model and viceversa. A crucial role is played by certain words of the 
given texts, which, by themselves, may evoke different contexts; however, words 
are not the only signs involved in this complex semiotic activity. 

Occhio 

Oggetti da disegnare 
(objects to be drawn) 

Figure 4. What the teacher draws on the blackboard 
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Firstly, there are gestures. Widely used by the pupils, gestures miming planes and 
lines in whatever position constitute a fundamental support to image a pyramid. Like 
the word 'pyramid,' gestures may represent both the concrete and the ideal pyramid, 
but better than the words, they may afford to represent general geometrical (spatial) 
properties. 

Secondly, there are drawings. The teacher's drawing, requested by a pupil, seems 
to support pupils' mental imaging. Both hypotheses are confirmed in these short 
excerpts. 

The sense of the text and the sense of the instrument are reconstructed with cross 
reference to each other. The discourse produced by the pupils is multivoiced, not 
only in the collective context (alternation of voices as alternation of turns) but also at 
the individual level (a pupil may control both voices by him/herself). Hence the 
polysemy of the artifacts is not only introduced by the teacher but also internalised 
by many pupils. 

The Embodiment Hypothesis is also confirmed: we observe a rich production of 
gestures; pupils' gestures support their mental imagery attempt to adapt the pyramid 
model to the painting situation to be explained. In particular, it seems that, after the 
intervention of Elisabetta, many pupils look for and find a confirmation of their 
interpretation in miming the cutting of the pyramid. 

The space constraints of this paper do not permit to go any further in our 
analysis. However, we think that the previous examples give sufficient evidence of 
how the articulation of voices is related to the polysemy of the artifact and how 
gestures and metaphors may provide a powerful base to interlace different meanings. 

5. CONCLUDING REMARKS AND OPEN PROBLEMS 

As the previous example shows, the theoretical framework presented in this paper, 
which originated the two hypotheses, seems to provide a powerful tool both to 
design and interpret educational intervention. Deeply rooted in the Vygotskian 
theory, this frame is an attempt to explain the complex functioning of artifacts of 
different types in the construction of mathematical meanings. The analysis of the 
interrelation among different artifacts, as modelled by Wartofsky's classification, is 
the main point, characterizing the evolution of this theoretical framework, in respect 
to those presented in previous works. 

The polysemy of a primary artifact, Diirer's glass, and the following emergence 
of a mathematical theory were reconstructed through the historical analysis, based 
on a number of texts, describing how and why to use this tool in the drawing. The 
teacher was in charge of introducing polysemy in the mathematics classroom. The 
new teaching experiment aimed at refining the previous hypotheses (Bartolini Bussi 
1996) concerning the key role of texts (secondary artefacts) as instruments of 
semiotic mediation, and focused on the importance of a direct link with the 
experience on a primary artefact. A text may play a crucial role, and we have shown 
how the teacher may use it: intepretation of a text shows its power in triggering a 
semiotic game within which meanings may be evoked and evolve. However, the 
emergence of mathematical modelling seems to be strictly related to the fact that it 



88 M. G. BARTOLINI Bussi - M. A. MARIOTTI - F. FERRI 

can be grounded in the concrete experience with a primary artefact, experience 
which provides all the pupils with a source of meaning. In particular, direct 
manipulation of the artifact, constitues the basic element for interpreting a text, but 
also provides the concrete reference within which one interprets the mathematical 
model evoked in the text. 

The findings of the first part of the teaching experiment confirm our hypotheses: 
- the function of polysemy of an artifact, as means to fuel multivoiced discourse, 

which may be directed according to the intention of the teacher and the 
possibility that polysemy is internalised by most pupils; 

- the function of body experience, that is of concrete manipulation and its mimic, 
both in the social interaction, when the class look for a shared meaning, and in 
the individual action, when the tension of interpretation asks for an immediate 
reference. 

These findings are consistent with those of other experiments, which all show the 
potentialities of signs (secondary artifacts) with respect to both the primary and the 
tertiary artefacts (gears, Bartolini Bussi et al. 1999 a; compass, Bartolini Bussi 2002; 
drawing instruments and pantographs, Bartolini Bussi 1998, 2001; Bartolini Bussi & 
Pergola 1996; abacus, Bartolini Bussi, 2003; big size models of conic sections, 
Bartolini Bussi, to appear). In the quoted experiments the primary artifacts are 
concrete, physical instruments, taken from the history of mathematics and 
technology, and represented by historical sources (secondary artifacts). 

These findings are also consistent with those coming from other experiments 
carried out within a Vygotskian perspective and centred on the semiotic mediation 
processes related to the use of micro world (Mariotti 2001, 2002, Mariotti & Cerulli 
2001, Laborde & Mariotti 2002). where specific elements of the micro world 
(dragging facility, commands available, macro ...) may be used as instruments of 
semiotic mediation. In the case of a micro world, primary and secondary artifacts are 
intimately linked so that sometimes it is difficult to separate them, to the extent that 
the polysemy of signs is even more evident. On the contrary, the specificity of 
'manipulating virtual objects' surely demands a reformulation of the Embodiment 
Hypothesis. However, we think that similarities and differences between concrete 
instruments, coming from historical tradition, and new technologies, generate a 
number of crucial questions and provide a stimulating open field of investigation. In 
this new field we intend to design one of our future research projects. 
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HEINZ STEINBRING 

DO MATHEMATICAL SYMBOLS SERVE TO 
DESCRIBE OR CONSTRUCT "REALITY"? 

Epistemological Problems in Teaching Mathematics 
in the Field of Elementary Algebra 

Abstract. By means of an epistemological analysis of a teaching episode from a mathematics classroom 
the paper tries to exempHfy and to concretize some fundamental ideas developed in a theoretical perspec
tive by Michael Otte towards the basic role of visuaUzations and metaphors for mathematics teaching. 
The metaphor "The equation is a balance" is taken as a paradigmatic case. ''The equation is a balance is a 
sentence not to be taken verbally, and the seemingly abstract (the algebraic equation) cannot be Umited to 
the seemingly concrete and empirical (the balance) in a process of reduction and of visuaHzation, but on 
the contrary, the balance represents the highly general meaning of the interaction or the reciprocity or it 
stands for the dynamic and compensation. ... The real balance has meaning for the equation. The alge
braic concept of equation could not have been constituted without the experience of the balance" (Otte 
1984). 

Key words: epistemology, epistemological triangle, mathematical knowledge, sign, sign language, sym
bol. 

VisuaUzations in mathematics are no pictures, no illustrations nor visual exempHfications. 
They act as metaphors. A metaphor must be spontaneously acceptable and intuitively evi
dent; ...the probably oldest and most widely spread metaphor in mathematics [is]: "The 
equation is a balance" (Otte 1984). 

1. INTRODUCTION: ELEMENTARY ALGEBRA AS A MATHEMATICAL 
SIGN LANGUAGE 

In general mathematics teaching, elementary algebra is of special interest. Following 
the first years of school, in which arithmetic mainly stands in the centre of mathe
matics instruction, a new difficulty, yes, often a break in the development of the stu
dents' mathematical thinking takes place with the content of algebra. The most strik
ing features of algebra are the new signs, the letters, the variables, the operation 
signs, the chains of sign-like combinations. Among other things, algebra represents 
something like a mathematical language, a sign language. 

Mathematics is often regarded as a difficult and mysterious science because of the nu
merous signs it uses. Obviously, there is nothing more inconceivable than a sign lan-
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guage we do not understand. Likewise, a sign language, which we understand only 
partly and whose use we are not familiar with, is hard to follow. (Whitehead 1948, 35) 

This aspect of algebra as a mathematical sign language will be at the centre of this 
analysis. Which are the particularities of this algebraic language? How does one 
"speak" in this language? Which meaning do the "words" and the "phrases" in this 
language have? How are sense and meaning communicated in this language? Which 
special social communication and mathematical culture is constituted with and by 
means of this language? 

In a first understanding, the algebraic sign language mainly has an economic 
function; the algebraic signs serve to abbreviate, simplify, clarify, and so forth com
plex circumstances. With the signs, other objects are named directly; with the alge
braic operations; the concrete relations and the concrete treatment of objects are rep
resented directly in a symbolic way. Thus, the algebraic sign language is understood 
as a "bijective" translation of objects out of reality into mathematics. 

Before analyzing the role of the algebraic sign language in mathematics instruc
tion (or in mathematical technical language), it is necessary to obtain clarity on cer
tain tacit, implicit or also open, explicit presumptions on the role of language; the 
perspective taken on the relation between language and reality should be explained 
for the analyses of mathematical communication. 

Mathematical signs do not represent empirical things, but embody relations. 
Raymond Duval formulates this fact as the "paradoxical nature of mathematical 
knowledge:" 

there is an important gap between mathematical knowledge and knowledge in other sci
ences such as astronomy, physics, biology, or botany. We do not have any perceptive or 
instrumental access to mathematical objects, even the most elementary, . . . . We cannot 
see them, study them through a microscope or take a picture of them. The only way of 
gaining access to them is using signs, words or symbols, expressions or drawings. But, 
at the same time, mathematical objects must not be confused with the used semiotic rep
resentations. This conflicting requirement makes the specific core of mathematical 
knowledge. (Duval 2000, 61) 

Mathematical knowledge must be represented by signs or symbols within a semiotic 
system that is of fundamental importance for mathematical activity. This is where 
the described paradox develops: In order to work on a not directly accessible 
mathematical concept and to understand it, a suitable symbolic representation sys
tem is required. However, in order not to confuse this sign system with the mathe
matical concept, and to operate meaningfully within this system, knowledge of the 
particular mathematical concept is necessary (cf. Duval 1993, 37f; Steinbring 1997; 
1998a). 

Object / refe- ^ • gj ,^^y^^ 
rence context 

Concept, 
as guided and developed by 

the activity of the learning subject 
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Figure 1 

The epistemological triangle represents a theoretical instrument for tackling this 
problem that one requires signs and symbols for mathematical knowledge, but that 
these signs and symbols themselves are not the knowledge. 

Mathematical knowledge cannot be reduced to signs and symbols. The connec
tion between the signs to code the knowledge and the reference contexts to establish 
the meaning of this knowledge can be represented in the epistemological triangle 
(cf. Steinbring 1989; 1991a; 1998b). The relations between the corner points of this 
triangle are not defined explicitly; they form a balanced system, that reciprocally 
supports itself. In the ongoing development of the knowledge, the interpretations of 
the sign systems and the chosen according reference contexts will be modified or 
generalized by the epistemological subject or the learner. 

Mathematic-didactic problems in particular, as they become visible in everyday 
instruction practice under an epistemological perspective, have been an essential 
reason to develop the epistemological triangle. 

The practice of mathematics, especially in school, is ... usually seduced to an identifica
tion of sign and signified by the automatization, the algorithmic, as the formula ex
presses it as a calculating procedure, or, if one makes the threefold distinction of con
cept, sign and object, which would actually be necessary, it is seduced to an identifica
tion of sign and object, neglecting an independent conceptual. (Otte 1984, 19) 

Similar triangular schemes for the analysis of the semiotic problem, how relations 
between symbols and referents are realized have been developed in philosophy of 
mathematics, in linguistics and in the philosophy of language (e. g., Frege 1969; 
Ogden & Richards 1923). The perspective of this triangular diagram leads to the 
question whether the algebraic sign (the verbal instrument) is essentially a fixed 
name for a certain thing, for a specific object, or what the sign or symbol could 
mean otherwise. 

In didactics of mathematics and also in fields of philosophy of mathematics, a 
very popular conception is that mathematical signs are merely names for things, 
even though mathematical signs in particular are very exact and unequivocal, precise 
terms for certain objects - in contrast to everyday language. 

In mathematical technical language, as in any other scientific technical language, one 
tries to avoid the ambiguities existing in everyday language and this is done by means 
of assigning each used sign one and only one well-determined meaning in the frame of a 
theoretical connection. Reversibly, the same technical sign is supposed always to be as
signed to each used concept or meaning content. (Maier & Bauer 1978, 142-143) 

This conception of the role of language and thus also of the role of mathematical 
language - is fundamentally criticized from a philosophical perspective. The illusion 
that the words and sentence constructions in the language correspond with things in 
reality in an unequivocal way is questioned. Lakoff and Johnson criticized this atti
tude as the myth of objectivism. 

According to the myth of objectivism, the world is made up of objects; they have well 
defined properties, independent of any being who experiences them, and there are fixed 
relations holding among them at any given point in time. These aspects of the myth of 
objectivism give rise to a building-block theory of meaning. If the world is made up of 
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well-defmed objects, we can give them names in a language. If the objects have well-
defmed inherent properties, we can have a language with one-place predicates corre
sponding to each of those properties. And if the objects stand in fixed relations to one 
another (at least at any given instant), we can have a language with many-place predi
cates corresponding to each relation. 
Assuming that the world is this way and that we have such a language, we can, using 
the syntax of this language, construct sentences that correspond directly to any situation 
in the world. The meaning of the whole sentence will be its truth conditions, that is, the 
conditions under which the sentence can be fitted to some situation. The meaning of the 
whole sentence will depend entirely on the meanings of its parts and how they fit to
gether. The meanings of its parts will specify what names can pick out what objects and 
what predicates can pick out what properties and relations. (Lakoff & Johnson 1984, 
202) 

An important aspect that reveals the independence of language - and also of mathe
matical language is metaphors, metonymies, or also language games. An excellent 
illustration of the implications of language as an independent, developing means of 
formation of reality and not merely a kind of duplication of reality is sign language 
for the deaf and dumb (see Sacks 1990; see, also. Pinker 1998). With gesture and 
sign languages one has often proceded from the assumption that gesture signs 
equivalent to the spoken "signs," the words of those who can speak, ought to be de
veloped for the deaf-mute. Hence, in the background, we once again find a kind of 
"objectivism," that the signs of sign language only serve for the translation into an
other language, or to code things of reality. A true sign language, however, is not 
simply a sign-like translation. 

True sign languages, however, are complete in themselves: Their syntax, grammar and 
semantic do not require a supplement, but they differ in their nature from the ones of all 
other articulated or written phonetic languages. Thus it is not possible to translate a spo
ken language word by word, sentence by sentence into sign language - their structures 
are fundamentally different. (Sacks 1990, 53) 

And with sign language -just like spoken language - one can behave actively, con
struct one's own world, enter the symbolic world, differentiate and create the world 
in a new way by means of the metaphorical use of language signs. "Language cre
ates experience in a new way. ... By means of language ... one can introduce the 
child into the purely symbolic sphere of past and future, of distant areas, ideal rela
tions, hypothetical events, of Utopian literature, beings, imaginary entities - from the 
werewolf to 7c-mesones ..." (Church 1971, 96, as cited in Sacks 1990, 68). 

The deaf-mute are also able to "play with pictures, with hypotheses, with possi
bilities or to enter the empire of imagination or of metaphors" (Sacks 1990, 65) with 
their sign language. This, however, makes it necessary not to understand sign lan
guage as "pantomime or a gesture-code or maybe as a kind of broken English in 
hand signs." (Sacks 1990, 108) In contrast, one should not conceive gestures as "pic
tures ..., but complex abstract symbols with a complex inner structure." (Sacks 
1990, 108) Sign language differs in aspects from spoken language; but it is impor
tant to realize that it is a "complete," not a deficit language; indeed, in its difference 
to spoken language, it also has its own features and advantages. 

Certainly, algebraic sign language is neither a sign language nor a common spo
ken language. But it is also a "living" language, not merely a sign code, or an un
equivocal picture of real or mathematical objects. Which particular characteristics 
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does the autonomous language of elementary algebra possess? With the help of al
gebraic sign language, is it also imaginable "to play with pictures, with hypotheses, 
with possibilities or to enter the empire of imagination or of metaphors" (Sacks 
1990, 65)? What does the metaphorical character of algebraic sign language consist 
in? How can it be brought forth and maintained? 

2. THE INTERACTIVE DEVELOPMENT OF MATHEMATICAL MEANING: 
ANALYSIS OF A CLASSROOM EPISODE IN ALGEBRA TEACHING 

So far, two contrary positions to the role of language have been emphasized: 
- Language serves for the description of reality, it pictures aspects of reality; it 

gives - as exact and differentiated as possible - reproductions of reality. 
- Language is a means of constructing reality; language is an autonomous, self-

referential system and instrument for creating reality by means of identifying and 
emphasizing things in reality; with abstractions and metaphors, structures and re
lations in reality are created. 
In a similar way, this difference - these two contrary points of view - can also be 

worked out for algebraic sign language: 
~ Algebraic sign language serves for describing reality; it pictures aspects out of 

technical contexts, out of other mathematical structures or reference domains 
(out of geometry, arithmetic, diagrams, algebraic structures). 

- Algebraic sign language is a means of constructing reality; it is an autonomous, 
self-referential system and instrument with its own rules for changing and creat
ing algebraic language elements; the algebraic equations do not just describe a 
findable reality; the algebraic expressions and equations formulate construction 
conditions for the creation of (ideal) objects within the reality to be created. 

For algebra - and already for elementary algebra as well - these features of auton
omy and the construction of its own reality are justified in the following: Algebraic 
connections or equations, such as the Pythagorean theorem a^ + b^ = (? or the law of 
force in physics: F - m - a (force equals mass multiplied by acceleration; see, for a 
discussion of theoretical terms Jahnke 1978) are no mere descriptions of findable 
reality in the sense that all aspects of reality are described down to the last detail 
with them; they are postulates or axioms to reality, conditions to which (ideal) ob
jects, references, and so forth are produced. 

The following examines an instruction episode on elementary algebra from this 
conceptual perspective on the role of algebraic sign language as a means of con
structing reality. 

2.7 Analysis of the Teaching Episode: ''System of two linear equations and bal
ance'' 

During the episode considered here, the students are asked to interpret operations on 
two linear equations with the help of a balance. The balance is a familiar metaphor 
for an algebraic equation as well as for the admissible operations and rearrange-
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ments with the equation (MacGregor 1998). The main statements by both students 
and their teacher will be summarized in the following. 

The episode can be structured into the following phases and subphases: 

Theme 

Posing a problem: Two balances with weights and objects 
Equations: An algebraic description of the balance situation 
Developing a "practical" solution of the balance problem 
Conditions for the practical solution 
Proposals for solution: Estimations and comparisons 
The ''practica " solution 

During the first phase (1-7) of this episode, the teacher shows the following trans
parency to the students: 

hases 

1 
2 
3 

3.1 
3.2 
3.3 

Contribution 

1-7 
8-16 
16 - 52 
16-23 
24-33 
34 - 52 

Figure 2 

First, the teacher explains the situation: 

4 T.: ... Two balances are shown ... so ... Yes, there are weights on it. Here we 
have such a 2 kilo piece made of iron, and there a one kilo piece; and now 
there are two objects, yes, a red one, which could be a box, or something, and a 
kind of cone, here, and there too. 

The box is colored red, and the cone is colored blue. 
The teacher makes some limiting conditions for possible solutions of the prob

lem: 

6 T.: ... you are only allowed to use these two weights. You don't get any other, 
additional, that is not, again 500 g and 100 or whatever other exists. ... 

During the second phase (8-16), one student quickly furnishes a mathematical 
description of both balances with the help of algebraic signs and equations: "This 
cone there we call x and the red y, then we have x plus y equals two kilos. ... And 
the other down there is then, one kilo plus x equals y.'' (11, 13). He has correctly de
scribed the two equations: 

x + y = 2 kg 

1 kg -h X = 3; 

But the teacher wants a "practical" solution. In the course of the third phase (16-52), 
such a practical solution is exemplarily discussed and elaborated. In subphase 3.1 
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(16-23), the teacher specifies some conditions for the acceptability of a practical so
lution. 

16 T.: ... I first of all would solve it with you in the practical way, 
... I could say, one could take off something here and put it into some other 
place, that's allowed. 
.. .You have to move some objects at least, put them somewhere. 

In their following statements, the students seem to have in mind some kind of 
weighing procedure, as it is generally known and also applied: All objects to be 
weighed have to be put on one side of the balance, and then they are weighed out 
with suitable weights: 

17 S.: ... all of them onto the other side, or so ... 
18 S.: ... all on one side ... take half a kilo ... 
19 T.: No, well, sawing through is not possible, no, the weights ... 

But the teacher refuses this proposal; it is not allowed to saw through the 
weights. In other words, one does not have enough many weights for an exact meas
uring procedure, only the 1 kg and 2 kg weight. 

Thereupon one student objects that indeed one object could weigh 0.5 kg and the 
other object could weigh 1.5 kg; accordingly the condition is specified. 

20 S.: ... but if this, ehm, the blue one would be now 0.5 and the red one 1.5, then 
it would work. 

21 T.: This would be ..., that must not be right, it could be that, for my sake, that 
this then is, eh, 1.3 and the other 0.7, that would also be OK ... this could also 
fit, yes. But this we cannot say. 

22 S.: ... but it doesn't work! 
23 T.: Well, this one, ... practically, how could one now, ... if one had to work 

with it now, could one find out something now by rearranging? ... Stephanie? 

The result of this discussion seems to be that there are not enough concrete dif
ferent weights for a concrete procedure of measurement; but the weight of an object 
could differe from 1 kg or 2 kg. Is a "pure practical" solution at all possible on this 
basis? 

In subphase 3.2 the students propose an approximation towards the solution, that 
tries to follow the teacher's conditions as strictly as possible: There is one 1 kg 
weight, one 2 kg weight, a box, and a cone. One student says: 

24 S.: When one takes off the blue, ehm, there above, and the red then goes up, 
then one knows, that it is lighter than two kilos. 

He means that the following will happen to the first balance when one takes off 
the blue cone: The left scale will go up, the right scale will go down; therefore the 
red box weight less than 2 kg. 

The teacher confirms the correctness of his argument, but he wants a more exact 
determination of the value of measurement. Is this possible on the basis of the given 
conditions? 

During the third subphase 3.3 (34-52) the "practical" solution as expected by the 
teacher is elaborated. A student proposes: 
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34 S.: Now, the red one here is as heavy as the blue one and one kilo. 

With this remark he points to the lower balance: "red" = "blue" + 1 kg 

The student continues: 

34 S.: ... Then one can take off the red one and therefore add another blue one and 
a one kilo piece. 

Now he is referring to the upper balance, in which one can substitute the red box 
through the blue cone plus the 1 kg weight. 

This argumentation is resumed again after the teacher's requirement. 

38 S.: Well, the red one there above ... 
40 S.: ... yes, ehm, this is as heavy as a blue part and one kilo, ... 
42 S.: Yes, and that, ehm, there above, take the red off. 
44 S.: ... and the others, ehm, the blue parts and the one kilo piece therefore ... 
45 T.: ... substitute them. 

Now it becomes obvious that other conditions of the concrete situation are no 
longer fulfilled. At least, in the beginning, the teacher has not indicated that there are 
several similar exemplars of red and blue objects at one's disposal. The situation 
given only allowed two objects and two weights, at one time, and the other balance 
situation could not be presented at the same time but only consecutively. 

S. 
2kg 

Figure 3 

Because the weights did not exist in all possible combinations, as the teacher re
quired in his assumptions before, - a condition that is normally fulfilled in every 
practical weighing procedure - one has to conclude that the concrete objects - the 
red box and the blue cone - do exist in several exemplars. (Are there perhaps several 
exemplars of the two weights existing at the same time? And in a way, later, one is 
allowed to saw through the numbers - representing the weights.) 

The student introduces the variability of the objects with the following remarks: 
" . . . and therefore add another blue one ..." (34); and later: " . . . the blue parts and 
the one kilo piece therefore ..." (44). The teacher legitimizes it by saying: "... you 
then would have here above two blue and a one kilo piece..." (47). This variability 
of the given objects to be weighed makes the concrete balance a "mathematical bal
ance" - in contrast to the restricting conditions of the teacher that the concrete ob
jects cannot be measured by matching weights. The student's description of the so
lution approach with the characteristics of the objects becomes a direct translation of 
the symbolic-algebraic representation as given at the beginning of the episode by 
another student: 
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x + y = 2 kg 
1 kg + X = y 

"red" + "blue" = 2 kg 
1 kg + "blue" = "red" 

This makes the solution possible, not in a "practical" way, but as a kind of theoreti
cal deduction: 

49 T.: What could you then deduce from it, then, Ismail? 
50 S.: That, ehm, the two, eh, blue parts are one kilo heavy. One then would 

weight 500 g... 

and, in the end, the procedure used here in a hidden manner is identified as the 
substitution procedure. 

2.3 Aspects of an Epistemological Analysis of the Teaching Episode 

In the course of this episode, the variables x and y, the measuring numbers (1 kg, 
2 kg) and the objects with their properties (red box and blue cone) are used to de
scribe a measurement situation with two different states. The symbolic variables x 
and y and the "concrete" variables "red" and "blue" are, in a way, exchangeable. 
According to the concrete weighing procedure, one would expect these variables to 
serve as names or marks for objects again; this also seems to correspond to the 
teacher's intentions. 

Table 1 

Practical Weighing Algebraic Weighing 

Conditions • The objects to be weighed exist 
only in one exemplar 

• There exist a number of match
ing different weights 

Action Each single object has to be 
weighed out with matching 
weights as exactly as possible; in 
this way determining the solution 

Concept Weighing out by a direct (or ap
proximate) comparison between 
object and weight 

• the objects to be weighed (variables 
x,y,z, ...) exist as often as necessary 

• the weights/numbers can be divided, 
multiplied, etc. (with other numbers) 
as often as necessary 

Drawing conclusions from one (or 
more) situations of equilibrium; operat
ing with the given "relations;" substi
tute objects/variables according to "rule 
of equilibrium" and determine the solu
tion in this way 

Weighing out (solution) by an indirect 
comparison; given states of equilib
rium/conditions of equivalence are 
compared; the solution is deduced by a 
logical transformation 
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The process of negotiation between teacher and students regarding the admissible 
conditions and procedures of the measurement situation for solving the problem re
veals the difference between a concrete, practical and a theoretical, mathematical 
way of measurement (Table 1). 

Bearing the structure of the epistemological triangle in mind (Figure 1), one can 
observe that the teacher intends to use the picture of the two balances as an explana
tory reference context for the elementary algebraic formula, for instance, in the fol
lowing way: The concrete situation of a balance with objects and with weights 
should here be, in a way, a clear, familiar reference context serving for a possible 
interpretation of the algebraic symbol system of "equation" and to provide it with 
meaning (Figure 4). 

At the beginning of the episode, the aim of this reference context of the two bal
ances was to provide the students with a direct and concrete interpretation of the two 
equations with two unknowns. In the course of the discussion between the teacher 
and some of the students about the conditions that are admitted and that are forbid
den in the procedure of weighting, the "inversion" can be observed. 

Object / reference context 

Sign / Symbol 

x + y = 2 
1 +x = y 

elementary 
equation 
Concept 

Figure 4 

It becomes increasingly clear that perhaps in the beginning, the concrete balance 
could give some support for the understanding of an equation, but then in the course 
of interactively specifying the conditions of the process of elaborating and solving 
the problem, it turns out that the algebraic equation now describes and determines 
how the situation of the balance has to be understood and interpreted. 

Here, we can observe a general issue: Elementary algebra - here the simple ex
pression of "two equations with two unknowns" - is first understood as a name for a 
concrete object, that is, for two states of a balance with weights and objects. But dur
ing the course of interactive negotiation between teacher and students, the proper 
mathematical object is constructed, the mathematical balance. This mathematical 
object has a different status than the concrete balance: Whereas the concrete balance 
is a material object with concrete properties, the mathematical balance is not given 
directly; it is described by a number of defining conditions. The mathematical dis
course in this episode has started with the teacher's intention to find a "practical" 
solution to the problem by using the balance in a concrete measurement process. But 
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with the constraint that only two weights are allowed (1 kg and 2 kg), the further in
teraction increasingly specifies the conditions under which a mathematical balance 
can be defined. A mathematical object - such as the mathematical balance in our ex
ample - is described by defining conditions. A concrete object is given materially 
and is described by modes of use. The discourse in this episode has transformed the 
concrete properties of a real balance into the defining conditions of a mathematical 
balance. 

The process of changing the function of a mathematical "sign/symbol" of being a 
mere name for a concrete object into a symbolic condition for constructing a 
mathematical object needs both sides: the balance and the algebraic sign system of 
an equation. The signs alone, the algebraically written equation, are not sufficient 
for defining the concept of an equation. In this way, the metaphor: "The equation is 
a balance." has turned into its inversion: 'The balance is an equation." 

The mathematical equation is created from being a name for the balance by 
adopting some structural similarities from concrete balances through a constructive 
act in which new relationships (conditions) changing the concrete balance into a 
mathematical balance are introduced. In this way, the algebraic equation constructs 
the mathematical balance: "The balance is an equation." 

3. CLOSING REMARKS 

The considerations on the role of language as a means of constructing reality and the 
analysis of the example episode from mathematics instruction in elementary algebra 
have revealed differentiated aspects to the meaning of elementary algebra as a 
mathematical language. One theoretical means of analyzing mathematical concepts 
is the epistemological triangle (Figure 1). In this triangle, aspects of "reality" are 
represented by the "object/reference domain" and aspects of (algebraic, mathemati
cal) language are represented by the "sign/symbol." Concepts are constituted in a 
co-operation between language and reality. 

The analysis has drawn attention to a possible development in the relation be
tween "object/reference context" and "sign/symbol" that can be stated in elementary 
algebra, and it has also emphasized the way in which these reciprocal actions are 
created interactively within mathematics instruction. 

In the following, I would like to characterize three levels of the relations between 
"object/reference context" and "sign/symbol:" 
(1) Algebraic signs and symbols serve as names for objects within the reference con

text: description of a reality. 
(2) Algebraic signs and symbols describe relations and structures within the refer

ence context. 
(3) There is a reciprocal action between algebraic signs and symbols and structures 

and relations: construction of a reality. 
(1) The function of algebraic signs as names for things predominates in everyday 
mathematics instruction. Such an empirical interpretation of the "mathematical real
ity," for which the algebraic signs are to be introduced and defined simply as names 
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for given things, so that their use can be controlled, also seems to be very appropri
ate for the demands of teaching in a methodical way. 

However, already for this interpretation of "signs as names for things," a purely 
empiristic use of mathematical signs must be relativized: An algebraic sign is not 
always simply a name for one single, fixed object, such as a single number. Alge
braic signs can also refer to several numbers, even to "all numbers." Signs such as n 
or e describe one certain number in each case, letters such as a, b, c, ... can describe 
all numbers; x can potentially describe all numbers, but with x in a given problem 
context, one is usually looking for only one or a few possible numbers. We can see 
that generalizations are already contained potentially in algebraic numbers. They do 
not merely relate to one certain object, but to a whole class of objects (which have a 
certain feature). 
(2) This potential general name function of the signs reveals a connection to the next 
level: The algebraic, symbolic terms and equations do not describe the constellation 
of (general) objects of a reality; equations formulate relations: The area formula for 
the trapezium is no mere description rule for the appropriate geometric elements of 
the trapezium and of the correct calculation: 

^ 2 

With the formula, relations and structures between the elements are described sys

tematically. The representation of a possible formula given here, expresses the rela

tion between the height h and the midline m = ——^ . By the way, one should also 

pay attention to the way in which the midline in this algebraic formula is symboli
cally formulated as an "average value" of the two parallel sides of a trapezium. 

On this level, the algebraic signs and symbols obtain a new interpretation: They 
do not remain mere names for objects; they describe structures and relations. Thus, a 
change from an empiristic sign use to a general characterization of relations takes 
place. 
(3) On this third level, it now comes to an interpretation, in which the struc
tures/relations on the side of the reference context and on the side of the sign/symbol 
start a reciprocal action. The roles of sign/symbol and of object/reference context 
become "exchangeable;" which side plays the role of sign/symbol and which one 
takes the role of "object/reference context." The (geometric, algebraic, arithmetical, 
...) structures and relations can adopt the role of a reference context for 
signs/symbols as well as be the signs/symbols (an iconic language) for another ref
erence context themselves. "...Mathematical signs play a creative rather than a 
merely descriptive function in mathematical practice. Those things that are 'de
scribed' - thoughts, signifieds, notions - and the means by which they are described 
- scribbles - are mutually constitutive: each causes the presence of the other." 
(Rotman 2000, 34-35) 

This change becomes particularly visible in the example of the episode on the in
terpretation of the equation as a balance. In the interaction between teacher and stu-
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dents, the concrete balance was given a new interpretation as a "mathematical bal
ance." The algebraic equation no longer remains a "name" for a given balance situa
tion. In the two domains - the balance domain and the domain of the algebraic equa
tion - the respective relations and structures come to the foreground and are related 
to each other. This reciprocal action makes it possible for the equation - the alge
braic verbal expression - to construct the mathematical balance - and, in a certain 
way, the "mathematical balance" becomes a description for equations. 

For the epistemological triangle (Figure 1), we thus obtain the following inter
pretation: The relation between the three corners is open in the sense that there is no 
fixed reference point (e. g., a given object), proceeding from which one could work 
out the other components of the triangle in a systematic and unequivocal way. In all 
cases, it is about reciprocal actions, which must be produced by the epistemological 
subject. 

Ultimately, no fixed objects are given a priori in the epistemological triangle; in 
social and cognitive processes of mathematical concept creation, signs/symbols with 
objects/reference contexts are put into relations and in contrast to each other, inter
preted with reference to each other, and developed. In the cognitive process, these 
relations and interpretations are produced and changed; they gain a new epistemo
logical status. Ultimately, the mathematical objects are not merely found to already 
exist and be described in a logically clear way by the mathematical signs and sym
bols; the objects of mathematical reality are constructed with mathematical, sym
bolic language. Through this construction, mathematical concepts in processes of 
generalization develop; and, conceptual ideas and conditions influence and guide the 
interpretation of symbols in reference contexts and the conception of structures and 
relations within reference contexts. 

The didactic-epistemological perspective on the role of mathematical language 
together with the qualitative analysis of an exemplary instruction episode has made 
it clear that in mathematical instruction interactions as well, attention must be paid 
to what Brian Rotman formulates for the practice of the researching mathematician 
as follows: "(W)hat present-day mathematicians think they are doing -using 
mathematical language as a transparent medium for describing a world of pre-
semiotic reality - is semiotically alienated from what they are ... doing - namely, 
creating that reality through the very language which claims to 'describe' it" (Rot-
man 2000, 36-37). 

Universitdt Dortmund 
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NORMA PRESMEG 

METAPHOR AND METONYMY IN PROCESSES OF 
SEMIOSIS IN MATHEMATICS EDUCATION 

Abstract. Building on Michael Otte's insights regarding the roles of icon, index, and symbol in 
mathematical signification, definitions of these categories of representation are explored in terms of 
metaphors and metonymies. A nested model of signs, based on Peirce's triadic formulation, is described, 
along with his trichotomic distinction among interpretants that are intentional, effectual, and 
communicational (leading to the commens). The theoretical argument and its utiUty is illustrated in terms 
of an episode of creating a proof in a college geometry class. The significance of the theoretical notions 
for creativity in mathematics is seen to reside in metaphorical and metonymical processes. 

Key words: commens, icon, ilndex, metaphor, metonymy, representamen, symbol, universals 

The reasoning of mathematicians will be found to turn chiefly upon the use of 
Hkenesses, which are the very hinges of the gates of their science. The utihty of 
Ukenesses to mathematicians consists in their suggesting, in a very precise way, 
new aspects of supposed states of things. (Peirce 1998, 6) 

1. HOW AND WHY IS SEMIOTICS USEFUL IN MATHEMATICS 
EDUCATION? 

After all, some of the originators of theories of semiotics were linguists. Ferdinand 
de Saussure's (1959) book, Course in General Linguistics, is a seminal work in this 
area. And Charles Sanders Peirce, himself fluent in Latin, Greek, and several other 
languages, makes it abundantly apparent in his writings (e. g., 1998, Vol. 2) that 
semiotics under girds and illuminates the study of languages and their structure. 
Why, then, is semiotics, defined as the study of semiosis (activity with signs), useful 
to mathematics educators? A hint of an answer to this question is given in the initial 
quotation from Peirce, and in this chapter I analyze semiotic aspects of metaphor 
and metonymy in particular, showing the relevance of "the use of likenesses" for 
deductive thinking and problem solving in the learning of mathematics. In a triadic 
model of nested signs based on the formulation of Peirce, the categorization of signs 
as iconic, indexical, or symbolic relates to the uses of metaphor and metonymy in 
semiosis. Informed by the insights of Michael Otte, I have found these constructs to 
be powerful lenses in my research, both on ways of connecting home activities of 
students with formal mathematical concepts in school and college (Presmeg 2002), 
and in understanding the ways that signs support learning of mathematics at all 
levels. After an initial description of this triadic nested model of signs and their uses, 
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I analyze in more depth how metaphor and metonymy are implicated in the model, 
concluding with an analysis of an episode in a college geometry course. 

2. A TRIADIC NESTED MODEL OF SEMIOSIS 

Implicit in Peirce's triadic model of semiosis is a nesting effect. However, his 
writing is dense with ideas, some of which are explicated in careful detail, while 
others are barely sketched and further elaboration is left to the reader (e. g., his ten 
trichotomies, 1998, 481-491). Thus it is useful to consider in detail how this nesting 
of signs occurs. In this chapter I shall refer mainly to the trichotomy that by his own 
account he used most often, namely, a trichotomy designating three kinds of signs, 
which he called icons, indices, and symbols. But first it is necessary to say a few 
words about terminology. In the previous two sentences I have used the word signs 
in two different ways, and this is what Peirce does too, in different parts of his 
writings. To avoid confusion I shall use the word sign to refer to the totality of 
object, representamen, and interpretant (the former usage above - these signs are 
nested), and not to the representamen specifically (the latter usage). Thus when 
Peirce designates icons, indices, and symbols as three kinds of "signs", he is 
referring to three ways in which the representamen may stand in relation to its 
object; and the interpretant is then the result of reflection on this relationship - and 
thus is indirectly implicated. If we take an example suggested by Peirce (1998) and 
elaborated by Whitson (1994, 1997), the falling barometer (representamen) suggests 
that it will rain (object), but an act of interpretation is involved, and the observer 
may decide to take an umbrella (interpretant). That the interpretant is in terms of an 
action - the taking of an umbrella - reminds us that Peirce was one of the founders 
of pragmatism; but this aspect of his writings will not be pursued in this chapter. "To 
define a sign we therefore need an object as well as an interpreter" (Otte 2001, 5). 

Michael Otte, in his writings on semiotics (e. g., 2001), usually invokes the 
representamen as "sign" following this usage in most of Peirce's work. As Otte 
(2001) remarked, Peirce (1998) defined a sign as anything that stands for something 
(called its object) in such a way as to generate another sign (its interpretant or 
meaning). This definition involves a double use of the term. The import of the 
definition seems to be that a sign is anything that stands for something else. In this 
case the interpretant (meaning) also stands for the relationship of the first two 
components. Although Otte's usage is consistent with this definition of Peirce, I 
shall not follow it here, because I am particularly interested in clarifying and 
describing the totality of object, representamen, and interpretant as a sign that 
becomes reified (Sfard 1992) as a new object in a nesting process that could 
continue indefinitely (as is also implied by Peirce's definition). A diagram casts 
light on the structure of the relationships. 

Each of the rectangles in Figure 1 represents a sign consisting of the triad of 
object, representamen, and interpretant, corresponding roughly to signified, 
signifier, and a third interpreted component, respectively. This interpretant involves 
meaning making: it is the result of trying to make sense of the relationship of the 
other two components, the object and the representamen. It is important to note that 
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the entire first sign with its three components constitutes the second object, and the 
entire second sign constitutes the third object, which thus includes both the first and 
the second signs. Each object may thus be thought of as the reification of the 
processes in the previous sign. Once this reification occurs, this new object may be 
represented and interpreted. Resonating with the cyclic nature of the processes 
involved, the construction of the representamen in the form of icon, index, or 
symbol, and its interpretation, also inform the creation of this new object. This 
formulation also illustrates Otte's (2001) statement that "the immediate object of a 
symbol is a sign itself (15). 

Figure 1: A representation of a nested chaining of three signs 

0 = Object (signified) 
R = Representamen (signifier) 
1 = Interpretant 
These three components together constitute the Sign, thus the three nested 
rectangles represent Signs 1, 2, and 3 respectively 

This is a model of thinking and feeling, imagination and reason: semiotics 
eliminates Descartes' dualisms in this regard. The model has the potential to 
constitute a web of signs. One nested component of such a web may also be related 
metaphorically or metonymically with another such component. Icons, indices, and 
symbols and how they embrace metaphors and metonymies, are the subject of the 
next section. 

3. METAPHOR AND METONYMY 
IN RELATION TO ICON, INDEX, AND SYMBOL 

In Peirce's "trichotomy of signs," as he stated, there are three kinds of signs 
(referring to the representamen): 
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Firstly, there are likenesses, or icons, which serve to convey ideas of the things they 
represent simply by imitating them. Secondly, there are indications, or indices, which 
show something about things, on account of their being physically connected with them. 
Such is a guidepost, which points down the road to be taken, or a relative pronoun, 
which is placed just after the name of the thing intended to be denoted, ... Thirdly, there 
are symbols, or general signs, which have become associated with their meanings by 
usage. Such are most words, and phrases, and speeches, and books, and libraries (Peirce 
1998, 5; his emphasis). 

In these definitions, Peirce is speaking broadly. With regard to icons, it may or may 
not be an actual physical likeness that connects the representamen with its object. It 
is the qualities of the object that are imitated, or its structure. As Otte (2001, 16) 
wrote, "The resemblance may be the extreme likeness of a photograph (CP2.281) or 
it may be subtler." But even with regard to photographs, Peirce (1998) qualifies this 
classification: 

Photographs, especially instantaneous photographs, are very instructive, because we 
know that they are in certain respects exactly hke the objects they represent. But this 
resemblance is due to the photographs having been produced under such circumstances 
that they were physically forced to correspond point by point to nature. In that respect, 
then, they belong to the second class of signs [indices], those by physical connection (5-
6). 

Peirce here gives a hint of the interconnectedness of icons, indices, and symbols. An 
algebraic formula is also an icon (Otte 2001; Peirce 1998). But in what sense can a 
formula be considered a "likeness" of a mathematical idea? Surely there are 
elements of habit, of being "associated with [its] meanings by usage" (Peirce, quoted 
earlier) in the employment of an algebraic formula? Would not such a formula then 
partake more of the nature of a symbol, a "general sign", than it would of an icon? It 
could be argued that both of these categorizations are accurate. It is in the depiction 
of the structure of the relationships involved that a formula is also, indeed, iconic. 
And while it is not possible for new knowledge to evolve from a symbolic 
representamen because it is established by habit (Otte 2001; Peirce 1998), it is this 
property of depicting relationships that gives the icon its power in creative 
mathematical thinking. And this is where the role of metaphor comes in, because the 
use of an icon involves comparing two domains and noting their structural 
similarities. Because an icon strips some of the superfluous baggage from a 
mathematical relationship, it has the power to highlight the essential elements of the 
structure. In the language of metaphor, the source (object) and the target 
(representamen) domains are united in the icon. These two domains are also called 
the "vehicle" and the "tenor" respectively, in English language literature (Presmeg 
1998), but the terms "source" and "target" better portray that it is the mathematical 
object that is the source of the structural relationships, and the icon is the 
representamen that captures them. Otte (2001, 16) pointed out that "icons are of key 
importance in mathematics" by virtue of their highlighting the analogy and 
structural similarity that play a fundamental role. 

Having claimed that symbols cannot be the fountain of new knowledge, I do, 
however, want to qualify this statement. The symbols chosen to represent 
mathematical knowledge, even if they are conventional and become established by 
habit, can have a profound effect on the direction that new knowledge takes. 
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Moreover, the symbols chosen may further the construction o f new knowledge, or 
they may impede it, because the nature of a symbol is that it is a rule that will 
determine its interpretant (Otte 2001, Peirce 1998). One has only to consider the 
history of mathematics through the ages to be convinced of this claim. Time and 
again, as in the example of Leibniz's notation for calculus chosen over Newton's 
infinitesimals, or the problems occasioned by the ambiguous use of symbols for 
negative numbers, the symbols were a crucial factor in the furtherance - or 
hindrance - of mathematical thinking. In section 5, I shall give a more mundane 
example from a college geometry course, which nevertheless exhibits that it is 
important for mathematics educators to pay careful attention to all three kinds of 
representamen, the iconic, the indexical, and the symbolic, in teaching mathematical 
concepts. 

Having established that icons depict structural relationships of mathematical 
objects by means of metaphor, it is the taking into account of context that suggests 
the importance of indices as metonymies. Metonymy is defined in Webster's 
dictionary as "a figure by which one word is put for another on account of some 
actual relation between the things signified" (Presmeg 1998, 29). This actual 
relation resonates with Peirce's aspect of physical connection in his definition of 
"indications, or indices". There is a sense in which icons, indices, and symbols all 
partake of metonymy, because in each of these cases, the representamen stands for 
the object by means of some actual relation. This relation is implied in the way the 
representamen is defined, as "a First which stand in such a genuine triadic relation to 
a Second, called its Object, as to be capable of determining a Third, called its 
Interpretant, to assume the same triadic relation to its Object in which it stands itself 
to the same Object" (Peirce 1998, 272-273; his italics). But the way in which the 
representamen stands in relation to its object in the case of an index is the closest to 
the literary use of the term metonymy, in which the context is needed for 
interpretation (as in the example, "Washington is talking with Moscow" - meaning 
that the governments centered in those cities are communicating). There is another 
forms of metonymy, called synechdoche, in which the part stands for its whole, or 
the whole for its parts (Presmeg 1998). One use of synechdoche in mathematics is 
when a particular drawing of a triangle, for instance, is taken to stand for the class of 
all triangles. It might be debated whether the relationship in this case is iconic or 
indexical. But if even as direct a link as a photograph is both iconic and indexical, as 
discussed earlier in this chapter, then I am inclined to say that a drawing of a 
triangle, taken to represent all possible triangles, is both iconic and indexical. Not 
only is structure preserved across the domains of particular and general triangles 
(icon/metaphor), but there is also a virtual "physical" link (index) - notwithstanding 
that it is impossible to draw a general triangle! Some of the problems associated 
with generality, and the ancient philosophical question of the status of universals, 
are relevant in a semiotic analysis, and these will be the topic of the next section. 

4. COMMENS AND GENERALITY 
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Bertrand Russell wrote in 1912, "Relations ... must be placed in a world which is 
neither mental nor physical" (Russell 1959, 90). His argument for this claim hinged 
on two sentences he gave as examples. If I say, "I am in my room," does the 
preposition "in", which defines the relation, exist in the same sense that "I" and "my 
room" exist? No, the preposition does not share this physical existence. Is the 
relation the work of the mind? The answer is no, because it is not thought that 
produces the truth of the proposition. To clarify even further, he suggested, "An 
earwig is in my room." This statement may be true even if no human is aware of it, 
or cognizant of what an earwig is. Such relations are examples of universals. Plato, 
in attempting to address the existence of universals, called them "forms" or "ideas" 
- pure essences, like justice or whiteness, which cannot exist in the world of sense 
because they are not particular. Plato's solution put them in the supra-sensible, 
unchangeable world of ideas. But Russell pointed out that there are four kinds of 
universals, namely, substantives other than proper names, adjectives, prepositions, 
and verbs. Plato's solution, like those of Berkeley and Hume much later, 
concentrated on the first two types, ignoring relations as universals and 
concentrating on qualities such as "triangularity". In Russell's judgment, this 
omission led to error. If one thinks of whiteness, it is not the whiteness that is in the 
mind, but the act of thinking of whiteness. Common nouns and adjectives refer to 
particular things, even if the qualities are universal. It is the latter two types of 
universals, prepositions and verbs, which refer to relations. Universals exist then, 
but they are not "merely mental." By this is meant that "Whatever being belongs to 
them is independent of their being thought of or in any way apprehended by minds" 
(Russell 1959, 97). 

The relevance of these issues for the semiotic discussion in this chapter is that 
the world of universals is "delightful to the mathematician" (Russell 1959, 100). 
More than that, mathematics, like language, could not function without universals. 
Semiotics casts light on why this is so. Peirce wrote as follows, in 1906: 

I use the word ''Sign'' in the widest sense for any medium for the communication or 
extension of a Form (or feature). Being medium, it is determined by something, called 
its Object, and determines something, called its Interpretant. .. .In order that a Form may 
be extended or communicated, it is necessary that it should have been embodied in a 
Subject independently of the communication; and it is necessary that there should be 
another Subject in which the same Form is embodied only in consequence of the 
communication. The Form (and the Form is the Object of the Sign), as it really 
determines the former Subject, is quite independent of the sign; yet we may and indeed 
must say that the object of a sign can be nothing but what that sign represents it to be. 
Therefore to reconcile these apparently conflicting truths, it is indispensable to 
distinguish the immediate object from the dynamical object. (Peirce 1998, 477) 

Relations, as represented by prepositions and verbs, refer to the latter class of 
dynamical objects. They are what Peirce called "dicisigns" because they signify the 
"form this sign represents itself to represent" (478). In the example he gave, "John is 
in love with Helen," John and Helen are the immediate object, but the dynamical 
object, the dicisign, resides in the relation "is in love with." Thus Peirce avoids the 
error of considering only qualities as universals, and embraces all four of Russell's 
categories in universals that a representamen might stand for. This opens the door to 
communication of mathematical structure by means of representamen and 
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interpretant. It is likely that the whole debate about Platonism in mathematics 
conflates this distinction between immediate objects and dynamical objects. 

In communication of mathematical ideas, there is a further Peircean construct 
that is relevant, and that is his trichotomy of three forms of interpretant: 

There is the Intentional Interpretant, which is a determination of the mind of the utterer; 
the Effectual Interpretant, which is a determination of the mind of the interpreter; and 
the Communicational Interpretant, ... which is a determination of that mind into which 
the minds of utterer and interpreter have to be fused in order that any communication 
should take place (Peirce 1998, 478, his emphasis). 

It is this fused mind that he called the commens. He characterized the commens as 
all that is well understood between utterer and interpreter at the outset, in order that 
the representamen should fulfill its function. The commens clearly partakes of the 
context, and thus serves a metonymical purpose. Whether the communication is 
spoken or written on a chalkboard or transparency for an overhead projector, the 
commens is an important construct for mathematics education. 

In this section I have barely skimmed the surface of the deep issue of how 
semiotics can inform the communication of mathematical ideas - which is the 
purpose of mathematics education. In the next section I return to how types of 
representamen, and the interpretants they determine by means of the commens, are 
implicated in the learning of mathematics. 

5. USE OF METAPHOR AND METONYMY IN MATHEMATICAL SEMIOSIS 

I shall open this section with an anecdote from an episode in a college level 
geometry course, Euclidean and non-Euclidean geometry, which I taught in spring 
of 2003. The topic of discussion was the Nagel point of a triangle, that is, the point 
of intersection of the line segments from the vertices of the triangle to the points of 
tangency of the opposite escribed circles. In figure 2, N is the Nagel point of triangle 
ABC. To establish the existence of the Nagel point by Ceva's theorem, it is 
necessary to prove: 

FB DC EA 

In preparing for class several days earlier, I had proved the relationship at home 
without difficulty, and because this particular day turned out to be a very full one, I 
did not check the proof before class, confident that I knew how to do it. After I had 
drawn the diagram on the chalkboard, without the lower-case notation for the line 
segments shown in figure 2, and we had established together what was required to 
prove, the students were given time to think, and later to talk with others in the 
established groups of four students that had become part of classroom practice. Not 
one of the 29 students could even approach a solution. What was worse, neither 
could I! I remembered that the proof had used the following facts: 

AB + BD = AC+ CD; BC + CE = BA + AE\ and CA ^ AF = CB + BF (2) 
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So I wrote this on the board, hoping to give the students and myself a clue about 
how to proceed (having told the students - to their delight and amazement - that that 
was genuinely all I could remember of the solution). After the 50 minutes of class, 
the problem was still unsolved, and I assigned it for homework. 

Figure 2. Illustration of the Nagel point, N, of triangle ABC. 

Back in my office, it took only a few moments, glancing at my previous work, to see 
that the proof was not difficult if one used a different notation, the lower-case letters 
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in figure 2, to stand for the line segments involved. In fact, the proof came out in 
seven lines. 

Proof: 

AG = AH (tangent segments from same point to circle P). 
Similarly BG = BD = ax and CD = CH = a2 
Therefore ci + C2+ ai = b2+ bi + a2 = semi-perimeter of triangle ABC. 
Similarly ai + a2+ bi = C2+ ci + b2 = semi-perimeter of triangle ABC, 
and bi + b2+ Ci = a2+ ai + C2 = semi-perimeter of triangle ABC. 
Therefore ai = Z?2, bi = C2, and ci = a2. 
Then 

^ A . £ L = I (3) 
«2 ^2 ^2 

and the concurrency follows (by Ceva's theorem). 
The following day, the students (who had not been able to solve it for 

homework), had little difficulty working out the proof with the support of group 
discussions, once I introduced the new lower-case symbols in the diagram. 

This episode was dramatic, and left me wondering what it was about the 
commens or the symbolism that led to such different results in the classroom 
practices on the two days. The first day had been frustrating for the students and for 
me; the second resulted in some students expressing enough confidence in their 
reasoning for them to be willing to come and demonstrate it on the board. It was, 
after all, the same structure that was represented in the notation I had used on the 
first day as on the second. But in semiotic terms, the representamen on day one, 

AB + BD = AC+ CD, (4) 

was not a sufficiently iconic likeness of the semi-perimeter of the triangle to make it 
clear, firstly, that the object was a semi-perimeter, and secondly, that each of the six 
given expressions represented a semi-perimeter, and that they were therefore all 
equal to one another. Somehow the representamen 

Ci+C2+ai = b2+bi+a2, (5) 

together with the similar equations, had helped to make the relationships apparent. 
Both of these representamens were symbolic: both were conventional ways of 
expressing relationships among the lengths of line segments. "A symbol is a 
representamen - a rule that will determine its interpretant" (Otte 2001, 14). In both 
cases, the interpretants were all-important in determining the outcomes of the 
actions taken, successful or otherwise. The difference between the two symbols 
appears to reside in their metaphoric and metonymic features, that is, how they 
behaved as icons and indices in representing the abstract structure of the 
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configuration of circles and lines. By breaking each side of the triangle into two 
constituent line segments, the lower-case symbols served to highlight basic building-
blocks of the structure, thus subtly pointing to a commonality that was less easy to 
deduce from the more holistic upper-case symbols. As a metaphor, the icon of the 
lower-case representamen was more efficient in suggesting an interpretant that 
would unpack the relationships. 

I have not yet mentioned the indexical features of the two notations. In each 
case, there was a physical connection between the representamen and its object, the 
mathematical relationships among the line segments. Thus both were clearly indices. 
As metonymies, they pointed to subtly different contexts - contexts that were 
sufficiently different to result in different interpretants, one unsuccessful and the 
other successful, in attempting the proof. I am not claiming that these interpretants 
would be identical for everybody. It is possible that some readers may have 
completed the proof using only the upper-case notation at the outset. 

In spite of the symbol being a rule, governed by the commens, that will 
determine its interpretant, there is sufficient individual variation in the construction 
of an interpretant to justify Peirce's insertion of the phrase "upon a person" - his 
"sop to Cerberus" - in the definition of a sign (as representamen) in one of his letters 
to Lady Welby: 

I define a Sign as anything which is so determined by something else, called its Object, 
and so determines an effect upon a person, which effect I call its Literpretant, that the 
latter is thereby mediately determined by the former (Peirce 1998, 478). 

Otte (2001) claimed that "the interplay of iconic and indexical representations [is] 
most important to understand mathematical cognition" (22). Then we cannot avoid 
the use of both metaphor and metonymy in mathematics, and semiotics can provide 
a tool for helping us to understand the relationships involved. Regarding 
mathematics as "a constructive and visual art" (ibid.), would imply that 
metaphorical thinking plays a fundamental role, in "seeing an A as a 5" (as Otte 
expressed it). Then the question that he asked is crucial: What leads us in creating 
good metaphors? After all, "everything seems similar to everything in at least some 
aspects" (22). This statement may be too broad; but the point is that the comparison 
of domains needs to be useful for a mathematical purpose. The ability to see 
structure across domains - discarding irrelevant details - is one that Krutetskii 
(1976), based on his research, considered to be a vital component of effective 
mathematical thinking. These issues will continue to be of significance for 
mathematics educators. 

Illinois State University, Normal, IL 
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ON PRACTICAL AND THEORETICAL THINKING 
AND OTHER FALSE DICHOTOMIES 

IN MATHEMATICS EDUCATION 

Abstract. I owe much of my understanding of the difference between synthetic and analytic thinking in 
mathematics to my reading of Michael Otte's papers and the conversations we had with him within the 
BACOMET group. One of the first sources of inspiration for me has been his work on arithmetic and 
geometric thinking. In the paper I shall outline the consequences of the distinction for analyzing processes 
of mathematics teaching and learning in my own research. I shall further use this distinction to look criti
cally upon the recent trend in mathematics education of considering mathematics as a kind of "discursive 
practice." 

Key words: epistemological obstacles, manipulatives, mathematics, practical thinking, Pythagoras theo
rem, teaching, theoretical thinking. 

1. INTRODUCTION 

This paper, dedicated to Michael Otte, is about practical and theoretical thinking as 
complementary epistemological categories and the use of this distinction in mathe
matics education. The distinction is presented as one among many "false dichoto
mies" that are common in the domain. The dichotomies are first discussed in the 
light of Michael Otte's papers on complementarity. An alternative view is then pro
posed in terms of couples of epistemological obstacles. A possible use of the practi
cal/theoretical distinction in mathematics education is illustrated by means of a 
thought experiment about a teacher educator planning to discuss the use of manipu
latives with his student teachers. The thought experiment points to the complexity of 
the system of objects of thought in mathematics education and the extreme fragility, 
in practice, of the distinction between theoretical and practical thinking. It also high
lights the crucial role that epistemological analyses, such as those offered in Michael 
Otte's papers, play for research in mathematics education. 

In his comments on one of my papers about epistemological obstacles (Sierpin-
ska 1996), Michael Otte was saying that, where I saw a couple of obstacles, he could 
see only one, namely 

... the problem that in order to understand mathematics one has to take into account [the 
fact] that mathematics is simultaneously meta-mathematics ... [T]he problem Ues in an 
empiricist or concrete epistemology [that] does not think of mathematical objects in re
lational or structural terms. ... [M]athematics is difficult for the learner not because of 
the technical complications of its method, but because of the specificity of its objects. 
(Letter dated 24.1.1994) 
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He went on to say that he has been busy his entire didactical career with this one 
problem [the problem of sources of difficulties in mathematics learning] and with 
the question of the nature of mathematical objects and concepts. In my own re
search, I have tried to engage more directly with the practice of teaching, with de
signing and experimenting didactic sequences. Somehow, I always ended up dis
cussing these same problems. They are very powerful attractors indeed in the dy
namics of research in mathematics education. 

2. EPISTEMOLOGICAL OPPOSITES 

Theory of mathematics education is replete with pairs of opposite categories of 
knowing and thinking such as the empiricist-structural distinction mentioned above, 
intuition versus formal knowledge, instrumental versus relational, or operational 
versus structural understanding. In my research I first resisted using such global 
categories, explaining both the meaning of particular mathematical concepts and 
students' difficulties by the existence of "epistemological obstacles" specific to con
crete mathematical concepts. But, as I went on in my research, I realized (and thus 
agreed with Michael) that many obstacles were related not to specific concepts but 
to mathematics in general. And thus I ended up with, first, three categories of think
ing in linear algebra: synthetic-geometric, analytic-arithmetic and analytic-
structural, and then attributing students' difficulties in linear algebra to their ten
dency to practical as opposed to theoretical thinking (Sierpinska et al. 1997; Sierpin-
ska 2000; Sierpinska & Nnadozie 2001). 

It is tempting to think that these categories refer to some ontological reality; that 
there exists an identifiable brain activity such as, for example, theoretical thinking, 
with no trace whatsoever of its opposite, namely practical thinking. But, as Michael 
Otte has argued in Otte (1990b), these distinctions should be regarded as epistemo-
logical, not ontological distinctions. They are our simplified ways of knowing hu
man cognitive activity in mathematics; they are not kinds of human cognitive activ
ity. 

I have argued that, whenever we see mathematical proof as involving only a mechanical 
aspect, we are driven to see that it involves, as well, an intuitive one. And whenever we 
are tempted to see mathematical proof as involving only a solitary aspect, we are driven 
to seeing that it is also a social matter. And whenever we are tempted to see a mathe
matical argument of the kind found in proof, namely a chain of tautologies or of equali
ties, as merely, or perhaps the ideal of, Hteral expression, we are forced to see that it is, 
in fact, essentially metaphorical. (Otte 1990b) 

This is why Otte preferred to speak of "complementarity" (p and not p) rather than 
of dichotomy (p or not p). 

3. COMPLEMENTARITY 

In his philosophical considerations on mathematics and its teaching, Otte has ex
plored in depth the idea of complementarity of object and method in science (Otte 
1990a), or, broadly speaking, the idea that "every scientific explanation simultane
ously contains a meta-communication, i. e. it represents, in an exemplary way, an 
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answer to the question what it means to explain an object or a fact at a certain his
torical point in time." This notion of complementarity comprises issues such as rela
tionships between intuition (which focuses on discovering the object of study) and 
logic (whose problem is to systematize methods of validation of the findings), im
mediate perception (synthetic thinking) and discursive procedures (analytic think
ing), or between theoretical representation and technology of measurement or com
putational technique. These issues constitute the philosophical underpinnings of de
bates on the teaching of mathematics focusing on the problems of striking a balance 
between "theory" and "practice," knowing why and knowing how, letting the stu
dents engage in free explorations and express themselves as they like and teaching 
them the "right" mathematical discourse and standards of methodological rigor. 

Complementarity of these categories could be expressed also in terms of episte-
mological obstacles. An epistemological obstacle is a way of thinking that stands in 
the way of another way of thinking, but it would not exist (as an obstacle) without 
this other way of thinking. Thus it does not make sense to speak of single epistemo
logical obstacles, but only of their pairs. The epistemological categories mentioned 
above can be seen as pairs of epistemological obstacles in the philosophy of knowl
edge. Intuition and formal knowledge is such a pair of obstacles, for, without intui
tion, formalism would have nothing to doubt; there would be no need to formalize in 
order to confirm or remove the doubt; on the other hand, without formalism, intui
tion would remain in a state of either permanent self-satisfaction or permanent 
doubt. 

Similarly, theoretical and practical thinking can be viewed as a pair of epistemo
logical obstacles. Thinking is not either theoretical or practical but arises in a tension 
between the two. The "practical sense" decisions are acts of discarding all but one 
possible course of action; but this decision would not be necessary if these possible 
courses of action were not available to the mind. They are available as a result of 
hypothetical, theoretical thoughts, however primitive, swift and unconscious. On the 
other hand, the mind would not engage in thinking about the possible courses of ac
tion and their outcomes if no action were envisaged at all. As Otte was saying, in his 
polemic with Piaget's concept of empirical abstraction, which he considered "too 
primitive" by being completely separated from reflective abstraction (Otte 1990a): 

One has to emphasize that theoretical consciousness demands to conceive the objects 
and phenomena of reaUty not just in the form of knowledge and contemplation but as 
parts of activity also ... [T]he relationship between the conceptual-reflective and the al
gorithmic-logical elements of mental activity is only conceivable as an interaction of 
two poles of a relationship the basis of which is the activity. (Otte 1990a) 

"This is all very well" - a mathematics teacher might say at this point - "but what 
difference does it make for my teaching practice, whether I see these pairs of catego
ries as dichotomies or as complementary couples?" 
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4. THE QUESTION OF RELEVANCE OF EPISTEMOLOGICAL DISTINC
TIONS FOR MATHEMATICS EDUCATION 

Saying that mathematical thinking is, at the same time, intuitive, formal, practical, 
and theoretical is anything but an astounding discovery. Of course, the realization of 
the epistemological complementarity discussed above might save one the inevitable 
failure of organizing one's teaching on the basis of the assumption that, say, "real" 
mathematical thinking is formal and theoretical, and that the intuitive and practical 
aspects of knowledge construction are only the necessary contingency of some 
shameful "didactic transposition" from scholarly research knowledge to the social 
and cultural institution of teaching mathematics to masses of students. It might save 
one, as well, from trying to "derive" theoretical concepts from concrete, "hands-on" 
experience, based on the belief that the meaning of these concepts is somehow al
ready there in the empirical relations. Steinbring has convincingly demonstrated the 
ineffectiveness of such approaches, using the theory of epistemological triangle and 
detailed analyses of classroom interactions (e. g. Steinbring 1991, 1993). 

But the mere realization of complementarity cannot help mathematics educators 
in understanding what exactly is difficult in learning this or that mathematical idea 
in a particular teaching/learning situation, never mind helping them in planning and 
organizing such situations. In each case, the mathematics educator must "roll up his 
sleeves" and do the epistemological and didactic analysis almost from scratch. This 
is no trivial task, as can be seen from the above-mentioned papers by Steinbring. 

The mathematics educator must also be more specific in describing the epistemo
logical categories if he^ intends to use them in analyzing particular teaching situa
tions; he needs to "operationalize" them. With respect to the theoretical/ practical 
distinction, for example, saying that learning mathematics is difficult because it re
quires theoretical thinking is almost a tautology. In the next section I present a char
acterization of the theoretical/practical distinction, which we developed for the pur
poses of our research on linear algebra teaching and learning (Sierpinska et al. 
2002). 

5. A CHARACTERIZATION OF THEORETICAL/PRACTICAL THINKING 

Michael Otte once told me that the difference between synthetic and analytic think
ing is that the former holds a direct relationship with its object while in the latter this 
relationship is mediated by one or more sign systems. The same can be said of the 
difference between practical and theoretical thinking, since it is normally assumed 
that theoretical thinking is analytical. 

Thus what is theoretical or practical is not thinking as such but the relationship 
between thinking and its object. It makes sense to conceive of this object as some 
kind of action, actual or imagined, present or past, performed or planned, since both 
theory and practice are normally related to purposeful action. "Action," here, could 
mean proving a mathematical statement as well as carving squares from a plank of 
wood. Practical thinking could be viewed as thinking-in-action, whereby changes in 
thought directly influence changes in action. Thus, the relationship between thinking 
and this very action of thinking is practical. If a philosopher ponders a theoretical 
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question, the relation of his thinking to this very activity of thinking is necessarily 
practical; he is not thinking about his thinking. He is just thinking; he is engaged in 
the practice of philosophizing. 

For theoretical thinking to even begin, the thought and its object must belong to 
different planes of action (Figure 1). Thinking-m-action must become thinking-
about'diction. The moment the philosopher reflects back on his thinking, verifying if 
it is well founded, eoretical. 

plane of action 

plane of action 2 

plane of action 1 

t 

0(t) 
Practical relationship 
between thought t and its 
object 0 ( t ) 

t 

Theoretical relationship 
between thought t and its 
object 0 ( t ) 

• — — — d > . 

0(t) 

Figure 1. Relations between thought and its object in theoretical and practical thinking. 

Let me illustrate this idea with one more example. Imagine a student who solves an 
equation and then substitutes the obtained result into the original equation. In the 
phase of solving the equation, the student is engaged in the practice of solving equa
tions: his thinking and his activity of processing the algebraic expression belong to 
the same plane of activity. In the phase of substitution, the student may be taking a 
step back from his previous activity, which would now become the object of his 
thinking. He may be verifying if the result he obtained indeed satisfies the equation. 
In this case, we could say that the student is "engaged in theoretical thinking" or, 
more precisely, that the relationship between his thinking and its object is theoreti
cal. But the student may also do the substitution as part of what he understands as 
the school task of "solving an equation," without viewing it as a means of control of 
the result obtained in the first phase. It is well known that many students indeed hold 
this conception and are not bothered if they obtain a contradiction through substitu
tion. These students think practically in both phases of the task. 

Obviously, one cannot assume that belonging to different planes of action is a 
sufficient condition for the relation between thought and its object to be theoretical. 
Musing about days gone by, day-dreaming, or rotating three-dimensional shapes in 
one's mind would then count as theoretical thinking and this is not what we intend 
to mean. More restrictions on the relationship between thought and its object are 
needed for a satisfactory characterization of theoretical thinking. 

The most obvious characteristic of what we normally call theoretical thinking is 
that its ultimate purpose is the production of theories or conceptual systems. 

One consequence of this assumption is that theoretical thinking is not about 
techniques or procedures for well-defined actions, although these might be derived 
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from or explained by the theories. Theoretical thinking is reflective in that it does 
not take such techniques or procedures for granted but considers them always open 
to questioning and change. In this sense, therefore, theoretical thinking is opposed to 
mythical thinking, in which knowledge is considered as "natural" or "sacred" and 
therefore in no need for justification (Steinbring 1991). 

Another consequence is that theoretical thinking is systemic, i. e. its objects are 
not particular actions but systems of relations between actions, and systems of rela
tions between these relations. As Otte was saying, 

The history of science may be briefly sketched as a transition from thinking about ob
jects to relational thinking. Theoretical thinking, accordingly, is not concerned with 
concrete objects, nor with intrinsic properties of such objects, and theoretical terms, in 
particular, are not just names of objects. Rather, science is concerned with the relation
ships between objects or phenomena. As the historical transition took place, it became 
increasingly obvious that a theoretical term will receive its soUd content, its clear form, 
only from its relationship to other concepts. (Otte 1990a) 

The systemic character of theoretical thinking entails sensitivity to contradictions', 
otherwise, conceptual systems would collapse. Vygotsky has particularly stressed 
this characteristic of scientific, as opposed to everyday concepts (Vygotsky 1987, 
234). Actually, the very concept of contradiction makes no sense outside a system of 
concepts. Contradiction is a type of logical relationship between propositions; there 
can be no contradiction between events occurring in space and time; their meanings 
change with the context in which take place. Contradiction thus requires stability of 
meanings in the frame of reasoning. This can be achieved by definitions and other 
agreed upon characterizations. 

The combination of reflective and systemic thinking implies that theories do not 
grow by simple addition of new concepts, but that new developments may cause a 
restructuring of the whole system. The system is always reflected upon as a whole. 
This feature of theoretical thinking is sometimes called "reflexivity'' (Steinbring 
1991). 

Concern with non-contradiction implies that attention is being paid to problems 
of validation, both at the level of the systems themselves and at the meta-level, i. e. 
at the level of methodology. Theoretical thinking asks not only. Is this statement 
true? but also What is the validity of our methods of verifying that it is true? Thus 
theoretical thinking always takes a distance towards its own results. 

Thinking within conceptual systems can only produce conditional truths; it is hy
pothetical thinking. Theoretical thinking is concerned with problems of the suffi
cient, necessary, essential, complete character of conditions of truth in each case. 

As mentioned, the assumption of belonging to different planes of action already 
implies that theoretical relationship between thought and its object is analytic, i. e. 
mediated by systems of signs. But, if we assume that the results of theoretical think
ing are conceptual systems or theories, which have to be formulated in some coher
ent terminology and symbolic notation, then we must also require that theoretical 
thinking have an analytic relationship with sign systems themselves. Theoretical 
thinking not only is mediated by systems of signs; it takes systems of signs as an ob
ject of reflection and invention. 
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In brief, theoretical thinking is thinking where thought and its object belong to 
distinct planes of action, and whose purpose is the production of internally coherent 
conceptual systems, based on specially created systems of signs. Theoretical think
ing is, therefore, reflective, systemic and analytic. 

I have argued elsewhere (Sierpinska et al. 2002) how highly relevant, a priori, 
are the above features of theoretical thinking in understanding linear algebra, and 
how irrelevant they can be for high achievement in linear algebra courses. In this 
paper, I will focus on the complementarity between theoretical and practical think
ing in actions related to teaching and learning of mathematics. 

6. A THOUGHT EXPERIMENT: 
THE INTERPLAY OF THEORETICAL AND PRACTICAL THINKING 

IN A TEACHER EDUCATOR'S PLANNING OF AN ACTIVITY 
ON THE USE OF MANIPULATIVES WITH STUDENT-TEACHERS 

Thinking in and about mathematics education involves simultaneously several 
planes of action. In particular, the object of study for a mathematics education re
searcher may comprise several levels of recursion of the act of "theoretical reflection 
on practice." For example, when a researcher reflects theoretically on the practice of 
a teacher educator, he may use his practical experience of being a teacher educator, a 
schoolteacher, a learner and doer of mathematics, and a researcher knowledgeable of 
the theories and methodologies of his field. He may entertain, with each of these 
planes of action, a practical or a theoretical relationship. 

In any concrete activity of reflection, these relationships are closely intertwined 
and dependent on each other. Their identification and categorization is possible in a 
methodological analysis, but not in actual fact. This is what I would like to show in 
the following thought experiment. 

Suppose a researcher reflects on the work of a teacher educator preparing an ac
tivity for his student teachers aimed at a reflection on the use of manipulatives in 
mathematics teaching, on the example of the learning, by high school students, the 
meaning of the Pythagorean theorem. In the first section (6.1), the narrator is the hy
pothetical teacher educator. In the second (6.2), a researcher interprets and analyzes 
the actions of the educator, focusing on the interplay between his theoretical and 
practical thinking. 

6.1 Teacher educator prepares a class on the use of manipulatives 

[1] Suppose I am a teacher educator preparing a session with student teachers on 
the problem of using manipulatives in the teaching of mathematics. I want to 
convince them that mathematics is not there, in the manipulatives, but, at best, 
in the interplay between the practical and theoretical tasks based on actions 
with the manipulatives. 

[2] Let me prepare for a worst-case scenario. Suppose the pre-service teachers in 
my class want a straightforward judgment such as, "manipulatives are good" 
(or bad). Also, suppose they expect that teaching with manipulatives is easy: 
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one just goes into the classroom with a bag of manipulatives, lets the students 
play with the them, and the students thus "naturally" discover the mathemati
cal concept planned for this particular lesson. 

[3] What situation could help my students realize that there is no simple recipe 
and that it all depends on the manipulatives, what you want to teach with them 
and how you set up the didactic situation? I know that just telling teachers "it 
depends" will not help them understand the complexity of the issue. I need to 
engage them in planning a concrete lesson with concrete manipulatives. Sup
pose I take the wooden puzzle that I got at the last NCTM^ meeting and ask 
student teachers to imagine if and how they could use it to introduce the Py
thagorean theorem. 

Figures 2a & 2b. Two ways of arranging the pieces of the puzzle. 

[4] This, I feel, is bound to show them that while manipulatives may embody 
mathematical ideas for those who already have them in their minds, they are 
not necessarily helpful in bringing these ideas to the minds of those who 
hadn't seen them before. 
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[5] The puzzle has 4 pieces, which can be arranged into shapes like those in Fig
ure 2. 

[6] This pair of shapes brings to mind the "puzzled" proof of the Pythagorean 
theorem, as in Figure 3. 

Angle ABC = 9U* 

Figure 3: The idea of the popular ''puzzled' proof of the Pythagorean theorem. 

[7] The student teachers will probably recognize the Pythagorean theorem in the 
puzzle, and they will take it for granted that their students will "see" it as well, 
in spite of never having heard of the theorem before. 

[8] I will show them that this need not necessarily be so. I will invite them to 
imagine, step by step, what may happen if they bring the puzzle to the class
room and ask the students to first play with it freely and then to construct 
squares. I will ask them to assume that students in the classroom are mostly 
practically minded. I don't know what scenarios they may come up with, but 
let me do this exercise myself, so I can be better prepared for arguing with 
their claims. 

[9] Most students want to make nice looking material objects. They do not think 
of a shape first and then try to construct it, but just move the pieces around, 
trying in which ways they best "fit" with each other. Their decisions about 
when to stop and consider the shape done are based on visual and tactile clues 
and their spontaneous esthetic feelings. These may be explained by their pre
vious encounters with cultural artifacts, but not by some explicit esthetic prin
ciples such as "symmetry," "compactness," or "balance" (Figure 4). 

[10] If the students only want to play with the puzzle in this rather random fashion, 
they will never be brought anywhere close to the Pythagorean theorem. Let me 
now think of the next-to-worst scenario. The students start noticing some rela
tions between the pieces. They might discover that the four pieces of the 
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Figure 4. Shapes that could be obtained by students through free play with the puzzle. 

puzzle are not identical. The lengths of their sides differ a little. Especially one 
piece is quite off the shape of the other three. Also the angles that look like 
right angles are not exactly so, because, when the pieces are put side by side, 
they do not form a straight line exacdy (Figure 5). 

Figure 5. The pieces of the puzzle are not all identical. 

[11] Students may decide to ignore the differences (as technical errors of the person 
who cut the pieces). Suppose now that some students are technically minded or 
have been inspired by their recent experiences in the woodwork class. Some of 
them may start thinking about the technology of producing the puzzle. This 
may lead them to viewing each puzzle as made from a single square piece of 
wood (like in Figure 2a) cut along two perpendicular lines passing through the 
center of the square, constructed as the intersection of its diagonals. Some stu-
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dents may measure the angles at which the inner segments fall on the sides of 
the square, find that they are approximately 60° and 120°, and include these 
measures in their definition of the puzzle. Other students may see these angles 
as arbitrary and only constrained by the requirement of producing a non-trivial 
puzzle, i. e. one made of four quadrilaterals with unequal sides and not four 
squares or four right-angled triangles (Figure 6). 

Figures 6a, 6b, 6c. Two trivial and one non-trivial puzzle. 

[12] These technological concerns of the students could perhaps be considered as 
the most "natural" outcome of playing with the puzzle in a high school 
mathematics class. This situation could give the teacher an opportunity to gen
eralize the puzzle as a set of four identical quadrilaterals with two opposite 
right angles and the sides of one of the right angles'̂  being equal. The other two 
angles add up to 180°, because the sum of angles in a convex quadrilateral is 
equal to 360°. Thus, if one of the angles measures a, the other measures 180° -
a. If a = 90°, the piece is a square^ (Figure 6a); if a = 135° the piece is a trian
gle (Figure 6c). 

Figure 7. The three squares seen as built on the sides of a right angled triangle. 

[13] The question is: Is it at all possible to bring students to think about the Py
thagorean relation from playing with the puzzle? Is there a best-case scenario? 
Suppose the students construct the squares in Figures 2, either by themselves 
or in response to the teacher's explicitly formulated task. Suppose they even 
notice that there are three squares in these two figures and that the area of the 
external square in Figure 2b is equal to the sum of the square in Figure 2a plus 
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the area of the square built on a segment which can be seen as a certain part of 
the side of the square in 2a. Suppose, even more optimistically, that they notice 
that all three squares can then been seen as built on the sides of a right-angled 
triangle (Figure 7). 

[14] Making these observations requires that the students be highly theoretically 
oriented. It requires seeing the shapes obtained with the puzzle as structures 
composed of segments of different lengths and mutual positions. It also re
quires reflecting about the relations between the different shapes obtained with 
the puzzle (possibly in a situation where only one shape is available to the 
senses at a time). These observations are not a result of direct visual and tactile 
perception: they are a result of a construction of a geometrical model of the 
puzzle (Figure 8). 

[15] Communication of these observations among students would require coding 
the different segments of the pieces of the puzzle. Students would not know 
where their observations would be leading them, so they would be likely to use 
ad hoc representations, such as color. However, color is not functional if alge
bra is to be used later on in the representation of the Pythagorean relation and 
its proof. If the teacher imposes a notation, this will immediately destroy the 
"naturalness" of the situation. The students will know that their initiative does 
not count and this is not real exploration but the well known ritual of fake 
"discovery teaching," where students are left in the dark till they are eventually 
explicitly told what they were expected to have discovered. But suppose that 
somehow students are brought to using letters to denote lengths of segments, 
as in Figure 8. 

Figure 8. Using a diagram to compare the sides of the three squares. 

[16] The students would be probably quick to notice, but also take it for granted 
that, in the left-hand side square in Figure 8, the side of the external square is 
2z and the side of the internal square is jc - }̂ . It could also be obvious for them 
from the figure that the side of the right-hand side square is x + y. Using the 
known formula for the area of a square, the students might write the relation: 
(2z)^ = (x + yf' + (x - y)^. The students would now see in front of them a famil-
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iar mathematical object: an algebraic expression. Their aim might become to 
simplify the expression (to Iz = x^ + y^). This is what they have always done 
in such situations. 

