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Preface

This volume contains a selection of refereed papers from participants of the
workshop “Construction and Analysis of Safe, Secure and Interoperable Smart
Devices” (CASSIS), held from the 10th to the 13th March 2004 in Marseille,
France:

http://www-sop.inria.fr/everest/events/cassis04/

The workshop was organized by INRIA (Institut National de Recherche en
Informatique et en Automatique), France and the University de la Méditerranée,
Marseille, France. The workshop was attended by nearly 100 participants, who
were invited for their contributions to relevant areas of computer science.

The aim of the workshop was to bring together experts from the smart devices
industry and academic researchers, with a view to stimulate research on formal
methods and security, and to encourage the smart device industry to adopt
innovative solutions drawn from academic research.

The next generation of smart devices holds the promise of providing the
required infrastructure for the secure provision of multiple and personalized
services. In order to deliver their promise, the smart device technology must
however pursue the radical evolution that was initiated with the adoption of
multi-application smartcards. Typical needs include:

– The possibility for smart devices to feature extensible computational infras-
tructures that may be enhanced to support increasingly complex applica-
tions that may be installed post-issuance, and may require operating system
functionalities that were not pre-installed. Such additional flexibility must
however not compromise security.

– The possibility for smart devices to achieve a better integration with larger
computer systems, through improved connectivity, genericity, as well as inter-
operability.

– The possibility for smart devices to protect themselves and the applications
they host from hostile applications, by subjecting incoming applications to
analyses that bring strong guarantees in terms of confidentiality or resource
control.

– The possibility for application developers to establish through formal ver-
ification based on logical methods the correctness of their applications. In
addition, application developers should be offered the means to convey to
end-users or some trusted third party some verifiable evidence of the cor-
rectness of their applications.

– The possibility for smart devices to be modeled and proved correct formally,
in order to achieve security evaluations such as Common Criteria at the
highest levels.
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In order to address the different issues raised by the evolution of smart de-
vices, the workshop consisted of seven sessions featuring one keynote speaker
and three or four invited speakers:

1. Trends in smart card research
2. Operating systems and virtual machine technologies
3. Secure platforms
4. Security
5. Application validation
6. Verification
7. Formal modeling

The keynote speakers for this edition were: Eric Vétillard (Trusted Logic),
Ksheerabdhi Krishna (Axalto), Xavier Leroy (INRIA), Pieter Hartel
(U. of Twente), K. Rustan M. Leino (Microsoft Research), Jan Tretmans
(U. of Nijmegen), and J. Strother Moore (U. of Texas at Austin).

In addition, a panel chaired by Pierre Paradinas (CNAM), and further con-
sisting of Jean-Claude Huot (Oberthur Card Systems), Gilles Kahn (INRIA),
Ksheerabdhi Krishna (Axalto), Erik Poll (U. of Nijmegen), Jean-Jacques Quis-
quater (U. of Louvain), and Alain Sigaud (Gemplus), examined the opportuni-
ties and difficulties in adapting open source software for smart devices execution
platforms.

We wish to thank the speakers and participants who made the workshop such
a stimulating event, and the reviewers for their thorough evaluations of submis-
sions. Furthermore, we gratefully acknowledge financial support from Conseil
Général des Bouches-du-Rhône, Axalto, France Télécom R&D, Gemplus Inter-
national, Microsoft Research and Oberthur Card Systems.

November 2004 Gilles Barthe
Lilian Burdy

Marieke Huisman
Jean-Louis Lanet
Traian Muntean
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Mobile Resource Guarantees for Smart Devices�

David Aspinall1, Stephen Gilmore1, Martin Hofmann2,
Donald Sannella1, and Ian Stark1

1 Laboratory for Foundations of Computer Science, School of Informatics,
The University of Edinburgh

2 Lehr- und Forschungseinheit für Theoretische Informatik, Institut für Informatik,
Ludwig-Maximilians-Universität München

Abstract. We present the Mobile Resource Guarantees framework: a
system for ensuring that downloaded programs are free from run-time
violations of resource bounds. Certificates are attached to code in the
form of efficiently checkable proofs of resource bounds; in contrast to
cryptographic certificates of code origin, these are independent of trust
networks. A novel programming language with resource constraints en-
coded in function types is used to streamline the generation of proofs of
resource usage.

1 Introduction

The ability to move code and other active content smoothly between execution
sites is a key element of current and future computing platforms. However, it
presents huge security challenges – aggravating existing security problems and
presenting altogether new ones – which hamper the exploitation of its true po-
tential. Mobile Java applets on the Internet are one obvious example, where de-
velopers must choose between sandboxed applets and working within a crippled
programming model; or signed applets which undermine portability because of
the vast range of access permissions which can be granted or denied at any of the
download sites. Another example is open smart cards with multiple applications
that can be loaded and updated after the card is issued, where there is currently
insufficient confidence in available security measures to take full advantage of
the possibilities this provides.

A promising approach to security is proof-carrying code [26], whereby mobile
code is equipped with independently verifiable certificates describing its security
properties, for example type safety or freedom from array-bound overruns. These
certificates are condensed and formalised mathematical proofs which are by their
very nature self-evident and unforgeable. Arbitrarily complex methods may be
used by the code producer to construct these certificates, but their verification by
the code consumer will always be a simple computation. One may compare this
to the difference between the difficulty of producing solutions to combinatorial

� This research was supported by the MRG project (IST-2001-33149) which is funded
by the EC under the FET proactive initiative on Global Computing.

G. Barthe et al. (Eds.): CASSIS 2004, LNCS 3362, pp. 1–26, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 David Aspinall et al.

problems such as Rubik’s cube or satisfiability, and the ease of verifying whether
an alleged solution is correct or not.

A major advantage of this approach is that it sidesteps the difficult issue of
trust : there is no need to trust either the code producer, or a centralized certifica-
tion authority. If some code comes with a proof that it does not violate a certain
security property, and the proof can be verified, then it does not matter whether
the code (and/or proof) was written by a Microsoft Certified Professional or a
monkey with a typewriter: the property is guaranteed to hold. The user does
need to trust certain elements of the infrastructure: the code that checks the
proof (although a paranoid user could in principle supply a proof checker him-
self); the soundness of the logical system in which the proof is expressed; and, of
course, the correctness of the implementation of the virtual machine that runs
the code – however these components are fixed and so can be checked once and
for all. In any case, trust in the integrity of a person or organization is not a
reliable basis for trusting that the code they produce contains no undiscovered
accidental security bugs! In practice it seems best to take advantage of both
existing trust infrastructures, which provide a degree of confidence that down-
loaded code is not malicious and provides desired functionality, and the strong
guarantees of certain key properties provided by proof-carrying code.

Control of resources (space, time, etc.) is not always recognized as a secu-
rity concern but in the context of smart cards and other small devices, where
computational power and especially memory are very limited, it is a central is-
sue. Scenarios of application which hint at the security implications include the
following:

– a provider of distributed computational power may only be willing to of-
fer this service upon receiving dependable guarantees about the required
resource consumption;

– third-party software updates for mobile phones, household appliances, or
car electronics should come with a guarantee not to set system parameters
beyond manufacturer-specified safe limits;

– requiring certificates of specified resource consumption will also help to pre-
vent mobile agents from performing denial of service attacks using bona fide
host environments as a portal;

and the one of most relevance in the present context:

– a user of a handheld device, wearable computer, or smart card might want
to know that a downloaded application will definitely run within the limited
amount of memory available.

The usual way of dealing with programs that exceed resource limits is to monitor
their usage and abort execution when limits are exceeded. Apart from the waste
that this entails – including the resources consumed by the monitoring itself –
it necessitates programming recovery action in the case of failure.

The Mobile Resource Guarantees (MRG) project is applying ideas from
proof-carrying code to the problem of resource certification for mobile code. As
with other work on proof-carrying code for safety properties, certificates contain
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formal proofs, but in our case, they claim a resource usage property. Work in
MRG has so far concentrated mainly on bounds on heap space usage, but most
of the infrastructure that has been built is reusable for bounds on other kinds
of resources. One difference between MRG and other work on proof-carrying
code is that proof certificates in MRG refer to bytecode programs rather than
native code. One bytecode language of particular interest is JVML [22] but there
are others, including the CIL bytecode of the Microsoft .NET framework [24],
JavaCard [33], and the restricted version of JVML described in [32]. An elegant
solution to the tension between the engineering requirement to make theorem
proving and proof checking tractable, while at the same time remaining faith-
ful to the imperative semantics of these underlying bytecode languages, is the
Grail intermediate language (see Sect. 5) which also targets multiple bytecode
languages.

One of the central issues in work on proof-carrying code is how proofs of
properties of code are produced. One traditional approach is for object code and
proofs to be generated from source code in a high-level language by a certifying
compiler like Touchstone [10], using types and other high-level source informa-
tion1. The MRG project follows this approach, building on innovative work on
linear resource-aware type systems [14, 15], whereby programs are certified by
virtue of their typing as satisfying certain resource bounds. For instance, in a
space-aware type system, the type of an in-place sorting function would be dif-
ferent from the type of a sorting function, like merge sort, that requires extra
working space to hold a copy of its input; still different would be the type of
a sorting function that requires a specific number of extra cells to do its work,
independent of the size of its input. A corresponding proof of this behaviour
at the bytecode level can be generated automatically from a typing derivation
in such a system in the course of compiling the program to bytecode. It even
turns out to be possible to infer heap space requirements in many situations
[16]. This work has been carried out in a first-order ML-like functional language,
Camelot (described in Sect. 3), that has been developed as a testbed by the
MRG project. The underlying proof-carrying code infrastructure operates at
the bytecode (Grail) level; Camelot is just an example of a language that a code
producer might use to produce bytecode together with a proof that it satisfies
some desired resource bound.

This paper is an overview of the achievements of the MRG project as of the
summer of 2004. It is self-contained, but due to space limitations many points
are sketched or glossed over; full technical details can be found in the papers
that are cited below. The main contribution of the paper is a presentation of the
overall picture into which these technical contributions are meant to fit.

In the next section, we describe the overall architecture of the MRG frame-
work, including the rôle of the two language levels (Grail and Camelot), and how
MRG-style proof-carrying code fits with standard Java security. Sections 3 and 4

1 A slightly different approach was taken by the work on Typed Assembly Language
([25] and later), where a fixed type system is provided for the low-level language,
and certification amounts to providing a typing in this low-level type system.
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focus on the “upper” language level, introducing Camelot and space-aware type
systems. Section 5 focuses on the “lower” language level, describing the Grail
intermediate language and the way that it provides both a tractable basis for
proof and relates to (multiple) imperative bytecode languages. Section 6 ties
the two language levels together by explaining the logic for expressing proofs
of resource properties of bytecode programs and the generation of proofs from
resource typings. A conclusion outlines the current status of the MRG project
and summarizes its contributions.

2 Architecture and Deployment

In this section we discuss the architecture of a smart device-based system which
deploys the technology of the MRG project in a novel protocol for certifying
resource bounds on downloaded code from an untrusted source. Our protocol is
designed so that it can be integrated with the built-in mechanism for Java byte-
code checking, via the Security Manager. In the JVM, the Security Manager is
entrusted with enforcing the security policy designated by the user, and ensuring
that no violations of the security policy occur while the code runs.

In our protocol, a Resource Manager is responsible for verifying that the
certificate supplied with a piece of code ensures that it will execute within the
advertised resource constraints. A Proof Checker is invoked to do this. If the
check succeeds, we have an absolute guarantee that the resource bounds are
met, so it is not necessary to check for resource violations as the code runs. Our
Resource Manager is not a replacement for the standard Java Security Manager
but instead forms a perimeter defense which prevents certain non-well-behaved
programs from being executed at all.

The Mobile Resource Guarantees framework provides a high-level language,
Camelot, and a low-level language, Grail, into which this is compiled. (Camelot is
presented in more detail in Sect. 3 and Grail is discussed in Sect. 5.) Application
developers work in the high-level language and interact with resource typing
judgements at the appropriate level of abstraction for their realm of expertise.
For this approach to be successful it is necessary for the compilation process
to be transparent [23] in that the resource predictions made at the high-level
language level must survive the compilation process so that they remain true at
the low level. This places constraints on the expressive power of the high-level
language, prohibiting the inclusion of some more complex language features. It
also places constraints on the nature of the compilation process itself, requiring
the compiler to sometimes sacrifice peak efficiency for predictability, which is
the familiar trade-off from development of real-time software.

A consumer of proof-carrying code (such as Grail class files with attached
proofs of resource consumption) requires an implementation technology which
enforces the security policy that they specify. The Java agents introduced in the
J2SDK version 1.5.0 provide the most direct way to implement these policies.
An agent is a “hook” in the JVM allowing the PCC consumer to attach their
own implementation of their security policy as an instance of a general-purpose
PCC Security Manager.
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Java agents can be used for several resource-bound-specific purposes:

1. to query the attached proof and decide to refuse to load, build and execute
the class if necessary;

2. to apply per-class or per-package use restrictions by modifying each method
in the class with entry and exit assertions that inspect resource consumption
measures; and

3. to apply per-method constraints on heap-allocation and run-time by instru-
menting method bodies.

Each of these checks can be unloaded at JVM instantiation time to allow a
mobile-code consumer to vary their security policy between its tightest and laxest
extrema.

3 Space Types and Camelot

This section describes the high-level language Camelot and the space type system
which together allow us to produce JVM bytecode endowed with guaranteed and
certified bounds on heap space consumption.