[17] The teacher would not be satisfied with this result. Not because it is not true. It 
is, but it is also irrelevant from the point of view of his didactic goal. The rela
tion could be obtained directly from looking at the square ACED, by noticing 
that 4(xy/2 + z /̂2) = (jc + yf. Taking y = 0, it could lead to the formula for the 
diagonal of a square (2z = V2 x), which, in the curriculum, is only derived as a 
consequence of the Pythagorean theorem. 

H 

angle ACB > 90** c'̂ ^ > a^2 + b^2 

H 

angle ACB < 90* c^2 < a'''2 + b^2 

Figure 9. The failure of the Pythagorean identity c^ = a^ + b^. 

[18] At this point, the student teachers should be convinced that, in order to even 
start discussing relations among the three squares that can be obtained with the 
puzzle, students have to forget about the puzzle as a puzzle altogether. They 
should also realize that students would have to be heavily directed to focus 
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their attention on the relation between the areas of the squares without simpli
fying it any further. But even if the hypothetical teacher achieves all that, his 
students will still be extremely far from the "discovery" of the Pythagorean 
theorem. This is because, for the puzzle, the relation between the areas is al
ways true. In fact, it is quite obvious and trivial. But the Pythagorean theorem 
speaks about one very exceptional situation. The rigid wooden puzzle illus
trates this one single exceptional situation without hinting at the class of situa
tions of which it is an exception. It is, indeed, quite exceptional that the areas 
of squares built on two sides of a triangle add up to the area of the square built 
on the third. It only happens when one of the angles of the triangle is a right 
angle. The puzzle, in itself, is unable to provoke students to think about the 
conditions of the Pythagorean relationship between the areas of squares built 
on the sides of a triangle. At best it illustrates a possible way of proving the 
theorem once it is realized as a conjecture. 

[19] But the student teachers should not be left with the impression that the only 
way to introduce the Pythagorean theorem is to state it on the board and have 
the students learn it by heart. They have to understand that their students will 
not appreciate the significance of the theorem this way, either. Suppose I sug
gest that student teachers try to imagine starting a lesson by directly asking the 
theoretical question: What is the relation between the areas of squares built on 
the sides of a triangle? and allowing their students to work within a dynamic 
computer environment (Figure 9). 

The discussion would then be organized on their views of the potential of this type 
of more sophisticated "manipulatives" in the teaching of the Pythagorean theorem. 

6.2 Analysis of the thought experiment 

This section presents a possible theoretical reflection of a researcher on the role of 
theoretical thinking in the work of a teacher educator planning a teaching activity 
with student teachers. The analysis will make references to the narrative of the hypo
thetical educator in the form of paragraph numbers in square brackets. It will also 
make explicit the evaluation, as theoretical (t) or practical (p), of the narrator's 
thinking about the practices of research (R), teacher education (E), teaching (T), 
learning (L), doing mathematics (M). The analysis highlights in italics words that 
are related to particular features of theoretical thinking. 

In [1] the researcher engages in hypothetical thinking ("suppose") about the ac
tion of a teacher educator, so his relationship with E is theoretical (tE). The choice 
of the topic, however, is based on his experience with E; he knows that manipula-
tives is a "hot issue" and is likely to attract student teachers' attention (pE). He also 
knows that this is a controversial issue in mathematics education (pR) and has a the
ory about the epistemological relationship between manipulatives and mathematics 
(tM). This theory re-surfaces now and again in his reflection ([4], [7], [8], [10], [13], 
[14], [18]). 

In [2] it is the hypothetical teacher educator who speaks. His consciously 
adopted methodology of preparing a class (tT) is to first "prepare for the worst" and 
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then gradually consider more optimistic scenarios. His worst-case scenario is based 
on the assumption, founded on his experience with teaching (pT), that his actual stu
dent teachers as well as hypothetical teachers and pupils have a strongly practical 
attitude towards their tasks. He considers this to be the worst-case scenario, because 
he assumes that mathematics is theoretical knowledge par excellence (tM). 

In [3] the educator decides against just telling the student teachers that the use of 
manipulatives can be more or less effective depending on circumstances. Following 
perhaps a "socio-constructivist approach" (tT), he plans to confront his student 
teachers with a specially designed situation, let them draw the conclusions for them
selves, and then engage in an argument with them, negotiating alternative ways of 
thinking. This operationalization of the socio-constructivist epistemology in terms of 
didactic choices is based on his familiarity with its common interpretations within 
the community of teacher educators to which he belongs (pE). He chooses to use a 
wooden puzzle as an example of a manipulative, because it is there on his desk, re
minding him of his recent activities with children of various ages playing with the 
puzzle (pT). 

In [5] the educator reflects on (tM) his personal experience with the puzzle; he 
has played with the puzzle, trying to make mathematically meaningful shapes (pM). 
Based on this experience, he assumes, in [6], that knowing the Pythagorean theorem 
allows one to construct a material model of the idea of the proof of the theorem with 
the puzzle (pM, tM). 

In [7] the educator reasons as follows: Since the student-teachers know the Py
thagorean theorem, and, according to the worst-case scenario, they hold the naive 
belief that mathematical patterns are there in nature and things (tL), waiting to be 
discovered, it is very likely that they will expect high school students to "discover" 
the theorem through playing with the puzzle (tT). 

In [8] the educator reflects on the possible moves (tT) in this situation, based on 
his experience as a teacher (pT). The best thing would be to ask the student teachers 
to actually perform an experiment with a student who has never seen the Pythagoras 
theorem before. But the constraints of time as well as the practical difficulties of ac
cess to such students and of the control of the experiment by the teacher educator 
make him opt for a collective "thought experiment" instead. 

In the sequel of the thought experiment ([9]-[18]), the teacher educator specu
lates about how his students could be led to the realization of the non-transparency 
of manipulatives by imagining what could happen in a classroom started by a free 
play with the puzzle. 

The educator imagines the course of events based, again, on his methodology of 
going from the worst-case scenario to gradually more optimistic scenarios regarding 
the agents' theoretical thinking (tT, [9], [10]). His speculations are founded on his 
informal observations of students playing with the puzzle (pT, tL, [9], [10]), his the
ory of people's relationship to cultural artifacts (tL, [9], [10]), and his reflection on 
his experience of mathematizing the relationships between the elements of the puz
zle (pM, tM, [10], [11], [12]). 

In [12] he reflects on the outcome of these speculations (tT); he considers a tech
nical approach to the puzzle as quite natural in students. On the other hand, thinking 
about the Pythagorean relation in the context of the puzzle does not appear as natu-
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ral; based on his reflection on his activity of relating the puzzle configurations with 
the Pythagorean relation, he realizes that this would require noticing unobvious 
quantitative relations and highly theoretical thinking (pM, tM, [13], [14]). This 
would also require a graphical representation of two special configurations of the 
puzzle and a mathematically consistent coding of the elements of the puzzle (pM, 
tM, [15]). 
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Figure 10. A summary of the interplay of theoretical and practical thinking in the course 
of the educator's work of preparing his classroom activity. Theoretical thinking was invested 
mostly into the educator's relationship with the practice of doing mathematics and the prac
tice of teaching. This thinking was strongly supported by the educator's experiences in these 

domains of practice. His thinking about learning was more speculative. 

These reflections lead the educator to point to the shaky foundations of the so-called 
"discovery learning" (tL, [15]). Through [16]-[18] he demonstrates (tT, tL, tM) how 
unrealistic it is to expect that the puzzle will "naturally" lead students to thinking 
about the Pythagorean theorem, in all these scenarios, not only in the worst case 
scenario, based on a reflection on his own mathematization of the puzzle. He shows 
that even if students are highly theoretically minded, the puzzle cannot bring them to 
thinking about the Pythagorean theorem, if they hadn't seen it before, because the 
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theorem points to the conditions of existence of a puzzle such as the given one. This 
existence is not put into question in the puzzle; the puzzle is a fact. 

The educator eventually goes back to thinking about the possible reactions of his 
student teachers to the realization of the epistemological impossibility of obtaining 
the Pythagorean theorem through even theoretical modeling of the puzzle. Based, 
again, on his methodology of worst-case scenario, he prepares to counter the prob
able student teachers' conclusion that "manipulatives are bad" with a proposal of an 
alternative representation (tT, pM, tM, [19]). 

Figure 10 contains a summary of the above analysis of the educator's engage
ment with the different domains of practice. 

A striking overall characteristic of the teacher educator's thinking is the lack of 
one coherent theoretical framework or conceptual system, on which his planning 
would be based. The educator makes decisions based on bits of various "theories," 
while being strongly influenced by his own experience and practice of teaching, 
learning and doing mathematics. His relationship to the different objects of his re
flection can be regarded as locally, but not globally theoretical. He makes conscious 
use of a methodology, but does not reflect on its validity. He does not verify for con
tradictions among his conclusions drawn at different points in his planning. His aim 
is to produce a rich learning experience for his student teachers, not to construct a 
theory of the use of manipulatives in the teaching of mathematics. 

The next section contains a theoretical reflection of the researcher on the results 
of this thought experiment and, more generally, on research in mathematics educa
tion (tR). 

7. CONCLUSION 

It was not too difficult to write a characterization of theoretical as opposed to practi
cal thinking. Innumerable philosophers did that, at least from the time of Aristotle. It 
was much harder to use this distinction in speaking about a concrete instance of 
thinking about teaching, learning and doing mathematics. One reason for this diffi
culty is the complementarity of the categories of practical and theoretical thinking. 
Both are related to action, one engaged with action from within, the other - from 
without. This is a subtle difference and it is easy for the researcher to mistake one 
for the other. 

At any given moment, the thinking subject is involved in a practical relationship 
with an action, planning what to do next. But any decision that is being made in the 
course of this action depends on a consideration, however swift, of the hypothetical 
possibilities and the choice of one. The choice may be based on various degrees of 
theoretical analysis and construction. It is not possible to reliably judge such mo
mentary choices as based or not on theoretical thinking - and this is another source 
of the difficulty. One can only speak of the presence of perhaps some features of this 
kind of thinking and one can never be sure if this short instance of thinking was 
done with some global and conscious intention of theory construction. "Intention" 
and especially "conscious intention" are categories that have caused enough prob-
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lems in philosophy and psychology; it is very difficult to operationalize them in re
search. 

Another reason of the difficulty is the complexity of what goes on in people's 
minds. Thinking takes place simultaneously at several planes of action, which can be 
considered separately only in theory, and even then, hypothesizing about the think
ing at all of these planes in a subject at a given moment of an observation or inter
view may easily overwhelm even the most assiduous of researchers. This complex
ity cannot be ignored in mathematics education research, because its object is ex
actly the interplay of thinking at several levels of action at once. The construction of 
a coherent theoretical framework for the object of research in mathematics education 
is, therefore, an extremely challenging task (but not an impossible task; see, e. g. 
Brousseau 1996; Chevallard 1999). 

It is not surprising, therefore, that so many researchers in mathematics education 
tend to reduce the complexity in their work, and either use eclectic approaches or 
focus on some chosen planes of action. Certainly cognitive and socio-cognitive is
sues, and philosophical questions related to the nature of mathematics have attracted 
much attention. 

One is often tempted to deplore this state of affairs. However, as in the thought 
experiment described in this paper, the crucial argument in analyzing a teaching pro
ject is often found not by applying the most general and sophisticated theoretical 
framework, but by looking at the best-case scenario. Of course, if students are not 
interested or not intellectually mature for a topic, and the teacher makes pedagogical 
mistakes, the project will fail. But suppose students are capable and willing to think 
theoretically about mathematics, and the teacher is "good" according to the stan
dards of some accepted instructional theory. If a teaching approach does not fulfill 
the expectations in this situation, the reason is not in the pedagogy but in the episte-
mology of the subject matter. Epistemological analyses of the mathematical ideas 
are, therefore, the foundation of any teaching project in mathematics education. This 
is why the work of philosophers such as Michael Otte is so important for our do
main. 

Concordia University, Montreal 

NOTES 

^ The pronoun "he" is used throughout the paper as a generic pronoun, not as this author's political state
ment. 
^ Regional conference of the National Council of Teachers of Mathematics, Montreal, Canada, August 
2002. 
^ These shapes were the first three produced by a 6:9 years old girl after she was given the puzzle and 
asked to "make some shapes with it." Asked why she made the first shape just so, she answered, "because 
it fitted with those triangles. And it also looks a bit like a flower, Uke those you get in a computer." The 
second shape was described as "it looks like a funny cat;" about the third she said, "it's a butterfly that's 
acting weird." Two grade seven students, asked to play with the puzzle, spontaneously constructed simi
lar shapes. They were mainly interested in verifying how the parts of the pieces fitted with each other; e. 
g., if it was possible to make a straight line with two of them. These students were able to construct the 
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two squares in approximately 10 minutes. One of them believed that the inner square (in Figure 2b) is of 
equal size with the full square (in Figure 2a). 
"̂  Here, the meaning of the word "angle" may be based on an intuitive/visual idea of "comer." 
^ At this point, "square" means a quadrilateral with 4 right angles and equal sides, not a visually grasped 
regular shape. 
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LUIS RADFORD 

THE SEMIOTICS OF THE SCHEMA^ 

Kanty Piaget, and the Calculator 

Abstract. What is the relationship between our mental activity and the empirical objects of the world? 
Kant raised this question in the Critique of Pure Reason and attempted to answer it by arguing that be
tween the realm of concepts and that of sensuous phenomena lies the schema. Piaget re-elaborated the 
Kantian concept of schema and since then it has been extensively used in constructivist and psychological 
accounts of the mind. In this article, I discuss Kant's and Piaget's concept of schema from a semiotic-
cultural perspective. Attention is paid to the epistemological premises on which the Kantian and Piagetian 
theoretical elaborations of the concept of schema were based and the role that signs played therein. I con
tend that the schema and its genesis can be better conceptualized if we take into account linguistic and 
non-Unguistic mediated actions embedded in the social processes of meaning production and knowledge 
obj edification. My discussion interweaves epistemological concerns with the semi otic analysis of a group 
of Grade 11 students dealing with the mathematical understanding and description of a natural phenome
non - the movement of a body along a ramp in a technological environment. 

Key words: activity, cultural semiotics, gestures, Kantian and Piagetian epistemology, mediated action, 
phenomenology, schema. 

INTRODUCTION 

Kant believed - contrary to Hume, Locke and the empiricist tradition - that knowl
edge cannot be reduced to what impressions and senses give us. Ideas should cer
tainly be more than the result of impressions that we receive from the contingent 
world. The guiding principles of experience should be more than customs if we are 
to avoid confining them to subjectivity. But Kant also believed - contrary to the ra
tionalist tradition of Descartes, Leibniz and Wolff - that knowledge cannot be re
duced to an inner mental activity governed by the a priori rules of Reason. Leibniz, 
for instance, had said that "our ideas, even those of sensible things, come from 
within our own soul" (Leibniz 1949, 15). If such were the case, Kant asked, how is it 
possible that the formal rules of Reason - removed from of all empirical content -
can yield knowledge of the objects of the external world? 

Kant constructed a sophisticated system that tried to accommodate both the em
piricist and the rationalist traditions. In this system, the senses were no longer con
sidered as superfluous or as with merely heuristic value, as in Leibniz^. Kant pro
vided the senses with an epistemological import. In an important passage of the Cri
tique of Pure Reason, he says that knowledge is constituted of both sensual percep
tions and concepts (A50/ B74, 92)1 

But knowledge is more than a cocktail of conceptual and sensual ingredients. 
The sensual perceptions, Kant claimed, have to be linked to their corresponding 
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concepts. To distinguish between the pen on the table and the book beside it, we 
need to be able to differentiate among the perceptions. To accomplish this we need 
to judge. Otherwise, Kant said, we would be led to a "rhapsody of perceptions" (A 
156/ B195, 193). Judgment is a "peculiar talent" that distinguishes whether some
thing (a perception) goes under a certain concept or not (A133/ B172, 177). For 
Kant, the schema is precisely a function of the faculty of judgment. A schema is 
something mediating between the mind's logical machinery and the phenomenal 
world. Its task is to ensure the link between concepts and senses, that is to say, be
tween Form and Content. 

THE ENCOUNTER OF FORM AND CONTENT 

The schema is a kind of analogical procedure - a "monogram", as Kant said - that 
unveils the link between the intellectual and the sensual in the course of its empirical 
execution. 

Like the concepts, the schema for Kant is itself void of empirical content. Yet it 
must contain something which is represented in the object that is to be subsumed 
under the concept (A137/ B176, 180). While the schema, in one respect, must be in
tellectual, said Kant, in another, it must be sensible (A 138/ B 177, 181). But the 
schema does not have to be confounded with an image: 

If five points be set alongside one another, thus,..., I have an image of the number five. 
But if, on the other hand, I think only a number in general, whether it be five or a hun
dred, this thought is rather the representation of a method whereby a multipHcity, for in
stance a thousand, may be represented in an image in conformity with a certain concept, 
than the image itself For with such a number as a thousand the image can hardly be 
surveyed and compared with the concept. This representation of a universal procedure 
of imagination in providing an image for a concept, I entitle the schema of this concept. 
(Kant, A140/B179, 182) 

In saying that the schema is a method or universal procedure Kant meant that its 
execution can be repeated again and again. The schema entails, in fact, a principle of 
iteration linking thereby knowledge and action. Kant's epistemology supersedes here 
the passive receptivity of impressions of the empiricist school and the reduction of 
knowledge to inner mental activity effectuated by the rationalist tradition. As a re
sult, "there is knowledge only in the schematized experience." (Chiurazzi 
1990, 155). This is also what Piaget meant when he said that we know an object 
only when we act upon it (Piaget 1970a, 85). 

Now, since the schema is not only intellectual but is also sensual, we can ask: 
What is the material of which the schema is made? In addition to the schema of 
number (quoted above), Kant mentioned other examples, among them the schema of 
a triangle and the schema of the concept of a dog. In the last two, the representation 
is made by drawing a figure that during its execution reveals the method', in the first 
one, the execution cannot reveal the method. There is no longer coincidence be
tween execution and method. In the case of a number such as a thousand I can still 
draw point after point, except that, in this case, "the image can hardly be surveyed 
and compared with the concept." Judgments ("perceptual judgments", to use 
Peirce's term) do not work the same in geometry as in arithmetic. In the schema of 
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arithmetic and algebraic objects highly cultural conventions underpin the very pos
sibility of the execution of the method or universal procedure. It took Kant almost 
10 years to disentangle the difference between these kinds of schemata. He came 
back to this difference in the third critique - Critique of Judgment - where, as 
Nichanian (1979) rightly observed, Kant met the symbol. 

THE ROLE OF SYMBOLS IN KANT'S CONCEPT OF SCHEMA 

It was, indeed, in the course of Kant's reflection on Aesthetics (by which he did not 
mean that which is related to art, but what in Greek is called "anaesthetic", i. e. 
"without sensation") that Kant encountered the symbol. How can we have or pro
duce sensual presentations or re-representations of ideas (such as 'taste') "for which 
a commensurate intuition can never be given"? (Kant 1790, S57, 140)"̂ . Kant wrote: 

All intuitions by which a priori concepts are given a foothold are ... either schemata or 
symbols. Schemata contain direct [presentations of the concept], symbols [contain] indi
rect presentations of the concept. Schemata effect this presentation demonstratively, 
symbols by the aid of an analogy (Kant 1790, S59, 148). 

The schema for the geometric concepts is hence based on a certain resemblance - it 
shows ostensively a certain commonality between the concept and its sensual pres
entation. As in the case of ideas of 'taste' or 'beautiful', the schema of arithmetic 
and algebraic concepts is only symbolic. They 

express concepts without employing a direct intuition [i. e. sensual presentations - LR] 
for the purpose, but only drawing upon an analogy with one, i. e., transferring the re
flection upon an object of intuition to quite a new concept, and one with which perhaps 
no intuition could ever directly correspond. (Kant 1790, S59, 148) 

The analogical process that allows us to move from an object of intuition to a new 
concept opens a window for a new kind of reflection - a reflection that will go from 
analogy to analogy. In contrast to the ostensive schema that functions as an "em
blem", here the symbolic schema needs to enter into a new realm, a realm of possi
ble experience. "The symbol is the analogy of an analogy, an analogy in abeyance". 
(Chiurazzi 1990, 158). 

With his Critique of Judgment Kant provided room for semiotic considerations 
and went beyond the borders of the Critique of Pure Reason. His epistemology 
reached a new point of development but the possibilities of development were lim
ited by his own ontological stance^. To understand this point, we need to note that, 
in its execution or materialization, the symbolic schema produces symbols, but the 
symbols thus produced designate something whose mode of existence is prior to all 
experience. We may not know where the chain of analogies will lead us, but what
ever the symbols are designating, their reference has always being there. 

We have struck here one of the more fascinating and profound tensions in Kant's 
theory of knowledge. Although the symbol - as any intuition (presentation or repre
sentation) - has an epistemological import (as we saw in the previous section), the 
symbol cannot have an ontological constitutive role. Thus, it is unthinkable for Kant 
to conceive of a "pure symbolicity", i. e. a symbolicity without actual reference that, 
in its movement, could "participate" in the constitution of its own object. For Kant, 
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the "symbol" can only be thought of in relation to a constituted reference: "the 
'symbols' must always be 'symbolic' in the ... sense that [their] pure reference must 
be constituted in the exterior of them." (Nichanian 1979, 287) The problem is that 
Kant adopted the rationalists' view on concepts and that, consequently, he consid
ered concepts as independent of, and prior to, all experience.^ Although considering 
himself a good Kantian, Piaget parted from Kant exactly at this point, as we shall 
see in the next section. 

PIAGET 

In 1924, Piaget published a review of Leon Brunschvicg's Uexperience humaine et 
la causalite physique [Human experience and physical causality]^. He was seduced 
by the way Brunschvicg dealt with these two concepts that were vital in Kant's the
ory of Knowledge. The 28-year-old Piaget rephrased Brunschvicg's position saying 
that experience is not, as Kant assumed, something invariable, something given once 
and for all. On the contrary, experience has a historical context. The object of Rai-
son, Kant was right, is to inform experience, but, in turn. Reason is constituted in 
experience. This claim was no longer Kant's. "Experience and reason are not two 
terms that we can isolate: Reason regulates experience and experience adapts rea
son." (Piaget 1924, 587). For Piaget, an account of human reason has to give up 
Kantian apriorism. 

To better understand Piaget's solution to the problem between experience and 
apriorism let us return to Kant's schema of a dog. We recognize a dog because the 
empirical data (intuitions) that we collect in our experience are identified and fil
tered by the schema. The schema is not an abstraction drawn from experience. Ex
perience is possible, and the empirical data become thinkable, because of the 
schema, and not the other way around. This is why Kant's theory of knowledge does 
not include a theory of abstraction. What Kant needed was a theory of subsumption, 
i. e. a theory indicating how representations and perceptions are subsumed under an 
a priori concept. In giving up apriorism Piaget found himself in need of a theory of 
abstraction. Central to it was the concept of schema - a revised one. He said: 
"Whatever is repeatable and generalizable in an action is what I have called a 
schema" (Piaget 1970b, 42). 

As in Kant's case, a schema for Piaget is based on iteration. But the emphasis is 
now on the actions. However, in terms of human cognition, what is important in 
Piaget's version of the schema is not that we can iterate actions of one kind and then 
actions of another kind. This would lead us to a wonderful 'panoply of schemata' 
(similar perhaps to Kant's "rhapsody of perceptions") that would remain in a chaotic 
situation in the absence of a higher organizing element. While Kant turned to the a 
priori concepts of the rationalist tradition, Piaget turned to structuralism: 

Any given scheme in itself does not have a logical component, but schemes can be co
ordinated with one another, thus implying the general coordination of actions. These 
coordinations form a logic of actions that are the point of departure for the logical 
mathematical structures. (Piaget 1970b, 42) 
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Piaget's anti-apriorism allowed him to conceive of symbols as playing a more deci
sive role in knowledge formation than they played in Kant's epistemology. Piaget's 
point of departure was the linking between action and representation. From the out
set he insisted that it is a current mistake to reduce representation to language: 

Language is certainly not the exclusive means of representation. It is only one aspect of 
the very general function that Head has called the symbolic function. I prefer to use the 
linguists' term: the semiotic function. This function is the abiUty to represent something 
by a sign or a symbol or another object. (Piaget 1970b, 45) 

In his book ''La formation du symbole chez Venfanf [The formation of symbol in 
children] - a particularly difficult book in its technical aspect because in it Piaget 
endeavored to show one of the central theses of his epistemology, namely that men
tal images are interiorized actions - Piaget argued that the symbol arises from non-
symbolic schematism^. More specifically, Piaget was claiming that there is a conti
nuity between the sensori-motor signifiers and the emergence of the first symbols in 
the children. In other words, that the sensori-motor intelligence prolongs itself into 
conceptual representation.^ 

The sensori-motor signifiers were seen by Piaget as 'indexes' or 'signals' but 
they still lack an independency vis-a-vis the signified object. The semiotic function 
begins precisely when there is a differentiation between signifiers and signifieds. 
This differentiation provides the signified with a spatial-temporal permanence and 
opens the possibility that a same signifier can be related to different signifieds.^^ For 
Piaget, the semiotic function includes differed imitations, symbolic play, mental im
ages, gestures, and natural language. Following Saussure he distinguished between 
symbol and sign. A symbol is a « motivated » signifier, which means that the signi
fier bears a certain resemblance to the signified. A sign, in contrast, bears an arbi
trary or non-motivated relationship to its signified. Thus, a letter that we use in an 
algebraic expression is a sign, while a figure standing for a triangle is a symbol. 

If it is true that the constructive stance of his genetic epistemology led Piaget to 
pay careful attention to the way in which actions and gestures become conceptual 
representations, it is also true, however, that Piaget's attention to signs and symbols 
faded away in his analysis of older children's thinking. Reflective abstraction con
verts action into operations and signs come to symbolize the operations. Hence, in 
Piaget's epistemology, in opposition to Kant's, signs and symbol borne a constitu
tive ontological role, but because the primacy was given to the structure, signs and 
symbols were in the end merely the carriers and the expressions of a thinking meas
ured by its structural features. Piaget wrote: 

reflective abstraction, which derives from the first concepts from the subject's actions, 
transforms the latter into operations, and these operations can sooner or later be carried 
out symbolically without any further attention being paid to the objects which were in 
any case "any whatever" from the start. (Beth and Piaget 1966, 237-238) 

To sum up, Piaget elaborated a theoretical reformulation of the Kantian concept of 
schema. He emphasized the epistemological role of action and gesture. However, the 
emphasis on the operations' structure left little room for a thematization of the con
tent of the operations and for a serious consideration of the semiotic systems and the 
cultural artifacts that the children use. Thus, for Piaget, the object that the hand 
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holds in the schema is unimportant. It may be "any whatever" from the start, as he 
says in the last quotation. Verillon and Rabardel comment that 

the object submitted to the Piagetian subject is fundamentally non-historical and non-
social: its main property is that it is structured by physical laws. ... The introduction of 
artifacts in classic Piagetian experiments is mainly due to their convenience for high
lighting the invariant properties of reaUty. (Verillon and Rabardel 1995, 80) 

Piaget's recourse to structuralism (even if it was a dynamic one) introduced irre-
soluble tensions in his epistemology - tensions that were proportional, we may say, 
to the ones Kant introduced in his by having recourse to apriorism.^^ While in Kant 
the tension appears between Form and Content, between concept and sensual repre
sentation, in Piaget it appears as the tension between structure and object. In both 
epistemologies, nevertheless, the common denominator is that mind's activity is, in 
the end, reduced to abstract mental labour. ̂ ^ 

In the next section I will claim that, from an epistemological and a psychological 
viewpoint, the concept of schema needs to be broadened so as to include not only 
the instruments that the individual uses (which has been Rabardel's recent claim^^) 
but its cultural context and other semiotic means such as speech and gestures that, 
more than mere ephemeral descriptors of reality, prove to be fundamental in knowl
edge formation. 

SCHEMA AND ACTIVITY 

Let us come back to Kant's concept of schema. As previously seen, for Kant, the 
distinctive epistemological trait of a schema is to present or exhibit, through the exe
cution of a procedure, the "intuition" of an object (the object of knowledge). I will 
take this idea as my starting point. However, as Peirce contended (Peirce 1966, 43), 
the way in which the object thus becomes intuited has a volitional character that 
Kant did not take into account. The volitional character underpinning the schema 
and its genesis, should be studied in the context of the individuals' activity.̂ "^ As 
such, it is related to the activity's goal. But complex activities are often comprised 
of chains of actions. A chain is directed towards the attainment of an aim. An aim 
(in contrast to the goal of the activity) is not necessarily something that is set from 
the beginning: it is a reference point that hypothetically can lead us closer to the 
goal. The formation of an aim is part of the heuristic process underlying the activ
ity. ̂ ^ Bearing these remarks in mind, the schema, I would like to suggest, is an or
ganization of actions or a chain of actions related to the attainment of the goal and 
aims of an activity. 

In this perspective the schema has a double nature: (1) di functional and (2) a 
phenomenological one. 

(1) The phenomenological aspect of the schema: 
In its phenomenological aspect, the schema is a mode of presentation - a mode 

of "exhibition" of the object, as Kant used to say, - an effort to render something (e. 
g. a conceptual object or a process) available, noticeable - even if, ontologically 
speaking, the object or the process (in short, what Husserl called objectity^^) does 
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not have necessarily precedence over the action. In this case, the schema produces 
the object and functions as a form of disclosure (in Heidegger's sense^^). The 
schema objectifies the object (Radford 2003a). 

(2) The functional aspect of the schema: 
The functional aspect of the schema means that the schema is governed neither 

by the Kantian rationalist apriorism nor by the Piagetian's normative character of 
logico-mathematical structures. Indeed, its adequacy is not examined against a grid 
of truth but against its practical results.^^ 

The schema, as I am formulating it, is still both a sensual and an intellectual ac
tion or a complex of actions. In its intellectual dimension it is embedded in the theo
retical categories of the culture. In its sensual dimension, it is executed or carried out 
in accordance to the technology of semiotic activity (Radford 2002b). We still save 
some of the characteristics of the Kantian formulation - figurative synthesis in the 
heuristic process, the difference between the execution of the schema and its result, 
its reiteration - but I place it in the broader context of the individual's subjective 
awareness that, in its constructive and creative endeavor, grows sustained and 
framed by the theoretical categories of the culture, its technology of semiotic activ
ity and the historically constituted mode of knowing (Radford 2003b). In the next 
section, I turn to a classroom episode that will help clarify the previous ideas. 

THE TECHNOLOGICALLY MEDIATED SCHEMA: FILLING THE HOLES 

In an artifact-mediated classroom Position of the CBR 
activity. Grade 11 students were asked 
to investigate the relationship between 
time and distance of a cylinder moving 
up and down an inclined plane^^. In one 
of the parts of the activity the students 
performed two experiments using a TI 
83+ calculator and a Calculator Based 
Ranger (CBR) motion detector. In the 
first one, the students propelled the 
cylinder upwards, from the bottom of 
the inclined plane and activated the 
CBR as soon as the cylinder was put in motion. In the second one, the cylinder was 
propelled one second after the CBR was activated^^. In both experiments the CBR 
was placed at the top of the inclined plane (see Figure 1). 

Figure 2 shows the calculator graph for the second experiment. In this part of the 
activity the students had to explain the shape of the calculator's graph. Another part 
of the activity consisted in two 'thought experiments.' Here the students were asked 
to sketch two graphs: one for a cylinder moving on an imagined ramp that had a 
greater slope than the one of the experiment, and one for a cylinder moving on an 
imagined ramp having a lesser slope than the one of the experiment. 

Figure 1. Inclined Plane or Table. 
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I will discuss first the students schema that resulted from the delayed motion 
(t = 1; see Figure 2), and then I will comment on the use of this schema in the part 
concerning the 'thought experiments.' 

In the first part, the schema, whose result is the graph shown on the calculator 
screen, consists of a sequence of actions, among them: (1) preparing the technologi
cal system calculator-CBR; (2) activating the CBR; (3) propelling the cylinder; (4) 
following the cylinder perceptually during its trajectory; (5) stopping the CBR when 
the cylinder comes back down and (6) making sense of the graph. 

In order to better understand the schema we need to discuss the role of the tech
nological system 'calculator-CBR' which was crucial in the experiment and in the 
generation of the graph. For sure, this technological system (TS) permitted a sub
stantial economy in the carrying out of the experience. While Galileo went to great 
pains to figure out a way to measure the consumed time (a variable that, in contrast 
to distance, cannot be seen), the TS registered the measures of distance and time 
and, in the human-TS interaction, the csilculditOT produced the graph.̂ ^ 

Now, the TS is more than a gadget to economize actions. It carries in itself, in a 
compressed way, socio-historical experiences of cognitive activity and scientific 
standards of investigation (Lektorsky 1984; Pea 1993). In addition to providing the 
students with economy and precision, the TS executes some of the human actions 
that it holds in a compressed way, and displays on its screen outputs of these actions. 
However, by taking over some of the human actions, certain aspects of the socio-
historical experience that the TS holds remain "hidden" from the individuals using 
it. As a result, the schema loses an impor
tant aspect of the "sensuality" that it could 
have had for Galileo and the understand
ing that could have resulted from seeing, 
touching, and doing. The fact that the 
symbol-graph is not the result of the 
individuals' own actions but rather the 
result of the individuals' actions and those 
socio-historical ones that the TS executes, 
brings forward a very important element in 
the genesis of the schema: the resulting 
schema is a schema containing "gaps" or 
"holes". Indeed, while the execution of the 
symbol-figure of a triangle reveals the schema, in the technological experiment the 
displaying of the symbol-graph of the cylinder's motion on the calculator screen 
does not. There is no longer coincidence nor analogy between the execution of the 
procedure and the schema. 

To obtain the schema, the holes have to be filled. However, the problem is not to 
repair the holes induced by the division of labor with their original substance (which 
would be impossible anyway). The problem is to make sense of the symbol-graph 
thus produced. In contrast to the schema of the triangle or of the dog, and the sche
mata discussed by Piaget, such as the baby hitting an object with a stick, the semi-
otic activity does not end with the production of the "image" (Kant) of the schema. 
The semiotic activity goes beyond the image (here the symbol-graph). The question 

Figure 2. Calculator's graph. 
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is not primarily to judge but to interpret and to produce meaning. The students have 
to make sense of the image and to do so they will have recourse to other semiotic 
systems such as gesture and speech, as we will now see. 

The students noticed that the graph was not perfectly curved in the part after its 
minimum value and that, in the graph, the value of the variable D (distance) in the 

ending points is not the same (i. e. D r > DQ ; see Figure 2). While the first differ
ence was explained by a slight turn of the cylinder when it was rolling upwards on 
the inclined plane, the second difference was more difficult to understand. After dis
cussing different ideas Judith said: 
Judith: ... (looking at the inclined plane) This thing there [the cylinder], does it go 

further? (the other two girls turn to see the inclined plane which was behind the 
students' desks) ... like this ... (she makes a gesture with her right arm; the ges
ture starts with her arm extended in front of her body and moves back, miming 
the cylinder motion in its coming back down trajectory) does it measure the ...? 
Oh! (she thinks she understood something) 

Vanessa: What? 
Judith: You started on the table [i. e. the table that served as the inclined plane for 

the experiment], right? (Vanessa : Yes) And when it was rolling it fell off the ta
ble (with a similar gesture her arm is bent again and goes beyond her desk, as the 
falling cylinder did during the final part of its motion when it fell off the inclined 
plane and was caught by the student)... I don't know... 

Vanessa: It has nothing to do with that. 
Judith: It does have something to do with that [...] That's the curve, right? Here (she 

points to the horizontal segment of the left part of the graph on the calculator 
screen) suppose this is when you started on the table and when you finished (she 
points now to the horizontal segment of the right part of the graph), you've fin
ished further, that's further. [...] Let's say that your distance here would be 30, 
and 45, that's the error! [...] 

In Lines 1 and 3 Judith makes an "iconic gesture", that is, a gesture that bears a re
semblance with its referent. The iconic sign-gesture enacts the falling trajectory of 
the cylinder (see Figure 3). It allows Judith to call her group mates' attention to a 
specific part of the phenomenon. Like the Calculator-CBR system, the iconic ges
ture affords a segmentation of the phenomenon and operates a choice of what has to 
be taken into account. But in contrast to the Calculator-CBR system, the iconic ges
ture does not stress speed, time, accurate distance and other elements. What it 
stresses is the fact that the cylinder went off the table. The iconic gesture has made 
an important fact evident (i. e. capable of being seen). The fact that, in its way back 
down, the cylinder went off the table and, consequently it travelled more distance, 
allows Judith a new interpretation of the graph. The new interpretation is elaborated 
on Line 5. Indeed, in Line 5, Judith has recourse to an "indexical gesture": pointing 
with her finger, she indicates two parts of the calculator graph on the screen (see 
Figure 4). In this case, numbers (30 cm and 45 cm) come to play the role of the 
iconic gesture that has previously shown the cylinder falling off the table. The first 
number represents the students' estimated distance from the cylinder's maximum 
point to the bottom of the table. However, the cylinder never went 15 cm off the ta-
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ble (i. e. 45-30), for it was caught immediately as it fell off the table. By exaggerat
ing the numbers, the particular element of the phenomenon is highlighted. 

Figure 3. Judith makes an iconic gesture that mimes the cylinder coming back down. In the 
genetic constitution of the schema, the students have to interpret the results of the artefact-

mediated actions. To do so, they have recourse to gestures and speech. 

I have discussed in some detail the previous students' dialogue because this dialogue 
shows aspects of the students' efforts to fill the schema and, overall, because I take 
these efforts as an important part of the genesis of the schema. 

The students' dialogue suggests 
that to fill the holes in the schema the 
students produce a kind of simulation 
of the cylinder motion. The simulation 
was oriented towards understanding 
some 'remarkable points' on the 
graph. In the terminology of the previ
ous section, these points are examples 
of aims and represent, as Arzarello and 
Robutti (2001, 37) indicate, strong 
connections between signs and experi
ence. To attain the aims, the students 
had recourse to language. Through its 
rich arsenal of terms, in particular through some objectifying deictics (e. g. pro
nouns, locative words, time-related expressions), language allowed the students to 
"indexicate" and "iconize" essential features of their mathematical experienced^. The 
students' dialogue also shows how language was coordinated with gestures in the 
production of meaning and understanding. 

Once some understanding was reached and that the schema was apparently com
pleted, the students could apply the schema to the proposed "thought experiments". 
To do so, the schema was significantly contracted. The technology of semiotic activ
ity was not the same (now the students worked with pencil and paper). The key ele
ment that the students retained of the cylinder motion was the parabolic shape and 
the starting and ending points of the graph. They then produced the graphs shown in 
Figure 5. 

Figure 4. Indexical Gesture. The students point 
to the right part of the calculator screen. 
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Figure 5. Graph for the cylinder motion on an inclined plane having a greater slope (graph 
3) and a lesser slope (graph 1) than the original inclined plane (graph 2). 

Graph 2 corresponds to the ramp of the original experiment. Graph 1 corresponds to 
the ramp having a greater slope and graph 3 to the ramp having a lesser slope. Of 
course, the results are not mathematically correct. The students focused on the kind 
of "effort" that it takes the cylinder to go up when the slope is greater and when the 
slope is lesser than the original one. All in all, the graphs show a partial understand
ing of the abstract mathematical spatio-temporal relationship of the cylinder motion. 

SYNTHESIS AND CONCLUDING REMARKS 

As we saw. Rationalists conceived of the mind as governed by a kind of abstract 
logical calculus ensuring deductions such as "M > N and N >P, then M>P", regard
less of the content of M, N, and P. Formal deduction removed from all empirical 
content, however, Kant argued, cannot yield knowledge. The question then was to 
explain how abstract concepts relate to their concrete content. In an important sense, 
the Critique of Pure Reason is an attempt to achieve this goal and the schema, in 
fact, was Kant's answer. 

One of the distinctive theoretical features of Kant's concept of schema is that the 
individual is neither reduced to a passive receiver of impressions neither to a flesh 
box in whose interior logical calculations are effectuated. The schema entails the 
idea of an individual who, to acquire knowledge, has to become active. However, in 
Kant's theory of knowledge, the schema exhibits or unveils its concept - it does not 
produce it. Piaget retained the Kantian feature of an active individual, gave up apri-
orism and added a new ontological dimension: the schema was endowed with the 
power of producing concepts. Piaget's thesis, in fact, was stronger: concepts could 
not be produced in the absence of their correlated schemata^^. The Piagetian elabora
tion of the schema opened a window for semiotic considerations. However, the con
crete was rapidly evacuated and the relationship between Content and Form ended 
up being thematized against the rigid grid of logico-mathematical structures. 
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Since most of our actions are carried out using signs and artifacts, and since 
these actions are not performed in an arbitrary way but are framed by social goals 
and the cultural logic of meaning, I suggested that the schema can be reinterpreted 
as an organization of semiotical and artifactual actions or a chain of such actions re
lated to the attainment of the goal and aims of an activity. The mediated nature of 
actions, nevertheless, leads to an important and difficult problem. Mediation means 
that, to accomplish something, we have recourse to an item of our environment (e. g. 
a word, an idea, a tool) that has already a social meaning. Carrying out a mediated 
action thus requires a lot of understanding. As a result of this intrinsic social nature 
of mediated action, the schema, generally speaking, cannot "exhibit" or show osten-
sively its object during its execution. The example of the graphic calculator and the 
motion sensor, I think, showed this point in a clear way. In the classroom episode, 
the students' schema was framed by a complex division of labor. The technological 
system calculator-CBR performed some key actions; as a result, even if the material 
product of the schema (i. e. the calculator graph) could be seen, the schema had 
"holes" that the students had to fill using creative imagination. The parabolic shape 
of the graph shown by the calculator underwent a process of interpretation. To do so, 
the sensual content of the cylinder motion had to be related to abstract aspects of the 
graph. Surely, language is a powerful means of objectification. However, in the 
genesis of knowledge, the relationship between conceptual descriptions and their 
referents cannot be reduced to linguistic terms (Otte 1998, 444). How then to ac
count for the emerging schema and its encompassing description of the relationship 
between the concrete and the abstract? The interpretative process of the calculator 
graph (a crucial step in the formation of the schema), may shed some light on this 
problem. 

In the course of this interpretative process, we saw the students displaying a 
range of semiotic forms of meaning production and knowledge objectification such 
as iconic and indexical reference (Figures 3 and 4) that were intermingled with lan
guage, intimating that the subsumption of a sensual content A into an abstract con
cept B by the schema may be much more complicated than perhaps Kant himself 
imagined. For one thing, both indexical and iconic reference involve types of 
"predication" different from those of the form "subject-copula-predicate", that is, of 
the form 'A is 5 ' that Kant emphasized following the classical logic's view on 
judgments. It may very well be that 'Reality' is much less homogeneous than what 
we usually think and that the distinction between the concrete and the abstract might 
be placed on an "infinite graduation of being, of perspective and of communication" 
(Otte 1998, 425) that language alone fails to capture. 

If "the essential question of epistemology", as Otte suggests, is to understand 
that which "enables an A to stand for a 5" (Otte 1998, 429) or that which makes an 
A to become subsumed into a S, a broader concept of predicative copula and rela
tionship between A and B (between the concrete and the abstract or between Content 
and Form) would be required. In this line of thought, copular predication, I want to 
suggest, needs to be broadened so as to include other forms of semiotic reference 
capable of accounting for the dialectic ways of the constitution of subject and predi
cate, that is, of the semiotic processes through which the object of knowledge be
comes noticed and socially thematized (in short, schematized) within a certain cul-
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tural discourse. It requires us paying attention to the technology of semiotic activity 
and its interaction with other semiotic systems in what Lotman (1990) calls the "se
miotic space". 

In the section titled Schema and Activity, I mentioned that I place the schema in 
the context of the individual's subjective awareness that grows sustained and framed 
by a historically constituted mode of knowing. I want to conclude these remarks by 
mentioning in what sense a schema relates to its cultural mode of knowing. I cannot 
find a better way to do so than to recall a phrase that Peirce wrote in a projected 
book that he never finished. Summarizing Kant's ideas, Peirce wrote: "Every cogni
tion contains a sensual element."'̂ '̂  In fact, every cognition (i. e. every phenomenon 
of our mental life) contains much more than a sensual element. It contains its cul
tural way of knowing. Thus, in the classroom activity, in addition to implicitly as
serting, in a subtle way, the existence of a mathematical relationship between time 
and space that describes the cylinder motion, the design of the activity informs the 
students that such a relation becomes intelligible through experimentation. The 
question we asked the students and their conceptual procedures to answer it are 
framed and thus make sense within a particular, historically constituted mode of 
knowing. Had we asked a 17* century philosopher of nature this same question he 
would have certainly found it amusing - if not laughable. Vicenzo di Grazia (an Ar
istotelian philosopher and contemporary of Galileo), for instance, said: 

... those who want to demonstrate natural accidents through mathematical methods are 
deUrious... the natural philosopher [scientifico naturale] studies natural phenomena 
whose essence entails movement, while, instead, the subject matter of mathematics does 
not comprehend movement. (Quoted in Biagioli 1993, 205). 

When I said, in the application of the schema to the two thought experiments, that 
the student only retained the parabolic shape and the starting and ending points of 
the graph, I was forgetting the most important thing: the students' schema embodies 
a way of inquiring and of knowing about nature that only habit makes us now take 
for granted and to see as "natural". 

Universite Laurentienne, Ontario. 

NOTES 

^ This article is a result of a research program funded by the Social Sciences and Humanities Research 
Council of Canada. 
• In New Essays Concerning Human Understanding, Leibniz says: "necessary truths ... must have princi
ples whose proof does not depend upon examples, nor consequently upon the testimony of the senses, 
although without the senses it would never have occurred to us to think of them. This distinction must be 
carefully made, and was so well understood by Euclid, that he often proved by the reason, what is suffi
ciently seen through experience and by sensible images." (Leibniz 1949, 44) 
^ As usual in references to Kant's Critique of Pure Reason, A50 means page 50 of the 1781 edition; B74 
means page 74 of the 1787 edition, etc. Page 92 refers here to the English translation of Norman Kemp 
Smith. I will use this format throughout this article. 
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"̂  In Kant's vocabulary "intuition" means an effected immediate relation that objects have on us (see 
A19/B33, 65). Examples of "intuitions" are impressions, perceptions, representations, etc. 
^ The problem, of course, is not that Kant had an ontology. We all need a theory of Being (even if it is 
only an impUcit theory) in order to make assumptions or hypotheses. As Adomo pointed out, "If you re
fuse to make any assumptions, if you attempt to understand a thing purely on its own terms, then you will 
understand nothing." (Adomo 2001, 13). 
^ Daval (1957) deals with this topic in detail. 
^ Brunschvicg 1922. 
^ In the beginning of the book he says: "We will attempt to show how the [emergence of the] symbol is 
prepared by the non-symboUc schematism" (schematisme pre-representatif). (Piaget 1968, 8). 
^ Piaget 1968, 68-69. See also Piaget 1972. 
°̂ Piaget in PiatteUi-Palmarini 1982, 58. 
*̂ One of the tensions in Piaget's epistemology is its problematic concept of necessity, related to the 

growth of knowledge. It has been discussed in Otte (1998, in press). Another one is related to the problem 
of objectivity. It has been discussed in Radford 2002a. 
"̂ For a detailed elaboration of this point see Adomo 2001 and Buck-Morss 1975. 

^̂  Rabardel 1995, 1997. 
^^ I use the term activity here in Leontiev's sense (Leontiev 1984). 
^̂  Leontiev 1984, 117. 
'̂  Husserll961,44. 
'̂  Heidegger 1971. 
^̂  In his interesting work, Vergnaud (1985) was also confronted with the problem of the adequacy of the 
schema. In deaUng with this problem in terms of invariants, he certainly succeeded in avoiding the Pia-
getian normative problem of logical structures. Among the invariants, Vergnaud included propositions (i. 
e. something that is true or false) and "propositional functions" - abstract functions having propositions 
as "variables". However, since "truth" as a conceptual category is adopted without critical stance, it is not 
clear how, epistemologically speaking, invariants are dependent and sensitive to the concrete cultural con
texts of teaming. 
^̂  The episode is described in detail in Radford et al. (2003). 
'° Thus, in the first experiment, the cylinder motion started at t=0 and, in the second experiment, motion 
started at t = 1 sec. 
^̂  Commenting on the data collection in his experiment on an inclined plane, Gahleo says: "As to the 
measure of time, we had a large pail filled with water and fastened from above, which had a slender tube 
affixed to its bottom through which a narrow thread of water ran; this was received in a Uttle beaker dur
ing the entire time that the ball descended along the channel [carved on the inclined plane] or parts of it. 
The Httle amounts of water collected in this way were weighed from time to time on a dehcate balance, 
the differences and ratios of the weights giving us the differences and ratios of the times, and which such 
precision that, as I have said, these operations repeated time and again never differed by any notable 
amount." (GaUleo 1638, 170) 
" A detail elaboration of the idea of "objectifying deictics" can be found in Radford 2002b. 
^^ I will not dwell into this point here, Hmiting myself to mention that, to some extent. Radical Construc
tivism was elaborated as an effort to bring this point to its logical conclusions (for a critique see e. g. 
Lerman 1996; for a reply see Steffe and Thomson 2000). 
-̂  Peirce in Hooper (Ed.) 1991, 17. 
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KENNETH RUTHVEN 

TOWARDS A NORMAL SCIENCE OF 
MATHEMATICS EDUCATION? 

Abstract: This paper suggests that the first BaCoMET [Basic Components of Mathematics Education for 
Teachers] project (Christiansen, Howson and Otte 1986) can be seen as an important early attempt to 
sketch a 'disciplinary matrix' (Kuhn 1962, 1970) for the field of mathematics education. This project 
brought together representatives of different national traditions of research in mathematics education, 
with the aim of identifying fundamental ideas which should be given high priority in any teacher educa
tion programme. My analysis of the project draws on Kuhn's (1970) priori tisati on of different senses of 
'paradigm' in relation to the development of 'normal science', and consequently draws out the central 
part played by clusters of exemplary problems (and solutions) in mediating between symbolic generalisa
tions and practical action. 

Key words: didactical research; mathematics education; normal science and scientific paradigms; teacher 
education; theory-practice mediation. 

THE IDEA OF BASIC COMPONENTS OF MATHEMATICS EDUCATION 
FOR TEACHERS 

My first - indirect - contact with Michael Otte was as a newly appointed teacher 
educator, through reading his report on 'The education and professional life of 
mathematics teachers' (Otte 1979) in a volume prepared by the ICMI for a 
UNESCO series on New Trends in Mathematics Teaching (Christiansen and Steiner 
1979). From the start - and entirely characteristically as I now recognise - Otte cau
tioned that "such a report can only ... provide cues for orientation at a general level 
by furnishing a conceptual framework for the contextual analysis of problems" 
(108). For Otte, "the special structural problem of the teaching profession" was "that 
it does not have a basic science such as law for the lawyer, medicine for the physi
cian" (114-115), with the result that "the most central problems for teacher educa
tion are undoubtedly those of mediating between theory and practice, [and] between 
the subject matter and the social and educational sciences" (126). In particular, he 
argued that "the present situation of the pedagogy of mathematics is characterized 
by great conceptual deficiencies" at a time when "we are faced with a host of practi
cal problems which can no longer be handled by the conventional inventory of spon
taneous principles gained from experience and transmitted by tradition" (127). 

Together with two fellow contributors to the UNESCO volume - Bent 
Christiansen and Geoffrey Howson - Otte set out to remedy this situation by initiat
ing a project aimed at establishing what they termed 'Basic Components of Mathe
matics Education for Teachers'. The rationale for this project is briefly presented in 
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the introduction to the resulting 'Perspectives on Mathematics Education' 
(Christiansen, Howson and Otte 1986). The animating idea was that "there were cer
tain basic, fundamental ... components of the didactics of mathematics which should 
be given high priority in any teacher education programme" (ix). A 'basic compo
nent' was taken as being an aspect of mathematics education which is: 

(i) fundamental in the sense that it plays a decisive part in the functioning of mathemat
ics teachers; (ii) elementary in the sense that it is accessible to intending teachers of 
mathematics and of immediate interest and value to them; and (iii) exemplary in the 
sense that it exemplifies important didactical or practical functions of the teacher and 
their inter-relationships, (x) 

Thus the project aimed to produce a text "to convey... such knowledge as would be 
useful to the teacher in carrying out his functions, i. e. knowledge for action'' (xi). 
Nevertheless, in conceptualising the form that such 'knowledge for action' might 
take, the project group was exercised by "the relationships between, on the one 
hand, theoretical knowledge (scientific theories about subject matter and about di
dactical concerns), and, on the other, the know-how of the practitioner (i. e. the ex
perienced teacher) who is operating and acting in appropriate ways in the class
room" (xi). Moreover, the multi-national project group faced a further challenge in 
synthesising and refining the diverse knowledge - both theoretical and practical -
which individual members brought from different traditions of research, so as to 
build "knowledge which was in some form 'common' or 'shared' by the group" (xi). 

PARADIGM AS METAPHYSICAL FRAME, DISCIPLINARY MATRIX OR 
EXEMPLARY PROBLEM 

This first BaCoMET project was an important attempt to frame a shared perspective 
on the field across different traditions. A more recent ICMI study, entitled 'What is 
Research in Mathematics Education and What are Its Results?', has sought to ex
plore - indeed, attempted to resolve - such differences of perspective within the 
field. Its main conclusion has been summarised by its leaders in the following terms: 
"[I]n spite of all the differences that divide mathematics education researchers (in 
terms of theoretical approaches, views on relations between theory and practice, phi
losophies of mathematics, etc.), they still constitute a community, and it is necessary 
to search for what constitutes its identity" (Sierpinska and Kilpatrick 1998, xi). The 
differences manifested in the course of the study were often characterised in terms 
of alternative - even conflicting - 'paradigms' for research in mathematics educa
tion. This issue is discussed most fully by Ernest (1998) who, following Habermas, 
talks of "multiple research paradigms, each with its own assumptions about knowl
edge and learning (epistemology), about the world and existence (ontology), and 
about how knowledge is obtained (methodology)" (77). While this conception has 
been widely influential in methodological discussions in the social sciences, in my 
view, it represents an overly rationalistic and foundationalist approach. 

I see the alternative perspective offered by Kuhn (1962, 1970) as a more fruitful 
one for appraising the situation of mathematics education. In the second edition of 
his work on 'The Structure of Scientific Revolutions', Kuhn (1970) added a substan-
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tial postscript in which he sought to tighten his loose central construct of 'paradigm'. 
In particular, he drew attention to two related - but ultimately distinct - senses of the 
term; the first more popular, the second more profound: 

On the one hand, ['paradigm'] stands for the entire constellation of behefs, values, 
techniques, and so on shared by members of a given community. On the other, it de
notes one sort of element in that constellation, the concrete puzzle-solutions which, em
ployed as models or examples, can replace explicit rules as a basis for the solution of 
the remaining puzzles of normal science ... Philosophically, at least, this second sense 
of 'paradigm' is the deeper of the two. (175) 

It is these shared models or examples which mediate between codified theory, ex
pressed in what Kuhn terms 'symbolic generalisations', and practical tasks of fram
ing and solving problems. This identification of the central part played in scientific 
thinking by a myriad of problem-solutions points to a much smaller granularity of 
scientific knowledge than do accounts which conceive such knowledge more exclu
sively in terms of symbolic generalisations. Kuhn's approach dissolves the idealised 
epistemological model of theory application, and highlights the crucial part that ex
emplars play in mediating theoretical constructs. 

Accordingly, Kuhn draws attention to the central function of exemplary prob
lems in the formation of disciplinary knowledge: 

The paradigm as shared example is the central element of what I now take to be the 
most novel and least understood aspect of this book ... Philosophers of science have not 
ordinarily discussed the [exemplary] problems encountered by a student... for these are 
thought to supply only practice in the appHcation of what the student already knows. He 
cannot, it is said, solve problems at all unless he has first learned the theory and some 
rules for applying it. Scientific knowledge is embedded in the theory and rules; prob
lems are suppUed to gain faciUty in their application. ... [However] this locahzation of 
the cognitive content of science is wrong. ... In the absence of such exemplars, the laws 
and theories [the student] has previously learned would have Uttle empirical content. 
(187-8) 

Working with exemplars not only gives substance to laws and theories but estab
lishes a fine texture of largely tacit knowledge through which a wide range of situa
tions can ultimately be related to a single idea: 

[The] abihty to see a variety of situations as like each other, as subjects for ... [some] 
symboHc generaUzation, is ... the main thing a student acquires by doing exemplary 
problems. ... After he has completed a certain number ... he views the situations which 
confront him as a scientist in the same gestalt as other members of his speciaUsts' 
group. For him they are no longer the same situations he had encountered when his 
training began. He has meanwhile assimilated a time-tested and group-Hcensed way of 
seeing. (189) 

Such shared disciplinary referents lie at the heart of Kuhn's account of a scientific 
community, the members of which "have undergone similar educations and profes
sional initiations ... absorb[ing] the same technical literature and draw[ing] many of 
the same lessons from it" (177). 
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BUILDING A SHARED DISCIPLINARY MATRIX FOR MATHEMATICS 
EDUCATION 

As a field, mathematics education has barely started to build a shared disciplinary 
matrix, codified in a standard literature. This involves not so much a search for 
grand overarching schemes as the development of many more modest and loosely 
coordinated analytic frameworks, clearly focused on issues of recognised signifi
cance, and closely associated with clusters of exemplary problem formulations and 
solutions. As I have argued elsewhere (Ruthven et al, 2002), taking replication and 
synthesis seriously could play a significant part in such development. From a techni
cal perspective, replication of a study across varied sites not only makes it possible 
to address issues of generalisability and contextual influence more rigorously, but 
provides an important mechanism through which theoretical ideas and research tools 
can be sharpened and refined in action, particularly in response to the operational 
challenges and cultural differences which arise in translating them between educa
tional sites, phases and systems and between research teams. From a social perspec
tive, the diffusion of research design and instrumentation from one group to others 
through replication studies not only mediates the development of more strongly 
shared systems of language and method, but also directs attention to the degree to 
which carrying through such work calls for recontextualisation rather than straight 
replication, illuminating contextual influences and cultural differences which tend to 
be glossed over in current discussion, evaluation and synthesis of research in the 
field. 

Likewise, critical reviews of research on particular topics, informed by apprecia
tion of such contextual influences and cultural differences, could play an important 
part in development of the field. At present, the synthesis of research receives insuf
ficient attention, perhaps on account of a popular perception of review studies as 
'secondary' rather than 'primary' research, but also because of the challenges of car
rying through such work rigorously and reflexively. The development of handbooks 
for the field is making some contribution in this respect, but their mode of produc
tion often limits their scope. Viewed in this light, the first BaCoMET project repre
sented an unusually ambitious and sustained attempt at holistic synthesis across dif
ferent traditions. Contemporary reviewers recognised this. One commented on how 
the book examines "aspects of mathematics education which are all acutely relevant 
to anyone engaged in initial or in-service teacher training" (Schwarzenberger 1987, 
67); another considered that the book "makes an important contribution to the 
emerging consensus on what constitutes the discipline Mathematics Education and 
provides a very broad range of organising ideas and principles which a contempo
rary teacher education programme needs to address" (Booker 1988, 505); a third ex
pressed the view - as did the others - that the book "will be a fundamental refer
ence, for years to come, for the training of mathematics teachers" (Adda 1988, 108). 

A feature which reviewers particularly appreciated in the BaCoMET text was the 
attention given to examples. Adda found the closing contribution on classroom or
ganisation and dynamics "a revealing chapter based on many illuminating and 
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stimulating examples" (108), while Booker commented of the same chapter how 
"the fundamental ideas ... are analysed in depth by the provision of a large number 
of well chosen classroom examples which are returned to on several occasions to 
reveal the full inter-related aspects" (509). The opening chapter on social norms and 
external evaluation took a rather different approach: 

In this provision of illustrative lessons, the first chapter differs from much of the re
mainder of the book as it allows for the practical implementation and testing of the ideas 
being put forward. The inclusion of several sets of student-teacher directed questions 
provide for further investigation of these concepts and strategies (Booker, 1988: 505-6) 

This is the only case of exemplary tasks being proposed in the text, as opposed to 
exemplary analyses being offered. Equally, the sense conveyed - as in the text more 
generally - is of issues being raised for discussion rather than problems posed for 
solution. Reviewers noted how the style of the text is more discursive than conclu
sive; with Adda commenting that "this is not a book that deals with categorical as
sertions ... it sets problems and puts its readers in the position of posing many 
more" (108); and Booker concluding that the book "provides a very useful frame
work for organising the discussion of mathematics education with intending teachers 
and supplies a wealth of ideas on which practising teachers could well reflect" (510). 
In this respect, then, the text does not employ generalisations and exemplars in the 
more definitive way implied by Kuhn's analysis of their function within normal sci
ence. 

The fullest reviewer comment bearing on the relation between theoretical gener
alisations and exemplary analyses within the BaCoMET text was occasioned by a 
chapter on 'observing students at work': 

Using compeUing, if familiar, examples [the authors] show how students frequently 
think about mathematical tasks in very personal ways; when this proves unexpectedly 
useful, the student is said to have unusual insight but when it leads to a misconception, 
the student is said to be in error. By highUghting the common basis to these two very 
different outcomes, the authors provide a meaningful context for the errors that students 
make in building and using their individual conceptions of the mathematics that the 
teacher is endeavouring to communicate. Practical means of investigating student con
ceptions are provided and these observations are related to an underlying theory of hu
man information processing. (Booker 1988, 508) 

Given the relatively extensive attention that this area had received within the 
mathematics education research community of the time, it not surprising to find this 
particular chapter being singled out. Significantly, some of the points made by 
Booker can be reformulated in terms of the emergence of critical features of a disci
plinary matrix. For example, paradigmatic examples should be both compelling and 
familiar to those in the field; indeed these characteristics are related inasmuch as ex
tensive public scrutiny plays a part in identifying particularly powerful examples. 
Equally, an important function of such exemplars is precisely to motivate and illus
trate deeper theorisation of the issue, serving a bridging function between theory 
building and practical action. In this respect, Adda was more sceptical: while she 
considered that the chapter "provide[s] many good examples", she found "the argu
ment of the theory stemming from cognitive science ... a little unconvincing, espe
cially as regards the complexity of the reported observations throughout this book" 
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(107). Once more, the comment is reveaUng: while the exemplars are found signifi
cant and persuasive, the capacity of the imported theory to enhance their analysis is 
questioned. Again, it is through wide and sustained public scrutiny of this type that 
scientific norms are established. 

SUMMARY AND CONCLUSION 

My argument has been not that issues of mathematics education can - or should - be 
treated wholly in scientific terms, but for the potential contribution of a normal sci
ence of mathematics education to the wider human enterprise. I have suggested that 
the first BaCoMET project can be seen as an important early attempt to sketch a dis
ciplinary matrix for the field. My critical appreciation of this work has been guided 
by the different senses of 'paradigm' expounded by Kuhn, and notably by the central 
part that he identifies clusters of exemplary problems and solutions as playing in 
mediating between symbolic generalisations and practical action. 

Faculty of Education, University of Cambridge 
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GUY BROUSSEAU 

THE STUDY OF THE DIDACTICAL CONDITIONS 
OF SCHOOL LEARNING IN MATHEMATICS 

Abstract: The production, knowledge and learning of mathematics follow a certain combination of "lo
gics": a logic of knowledge, a logic of the subject and a logic of situations. They do not coincide. How do 
they relate to didactical activity? 
Do the epistemological, semiological and psychological approaches suffice as theories of didactical activ
ity? What is the importance of the latter with respect to the first two? Is it necessarily reduced to the de
scription of practices, or to a collection of techniques or technologies? 
Knowledge is the most important means and object of the transmission of acquisitions from one genera
tion to another, and also the most powerful means of influencing nature and people. Its production and 
transmission have become one of the principal activities of all of humanity. Studies of the conditions for 
creation and transmission of knowledge now have high priority. 

Key words: didactical laws, logic of situations, macrodidactique, microdidactique, production of knowl
edge, theory of situations, transmission of knowledge. 

I. INTRODUCTION 

Michael Otte has interested himself in numerous subjects, with a remarkable perspi
cacity and depth. I have had the good fortune to take advantage of his reflections and 
he has been kind enough to invite me to offer my ideas in the context of the BA-
COMET project. He has introduced me to numerous eminent colleagues who have 
caused me to envisage different approaches to mathematical education. He invited 
me to write an article with him which permitted certain of my ideas to be expressed 
in English, but which above all showed me his immense culture and his profound 
knowledge of French literature. 

His interest was thus already in linguistics and for instance in the "science of 
symbols" (Alleau 1982). For my part, grounded in observation of classes and stu
dents, I concerned myself with modelling situations, with ergonomic studies and 
with the production of experimental engineering. The study of semiological 
/didactical relations brought us together of a moment. 

His interest in the logic of s-knowledge^ (savoirs) can be explained. The culture, 
science and organization of s-knowledge - even if they involve more individual psy
chological processes - are among the most powerful and the most economical of the 
means and tools of c-knowledge. It is a standard practice to try to derive from them 
all new c-knowledge. Tht fragility of knowledge (Brousseau and Otte 1991) estab
lished for a moment by isolated human beings at the whim of fluctuating conditions 
would seem to condemn their observation to a crippling sterility. The object of this 
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article is to make a rapid presentation of the studies I have carried out on the logic of 
didactical situations in mathematics. 

11. RESEARCH IN MATHEMATICS EDUCATION 

C'Knowledge (connaissances) in Mathematics Education 

The democratic sharing of opinions and responsibilities is retreating everywhere in 
the face of a redistribution of powers which allocates decisions, even the most per
sonal, to opaque economic organisms disguised by powerless politics and increas
ingly servile media. The reasons invoked publicly are a cosmetic cover-up of con
clusions reached by the "specialists." These are in principle supported by scientific 
study which is assumed to make their assertions verifiable by those who can under
stand them. 

Treatment of society's major problems, health, industrial production, the econ
omy, etc. follows this model more and more. Education appears to be an exception, 
being perhaps the last domain in which the majority of citizens feel they have the 
right to claim full competence, from being either parents or students or erstwhile 
students or simply citizens concerned for the instruments of cohesion and progress 
for their city. The portion of the population currently devoting itself to the creation 
and diffusion of information or its teaching probably makes up a majority of the 
city. In all cases it plays the principal role there. In any case, education is the princi
pal and final instrument of political and commercial use of the intangible but essen
tial product, hope. The hope of improving living conditions for the next generation 
is an inexhaustible commercial lode. Appetites whetted by this huge market, certain 
economic interests relentlessly attack the vestiges of the traditional educational 
structures. In France, successive governments and numerous institutions have for 
thirty years shamelessly exploited the alibi of education and training to satisfy needs 
or projects that have nothing to do with education. For example, the duration of non
professional education of teachers of primary school has been augmented by six 
years, education entirely confiscated by the universities in order to augment the 
number of their students and thus of professors in the fields that interest them. Not 
only do they jettison from their programs of disciplinary training everything which 
might relate to the future career of many of their students and exclude everything 
that might improve the common professional culture of teachers, but they also fight 
outside of their realm against anything that might constitute a scientific university 
setting for teaching. 

If a number of actors of the diffusion of knowledge and culture wish to see them
selves in the role of experts, the scientific field which should validate them still fails 
to be clear. 

It's not for lack of candidates: every discipline, on one account or another, has 
been presented as a distortion-free theoretical setting, and sometimes as the unique 
setting for the study of these phenomena. The disciplines concerned as objects of 
study were long ago disqualified a priori by the fact that they are specific, and thus 
incapable of assuming the unifying role necessary for the "standard" functioning of 
the institutions (a role comparable to that of other fields of problems). They have 
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thus been supplanted by "more general" disciplines such as psychology, sociology, 
linguistics or statistics. One can cite by the dozen the branches which have been 
called on, from philosophy to computer science, from medicine to ecology, from an
thropology to economics, not to mention the ad hoc sciences and home made theo
ries. 

If effectively numerous interesting works on education have issued from reflec
tions based on these sources, their dispersion damages their unity, and the number of 
specialists perched on this or that twig of their discipline is not sufficient to assume 
the support expected of the collection. Nonetheless, social and administrative neces
sities tend to assemble these renegades into a community of "sciences of education" 
in the confines of institutions of teaching and training. The repertoire of this com
munity is composed of migrant concepts interpreted in a soft and diverse manner 
better designed to create complicity than cooperation or real debate. But in fact the 
most obvious efforts are those which tend each time to diversify yet further the ap
proaches, the concepts, the vocabulary and the practices. Thus educational science 
forms an enormous field of knowledge, but one without structure. 

The scientific fragility of researchers in this domain as they face various classic 
disciplinary institutions is obvious. Moreover, from one country to another the vari
ety of cultures and institutions illustrates perfectly both the efforts at unification de
manded or imposed by those who are responsible and the "natural" efforts of diver
sification resulting from the individual (and individualistic) activities of the actors. 

Despite the diversity of the administrative and cultural organizations for teach
ing, at the elementary level there is a certain uniformity of objectives and practices, 
which is encouraging. 

The relationship between research institutions and those dedicated to teacher 
training or the effective management of teaching vary from one country to another 
and are never very clear. In these conditions the teachers are bombarded with injunc
tions of all sorts, orchestrated or chaotic, in the name of justifications or slogans 
whose origins they do not know, whose objectives are the subject of all manner of 
fantasies, but whose real consequences frequently elude them. 

Research in mathematics education adheres approximately to this scheme of 
things, and for the past thirty years on the basis of a mathematical knowledge all the 
better shared for being more elementary, most research has based itself on studies of 
psychology, and most reform on "naive" propositions of mathematicians. The more 
the knowledge of the processes of learning and teaching grew, the more the enthusi
asm for mathematics education of the community of mathematicians diminished, to 
the point of indifference. For some it turned into downright hostility towards re
search, curiously, in inverse ratio to their distance from mathematics itself. 

Didactique of mathematics 

In the space of a short article, this picture is lacking in nuances and does not do jus
tice to all those who are making considerable efforts to offset the faults I have 
pointed out. But it is not the virtues of the actors themselves which command our 
attention here, but the phenomena they are fighting. Our goal is to identify the un-
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controllable effects of various "laws" which confront them, not in general economic, 
sociological or psychological laws, but didactical laws - those which are specific to 
the knowledge in question. These laws arise, by whatever name one gives it, from a 
"science of the specific conditions for the diffusion of knowledge necessary to hu
mans and their institutions". The ambition of limiting the study to "social projects of 
causing this or that piece of knowledge - constituted or in process of constitution -
to be appropriated by this subject or that institution" would seem more limited, but it 
leads to the examination of the same field. At the same time, the appropriation of a 
piece of knowledge implies (or even is equivalent to) its re-creation. Studying it re
quires comparing it with the conditions of its creation (historical) and of its use in 
various institutions of society. 

Referring to Economics, with which it has many things in common, the study of 
Didactique seems to me to need to be divided in two large portions: microdidactique 
and macrodidactique. 

Microdidactique is concerned with specific minimal conditions which are at the 
disposal of a teaching organism to "determine" the appearance, appropriation and 
use of a precise piece of knowledge, perceptible in the behavior of a human student 
organism. It is micro in the sense that, like microeconomics, "in its abstract formula
tions it claims to respect the individuality of each piece of goods and each agent." 

Macrodidactique is concerned with the partial or global functioning of aggre
gates of agents or institutions relative to the diffusion of aggregates of pieces of 
knowledge belonging or connected to the same discipline. 

In relationship with didactical engineering which tends to produce projects use
ful to effective teaching, most of the research work published these days in mathe
matical education concern microdidactique. 

Microdidactique 

Studies of the agents (the students and the teachers) in their characters, their general 
behaviors (attitudes, learning) and their interactions occupy most of the terrain. 
These studies are mostly based on methods imported from psychology, clinical in 
particular, or linguistics, and on statistics about cohorts of students (rarely about co
horts of classes) and on concepts drawn directly from the teachers' practices but 
rarely subjected to a tight theoretical analysis. 

Studies of mathematical c-knowledge taken up from a didactical point of view 
have become scarce, and are rarely published in journals of the science of education, 
perhaps for lack of theoretical support for elementary s-knowledge, and certainly for 
lack of mathematical and epistemological c-knowledge beyond a certain level. 

The modeling of human interactions recovered part of the older work in artificial 
intelligence (or formerly interactions with automated systems or computer systems). 
It offers its means and its methods ... and its scientific ideologies to every kind of 
domain, including ethnology and didactique. This point of view makes it possible to 
connect certain characteristics of the agents and of knowledge in the interactions, 
thus by characteristics other than those arising solely from the logic of the subject or 
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that of the knowledge. But the most direct approach takes as its object the cause and 
the function of the interactions. 

It chooses the conditions which determine these interactions and treats them as 
forming a system. In the "theory of situations," each of these systems or conditions 
can be modeled by a "situation" - a formal game - which makes it possible to de
scribe and justify (for instance with the help of the theory of games) the actions of 
the agents with their "milieu." But the ecological and anthropological approach of 
Chevallard, for example, generalizes this approach and also considers ecosystems 
without agents, for example a "praxeology" of the c-knowledge which permits a 
piece of s-knowledge to function. 

The theory of situations thus brings out the role of another type of logic which 
integrates and subordinates the two preceding ones. This approach may still appear a 
bit exotic to some, even though it has been developing for around thirty years and 
has brought in a number of new and useful concepts. For the past fifteen or so years, 
only a few sociology researchers (Barwise, Berger and Luckman, Quere) have taken 
up the ideas of McHugh and have occupied themselves - independently of didac-
tique - with contrasting a logic of situations with that of groups or individuals. 

To conclude, microdidactical approaches are numerous and varied, but they re
strict themselves to one, or occasionally two, of the three logics: that of the subject, 
that of s-knowledge or that of situations. Very few of the works really combine them 
and establish relations among the three. 

Macrodidactique 

On the other hand, studies of macrodidactique are very rare and only mobilize pa
rameters of very little scientific value. Now, the most important difficulties and the 
majority of those that are encountered by the teaching of mathematics are of mac-
rodidactical nature. 

One example may give at least an idea, if not a proof: In the sixties, a study of 
the processes of multiplication and division as taught in the French schools demon
strated theoretically that an appropriate disposition of the calculations would make it 
possible to improve decisively and durably the performance of nearly every student. 
This ergonomic study was supported by the precise measurement of performances of 
large groups of students. A didactical experiment carried out in the classroom 
proved irrefutably the validity of the study: the improvements were a little better 
than predicted. It also showed that the time required for learning could be materially 
shortened. One could hope to replace nearly two years' worth of daily computational 
drill by more valuable mathematical activities without losing any of the students' 
ability to calculate. The publication of this article in the acts of an international col
loquium of science of education did not provoke a single question or awaken the 
faintest interest. Later and repeatedly, supported by this work, the project of reform
ing the teaching of the processes of calculation was proposed up to the highest levels 
The reception of the idea became more civil as the age and reputation of its author 
grew, but not a one of the people asking about it ever envisioned trying the reform. 
It is easy to understand why changing cultural practices that are the most elementary 
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and the most wide-spread in the whole of a population is a didactical enterprise that 
appears infinite, no matter how beneficial the aim of it. And in that case, the simple 
and non-mysterious nature of the suggested modification made it appear trivial and 
almost ridiculous. What mathematical savant would dare propose such a project to 
his minister, and what politician would want to stake his reputation on it? Once the 
microdidactical or pedagogical difficulties are resolved, there remain those which 
reside in the relationship of society to the piece of knowledge in question and the 
learning of it. Conceiving of the conditions for a reform of the human methods of 
calculation used by the population would have arisen from macrodidactical c-
knowledge which was absent at the period. This reform seemed useless when calcu
lators were appearing. This reform would have required other means than new ob
jects or procedures of teaching, and other knowledge than that of the psychology of 
children. 

Should we then deduce that the results of microdidactical research, even when 
solidly established and very rationally connected to their application, are condemned 
to be useless? No, but it is necessary to apply to the diffusion and to the use of this 
type of knowledge the same analysis of functionality and application that we apply 
to mathematics itself, applying the didactique of mathematics to the didactique of 
the didactique of mathematics! 

III. THE LOGIC OF SITUATIONS 

Thus the didactique of mathematics concentrates on the study of the conditions of 
learning and teaching which are specific to the knowledge aimed at, this study being 
in relation to the relevance, adequacy, dependability and economy which the knowl
edge in question procures in these circumstances (Principle 1). 

The fundamental hypothesis of the theory of situations (Brousseau 1998) is that 
the conditions which prevail for setting a piece of knowledge in action do not act 
independently of each other (Principle 2). (They are never optimal at the extremes 
of their interval of action) It is therefore necessary to consider them together. They 
form systems which it is convenient to model before calling attention to them. 
Moreover, the sole means available to teachers is to recreate a set of favorable con
ditions 

The general model maintained is that of the economic theory of games, (Princi
ple 3). A subject does what works best for him given his circumstances and his pro
jects. The objective of his reactions or his decisions is to minimize and regulate the 
perturbations imposed on him 

Thus in the theory of situations the method of defining a concept C is the follow
ing: 

"C is the object that resolves the situation S optimally'' (Principle 4).This mode 
of definition specifies the categorical definition used in mathematics: "O is the ob
ject which satisfies the relationship R(0)" This principle is applied first to mathe
matical knowledge. A mathematical notion cannot be analyzed in the Theory of 
Situations in the didactique of Mathematics until the moment when it has appeared 
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as the solution to a situation. From this arises the phenomenotechnical and theoreti
cal importance of didactical engineering. 

These situations can be composed and decomposed in various ways (Principle 
5): for example a subject can be an actor simultaneously in several situations with 
his decisions in one depending on conditions determined in the other, as when a sub
ject acts by exchanging information with a correspondent about his action The ob
server is part of the system and his own game should be analyzed as a subsystem. 
The comparison of his "models" with what happens requires a certain engagement 
on his part and he must verify them by this means. 

We have been lead to a coarse classification of these systems of interaction in 
terms of various criteria: presence or absence of an actor with didactical intentions 
with regard to the others (didactical or a-didactical situations) and the types of reac
tion which they produce (actions on the milieu, formulations, assertions, devolution 
or institutionalization). The use of these types makes it possible to describe and ex
plain a good many phenomena of teaching, but they chiefly serve as an entry point 
for research on conditions specific to a given piece of knowledge. 

I will recall here the paradoxes which led to giving didactical situations a differ
ent model from non-didactical situations. They have been widely presented (in par
ticular in our article G. Brousseau and M. Otte, 1991). 

Principle 4 aims to establish a correspondence between mathematical knowledge 
and situations. Clearly any "real" situation mobilizes a great deal of knowledge. The 
ones which interest us here are those which cannot be resolved except by originating 
a piece of knowledge, but which can be presented by using more elementary knowl
edge which should already have been acquired. The prerequisite knowledge is that 
which permits the subject to learn the rules of the game and imagine some basic 
strategies (whether or not they actually resolve the situation). The solution knowl
edge is what the optimal strategy leads to. It is in this sense that the following prin
ciples are formulated: 

Every mathematical notion has at least one situation that characterizes it. (Prin
ciple 6a) 

Every situation (considered by the Theory of Situations in the Didactique of 
Mathematics) determines a set of pieces of mathematical knowledge which are in
dispensable to the invention of its resolution. (Principle 6b) Depending on the fa
miliarity of the situation, the forms of knowledge required to solve it will modify 
themselves in order to reduce the cost of use. 

Note that this principle makes it possible to characterize mathematical knowl
edge following new variables (relevance, adequacy, adaptation, economy, depend
ability in a field, cost of use or of learning, etc.) and not only from the point of view 
of validity. It tends to offer a means of producing a hierarchy, at least locally, ac
cording to their complexity. It has been shown that consideration of situations makes 
possible a certain liberty in the conception of the didactical articulation of knowl
edge relative to axiomatic ordering. This possibility is very important for the con
struction of meaning of the knowledge taught. 

We have added to these principles a working hypothesis, a hypothesis which is 
probably useless for establishing the consistency of the theory but very productive in 
the search for processes: the collection of situations of a certain type (action, formu-
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lation, validation, etc.) relative to the same piece of mathematical knowledge has at 
least one generator: the fundamental situation of this knowledge. 

At this point in the exposition one should understand "generator" in the static 
sense: the schematic description of this situation results in the appearance of a set of 
specifications (values or intervals) of a set of variables which are satisfied by all 
situations associated with this knowledge and only by them. But one might under
stand it in the dynamic sense as "a situation which will cause the others to appear by 
iht process which it engages" as soon as this notion of process is introduced. 