Syntactically, and as far as its functional semantics is concerned, Camelot is
essentially a fragment of the ML dialect O’Caml [29]. In particular, it provides
the usual recursive datatypes and recursive (not necessarily primitive recursive)
definition of functions using pattern matching, albeit restricted to flat patterns.

One difference to O’Caml is that Camelot compiles to JVM bytecode and
provides (via the O’Camelot extension [36]) a smooth integration of genuine Java
methods and objects.

The most important difference, however, lies in Camelot’s memory model.
This uses a freelist, managed directly by the compiled code, rather than relying
exclusively on garbage collection. All non-primitive types in a Camelot program
are compiled to JVM objects of a single class Diamond, which contains appro-
priate fields to hold data for a single node of any datatype. Unused objects are
released to the freelist so that their space can be immediately reused. The com-
piler generates the necessary code to manage the freelist, based on some language
annotations described below.

This conflation of types into a single allocation unit is standard for memory
recycling in constrained environments; there is some loss of space around the
edges, but management is simple and in our case formally guaranteed to succeed.
If required, we could duplicate our analysis to manage a range of cell sizes in
parallel, but we have not yet seen compelling examples for this.

3.1 The Diamond Type

Following [14], Camelot has an abstract type denoted <> whose members are
heap addresses of Diamond-objects. The only way to access this type is via
datatype constructors. Suppose for example that we have defined a type of in-
teger lists as follows2

2 The annotation ! ensures that the constructor Nil is represented by a null pointer
rather than a proper object.
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type iList = !Nil | Cons of int ∗ iList

If this is the only type occurring in a program then the Diamond class will look
as follows (in simplified form and Java notation):

public class Diamond extends java.lang.Object {
public Diamond R0;
public int V1;

}

If, say, x1 is an element of type iList , hence compiled to an object reference of
type Diamond, we can form a new list x2 by

let x2 = Cons(9,x1) in ...

The required object reference will be taken from the aforementioned freelist
providing it is non-empty. Otherwise, the JVM new instruction will be executed
to allocate a new object of type Diamond.

If, however, we have in our local context an element d of type <> then we
can alternatively form x2 by

let x2 = Cons(9,x1)@d in ...

thus instructing the compiler to put the new Cons cell into the Diamond object
referenced by d, whose contents will be overwritten.

Using these phrases in the context of pattern matching provides us with
elements of type <> and also refills the freelist. A pattern match like

match x with
Cons(h,t)@d −> ...

is evaluated by binding h, t and d to the contents of the “head” (h) and “tail”
(t) fields and the reference to x itself (d). Thus, in the body of the pattern match
d is an element of type <> available for constructing new Cons cells.

Alternatively, the syntax

match x with
Cons(h,t)@ −> ...

returns the cell occupied by x to the freelist for later use.
Finally, an unannotated pattern match such as

match x with
Cons(h,t) −> ...

performs ordinary non-destructive matching.

3.2 Linear Typing

When a list x is matched against a pattern of the form Cons(h,t)@d or Cons(h,t)@
it is the responsibility of the programmer to ensure that the list x itself is not
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used anymore because its contents will be overwritten subsequently. For this
purpose, the Camelot compiler has an option that enforces (affine) linear use
of all variables. If all variables are used at most once in their scope then there
can in particular be no reference to x in the body of the pattern match above.
In [14] a formal proof is given that such a program behaves purely functionally,
i.e., as if the type <> was replaced by the unit type. Linear typing is, however,
a fairly crude discipline and rules out many sound programs. In [6] we present
an improved type system that distinguishes between modifying and read-only
access to a data structure and in particular allows multiple read-only accesses,
which would be ruled out by the linear discipline. This is not yet implemented
in Camelot. Alternatively, the programmer can turn off the linear typing option
and rely on his or her own judgement, or use some other scheme.

3.3 Extended Example

The code in Figure 1 shows a standalone Camelot application containing a func-
tion start : string list −> unit which serves as an entry point. It is assumed
that the program is executed by applying start to an (ordinary) list of strings
obtained, e.g., from the standard input.

We see that the function ins destroys its argument, whereas the sorting func-
tion sort : ilist −> ilist, as well as the display function show list : ilist −> unit,
each leave their argument intact.

3.4 Certification of Memory Usage

The idea behind certification of heap-space usage in MRG is as follows: given a
Camelot program containing a function start : string list −> unit, find a linear
function s(x) = ax + b with the property that evaluating (the compiled version
of) start on an input list of length n will not invoke the new instruction provided
that the freelist contains initially no less than s(n) cells.

Once we have such a linear function s we can then package our compiled
bytecode together with a wrapper that takes input from stdin or a file, initialises
(using new) the freelist to hold s(n) cells where n is the size of the input, and
then evaluates start.

3.5 Inference of Space Bounds

Such linear space bounds can efficiently be obtained using the type-based anal-
ysis described in [16] which has subsequently been implemented and tuned to
Camelot in [17]. In summary, this analysis infers for each function contained
in the program a numerically annotated type describing its space usage. The
desired bounding function can then be directly read off from the type of start.

The result of running the analysis on our example program is given in Fig-
ure 2. The entry

ins : 1
↑
, int −> iList[0|int,#,0] −> iList[0|int,#,0], 0;
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type iList = !Nil | Cons of int ∗ iList

let ins a l = match l with
Nil −> Cons(a,Nil)

| Cons(x,t)@ −> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with
Nil −> Nil

| Cons(a,t) −> ins a (sort t)

let show list0 l = match l with
Nil −> ””

| Cons(h,t) −> begin
match t with

Nil −> string of int h
| Cons(h0,t0) −> (string of int h) ˆ ”, ” ˆ (show list0 t)

end

let show list l = ”[” ˆ (show list0 l) ˆ ”]”

let stringList to intList ss =
match ss with

[] −> Nil
| (h::t) −> Cons((int of string h),(stringList to intList t))

let start args =
let l1 = (stringList to intList args)

in let = print string (”\nInput list :\n l1 = ” ˆ (show list l1))
in let l2 = sort l1
in let = print string (”\nResult list:\n l2 = ” ˆ (show list l2))
in ()

Fig. 1. A standalone Camelot program

ins : 1, int −> iList[0|int,#,0] −> iList[0|int,#,0], 0;
int of string : 0, string −> int, 0;
print string : 0, string −> unit, 0;
show list : 0, iList [0| int,#,0] −> string, 0;
show list0 : 0, iList [0| int,#,0] −> string, 0;
sort : 0, iList [0| int,#,1] −> iList[0|int,#,0], 0;
start : 0, list 1 [string,#,2|0] −> unit, 0;
stringList to intList : 0, list 1 [string,#,2|0] −> iList[0|int,#,1], 0;
string of int : 0, int −> string, 0;

Fig. 2. Output of space analysis on the program in Fig. 1

indicates that a successful run of ins requires the freelist to contain 1 cell to
begin. The entry

stringList to intList : 0, list 1 [string,#,2
↑
|0] −> iList[0|int,#,1

↑
], 0;
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indicates that a call to stringList to intList on an input list of length n requires
a freelist of size 2n and upon completion leaves a freelist of size 1m where m is
the length of the resulting iList .

Finally, the entry

start : 0, list 1 [string,#,2
↑
|0] −> unit, 0

indicates that a call to start requires a freelist of size 2n where n is the length of
the input, so the desired bounding function can be chosen as s(n) = 2n in this
case.

More generally, a (hypothetical) entry

f : 3, iList [0| int,#,17] −> iList[0|int,#,13],11

would indicate that a call to f : iList −> iList with an argument of length n
requires a freelist of minimum size 3 + 17n to succeed without invoking new.
Moreover, if the resulting list has length m then the freelist will have size at
least 11+13m plus of course the number of cells left over from the initial freelist
in case its size was above the minimum specified by the typing.

Actually, the meaning of the constant 17 in the typing is “17 per Cons-cell
of the argument” which in the case of linear lists specialises to 17n with n being
the length. In the case of data structures with more than one constructor, nested
data-structures, and tree-like data structures this view is more fine-grained than
linear functions in the overall size.

Other examples discussed in [17] include functions on trees such as heap
sort and computation of Huffman codes, as well as functions where the space
bounding function has fractional coefficients, e.g. s(n) = 4

3n.
Regarding the functionality of the space inference we note two important

aspects. First, the numerical annotations arise as solutions of a system of linear
inequalities which is in turn obtained from a skeleton type derivation which has a
numerical variable wherever a numerical annotation would be required. Second,
the soundness of destructive pattern matches in the sense of Sect. 3.2 arises also
as a precondition to the correctness of the space analysis. For further detail we
refer to [16].

4 Parameter Size

Other guarantees of resource properties that are under consideration in MRG
include execution time, stack size, and size of parameters supplied to system
calls. Of these three, the third has been studied in more detail albeit not to
the same extent as heap space consumption. We summarise the partial results
achieved so far.

Suppose we are given a system call

brake : int ∗ int −> unit

where it is “safety critical” that whenever brake is called with parameters (x,y)
then some proposition P(x,y), e.g. a conjunction of linear inequalities describing
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some “safe window”, must be satisfied. We emphasize that the brake function
itself will not be implemented in Camelot but assumed as given, for example by
being part of the system architecture.

A possible scenario for such a situation could consist of a car manufacturer
providing an API which allows for third party firmware updates. The manufac-
turer would publicise a certain safety policy concerning the parameters supplied
in calls to the methods provided in the API. The manufacturer would guar-
antee that adherence to this safety policy will prevent severe hazards. Within
the safety policy the third party provider will try to optimise the behavioural
properties of the system. Whether or not such optimisation actually happens
need not be formally established; our goal is only to ensure adherence to the
manufacturer-supplied safety policy.

In order to express such a safety property on the bytecode level one can
use the instrumented operational semantics and bytecode logic which will be
described below in Sect. 6.

Here we are concerned with the question of how such safety policies can be
expressed on the level of Camelot through a type system in such a way that
functions can be checked individually once their typing is known, following the
usual typing principles, e.g.: to show that a function has a certain type show
that its body has that type assuming it to hold for any recursive call within the
body.

We claim that a solution based on dependent types in the style of Dependent
ML [37] fits these requirements very closely. In a nutshell, the idea is as follows.
In order to guarantee that a function main calls brake exclusively with such safe
parameters, we may try to type main using dependent types under the following
assumed typing for brake. (Since the function brake is not itself implemented in
Camelot, we can assume an arbitrary typing for it.)

brake : {(x,y) : int ∗ int | P} −> unit

We will now explain how this idea has been elaborated within MRG. We re-
emphasise that these results are partial as yet and that this section must be
understood as a report on on-going work.

4.1 Extending Camelot with Dependent Types

In order to express the desired typing constraints without overly interfering with
the language design, Pfenning and Xi’s Dependent ML (DML) [37] appears to
be particularly suitable.

DML assumes a simply (i.e. non-dependently) typed base language on top of
which dependent types are added in such a way that every dependently typed
program also makes sense in the simply typed base language. Moreover, the
question whether or not a given simply typed program admits a given depen-
dent typing translates into a constraint solving problem in a certain constraint
language over which DML is parametric. For our purposes, we choose linear
arithmetic over the integers as constraint language.
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DML types may depend on types from the constraint language, but not on
other DML types. In particular, the types from the constraint language, the
so-called index sorts, do not themselves form DML types but can be reflected
into DML using singleton types if so desired. Likewise, code may not depend
on values of index sorts, only on values of DML types. In this way, all index
information may be erased from a DML program and a simply typed program
is obtained.

We remark that this is not the case for more radical approaches to dependent
typing such as Cayenne [7].

For our purposes, we use linear arithmetic for the constraint language which
means that the index sorts include int and are closed under cartesian product.
We need two type families: Int , Bool : int −> Type with the intention that Int(i)
contains just the integer i and Bool(i) contains true if 1 ≤ i and false otherwise.

We assume the following constants with typing as indicated:

0 : Int(0)
1 : Int(1)
plus : Pi x,y:int.Pi xx:Int(x).Pi yy:Int(y).Int(x+y)
true : Pi x:int|1<=x.Bool(x)
false : Pi x:int |x<=0.Bool(x)
leq : Pi x,y:int .Int(x) −> Int(y) −> Bool(1+y−x)

The type former Pi obeys the usual rule for dependent function space due to
Martin-Löf: if e : Pi x:t.A(x) and i :t then e[ i ] : A(i). We use square brackets
for dependent application to mark that the argument of such an application is
always a term of the constraint language which can be automatically inferred
using Xi’s elaboration algorithm [37]. Moreover, index application is irrelevant
to the actual behaviour of a program; it only affects typeability.

Subset constraints in a Pi-type express that such index arguments must obey
a certain constraint and are written using vertical bars as in the typing of true.
They can be viewed as syntactic sugar for ordinary dependent application if one
closes the index sorts under subsets of index sorts with respect to predicates
expressible in the constraint language.

In order to be able to reflect knowledge about branches in a case distinction
into the typing we use the following typing rule for if-then-else:

Γ � t1 : Bool(i) Γ, 1 ≤ i � t2 : T Γ, i ≤ 0 � t3 : T

Γ � if t1 then t2 else t3 : T
(If)

We remark here that typing contexts contain bindings of ordinary variables to
types, of index variables to index sorts, and constraints on the index variables.