For the moment, at this stage of the theory, "to learn" is synonymous with "to 
change strategies in a characteristic situation," but this definition is much too restric
tive to account for all the causes of more or less permanent adaptation and to distin
guish the causes of adaptations or causes of c-knowledge and the reasons to know 
(their necessity in the s-knowledge) to which they should lead. 

Along with the decomposition and composition which fix the synchronic rela
tionships of various situations there appear diachronic conditions relative to their 
succession, articulation in process. 

IV. THE LOGIC OF PROCESSES 

Separating the pieces of knowledge associated with a situation into base knowledge 
and resolution knowledge establishes a condition on the temporal succession of 
situations a subject can approach. These ordering conditions are a great deal more 
complex but also more flexible and realistic than those used in the classical peda
gogical analyses: certain forms of knowledge (implicit models for example) suffice 
for the introduction of others. They intend to establish under certain conditions the 
legitimacy of a "functional" and "usable" order aside from the classical axiomatic or 
rational order. 

An initial use of the Theory of Situations in Didactique of Mathematics consists 
for the teacher of arbitrarily choosing the situations she will offer her students and 
the order in which she will offer them in such a way as to "construct" the knowledge 
that she wishes to teach while contenting herself with respecting the temporal order 
expressed above. She will thus be able to use a "curriculum" of non-didactical situa
tions, but the genesis of the knowledge itself will be entirely didactical. 

Now, while a situation calls forth a knowledge for solution, and can sometimes 
provoke and permit its invention, it also generally produces a good many new ques
tions which are the source of the situations for the future. The manner in which an 
answer produces new questions is an object of study which has been a bit neglected 
in the research of these past twenty years, but which has a lot of importance in the 
comprehension of the process of learning and of teaching. It's a matter of a proce
dure for aggregating situations such as we have described above, but one which re
quires new conditions. We won't give here the supplementary principles extending 
the theory of situations into a theory of processes. 

A didactical process is a series of didactical situations relative to the same piece 
of knowledge (object of teaching or of learning) and such that in order for one to 
succeed, all the previous ones must have succeeded. This definition is suitable for a 



THE STUDY OF SCHOOL LEARNING IN MATHEMATICS 167 

description after the fact. After the conception of a normative curriculum one uses 
other terms (program, progression,...) But if the situations are relatively a-didactical 
it is necessary to consider the local and temporary reasons one has at the end of each 
situation to consider the next. Thus not only can each situation be proposed thanks 
to the acquisitions for the preceding ones but it is in addition (more or less) justified 
by the questions raised by the preceding one. These justifications have two sides, the 
justifications for the teacher (a step in a curriculum project, for example) but we will 
interest ourselves here in justifications for the students (intelligibility of the situa
tion, relevance and immediate interest of the questions, possibility of solving, etc.) 

Such a process constitutes a "genesis" of a concept or of a notion, that is to say, a 
construction. It's a matter of a chronogenesis, that is of a genesis where the links be
tween the pieces of knowledge are determined by their place in a history and by the 
relations of causality, of dialectic. The authentic - historical - chronogenesis of a 
piece of knowledge can only rarely serve as a didactical model because the situa
tions of which it is composed are far too complex, the effective conditions of dis
covery cannot be reproduced, the motivations and repertoires of the original con
structors are often very distant from what the culture remembers of them. 

An important part of mathematical work consists of substituting for this fre
quently chaotic or hesitant chronogenesis of a piece of mathematical knowledge a 
logical, ergonomic and if possible elegant construction which will simultaneously 
permit its verification, comprehension and use. This continual effort of reconstruc
tion is of a didactical nature. It ends up with a topogenesis of mathematics where 
every object has a place according to its definition and its properties, in a partial or
dering determined by relations of logical necessity and of ergonomy. 

In a topogenesis and in a chronogenesis of the same piece of s-knowledge the 
objects are mathematically equivalent, but their organization, their reciprocal places, 
their significance and their environment of c-knowledge are different. 

The merit to a topogenesis is that it structures knowledge in such a way as to 
minimize memory, risk of errors, redundancy, effort for communicating,... But it 
also tends to cause the disappearance of the conditions which made the knowledge 
necessary and functional. The chronogenesis is always much closer to the real func
tioning of mathematics and because of that much better motivated and even exciting 
for the students, but it is also much more random and extravagant in learning time 
than the topogenesis. And since in the end the students need to leave school with 
knowledge structured according to the topogenesis of the moment, if one uses a 
chronogenesis that is too different, one is obliged reorganize it, which takes even 
more time. 

This example gives a clear demonstration that didactique does not consist of de
termining norms, but rather of studying the equilibrium between opposing con
straints 

CONCLUSION 

Our manner of studying the conditions for the functioning and learning of knowl
edge permits us to place the use of mathematical or psychological or other knowl-
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edge which one wants to use in teaching under the control of a theory of didactique. 
It should not be understood that the conditions whose effects we are studying are 
obligations or norms which teaching should realize, or restrictions which condemn 
us to examine only a part of the effective situations. On the contrary, every situation 
of real teaching, by the very fact of existing, leads us to think that it should satisfy a 
certain number of conditions which we ought to be able to study and model in the 
Theory of Situations in Didactique of Mathematics. 

Universite ''Victor Segalen'\ Bordeaux! 

NOTES 

Translated by Virginia Warfield 

^ In order to convey the distinctions between the French words "savoirs" and "connaissances," both of 
which translate to "knowledge," we use the following definitions: C-knowledge means knowledge as a 
means to make a decision, or understanding in the sense of having a familiar relationship. "C" is initial 
letter in the Latin word "Conoscere," from which are derived "connaissances" (French), "conocimientos" 
(Spanish) and "conoscenza" (Italian). S-knowledge means knowledge as a cultural and social means to 
identify, organise and communicate the C-knowledge. "S" is the initial letter of the Latin word "sapere," 
from which are derived "savoir" (French), "saber" (Spanish) and "sapienza" (ItaHan). 
• Didactique des mathematiques, «Science des conditions specifiques de la diffusion des connaissances 
(mathematiques) utiles aux humains». 
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ROLAND FISCHER 

THE FORMAL, THE SOCIAL AND THE SUBJECTIVE: 

Variations on a Theme of Michael Otte 

Abstract. With strong reference to his book "Das Formate, das Soziale und das Subjektive" ideas of M. 
Otte are put into relation with some deliberations of the present author. These concern the role of science 
in society, general education, the role of mathematics in education, the limits of mathematics and their 
social relevance. 

Key words: complementarity, consciousness of society, diagrammatic thinking, general education, Hmits 
of mathematics, logical types, mathematics and organization, sociology of knowledge 

Michael Otte has written a great deal, and I have read a great deal of his work. His 
book Das Formale, das Soziale und das Subjektive. Eine Einfiihrung in die Philoso-
phie und Didaktik der Mathematik (The Formal, the Social and the Subjective. An 
Introduction into Philosophy and Didactics of Mathematics) presents a summary of 
his previous work, a kind of interim precis. I would now like to offer a few varia
tions on his ideas; these will be interpretations of his thoughts, comments and addi
tions, as well as some alternative perspectives. 

THE CENTRAL CONCERN 

What is important to Michael Otte; what are his concerns? As I understand him, 
mathematics is not simply a discipline like any other; mathematics reflects central 
elements of human existence and of society. Contemporary existential problems can 
be reflected upon, understood and dealt with in terms of mathematics - mathematics 
not in the traditional sense of applied mathematics, rather that mathematics is used 
as a medium for reflection, similar to a work of art. This requires overcoming limita
tions and biases in mathematics with, for example, the principle of complementarity. 
Many limitations and biases are indeed an inherent feature of mathematics, a condi
tion for its effectiveness. In the area of didactics, however, a more complete, differ
entiated yet simultaneously comprehensive view is required. In this context I recall a 
phrase from Arnold Kirsch, who said, "Teachers must draw distinctions where 
mathematicians draw none." 

An example of this, the one with which Michael Otte begins his book, is the dif
ferentiation of logical types. The linguistic variant of this is that there is an object 
language and a meta-language. Michael Otte's thesis is that mathematics depends on 
non-differentiation, on evening-out. Differentiation comes only on subsequent 
analysis. Otte speaks of a "symmetrizing, non-hierarchical handling" of logical 
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types^ (36). To be more concrete, here is an example which in didactics has been 
frequently analyzed: the handling of variables. This takes the form of a permanent 
interplay between the variable as a specific object (e. g. as an unknown, but definite 
number) and as a sign, which undergoes various operations according to determined 
rules. Underlying this interplay is the complementarity of semantics and syntax, of 
content and logic. Any resolution that tends to one of these directions has its disad
vantages; one loses sight of the essentials. A competent mathematician will avoid 
this mistake; he intuitively alternates between levels, but in any event he does not 
routinely reflect upon what he is doing. The problem is first of all one of basic the
ory: the familiar antinomies; this problem can be solved by sophisticated scrutiny. 
Second, there arises a didactic problem, namely, how do I teach someone to learn 
without reflection? Third, the complementarity also relates to a societal problem, 
We live in a formalized society that functions largely according to rules, be they le
gal-economic or technical. Setting this layer of rules as an absolute leads to dehu-
manization; on the other hand focusing on the material level, that is, on people, 
overlooks the necessity for social mechanisms. And although simply dealing with 
complementarity in an intuitive way is perhaps possible in individual cases, it is dif
ficult to translate into social patterns. That requires conscious, organized reflection. 
Here is where mathematics could make headway, initially with its ability to allow 
the layer of rules to assume concrete form; above all however through a more pre
cise scrutiny of the activities of mathematicians themselves and historical develop
ments. However, with its tactic of evening out levels of communication, mathemat
ics can hinder exactly this social learning process. 

To put it somewhat more dramatically: Mathematics and its instruction are today 
at a crossroads. They can either chart a course towards a mechanistic, unconscious 
world; or they can help create a new social consciousness, a new step toward release 
from a self-imposed immaturity; a new enlightenment, as it were. Michael Otte's 
work in my view makes the case for this second path, and as such is a challenge for 
anyone who has to do with mathematics and its instruction: teachers, teacher-college 
educators, school curriculum administrators and of course mathematicians them
selves. 

That actually says everything. I am following a dramatic structure that Michael 
Otte applies in his own work: to state essentials at the beginning, the rest being 
variations on the theme, where each individual piece often contains the whole in 
fractal form. That is how Michael Otte once explained his methods to me, when I 
told him of my difficulties in reading his work. His writings as a rule do not have the 
linear-logical structure that we are accustomed to find in mathematics and in the sci
ences in general. 

Nevertheless a conceptual construct does underlie the following remarks: to pro
ceed from the general to the specific. Society-science-education-mathematics are the 
themes, and that last theme once again subsumes all the others. That is exactly the 
intended point. 
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SOCIETY AND SCIENCE 

Michael Otte describes society as follows (131): on the one hand there is variety, 
there are many realities, culturally, politically and in other dimensions. The auton
omy of subsystems, of regions and of individual people (singleness) has to a large 
extent been realized. On the other hand there is uniformity and connectedness, for 
example in commercial products (hamburgers, Coca-Cola and jeans), in production 
methods, in life styles, in the communications media, and so on. There is, then, dif
ferentiation as well as integration. Social complexity is a result of the meeting of 
these two tendencies, at the same time as it intensifies abstraction in self-depiction. 

To expand upon this statement, the bonds of society are based upon rules: eco
nomics, technology and political-administrative regulatory mechanisms are what 
hold society together. We trust such mechanisms, trust the various "invisible hands," 
and surrender ourselves to them. They are exactly what subsequently make variety 
possible on other levels as well; but at the same time this self-surrender also implies 
a renunciation of any holistic consciousness of society."^ 

According to Michael Otte, the ambivalence between differentiation and integra
tion and the accompanying increase of complexity and abstraction also occurs on the 
level of knowledge. Differentiation and heterogeneity are obvious today. According 
to Michael Otte the effort towards integration has led to an abstraction, to the theo-
retization and methodolization of knowledge (131, 149). Scientific knowledge since 
about the 19th century has been regarded as a "system of instruments for the recon
struction of reality." (131) Its connection with reality is becoming increasingly indi
rect. Michael Otte regards the interest in epistemology itself as a consequence of the 
fragmentation of a uniform world view. Through the detachment from a direct con
nection to reality, which has been pursued most consistently in the field of mathe
matics, but observed by theorists of science in the other sciences as well, the claim 
for total coherence becomes possible, even if it is reduced to little more than free
dom from contradictions. 

Besides the mathematical course in its widest sense, another way to deal with the 
complexity of knowledge is to attribute it to social complexity, as the sociology of 
science and sociology of knowledge attempt to do, from Karl Mannheim to Thomas 
Kuhn and today above all in science studies. The gain of the sociological approach 
compared with the philosophical approach is that sociology brings more complexity 
into play (A. Comte) (399). Whereas the philosopher usually assumes a single sub
ject of cognition, the sociologist accepts a priori the multiplicity of individuals. 

Michael Otte, however, adheres rather to a philosophical course in ascertaining 
that science has a special responsibility that concerns its links to society. He writes: 

Science fulfils ... in human evolution a specific function that is essential for that evolu
tion altogether and as an overriding objective. This is meant in terms of the concept of 
truth or objectivity, as opposed to the particularity and subjectivity of individual inter
ests. (344) 

My comment to that statement: I am of the view that science has exhausted its abil
ity to provide truth and objectivity as forces for connectivity in society. Science had 
supplanted the traditional connection-providing institutions of faith and religion 
which had operated through the Church and ruling dynasties (the great enlighten-
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ment project). But science, in its function for providing social synthesis, has itself 
now reached a crisis. However, it is often said that we live in a knowledge-based so
ciety. Knowledge is meant in this sense in terms of particularity. Pieces of knowl
edge are factors of productivity which can be bartered: knowledge as wares, so to 
speak. Nevertheless we have simultaneously overcome the knowledge-based society 
in another way: it is not knowledge which binds us together; it is rather, as men
tioned earlier, a rules-bound dependence on one another. To mention the drawback 
of this situation once again: the whole does not come into view, the collective capac
ity for action exists only in terms of contextual mechanisms, whereby these are set 
up as absolutes and the resulting problems cannot be addressed. 

EDUCATION AND WHOLENESS 

Although in the matter of truth/objectivity I am of a differing opinion from Michael 
Otte, I share his view that the sciences have a contribution to make to overcoming 
the particularity of society, and hence a contribution to a holistic view. For Michael 
Otte this is part of what he describes as education. He believes that the sciences (and 
not only schools) have an educational responsibility. Reducing science to research 
seems to him an inappropriate limitation. He writes, inter alia, "Science = Research 
-I- Learning," or, "Science = Productivity + Culture," or again, "Science = Tool -h 
Reflection." (190) And he postulates that learning must be concerned with the inte
gral whole of society. On the other hand education also has to do with autonomy, 
specifically the autonomy not only of the individual who is learning, but of the 
school as an institution as well. Michael Otte formulates it as "respect for the self 
regulation of learning processes." (132) 

One could also say that it is the exchange between several whole entities that 
should be encouraged: that of the individual, that of society, and, so speak as an in
termediate and connecting link, that of the learning community. Because a compre
hensive wholeness can never be scientifically established, something like a moral 
component enters into the matter, as Michael Otte observes. (130, 132) 

In the implementation of a demanding educational responsibility, a specific en
tity, namely the teacher, has for Michael Otte an outstanding role to play. He de
scribes the teacher as an "exemplary intellectual,'' who is effective not only through 
what he does, but for who he is. (161) In this regard Michael Otte considers various 
concepts of what an intellectual is; in each case the intellectual obligates himself to a 
holistic social idea, to the "totality of the system of reference," as he calls it. That 
Michael Otte is an intellectual in the special sense of the word is obvious to me. 
However, there are not many like him. Thus there arises the problem of the educa
tion of such intellectuals, or, put another way, the question of what a general educa
tion is or ought to be. 

My suggestion: instead of being simply an acquisition of general knowledge, the 
process of general education signifies the systematic practice of establishing connec
tions and relationships between one branch of knowledge to another. This is a ques
tion of determining the relationships of elements of knowledge to one another, in
cluding even contradictions, especially when taking into account differing basic 
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conceptions and views of mankind and of the world: indeed when all the different 
entities are considered. Interweaving and contradiction is the shorthand term I have 
introduced for this approach. Social consciousness in this case cannot (any longer) 
be understood as fixed, common knowledge; it is rather a process of people con
structing holistically interwoven theories of the world (and thereby of themselves) 
and of their subsequent deconstruction as a result of continuing human development. 
To be an educated intellectual means taking part in this process. Here questions of 
relevance and assessment play a significant role. The task of a public education sys
tem is a dialectical one: to offer a comprehensive picture and at the same time to en
able people to discuss it critically while keeping in mind the question, "what does all 
this mean to me/us?"^ 

Where for me establishing interweaving and contradiction, construction and de-
construction is mainly a communicational and organizational problem, Michael Otte 
keeps the individual more sharply in focus. Whereas I take for granted that overcom
ing social integration that is merely rule-oriented is in fact our mutual objective. And 
my approach also relies on intellectuals of the cast of Michael Otte. I notice this in
creasingly with such entirely pragmatic questions as: who should be the recipients of 
events or publications for which I or the group I work for are responsible? There 
must be agents for that process of construction and deconstruction, of interweaving 
and contradiction who transcend the field of science. To regard teachers here as the 
ideal group is appealing to me and would at the same time have implications for 
their vocational profile, for their place in society and, finally, for their training. 

COMPREHENSIVE DISCIPLINARY DIDACTICS 

And so I come to the subject of didactics of disciplines, to which I would like to 
contribute a thought that for its part also concerns organizational matters. The ques
tion is that of a holistically integral relationship to society in the areas of education 
and science. However, the sciences themselves give the impression of being frag
mented - into disciplines. I believe there should be serious thought given to the ex
tent that didactics of disciplines should be interdisciplinary, not simply in terms of 
establishing links to psychology, pedagogy, sociology, etc., but especially to other 
parallel disciplines, i. e. to other school subjects. A comprehensive didactics of re
lated disciplines, then, rather than the didactics of separate disciplines. Disciplinary 
boundaries perhaps no longer even allow for postulating essential questions. And in 
strategic terms: The didactics of different disciplines have always received their 
stimulus as a result of the significance of those disciplines; this has also always been 
a problem for their independence. Because today so many disciplines no longer have 
unquestioned relevance in the educational canon, new directions in the self-
understanding of didactics should be seriously considered. The concept "didactics of 
a discipline as an advertisement for that discipline" has in any event always been 
problematic. 

Michael Otte would possibly not agree with the foregoing ideas, because for him 
object-orientedness is an essential condition for scholarly practice. There must be an 
object and resulting resistive force. He repeatedly warns against the dissolving of 
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science or education into mere abstract communication. And what insures a material 
object better than establishing its boundaries? 

MATHEMATICS AS AN EXEMPLARY GENERALITY 

In keeping the universality of science and therefore the totality of society in view, 
Michael Otte pursues a different course. His concern is that within the individual 
scientific disciplines a researcher dedicated to particular field of study should always 
keep sight of general principles that reach beyond his particular field. In Otte's 
mathematic-didactical and mathematics-philosophical writings one repeatedly 
comes across broad statements that apply to mathematics, to science in general, in
deed to life itself. A few examples: 'The hierarchy of logical types is to be noted in 
life, knowledge and logic; at the same time it cannot be noted." (31) Or: "There exist 
no generality without activity, movement, change." (79) Or: "Generality is recog
nizable and explains the particular, the accidental. That which is undefined controls 
what is defined." (83-85) Or again: "We must determine something definitively, at 
the same time that we must keep those determinations in perspective. One should 
value one's own importance, but one should never take oneself seriously." (264) 
How does one arrive at such insights if one concentrates on mathematics? 

I believe (and I think this is also Michael Otte's opinion; I shall however formu
late it somewhat more radically) that mathematics has the potential to become the 
quintessential scientific field in education. As such it would be an alternative to the 
interdisciplinary study that I have just propagated, or at least complement it. That is 
to say, we mathematicians can offer something that extends far beyond what is usu
ally understood as mathematics, and which has special relevance in modern times. 
That immodest statement may be less appealing than saying that in the concert of 
disciplines we also have a contribution to make. However, immodest propositions 
are urgently necessary. The human need for orientation is very apparent, and if the 
scientists have nothing to offer it, others will: journalists, sect leaders, and practitio
ners of the esoteric arts. In passing, the worst offerings don't come from science 
journalists. 

Where, then, are mathematics' unique possibilities? Essentially it is the objectifi-
cation of structures. "Everything is number," said the Pythagoreans; the modern 
variant of this is "everything is structure". This view includes everything from the 
composition of matter, the laws of cosmic motion, the depiction of life as a special 
form of organization, the development of interactive social and economic models, to 
the perception that matter itself is nothing but structure (e. g. nothing but an asym
metry of space). The specific achievement of mathematics is to turn these structures 
into objects of observation, of study and, eventually, of manipulation. Visual and 
material representations provide an important means to accomplish this. Michael 
Otte speaks in connection with Charles S. Peirce of mathematics as "diagrammatical 
thinking." (94) He quotes Peirce: "Mathematical thinking means the providing of 
experiments with diagrams and observing the results of those experiments." (382/3) 
These objectifications provide the requisite resistivity; they give rise to the auton
omy of the object and lend it stability. It is the sort of stability that can generally be 
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produced through textual means, but that does not exist in a purely oral culture; 
whereas mathematics, with its possibilities for systematic manipulation of symbols, 
goes beyond written speech. 

With diagrams the abstract, the invisible, the intangible, on the other hand the 
invariant (that which Durkheim describes as ''the wisdom of the community" 
(409/10)) can be permanently preserved. They can be studied and transmitted. In this 
light the frequently discussed relationship of mathematics to the natural sciences, or 
more exactly to the material world, is turned on its head: mathematics is applied, 
material (inanimate) nature. ^ 

The simplest type of structure is a distinction. "Draw a distinction" is, according 
to Spencer-Brown the first step in any systematic procedure^. The introduction of a 
sign implies a distinction and/or creates it. In any case the sign thus gains stability. 
The basic prerequisite for any mathematical process is a distinction, at least that be
tween an empty set and the notion of it. The Cantorian definition of set speaks of 
"well-differentiated objects" that must be taken as a premise. To this Michael Otte 
remarks, "in the final analysis mathematics is based upon the possibility to observe 
distinctions in a spatial-temporal world, and to draw conclusions from it." 

LIMITS OF MATHEMATICS 

Every possibility has its limits, including that of the objectification of structures. The 
educational process, especially when it aims for comprehensiveness, must reflect 
these limits. I would like to point out one limit in particular: Mathematics does not 
allow for objects to include the structures that contain them. To put this more con
cretely in terms of mathematical function: an element x, to which a function/is ap
plied, and the function/itself lie on two different levels. The element x may not de
termine the function /. This applies as well when considering functions of several 
different variables: mathematical processes are applied to arguments that are not de
termined by those arguments. Michael Otte describes it thus: 

Objects have as it were no influence on 'what happens to them,' in the sense of applying 
the function. The algebraic function which assigns the element x^ to an element x estab-
Hshes itself, it would seem, independently of the nature of the individual argument, des
ignated here as x. 

Mathematical relations become independent of the objects they relate. 
Carrying the situation into the social realm, one can make the following analogy: 

X or several xi, JC2 ... would represent individual people,/an organizational structure, 
through which these people are linked with the objective of accomplishing a particu
lar task. The functional value would be the particular output of the organization. In 
accordance with functional principle, the organization cannot be defined, at least not 
entirely, by its members. What this means for our administrative organization where 
the functional concept prevails, is obvious. It is an undemocratic feature: the struc
ture does not derive from elements, at least not entirely. This is not meant to be a 
left-wing criticism of business management (or indeed of jurisprudence); not every
thing must be democratic. It is, however, a mathematical limit in my view.^ 



176 R. FISCHER 

But we have yet to come to Michael Otte's main point. In the historical devel
opment of ideas and in practical interaction with them he sees an overcoming of the 
undialectical separation between relations and the objects they relate, of function 
and argument. For the development of the concept of function the parallel develop
ment of the concept of real numbers, especially the notion of continuity in the field 
of argument, was an essential condition (403). The differentiation of the concept of 
function, the emergence of the concept of continuity have been closely linked with 
the development of the concept of the real number. One could certainly put a set-
theoretical concept of function at the beginning of a lecture, or construct real num
bers without reference to the concept of function. However, the historical dialectic 
would then be lost. 

Incidentally, without formulating the social analogy explicitly, as I have just 
done, Michael Otte speaks of an ''equality of objects and relation^,'' (404). It is 
however obvious that as a whole he is making reference to social realms, and this 
concern emerges from other formulations of his as well. He writes, for example, 
"Coherence, as well as formal consistency, are possibly outmoded requirements and 
should be replaced by other forms of cooperation." (291) 

(In writing this paper, a difference between Michael Otte's thinking and my own 
became clear to me, which perhaps explains several arguments that he and I have 
had. I accept mathematical biases (for example the separation of relations and the 
objects that are related), and so set a mathematical limit and try to overcome this 
limit by the way mathematics is handled, especially by establishing a social context. 
Michael Otte on the other hand sees the process of overcoming within mathematics 
itself; at least when taking its development into consideration and bearing in mind 
the creative mathematician. I consider this a difference in strategy.) 

PRESERVATION OR TRANSCENDENCE 

The representation of a structure (function, organization) with mathematical meth
ods in the widest sense can serve two entirely different purposes. The first is in order 
to preserve this structure, to stabilize it. This is necessary to mathematics; while cal
culating the value of a function, for example, that function may not be altered. But 
preservation can also have a social effect, in the sense of preserving or even justify
ing existing conditions. Second, a mathematical representation can be used to pro
mote discussion about the structure and to change it if necessary. In this way the 
bounds of mathematics are exceeded in the narrow sense, unless a larger framework 
is given. (However, a framework in the largest sense, e. g. the set of all sets, cannot 
be expressed in terms of mathematical concepts.) 

If one at least keeps the second course open, then mathematics also has the po
tential to transcend itself This would be a significant accomplishment that could 
transform mathematics into a pre-eminent field of study. In this context, I would like 
to repeat a quotation from Michael Otte already cited earlier: "We must determine 
something definitively, at the same time that we must keep those determinations in 
perspective." (264) Mathematics can be useful in both cases. What is particularly 
novel here, and which mathematics makes possible, is that these determinations and 
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perspectives are raised beyond merely intuitive-individual interplay and allow for 
social reflection and action by means of objectification. Through the medium of 
mathematics the broadening of philosophy, which until now philosophy itself has 
not succeeded in accomplishing, could take place: to establish the transition from the 
reflection of a single subject and an individual - even an absolute - into a collective 
reflection. Put another way, mathematics could create a synthesis of sociology and 
philosophy. 

CONCLUSION 

It may be that some might shudder at the thought of this broad arc; that the mathe
matics one has learned and loved might be lost. Some may feel that the whole pur
pose of mathematics as an educational discipline is to set concrete, definable terms 
against such scholarly-speculative constructs. But I believe that keeping to such a 
conception of mathematical instruction will leave it no great future, because other 
fields such computer science have already begun to challenge it. On the other hand, 
it is also clear that with an alternative programmatic model such the one as I have 
outlined here, the efforts to come to terms with problems in this area are still not 
complete. However, it would be wrong to believe that such a model could not be re
alized. In numerous essays, books and in the dissertations he has advised (more than 
twenty) Michael Otte has let his philosophical approach assume concrete form. He 
is, as I have already mentioned, a passionate advocate of a postulate of objectifica
tion for the sciences: one must have something material to manipulate; something 
not subject to the preferences of a human agent and which offers resistive force. He 
and his students have often taken texts from the history of mathematics; through 
these texts and through consistent and thorough application of dialectical mathe
matical understanding they have succeeded in establishing a new form of scientific 
scholarship in the didactics of mathematics that in my opinion is altogether unique. 
These new directions, or at least the recognition of the superior abilities of their 
leading proponents (these include Michael Otte's students as well), have won them 
respect and notable success. 

Allow me to set forth this important issue once more. With mathematics uncon
sciousness of society can in the long term be preserved or transcended. As such 
mathematics is dangerous, but can also be beneficial. At Plato's Academy of Phi
losophy it was common knowledge that no one could enter who had not learned 
mathematics. To ensure an interaction with mathematics that encourages conscious
ness, I would turn Plato's phrase around: No one who has not learned philosophy 
should be allowed to learn mathematics; otherwise he would be a danger to human
ity. And Michael Otte is the advocate of the sort of philosophy I mean. 

Institutfilr Mathematik, Universitdt fUr Bildungswissenschaften, Klagenfurt 
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REFLECTIVE LEARNING 

Problems and Questions Concerning a Current Contextualization of the 
Vygotskian Approach 

Abstract. Both the works of art and the theoretical concepts are forms of knowledge based upon the 
hypothetical nature of our knowledge about reaUty. For reflective learning, the importance of works of art 
and theoretical concepts Hes in the fact that they are spaces for development of thinking; they are never 
objects, results or drilled routines, methods and techniques. They are spaces for development of thinking 
in a special way: the subject will be able to think himself or herself. Drawing on an empirical research 
project, we shall inquire into following question: In what way is the sphere of the hypothetical or, the 
thinkable or the possible a space in which the human being can unfold his existence as a free and active 
being, potentially infinitely capable of development? 

Key words: Activity theory of learning, self-referentiality, work of art 

To focus our theme we would like to describe a scene from Lucchino Visconti's 
marvelous film "Bellissima:" 

Anna Magnani sits in her ghetto flat with her view fixed on the shabby screen of 
an open-air cinema opposite for which she cannot even afford the admission. She 
watches a scene from "Red River" by Howard Hawks. To the reproaches of her 
husband, who is only interested in his every day affairs, she answers: "Oh Spartaco" 
- what a name for a chronically unhappy proletarian always sitting around in his 
undershirt! - "Oh Spartaco, allow me my dreams." 

Certainly, this film is about nothing if not about the destruction of her dreams, 
although at the same time it deals with the preservation of dignity and with the love 
experienced by the dreamers. Perhaps it is exactly the artistic quality of the film that 
allows illusion and disillusionment to coincide in such a way that the human being is 
saved with respect to both his body and his mind. 

The film within the film here is no simple citation; it is rather a key which opens 
the film itself as a complex system of self-referentiality: In the relationship between 
the film in the film and the main plot of the film the process of the destruction of the 
dreams of the principal character is becoming the central theme. The relationship 
between the film in the film and Visconti's film becomes a means by which the 
latter is making itself a subject of discussion as a film. Only for the spectator can 
this self-referentiality become a means of reflection with which he refers Visconti's 
film to himself. 

We now want to use this scene taken from Visconti's film to consult different 
aspects and dimensions of self-refereniality. We narrow this questioning down to the 
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content-part and the subject-part of reflective learning. We hope it will thus become 
clearer what "reflective learning" means. 

We will begin with the following historical example: Wilhelm von Humboldt 
was arguably the first person to introduce a concept of reflective learning about 200 
years ago. He did this within the context of his practical administrative work related 
to education. Our second step will be to consider how and why "self-referentiality" 
became a fundamental concept in Vygotskij's approach within the political context 
of the formation of a new society. The third step will be to criticize certain 
tendencies of the current Vygotskij fashion which is in the process of forfeiting the 
political core of the cultural-historical paradigm as a science of subjectivity. 
Deleuze's and Guattari's concept of desir enables our critique to regain a conception 
of the individual as the social subject of his life. Finally, we will return to Visconti's 
film and outline issues and aspects of a concept of reflective learning in reference to 
the reflective potential of art. 

1. A HISTORICAL PROLOGUE: "LEARNING HOW TO LEARN" IN 
HUMBOLDT 

In 1806 and 1807 Napoleon's troops inflicted a crushing defeat on the Prussian army 
in the battles of Jena and Auerstaedt. The entire state of Prussia collapsed. This 
catastrophe illuminated the extensive backwardness of this society on economic, 
technological, and political/cultural levels. 

At the same time, this catastrophe was both the context and the impetus for the 
Prussian reforms initiated by Stein and Hardenberg. These reforms supplanted the 
traditional feudal society and as "reforms from above" were geared toward 
something new that had not existed in Prussia beforehand. 

As a part of this movement, the educational reforms aimed at developing an 
entirely new type of school. The concept of "general education" (Allgemein-
Bildung) functioned as a political strategy in the development of a general public 
school for all children. In a politically decisive administrative position, Humboldt 
organized this educational reform around 200 years ago. 

In an extremely concise and precise manner he worked out a new conception of 
the contents of instruction, a new conception of learning itself, and of the connection 
between the two. 

The contents were limited to instruction in language and mathematics. 
"Empirical and historical" subjects such as history, natural history, and geography 
were to be permitted as soon as they had become a matter of theoretical reflection -
which was not the current state of affairs. 

Instruction in language included those areas of philology which had already 
been theoretically and methodically clarified: philosophical grammar, Greek and 
Latin grammar. - The guiding principle was: "The form of the language as 
language" should become perceptible in instruction. According to Humboldt, this 
could be achieved "more easily with a dead language that causes astonishment 
because of its unfamiliarity than with the living mother tongue." 
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Instruction in mathematics was to take place in the form of a mathematics 
characterized by exact logical deductions as taught by Euclid, Lorenz, or according 
to some other precise conception of mathematics. 

The contents of instruction were no longer "objects" in the treatment of which 
useful skills and abilities were to be learnt as according to the pedagogy of the 
Enlightenment. Here for the first time, a theoretical conception of knowledge 
displaced knowledge in an immediate practical sense. Instead of being oriented to 
the "needs of daily life" - as Humboldt described the immediate and pragmatic 
relation to society - an orientation was established towards knowledge on the 
highest level of a theoretical generalization. Astonishingly, at the same time this 
caused a radical focus on the individual, more precisely, on that activity which 
allows him to realize himself as the subject of his learning. 

Humboldt expressed this in the following manner: 

With reference to the contents of instruction, from which all original creative work must 
always follow, the young person should be made capable of already actually beginning 
to compile the subject matter to a certain extent and to a further extent of accumulating 
it as he pleases in the future and of developing his intellectual-mechanical powers. 
Thus, he is preoccupied in a twofold manner: with learning, but also with learning how 
to learn. (1809, 169-170, my italics - B. F.) 

Within the scope of the pedagogy of the Enlightenment, "mechanical skills" were 
developed - particularly with regard to the technical handling of articles for work, 
their material prerequisites and means. This accounted, for example, for a large part 
of the instruction that took place in the industrial schools. 

Humboldt's suggestion signalized a fundamental change. Instead of a direct 
adoption of articles, substances, and knowledge as a finished product, the activity of 
learning itself became the focus, but not simply as some sort of automatism, 
activeness, or action. 

Here, the characterization of learning as simultaneously being an orientation 
towards the content "from which all original creative work must always follow" and 
an orientation towards "learning how to learn" as a conscious focus on the learning 
process itself seems to be of primary importance. For only in this simultaneous 
orientation does a simple reproduction of knowledge become replaced by a self-
active production of knowledge as a subjective constitution, by learning as learning 
activity. 

This formulates a conception that deals with the development of individuality by 
means of acquisition of and access to knowledge at the highest level of its 
generalization. That is, from a radical, one-sided position general education 
{Allgemeine Bildung) is determined as the sole purpose of instruction (Humboldt 
maintained, "Every carpenter should be required to learn Greek''). 

There are two dimensions to the solution of the problem of generalization: 
- Knowledge at the highest level of generalization is connected to the logic of the 

process of acquisition itself. - Learning confronts itself as learning how to learn. 
- This necessarily requires a generalization at the social level: compulsory public 

schooling for all pupils. 
So much in the way of an outline of Humboldt's concept. The actual implementation 
of this conception was a failure - not because of its radical, Utopian perspective, but, 
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rather, due to the contradictions of bourgeois class society, which developed very 
rapidly during Prussia's industrialization (Fichtner 1996, 174-194). 

2. VYGOTSKU: MASTERY OF ONE'S OWN BEHAVIOR AS REVERSED 
ACTION AND SELF-REFERENTIALITY 

Analogous to Humboldt's situation, we find a similarly dramatic socio-political 
context for the development of the paradigm associated with the cultural-historical 
school. 

We comprehend the cultural-historical school from its historical context as an 
attempt within the humanities to define the subject in a new way under revolutionary 
conditions. 

This new characterization became necessary as a result of the historic radical 
change and its social conflict-related pressures. Although the political and social 
environment of this period was shaped by the upheaval of an entire society and this 
was considered to be an historic act of self-constitution by a social subject of 
history, it became evident early on that such catchwords as "re-molding human 
beings" or "creation of new man" included determinist elements. Above all, it 
became evident that simply confronting people with objective necessities was not 
sufficient to change their consciousness. 

We consider the research undertaken by the cultural-historical school to be an 
attempt to overcome both determinism and voluntarism in the formulation of the 
political aims of this social process of radical change. Categorically, Vygotskij 
emphasized the fact that the human individual as a subject can be reduced neither to 
nature nor to society. 

Vygotskij's attempt to establish a science of subjectivity was based on a 
philosophical and methodological premise that could only be formulated in a 
negative way: as the overthrow of any type of dualism and, in particular, of the 
dualism between individual and society. 

Within this context, the Theses on Feuerbach were of considerable significance, 
especially the third thesis, which stipulates that a change in reality necessarily 
includes a change in human beings themselves: 

The materialistic doctrine concerning the changing of (men's) circumstances and 
education forgets that circumstances must be changed by men and that the educator 
himself must be educated. This doctrine therefore has to divide society into two parts, 
one of which is superior to society. The coincidence of changing circumstances and 
human activity or self-change can be comprehended and rationally understood only as 
revolutionary practice. (Marx 1983, 156) 

We consider this coincidence of changing circumstances and changing human 
activity or self-change to be a general framework of a revolutionary nature. Here, we 
do not wish to limit the concept of "revolutionary practice" to political activity in the 
strict sense of the word. We consider human activity in a very general way to be 
"revolutionary practice" whenever this connection between change in the world and 
self-change can be presumed. 

Falk Seeger (1998) has demonstrated conclusively the central importance of 
Vygotskij's concept of "self-control or the mastery of one's own behavior" for the 
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entirety of his work. Vygotskij provided a first systematic development of this 
concept in his study on "The History of the Development of Higher Mental 
Functions." 

Three basic concepts are combined in this approach: ''the concept of higher 
mental function, the concept of cultural development of behavior, and the concept of 
mastery of behavior by internal processes T (Vygotsky 1997a, 7) 

I need not go into detail on the famous metaphors Vygotskij uses in developing 
his approach: the example of tying a knot in a handkerchief in order to remember 
something and the no less famous image of Buridan's ass caught between two 
equally alluring bundles of hay. 

As Vygotskij himself described his approach: 

In contrast to Lewin we attempt to provide for the concept of mastery of one's own 
behavior a completely clear and precisely determined content. We proceed from the fact 
that the processes of behavior represent the same kind of natural processes subject to the 
laws of nature as all other processes. Neither is man, subjecting processes of nature to 
his will and intervening in the course of these processes, an exception in his own 
behavior. But a basic and very important question arises: how does he represent the 
mastery of his own behavior to himself? ... We know that the basic law of behavior is 
the law of stimulus-response; for this reason, we cannot master our behavior in any 
other way except through appropriate stimulation. The key to mastery of behavior is 
mastery of stimuH. Thus, mastery of behavior is a mediated process that is always 
accompUshed through certain auxiliary stimuli. (Vygotsky 1997a, 87) 

Here we have an explicit formulation of the main issue: how do humans represent 
self-regulation to themselves? 

Vygotskij provides certain clues about how to deal with this issue: 
All clues refer to the social nature of this process in which human beings present 

self-regulation to themselves. 
Vygotskij describes these "certain auxiliary stimuli" as "psychological 

instruments." He does not understand them as a mediator between subject and 
object. They are exclusively means of the subject's influence on itself. With its help 
the child organizes, controls and governs its behavior in very different situations. -
It does not any longer react to an external stimulus - but creates, constructs its 
behavior. 

Thus Vygotskij characterizes processes as "mediatory activity" and not as 
mediated. This ability of the human individual to produce his psychological 
processes as mediatory, mediating activity can for Vygotskij only be explained out 
of the subject-subject relationships. 

Human self-regulation occurs in accordance with the so-called "general law of 
cultural development." This means that higher mental functions progress from the 
outside to the inside, from the social level to the individual level. "Initially the sign 
is always a means of social connection, a means of affecting others, and only later 
does it become a means of affecting oneself 

Vygotskij concretized this in many examples. They are all to be found in the 
context of the question: How does its way of thinking change when the child learns 
to speak; and how does its way of speaking change when it learns to think? 

An Example: What are numbers? 
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The arithmetical idea of numbers is a generalization of numerical attributes of 
things. Against this the algebraic idea is a generalization of the subjects operation on 
which the development of the graphical numerical idea of numbers is based on. It is 
a conscious generalization of the process of reasoning. On this basis the child is able 
to handle arithmetical ideas more freely. 

Vygotskij demonstrates the same phenomenon using the example of grammatical 
structures: 

I loosen the knot. I do that consciously. However I cannot say how I did it. My 
conscious action does not come out to be an action which has become conscious, 
because my attention is focused on the act of loosening, but not on what I am doing. 
The consciousness always represents some part of reahty. Object of my consciousness 
is the loosening of the knot, the knot and what happens to it; but not the actions I carry 
out loosening the knot, not what I am doing. This can in particular become the object of 
the consciousness, then this is the process of becoming conscious. Becoming conscious 
is the act of consciousness, whose object is the activity of consciousness itself. 
(Thinking and Speech; German edition: 1964, 168.) 

At this point it would be appropriate to discuss the difference between "objective 
meaning" and objective "sense" in detail along the lines of the explication of this 
difference as found, above all, in Leont'ev (1981). Furthermore, the concept of 
"inner language" introduced by Vygotskij in an almost poetic form in the last 
chapter of his "Thinking and Speech" (Minck's retranslation of 1987) is of 
considerable significance in this context. Here we also find important reflections on 
the issue of how humans represent self-regulation to themselves. 

We will cut our outline short here and summarize, even if somewhat too hastily: 
The paradigm of the cultural-historical school aims at establishing the humanities as 
a science of subjectivity. At the core is a conception of a human who as the subject 
of his learning process produces his or her uniqueness and unrepeatability not 
against the society he belongs to but, rather, by means of this society. 

This science of subjectivity views humans as individual social beings who attain 
their autonomy to the extent that they do not simply observe social wealth in objects, 
but also have their own subjective means of the acquisition and expression of this 
wealth at their disposal. 

This conception of such a science of subjectivity must became opposed to the 
system and became markedly contradictory to the political and cultural changes in 
social life as these began to be realized at the outset of the Stalinist era. The 
scientific category of "personal sense" facilitated, for example, radical criticism of 
social living conditions. The actual system of their "objective meanings" became 
less and less transformable into "personal sense." Stalinism placed the responsibility 
for this on the people themselves. The Paedology Decree issued on July 4th, 1936 
made any further work by the cultural-historical school impossible. 

3. A CRITIQUE OF CURRENT APPLICATIONS OF THE VYGOTSKIAN 
APPROACH AND THE CONCEPT OF DESIRE 

The current interest in the cultural-historical school in Europe, Latin America, and 
the U. S. A. is astonishing and makes us somewhat suspicious. 
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Where does this widespread interest in the work of a Marxist scholar, and 
Communist of the former Soviet Union at American universities and Brazilian ones 
(which we are more familiar with) come from? 

What difference exists between a subject who was determined to develop and 
form social life in the Soviet Union of the 1920s and the subject that is engaged in 
forming our present society? 

What is the meaning of formation of identity in a society that is not reconciled to 
itself, is not identical to itself and as a capitalist society is currently caught up in 
dramatic changes within the context of globalization? 

What does development of the subject mean in an antagonistic society that 
demands from the individual a balance of forces that is impossible in society itself? 

How can a paradigm and its basic concepts that were aimed at making a practical 
contribution to the development of a society without class differences, without 
exploitation of humans by humans function in a society that is precisely based upon 
expansive implementation of capital? 

The current reception and further development of the paradigm of the cultural-
historical school makes no mention of our reality, its conflicts and contradictions 
and their significance for the development of subjectivity and identity of children 
and youths, for their learning and cultural appropriation. 

The current reception and further development of the paradigm of the cultural-
historical school is far too lacking in mediating factors; it has a peculiarly abstract 
tendency. The fundamental concepts and strategies are usually not related to our 
reality in any concrete manner. 

Currently profound and comprehensive processes of an economic permeation of 
our society are taking place under the label of ''globalization." Subsystems of our 
society such as public health services, law, sports and, not least, pedagogical 
institutions are forfeiting their relative autonomy to an ever greater extent. They are 
degenerating to auxiliary and reinforcing mechanisms of the market. Economy, that 
is, profit is rapidly and without any noticeable resistance becoming the measure of 
all things. (Chomsky 1999) All this represent factors of dramatic changes involved 
in how inner and outer coherence of our society is being produced. Within this 
context, practically all the traditional forms and functions of culture as a medium of 
the social life world are in the process of dissolution. 

In the present discussion, the fundamental concepts of the cultural-historical 
school are not related to this "disintegration of the social" and to this dissolution of 
traditional forms of lifeworld. Since this reality is not thematized, many of the 
concepts forfeit their methodological potential. They no longer allow deliberation on 
the fundamental and revolutionary connection between change in the world and self-
change of the subjects, between the development of this society and the 
development of its individuals. Consequently, a greater portion of current cultural-
historical research exhibits a pronounced orientation towards superficial 
craftsmanship, towards technical and methodical optimization of what is already 
available: for instance, the "Zone of Proximal Development" as a sort of "scaffol
ding" or "coaching" or as a method for implementing group work in existing forms 
of instruction. 
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Our own theoretical and practical work of the last few years has made it 
increasingly evident that it is practically impossible to use Vygotskij's approach for 
the education of persons who must adapt to the system of a society based on 
capitalist alienation and exploitation. This would encompass an alienation from the 
original intentions of Vygotskij's entire work. We see one possibility of regaining 
the connection between changes in the world and the self-change of individuals in 
the works of Deleuze and Guattari. Here, the concept of "desire" plays a significant 
rolel 

Guattari liberated this concept from the psychoanalytic perspective, which had 
bound it exclusively to the "libido" as the biological source of unconscious 
aspirations of humans. In this way, Guattari adopts a position with regard to 
psychoanalysis similar to that of Vygotskij: 

For me, desire encompasses all the forms of the will to live, to create, to love, to 
generate a different society, a different perception of the world, other values. Regardless 
of which dimension of desire one considers, it is never simply a general sort of energy, 
a vague function of chaos or disorder. (...) Desire is always a way of producing 
something. For this reason, I find it extremely important to dismantle the classical 
psychoanalytic conception. I am convinced that there is no biological-genetic process 
within the child that determines the aim of desire. However small a child may be, it 
lives out its relationship to the world and its relationships to others in an extremely 
creative and constructive manner. It is the schematizing of the child's semiotics by the 
school as a form of power that causes a type of schema of non-differentiation. (1986, 
215 ff), 

and, we would like to add, just as much so by all the other forms of power within the 
contexts in which the child lives: in the family, in the mass media, in the totalization 
of commodity-price relationships within social relationships. 

We would like to pose the following general question: 
What is the productive, critical-analytical potential of this concept of desire for a 

re-interpretation of the fundamental concepts of the cultural-historical paradigms? 
Is it possible to realistically analyze the origin of the higher mental function in 

our social reality? If yes - how? 
Is it possible to claim this also for the other concepts as for 

- the concept of cultural development of behavior 
- the concept of mastery of behavior by internal processes 
- the concept of personality (Leont'ev)? 
Only empirical and above all high-quality research can discover what productive, 
critical and analytical potential this conception of desire might have. 

4. WORKS OF ART AS REVERSED ARTIFACTS AND ART'S POTENTIAL 
FOR REFLEXIVE LEARNING 

At a central sequence in Visconti's film, we note how the protagonist watches a 
movie and becomes engrossed in her dreams, and how the film as a whole deals with 
the destruction of her illusions. The film within the film presents the simultaneity of 
illusion and disillusionment and, for the audience watching Visconti's film, it 
becomes a means of reflection on the nature of cinema in general and on one's own 
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relation to this medium, etc. The film allows the observer his or her freedom of 
interpretation and provokes reflections and self-reflections. 

This ability to present something and at the same time to thematize the 
presentation itself as a presentation seems to us to be an indication of the greatness 
of works of art. Such a presentation is always also the destruction of any unmediated 
perception of presentations - the destruction of presentation. Such presentations do 
not represent reality, the world, but, rather, reflect our activity in the world. 
Representation does not consist of the objects it designates. 

This self-referentiality of art has enjoyed a practically inexhaustible variety of 
forms and possibilities in the course of its history. To make mention of just a few of 
these forms we would like to note some basic principles and mechanisms involved 
in perception as aptly described by Falk Seeger. He shows some pictures well 
known dealing with the "figure-ground-relationship" within the psychology of 
perception as for instance Figure 1, 

Figure 1. A complicated self-referential picture: A Sufi mandala 

If the person, looking at one of those figures, focuses on one of its parts (...) the figure 
switches after a while: What had been at the forefront now seems to be at the back, and 
vice versa. (...) The usual semiotic function of the sign as pointing or referring to 
something else that is not given in the sign or picture is short-circuited because the 
image refers to itself As a consequence ,the viewer is "left to her or his own devices," 
so to speak, and the normally unconscious processes of of perception are made 
conscious. (...) The key to an understanding of the psychological functioning of those 
pictures is Vygotsky's idea of "reverse action," of producing an artifact that is operating 
on the individual, not on the environment. (Seeger 1998, 330) 
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The here given picture is a "pure case" of self-referentially, it demonstrates the 
effect of self-referentially and nothing else. In work of arts self-referentially is an 
origin of an enormous explanatory potential. 

Works of art are not primarily objects. They can be made to be such - as a 
commodity, as a fetish, as a status symbol, etc. Works of art are artifacts that 
mediate a relationship. What sort of a relationship? Each individual work thematizes 
art as a relationship. Art defines itself in relationship to what it is not. It is neither a 
product of labor nor is it nature, but, rather, something that does not exist in this 
empirical sense: namely, free form and "definite negation" of our accessible, 
consummate world. 

In contrast to our relationship to nature or to work, our relationship to art is one 
in which we do not objectify ourselves and other things, but, rather, as Marx 
expressed it: one in which man "behaves towards himself as to a universal, and thus, 
free entity." 

A work of art does not represent anything. Nothing else can be put in its place. 
By contrast, I can present the spoken word "tree" in sign language or in any alphabet 
used somewhere in the world, and it can always be related to a particular object. 

Cezanne's pictures of Mont Saint Victoire do not represent a mountain with the 
purpose of illustration or documentation. They do not convey any meaning of or 
symbolize empirical reality - they do not refer to anything beyond themselves. 
These paintings are art in an immanent sense. They establish a relationship to art 
that continually asserts itself against their reification. These pictures refer only to 
themselves. But what differentiates them from the "pure cases" in which pictures 
thematize perception itself? 

We would like to illustrate the particular potential of the self-referentiality of 
works of art with the following two examples: 

Kafka's ''The Castle:'' The character of the surveyor K. is not based on some 
historical model and is not conceived of as representative for a figure of some 
particular social standing. He is a character who is anonymous, even with respect to 
himself, among other anonymous characters. No one knows anyone else, even 
though they all meet each other and speak to each other. In "The Castle" everything 
is narrated just as it happens to K., as he sees and understands it. There is no 
relationship whatsoever to any reality beyond the confines of the novel. Any 
concrete form of reality is totally absent. The castle does not symbolize some ruling 
power of which K. is a subject. And yet power and powerlessness and totalitarian 
coercion are present in every sentence. In the novels by Zola, the world of social 
misery, the exploitation of workers is realistically described from the outside. Zola's 
characters were present and still are in a great variety; but they always remain where 
they are in actuality. Kafka writes within the fictional character of K., which only 
originates while reading and makes reading a formidable experience: I do not read 
the words, but, rather, the words read me and they determine the rhythm and tone of 
my reading. 

Velazquez s ''Las Meninas:'' The painter , Velasques himself pauses during his 
work. His gaze bores into the room where we, the observers, are to be found. The 
majority of the persons present in the scene on the left side of the easel also 
concentrate on the space in front of and outside the painting, which is actually our 
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location. In the background a mirror hangs on the wall, but does not reflect the 
models, the royal couple, but, rather, a part of the picture that Velaszquez is painting 
and that we can only see from behind. The painted frame almost collides 
aggressively with the surface of the canvas on which the entire scene is presented. 

The idea of the reflecting mirror - one of the great themes of European painting 
- is reversed in this image: painting itself, and not reality, is reflected. 

In the background, in the opening leading to another room, we see Jose Nieto de 
Velazquez, the queen's chamberlain. He is behind the scene in much the same way 
as we are before it. Velazquez is facing us; he enjoys the privilege of being able to 
see the picture. All of the lines in perspective converge at his hand. This hand grasps 
the perspective schema and manipulates the curtain. 

As a whole, this work is a painting about painting: its theme is art as a 
relationship. Velazquez's replies to the question of what artistic representation is in 
the form of an aporia: He openly reveals his countenance, yet he conceals his work. 
"Las Meninas" is a picture open to an infinite variety of interpretations. Velazquez 
permits the observer to have freedom to interpret, but at the same time he forces him 
or her to meditate on the paradox of representation. 

What, now, might be the potential of the self-referentiality of art for reflective 
learning? It is certainly not a one-to-one correspondence. This would mean to study 
the system comprised of works of art, their reception, and their effects with 
reference to the mechanisms involved and to construct a model of reflective learning 
from these mechanisms. But the explanation of works of art by the proper authorities 
seems to be more of a dead end. 

Art is not didactic, art is not pedagogic, nor is it technical. Works of art are not 
instruments for practical problem-solving. Works of art mediate a relationship by 
providing space for the development of thought. 

Fachbereich 2 Erziehungswissenschaft, Universitdt Siegen 

NOTES 

Translated by Thomas La Presti 

^ More than thirty-five years ago, Michael Otte introduced a group of students that I was a member of to 
the main figures of the cultural history school (Vygotskij, Leont'ev, Luria, and Dawydow) in a way 
especially typical of him - by explaining theories as perspectives. The criterion of their appropriation and 
implementation can be formulated by posing the question: Do they help us to make our experiences 
capable of development? This essay is an expression of my thanks to him for these insights. 
^ Collaborating in various projects with Maria Benites I'm indebted to her for this perspective on Deleuze 
and Guattari. 
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THINKING AND KNOWING ABOUT KNOWLEDGE 

A Plea for and Critical Remarks on Psychological Research Programs on 
Epistemological Beliefs^ 

Abstract. In educational, developmental as well as cognitive psychology several approaches to measure 
epistemological behefs have evolved. These approaches focus on learners' and teachers' behefs about 
knowledge and epistemological issues. Such behefs are important because of their impact on learning 
processes and learning results. Some of the most research approaches and their methods are outhned. 
Then some difficulties which the research is encountering are discussed. One of such difficulties concerns 
the issue of domain specificity of epistemological behefs. This issue is one of the reasons for inconsistent 
empirical results. It will be suggested that some of these inconsistencies are caused by the epistemology 
imphed in the research approach itself In particular, the idea that epistemological behefs can refer to 
knowledge as a social and cultural entity, is underrated. The paper concludes with the discussion of this 
argument and of it's consequences for further research. 

Key words: epistemological behef, learning, measuring behefs, duahsm, relativism, certainty of knowl
edge, simphcity of knowledge, division of cognitive labor, domain dependency 

1. PRELIMINARY REMARK 

Learning a certain school subject always requires the development of an epistemo
logical perspective about the content within the context of a certain domain of 
knowledge (e. g. mathematics). Teaching a school subject (and therefore selecting it 
from many other options which could be taught) is justified if that specific content is 
helpful for the development of a broader perspective on the domain of knowledge. 
The importance of an epistemological perspective in learning and teaching has al
ways been emphasized in the work of M. Otte (e. g. 1994). It is a main theme in his 
critical thinking on educational issues. In his work this emphasis on epistemology in 
its own right is expounded mainly as a meta-perspective, in other words, as com
ments on the ways researchers, teacher educators and teachers think and argue about 
knowledge. And it is expounded often with a normative intention, driven by the con
tention that a more thorough reflection on epistemological issues would improve 
(mathematical) education. It is rarely based on empirical observations of epistemo
logical thinking among students. But such empirical research approaches are also 
relevant for philosophical and historical reflection on educational issues. Since any 
'having to do' requires the 'being able to do' and since any normative statement on 
educational issues should be based on a realistic examination of the personal and in
stitutional conditions of acting according such normative statements, philosophical 
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reflection needs such empirical analyses. Otherwise it would be out touch with its 
communicability with the social field it refers to. 

On the other hand, however, empirical analyses are not beneficial unless they 
themselves are based on an appropriate epistemological conception. Only then is it 
possible in the event of contradictory results to decide whether they are merely 
caused by methodical problems or whether a revision of the theoretical approach is 
needed. (By the way: Such a self-referential use of a certain epistemological argu
ment is inspired last not least by M. Otte's work, where such patterns of self referen
tial argumentation can be found very often and where the importance of self-
reference for the justification of mathematical knowledge has been thoroughly dis
cussed). 

2. EPISTEMOLOGICAL BELIEF: A VERY INTENSIVELY-INVESTIGATED 
OBJECT OF RESEARCH INCLUDING MANY OPEN QUESTIONS 

Recently several empirically based approaches to epistemology and epistemological 
beliefs have evolved. They are put forward by psychologists (within the sub-
domains of developmental, educational and cognitive psychology) and by research
ers in science, language, history and mathematics education. These approaches are 
attempting to describe and measure learners' and teachers' beliefs about knowledge 
and epistemological issues. (Buehl, & Alexander 2001; Duell, & Schommer-Aikens 
2001; Hofer, & Pintrich 1997; 2002 have given inspiring overviews of this re
search). 

The development of beliefs about the ontological status and justification of 
'knowledge,' knowing and (sometimes) about the acquisition of knowledge is the 
subject of these research approaches. Some of the researchers focus their studies on 
the beliefs about academic knowledge, e. g. mathematics (Schoenfeld 1992; de 
Corte, Op t' Eynde, & Verschaffel 2002), science (Lederman 1992), psychology 
(Hofer 2000). Others prefer to concentrate on the epistemology underlying the ap
plication of personal knowledge in connection with problems in everyday life. Here, 
general ideas about knowledge and its justification are at the forefront while assign
ment to a particular domain of school knowledge is not so important for these re
searchers (Kuhn 1991; King, & Kitchener 1994). 

Some of the research approaches will be outlined below (section 3). The paper 
goes on to deal with the difficulties which the research is encountering at present. As 
an example of such difficulties the issue of domain specificity of epistemological 
beliefs will be discussed (section 4). This issue is one of the reasons for inconsistent 
empirical results. It will be suggested that some of these inconsistencies are caused 
by the epistemology implied in the research approach itself (section 5). In my view 
the research is based on an inadequate theory as to what the content of beliefs about 
epistemology and academic knowledge might be. In particular, the idea that episte
mological beliefs can refer to knowledge as a social and cultural entity, is under
rated. Put bluntly: the epistemology of the research on the development of epistemo
logical beliefs might fall behind the development of the subjects of their research. 
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The paper concludes with the discussion of this argument and of it's strategical con
sequences for further research (section 6). 

3. FROM THE BELIEF IN ABSOLUTE KNOWLEDGE TO THE CONTEXTU-
ALIZATION AND DEVELOPMENT OF A PERSONAL POINT OF VIEW: 

PERRY'S DEVELOPMENT MODEL AND SUBSEQUENT STUDIES 

Many recent approaches are rooted in Perry's seminal work on the intellectual and 
moral development of college students (Perry 1970, for review about his work, see: 
Moore 2001, Hofer, & Pintrich 1997). Perry, a professor at Harvard University, 
examined several cohorts of college students by a longitudinal method over a period 
of 4 years per group. In nondirective interviews he asked students about important 
events in their (intellectual) development at the college. The results were integrated 
into a development model of beliefs about views on the making of meaning. Al
though Perry does not mention any stages, his ideas of development are clearly in
fluenced by Piaget's stage theory and also have a strong affinity with Kohlberg's 
theory of moral development. Thus he views intellectual development as a result of 
dealing with new experiences, while at each developmental step a state of equilib
rium has to be achieved. 

The original model consisted of 9 phases which, however, in subsequent studies 
were reduced to four stages: Dualism, Multiplicity, Contextual Relativism, and 
Commitment within Relativism. (The following short description of these stages is 
based on Hofer, & Pintrich (1997), the references are from page 71 of this text). 

Dualism is ... "characterized by a dualistic, absolutist, right, and wrong view of 
the learner." 

It is a view about knowledge where it is not difficult to figure out if elements of 
knowledge are true - it is simply a case of consulting the authorities. 

Multiplicity ... "represents the beginning of the recognition of diversity and un-
certainity. Authorities which disagree haven't yet found the right answer, but truth is 
still knowable." 

Later this includes also the assumptions that there may be issues where different 
opinions are possible and that it is permissible to have these opinions. 

Contextual Relativism encompasses the acknowledgment that knowing always 
includes a personal perspective and that it is based on one's own intellectual activi
ties within a certain context. "At Position 6 (the second sub-stage of this stage, R. 
B.) individuals perceive knowledge as relative, contingent, and contextual and begin 
to realize the need to choose and affirm one's own commitments." 

Commitment within relativism refers not primarily to knowledge and its justifica
tion but primarily to a certain approach to finding a personal position within a con
text of relativism. Nevertheless it is again the idea of multiplicity, i. e. coping with a 
multiplicity of values and developing a personally-justified position within such an 
environment. 

The basic idea of the development model refers to the tension between a simple, 
even naive, belief in a one-dimensional and external explanation of knowledge and 
meaning and a relativistic view of knowledge and meaning, in which the individual 
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is not only a passive recipient but also an active constructor of his knowledge. 
Perry's model and results inevitably turn out, on detailed inspection, to be more 
complex than can be expressed by this dimension. However, the basic idea can be 
recognized more easily by taking into account the fact that the starting point for 
Perry's studies was the research carried out by Adorno, Frenkel-Brunswick, Levin-
son and Sanford (1950) on the authoritarian personality. This research was already 
based on a similar idea about closed vs. open-mindedness. Contrary to Adorno et al. 
Perry and subsequent research on epistemological beliefs see these opinions more as 
a result of a developmental and learning process than a personality trait. 

Perry's development model has inspired a number of subsequent studies which 
share his idea of cognitive development from 'absolute knowing' to 'contextual 
knowing.' In different studies the poles of this dimension have different names. Here 
I will use these, in my view very appropriate, terms for the two poles of develop
ment suggested by Baxter Magolda (1987). Some examples of these subsequent 
studies are mentioned here in brief. 

King and Kitchener (1994) have described in a series of studies of 'the ways that 
people understand the process of knowing' (1994, 13) by asking their research sub
jects to respond to ill-structured problems. These are problems for which there are 
no clear-cut, unambiguous solutions, e. g. questions pertaining to the objectivity of 
media, assumptions about the construction of the Egyptian pyramids or chemical 
additives in food. The research subjects had to verbalize their thoughts on these 
problems. The analysis of the interviews was based on categories which were essen
tially concerned with the tension between absolute and relativistic beliefs. The re
sults confirmed and extended Perry's stage model. King and Kitchener asked over 
1700 students and students of varying ages. Thus they were able to demonstrate that 
the developmental stages do in fact correlate with the age of people and also depend 
on their degree of education: Older and better educated students and young adults, 
respectively, more often gave explanations which were classified as quasi-reflective 
or reflective. 

However, subsequent studies also led to a fundamental broadening of the term 
'epistemological beliefs.' An example of this are the studies of Schommer (1990, 
1994; and also based on her work: Jehng, Johnson, & Anderson 1993). Schommer 
devised a questionnaire in which subjects had to state their degree of disagree
ment/agreement to propositions, for example regarding the certainty of knowledge, 
e. g. 'The only thing that is certain is uncertainty itself,' 'Scientists can ultimately 
get to the truth.' Since the aim was to obtain empirical evidence for a relationship 
between epistemological beliefs and learning in school, questions were included 
which did not directly address the nature of knowledge but for example preferences 
in study strategies 'When I study I look for single facts' or questions with regard to 
whether learning success depends on ability or on step by step efforts. Schommer's 
questionnaire made it possible to study a relatively large sample more economically. 
It also made possible an empirical examination of the question whether epistemo
logical beliefs vary over different dimensions. This concerns for example the ques
tion whether beliefs regarding the certainty of academic knowledge co-vary system
atically with beliefs regarding the simplicity of knowledge, or whether such beliefs 
develop independently of one another. In a series of studies in which the question-
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naire was used (repeatedly revised and supplemented), four factors were found by 
Schommer (1994; Schommer, Calvert, Gariglietti, & Bajaj 1997) which were inde
pendent of one another: 

(1) Simplicity of knowledge, i. e. knowledge as an entity of unrelated items vs. 
knowledge as a system of propositions, 

(2) the certainty of knowledge, 
(3) quick learning i. e. the ease of knowledge acquisition and 
(4) innate ability, i. e. degree of individual control over knowledge acquisition. 
In addition, Schommer - and others - could establish empircally relationships 

between some of the just mentioned epistemological beliefs and cognitive processes 
during learning, for example when learning from texts (Kardash, & Howell 2000). 

However, the factor structure as reported by Schommer did not prove very sta
ble, i. e. not all the factors could be replicated in other studies. This was caused, 
among other things, by questions which were not clearly formulated. In addition, the 
propositions which have be judged refer partly to the personal knowledge of the sub
ject and partly to the presumed knowledge of experts. Finally, it was heavily criti
cized that many of M. Schommer's questions and two of the four factors which she 
had been able to find do not really refer to epistemological issues (Hofer, & Pintrich 
1997). This conceptual objection is legitimate and is not seriously denied by the au
thor (Schommer-Aikins 2002). The selection of the items was eclectic in so far as 
the main objective was - as already mentioned above - to include as many beliefs as 
possible which could have an effect on learning. Nevertheless, the core theme under
lying the issue of epistemological beliefs, as outlined above, can be discerned: in my 
opinion, each dimension contains the idea of 'absolute knowing' vs. 'contextual 
knowing.' (Note: This is an analytical conclusion about the semantics of the propo
sitions which make up the individual factors, not an assumption that it would be 
possible to establish empirically a sort of 'g(eneral)-factor' behind the four dimen
sions described above). 

4. ARE EPISTEMOLOGICAL BELIEFS SPECIFIC FOR THE KNOWLEDGE 
DOMAIN TO WHICH THEY REFER? 

Other researchers doubt whether it is at all possible to define and to study empiri
cally epistemological beliefs independently of the domains to which the knowledge 
refers. Given the great differences between academic disciplines (in terms of their 
concepts, methods, languages) it is very plausible that students ideas about knowl
edge might reflect such differences. Actually this has been demonstrated in an inter
esting study undertaken by Stodolsky, Salk, and Glaessner (1991). They asked fifth 
class students about special features of the subjects mathematics and social studies. 
In order to make students of this age group think about the nature of these subjects 
an interesting scenario was developed. Students were asked to imagine a popular ex
traterrestrial movie character (E.T.) visiting their school and needing some explana
tions about what went on during school lessons. Stimulated by this external perspec
tive the students reported characteristic differences between the learning and teach
ing in these two subjects (for example: teaching and learning with algorithms is 
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typical for mathematics). Although the questions did not refer directly to epistemo-
logical beliefs, characterizations of the two domains were essentially found to refer 
to epistemological issues. 

Schommer and Walker (1995) have reacted to the criticism on their assumption 
about domain independent epistemological beliefs. They used one of Schommers's 
questionnaires originally used without any reference to a certain knowledge domain. 
Now a student sample was asked to refer to a specific domain (e. g. mathematics) 
when answering. Then this sample was asked to work on the questionnaire again, 
now with reference to social sciences. Based on correlations between the answers 
for the two domains and based on comparison with a control group the authors 
stated a moderate domain independency of the epistemological belief. However, as 
explained above, two of the four factors found by Schommer did not concern epis-
temology beliefs but learning strategies. It is interesting that the specifically episte
mological beliefs about certainty and simplicity of knowledge showed a lesser de
gree of domain independency than the beliefs about learning strategies. Schommer-
Aikins (2002) has, therefore, moderated her claim of domain independence of epis
temological beliefs. 

Buehl, Alexander, and Murphy (2002) also examined the domain specificity of 
epistemological beliefs. They started with criticism of Schommer's approach which, 
in my opinion, reveals a very fundamental problem. They argued that a question
naire which is based on the assumption of domain independency could not simply be 
applied to different domains. It has to be assured that all questions are applying 
equally meaningfully in the different domains. They have therefore devised an in
strument which contains only items that can be answered with respect to both 
mathematics and history. Buehl, Alexander, and Murphy (2002) report that they had, 
for example, to leave out questions on the perceived meaning of formulae in mathe
matics as they were unable to formulate corresponding questions for history. 

However, such a strategy results in risking the loss of those items which are par
ticularly relevant for eliciting domain specific beliefs. This emerging problem of 
mixing things which are incompatible can in my opinion only be solved if, on the 
basis of the specific research question a theoretical decision is made as to what de
gree incommensurability between domains has to be accepted. Thus, in the light of 
this, it is not surprising that Buehl, Alexander, and Murphy (2002) only found do
main specific differences for some beliefs, e. g. for beliefs concerning the relation
ship between mathematics and history, respectively, and other subjects (mathematics 
seems to be seen as more strongly linked with other knowledge domains than his
tory). Clearer empirical evidence for domain specificity of epistemological beliefs 
was found by Hofer (2000), who examined the beliefs of college beginners with re
spect to psychology and science. 

5. WHAT CAUSES INCONSISTENT RESULTS? THE NECESSITY FOR IM
PROVING RESEARCH ASSUMPTIONS ABOUT WHAT THE 'CONTENT' OF 

EPISTEMOLOGICAL BELIEFS COMPRISES 



THINKING AND KNOWING ABOUT KNOWLEDGE 197 

As has already become clear, there are considerable inconsistencies in the findings 
(see also Pintrich (2002), Buehl, & Alexander (2001), Schraw (2001) for critical re
views of such inconsistencies). Below is a summary of some of these inconsisten
cies: 

Complexity of epistemological beliefs. The number of dimensions that can be at
tributed to epistemological beliefs is not at all clear. In a critical review of the pre
sent research position Pintrich (2002) states: There is more than one dimension, but 
less than ten. For example, Hofer (2002) as well as Quin and Alverman (1995) re
port that 'Certainty of knowledge' and 'Simplicity of knowledge' did not occur as 
separate dimensions, as Schommer had found, but were mixed. This can be the re
sult of a slightly different choice of items (a method-oriented explanation of incon
sistencies) or it points to the fact that certainty and simplicity are two aspects of 
more complex beliefs about knowledge (a theory-oriented explanation of inconsis
tencies). 

Domain dependency. It can be safely assumed that epistemological beliefs are in
fluenced strongly by the knowledge domains to which the questions in the invento
ries refer. There are, however, up to a certain degree, domain independent epistemo
logical beliefs. This varies according to the researcher and, consequently, the re
search instrument. 

Age level: Chandler, Hallett and Sokol (2002) have demonstrated that the devel
opment from the pole 'absolute knowing' to the pole 'contextual knowing,' as al
ready described by Perry, can be found in all studies regardless of which age levels 
are examined. However, it is not possible that the same development takes places 
exactly in the phases a researcher happens to select. 

Of course, many concrete causes of such inconsistencies can be found in the 
methods used. In the recent debate on epistemological beliefs there are much more 
suggestions about methods than about the actual content of epistemological beliefs. 
However, as Chandler et al. (2002) argue convincingly, a solution to the problem of 
inconsistencies cannot be expected from an improvement in methods alone. In the 
above mentioned critical reviews it has, therefore, been demanded that besides im
proving research methods, it is necessary to further develop the theoretical assump
tions about the ontology of epistemological beliefs 

I would therefore like to ask whether the ideas about what the content of episte
mological beliefs under discussion by most of the authors in this research area at 
present do justice to what people think about knowledge and recognition. In other 
words, I doubt that the 'ontology' of epistemological beliefs which is presupposed in 
recent research really 'fits' the 'ontology' of the research subjects. It was illustrated 
at the outset that present research - slightly simplified - focuses on the basic idea of 
'absolute truth vs. contextual knowing.' This understanding of epistemology is how
ever too narrow. It is based on a psychologically inspired idea of epistemology as a 
theory of individual knowledge attainment. (The relationship between Perry and 
Piaget has already been pointed out). In contrast, modern views on epistemology 
emphasize the social nature of the generation and justification of knowledge (Fleck 
1979; Latour, & Woolgar 1979; Otte 1994). Here it is clear that the generation and 
use of knowledge is a process which is socially distributed within a cultural context. 
There is a lot of division of cognitive labor when it comes to the generation, justifi-
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cation and use of knowledge. And it is clear that knowledge is represented not only 
in individual minds, but also in books, in the Internet, and in social and in technical 
artefacts. Accordingly, epistemology (note that this notion refers to epistemology as 
a philosophical discipline) describes processes and problems of individual knowl
edge attainment only in a limited number of cases. 

Two examples will demonstrate why division of cognitive labor and the social 
nature of knowledge are important for the empirical analysis of epistemological be
liefs: One of the factors which has been found in many studies of epistemological 
beliefs concerns the 'sources of knowledge.' It is elicited by the item 'Sometimes 
you just have to accept answers from the experts even if you don't understand them' 
and 'If you read something in a textbook for this subject, you can be sure that it's 
true' (Hofer 2000, 399). Agreement with these items is taken as an indicator for a 
belief in authorities and little development towards the contextualized pole of 
knowledge. 

This may be the case in certain contexts. But it might also indicate an acknowl
edgment of the division of cognitive labor. It is unnecessary and impossible in many 
contexts for individuals to actively gain, structure und justify knowledge themselves, 
i. e. to think in the way it is described by the positive pole of Perry's sketched de
velopment. Instead a stable judgment is needed as to when in a division of labor one 
can rely on other people and when one has to make a judgment of one's own. 

However, contemporary research on epistemological beliefs underestimates the 
division of cognitive labor. Maybe the research subjects who have to answer the 
questions about knowledge take the division of labor into account. Consequently this 
ambiguity of 'expert truth' reveals itself in inconsistent results. It is possible that 
subjects prefer such absolute truths although they would be prepared to develop a 
critical position towards the opinions of certain experts and specific questions. 

A different but related example concerns the issue of 'absolute' vs. 'relative,' i. 
e. 'personal view dependent truth.' The belief that there are absolute, externally 
proven truths which cannot be personally verified is not always an indication for na
ive epistemology (Hammer, & Elby 2002). In fact, it makes sense to assume that the 
earth is round and not a disc, that Newton's laws are always valid in macrophysics, 
etc. It is the belief about the social distribution of knowledge (Who states the propo
sition, when and what for?) which decide if and when a statement should be re
garded as true or false. 

6. A SUGGESTION FOR A RESEARCH STRATEGY: SEARCHING FOR THE 
'DIVISION OF COGNITIVE LABOR' 

Of course, it is an open empirical question which age groups and with what educa
tion know about the division of cognitive labor. To this extent my criticism implies 
also a research program. There is already empirical evidence in developmental psy
chology (Lutz, & Keil 2002), in concept research (Malt 1994) as well as in expert 
research (Bromme, Rambow, & Nuckles 2001) that conceptual knowledge consists 
not only of knowing about the meaning of concepts but also of assumptions about a 
division of cognitive labor. Individuals know about other people possibly having dif-
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ferent, better, and in other contexts more useful knowledge about concepts than the 
individual has. Nevertheless, these concepts can be applied in one's own thinking 
and communication with other people (Bromme 2000). If some of the research sub
jects know about this division of labor and take this into account in some of their 
answers one needn't be surprised at the above mentioned inconsistencies of results 
on epistemological beliefs. 

This criticism regarding the implicit epistemology of epistemology research (i. e. 
its own notion of epistemology) implies not only that the division of cognitive labor 
should be added as a possible additional variable. I do not suggest a simple addition 
of further ontological elements. A merely descriptive, so to say 'bottom up' ap
proach to the empirical reconstruction of epistemological knowledge will not be 
successful. Adding further items in questionnaires will presumably not result in the 
reduction of inconsistencies. It has to be accompanied by a contextualization of the 
use of epistemological beliefs. It might be helpful to start with the question: why and 
with what aim epistemological beliefs emerge and for what are they needed? The 
question also arises as to what the problems are which people solve by having cer
tain epistemological beliefs. When, i. e. with what actions and in which contexts do 
problems arise for which the availability of a certain epistemological belief is rele
vant? 

A final example will help to demonstrate this: If a student has to choose between 
conflicting factual statements made by another student or by a teacher, it makes 
more sense for him to believe in the teacher's authority. A person who is consider
ing renting a flat which is near a mobile phone mast has to decide whether to believe 
the previous tenants who complain about headaches, or physicists who claim that 
there is no health risk. In this case it might make sense not to believe in the physi
cists' authority. In either case the epistemological belief has nothing to do with 
knowledge as such, but concerns the relationship between the statement 'proposition 
X is true' and the social context of who, why and where has said this, and of whom, 
why and where the truth of this proposition is important. 

It therefore makes sense to distinguish between the contexts in which epistemo
logical beliefs are applied. So school and university can be seen as such a context. A 
personal search for natural scientific or medical knowledge, e. g. on the internet, is a 
different context. However, since people act in several such contexts at the same 
time, it appears essential to apply constraints to any proposed extension of the ontol
ogy of potential epistemological beliefs by specifying the context in which and aim 
for which the knowledge is needed about which people have epistemological beliefs. 

Fachbereich Psychologie, Universitdt Munster 

NOTES 

Thanks to Elmar Stahl for critical remarks and to Ingrid Speight for native speaker advice. 
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THOMAS MIES 

THE COGNITIVE UNCONSCIOUS 

Recalling the History of the Concept and the Problem 

Abstract: For a long time the cognitive unconscious was a marginal subject in the epistemology and 
psychology of the 20th century. In the last decades, however, this situation has dramatically changed 
under the influence of cognitive psychology and cognitive science. As a contribution to a better under
standing of this change, its reasons, and its perspectives, this article tries to recall the history of the cogni
tive unconscious as a philosophical and psychological concept that does not begin with the rise of cogni
tive psychology and cognitive science. It Hnks the concept to the philosphical criticism of Descartes and 
Kant as the most eminent proponents of a philosophy of consciousness. In particular, it links the concept 
to American pragmatism. By anchoring consciousness in practical and sign-mediated intersubjectivity, 
Peirce, Dewey, and Mead, at the same time laid the foundations for a pioneering conception of the cogni
tive unconscious that requires further elaboration and remains a stimulating challenge for current philoso
phical and psychological research. 

Key words: abduction, aesthetics, cognitive science, habit, mind, philosophy of consciousness, pragma
tism, psychoanalysis, unconscious, unconscious inference 

I believe that much of early Freudian theory was upside down. At that time many thinkers re
garded conscious reason as normal and self-explanatory, while the unconscious was regarded as 
mysterious, needing proof, and needing explanations. Repression was the explanation, and the 
unconscious was filled with thoughts which could have been conscious but which repression and 
dream work has distorted. Today we think of consciousness as mysterious, and of the computa
tional methods of the unconscious, e. g., primary process, as continually active, necessary, and 
all-embracing. (Bateson 1975, 135 f.) 

It is because agents never know completely what they are doing that what they do has more 
sense than they know (Bourdieu 1990, 69). 

INTRODUCTION 

The fact that unconscious mental processes have a role in learning and cognizing 
would seem to be a truism from a present-day point of view. It is all the more sur
prising then to note that scientific discussion of this "truism" has long been the privi
lege of eminent individualists, being left without much resonance during the 20^ 
century, a century deemed, according to widespread prejudice, to have been that of 
the discovery of the unconscious. In truth, discussion of the cognitive unconscious 
was confined to the margins of scientific debate, to footnotes, and to anecdotic oc
currence. 

203 
M. H. G. Hoffinann, J. Lenhard, F. Seeger (Eds.), Activity and Sign - Grounding Mathematics 
Education, 203 - 214. 
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Undoubtedly, psychoanalysis dominated the scientific discourse on the uncon
scious quite decidedly from its very onset until the 1970s. It is thus suggestive to 
link the fact stated above to certain basic assumptions of the Freudian conception of 
the unconscious: This conception can be conceived of as cognitivist inasmuch it 
refers primarily to a certain, albeit quite specific, class of "notions"; conceiving 
these notions and the regularities of their linkages, however, not only as a primitive 
cognition, but rather as a depraved one that is in sharp contrast to productive learn
ing and reasoning. "Primary process" and "secondary process" are mutually exclu
sive. This is also connected to the fact that psychoanalysis, despite its important con
tribution to the semiotic turn in philosophy and in the humanities, was long domi
nated by a concept of the symbol that isolated it from the scientific and philosophi
cal developments initiated by the semiotic turn (cf. Lorenzer 1972). The belief that 
the unconscious is creative shared by many psychoanalysts - including Freud him
self, of course - cannot be founded adequately under these premises of reasoning, 
and it is no accident, albeit involving considerable inconsistencies in this field as 
well, that it is being demonstrated almost exclusively in studying artistic production. 
A conception of the unconscious that declares itself incompetent to such an extent 
regarding questions of learning psychology and epistemology seems to confirm all 
reservations and biases that consider any application of psychological concepts and 
insights to the epistemological field a path of error anyway. 

During recent decades, however, there has been a far-reaching turn in evaluating 
the cognitive unconscious. A marginal theme has evolved into a legitimate and im
portant object of research. The most spectacular aspect of this turn is undoubtedly 
the growing recognition of cognitive structures and processes that operate without 
consciousness. The rapid progress of cognitive psychology and cognitive research 
demonstrates the power of these structures and processes (see, e. g., Kihlstrom 1987; 
PerrigAVippich/Perrig-Ciello 1993; Pfeifer/Scheier 1999). How far-reaching the turn 
is here may be illustrated by the following quote: "Paradoxically, it would seem as if 
the psychologists were able at present to make clearer statements about unconscious 
cognitions than about phenomena of consciousness. It is widely recognized in mod
ern research that unconscious cognitions have a role in every kind of information 
processing, that is also in case of so-called higher forms of coping with the external 
and the internal world (like reasoning, imagining and remembering)" (Per
rigAVippich/Perrig-Ciello 1993, 218). 

In psychoanalysis as well, the assumptions for discussing the topic of the cogni
tive unconscious have undergone a profound change. The notion that unconscious 
and conscious thinking are incompatible is being replaced by conceiving the primary 
and secondary process as a continuum in which the two are recognized to be func
tionally different forms of the cognitive acquisition of reality (see, e. g.. Holt 1967; 
Matte-Bianco 1975; McKinnon 1979). The psychoanalytic concept of the symbol is 
liberated from its isolation with regard to the general development of the theories on 
signs, language, and symbols (cf., specially, Lorenzer 1972, 1977, 1981). This 
change does not stop at the core region of psychoanalytic practice and theory forma
tion. Recent empirical studies on the process of psychoanalytic therapy no longer 
assume "that the patient's basic thrust is the wish to gratify unconscious infantile 
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wishes," but rather start "from the radically different assumption ... that patients 
come to therapy with the conscious and unconscious desire to master early conflicts, 
traumas, and anxieties and with unconscious plans as to how this mastery can be 
achieved." (Eagle 1984, 96 ff.). The author just quoted comments this change of 
paradigm as follows: "The concept of unconscious plans ... might have seemed un
tenable some years ago to some sceptical critics. However, under the impact of de
velopments and research in so-called cognitive science and cognitive theory, the 
idea of complex and purposive unconscious cognitive operations seems common
place and entirely feasible." (loc. cit., 101). It is thus also not surprising that an in
creasingly intense cooperation between psychoanalysts and cognitive psychologists, 
respectively cognitive scientists has developed in the last two decades, (see, e. g., 
Moser/von Zeppelin 1991; Leuzinger-Bohleber/Schneider/Pfeifer 1992; Shevrin et 
al. 1996; Bucci 1997) 

Further evidence for the turn just sketched may be found in the fact that the ana
lytic philosophy of the mind, which, indeed, has been intimately connected with 
cognitive science as an interdisciplinary approach, has made energetic efforts during 
recent decades to integrate the Freudian theory of the unconscious, thus trying to 
understand irrationality within the context of the cognitive acquisition of the world 
(see Davidson 1982, 1985; Pears 1984; Cavell 1993). Guiding these efforts is the 
search for an alternative to Freud's radical way of opposing the pleasure principle 
and the reality principle: "If instead we assume the position ... first that passions 
(wishes, and desires) are fully mental and logically inextricable from belief, and 
second that mental content is constituted out of interrelations between organism and 
external world, organism and other organisms, then we will expect it to be the case 
that passions, desires, and interests are also in some general way adapted to external 
reality, no matter how much they stray here and there" (Cavell 1993, 158). 

It is beyond any doubt that psychoanalysis has revolutionized the study of the 
unconscious theoretically, methodologically, and empirically. The history of science 
and philosophy, however, also shows that it would be completely erroneous to as
cribe the discovery of the unconscious to Freud (see, e. g., Ellenberger 1970; Adler 
1988; LUtkehaus 1995). Just as the philosophic and scientific discourse on the un
conscious does not begin with Freud, the cognitive unconscious has by no means 
been scientifically thematized for the first time by cognitive psychology and cogni
tive science. In view of the revolution just sketched, an effort to recall the history of 
"the unconscious" might be useful that is not confined to Freudian thinking and to 
psychology. It might contribute toward a better understanding of the reasons that 
have led to the present upswing of the cognitive unconscious, and toward placing 
alternative modes of thinking at the disposal of the present scientific debate which 
have fallen into oblivion because of the course taken by the development of con
cepts and theories. What follows is intended to contribute to such an effort of recall. 
The history of classical psychoanalysis itself provides a negative example for the 
uses of such an effort of recall. Freud and his disciples, by believing that they could 
mostly ignore the history of the discovery of the unconscious, in particular its phi
losophical aspects, as a mere prelude, adopted without reflection decisions about 
direction that had been made long before them. These decisions drew insurmount-
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able boundaries to any attempt at articulating what was new in their own approach 
(see Sulloway 1979; Mies/Brandes 1999; Mies/Scholz 2001). 

THE CRITIQUE OF THE PHILOSOPHY OF CONSCIOUSNESS 
CHARLES SANDERS PEIRCE 

Our confining the history of the concept here to Peirce and to American pragmatism 
is more or less arbitrary and not just due to the fact that a comprehensive history of 
the cognitive unconscious, which would have to begin with Leibniz at the latest, 
would go beyond the frame of this contribution.^ The history of the concept refers -
however contrarily - from its very outset to the development of the philosophy of 
consciousness as its determining context of reasoning. Descartes as its founder, and 
Kant as its most important reformer, thus do not just mark fundamental incisions in 
the history of the philosophy of consciousness; after them, a fundamental revolution 
also took place in thinking about the unconscious (see Mies/Brandes 1999; and, spe
cifically for Kant, Marquard 1987). What distinguishes Peirce and other authors 
belonging to the current of American pragmatism, which founds mind and meaning 
in practical intersubjectivity, from other philosophical thematizations of the uncon
scious in the 19^ century and at the beginning of the 20* is precisely their radical 
break with the prerequisites of reasoning assumed by the philosophy of conscious
ness, without making any concessions to irrationalism, and with the goal of recon
structing the concept of rationality itself. 

In Peirce's justification of his own position, Descartes and Kant take central po
sitions in the critical debate. Peirce sharply rejects the methodological postulate of 
radical doubt set by Descartes, according to which the individual cognizing subject 
is called to negate all the previous givens of his own reasoning in his own mind to 
be able to proceed, as a lonesome self-consciousness, to an indubitable basis of cog
nition upon which the edifice of our knowledge is to be erected completely anew. 
Peirce considers a doubt with regard to what is considered unproblematic in action 
to be an intellectualist fiction. For him, the doubt is connected with a discrepancy 
between our beliefs and our actions, and its aim is to do away this discrepancy. The 
doubt's point of origin is the divergence between the expectations integrated into a 
belief, or into a system of beliefs, and the results of the action guided by this belief. 
The concept of belief links consciousness with action: Belief "is something that ... 
involves the establishment in our nature of a rule of action, or, say for short, a habit" 
(Peirce CP 5.397). Elsewhere, Peirce defines belief as "a deliberate, or self-
controlled habit" (CP 5.480). The generalization of reasoning is based on the practi
cal generalization in the application of beliefs. The important contribution of the 
experiment to scientific progress consists in systematically exploiting the orientation 
of reasoning toward action in order to attain cognitions. Thus, Peirce emphatically 
stresses Lavoisier's scientific achievement of having carried "his mind into his labo
ratory, and literally to make of his alembics and cucurbits instruments of reasoning, 
giving a new conception of reasoning as something which was to be done with one's 
eyes open, in manipulating real things instead of words and fancies" (CP 5.363). 
With regard to the dependence upon this orientation toward action, there is continu-
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ity between common sense and scientific reasoning, even if the respectively relevant 
contexts of action and the methods of fixing beliefs may differ. 

Just like he destructs Descartes' method, he destructs the result of Descartes' 
quest for a foundation of all scientific cognition. The reflexive orientation of the 
cognizing subject toward his or her own thinking in self-awareness is by no means 
favored epistemologically over the knowledge we have about the social and natural 
world to which we belong. For Peirce, reflexive self-awareness is the result of a 
complicated process of learning that integrates experiences with the external world, 
and in particular with relevant others, and not something given with intuitive cer
tainty that would have to be assumed before any reasoning. Introspection cannot be 
segregated from questions regarding how dependent our consciousness is on the 
external world. Just like the consciousness of others, our own consciousness is only 
accessible if mediated by signs. Without signs, there is no thinking. "Man makes the 
word, and the word means nothing which the man has not made it mean, and that 
only to some man. But since man can think only by means of words or other exter
nal symbols, these might turn round and say: 'You mean nothing which we have not 
taught you, and then only so far as you address some word as the interpretant of 
your thought'" (CP 5.313) 

The indissoluble linkage between thinking and sign points to the temporality and 
unconditional inter subjective character of consciousness. Individual self-
consciousness is linked to discovering that one's own opinion deviates from that of 
others, and thus to discovering the possibility of error, of error that can be clarified 
and rectified only in communication with others. "Ignorance and error are all that 
distinguish our private selves from the absolute ego of pure apperception" (CP 
5.235). The formulation obviously alludes to Kant who also rejects the Cartesian 
preference for knowledge generated in reflexive self-reference with regard to em
pirical self-consciousness, but adheres to this preference where the transcedental 
unity of self-consciousness as a condition of the possibility of all knowledge is con
cerned. A philosophy, however, that considers the attempt to detach consciousness 
from its embodiment in sign and action to be a false track will not be able to be sat
isfied with such a transcendental unity of self-consciousness. The pure ego of apper
ception becomes a community's self, a community that approaches an understanding 
of reality by means of practical testing and inter subjective understanding within a 
process that will never end. The transcendental unity of consciousness becomes in-
tersubjective agreement in the use and interpretation of signs, respective agreement 
in reasoning and action. Consciousness "is sometimes used to signify the: / think, or 
unity in thought; but the unity is nothing but consistency, or the recognition of it. 
Consistency belongs to every sign, so far as it is a sign; and therefore every sign, 
since it signifies primarily that it is a sign, signifies its own consistency. ... But the 
identity of a man consists in the consistency of what he does and thinks" (CP 5.313 
- 315; see, on the reception of Descartes and Kant by Peirce, Apel 1973, 1975). 

For Peirce as well, the conscious self is not master in his own house, albeit in 
quite another sense than that intended by Freud. To form this self logically and tem
porally presupposes the existence of social systems of signs and actions that are an
chored profoundly in a collective history and orient beyond this self toward a collec
tive future. The self is formed in a practical process of learning and acquiring these 
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systems that is the very thing that makes consciousness possible and can be made an 
object of conscious reflection only in a limited way. Ideas and signs receive their 
meaning only in the context of habits. Peirce borrows this concept of "habit" from 
the context of the psychology of association going back to Hume, although not in
terpreting it like the latter as merely factually sensory, respectively sensori-motor 
linkage, but rather as embodiment of thoughts, as interpretant of signs, as practical 
generalization, and thus as a cornerstone of his own theory of meaning. With this, 
"habit" becomes an epistemological key concept. Habits are embodied processes of 
logic inference: "A habit arises, when, having had the sensation of performing a 
certain act, m, on several occasions a, b, c, we come to do it upon every occurrence 
of the general event, /, of which a, b and c are special cases. That is to say, by the 
cognition that 

Every case of a, b, or c, is a case of m, is determined the cognition that 
Every case of / is a case of m. 
Thus the formation of a habit is an induction, and is therefore necessarily con

nected with attention or abstraction" (CP 5.297). According to the stricter distinction 
between induction and hypothesis, respectively between inductive and abductive 
inference, in Peirce's later works, it would probably be more appropriate to grasp 
the genesis of a habit in the form of an abductive inference. 

Now humanity's habits are only in part beliefs, that is, linked to consciousness. 
Against the definition quoted above, even with regard to beliefs, Peirce is indeed not 
sure whether they must be bound to consciousness: "Belief is not a momentary 
mode of consciousness; it is a habit of mind essentially enduring for some time, and 
mostly (at least) unconscious" (CP 5.417). Peirce tentatively develops a functionalist 
concept of consciousness that derives it in a way similar to that of deriving doubt 
from the disturbing confrontation of habits with reality, and whose further elabora
tion then became a priority task in the development of pragmatism: Consciousness is 
"symptomatic of the interaction of the outer world - the world of those causes that 
are exceedingly compulsive upon the modes of consciousness, with general distur
bance sometimes amounting to shock, and are acted upon only slightly, and only by 
a special kind of effort, muscular effort - and of the inner world, apparently derived 
from the outer, and amenable to direct effort of various kinds with feeble reactions" 
(CP 5.943). 

Peirce works with a concept of meaning and mind that extends far beyond the 
realm of consciousness, albeit he is as an eminent logician engaged for the concern 
of an improved conscious control of our reasoning. In his "Lectures on Pragma
tism," he concludes: "But the sum of it all is that our logically controlled thoughts 
compose a small part of the mind, the mere blossom of a vast complexus, which we 
may call the instinctive mind, in which this man will not say that he has faith, be
cause that implies the conceivability of distrust, but upon which he builds as the 
very fact to which it is the whole business of his logic to be true" (CP 5.212). There 
are two operations of reasoning whose execution Peirce completely, or at least for an 
important part, ascribes to the cognitive unconscious of the "instinctive mind," and 
both are of fundamental importance for human reasoning: perceptual judgments, and 
abduction. Peirce speaks of the "fineness of subconscious observation," and of the 
temptation of consciousness toward "breaking down, denying, and pooh-poohing 



THE COGNITIVE UNCONSCIOUS 209 

away" this fineness (Peirce RLT 182). He considers this subconscious element of 
observation to be the "very most important of all the constituents of practical reason
ing" (ibid.). Peirce takes up Leibniz's theory of a continuum of representations ex
tending from the quite imperceptible representations to those most coercive to con
sciousness, albeit in the modification this theory has experienced by Herbarth, and 
according to which the representations fight for access to consciousness, trying to 
displace one another. He himself undertook experiments in order to prove that sen
sual perceptions below the level of consciousness exist, which, nevertheless, are 
cognitively recorded and enter into perceptual judgments, thus doing pioneer work 
in the field of studying subliminal perception, a field that has only been discovered 
as an important field of research by psychoanalysis and cognitive psychology during 
the last decades (see ibid 312 ff.) 

Even with this, however, Peirce still remains within the framework of a psychol
ogy of an associative sensualism, and the epistemic significance of the concept of 
habit remains unexploited. Peirce leaves this framework when he only links the con
cept of perception to the concept of habit, advocating the thesis "that the conformity 
of action to general intentions is as much given in perception as is the element of 
action itself, which cannot really be mentally torn away from such general pur-
posiveness" (CP 5.212). In this context, Peirce develops the conception of the per
ceptual judgment as an unconscious inference.'̂  He justifies this conception by not
ing that our perceptions as a rule include a classification, speaking of "the interpreta-
tiveness of the perceptive judgment" (CP 5.183), which is familiar to every psy
chologist. The point of his argument, however, is that perceptual judgments must be 
analyzed logically in the form of the abductive inference, or "that abductive infer
ence shades into perceptual judgment without any sharp line of demarcation be
tween them" (CP 5.181). The cognitive process assumed in the perceptive judgment, 
however, differs, as a border case of abductive inference, from all other abductive 
inferences in that it is unconscious and thus exempt from logical control, and 
through the symptom "that we cannot form the least conception of what it would be 
to deny the perceptual judgment" (CP 5.186). As a border case of abductive reason
ing, the perceptive judgment, too, is bound to signs, in this case, to iconic signs. It is 
an act of an unconscious cognitive creativity unfolding immediately in sensuality, 
and refers, as practical generalization, not only to present things but also to future 
applications in which the field of conscious control then can also extend, proving 
"that what are really [that is, fallible', author's addition] abductions have been mis
taken for perceptions (CP 5.188). Such applications, however, presuppose again 
perception and thus unconscious cognition as the basis of all reasoning. 

The thesis suggesting a continuum between perceptive judgment and abductive 
inference cannot remain without impact on the conception of abduction itself. As it 
is a leitmotiv of pragmatism to emphasize the orientation of consciousness and of 
scientific cognition to the future, and to make the idea of the new at home in phi
losophy, abduction is entitled to take a key role in Peirce's reasoning. "It is the only 
logical operation which introduces any new idea; ... every single item of scientific 
theory which stands established today has been due to Abduction" (CP 5.171 ff.). 
Now it is remarkable that while Peirce distinguishes abduction with regard to its 
controllability from the perceptual judgment, he emphatically moves it into the 
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neighborhood of the perceptive judgment with regard to the creativity that finds ex
pression in it. He relates abduction to humanity's "faculty of divining the ways of 
Nature .... An Insight, I call it, because it is to be referred to the same general class 
of operations to which Perceptive Judgments belong." This faculty resembles in
stinct too in its small liability to error; "for though it goes wrong oftener than right, 
yet the relative frequency with which it is right is on the whole the most wonderful 
thing in our constitution" (CP 5.173). For the new to be able to enter human cogni
tion, it must become present through a reconstruction of sensuality that evades con
scious control and forces itself on the consciousness with sudden compulsion: "The 
abductive suggestion comes to us like a flash. It is an act of insight, although of ex
tremely fallible insight. It is true that the different elements of the hypothesis were in 
our minds before; but it is the idea of putting together what we had never before 
dreamed of putting together which flashes the new suggestion before our contempla
tion" (CP 5.181). In Peirce, scientific reasoning unfolds in the context of a sensuality 
which is characterized by orientation toward action, conveyance by signs, and gen
eralization. Hence, it does not just begin with the cognitive unconscious; it also re
ceives its decisive developmental impulses from it. 

PRAGMATISM AND PSYCHOANALYSIS: 
JOHN DEWEY AND GEORGE HENRY MEAD 

Peirce's successors did not agree with important aspects of this theory of the uncon
scious. What irritated them was the metaphysical embedding of the concept into a 
theist theory of evolution in which not only the conceptual distinction between in
stinct and the cognitive unconscious of human reasoning loses its acuteness, but also 
the distinction between natural law and "habit." This embedding leads to a certain 
affinity between the unconscious in Peirce and the conception of the unconscious 
developed by Schelling as well as the German romantic natural philosophy. But this 
affinity finds its boundary in the semiotic and pragmatic turn initiated by Peirce. 
After him, it has become a priority task for American pragmatism to develop a con
cept of communication as a process of understanding between really different sub
jects, a concept whose difficulty is more played over than solved by Peirce's meta
phorical figure of the human as a sign. Peirce's successors struggle with the problem 
that while Peirce postulated the subordination of the individual consciousness to the 
consciousness of the community, he did not develop a concept of consciousness that 
realizes this postulate conceptually. This problem is all the more urgent as William 
James, who was the first to make pragmatism known to science and to the general 
public, and without whose support Peirce's philosophical work would have been 
completely neglected by the contemporary scientific community, indeed tried to 
found his own individualist variant of pragmatism deviating from Peirce on a psy
chological study of the "stream of consciousness." The concept of "habit" as embod
ied generality does not agree well with a psychology of association to which Peirce 
nevertheless remains confined across wide stretches of his work, and which still 
exerts a rather unbroken impact on Freud's reasoning as well. Eventually, the reflec
tion on the unconscious in the context of American pragmatism soon fell under the 
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strong influence of psychoanalysis which had been received relatively rapidly and 
enthusiastically in the United States, to Freud's ambiguous surprise. 

The problem situation sketched above reveals why the most eminent pragmatists 
of the generation after Peirce, George Henry Mead and John Dewey, concentrated 
rather more on the fields of study concerned with the prerequisites of a theory of the 
cognitively unconscious: intersubjectivity, consciousness, morals, aesthetics, epis-
temology, and theory of science. Their analyses attempt to realize the possibility 
opened up by the sign-theoretical and pragmatic turn in philosophy initiated by 
Peirce of establishing, respectively elaborating, alternatives to the philosophy of 
consciousness in all these fields. Because of the push in this direction, the focus was 
predominantly on a new foundation of the so-called higher cognitive functions, 
while the cognitive unconscious as a research field of its own was made an explicit 
topic only marginally, hardly being made a direct object of research. The concept of 
"habit," the thesis that meaning and mind are more comprehensive than conscious
ness, and a functionalist conception of consciousness that situates the latter within 
the context of a practically-sensually mediated unity of subject-object, nonetheless 
remain guidelines in this. To give only one exemplary quote: "Mind is more than 
consciousness, because it is the abiding even though changing background of which 
consciousness is the foreground. Mind changes slowly through the joint tuition of 
interest and circumstance. Consciousness is always in rapid change, for it marks the 
place where the formed disposition and the immediate situation touch and interact. It 
is the continuous readjustment of self and the world in experience. "Consciousness" 
is the more acute and intense in the degree of the readjustments that are demanded, 
approaching the nil as the contact is frictionless and interaction fluid. It is turbid 
when meanings are undergoing reconstruction in an undetermined direction, and 
becomes clear as a decisive meaning emerges." (Dewey 1934 (1988), 270). One 
may object that this quote has been taken from the most important contribution of 
American pragmatism to philosophical aesthetics, thus shifting the subconscious 
again in the vicinity of creative work, removing it from scientific reasoning. It is, 
however, the very point of this aesthetics, which has not been published by accident 
under the title of "art as experience," that it is free from any kind of genius cult, try
ing to liberate art from its isolation from everyday experience and from scientific 
reasoning. In doing so - albeit under completely changed social and cultural condi
tions and in a rather different conceptual and theoretical context - it takes up the 
object of a "science of the sensual cognition" that was attached to the constitution of 
aesthetics in the German philosophy of the Enlightenment and was intended to help 
toward obtaining recognition for the ''fundus animae (Grund der Seele)" and the 
subconscious in epistemology. 

Mead and Dewey seek the debate with the philosophy of consciousness on the 
latter's own traditional terrain, hoping, in a second step, to arrive at a convergence 
with psychoanalysis, which by abandoning this terrain gets itself entangled, in the 
pragmatists' view, in the pitfalls of this philosophy in an unreflected way. John 
Dewey has clearly articulated the proximity and distance that simultaneously charac
terize the relationship of pragmatism after Peirce to psychoanalysis: "The rise at the 
present time of a clinical psychology which revolts at a traditional and orthodox 
psychology is a symptom of ethical import. It is a protest against the futility, as a 
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tool of understanding and dealing with human nature in the concrete, of the psychol
ogy of conscious sensation, images and ideas .... Every movement of reaction and 
protest, however, usually accepts some of the basic ideas of the position against 
which it rebels. So ... the founders of psycho-analysis ... retain the notion of a sepa
rate psychic realm or force. They add a statement pointing to facts of the utmost 
value, and which is equivalent to practical recognition of the dependence of mind 
upon habit and of habit upon social conditions. This is the statement of the existence 
and operation of the "unconscious," of complexes due to contacts and conflicts with 
others, of the social censor. But they still cling to the idea of the separate psychic 
realm and so, in effect, talk about unconscious consciousness. They get their truths 
mixed up with the false psychology of original individual consciousness" (Dewey 
1922 (1988), 61 ff.). 

In the field of psychology, behaviorism and psychoanalysis have pushed this cri
tique to the background, just like the analytic current in Anglo-Saxon definitively 
seemed to displace pragmatism. Pragmatism itself, however, in no way conceives 
itself in opposition to these research approaches and tendencies. It is revealing in 
this context that Mead sees the task of a psychology inspired by pragmatism "to 
state the whole of human behaviour in scientific terms which would be equally ap
plicable to primitive impulses and to the so-called higher processes and cultural ex
pression" (Mead 1930, 703). He welcomes behaviorism and psychology as first at
tempts pointing in such a direction, motivating "new methodological approaches" 
(ibid) beyond themselves. The novelty of these new methodological approaches 
consists in relating practical generalization and social generalization to one another, 
and to identify this relation as the source of all processes of generalization. 

Neglecting this source has for a long time determined psychological and phi
losophical reasoning in the 20* century, creating the impression as that pragmatism 
were no longer more than a marginal phenomenon of the history of psychology and 
philosophy. In psychology, the result was a behavior that, while being generalized, 
was not generalizable itself, and an unconscious that stood in contrast to the cogni
tive appropriation of reality; and in philosophy, a sophistication of the set of logical 
tools that declared the inquiry into what makes reasoning possible in the first place 
to be meaningless. This situation has changed fundamentally with the cognitive turn 
in psychology and the constitution of cognitive science, and it is suggestive that the 
seeming obsolescence of pragmatism is, in important points, founded in an anticipa
tion of a problem situation for whose reception the time was not yet ripe. Pointing 
out the problem of the cognitive unconscious is not one of the least important argu
ments supporting this presumption. 

Munster 

NOTES 

* The quotes from Perrig et al, Baumler, Baumgarten, Helmholtz, and Schlick were translated for this 
contribution from the original German or Latin text. 
Only such a comprehensive presentation, however, could demonstrate that the concept of the uncon

scious formulated by Freud and his successors in the 19* century supersedes an older conceptual tradition 
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beginning with the German Enlightenment in which the term was estabhshed for the first time, not only 
with reference to metaphysics, anthropology, or psychology; but, in the first place, also with reference to 
epistemology. "What is philosophically typical for the 18* century is thus not rationaUsm, but the prob
lem of irrationaUsm seen from the realm of rationaUsm .... The 19* century does no longer know irra-
tionahsm because it is purely irrationahstic itself (Baumer 1923/1967, 5). This judgment written in the 
context of an extensive evaluation of the original contribution made by the German philosophy of 
EnUghtenment, is certainly exaggerated and one-sided, and highly problematic with regard to the concept 
of rationaUty assumed as well. With regard to the conception of the unconscious, it highlights, however, 
an important tendency - especially in German philosophy and psychology (see Marquard 1987; Kaiser-
El-Safte 1987). This older conceptual tradition is closely affiliated to the question whether there is a sci
ence of sensual cognition, and plays an important role in the constitution of aesthetics as a philosophical 
discipHne (see, for a very instructive contribution, Adler 1988). Baumgarten summarizes the sensual 
capacities for cognition as 'fundus animae,' as 'bottom of the soul' (Grand der Seele). Baumgarten also 
estabhshes aesthetics as a philosophical discipline with his definition: "Aesthetics (as theory of the fine 
arts, as basic epistemology, as the art of fine reasoning, and as the art of thinking analogous to reason) is 
the science of sensual cognition" (Baumgarten 1750/1758/1988, 3). It is easy to see that the concept of 
aesthetics that comes to prevail in the 19* century, one which covers nothing but the theory of art and of 
what is beautiful, represents a reduction compared to Baumgarten's concept of aesthetics. There is no 
space here to more extensively justify the assumption that the quasi-monopoly to unconscious creativity 
that psychoanalysis continued to assign to the arts, mirrors this reduction that took place in the transition 
from Baumgarten to Kant, and within the aesthetics of the 19* century. 
2 

It would probably be very instructive to compare this conception of the perceptual judgment as an un
conscious inference to the concept of unconscious inference developed by Helmholtz in his "Physiologi
cal Optics," which I consider to be the 19* century's most eminent German contribution to an epistemol
ogy of the unconscious. Helmholz interestingly tries to underpin this concept with the examples of how 
the child acquires language and how the artist creates. Later he modifies the term of this controversial 
concept in order to prevent it being erroneously identified with the irrationalist conception of the uncon
scious in Schopenhauer, without, however, making any concessions in the matter (see Helmholz 1894, 
601 ff, and 1921). Freud stresses this concept as exemplary evidence for the significance of the uncon
scious, whereas Moritz SchUck strictly rejects it in the ceremony for the 100* anniversary of Helmholtz's 
birthday, considering it to be at best difagon de parler apt to give rise to misunderstandings: "Modem 
psychology emphatically rejects the concept of unconscious inference because it considers reasoning, the 
logical process, exclusively as a function of consciousness" (SchUck in Helmholz 1921, 165). Such a 
stark psychologism, which scarcely conceals the autor's dependence upon the premises of the philosophy 
of consciousness and betrays a one-sided view of the state of the debate in the psychology of his time, is 
most astonishing in treating a question that is not only of psychological but also of epistemological im
port. 
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HANS NIELS JAHNKE 

HILBERT, WEYL, AND THE PHILOSOPHY OF 
MATHEMATICS^ 

Abstract. Starting from a critical discussion of P. Forman's thesis about the influence of pessimistic and 
romantic attitudes on the development of mathematics and physics during the Weimar repubhc the paper 
investigates the relation between D. Hibert's and H. Weyl's positions in the foundations crisis of mathe
matics. H. Weyl's statement that the theoretical concepts of mathematics "are interwoven with the his
tory of thinking and shall never be laid down as a dead fmal result" is seen as an attractive frame for a fu
ture philosophy of mathematics. 

Key words: context of science, cultural impredicative definitions, foundations crisis, mathematics as a 
cultural system Weyl's interpretation of Hilbert's formahstic program. 

1. FOUNDATIONS CRISIS AND CULTURE OF SCIENCE AT THE TURN OF 
THE 20™ CENTURY 

Any effort to study the foundations crisis and Hilbert's program today calls for ex
planation. Hilbert's program as an attempt to achieve a definitely valid foundation of 
mathematics failed, as Godel's theorems of 1931 have shown. As a field of research, 
however, Hilbert's proof theory is still worked on. Philosophically, things do not 
seem to be promising. Hilbert's program appears to state that mathematics is nothing 
but a theory of formal systems which have no meaning (Curry 1951). Hence, there is 
a criticism as old as this program that it is an instance of philosophical resignation 
and signifies a definite abandonment of any epistemological reflection about 
mathematics (Becker 1927, 32). G. Kreisel speaks of a formalistic-positivistic doc
trine (Kreisel 1970). Indeed, a close tie of the philosophy of mathematics to mathe
matical logic has emerged during recent decades, and for many authors, the task of 
the philosophy of mathematics is reduced to paraphrase results of mathematical 
logic in everyday language. 

In the following, I should like to show that these conclusions do not follow from 
Hilbert's position, taking up the interpretation of Hilbert's views offered by 
Hermann Weyl in the 1920ies for the first time in (Weyl 1924). This is to say that, 
for me, Hilbert's program and his philosophical interpretation do not seem to have 
been sufficiently treated and that the attempt is promising to make it fruitful for the 
philosophy of mathematics. The formalist-positivist doctrine is a later interpretation 
but by no means Hilbert's own conception. It is surprising that even such philoso
phers who disagree with the close tie of the philosophy of mathematics to mathe
matical logic have taken little or no notice of Weyl's considerations, and I know of 
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no serious attempt to develop these considerations further. The philosophy of Ernst 
Cassirer might be an exception to this statement. However, it seems that Weyl and 
Cassirer had consciously maintained a certain distance to each other (see Cassirer 
1929, 448 ff). 

In order to understand Hilbert's program out of its own, it would seem necessary 
to recall some of the basic features of the contemporary situation of the sciences. To 
gain access to this matter, I should like to advance the following idea. The first 
paradox was discovered in 1895 by G. Cantor (in regard to the history of the founda
tions crisis see, e. g., Thiel 1972). Russel's paradox was published in 1903. The fun
damental dispute or crisis, however, did not take place before 1918. This raises a 
problem. Obviously, the paradoxes were not of the kind to have a great initial impact 
on mathematicians. Rather, they were taken to be problems in a special discipline, 
set theory and logic, which should and could be solved there and did not really con
cern mathematics as such. Besides: that what is considered the solution of the foun
dations crisis until today, Zermelo's axiomatization of set theory, had existed since 
1908 (Zermelo 1908). Zermelo's axiomatization performs just what is intended to 
do. It permits to operate safely with sets without running the risk of paradoxes as far 
as they are known today. But if this is the case, what was then the reason why there 
was such a heated foundations dispute after 1918 which was actually taken for a cri
sis by many mathematicians, and which, on a personal level, climaxed in Brouwer's 
dismissal from the editorship of the Mathematische Annalen? 

This time lag can be explained by assuming a general change of attitude with 
many mathematicians which caused that phenomena were thought to be of general 
meaning which had at first been considered to be isolated. But what can have occa
sioned such a change of attitude? Two complexes of causes could be taken into con
sideration here: 

• the simultaneous crisis in physics 
• changes of the cultural and social situation of the sciences at this time. 
Indeed, the American historian of science P. Forman, whose work was mainly on 

the history of Quantum physics, has attempted to show that there were widespread 
sentiments of cultural pessimism, romanticism and hostility towards science in the 
Weimar Republic because of the lost war (Forman 1971). As a case in point, he 
quotes the philosophy of life and the youth movement. According to Forman, 
Oswald Spengler's book The Decline of the West was the most important expression 
of these attitudes (Spengler 1918). Representatives of the theoretical disciplines 
(theoretical physics and mathematics) were among the very people who gave way to 
these sentiments in their self-representation. This development was quite compara
ble to the modern debate about problems of environmental pollution and nuclear en
ergy. As a result of this active adaptation to pessimistic attitudes, Forman says, the 
general validity of the principle of causality had been questioned even before the 
proper formulation of quantum physics in 1925 - 27 without compelling theoretical 
or empirical reasons. The general tendency was to flirt with contemporary trends 
and to try to deny a mechanistic Weltbild which left no room for the autonomy of the 
living individual and for the freedom of man. 
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Forman says, that the rise of intuitionistic positions must be seen in this context 
as an attempt to present, and do mathematics in a humanly conceivable way, that is 
intuitively and without the monsters of actual-infinite sets of arbitrary cardinality. 

To prove his theses, Forman provides impressive material. For our purposes, 
Spengler's book is important insofar as Hilbert reacted to it quite strongly. Spengler 
had advanced a historico-philosophical theory according to which various cultures 
could be distinguished typologically. They experience rise, climax and decline like 
organic beings. The transition of a culture into the stage of civilization was the onset 
of the stage of decline. Hence, the highly civilized West was in a state of decline. 
Typologically, he distinguished the ontologically meaningful mathematics of the 
Greek from the Cartesian-rationalist mathematics of modern times. According to 
Spengler, the latter had entered a stage of internal exhaustion. 

In a 1930 lecture with the title Naturerkennen and Logik which he held on the 
occasion of being given honorary citizenship in Konigsberg and which was also 
emitted by radio, Hilbert objected incisively against all those who "had given them
selves up to a reactionary and fruitless mania of doubt" and who today "prophesy 
the downfall of culture with a philosophical face and in a superior tone and please 
themselves in the Ignorabimus'' To this, he opposed the slogan: "We must know, 
we shall know" (Hilbert 1930, 87). 

That Hilbert thought such polemics to be necessary can well be interpreted as a 
symptom of a widespread tendency towards cultural pessimism. His term Ignor-
abimus, however, was not aimed at Spengler, but at the physiologist E. DuBois-
Reymond, who, at the close of the 19th century, had been convinced that there was 
an absolute limit to cognition (Du Bois-Reymond 1872). He had coined the popular 
phrase of Ignorabimus ("We shall not know"). Ignorabimus, at the time, was a re
flection of the widespread feeling that the natural sciences had reached their limits. 

This shows, however, that the tendencies critical of the sciences of that time 
were not caused by Spengler's Decline of the West. They were broader and more 
manifold in their motives. If one thinks this over in its consequences, one is led to
ward a critical evaluation of Forman's thesis. It is evidently too simplistic to see the 
cause for the debate on the strict limits of the principle of causality and the question
ing of the classical foundations of mathematics in pessimistic tendencies of the 
German scientific community after the lost World War, or even to their having read 
a bestseller of cultural pessimism. In Hermann Weyl's case, in particular, this would 
lead to a quite inappropriate view of things. Forman claims in all seriousness that 
Weyl's temporary partisanship for intuitionism and his doubts with regard to strict 
determinism in physics were due to the impression Spengler's book had had on him. 
Besides the fact that Weyl's programmatic book on intuitionism Das Kontinuum 
was written in 1917 before Spengler's "Decline" had been published, Forman does 
not ask whether Weyl has had scientific reasons for his critical view of the principle 
of causality. Whether physics would be able to maintain a purely deterministic view 
of natural events had been questionable ever since Boltzmann's work an thermody
namics, and had become an unavoidable problem by Planck's discovery of the 
Wirkungsquantum. Also, the intuitionistic criticism of the foundations of mathemat
ics was not only a question of sentiments, but marked a scientific problem: the foun-
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dations crisis, I should like to show, has had a result which was important for 
mathematics and for the philosophy of mathematics. 

Thus, my assessment of Forman's work is ambivalent. For me, it is one of For-
man's big merits to have inquired into connections between the developments in 
theoretical physics, the foundations crisis in mathematics, and the general culture of 
science. There are linkages which, as far as I know, nobody has as yet studied. Also, 
the significance of culture as a mediator between the individual disciplines (where 
else could mediations originate otherwise?) and between science and its applications 
is as yet far too removed from the attention of the historians and philosophers of sci
ence. Forman, however, works with a model of the connection between science and 
culture which falls short because it offers little opportunity of establishing a link be
tween the intradisciplinary logic of the thing and the mediating role of culture. This 
is how he is able to paint a picture in which the revolutions of physics and mathe
matics at the beginning of our century are represented as merely dependent on phi
losophical trends of fashion. 

To put it briefly: I accept the broad frame of Forman's work, but I cannot accept 
its concrete results. 

2. IMPREDICATIVE DEFINITIONS 

In the following, I should like to show that what I call the broad frame is quite useful 
for understanding the foundations crisis, and that Hilbert and Weyl, in particular, did 
not consider the problem of foundations a mere matter of logic, but saw it in a larger 
context. To do this, I shall proceed in three steps: 1. I shall sketch an analysis of the 
paradoxes given by H. Poincare and B. Russell which motivated Weyl's conversion 
to intuitionism (Weyl I); 2. I shall briefly present Hilbert's program; and 3. I shall 
describe H. Weyl's interpretation of Hilbert's program (Weyl II) which, in my opin
ion, is a convincing alternative both to intuitionism and to the "formalist-positivist 
doctrine". 

Poincare's and Russel's explanation for the set theoretic paradoxes is that they 
are based on a hidden circle of reasoning. The cause for the paradoxes be the occur
rence of so-called impredicative definitions (this term was coined in (Poincare 
1909). The concept of the set of all sets indeed implies that this set contains itself 
and even its power set as an element. This contradicts an intuitive understanding ac
cording to which the set-element relationship results in a hierarchical stratification 
of the objects which causes a set to be on a higher level than its elements. Russel 
found out that all paradoxes have one feature in common which could be called self-
reference or reflexiveness, 

... all our contradictions have in common the assumption of a totaUty such that, if it 
were legitimate, it would at once be enlarged by new members defined in terms of itself. 
This leads us to the rule: 'Whatever involves all of a collection must not be one of the 
collection,' or, conversely: If, provided a certain collection had a total, it would have 
members only definable in terms of that total, then the said collection has no total (Rus
sell 1908, 38). 

Thus, Russell established the so-called vicious circle principle. "No total can contain 
elements which are defined by this total itself (1. c.) 
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What does this precisely mean? We shall discuss this in a first step using Can
tor's diagonal proof for the non-denumerability of the real numbers. The relevance 
of this example is shown by the fact that the diagonal method does not only prove 
the non-denumerability of R but that Cantor's whole transfinite arithmetic essen
tially depends on this method. The proof that the cardinal number of the power set of 
a set M is genuinely larger than the cardinal number of M uses a generalization of 
the diagonal reasoning. Godel's construction of an improvable, but nevertheless true 
theorem of arithmetic essentially uses a diagonal construction, too. 

Let us recall what Cantor did. He assumes a denumeration of the real numbers by 
infinite decimal fractions 

r^ = 0,ajj(2j2^i3 ••• 

Then, a decimal number 

can be defined with 

O^b^b^b^'" (2) 

for all n. The new number r does certainly not occur in the given denumeration 
(Cantor 1874). 

What can be deduced from this proof? Cantor says: people assumed that there is 
a denumeration of the real numbers and derived a contradiction from that by con
structing another real number which, contrary to the assumption, does not belong to 
this denumeration. Hence, there are non-denumerably many real numbers. To this, 
Poincare and the constructivists objected: If one assumes that all numbers of R are 
contained in the denumeration, then the additionally defined element r is defined in 
a circular way (by an impredicative definition) and thus inadmissible. For r is de
fined with reference to the set of all real numbers. This set, however, contains r it
self, and thus r, finally, is defined dependent on itself: r : =f(r), circle! The diagonal 
method corresponds exactly to Russell's description where a universe is assumed 
which, if it were legitimate, would at once be enlarged by new elements which are 
defined with its help. Hence, this contradicts the rule he established: if a set which 
represents a total contains elements which can only be defined with the help of this 
total, then this said set is no total. 

There exists, however, an interpretation of the diagonal method which is accept
able in the constructivist sense. According to that interpretation. Cantor's proof says 
that additional real numbers can be constructively defined for any denumerable set 
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of real numbers. Here, the additional elements are not defined impredicatively, be
cause they did not belong to the original set. Thus, in the constructivist sense. Can
tor's proof can be used to prove the existence of transcendental numbers. The usual 
argument saying that the set of algebraic numbers is denumerable, that of the real 
numbers non-denumerable, and hence there are transcendent numbers, however, 
must not be used in this way. Instead, the proof must be shaped so as to effectively 
construct, for an effective denumeration of the algebraic numbers, a transcendental 
number according to the diagonal method which does not belong to the algebraic 
numbers. In this version, the method is constructive. According to a strictly deter
mined rule, one obtains step by step the decimal representation of a real number 
which can be proved to be different from all algebraic numbers (Kaufmann 1930). 

The interdiction of impredicative definitions does not only strongly intervene 
into Cantor's transfinite arithmetic, but it was quickly realized that it puts extensive 
parts of classical mathematics in question. This can be easily shown with the exam
ple of the existence of the supremum of a bounded set of real numbers. In order to 
obtain the proof that any such set has a supremum, this supremum is defined by a 
condition which necessarily implies a quantification over all real numbers and thus 
also over the sought supremum itself. The latter is thus impredicatively defined. 

In his book Das Kontinuum of 1918, Weyl quoted this example as the crucial 
motivation for his conversion to constructivism. 

Weyl commented this difficulty as follows: 

The vicious circle concealed by the foggy character of the common concepts of set and 
function, which we are pointing out here, is by no means a formal error in the structure 
of analysis which can be easily corrected. The insight that it is of fundamental impor
tance is something which cannot be conveyed to the reader with few words. The more 
distinctly one calls the logical network of analysis to mind, the clearer it becomes that, 
with the present mode of foundation, so-to-say every cell of the huge organism is per
meated by this toxic contradiction. (Weyl 1918, 23) 

P. Lorenzen, whose constructivist foundation of analysis is essentially an elaboration 
of Weyl's approach, has formulated a weaker theorem at this point which postulates 
that a supremum exists only for such sets which can be replaced, with regard to the 
property of having a supremum, by a definite set of rational numbers (bounded sets 
with definite left class) (Lorenzen 1965, 66). 

Four solutions have been given for the problem of impredicative definitions: 
1. Godel: He says that the impredicative definitions compel to a platonic philosophy 
of mathematics. If we assume that the set of all subsets of the natural numbers exists 
independent of definitory predicates, then definitions of this type are not circular, 
since they can be understood to be selections or characterizations of a certain set out 
of a universe of sets (Godel 1944). This is the view taken by most mathematicians. 
But there is one thing it shows: without assuming independent objects, mathematics 
cannot be founded. 2. Russell: Together with Whitehead, he developed the so-called 
theory of types in which the predicates are ordered into a hierarchy of types and 
quantification is only permitted over predicates of lower levels. In order to save the 
usual modes of deduction of analysis, Russell introduced a so-called axiom of re-
ducibility which requires that there be an extensional predicative definition for every 
impredicative one (Russell 1908). This requirement, however, is an assumption 
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which is legitimized only by the purpose which in fact contradicts the logicist struc
ture of mathematics. 

The third solution was that of intuitionism, and the fourth was Hilbert's proof 
theory. Intuitionism shall only be briefly dealt with here. It is governed by the basic 
attitude expressed by Poincare as follows: Every theorem in mathematics must be 
verifiable. As soon as I propose a theorem, I claim that all verifications which could 
be tried must be successful; even if they are beyond a person's forces. Verifications, 
however, can only refer to finite numbers, and hence all theorems about infinite sets 
are nothing but abbreviated claims about finite numbers (Poincare 1909, 138 ff.). In 
intuitionism, the sequence of natural numbers is thus the basic starting point of 
mathematics given in inner intuition, not as something ready-made, but as some 
process of growth. For Brouwer, this entailed that some laws of classical logic 
which are valid for finite sets loose their meaning for infinite ones (A well readable 
exposition of the basic ideas of intuitionism is Bouwer 1912). 

It is well known that this conception not only compels us to abandon important 
theorems of classical mathematics, but also entails enormous difficulties for the 
practice of mathematical deduction. I should like to point out an aspect which was 
important to Hermann Weyl. In the intuitionist view, the object of mathematics are 
sequences which are given by a law and thus can basically be seen, and other, so-
called 'Jree choice, becoming sequences'' which can be taken into account only as 
far as they have been "actually realized" and numerical values are known. 

It is frequently overlooked that this can be interpreted to mean that the object of 
mathematics is conceived of as a network of determinism and indeterminism. Brou
wer did not do so. H. Weyl, however, has pointed out analogies between the in-
tuitionistic conception and contemporary physics. Thus, in a paper which Forman 
interpreted to be proof of Weyl's conversion to Spengler's cultural pessimism, Weyl 
tried to argue that Brouwer's 'Jree choice, becoming sequences'' present a remark
able analogy to a process taking place in quantum jumps and that the intutionistic 
conception of the continuum is thus much closer to contemporary physics than the 
traditional view (Weyl 1923). The continuum of intuitionism is no set of unequivo
cally determined states, but an inward process of growth. As far as I know, however, 
he never went beyond such hints. 

3. HILBERT'S PROOF THEORY AND WEYL'S INTERPRETATION 

Let us proceed to Hilbert's proof theory. The idea of proof theory is mentioned for 
the first time in (Hilbert 1918). Then in the course of the 1920s, Hilbert outlined his 
conception in a series of lectures and papers (Hilbert 1922, 1923, 1925, 1928, 1931). 

Against Weyl, Hilbert insisted that philosophy had to adapt to mathematics, and 
not vice versa. He wrote: 

... in my opinion, [Weyl] would have had to recognize, just because he arrived at a cir
cle, that his point of view and hence the constructive principle in his own version and 
apphcation are impracticable and that the path to analysis is not reachable from his posi
tion. (Hilbert 1922, 158) 
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Let us first recall the basic ideas. In his first step, Hilbert says that the usual rules of 
inference are legitimate only for finite sets. Logical deduction, in which the signs 
used to have an objective meaning, is thus possible only for finite object fields, it 
proceeds arithmetically and combinatorially. 

As a necessary prerequisite for any kind of deduction, we may thus assume cer
tain extralogical, discrete objects which 

are intuitively present as an immediate experience before all thought. If the logical de
duction is to be certain, these objects must be totally visible in all their parts, and their 
perception, their distinction, their sequence is immediately visualized together with the 
objects themselves as something which cannot be reduced to something else (Hilbert 
1925, 171). 

Among such objects, Hilbert counts the natural numbers, more precisely, finite 
combinations of strokes which can be established, analysed and compared, and 
which can be controlled combinatorially. Thus, we obtain an elementary part of 
arithmetics which only encompasses verifiable statements about finite sets of natural 
numbers, but not about all natural numbers. Operations in this field are purely intui
tive and hence need no axiomatic basis. 

The foundation of classical mathematics is then achieved by adding, to these 
(number) signs, further logical signs, mathematical signs, and different kinds of let
ters. The use of these additional signs is fixed by rules (axioms). This means that the 
finite arithmetic which was used to begin with is supplemented by further elements 
as ideal elements. Such an addition is possible if it can be done consistently, and this 
means it must be shown that eliminating these ideal elements does not lead to con
tradictions in the traditional field of finite arithmetics. 

If all propositions which make up mathematics are transformed into formulae, 
mathematics proper becomes a stock of formulae, and by marking certain of these 
formulae as axioms, it becomes possible to transform the entire mathematics into an 
operating with signs. Material deduction is replaced by external action according to 
rules. This enables us to change the totality of mathematics into a controllable calcu
lus. In particular, Hilbert expected that the consistency of mathematics could be 
proved by formalization. A proof would have to show that the formula 1 = 0 can 
never be deduced if operating is done according to the rules. 

Finite mathematics plays a double role in this approach. On the one hand, it is 
the materially certain part of mathematics with which all mathematical deduction 
must begin, and on the other hand it is the theory which permits to analyse the op
erations with the signs, and thus is metamathematics. 

We refrain from discussing the details and just remark that Hilbert needs one 
single axiom which is similar to the axiom of choice known from set theory in order 
to found the transfinite modes of deduction which were the starting point of the con
flict. He requires the existence of a function G which selects an element from each 
set, and this function is to be specified by the following condition: 

Aia) -^ A{e A) (4) 
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This axiom enables us in particular to formulate the rules of deduction for the ter-
tium non datur for infinite sets and to prove their consistency (Hilbert 1928, 67 ff.). 

In order to get an idea of this Hilbertian mathematics, H. Weyl's analogy may be 
useful (Weyl 1924, 147 ff.). He compared Hilbert's mathematics with a game of 
chess. The signs are the chessmen, a position on the board is a formula, the starting 
position are the axioms, and the chess rules are the rules according to which formu
lae are derived from formulae. A position in chess conforming to the rules is one 
which has developed from the starting position by application of the rules. To this 
corresponds, in Hilbert's mathematics, a formula which can be proved. Just as one 
can show that a position in chess in which ten queens of the same colour appear is 
impossible, it should be demonstrable for arithmetic that the formula 1 = 0 cannot be 
derived. 

What is the matter with this Hilbertian conception? Is it true that it transforms 
mathematics into a meaningless game, or, to state it with more caution, that mathe
matics has definitely been freed of all ontological ties? What about the object of 
pure mathematics according to Hilbert? This question shall be treated in the last part 
of this paper by presenting an interpretation of Hilbert's position given by H. Weyl. 
It was first published in the Mathematische Zeitschrift in 1924 under the title Rand-
bemerkungen zu Hauptproblemen der Mathematik and was later repeated in the fa
mous Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag iiber die 
Grundlagen der Mathematik in the mathematical seminar of Hamburg university in 
1928. With this interpretation, Weyl withdraw from intuitionism, and in my opinion 
the paper contains some remarkable thoughts (Weyl 1929). 

Hilbert himself had justified the transformation of mathematics into a game of 
formulae by pointing to the method of ideal elements. Its essence is the introduction 
of new elements into mathematics which cannot be interpreted in the frame of the 
traditional theory and which are defined only by certain rules. For mathematics, this 
was a current and successfully applied method in the 19th century. Hence, Hilbert 
said, it is "by no means reasonable" to make the requirement that "every formula 
must be interpretable for itself." A new point of view was that Hilbert claimed this 
for physics as well. In physics, too, it is impossible to interpret every concept and 
every formula in an empirical way. The experiment controls only certain combina
tions and deductions of the physical laws, and the physicist does not require that all 
his concepts should be empirically interpretable (Hilbert 1928, 79). 

This is from where Weyl's interpretation of Hilbert went on. It had hitherto been 
a view shared by all mathematicians, he says, that mathematics is a system of intui
tive, reasonable, cognizable truths. The foundations crisis now had shown that this 
position could no longer be maintained. Brouwer, in particular, had made it clear 
that mathematics had far surpassed the Limits of intuitive thinking. This was his his
torical merit. Hilbert's achievement, however, was to have seen that classical 
mathematics must be interpreted anew for this reason. This was an insight which 
merited to be fixed as a thesis. Together with Weyl, we may say that the prevalence 
of the Hilbertian conception "means a decisive defeat of the philosophical attitude of 
pure phenomenology" (Weyl 1928, 88). For Weyl, any conception is "phenomenol-
ogical" which strives to interpret mathematical concepts and formulae totally by 
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phenomena intuitively given which exist independent of and anterior to any mathe
matical theory; of course, this is opposed he has intuitionism in mind. 

Here, Weyl said, is an exact analogy to the natural sciences. There, too, the theo
retical concepts and propositions could not be empirically interpreted and justified 
for themselves. In contrast to phenomenal cognition which merely stated what was 
given in intuition, and in which every judgement had its own sense which could be 
fully ascertained in intuition, the situation in theoretical physics was quite different. 
Here, the individual propositions were not empirically interpreted and tested each 
for itself, but the entire theoretical system was put into question by confronting it 
with experience. 

This shall be demonstrated with an elementary consideration. In the history of 
physics, the status of the formula 

F = m'a (5) 

has been controversial since Newton. If it is a law of nature, the quantities F, m and 
a must be empirically defined. For the acceleration a, this is certainly the case, it can 
be determined by measuring lengths and time. For the inert mass m, however, the 
situation is more complicated. Indeed, there is no general method of measuring 
masses known which does not assume, in one or another form, the validity of New
ton's first law. For the measuring of forces, even additional special laws must be as
sumed to be valid beforehand. Here again, it can be said that the situation is hardly 
compatible with the traditional understanding of definitions. There is a circular rea
soning here which bears a certain similarity to impredicative definitions. 

One possibility of solving this difficulty which is applied in modern epistemol-
ogy with formal methods amounts to conceive of the Newtonian first law simultane
ously as of an implicit definition and a law. m and F are measured and mutually de
termined within a complicated network of applications (see Sneed 1971 and Steg-
mtiller 1973). Then, however, a theory can no longer be considered as a system of 
propositions, but rather as a pair formed by a so-called structural kernel K and a set / 
of intended applications: (K, I). 

In this way, Newton's first law becomes a general scheme which is applied in a 
manifold way in order to develop methods for measuring m and F. This could be ex
pressed as follows: the theoretical concepts of m and a have no previously given 
empirical content, but they produce methods of verifying them by application. For 
this state of affairs, it is clear that Newton's First law cannot be falsified by a single 
empirical observation. This is the very reason why the individual propositions do not 
form the empirical content in classical mechanics, but rather, as Weyl expressed it, 
only the entire system as a whole can be accepted or rejected 

Hence, our result is that mathematics and physics use circular definitions of their 
fundamental concepts in quite a similar way. This is the core of the analogy between 
the ideal elements in mathematics and die fundamental theoretical concepts in phys
ics (see Jahnke 1978, chapt. Ill for a detailed exposition of this analogy). 
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In this, Weyl sees a possibility of giving meaning to Hilbert's theoretical mathe
matics, as opposed to Brouwer's intuitive mathematics, v^hich we shall again de
scribe in Weyl's words and designate as a further thesis. 

One finds the beyond to which the symbols of mathematics are related by allowing 
mathematics to fuse completely with physics and assuming that the mathematical con
cepts of number, function, etc. (or the Hilbertian symbols) participate basically in the 
same way in the theoretical construction of the real world as the concepts of energy, 
gravitation, electron do. (Weyl 1934,150) 

The question is: What then is the justification of an independent pure mathematics? 
Or does Weyl give up this independence? 

Some indication may be got from other conclusions Weyl drew: While the intui
tive phenomenological cognition, for instance the intuition of finite combinatorial 
facts, is subject to error, but unchangeable in its essence, this is not true for the 
higher, transphenomenal mathematical constructs. The criterion of consistency is 
necessary for these, but it is not sufficient. Since aspects of fruitfulness and value are 
important here, they share the destiny of all other theoretical insights: they are sub
ject to change. 

As the relationship between the theoretical constructs and empirical reality is 
mediated and not unequivocal, the selection of these constructs is influenced by fac
tors which are beyond our conscious control and only so much can be said about 
them that they correspond to our needs by contributing to an interpretation of reality. 
Weyl says that the meaning of theoretical creation is as obscure for us as that of 
creative art. If the theoretical concepts are to serve human understanding, they are 
linked to the respective way humans historically and concretely confront their own 
reality. Weyl has formulated this in a statement which we should like to maintain as 
another thesis: the theoretical concepts ''are interwoven with the history of thinking 
and shall never be laid down as a dead 'finaV result'' (1. c.) 

In this way, mathematics is conceived of as a cultural system subjected to 
change. 

I should like to summarize the results of these considerations in four theses 
which at the same time sketch a general program of historical and didactical re
search. 

• The attraction of Weyl's conception, in my opinion, lies in his conclusion 
that mathematics can no longer be founded as an independent system, but 
only within the context of men's effort to interpret and control their natural 
and social environment. At the same time, mathematics is not reduced to its 
applications. Rather, the autonomy of theory is emphasized. Theories are 
complicated, self-referring systems. Mathematics, in particular, introduces a 
specific element of the formal, of the consistent and of the transparent into 
the interpretation of reality. This is what Weyl means with his analogy to 
"creative art." 

• Mathematics, since Hilbert, is neither without ontology, i. e. not simply a 
theory of formal systems, nor must, conversely, every concept, every formula 
or every proposition be verifiable in an empirical-intuitive way as Poincare 
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demanded: rather, the decisive insight is that every theory only creates its re
spective own methods and processes of verification. 

• Godel's escape into Platonism does not seem compelling to me. Rather, a 
conclusion from the second thesis is that the way mathematics refers to appli
cations changes from theory to theory, from application to application. 
Hence, this relationship can and must be historically investigated if we intend 
to develop an appropriate understanding of mathematics. Thus, there can be 
no philosophy of mathematics which describes the reference of mathematics 
to reality a priori in a valid way. 

• As the connection between theory and application is ambiguous, theories will 
never be justifiable from their applications alone. This is why we have to as
sume with Weyl that the historical reconstruction of the objectiveness of 
mathematics must inevitably also investigate the way it is integrated into a 
culture. Mathematics is a cultural system. Conversely, however, it is also true 
that the cultural side of mathematical thinking attains its realistic status only 
if mathematics is understood to be a part of our confrontation with reality. 
Mathematics is a human construction (man's symbolic construction, as Weyl 
says), which is only understood in an appropriate perspective and in its entire 
deep structure if its tension with the natural and social reality is not lost out 
of view. 

POSTSCRIPT 2003 

Since 1990 quite a few historical studies appeared which are relevant to the theme of 
the present paper. Especially, I would like to refer to Skiili Sigurdson's PhD thesis 
of 1992 Hermann Weyl, Mathematics and Physics, 1900 -1927 and to the volume 
Hermann WeyVs Raum-Zeit-Materie and a General Introduction to his Scientific 
Work, edited by Erhard Scholz (2001). This volume contains a chapter by Robert 
Coleman and Herbert Korte with among others a detailed exposition of Weyl's ap
proach to the foundations of analysis. A critical examination of Forman's paper 
from the point of view of a historian of physics is Hendry (1980). I was not aware of 
the latter paper when I wrote the original version of the present study. 

Also, D. Hubert's lectures Natur and mathematisches Erkennen, edited by D. 
Rowe in 1992, showed very clearly that his general views on mathematics were, in 
regard to the close relation of mathematics and physics, similar to that of Weyl and 
cannot be qualified as formalist, (cf. Rowe 1997) 

In 1994, Michael Otte published Das Formale, das Soziale and das Subjektive. 
Eine Einfilhrung in die Philosophic und Didaktik der Mathematik, a book in which 
he argued that mathematics as a cultural and social enterprise can be understood 
adequately only by taking into account its reference to applications ("Gegen-
standlichkeit mathematischer Erkenntnis"). 

Universitdt Duisburg-Essen 

NOTES 
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This paper is the English version of (Jahnke 1990). I would Uke to thank Abe Shenitzer, Toronto, for 
his generous help in poUshing the translation. 
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THOMAS MORMANN 

MATHEMATICAL METAPHORS IN NATORP'S 
NEO-KANTIAN EPISTEMOLOGY AND PHILOSOPHY 

OF SCIENCE 

Abstract. A basic thesis of Neokantian epistemology and philosophy of science contends that the know
ing subject and the object to be known are only abstractions. What really exists, is the relation between 
both. For the elucidation of this "knowledge relation" ("Erkenntnisrelation") the Neokantians of the Mar
burg school used a variety of mathematical metaphors. In this contribution I'd Uke to reconsider some of 
these metaphors proposed by Paul Natorp one of the leading members of the Marburg school. It is shown 
that Natorp's metaphors are not unrelated to those used in some currents of contemporary epistemology 
and philosophy of science. 

Key words: mathematics, metaphor, Neokantianism, Marburg school, Natorp. 

1. INTRODUCTION 

Since some time "postpositivist" philosophy of science has become interested in its 
history and evolution. In order to understand science, not only history of science but 
also history of philosophy of science has become an important topic for philosophy 
of science. As a result of this attitude Neokantian philosophy is being re-evaluated 
as a hitherto unduly neglected source of philosophy of science and epistemology. 
For instance, the investigations of Coffa, Friedman and others have shown that Neo
kantian philosophy played an eminent role for the emergence of the Logical Empiri
cism of the Vienna Circle. This holds in particular for the Marburg School, whose 
most important members were Cohen, Natorp and Cassirer (cf. Coffa 1991, Fried
man 1999, 2000). It goes without saying that a short paper like this is not the appro
priate place to present a detailed account of the Neokantian philosophy of science 
and its relation to modern philosophy. The aim of this contribution is more modest. 
Provisionally accepting Rorty's thesis that "it is pictures rather than propositions, 
metaphors rather than statements, which determine most of our philosophical con
victions" (Rorty 1979, 12), I want to take a shortcut reconsidering some of the core 
metaphors that guided Neokantian epistemology and philosophy of science.^ 

Remarkably, the guiding metaphors of Neokantian epistemology and philosophy 
of science have their origin in science itself, in particular in mathematics.^ This 
points at a rather complex relation between science and philosophy of science that is 
not adequately described by the standard 2-level account according to which phi
losophy of science is a sort of metascience dealing with the sciences as its object. 

229 
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Dealing with Natorp's metaphors, I'd like to show two things: first, the Neokant-
ian metaphors are surprisingly modern. They may still deserve to be taken into con
sideration by contemporary philosophy of science. Secondly, a closer look at the 
metaphorical apparatus of a gone-by philosophical stance may help sharpen our own 
sensitivity for the often murky metaphorical ground on which many of our own ba
sic philosophical convictions are based. 

More precisely I want to concentrate on some metaphors that Natorp used for the 
elucidation of a basic thesis of Neokantian epistemology put forward by virtually all 
authors of the Marburg school and most other Neokantians. According to this thesis 
the true issue of epistemology is neither the knowing subject nor the known object, 
but the "knowledge relation" ("Erkenntnisrelation") by which subject and object are 
related. Subject and object are mere abstractions. Hence, strictly speaking, only the 
"knowledge relation" exists (cf. Cassirer 1910, Rickert 1915, Natorp 1903, 1912). 
The K-relation, as I want to call it, has a privileged status with respect to its relata, to 
wit, the knowing subject on the one hand, and the known (or knowable) object on 
the other. Rival epistemological approaches such as empiricism, positivism, and 
non-critical versions of idealism like Hegelianism, are accused by the Neokantians 
to commit a reductive fallacy falling back on some apparently simpler "monistic" 
position that eliminates the K-relation in favour of one of its relata. In the end, all 
these positions are claimed to be unable to characterize the true nature of science as 
an ongoing process of knowledge acquisition."^ 

For the elucidation of the K-relation, Neokantian philosophy used a variety of 
pictures, analogues, and metaphors. For the Marburg School the paradigm of know
ledge was scientific knowledge, more precisely, mathematics and mathematical 
physics. Hence it is not surprising that in the Marburg account mathematical meta
phors played an important role. Maybe the first of these guiding metaphors was due 
to Hermann Cohen, the founder of the school. According to him, the essence of the 
formation of mathematiced empirical science was to be found in the concept of the 
infinitesimal (Cohen 1863)."̂  Cohen's mathematical erudition was not very pro
found, and he presented this thesis in a rather obscure way. Hence, his account did 
not gain much real influence, even among the members of the Marburg school. Cas
sirer's "functional approach" of critical idealism became better known one or two 
generations later. In Substance and Function (1910) Cassirer put forward a "func
tional" or "relational" account of scientific concepts in which he contended that the 
essence of the modern science resided in the concept of mathematical function. 

Cassirer's "function" was by no means the only mathematical metaphor that 
guided Neokantian epistemology. In this paper I'd like to consider some of the lesser 
known mainly due to Natorp that served as guiding lines for the Marburg 
Neokantianism in general. In his lifetime Natorp was one of the most influential 
members of the Marburg school. Before Cassirer became prominent he was a kind 
of official spokesman of the Marburg school whose sober and relatively accessible 
treatises (compared with the writings of Cohen) taught generations of students the 
basics of the school's doctrines (cf. Natorp 1903, 1910, 1929).^ 

Natorp took his metaphors seriously. For him, they were more than embroider
ies, rather, he used them as "intuition pumps" to develop his account of scientific 
knowledge. He attempted to draw contentful conclusions from them, considering 
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them as models that could be used for the description of the sciences, their methods 
and development. True, Natorp's metaphors are no longer ours, and sometimes they 
appear strange and contrived. Nevertheless, even contemporary epistemology and 
philosophy of science can hardly be said to be an area free of metaphors, as will be 
briefly discussed in the last section. 

The outline of this paper is as follows. In section 2 the Neokantian transforma
tion of the Kant's original epistemological position is discussed.^ This sets the stage 
for the detailed analysis of some of Natorp's core metaphors in section 3. In particu
lar, we will deal with his "equational account" of knowledge according to which 
knowing (cognizing) may be characterized as an activity analogous to solving a 
mathematical equation. The paper concludes with some general remarks on the pro
blematic of metaphors in philosophy comparing Neokantianism with some post-
positivist authors. 

2. THE NEOKANTIAN REFORMULATION OF KANT'S EPISTEMOLOGY 

The Neokantian approach to epistemology and philosophy aimed to be faithful to the 
spirit but not to the letter of Kant's philosophy. For Natorp this meant to restitute the 
"transcendental method" as the true core of the Kantian approach, and to give up all 
of ingredients of Kant's system that did not sit well with that method. The transcen
dental method deals with the problem of the possibility of experience. The NeoKant-
ians interpreted Kant as contending that the object of experience is determined by 
the laws and methods of the knowing subject. Thereby the object no longer is some
thing given ("gegeben") but something "posed" ("aufgegeben") (cf. Kinkel 1923, 
405). Conceiving Neokantian philosophy as based on the transcendental method has 
two implications: 

(i) Philosophy recognizes the historical, societal and scientific context in which it 
exists. It is aware that it is rooted in the specific theoretical and practical experiences 
of its time and refuses to build up "high towers of metaphysical speculations" (cf. 
Natorp 1912, 195, Kinkel 1923, 402/403). 

(ii) Philosophy accepts the facts of science, morality, art and religion. The task of 
philosophy is to carry out a deductio iuris of these facts, i. e., it has to provide a kind 
of "logical analysis" which shows the reasons why these facts are possible thereby 
revealing what is the "quid iuris" of them. In still other words, and going beyond the 
epistemological sphere, philosophy has to show the lawfulness and reasonableness 
of the cultural achievements of mankind. 

Thereby the philosophy of critical idealism is lead to a "genetic" epistemology 
and theory of science that regards the ongoing process of scientific and cultural crea
tion as essential, not its temporary results. These are to be considered as being of se
condary importance. As Natorp put it with respect to scientific knowledge: know
ledge is always "becoming" and is never "closed" or "finished." There never is 
something "given" that is not transformed in the ongoing and strictly speaking infi
nite process of cognition. The "fact of science" is, according to Natorp to be under
stood as a "fact of becoming" ("Werdefaktum"). 
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The rejection of a non-conceptual given in any form brings the Marburg brand of 
Neokantianism in open conflict with some of the corner-stones of Kant's epistemol
ogy, to wit, the dualism of "scheme" and "intuition," and related dualisms such as 
that of "spontaneity" and "receptivity" of thinking: "Maintaining this dualism of 
epistemic factors (receptivity and spontaneity, T. M.) is virtually impossible if one 
takes serious the core idea of the transcendental method." (Natorp 1912, 9). 

Subscribing to a "genetic" account of knowledge that emphasises the process 
character of knowledge gives the K-relation priority over its relata, to wit, the know
ing subject and the object of knowledge. Both are constituted in the ongoing process 
of knowledge. Taken for themselves they are just abstractions from the more basic 
K-relation. Although it may sometimes be expedient to treat the subject of knowl
edge and the object of knowledge separately this separation is to be considered as a 
methodological device by which one may distinguish between two complementary 
accounts: one in which the object occupies centre stage, and one which emphasizes 
the role of the cognizing subject. Speaking in a Kantian framework, object-oriented 
accounts emphasize the role of receptivity of cognition, in particular perception, 
while subject-oriented, epistemic account are inclined to lay stress upon the con
structive aspects of cognition. According to the Neokantian doctrine both accounts 
are mistaken. For the Neokantianism, ontology and epistemology are two sides of 
the same coin. Ontology without epistemology would be some kind of magic, which 
leaves unexplained how knowledge gets access to its object, while epistemology 
without ontology would be without content, since it denies the objectual character of 
cognition. Expressed in Kantian language, object-oriented approaches tend to em
phasize the receptivity of cognition. According to them, cognition is essentially a 
passive and receptive behaviour. The thinking mind is confronted with something 
outside and independent of the sphere of reason. Ignoring more subtle differences 
this amounts to some kind of "copy-theory" or "mirror-theory" of knowledge. Sub
ject-oriented approaches, on the other hand, emphasize the spontaneity of cognition. 
According to them, cognizing is essentially to be considered as a creative activity. 
Such a conception does not admit a "given" as a mind-independent presupposition 
of the cognizing process. Rather, the given ("das Gegebene") is to be conceived of 
as the product ("das Ergebnis") of the immanent determination of thought. Thereby, 
subject-oriented approaches are in danger of underestimating the resisting power of 
the real world in favor of the unrestricted creative power of the knowing mind. Ac
cording to Natorp, employing the "transcendental method" as a guide-line, critical 
idealism overcomes the shortcomings and deficits of both the subject-oriented and 
the object-oriented accounts. 

3. NATORP'S MATHEMATICAL METAPHORS 

Natorp's metaphorical frame for elucidating the "relational" account of Marburg 
Neokantian epistemology and philosophy of science was based on two groups of 
metaphors, one taken from algebra and the other taken from geometry. Let us begin 
with his basic algebraic metaphor. According to it, knowing as the determination of 
the object of knowledge ("Erkenntnisgegenstand") is analogous to the process of 
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solving a numerical equation. In order to be specific, the reader may have in mind a 
numerical equation like x^ + 2x + I = 0. In other words, the object of knowledge 
may be considered as the "x of the K-equation:" 

If the object is to be the x of the equation of knowledge, it has to be completely deter
mined by the perspective of knowledge, although it is that what one is looking for. In 
the same way as the X, Y etc. of an equation have meaning only for and in the equation, 
due to the meaning of the equation itself, ... the X of knowledge becomes meaningful 
only in the context of the inquiry. (Natorp 1910, 39) 

Hence, for Natorp, as for all his fellow-philosophers of the Marburg school, the ob
ject of knowledge was not an unproblematic starting point of the ongoing process of 
scientific investigations, but rather as its limitJ The object was a problem to be 
solved. In various versions this equational account of knowledge can be found in 
virtually all of Natorp's epistemological writings. For instance, in his Philoso-
phischer Propddeutik (Natorp 1903), which may be considered as a compendium of 
the basic doctrines of the Marburg school, he maintained that the equational meta
phor expresses "the very idea of the critical or transcendental method of philosophy" 
(ibidem, § 7, 10). Against a one-sided and naive realism, the Critical Idealism of the 
Marburg School insisted that the object of knowledge was not to be considered as 
"given" ("gegeben") but as a problem "posed" ("aufgegeben"^) to the scientific in
vestigation as suggested by the equational metaphor of knowledge quoted above. 
Being engaged in a solution of an equation, at the same time one does "have" and 
does "not have" the object represented by " y :̂  On the one hand, one does have the 
object, since x occurs in an equation that (hopefully) determines it completely, on 
the other hand, one does not have the object, since one does not know the precise 
value oix. In a sense, the equation promises to deliver the object but has not yet de
livered it, since also the problem-solver, i. e., the scientist has to fulfil his part of the 
contract. 

In order to bring to the fore more clearly the philosophical content of the equa
tional metaphor it is expedient to dwell upon the mathematical or logical form of 
equations in some more detail. This is in line with Natorp's own approach. An equa
tion in the sense of Natorp has the general form F{x) = 0. Strictly speaking, this for
mula is not an assertion that can be evaluated to be true or false. In order to render 
the formula a proposition the free variable x has to be it has to be bounded by a 
quantifier. It is sufficient to consider the existential quantifier 3x (there is at least 
one x)}^ Thereby we obtain 3x{F{x) = 0). In other words, Natorp's equational model 
of inquiry amounts to the introduction of variables and quantifiers. The introduction 
of quantifiers is tantamount to entering the realm of ontology. According to him, the 
objects a theory is referring to are just the values of its quantified variables (Quine 
1976, § 26). I do not assert that Natorp had a clear idea of the concepts of variable, 
range, and quantification in the sense of modern logic. But at least his equational 
model may be considered as an implicit and informal precursor of Quine's thesis 
that ontological questions appear when one has to consider quantified theoretical 
statements whose parameters are determined by appropriate theoretical premises and 
whose "solutions" - if there are any - may be conceived as the objects the theory is 
referring to. Numerical equations such as 3x (F{x) = 0) may be considered as a kind 
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of simplified model for them. Thereby, Quine's slogan "To be is to be the value of a 
variable" may be translated in Natorp's terms as the thesis that the object of knowl
edge exists exactly if it can be conceived as a "root" of a valid K-equation. 

Conceiving Natorp's "K-equations" as quantified sentences, it is natural to ask 
on what sort of quantification they are based: substitutional, objectual quantification, 
or perhaps some intermediate form. According to the substitutional conception a 
variable is nothing but a slot in which one may insert just any constant. Such vari
ables do not contend to refer to objects as their values. In the objectual interpretation 
the variable refers to some entities as its values, and one need not be able to charac
terize them by a name or a description (cf. Quine 1976, § 26). As Quine points out 
the substitutional and the objectual interpretation of variables are opposite to each 
other. In the following I'd like to consider substitutional variables and objectual 
variables as the two extreme poles of a spectrum. I will argue that such a "variable 
conception" of variables fits the dynamics of the process-oriented Neokantian ac
count best. The dynamic of the object's development in the ongoing knowledge 
process may be described as an ontological move that starts from the substitutional 
pole and advances towards the objectual pole. To be specific, let us consider the 
equation x̂  -i- 1 = 0 to be interpreted as the task of determining the truth-value of the 
proposition 

(*) 3 x ( / + 1=0). 

Whether this proposition is true or not, depends on the range V over which the vari
able X is running. If one assumes that V is the domain of real numbers R, there is no 
object in this domain which satisfies this equation. In this situation the inquirer has 
two options: either he sticks to the traditionally established domain of number ob
jects, considering therefore (*) as false, or he attempts to enlarge the range V in such 
a way that the equation (*) may come out as true for some object of the new domain. 
As is well-known modern mathematics has chosen the latter option by accepting 
"imaginary" numbers ± / := ± V-1 as solutions. Without doubt, this outcome will 
have pleased Neokantian epistemology which always sympathized with conceptual 
progress of the sciences, in particular mathematics. 

As is indicated already by their traditional name the ontological status of the new 
"imaginary" numbers + / and -/, and more generally of complex numbers a + ib, was 
at first considered as rather dubious. Imaginary numbers were considered as mere 
ficticious (but useful) constructs. They were something like theoretical terms (cf. 
Carnap 1974) by which the theory of numerical equations could achieve a greater 
unity and coherence. For instance, admitting complex numbers one could assume 

2 

that every quadratic equation x + ax + b always had two formal solutions even if 
these solutions did not always define real numbers. In this stage, complex number 
objects had a purely substitutional character. It took some time before these con
structs were recognized as genuine mathematical objects having the same ontologi
cal status as that of the familiar "real" numbers. An important step on this road to 
full recognition was the insight that the fundamental theorem of algebra, according 
to which every equation of n* degree has n (possibly complex) solutions, was valid 
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only for the enlarged domain C of complex numbers. Another argument for their 
growing ontological respectability offered Gauss's representation of complex num
bers as points of the Euclidean plane. Summarizing we may say that in the course of 
the historical and conceptual development of mathematics the ontological status of 
the "imaginary" substitutions changed: they got rid of their purely instrumental 
status and gained recognition as fully accepted mathematical entities. ̂ ^ 

Natorp's attempt to explicate objectual knowledge with the metaphorical K-
equation can be conceived as an intuitive generalization of Hilbert's program of the 
constitution of mathematical objects by implicit definitions (cf. Hilbert 1899). In 
Hilbert's Foundations geometric objects such as points, lines, and planes are defined 
by implicit axioms which stipulate that certain relations exist between them. Outside 
the system, it does not make much sense to speak of points. Inside the system, for 
the determination of a point as an object of Euclidean geometry, it is necessary to 
determine all other kinds of geometrical objects as well. Something is a point in the 
context of Euclidean geometry, if and only if it fits into the relational structure of 
Euclidean geometry. In the metaphorical language of Natorp's K-equation this fit
ting may be expressed as the assertion that the conceptual object "point" may be 
considered as a solution of a structural K-equation. For the objects of modern struc
tural mathematics this account has some plausibility, it appears more problematic for 
the objects of empirical science, at least from a modern point of view. From a Neo-
kantian stance, things may have looked different. In contrast to modern philosophy 
of science the NeoKantian philosophy of science assumed that there is a profound 
similarity between mathematics and mature empirical science such as physics (cf. 
Cassirer 1910). For the philosophers of the Marburg school it even became difficult 
to draw a line between the two kinds of knowledge. Of course, they could not deny 
that there is a difference: otherwise they could be accused of succumbing to an unre
stricted Hegelian rationalism that neglected the object of knowledge in favour of an 
unrestricted conceptual activity of the knowing subject. This objection also threat
ened Natorp's equational model: it might have been plausible to assert that a point as 
an object of geometry can be considered as the "solution" of some "relational equa
tion." It is harder to understand how this approach can work for the objects of em
pirical science. Physical objects such as "atoms," "electrons" or "quarks" do not go 
into the framework of a physical theory without remainder. In this respect mathe
matical and physical theories are essentially different. Natorp did not ignore this 
fact, and complemented his equational account in such a way that it no longer fell a 
prey to this objection. Elaborating the equational model he pointed out that the ob
ject of knowledge - as a solution of the K-equation - was not simply a problem but 
an infinite task ("unendliche Aufgabe") that could be solved in finite time only ap
proximately. Otherwise, the knowing subject would possess completely the empiri
cal object to be known which would amount to an Hegelian rationalism that Natorp 
strictly rejected: 

Although we conceive, similarly as Hegel does, the object of knowledge (= X) only in 
relation to the functions of knowledge itself, and consider it ... as the X of the equation 
of knowledge, ... we understand that this "equation" is of such a kind that it leads to an 
infinite calculation. This means that the X is never fully determined by the equation's 
parameters A, B, C etc. Moreover, the series of the parameters A, B, ... is to be thought 
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not as closed but may be extended indefinitely. In contrast, Hegel allows that the irrati
onal is completely dissolvable in the rational, to wit, the lawhke determinations of 
thought (Natorpl912, 19-20) 

The metaphor of the K-equation is flexible enough to incorporate "infinite calcu
lation" and approximative solvability. Natorp's "infinite calculation" already occurs 
in rather elementary examples: consider an equation like x̂  - 2 = 0 having only irra
tional solutions, in our case +V2 and -V2. The effective calculation of the decimal 
series of these numbers is a "supertask" and cannot be carried out by a finite subject 
in finite time. Every effective solution remains approximative. '̂̂  

Another more sophistated example of an equation that leads to an "infinite calcu
lation" is provided by recursive equations such as the one that is used for the calcu
lations of the Fibonacchi numbers: XQ = 0, xi = 1, x^^i = x^+i + x^. In this way, one 
may define an infinite K-equation in the sense of Natorp as a series (̂ „) of equations 
in which the parameters of the n* equation are calculated as solutions of the pre
vious equations. These examples should suffice to make clear the point Natorp 
wanted to make. In order to take into account the undeniable fact that the empirical 
realm does not go into the domain of conceptual activity of the thinking subject 
without remainder, the inexhaustibility of the empirical object is re-interpreted as the 
impossibility for the knowing subject to obtain complete knowledge of the object to 
be known in finite time. If this can be considered as an acceptable substitute of the 
inexhaustibility of the empirical object is not to be discussed here. At least, the phi
losophers of Marburg school believed to have countered successfully the objection 
that their account of the "methodically progressing" scientific knowledge was just a 
disguised version of Hegel's absolute knowledge.̂ "^ For them, absolute knowledge 
was not something that we, as finite creatures, could ever aspire to get. Rather, the 
object as fully known was "the point at infinity which can never be reached but 
which is nothing but another expression for the always identical direction of the in
finite, infinite road of knowledge." (Natorp 1910, 34). Here, then, we are entering 
the realm of geometric metaphors the philosophers of the Marburg School used to 
elucidate the unending quest for scientific knowledge. For them, the "illusion of the 
point at infinity" was an argument against the realist conception of knowledge ac
cording to which cognizing was to be conceived as an activity directed to some goal 
located outside the K-relation. Not so, they claimed, the point of infinity is an illu
sion caused by misunderstanding the methodological unity that intrinsically consti
tutes the uncompleatable object of scientific knowledge. 