The remaining types and rules of Camelot remain unchanged. We emphasize
that since DML has been developed as an extension to Standard ML and Camelot
is equivalent to a subset of Standard ML this extension is unproblematic and not
at all innovative. What is innovative is the application of DML to the problem
of certifying parameter sizes and also, perhaps, the particular DML signature
given above.
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4.2 Example

We are now in a position to formally express the constraints on calls to brake as
a DML typing.

brake : Pi x,y:int |P(x,y).Int(x) −> Int(y) −> Unit

For the sake of concreteness assume that P(x,y) is x+y <= 10.
Now suppose that we are given a main function that calls brake with two given

parameters but prior to the call checks that these parameters indeed satisfy the
required constraint, in order to prevent unsafe calls to brake:

brake : Int −> Int −> Unit
main : Int −> Int −> Unit
main = lambda xx:Int.lambda yy:Int.

if leq(plus(xx,yy),10)
then brake(xx,yy)
else brake(0,0)

Here is how this program can be typed in our dependently typed extension.
As already mentioned the index abstractions and applications can be inferred
automatically.

brake : Pi x,y:int |x+y<=10.Int(x) −> Int(y) −> Unit
main : Pi x,y:int.Int(x) −> Int(y) −> Unit
main = lambda x,y:int.lambda xx:Int(x).lambda yy:Int(y).

if leq[x+y,10](plus[x,y](xx,yy),10)
then brake[x,y](xx,yy)
else brake[0,0](0,0)

Let us see how the typing rule If above allows us to typecheck this definition.
Put

Γ = x : int, y : int, xx : Int(x), yy : Int(y)

and then we have

Γ � leq[x + y, 10](plus[x, y](xx, yy), 10) : Bool(1 + 10 − (x + y))

So, in the “then” branch of the conditional we have the additional constraint

1 <= 1+10−(x+y)

or equivalently, x+y <= 10, which is what is required to typecheck the applica-
tion brake[x,y](xx,yy).

4.3 Summary

We have shown in this section how an extension of Camelot with dependent
types in the style of DML [37] can be used to automatically check adherence
to bounds on parameters to system calls. Of course, this is only a first step. In
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contrast to the case of heap space certification, we have not yet developed the
automatic generation of certificates in bytecode logic for this application. More
significantly, generalisations of the described per-call policy will be needed for
some applications. For instance, one may want to require some constraint on the
parameters supplied to all calls of a given function during a certain interval. As
a special case, one might require an upper bound on the number of calls to some
function (e.g., network connections) or on the sum of the parameters, e.g., in
the case where a system function performs an automatic payment. It remains to
be seen to what extent dependent typing provides solutions to these problems
as well.

5 Grail

We now move on to the low-level Grail language that is the target of the Camelot
compiler, and our vehicle for proof-carrying code3. The challenge here is to iden-
tify a language that not only supports formal proofs of resource usage, based on
information from Sect. 3, but also maps directly onto executable bytecodes. To
do this we give Grail two distinct semantics, one functional and one imperative.
These are provably compatible, and the two viewpoints allow flexible reasoning
about resources.

An extended discussion of the properties of Grail appears in [9]. Here we begin
by outlining the constraints that shape it. The language for our proof-carrying
code needs to be all of the following:

– The target for the Camelot compiler;
– A basis for attaching resource assertions;
– Amenable to formal proof about resource usage;
– The format for sending and receiving guaranteed code;
– Executable.

The first three of these suggest a simple functional language, suitable as the
output of a transforming Camelot compiler. This is strengthened by the fact that
we must also perform transparent compilation, to preserve resource information
computed at the Camelot level. However, the final two requirements demand a
ruder machine language: what we guarantee should be the actual resource profile
of runnable code.

Our solution is to arrange that Grail programs, such as that in Fig. 3, can
be both evaluated functionally, using call-by-value, and executed imperatively,
with state and goto – with both routes giving exactly the same result. In the
functional reading “x=5” is a lexically-scoped declaration; on imperative execu-
tion it updates a named storage cell. This dual approach then satisfies all the
requirements for our low-level language. The final two requirements are satis-
fied by providing an assembler from (the imperative interpretation of) Grail to
JVM classfiles, which can be executed and transported over a network, and a
disassembler that reconstructs the original Grail code.
3 Grail stands for “Guaranteed Resource Allocation Intermediate Language”.
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method static int fib (int n) =
let

val a = 0 // Local variable declarations
val b = 1

fun loop (int a, int b, int n) = // Local function declaration
let

val b = add a b // Lexically scoped variables
val a = sub b a // hide outer declarations
val n = sub n 1

in
test(n,a,b) // Tail recursive function call

end

fun test (int n, int a, int b) = // Another function declaration
if n<=1 then b else loop(a,b,n) // Conditional recursive call

in
test(n,a,b) // Main expression

end

Fig. 3. Grail code to compute the Fibonacci number Fn. For speed, we keep track of
both Fk and Fk+1 in accumulating parameters a and b

The functional semantics is comparatively standard: Grail has strong static
typing, call-by-value first-order functions, mutually recursive local declarations,
and lexical scoping. Within this, we make several simplifications appropriate to a
compiler target language. For example, local function declarations may not nest,
functions are only applied to values, and expressions can contain just one basic
operation; later we shall see some further constraints on control and dataflow.

The Fibonacci code of Fig. 3 is the body of a single method. Above this,
Grail provides precisely the class and object structure built into the Java vir-
tual machine. Thus the basic expression operators include not just add and sub
but also primitives to create and manipulate objects on the Java heap. We use
these to implement the space management inferred for Camelot programs by the
analyses of Sect. 3.

The comments in Figure 4 present an alternative view of the same code,
as a purely imperative stream of assignment statements and jumps. Instead of
local functions we have a collection of basic blocks, function calls are merely
jumps, and parameter lists now track which variables are live. This imperative
reading gives a direct map onto Java bytecode: Grail variables are JVM variables,
and each statement expands to a short sequence of instructions, which compose
exactly as laid out in the Grail source. For example:

val b = add a b
val a = sub b a
val n = sub n 1

becomes

9 iload 1 13 iload 2 17 iload 0
10 iload 2 14 iload 1 18 iconst 1
11 iadd 15 isub 19 isub
12 istore 2 16 istore 1 20 istore 0
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method static int fib (int n) =
let

val a = 0 // Initial assignment
val b = 1 // to variables

fun loop (int a, int b, int n) = // Labelled basic block, with
let // live variable annotation

val b = add a b
val a = sub b a // Sequence of assignments
val n = sub n 1 // updating named registers

in
test(n,a,b) // Goto, with live variable

end // annotation

fun test (int n, int a, int b) = // Another labelled basic block
if n<=1 then b else loop(a,b,n) // Conditional return or jump

in
test(n,a,b) // Initial entry label

end

Fig. 4. Imperative Grail code to calculate the Fibonacci number Fn. Comments indi-
cate semantics for execution on the Java virtual machine

This gives bytecode that is highly stereotyped, and our disassembler recovers the
original Grail simply by clustering instruction sequences. We can even identify
variable names from standard JVM metadata.

These different views on Grail allow us to support sound formal reasoning,
using the logical rules presented in the next section, at the same time as effective
transmission and execution, following the architecture of Sect. 2. However, this
is only justified if the functional and imperative semantics coincide. We ensure
this by placing some additional constraints on Grail. A method declaration is
well-formed if:

– Local functions are closed (all variables appear in their parameter lists);
– Invocations of local functions are all tail calls;
– The arguments of every function call syntactically match its declared pa-

rameters – for example, fun f (int x) is always invoked as f(x).

We have a formal semantics for both the functional and imperative views of
Grail, defined by induction over the structure of programs. For well-formed code
we can prove a strong correspondence between these:

Theorem 1. Every well-formed Grail method body can be presented either as
functional declarations or decomposed into imperative basic blocks:

mbody
�imperative

�
functional

blocklist.
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Suppose now that E is a variable environment and s is a matching initial state,
appropriate for mbody and blocklist respectively:

E =var s where var = fv (mbody) = Var(blocklist) .

Then functional evaluation and imperative execution coincide: for any final
value v

E � mbody ⇓fun v if and only if s � blocklist ⇓imp v .

Moreover, these evaluations also have identical effect on the heap, and make
matching use of time and memory space.

Sect. 6 has more detail on the functional operational semantics, and its accom-
panying logic. We can apply this theorem to show that evaluation metrics for
functional Grail match execution steps of the corresponding imperative Java
bytecode [30]. Part of this development includes a formalisation within the Is-
abelle theorem prover of both functional and imperative semantics, as well as
the translation between them.

Further results on the properties of well-formed Grail appear in [9]: relat-
ing (functional) free variables to (imperative) liveness; and matching dataflow
analysis of imperative single-use registers to a functional linear type system.

To take advantage of these results, our Camelot compiler must of course
generate well-formed Grail. To do this it carries out a range of standard trans-
formations, such as λ-lifting, variable renaming, and insertion of intermediate
declarations. These are all legitimate functional rearrangements; but in the light
of Theorem 1 we can also show that these correspond directly to imperative com-
pilation techniques: namely conversion to static single-assignment form (SSA)
and then elimination of Φ-functions [3].

This is an instance of a more general observation, that low-level transforma-
tions on registers and imperative variables map to functional transformations of
Grail. Thus we can carry out bytecode optimisations like register allocation and
sharing while still in the intermediate language of our compiler [35].

Many of the transformations used in compiling Camelot to Grail are familiar
from other functional languages; ideas like A-normal and CPS form, types in
compilation, and typed low-level languages [2, 5, 11, 12, 25, 34]. We have taken
particular inspiration from λ-JVM, a functional language for expressing gen-
eral JVM programs [19]. The novelty of Grail, by comparison with these other
schemes, lies in the fact that it is strict enough to support a reversible translation
to bytecode which preserves execution costs.

Grail generates bytecode with a regular form that makes it particularly
straightforward to analyze: for example, the JVM operand stack is always empty
between Grail statements, and local variables keep the same type throughout a
method body. Simplifications like these appear in other proposals for effective use
of Java on smart devices – thus, for example, all Grail programs immediately sat-
isfy Leroy’s conditions for fast on-card JavaCard verification [21]. Similarly, the
Squawk JVM architecture runs on very small devices with a tripartite memory
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structure (ROM/NVRAM/RAM) [32]: we already satisfy many of the conditions
for Squawk bytecode, and we believe that the remaining ones can be ensured by
manipulation at the Grail level.

In building a PCC framework with Java classfiles as the transport format,
the natural question is: why not just use Java bytecode as the base language?
The results presented here give the answer: Grail is Java bytecode, but with
a stern discipline over the flow of control and data that makes it efficient and
straightforward to analyze.

6 Bytecode Logic and Certificate Generation

Our proof-carrying code infrastructure equips Grail programs with certificates
concerning their resource usage. Certificates contain a claim of resource usage
together with (instructions for generating) a proof of the claim. The proof is
expressed in a program logic for Grail that we have designed specifically for the
purpose. In this section we give an overview of the program logic and then of
the process of certificate generation. Full technical details of this work appear in
[4, 8].

6.1 Resource-Counting Operational Semantics

We want assertions to express properties of program execution as defined by
the Grail (functional) operational semantics. The operational semantics is de-
fined as a big-step relation which is annotated with resource measurements. An
expression e is evaluated in an environment E and heap h, written

E � h, e ⇓ (h′, v, p).

to yield a value v, an updated heap h′, and a resource component p. As usual,
an environment is a mapping from variables to values, and a heap is modelled
as a finite map from a set of locations to values.

The resource component p is a tuple which includes a measure of the number
of instructions executed when evaluating e, and the maximum size of the frame
stack. The amount of heap space consumed when evaluating e is not included in
p, because it can be calculated as the size of the difference between the domains
of the input heap and output heap, |dom(h′)−dom(h)|. This is possible because
we do not model garbage collection; indeed, the JVM specification [22] does
not even require garbage collection to occur (and it does not take place on the
versions 1.X of the JavaCard platform).

The rules defining the operational semantics are straightforward to write,
given knowledge of the translation from Grail into Java bytecode outlined in the
previous section. Example rules for if statements are shown further below.

6.2 A Logic for Grail

A possible starting point for the logic would be to take an existing program logic
for Java bytecode, perhaps based on cutting down a logic for Java, and extend it
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to express the resource-related properties of interest. However, to do this would
be to ignore the advantages brought by Grail: rather than attaching assertions to
sequences of bytecode instructions, we may attach them to Grail functions, and
relate them rather directly to the types used by our Camelot compiler. Moreover,
the functional viewpoint afforded by Grail allows more elegant rules in several
cases than are possible in a Hoare-style logic.

This led us to design a custom logic of partial correctness for Grail. Sequents
are of the form:

Γ � e : P,

relating a Grail expression e to a specification P under some set of assumptions
Γ of the same form. The specification P denotes a predicate which constrains
possible executions of e as defined by the resource-counting operational seman-
tics.

Satisfaction of a specification P by a program e is denoted by |= e : P and
asserts that every (terminating) execution lies within the domain of P , that is

∀E, h, h′, v, p. E � h, e ⇓ (h′, v, p) implies P (E, h, h′, v, p).

Similarly to VDM, our specification predicates allow us to relate the environment
and the initial heap to the result, the final heap and the resources consumed.
This means that there is no need for auxiliary variables that are necessary in
a Hoare-style logic to relate results in the post-condition to inputs in the pre-
condition. This has a particular technical advantage in that we do not require
the often rather complicated adaptation rules of Hoare logic when using proven
(or assumed) specifications for procedures4.

So far we have not introduced a syntax for writing specification predicates.
Instead we use the higher-order logic of the theorem prover, Isabelle/HOL [28], in
which we have formalised the entire Grail-based PCC framework. This particular
form of shallow embedding for propositions is known as the extensional approach.
As a rather trivial example of a specification, the predicate |dom(h)| = |dom(h′)|
is satisfied by programs which do not allocate heap space.