Summarizing we may say that Natorp's epistemology is characterized by a net of 
tightly interrelated metaphors and analogues mainly taken from algebra and geome
try. These metaphors were designed to defend the epistemology of Neokantianism 
against two complementary threats: on the one hand, the critical philosophy of Na
torp's neokantianism is directed against a "dogmatic" epistemology that assumes 
some kind of non-conceptual given as a base of knowledge. On the other hand, it is 
directed against a Hegelian conception of knowledge that hands over the objectual 
part of the knowledge relation without rest to the free-wheeling conceptual activity 
of the knowing subject. 
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4. CONCLUDING REMARKS 

Once upon a time Berkeley admonished philosopher's to keep away from me
taphors: "a metaphoribus autem abstinendum philosopho" but few philosophers 
have followed his advice. In particular, in the realm of epistemology and philosophy 
of science the use of metaphors is flourishing as the following brief list suffices to 
show: 
(i) In Conjectures and Refutations (Popper 1963) Popper proposed to base the 

theory of truth approximation of theories on the spatial metaphor that "truth 
[is] located somewhere in a kind of metrical or at least topological space ..." 
(232). More precisely, he pleaded to conceptualize the notion of truthlikeness 
as a distance from truth. 

(ii) Probably the most influential metaphor dealing with matters epistemological in 
the last decades has been Rorty's ''mirroring metaphor" in The Mirror of Na
ture (Rorty 1989). More precisely, Rorty blames the so called representational-
ists as being captivated by the profoundly misleading mirroring metaphor. 

(iii) In Evidence and Inquiry (Haack 1993) the author bases her "foundherentist" 
epistemology on the metaphor of the "crossword puzzle." It is not difficult to 
show that this metaphor has some similarity with Natorp's K-equation. Or, the 
other way round, Natorp's may be characterized as a foundherentist account 
avant la lettre. 

(iv) McDowell's Mind and World (McDowell 1994) is thoroughly informed by 
spatial metaphors dealing with the topography of the "space of concepts" and 
the "space of reasons". 

I think it would be too simple to dismiss all these approaches simply because they 
heavily depend on metaphors. The philosophical and linguistic investigations of the 
last decades have shown that, pace Berkeley, metaphors may well be cognitively 
meaningful and legitimate in philosophy and even in science (cf. Steinhart 2001). 
This does not mean that metaphorical assertions are exempt of criticism. Some may 
be better than others. The metaphors that frame Natorp's epistemology and philoso
phy of science are no longer ours, and his account of science has many features that 
appear to be obsolete from a contemporary perspective. Nevertheless, it may still be 
interesting to take notice of his metaphorical framework not the least as a means to 
better understand our own metaphorical presuppositions. 

Department of Logic and Philosophy of Science, University of the Basque Country 
UPV/EHU, Donostia-San Sebastian, Spain 

NOTES 

^ For the following nothing depends on the term "metaphor", histead of "metaphor"one may use terms 
such as "analogue," "picture," or "model." The only point I want to insist on is that "metaphors" are more 
than rhetorical ornaments but play an important cognitive role. For a modem account of the "logic of 
metaphors," see Steinhart 2001. 
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^ Still, metaphors are assumed to be grounded in informal and common sense experiences. For phi
losophical purposes, other kinds of metaphors that may be called "theory-constitutive" (Steinhart 2001, 7) 
may be more interesting. For a thorough discussion of this kind of metaphors, the reader may consult 
Steinhart'shook. 
^ As a modem analogue of this epistemological debate one may consider the discussion of a viable "mid
dle way" between coherentism and foundationahsm (cf. Haack 1993, McDowell 1994). 
"̂  For Cohen, the key for understanding the applicability of mathematics to empirical science was the 
concept of the infinitesimal. He rightly considered standard logic as useless for this endeavour and set 
about formulating a "transcendental logic" to achieve this (cf.(Cohen 1968, 43 ff). 
^ According to Camap's own testimony, Natorp was the Neokantian who had had the greatest influence 
on him. 
^ I think it is still necessary to emphasize that Neokantian epistemology can in no way be characterized as 
an epigonal rehearsal of Kant's account. Quite the contrary, the various Neokantian schools profoundly 
modified the very foundations of the Kantian edifice. 
^ How the concept of "limit" is to be understood precisely, will be dealt with later in more detail. 
^ The Marburg school, in particular Natorp, made a lot of this intricate relation between "gegeben" and 
"aufgegeben." For them, it was more than just a pun depending on a contingent Unguistic feature of Ger
man. 
^ As is shown by the discussions to be found in Sellars and McDowell, the problem of the given is still on 
the agenda of contemporary philosophy (cf Sellars 1956, McDowell 1994). 
°̂ Analogous considerations obtain for the universally quantified assertion Vx (F(x) = 0). 

^̂  Using the Kantian distinction between receptivity and spontaneity, one may say that the substitutional 
conception of variables gives spontaneity an important role: according to this approach the possible val
ues of variables are certain symboHc constructs, whose invention takes place in the sphere of spontaneity. 
If these constructs turn out to be successful they are "reified," and the "hypothetical" or "fictitious" roots 
of the knowledge equation obtain the status of fully recognized scientific objects. 
"̂ Natorp's concept of approximation may be said to be based on somewhat old-fashioned idea of "exter

nal" approximation as one may call it: considering the decimal approximation of 02 we may conceive it 
as a converging series 1, 1.4, 1.41, 1.414 of rational numbers converging to the Umiting point V2. Then 
clearly V2 is not among the elements of this series. Hence, against his intentions, Natorp's model suggests 
that the object of knowledge remains outside the approximation process. Later, Cassirer took up the ana
logue of numerical approximation to construe an analogy that fitted much better the basic idea of Neo
kantian epistemology. Cassirer based his considerations on what may be called "internal approximation." 
According to this modem concept the converging Cauchy series (a^) is itself a representant of its Umit V2. 
Using this conception of a Hmit of a convergent series one obtains a really compelUng mathematical ex
ample for the basic Neokantian claim that "the road is the end," and this is what Natorp intended. 
^̂  For instance, the Neokantian Siegfried Marck belonging to the South-West school of Neokantianism, 
considered Natorp's attempt to avoid the Scylla of HegeUanism as unsuccessful. According to him, the 
alleged unity of science and philosophy, and the continuity between science, philosophy, and Hfe as pro
pagated by the Marburg School lead to an egalitarian "methodologism" by which the critical character of 
philosophy was abandoned (cf Marck 1913, 386). 
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KARL-NORBERT IHMIG 

NEWTON'S PROGRAM OF MATHEMATIZING 
NATURE 

Abstract. When Newton started his lectures on optics in 1669 as the follower of Isaac Barrow on the 
Lucasian chair at Cambridge he intended to develop the theory of colors as a mathematical theory of 
physical objects. It is in connection with this first attempt of mathematizing nature that we encounter 
most of the central questions with which Newton's subsequent interpreter were occupied. Why did 
Newton oppose to hypothetical physics? What did he mean when he contended that his principles of 
physics are "deduced from phenomena?" How is the relation between inductive and deductive inferences 
to be conceived within his methodological approach; What are Newton's sources of the methods of 
analysis and synthesis (or resolution and composition) that play an essential role in his investigations of 
colors and that also paved the way to the theory of universal gravitation. The paper attempts to discuss 
Newton's methodological presuppositions primarily from the perspective of his early optical studies. 

Key words: analysis-synthesis, history of science, mathematic, Newton. 

1. THE ORIGIN OF THE MATHEMATIZATION PROGRAM IN NEWTON'S 
LECTURES ON OPTICS 

The success of Newton's Theory of Gravitation, which prevailed in the 18^ century 
against Descartes' mechanistic cosmology, was based last not least on the fact that 
he was able to found it on a successful application of mathematics to natural 
phenomena. Relatively little is known, however, about the background, goals, and 
foundations of this program. This is mainly due to Newton's reserve, both in the 
Principia and in his other principal work Opticks, with regard to treating such 
comprehensive questions. The absence of unequivocal methodological 
considerations leaves many questions open, at the same time provoking manifold 
speculations, in particular, regarding whether Newton's discoveries were more or 
less accidental, or whether they were the outcome of a deliberate methodological 
approach. While there is agreement among historians and theorists of science that 
linking experiment and mathematical calculus led to Newton's epoch-making 
discoveries, how this linkage was effected remains obscure. 

One of Newton's most remarkable observations with regard to methodology is 
found in the "Scholium Generale" he added to the Principia's second edition of 
1713. This is where he says: 

But hitherto I have not been able to discover the cause of those properties of gravity 
from phenomena, and I frame no hypotheses; for whatever is not deduced from the 
phenomena is to be called an hypothesis; and hypotheses, whether metaphysical or 
physical, whether of occult quahties or mechanical, have no place in experimental 
philosophy.^ 

241 
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The strict rejection of hypotheses in experimental philosophy, however, hardly 
seemed to agree with how Newton practiced science. As hypotheses can be found in 
all editions of the Principia, some authors have tried to determine the meaning of 
the concept of hypotheses and its various forms of use more precisely.^ This has 
made it possible to separate "good" from "bad" hypotheses, thus confining 
Newton's rejection of hypotheses merely to the bad ones. 

It remains open, however, whether there is a connection between Newton's 
rejection of hypotheses and his program of mathematizing nature. Moreover, his 
statement of 1713 does not convey anything new. Already, more than 40 years 
before, quite similar remarks of Newton can be found in the context of the dispute 
about his theory of colors. The publication of this first scientific work with the title 
New Theory about Light and Colors in 1672, was followed by a debate with Hooke, 
Pardies, and Huygens within which Newton expressed his rejection of hypotheses 
several times. At least here, his methodological assumptions show remarkable 
continuity. This raises the question whether he rejected hypotheses on the basis of a 
more comprehensive methodology connected with his own program of 
mathematization.^ In any case, a closer look shows that he stressed his intention to 
conceive his theory of colors as a mathematical natural science already in 1672, 
considering it for this reason to be a certain theory in contrast to merely probable 
hypotheses. 

Thus, the New Theory about Light and Colors says: 

A naturalist would scearce expect to see ye science of those [colors] become 
mathematicall, & yet I dare affirm that there is as much certainty in it as in any other 
part of Op ticks. For what I shall tell concerning them is not an Hypothesis but most 
rigid consequence, not conjectured by barely inferring 'tis thus because not otherwise or 
because it satisfies all phaenomena (the Philosophers universall Topick), but evinced by 
ye mediation of experiments concluding directly & wthout any suspicion of doubt."* 

That this is not an accidental observation becomes clear when one considers that the 
New Theory was written on the basis of Newton's lectures over optics. In the fall of 
1669, Newton succeeded Isaac Barrow's tenure of the Lucasian Chair at the 
University of Cambridge. The first topic he chose for his lectures was optics. This 
gave him the opportunity of publicly presenting his own considerations on the 
theory of colors to an audience - however small. He began his lectures in January 
1670, closing them in the fall of 1672.̂  In the third lesson, he summarized the 
foundations of his theory of colors in the form of four propositions that were 
specifically not to be hypothetical ones valid only with some probability, but rather 
experimentally proven propositions: "It is affirmed that these propositions are to be 
treated not hypothetically and probably, but by experiments or demonstratively."^ 

It is probably no accident that he refers to the idea of a mathematical treatment of 
the theory of color precisely in this context: 

Thus although colors may belong to physics, the science of them must nevertheless be 
considered mathematical, insofar as they are treated by mathematical reasoning. Indeed, 
since an exact science of them seems to be one of the most difficult that philosophy is in 
need of, I hope to show - as it were, by my example - how valuable mathematics is in 
natural philosophy. I therefore urge geometers to investigate nature more rigorously, 
and those devoted to natural science to learn geometry first. Hence the former shall not 
entirely spend their time in speculations of no value to human life, nor shall the latter, 
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while working assiduously with an absurd method, perpetually fail to reach their goal. 
But truly with the help of philosophical geometers and geometrical philosophers, 
instead of the conjectures and probabilities that are being blazoned about everywhere, 
we shall finally achieve a natural science supported by the greatest evidence/ 

The following can be inferred from these findings: First, it is clear that Newton had 
explicitly formulated his program of a mathematization of nature already at the end 
of 1669 and the beginning of 1670. Second, this program pursues the goal of making 
certain of the foundation of the natural sciences in such a way that they are 
distinguished from merely probably hypotheses. Third, Newton, at this point, 
understands "hypotheses" to be physical principles or theorems that form the 
foundations of a theory while not being certain, holding only with a certain 
probability.^ 

2. A SCIENCE OF NATURE WITHOUT HYPOTHESES? 

Newton's controversy with Hooke, Pardies, and Huygens following the publication 
of the New Theory about Light and Colors, is often interpreted as a dispute between 
the corpuscular versus wave theory of light. Two things, however, speak against 
this: First, the three scholars just named did not propagate a wave theory of light in 
the modern sense. Although their theories were not based on the behavior of 
individual corpuscles, they were based on that of corpuscle streams, which were 
interpreted as periodically compressing and extending longitudinal waves.^ Second, 
Newton declared repeatedly that his own theory did not depend on a definite 
mechanist hypothesis, and, for that reason, behaved neutrally toward hypotheses of 
that kind.̂ ^ Rather, the emphasis in the dispute between Newton and Hooke is on the 
following questions of methodological import: How extensive can the certainty 
about objects of nature be at all? Are there limitations of principle lying in the nature 
of the object? Hooke, indeed, mainly challenges Newton's claim that the latter's 
theory is not only a case of a merely probable hypothesis, but rather a strictly 
derived consequence "evinced by ye mediation of experiments concluding directly 
& wthout any suspicion of doubt." Whereas Hooke does not cast any doubt on the 
results of Newton's experiments, he objects: 

Nor would I be understood to have said all this against his theory as it is an hypothesis; 
for I doe most Readily agree with him in every part thereof, and esteem it very subtill 
and ingenious, and capable of salving all the phaenomena of colors; but I cannot think it 
to be the only hypothesis; not soe certain as mathematicall Demonstrations.^^ 

Hooke points out the difference of principle between the certainty of mathematical 
proofs and the epistemic status of theories of natural science. According to this 
view, it is reasonable that principles of natural science can be expected only to "save 
the phenomena." Hence, the approach of the natural sciences must in the first place 
consist in sketching hypotheses and in testing them experimentally: 

I see noe reason why Mr. N. should make soe confident a conclusion that he to whome 
he writ did see how much it was besides the busness in hand to Dispute about 
hypotheses. For I judge there is noething conduces soe much to the advancement of 
Philosophy as the examining of hypotheses by experiments & the inquiry into 
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Experiments by hypotheses, and I have the Authority of the Incomparable Verulam to 
warrant me/^ 

Whereas Hooke refers to Bacon in this context, the attitude he expresses here 
reflects an understanding of natural science theories that was very widespread in the 
17* century. Descartes and Huygens, for instance, were eminent representatives of 
this interpretation of theory. In one of his letters to Mersenne, Descartes writes: "But 
to require of me Geometrical demonstrations in a matter which depends on Physics 
is to demand that I achieve impossible things."^^ In other words: for reasons of 
principle, certain proofs can be present only in mathematics, and - one would like to 
add - in metaphysics, but not in physics. In the realm of the natural sciences, the 
researcher had no other choice than to try to explain given effects by an assumed 
cause, then prove the correctness of the cause by the effects. Descartes uses a 
metaphor, among other things, to prove his view. Just like two clocks that are 
externally exactly similar and indicate the hours in exactly the same precise way 
while being completely different in their internal mechanism, in an analogous way, 
it should be assumed with regard to natural events that God is able to produce the 
visible phenomena in quite different ways. As insight into God's way of acting is 
inaccessible to the human mind, it is sufficient, he says, to assume one possible kind 
of mechanism as a hypothesis, and to show that its consequences agree with the 
phenomena. That it is impossible to conclude, vice versa, that the hypothesis itself is 
true, if it conforms to the phenomena seems to have been clear to Descartes. If a 
large number of phenomena, however, can be inferred from the respective 
hypothesis, it would be difficult to imagine "that so many things should be 
consistent with one another, if they were false."^^ Natural science cognition can only 
possess a hypothetical status, for reasons of principle. 

Already at the beginning of his career, Newton seems to oppose such an 
interpretation of theory, saying that it would lead only to "conjectures and 
probabilities that are being blazoned about everywhere," without ever being able to 
arrive at any point to certain insights. "You see therefore how much it is besides the 
businesse in hand to dispute about Hypotheses''^^ What is it that Newton has to set 
against this, and what is the role of his own program of mathematization in this? 
Some first indications may be found in his answer to Pardies of May 5*, 1672, in 
which he treats the relationship between his own theory of colors and possible more 
far-reaching hypotheses: 

For the best and safest method of philosophizing seems to be, first to inquire diUgently 
into the properties of things, and establishing those properties by experiments and then 
to proceed more slowly to hypotheses for the explanation of them. For hypotheses 
should be subservient only in explaining the properties of things, but not assumed in 
determining them; unless so far as they may furnish experiments. For if the possibiUty 
of hypotheses is to be the test of the truth and reality of things, I see not how certainty 
can be obtained in any science; since numerous hypotheses may be devised, which shall 
seem to overcome new difficulties. Hence it has been here thought necessary to lay 
aside all hypotheses, as foreign to the purpose, that the force of the objection should be 
abstractedly considered, and receive a more full and general answer. ̂ ^ 

According to this description given by Newton himself, the approach in the natural 
sciences encompasses three steps: The first consists in carefully studying and 
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determining the properties of things. The second step is about corroborating and 
affirming these properties found by experiments. The third step concerns a gradual 
progress from the theory confined to a certain limited range of phenomena toward 
more general hypotheses in order to explain these properties. This shows that 
Newton's intention's by no means to banish hypotheses from natural science 
altogether. He calls attention, however, to an epistemic distinction between the 
properties established experimentally beforehand and the hypotheses possibly 
explaining them. These properties indeed represent limiting conditions for possible 
hypotheses in the sense that all hypotheses not agreeing with these properties must 
be rejected. This serves to exclude the possibility that these properties could be 
doubted or refuted on the basis of contradicting hypotheses alone. The mere 
possibility of hypotheses cannot decide on the truth of things, for one can imagine 
many hypotheses that may cause a variety of additional problems on their part. 
Nevertheless, Newton realizes that when one has "directly derived" a property or a 
principle from the phenomena, the latter are not yet explained by this. While it is 
possible to explain some phenomena on the basis of this property, this property itself 
requires an explanation. Such an "explanation of the explanation," however, is 
subject to the same conditions as the original explanation itself. In the final 
consequence, it also has to be "deduced from the phenomena." The hypothetical 
status of the explanation thus refers only to a provisional state that must be 
overcome by additional research. The difference compared with Hooke's conception 
is that Newton deems this tentative character to be surmountable in principle. 

Newton himself designed a model for a possible hypothesis that might explain 
the properties of light in this sense. In December 1675, he presented his treatise. An 
Hypothesis explaining the Properties of Light discoursed in my severall Papers to 
the Royal Society. He explicates his motive with the fact that his own way of 
speaking in a very abstract sense of light and the colors, that means, to abstract from 
more particular assumptions about the nature of light and the cause of colors, has not 
been understood by a larger public. This is the reason why he has decided, so-to-say 
for didactical reasons, to illustrate his own theory with a hypothesis: 

And therefore because I have observed the heads of some great virtuoso's to run much 
upon Hypotheses, as if my discourses wanted an Hypothesis to explain by, & found, 
that some when I could not make them take my meaning, when I spake of the nature of 
light & colors abstractedly, have readily apprehended it when I illustrated my Discourse 
by an hypothesis.'^ 

In this context, he places the greatest emphasis on pointing out that this is only a 
possible model that, while in agreement with his own theory of light, is not being 
presented with a claim to truth: "This I thought fitt to Expresse, that no man may 
confound this with my other discourses, or measure the certainty of one by the 
other."^^ It must thus be noted that he does not make a claim to certainty for the 
correctness of the "ether hypothesis." It does not meet the criterion raised by him of 
having been "deduced from the phenomena." 



246 N. IHMIG 

3. ONE UNIFORM METHOD IN BOTH THE "OPTICKS" AND IN THE 
"PRINCIPIA"? 

With regard to the certainty of the experimentally established properties of natural 
objects, two questions arise: Is it possible to find indications for a scientific method 
in Newton that might serve to justify the claim to certainty? What is the share of 
mathematics in this? If we begin with the last question, we must observe that the 
idea of basing the certainty of knowledge in the realm of natural sciences on the 
application of mathematics was not new. Newton himself quotes a number of 
examples of a successful mathematical treatment of a physical science: astronomy, 
geography, navigation, optics, or mechanics.^^ Well-known precursors and 
contemporaries of Newton like Kepler, Galileo, Descartes, or Huygens shared this 
view. In this connection, the following observation is revealing: In his lectures on 
optics, Newton criticizes three conceptions of color theory: (1) the peripatetic 
conception going back to Aristotle, (2) the conception of geometric optics, and (3) 
the mechanist conceptions (which were also directed against the Aristotelian 
tradition).^^ 

Now precisely the geometric optics was based on applying mathematics to the 
physical object of light. The mechanist philosophers were also much in favor of 
mathematizing nature. Hence, if Newton criticizes these conceptions, opposing them 
with a mathematical philosophy of nature of his own, this can only mean that he 
intended to establish them on a new foundation. What is new in Newton's program 
of a mathematical philosophy of nature is that he does not share an assumption made 
by a number of representatives of the idea of mathematizing nature at the time. It is 
the assumption that nature is constituted a priori according to mathematical laws. 
This approach can be found, for instance, in Kepler, or in Galileo. Newton, in 
contrast, holds the view that mathematical determinations in themselves are of no 
importance for natural science. In order to convey an importance for objects or 
processes of natural science, it is necessary to establish physical properties of these 
objects or processes beforehand on which the application of mathematical concepts 
or structures can be based. In Newton's eyes, a mathematical philosophy of nature is 
thus essentially based on physical principles whose correspondence to the 
mathematical principles of a theory developed independently of experience is by no 
means established, but must yet laboriously be shown by experimental methods. 
Only after the possibility of such an assignation has been created, can conclusions 
for the field of physical objects be drawn from the mathematical structures and 
calculations. This means that it is only then we are justified in explaining the 
relations of real physical objects or processes on the basis of the relations between 
mathematical quantities. That Newton held this view already at the beginning of the 
1670s can be seen from his answer to Hooke dated June 11*, 1672: 

I said indeed that the Science of Colors was Mathematicall <SL as certain as any other 
part of Optiques\ but who knows not that Optiques & many other Mathematicall 
Sciences depend as well on Physicall Principles as on Mathematicall Demonstrations: 
And the absolute certainty of a Science cannot exceed the certainty of its Principles. 
Now the evidence by wch I asserted the Propositions of colors is in the next words 
expressed to be from Experiments & so but Physicall. Whence the Propositions 
themselves can be esteemed no more then Physicall Principles of a Science.^^ 
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The problem of founding a mathematical science of natural objects thus shifts to the 
problem of founding the physical principles. In a letter to Oldenburg, then president 
of the Royal Society, dated June 25*, 1672, Newton explains the methodological 
maxims to be applied: 

You know the proper Method for inquiring after the properties of things is to deduce 
them from Experiments. And I told you that the Theory wch I propounded was evinced 
to me, not by inferring tis thus because not otherwise, that is not by deducing it onely 
from a confutation of contrary suppositions, but by deriving it from Experiments 
concluding positively & directly?^ 

What does it mean to "deduce" something from the experiments, respectively from 
the phenomena? Further evidence on Newton's scientific method can be found in the 
second English edition of Opticks of 1717: 

As in Mathematicks, so in Natural Philosophy, the Livestigation of difficult Things by 
the Method of Analysis, ought ever to precede the Method of Composition. This 
Analysis consists in making Experiments and Observations, and in drawing general 
Conclusions from them by Liduction, and admitting of no Objections against the 
Conclusions, but such as are taken from Experiments, or other certain Truths. For 
Hypotheses are not to be regarded in experimental Philosophy. [...] By this way of 
Analysis we may proceed from Compounds to higredients, and from Motions to the 
Forces producing them; and in general, from Effects to their Causes, and from particular 
Causes to more general ones, till the Argument end in the most general. This is the 
Method of Analysis: And the Synthesis consists in assuming the Causes discover'd, and 
estabUsh'd as Principles, and by them explaining the Phaenomena proceeding from 
them, and proving the Explanations.̂ "^ 

It is remarkable that Newton establishes an analogy here between the methods in 
mathematics and those in natural philosophy; the method of mathematics serving as 
a model whose application he recommends for studies of natural science as well. At 
the same time, the quote reveals that the method it mentions is subdivided into two 
partial steps. He calls these the "method of analysis," and "method of composition," 
or method of "synthesis." The crucial thing in applying these methods is succession. 
Analysis must always precede composition or synthesis. What is meant by method 
of analysis and by method of composition or synthesis, which obviously have their 
origin in mathematics, and which Newton would like to transfer to studies of natural 
science? He explicates the method of analysis in immediate reference to facts of 
nature, without mentioning their origin in mathematics in detail. 

Two examples are quoted to illustrate the method of analysis. These are how to 
proceed from the composite to its components, and from the motions to the forces. It 
is not difficult to recognize that these examples obviously correspond to Newton's 
own research on optics and mechanics. In optics, he attempts to explain the 
phenomena of white light assuming that the latter is composed of (homogeneous) 
monochromatic rays. In mechanics, he derived the force of gravitation from the 
falling motion of heavy bodies on earth and from the movements of the moon, the 
planets, and their satellites. Generally speaking, the analytic method leads from the 
effects to the causes. Once the causes have been found and securely established, 
they can be used as a basis for the respective theory. The explanations for the 
various phenomena the theory is concerned with are then derived from them. This is 
the task of synthesis, or of the method of composition. 
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Additional references to the methods of analysis and synthesis are also found in 
the Principia, Thus, Newton writes in his preface to the first edition of 1687: "for 
the whole burden of philosophy seems to consist in this - from the phenomena of 
motions to investigate the forces of nature, and from these forces to demonstrate the 
other phenomena".^^ Despite the fact that he does not explicitly mention analysis 
and synthesis there, the following observation of Roger Cotes, who edited the 
second edition of the Principia of 1713, and wrote a preface to it, reveals that 
Newton's description points precisely to these partial steps. In his preface. Cotes 
emphasizes the method of experimental philosophy as a model for the entire 
research into nature: 

They proceed therefore in a twofold method, synthetical and analytical. From some 
select phenomena they deduce by analysis the forces of nature and the more simple laws 
of forces; and from thence by synthesis show the constitution of the rest. This is that 
incomparably best way of philosophizing, which our renowned author most justly 
embraced in preference to the rest, and thought alone worthy to be cultivated and 
adorned by his excellent labors.̂ ^ 

Accordingly, analysis and synthesis are explicated as partial steps of an integral 
method both for the objects of mechanics and of optics. In this respect, they do not 
differ for the two disciplines. Beyond that, Newton points out that he has applied 
both methods in optics, in particular in the first two books.^^ Now almost all parts of 
these first two books stem from observations and experiments he himself had made 
during the first half of the 1660s, and which he had already published from the end 
of the 1660s to the mid-1670s. '̂̂  From this, it may be concluded that his 
methodological maxims show a remarkable continuity not only with respect to the 
diverse topic areas, but also with respect to his own intellectual development. This 
can be seen in particular from his early lectures on optics, which were much more 
strongly oriented toward a mathematical treatment of the theory of colors than his 
Opticks. In both their versions, they contain a separate mathematical part (analogous 
to Books I and II of the later Principia), which is entirely absent in the Opticks. 
Hence, it may be expected that the connection between his program of developing a 
mathematical science of nature and the methods of analysis and synthesis is much 
more pointedly present in his earlier lectures than in his later works. The following 
section will serve to begin clarifying the origin and the significance of the 
mathematical methods of analysis and synthesis Newton applied in his studies of 
nature. The last section is intended to make clear from the example of his lectures on 
optics in which form these methods can be transferred to facts of natural science. 

4. THE ORIGIN OF THE ANALYTIC AND SYNTHETIC METHOD IN 
MATHEMATICS 

Convincing evidence for the fact that the Synagoge of the Greek mathematician 
Pappus of Alexandria is the source of Newton's methods of analysis and synthesis is 
to be found in drafts for a planned preface to the Principia's third edition. They 
presumably go back to the years 1716- 1718, dealing in particular with the methods 
of analysis and synthesis. It says there: "The ancients treated geometrical matters by 
a dual method, namely analysis and synthesis, or resolution and composition, as is 
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clear from Pappus."^^ Besides this general clue to Pappus, we can find additional 
documents showing that Newton closely studied both the corresponding definition 
of the methods of analysis and synthesis at the beginning of book VII of Pappus' 
Synagoge (respectively Latin Collectio) and their applications to concrete geometric 
constructions. During the first half of the 1690s, Newton intended to write a more 
extensive work on geometry. A substantial introduction and parts of the first book 
have been preserved of this obviously never completed work. One of the chapters of 
the first book bears the heading "De Compositione & Resolutione Veterum 
Geometrarum." This is where we find some direct quotes from the introduction to 
the seventh book of the SynagogeP 

Whiteside has documented Newton's strong interest in Pappus already toward 
the end of the 1670s.̂ ^ Most probably, however, Newton's familiarity with Pappus' 
text goes back even farther. Thus, a mathematical manuscript by Newton has been 
preserved whose reasons of production are unknown.^^ It originated between 1667 
and 1670. Probably, this fragment was produced in the context of struggling with the 
methods of analysis and synthesis, as Newton explicitly mentions analysis at one 
point in his proofs."̂ ^ There are several additional indirect indications for Newton's 
early interest in Pappus. In 1646, Frans v. Schooten edited Vieta's works. There is 
proof that Newton made excerpts of this edition that also contains Vieta's work In 
Artem Analyticem Isagoge from the year 1591. The Isagoge is intended as an 
introduction to Vieta's new algebraic letter calculus, and the author treats the 
methods of analysis and synthesis extensively at the beginning. Vieta explicates 
analysis as a mathematical method for finding truth that is valid for both geometric 
and arithmetic objects.^^ At roughly the same time as Vieta's writings, Newton also 
read Descartes' Geometry, which had been published in a Latin translation, together 
with an extensive commentary, by v. Schooten in 1661.^^ Descartes refers to Pappus 
several times in this volume. Hence, it is not improbable that Newton became 
acquainted with Pappus' theory of method already in the mid-1660s. This period 
would concur rather precisely with the "annus mirabilis" of 1666, the year in which 
Newton succeeded in making his decisive discoveries in the fields of mechanics, 
optics, and mathematics during his sojourn in his Woolsthorpe home. 

The question now is how Newton interprets the methods of analysis and 
synthesis with regard to their contents. He explicitly quotes Pappus' description of 
these from Commandinus' Latin translation, the quote being in English: 

Resolution, accordingly, is the route from the required as it were granted through what 
thereupon follows in consequence to something granted in the composition. For in 
resolution, putting what is sought as done, we consider what chances to ensue, and then 
again its antecedent, proceeding in this way till we aUght upon something akeady 
known or numbered among the principles. And this type of procedure we call 
resolution, it being as it were a reverse solution. Li composition, however, putting as 
now done what we last assumed in the resolution and here, according to their nature, 
ordering as antecedents what were before consequences, we in the end, by mutually 
compounding them, attain what is required. And this method is called composition^ 

While refraining to discuss here details of the interpretation of Pappus' description 
of analysis, which raises a number of philological problems,^^ we should like to 
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point out one of the principal difficulties presented by the traditional Greek text. 
Jones translates it as follows: 

Now, analysis is the path from what one is seeking, as if it were estabUshed, by way of 
its consequences, to something that is estabUshed by synthesis. That is to say, in 
analysis we assume what is sought as if it has been achieved, and look for the thing 
from which it follows, and again what comes before that, until by regressing in this way 
we come upon some one of the things that are already known, or that occupy the rank of 
a first principle.^^ 

It would seem that there is an obvious contradiction here. To begin with, analysis is 
described as a path that assumes what is sought as if it were given, drawing 
conclusions from that. The next sentence, however, which begins as if it were an 
explication of the preceding sentence, talks about the path of analysis in the sense of 
recourse to the conditions from which what is sought follows. If one draws on 
Commandinus' translation for comparison, it is seen that he obviously tried to 
smoothen this contradiction somewhat inasmuch as he says in the second sentence: 
"we consider what chances to ensue." His continuation, however "and then again its 
antecedent," does not quite seem to fit that. 

How did Newton respond to this difficulty of interpretation? Surprisingly, he did 
not respond at all. Either he had not become aware of the contradiction, as it had 
already been softened in Commandinus' translation, or Newton associated a content-
related interpretation with the methods of analysis and synthesis in which the 
contradiction does not occur in the first place. Newton comments this passage as 
follows: 

By these words you should understand that a general method for solving problems was 
known to the ancients, and that this method consisted in its greatest part in the resolved 
locus, proceeding by means of resolution and composition jointly: by resolution 
composition is attained and in the fullness of composition all that is geometrical is 
accompUshed; solution is, however, the opposite of resolution in that it may not be had 
till all trace of resolution be removed from start to finish by means of a full and perfect 
composition.^^ 

To begin with, it is notable that Newton understands analysis and synthesis, 
respectively resolutio and compositio, as a general method of problem solving that 
need not be confined to the object of geometrical problems and theorems. It is also 
remarkable that he does not conceive of the methods of resolution and composition 
as directions opposed to one another. Instead, he opposes resolutio and compositio 
jointly to solutio: 

Solution therefore differs from resolution and composition inasmuch as the latter are 
means and procedures for discovering through the resolved locus, the former is the 
enddiscovery at which the whole process terminates. Resolution and solution are two 
totally opposite extremes, and the expert makes his way in stages from one to the other 
by composition.^^ 

He considers both resolutio and compositio to be means and methods of discovery, 
opposing them to the final solution of a problem. Thus, the above quote says that 
Pappus' method contains an approach "by means of resolution and composition 
jointly." In an earlier version of this text, Newton specifically pointed out that 
resolutio and compositio were occasionally intermingled: 
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Solution is contrary to resolution: the expert proceeds from beginning to end and from 
resolution to solution by means of composition. Resolution can be intermingled with 
composition, but with solution not at all."̂ ^ 

Further evidence for Newton's interpretation of Pappus' methods of resolutio and 
compositio can be found in the drafts for a preface to the Principia 's third edition: 

The analysis of the ancient geometers seems to have consisted in the deduction of 
consequences from givens until the thing sought should result. [...] W^ere, however, the 
thing sought would not easily ensue from the givens, they either looked for lemmas or 
porisms through which some new given might be gatherable, or assumed unknowns as 
givens so that thereby they might gather some given as though it were unknown, [so 
that they see what might ensue] and at length by inverting the sequence of argument 
deduce the thing sought from whatever relationship between the givens and the 
sought."̂ ^ 

This quote reveals that Newton initially ascribes a certain direction to the analysis of 
the geometers of antiquity, namely, the derivation of consequences from the 
"given," respectively from the "data." What is meant by a given? Givens are 
quantities, relations between quantities, points, lines, areas, and so forth, as well as 
relationships between such objects that are established by the principles or axioms of 
geometry and by the prescribed constructions. Analysis investigates which further 
relations can be derived from this in order to find the sought, which consists, in the 
case of geometric problems, in certain objects to be constructed that shall satisfy 
certain conditions. If the conclusions from the initial construction lead to the desired 
result, that is to say, to a theorem already known, or if they lead to an assumed 
principle, analysis is accomplished. If one encounters difficulties on this path, 
however, one is compelled to draw on auxiliary theorems or auxiliary constructions. 
One of their properties is that they introduce new objects, or relations between 
objects, into the problem that are based on relations between what is given ("data") 
and what is sought ("quaesita"). In that case, what is sought is assumed as given, and 
further conclusions are drawn in connection with the initial construction and the 
axioms from these relations, until one encounters a known theorem or principle. If 
this is the case, then what is sought can be deduced from these relations by inverting 
the argumentation. 

Obviously, Newton counts this deduction, which runs in the inverse direction, 
that is, from the principles and axioms to the determined construction, as still 
belonging to analysis. This would mean that analysis, according to Newton's 
interpretation, includes two directions: one from the initial construction to the 
principles, and another back from the principles to this construction. This would also 
explain why Newton holds the view that resolutio and compositio are frequently 
intermingled. "Deduction," in this context, obviously possesses another meaning, as 
a syllogistic derivation of propositions. For it is always possible that many different 
relations can be derived from a given construction containing determinate relations 
between the objects given and the objects sought. From these different possibilities, 
it is not clear beforehand which of them is conducive to the goal, that means, which 
makes it possible to determine the objects sought on condition of the objects given. 
In that case, one would be compelled to first examine each of them separately, a task 
which may require further auxiliary constructions. Possibly, further intermediate 



252 N. IHMIG 

steps would be necessary in the course of these studies that sometimes involve an 
inversion of the direction of argumentation. Hence, the result is a complex, 
branched-out procedure that leads eventually to the determination of what is sought 
or to the solution of the problem. Only after this has been achieved, is one in a 
position to know which of these branches one must follow in the inverted direction 
in order to receive an unequivocal determination of what is sought from what is 
given. 

What is the function of synthesis in this interpretation? Newton answers this 
question as follows: 

The ancients used in mathematical matters to practice a dual method, analysis and 
synthesis, or composition and resolution. Through analysis they discovered 
propositions, and through synthesis they demonstrated them once found - and when 
these were not yet demonstrated they did not admit them into geometry; for geometry's 
title to praise lay in the utter certainty of its matters. And on that account I have in the 
books which follow composed the propositions found out by analysis in order to render 
them absolutely certain and so, because of their certainty, worthy to be admitted into 
geometry."^^ 

It is only synthesis that conveys the necessary certainty to the discovery of analysis 
that Newton understands as an "ars inveniendi," and provides the "solution" or 
"demonstration" of the theorems or problem solutions discovered. Whereas analysis, 
for Newton, is no method that can be applied mechanically, but rather depends on 
the skill and experience of the mathematical expert, synthesis must meet the 
requirement of being understood by all who are sufficiently familiar with the basics 
of geometry.^^ 

5. THE APPLICATION OF ANALYSIS AND SYNTHESIS TO NATURAL 
SCIENCE 

How can the methods of analysis and synthesis be transferred to facts of natural 
science? "̂̂  After a brief look back to the concept of Newton's program of 
mathematization, three central points can be retained: First, the application of 
mathematics to objects of nature is based on physical principles, that must be 
ascertained experimentally. Physical meaning is not due to the mathematical 
determinations in themselves, but only in connection with these physical principles. 
Second these principles have the character of physical properties of natural objects 
that can be drawn on as causes to explain a certain range of phenomena. Nothing has 
been said with this about the causes of these principles themselves, that is, about the 
causes of the causes. For these, it is also true that they must be "deduced from the 
phenomena." Third, Newton understands the path leading from the effects to the 
causes as analysis, adhering to the ancient geometers in this. What follows intends to 
use Newton's early writings on optics to elaborate the parallels between 
mathematical and philosophical analysis which are significant for Newton's 
experimental method. 

What is the analogy with the method of geometric analysis and synthesis, in 
Newton's methodological approach in the natural sciences? What is the "given," and 
what is the "sought?" Let us treat the "given" first. Referring to the example of 
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optics, one is confronted with what Newton describes as "the celebrated 
Phaenomena of Colors" in his New Theory about Light and Colors. These 
phenomena stand as the "given" at the outset of Newton's considerations. They have 
not been observed accidentally, but rather are produced by means of a well-devised 
experimental setup, and form the beginning both of his first lectures on optics and of 
his New Theory about Light and Colors.^^ Sunlight falls through a shutter's round 
aperture into a darkened room. A prism is placed immediately behind the aperture. 
The sunlight is led through the prism, and projected on the opposing wall of the 
room or on a screen. The screen shows an elongated, oval image that is several times 
longer than broad. In addition, one beholds colors that follow one another from one 
end of the image to the other in the order of red, yellow, green, blue, and violet. 
Obviously this spectrum of colors, in connection with the experiment's setup, must 
be considered to be the "given." What is remarkable in this context is that both the 
given of geometry and the given of natural science are nothing one can simply find 
and observe passively, but that both cases are about something intentionally 
produced and constructed. 

What now is the "sought?" In geometry, what is sought is a possibility of 
constructing (provided it is a "problematical analysis") quantities or relations 
between quantities depending on "given" quantities or relations. Similarly, a 
physical property is sought in the natural sciences: one that proves to be the 
determining factor for the production of certain phenomena or processes of nature. 
How does one find such a property or such a principle? One does this by deriving 
conclusions from the phenomena, in connection with a tentatively assumed 
principle, until one meets a principle or theorem already known or possibly even a 
contradiction."^^ Newton indicates such a principle that has hitherto been assumed to 
be valid, namely, the geometric sinus law of refraction based on the physical 
assumption that the white sunlight is homogeneous. This means that all the rays of 
the white sunlight having the same angle of incidence on a refracting plane will have 
the same angle of reflection. In his next step, Newton draws conclusions from the 
phenomenon of the elongated spectrum of colors in connection with this assumed 
physical principle. In doing so, however, he is confronted by a contradiction. For he 
computes precisely one position of the prism for which the sum of the two angles of 
incident at the prism's two sides that refract the rays is exactly equal for all rays.^^ If 
the assumed physical principle of homogeneity of the white sunlight were valid, the 
image should appear circular precisely in this case. After Newton had set up his 
experiment precisely according to these prerequisites, he had to note, however, that 
the image did not appear circular, but oval. Hence, the physical principle assumed 
by geometric optics contradicts the phenomena, and must therefore be rejected."̂ ^ 

Hence, the search for a physical principle that is in harmony with the phenomena 
must be continued. The phenomenon of the elongated form of the colors spectrum 
remains the point of departure. Newton's new assumed principle is that the white 
sunlight is composed of different (homogeneous) rays having different degrees of 
refrangibility. He now derives conclusions from this phenomenon in connection 
with this new principle. He begins by describing the elongated image as a plane 
geometrical figure that is delimited below and above by two parallel straight lines 
and at the edges by two semicircles. This is a conscious idealization; for Newton 
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was aware of the fact that the oval's edges are not delimited by exact mathematical 
lines in reality. Pursuing this, he develops four additional assumptions that are of 
purely ideal, theoretical nature and by which the spectrum's form can be explained 
on the basis of assuming the principle of the heterogeneity of the white sunlight. 
These assumptions include already proven geometrical theorems, as well as 
infinitesimal and continuity assumptions."^^ One could compare them to the lemmata 
and porismata that are to assist the geometer in the analysis of difficult problems and 
that have been collected in the "locus resolutus." 

(1) Rays of white sunlight, which are equally refracted in case of equal angle of 
incidence when passing the prism, yield an approximately circular image if 
considered separately. (2) If one now imagines additional rays of sunlight, which 
have equal refraction compared to one another, but which differ in their refraction 
from the rays of sunlight considered before, these will again yield a circular image 
that, however, will occupy a place within the oval different from that of the first 
image. (3) In a further step, Newton extends his reflections to infinitely many rays. 
Imagine infinitely many other rays whose quantity of refraction is continually larger 
or smaller than that of the preceding one. These will thus describe an infinite 
number of circles that fill out the spectrum in its length. The first three steps thus 
explain the elongated form of the spectrum image and its lateral delimitation by 
semicircles. (4) As the circular images of the separate rays all possess approximately 
the same extent, the lines delimitating the spectrum above and below are 
approximate straight lines and run parallel to one another. This would also explain 
the delimitation of the image above and below. 

These theoretically derived relationships between the given and the sought 
assumed to be given are subjected to another experimental test in what follows. This 
is done by examining the relationship between the spectrum's breadth and length in 
more detail. This relationship proves to be the decisive relation on which Newton's 
theoretical explanation is based. In his first experiment, he had established that the 
relation between the image's breadth and length never went below 1 : 4. If one 
reduces the aperture for the light by a fifth, the relation grows to 1 : 13.5. 
Corresponding observations can be made if one increases the distance between 
prism and screen or inserts a convex lens into the experimental setup. In his Opticks, 
Newton later describes experiments in which he was even able to attain relationships 
of 1 : 60 or 1 : 70.̂ ^ 

If one summarizes Newton's comprehensive conduct of proof, it becomes clear 
that in order to test and confirm the new physical principle, the application of the 
method of analysis involves a multitude of experiments mutually supporting and 
supplementing one another. The claim to certainty for this principle is finally based 
on the presence of a lower boundary for the mathematical relation between the 
spectrum's breadth and length that proves invariant under all possible variations of 
the experimental conditions. For Newton, this invariance of the mathematical 
relation is an indication that this cannot be a phenomenon dependent on random 
circumstances. He obviously judges the presence of such an invariant mathematical 
regularity to be a clue to the existence of a real physical property. For he considers it 
to be proven that the property of the different refrangibility of the rays emerges from 
a "previous disposition of the rays" and is based on certain laws.̂ ^ 
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What can be inferred from this for the application of the analytic method in the 
natural sciences? One of the first things to be remarked is that both deductive and 
inductive elements appear in it, and they are closely interwoven. Newton 
systematically varies the experimental conditions to establish functional 
dependencies of the phenomena on the factors relevant for their production. In doing 
so, he recurs to auxiliary assumptions like, for instance, the principle of continuity, 
considerations of limiting values, or theorems of geometrical optics. To these 
assumptions one can attribute in an analogous way the function that the lemmata and 
porisma had within the analytical method of the ancient geometers. The goal of 
analysis in natural science consists in discovering and confirming constant 
quantitative relations that indicate an invariant physical property. Inductive 
generalization, which belongs to the method of analysis, has the character of 
exploring constant functional dependencies between factors by means of continuous 
variation. This obviously cannot be done with a single experiment. Rather, Newton 
can be observed to repeat experiments to investigate different experimental 
conditions separately. Techniques of eliminating disturbing factors or increasing 
observed weak effects are of particular importance here. Where Newton describes 
one experiment, it is always a case of a multitude of systematically connected 
experiments that are derived from one principal experiment. 

All the aspects listed here must be taken into account if one wishes to understand 
on what Newton bases his claim that his theory's principles were not hypotheses, but 
rather "deduced from the experiments." "Deduction" must not be equated here with 
a syllogistic derivation, but implies both an inductive generalization by means of 
variation and a critical examination of the regularities thus established by 
experimental tests. This means that analysis does not represent a one-way street in 
the sense of moving from the phenomena toward the principles, but that it includes 
the opposite direction from the principles to the phenomena as well. This 
interpretation is confirmed by a quote from Newton, which presumably was written 
in 1700 as a draft to an intended preface to his Opticks: 

As Mathematicians have two Methods of doing things which they call Composition & 
Resolution & in all difficulties have recourse to their method of resolution before they 
compound so in explaining Phaenomena of nature the Uke methods are to be used & he 
that expects success must resolve before he compounds. For the explications of 
Phaenomena are Problems much harder then those in Mathematics. The method of 
Resolution consists in trying experiments & considering all the Phaenomena of nature 
relating to the subject in hand & drawing conclusions from them & examining the truth 
of those conclusions by new experiments & drawing new conclusions (if it may be) 
from those experiments & so proceeding alternately from experiments to conclusions & 
from conclusions to experiments untill you come to the general properties of things. 
Then assuming those properties as Principles of Philosophy you may by them explain 
the causes of such Phaenomena as follow from them: wch is the method of 
Composition.^^ 

Newton bases the possibility of treating the theory of colors mathematically on the 
correlation between the property of refrangibility and the rays' disposition to 
manifest a determinate color. Assigning the color scale to the indices on the scale of 
refraction creates the basis for introducing a metric into the theory of colors. It must 
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be noted that the possibility of this assignation is based on the physical property of 
white light that it is composed of heterogeneous, differently refrangible rays. 

After the analysis has come to a (provisional) conclusion, synthesis follows: 
"And the Synthesis consists in assuming the Causes discover'd, and establish'd as 
Principles, and by them explaining the Phaenomena proceeding from them, and 
proving the Explanations."^^ The interface of the transition from analysis to 
synthesis can be clearly determined in the lectures on optics. At the beginning of the 
seventh lesson, Newton observes that he had laid, in the previous lessons, the 
foundations of his own theory of colors by means of which the common color 
phenomena can be explained: "Thus far we have erected the foundation whereby the 
common appearances of colors produced by prisms can be most certainly 
["certissime"] explained."^"^ He answers the question whether a repeated treatment of 
the phenomena of the prismatic colors was not superfluous at this point by pointing 
out that this step was necessary because of the method he adhered to: "that 
consequently we may retain the proposed method, namely, to determine them 
scientifically from principles previously demonstrated."^^ This method apparently 
contains two steps: (1) of deriving the principles (causes) from the phenomena, and 
(2) of explaining the phenomena by means of these principles. It is not difficult to 
recognize that these two steps are analysis and synthesis. This demonstrates that 
Newton consciously adhered to a certain scientific method already in 1669/70, when 
he began to draft his lectures on optics, and that this consciousness did not emerge 
only as a result of his disputes about the New Theory in the years 1672/73. 

What is new in synthesis, as opposed to analysis? Is this merely a case of a linear 
inversion of the direction of argument? It must be recalled here that the physical 
principles that emerged from analysis, within the scope of Newton's idea of 
mathematizing nature, had the function of serving as a foundation for a 
mathematical treatment of physical objects. This meant, in particular, that only such 
properties of natural objects were appropriate for these principles on which a metric 
could be founded. It was only after these properties had been ascertained that it 
became possible to attribute a physical meaning to the mathematical theorems and 
proportions. This is precisely what Newton does in pursuing the path of synthesis. 
The explanation of the elongated form of the color spectrum that follows analysis is 
characterized by the fact that attention is drawn specifically to the discrepancy 
between the spectrum image's ideal mathematical form and its real shape, and that 
the causes of this deviation are determined. This points to another interesting aspect 
of Newton's idea of mathematization. For Newton, mathematization precisely does 
not mean that the physical principles exactly copy the mathematical laws and 
determinations, but rather that they help to explain the deviations from such ideal 
laws. This explanatory function of synthesis is what is new, as compared to analysis. 
This is where the synthesis of the natural sciences is distinct from the synthesis of 
ancient geometry insofar as the latter did not have such a problem at all, being 
exclusively concerned with ideal mathematical objects. 

The different character of Opticks and Principia is apparently due to the fact 
that, in optics, Newton did not manage to achieve the unification with regard to 
explaining phenomena that he achieved in mechanics. Essentially, it was the 
phenomena of refraction and reflection that he was able to unify under common 
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principles. Newton himself probably saw quite clearly that his project of a 
mathematical theory of colors remained incomplete. But he also was clearly aware 
of the fact that science is not the isolated work of an individual, but must be 
conceived of as a social and historical process: 

But if without deriving the properties of things from Phaenomena you feign Hypothesis 
& think by them to explain all nature, you may make a plausible systeme of Philosophy 
for getting your self a name, but your systeme will be little better than a Romance. To 
explain all nature is too difficult a task for any one man or even for any one age. [...] Tis 
much better to do a little with certainty & leave the rest for others that come after you 
then to explain all things by conjecture without making sure of any thing.^^ 

Abteilung Philosophie, Universitdt Bielefeld 
Institutfur Philosophie, Universitdt Dortmund 

NOTES 

' Newton, Mathematical Principles of Natural Philosophy. Vol. II, 547. 
- Cf. Cohen (1956, 575-584); Cohen (1966); Hanson (1970); Shapiro (1989). This is only a small 
selection from the rich literature on Newton's concept of hypotheses. 
^ Kargon explains Newton's rejection of hypotheses from the latter's opposition to the ideal of a 
"hypothetical physics" propagated at the time by Descartes, Hobbes, and Gassendi that was unable to 
proceed beyond plausible (i. e., probable) hypotheses because of its own essence and because of its 
object's nature. Instead, Newton, continuing on from Francis Bacon and his own teacher Isaac Barrow, 
demanded a form of certainty going beyond mere hypothetical probability for the natural sciences as well. 
Barrow, in particular, had called for such a certainty, attempting to found it on the application of 
mathematics. Cf. Kargon (1965). 
"^ Newton, Correspondence, Vol. I, 96 f. 
^ Two manuscripts of Newton's lectures on optics have been preserved. As date of authorship for the 
first, shorter manuscript, the time between the end of 1669 and the end of 1671 can be presumed. The 
second, longer manuscript, which obviously represents an improved version of the first, was probably 
finished subsequently in February 1672. Meanwhile, the excellent edition and translation of both 
manuscripts by Alan E. Shapiro is available: Shapiro, A. E.. The Optical Papers of Isaac Newton. Vol. I: 
The Optical Lectures 1670 - 1672, Cambridge 1984 (in the following quoted as: Newton, Optical Papers 
I). 
^ Newton, Optical Papers I, 87. 
^ Op. cit., 89. 
^ Shapiro comments at this point (Newton, Optical Papers I, 28): "Newton [...] makes a powerful plea for 
mathematical natural science, while offering his new, mathematical theory of color as an example of the 
value of mathematics in natural philosophy. Thus, at the beginning of his career he had already clearly 
formulated a program for the reform of natural science that would come to full fruition in his 
Philosophiae naturaUs principia mathematica, that is. The Mathematical Principles of Natural 
Philosophy." 
^ Concerning the theories of light of the 17th century Shapiro has good reason to prefer, not to speak of a 
contrast between wave and corpuscular theory, but instead of one between "continuum theory" and 
"emission theory." Cf. Shapiro (1973, 136). 
^̂  Cf. for example Newton, Correspondence, Vol. I, 174. Here, Newton admits that it was possible to 
explain the properties of Ught he had found out not only by one, but "by many other Mechanicall 
Hypotheses." This is why he had preferred "to decline them all, & speake of light in generall termes, 
considering it abstractedly as something or other propagated every way in streight lines from luminous 
bodies, without determining what that thing is." 
^̂  Op. cit, 113. 
^̂  Op. cit., 202 (Letter by Hooke to Lord Brouncker of June 1672). 
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'̂  Quoted according to Sabra (1967, 23). 
"̂̂  Descartes, Principles of Philosophy, Part FV, § 205, 287. For the clock-metaphor cf. op. cit., § 204, 

286. Cf. for this also Laudan (1981, 27-58). 
'̂  Newton, Correspondence, Vol. I, 177 (Newton's answer to Hooke dated June 11*, 1672). 
'^ Cohen (1958, 106). 
^̂  Newton, Correspondence, Vol. I, 363. 
'^ Op. cit., 364. 
^̂  Newton, Optical Papers I, 86 f. 
°̂ Op. cit, 46-49; 80-85. 

^̂  Newton, Correspondence, Vol. I, 187 f. Cf. for this also Mamiani (1976, 107 f.). 
^̂  Newton, Correspondence, Vol. I, 209. 
^̂  Newton, Opticks, 404 f. A corresponding text already appeared in an abbreviated form in the first 
Latin edition of Opticks of 1706. 
'̂̂  Newton, Mathematical Principles of Natural Philosophy. Vol. I, Newton's Preface to the First Edition, 

XVII f. 
^̂  Op. cit.. Cotes' Preface of the Second Edition, XX f. 
"̂  Newton, Opticks, 405: "In the two first Books of these Opticks, I proceeded by this Analysis to 
discover and prove the original Differences of the Rays of Light in respect of Refrangibility, 
Reflexibility, and Color, and their alternate Fits of easy Reflexion and easy Transmission, and the 
Properties of Bodies, both opake and pellucid, on which their Reflexions and Colors depend. And these 
Discoveries being proved, may be assumed in the Method of Composition for explaining the Phaenomena 
arising from them: An Instance of which Method I gave in the End of the first Book." 
-̂  Cf Hall (1995, 33-83). 
"̂  Newton, Mathematical Papers, Vol. VIII, 449. 
^̂  Newton, Mathematical Papers, Vol. VII, 248-251; 304-311. According to Whiteside, Newton used the 
second edition of the Latin translation by Commandinus that was pubUshed in a first edition by Manolessi 
in 1610: Pappi Alexandrini Mathematicae Collectiones a Federico Commandino Urbinate in Latinum 
conversae, & Commentarijs illustratae, Bologna 1660. Cf Newton, Mathematical Papers, Vol. VIII, 449, 
note 21. Commandinus translates the Greek terms of "analysis" and "synthesis" by "resolutio" und 
"compositio." This explains why Newton uses these expressions synonymously where he draws on 
Pappus' Latin translation. On the significance of the methods of analysis and synthesis in mathematics cf 
Otte/Panza(1997). 
^̂  Cf Newton, Mathematical Papers, Vol. IV, 218: "What the geometrical manuscripts now pubHshed do 
reveal is that in his middle-thirties Newton developed an acute interest in the IX)V(r{(jyfr\ ([Mathematical] 
Collection) of the late Alexandrian mathematician Pappus, minutely studying its seventh and eight books 
in one or other of the available editions of Commandino's Latin translation." 
^̂  Cf Newton, Mathematical Papers, Vol. II, 450-517. 
~̂ Op. cit., 493: "This construction can be demonstrated in the manner of problem 4 but for the sake of 

brevity and variety I prefer to employ the following analysis." 
" Cf Klein (1968, 154-178); Panza (1997, 401-405). 
^̂  Cf Whiteside (1967, 73). Cf also Westfall (1980, 106). 
^̂  Newton, Mathematical Papers, Vol. VII, 307; cf. also op. cit., 249. For the critical edition both of the 
Greek original and its English translation, cf Pappus of Alexandria, Book 7 of the Collection, Part 1. 
Introduction, Text and Translation, ed. by A. Jones, New York et. al. 1986, 82 f 
^̂  It should be noted that the Greek original raises grave problems of interpretation. Since the works of R. 
Robinson and F. M. Comford from the 1930s, the discussion of these problems has focused mainly on the 
issue of the "direction" of analysis and synthesis. Does the analysis of a theorem to be proved mean to 
descend to further conclusions from this theorem, or vice versa to ascend to its conditions? Robinson 
pleaded in favor of the former possibility, whereas Comford considered the second option plausible in 
connection with his own studies of Platon's dialectic. To this problem has to be added the further 
difficulty of how to link this general description of the methods at the beginning of the seventh book with 
Pappus' subsequent geometrical practice. The latter attempt has been made in particular in 
Hintikka/Remes (1974), Behboud (1994), and Maenpaa (1997). A brief summary of the discussion and 
additional references are to be found, for instance, in Behboud (1994, 53-57). 
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^̂  Pappus of Alexandria, Book 7 of the Collection, Part 1, 82. 
^̂  Newton, Mathematical Papers, Vol. VII, 307. "Resolved locus" respectively "locus resolutus" is the 
translation of the Greek term "Toatoq dvaA.'u6|̂ £V0(;". This obviously meant a branch of the mathematics 
of antiquity concerned with geometrical analysis. Pappus enumerates a number of books belonging to this 
branch, Uke EucUd's "Data" and "Porismata," and further works by ApoUonius, Aristaeus, and 
Eratosthenes. This branch obviously dealt with solving difficult geometrical problems and was intended 
only for those who were already sufficiently famihar with the elements and foundations of geometry. 
' ' Op. cit., 309. 
^̂  Op. cit., 308, note 69. 
"̂^ Newton, Mathematical Papers, Vol. VIII, 443/445. Cf op. cit., 444 f, note 3: "The ancients in the 
resolution of problems used first to gather from the givens whatever might come to ensue, [...]. If by this 
method they were able to collect what was sought, the problem was resolved; but if not, they used to 
assume what was sought as though it were a given in order that they might thence gather some given as 
though it were sought, and so from the (connection) relationship between given and sought deduce the 
sought by going back." 
^̂  Op. cit., 451. 
"̂^ Op. cit. 449: "Propositions in geometry, however, ought to be propounded in such a way that they may 
be appreciated by the great majority and thus most impress the mind with their clarity, and they need 
consequently to be synthetically demonstrated. Analysis is useful for finding out truths, but the certainty 
of a finding ought to be attested through the composition of a demonstration, and so made as transparent, 
clear and manifest to all as it is possible." 
"̂"̂  The first authors, and to my knowledge the only ones, to call attention to the importance of the 
geometrical method of analysis and synthesis for Newton's natural science research, were Hintikka und 
Remes. They base this thesis on their interpretation of geometrical analysis as figural analysis, which 
shows, in its confinement to spatial constructions, some parallels to the analysis of experimental 
situations. Cf Hintikka/Remes (1974, 106): "Newton, Uke any experienced mathematician, is thinking of 
the geometrical analysis as an analysis of figures, that is to say, as a systematic study of the 
interdependencies of the geometrical objects in a given configuration, including both the 'known' 
(controllable) and 'unknown' (uncontrollable) factors. [...] From this, it was but a short step to the idea 
that an experimental setup represented a kind of analytical situation, too, in that what is happening in a 
typical controlled experiment is a study of what depends on what in it - and hopefully also precisely what 
mathematical relationships these dependencies exempUfy." 
"̂^ Cf Newton, Optical Papers I, 50. In what follows, I shall confine myself to Newton's presentation in 
his first lecture series of 1669 - 1670 that Shapiro designates as "Lectiones opticae." Cf for this also 
Newton, Correspondence, Vol. I, 92. 
"^ Newton gives the respective quote from Pappus in Newton, Mathematical Papers, Vol. VII, 309: "if we 
meet with what evidently cannot be done, then the problem will be Ukewise impossible." 
"̂^ This position of the prism is derived in an exact mathematical way on the basis of comprehensive 
geometrical considerations in his "Lectiones opticae." This is followed by practical hints as to the 
simplest way of reaUzing this position experimentally. Cf Newton, Optical Papers I, 52-63. In his New 
Theory, he intentionally left out this derivation, a fact that gave rise to the misunderstanding that he 
intended to claim the spectrum's image must appear circular in any position of the prism under the 
assumption of the homogeneity of the white sunUght. 
' ' Op. cit, 61. 
^̂  Cf for this op. cit., 62-65. 
°̂ Newton, Opticks, 69. 

^̂  Newton, Optical Papers I, 74 f 
^̂  U. L. C. Ms. Add. 3970.5; quoted according to Guerlac (1977, 205f). Cf for this also U. L. C. Add. 
3970.3. Foho 480v in McGuire (1970, 185). 
^̂  Newton, Opticks, 404f 
^"^ Newton, Optical Papers I, 145. 
^̂  Op. cit., 145. The corresponding interface within the second series of lectures is found in part II, 
lecture 10. Cf op. cit., 523. 
^̂  U. L. C. Ms. Add. 3970.5; quoted according to Guerlac (1977, 206). 
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MIRCEA RADU 

DID HERMANN AND ROBERT GRABMANN 
CONTRIBUTE TO THE EMERGENCE OF FORMAL 

AXIOMATICS? 

Abstract. This paper provides a critical assessment of the most influential ideas advanced by 
contemporary historians of mathematics in connection with the contribution of Hermann GraBmann to the 
of emergence of a new type of axiomatic approach during the 19* century. My analysis uncovers an wide 
variety of conflicting statements concerning the objectives and relevance of GraBmann's contributions. 
Based on this analysis, I argue that a renewed more careful examination of this contribution is needed. 

Key words: axiomatics, foundations of arithmetic, foundations of Unear algebra, history of mathematics. 

In a relatively recent study dedicated to the impact of late 18^ and 19^ century 
mathematical developments on philosophy and on the foundations of mathematics, 
Donald Gillies writes: 

Since German philosophy of mathematics was driven by problems which arose outside 
philosophy in mathematics, we can classify the main developments by the mathematical 
results which gave rise to them. Following this principle, we can distinguish three main 
philosophical views (...). ( . . . ) ! will argue that the discovery of non-Euchdean geometry 
gave rise to an empiricist philosophy of mathematics which was appHed to geometry, 
even if not to arithmetic. (...) I will trace a path which led from the arithmetization of 
analysis by Cantor and Dedekind (...) to logicism in the philosophy of mathematics. 
Finally (...), I will argue that the development of a pluraUty of systems of geometry in 
the period following the discovery of non-Euclidean geometry was the main factor in 
the rise of formahsm in the philosophy of mathematics (GiUies 1999, 173). 

The emergence of the abstract concept of n-dimensional vector space in H. 
GraBmann's work is not included in Gillies' list. Hermann and Robert GraBmann's 
1861 revolutionary treatment of arithmetic, or the foundational works published by 
R. GraBmann in 1872 and 1891 are also missing. In a footnote to the previously 
quoted passage, Gillies mentions that Volker Peckhaus and Georg Henrik von 
Wright did point this omission out to him (Gillies 1999, 173). This, however, did not 
have any impact on Gillies paper since, in the end, these contributions were left out 
of the classification scheme presented. 

This seemingly minor detail indicates that Gillies' position was not really 
determined by the mathematical achievements that shaped 19* century foundational 
as well as philosophical thinking, but rather by those problems that contributed to 
the emergence of intuitionism, logicism, and formalism as basic directions of 
foundational research. Because the GraBmann brothers did not directly contribute to 
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any of these directions, their ideas remain necessarily outside the horizon of Gillies' 
reflection. 

Gillies' paper can certainly be read independently of the contribution of the 
GraBmann brothers and it does provide an insightful discussion of the topics 
considered. At the same time, however. Gillies' omission of the contributions of the 
GraBmanns is symptomatic for a discourse which despite isolated challenges (Webb 
1980, Otte 1989) has established itself in present day research on the history of the 
foundations of mathematics. While acknowledging (as a rule in a few sentences) that 
the GraBmanns contributed to some extent to the development of the foundations of 
mathematics, this discourse attributes the emergence of the new axiomatic trend in 
mathematics during the 19^ century to debates which grew around the discovery of 
the non-Euclidean geometries, and of the arithmetization of analysis or more 
generally of mathematics as a whole. 

The objective of my paper is to briefly review the diversity of positions forming 
this discourse. In my view, such an analysis represents a necessary step on the way 
towards a more appropriate appreciation of the contributions of the GraBmann 
brothers to the foundations of mathematics. At the same time, this sort of discussion 
may be helpful for facilitating a critical self-reflection of those working on the 
history of the foundations of mathematics, concerning the more general issue of 
understanding the variety of contributions and positions in respect to axiomatics 
before Pasch and Hilbert. 

In his The Axiomatization of Arithmetic, Hao Wang writes: "The application of the 
axiomatic method in the development of numbers is not natural. Its rather late 
appearance is evidence" (Wang 1957, 146) and adds: 

In 1861, Hermann GraBmann published his Lehrbuch der Arithmetik. This was probably 
the first serious and rather successful attempt to put numbers on a more or less 
axiomatic basis. Instead of just the positive integers, GraBmann dealt with the totality of 
all integers, positive, negative and 0. Much of his method can be used to handle the 
smaller totaUty of all positive integers, too. He was probably the first to introduce 
recursive definitions for addition and multipUcation, and prove on such a basis ordinary 
laws of arithmetic by mathematical induction. (Wang 1957, 147) 

Wang continues by noting that "GraBmann did not present his development in an 
axiomatic form, although such a recasting is not difficult" (Wang 1957, 147). 

Even though, as it will be seen, H. GraBmann's arithmetic textbook is widely 
recognized as marking a decisive step towards the axiomatized arithmetic, at the 
same time there is considerable disagreement as to whether H. GraBmann's 
treatment as such should be seen as an axiomatic theory, and whether Hermann and 
Robert GraBmann themselves intended their treatment of arithmetic to be an 
axiomatization.^ Among other things, it must be noted that H. GraBmann's textbook 
does not contain any terms that might be interpreted as synonymous with "axiom" or 
"postulate" (such as, for instance, "Grundsatz"). Instead, Hermann GraBmann 
speaks of "definitions [Erklarungen]" only. 

Despite these important remarks on the Lehrbuch, Wang's paper concentrates on 
Dedekind's contribution to the axiomatization of arithmetic as pursued in the 1888 
Was sind und was sollen die Zahlen, and on the ideas contained in Dedekind's letter 
to H. Keferstein dated February 21^, 1890 (Wang 1957, 149 ff.). In this way 
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Dedekind rather than GraBmann is judged to have been the true promoter of the 
axiomatic treatment of arithmetic. 

In his Mathematics - the Music of Reason, Dieudonne emphasizes what he sees as 
the discrepancy between Euclid's treatment of arithmetic and his axiomatic approach to 
geometry. He takes note of the gap between Euclid's treatment of arithmetic and the 
19* century efforts, which eventually led to the axiomatization of arithmetic 
(Dieudonne 1992, 216). Unfortunately, Dieudonne does not consider the problem in 
detail. 

The Abrege d'Histoire des Mathematiques - the most significant historical work 
edited by Dieudonne - contains a large section (written by M. Guillaume) examining 
the evolution of axiomatics. This chapter concentrates on the relationship between the 
evolution of axiomatics, geometry, and logic (Dieudonne 1978, Vol. 2, 315-418). 
Axiomatics is only briefly mentioned in the section UAxiomatisation durant les dix 
dernieres annees du dix-neuvieme siecle. Guillaume explains that Peano defined the 
notion of real vector space in the abstract axiomatic manner that is still in use today, 
and that he subsequently extended this approach from geometry to arithmetic 
(Guillaume in Dieudonne 1978, Vol. 2, 331). He then adds that: (a) Peano's 
approach to linear algebra was influenced by Hermann GraBmann's 1844 
Ausdehnungslehre, and (b), that Peano's approach to arithmetic was influenced by 
Hermann GraBmann's 1861 Lehrbuch. Guillaume, however, choses to place 
GraBmann's treatment of arithmetic in the tradition that led to Godel's 
incompleteness theorem rather than to the axiomatic tradition (ibid., 331 f.). 

Even though Hermann GraBmann's work is described as the source of inspiration 
for Peano's axiomatization of linear algebra and arithmetic, neither Dieudonne nor 
Guillaume undertake a closer investigation of Hermann GraBmann's contributions to 
the foundations of mathematics or of his influence on Peano. In particular, the 
precise nature of Peano's debt to H. GraBmann remains unclear. 

A similar situation can be found in the writings signed "Nicolas Bourbaki". 
Bourbaki does not attribute the axiomatization of arithmetic to H. GraBmann but to 
the already mentioned 1888 work of Dedekind. The 19* century shift towards the 
axiomatization of arithmetic is brought in connection with an increased tendency of 
looking for models for the various mathematical theories inside arithmetic rather 
than geometry, a trend which we are told began around 1880 (Bourbaki 1974 
<1969>, 36 ff.). Bourbaki adds that prior to the 19* century hardly anybody 
seriously questioned the intuitive foundations of arithmetic already present in 
Euclid's Elements. He notes that even Weierstrass who is famous for his pursuit of 
rigor in analysis, did not see the need for a revision of the foundations of arithmetic 
itself. GraBmann is said to have been the first to pursue a "logical clarification" of 
arithmetic, but no details are given as to what this is supposed to mean (ibid., 38). 

In his 1980 book Mechanism, Mentalism, and Metamathematics, Judson Webb 
also takes on the issue of the axiomatization of arithmetic: 

Returning to elementary arithmetic, we recall that it had always been traditionally 
conceived in terms of algorithms and calculation. Even Gauss' Disquisitione 
Arithmeticae of 1801, which shifted the focus of arithmetic to proof of theorems in his 
congruence theory, had as an essential goal the explanation of why certain algorithms 
work as well as proofs that they will work. In the middle ages, 'algorithm' was defined 
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to be the arithmetic which calculates with hido-Arabic numerals. Conversely the 1771 
edition of the Encyclopedia Britannica defined 'Arithmetic' in terms of the notions of 
number and algorithm. Number was defined, following Euclid, as 'either a unit, or a 
multitudes of units', and once a person has 'the idea of number in his mind', he is ready 
for the 'science of arithmetic' (...). (Webb 1980, 43 f.) 

Arithmetic is described as having been originally conceived as a collection of 
algorithms (Berkeley's work is an illustration), no attempts having been made to 
organize these algorithms into a coherent deductive system. As Webb points out, 
this position can be still encountered as late as 1801 in GauB' work. 

Webb distinguishes between two fundamentally different approaches to number: 
the algorithmic and the deductive. The algorithmic approach "regards the basic 
operations of arithmetic as algorithms rather than as functions in the modern sense, 
i. e., as rules rather than sets" (Webb 1980, 44). The deductive approach is more 
theoretical; it 

reduces the notion of number to concepts of pure logic and then concentrates on the 
proofs of arithmetical propositions. (...) The algorithmic conception tends to stress 
formaUsms and concrete symbols while the deductive conception stresses concepts and 
abstract objects. (Webb 1980, 44) 

Webb writes that Dedekind and Frege worked to reduce number to pure logic, and 
on this basis, he classifies them among those pursuing a deductive treatment of 
arithmetic. As for H. GraBmann's treatment of arithmetic, he writes: 

An early proponent of logicism was H. GraBmann, who held that while geometry 
depended to some extent on spatial intuition, number depended wholly on the law of 
thought. He was the first mathematician both to approach arithmetic axiomatically and 
to employ recursive definitions for the basic arithmetical operations. The two are 
related, for if one decides to use, say, the recursive 'definition' a + (b + \) = (a + b)+ 1 
for addition, then the fact that it does not in general enable one to eliminate the plus 
sign, together with the difficulty of replacing it with anything more basic or obvious, 
obliges one to take it as an 'axiom'. (...) Recursive definitions for the basic arithmetic 
operations began to appear frequently in the literature after GraBmann and were seen as 
raising two kinds of problems, which we can classify roughly as logical and 
mathematical. (Webb 1980, 44) 

Webb endorses the idea that the axiomatization of arithmetic was an achievement of 
19* century mathematics. Moreover, unlike Wang, Webb does not hesitate to call 
GraBmann's 1861 approach to arithmetic an axiomatization. He also provides a 
justification for assigning GraBmann's Lehrbuch an axiomatic nature. The 
introduction of formally expressed, recurrent definitions in arithmetic such as 
a + (b -\- 1) = (a + b) + 1 leads to the fact (already noticed and criticized by Frege, 
and emphasized by Wang) that the sign "+" (of addition) which is to be defined 
appears both in the expression of the definiens as well as in the expression of the 
definiendum. Therefore, formally expressed recurrent definitions are circular. The 
only way to avoid regarding this circularity as detrimental to the entire construction 
is to take them as implicit definitions of the signs involved, in Hilbert's fashion. For 
Webb this means that these definitions must therefore be interpreted as axioms. 

According to Webb, GraBmann's axiomatization of arithmetic is a direct 
consequence of the shift towards explicit, formally stated, recurrent definitions of 
the basic operations of arithmetic. H. GraBmann's treatment of arithmetic is 
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described as a combination of the algorithmic and the formal. No justification for the 
rather doubtful claim that H. GraBmann was a forerunner of logicism is given. This 
statement, however, needs further clarification, for neither Hermann nor Robert 
GraBmann ever maintained that logic should be taken as a foundation for arithmetic 
or for any other mathematical discipline, but on the contrary, R. GraBmann 
developed logic as a branch of mathematics. Moreover, logicism and axiomatics are 
not necessarily compatible (Compare Russell 1919; Otte 2002). 

In 1982 D. Gillies published a book called Frege, Dedekind, and Peano on the 
Foundations of Arithmetic. In the introduction he explains that the broad reason for 
writing the book was to find an answer to the questions: 

Why did these authors get interested in the subject? Why did they feel that it would be 
desirable to provide a firm foundation for arithmetic? After all, the arithmetic of the 
natural numbers {0, 1, 2, ..., n, ...} had been widely employed by mathematicians in 
Western Europe since 1500. WHiy then was it only in the last quarter of the 19* century 
that serious attempts were made to examine the foundations of the theory of numbers? 
(Gillies 1982, 1) 

On the whole, the thesis defended by Gillies is that the axiomatic turn in arithmetic 
(at least as pursued by the authors mentioned in the title of his book) was a late 
outcome of the arithmetization of analysis (Gillies 1982, 1 ff.). Hermann 
GraBmann's name is mentioned only once in a section of the book in which Gillies 
undertakes a comparison between the account of the foundations of arithmetic given 
by Dedekind, Frege, Peano, and Hilbert. Gillies quotes Wang's statement according 
to which "Historically, Peano borrowed his axioms from Dedekind" (Wang in 
Gillies 1982, 66) and adds: 

I think it is correct to speak of Peano's axioms rather than Dedekind's axioms; for 
Dedekind was not trying to axiomatize arithmetic, but rather to define arithmetical 
notions in terms of logical ones. Another way of putting it is to say that Peano is not a 
logicist, but a forerunner of Hilbert's later formahsm. (...) Another difference between 
Dedekind and Peano is that Dedekind was a logicist, but did not use formal logic; while 
Peano was not a logicist, but did use formal logic. (Gillies 1982, 66) 

Gottfried Martin attempted a detailed historical analysis of the development of 
axiomatics since Kant (Martin 1972). The starting point of Martin's work is the 
observation that Kant has had a number of close collaborators who wrote 
mathematical textbooks in which they attempted to give mathematical substance to 
Kant's epistemological ideas. The presentation of mathematics given in these books 
differs from that provided in the other books of the time through the fact that they all 
adopt an axiomatic path (Martin 1972, 20 f.). Martin speaks of the axiomatic 
foundation of mathematics, but his work focuses almost exclusively on the 
axiomatization of arithmetic and on combinatorics. Apart from Kant's writings, 
Martin's analysis focuses on the philosophical works of Johann Schultz and Jakob F. 
Fries (many other authors such as F. Murhard and M. Ohm are also considered). 

Martin's work involves two related claims: a weak claim, and a strong one. 
According to the weak claim, Kant's treatment of the axiomatic nature of 
mathematics (in the Critique as well as in the Kant - Schultz correspondence) 
influenced Schultz, Fries etc. and it pushed them in the direction of providing an 
explicit axiomatic treatment of arithmetic. According to the strong claim, Kant's 
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work provided not only the philosophical foundations and impetus for an 
axiomatization of arithmetic, but stronger: the axioms published in Schultz' first 
edition (1789) of his Prufung der Kantischen Critik der reinen Vernunft (these are 
the commutative and associative laws for the addition of natural numbers), which, 
according to Martin, were taken over by Fries in his 1822 Die mathematische 
Naturphilosophie, belong to Kant. Martin claims that Kant was the first to recognize 
"the essentially axiomatic nature of arithmetic" and the first to have stated "two 
axioms of addition, namely the associative and the commutative law" (Martin 1972, 
66). 

Martin, however, was unable to find any conclusive historical evidence capable 
of sustaining his strong claim. As Friedman (Friedman 1992, 105 ff.) pointed out, 
Kant's own words go against Martin's strong claim. As far as the weak claim is 
concerned, Martin's case looks better. He, however, does not venture into any 
detailed investigation of this last thesis. Instead, he focuses unilaterally on 
establishing Kant's paternity of the axiomatization of arithmetic. In respect to 
GraBmann, Martin simply suggests a Kant-Schultz-Fries-Ohm-Hermann GraBmann 
link in the treatment of arithmetic, and in this way tries to present GraBmann's 1861 
revolutionary approach to arithmetic as a late technical improvement of the 
axiomatic ideal put forward by Kant (Martin 1972, 50). This limits the scope of his 
analysis and narrows the interpretation of the various passages of the writings 
discussed by him. 