Many of the rules of our logic correspond closely with rules of the operational
semantics. For example, the rule for an if statement looks like this:

Γ � e1 : P1 Γ � e2 : P2

Γ � if x then e1 else e2 : λ E h h′ v p.∃p′. p = tick2(p
′)∧

(E〈x〉 = true −→ P1(E, h, h′, v, p′) ) ∧
(E〈x〉 = false −→ P2(E, h, h′, v, p′) ) ∧
(E〈x〉 = true ∨ E〈x〉 = false)

(if)

In fact, every if statement satisfies a predicate which is equivalent to this form:
either the environment binds x to true and we have P1, or the environment binds
x to false and we have P2. But P1 and P2 are not satisfied exactly: we have to
4 In our case: Grail methods and function calls.
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adjust the resource component p to account for two extra bytecode instructions
(corresponding to the variable lookup and branch).

This rule in the logic captures the behaviour of evaluating either branch of
an if statement, expressed in the operational semantics by the two cases:

E〈x〉 = true E � h, e1 ⇓ (h1, v, p)
E � h, if x then e1 else e2 ⇓ (h1, v, tick2(p))

(if-true)

E〈x〉 = false E � h, e2 ⇓ (h1, v, p)
E � h, if x then e1 else e2 ⇓ (h1, v, tick2(p))

(if-false)

which also advance the clock resource component by two steps.
The only place in which the domain of the heap is altered is in Grail’s new

statement, which corresponds to a new statement in Java. This uses a special
constructor for a class c which assigns the contents of xi to each of the n fields
zi in the newly constructed object. The rule in the logic is this:

Γ � new c [zi := xi] : λE h h′ v p. p = tickn+1() ∧ v = Ref newloc(h)∧
h′ = h[newloc(h) �→ (c, {zi := E〈xi〉})]

(vnew)

The function newloc models the JVM memory allocator’s assignment of a new
location which isn’t already in the domain of h. An object is modelled as a pair
(c,flds) where c is a class name and flds is a record assigning field names to
values. As usual, the resource component counts the clock ticks: in this case the
time taken by a new instruction is n+1 ticks. The resulting heap contains a new
object with the appropriate fields. This rule captures exactly the behaviour of
object construction. Obviously, unrestricted new instructions can lead to uncon-
trolled growth of the heap. The crux of our memory management and resource
assertion system is to severely restrict where new can be used.

Compared with directly expanding operational semantics, the power of the
logic comes in the rules for function and method calls. The rules are similar to
Hoare’s original rule for parameterless procedures (but lacking preconditions,
since we have a logic for partial correctness). For a function call, the rule is:

Γ, (f (x1, . . . , xn) : P ) � mbodyf : λE h h′ v p. P (E, h, h′, v, tick1(call1(p)))
Γ � f(x1, . . . , xn) : P

(call)

This allows one to recursively use the assumption that a call to f satisfies a
specification when proving that the unfolded definition of f (mbodyf ) indeed
satisfies the specification5. Again, however, we must adjust the specification to
5 Because of the restrictions of Grail described in Sect. 5, the actual parameters

x1, . . . , xn coincide with the formal parameters as mentioned in mbodyf . For method
calls, however, the appropriate rule must instantiate parameters, substituting into
the method body.
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take account of the resources used in evaluating the function call itself. In this
case, the clock advances by one tick and a counter for depth of calls is incre-
mented. In the case of method calls, the depth count corresponds to the number
of frames on the framestack; we make a similar count for functions so that we
might measure the effects of tail-recursion optimisation. When resource compo-
nents are combined in let-expressions (corresponding imperatively to sequential
composition), the resulting resource component takes the maximum of the depth
values in each sub-expression.

As well as the rules corresponding to each syntactic element of Grail, the
logic has two essential structural rules:

e : P ∈ Γ

Γ � e : P
(vax)

Γ � e : P ∀E h h′ v p. P (E, h, h′, v, p) −→ P ′(E, h, h′, v, p)
Γ � e : P ′

(vconseq)

We have established strong results about the bytecode logic, including sound-
ness and (relative) completeness.

Theorem 2. (Soundness) If Γ � e : P then Γ |= e : P .
Theorem 3. (Completeness) If |= e : P then � e : P .

The obvious statement of these theorems belies the complexity of their proofs.
A delicate inductive argument on the depth of evaluation and function call nest-
ing is needed to prove the call and method invocation rules sound. To prove
completeness, we used a novel technique based on the admissibility of a cut rule
for the logic. Full details of the development appear in [4].

6.3 The Role of the Theorem Prover

If we are to believe in the correctness of our approach, it is an essential require-
ment that the program logic is sound for the semantics of Grail. Plausibility of
the whole framework lies with Theorem 2 above.

Taking this point seriously led us to formalise both the program logic and the
semantics of Grail within a theorem prover, providing machine-checked proofs of
the above theorems. This follows the approach of several other researchers (most
closely, Kleymann [18] and Nipkow [27]). In previous work, this methodology was
advocated to increase confidence in meta-theoretical results for program logics,
especially soundness, to avoid the possibility of embarrassment (experienced by
several authors previously) of proposing unsound or inconsistent logics because
of subtle flaws in paper-based arguments6.
6 Of course, just as paper-based arguments may be scrutinised by many readers, we

should encourage at least the statements of our formal theorems and the requisite
definitions to be examined by others; we may delegate trust in the proofs themselves
to the community’s trust in the implementation of the theorem prover.
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For our PCC infrastructure, this approach provides also the possibility of
using the formally derived proof rules to represent proof evidence directly (or
indirectly as the result of applications of tactics). This gives us an easy way of
constructing certificates, which may be represented simply as proof script texts
for Isabelle with a certain format. To check a certificate, we must extract the
claim it makes, and see if the proof successfully replays when applied to the
code which has been delivered. An advantage of this approach is that the logic
is automatically extensible: to satisfy particular resource policies we may draw
on additional stock lemmas which amount to derived proof rules in the logic.

The obvious drawback of using Isabelle proof scripts directly is that Isabelle
is now required on the client (code consumer) side, and the size of Isabelle’s code
base and memory footprint precludes its use on most small devices! Of course,
one may change the point at which proof-checking is done to be on a securely-
connected and trusted proof server (employing the strategy known as off-device
verification), but our viewpoint is that while our present implementation is ideal
for an experimental research prototype, it ought to be replaced by a dedicated
proof checker for real deployment. A dedicated checker for our logic could be
much smaller and more efficient than a general purpose theorem prover.

6.4 Generating Certificates

While the bytecode logic outlined above enjoys the property of being relatively
complete, our experience is that it is rather too low-level for the straightforward
construction of certificates. Our initial strategy was to use (formalised versions
of) the space assertions obtained from the space type system as specifications
of the corresponding compiled functions. Syntax-directed backwards applica-
tion of the proof rules for the program logic would then generate purely logical
verification conditions arising from side-conditions which should be provable au-
tomatically.

Unfortunately, the hope that this could be achieved turned out to be too
naive. Firstly, the generated verification conditions contained many quantifiers,
which were not automatically instantiated using Isabelle’s standard solvers. More
seriously, stronger invariants than just freelist balance were required, in par-
ticular invariants concerning separation of certain data structures in the heap
(cf. [31]).

Our solution to both problems is to introduce a notion of derived assertion
which more directly expresses in the logic the semantic intention of notions from
the high-level type system described in Sect. 3. These derived assertions do not
encompass the full power of the program logic, only that needed to capture the
meaning and invariants underlying the space type system.

More concretely, derived assertions have the form

e : {|Δ, m � T, n, U |}

Here Δ is a typing environment assigning numerically annotated types as in
Sect. 3.5 to variables in e, T is a numerically annotated type, and m, n are
numbers. Additionally, U records the set of variables that are actually used in e.
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A derived assertion expands into an ordinary assertion in the program logic
which expresses the semantic meaning of the typing judgement

Δ, m � e : T, n

in the system from [16]. Intuitively, this semantic meaning is as follows: given
a stack S and a heap h such that S and h are type-correct with respect to
Δ (when Δ says x : iList then S[x] should indeed point to a linked list in h),
then provided e evaluates under S, h to some value v under a purely functional
semantics without any space constraints then it will do so in the freelist-based
memory model without invoking new provided the freelist has minimum size
M . Upon completion the freelist will contain N cells. Here M equals m plus the
number of cells obtained from the number of nodes in the data structures pointed
to by S according to the numerical annotations in Δ. Likewise, N equals n plus
the number of cells obtained from the number of nodes in the data structures
pointed to by v according to the numerical annotations in T , plus of course any
excess in the initial size of the freelist.

All of this is under the additional assumption that during the evaluation of
e no live cell (reachable from the current stack) will be returned to the freelist.
As mentioned in Sect. 3.2, this condition is guaranteed under linear typing, and
this is currently what is modelled in the derived assertion scheme. That is, in
addition to what has been explained already, the derived assertion expresses that
the heap regions corresponding to distinct variables listed in U do not overlap.

There are some other technical conditions which turned out to be required.
For example, the final heap will equal the initial heap on those locations that
are aliased with neither the arguments nor the freelist (i.e. contents of locations
not affected by the evaluation should not change).

In total, the definition of the meaning of derived assertions consists of a few
hundred lines of Isabelle code. Fortunately, though, we were able to prove once
and for all a set of derived proof rules for these derived assertions which roughly
follow the typing rules from [16] and allow us to prove derived assertions in a
syntax-directed fashion rather than by unfolding definitions. The only non-trivial
side-conditions that arise during this syntax-directed backwards application of
derived rules are numerical inequalities, all of which turn out to be easily provable
provided the derived assertions to start with were constructed from results of
the analysis in [17].

Since the analysis [17] speaks about high-level Camelot code whereas the
program logic is about compiled Grail, the derived rules sometimes apply to
canonical sequences of Grail instructions which arise e.g. from compiling a match
construct. It should also be noted that the inference is run on intermediate
code in monomorphised A-normal form which is (although syntactically correct
Camelot) already quite close to the compiled Grail.

Overall, our approach can be compared to the idea of Foundational Proof-
Carrying Code (FPCC) [1], which also takes a formalised machine semantics as
a starting point (although for a real machine rather than bytecode), and then
derives high-level rules and typing principles. However, whereas FPCC aims at
building general derived rules from the ground up, involving complex model
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constructions, we have instead started from a specific high-level analysis and
derived its type soundness directly.

At the time of writing we have conducted very promising experiments (in
particular insertion sort and heap sort) where we prove a concrete space bound
by first deducing it from an appropriate derived assertion and then proving the
latter by backwards application of derived proof rules, where the choice of rule to
use is always clear. In principle it is now indeed possible to generate proof scripts
automatically during compilation, giving the correct invariants and auxiliary
lemmas to be able to establish derived assertions. To make that happen we have
designed an Isabelle tactic that can solve derived assertions automatically, given
partial typing information from the Camelot compiler. We are now extending
this to more examples and connecting to the Camelot compiler to complete the
PCC infrastructure. Full details of the certificate generation strategy are given
in [8].

7 Conclusions

The MRG project has delivered a prototype framework for guaranteeing resource
security in mobile applications, based on proof-carrying code for the Java Virtual
Machine. We have demonstrated the feasibility of PCC for resource verification,
based on the technologies developed in the project. As part of this, the MRG
work has made specific contributions to the relevant state of the art:

– Type systems for memory management in high-level programming languages.
These allow static checks on heap usage and automatic inference of space
bounds. For devices with severe memory constraints, this offers the opportu-
nity to raise the current cautious programming model: from manual control
of fixed allocation to an automated freelist, without compromising memory
safety.

– Resource-exact compilation. Camelot extends the standard task of a compiler
– to preserve the meaning of a program – to also reliably preserve resource
behaviour. Thus we can use source language types and assertions to correctly
describe resource usage for the corresponding executables.

– Grail. Our target language shows not only the practicality of carrying out
formal proofs on bytecode; also that a PCC consumer can recover enough
structure from the corresponding JVM executable to repeat and verify these
proofs.

– The Grail bytecode logic. With its shallow embedding into Isabelle/HOL,
this allows us to derive VDM-style assertions of time and space usage for
programs. We have formally verified this implementation as sound and com-
plete for a resource-counting operational semantics of Grail.

– The system of derived assertions in the Grail logic. Our logical interpretation
of space types provides a toolkit for transferring source-level statements of
heap usage into machine-checkable bytecode proofs.

– The MRG architecture. This brings all these components together in an
end-to-end PCC framework.

The current system serves as a demonstrator and experimental platform. For
practical applications there remain issues of size and performance: although our
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certificates are small, the trusted code base is large, and programmed for flexibil-
ity rather than speed. The present framework, with a full theorem prover at both
producer and consumer side, is sufficient for wholesale PCC; for example where
a software developer passes certified code to a device vendor for approval. A
targeted checker built just for the bytecode logic would be considerably smaller,
enough to support some retail PCC, where an individual consumer can check
downloaded code on their PC before installing on a smart device. Proof-checking
on the device itself remains an extremely challenging goal.

Certain components in the MRG framework are natural targets for future
development. Automatic certificate generation, as sketched in the last section,
has been demonstrated for individual examples, but we need to extend this suc-
cess to more general settings. Resource policies are a user-level description of
what a consumer requires of incoming code. We need to investigate how best to
express these, and how to map them into specifications in the bytecode logic.
Finally, we require a treatment of termination to complement the bytecode logic,
which is a logic of partial correctness (all its assertions are contingent on termi-
nation). There are established approaches to proving termination; these are in
general different to those for correctness, so decoupling them is appropriate, and
moreover leads to simpler rules for method and function invocation.