Hans Wussing is best known for his important contributions to the history of 
group theory, and more generally, for his work on the evolution of the concept of 
algebraic structure. In his Die Genesis des abstrakten Gruppenbegrijfs of 1969, as 
well as in other works, Wussing provides a detailed historical reconstruction of the 
various lines of thought involved in the emergence of the abstract group concept. 
Wussing writes that the decisive element in the development of the abstract group 
concept consisted in the shift from a bottom-up approach (in which the concept of 
group is only implicitly treated as embedded in the study of some particular 
mathematical topic - Gauss' introduction of the congruence modulo a given natural 
number in number theory, or Cauchy's study of the theory of permutations are 
examples of this), to a top-down approach in which a group appears as "System 
definierter Relationen zwischen abstrakten Elementen" (Wussing 1969, 171). The 
group structure emerged as an autonomous object of mathematical study as a result 
of such a shift. The decisive step towards the passage from the bottom-up to the top-
down approach concerning the group concept is assigned to W. van Dyck's work 
(Wussing 1969, 182). This shift is important because as Wussing points out van 
Dyck was strongly influenced by Hermann GraBmann, Hankel, and Schroder 
(Wussing 1969, 180). 

Even though Wussing mentions GraBmann several times in his book, he nowhere 
undertakes a detailed examination of the structural-algebraic ideas contained in 
GraBmann's work. This is perhaps due to the fact that Wussing places GraBmann not 
in the group-theoretic tradition, but rather in the tradition that led to the development 
of the concept of vector space which is not dealt with in his book. In any case, a 
particularly important factor in the development of van Dyck's abstract group 
concept was his discussion of the possibility of framing various "operations of 
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multiplication which satisfy the associative but not the commutative law" (van Dyck 
in Wussing 1969, 180). As it is well known, GraBmann was one of the first to realize 
(as early as 1832) the possibility of introducing a non-commutative product concept 
in geometry, and this had an enormous impact on the development of his ideas. The 
idea of a possible H. Gra6mann-van Dyck link on this issue is not considered by 
Wussing. 

Wussing's work on the history of the abstract group concept, a concept whose 
emergence is strongly linked to the resurrection of axiomatics in 19* century 
mathematics, suggests that Hermann GraBmann's A\ may have had a major 
influence. Yet the precise nature of this influence, the structural-algebraic ideas, and 
the place of axiomatics in GraBmann's work as such are not considered. 

Hermann GraBmann's 1844 Ausdehnungslehre contains a short section dedicated 
to the presentation of the Allgemeine Formenlehre (General Theory of Forms). 
GraBmann describes it as a "new mathematical discipline" (GraBmann 1894 - 1911, 
Bd. 1.1, 33). To the modern reader this theory is bound to look like an axiomatic 
introduction of the basic structures of abstract algebra (semigroup, group, and field). 
In terms of the already mentioned distinction between the bottom-up and the top-
down approach to algebra, H. GraBmann's approach was clearly and deliberately 
intended to be top-down. Moreover, GraBmann claims that the development of this 
theory must precede the treatment of all the other "particular [speciellen]" 
mathematical disciplines: 

Antecedent to the division of the theory of forms into four branches is a more general 
subject that we may call the general theory of forms. In it are presented the general 
conjunctive law that apply to all branches alike. 
This preliminary subject is not intended simply to save repeating the same material in 
all four branches and thus to condense the treatment of the different parts, but also 
permits what naturally belongs together to appear together, and to act as the foundation 
of the whole. (H. GraBmann 1995 <1844>, 28; H. GraBmann 1894 - 1911, Bd. I.I., 28) 

Commenting on this passage, Lewis writes: 

This description might imply to a modem reader that GraBmann is establishing a system 
of axioms. But what is presented is not a set of unproven statements from which 
succeeding statements are deduced; rather, principles of connection, expressed by 
means of the general concepts equality and difference, and connection and separation, 
are symbolized. To call the 'basis of the whole' may mean nothing more than that it 
precedes and is used in the succeeding presentation. (Lewis 1977, 140) 

Even though Lewis recognized the possibility of interpreting the previous GraBmann 
quotes as an indication of an axiomatic intention, he believes that GTF was not so 
intended, and stronger, that it cannot be seen as an axiomatization of mathematics. 
Lewis' claims, however, are not easy to interpret. Ultimately, they seems to be based 
on the distinction between "unproved statements" and "deduction" on the one hand, 
and a "principle of connection" and establishing a "symbolic calculus" on the other. 
The term "axiomatics" is the one reserved for the former and denied of the latter. 
Unfortunately, Lewis does not explain his distinction any further so that its meaning 
remains somewhat unclear. In another short passage, Lewis attacks the same issue 
once again from another angle: 
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There is another depiction of mathematical progress which has had a dominant role in 
historiography of mathematical progress and which emphasizes the rise of the axiomatic 
method as the fundamental characteristic of modem mathematics. It is possible to view 
GraBmann's general theory of forms also as a part of this Hne of progress, but only a 
misinterpretation could allow the Ai as a whole to be viewed in this way. 
Such a misconception could come about from the association of the Ai with Peano and 
Whitehead, who in turn are associated with the axiomatic development. But there is no 
evidence that the Ai influenced these two in this way, and neither Peano nor Wliitehead 
discussed the larger import of the Ai in the development of mathematics. (Lewis 1977, 
129) 

Here again, Lewis seems to be explicitly acknowledging the possibility of 
consistently interpreting the GTF as providing a formal axiomatic foundation of the 
individual mathematical disciplines. In the end, however, this option is dismissed 
indirectly by claiming that GraBmann's Ai did not participate to the axiomatic turn 
in algebra which is assigned to Peano and Whitehead. 

Lewis' paper contains a detailed discussion of many of the fundamental ideas of 
Hermann GraBmann's Ausdehnungslehre. Yet, Lewis is interested primarily in 
clarifying the relationship between Schleiermacher's philosophy and Hermann 
GraBmann's conception as outlined in the 1844 Ausdehnungslehre. Foundational 
issues are discussed only briefly. On the whole, Lewis concludes that GraBmann's 
GTF cannot be seen as an axiomatic foundation of mathematics and that it was not 
so intended. 

Despite his renewed, perceptive discussion of the role of the General Theory of 
Forms in the Ai, Jean-Luc Dorier endorses Lewis' conclusion, and in addition to 
that, he claims that GraBmann's approach to the second edition of the 
Ausdehnungslehre which was published in 1862 was not axiomatic but merely 
"formalistic:" 

he bare formaUsm of the A2 is the artificial result of GraBmann's attempt to satisfy the 
criticisms received after the edition of 1844; this resulted in the inaccessibility of most 
of the intuitive discussion, which is to be found in the Ai. (Dorier in Schubring 1996, 
181) 

The same position was defended in an earlier paper as well (Cf. Dorier 1995). 
In his study The Axiomatization of Linear Algebra: 1875 - 1940, G. H. Moore 

attempts to settle a question raised by MacLane concerning the origin of "the 
definition of a vector space as a set of elements subject to suitably axiomatized 
operations of addition and multiplication by scalars, and not just as a set of n-tuples 
of scalars closed under these two operations?" (MacLane in Moore 1995, 263). 
Moore's answer is: "The relevant period for axiomatization and acceptance extends 
from 1875 to about 1940" (Moore 1995, 263). Both Dorier as well as Moore 
mention some of Hermann GraBmann's contributions, but they do not undertake a 
detailed examination of his ideas and they both refuse to credit GraBmann's 
contributions to have played a fundamental part in the development of axiomatics in 
general or in the axiomatization of the vector space structure. 

The contributions of the GraBmann brothers to the development of algebra and 
arithmetic were also discussed by Volker Peckhaus (Peckhaus 1997, 243-250). 
Peckhaus' objective is to examine the interconnection between the development of 
logic and that of algebra since Leibniz. The presentation of the ideas of Hermann 
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and Robert GraBmann does not touch upon the issue of the contribution of the 
GraBmanns to the emergence of axiomatics either in respect to abstract algebra or in 
respect to arithmetic. 

Peckhaus' book contains just two more or less explicit references to the 
contributions of the GraBmann brothers to axiomatics. Firstly, we are told that the 
significance of H. GraBmann's Allgemeine Formenlehre for the development of 
"formalism [Formalismus]" was discussed by Jean Cavailles in (Peckhaus 1997, 
245; Cavailles 1938). Secondly we are reminded that Peano's Calcolo Geometrico 
provides an axiomatization of vector algebra which builds on H. GraBmann's 
contributions (Peckhaus 1997, 246). Both claims are certainly correct. Both, 
however, are hardly helpful in establishing the merits of H. GraBmann's work. Even 
though axiomatics is indeed the central theme of Cavailles remarkable book 
mentioned by Peckhaus, at the same time, the contribution of the GraBmann brothers 
is only briefly mentioned in it. Cavailles does not provide a detailed examination 
either of the complex foundational ideas that can be found in the work of the 
GraBmanns nor of any other aspect of these contributions (Cavailles 1981 <1938>, 
48 ff.). Moreover, Cavailles writes that GraBmann's theory was developed based on 
extensive use of intuitive evidence taken from the peculiar use made of pictorial 
representations, and that the formalisms used were just an attempt to dissimulate this 
intuitive input (Cavailles 1981 <1938>). 

Peckhaus does not undertake a detailed examination of the contributions of the 
GraBmann brothers. He is only interested in the contributions of the GraBmanns in 
as far as they prepared the ground for Schroder's work on algebra. Schroder's 
contribution is assigned a greater historical significance. This option is reflected in 
Peckhaus' comparison between the GraBmann brothers and Schroder concerning the 
use of recurrent definitions. Speaking about recurrent definitions such as 
a + (b + e) = (a -{- b) -h e, Peckhaus writes: 

This type of definition which plays only a marginal role in [Hermann - M.R.] 
GraBmann's work was taken over by Schroder who used it systematically in his 
approach to the introduction of the arithmetical operations. (Translation M. R.) 
Diese bei [Hermann - M. R.] GraBmann nur beilaufig verwendeten Defmitionsarten 
werden von Schroder ubemommen und zu einem durchgangigen Gestaltungsprinzip fiir 
die EinfUhrung der arithmetischen Rechnungsarten ausgebaut (Peckhaus 1997, 247). 

Peckhaus' analysis certainly has the merit of uncovering various important aspects 
of Schroder's seminal contributions. At the same time, it must be pointed out that 
recurrent definitions were by no means used "beilaufig" by the GraBmann brothers 
but were central both to the 1861 treatment of arithmetic as well as to the 1872 
treatment of the General Theory of Forms. 

As far as the contribution of the GraBmann brothers to the emergence of formal-
axiomatics in general, and to the axiomatization of arithmetic and algebra in 
particular is concerned, the discussion outlined above leaves us with an 
unsatisfactory situation. While we are told that this contribution represented a 
turning point in the treatment of the foundations of arithmetic, and that it had a 
significant impact on the development of the abstract concepts of group and vector 
space, we are not given any significant information about the mathematical and 
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epistemological origin of this shift, of the nature of the shift, or of its relevance for 
the evolution of axiomatics in general. 

Many important questions remain open and the answers provided controversial. 
Some of them are: (1) when did the shift from the pre-axiomatic to the axiomatic 
stage in the treatment of arithmetic really occur (in H. GraBmann's work, or earlier 
in the writings of Kant and Schultz, or rather subsequently in the work of Peirce, 
Dedekind, etc.)? (2) Although it is true that events such as the discovery of the non-
Euclidean geometries, the arithmetization of analysis and of geometry, and the 
paradoxes of set theory have played an important role in the resurrection of 
axiomatics during the 19* and the first half of the 20* century, these topics did not 
play any role whatsoever in the works of the GraBmann brothers. If this is true, then 
what were the mathematical and epistemological sources of Hermann and Robert 
GraBmann's axiomatic turn? (3) Indeed, why did an outstanding mathematician such 
as H. GraBmann bother taking up the foundations of arithmetic? (4) Did Hermann 
and/or Robert GraBmann regard their treatment of arithmetic as an axiomatization? 
(5) Does the work of the GraBmann brothers contain other ideas that are relevant for 
a history of axiomatics? (6) Should the foundational ideas of the GraBmann brothers 
be seen as a source of logicism or rather of formalism, or perhaps as belonging to 
some other tradition? (7) Over and above all that, the previous discussion also 
hinges upon another delicate general distinction between an axiomatic mathematical 
theory and a deductive but non-axiomatic mathematical theory. As far as I can see, 
there is no consensus on this issue between the various historians dealing with the 
foundations of mathematics. As long as one is interested only in the technical 
outcomes, this may not have a great significance. As soon as we turn to historical 
and to the philosophical matters related to them the situation changes and a much 
deeper investigation of these matters becomes necessary. It seems to me that the 
time has come to follow Judson Webb's and Michael Otte's example, abandoning 
the rather prudent position in respect to the contributions of Hermann GraBmann to 
the development of the foundations of mathematics, and replace old prejudice by 
new substantial research. 

Institutfur Didaktik der Mathematik, Universitdt Bielefeld 

NOTES 

' This attitude is expressed in even stronger terms by Herbert Stachowiak: "As far as mathematics is 
concerned, the only relevant contributions to axiomatics made between Euclid and Hilbert come down 
basically to the debates over Euclid's postulate." (Stachowiak 1971, 311). 
' Wang does not explain why he thinks that an axiomatic treatment of arithmetic is "unnatural." He also 
does not explain why he thinks H. GraBmann's treatment of arithmetic is not cast in axiomatic form. 
^ Compare Radu 2000 and Radu 2003. 
^ The German word "Erklarung" means explanation, but Hermann GraBmann as well as his brother use 
this term in the sense of "definition." 
^ A similar view is advocated by Medvedev (Medvedev 1981, 223). 
^ Demidov also considers the relation between group theory and the axiomatic method. Among the 
mathematicians which contributed to the axiomatization of the "new algebra" during the 19th century he 
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mentions Hankel, Weber, and Dedekind. Although H. GraBmann's work is also mentioned, no connection 
is made between GraBmann and the axiomatization of algebra (Demidov 1970). 
^ Here the expression "theory of forms" is used as another name for "mathematics". 
^ This rejection of placing the Allgemeine Formenlehre in the axiomatic tradition is not based on Lewis 
analysis of its content, but rather on the historical point according to which there is no clear evidence of 
the fact that (as an axiomatic theory) the GTF has had an impact on Peano or Whitehead. Lewis' 
historical argument is rather weak. Indeed, GraBmann's treatment of the Calculus of Extension and the 
account of arithmetic developed in the Lehrbuch are closely related to the axiomatic spirit which 
permeates the Ai at several levels, and this work was expUcitly connected to axiomatics. Lewis' thesis is 
called into question by Wussing's discussion of van Dyck's development of the abstract group concept. 
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GERT SCHUBRING 

A CASE STUDY IN GENERALISATION 

The Notion of Multiplication 

Abstract. While the operation of multipUcation is presented by historiography as an unproblematic no
tion which did not see substantial evolution, a polemic by Ampere against Bezout's arithmetic textbook, 
highly popular in France over many decades, is used here to unravel decisive restrictions imposed on 
multipUcation in various mathematical cultures since Old Babylonian times. The analysis illustrates not 
only the controversy about the existence of a Greek "geometric algebra," but makes accessible also re
flections on non-commutativity of operations in the 18^ century aheady. The concept of multipUcation 
thus underwent characteristic changes in the process of generaUsing mathematics. 

Key words: arithmetic operations, de-contextuaUzation, geometric algebra, non-commutativity, qunati-
ties vs. numbers, restrictedness of multipUcation. 

Multiplication seems to be a simple and conceptually and epistemologically unprob
lematic, innocent notion. This widespread assumption is reinforced when one con
sults the chapter on multiplication in the famous Tropfke for algebra, i. e. the major 
classical historical source for the development of concepts and notions in elementary 
mathematics. Of its twenty-five pages, the chapter devotes barely more than half a 
page to the conceptual history of multiplication stricto sensu - the rest discussing 
various uses of signs for the operation of multiplication, the terms used, and repre
sentations in different cultures. The main content of the short conceptual paragraph 
is given by a reference to Euclid's definition of multiplication as repeated addition, 
in Book VII, definition 15: 

A number is said to multiply a number when that which is multipUed is added to itself 
as many times as there are units in the other, and thus some number is produced (Heath 
1956 II, 278; Tropfke 1980, 207-208). 

Multiplication thus seems to present the case of a stable notion with a meaning re
maining identical over millennia. 

I began to doubt this harmonic view of an unchangeable identity when I stum
bled on a harsh critique, by Ampere, of how Bezout presented multiplication in one 
of his textbooks. As Etienne Bezout (1730 - 1783) was one of the most influential 
French textbook writers - on an international level, too -, meanings of multiplica
tion not conforming to the traditional view would imply that such "non-conformist" 
views were rather broadly disseminated, and even widely accepted. Moreover, Am
pere proved to be an analyst highly sensitive to conceptual problems in elementary 
mathematics. This may sound surprising, since Andre-Marie Ampere (1775 - 1836) 
is remembered as an outstanding researcher in physics and chemistry, and also in 
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philosophy; his profound research into the foundations of mathematics are not well 
known, however. Even in a recent authoritative biography of Ampere, it is claimed 
that he would have had the ability to contribute to rigorous foundations of calculus, 
but it is also claimed that his interests never focused on this topic (Hofmann 1996, 
59) 

As his Nachlafi reveals, however, Ampere strove for clarity and rigor in the 
foundations of mathematics - while teaching calculus and mechanics at the Ecole 
Poly technique. Numerous manuscripts in his Nachlafi prove that he worked inten
sively over many years to prepare a comprehensive treatise on pure mathematics, 
from arithmetic to the calculus. He never succeeded in completing this text: in par
ticular, the repeated attempts to come to terms with the first chapters in arithmetic 
show on the one hand his effective concern for foundations, but on the other hand 
that there were still unsolved problems inhering in the number concept. 

In one of these numerous fragments of the arithmetical part within his projected 
treatise. Ampere discussed the concept of multiplication; and there he made the fol
lowing critical remark: 

Avant de finir cette petite digression, je crois devoir dire un mot d'un passage de Bezout 
sur la nature de 1'operation dont je traite, et qui tendrait renverser le premier principe, 
qui consiste dans I'invariabilite du produit quelque soit celui des deux facteurs qui ser-
vent de multiplicateur: On trouve a 1'article 117 de I'artillerie deux multiplications de 

s d 

17 toises par 34#.10 .2 . Dans I'une, le produit est exprime en livres et dans I'autre en 
toises, et il dit qu'il n'a donne ces deux exemples de multiplication que pour prouver 
qu'en changeant le multiplicande avec le multiplicateur on pent changer le produit. 

As Ampere points out here, Bezout's claim in his series of textbooks for artillery of
ficers, that multiplying two quantities in a different order will result in different 
products would undermine the basic property of multiplication: that the product is 
independent of the choice of one of the two factors to serve as multiplicator. In fact, 
commutativity had always constituted a fundamental element of the notion of multi
plication. Euclid had proved it, as proposition 16 of Book VII, and Antoine Arnauld 
had even postulated the independence of order as an axiom, in his famous innova
tory textbook Nouveaux Elemens de Geometrie of 1667: 

c'est la mesme chose dans la multiplication de commencer par lequel on veut des deux 
nombres que Ton multiplie (Arnauld 1667, 2). 

Let us look therefore at Bezout's exposition in his arithmetic textbook for the artil
lery^ There, Bezout had in fact multiplied the two factors mentioned in a different 
order. First, the compound factor by 17 toises (fathoms): 
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E X E M P I B V, 

A raison de 34*' lo^ 2* la wise » 
Cgmbien doivent couter. . 17 toises ? 

238^ 
34 

8, 
0, 
0. 

586. 

0-̂  

10 

-*7 
s. 

12. 

o>« 

10 

.10 

Figure 1. Example from Bezout(1800). 

And, thereafter, in inverse order: 

^^ tO'SC*. 

34*- 10-^ Q*, 

68'- oP'- 0?=*' o'' of'*-

5i 

8. 3 

0. 0. 10. 2. 4 I 

586, 3. 10. »• 4 r 

F/̂ Mre 2. From BezoM? (1800, 90). 

For Bezout, this was not a marginal observation; rather, he emphasized the impor
tance of distinguishing between multiplicator and multiplicand, since - despite the 
equality of the factors in both cases - "the two products are different" (ibid., 91). 

One observes two differences between both products. First, there is the numeri
cal difference to which Bezout is apparently alluding. That is due to the complex 
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system of non-metrical sub-units of toises (fathoms) and of livres (pounds) respec
tively: 

Table 1. List of sub-units used by Bezout 

sign lengths sign prices 

t 1 toise = 6 pieds # 1 livre = 20 sous 

pi 1 pied =12 pouces s 1 sous = 12 deniers 

po 1 pouce = 12 lignes d 1 denier 

I 1 ligne = 12 points (pts) 

The second difference was a difference in the dimension of the products, and this 
constituted the most problematic feature for Ampere, since we saw that he objected 
to the one product being expressed in livres and the other in toises. 

These differences reveal the hitherto hidden problem in the history of the notion 
of multiplication. Bezout's intention had been to show "the importance" of distin
guishing between multiplicand and multiplicator when both of them are concrete 
C'concrets") (Bezout 1800, 91). What was hence at stake was the multiplication not 
of abstract entities, i. e. numbers, but of "concrete" or "named" quantities, i. e. mag
nitudes. Euclid's definition quoted above only applied to numbers (dpi0|i6g): actu
ally, only to integer numbers; likewise, Arnauld had formulated his axiom of com-
mutativity for numbers, too. Operations on numbers are not necessarily defined for 
quantities, too. 

The historical problem of multiplying general quantities, and its evolution, has 
not been recognized and studied in traditional historiography. Only relatively re
cently has research on the nature and meaning of operations in arithmetic and in al
gebra begun, in particular for some key periods and particular key cultural settings. I 
will briefly recapitulate here some important results for Babylonian mathematics, 
Greek mathematics, and early modern European mathematics and show some com
mon patterns which highlight the relation between magnitudes and numbers as a key 
problem which went beyond the illusion of a stable notion of multiplication which 
always remained identical. At the same time, it will become evident that the problem 
was well known and controversially discussed in particular in the pre-modern pe
riod. 

BABYLONIAN MATHEMATICS 

Since the pioneering work of Otto Neugebauer in the 1920s and 1930s, who was the 
first to seriously study Babylonian cuneiform texts and unravel their mathematical 
meaning, his interpretation of these texts as constituting a Babylonian algebra has 
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been generally shared and even been widely disseminated by B. L. van der Waerden. 
Recent critical research has reassessed this pioneering work and the underlying as
sumptions of interpretation. One of the major outcomes of this research consists in 
showing how deeply contextualised the mathematical notions were, and how far 
Babylonians really were from dealing with "pure" concepts. 

A first perspective for these new approaches was provided by research into the 
generalisation of the number concept from an utterly complex contextualisation of 
magnitudes. Due to the strenuous efforts of an international group analysing Sumer-
ian and Babylonian cuneiform texts, which began mainly as book-keeping records 
for the needs of state administration, it has been possible to reconstruct the process 
of transformation of signs for measuring quantities into number signs, and the estab
lishment of number systems. The conceptual and technical problem to be solved for 
this reconstruction was determined by the fact that the first sign systems were all 
closely tied to the concrete objects they were to measure, so that the same sign may 
have a different meaning when applied to a different class of objects. In fact, the re
search group identified about 6,500 different number signs; the researchers were 
able to trace their transformation into more and more "abstract" and general num
bers, loosening their ties to the object classes and quantities they were meant to 
measure (see Nissen, Damerow, Englund 1993). 

And only recently has it become clear that arithmetical operations had to un
dergo an analogous process of generalisation, of de-contextualisation. Hitherto, the 
postulated Babylonian algebra had - as H0yrup has put it - "looked astonishingly 
modern and similar to ours" (H0yrup 2002, 7-8). The research result which entirely 
overthrew this received algebraic interpretation was to show that clear-cut arithmeti
cal operations did not exist which would be the necessary basis for the supposed al
gebra. There were no uniform, "numerical" operations; rather, there existed several 
operations molded according to different - mainly geometrical - contexts, instead of 
just one of the four classical operations. 

In fact, there is not just the one canonical type of addition which is familiar to us; 
instead there are two additive operations. The first can be understood as "append
ing" and is non-commutative, since one entity is always "appended to" another so 
that it becomes absorbed into the other which "conserves its identity while increas
ing in magnitude". This operation is only used for "concretely meaningful 'addi
tions"' (H0yrup 2002, 19). The other additive type can be understood as "accumulat
ing"; it is commutative. "It adds the measuring numbers of two or more" quantities 
and hence resembles the later standard notion of addition (ibid.). 

As for subtraction, H0yrup identified two distinct forms for this, too: "removal" 
and "comparison". He sees removal as the inverse of appending: "it can be used 
only when the subtrahend is really part of the entity from which it is subtracted". 
The other form, comparison, is not a reversal of any kind of addition; it is a concrete 
operation, and not on numbers, "used to say how much one magnitude A exceeds 
another magnitude B which it does not contain'' (ibid., 21). 

The most complicated case is presented by multiplication, however! H0yrup dis
tinguished four different operations - even with several numbers of terms expressing 
them - for what had traditionally been understood as multiplication. The first comes 
near to the repeated addition of numbers: it applies to the multiplication of two 
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numbers a and b as "a steps /?" (ibid., 22). The next is called "raising" or "lifting" 
and applies to the determination of a concrete magnitude by means of multiplication; 
it is used for multiplying magnitudes with scalar factors and for the calculation of 
volumes from base and height (ibid.). The third type, literally named "the double", 
applies to repeating concrete magnitudes and is translated by H0yrup as "to repeat" 
or "to repeat until n, n between 2 and 9" (ibid., 23). 

In fact, this is an exclusively geometrical operation, since it does not represent an 
operation between numbers and numbers, nor between numbers and quantities. It is 
the geometric operation of producing a rectangle. H0yrup translates its Babylonian 
term as "to make [two segments a and b ] hold each other".^ This is sometimes ex
pressed in the texts as "I have built a surface" (ibid.). 

And division as an arithmetical operation in its own right and as the reverse of 
multiplication did even not exist in Babylonian mathematics. There were instead 
several procedures which exerted for certain types of magnitudes some analogous 
functions (ibid., 27 ff.). 

GREECE AND EUCLID 

The controversy of the 1970s and the 1980s as to whether a "geometric algebra" ex
isted in ancient Greece, and in particular in Euclid's Elements, has revealed some
what analogous limitations and the contextual nature of the allegedly arithmetical 
operations within this mathematics. Since 1975, Sabetai Unguru has attacked the 
largely accepted view similar to Neugebauer's interpretation for Babylon that Greek 
- and especially Euclid's - geometry was really nothing but algebra dressed up 
geometrically. Whereas Unguru first explored historical, philosophical, and linguis
tic arguments against this received view, he questioned its mathematical justification 
in two seminal papers in 1981 and 1982, jointly with David Rowe (Unguru/Rowe 
1981 and 1982). The starting point for this endeavour was the consideration that 

the existence of a coherent system of arithmetical operations is a necessary (though not 
sufficient) precondition for the existence of any system of algebra (ibid. 1981, 4). 

Investigating whether there was a coherent system of arithmetical operations in 
Greek mathematics, one notes a striking generalisation with regard to Babylonian 
times: addition and subtraction now prove to be well-defined, universal and unre
stricted operations. Both operations are applicable to all kinds of quantities, numbers 
as well as magnitudes - provided that these are - within one operation - of the same 
kind (ibid., 14 ff.). The multiplication operation is not general, however, and more 
restrictive. In fact, as outlined above, multiplication is explicitly defined for numbers 
only and can at best be extended to multiplying quantities by numbers. The reason 
for this restriction is that only thus can the homogeneity between the concerned 
terms be maintained. And homogeneity between the magnitudes is the basic pre
condition for all operations in Greek geometry. Thus, one will never find, for in
stance, a line added to a rectangle since these are not homogeneous figures. 

The consequence of having homogeneity as the fundamental property which any 
operation has to possess is that it destroys the likewise basic assumption of the sup
posed "geometric algebra" - namely, that the operation of rectangle formation can 
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be understood as the missing multiplication of a line segment by a line segment. 
Since the product would be two-dimensional, it would not be homogeneous with the 
one-dimensional factors. Rectangle formation is hence an entirely geometrical pro
cedure and does not constitute the missing generalised multiplication, (ibid., 30 -
31).Within the four arithmetical operations addition, subtraction, multiplication, and 
ratio formation (as a form of division) which form a system when applied to homo
geneous quantities (i. e. of the same dimension), multiplication plays an exceptional 
role: 

Whereas addition, subtraction, and ratio-formation are defined for arbitrary pairs of ho
mogeneous magnitudes, multipHcation requires that [at least] one of these magnitudes 
be a number (ibid., 28). 

Grattan-Guinness has recently systematised these results with respect to the re-
strictedness of the various operations; he also printed a table showing for which of 
the three types of Greek quantities - numbers, magnitudes, and ratios - which opera
tion is defined and which different meaning it entails according to the respective 
type of quantity. It can thus be nicely demonstrated that it is mainly due to the miss
ing generality of multiplication that there was no algebra in Greek mathematics 
(Grattan-Guinness 1996, 371). 

EARLY MODERN EUROPE 

As far as early modern Europe is concerned, recent research into the history of 
mathematics has shown that the problem of establishing a general operation of mul
tiplication remained unsolved: due to the fact that it was mainly geometric quantities 
which were the subject of arithmetical operations, the homogeneity of the product 
was still violated. 

The seminal tendency for mathematics in the early modern period was to strive 
for a fusion of arithmetic, algebra, and geometry, and to remove or at least to dimin
ish the fundamental differences between numbers and arithmetical calculation, and 
geometrical magnitudes and construction respectively. One was prepared to suspend 
the strict methodological prescriptions of Greek geometry, and to relax the restric
tions of multiplication. 

Whereas the introduction of a unit length had been excluded in Greek geometry 
(Unguru/Rowe 1981, 21-22), one now employed numbers in practical geometry and 
units of lengths and areas so that, at least in practical contexts, multiplication of 
geometrical magnitudes was interpreted numerically (Bos 2001, 126). On the other 
hand, the dimensional interpretation of the operations in geometry remained an ob
stacle to the merging of arithmetical and geometrical methods; the use of numbers 
continued to be judged as inappropriate in geometry, from the viewpoint of theoreti
cal mathematics (ibid., 131). 

By the end of the sixteenth and the first half of the seventeenth centuries two im
portant yet decisively different approaches to overcome these obstacles had been 
developed - one by Fran§ois Viete (1540 - 1603) and the other by Rene Descartes 
(1596 - 1650). A major feature of both approaches was - as will come as no surprise 
now - a proposal for a solution to the multiplication problem. 



282 G. SCHUBRING 

Viete's intention was to provide an algebra for abstract magnitudes, thus uniting 
arithmetic and geometry. As Henk Bos has shown, his approach was inspired by ge
ometry: he not only allowed the multiplication of two line segments, he even al
lowed an - in principle - unlimited scale of successive higher-dimensional species 
of magnitudes. Since in geometry the highest dimension for magnitudes was three -
the dimension of space - Viete refrained, according to Bos, from an interpretation of 
products of more than three line segments (ibid., 148). 

Viete expressed "scalar" quantities, resulting from successive multiplications of 
a length, a "side", by itself thus essentially powers, in dimensional terms: 
• side, square, cube, square-square, square-cube, cube-cube, etc., 

and "comparative" quantities, resulting from multiplying lengths and widths 
such as: 

• length or width, plane, solid, plane-plane, plane-solid, solid-solid, etc. 
The product of magnitudes increased in dimension, its dimension being the sum 

of the dimensions of the two factors. In Viete's approach, multiplication thus did not 
constitute a closed operation (Bos/Reich 1990, 188). 

Descartes, for his part, chose a different route which preserved dimensional ho
mogeneity. As is well known, he introduced - for the first time explicitly in non-
practical mathematics - a unit length segment and thus succeeded in obtaining line 
segments as results, thus achieving closed operations. Descartes did this by reinter
preting Euclid's construction of the fourth proportional in book VI, 12, using the 
first element as his unit length. In the same way, he was able to interpret Euclid's 
construction of the mean proportional (VI, 13) as square root extraction. Descartes 
thus proceeded to solutions for quadratic equations and even to higher-order roots by 
means of mean proportionals. It is important to stress that Descartes - while operat
ing with line segments and introducing a unit line segment - did not identify line 
segments with their numerically expressed lengths, apparently due to the problem
atical conceptual status of irrational numbers (Bos 2001, 293-296). 

CONVOLUTIONS AND ALTERNATIVE SOLUTIONS 

Notwithstanding Descartes' generalisation of the notion of multiplication, the con
ceptual problems in establishing a truly general multiplication persisted. Descartes' 
solution was still a special case: multiplying line segments by line segments. Practi
cal problems, in particular in the considerably extending physics, implied multiplica
tion between different kinds of magnitudes, however - like mass and velocity, or in 
commercial contexts quantities and prices. Practitioners would not be impressed by 
theoretical prohibitions to multiply arbitrary magnitudes by magnitudes. 

In fact, the case of Bezout's arithmetic, criticised by Ampere, shows that the ma
jor problem in practice was to multiply different magnitudes - a problem which has 
not been studied at all by historiographers. Since Bezout was a well-known and 
typical author of textbooks one can reasonably expect that his approach to multiply
ing magnitudes was not an isolated one in his time. Alerted by the Bezout case, I 
found several authors exhibiting analogous practices. A particularly telling example 
is presented by the Italian mathematician Leonardo Salimbeni (1752 - 1823), since 
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he attempted, in a memoire of 1794, to clarify the notion of multiplication. His 
thinking started from the observation that Euclid's definition only concerned num
bers and that a rigorous definition for magnitudes was still missing. 

Salimbeni's solution was to propose a modification of Descartes' definition for 
the multiplication between line segments: 

The true and general definition of the algebraic multiplication is the following: One says 
that one magnitude multiplies another magnitude when one postulates: as the concrete 
unit of the multiplying magnitude is to this magnitude, so is the multipHed magnitude to 
the other magnitude which becomes produced (Sahmbeni 1794, 484; my transL, G. S.). 

The modification seems to be a minor one: the unit is restricted just to the quantity 
of the multiplicator, which can be symbolised thus: 

U .• A :: B:P, 

yet this shows at the same time the incoherence within this definition. The unit is 
only able to measure the magnitude A, not however magnitude B, which is of an
other kind. Salimbeni tried to circumvent this contradiction by giving the rank of a 
"theorem" to SL petitio principii: 

Theorem: When one magnitude multipHes a magnitude, the product will be homogene
ous with the multipUed magnitude (ibid., 487). 

The product should thus always have the same dimension as the multiplicand - or, 
as the first factor. Multiplication should maintain the dimension of the multiplicand, 
and should not be affected by the dimension of the multiplicator. After "proving" 
this theorem ~ basing himself on his "true" notion of multiplication - Salimbeni ve
hemently attacked traditional approaches, and in particular that of Viete, dismissing 
them as "falsissimos": 

Simple and obvious as this theorem is, it is nevertheless contrary to the commonly re
ceived idea. Who has not read again and again that a line multiplying a line produces a 
surface, and that a Une multiplying a surface produces a soUd? This all is entirely false 
[...] since we have proved that the magnitude produced is of the same kind as the mul
tipUed one (ibid., 487).-^ 

One wonders how Salimbeni would have reacted to reverting the order of A and B in 
multiplying, and will note that he was not only fully aware that, in his conception, 
multiplication was no longer commutative, but he seemed even quite proud of this 
achievement. In fact, he criticised the fact that a postulate that the product of two 
magnitudes should not depend on the order was accepted in Algebra: 

when two magnitudes are multiplied by each other in a different order, the products are 
mutually equal [...] But, taken generally, this theorem is false; being true only in the 
case when both magnitudes A and B are of the same kind (ibid.). 

Salimbeni confidently explained his notion by an example analogous to the one by 
Bezout: having to multiply a length, 3 piedi, and a price, 70 libbre, the product will 
be either 210 piedi or 210 libbre (ibid.). 
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It is remarkable to see the notion of non-commutativity emerging through at
tempts to generalise the notion of multiplication. On the other hand, these efforts did 
not lead to the desired generalization; rather, they aggravated the problem. The 
eventual solution was achieved by a radical algebraisation, by separating numbers 
from geometric and other magnitudes. For calculation, magnitudes became defi
nitely represented by numbers (now based on the concept of real numbers). More
over, the introduction of metrical units made questions of conversion less salient. 
And the triumph of pure mathematics relegated dealing with magnitudes to fields of 
application, of a no longer foundational nature. 

It often goes unnoticed that - this strict algebraisation notwithstanding - an al
ternative approach to generalising multiplication has been implemented in the his
tory of mathematics: in the realm of geometry. In fact, it was a major motivation for 
Hermann G. GraBmann (1809 - 1877) - when elaborating his Ausdehnungslehre 
since the 1830s - to achieve a general notion expressly of multiplication for geomet
ric magnitudes. The notions and theories introduced and developed by him - includ
ing the first coherent notion of non-commutativity - led eventually to the successes 
of linear algebra and multilinear algebra. There are effectively alternative paths in 
the history of mathematics - even for such apparently straightforward processes as 
generalisation. 

Institutfur Didaktik der Mathematik, Universitdt Bielefeld 

NOTES 

^ The second, parallel series of his Cours de Mathematiques was intended for the training of engineers. 
" This comes close to the formation of rectangles as defined in EucUd's book II where rectangles are 
formed by two segments which "contain" them (in German somewhat clearer: "umfassen") (Heath 1956 
I, 370). 
^ "La vera e generate difinizione delta moltipUcazione algebricha e questa: Una grandezza dicesi molti-
pHcare una grandezza, quando facciasi come I'unita concreta delta grandezza moltipUcante alia stessa, 
cosi la grandezza moltiplicata ad un'altra grandezza che si produce." 
"* "Teorema: Se una grandezza moltiplichi una grandezza; il prodotto sara omogeneo alia grandezza 
moltiphcata." 
^ "Quantunque sempHce e manifesto sia questo Teorema, egh e pero contrario ad una idea comunemente 
ricevuta. chi e, che non abbia molte e molte volte letto: che una Hnea moltipUcando una linea produce una 
superficie, e che una linea moltipUcando una superficie produce un soUdo? tutte cose falsissime. [...] 
poiche abbiamo dimostrato che la grandezza prodotta e dello stesso genere della moltipUcata." 
^ "che se due grandezze con vario ordine moltipHchinsi insieme, i prodotti sono uguaU fra loro. [...] Ma 
questo Teorema preso in senso generale [...] e falso; non essendo vero che nel caso in cui le le grandezze 
A [e] B sieno dello stesso genere." 
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Abstract. This text discusses the institutionaUzation of mathematics research in Brazil with emphasis on 
the cooperation networks involving Brazil and Germany. These cooperation networks began systemati
cally at the Instituto de Matematica Pura e Aplicada [MPA] (Institute of Pure and Applied Mathematics) 
in Rio de Janeiro, Brazil. An example is the work of the Brazilian mathematician Paulo Ribenboim at 
Bonn University and his contact with the German mathematician Wolfgang KruU. Another example is the 
contribution from the German mathematician Otto Endler in Brazil. Another collaboration arose during 
the 1990s: Michael Otte and his work preparing Brazilian researchers for the investigation of the history 
of mathematics. 
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Cooperation networks involving Brazil and Germany began in the 1950s. On one 
side, there is Brazil, a country without any tradition in mathematics research, that, 
nonetheless, set upon governmental initiative a specialized institute of mathematics 
research at the beginning of the 1950s, well in advance of such moves in several 
European countries. On the other side, there is Germany, a country with a long tradi
tion in mathematics research, that nonetheless did not set up its specialized institute 
in Bonn until the 1980s. 

In the 1930s and 1940s, mathematicians from Italy, France, and the United 
States, among other countries, had already cooperated with the Brazilian mathemati
cians for short and long periods. Such cooperation favoured the formation of univer
sity professors and researchers in the faculties of philosophy created in the 1930s. 
Experienced mathematicians such as Luigi Fantappie, Giacomo Albanese, Jean 
Dieudonne, Andre Weil, Oscar Zariski, Alexander Grothendieck, Marshall Stone, 
Adrien Albert, and Antonio Monteiro, among several others, had been in Brazil, 
mainly in Sao Paulo and Rio de Janeiro. However, similar relations were not estab
lished with German mathematicians. It was only after the World War 2, when IMP A 
was founded, that cooperation links began between the two countries. One of the 
first German mathematicians to visit IMPA was the applied mathematician Lothar 
CoUatz from the University of Hamburg. CoUatz's stay in Brazil was short, but it 
already disclosed a certain trend toward establishing cooperation acts with the Ger
man-speaking countries. 

In this chapter, I shall start by reporting on the creation of some specialized 
mathematics institutes on the international level. Afterwards, I shall present the con
ditions that had favoured the foundation of IMPA in Rio de Janeiro. I shall then go 
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on to address the following questions: How were the first contacts established with 
German mathematicians? How did the scientific cooperation network between the 
two countries develop? Who were the first German mathematicians to come to Bra
zil, and, among them, who were the ones with whom a long-time cooperation was 
established? Answers to these questions are only explored here because the goal is 
not to document the entire cooperation, but only to point out how the first steps in 
this process occurred. 

CREATION OF SPECIALIZED MATHEMATICS INSTITUTES AROUND THE 
WORLD 

Pyenson and Sheets-Pyenson (1999) relate the word discipline, which possesses 
several meanings, to the word authority. In our context, the subject matter of 
mathematics is what we considered as the discipline of mathematics. Disciplines 
function according to principles; to general and abstract rules. In contrast, institu
tions operate according to corporate structures and private convenience. In a contra
position between both, it can be said, like Pyenson and Sheet-Pyenson, that disci
plines display an abstract solidarity whereas institutions show an earthly and organic 
solidarity. ''Exploring the authority of disciplines and institutions to elaborate the 
counterpoint of tradition and innovation, in Kuhn 's word, is the project that has 
animated historians of science since the 1960s" (Pyenson & Sheet-Pyenson, 1999, 
20-21). The present chapter takes the same perspective to analyze the discipline of 
mathematics in a scientific institution directed mainly toward research. 

Institutes devoted primarily to mathematics research only appeared in the 20^ 
century. Some of the main pioneers were: the Steklov Institute (1919, Saint Peters
burg), the Institute for Advanced Study (1930, Princeton), the Institute of Pure and 
Applied Mathematics (IMPA, 1952, Rio de Janeiro); the Institut des Hautes Etudes 
Scientifiques (IHES, 1958, Bures-sur-Yvette), and also the Max-Planck-Institut fur 
Mathematik (1981, Bonn). Earlier initiatives had not been very successful. For ex
ample, in Sweden, in 1916, Gosta Mittag-Leffler and his wife Signe established the 
Mittag-Leffler Institute. Although incorporated to the Royal Swedish Academy of 
Sciences in 1919, financial difficulties and Mittag-Leffler's death in 1927 led to an 
almost total lack of activity apart from its library. It was only in 1969 that Lennart 
Carleson managed to turn Mittag-Leffler's dream into a concrete one. The next sec
tion sketches two specialized institutes that continued to function without interrup
tions. 

STEKLOV INSTITUTE (SAINT PETERSBURG) 

In 1919, the Mathematical Cabinet of the Academy of Sciences of Russia was set up 
at Saint Petersburg. This was due to the initiative of V. Steklov, a mathematician 
and theoretical mechanic and vice-president of the Academy of Sciences of Russia. 
Despite the state of civil war, resources for the creation of this cabinet had been pro
vided by a decree of Lenin. Later, in 1921, the Institute of Mathematics and Physics 
was created. This contained not only the Mathematical Cabinet but also the Labora-
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tory of Physics and a Network of Cosmic Stations at the Academy. Steklov was its 
first director. In 1926, after Steklov's death, the institute started to be called the 
Steklov Institute. 

THE CREATION OF IMPA 

In Brazil, in the 1950, university professors and researchers were aware that entre
preneurs had little interest in producing scientific knowledge and paid little attention 
to science. Thus, the possibility of promoting science and technology was restricted 
to the action of the state. Therefore, the rise of agencies to promote science and 
technology would require the political initiative of the government itself. In coun
tries like England (1916), the United States (1918), and Canada (1916), National 
Councils of Research had appeared during World War 1 as agencies that could guide 
technological and scientific production. 

In the middle of the 19* century, science acquired supremacy in the western 
thought, and it became socially recognized for its instrumental potentials and its ca
pacity to develop technology. In Brazil, after the World War 2, with the high status 
of science and technology, discussions intensified over the creation of an agency for 
promoting research. The pivot was the atomic bomb. For the historian Ana Maria 
Ribeiro de Andrade, the ''Second World War modified mentalities, revealed ideolo
gies and intervened directly with the scientific work'' (Andrade 1999, 15). The Bra
zilian army was pledged to produce nuclear energy in Brazil. Several societal groups 
joined together to produce nuclear energy and develop science in Brazil. These in
cluded scientists, the army, government and scientific societies. Special attention 
must be given to admiral Alvaro Alberto da Motta e Silva. After negotiations with 
other countries, possessing the monopoly on atomic energy technology, he tried to 
find the path that would ensure Brazil's attainment of its scientific and technological 
potential. 

In Brazil, the National Council of Research (CNPq, Conselho Nacional de Pes-
quisd) was created in 1951, directly linked to the Presidency of the Republic, as an 
autarchy, with corporate entity and administrative autonomy. The creation of the 
CNPq forms a watershed in Brazil; it is possible to speak of science in the country 
before and after the rise of this Council. Before its foundation, only a few states de
veloped some scientific research. Within 10 years, CNPq had already created several 
research institutes and been able to promote scientific investigations outside the axis 
Rio de Janeiro-Sao Paulo, thus expanding scientific research throughout the country. 

One of the first institutes that the CNPq created was IMPA - Institute of Pure 
and Applied Mathematics. It was established in 1952, and had a well-defined goal: 
"Teaching and scientific inquiry in the field of pure and applied mathematics, as 
well as the diffusion and rise of the mathematical culture in the country" (Arquivo 
CNPq, t.6.3.002). However, its existence was only acknowledged by Decree 39,687 
of August 7, 1956. The Institute would be led by a director, nominated in commis
sion by the president of the CNPq, and would also have a Supervising Council, 
composed of six members, whose function would be to guide the institute scientifi
cally, technically, and administratively. The IMPA started its activities in 1953 
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without its own building and as a guest of the Brazilian Centre of Physics Research 
(CBPF). 

Even though, according to its statute, the institute's goal was to develop research 
in both pure and applied mathematics, its first 20 years of existence focussed pre
dominantly on pure mathematics. Since 1960, a special prominence has been given 
to research on dynamic systems. The IMP A started its activities with Lelio Gamma 
as director, Mauricio Peixoto and Leopoldo Nachbin as titular researchers, and 
Paulo Ribenboim and Carlos Benjamin Lyra as assistant researchers. Carlos Lyra 
was a professor at the University of Sao Paulo (USP) and did not take an active role 
as a researcher in IMPA. 

The two first decades of the IMPA were an attempt to empower institutions. 
IMPA sought to promote several institutions with the main goal of promoting re
search and international interchange. CNPq provided financial support to research
ers, and IMPA's main concern was to encourage new mathematicians. CNPq pro
vided the financial resources to pay the salary from of foreign professors who where 
guests at IMPA for shorter or longer periods. 

In 1960s, the BNDE (National Bank of Economic Development) was a major 
funder of IMPA. Later, according to Lindolpho Dias, a former director of this insti
tute, the FUNTEC (Technological National Foundation) was established and cov
ered 70 % of the personnel payroll of IMPA. Furthermore, another institution for 
promoting research, the [FAPESP] (Sao Paulo State Foundation of Support to Re
search) granted funds. In this same decade, beyond the OEA, the Ford Foundation, 
the Foundation SLOEN, and the National Science Foundation granted resources to 
IMPA. The Ford Foundation was created in 1936, but its international expansion oc
curred only in 1950. The National Science Foundation was founded in Washington 
in 1950. 

One can observe from these facts that IMPA received not only strong support 
from Brazilian governmental institutions such as the CNPq but also from foreign 
foundations that funded guest residences of prominent international mathematicians 
at the institute. In sum, IMPA received a lot of support in promoting the goal of the 
development of mathematics research. Without these resources, IMPA would have 
hardly survived and grown. After this brief overview, I shall now introduce the peo
ple who played a central role in establishing the cooperation network between Brazil 
and Germany, and consider the implications of such cooperation for mathematics 
research in Brazil. 

PAULO RIBENBOIM AND WOLFGANG KRULL (1899 - 1971) 

The first person to deserve special attention is Paulo Ribenboim, who was born in 
1928 in Recife, Pernambuco. He got his Bachelor degree in mathematics from the 
National Faculty of Philosophy at the University of Brazil in Rio de Janeiro in 1948. 
In this same year, he attended lessons on integral equations and grids given by the 
Portuguese mathematician Antonio Aniceto Ribeiro Monteiro. With Leopoldo 
Nachbin he attended lessons on topological vector spaces; with the American 
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mathematician Adrian Albert, he attended a course on Galois theory; and with the 
American mathematician Francis Murnaghan, he studied vector geometry. 

Since 1950, different funding agencies had granted scholarships to Paulo Riben-
boim. The first scholarship was for studying with Jean Dieudonne at Nancy, in 
France. There he met Laurent Schwartz and Alexander Grothendieck. In 1951, he 
received a 6-month scholarship from UNESCO. He enrolled in a course of Jean Del-
sarte, studying Lie groups; with Jean Dieudonne, he studied algebraic numbers and 
valuations; and with Laurent Schwartz, he studied distributions theory. In 1952, he 
received another scholarship, this time from CNPq. In 1953, he got a scholarship 
from CAPES (Coordena^ao de Aperfeigoamento de Pessoal de Ensino Superior -
Coordination of Enhancement of Personnel from Higher Education), another fund
ing agency from Brazil created in 1951. At that time, the scholarship was to carry on 
studies at the University of Bonn, in Germany. In 1953, Leopoldo Nachbin recom
mended him and affirmed that he was the best young mathematician to graduate 
from the National Faculty of Philosophy at the University of Brazil in Rio de Ja
neiro: 

He is a very young competent mathematician with a solid culture who is already en
gaged in research in the field of modem algebra. It is my opinion that he is the best stu
dent in mathematics produced by the National Faculty of Philosophy, from Rio de Ja
neiro (Arquivo Leopoldo Nachbin). 

In the University of Bonn, he started to work under the supervision of the algebraist 
Wolfgang Krull, in the summer semester of 1953/1954. Krull was very impressed by 
the scholarship holder as a letter to the National Council of Research shows: 

My impression of Mr. Ribenboim is very positive, and I would really welcome to have 
him as a co-worker for a longer period. Especially, I Uke his profound mathematical 
knowledge, the logical precision of his thinking and the attentiveness of his proofs, his 
personal initiative in attacking problems and making them his own, and his great diU-
gence. (Mein Eindruck von Herr Ribenboim ist sehr gunstig, und ich wurde es sehr 
begriissen, wenn ich ihn noch langere Zeit als Mitarbeiter haben konnte. Besonders 
schatze ich an Herm Ribenboim seine griindliche mathematische Bildung, die logische 
Scharfe seines Denkens und die Sorgfaltigkeit seiner Beweisfuhrung, seine personliche 
Initiative in selbstandigen Angreifen von Problemen und seinen grossen Arbeitseifer.) 
(Krull, 12.5.1954, translated into EngHsh by the editors) Source: Paulo Ribenboim: Ca
reer up to 1995, Queen's University, Ontario, 1995. 

Krull assisted Ribenboim personally after his arrival in Bonn. On the very first day, 
Krull advised him to study Jaffard's articles on rings of Dedekind. The first impor
tant results came from the study of Krull "Allgemeine Bewertungstheorie." This 
work was so fertile in terms of further results and methods that it functioned as a 
permanent source in which one could seek inspiration for further studies in the area 
and also for dealing with problems in similar areas. Although Paulo Ribenboim 
worked with Krull from 1953 until 1956, he did not produce his doctoral dissertation 
until he returned to the University of Sao Paulo. Some of the publications resulting 
from these first studies in cooperation with Krull are: 

• Sobre a teoria das valorizagoes de Krull. Boletim da Sociedade de Sao Pau
lo 11, (1956a). 
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• Un theoreme sur les anneaux primaires et completement integralement clos. 
Mathematische Annalen 130, 399-404, (1956b). 

• Sur la theorie du prolongement des valuations de Krull. Mathematische 
Zeitschrift 75, 449-466, (1961). 

• An Existence Theorem for Fields with Krull Valuations. Trans. Amer. 
Math. Soc. 105, 278-294, (1962). 

• On the Existence of Fields with few discrete valuations. Journal fur reine 
und angewandte Mathematik 216, 43-49, (1964). 

Ribenboim's article published in the Mathematische Zeitschrift in 1957, is based on 
Krull's work of 1932. One of the main results of the evaluations of KJUII concerns 
the theorem of the approach. The objective of Ribenboim's article was to establish 
the theorem of the approach for finite sets of valuations, not necessarily two by two-
independent ones. The bibliographical references used were Bourbaki, KJUU, Jaf-
fard, and Nagata. 

In 1956, Ribenboim returned to Brazil, and made the exceptional move of CNPq 
granting him another scholarship for a further year. In this same year, he entered the 
Academia Brasileira de Ciencias [Brazilian Academy of Sciences] as an associated 
member. In August of 1957, under the formal supervision of Candido da Silva Dias, 
he presented his doctoral work to the Faculty of Philosophy, Sciences and Lan
guages at the University of Sao Paulo. His doctoral thesis was entitled "About the 
theory of valuations of Krull." Clearly, the real supervisor of Paulo Ribenboim's 
doctoral work was Wolfgang Krull, but as the work was presented in Brazil, it was 
necessary to comply with Brazilian laws and formalities requiring a Brazilian pro
fessor to be the doctoral supervisor. In this same year, IMPA appointed the new doc
tor of philosophy to head research. 

In 1959, he received a scholarship from the Fulbright Commission to study at the 
University of Illinois. He remained in the United States, teaching in several universi
ties until 1962, when his Visa could not be renewed. He accepted a post at Queen's 
University, Ontario, Canada where he remained until his retirement. In 1988, the 
Springer Verlag published Ribenboim's collected works in a book entitled "The 
book of the prime numbers record." The book originated from a course he gave at 
Queen's University in 1984. 

It can be concluded that with the research of Paulo Ribenboim, IMPA entered a 
phase of contact with the modern algebra produced in Germany by one of its most 
brilliant researchers Wolfgang Krull, who was a disciple of the algebraist Emmy 
Noether. This established the connection with German mathematics. This connec
tion would gain continuity through the German Otto Endler, who produced his doc
torate under Krull's supervision. Later, this link would continue with Karl Otto 
Stohr, also a disciple of Krull, who is currently at IMPA, doing research and super
vising graduate students. Paulo Ribenboim was responsible for Otto Endler coming 
to Brazil. 
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OTTO ENDLER (1929-1988), A GERMAN IN BRAZIL 

Otto Endler was born in 1929 in the city of Mikulasovice, Czechoslovakia,. In 1950, 
he entered the University of Bonn where he received his doctorate in 1955, with the 
thesis ''Differentiation in algebraischen Funktionenkorpern von n Variabeln,'' under 
the orientation of W. KruU. This is when he met Paulo Ribenboim, and the partner
ship with Brazil started. He came to IMP A in 1957, as an invited researcher. In the 
following year, Otto Endler gave a seminar on Riemann surfaces at the ITA (Insti-
tuto de Tecnologia da Aeronautica - Institute of Aeronautics Technology) and an
other one on holomorfic functions at the IMPA. In 1959, Otto Endler published his 
first work in Brazilian periodicals: "On rings of fractions" in the Summa Brasiliensis 
Mathematicae, Vol. 4. In the following year, Otto Endler met the physicist Ana 
Maria Freire at ITA. They got married in this same year and had a son. 

Otto Endler did not cut his links with the University of Bonn. He continued to 
make annual trips to Germany, and in 1962, he gained his postdoctoral dissertation 
with the thesis "Bewertungstheorie unter Benutzung einer Vorlesung von W. Krull." 
This thesis was published in Bonn, in the Bonner Mathematische Schriften, n. 15, 
eds.: Hirzebruch, P.; Krull, L.; Peschl, E.; Unger, H., in 1963. This dissertation enti
tled him to become a full professor at the College of Mathematics and Natural Sci
ences at the University of Bonn, in 1962. The work was made up of two parts: foun
dations of the theory of valuation and Galois theory. Among the 53 works cited by 
Otto Endler in his thesis, one finds 11 works from Krull and 7 from Ribenboim, in
dicating the important role of the work of these two mathematicians. In Brazil, he 
also published the following work in Anais da Academia Brasileira de Ciencias 
[Annals of the Brazilian Academy of Sciences], in Notas de Matemdtica, and in Atas 
dos Coloquios de Matemdtica: 

• Modules and Rings of Fractions. Summa Brasiliensis Mathematicae, 4 
(1959a), 149-182; 

• On the inverse problem of Galois theory. Anais da Academia Brasileira de 
Ciencias, 31 (1959b); 331-332; 

• On pseudovalued complete Rings. Atas do Segundo Coloquio Brasileiro de 
Matematica, (1960), 9-10; 

• The resolution of algebraic equations and the inverse problem of Galois 
theory. Notas de Matematica, 24 (1961), Rio de Janeiro. 

In parallel, he published works on mathematics in international periodicals and pub
lishing houses. More specifically, his book entitled Valuation Theory was published 
in 1972 by Springer Verlag. The collected work dedicated to the memory of Wolf
gang Krull was written from his notes for a course given in 1969/70 at the Univer
sity of Rochester (New York State). But, according to the author, the most of this 
book was worked out during his stay as a visiting professor in IMPA at Rio de Ja
neiro. He called attention in the introduction to the fact that many advanced topics in 
the theory of the valuations, such as the theory of the fields of maximal values and 
Ribenboim's generalization of the theorem of the approach were not explored in the 
book. 
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In a Brazilian book publication, entitled Theory of the Algebraic Numbers, Otto 
Endler offered an important contribution to training mathematics professors and 
mathematics researchers in Brazil. The "Brazilian Society of Mathematics" pub
lished this work in 1985 as a part of the Euclides project. This book is still impor
tant, and continues to be assigned as a compulsory reference in IMP A. In 2001, it 
was compulsory reading in the discipline of Algebra II for the master's mathematics 
course. For the discipline of Algebraic Theory of Numbers, from the doctoral pro
gram of mathematics from IMPA, the books from Otto Endler and Paulo Ribenboim 
are also given as basic references for students. In IMPA, Otto Endler supervised the 
following doctoral dissertations: 

• Gervasio Gurgel Bastos - "A problem of existence of the valuations", in 
1974. This work was published in the Abhandlungen aus dem Mathemati-
schen Seminar der Hamburgischen Universitat. Vol. 41 (1974), 154-157. 

• Antonio Jose Engler - "A study on dependence and valuation ring compo
sition", in 1976. It was published in the Manuscripta Mathematica, Vol. 24 
(1978), 83-95. 

Endler also supervised in IMPA the following work for a master's degree: Gonzalo 
Bueno Angulo - "Ideals versus valuations in the introduction to the theory of the 
algebraic numbers," in 1982. 

It can be seen that all the works supervised by Otto Endler are tied closely with 
the research on the theory of the valuations started by Krull. Endler invited Krull to 
come to Brazil in 1969. During this visit, Krull delivered lectures in IMPA. Otto 
Endler was responsible for the first collaboration between Brazil and Germany in the 
area of mathematics, with the support of the GMD [Gesellschaft fur Mathematik und 
Datenverarbeitung, Society for Mathematics and Date Processing], in Germany. 
This German institution was founded in 1968 in Bonn. This bilateral accord was ini
tiated in 1969, just one year after the foundation of GMD. The accord permitted sev
eral mathematicians to visit Brazil. Before this official agreement IMPA had re
ceived German mathematicians very sporadically. For example, in 1963, beyond 
Otto Endler, IMPA also received Wilhelm Klingenberg, a mathematician from the 
University of Gottingen, who spoke about "On closed geodesies on manifolds." 
German mathematicians who came to IMPA as a result of the accord with GMD in
clude Gunter Bengel from the University of Munster, Ernst Ruh from the University 
of Bonn, Jurgen Herzog from the University of Essen, Herbert Heyer from the Uni
versity of Tubingen, Lothar Collatz from the University of Hamburg, Heinz Jurgen 
from the University of Bielefeld, Klaus Foret from the University of Oldenburg, 
Henning Stichtenoth from the University of Essen, Jurgen Neukirsch from the Uni
versity of Bonn, and Peter Roquete from the University of Heidelberg, Friedrich 
Hirzebruch from the University of Bonn, Heinz Helling from the University of 
Bielefeld, Alexander Prestel from the University of Konstanz, and Karl-Otto Stohr 
from the University of Bonn. These mathematicians investigated not only in the area 
of algebra but also in the areas of algebraic topology, logic, theory of numbers, 
differential geometry, among others. In 1969, on the recommendations of Otto 
Endler, Jurgen Syman signed a professional contract with IMPA, and in 1972, he 
also recommended Karl-Otto Stohr to sign a contract with IMPA. Krull also 
supervized Karl-Otto Stohr in Bonn. Karl-Otto Stohr is still in Brazil at the present 
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Karl-Otto Stohr in Bonn. Karl-Otto Stohr is still in Brazil at the present time. He has 
distinguished himself mainly through training a large number of mathematicians. 

The German mathematicians referred to in this text were certainly not the only 
ones who contributed effectively to the development of mathematics research in 
Brazil. Several others need to be investigated and should have their stories told. But 
as mentioned at the beginning, this chapter does not claim to exhaust the theme of 
the German-Brazilian network in the field of mathematics. The basic aim is to show 
how this cooperative network became established and to report its first important 
steps. 

A NEW COLLABORATION WITH GERMANY 

In the last decade of 20* century, we observed the rise of another German collabora
tion with Brazil, but this time, in the area of mathematics education, a recent field 
compared with other disciplines and scientific fields. Mathematics education has 
only established its identity as a scientific field in the 20* century. It involves 
knowledge and research from several fields including mathematics, education, his
tory of sciences, psychology, sociology, and anthropology. In the last decades, pro
fessionals trained specifically in mathematics education and in the history of 
mathematics have contributed a lot to the establishment of the field of mathematics 
education around the world. In the English-speaking countries, it is normal to use 
the terms mathematics education or mathematical education, whereas in some Euro
pean countries, it is more common to use the term didactics of mathematics. 

Michael Otte, professor at the University of Bielefeld, (see the photograph above) is 
one of the most active members of the Institut fiir Didaktik der Mathematik (IDM, 
Institute for Didactics of Mathematics) at this university. In 1990, he began collabo
ration with the Universidade Estadual Paulista (UNESP, Paulist State University), in 
Rio Claro, Sao Paulo. This collaboration has involved delivering lectures, seminars, 
and courses; supervising master's students in the graduate program on mathematics 
education; and also publishing articles and books. Michael Otte published a book in 
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Portuguese with the title "O formal, o social e o subjetivo: Uma introdugdo a 
Filosofia e a Diddtica da Matemdtic" [The formal, the social, and the subjective: An 
introduction to philosophy and didactics of mathematics]. His interest, great in
volvement, and dedication to training of students have extended to other Brazilian 
universities. He has also been actively engaged at Universidade Federal do Mato 
Grosso [Federal University of Mato Grosso], where he has supervised more than 10 
master's students working on topics in the history of mathematics. Michael Otte of
ten comes to Brazil and has received financial support from Brazilian and German 
agencies. From Brazil, he has received funds from CNPq and CAPES; from Ger
many, the DAAD (Deutscher Akademischer Austausch Dienst). This sort of finan
cial cooperation has been made possible by programs to stimulate and enhance 
graduate programs and research. 

More recently through the program of cooperation between Brazil and Germany 
(PROB AL - Pro grama de Coopera§ao Brasil Alemanha), Michael Otte has extended 
his activities to two universities in the state of Sao Paulo. These are the Universi
dade Estadual de Campinas (UNICAMP, State University of Campinas) and the 
PUC-SP (Pontificia Universidade Catolica de Sao Paulo, Pontifical Catholic Univer
sity of Sao Paulo). He has collaborated in graduate programs supervising master's 
and doctor's theses from several students. 

Michael Otte's initial contact with Brazil arose from his supervision of two Bra
zilian students enrolled in graduate programs in Germany funded by CAPES and 
CNPq. These students are Circe Mary Silva da Silva and Fernando Raul de Assis 
Neto. Both have written their doctoral theses on topics in the history of mathematics 
in 1991 and 1992. Circe Mary Silva da Silva's thesis (1991) is - "Positivismus und 
Mathematikunterricht: Portugiesische und Franzosische Einfliisse in Brasilien im 19. 
Jahrhundert" (Silva, 1999) and Fernando Raul de Assis Neto's thesis (1992) is -
"Geometric de Position - eine Studie zum Werk von Lazare Carnot" (1753 - 1823). 

The return of these professors to Brazil with their PhDs had an important impact 
in the universities where they worked. Circe Mary Silva da Silva has worked in the 
last years at Federal University of Espirito Santo and Raul Fernando Assis Neto has 
worked at Federal University of Pernambuco. They returned with experience in con
ducting research in the history of mathematics acquired in Germany. These Brazilian 
professors have helped to promote and establish the field of mathematics education 
in their universities and in Brazil. They are contributing particularly to research on 
the history of mathematics in Brazil and helping to prepare master's students in 
graduate programs in different states (Espirito Santo and Pernambuco). They are 
also contributing to the advance of other research fields in the country. They main
tain contact with German investigators and have organized symposiums and confer
ences to bring some of them to Brazil, as well as returning to Germany themselves 
for short periods. 

In the last years of the 1990s, new members have joined the group of German re
searchers who maintain contact with Brazilian professors working mainly in history 
of mathematics. These include Gert Schubring, also from University of Bielefeld. 
Schubring is the German coordinator of the collaboration project between Brazil and 
Germany (PROB AL) in the area of history of mathematics. The Brazilian coordina
tor is Joao Bosco Pitombeira de Carvalho. 
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FINAL CONSIDERATIONS 

In the decade 1957 - 1967 IMP A consolidated itself as a specialized research insti
tute in Brazil. It was also during this time that several international partnerships 
were established. Furthermore, it was in 1962, that IMP A established officially its 
graduate program in mathematics. 

Paulo Ribenboim was responsible for the initiating the productive knowledge 
exchange with German mathematicians since way back in 1953. Nonetheless, it is 
impossible to measure properly the scientific production of German supervisors and 
their corresponding Brazilian students or disciples at this stage. It is still too early to 
evaluate the multiplicative effects, results, and power of such scientific networks be
tween Brazilian and German mathematicians. And more research in other Brazilian 
institutions and in the other states needs to be implemented with respect to the influ
ential persons involved in this mathematics research network, as well as a more 
through investigation at the network dealing with the history of mathematics. 

The contribution of international mathematicians was without doubt an important 
aspect in establishing IMPA as a well-known research institution. And those interna
tional researchers played a crucial role for the development of mathematics research 
in Brazil. Nonetheless, without the presence of local scientific leaders taking the first 
steps to the form the initial nucleus of mathematics research, the international con
tribution would not have had such a strong impact. Among the principal Brazilian 
mathematicians who performed this vital role in mathematics research we cite, for 
example: Leopoldo Nachbin, Mauricio Peixoto, Elon Lages Lima, and Manfredo 
Perdigao do Carmo. These important leaders not only served to make crucial links 
and implement cooperative networks between Brazil and abroad; they were also the 
support basis for the development of mathematics research in IMPA. The research 
work developed by these Brazilian mathematicians has been acknowledged of their 
peers on both national and international levels as an important contribution to the 
field of mathematics. Another relevant point to consider refers to the political nego
tiation to get support for IMPA by Brazilian personalities, such as Lelio Gama, Lin-
dolpho Dias, Leopoldo Nachbin, and Jacob Palis. These were the first ones to firm 
accords to get financial support to IMPA that could assure the attainment of the 
main goals of this institute. Naturally, without the money granted through these 
agreement, IMPA would not have gained its reputation as an important specialized 
research institute in mathematics. 

While the history of mathematics research is relevant and important being able to 
develop the skills to write and implement such research requires a solid theoretical 
and philosophical position. The theoretical foundation on the history and philosophy 
of mathematics developed by Michael Otte provided Brazilian researchers with a 
framework for implementing further research in the field. 
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ANDREAS DRESS 

DATA STRUCTURES AND VIRTUAL WORLDS 

On the Inventiveness of Mathematics 

Abstract. It is argued that the real impact of mathematics is its power to shape concepts that allow us to 
understand the real world by manipulating virtual worlds. 

Key words: conceptuaUsation, early hominids, Fourier analyses, virtual worlds. 

A current notion is that it is the task of mathematics to find proofs for difficult con
jectures and answers to tricky questions - presuming that the question or conjecture 
has already been phrased in the language of mathematics and that it should therefore 
be possible to find the requested answer or proof provided one is gifted with a suffi
ciently well-developed and well-trained power of combination. 

According to this point of view, success or failure in mathematics depends ex
clusively on such achievements: who comes up (first) with the correct answer or 
finds a convincing proof merits recognition and fame, nothing else ever counts. 

Doubtlessly, this view covers essential aspects of present-day mathematics. And 
just as doubtlessly, it falls short in many ways: Not alone that there may be more 
than one correct answer to some questions, and none at all to others, that some con
jectures are false, and several, like e. g. the continuum hypothesis, may even be un-
decidable - more important is that the real progress achieved by finding an answer 
to an open question does often not so much consist in that very answer, but rather in 
the new methods developed to find it and the new concepts on which such methods 
are based, not to mention that neither question nor conjecture could even have been 
stated before the fundamental concepts and definitions to which they refer had been 
worked out properly. 

A good case in point is Jean Baptiste Joseph Fourier's (1768 - 1830) theory of 
Trigonometric Series developed to solve the heat equation, published first in 1807. 
This theory, today called Harmonic or Fourier Analysis, has not only become one of 
the cornerstones of modern mathematics, yielding innumerable applications in phys
ics and engineering as well as in pure and applied mathematics itself - from number 
theory to stochastics. Fourier's ideas presented also the crucial challenge for clarify
ing all of the most fundamental concepts of analysis during the 19th century like 
function, continuity, convergence, integrability, differentiability etc. And they led 
Georg Cantor (1845 - 1918) to establish his Mannigfaltigkeitslehre (theory of multi
fariousness) called Set Theory today which - after some initial hesitation - is now 
considered to provide the most efficient foundation for mathematical reasoning so-
far. 
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Moreover, Fourier's theory is a paradigm for the use of mathematical methods in 
data analysis: It permits (i) to completely decompose a complicated signal into sim
ple elementary components in a purely formal way that can be fully automatized, (ii) 
to reconstitute that signal from those components, and (iii) to identify its most im
portant components. In consequence, Fourier theory allows to separate the essential 
message contained in a signal from random noise. Furthermore, the definition of 
what may and should be considered to represent a simple elementary component can 
be adapted flexibly to whatever operational symmetry constraints appear to be perti
nent. This has been giving rise to further, not even presently fully exhausted possi
bilities of applying Fourier's ideas inside and outside mathematics (see Figure 1). 

la 

Figure 1 
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Explanation for figure 1: We are considering signals that consist of seven successive 
points 2 i , ^ 2 ' • • •' 2? i^ ^he plane, repeated in this order, having a fixed point of 
gravity P - {Q^^ +^2 •••"^Q?)^- Such a signal may be considered to be elementary 
if it (a) transforms into itself under rotation by 51.4285714 ... = 360/7 degrees 
around their point of gravity. Figure la shows six distinct elementary signals of this 
form from which all further elementary signals can be obtained by rotations around 
P and dilatations (Figure lb). Fourier analysis now permits us to represent any arbi
trary signal Qi 9 G2' • • •' 2? ^f ^he form described above as a superposition of those 
six elementary signals, appropriately rotated and dilated (Figure Ic). The (relative) 
seize of the 6 dilatations may not only permit to recognize a given signal as being -
except for minor random noise - essentially just one of those six elementary signals, 
it also allows to quantify exactly the extent of perturbation due to random noise 
(Figure Id). 

In summary, the relevance of the conceptual tools introduced by Fourier and the 
progress of the mathematical sciences initiated by his ideas and methods outweighs 
by far his contributions to what was his primary concern, his - rather elegant - solu
tion of the heat equation. 

In this context, it is also whorthwhile to discuss the - at first glance rather banal 
- observation that there may be more than one correct answer to a given question, 
and that a problem may have more than one correct solution. It implies that instead 
of looking for the one correct solution, it is often feasible to concern oneself first 
with the collection of all possibly correct solutions, to list and to examine all of 
them, and to relate their properties to one another. It is one of the fundamental 
achievements of modern mathematics - if not the most decisive one - that it offers 
tools that permit to form and handle such collections. I. e., it permits to conceptually 
grasp and to explicate the space formed by those (potential) solution, and to pro
duce, to analyze, and to axiomatically describe such spaces in rather concrete and 
constructive ways. In yet other words, it is the capacity of modern mathematics to 
design virtual worlds and to successfully use their structure for interpreting real-
world data that is probably its most eminent achievement. 

From an evolutionary perspective, such ability to design adequate and stringent 
virtual representations of our environmental reality presumably began to develop 
among our ancestors 4 to 5 million years ago: Separated by the East African Rift 
Valley from their own kind in the Central and West African rain forests, the prede
cessors of the present-day chimpanzees, our closest relatives today, they began to be 
exposed to a climate turning increasingly arid, transforming the eastern part of this 
rain forest into grass lands. Thus, the early hominids were compelled to descend 
from the gradually disappearing trees and to survive in new habitats which had al
ready been occupied and very successfully exploited by many other mammals. The 
early hominids were weaker than the carnivores living there, and much slower than 
the latter's prey. 

One feature, however, that they brought along into those savannahs as former 
climbers was a highly developed optomotoric system supported by a large visual 
cortex. This had enabled them to safely grasp a branch that - having already left 
their field of vision directed towards the next and second-to-next support for their 
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treetop swinging - they could no longer envision but with their "inner eye". The 
hominids might have died out under these constraints. Instead, we systematically 
used and elaborated, in the course of evolution, this ability to constitute and to ma
nipulate a virtual world before our inner eyes - a virtual world that was based on 
those traits of our environment that were most crucial to our existence and could be 
manipulated in such a way that successful strategies of coping with the real world 
resulted. 

Certainly, there are a number of other frequently named factors which contrib
uted towards our becoming humans: For instance, developing the ability to commu
nicate verbally among ourselves about our respective virtual inner worlds (albeit 
only within certain limits, as we sadly experience again and again). Further, to plan 
actions as a group using such modes of communication basis was a crucial step ac
companying this process. Other decisive boosts for the hominids' development were 
that the erect posture liberated hands for purposes of actually implementing what 
had been imagined, and that our "instinct of play" continued to grow ever stronger, 
allowing and training us to playfully generate and investigate virtual worlds. The 
foundation of the hominid success story, however, is in my opinion the human abil
ity - culminating in mathematics and in the exact sciences it supports - of deliber
ately and progressively extending, if not overcoming, the boundaries and constraints 
of the real world by confronting it with suitably constructed virtual worlds. 

Surely still within prehistoric times, this development led towards forming a ten
tative concept of number. Numbers constitute the data structure that is probably the 
most important one today for the virtual reconstruction of contexts and the shaping 
of virtual worlds which represent basically all of those traits of the real world that 
we really need to know about. 

Once begun, the elaboration of the concept of numbers required many additional 
millenniums, and it can perhaps not even today be considered accomplished, as re
cent contributions by John Conway demonstrate. It is undisputed, however, that 
solving specific problems (as e. g. the Delian problem of doubling the cube) and 
computing specific numbers (the infinite alternating sum 1 - 1/2 -i- 1/3 - 1/4 -i- ... or 

like exp^ ) makes sense only within the context of the number system, the space of 

all possible solutions of all numerically posed problems. 
At the same time, our present number system forms the building material for the 

overwhelming majority of spaces (of solutions) designed by present-day mathemat
ics. One case in point are, e. g., the separable Hilbert spaces describing the collec
tion of all signals accessible by means of classical Fourier analysis. 

Beyond that, mathematical disciplines like topology, algebra, combinatorics, or 
category theory offer a wealth of further possibilities for designing solution spaces 
for the most diverse classes of problems. Their focus often extends far beyond the 
usual tasks of mathematics dealing with basic quantitative relationships. Instead, 
they allow to grasp and to treat as well purely qualitative aspects: 

The concepts of groups and of group actions for instance was developed in the 
19th century. It provides a data structure that permits to virtually record, analyze, 
and classify practically all phenomena linked to symmetry. It can be viewed as the 
culmination point of a development that had started most certainly already in the 
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neolithicum more than 4000 years ago - as stone artefacts shaped like octahedrons 
and dodecahedrons in the Ashmolian Museum in Oxford amply testify. 

In the same vein, the concept of a topological space developed between 1850 
and 1930 provides a data structure that permits to state and virtually handle concepts 
like shape without inadequate recourse to purely quantitative levels of description. 
Classifying all possible shapes under certain appropriate limiting conditions - say all 
knots, or all closed two-dimensional manifolds, or even all simply connected and 
closed three-dimensional manifolds - is one of the central tasks in this area. How 
difficult this is can be seen from the fact that methods - often just as profound as 
subtle and astucious like e. g. algebraic topology - which only serve the subordinate 
goal of enabling one to orient oneself within the virtual world of all imaginable 
shapes and to systematically distinguish different shapes from one another, already 
count among the secular achievements of mathematics in the last century. 

In contrast, combinatorial graph theory provides an almost disappointingly ele
mentary data structure that permits, however, to model and to construct the most 
complex networks and, thus, to virtually examine all sorts of interdependence be
tween different parts of highly interconnected worlds. 

And last, not least there is category theory. It encompasses all these three theo
ries and simultaneously extends their analytic power, providing the most elaborate, 
powerful, and flexible tool for designing mathematically structured virtual worlds 
that we presently know. 

It must be noted, however, that these abstract concepts designed for grasping and 
handling qualitative aspects often unfold their full power only in combination with 
numerically defined aspects: 

Many achievements of group theory are based on representation theory including 
the theory of group characters - i. e. systems of numerical invariants that encode 
decisive properties of any given collection of symmetry operators forming a group. 

Likewise, the continuous r^dd-wdAucd functions that can be defined on a topologi
cal space form the presumably most important invariant of this space. The existence 
of sufficiently many of such functions can be shown by rather abstract means for a 
surprisingly large class of spaces. And perhaps even more importantly: Topological 
spaces supplied with an appropriate measure that allows integration of continuous 
real-valued functions offer the opportunity to systematically simulate and investigate 
the phenomenon of probability, truely fundamental for so many aspects in present-
day live. 

And finally, the networks studied in combinatorics are of particular theoretical 
and practical interest - e. g. within the context of optimization theory - as soon as 
their elements (the nodes of the networks as well as the connecting elements or 
edges linking these nodes) are numerically quantified by suitably defined weights or 
capacities etc. 

In summary, the thesis advanced here asserts that the crucial achievement of 
mathematics that has shaped our present culture in a fundamental way is based first 
of all on its ability - present already in the early evolution of the hominids - to de
sign phenomenologically adequate and stringent conceptual or virtual worlds and 
data structures, and on their amazing penetrating power. 



304 A. DRESS 

This corresponds to the fact observed by G.-C. Rota that much, if not the major
ity of mathematical work is devoted to the task of obtaining new perspectives on 
things already known, of exploring virtual worlds already discovered, and of detect
ing new and surprising connections between them - work that is concerned with 
making virtual worlds habitable and allowing people to feel at home in them. 

It also corresponds to the fact that, in mathematics, one quite frequently does not 
attempt (as the example of Fourier analysis shows indeed) to find the correct proof 
for a theorem, but rather the correct conceptual framework for a proof, that is, find
ing out what has really been established by that proof. 