In future MRG work, we look to broaden our programme to address other
scenarios for PCC application. These include different kinds of resources, like net-
work connections or concurrent threads; as well as other application domains,
such as microcontrollers for embedded systems, or mobile code in the Grid. In
this last case, for example, existing systems like the Globus “Resource Speci-
fication Language” [13] state hoped-for space and time requirements, possibly
even just from back-of-the-envelope calculations, whereas we would aim for static
checks of correctness.

At the language level, we propose to transfer some of our work on type sys-
tems and logics across to Java itself. We would do this by expressing resource
assertions in the industry standard Java Modeling Language (JML), which al-
ready has a certain amount of formal tool support [20].

The continuing progress of the project will be publicized on the MRG web-
site, http://www.lfcs.ed.ac.uk/mrg. This carries papers and downloadable
software as well as a web-based demonstration.
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Abstract. This paper addresses the problem of static checking of pro-
grams to ensure that they satisfy confidentiality policies in the presence
of dynamic access control in the form of Abadi and Fournet’s history-
based access control mechanism. The Java virtual machine’s permission-
based stack inspection mechanism provides dynamic access control and
is useful in protecting trusted callees from untrusted callers. In contrast,
history-based access control provides a stateful view of permissions: per-
missions after execution are at most the permissions before execution.
This allows protection of both callers and callees.

The main contributions of this paper are to provide a semantics for
history-based access control and a static analysis for confidentiality that
takes history-based access control into account. The static analysis is a
type and effects analysis where the chief novelty is the use of security
types dependent on permission state. We also show that in contrast to
stack inspection, confidential information can be leaked by the history-
based access control mechanism itself. The analysis ensures a noninter-
ference property formalizing confidentiality.

1 Introduction

Since Denning and Denning’s early work on static certification of secure infor-
mation flow [6], there have been several advances in specifying static analyses;
these advances have been comprehensively summarized in Sabelfeld and Myers’s
survey [16]. Many of these analyses are given in the style of a security type sys-
tem that is shown to enforce a noninterference property [8]. Noninterference is
expressed in terms of a lattice, with L ≤ H the canonical example: the property
says that output channels labeled L are not influenced by input channels labeled
H . The mnemonic is H for high security and L for low: with this interpretation,
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noninterference says that public outputs do not reveal secret inputs. But non-
interference also formalizes integrity1. Security type systems use labels not only
for external channels but also for program variables and other internal channels,
in order to impose restrictions such as absence of assignment from an H variable
to a L one.

Despite the advances, security type systems have not seen much use as non-
interference is difficult to achieve in practice for various reasons, e.g., covert
channels and declassification. One way to introduce flexibility is to consider se-
curity type systems for information flow that take access control into account.
As Sabelfeld and Myers note, access control mechanisms, by themselves, control
the release of information but not the flow of information once access has been
granted [16]. In previous work [4, 2], we studied the access control mechanism
of Java [9] and the .NET CLR [10], called stack inspection, and established a
connection between authorization of information access and the subsequent flow
of the information. With respect to security type systems, the chief technical
novelty was the use of a permission-dependent security type system and the for-
malization of noninterference for such a type system. Permissions are typically
used to license sensitive operations. Permission-dependent types can express, for
example, that to obtain a secret by reading a confidential file a certain permis-
sion is required; moreover the read operation yields no secret if the permission is
absent. Assumptions about permissions are used in the typing system to allow
certain subprograms to be ignored, namely in branches conditioned on permis-
sion tests known never to succeed.

In simple terms, the noninterference property guarantees that the access
control mechanism is serving correctly to enforce flow policy, in the sense that
once access has been granted, there is no subsequent leak of secret information.

This paper continues the investigations of our previous work [4, 2] but consid-
ers history-based access control proposed by Abadi and Fournet [1]. Stack inspec-
tion is designed for extensible systems, where computation proceeds with trusted
and untrusted code calling each other. The stack inspection mechanism is useful
in providing protection to trusted code when it is called by untrusted code; un-
trusted code can execute the trusted code with reduced powers – namely, with
permissions common to both. This provides protection because the untrusted
code is prevented from using trusted code as deputy and executing sensitive op-
erations. However, as Abadi and Fournet note, stack inspection is not useful in
providing protection to the caller. Thus, if trusted code calls untrusted code and
proceeds with the result returned by the latter – using the same permissions as
it used for the call – undesired results may occur: in proceeding with the result
returned by untrusted code, stack inspection forgets that security may depend on

1 Whereas confidentiality is about what information is leaked, integrity is about what
information is corrupted: highly trusted data should not be influenced by untrusted
inputs. If we use the same lattice as for confidentiality then integrity is dual to confi-
dentiality. But if we read H as “hacked” and L as “licensed” then to check integrity
is to check that H does not influence L. So for simplicity we confine attention to
confidentiality.
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how, i.e., with what permissions, the result was computed in the first place. This
is because the stack frame containing the permissions is popped upon return, so
the permissions are no longer available on the stack.

To illustrate the problem, we recall the central example from Abadi and Four-
net’s paper. The Main method of a trusted class NaiveProgram, with permission
FileIO, among others, calls method TempFile of an untrusted class, BadPlugIn,
whose permissions do not include FileIO. The method happens to return a sensi-
tive document. Next, the Delete method of class File is called, with the sensitive
document as argument. Class File has all permissions, and method Delete first
checks whether FileIO is present in the currently enabled permissions; if so, the
document is deleted, otherwise, the method aborts.

In a stack inspection régime, the call NaiveProgram.Main results in deletion
of the sensitive document. This is because Delete’s code is executed with per-
missions common to NaiveProgram and File, so the check for FileIO succeeds.

In a history-based régime, the document survives, because we track permis-
sion state both before and after the call. Where stack inspection is functional, in
the sense that the security context is passed as an argument to sub-commands
including method invocations, the history based mechanism is imperative, in the
sense that the security context is a (special) state variable. The call to TempFile
returns the document together with permissions in the intersection of NaivePro-
gram and BadPlugIn, so that FileIO is excluded. Effectively, the history of how
the return result was created is recorded. Now the call to Delete takes place with
this reduced set of permissions; the check fails.

The contributions of this paper are to formalize the informal development of
common programming patterns of history-based access control in [1] and to pro-
vide a type-based analysis for secure information flow that takes history-based
access control based on such patterns into account. Some familiarity with our
previous work [3, 4, 2] will be helpful; in fact, readers familiar with our previous
work will readily observe the substantial overlap with that work. The modest
variation in this work is that the type-based analysis rules also involve an ef-
fect analysis; this effect analysis tracks not only assumptions about the initial
permission state, as in stack inspection, but also provides a conservative approx-
imation of the final permission state. A second difference is that, in contrast to
the stack inspection mechanism, the history-based mechanism is itself a covert
channel subject to nontrivial attacks. To account for such flows, our rule for
method calls in high contexts requires that the invoked method has certain per-
missions; by contrast, the other rules require absence of permissions in certain
contexts.

One of our goals is to demonstrate the flexibility of the framework described
in our previous work by showing how to handle a different access control mech-
anism. To reinforce the similarity, the technical development in this paper is
structured as in [2]. Proof cases are omitted since they are easily adapted from
corresponding ones in [2].

In passing, we note that different access control mechanisms are possible.
Our previous work on stack inspection is motivated in part because it is widely
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deployed. The limitations of stack inspection with respect to method calls were
explained by Abadi and Fournet [1] who proposed history-based access control as
a way out. Their mechanism is designed to be similar to stack inspection which
increases its potential for use in practice and thus it merits study. It would also
be interesting to seek a more general notion of access control which subsumes
these mechanisms and others. There may be some interesting parallels between
such mechanisms and recent work on resource usage analysis, history effects,
etc. [12, 14, 13].

The rest of the paper. Section 2 introduces code-based access control via an
example and discusses stack-based and history-based access control. It also ex-
plains the security type formalism used in type-based information flow analyses.
Section 3 is the key section of the paper. It shows how access control can be
used to provide more fine-grained confidentiality policies. It also shows how, in
contrast to stack inspection, the history-based access control mechanism can it-
self be employed to leak secrets. Section 4 formalizes the syntax and semantics
of the object-oriented language we study. Section 5 gives a type-based static
analysis that enforces confidentiality. Section 6 shows the analysis at work on
the central example in Abadi and Fournet’s paper [1]. Section 7 and Section 8
give the technical details of the static analysis; the latter section states the main
result that a program deemed safe by the analysis satisfies the noninterference
property. Section 9 concludes.

2 Access Control and Information Flow

Access control via stack inspection. In the Java access control mechanism [9],
each class C has a set Auth C of permissions associated with it; this comprises a
local access control policy. A typical policy grants few permissions to code from
remote sites and many to code residing on the local disk. The most interesting
policies concern trusted remote sites: Code which has been cryptographically
authenticated as originating at a trusted site may be granted particular permis-
sions.

Permission checks are used to guard sensitive operations. Following previous
work [7], we refrain from modeling exceptions and instead consider a construct,
test p then S1 else S2, which checks for permission p, executing S1 if the check
succeeds and S2 if it fails.

Example. We consider the following example from Section 4.1 of Abadi and
Fournet’s paper [1], adapted to our notation (e.g., type unit for void).

class BadApplet extends Object { // some permissions but not FileIO
unit Main() {

result:= NaiveLibrary.CleanUp(...”password file”...); }}
The comment indicates our assumption about the static access policy: BadApplet
does not have permission FileIO, whereas NaiveLibrary and File below are trusted
classes with all permissions.
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class NaiveLibrary extends Object { // all permissions
unit CleanUp((string, L) s) {

File.Delete(s);}}

class File extends Object { // all permissions
unit Delete((string, L) s) {

test FileIO then Win32.Delete(s) else abort;} }

The call, BadApplet.Main() will abort. The call to NaiveLibrary.CleanUp will occur
in a context with permissions common to NaiveLibrary and BadApplet and this
context does not contain FileIO. As CleanUp calls Delete, the body of Delete will
also be executed with permissions common to the current permissions (without
FileIO) and Delete; hence the test in Delete fails – the password file survives.
This is a situation where stack inspection is satisfactory, and the history based
mechanism works the same way.

History based access control. At runtime, both stack inspection and the history
based mechanism involve a set of currently enabled permissions; it is a subset
of the statically authorized permissions of the class of the currently-executing
code. When a method is invoked, the initial permission set for the method body
is the intersection of the caller’s current set and the static permissions of the
called code. (Note that it is the class of the dynamically dispatched code that
matters, not the class of the target object.) In stack inspection, the method call
has no effect on the current permission set of the caller. In the history based
mechanism, the caller’s permissions become the intersection of their initial value
with the final permissions of the called method.

Both mechanisms include means to test and branch on the currently enabled
permissions, which we model with the test construct.

Permissions P get enabled by the construct enable P in S in stack inspec-
tion and a similar construct grant P in S for the history-based mechanism; in
both cases, what gets added to the current permission set is the intersection of P
with the statically authorized permissions, Auth C, of the current code’s class, C.

Whereas the permission set on termination of enable P in S is the same
as its initial value, the history based construct grant P in S deals with the
final permissions of S. Specifically, the final permissions of grant P in S are
the intersection of its initial permissions and the final ones of S. Together with
the behavior of method calls described above, this ensures that for any com-
mand, the final permission set is a subset of its initial value (see Lemma 1). (In
stack inspection the final permissions are equal to the initial ones, so permission
passing can be modeled as just a parameter in the semantics.)

The history based mechanism needs a construct, accept, to allow a privi-
leged caller to retain its permissions after calling less privileged code (e.g., to
delete a file named by an untrusted applet, after checking that the named file
is not important). The effect of accept P in S is to execute S with the current
permissions Q. This results in a final permission set Q′ from S, which may be a
proper subset of Q. The permission set after accept P in S becomes Q′∪(Q∩P ).
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Note that constructs grant and accept abstract two useful programming
patterns for modifying permissions in code. Abadi and Fournet show how they
can be implemented using low-level constructs [1]. For purposes of formal anal-
ysis, however, we will stick to grant and accept in the sequel.

Checking information flow using security types. Based on earlier work on static
certification of information flow by Denning and Denning [6], the idea developed
by Volpano et al. [18] is to label not only inputs and outputs but also variables
and parameters by security types, for example replacing a variable declaration
x : T by x : (T, κ) where κ is the security level. As usual, we consider the rep-
resentative two-element lattice L ≤ H of levels. Syntax-directed typing rules
specify conditions that ensure secure flow. Overt flows, like an assignment of an
H-variable to an L-variable, are disallowed by the typing rules for assignment,
argument passing, etc. To preclude covert flow via control flow, commands are
given types com κ with the meaning that all assigned variables have at least
level κ. For a conditional, if e then S1 else S2, with e high, both S1 and S2 are
required to have type com H .

In an object-oriented language, covert flow also happens via dynamically
dispatched method call. Moreover, there is the possibility of observing differing
behavior of the allocator if objects allocated conditionally are accessible. Such
issues are treated in [15, 3]. In [3], commands are given types (com κ1, κ2) where
κ1 is a lower bound on the level of assigned variables and κ2 is a lower bound
on the heap effect (field assignments and newly allocated objects). Annotated
arrow types are used for modular checking in the case of methods (or procedures
or functions [11]): the type (T, κ1)−〈κ2〉→(U, κ3) designates an assumed input
level at most κ1; on this assumption, the heap effect (min level of fields written)
is at least κ2 and result level at most κ3. A method body is checked with respect
to its type, which is used as an assumption for checking method calls. As with
ordinary types in Java-like languages, the same type is used for all overriding
declarations.

3 Using Access Control for Confidentiality

As mentioned in the introduction, a primary aim of our work is the static check-
ing of method bodies to ensure that they satisfy confidentiality policies. However,
we also want our confidentiality policies to be flexible enough to admit a large
number of programs. We allow a method to be given several types, to allow
different information flow policies to be imposed for callers with different per-
missions. We explain the idea with the motivating example from our previous
work [4, 2].

Consider a trusted class Kern, having permissions stat and sys, and with
a method getStatus that can be called in more than one context. If called by
untrusted code, getStatus returns public (L) information. Trusted code, however,
can obtain private (H) information.
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class Kern extends Object {
String Hinfo; // H
String Linfo; // L
String getHinfo() { // type () → H

test sys then result : = self.Hinfo else abort }
String getStatus() { // types () −〈∅〉→ H and () −〈{stat}〉→ L

test stat
then enable sys in result : = self.getHinfo()
else result : = self.Linfo }

. . . “other methods that manipulate Linfo and Hinfo”}

Method getHinfo is useful only to callers with permission sys. Because the se-
curity type of self.Hinfo is H , it can only be assigned to a H variable. In this
case, the body of getHinfo, it is the special variable, result, that gives the method
result. So, for the policy expressed by the type () → H , the code can be accepted
under a Smith-Volpano style analysis [18].

For getStatus, the Smith-Volpano analysis will also insist that result be typed
H , so that it satisfies the policy is () → H . But getStatus is useful both for callers
with permission stat and for those without; only the former obtain H info. So
we parameterize the policy by permission stat: if called in a context that does
not have permission stat, getStatus returns L; otherwise it returns H . The use
of negative permissions allows types that mention only permissions relevant to
implementations of the method.

More formally, method types in [4, 2] have the form

κ0, κ̄−〈P ; κ〉→κ1 (1)

This means: suppose the level of self is at most κ0, and the level of the parameters
of the method have level at most κ̄, and the method is called in a context with
permissions disjoint from P . Then the result has level at most κ1, and fields
written have level at least κ.

Using this notation, getStatus can be assigned both types L, ()−〈{stat}; H〉→L
and L, ()−〈∅; H〉→L.

In the BadApplet example in section 2, Delete can be assigned both types
L, L−〈{FileIO}; H〉→() and L, L−〈∅; H〉→(). The body of BadApplet.Main needs
to be typechecked in a context where FileIO is absent. Hence BadApplet.Main
can be assigned the type L, ()−〈{FileIO}; H〉→().

A method body must be checked against each of its declared types. A par-
ticular type gives an assumption that certain permissions are absent, and under
this assumption certain branches are known not to be taken. Typically the ig-
nored branches involve H assignments and thus ignoring these branches allows
the result to be considered L.

History based. In (1), the levels κ0, κ̄ can be read as the input channel and κ1

as the output level. For a sound static analysis, the type also tracks the write
effect κ and the corresponding judgement for commands gives a command level.
In the sequel we carry out this same idea for the history based mechanism, for
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which we have to track the update effect on permissions. Thus method types
and command judgements include an upper bound on the final permissions; this
is made precise in section 5.

Unlike stack inspection, the history based access mechanism introduces a
covert channel. The reason is that permission changes made in the context of a
high conditional can persist outside the scope of that conditional. If some com-
mand S changes the final permission state then it can be used to leak information
by executing S under a H guard and then, after the conditional, updating L state
based on testing whether the permission state is changed. In [2] we point this out
in regard to a variation on enable that does not have a scoped sub-command
in which the permission is enabled.

The history based mechanism does not allow persistent increase of permis-
sions, but it allows persistent decrease. Here is an example attack, using an
explicit grant to establish some permission which may then be decreased by a
suitable method call.

grant p // assuming p statically authorized
in

if H-exp
then e.m() // assuming p not authorized for m
else skip;
test p then L-var := ”H-exp is false” else L-var := ”H-exp is true”

A variation uses the accept statement to allow m to be invoked in every case.

grant p // assuming p statically authorized
in

if H-exp
then e.m() // assuming p not authorized for m
else accept p in e.m();
test p then L-var := ”H-exp is false” else L-var := ”H-exp is true”

The security typing rule for method call disallows any writes to L fields by m –
this is enforced by requiring that its heap effect be H , as it is called in the scope
of a high guard. Because any code is allowed to invoke grant, test, and accept,
the (implicit) variable holding the current permissions must be treated as L and
thus changes to it too must be disallowed in H conditionals. It turns out that
this can be achieved in the static analysis by requiring that permissions that
can be enabled at the site of the call must be included in the static permissions
of all classes that provide an implementation of m. For a method call in a H
command, any implementation that could be dispatched to at that method call
site should be at least as trusted as the caller. (This condition has no counterpart
in [2].)

Just as a method type serves to specify all implementations thereof, one
can imagine stipulating the permissions that all implementations are required
to have (a link-time requirement). But in this paper we express the restriction
explicitly in the call rule.
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Table 1. Grammar.

T ::= bool | unit | C data type; C ranges over class names

CL ::= class C extends C { T̄ f̄ ; M̄ } public fields f̄ , public methods M̄

M ::= T m(T̄ x̄) {S} method; result type T , param. types T̄

S ::= x : = e | if e then S else S | S; S assign to variable; conditional; sequence

| T x : = e in S | x : = e.m(ē) local variable block; method call

| e.f : = e | x : = new C assign to field; construct object

| grant P in S enable permissions

| accept P in S accept permissions

| test P then S else S branch on permissions

e ::= x | null | true | false variable, constant

| e.f | e = e | e is C | (C) e field access; equality test; type test; cast

4 Language

This section formalizes the sequential class-based language for which our results
are given. It is adapted from [2], but with the history-based constructs and with
the semantics changed to return the permission state from commands and meth-
ods as discussed in Section 2. We assume given a finite set, Perms, of permissions.
The semantics is given with respect to a given function Auth : ClassNames →
P(Perms) that specifies access policy. The semantic definitions are independent
of any particular information flow policy.

4.1 Syntax

The grammar is given by Table 1. It is based on given sets of class names (with
typical element C), field names (f), method names (m), and variable/parameter
names x (including distinguished names “self” and “result” for the target object
and return value). Identifiers like T̄ with bars on top indicate finite lists, e.g.,
T̄ f̄ stands for a list f̄ of field names with corresponding types T̄ . We let P, Q, R
range over sets of permissions.

We include unrestricted recursion but omit loops, super calls, and constructor
methods.

A complete program is given as a class table, CT , that associates each de-
clared class name with its declaration. The typing rules make use of auxiliary
notions that are defined in terms of CT , so the typing relation � depends on
CT but this is elided in the notation. Because typing of each class is done in the
context of the full table, methods can be recursive (mutually) and so can field
types.

The subtyping relation ≤ on types is defined as follows. For base types,
bool ≤ bool and unit ≤ unit. For classes C and D, we define C ≤ D iff either
C = D or the class declaration for C is class C extends B { . . . } for some
B ≤ D. The typing rules are syntax-directed: Subsumption is built into the rules
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Table 2. Selected typing rules for commands.

Γ 	 e1 : C (f : T ) ∈ fieldsC Γ 	 e2 : U U ≤ T

Γ 	 e1.f : = e2

Γ 	 e : D mtype(m, D) = T̄→T T ≤ Γ x Γ 	 ē : Ū Ū ≤ T̄ x �= self

Γ 	 x : = e.m(ē)

P ⊆ Perms Γ 	 S

Γ 	 grant P in S

P ⊆ Perms Γ 	 S1 Γ 	 S2

Γ 	 test P then S1 else S2

rather than appearing as a separate rule, so that the semantics can be defined
by recursion on typing derivations.

Some auxiliary notations: let CT (C) = class C extends D { T̄1 f̄ ; M̄ }
and let M be in the list M̄ of method declarations, with M = T m(T̄2 x̄){S};
let mtype(m, C) = T̄2→T record typing information and let pars(m, C) = x̄
record the parameter names. Let superC = D. For fields, we define fieldsC =
f̄ : T̄1 ∪ fieldsD and assume f̄ is disjoint from the names in fieldsD. The built-
in class Object has no methods or fields. If m is inherited in C from B then
mtype(m, C) is defined to be mtype(m, B), so that mtype(m, C) is defined iff m
is declared or inherited in C.

A class table is well formed if each of its method declarations is well formed
according to the following rule.

x̄ : T̄ , self : C, result : T � S mtype(m, superC) is undefined or equals T̄→T
pars(m, superC) is undefined or equals x̄

C � T m(T̄ x̄){S}

A typing environment Γ is a finite function from variable names to types, written
with the usual notation x : T . A judgement of the form Γ � e : T says that e has
type T in the context of a method of class Γ self, with parameters and local
variables declared by Γ . A judgement Γ � S says that S is a command in the
same context. Note that access policy has no influence on typing, though of
course it does influence semantics. Typing rules for some commands appear in
Table 2. The rule for accept is the same as for grant. For other elided rules we
refer the reader to our earlier papers [4, 2].

4.2 Semantics

The state of a method in execution is comprised of a heap h, which is a finite
partial function from locations to object states, a store η, which assigns locations
and primitive values to local variables and parameters, and the currently enabled
permissions P1. Every store of interest includes the distinguished variable self
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Table 3. Semantic domains, for given policy Auth . We write dom and rng for the
domain and range of a function.

θ ::= T values of type T
| Γ store (maps variables to values)
| state C object state (maps fields to values)
| Heap heap (maps locations to object states) with no dangling loc.
| Heap ⊗ Γ ⊗ P(Perms) (global) states with no dangling locations
| Heap ⊗ T ⊗P(Perms) triples (h, d, P ) where value d is not a dangling loc. w.r.t. h
| θ⊥ lifting
| perms C permission sets authorized for C
| (C, x̄, T̄→T ) method of C with parameters x̄ : T̄ and return type T
| MEnv method environments

[[bool]] = {true , false}
[[unit]] = {it}
[[C]] = {nil} ∪ {� | � ∈ Loc ∧ type � ≤ C}
[[Γ ]] = {η | dom η = dom Γ ∧ η self �= nil ∧ ∀x ∈ dom η • η x ∈ [[Γ x]]}
[[state C]] = {s | doms = dom(fields C) ∧ ∀(f : T ) ∈ fieldsC • sf ∈ [[T ]]}
[[Heap]] = {h | dom h ⊆fin Loc ∧ closed h ∧ ∀� ∈ dom h • h� ∈ [[state (type �)]]}

where closed h iff rng s ∩ Loc ⊆ domh for all s ∈ rng h

[[Heap ⊗ Γ ⊗ P(Perms)]]

= {(h, η, P ) | h ∈ [[Heap ]] ∧ η ∈ [[Γ ]] ∧ P ⊆ Perms ∧ rng η ∩ Loc ⊆ dom h}
[[Heap ⊗ T ⊗P(Perms)]]

= {(h, d, P ) | h ∈ [[Heap]] ∧ d ∈ [[T ]] ∧ P ⊆ Perms ∧ (d ∈ Loc ⇒ d ∈ dom h)}
[[θ⊥]] = [[θ]] ∪ ⊥ (where ⊥ is some fresh value not in [[θ]])

[[perms C]] = {P | P ⊆ Auth C}
[[C, x̄, T̄→T ]] = [[Heap ⊗ (x̄ : T̄ , self : C) ⊗ P(Perms)]] → [[(Heap ⊗ T ⊗ P(Perms))⊥]]

[[MEnv ]] = {μ | ∀C, m • μCm is defined iff mtype(m, C) is defined,
and μCm ∈ [[C, pars(m, C),mtype(m, C)]] if μCm defined }

which points to the target object. A command denotes a function from initial
state to either a final state or the error value ⊥. States are self-contained in the
sense that all locations in fields and in variables are in the domain of the heap.

For locations, we assume that a countable set Loc is given, along with a
distinguished entity nil not in Loc. We treat object states as mappings from
field names to values. To track the object’s class we assume given a function
type :Loc → ClassNames such that for each C there are infinitely many locations
	 with type 	 = C. We assume that, like nil , the three primitive values it , true,
and false are not in Loc. The semantic definitions and results are given for an
arbitrary allocator. An allocator is a location-valued function fresh such that
type(fresh(C, h)) = C and fresh(C, h) �∈ dom h, for all C, h.

Methods are associated with classes, in a method environment. For any data
type T , the domain [[T ]] is the set of values of type T . For any typing environment
Γ , [[Γ ]] is the set of stores assigning values of appropriate type to the variables
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in dom Γ . There are several other domains for which there is no corresponding
notation in the syntax. Such semantic categories, θ, together with semantic do-
mains, [[θ]], for each category are defined in Table 3; T and Γ are included in θ.
In a language like Java with garbage collection and without pointer arithmetic,
dangling locations (those not in the domain of the heap) never occur in program
states or as expression values. Capturing this in the semantics is the purpose of
the special cartesian products Heap⊗Γ ⊗P(Perms) and Heap⊗T ⊗P(Perms).

For expressions and commands, the semantics is defined only for deriv-
able typing judgements. The meaning of an expression Γ � e : T is a function
[[Heap ⊗ Γ ]] → [[T⊥]] that takes (h, η) ∈ [[Heap ⊗ Γ ]] and returns either a value
d ∈ [[T ]], such that (h, d) ∈ [[Heap ⊗ T ]], or the improper value ⊥ which represents
errors. The errors are null dereferences and cast failure; the other expression con-
structs are strict in ⊥. We omit the semantics of expressions and refer the reader
to our previous work [2].