And it corresponds finally to the fact that successful tricks are, as a rule, embed
ded sooner or later into a conceptual framework in such a way that one is almost 
routinely led towards these tricks once one accepts working within this framework 
as exemplified, e. g., by the ground-breaking work of N. Bourbaki. 

Above all, however, this perspective offers a way to understand the unreason
able effectiveness of mathematics in the natural sciences discussed by Eugene 
Wigner (1902 - 1995) in a lecture given in 1959: the real strength of mathematics is 
its inventiveness with which it designs and investigates new worlds and data struc
tures corresponding to them. Evolution would probably have eliminated us several 
million years ago without further ado if the virtual worlds designed by us had proved 
inadequate, that is, to keep within the metaphor presented above, if the branch imag
ined in front our inner eye had not actually been where we imagined it, thus saving 
us just in time from a disastrous fall. This metaphor also explains why the persistent 
experience of the might and power of our imagination has led to the misunderstand
ing - so popular in present-day social sciences - according to which the branch we 
grasp and which saves us from falling was only at this precise locality because we 
ourselves had imagined it to be there. 

The question remains, however, whether our ability of confronting the real world 
successfully with virtual worlds has not meanwhile set a dynamic in progress that 
targets a perhaps disastrous fall of quite another kind, making our planet uninhabit
able at a time at which we are - due to our steadily increasing power of manipula
tion -just on the point of subjugating it completely . Yet, this is another story better 
to be discussed in quite a different context. 

Forschungsschwerpunkt Mathematisierung, Universitdt Bielefeld 
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VARIABLES, IN PARTICULAR RANDOM VARIABLES 

Abstract. We argue that the concept of a variable as classically understood in mathematics and physics is 
didactically and scientifically inadequate for the needs of probability and statistics and we propose an 
alternative concept. A revision should have poHtical implications for the relation between mathematical 
and statistical teaching. 

Key words: axiomatics, foundations of probability, random variables, statistical teaching, variables. 

It can hardly be doubted that the concept of a variable is fundamental and ubiquitous 
in analysis. The textbooks are very reserved with explanations or definitions, how
ever. On the other hand, they take great pain in explaining and defining the concept 
of a function, a concept which is clearly secondary to the concept of a variable. The 
concept of a function (or a mapping) builds on the concept of variables; a function 
associates the value of the dependent variable with the value of the independent 
variable. 

I find it remarkable that the textbooks do not say or suggest, that the concept of a 
variable may remain undefined just as the concept of a point in euclidean geometry. 
They rather seem to suggest that it must be left to the users of analysis to build up 
that concept of a variable which suits their needs. I am not aware of any didactical or 
philosophical discussion of this kind of an approach to mathematics, however. 

At first sight the didactical strategy seems to work in present day elementary 
analysis. Different contexts go along with different conceptions of variables. No
body is really bothered by the observation that variables in thermodynamics are not 
exactly the same as variables in mechanics or economics. I will argue here, that the 
disconcern with a mathematical concept of a variable has shown its Achilles-heal in 
the case of random variables. It seems to me, that present day education in elemen
tary analysis is not open for an intuitive and workable conception of a random vari
able. This has lead to a very unfortunate situation which cries for action. 

A very basic innovation is needed to pave the way for a broader and deeper un
derstanding of stochastics. Mathematicians must understand that the common reduc
tionist approach to the concept of a random variable is inadequate and that this must 
have consequences for the teaching of elementary analysis already at school level. 

There are of course historical reasons for the divergence between the needs of 
stochastics in the practical sense and present day mathematics in the narrow sense. 
When probability around 1930 (after a dormant period of a century) became again a 
respectable field of mathematics, the teachers of mathematics wanted a definition: 
what is a random variable? Bourbaki did not offer a definition, he left stochastics 
aside. But for the mathematicians who believed in Bourbaki at that time it was clear, 
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that a random variable is a measurable function (or a measurable mapping) from a 
measurable space (Q, Q5^ into another measurable space (5, ^ ) . And they did not 
try to please traditional stochastic thinking. P. Halmos argued in these times that 
probability theory is legitimate mathematics, in as far that it is the theory of normed 
boolean algebras. 

The mathematics departments have put probability theory into their curricula, 
because they were told in the sixties that mathematicians need competency in sto-
chastics, when they were to leave the realm of genuine mathematics, in other words, 
when they leave the mathematics department. By this move the advanced students of 
mathematics towards the end of their studies after an intensive training in traditional 
analysis got the opportunity to learn the reductionist approach to stochastics. The 
majority of university mathematicians considered this as a concession which was not 
justified by the strive for mathematical progress. 

On the other hand, the concession turned out to be a fairly small contribution to 
the needs of a better stochastical education. Only very few students got acquainted 
with the rich world of stochastic intuitions. Not much was achieved to assist students 
of the sciences working with unprecise data or students of economics dealing with 
decisions under uncertainty. A mathematics based philosophy of stochastical think
ing didn't come to the attention of any kind of students. A gap was opened: the non-
mathematicians defied measure theory, and the mathematicians defied "cookbook"-
statistics, as they called stochastics without measure-theoretic foundations. In par
ticular, mathematicians would not accept the "definition" of a random variable, 
which is commonly presented in books for non-mathematicians: "A random vari
able is a quantity whose value depends on chance ". 

More and more people have stressed in recent years that action has to be taken in 
order to provide a common ground for mathematical stochastics and stochastical 
modelling in the sciences. There is a remarkable article of two prominent statisti
cians: David S. Moore and George W. Cobb (2000). The introduction says: 

It has become a truism, at least among statisticians, that while statistics is a mathemati
cal science, it is not a subfield of mathematics ... In mathematics, context obscures 
structure. In data analysis, context provides meaning. ... 

They conclude their article: 

Mathematics, a core discipHne, looks inward and risks being seen as increasingly irrele
vant. Statistics, a methodological discipline, looks outward but risks being swallowed 
by information technology. Both professions have a stake in the survival of statistics as 
a subject informed and structured by mathematics. 

The article also points out political consequences of a reconciliation: 

To mathematics statistics offers not only the example of an outward looking culture, but 
also entree to new problems ripe for mathematical study. To statistics, mathematics of
fers not only the safe harbor of organizational strength, but intellectual anchorage as 
well: mathematical understanding is an essential part of what distinguishes statistical 
thinking from most of the rest of information technology. 

Mathematics is challenged both didactically-philosophically and politically in these 
days; and stochastics will undoubtedly be a focus of renewal. There are pleas in this 
direction also by prominent mathematicians. 
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David Mumford (former IMU-president, originally coming from the very pure 
end of mathematics) contributed to the volume "Mathematical Frontiers and Per
spectives 2000" an article "The Dawning of the Age of Stochasticity." There he 
points out: 

The basic object of study in probability is the random variable, and I will argue that it 
should be treated as a basic construct, Hke spaces, groups and functions, and it is artifi
cial and unnatural to define it in terms of measure theory. 

Mumford challenges the teachers of probability: 

Put the concept of 'random variable' on center stage and work with manipulations of 
random variables wherever possible. 

The challenge has been felt by many teachers of stochastics for years. In our courses 
at the Department of Mathematics at Frankfurt University, Goetz Kersting and my
self have been working hard over 20 years to deal with random variables independ
ently of measure theory. In more recent times we have got encouraging results both 
in technical aspects and in practical teaching. We feel that the successes of teaching 
have considerably improved since the curriculum advises the students of mathemat
ics to take up stochastics early. In former times we had to deal with the problem that 
students with an extensive training in traditional analysis were disappointed or con
fused, when the course in stochastics didn't conform to the familiar scheme. These 
students insisted that they would understand much more easily on the basis of meas
ure theory; there was little curiosity for stochastic intuition. Our younger students 
now find it less difficult to build up intuitions around the concept of random vari
ables. In our elementary courses this concept is introduced in a way, which is open 
for enlargement fitting the needs of professional mathematical stochastics. 

In the search for a flexible conception of a variable it is appropriate to recall the 
historical origins of analysis. It was Leibniz who invented functions. Newton on the 
other hand had curves in mind when he invented his calculus. Euler (1768) consid
ered it fruitless to unite the conceptions in Newton's tradition with the ideas of the 
continental school. In early 19th century a variable was commonly understood as 
something which runs through a domain. It was in opposition to this dynamical con
ception when Bolzano gave a statical definition of continuity. This lead to the con
cept of a function "in the sense of Dirichlet" and finally to Cantor's set theory, for
bidding any dynamical association. 

The dynamical conception of a variable has survived in school mathematics. Un
fortunately there it is so intimately connected with special functions on an interval 
that every extension of the intuition about variables seems to be difficult. (Already 
Riemann's idea of an abstract "multiply extended manifold" seems to be beyond the 
intuition of most of our high-school teachers). Thus there is very little hope that an 
intuitive conception of random variables might profit from the traditional concept of 
a variable in analysis. As far as I know, nobody has ever tried to teach an intuitive 
concept of a random variable using analogies with the algebraic concept of an inde
terminate. Thus random variables have to find their own intuitive basis. 

Modern analysis in the spirit of Cantor's set theory has variables of course; but 
nothing is varying here. The mathematician may insert a value of the independent 
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"variable" into a function /(•) (which is seen as a black box) and he retains the 

value of the dependent "variable"; the evaluation is a singular act at every instance; 
the mathematician is choosing a value in an arbitrary, completely discontinuous act. 
For every singular x in a specified set the black box /(•) produces a singular 

y = fix). 

In the case of a random variable we have an actual variability and this variability 
is due to chance. Chance inserts a "typical" value into the black box /(•) and the 
output is a "typical" value of the dependent variable. 

X-^Y = f{X), 

The technical term is not "typical", but rather "random". "Typical value" might be 
confused with "generic value" which is a technical term in geometry. So we say: 
The blackbox associates the random variable Y=f{X) with the random variable X. 

In stochastics the calculus of functions is more or less the same as in traditional 
analysis. The arguments of the functions have a different logical status, however. 
There are instances where the difference has technical consequences. For example: 
assume Y = f {X). We may ask for conditions which guarantee the existence of a 
g(') such that X = g(Y). (In our "polish" calculus to be sketched below there exists 

an easy and intuitive criterion). 
There exist teaching traditions for elementary statistics (or probability) in various 

applied fields. They all deal with random variables. And most of them seem to get 
along without any elaborate mathematics. One may object that all of them are fairly 
incoherent. But this is not the most serious objection. Looking closer one finds that 
the non-mathematical traditions tend to produce misconceptions which hamper a 
deeper understanding of stochastic modelling. For example: in certain traditions of 
teaching randomized algorithms, the concept of randomness (implicitly) includes 
stochastic independence or uniform distribution or both. 

Almost all traditions of teaching elementary probability theory tie the concept of 
a random variable to a fixed "true" distribution. Many textbooks stick to the idea 
that the distribution is the only thing which is worthwhile considering when we 
speak about random variables; there, probability theory is the theory of probability 
measures. This has its price. We find that very often students who have been brought 
up in a narrow teaching tradition, have serious problems, when they have to think in 
wider terms. For example, the concept of an equivalent martingal measure, which is 
crucial in mathematical finance, presents enormous conceptual difficulties to most 
of these students, as they are used to think in terms of the familiar "true" distribu
tion. 

Let me now briefly sketch our proposal, how random variables might be con
ceived as objects within an axiomatic context. We start with four axioms which can 
be supplemented at various levels all compatible with professional mathematical 
stochastics. 
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- Every random variable takes values in a measurable space ("domain"). When Xi 
and X2 are random variables, then (Xi, X2) is a random variable with values in 
the product space. 

- When X is an Upvalued random variable and ^ : 5i —> 5*2 is a measurable map
ping, then (p(X) is an 52-valued random variable. 

- For every measurable B in the domain of Z there exists a {0, 1}-valued random 
variable I^XEB) which represents the event {X e B}. The 5-valued random 

variables X and Y are equal if and only if the event {X e B} is equal to the 

event {Fe B} for every measurable B (or a family of subsets which generates 

the (7-algebra). 

- The set o^of observable events is a cr-complete boolean algebra (Equality of 
events is given axiomatically and cannot be reduced to equality of more con
crete mathematical objects). 

It is true that the events can be identified with the (0, 1}-valued random variables. 
However the universe of all random variables (in any particular stochastic model) is 
much richer than the set of those random variables which can be constructed in an 
obvious way from the {0, l}-valued random variables. Even in school stochastics, 
we need nondiscrete random variables, in particular random variables with values in 
R, and random vectors, i. e. random variables with values in W^. In elementary uni
versity teaching we need random functions and random measures. Ultimately our 
axiomatic system admits random variables with values in all measurable spaces 
(5, ^Jof a certain type f. This type / has to be specified and I may say at this point, 
that my favorite class / is the class of polish spaces. 

Beyond the four axioms stated above, one has to make a couple of non-obvious 
technical and didactical decisions. The teacher has to decide how far he wants to ex
tend the perspective at a certain point - but he should be aware of what he is doing 
and he should be careful not to brain-wash his students at a level which cannot be 
extended in an intuitive way. 

We believe that an essential point of stochastic reasoning would be missed, if 
one would teach a toy version which would require all the admissible domains to be 
denumerable. Such a toy version would be counterintuitive for most (high-school) 
students, since the students at the same time might be confronted with random vari
ables in the sense of unprecise measurements in some applied discipline. 

Philosophically speaking, such a toy version would miss a "principle of continu
ity" (in a sense which I have learned in long discussions with Michael Otte). We in
sist, that it is basic for a thinking in stochastical terms, that the events (in general) 
cannot be broken down to any kind of "elementary events" (which in the measure-
theoretic reduction would correspond to the values of some independent variable 
coeQ), There are school teachers who have tried to tell their students what elemen
tary events are in the case of an infinite sequence of coin tosses. They all have 
failed; and we argue that there are fundamental philosophical reasons for this failure. 
Events are not like sets, which are equal if and only if they have the same elements; 
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the equality of events is more abstract and flexible. The partial analogy between sets 
and events is the philosophical trap which every teacher of stochastics should be 
aware of. (Of course the advanced analyst will be happy to learn that there exists a 
technical although highly non-constructive bridge to set theory. 1948 Loomis has 
proved that every a-complete Boolean lattice can be represented by a set of equiva
lence classes of measurable sets.) 

Here is an example of a nontrivial didactical decision. At some instance the sys
tem of axioms has to say under what conditions an infinite sequence of random vari
ables Xi, X2, ... may itself be considered as a random variable in the universe. In 
particular it has to be fixed axiomatically under what conditions an infinite product 
of admissible spaces (St, ^ 0 can be considered as an admissible space. We think 
that an infinite sequence of coin tosses or a random path through a rooted tree ought 
to qualify as a random variable at a fairly early stage of stochastical education. 

For a second course at university level I strongly recommend the full class of 
polish spaces. This opens a wide range of interesting questions and fruitful consid
erations which fortunately have nice intuitive answers. It turns out, that the theory of 
"sure" convergence of random variables is more or less a well reflected version of 
the material of convergence and continuity, which is commonly treated in elemen
tary analysis. The main ingredients of sophistication are the following: we experi
ence the distinction between sure events and mathematically true assertions. Sec
ondly, all manipulations of the objects are bound to be of denumerable type. Thirdly 
the considerations about nullsets in measure theory get a clear profile. Finally the 
floor is set for the theory of weak convergence (which is a subject for advanced 
courses). It gains a nice intuitive background by the concept of sure convergence; 
stochastic convergence appears as the topological weakening of sure convergence. 

This is not the place to say more about mathematical technique. A thorough scru
tiny of the technical aspects of our axiomatization is in preparation. On Kersting's 
homepage you can find a manuscript documenting a first university course which 
puts random variables on center stage. More about tensions between stochastics and 
mathematics proper can be found in Dinges (2001). 

As a conclusion I may summarize the main thrust of this article in honour of my 
dear friend Michael: Students on all levels ought to be encouraged to trust in the in
tuitive concept of a random variable. The variability of an observable may be due to 
chance; it is not necessarily caused by the specification of some "independent" vari
able. 

ISMI, Institutfiir Stochastik & Mathematische Informatik, Fachbereich Mathematik, 
Universitdt Frankfurt/Main 
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JOHANNES LENHARD 

DEDUCTION, PERCEPTION, AND MODELING: 

The Two Peirces on the Essence of Mathematics 

Abstract. Charles Sanders Peirce, the celebrated philosopher of pragmatics and semiotics, viewed mathe
matics as the basic science. But, according to him - what is it? 

In providing an answer, he gave reference to his father Benjamin Peirce, a leading Harvard mathema
tician. Charles quoted him with: Mathematics is the science which draws necessary conclusions. How
ever, he went further than his father's position by asking what is necessary reasoning. His analysis led 
him from the clean world of pure reasoning to the more down-to-earth circumstances of perception and 
experimentation. Even deductive reasoning proceeds by using signs and their iconic quahties and is based 
on the perception and experimental manipulation of diagrams. Moreover, Peirce accompHshed a prag
matic shift that was oriented toward mathematical practice and especially included the process of model
ing as a mathematical key activity. 

This Peircean standpoint will be explored in more detail, and it will be shown (so I hope) that it of
fers a perspective for a genetic philosophy with an impact on the didactics of mathematics. 

Key words: deduction, diagrammatic reasoning, modehng, Peirce, perception. 

1. INTRODUCTION 

If one is reading, as currently, in a philosophical context, about "two Peirces", or 
even a greater number, one will probably expect to read about the different 
standpoints taken by Charles Sanders Peirce (1839 - 1914) in different articles or at 
different times. C. S. Peirce is prominent as the "most original and versatile of 
American philosophers and America's greatest logician" (Weiss 1934), and as the 
founder of philosophical pragmatism and semiotics. But, in equal measure, his 
works appear as complex and heterogeneous. 

The title of the present article, however, refers to two different persons - Charles 
and his father, Benjamin Peirce. Whereas for today's philosophy, and especially the 
philosophy of mathematics, Charles is by far the more prominent of them, the 
situation was completely reversed a hundred years ago. Benjamin was the most 
famous scientist of the 19^ century in the USA. He was a mathematician and he was 
the admired idol of his son Charles. It is in contest with his father's standpoints that 
Charles formed an important part of his philosophy of mathematics. At least this is 
my thesis and the topic of the present article. 

C. S. Peirce was a passionate system-builder. He conceived of mathematics as 
the fundamental science in the system of the sciences (cf. his lectures on 
pragmatism). It is worth noting that Peirce did not choose logic, his home discipline, 
as the fundamental science. In the literature, this position is controversial. Grattan-
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Guinness (1997) or Hull (1994) vote in favour, whereas Fann (1970) or Murphey 
(1993) propose that Peirce has seen logic as foundational after all. I myself shall not 
contribute to this debate that traditionally dominates the view on Peirce's conception 
of mathematics. I shall ignore the relation between logic and mathematics and hope 
to gain a clear view on Peirce's perspective on mathematics. 

By the way, this coincides with my personal career. I have become acquainted 
with pragmatism, or pragmaticism in Peirce's terminology, as a philosophical 
standpoint through Karl-Otto Apel in Frankfurt. Alas, he consciously ignored the 
mathematical texts of Peirce. Later, I appreciated a philosophical position playing a 
kind of basso continuo in Michael Otte's works: that the core of mathematics itself, 
closely examined, shows deep connections to philosophy. 

Back to the issue in my article: What is the essence of mathematics according to 
Peirce? The common view is that he took over the definition from his father 
Benjamin. Indeed, Benjamin plays a crucial role as admired scientist. Born in 1809, 
he graduated at Harvard where he began an equally successful and long-lasting 
career as professor for mathematics and astronomy, lasting 47 years until his death 
in 1880. His leading positions as consultant for the government, in the Coast Survey, 
or the National Academy of Sciences is aptly summarized by Murphey: "His 
position was thus a commanding one in almost every field of physical science in 
America" (Murphey 1993, 11). 

The young Charles Peirce seemed to be predestined for a bright career at 
Harvard and delivered his Harvard lectures on the philosophy of science in 1864 -
65 and the Lowell lectures 1866 - 67. But he always stood in the shadow of his all-
powerful father. "At Harvard and on the Coast Survey, he was still Benjamin 
Peirce's son" (ibid., 19). Joseph Brent, in his highly readable biographical study, 
identifies the relation between Charles and his father as the key to the former's life 
and consequently to the failure of Charles' academic efforts. "Charles spent his life 
trying to surpass his father at his own subtle and demanding calling, the exploration 
of the abstract" (Brent 1998, 340). Whatever the biographical motivations may be, it 
is certain that, concerning the reflection about mathematics, the standpoint of 
Benjamin served as the starting point for Charles both personally and as regards 
content. 

Charles repeatedly and affirmatively quoted the famous definition of Benjamin 
published in his late main work "Linear Associative Algebra" from 1870 and surely 
in familiar dialog for a longer time: Mathematics is the science which draws 
necessary conclusions. 

This definition expresses two aspects: First, mathematics cannot be limited by 
referring only to certain objects. Stan Ulam expressed this in a similar vein about 
100 years later: 

The mathematical method, as presently used, probably would not appear strange to the 
Greeks. However, the objects to which mathematical thought is devoted today have 
been vastly diversified and generalized. It is their proliferation that would perhaps 
appear so striking not only to the ancients but even to mathematicians of the last 
century. (Ulam 1986, 2) 
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The second aspect of Benjamin's definition, again in accordance with Ulam, is that 
the method is made the criterion of demarcation, namely, necessary reasoning. 

It is uncontroversial that this definition played a central role for Charles (cf. 
Engel-Tiercelin 1993, 30/31; Grattan-Guinness 1997, 34; or Hull 1994, 274). But 
contrary to the suggestions of the mentioned literature, I shall claim that this is the 
beginning and not the end of Peirce's considerations about an adequate definition of 
mathematics. Admittedly, Benjamin's definition serves as an accepted basis for 
Charles, and therefore it can justly be called the family doctrine of the Peirces. Later 
on, Charles had modified, or better, transformed this statement in a twofold way. 
This transformation can be read as a critical discussion of his father's position. 

In the following I shall interpret a text of Charles Peirce and quote extensively 
from it. This is worthwile, because this text is a self-contained statement published 
in the Educational Review of 1898 as "The Logic of Mathematics in Relation to 
Education". The determination of mathematics is the main theme, and the modi
fications of Benjamin's definition are clearly expressed. The first transformation is a 
pragmatic turn. It enlarges the conceptual framework and looks at mathematics as 
an activity oriented toward applications, containing necessary reasoning only as a 
part. The main question shifts from: what is the essence of mathematics, to what is 
the business of the mathematician? The second trans-formation is a semiotic specifi
cation. Charles asks further what is necessary reason-ing like? And his answer 
consists in the semiotic proposal that each deduction contains elements of perception 
in an essential way, or proceeds diagrammatically, as he baptized it. 

2. OF MATHEMATICS IN GENERAL -
C. S. PEIRCE'S PRAGMATIC AND SEMIOTIC VIEWPOINT 

The subject of this section will be the interpretation of Peirce's 1898 article "The 
Logic of Mathematics in Relation to Education," bearing the subtitle "Of Mathe
matics in General." It is contained in the Collected Papers (CP), covering para
graphs 553 to 562 of the third volume, according to the usual way of citation: CP 
3.552 - 3.562. In this short text, Peirce reasons about the essence of mathematics 
from his philosophical viewpoint. One can find, therefore, characteristic features of 
the Peircean philosophy in a nutshell. 

Commonly, one finds cited only the lines in which Peirce quotes his father's 
definition. The citation should support the identity of the two viewpoints. But this is 
not the whole truth. Therefore, I shall quote the Peircean text extensively to show 
how Charles develops his own position, modifying Benjamin's definition in subtle 
but essential aspects. 

While searching for a definition of mathematics, Peirce is concerned at first with 
"the definition of mathematics as the science of quantity." He judges a Greek origin 
as rather implausible, because Aristotle reasoned "that mathematics ought not to be 
defined by the things which it studies but by its peculiar mode and degree of 
abstractness." (3.554) This aspect, that mathematics is independent from the objects 
it investigates, will build the backbone of the later definition by Benjamin Peirce. 
The origin of the definition as the science of quantity may be somewhere, this does 



316 J. LENHARD 

not affect that "the definition of mathematics as the science of quantity suited well 
enough such mathematics as existed in the seventeenth and eighteenth centuries." 
(3.555) But it did not suit any longer, because obviously mathematics began to cover 
a broader field. 

In the next paragraph, Peirce discusses Kant and his conception of mathematics 
given in the Critique of Pure Reason. For Kant, as for Peirce, mathematics played a 
fundamental role for epistemology. 

Kant, in the Critique of Pure Reason (Methodology, chapter I, section 1), distinctly 
rejects the definition of mathematics as the science of quantity. What really 
distinguishes mathematics, according to him, is not the subject of which it treats, but its 
method, which consists in studying constructions, or diagrams. That such is its method 
is unquestionably correct; for, even in algebra, the great purpose which the symbolism 
subserves is to bring a skeleton representation of the relations concerned in the problem 
before the mind's eye in a schematic shape, which can be studied much as a geometrical 
figure is studied. (3.556) 

Even this short passage shows clearly how Peirce embeds his semiotic thesis about 
diagrammatic reasoning in the tradition of Kant. What Kant described as 
construction was interpreted by Peirce as constructing an observable picture or 
diagram that allows for further empirical analysis. 

Peirce defends Kant against a cursory reading, as he ascribes to Hamilton and De 
Morgan, who had characterized the Kantian definition of mathematics as "science of 
pure time and space." 

Not only do mathematicians study hypotheses which, both in truth and according to the 
Kantian epistemology, no otherwise relate to time and space than do all hypotheses 
whatsoever, but we now all clearly see, since the non-EucHdean geometry has become 
famihar to us, that there is a real science of space and a real science of time, and that 
these sciences are positive and experiential - branches of physics, and so not 
mathematical except in the sense in which thermotics and electricity are mathematical; 
that is, as calling in the aid of mathematics. (3.557) 

What is the relation between mathematics and sciences that call in the aid of mathe
matics? The answer to this question is pivotal for Peirce's philosophy of 
mathematics: Defining mathematics requires it to be embedded into the process of 
scientific research. Only by looking at the whole process does it become possible to 
acknowledge those aspects of genesis and evolution that were so close to Peirce's 
heart. 

Now come the decisive paragraphs, introduced by the position of his father who 
formulated very clearly that mathematics cannot be defined through its objects, but 
has to be defined "subjectively." 

Of late decades philosophical mathematicians have come to a pretty just understanding 
of the nature of their own pursuit. I do not know that anybody struck the true note 
before Benjamin Peirce, who, in 1870, declared mathematics to be "the science which 
draws necessary conclusions," adding that it must be defined "subjectively" and not 
"objectively." (3.558) 

Charles quotes his father affirmatively, and therefore one can speak of this definition 
as the family doctrine. Nevertheless, he modifies it in the following paragraphs and 
thereby works out the original Peircean pragmatic and semiotic shifts. 
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The definition in the Encyclopedia Brittannica, according to which "the essence 
of mathematics lies in its making pure hypotheses, and in the character of the 
hypotheses which it makes" (3.558) is in line with this family doctrine. 

What the mathematicians mean by a "hypothesis" is a proposition imagined to be 
strictly true of an ideal state of things. In this sense, it is only about hypotheses that 
necessary reasoning has any appHcation; ... (3.558) 

This unspectacular statement contains the fundamental insight that the applicability 
of mathematics depends on the construction of ideal states - or expressed in a more 
modern fashion: it depends on the construction of model worlds. Mathematics 
makes its assertions only by the use of models and only about models. 

Hence to say that mathematics busies itself in drawing necessary conclusions, and to 
say that it busies itself with hypotheses, are two statements which the logician perceives 
come to the same thing. (3.558) 

One could exchange Peirces "hypotheses" for "models." What is the subject matter 
of "busies itself?" At first sight, it seems as if mathematicians would act solely in the 
world of models, because it is only there that they can do what characterizes them, 
namely, to reason necessarily. 

This self-sufficient attitude of mathematics is closely related to so-called "if-
thenism," and seems to result from the Peircean family doctrine. Exactly at this 
point, Peirce takes a step that shapes his philosophy of mathematics. He embeds the 
necessary reasoning, as a part of mathematical activity, into a more global practice 
of mathematics. The question is not about any hypotheses, but about ones that are 
judged as adequate for certain reasons, that is, for criteria of application. In other 
words, according to Peirce, the steps of modeling (that Peirce called "abductive"), of 
necessary reasoning within a model, and of testing the results inductively by appli
cation to the world of phenomena form one and the same process. This process, in 
turn, refers not only to a theoretical and methodological practice, but also to a social 
one. Thus, Charles Peirce performs a pragmatic shift in the definition of mathe
matics. The question of identifying the "essence of mathematics" is transformed into 
the question of the "business of the mathematician." In Peirce's own words: 

A simple way of arriving at a true conception of the mathematician's business is to 
consider what service it is which he is called in to render in the course of any scientific 
or other inquiry. Mathematics has always been more or less a trade. An engineer, or a 
business company (say, an insurance company), or a buyer (say, of land), or a physicist, 
fmds it suits his purpose to ascertain what the necessary consequences of possible facts 
would be; but the facts are so complicated that he cannot deal with them in his usual 
way. He calls upon a mathematician and states the question. Now the mathematician 
does not conceive it to be any part of his duty to verify the facts stated. He accepts them 
absolutely without question. He does not in the least care whether they are correct or 
not. (3.559) 

Here, Peirce poses slightly too much, because the process of modeling is a highly 
dialogic undertaking and it affords a lot of mediation. Modeling is dependent on 
aspects of correctness, or better, of adequacy. 

He (the mathematician) fmds, however, in almost every case that the statement has one 
inconvenience, and in many cases that it has a second. The first inconvenience is that, 
though the statement may not at first sound very complicated, yet, when it is accurately 
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analyzed, it is found to imply so intricate a condition of things that it far surpasses the 
power of the mathematician to say with exactitude what its consequence would be. At 
the same time, it frequently happens that the facts, as stated, are insufficient to answer 
the question that is put. (3.559) 

That is the lesson of the naive model builder: In the process of application, it is 
neither obvious which facts are relevant, nor how these facts could be molded into a 
model that is able to allow for a mathematical treatment. There is no unique relation 
between the field of concrete problems of application and mathematical models. 

Accordingly, the first business of the mathematician, often a most difficult task, is to 
frame another simpler but quite fictitious problem (supplemented, perhaps, by some 
supposition), which shall be within his powers, while at the same time it is sufficiently 
Uke the problem set before him to answer, well or ill, as a substitute for it. (3.559) 

At this point, the process of modeling is getting off the ground. It is worth noting 
that "to frame another problem" has nothing to do with necessary reasoning, rather it 
is a question of judgment. Nevertheless, it is "the first business of the mathe
matician." Peirce is assigning the problems of adequate modeling to mathematics 
itself! Thus he is enlarging the family doctrine considerably. Although mathematics 
is still not defined by certain objects, the difficulties in the handling of objects are 
still very much involved. In the quotation, Peirce has named two criteria: 

1. The question to the model should be practically treatable, "shall be within his 
powers," and 

2. the model should be sufficiently adequate, in the sense of applicability, 
"sufficiently like the problem set before him." 

The characteristic tension in applied mathematics is caused by the condition to fulfill 
(i) and (ii) "at the same time." Both aspects stand in a complementary relation - the 
more one makes it easier with the one aspect, the more it gets difficult with the 
other. Normally, neither very simple nor very complex models lead to a solution, 
because they either have little significance or are hardly possible to analyze. 

The (always only preliminarily accepted) outcome of the process of modeling is 
preparing the ground for necessary reasoning, one can say. And the latter cannot 
claim the rank of a definition of mathematics. 

This substituted problem differs also from that which was first set before the 
mathematician in another respect: namely, that it is highly abstract. All features that 
have no bearing upon the relations of the premisses to the conclusion are effaced and 
obliterated. The skeletonization or diagrammatization of the problem serves more 
purposes than one; but its principal purpose is to strip the significant relations of all 
disguise. (3.559) 

After the pragmatic transformation from essence to business described above, the 
second philosophically meaningful step beyond the family doctrine consists in a 
specifying request. What is necessary reasoning like? 

Kant is entirely right in saying that, in drawing those consequences, the mathematician 
uses what, in geometry, is called a "construction," or in general a diagram, or visual 
array of characters or lines. Such a construction is formed according to a precept 
furnished by the hypothesis. Being formed, the construction is submitted to the scrutiny 
of observation, and new relations are discovered among its parts, not stated in the 
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precept by which it was formed, and are found, by a little mental experimentation, to be 
such that they will always be present in such a construction. Thus, the necessary 
reasoning of mathematics is performed by means of observation and experiment, and its 
necessary character is due simply to the circumstance that the subject of this observation 
and experiment is a diagram of our own creation, the conditions of whose being we 
know all about. (3.560) 

This quote gives the principal elements of diagrammatic reasoning, always including 
"observation and experiment." Peirce's semiotic answer consists in analyzing 
necessary reasoning as diagrammatic reasoning. This Peircean conception is en
joying growing attention in different areas as semiotics, didactics of mathematics, or 
artificial intelligence (cf. Stjernfelt 2000; Hoffmann 2002; Chandrasekaran 1995). 
The pictorial approach seems to me to be especially promising, because the philo
sophy of mathematics usually suffers from a strong linguistic orientation, which it 
has inherited from the common analytical philosophy of science (cf. for an 
exception, e. g., Giere 1999). 

At the end of the foregoing quotation, Peirce is overshooting slightly in claiming 
a complete knowledge about the self-created diagrams. In this passage, he comes 
very near to the verum est factum theory of Cusanus. Therefore, he seems to miss his 
own point: Particularly the observed relations in a diagram can give rise to further 
questions. On, for example, the assumptions that underlie the construction, and 
whether some of them can be weakened without destroying the observed relations. 
This results in an analysis of the further attributes of a created diagram or a built 
model - attributes that were not known from the first and which are not under the 
command of the diagram's creator. That is, as I see it, the point of experimenting 
with diagrams. Michael Otte (2002) gives a nice example of a diagrammatic proof 
analysis, which starts from certain geometrical points in a triangle, observes their 
invariance under certain transformations (based on dynamical geometry software), 
and leads eventually to the theorem of Desargues. Peirce refers once more to Kant -
my last quotation from the text: 

But Kant, owing to the slight development which formal logic had received in his time, 
and especially owing to his total ignorance of the logic of relatives, which throws a 
briUiant Hght upon the whole of logic, fell into error in supposing that mathematical and 
philosophical necessary reasoning are distinguished by the circumstance that the former 
uses constructions. This is not true. All necessary reasoning whatsoever proceeds by 
constructions; and the only difference between mathematical and philosophical 
necessary deductions is that the latter are so excessively simple that the construction 
attracts no attention and is overlooked. The construction exists in the simplest syllogism 
in Barbara. Why do the logicians like to state a syllogism by writing the major premiss 
on one line and the minor below it, with letters substituted for the subject and 
predicates? It is merely because the reasoner has to notice that relation between the 
parts of those premisses which such a diagram brings into prominence. If the reasoner 
makes use of syllogistic in drawing his conclusion, he has such a diagram or 
construction in his mind's eye, and observes the result of ehminating the middle term. 
(3.560) 

Peirce is arguing explicitly in favour of the essential similarity of all necessary 
reasoning, that is, for the thesis that all such reasoning proceeds diagrammatically. 
In this context, it provides a good argument to interpret the compelling force of a 
syllogism as an effect of observation. 
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By the way, this passage indicates a point about the Kantian philosophy of 
mathematics. Peirce criticizes Kant indulgently for his erroneous claim that 
philosophy and mathematics would reason in essentially different manners (namely 
conceptually vs. intuitively). The missing acquaintance with the logic of relations, so 
Peirce, has caused Kant's mistake. For Peirce, in contrast, it is just the logic of 
relations that provides a sufficiently general framework to perceive the structural 
similarity of all necessary reasoning. All such reasoning involves elements of 
observation. As one of the founders of the logic of relations, Peirce surely has 
highlighted this instance proudly. 

Interestingly, one can find a very similar critique of Kant that points to the very 
same mistake, but reaches the opposite conclusion. Bertrand Russell (1956), or, in 
the same vein, Michael Friedman (1992), blame Kant for his out-dated conception of 
logic, that was based on the Aritotelian subject-predicate logic, which, in turn, was 
fundamentally broadened by relational logic. So far, their critique agrees with 
Peirce's. But they draw the opposite conclusion: All elements of construction, 
intuition, and perception are judged to be superfluous, because they would be 
introduced only as a crook for Kant's insufficient conception of logic (cf., for a 
critical discussion, Lenhard 2004). Maybe this illustrates that Peirce saw, as 
mentioned already at the beginning, mathematics as a fundamental science and did 
not argue for logicism in the sense of Russell, whose goal was to deduce 
mathematics from logic. 

Let us leave the interpretation of the Peircean text here and sum up the results of 
the reading. 

3. CONCLUSION 

The Peircean family doctrine, that is, the statement of Benjamin Peirce that 
mathematics is the science that draws necessary conclusions, was adopted also by 
Charles Peirce. But, as we have seen, Charles modified this doctrine in a twofold 
manner. First, he broadened it pragmatically and second he made it more specific 
semiotically. Let us review the two modifications briefly. 

1. Peirce has broadened the task of determining mathematics from the "essence of 
mathematics" to the "business of the mathematician." This presents a pragmatic 
shift, insofar as necessary reasoning is embedded in a process of research, that is, 
a social practice, which especially includes the systematically important stage of 
modeling. 
This transformation is in good agreement with the general feature of Peirce's 
pragmatic philosophy, as expressed by Karl-Otto Apel, namely to see the logic of 
science as a kind of "logical Socialism (the ideal of a practising community of 
inquirers)." And to act on the assumption "that the world cannot be known or 
explained merely by its previously fixed, lawful structure, but must rather 
continue to be developed as a historical, social world of institutions and habits 
for which we must assume responsibility ... (Apel 1981, 193)." That this prag
matic turn affects Peirce's philosophy of mathematics is broadly underestimated 
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in the literature (cf. the above-mentioned references to Engel-Tiercelin, Grattan-
Guiness and Hull). 
One could presume that C. S. Peirce's activity as an applied mathematician for 
the Coast Survey contributed to this picture. This is oriented toward the practice 
of mathematical research and not the particular subspecies of so-called "pure" 
mathematics. Finally, Peirce takes up a position, very likeable for me, according 
to which it is a philosophical challenge to investigate mathematics on the basis of 
a close examination and acquaintance of its course of action. 

2. The second modification consisted in a semiotic shift, which takes necessary 
reasoning itself as the subject of investigation and localizes elements of 
observation and experiment in any such reasoning. 
The principal direction of the family doctrine is maintained; that is, no specific 
domain of objects is ascribed to mathematics. But this should not hide the fact 
that diagrams do consist in concrete individual objects. And, furthermore, mathe
matical deduction explores, using the framework of a model, the properties of 
those objects. Thus, the semiotic shift goes hand in hand with a strong relation to 
objects. It can count as one of Peirce's main points that mathematics proceeds by 
transforming abstract concepts into concrete objects of investigation, a process 
that he has called "hypostatic abstraction." 

Peirce strived toward a pragmatic, or pragmatistic, and semiotic viewpoint on 
mathematics. Insofar, the interpreted passages are "typically Peirce." Another typi
cal feature is that Peirce was seeking for a methodological answer to the question on 
the "essence" of mathematics. 

Is this approach getting rid of all philosophical problems? Admittedly, this is a 
rhetoric question - it does not. Here I should like to point to the already mentioned 
problems concerning the adequacy of mathematical models that turn up in the 
context of application. Modeling is an activity in two worlds, so to speak, and Peirce 
has seen it as a fundamental problem to give a philosophically valid argument for a 
trustworthy relation between the world of real phenomena and that of an "ideal state 
of things." The difficult task is not to mix them up and, at the same time, to mediate 
them. Following Leibniz, Peirce has connected this problem with a "principle of 
continuity," and he has worked out a metaphysical hypothesis, the so-called 
synechism, a kind of doctrine of connection. 

For me, the main achievement of Peirce's philosophical account of mathematics 
does not lie in the classification of mathematics in the architectonic system of 
sciences (that was not mentioned at all in our reading). Rather it consists in the 
convincing proof that questions concerning mathematics inevitably lead to questions 
of the broadest philosophical significance. This seems to me to be also the essential 
viewpoint in Michael Otte's considerations about the Peircean principle of 
continuity that are part of his "Mathematik und Verallgemeinerung - Peirces semi-
otisch-pragmatische Sicht" (1997). 

Finally, I shall hint at the significance of these philosophical reflections for the 
didactics of mathematics. First, Peirce's article contains the "relation to education" 
in its title, and one can ask what this relation is. Actually, Peirce does not aim at 
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didactical considerations, at least not in the examined article (cf., about Peirce's 
didactics, Radu 2003). 

Nevertheless, the text contains a didactic message. I read it as the appeal to 
ground didactics philosophically, that is as the demand to base didactics of 
mathematics on a philosophically adequate picture of mathematics. (Perhaps the 
collaboration with Michael Otte has made me hypersensitive in this respect). Today, 
the dominant picture views the essence of mathematics as being realized in so-called 
"pure" mathematics, which is thought of as marking the application-far pole of all 
sciences. This picture is in obvious conflict with Peirce's view. And, in addition, this 
culturally established picture of mathematics is, at least partly, to be blamed for the 
recently diagnosed dreadful state of mathematics education. Thus there lies a 
common didactical and philosophical challenge. Currently, this challenge seems to 
be taken up by different approaches as exemplified in Corfield (2003), Lenhard and 
Otte (2003), or van Kerkhove (2003) - and some contributions to the present 
volume. 

Institut fUr Didaktik der Mathematik und Institut fiir Wissenschafts- und Technikfor-
schung, Universitdt Bielefeld 
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C. ULISES MOULINES 

MODELS OF DATA, THEORETICAL MODELS, 
AND ONTOLOGY 

A Structuralist Perspective 

Abstract. A general scheme for dealing with ontological issues form a "Scientistic point of view" is pro
posed. "Ontological commitments" (in Quine's sense) should always be examined with respect to a well-
estabUshed scientific theory. By means of a schematic example of "reconstruction" of a piece of experi
ence within a theoretical frame, it is shown what the essential steps in the process of constructing of a 
scientific ontology are. This steps involve, first, the construction of a "model of data" for a given "experi
ential situation", second, the selection of a model of a mathematized theory, an third, the subsumption of 
the data model under the selected mathematical model. A further schematic example provides the clues 
for answering the question of ontological reduction between different experiential domains. A final word 
is said about what it would mean to have a really unified universal ontology. 

Key words: ontological commitment, data model, theoretical model, subsumption, echelon set, ontologi
cal reduction. 

In the traditional wording, ontology is the discipline of Being in general. In a less 
bombastic, but eventually equivalent way of speaking, Quine has characterized it as 
the discipline of what there is (Quine 1953). And all "what there is," also following 
Quine, is the values of bound variables. Though Quine's slogan is in need of some 
minor qualifications and revisions, I still think it is a good starting point for doing 
ontology.^ The question, however, is to determine where these bound variables are 
to be found. My answer (which I think also follows the spirit though perhaps not the 
letter of Quine's slogan) is that they are to be found in scientific texts, or, more pre
cisely, in the formulations of scientific theories in standard scientific texts. I feel no 
inhibition in pleading for a "scientistic" ontology: If you want to find out what there 
is in the world around you, ask science! I shall not argue at length in favor of this 
kind of "scientism," I would just like to point out that it responds to an "economic" 
strategy founded on historical induction: Whenever there has been a dissent on 
"what there is" between science on the one hand and common sense, metaphysics, 
religion, or whatever on the other, in the long run it has always been science that has 
won the battle.^ Though I think there are very good reasons why this is so, I cannot 
dwell upon this point here. 

Therefore, having taken this "scientistic" decision in matters ontological, our 
next task is to investigate the way scientists handle their "ontological commitments" 
(to employ another of Quine's famous phrases) within the theoretical frame of their 
respective disciplines. Now, the first thing we notice is that the starting point for any 
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scientific investigation is a more or less loosely determined piece of (ultimately sen
sorial) experience.^ Nonetheless, unless we are hard-nosed ontological phenomenal-
ists (which I am not), we shall not assume that the elements of a particular piece of 
experience are actually what there is. Let us rather say that scientific research starts 
with a particular experiential situation (ES), and the final goal is to find out what 
there is behind £"5 - to find out the "Hidden Being Behind Appearances." Scientists 
(or whoever) may describe ES by means of particular expressions of ordinary lan
guage, like "wet," "hot," "sweet," "brown," and so forth. But a "scientific ontology" 
will not be one in which it is assumed that these predicates apply to what really is. 
Our starting point is necessarily an ES we describe in ordinary language, but our 
goal is to get "behind" ES and describe it within the conceptual frame of a scientific 
theory. 

A first obstacle to attain this goal, however, comes from the fact that the identity 
criteria for any ES considered are too fuzzy and uncertain for our purposes. The 
conceptual demarcations of experiential objects characteristic of ordinary life have 
to be further refined and modified for scientific purposes. To do this, scientists per
form a series of actions and interactions, mainly consisting in linguistic communica
tion with their peers plus the systematic observation and/or manipulation of me
dium-sized objects. This leads, in a first step, to the constitution of what we may call 
an "operational baseT OB, for ES ; in this way, the original ES becomes trans
formed and codified into an intersubjectively controlled experiential situation 
(ICES). The same or another OB may serve to determine other ICESs. 

It is important to be aware of the fact that a successful codification process lead
ing from an original ES into an ICES is never the outcome of the heroic action of a 
single individual but rather that of intersubjective communication. Or, to put it more 
cautiously, the only ICESs that science takes seriously for ontological purposes are 
those constructed intersubjectively. The construction of ICESs always takes place 
within a collective entity, a "group of partners" (GP) standing in regular interaction. 
At least since Thomas S. Kuhn, we know that these entities are the real subjects of 
science. In this sense, scientific ontology depends on pragmatics. 

Of course, this is only the first step toward a full-fledged scientific ontology. 
What comes next? To discuss this question, I propose to lay out a couple of sche
matic examples instead of a general argument. 

FIRST EXAMPLE 

While lying on his terrace, Johnny (or Nebuchadnezzar) faces an experiential situa
tion, let us call it "£"5^." This intrigues him, and may be described (without any onto
logical commitment) as follows: "Experience of the sky on a clear night; slowly 
moving sparkling points at various positions." In order to interpret ESp correctly, 
Johnny-Nebuchadnezzar meets a group of partners, GP°, all of them equally in
trigued by the night sky, and they agree to proceed in the following way: 

First, they agree to undertake systematic observations on many following nights. 
Second, they agree to determine lapses of time by means of a device (a medium-

sized object) called a "clock." (We need not imagine here a quite sophisticated, i. e., 



MODELS OF DATA, THEORETICAL MODELS, AND ONTOLOGY 327 

"theoretized" apparatus; it would be enough to have a sandglass, on which GP° 
makes some marks: The time elapsed is determined by the number of marks covered 
by the falling sand.) 

Third, on a long series of following nights, always beginning at the same time 
(i. e., starting from the same mark on the sandglass) and after equal lapses (i. e., after 
the same number of covered marks), GP° focuses its special attention on those spar
kling points that move irregularly. 

Fourth, after some hesitations, GP° decides to devote itself only to the irregularly 
moving points and to give them a generic name: "planets." They also give proper 
names to the individual points: "Mercury," "Venus," and so forth. 

At this point, we can say that GP° has transformed the original ESp into a clearly 
demarcated ICESp. 

We now go on to the next phase of the scientific enterprise. GP° notices that a 
thorough investigation of the issue of the night sky requires more than mere obser
vations and denominations. One has to "fix them on paper." GP° decides to repre
sent ICESp in the following way: They take squared paper, agree on marking a "cen
ter of coordinates" on the paper representing a particular sparkling point (e. g., the 
so-called "North star"), and they determine the relative positions of the planets with 
respect to the North star by means of successive marks on the paper within regular 
lapses of time. On a great number of sheets, they obtain in this manner a great num
ber of marked points. 

We may call this representation an "ICESp-corresponding data model," or just 
DMp. The representation has been established according to a set of conventions or 
"axioms:" 

(Ai) "Pointpi on the paper, when the sand covers mark m, represents Mercury." 
(A2) "Point/?2 on the paper, when the sand covers mark m, represents Venus." 

(A^) "Point p;„ on the paper, when the sand covers mark m\ represents Mercury. 

(An) "The distance frompi to the center, when the sand covers mark m, is ri." 
(An + i) "The distance from/?2 to the center, when the sand covers mark m, is r2." 

After some quarrels and reconciliations within GP° (what sociologists of science 
call "negotiations"), GP° agrees to accept "axioms" (Ai), (A2), ..., (Ami..., (AJ, 
(An + \),.... This process of acceptance is followed partly by convention (e. g., for 
(Ai), (A2J,... ) and partly through procedures normalized and admitted by GP° (re
lated, e. g., to the way the number of boxes on the squared paper separating each pt 
from the center of coordinates for establishing (A^), (A^ + 1), ..., is to be counted). As 
soon as the process of acceptance comes to an end, GP° declares the statements (Ai), 
(A2),...,(An + i),... to be true. 
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Consider now the following structure: 

DMp = : < fph...,p5}, f...mu...}, d >, 

in which dis a. diadic function consisting of the triples 

<Pi, nii, r,>,(withr,GQ), 

that are the values of those parameters correlated in each statement (A^ +j), withy > 
0. 

The construction process just illustrated leads to the conclusion that DMp is a 
kind of structure that is a "model" of the axioms (Ai), ..., (A^), ... in a sense similar, 
though not identical, to the standard Tarskian notion of "model of a formalized the
ory." It is similar to the standard model notion in the sense that the triples <pu m,, r, 
> satisfy (in the strong Tarskian sense of "satisfying)" the formulae (An +jj for y > 0. 
However, it is not quite a Tarskian model, because we cannot really speak of "satis
faction" with respect to the formulae (Aj,) for k < n: What we have here instead are 
operational presuppositions to settle the "universe of discourse" of DMp^ Taking into 
account both aspects (the analogy as well as the nonidentity with the formal model 
notion), it seems to be justified to apply to the structure DMp the special denomina
tion "data model". 

Up to this point, we still have not talked about ontology. We still have not said 
what there is. Neither the sparkling points in the night sky, nor the marks on the 
sandglass, nor the marked points on the squared paper; none of these elements of 
GP°'s experiential space are what really is - at least from the point of view of a sci
entific ontology. For, up to this point, GP° has not made any serious ontological 
commitment. According to the "scientism" in matters ontological we have adopted 
from the beginning, in order to come to such a commitment, GP° has got to work 
within the frame of at least one well-established scientific theory. This brings us to 
a qualitatively new phase in our enterprise. 

Let us assume somebody (GP° itself or some other group of partners) has ini
tially elaborated a specific theory, call it "r^," for the time being only as a purely 
mathematical formalism. According to the structuralist standpoint I adopt here, the 
identity criterion for it is its proper model class, M[Tp]. Let us suppose the elements 
of this class have the form: 

XE M[Tp]^X= <A /, //?,/?!, ..., /?^/i, . . . , / ,>, 

so that the components of any x are characterized as follows : 
(*1) D is a finite, nonempty set (whose elements Tp's inventor just calls "dots"). 
(*2) / is isomorphic to an interval of IR (whose elements are called "instants"). 
(*3) Ri and^ are relations and functions defined over D and/or / and/or IR. 
Further, any x e M[Tp] satisfies some "proper axioms" or "laws," that is, formu

lae relating D, I, /?,, and fj with each other. (For the purposes of illustration, we can 
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imagine they are the formulae known as "the laws of Kepler," "the laws of Newton," 
or something of the sort.) 

Up to this point, we are still outside ontology. All this is pure mathematics (and I 
have already said that we just make the simplifying assumption that mathematics has 
nothing to do with what there really is). For the time being, to be a "dot" just means 
being an element of any set D that is, in turn, the first component of a given struc
ture X that is, again in turn, an element of the class M[Tp] characterized in purely 
formal terms. The same goes for the term "instant." 

Now, suppose GP° is able to give a mathematical proof for the following claim: 

There is at least a concrete w° G M[Tp] such that: 

DM pis a substructure of w° (abbreviated as "DMp § w°"). 
The concept of substructure relevant here may be explicated in following terms: 

Let w° = <D° r , IR, 7?%...,/?°^ . . . , / ' i , . . .A>, 

in which, for some/"/, we change this symbol into 5° and characterize it as follows: 

Then, formula ''DMp § w° " means that following conditions are fulfilled: 

(1) (pi, . . . , / 7 5 } c D ° ; 

(2) {...,m„...}cr; 

(3) 5V{pi, . . . , /75}X{. . . ,m„. . .}X//f ' = rf. 

From the claim " DMp § u^ " (which has been mathematically proven), GP° now 
concludes: 

The experiential situation ICESp can be subsumed under theory Tp. 
Clearly, this conclusion is not a logico-mathematically valid inference; it corre
sponds more to what GP° understands under "subsumption of experience under a 
theory" or, to put it more crudely, to pointing out that theory Tp "works well" with 
respect to ICESp. 

At this point, finally, GP° (as well as we ourselves, as philosophers of science 
analyzing scientific behavior) are allowed for the first time to engage in ontological 
commitments and to declare 

Planets are really dots. 
Or, to put it somewhat differently "What there is in the night sky are dots;" or still, 
in the traditional jargon: "The Being hidden behind the nightly appearances consists 
of dots." 
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My claim is that this schematic and admittedly oversimplified example is in 
principle paradigmatic for the way ontological issues are solved from a scientific 
point of view. I say "in principle," because the following complication may arise. 

SECOND EXAMPLE 

Let us suppose we are confronted with another intersubjectively controlled, experi
ential situation ICES of the following kind. GP° observes a number of more or less 
round, medium-sized rigid bodies, which any member of GP° can see and touch 
(and smell and taste if he/she wishes). GP agrees thoroughly to polish these bodies 
(according to some standardized procedures), to put them on an equally well pol
ished table, and to push the round bodies so that they move in straight lines, rotate, 
and collide with each other. GP° systematically observes the changes of direction 
and rotation of the round bodies, and represents all this in a way analogous to, 
though not identical with, the case of the planets (e. g., the objects are no longer rep
resented by points but by volumes, and the representation of the motion is not two-
but three-dimensional, etc.). Suppose that GP° comes in this way to the construction 
of another "data model" DM .̂ Suppose, further, that somebody invents another the
ory, call i t 'T^" essentially different from Tp, whose models have the structure x = 
<C, /, /if, .. .>, thereby satisfying laws different from those of Tp (say, the principles 
of the conservation of kinetic energy and of angular momentum). C's elements are 
now called "chunks." 

Assume, further, that, by going through a formal argument analogous to the case 
of the planets with respect to the theory Tp of dots, GP° now comes to the inference 
that, for a given v° G M[Tr], the claim is valid: 

DMr§v\ 

and that, therefore, the conclusion is warranted 

ICESrCSin be subsumed under T^. 

In this case, we may go on to the ontological way of speaking and declare that 
chunks really exist, or that "the hidden Being behind the rotating and colliding 
round bodies on the table consists of chunks." 

Because it is not the case that ICESr = ICESp, nor that DMr = DMp, and because 
the laws of Tp and T^ are different nonequivalent formulae, there is no reason to as
sume that chunks have anything to do with dots. Even if we were to assume that our 
experiential situations are restricted to ICESp and ICESr, we would be obliged bit
terly to acknowledge that there is no unified ontological constitution of reality, since 
Being is sometimes being a dot and sometimes being a chunk. 

Suppose, however, that GP notices the following fact: For any model v of Tr that 
is ontologically relevant, in other words, for any v G M[Tr] really subsuming a given 
ICESr, one can proceed according to the following steps: 
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(a) One reinterprets v's basic domain as being not a simple set, but rather a set of 
sets. Instead of having C = fci, ..., cj, we would have C = ffdi, ... dkJ, fd\, ... 

(b) One takes the great union D = u C = fdi, ..., d^ d\, ..., di, d\, ..., d'^I as the 
basic domain of a structure u that, comes out as a model of Tp, that is, u e 
M[T,]. 

(c) It is possible to prove mathematically that if you add some special conditions to 
Tp 's proper axioms, that is if you presuppose that u G Mi [Tp], in which M, [Tp] 
is an axiomatizable proper subset of M[Tp], then u also satisfies some formulae 
that are equivalent to T '̂s proper axioms. 

In this situation, we can say that Tr (at least in the area of relevant experiential situa
tions) is reducible to Tp^ and, in particular, that, for any (ontologically relevant) v G 
M[Tr] with Di(v) = C, there is a corresponding u G M[Tp] with Di(u) = £), such that 
C c p(D). Therefore, it seems plausible to admit that, in spite of the difference be
tween the theories applicable to different experiential situations, the ontological 
unity has been restored: Chunks are "in fact" sets of dots, and consequently, the Be
ing "hidden behind the phenomena" still only consists in dots. 

There are several directions in which this possible situation may be generalized 
in order to speak of a restablished unity of Being in spite of having different, non-
equivalent theories that are applicable to different experiential situations. 
1. One possible direction is this. The set-theoretical relationship between C and D 

may come out as being more complex than the simple formula C c p(D) sug
gests. It could be the case that the experiential situations require several distinct 
basic domains Di, ..., D„, instead of a single D, but, nevertheless, allow for a re
construction of C as a complex configuration of a relational kind over Di; an ex
ample for this might be illustrated by the formula: 

CQP(BIX^(B2)XB3). 

In general, we may suppose that C can be constructed as an echelon set out of 
previously given domains Bx.Bi, ... In this case too, it is plausible to say that 
what "really exists" is not constituted by the elements of C but rather by the ba
sic elements of those Bi that settle the base for the echelon set C. 

2. Second, it will usually be the case that the derivation of the laws satisfied by v 
from the laws and additional special conditions satisfied by v's counterpart u (as 
illustrated in Point c above) does not work exactly but only approximatively. To 
deal with this case in a serious way, a serious (i. e., a precise and plausible) no
tion of approximation as a kind of intertheoretical relation is needed. But its for
mal explication poses no particular problem (at least not as a matter of principle): 
The structuralist approach provided such an explication (and its illustration by 
means of real-life examples) some time ago; it is essentially based on the notions 
of a uniform structure and a blur (as a kind of "model-theoretical fuzzy-set"). 
For details, see Moulines (1980) and (1981), as well as Balzer, Moulines and 
Sneed (1987, Ch. 7). At any rate, what interests the ontologist here is that, even 
if there is no exact derivation of the laws of one theory from those of the other, 
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and therefore there is no exact relationship between their corresponding models, 
the notion of intertheoretical approximation makes it possible to recover the on
tological unity. 

3. Third, there is some hope for an ontological unification even in those cases in 
which the laws of one theory cannot be derived either exactly or approximatively 
from the laws and special conditions of the other. Imagine the following situa
tion: There is a theory T with a model v G M[T] and a basic domain C, so that 
GP "suspects" that, for another theory r° , the model v with its domain C has 
"something to do" with r° . However, even by adding special conditions to T"̂ , 
GP is not able to find a v-corresponding model in r° , u G MJT^], allowing for 
an exact or approximative derivation of T's laws from the laws and special con
ditions of r° . Still, GP should not necessarily despair. One might be able to es
tablish the following intertheoretical relationship (expressed in exclusively 
model-theoretical terms) between T and r° : v can be connected with a particular 
w° G MilT""] with a basic domain D and subsuming the same experiential situa
tion as before (or a similar one); this connection may consist, for example, in the 
identification "C c p (D)" without thereby hindering v's ability to subsume the 
corresponding experiential situation. In this case, we could conclude that, even 
though the nomological reduction between both theories is no longer possible we 
may speak of an ontological reduction, and we (or GP) may claim that the ele
ments of C of r are "nothing but" sets (or structures) of elements of D of T°, 
Let us summarize the results of our considerations. Let us suppose we have a 

theory T with some models subsuming - through idealization - some experiential 
situations that interest us; in these models, the basic domains D\, ..., D„ appear. Let 
us further assume we find (or invent) another theory r ° possessing models subsum
ing the same, or similar, and possibly other interesting experiential situations and 
having basic domains D°i, ..., D'^rn- And let us finally suppose that, for any relevant 
model V of r and for all its basic domains Dj, we can find a relevant model w° of r ° 
with one or several domains D°y, such that v and w° are linked together through at 
least one of the configurations depicted in Situations 1 to 3 above. In such a case, we 
may claim that T is ontologically reducible to r°, and that the only ontologically 
relevant commitments we have taken are those corresponding to 7°. The only Real 
Being is being according to r° . 

A final word on matters ontological. Imagine for a moment we would have a 
single BIG THEORY r ° to which all other scientific theories Ti would have the kind 
of relationship we have just called "ontological reducibility." In this situation, I 
think we would be warranted in claiming that we have a unified ontological picture 
of THE WORLD. Is present-day science in this situation? Certainly not! Some sci
entists, especially physicists, are trying very hard to make it come about; some other 
scientists, mainly nonphysicists, are doing their best to hinder it; and most other sci
entists just don't care. We, as philosophers of science, cannot decide the issue; but, 
at least, we know in quite precise terms what it would be like to have either a posi
tive or a negative answer to the question. 

Institutfur Philosophie, Logik and Wissenschaftstheorie, Universitdt Munchen 
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NOTES 

' For an assessment of a somewhat modified Quinean perspective on ontological matters, see Moulines 
(1994) and (1998). 
^ By "science," I mean the collection of well-established, institutionally anchored scientific disciplines. 
^ In this discussion, I shall leave aside the realm of pure mathematics, not because I think that the onto
logical questions related to mathematics are uninteresting, quite the contrary, but rather because deaUng 
with them would go far beyond the scope of this article. In the present context of discussion, mathematics 
will be considered in its purely instrumental value for empirical science. 
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MARCO PANZA 

SOME SOBER CONCEPTIONS OF MATHEMATICAL 
TRUTH 

Abstract. It is not sufficient to supply an instance of Tarski's schema,' "p" is true if and only if p ' for a 
certain statement in order to get a definition of truth for this statement and thus fix a truth-condition for it. 
A definition of the truth of a statement ;i: of a language L is a bi-conditional whose two members are two 
statements of a meta-language L\ Tarski's schema simply suggests that a definition of truth for a certain 
segment x of a language L consists in a statement of the form: ' v{x) is true if and only if T{X) , where 
' v{x)' is the name of x in L' and T{X) is a function T: S -^ S' (S and S' being the sets of the statements 
respectively of L end L') which associates to x the statement of L' expressed by the same sentence as that 
which expresses jc in L. In order to get a definition of truth for x and thus fix a truth-condition for it, one 
has thus to specify the function r. A conception of truth for a certain class X of mathematical statements is 
a general condition imposed on the truth-conditions for the statements of this class. It is advanced when 
the nature of the function r is specified for the statements belonging to X. It is sober when there is no need 
to appeal to a controversial ontology in order to describe the conditions under which the statement T(X) is 
assertible. Four sober conceptions of truth are presented and discussed. 

Key words: mathematical truth, conception of truth, truth-condition, statements vs. sentences, Tarski's 
condition. 

Truth is generally considered to be a crucial matter in the philosophy of 
mathematics. It is quite common to define realism in mathematics as the thesis that 
mathematical statements can be true, but their (eventual) truth does not depend on 
the fact that they are proved, or even that they could be proved in our mathematical 
theories, being rather somehow independent of us. In other words, it is generally 
accepted that to be realist in mathematics means to consent to the thesis that truth or 
falsehood are intrinsic properties of mathematical statements. 

I do not intend to discuss this thesis here. My aim is much more modest. I simply 
observe that, commonly, this definition assumes implicitly not only that there are 
mathematical statements, but also that they are homogeneous with respect to the 
property of them that makes them eventually true or false. This means that 
mathematical statements, whether true or false, are all so in the same sense or for the 
same sort of reasons. If one does not take this for granted but nevertheless accepts 
the previous definition, one can hardly admit that realism in mathematics is a well-
defined and even a consistent thesis, and thus argue in favour of or against it. One 
evidence for this is that people who consider themselves to be realist in mathematics 
in the previous sense mainly look for a suitable conception of mathematical truth, 
and only for one. 

335 
M. H. G. Hoffmann, J. Lenhard, F. Seeger (Eds.), Activity and Sign - Grounding Mathematics 
Education, 335 - 347. 



336 M. PANZA 

When mathematics is considered abstractly as a (more or less well-defined) 
domain of justified beliefs, or even as a system of statements of a certain sort that 
belong to such a domain because of their form, their content, or the modality of their 
justification, such an assumption is quite tenable. Explicitly or not, it can even enter 
the definition of mathematics itself and, when the realist thesis (as previously 
defined) is accepted, also contribute to the definition of mathematical knowledge. In 
contrast, it seems to me that when mathematics is considered as an actual practice or 
activity accompanying the history of humanity, or even as the system of issues 
resulting from such a practice or activity, this same assumption is quite doubtful. 
There is no doubt, I think, that from such a point of view, one may rightly speak 
about mathematical statements, that is, admit that the term "mathematical statement" 
refers to genuine objects. And I also hold that one can sensibly assign to these latter 
objects the property of being true. But, when mathematics is conceived in such a 
way, there is no guarantee that these objects are homogeneous with respect to what 
makes they are true or false; there is no guarantee that, if true, they are all so in the 
same sense or for the same sort of reasons. 

There are at least two ways to argue that this is not really the case. The first one 
consists in seeking out various occurrences of the term "true" and their cognates in 
texts unanimously considered as mathematical ones, and to show, by means of 
textual analysis, that this term does not have the same sense across these 
occurrences. The problem with this strategy is that the argument it provides could be 
countered by arguing that, although they occur in mathematical texts, some of these 
occurrences are not specifically mathematical. Thus, I prefer to look beyond this 
objection and to proceed in the second way. I shall present different senses in which 
it seems to me that one should admit that a mathematical statement could be true, 
and argue that when a statement is true according to one of these senses it is not true 
for the same sort of reason as when it—or any other statement—is true according to 
any other one of them. 

In doing this, my intention is not to argue against realism in mathematics. Far 
from it, I argue that if the opposition between realism and anti-realism in 
mathematics is genuine and crucial, and if one speaks of mathematical truth in the 
senses I shall consider here, then this opposition is not concerned with truth. This is 
the reason why I take these senses to be sober ones. My aim is simply to show that it 
is possible to speak of truth in mathematics without being engaged in doubtful and 
controversial ontology. Of course, I admit that one could also speak of truth in 
mathematics in other and not sober senses. It is even a matter of fact that a lot of 
philosophers and mathematicians have done and do this. I do not intend to make a 
stand against their attitude here. I simply advance the hypothesis that sober senses 
(the ones I shall consider or some other ones that could be added to my list) would 
suffice to give a satisfactory account of mathematical practice or activity (though I 
concede that this account might not meet the intentions and metaphysical 
convictions of some mathematicians). 

1 
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Up to now, I have generically used the term "sense" in order to refer to a certain way 
to conceive truth in mathematics. To be more precise, I shall from now on speak of 
truth-conditions and of definitions and conceptions of truth. I shall speak of truth-
condition and definition of truth for a certain statement in order to refer respectively 
to the condition that such a statement has to satisfy in order to be true, and to the 
statement that specifies such a condition. I shall speak instead of conception of truth 
for a certain class of statements in order to refer to a general condition imposed on 
the truth-conditions for the statements of this class. Thus, in order to present 
different senses in which one should admit that mathematical statements could be 
true, I shall advance different conceptions of truth for different classes of 
mathematical statements. 

Before doing this, let me present a general condition that, in my opinion, any 
definition of truth for a mathematical statement, should satisfy. 

This is Tarski's condition. I require that any definition of the truth of a 
mathematical statement should be expressed by an instance of Tarski's schema: ̂ "p" 
is true if and only if p i I shall not argue in favour of such a condition. I simply argue 
that, taken as such, an instance of Tarski's schema is nothing but a sentence of a 
certain language, /. e. a well formed combination of terms (or formula) of this 
language. It is thus not sufficient to supply an instance of Tarski's schema for a 
certain statement in order to get a definition of truth for this statement and thus fix a 
truth-condition for it. In order to do that, it is also necessary to interpret such a 
sentence, that is, to take it as being the expression of a certain statement. 

Suppose that a particular instance of Tarski's schema is uttered in a certain 
language U in order to provide a truth-condition for a certain statement x of another 
language L. U should then serve as a meta-language with respect to L. Hence V 
would contain a name for x, to be used to form the first member of the bi-conditional 
constituting such an instance of Tarski's schema. This name should not only denote 
xmL\ but also be, as such, functionally related to the second member of this bi
conditional. And this second member should, in turn, be a sentence of U expressing 
a certain statement. It is just this latter statement that fixes a truth-condition of x. 

A definition of the truth of a statement jc of a language L is thus a bi-conditional 
whose two members are two statements of a meta-language L\ the first saying that x 
has the property to be true, and the second being the value taken by a function 
y/:N' ^S' (in which Â ' is the set of the names of U and S' the set of the 
statements of U) when its argument is the name of x in L\ Of course, not every 
name of L' could be an argument for such a function. In order to be so, a name of L' 
should be the name of a statement of L and result from a quotation. Tarski's schema 
would then suggest the following: Take the statement x as it is uttered in L; 
transform it into its same name in L' by adding quotation marks to the sentence of L 
which expresses it, and use this name to form a statement of U saying that x has the 
property of being true; disquote such a sentence in order to obtain another statement 
of L'; and form a bi-conditional whose two members are given by these two 
statements of L'. This means that Tarski's schema would suggest to define a 
function T: S ^> S' (S being the set of the statements of L) by composing a function 
v: S -> N\ giving the name of x in L' when applied to x, with another function 
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y/: N' -^ S'. It is just the value of this function r that ultimately would provide a 
truth-condition for x. 

Suppose now that the function v is simply the quotation function: applied to a 
statement of L, it gives a name for this statement in L' by simply adding quotation 
marks to the sentence which expresses this statement. Then the function yr can not 
simply be the disquotation function, since when this function is composed with v, it 
can only produce the identity function and not a function rfrom S to S\ Thus, either 
V is not simply the quotation function, or y/ is not simply the disquotation function. 
It follows that either there is more in Tarski's schema that the simple allegation of 
the quotation and the disquotation functions (jointly with the instruction to form a 
suitable bi-conditional by using their values), or it is not sufficient to supply an 
instance of Tarski's schema for a certain statement in order to get a definition of 
truth for this statement and thus fix a truth-condition for it. But, in Tarski's schema, 
there is nothing more than that; hence, it is not sufficient to apply this schema to a 
certain statement in order to get a definition of truth for this statement and thus fix a 
truth-condition for it. 

A definition of truth of a certain statement x of a language L is rather a bi
conditional statement of a meta-language L\ whose first member says of JC that it has 
the property of being true, and the second one is the value taken by a function r from 
S to S' when it is applied to JC, under the condition that this function results from the 
composition of the quotation function vfrom S to N' and a function ^from N' to S' 
such that y/{v{x)) is the statement of L' expressed by the same sentence that 
expresses x in L. This bi-conditional statement has thus the form: ^v(x) is true if and 
only if T{X)^, where ^v(jc)̂  is the name of x in L' and T{X) = y/{v{x)). 

Of course, a definition of this sort can only be uttered in L' if this language 
contains all the terms of L entering in x. This is an obvious necessary condition. But 
it is not sufficient, since to say that a statement of L' is expressed by the same 
sentence that expresses it in L is not sufficient in order to identify this statement. The 
work of the function ^is just to identify this statement. 

Thus, either it is admitted that at least some ones of the sentences of L' are such 
that one of them may express different statements, or it is admitted that the 
statements of L' are not given independently of the specification of the functions y/ 
and T. I favour the second possibility. After all, it seems to me very natural to 
conceive the language L' as being constructed on the basis of L just in order to utter 
truth-conditions for the statements of this latter language, rather than as an already 
given language fortuitously satisfying all the conditions that should be satisfied by a 
meta-language with respect to L where a definition of truth for a statement of L 
could be uttered. 

It follows that, in my opinion, in order to advance a conception of truth for a 
certain class X of mathematical statements of a certain language L, one should 
simply specify the nature of the function T entering the truth-conditions of the 
statements belonging to X and allowing the determination of the statements of L\ 
This is what I shall do. 



SOME SOBER CONCEPTIONS OF MATHEMATICAL TRUTH 339 

Before to do that, let me consider some consequences of Tarski's condition. 
Suppose that one has specified the nature of the function r entering the truth-
conditions of the statements belonging to a certain class X of mathematical 
statements, and has thus advanced a conception of truth for this class of 
mathematical statements. One can then advance a conception of falsehood in the 
same way, by assuming that a definition of the falsehood of a certain mathematical 
statement x belonging to a certain language L and a certain class X of mathematical 
statements is a bi-conditional statement of a language L' working as a meta
language with respect to L, namely the statement: ^ v{x) is false if and only if non 
r(;c)\ where ^non r(jc)\ is the negation of the statement ^T(X)^ in L . It is then only a 
question of propositional logic to derive in L' the following bi-conditional: ^v{x) is 
not true if and only if v(x) is falsel But what about the truth or the falsehood of the 
negation of x in L? If such a negation belongs to X, the previous definitions give, by 
substitution: l^v(nonx) is true if and only if r(non x)^ and '̂ KnonA:) is false if and 
only if non r(non x)l However, nothing enables us in general to derive from here the 
bi-conditionals: ^̂  v(non x) is true if and only if non T(X)\ or ^v(x) is false if and only 
if r(non x)l To do that, we would have to admit that r(non x) is identical with non 
T(X), and nothing enables us to admit that in general. Nevertheless, nothing prevents 
the function r from satisfying such a further condition. If this is the case, it is then 
only a question of propositional logic to derive the bi-conditional ^v(non;r) is true if 
and only if v(x) is false\ and, if either the logic in L or the logic in L' are classical, 
also the conditional ^ v(non x) is false if and only if v(x) is truel It would follow that 
the truth of the negation of x is equivalent to the falsehood of x, and if either the 
logic in the language which x belongs to or the logic in the language in which this 
definition is stated are classical, it is also such that the truth of x is equivalent to the 
falsehood of the negation of x. This is a remarkable condition, and it seems to me 
that we are entitled to qualify a conception of truth that satisfies it as a 
correspondentist conception of truth. 

The first conception of truth I shall advance is just a sober correspondentist 
conception. Thus it constitutes an example proving that a correspondentist 
conception of truth for a class of mathematical statements can be sober. 

2.1 

5x^ i- Aax 
Take a sentence like the following one: "the primitive of —. is 

2yax-\- a 

—^ax^-a^ +C ." It seems to me that one possible way of understanding the 
a 

statement expressed by such a sentence, say 5, is to take it as referring to the 
symbolic expressions that enter it. If so, the statement s tells us that if one applies 
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the derivative algorithm to the expression — ^ a x + a^+C, one obtains the 
a 

5x^ + 4ax 
expression —. It is thus a statement describing a relation between two 

2^Jax + a 
symbolic expressions, that is, two equivalence-classes of empirical objects such as 
concrete signs. One is then entitled, I think, to take s as true, just because the 

x^ I 
application of the derivative algorithm to the expression — ^ a x + a^ + C gives the 

a 
5x + 4ax 

expression —. . This is simply a way to understand the term "primitive." 
2^ax + a 

Let us suppose that s belongs to a language L. This means that L is the language in 

1 - 1 1 44 1 . . . p 5x + 4ax . X I 2 ^ „ 
which the sentence the primitive or —. is —^ax-\-a + C expresses 5. 

The function r entering a possible truth-condition ofs should thus simply associate s 
to a statement T{X) of a suitable meta-language L' expressed in such a language by 

1 44 1 . . . ^ DX -\- 4ax . X / 2 7. „ 
the same sentence the primitive or —. is —^|axi•a + C and asserting 2^Jax-\-a'^ 
here that the application of the derivative algorithm to the expression 

2 2 
X I 2 7^ - 1 . 5x -\- Aax ^ , , . ^ . 
—yjax + a +C gives the expression —. In other terms, this lunction 
^ 2^|ax'{-a^ 

should associate ^ to a statement of L' telling us the same as that which the 
statement s tells us in L. 

It is easy to generalise this example. Let us consider a class X of mathematical 
statements of a language L asserting that a certain rule of formal transformation 
applied to a certain expression produces or does not produce another given 
expression. A possible conception of truth for such a class of statements simply 
requires that the function r defined over this class associates any statement x of X to 
a statement of L' telling us the same as that which the statement x tells us in L; that 
is, that the rule of formal transformation that x refers to, when applied to the first 
expression that x refers to, produces the second expression that x refers to. I suggest 
that a lot of mathematical statements can be conceived as asserting that a certain rule 
of formal transformation applied to a certain expression produces or does not 
produce another given expression, and that one is thus entitled to apply to them such 
a correspondentist conception of truth. 
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2.2 

To pass to other conceptions of truth, let us consider the same sentence as before: 

"the primitive of —. is — \ a x - \ - a^ + C ." One could also understand the 

statement expressed by such a sentence, say 5*, by referring the term "primitive" not 
to the derivative algorithm, but to the general definition of derivative. If so, j * tells 

^a{x •^-n)^: a + C V« 
a \ a 

ax-\-o} -C 

to us that the limit of when h tends 
h 

5x + 4ax 
toward 0 is equal to —. . If the derivative algorithm is taken as being 

justified by having shown that it satisfies the general definition of derivative, the 
difference between the statement 5* and the statement s considered in the previous 
example is far from being essential from a mathematical point of view. This is not 
my point, however. What is important for me is that the equivalence of these two 
statements has to be set up by means of a proof, which is not, as such, part of these 
two statements. It seems to me that this allows us to consider these two statements as 
distinct from each other. 

One could certainly hold that to say that the limit of 

— J a ( x + /i) + a^ + C ^ax^a^ -C ^ ^' ^ ^ -t i^ "V ax -r- a — L. 

when h tends toward 0 is equal to 

is nothing but asserting that the first expression can be transformed into 
5x^ + 4ax 

2ylax-\-a^ 
the second one by applying certain rules of transformation in a suitable way. If so, 
the situation does not change with respect to the case considered in Section 2 .1: 
Though the truth of the statement s and the truth of the statement s* do not depend 
on the same reason, the reasons they depend on are of the same sort; and the truth-
conditions of these statements satisfy the same conception of truth, since a certain 
sequence of rules of transformation is itself a rule of transformation. But one could 
also argue that this is not so: that when speaking of limit, we are implicitly referring 
to functions, whereas when operating according to certain rules of transformation, 
we are working with symbolic expressions, eventually with the symbolic 
expressions expressing these functions. When we are considering particular 
functions like the previous ones, the difference between a function and the 
expression that expresses it could appear to be minor. But it is not certainly so in 
general, and it is not so in particular, when we are referring to a class of functions 
respecting certain general conditions, like continuous functions or limited functions. 
Thus, it should be clear that a statement referring to these functions can not be 

file:///ax-/-
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understood as asserting that a certain rule of formal transformation applied to a 
certain expression produces or does not produce another given expression. 

Hence, if one wanted to understand the statement 5*, or any other statement about 
functions, as a description of some objects and/or their relations, one should admit 
that these objects do not simply consist of equivalence-classes of empirical objects. 
This is also the case for statements about numbers, sets, algebraic structures, and a 
lot of other mathematical entities that cannot be understood as equivalence-classes 
of empirical objects. One could think that there is no way to admit that these 
statements can be true or false unless their truth-conditions depend on a function r 
that is supposed to associate any one of these statements to a statement of a suitable 
meta-language telling us that the objects it refers to have the properties or relations it 
assigns to them. A similar conception of truth is hardly a sober one. Far from 
arguing here that a similar conception of truth is not tenable, I limit myself to 
ignoring it and advancing three sober alternative options. 

2,2,1 

The first two options consist in requiring that the function r associates any statement 
X of the considered class of statements of a language L to a statement of a suitable 
meta-language L , telling us respectively that the statement x has been proved or is 
provable within the theory to which it belongs. 
Of course, to say that x has been proved in a certain mathematical theory is not the 
same thing as saying that it is provable in such a theory, whatever our notion of 
proof. I shall not enter into this distinction here. I simply observe that in the first 
case, T{nonx) is certainly not identical with non r(x), whereas in the second case, 
the identity of r(non x) and non T{X) depends on the nature of the mathematical 
theory to which x belongs. Thus, the conception of truth depending on the first 
option is never correspondentist, whereas the conception of truth depending on the 
second is not so in general. 

However, if the first option were accepted, then it would be very unsatisfactory 
to define the falsehood of x by the bi-conditional ^ v{x) is false if and only if non 
r(jc)l The bi-conditional ^v{x) is false if and only if rinonx)^ would be preferable. 
Hence, it would be only a question of propositional logic to derive in L': '̂ v(non x) is 
true if and only if v{x) is falsel By substitution, one also would have: ^v{nonx) is 
false if and only if r(non non x)l Thus, if the logic in L were classical, it would also 
be only a question of propositional logic to derive in L': ^v(non x) is false if and only 
if T{X)^ and thus ^v{x) is true if and only if v(nonx) is falsel But it would not be 
possible to derive: ^ v{x) is not true if and only if v{x) is falsel Thus a statement x 
could be not true, without being false. 

One could object to these conceptions of truth by drawing on a classic argument 
first presented by Tarski. Using godelisation, one can associate injectively each 
sentence of a formal theory, that is, a mathematical one, to a natural number, and 
thus each set of sentences of a formal theory to a set of natural numbers. Supposing 
that any sentence of a formal theory is associated bijectively which a statement that 
is expresses, and that to prove a statement in such a theory is nothing but to derive in 
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it the sentence that expresses it, one could then wonder whether the set of numbers 
associated to provable statements and the set of numbers associated to true 
statements are identical. Now, because of the nature of a formal theory, the first of 
these sets can be characterized in terms of simple arithmetical operations and 
relations. One could then translate the definition of provability into the language of 
the theory, that is the object-language. If a similar translation were also possible for 
the definition of truth, this language would be semantically universal and then it 
would be possible to use it to formulate the antinomy of the liar. Thus, either the 
antinomy of the liar can be formulated in the language of a formal theory, or 
provability within this theory and truth of its statements are not extensionally 
equivalent properties. 

Though admitting that a mathematical theory could take the form of a formal 
theory and that a proof of a statement in such a theory reduces to a formal deduction 
of a sentence, this argument does not seem to me to be a conclusive reason to reject 
the previous conceptions of truth for the statements of such a theory. After all, these 
are sober conceptions, and they are simply supposed to correspond to two different 
senses in which mathematicians speak or have spoken of truth. Thus, if Tarski's 
argument is correct, it simply discloses that these senses make it possible to 
formulate the antinomy of the liar within a mathematical formal theory. Notice, 
moreover, that this is not the same as asserting that this theory is not consistent, 
since the theory itself is completely independent of the nature of the meta-language 
used to assign to its statements the property of being true. 

2,2,2 

The comparison between the statements s and i** expressed by the same sentence in a 
language L suggests the possibility of defining the truth of one of these statements, 
say s, by means of a statement of a meta-language L\ telling us in this latter 
language the same as that which the other statement, say s, tells us in L. In such a 
way, one could also assign a sober sense to the distinction between truth and proof 
or provability. One could admit that in order to prove that the primitive of 

5x^+4ax_. ^^ ^rzr73 
2-4 ax ^ a 

X I 
—yjax + a^i-C, one should show that the limit of 

-̂  —Ja{x-^h) + a^ +C Sax-{-a -C 
a \ a when h tends toward 0 is equal to 

5x^ + Aax 

2ylax-\-a^ 
, though maintaining that the statement s* is true because the application 

of the derivative algorithm to the second of these expressions simply produces the 
first. When understood in this way, the distinction between truth and proof or 
provability reduces to a methodological one and just concerns the internal 
organisation of a certain mathematical theory. 
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A similar view can be applied to universal statements. Let us take the example of 
the last theorem of Fermat. This tells us that if AI is a natural number greater than 2, 
then there is no trio of strictly positive natural numbers x, y, and z such that 
jc'̂  + y'̂  = z^> The simpler way to understand this theorem is to take it as assuring us 
that no substitution of the letters "x," "y," "z" and "n" in the sentence "x^ + y^ = z"" 
with symbols of natural numbers satisfying the previous conditions transforms this 
sentence into numerical identity. However, there is no way to prove it by 
considering such substitutions. To do that, it should be rather showed that the fact 
that X, y, z, and n are four natural numbers satisfying these conditions is a sufficient 
condition for the sum x" + y"" to be different from z". 

The same point can be made in general. Any universal theorem can be 
understood in at least two ways: a distributive or extensional way and a compact or 
intensional way. Extensionally, it asserts that every single element of a certain 
domain has a certain property; intensionally, it asserts that it is sufficient to belong 
to such a domain to have this property. If the domain is an infinite one, there is no 
other way to prove this theorem than by proving the latter. However, one should 
maintain that this theorem is true because of the former. 

In general, one could identify a theorem (of a certain sort) with an equivalence-
class of statements composed of two statements, and assume that the proof of this 
theorem is concerned with one of these statements, while its truth is concerned with 
the other. 

It would then be sufficient to treat an equivalence-class of statements as a 
statement whose utterance is nothing but the utterance of one of its members in 
order to be able to present a conception of truth that fits with such a view. Let us 
consider a class X of mathematical statements of a language L and two relations of 
equivalence defined over X, say R' and R'\ such that R' divides X into several 
equivalence-classes, each of which is composed of two distinct statements, and /?' ' 
divides X in two equivalence-classes respectively composed of one and only one of 
the two statements making up each one of the classes of equivalence in which X is 
shared by R\ Let Xp and Xt be the two classes in which X is divided by R'\ A 
conception of truth for X could require that the function r defined over this class 
associates any statement jc of X to a statement of a suitable meta-language U telling 
us the same as the statement of L equivalent to x according to R' and belonging to 
the class X^. At the same time, one could suppose that in order to prove any 
statement x of X, one should produce an argument showing that the things are as it is 
said by the statement of L being equivalent to x according to R' and belonging to the 
class Xf. 

In the case of the last theorem of Fermat, the role of the statement x is taken by 
any one of the two statements telling us respectively that: no substitution of the 
letters "A:," "y'' "z," and "n" in the sentence "x'̂  + y" = z^'' with symbols of naturals 
numbers satisfying the given conditions transforms this sentence into a numerical 
identity; and that the fact that x, y, z, and n are four natural numbers satisfying these 
condition is a sufficient condition for the sum x^ -\- y"^ to be different from z". The 
role of the statement of L equivalent to x according to R' and belonging to the class 
X^ is taken by the first of these two statements, and the role of the statement of L 
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equivalent to x according to R' and belonging to the class Xp is taken by the second 
one. 

If X is a class of universal statements, the relations R' and R" can be defined on 
this class in such a way that i?' associates one to each other two statements telling us 
respectively that every single element of a certain domain has a certain property, and 
that it is sufficient to belong to such a domain to have this property, while Xt and Xp 
coincide respectively with the class of the elements of X having an extensional form 
and the class of the elements of X having an intensional form. It is then possible to 
generalise to any statement of X the previous way to fix the truth-condition of the 
last theorem of Fermat. However,, this is nothing but a particular case of the 
conception of truth I am presenting here, since nothing prevents us from defining the 
relations R' and 7?'' on a certain class of mathematical statements, either universal or 
not, in a different way. The example of the statements s oX s* suggests a way to do it 
in a certain case. Other strategies could be followed in other cases. 

I shall not enter into a discussion of these strategies. I limit myself to observing 
that such a conception is a correspondentist one, and that it is, as such, sober. Of 
course, one could associate it with an understanding of distributive statements that 
depends on some strong ontological or epistemological condition and thus transform 
it into a non sober conception. Nevertheless, this is not necessary. In order to refer to 
such a conception saying that a certain mathematical statement x is true and 
distinguishing between its truth and its proof or provability, it is sufficient to have at 
one's disposal a procedure able to decide, in any specific case covered by this 
statement, whether the things are or are not as claimed by the statement of L 
equivalent to x according to R' and belonging to the class Xf. In the case of the last 
theorem of Fermat, it is, for example, sufficient to have at one's disposal a 
procedure able to decide, for every set of four natural numbers <x, y, z, n> satisfying 
the given conditions, whether x" + / = z" or not. And there is no doubt that all who 
are acquainted with elementary arithmetic and have a sufficient computational 
capacity have such a procedure at their disposal. Of course, if the specific cases one 
should consider in order to exhaust the domain covered by the statement under 
examination are infinite in number, one would never know in this way whether this 
statement is true or not. But, far from being an unsatisfactory consequence of the 
present conception of truth, such a circumstance shows how close this conception is 
to any acceptable conception of truth for empirical universal statements. 

2.3 

The last conception of truth I consider here is a very classic and traditional one. I 
shall limit myself to observe that, under suitable conditions, this conception can be 
understood as being sober, and to present it in an uncustomary frame. 

Let us take the example of the Bolzano-Weierstrass theorem: If f{x) is a 
continuous function from R to R defined both in a and b, K is a. real value, and 
f(a) < K <f(b), then there is a real value c such that/(c) = K. 

In classical analysis, this theorem is proved by reduction to absurd, by showing 
that its negation contradicts the axiom of the superior upper bound. This is a non-
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constructive proof that (from a classical point of view) only warrants that c exists 
without exhibiting it. Its legitimacy has been thus the object of several discussions. I 
do not want to return to such an issue here. I simply observe that the principal reason 
for a mathematician to be not disposed to renounce to this theorem is not a logical 
one, being rather concerned with the expressive power of mathematics. 

A theory of real continuous function in which it is not possible to prove the 
Bolzano-Weierstrass theorem could hardly pretend to be useful for explaining a 
large class of real phenomena. Suppose that John and Mary are in Paris and that 
John walks from the Arc de Triomphe to the Place de la Concorde along the left side 
of the Champs Elysees, while Mary is somewhere on this same side of the Champs 
Elysees, drinking a glass of champagne. They will probably meet there. A theory or 
real continuous function in which it is not possible to prove the Bolzano-Weierstrass 
theorem cannot be used to explain this trivial phenomenon. To conclude that such a 
theory would thus be unsatisfactory is the same as admitting that a mathematical 
theory should have an expressive power and that this power is part of its 
mathematical legitimacy. 

Once this has been admitted, it is very natural to speak of the truth of certain 
mathematical statements by referring to their expressive power rather than to their 
intra-theoric content. Let us suppose that X is a class of statements of this sort 
belonging to a certain theory T and a certain language L. For advancing a conception 
of truth which justifies thus way of speaking, it is sufficient to define a function (p 
that associates any statement x of X with another statement (p{x) referring to objects 
that are not part of the domain of T and require that the function r defined over X 
associates any statement ^ of X to a statement of a suitable meta-language L' telling 
us the same as the statement (p(x). 

This is what one does when defining the truth of a mathematical statement with 
respect to a certain model of the theory this statement belongs to. A classic example 
is the definition of the truth for the statements of Peano's arithmetic with respect to 
one of its set-theoretical models. Notice, however, that the possibility to define the 
truth of a mathematical statement in this way does not depend on the possibility to 
define a model for the whole theory this statements belongs to according to the 
constraints of the logical theory of models. The statement expressing the Bolzano-
Weierstrass theorem could, for example, be associated by ^ to a statement 
concerning suitable curves traced on a Cartesian plane, without need for these 
curves to belong to a model (in the sense of the logical theory of models) for the 
whole theory of real functions. 

It seems to me that in order to understand this conception of truth for a certain 
class X of mathematical statements as being sober, it is not necessary to suppose that 
the statements associated to the statements of X by the function (p are not 
mathematical in turn, or do not refer to objects that are involved as such, or could be 
involved with a controversial ontology. What it is needed is simply that these latter 
statements or any one of their particular instances (if they are universal statements of 
a distributive form) are somehow decidable, that is, that there is an effective 
procedure to decide whether these statements or any one of their particular instances 
can be asserted or not. 
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This last remark, together with the example given by the conceptions of truth 
presented above, should make clearer what I mean by "sober". Taking the Tarski's 
condition for granted, I maintain that a conception of truth for a class X of 
mathematical statements of a language L is sober if and only if there is no need to 
appeal to a controversial ontology in order to describe the conditions under which 
the statement T{X) of L ' is assertible. 

As there is neither a generally accepted criterion to decide what is a controversial 
ontology nor a general accepted definition of assertibility, and my formulation of 
Tarski's condition does not involve any strict constraint on the nature of the 
statement r(x), it would be easy to object that my characterization of the general 
notion of a sober conception of truth for a class of mathematical statements is so 
large that one could arbitrarily suggest many other sober conceptions of truth. I 
accept the point, but I do not think that this is an argument against my views. 

I have two reasons for maintaining this. 
First, it seems to me that however large it could be, my characterisation of the 

general notion of sober conception of truth for a class of mathematical statements 
sets up a general form that a sober conception of truth should satisfy. I claim this 
very useful because I think that the only proper way to speak of truth in general is to 
fix a form that a certain predicate should satisfy in order to be taken in certain 
contexts as the predicate "to be true." This is the same as arguing that the term 
"true" should be taken in general—that is, independently of any specific and 
contextual definitional clause—as referring to an equivalence-class of predicates 
rather than to a single and well-defined predicate. 

My second reason is also a justification of this attitude: I argue that as far as 
philosophy may lead us, it cannot do more than provide us with some general 
categories to be used to study real phenomena. Philosophy of mathematics should 
provide us with some general categories that can be used to study mathematics as a 
given reality. Though philosophy certainly has a history, a method, and a 
disciplinary content to which it refers, these categories should not be shaped 
abstractly. What ultimately decides whether they are the good ones or not is neither 
philosophy nor logic. It is rather the reality to which they should be applied. 

REHSEIS, CNRS and Universite de Paris 7 
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CAN THERE BE AN ALTERNATIVE MATHEMATICS, 
REALLY? 

Abstract. David Bloor, aheady in 1976, asked the question whether an alternative mathematics is possi
ble. Although he presented a number of examples, I do not consider these really convincing. To support 
Bloor's view I present three examples that to my mind should be considered as genuine alternative: (a) 
vague mathematics, i. e., a mathematics wherein notions such as 'small', 'large' and 'few' can be used, 
(b) random mathematics where mathematics consists (almost) solely of a practice, and (c) a mathematics 
where infinitesimals can be used without any problem, on the assumption that one is wilUng to work with 
local models only and to resist looking for global models. Finally, I argue that these examples support 
Otte's thesis that an ontology is constituted by a practice and not vice-versa. 

Key words: alternative mathematics, mathematical practice, non-compactness, randomness, sociology of 
mathematics, vagueness. 

1. INTRODUCTION 

In the first edition of Knowledge and Social Imagery, David Bloor, one of the found
ing fathers of the Strong Programme in the philosophy and sociology of the sci
ences, raises the important question of the possibility of an alternative mathematics. 
The fact that this question needs to be dealt with is rather obvious: if (the production 
of) knowledge is a social process, then this must also apply to that part of human 
knowledge that seems to resist most strongly this sociological turn: mathematics. 
Especially among Western mathematicians and philosophers there is a deep belief 
shared by most, if not all, that mathematical knowledge is (a prime candidate for) 
necessary knowledge. Surely one of the possible roads to follow to attack this neces
sity view is to show that alternatives are possible, leaving open the matter why it is 
that we happen to have the mathematics today we actually practice. However this 
task is actually a very tricky matter. As Bloor himself remarks: 

To decide whether there can be an alternative mathematics it is important to ask: what 
would such things look hke? By what signs could they be recognised, and what is to 
count as an alternative mathematics? (Bloor 1991, 107) 

It is worthwhile, I think, to have a brief look at the specific examples Bloor presents 
in the chapter that carries the same title as this paper (apart from the addition of 
'really', which, of course, is a reference to Reuben Hersh's book). He presents four 
cases, here grouped into three^: 

(a) The nature of numbers. Here Bloor argues that in different historical periods 
numbers such as one and zero were interpreted in quite different ways compared 
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to today's practices. To give one small illustration: there is indeed a world of dif
ference between saying that "the equation x̂  - jc - 6 = 0 has two solutions x = 2 
and X = - 3 , but I only use the positive solution" and saying that "the equation x^ 
-x-6 = 0 has exactly one solution, viz. x = 2," simply because negative entities 
can be anything you like, but they are not numbers. In turn, this goes together, as 
Bloor shows, with visual representations. Thus, making a diagram such that the 
parabola, representing y = x^ -x-6, can be drawn, it becomes inevitable to talk 
about two solutions on a par, so to speak, because they have a shared identity as 
geometrical points. 

(b) The metaphysics of numbers. Here Bloor deals with the Pythagorean view of 
numbers as part of a larger metaphysical framework. These metaphysical consid
erations are part and parcel of mathematical activities. In support of this claim, 
he discusses the great classic of all (mathematical) times: the irrationality of 

. Actually by formulating the theorem in this way, one is already subscribing 
to a particular metaphysics, viz. there are other numbers besides the rational 
numbers, so the rational numbers do not exhaust all numbers. But a quite differ
ent conclusion can be drawn: is not a number. Perhaps a geometrical entity, 
but definitely not a number. 

(c) The case of the infinitesimals. This, of course, is the best-known example of an 
alternative approach in differential and integral calculus. Bloor here quotes the 
work, among others, of John Wallis, more specifically the case of the surface of 
a triangle. Let me briefly present this case. Wallis slices up the triangle into an 
infinite series of very thin layers, parallel to the base of the triangle. If the height 
of the triangle is /z, and the number of layers is oo, then a layer has height hl^o, 
The length of each layer varies from b, the base of the triangle to 0 at the top. 
This forms an arithmetical series, the sum of which is equal to the product of the 

average of the terms and the number of terms or, in this case, — oo. Hence the 
2 

surface of the triangle is oo = /̂ . — . 
^ oo 2 2 

It is obvious that different standards of rigour are at work here, but that precisely is 
what is at stake: the standards of rigour are not fixed once and for all, but are suscep
tible to (deep) changes. 

In short these examples support the thesis that alternative mathematics is possi
ble. At the same time, it seems clear to me that these examples are rather "mild." For 
a critic of Bloor's view^ it is easy to remark that the cases presented are historical 
cases and that historical progress means precisely that: we used to believe half-
baked ideas, these helped us forward, but in due time, when we found out the rub
bish we believed in, we changed our minds, and so we come closer to (eternal) truth. 
Compare it to the fact that most mathematicians and (I hate to say) philosophers ac
cept readily that in order to understand the mathematics of a non-Western culture, 
the social, the anthropological, the metaphysical, ... dimensions are required. How
ever, for Western mathematics this is not necessary. 
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The purpose of this paper is to try to push the boundaries a bit further, i. e., to 
show that there are possibilities for alternative mathematics that go beyond the 
"mild" examples of Bloor, thus making his case even stronger. Probably the most 
important element is that for "real" alternatives, more has to be taken into account 
than mathematical concepts and theories on their own. At the same time, this paper 
can be read as a plea for the importance of mathematical practice. A consequence of 
looking at the matter from this point of view is that I will not talk about intuitionistic 
mathematics or any other form of constructivist mathematics, including strict fini-
tism, or about inconsistent or paraconsistent mathematics or about alternative set 
theories (e. g., non-well-founded ones). Although some can indeed claim to be alter
natives compared with standard classical mathematics, they share too many proper
ties: they all focus on mathematical theories and mathematical proofs, there is an 
underlying logic implying a standard picture of the nature of a proof, all concepts 
are sharply delineated. No wonder that multiple translations are possible. 

2. SOME EXAMPLES 

I will present in this paper three alternaUves: vague mathematics, random mathemat
ics, and open (or non-compact) mathematics. The first one, vague mathematics, is 
perhaps the "softest" one, as I will show that it is translatable into a classical frame
work. On the other hand, the translation only serves the purpose to show that vague
ness does not exclude in any case clear and sharp reasoning. Once one is convinced 
of this fact, one can simply forget about the translation and simply do vague mathe
matics. 

2.1. Vague mathematics^ 

Vague mathematics can be considered as an attempt to make sense of statements 
such as "Small numbers have few prime factors." Why the emphasis on vagueness? 
I guess that even a rather superficial look at the history of mathematics indicates that a 
story can be told that centers around the gradual elimination of vague concepts from 
mathematics and their replacement by sharply defined concepts instead. Thus the no
tions of small and large, few and many numbers disappear quite soon from mathematics 
(see, e. g., the now rarely mentioned, yet famous text of Archimedes, The Sand Reck
oner, dealing with large numbers'̂ ), and the notion of infinitesimals - perhaps one of the 
vaguest concepts ever - has been eliminated and replaced by the notion of limit (see 
Boyer (1959) for a classic, but see an 'alternative' alternative treatment of infinitesimals 
below in 2.3). 

Let me start with elementary number theory. The language of that theory (in its 
first-order formulation) involves the use of constants (usually 0), variables {x, y, z, 
...), predicates (P, Q, R, ...), and logical connectors (&, v, D, ~, =, V, 3) and the 
usual formation rules. To interpret the language we need a model M, being a triple 
<D, I, v>, where D is the domain of the model, / the interpretation function that 
maps constants and variables on D and predicates P of rank r on a subset of D\ the 
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r-cartesian product of D. Finally v is the valuation function that maps sentences A 
onto {0, 1} according to some set of semantical rules. 

Let me now focus on the predicates in relation to M. The interpretation of a 
predicate P (of rank r) will be / + (P) c D\ Call / + (P) the positive extension and 
D V + (P) = / - (P), the negative extension. Thus to a predicate P in the language 
will correspond a "full" interpretation /(P) = < / + (P), / - (P) > such that 
/ + (P) u / - ( P ) = D'and/+ (P) nI-{P) = 0 . 

The crucial step is to consider not just one model, but a series M of models Mi, 
M2, ..., M„ such that, if in Mi the predicate P has an interpretation /j(P) = < I- + (P), /. 
- (P)> and such that, if / < 7, then /,+(P) c /̂  + (P) (and, hence, Ij - (P) c /, - (P)). 
Thus we obtain a "nested" set of models. The core idea is to apply a supervalua-
tional method to the set M. This means quite simply that if A is true in all models M ,̂ 
then it is True (the capital T serves to indicate the supervaluational function), if A is 
false in all models M[ then it is False (likewise), and in the remaining cases the truth 
value is Undetermined. This opens up the possibility to introduce new predicates 
that cannot be defined classically. 

A specific example to illustrate the procedure is to introduce the predicates 
"small" or S{n) and "large" or L(n). Both are rank 1. As to their interpretation, what 
one has to do is to specify the set M of models. We can select two numbers Si and 
5„, 5i < Sn, such that, for any number 5/, such that S\ < 5/ < 5„, there is a correspond
ing model Mi, where: 

/,(5) = </,+ (S), / , -(5)> = <{0,l,. . . ,5,},{5,>i,5,,2,.. .}>. 

It is easy to see that the condition: if i < j , then /̂  + (5) c Ij + (5), is satisfied. The 
same procedure can be carried out for L(n). Again, we can select two numbers Li 
and L^, Li > L^, such that, for any number L/, such that Lj > Li > Lm, there is a corre
sponding model Mi, where: 

/,(L) = </,+ (L),/ ,-(L)> = <{L,,i,L,,2,...},{0,l,... ,L,}>. 

It is easy to see that the condition: if i <j, then //+ (L) c Ij+ (L), is satisfied in this 
case as well. 

Finally, we have to say something about how to combine the set of models for 
"small" with the set of models for "large." Many possibilities can be explored: each 
classical model for "small" can be combined with every classical model for "large", 
or, more restrictedly, for every "smaU"-model, there is one "large"-model and vice-
versa. In other words, in terms of the description above, n = m. Let me continue with 
this simplified approach. 

Within this framework it is easy to prove that: 

Theorem: (\/n)(S(n) v S(n)) Sc (Vn)(L(n) v -L(n)). (Any number is either small 
(large) or not small (large)). 
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Suppose that we add further that for every M„ Si < Li (or equivalently, Sn < L^). Then 
it is easy to prove the following: 

Theorem: (\/n){L{n) Z) -S{n)) & (\fn){S(n) D -L{n)). (If a number n is large (small), 
then it is not small (large)). 

Theorem'. (Bn){-S(n) & -L(n)) or, equivalently, -(\/n){S{n) v L(n)). (There is a 
number n that is neither small nor large, or, equivalently, it is not the case that every 
number is either small or large). 

For a further development of this approach, I refer the reader to my (2000), where a 
proof is given of the theorem "Small numbers have few prime factors." Let me re
peat once more that it is clear by this presentation that it is possible to translate this 
vague mathematics into classical mathematics. The important point, however, is that 
we can leave out the semantics and continue with the vague notions on their own. 
Or, put differently, if someone says that (a) small numbers have few prime factors, 
(b) this number has a lot of prime factors, therefore (c) it is most likely not a small 
number, then, if there are doubts about the correctness of the argument, one can al
ways pull in the semantics and present a classical detailed analysis and determine 
under what precise circumstances the argument is definitely correct. Note that this 
line of handling the subject is obviously analogous to the deep belief mathematicians 
share that every concrete proof (as it appears in the journals, is written down on 
blackboards or presented at conferences) could be rewritten in an exact formal for
mat satisfying the most stringent demands of the logician. 

To round off this first alternative, let me just mention that nothing prevents a 
useful combination of classical and vague mathematics. This opens up the possibil
ity that, on the one hand, we can have a (classical) theorem stating that for objects 
satisfying conditions Ci, C2, ..., Ĉ  a certain property P holds, and, on the other 
hand, a vague counterpart that says that for most objects P holds (if such happens to 
hold in vague terms). Or, one might say that we have a combination a "rough" 
mathematics and a "detailed" mathematics. To quote the case that was the topic of 
Lakatos' Proofs and Refutations: from a vague perspective, it should be alright to 
claim that for most polyhedra, V(ertices) - E(dges) + F(aces) = 2. But, if the game is 
played in more detail, then the exceptions have to be dealt with. 

2.2. Random mathematics 

The next alternative is a radical departure from mathematics as we know it pres
ently. I will try to show that it is possible to arrive at a mathematical theory, taken in 
the sense of a set of true statements, without the notion of proof As this presentation 
does not necessitate heavy formal machinery, let me present it in the form of a story. 

Imagine a culture where arithmetic is developed in the following way. Let us as
sume that they have some notions of numbers in the sense that they can generate 
names for numbers that are locally ordered. By this I mean that they know that 3 fol
lows 2 and comes before 4, but 3 compared to 1000 does not necessarily make 
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sense. They are not incomparable as such, but it is uninteresting to do so. They also 
have some idea of addition in the following sense. When they are presented with an 
equation of the form n + m = k, then they can also generate the equations (n - 1) + m 
= (/: - 1), n + (m - 1) = (/: - 1), n + (m + I) = (k + I) md (n + I) + m = (k + 1). Call 
these four equations the neighbours of the given equation. Do note that the numbers 
between brackets are meant to be names for those numbers. 

Imagine further that empirically they discover (e. g., through the manipulation of 
objects) that 2 + 3 = 5. They then accept this equation as correct and, this is the most 
determining element in the story, also the neighbours. Such equations are put on a 
list, entitled "things we know for sure." In the course of time, people ask questions 
of the type "What is the outcome ofn + m (for some specified n and m)?" To find 
the answer, they check the list. If it is on the list, that is the answer. If not, any an
swer will do. In the former case, note that all the neighbours are added to the list as 
well. In the course of time, this list will grow. 

What will happen is that, under the assumption that, given sufficient time, any 
equation is likely to turn up, at the end of times the list will contain all true arith
metical statements involving addition. A simple argument to see why this must be 
the case is to consider a two-dimensional lattice, where each square corresponds to a 
couple (n, m). One starts (as in the example presented here) at (2, 3) and the 
neighbours are (1, 3), (3, 3), (2, 2) and (2, 4). This corresponds neatly to a random 
walk in the plane and, as is well known, given sufficient time, all squares will be 
visited. Hence the label random mathematics^. Formulated in those terms, if we call 
T the set of all true arithmetical statements involving addition, then in the limit T 
will be reached. It is perfectly acceptable therefore to say that this culture knows 
how to add. 

This approach can be (rather) easily generalized. Take any classical mathemati
cal theory T. As the set of sentences is countable, it is always possible to write down 
a listing of all sentences. The only tricky part is to define a relation of neighbour
hood, that in some sense or other can be connected to either empirical data or con
crete practices. From a formal point of view, one could argue that any mathematical 
theory can be coded into arithmetic and it is clear that for addition and multiplication 
such a connection can be established. Of course, the weak point of this argument is 
that, according to the code used, the corresponding arithmetical statements might be 
difficult to connect to a practice^. 

However, what this perhaps somewhat bizarre example show, is that it is abso
lutely not necessary to have a notion of proof (as weak or as strong as one would 
like to have it) to arrive at a set of true arithmetical statements. What happens here is 
that local bits and pieces are glued together as time goes on and all that is required is 
(a) some knowledge of the local bits and pieces (but this can be learnt quite easily in 
an empirical fashion) and (b) a "desire" for consistency (i. e., when local bits are 
glued together, make the least amount of changes to what you already have "for 
sure"). 

Compared to Bloor's examples, I claim that this type of mathematics truly de
serves the label 'alternative'. 
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2.3. Open or non-compact mathematics: infinitesimals once more 

In this paragraph I will outline how one can have "genuine" infinitesimals on condi
tion that one is willing to accept the following: 

(a) in terms of models, only local models (in a sense to be specified in what follows) 
are considered, or, alternatively, there are no global models^, 

(b) all local models are essentially finite. 

I realize that these conditions run counter to everything that is cherished by logi
cians, mathematicians and philosophers, but I am looking for real alternatives. 

If, however, one is willing to make these "sacrifices", then matters become rather 
easy, if perhaps a bit tedious. What follows presents a rough outline and not a full
blown theory. Let us start with the standard theory T of real numbers. The first 
change that has to be made is that two sets of distinct variables will be used: 

(i) variables for "standard" real numbers: x, y, z, ... 
(ii) variables for "infinitesimals": e, 6*, 6", ... 

Suppose we now have a finite series of formulas F = (Fi, F2, .., F„}, all expressed in 
the language of T. The intuitive idea is that F could, e. g., represent a calculation of 
the value of a function in a particular point. Further suppose that if all formulas are 
interpreted in R such that all variables are treated in the same way, then they are true 
in the standard model of real numbers. 

Example: F = {Fi, F2, F3, F4, F5} 
Fi: ((jc + ey - x^)le = {{x^ + ?>x^8 + 3x^ +^)- x'^ys 
F2: ((jc3 + 3x^6+ ?>x^ -h £3) _ x^)le= (3x2^ + 3x^ + ^)le 
F3: Ox^e+ 3JC^ + ^)l8= 3x^ + 3x^+ ^ 
F4: 3x2 + 3;̂ ^+ ^ = 3;c2 + (3x + 8).e 
F5: ((x + ey -x^)l8= 3x2 + (3^ + gy^ 
(I consider all the formulas universally quantified both over x 
and 8, taking into account that 6*?̂  0, i. e., every F̂  is preceded 
by(Vx)(V^)(^;^OD...)) 

Obviously, if F is finite, then so is the number of variables, both "standard" and "in
finitesimal," so is the number of constants, and so is the set of terms occurring in the 
members of F. 

This set of terms can be split up in different types: 

(tl) some terms involve only constants and variables for standard real numbers, 
(t2) some terms involve only infinitesimal variables, 
(t3) some terms are mixed such that the term consists of the sum of a term of type 

(tl) and a mixed term, 
(t4) some terms are mixed such that the term consists of the product of a term of 

type (t2) and a mixed term. 
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I will make one further assumption, namely, that, although (tl) - (t4) do not exhaust 
the set of terms, yet, any term can be transformed into one of these categories^. 
Thus, e. g., if the term is (x + £).8 + 8.{x - 6), it is mixed but neither of type (t3) or 
type (t4). But the term is easily transformable into 8.(x+ 8+ x- 8), and thus of type 
(t4). 

Example (continued): The terms occurring in the calculation are: 

(tl) X, x^, x^, 3, 3x, 3x^, 
(t2) 8,8^,^, 
(t3) X + 8, (x + 8y - x^, x^ + [3x^8] + [3x8^] + [6̂ ] (whcre the square brackets 

mean that the bracketed term is either present or not, at least one term being 
present), 

(t4) 3x^8, 3x8^, [3x^8] + [3x8^] + [^] (as this term is the same as ([3x^] + [3x8] + 
[8^]).8, the brackets have the same meaning as above). 

Finally, we arrive at the interpretation of the formulae F/. Again, the procedure here 
is rather unorthodox. There are several stages that have to be executed consecu
tively. Throughout, Int is an interpretation function that interprets the variables, con
stants, terms and formulae in the ordinary real number model. The resulting model, 
if it exists, will be called a local model. 

(51) Let Int fix the values of the standard variables and of the constants. This also 
implies that all terms of type (tl) are thereby fixed, as we follow standard 
procedures, i. e., Int{t\ + 2̂) = Int{t\) @ Int{t^, where © is addition in the real 
number system, likewise for multiplication. 

(52) Consider the following set Dist = {|Int( î) - Int{t2)l \Int{t^)\ \tu 2̂ are terms of 
type (tl) and t^ is the term that has the smallest non-zero absolute value}. In 
short the set Dist looks at all the differences between the standard numbers in 
order to determine a lower limit, which is why t^ has to be taken into ac-
count^ .̂ 

(53) Let She the smallest non-zero element of Dist. Take a number S' « S. Con
sider all terms of type (̂ 2) and type (̂ 4). Choose Int{8) in such a way, that, for 
all those terms t, \Int{t)\ < S\ As both sets of terms are finite, this is always 
possible. For terms of type (t2), this is obvious and for terms of type (t4), 
note that it is a product of a pure infinitesimal term and a mixed term. 

(54) All remaining terms can now be interpreted in the usual way. 

The formulas can be evaluated according to standard principles, e. g., if v is a valua
tion function based on Int, then v{t = r') = 1 iff <Int{t), Int(f)> e Int{=^). Do note that 
the clause for the universal quantifier is restricted to local models and not to all 
standard real number models. 

Example (continued): 

Suppose that Int{x) = 2. Then terms of type (tl) are evaluated as: 
Int{x^) = 4, Int{x^) = 8, Int{3) = 3, Int(3x) = 6, Int(3x^) = 24. The minimum dis
tance is 1, so take, e. g., cJ' = 0.001. The largest term of type (t4) we can encoun-
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ter is 3x^8 + ?>xe^ + 6̂ . A direct calculation shows that Int{e) = 0.00001 will do 
the job. 

Graphically, what is being proposed here, produces the following picture. The line 
represents the real numbers R, where only a finite number of elements are inter
preted, such as X, £, and so on. 

[-S,S\... [Int(x) - S, lnt{x) ® S\ ... [Int(x^) - S, lnt(x^) ®S[... [Int{x^) - S, Int(x^) ®S\... 
. . . . R 

0 Int(x) Int(x^) Int{x^) 

Furthermore one has to make sure that in the interval [S, S\ one finds the interpreta
tions of all infinitesimal expressions, such as, e, 6*̂, 6̂ , ... and that for any term t of 
type (tl), all expressions t + e.f (where f is any term) are interpreted in the interval 
[Int{t) - S, Int(t) © S\. Because we deal with a finite number of statements, this pro
cedure can always be executed. 

On the one hand, it is obvious that I treat infinitesimals, such as ^in the example, 
as an ordinary real number and, semantically, it is in fact interpreted as such. But, on 
the other hand, it is also the case that, in every local model of a set of formulae F, 
for any "standard" variable x and for any infinitesimal variable e,x^ e, thus express
ing that no "standard" number equals an infinitesimal. Likewise, for all the constants 
n named in the set F, n ^ e. Thus infinitesimals are at the same time different. Fi
nally, let me mention that this approach is quite distinct from such theories as Rob
inson's non-standard analysis or synthetic differential geometry^ ̂  (which, as said 
before, I would consider to be "mild" alternatives, if at all). 

3. THE IMPORTANCE OF PRACTICES 

Perhaps the reader is wondering whether this contribution has been published in the 
right book, viz. a Festschrift for Michael Otte. Should this paper not belong in a 
similar book dedicated to David Bloor? My answer is no. Bloor was the starting 
point I needed to develop the idea of (forms of) a "truly" alternative mathematics 
(compared to the "mild" forms). Granted that (if the reader is so willing) such "real" 
alternatives are genuine possibilities, it is important to ask the next question. What 
does it tell us about the ontology of mathematics? This, no doubt, has been and still 
is a major concern in Otte's thinking about mathematics and philosophy. I have al
ways been and still am very sympathetic to the idea that mathematics is an activity 
and that the task is to show how ontological considerations flow from this activity. 
To let Otte and co-author Panza speak for themselves: 

From our point of view, mathematics (like science in general) has to be understood as a 
human activity, namely the activity of producing mathematical (...) theories (...). The 
aim of logic is not merely to study the internal structure of such theories, or even the 
formal nature of their propositions (...). Rather it impUes the study of the modalities of 
human activity that produces them. Such an activity is a concrete and historical phe
nomenon. It is in terms of this phenomenon only that, we beUeve, it becomes possible to 
explain all other phenomena or entities. (Otte & Panza 1997, 269-270) 
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Referring to the third example I presented above, I would like to make a modest 
suggestion^^. If we are asked what are the basic constituents of mathematical prac
tice in its most reduced form, then my answer would be: a triple <m, s, P>, where m 
is a particular mathematician, s a mathematical statement, and P a finite set of for
mulae (interpreted as a proof of 5 or a calculation leading to s). If one is now willing 
to make a "double abstraction" - exclude the first element: who wrote the proof is of 
no importance, and exclude the third element: proofs only help us to see what state
ments are true - then we are left with a set s of statements, that might carry the label 
of a mathematical theory T. Then, and only then, can questions be asked about the 
ontology of T, what it is about. As the other way round does not work, i. e. to 
"undo" the double abstraction, starting from 7, it becomes obvious that practice gen
erates ontology and not vice versa. It is a kind of "simple-minded" argument in sup
port of Otte's views. But as we all know, such arguments often have a high rhetori
cal impact. Let this be the core of my contribution to this Festschrift, 

Vrije Universiteit Brussel, Centrum voor Logica en Wetenschapsfilosofie, Universi-

teit Gent 

NOTES 

^ To be precise, the chapter that follows the chapter being discussed here presents a fifth case, but that 
case is tied strongly to the necessity and certainty of the underlying logic and I am not addressing that 
problem here. 
~ In the second edition of Bloor's book, there is an afterword where Bloor replies to his critics (163-185). 
The paragraph entitled "Mathematics and the Realm of Necessity" (179-183) discusses mainly this prob
lem of the necessity of mathematics. 
^ This chapter is a summary of Van Bendegem (2000). 
'̂  An English translation is to be found in Newman (1956), vol. 1,420-429. 
^ The other source of inspiration is the theory of cellular automata and, especially, the result that shows 
that Turing machines can be easily translated into such automata. 
^ It is not that difficult to see that many problems will arise (that however do not really challenge the ba
sic idea). The example given here concerns statements involving only constants. But, if the language is to 
be more expressive, quantifiers and variables should be included. What then happens if someone asks the 
question: "Is it the case for all x and y, x + y = y -^ xT Several approaches are possible: if all the specific 
cases on the hst agree with the general statement, then answer yes; if not, answer no, and present the 
counterexample. In the former case, one risks to give wrong answers. However in due time these will be 
corrected. This makes clear that classical logic will not be the underlying implicitly given logic, but rather 
(some kind of) a non-monotonic or default logic. 
^ This presentation is a summary of my (2002). In that paper the focus is more on the inconsistent behav
iour of infinitesimals, whereas here I am more interested in the non-compactness. 
^ Yet another formulation is that one should be wiUing to give up compactness. 
^ A simple proof by induction on the length of terms will do. Suppose that all terms of length n are of 
type (tl) - (t4). A term t of length n+\ is either of the form f + r"or t.t" As both f and ^"are shorter than n, 
they are of type (tl) - (t4). It is now sufficient to check all possible cases to see that t is of either one of 
the four types. E. g., suppose f is (t3) and /" is (t4), then f is of the form ti + m, where ti is of type (tl) 
and m is mixed, and t" is of the form t2, m\ where 2̂ is of type (t2). But then t = f + t" = tl+m + ti, rn = t\ 
+ m", where m" is obviously a mixed term. 
^̂  A straightforward example: suppose F consists of one formula, viz., 1 -1- f = 3. lnt{\) = 1 and Int(3) = 
3, so the minimum distance is 2, but then Int{£) = 1 is possible, since 1 < 2, but then Int(E) = Int{\), which 
is precisely what needs to be avoided. 
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'* See my (2002) for more details on these approaches. 
^̂  This suggestion is inspired by Philip Kitcher, who in his (1983, 163-164) proposed to model mathe
matical practice by a five-tuple <L, M, Q, R, S>, where L is the language, M the set of metamathematical 
views, Q the set of accepted questions, R the set of accepted reasonings, and S the set of accepted state
ments. 
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ROLAND FISCHER 

AN INTERVIEW WITH MICHAEL OTTE 

Alpbach, Tyrol on August 16^^, 2002 

Alpbach is a very nice village in the Tyrolean mountains, about 100 metres above 
sea-level, surrounded by meadows and woods. It is a good place for walking, climb
ing (and skiing in winter). It is also a good place for thinking and dialogue. Each 
summer since 1945 the "European Forum Alpbach" takes place, an event of discus
sions between scientists, politicians, businessmen, journalists etc. Michael Otte was 
in Alpbach several times in the last 3 years and we discussed questions of mathemat
ics, education, politics and many other fields. 

Fischer: Michael, was there any precise point in time of which you remember hav
ing decided to become a scientist? 

Otte: No, there was no such point in time, and this due to a certain kind of 
schizophrenia (which lies in my own person). On the one side, and this is 
also one of the reasons why we are here in Alpbach, I have always been 
loyal to some kind of peasant realism, that is I have always felt the neces
sity, even as a child, to earn my own money, and the values bound to arise 
from that have been strongly formative for me. On the other side, ideas 
have enormously fascinated me since I was a child. My focus of interest 
on mathematics and physics developed because this is precisely where 
thinking can be observed at its closest and most transparent. I am, for in
stance, no natural scientist in the proper sense, as would have been sug
gestive, coming as I did from the country, from the mountains, where ag
riculture was then absolutely non-mechanized, quite in contrast to today, 
that's how you develop an interest in such a kind of environment; but I 
have not become a natural scientist (Naturwissenschaftler), I am now 
rather more what the English formerly called "a naturalist." There is al
most a dispute today in the biology departments between those who carry 
out field expeditions, and those who are sitting in front of computers do
ing gene analysis. In English, you have two different terms for this; natu
ralist vs. natural scientist. But, as has been said, how man thinks, and why 
he thinks, that's what has always interested me in the first place, and 
that's what has continued quite steadily and has led me towards leading 
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some kind of double life. Even a "naturalist" will measure and classify, 
while at the same time seeking to experience nature. 

Fischer: And why did you choose this quite unusual combination of studying 
mathematics on the one hand, and German language on the other? 

Otte: Because for me, poets are people quite similar to mathematicians. While 
for me everything is subsumed under the category of the image. On the 
one hand, I am familiar with a convoluted reality, a complex process of 
calculation whose end cannot be anticipated - I have always liked to do 
numbers - it is at the same time always somehow weird. I also like moun
tain meadows better than the forests there because you can't look about 
yourself in the woods, and this is something you can stand but for a while. 
The basic need people formerly shared was that of an ordered vision, a 
clear form. The evaporation of general truth is typical for the crisis of 
modernity which has been brought about by the scientific revolution of 
modern times and by everything it entailed. Descartes was this revolu
tion's first champion. He deemed mathematics important because it exer
cised your vision, and not because its theorems or truths were so interest
ing. His concern was the perception of truth which was to be enhanced by 
extreme concentration and appropriate means. Rationalist science would 
seem to be nothing but the self-scrutiny of human thought projected to the 
external world. 

Fischer: That's how it looks in retrospect. Did you see that you liked this as you 
now express it quite as clearly that time already? 

Otte: I never really liked something on my own, but was rather driven to it, I 
have always been on the defensive, that's how it is. I have always felt that 
I have to master some kind of survival struggle while at the same time 
having been aware of the freedom of imagination. In the village, you were 
isolated because you belonged among the have-nots, and later you were 
isolated because you came from a village and were not the same as the 
others. That was quite intimidating. I wanted to study history with Franz 
Schnabel, but with him you did not have any chance to apply for partici
pation in one of his seminars if you did not wear a tie. I did not quite have 
impressive social skills either. Nevertheless, I have pursued the same 
goals, and the same ideas as well, over a long time, actually all my life. I 
realize this over and again whenever my entire structure of ideas all of a 
sudden shifts. Such a shift generates a meta-view. Before, you were 
firmly stuck in the deep, impenetrable forest of meanings, and all at once 
this became a clear form and quite flat. In mathematical thought, this 
process of development is very pronounced. Ever again, one is led, after 
long experimentation, to exclaim: Ach, it is that simple! There is nothing 
behind it which would involve the soul. X means no more than X! 
Mathematics, and the arts as well, are characterized by the fact that the 
ideas only become apparent in realization or application. 
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Fischer: What then, were your goals, your ideas which you have always pursued? 
Or, let's just begin with one of these. 

Otte: Well, if you are interested in thinking, I'll say it this way: Thinking 
should be understood as a kind of perception. And in perception, there is 
always a mix of interpretative, structuring, and receptive moments. That 
is, you don't perceive reality in itself, but all this is actually a recursively 
intertwined process between what is your own activity of interpretation 
and that which suggests itself. While I cannot say that everything I per
ceive is only my own fiction, - that is you, as you are sitting before me, 
will not disappear even if I blinked my eyes most forcefully, - but an "ob
jective" description of what I perceive seems just as impossible on the 
other hand. Reality has a certain resistance and stubbornness, things are 
active, not as strongly as human beings, but certainly somehow as well, 
and this means in the last instance that they are something like basic units. 
While I can analytically take apart such a basic unit, like some kind of 
black box, the real process disappears by this activity. In perception, be
sides the indication that something exists, there is also what I project into 
it, or the categories I use to make a judgment of perception whenever I in
terpret a perceptual impression, and I will never be able to acutely distin
guish between what comes from outside and what is being added from 
within. The same thing is repeated for every other activity, not only for 
the activity of perception. Within a process of activity, these complemen
tary elements will always be in action, either the side of means and prob
lems, or the object side. If I considered this in a static way, I would al
ways get entangled in paradoxes. Proof is a means to explain reality, but 
at the same time, proof is the goal of my cognition, its object. When a 
student asks what a certain concept means, say, vector, then I'll say well, 
lets try and begin to develop a linear algebra, and in the end we shall 
know what a vector is. On the other hand, the student will not be able to 
participate in the process of developing a linear algebra if he/she doesn't 
already have an intuitive idea what this is all about. 

Fischer: Your concern in this context is, and has ever been, to convey such in
sights to people. Or did you want to realize it yourself in different con-
cretizations, or what is your concern now? 

Otte: My concern, properly speaking, or what I always have believed is that 
reasoning is a form of life, and actually one that is just as essential as eat
ing and drinking. And only after I had come to Brazil, for instance, did I 
realize that in a society as particularized as the Brazilian, epistemology is 
something eminently political. One of the fundamental problems of Bra
zilian society, for instance, is the weakness of all the institutions, resulting 
in the fact that one is compelled to recur, in the last instance, to life within 
the family and the "tribe," this weakness again having to do with the fact 
that the general, in this case the societal general, is not felt to be some
thing real. In Brazil, people think rather more like Margaret Thatcher who 
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said "I don't know any society, I know only individuals." In this sense, I 
think that epistemology is naturally a means to enhance one's personal 
life, and to solve problems as well. However strongly single individuals 
strive for self-realization, they would at the same time like to become 
"more general," and to contribute to some general ideas and works. When 
I happened to visit the church here in Alpbach, I say a woman kneeling in 
one of the benches. On a small piece of paper, she wrote: "Lord, I beg, 
protect me from loneliness." Here again, we sense that there is no indi
vidual existence, and that generalization and connection are the most im
portant things in life. This connection is then fed from the sensation of 
immediate familiarity with others, or it is what we have in common in our 
thinking and in our ideas. 
Coming back to didactics in the narrower sense, saying that concepts are 
important means of reasoning, we have to know at some point what kind 
of entities concepts actually are, in the same sense as I would ask what 
chairs are, or what apples are, that is in principle, to what category of our 
reality something like that belongs. This means that we must connect the 
two levels of the general just named, the immediate, the common on the 
one hand, and the structural order of ideas on the other. 

Fischer: Is this to mean that one of your motives was to tell the others that that's 
how it is? 

Otte: Where the telling is concerned, I have missed a lot, because I wanted to 
understand myself first, and that takes some time, actually. This is why I 
have always been more comfortable with the people I was able to work 
together for a long time, with candidates for doctoral degrees, or in work 
groups on projects. 

Fischer: You seem to have offered the solution to the problem already which con
sists, for instance, in pointing out these complementarities. But what was 
before? When you say that you only realized that this was the case, then 
there must have been some pressing problems before. 

Otte: I grew up in very poor times, 1945 - 47 in mountain Bavaria, where there 
was a social wilderness including the struggle of everybody against eve
rybody about everything, and in particular of the native farmers against 
the refugees who had come from the east. For me, ideas are part of a 
genuine humanism. People should contribute to a larger connectedness 
however important it remained in every moment to get hold of the money 
and of the things essential for life. To teach people to think, or to help 
him, respectively myself, to attain a clear view of themselves and of the 
world, that is for me in a certain sense a humanist concern. It is even the 
kind of help other people can offer - perhaps therapists, or a medical doc
tor, - each of these in their own way. On the other hand, I have never 
grown completely beyond feeling the pressure of a struggle of life deter
mined by economics, and I have hence always felt bashful when con-
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fronted with others, a thing which is not ideal for an educator or teacher 
(in this respect, you have always been a model for me). 

Fischer: Before you came to Bielefeld, where you clearly turned to didactics on 
the outside, what was there, how did that what you now have sketched as 
a fundamental problem become concrete at that time? 

Otte: I had come to didactics before that, from a practical reason. I obtained my 
PhD. in Munster in pure mathematics, and Miinster was a very large uni
versity. They had done a survey when people began to reflect on the 
number of semesters spent in studies and the like. One of the findings was 
that there were an incredible number of students at the university, I be
lieve more than three hundred students of mathematics in their twelfth 
semester or more without having had any examination and no topic for 
their paper, I wrote a letter to them all, and quite a number responded, 
almost 80, 90. These I then organized into groups of three to five people, 
than giving projects into these groups, and these projects had to be some
thing altogether different. It made no sense to me to offer them just some 
bit more new subject matter, they had been sitting there for six years al
ready, having heard lots of things going into their one ear, and out by the 
other. These were projects where a subject matter which one was sup
posed to know was taken up again from another perspective in a new and 
problem-oriented way. Elementary mathematics from a higher point of 
view, this was actually the task. In any case a subject matter they had al
ready had, but now to be worked upon from a new perspective and in a 
novel way, in cooperation and with a clear goal in mind. And I believe I 
made about more than sixty people from this group of people, who were 
to all intent and purpose dropouts, successfully pass their examinations. I 
thus did not begin my work in didactics theoretically-scientifically, but 
rather practically and with the conviction that there are wonderful things 
in mathematics which everybody should know. Moreover, I was a good 
organizer, if left alone, and if there was not such a lot of political and 
socio-psychological debate going on. The rector of the University of 
Bielefeld got to know all this, and that the reason proper why I came to 
Bielefeld. 

Fischer: This means that your approach was one concerning the didactics of higher 
education one, starting from a problem with which you were confronted 
in teaching. 

Otte: Precisely, yes, that was quite practical. At that time, however, I had al
ready begun to hold additional seminars in Munster, for instance about 
Piaget. I used the book ''Mathematical Psychology and Epistemology 
written by Piaget jointly with E. Beth. 

Fischer: And that's how you came to concerning yourself with didactics theoreti
cally as well. 
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Otte: That has always come natural to me. It is simply impossible for me to do 
something without having general thoughts about it, well perhaps with the 
sole exception of painting. In all the years when I worked in farming and 
in handcraft, this also impeded me. 

Fischer: When you came to Bielefeld then, you were also confronted with a didac
tics of mathematics already existing in Germany. What was your idea of 
that then, and how did you see yourself in relation to what was there? 

Otte: I did not acknowledge the didactics that was there already. That had to do 
partly with the arrogance of the mathematician with regard to these theo
ries of method: "Either one masters mathematics, or one becomes a 
mathematics educator." I don't want to enlarge upon all these prejudices 
here again. That's the one side, and the other side was that I felt rather 
constrained between two colleagues who were relatively prominent in 
German mathematics education, the two of them being both more than ten 
years older than me, and thus having already occupied certain fields for 
themselves: Bauersfeld curriculum theory and primary school mathemat
ics education, Steiner the didactics of secondary school and of the Gym
nasium, that is to mean what is the didactics of the subject matter in the 
classical sense, and beyond that the corresponding theories of didactics. 
And properly speaking, I strove for something quite different, to insert 
what was offered in the shape of classical subject matter didactics in 
mathematics somewhat within an interdisciplinary context. I always told 
the mathematicians: mathematics education, properly speaking, represents 
the objective historical interests of mathematics as a science. I was con
vinced from the very outset that mathematics education is always an insti
tution concerned with teaching, also in the sense that it must take note of 
what is being achieved in its most diverse sciences it relates to (theory of 
cognition, psychology, philosophy, sociology, of course mathematics as 
well) and try to implement this in a kind of ''applied basic science.'' No
body was really willing to do that, the term was held to be some kind of 
invective, the intention being called "sociologism" in the IDM's advisory 
body. The only institutional model proper was the Max-Planck Centre for 
Educational Research. That time, of course, was a difficult period politi
cally as well, the era of the Cold War and of the Berufsverbot. 

Fischer: What were the first projects you initiated in this sense at the IDM? 

Otte: The first project I had already begun in Mtinster, even before I had taken 
up work at the IDM, because I had reflected upon what I could do at all. 
Something must be said on this: to begin with, we had rather a lot of free 
positions at the IDM, for instance 16 positions for delegated teachers, and 
at least fourteen, fifteen positions more for assistant professors. And these 
were virtually impossible to fill, for the didactics of mathematics itself 
had not yet produced any academic rising generation. Even established 
mathematics educators who otherwise did not give me the lightest credit 
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recognized that I have been the one person who initiated workshop pro
jects for doctoral theses in the sense of establishing a rising generation. 
The doctoral theses workshop at the IDM was important in this frame. 
And the second project which I started in Munster already had to do with 
my - somewhat naive intention - to establish a good connection to the 
mathematicians as well. It was a volume published by Springer: "Mathe-
matiker liber die Mathematik" (mathematicians on mathematics). Today, 
books of this kind are nothing remarkable. But at the time, this was quite 
unusual, and the publishing house of Springer, conservative and success
ful as it is, hesitated for a long time whether they would edit something 
like that, but then created a series which saw two more volumes. The se
ries was called "Wissenschaft und Offentlichkeit" (science and the pub
lic). Only at the time you had to deliver a complete printable typescript; in 
a sense, this was a typed book. Half of it consisted of contributions col
lected and translated from the English. I travelled, for instance to Moscow 
to see Kolmogorov about it. The other half was from people I had con
vinced to contribute original German essays, such as Jlirgen Brieskorn in 
Bonn, Andreas Dress in Bielefeld, or Hermann Dinges in Frankfurt. This 
volume, I have heard, has later been used over years and decades in semi
nars, of philosophy as well. It has been selling for 30 years. And that was 
the very first project. 

Fischer: The workshop projects for doctoral theses, what was their contents? What 
were the themes you gave there? 

Otte: When I remember and look at the first themes, these were things which 
had to do with mathematics itself, and which were intended to open new 
perspectives on mathematics. Jahnke, for instance, was to work on the 
problem of proof, using the previous work of Sneed and Stegmliller in 
structuralist theory of science. These are concerned with empirical theory, 
and there is so-to-say from the outset this duality between a structural nu
cleus and intended applications. The theory itself was to be seen only as a 
dual edifice, this is simply the more reasonable and natural point of view, 
and I reasoned that this must work in mathematics as well. If I had been 
more seasoned at the time, and if I had known Abraham Robinson's 
work, that is the work of scholars who from the very outset had extended 
the purely proof-theoretical orientation of mathematical foundational re
search by a model theoretical component in the thirties already (Abraham 
also was an applied mathematician who worked in the airplane industry in 
World War II), this would certainly have been better. Our approach at the 
time was a bit difficult to access and problematical. We tried to legitimize 
it mainly epistemologically. 
Other results concerned applications, and I would like to quote two ex
amples, the doctoral theses submitted by Biehler and Steinbring. Stein-
bring's thesis was on probability theory, that is on the history of probabil
ity theory, continuing Hacking's books of the period - among them Hack-
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ings own doctoral thesis. Biehler continued Tukey. What I liked in this 
was that explorative data analysis from its very outset is about quite an
other type of knowledge. That is, different from the hermetical character 
of the Newman-Pearson theories where theorems of pure mathematics can 
still be used, a mode not quite overcome, but supplemented by a con
glomeration of methods of analysis and strategic rules. What was lacking 
at the time was the semiotic knowledge, otherwise one would have seen 
more: it is always a matter of interpretation and of a new elaboration. 
What is interpreted is not only reality, but all the representations - that is 
stem-and-leaf and however all these methods are called - become an ob
ject themselves. 
Somehow, things were as a rule about mathematics itself, and about rob
bing mathematics of its alien character which it acquired so-to-say inad
vertently by the predominance of a linguistic culture, and by certain forms 
of pure mathematics itself. I recall a debate, however, one of the first I 
had with you. Your critique of me was that I was always embellishing 
mathematics, somehow trying to make it look less obtuse than it really is, 
while you saw that situation always more relentlessly and realistically. I 
have later often had occasion to think back to this. 

Fischer: Well, I later formulated it to say that you were trying to overcome this 
narrow view from within mathematics, while I was trying to do the same 
from without. This is then rather more a question of definition, of what 
you are willing to count among mathematics. 
I recall that at that time there was still the EPAS project. How do you see 
that in retrospect? 

Otte: The EPAS project was formed on the basis of a different belief. I have 
already said that I thought that to teach someone to think, or also to con
vey knowledge about cognition and knowledge to him or her should be 
some kind of humanist concern. What I did not like in traditional didac
tics, in particular in subject matter didactics, was how the teachers are 
kept in leading strings. This began with the textbooks, the textbooks being 
not textbooks at all for the pupils, but rather for the teachers. And the 
teacher, vice verso, refrained from reading anything else; that is he had 
the most diverse school textbooks in his cupboard, trying to distil recipes 
from these for his next lesson to be held. 
Consequently, the idea was the following: As a scientist, you cannot act 
as if you knew more about teaching than the teacher, and this is why we 
externals must in my opinion refrain from trying to act directly on the pu
pils, somehow circumventing the teacher. The consequence from this is 
that you must focus on educating the teachers. And in order to focus on 
teacher education and training, you must cooperate with those people who 
have a most supportive role in professional teacher training during the 
first two trainee years in teaching service preceding the second state ex
amination. In the university studies of mathematics, a maximum of 8% 
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percent of the curriculum until the first state, purely academic state ex
amination was then assigned to the didactics of the subject matter. The 
professional training proper took place during the two-year traineeship. 
And there were the teacher seminars, where the directors (Fachleiter) as
signed to the various subjects were the true trainers. The idea was to co
operate with these people. While they don't have the teacher's problem in 
the same extent as the teachers themselves, that is they are not in over 
their heads, are compelled to talk about teaching, must teach others how 
to teach, and insofar have certain problems to reflect on the one hand, 
they are practitioners, are involved in teaching, know how school looks 
like from within etc. on the other. Hence, we applied for some funding 
from third parties, the application was written in 1975, I remember pre
cisely, the secretary had to type it even on Easter Monday in order to en
sure that it arrived in time at the Volkswagen Foundation. We won over 
three federal states, North-Rhine Westphalia, Berlin, and Schleswig-
Holstein, to participate in this project and for delegating teacher seminar 
directors. I visited everywhere, in the classrooms as well as in the teacher 
training seminars from Kiel to Wuppertal. It was still easier then, North-
Rhine Westphalia, the biggest federal state, did not even have an institute 
for school and in-service training then which was later founded in Soest, 
and the ministry was much more willing to accept offers to cooperate 
from the university. I don't remember the name of the ministry official, 
but above all there were some outstanding seminary directors. We wrote 
texts on central professional problem fields, these were then distributed to 
teachers, in their tentative version, and there followed an annual confer
ence on experience had with them, for an entire week in Bielefeld. Every
thing was extensively discussed on this occasion, and we attempted to in
tegrate suggestions made. Later, the texts were published in several vol
umes. 

Fischer: Were you as content with this, this kind of practical activity, as with the 
doctoral theses? 

Otte: I was content on the one hand, because there were really quite a number 
of very outstanding persons among the seminar directors. If all the par
ticipants seriously understand their own craft, and show mutual respect, 
something good will result. What was actually missing with me, but also 
for the university in general, was a scientific preparation. Let's take, for 
example, the volume "Text Wissen Tatigkeit" which we authored at the 
time. In the entire world, we were unable to find a text analysis system 
oriented towards mathematics of which we could have said, well, let's 
take this and analyze the mathematics textbooks on this basis and see 
what comes out. There were only content-indifferent systems of the kind 
developed by psychology. One of the famous among these in Germany 
was then that of the Hamburg psychologists Thun and Gotz. The inevita
ble outcome is that while the text is improved and reads quite beautifully, 
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the mathematical object has simply disappeared. With regard to some 
problems, we simply bit off more than we could swallow. I think this has 
persecuted me anyway for my whole life: I have always tackled problems 
which were much too difficult. 

Fischer: Another undertaking I remember in which I participated some time my
self was the BACOMET project in which you actually attained a signifi
cant achievement in organizing science within an international context. 
Does it still exist at all? 

Otte: While the BACOMET project has not been pronounced dead yet offi
cially, it as been put a bit to sleep since we are no longer organizing the 
annual meetings from the IDM. This is also due to the fact that nowadays 
the DFG and other funding organizations do no longer provide any re
sources for this kind of educational research. This seems to be different in 
Austria, as can be seen from your own work. 

Fischer: These meetings continued until two years ago? 

Otte: Yes, they did, and the conferences were for a long time held in Melle, in 
the vicinity of Bielefeld. To get funding for that is even more difficult in 
England and in Italy, where we tried, and has hitherto failed. In 2003, an
other volume of the project will be published. The BACOMET project 
evolved from something else, actually from organizing the Karlsruhe 
Congress of 1976. This Third International Congress on Mathematics 
Education was to have a quite different structure, one aligned to themes. 
This was prepared by 13 expert reports. I had volunteered for the report 
on teacher education and training and held a preliminary conference with 
persons whom I had chosen myself or who had been designated by IMUK 
the year before in Bielefeld in order to prepare the report. This pleased 
people like the then UNESCO representative Bent Christiansen from Co
penhagen, and he subsequently asked me whether I would like to continue 
something similar. This is how the BACOMET project came into being. 
The intention was to invite institutions - we also invited the Klagenfurt 
team as a whole - in order to have some continuity of project work in the 
time between congresses by having several members in the same place. 
This was an overambitious structure which soon disintegrated because not 
everybody was interested with equal intensity. Nevertheless, BACOMET 
provided a program of orientation for many, for almost 20 years. 

Fischer: This is then something like a red thread: in the case of the doctoral theses 
the candidates, then the seminar directors in the EPAS project, the col
leagues from the different nations in the BACOMAT project: All these 
were at the same time projects of education for a new generation of edu
cators, 

Otte: That's correct, according to the motto: specialization and cooperation will 
yield the first steps forward from the stone-age. The academic discipline 
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of mathematics education was called to create itself in a first step, actu
ally. But it also had to do with how I worked, with some deficit in myself. 
I do not write well. Or better, I write in such a way that most people find 
it too condensed. In the English, this is even worse as easy readability has 
an even more important role. "How can such a bright person write such 
boring things"? Or they say something like that. Formerly, I was no very 
well able to hold a lecture in front of people I did not know. But I think 
that I am good if I can work together with the same group for a longer pe
riod of time. B ACOMET was a big success, everybody liked to come up 
to the close. 

Fischer: How many people came usually? 

Otte: Always between 21 and 23 people. 

Fischer: An international class of school. 
Another line in your work is history, the history of science, the history of 
mathematics. That was one aspects you always had in mind as well, but I 
had the impression that this became particularly intense in the eighties 
where you got onto the historical track with some of your co-workers as 
well. 

Otte: That's right, actually. For me, the formation of the new educational gen
eration had a certain priority, and doctoral thesis projects had to find rec
ognition in the established sciences as well. I have been working at a re
form university, and in a most ambitious one, in Bielefeld, and I had the 
good fortune of encountering a very pronounced tradition in the fields of 
history of science and research into science there. When von Weizsacker 
was pensioned, the Max Planck Institute for researching the condition of 
life in the scientific civilization situated in Starnberg was dissolved. Be
cause of this, some additional excellent people such as Wolfgang Krohn 
and Wolfgang van den Dale came to Bielefeld because of a contract be
tween the Max Planck Society and the University of Bielefeld. 
As for myself, I've never been a historian quite simply. While I have my
self worked historically, about Hermann Grassmann (1809 - 1878) quite 
intensely, I have never quite liked to do history in a purely descriptive or 
narrative way. This has then led to some disagreements in our work 
group, because of the complicated individual problems of orientation 
within a field of work of such interdisciplinary dimensions. And it has led 
to some splits, three different directions being established in Bielefeld: the 
purely historical one represented by Schubring, my own, which is the 
most philosophical one, and Jahnke in between. I was also co-applicant 
for post graduate college for research into science and technology, its pre
sent name is completely different. I have been with that from the very be
ginnings, it consisted of twelve professors if different faculties and de
partments of the University of Bielefeld who cooperated to write this ap
plication. 
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Fischer: 

Otte: 

Fischer: 

Otte: 

Fischer: 

Otte: 

Fischer: 

Otte: 

Over which period did that take place, do you recall that? 

This, the post-graduate college? 

Yes, this cooperation with colleagues. 

That certainly kept going for 10 or 15 years, perhaps even longer. 

Well, you can perhaps quote an example to describe what this focus on 
the history of mathematics may still contribute, from your point of view, 
for your other concerns, that is for didactical concerns, the role of mathe
matics in society? 

At present, I have begun to concern myself with the history of geometry. 
In Brazil, I have begun to work with computer geometry. For the students 
in Brazil, I had to look for something immediately relevant for my lec
tures, linking mathematical subject matter, or mathematical knowledge 
immediately with historical and philosophical backgrounds. The com
puter has generated so many illusions about thinking. And as I generally 
assume that mathematics is an activity, and that activity represents a sys
tem of relations between means and objects, thinking cannot remain un
concerned if a new means like the computer is placed at the disposal of 
geometrical activity. And when I began with this, it was at once visible 
that a very strong element has become relevant again which had an im
portant role in mathematics until the end of the 18^ century, but then fell 
into oblivion, namely the principle of continuity. In natural philosophy, 
too, it had played an important role, just think of the presentation in 
Lovejoy's famous volume "The Great Chain of Being." The fascination in 
the principle of continuity is that it is not simply a principle, but rather it 
are the principle's changes from which the historical stage of develop
ment of mathematical and natural science thought can be discerned. I 
think the mathematicians have erected some kind of interpretative dogma
tism there. They say, for instance, what about it, this simply means the 
theorem of identity for homologous functions, or this should be expressed 
in the terms of Zariski topology of algebraic varieties. This is nonsense. I 
think the principle of continuity is so fascinating because it indicates, so-
to-say, the emergence of the theoretical view from perception, from crude 
empirics. It is situated at the point of intersection between the empirical 
and the conceptual which has occupied reasoning for centuries. It may 
even show us how the good theories about the essence of the relationships 
in nature have arisen. 

Could you try to formulate this principle? 

Properly spoken, the principle of continuity is the following: The world is 
infinitely complex, it changes every moment, and if we desire to recog
nize anything, we must look for invariants or similarities. And in this 
connection, it is quite interesting to see how this is being done empirically 
in the first place, that is how a purely phenomenal concept of similarity is 



AN INTERVIEW WITH MICHAEL OTTE 373 

Fischer: 

Otte: 

taken as the basis, and how this concept of similarity changes. Galileo, for 
instance, took the catenary and the parabola to be the same. If you hang a 
chain on the wall and then project the oblique shadow of a circle onto a 
parabola, you actually see that they are quite similar, at least in the vicin
ity of the vertex. It was Huygens who discovered this "error." What does 
that mean, he discovered an error? He used another principle of relation
ship. Since then, we look at a similarity of genus which is based on the 
algebraic-analytical mode of generation. Parabola and catenary are em
pirically so similar that they were still taken to mean the same by Galileo. 
On the other hand, while circle, ellipse, and parabola are similar in genus, 
or in family, they are quite dissimilar empirically. In analytic geometry, 
they are nevertheless considered to belong together. The new conception 
of the principle of continuity marks an essential element of the Scientific 
Revolution of the 17* to 19* centuries. During that period, thought and 
intuition began to transcend from the things to the laws which determine 
them. These laws, or relational structures, however, also determine the 
thinking in analogies or metaphors, that is they provide the aspect under 
which thinking approaches the existing world. Using a metaphor means to 
find the basis of relational similarity in the first place. More important 
than empirical similarity in this case here is the generic similarity or of 
family likeness, which implies the transition from the purely empirical to 
the theoretical. And this is precisely what the principle of continuity is 
conceptually aiming at. 

My question was how useful history is in this, and now I would like to 
interpret you answers to say that you actually know quite precisely what 
you desire to see in history, and that you then succeed in finding that, us
ing it to illustrate your ideas even more clearly, but less that the intention 
now is to tumble on some things empirically in history. 

I would like to say two things in answering that: Firstly, I think you are a 
nice fellow, but secondly you insinuate with that, well, it could also be 
said that I am a falsifier of history. 

Fischer: no. 

Otte: I would like to say to that: what is the predicament of the philosophy of 
mathematics? It is hung with two problems it has no hope of solving: One 
is the problem of the ontological status of mathematical objects, or the 
question whether mathematics has any objects at all, and the second is 
how proof as the tautological process which it seems to be can lead to 
new insights. I think that in modern mathematics, in contrast to the Aris
totelian science, proof not only has a rhetorical function, is not intended 
to convey truth to somebody, but rather has a constitutive function. And if 
it has a constitutive function, it presents itself quite differently as a prob
lem. Using the perspective of these problems, I approach history, perceiv
ing much more with it; you see things you simply do not see when ana-
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lyzing with the logic of mathematics. That's the first thing I wanted to 
say. And the other thing concerns the limits of the philosophical perspec
tive. History will always yield total surprises, for instance if you take the 
problem of doubling the cube. The most suggestive thing is to double the 
side length - the Athenians are said to have been so stupid to do this - but 
then you obtain the eightfold. And somewhere between the plain one and 
the eightfold, there must be, according to the principle of continuity, the 
double volume somewhere. Another great problem of antiquity was 
treated in the same way, that of squaring the circle. Somewhere between 
the inscribed square and the circumscribed square, there must be a square 
which is equal in area to the circle. This, for instance, is a seemingly evi
dent argument, and the surprise is that people like Nicolaus von Kues 
(1401 - 1464) radically rejected it. That reality is something continuous, 
the very "Great Chain of Being," appears somehow so suggestive that it 
was a puzzle for me how somebody cannot accept it. In the 15* century, 
however, the harmonious world view crumbled, and the particular and the 
general were no longer so statically compatible. That is to say, you learn 
from history as well, and in this case you learn which mathematical con
ceptions can have fundamental cultural-historical impact. 

Fischer: One of the particularities of your historical contributions I have read is 
that they do not confine themselves to the history of science in the nar
rower sense, like you described it just now quoting examples, but that you 
establish references to the history of culture, to the economy of the re
spective period, for instance to technology and history of technology, 
showing the history of mathematics, or of the natural sciences, embedded 
into the history of technology, at least since the 19* century. 

Otte: I would like to say two things to this: The first is that I had abandoned 
this kind of work for some time, because it is so difficult to communicate 
about it. Those people who have a larger sociology of science and history 
of culture perspective either show no interest at all for mathematics, or 
merely a very superficial one. If I look at the work I wrote today, on the 
other hand, I often wonder, dear me, what you've written that twenty 
years ago, you cannot improve upon even today. There seems to have 
been no progress with me on the general level during the last twenty 
years. This is why I prefer working with very precise examples which you 
use to develop your own perspective, that is where you can see something 
much more exactly, but cannot see something as large. Nevertheless, I be
lieve heuristically or in orientation, that there was a, fundamental rupture, 
and this is really the Industrial Revolution. Kant's philosophy advanced a 
point, a central point: That we need not harbour the illusion of being 
wholly transparent, clear and manageable to ourselves, and only the im
penetrable mystery of the external world confronted us, as Cartesianism 
saw things, but that objectivity is subjective, and vice versa. If the world 
is nothing but a social construction anyway, one must ask: does the con-
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structor really know himself? Or better, this illusion of (social) construc
tivism which says that we immediately understand what we have done 
ourselves, for this very reason, simply evaporates. Activity and social 
practice as fundamental realities, but also as scientific object for thinking 
and for science, this has been brought along by the Industrial Revolution 
of the 18* and 19* centuries. In this sense, this is some kind of watershed 
which you will always use to find your direction. 

Fischer: Philosophy and theory of science have always been important to you as 
well. Has there been a development? You have already mentioned Sneed 
as a theorist of science, and I know that you often quoted Quine, you have 
for a long time been occupied with Russell or Peirce, or still are. Has 
there been a development during the last thirty, forty years? 

Otte: Yes, there has been, and this year I have joined the Deutsche Gesellschaft 
fiir Semiotik. I hesitated for a long time, but joining simply expresses a 
certain development. I recall there was a time when it was said that you 
could properly not use Marxist concepts like "activity" or "practice" in 
(didactical) research. Independent of the polemic stance it is quite clear 
that analytical philosophy - you mentioned Quine - that is the one which 
is mainly concerned with language and logic, assumed a paradigm of lan
guage ("linguistic turn"), not di paradigm of activity. Here again, there is a 
fundamental insight by Kant which has been continued both by Marxism 
and by Peirce's pragmatism. Mathematics is not a science of concepts, al
though there is no explicit mention of object in particular in modern 
axiomatized mathematics with its attributive use of concepts. But never
theless mathematics is, as one could state quite banally, in my opinion 
mainly a technological and at the same time fine art. I found semiotics in
teresting for the reason that it treats this. Language and linguistic symbols 
belong to the realm of signs, but they are not the only ones. To quote an 
example: you take a triangle, you take any point, you construct the point 
symmetrical to the first triangle corner, the point symmetrical to the sec
ond triangle corner, the point symmetrical to the third triangle corner, and 
you take the median of this and the initial point. Because of the way this 
last point has been introduced here, it is of course dependent on the first 
point, so that you would expect that if the first point varies, the last one 
must vary as well. It does not, however. What does this mean? This 
means that the point, so-to-say, has a determination which is independent 
of its mode of construction. I have told the students that every fixed point 
signifies a theorem, "find the theorem, find the proof." And this, these are 
typical things which I am unable to express in language like that, by 
speaking of this or of that point. What does this mean, this point? In lan
guage, I would have to tell how it has been introduced. It has not been in
troduced, however. I am still trying to find it. That is to say I suddenly 
have something of which I claim it is there, but whose properties I am 
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precisely trying to find. This is exactly the path in the opposite direction 
to that we usually walk when we begin with the definitions. 

Fischer: That is, one might consider that you see in pragmatism the possibility to 
overcome those problems which in a -

Otte: linguistic orientation 

Fischer: cannot be coped with. 

Otte: That's right. What matters is the activity. Kant's philosophy is a philoso
phy of activity, and who continued it? Porperly speaking, only Marxism 
and pragmatism, all the others went into the linguistic direction, into the 
direction of conceptual language -

Fischer: - which then runs in the direction of differentiation, with hierarchies, of 
types, for instance, or of others, but does not do justice to mathematics. 

Otte: Exactly, mathematics, that's what it always is, that is I hypostasize things, 
that is I take a process again as object of another process, that's what 
mathematicians do, ever again. Mathematicians always operate within 
particular model realities, and do not claim to have any insights about the 
"real" world. Common positivism, against that, identifies knowledge with 
reality, and then wonders when something unheard of appears (e. g. mad 
cow disease). 

Fischer: In 1994, in the volume editied by Suhrkamp "Das Formale, das Soziale 
und das Subjektive," you drew a balance with regard to didactics, present
ing your considerations in a quite extensive frame. This book is not only 
about teaching mathematics, but about the role of science in society, and 
about the role of education, about the teacher as an intellectual. This goes 
far beyond what one expects of a mathematics educator. How do you see 
that today, is that balance still correct, or how would you place the accent 
now? 

Otte: Well, today I would make the book shorter. What the point was? Firstly, 
it was some kind of a collection of what I always wanted to say about di
dactics. It was a situation when didactics as a science was on the decline. 
It suffices to look at the situation in Bielefeld. At one point in time, Biele
feld had seven or eight tenures for university professors in mathematics 
education, including those of the Padagogische Hochschule training ele
mentary school teachers, and now one of these will remain. At the same 
time, however, I thought there is a new theory of activity, the complemen
tarity of object and means. The volume you mentioned circles mainly 
about the idea of complementarity, presenting it in ever new contexts. I 
consider this idea to be fundamental, and it was very significant, heuristi-
cally and philosophically as well, that I found it almost 30 years ago on 
the occasion of a debate on teaching analysis (see annex). 
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Fischer: And later, since 1994, what have you been doing mainly? 

Otte: I would like to elementarize all that's totally incomprehensible in the 
technical mode of expression of common philosophy of mathematics in 
order to show that it is really useful for learning mathematics as well. If I 
were called to hold a course, and if I had to say what belongs to didactics, 
I would say that at least three seminars or three lectures form the begin
ning. A first one to discuss the concept of number (see annex). Russell's 
"Introduction to Mathematical Philosophy" would be a suitable object of 
study in this. 
A second lecture would have to treat the principle of continuity and its 
changes. I am presently writing a number of contributions where I dem
onstrate theorems of elementary geometry in a different way, but not at 
once from so high a point of vantage. Well, I'll take now the theorem 
about the Euler line in the triangle, that the circumcentre, the orthocentre, 
and the line of centres of gravity lie on one straight line. OK with you? 
Now you can say that nothing metric occurs there, and hence there must 
also be a projective proof for that, etc. Nice and good! you can try that 
anyway, and if you are a genius, more of a genius than a normal high 
school or teacher student of mathematics, you will certainly find some
thing. But what I've done now is using the fact that I can rapidly draw 
and deform diagrams on the computer, and on this basis I generalize the 
theorem step by step. I execute seven steps of deformation until I arrive at 
Desargues' theorem, or vice versa. Afterwards, I will interpret the new 
theorem at first glance into the original diagram. 
This is sometimes the problem of didactics: either you give the student 
the result, then he/she will have learnt nothing, or you always tell them 
"look here, look here." There is a French play by Marcel Aime in which a 
teacher of French language called Topaze gives his pupil a dictation con
taining the sentence "des moutons etaient dans un pre." The pupil ignores 
the silent plural "5" in "moutons," obstinately hearing and writing down 
the singular form. The teacher, looking over his shoulder, observes this 
error, and in his exasperation resorts to pronouncing "moutonssses" ever 
more exaggeratedly, thereby defeating his own pedagogical intention (the 
so-called "Topaze effect"), and moreover merely confusing the pupil who 
remains unable to find the solution. This describes the dilemma of the di
dactical contract which must be continuously broken by the teacher in or
der to be kept, by the teacher's avoiding the easy way of sparing the pu
pil's mental effort, or by his keeping the pupil ignorant by refraining from 
handing him/her the solution pat (Brousseau/Otte 1991, 15). 
And the third lecture would be one about the importance of model theory, 
I try, for instance, to do some quite different types of work on the prob
lem of non-standard interpretations, for instance on non-standard analysis. 
In my opinion, it is not convincing why this epsilon-delta-analysis should 
be the only way to teach analysis. Learning really works much better of 
you have alternatives. All these well-established tenets start to shiver once 
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you suddenly see that there are new possibilities even in the infinitely 
small. Laugwitz has always propagated this here in Germany, but despite 
all his brilliance he has always done so in a - how do you call it - misan
thropic way, you are so uncomfortable reading his texts. I have to agree 
with him in almost every case, but the atmosphere always seems so bad-
tempered. That's understandable, perhaps, in view of the dogmatic tradi
tionalism in science. In any case, there is a lot to learn from this topic, 
once you drop the belief that mathematics is a science which says how it 
is. Nothing is how it is. 

Fischer: A good closing remark for a halfway balance of an educator's career. 
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