The meaning of a command Γ � S is a function

[[MEnv ]] → [[Heap ⊗ Γ ⊗ perms(Γ self)]] → [[(Heap ⊗ Γ ⊗ perms(Γ self))⊥]] (2)

that takes a method environment μ (see below)and a state (h, η, R), where the
enabled permissions R ∈ perms(Γ self); it returns a possibly updated state to-
gether with the updated permissions, or ⊥ which indicates divergence or error. In
history-based access control, permissions get updated, e.g., in method calls. The
semantics of command, in Table 4, is defined by recursion on the typing deriva-
tion. A nontrivial proof obligation is that if Γ � S is derivable then its semantics
satisfies (2), which embodies the important property that if the permissions be-
fore execution are included in Auth(Γ self), permissions after execution are also
included in Auth(Γ self).

The main distinction between stack inspection and history-based access con-
trol is that in the former, permission state (i.e., enabled permissions) after eval-
uation equals the permission state before evaluation; in the latter, permission
state after evaluation is at most the permission state before evaluation. Accord-
ingly, the semantics of commands satisfies the following property, shown by a
structural induction on commands.

Lemma 1. Suppose (h0, η0, Q0) = [[Γ � S]]μ(h, η, R). Then Q0 ⊆ R.

A method environment μ maps each class name C and method name m (de-
clared or inherited in C) to a meaning μ C m which is an element of [[C, x̄, T̄→T ]],
i.e., [[Heap ⊗ Γ ⊗ P(Perms)]] → [[(Heap ⊗ T ⊗ P(Perms))⊥]] where T is the re-
turn type and Γ = self : C, x̄ : T̄ is the parameter store with x̄ = pars(m, C).
The result from a method, if not ⊥, is a triple (h, d, Q) with d in [[T ]] and Q in
P(Perms) such that, if d is a location then d is in the domain of h.

For a method declaration M = T m(T̄ x̄){S} in class C, define

[[M ]]μ(h, η, R)

= let R′ = R ∩ Auth C in let η1 = [η | result �→default] in

let (h0, η0, Q0) = [[x̄ : T̄ , self : C, result : T 	 S]]μ(h, η1, R
′) in (h0, η0 result, Q0)
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Table 4. Semantics of selected commands, for given policy Auth and allocator fresh .
The metalanguage construct, let d = E1 in E2, has the following meaning: If the value
of E1 is ⊥ then that is the value of the entire let expression; otherwise, its value is the
value of E2 with d bound to the value of E1. Function update or extension is written,
e.g., [η | x �→d].

[[Γ 	 e1.f : = e2]]μ(h, η, R)

= let � = [[Γ 	 e1 : C]](h, η) in

if � = nil then ⊥ else let d = [[Γ 	 e2 : U ]](h, η) in ([h | � �→ [h � | f �→d]], η, R)

[[Γ 	 x : = e.m(ē)]]μ(h, η, R)

= let � = [[Γ 	 e : D]](h, η) in if � = nil then ⊥ else let x̄ = pars(m,D) in

let d̄ = [[Γ 	 ē : Ū ]](h, η) in let η1 = [x̄ �→ d̄, self �→ �] in

let (h0, d0, Q0) = μ(type �)m(h, η1, R) in (h0, [η | x �→d0], R ∩ Q0)

[[Γ 	 grant P ′ in S]]μ(h, η, R)

= let (h0, η0, Q0) = [[Γ 	 S]]μ(h, η, R ∪ (P ′ ∩ Auth(Γ self))) in (h0, η0, R ∩ Q0)

[[Γ 	 accept P ′ in S]]μ(h, η, R)

= let (h0, η0, Q0) = [[Γ 	 S]]μ(h, η, R) in (h0, η0, Q0 ∪ (P ′ ∩ R ∩ Auth(Γ self)))

[[Γ 	 test P then S1 else S2]]μ(h, η, R)

= if P ⊆ R then [[Γ 	 S1]]μ(h, η, R) else [[Γ 	 S2]]μ(h, η, R)

The semantics of a class table CT is a method environment, written [[CT ]], given
as a least upper bound. Specifically, [[CT ]] = lub μ where the ascending chain
μ ∈ N → [[MEnv ]] is defined as follows.

μ0 C m = λ(h, η, R) • ⊥
μj+1 C m = [[M ]]μj if m is declared as M in C
μj+1 C m = μj+1 B m if m is inherited from B in C

5 Safety

The syntactic property given by static analysis is called safety. The analysis is
specified by a typing system.

In this section we annotate the syntax of Section 4 with security labels. Where
types T occur in declarations of fields and local variables, we use pairs (T, κ)
where κ is a security level, L or H . Such a pair, written τ , is called a security
type. The grammar is revised as follows.

CL ::= class C extends C { τ̄ f̄ ; M̄ } S ::= . . . | τ x : = e in S | . . .

Note that there is no change for cast and test.
We refrain from giving concrete syntax for the security types of method

parameters, results, and effects. By analogy with the auxiliary function mtype
which gives the declared type of a method (see Section 4.1), we assume that a
function smtypes is given. It may assign multiple security types for a method,
each of the form κ, κ̄−〈P ; κ1; Q〉→κ2. The intended meaning is as follows: if the
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method is called with arguments compatible with κ̄, target object compatible
with κ, and enabled permissions disjoint from P , then the heap effect is ≥ κ1

and the result level ≤ κ2 and the enabled permissions after the call are disjoint
from Q.

There is an ordering on method typings κ, κ̄−〈P ; κ1; Q〉→κ2. It is contravari-
ant on inputs κ, κ̄ and P and on assignables κ1, covariant on the result value κ2

and Q.

Definition 1 (subtyping). κ, κ̄−〈P ; κ1; Q〉→κ2 ≤ κ′, κ̄′−〈P ′; κ′
1; Q

′〉→κ′
2 iff

κ′ ≤ κ, κ̄′ ≤ κ̄, P ⊆ P ′, κ′
1 ≤ κ1, Q′ ⊆ Q, and κ2 ≤ κ′

2. ��
Note that P, Q are interpreted negatively, so the conditions P ⊆ P ′ and Q′ ⊆ Q
are effectively contravariant and covariant respectively.

Definition 2 (annotated class table). An annotated class table is a class
table with annotations according to the grammar above, together with a partial
function smtypes satisfying the following conditions. First, smtypes(m, C) is de-
fined iff mtype(m, C) is defined. Second, if smtypes(m, C) is defined then it is a
non-empty set of annotations of the form κ, κ̄−〈P ; κ1; Q〉→κ2. Third, if C ≤ D
and mtype(m, D) is defined then smtypes(m, C) = smtypes(m, D). ��
Note that we do not require P ⊆ Auth C or Q ⊆ Auth C. A method may
be declared in one class and inherited or overridden in a subclass with different
permissions. The third condition allows us to reason about method calls in terms
of the static type of a called method, because any implementation that can be
invoked by dynamic dispatch is checked with respect to the same security types.

We use the symbol † to erase annotations: (T, κ)† = T , and this extends
to erasure for typing environments, commands, and method declarations in an
obvious way.

Definition 3 (safe class table and method declaration). An annotated
class table CT is safe provided that each class satisfies the rule

C extends D � M for each M ∈ M̄

� class C extends D { τ̄ f̄ ; M̄ }
The hypothesis of this rule requires that each method declaration be checked with
respect to its security types according to the following.

mtype(m, C) = T̄→T pars(m, C) = x̄
self : (C, κ0), x̄ : (T̄ , κ̄), result : (T, κ4); (P∩Auth C) � S : (com L, κ3); (Q∩Auth C)

for each (κ0, κ̄−〈P ; κ3; Q〉→κ4) ∈ smtypes(m, C)
C extends D � T m(T̄ x̄){S}

This rule depends on rules for expressions and commands. The rules for com-
mands are given in Table 5 but the rules for expressions are exactly the same as
the ones in [2] and hence elided2. ��
2 A method can have more than one type so for flexibility in checking method decla-

rations the rule must allow local variable declarations to be annotated differently for
different types. The precise formulation [2] uses † but we omit the unilluminating
complication here.
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Table 5. Security typing rules for commands, for given Auth .

x �= self Δ, x : (T, κ) 	 e : (U, κ) U ≤ T

Δ, x : (T, κ); P 	 x : = e : (com κ, H); P

Δ 	 e1 : (C, κ1) f : (T, κ) ∈ sfields C Δ 	 e2 : (U,κ) U ≤ T κ1 ≤ κ

Δ; P 	 e1.f : = e2 : (com H,κ); P

x �= self B ≤ D

Δ, x : (D, κ); P 	 x : = new B : (com κ, H); P

Δ, x : (T, κ) 	 e : (D, κ0) mtype(m,D) = T̄ → T ′ Δ, x : (T, κ) 	 ē : (Ū , κ̄)
Ū ≤ T̄ x �= self T ′ ≤ T κ′

0, κ̄′−〈P ′; κ′
1; Q

′〉→κ′ ∈ smtypes(m, D)
κ′

0, κ̄′−〈P ′; κ′
1; Q

′〉→κ′ ≤ κ0, κ̄−〈P ′; κ1; Q
′〉→κ

P ′ ∩ Auth(Δ†self) ⊆ P Q ⊆ Q′ ∩ Auth(Δ†self)
κ0 ≤ κ � κ1 κ = H ∧ κ1 = H ⇒ (Auth(Δ†self) − P ) ⊆ (∩E≤DAuth E)

Δ, x : (T, κ); P 	 x : = e.m(ē) : (com κ, κ1); Q

Δ; P 	 S1 : (com κ1, κ2); Q1 Δ; Q1 	 S2 : (com κ1, κ2); Q

Δ; P 	 S1; S2 : (com κ1, κ2); Q

Δ 	 e : (bool, κ)
Δ; P 	 S1 : (com κ1, κ2); Q Δ; P 	 S2 : (com κ1, κ2); Q κ ≤ κ1 � κ2

Δ; P 	 if e then S1 else S2 : (com κ1, κ2); Q

Δ 	 e : (U,κ) U ≤ T Δ, x : (T, κ); P 	 S : (com κ1, κ2); Q

Δ; P 	 (T, κ) x : = e in S : (com κ1, κ2); Q

Δ; (P − (P ′ ∩ Auth(Δ†self))) 	 S : (com κ1, κ2); Q

Δ; P 	 grant P ′ in S : (com κ1, κ2); Q ∪ (P − (P ′ ∩ Auth(Δ†self)))

Δ; P 	 S : (com κ1, κ2); Q

Δ; P 	 accept P ′ in S : (com κ1, κ2); Q − (P ′ ∩ Auth(Δ†self))

P ′ ∩ P = ∅ ∧ P ′ ⊆ Auth(Δ†self)
Δ; P 	 S1 : (com κ1, κ2); Q Δ; P 	 S2 : (com κ1, κ2); Q

Δ; P 	 test P ′ then S1 else S2 : (com κ1, κ2); Q

P ′ ∩ P �= ∅ ∨ P ′ �⊆ Auth(Δ†self) Δ; P 	 S2 : (com κ1, κ2); Q

Δ; P 	 test P ′ then S1 else S2 : (com κ1, κ2); Q

Δ; P 	 S : (com κ1, κ2); Q κ3 ≤ κ1 κ4 ≤ κ2 P ⊆ P ′ Q′ ⊆ Q

Δ; P ′ 	 S : (com κ3, κ4); Q
′
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In the rules for expressions and commands, we write Δ for typing environ-
ments that assign security types. A judgement Δ; P � S : (com κ1, κ2); Q says
that if no permissions in set P are enabled initially, then S is safe, assigns only
to variables (locals and parameters) of level ≥ κ1 and to object fields of level
≥ κ2 (see Lemma 4), and no permissions in set Q are enabled finally, i.e., after
execution of S.

The rules use versions of the auxiliary functions that take security levels into
account. Let CT (C) = class C extends D { τ̄1 f̄ ; M̄ }. Corresponding to
fields, we define sfields C = f̄ : τ̄1 ∪ sfieldsD.

Judgement Δ; P � S : (com κ1, κ2); Q is derivable provided P ⊆ Auth(Δ†self)
and Q ⊆ Auth(Δ†self) and the judgement is derivable using the security typing
rules.

The last rule in Table 5 is a subsumption rule.
The rule for method call is different from our work on stack inspection [2]

in that it has an extra condition for high commands: permissions that may be
enabled at the site of the call (namely, Auth(Δ†self) − P ) must be included
in the static permissions of all classes that provide an implementation of the
method (namely, ∩E≤DAuth E). This condition essentially disallows high com-
mands from making calls that may dynamically dispatch to untrusted code.
Because permission state is an implicit low variable, and a call to untrusted
code causes a loss of permissions, this loss can be tested by a low observer and
used to reveal secrets – recall the example attacks in section 2. Those attacks
are untypable in our system because they require permission p at the call site
for m to be included in the static permissions of m.

Note that the rule for method declaration does not restrict assignments to
local variables, i.e., it allows effect L in the hypothesis. Subsumption may be
used to get L there from H . The rule for method call has a form of subsumption
built in: it requires there to be some declared type for the method that matches
its invocation.

The second rule for test is the one that removes from consideration a branch
that cannot be taken under the assumption: the test of P ′ fails if P ′ contains
permissions assumed to be excluded or permissions that are not authorized for
the class in which this command occurs. The first rule for test handles the case
where it cannot be statically determined, from the information tracked in the
judgements, whether the test of P ′ succeeds.

Properties of security typing. For any judgement Δ; P � S : (com κ1, κ2); Q
derivable using the security typing rules for expressions and commands, the
erased judgement Δ† � S† is derivable using the ordinary typing rules for com-
mands. Conversely, any program typable using the ordinary typing rules for com-
mands can be annotated everywhere by L and typed by the security typing rules
for expressions and commands, taking smtypes(m, C) = {L, L̄−〈∅; L; ∅〉→L} for
all m, C. In other words, for the trivial security policy encoded by the above
security type, the analysis rejects no well formed program.
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6 Example

The following example, discussed in the introduction, shows our type system at
work; in contrast to the scenario in section 3, where untrusted code calls trusted
code, here we consider the dual scenario of trusted code calling untrusted code.

class NaiveProgram extends Object {//static permissions contain all permissions
unit Main() {

(string, L) s := BadPlugIn.TempFile();
File.Delete(s); }

Suppose that NaiveProgram is a trusted class with all permissions. Next, we
consider the partially trusted class BadPlugIn whose static permissions do not
include FileIO.

class BadPlugIn extends Object {//static permissions do not contain FileIO
(string, L) TempFile() { result := “...password file...”} }

The trusted class File has all permissions and contains the method Delete, where
the file deletion operation is protected by a test of permission FileIO.

class File extends Object {//static permissions contain all permissions
unit Delete((string, L) s) {

test FileIO then Win32.Delete(s) else abort;} }
We decorate BadPlugin.TempFile() with the history-based flow policy

smtypes(TempFile, BadPlugin) = {L, ()−〈∅; H ; {FileIO}〉→L}
The code for File.Delete can be checked against the flow policy

{L, L−〈{FileIO}; H ; {FileIO}〉→(), L, L−〈∅; H ; ∅〉→()}
The first is used in a context where FileIO is absent and asserts that FileIO is
absent after the call is finished. Indeed, for this policy, the type system checks
the body of Delete in the permission context {FileIO} ∩ Auth(File), i.e., the
context {FileIO}. To type check the test, note that {FileIO} ∩ {FileIO} �= ∅,
and Delete is accepted.

If we check NaiveProgram.Main for the policy L, ()−〈∅; H ; {FileIO}〉→(),
we have the following situation: the call to TempFile results in the excluded
permission set FileIO, which is the excluded permission set for the call to
Delete. We have two possibilities for the type of Delete now, but only the type
L, L−〈{FileIO}; H ; {FileIO}〉→() will do: from Table 5, rule for method call, we
have to establish {FileIO} ∩ Auth(NaiveProgram) ⊆ {FileIO} and {FileIO} ⊆
{FileIO}∩Auth(NaiveProgram). Both succeed. Hence NaiveProgram.Main is well-
typed.

Note that we could not have chosen the type L, L−〈∅; H ; ∅〉→() as the type of
Delete, since we cannot establish {FileIO} ⊆ {FileIO}∩∅ for the postcondition.

In our previous work [2], on stack inspection, the typechecker rejected Naive-
Program.Main as ill-typed. It is instructive to recall the reason: after the call
to TempFile, the call to Delete occurs in the context where no permissions are
excluded, and then the antecedent {FileIO} ∩Auth(NaiveProgram) ⊆ ∅ fails.
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7 Indistinguishability and Confinement

In this section we show that if an expression is safe, i.e., accepted by the security
typing rules of Section 5, and has level L, then it is read confined : its value does
not depend on H-fields or H-variables. Moreover, if a command is safe and it
has level com H, H then it is write confined : it does not assign to L-fields or
L-variables. These two properties are the semantic counterparts of the rules “no
read up” and “no write down” that underly information flow control; the terms
“simple security” and “*-property” are also used [5].

The formalization uses the indistinguishability relation ∼ which is also used
to formulate noninterference in Section 8. States (h, η, P ) and (h′, η′, P ′) may
be indistinguishable to an L observer while having different allocation of ob-
jects visible only to H . For this reason, indistinguishability is formalized using
a bijective correspondence between those locations in dom h and dom h′ that,
informally, are or have been visible to L.

Definition 4. A typed bijection is a bijective finite partial function, σ, from
Loc to Loc, such that type(σ 	) = type 	 for all 	 in dom σ. ��

In the sequel, σ and its decorated variants range over typed bijections. We treat
partial functions as sets of ordered pairs, so σ′ ⊇ σ expresses that σ′ is an
extension of σ.

Definition 5 (indistinguishable by L). For any σ, we define relations ∼σ

for data values, object states, heaps, and stores.

	 ∼σ 	′ in [[C]] ⇐⇒ σ 	 = 	′ ∨ 	 = nil = 	′

d ∼σ d′ in [[T ]] ⇐⇒ d = d′ for primitive types T
s ∼σ s′ in [[state C]] ⇐⇒ ∀(f : (T, κ)) ∈ sfieldsC • κ = L ⇒ sf ∼σ s′f
η ∼σ η′ in [[Δ†]] ⇐⇒ ∀(x : (T, κ)) ∈ Δ • κ = L ⇒ η x ∼σ η′ x
h ∼σ h′ in [[Heap]] ⇐⇒ dom σ ⊆ dom h ∧ rng σ ⊆ dom h′ ∧

∀	, 	′ • 	 ∼σ 	′ ⇒ h 	 ∼σ h′ 	′

d ∼σ d′ in [[T⊥]] ⇐⇒ d = ⊥ = d′ ∨ (d �= ⊥ �= d′ ∧ d ∼σ d′ in [[T ]])
P ∼σ P ′ in [[P(Perms)]] ⇐⇒ P = P ′

��

For classes C, the formulation above exploits the convention that equations
involving partial functions are interpreted as false when the function is undefined.
Thus, for 	 �= nil , the relation 	 ∼σ 	′ holds only if 	 is in dom σ. The last clause,
for T⊥, is needed to handle errors (null dereferences) in expressions.

In our model, permissions are atomic values and indistinguishability is just
equality for permission sets. In a more detailed model, permissions would be
heap objects.

Indistinguishability is not symmetric or reflexive in general. But h ∼ι h
where ι is the identity on dom h. Limited transitivity and symmetry hold, e.g.,
if h1 ∼σ h2 and h2 ∼τ h3 then h1 ∼τ◦σ h3.
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One use of ∼ is to formulate, in Lemma 4 below, that if a command is typable
as (com H, κ) it does not assign to L-variables, and if it is typable as (com κ, H)
it does not assign to L-fields of objects. For this purpose we use h ∼ι h0, for
initial h and final h0, where ι is the identity on dom h. This expresses that no
L fields of initially existing objects are changed.

Each of our results about the meaning of a class table CT is proved by
induction on the approximation chain by which [[CT ]] is defined. The induction
step is treated as a separate lemma about commands, in which the induction
hypothesis is an assumption about the method environment.

The security typing rules depend on permission effects. Thus, we first show
some results on the soundness of effects. The intuition is that if a safe command
is executed with permissions disjoint from the initially excluded permissions,
then the permissions produced as a result of execution are disjoint from the
final set of excluded permissions. Formalizing this intuition is the purpose of
Definition 6, Lemma 2 and Lemma 3 below.

For brevity we write Q # P for Q ∩ P = ∅.

Definition 6 (disjoint effects in method environment). Method environ-
ment μ has disjoint effects, written disj μ, if the following holds for all C, m and
all κ0, κ̄−〈P ; κ; Q〉→κ1 in smtypes(m, C). If R # P and μCm(h, η, R) �= ⊥ then
Q # Q0, where (h0, d, Q0) = μCm(h, η, R). ��
Lemma 2 (disjoint effects in commands). Suppose Δ; P � S : (com κ1, κ2);
Q and disj μ. For all η, h, R such that P # R, and R ⊆ Auth(Δ† self), if
(h0, η0, Q0) = [[Δ† � S†]]μ(h, η, R) then Q # Q0.

Lemma 3 (safe programs have disjoint effects). If annotated class table
CT is safe then disj [[CT †]] and also disj μi for each μi in the approximation
chain for semantics of CT .

The purpose of Definition 7, Lemma 4 and Lemma 5 below is to establish
that H-commands do not assign to L-variables and L-fields of objects.

Definition 7 (write confined method environment). Method environment
μ is write confined, written wconf μ, if the following holds for all C, m and all
κ, κ̄−〈P ; H ; Q〉→κ1 in smtypes(m, C). If R#P and μCm(h, η, R) �= ⊥ then h ∼ι

h0 where (h0, d, Q0) = μCm(h, η, R) and ι is the identity on dom h. Moreover,
if κ1 = H, then R′ = Q0 where R′ = R ∩Auth C. ��
Lemma 4 (write confinement of commands). Suppose disj μ, wconf μ,
and Δ; P � S : (com κ1, κ2); Q. For all η, h, R such that P # R, and R ⊆
Auth(Δ† self), if (h0, η0, Q0) = [[Δ† � S†]]μ(h, η, R) then: (i) κ1 = H implies
η ∼ι η0; (ii) κ2 = H implies h ∼ι h0 and (iii) κ1 = H and κ2 = H imply
R = Q0, where ι is the identity on dom h.

Note that no condition is imposed if [[Δ† � S†]]μ(h, η, R) = ⊥.

Lemma 5 (safe programs are write confined). If annotated class table CT
is safe then wconf [[CT †]] and also wconf μi for each μi in the approximation
chain for semantics of CT .
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The last result in this section can be seen as a simple form of noninterference.
It says that if an expression can be typed Δ � e : (T, L) then its meaning is the
same in two L-indistinguishable states.

Lemma 6 (safe expressions are read confined).
Suppose Δ � e : (T, L) and h ∼σ h′ and η ∼σ η′. If d = [[Δ† � e : T ]](h, η) and

d′ = [[Δ† � e : T ]](h′, η′) then d ∼σ d′.

8 Safety Implies Noninterference

This section states the main result: if a class table is accepted by the security
typing rules then the method environment that it denotes satisfies noninterfer-
ence. That is, if it is safe with respect to a given flow policy then its semantics
for the given access policy does satisfy the flow policy.

Noninterference for a class table is defined in terms of noninterference of
method meanings with respect to their security types. Roughly, the idea is that
a method executed under related stores, related heaps, and related permission
states, yields related heaps. Provided smtypes of the method declares that the
level of the return result is L, the return results are also related. This idea can
be formalized (as in [2]) by saying that a method meaning d satisfies a method
type κ0, κ̄−〈P ; κ1; Q〉→κ2 iff the following holds for all σ, h, h′, η, η′,P1, P

′
1: Let

(h0, d0, Q0) = d(h, η, P1), and (h′
0, d

′
0, Q

′
0) = d(h′, η′, P1). If h ∼σ h′, η ∼σ η′,

P1 ∼σ P ′
1, and P1#P then there is τ ⊇ σ such that h0 ∼τ h′

0, Q#Q0, Q0 ∼τ Q′
0,

and (κ2 = L ⇒ d0 ∼τ d′0)

Definition 8 (noninterfering method environment). A method environ-
ment is noninterfering, written nonint μ, iff for all C, m, the meaning μCm
satisfies every κ0, κ̄−〈P ; κ1; Q〉→κ2 in smtypes(m, C). ��

Our main result is that the method environment denoted by a safe class table
is noninterfering. The proof uses lemmas which express noninterference for the
expression and command constructs, respectively.

The proof of the main theorem goes by proving noninterference of each
method environment in the approximation chain, using the following.

Lemma 7 (safe commands are noninterfering). Suppose disj μ, wconf μ,
nonint μ, and Δ; P � S : (com κ1, κ2); Q. Suppose also R#P , R ⊆ Auth(Δ† self),
η ∼σ η′, h ∼σ h′, R ∼σ R′, (h0, η0, Q0) = [[Δ† � S†]]μ(h, η, R) and (h′

0, η
′
0, Q

′
0) =

[[Δ† � S†]]μ(h′, η′, R′). Then there is τ ⊇ σ such that η0 ∼τ η′
0 and h0 ∼τ h′

0 and
Q0 ∼τ Q′

0.

Theorem 1 (safety implies noninterference). If annotated class table CT
is safe then its meaning [[CT †]] is noninterfering.

9 Discussion

We have formalized the history based mechanism of Abadi and Fournet and
shown how, by tracking updates of the permission state, static rules can ensure
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noninterference in programs that depend on access control to prevent illegal
information flow. Unlike stack inspection, the mechanism itself introduces a new
channel of information flow, but one that can be controlled using the same sort
of type-and-effect analysis that we previously developed for stack inspection [2].
For modular (per-method) checking of dynamically dispatched method calls, we
rely on a flow policy that specifies a set of types for every method; this flow policy
is invariant with respect to subclassing. Whereas these flow types describe flows
that occur in the absence of certain permissions, a fully modular system would
also specify certain permissions required to be present. This set would be used
to check method calls in H commands. In this paper we chose to omit the latter
form of interface specification, but the call rule imposes essentially the same
condition.

Specifying the analysis in terms of a type system is convenient for proving our
noninterference result. But for practical application of the result, type inference
is needed to reduce the burden of annotation. We have developed a modular
inference algorithm for inferring security types for an object-oriented language
without dynamic access control [17]. In future work, we plan to report on security
type inference for a language with dynamic access control supporting, e.g., the
stack inspection mechanism or the history-based mechanism.

Another practical issue is to provide a syntax for flow policy. By Lemma 1,
permission state after execution is at most the permission state before execu-
tion. So it is reasonable to expect that in the analysis, the final set of excluded
permissions contain the initial set of excluded permissions. Thus in a flow policy,
κ0, κ̄−〈P ; κ; Q〉→κ1, Q can contain the permissions not already in P . To translate
this into the framework of this paper, Q can be replaced by P ∪ Q.
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Abstract. The Spec# programming system is a new attempt at a more cost effec-
tive way to develop and maintain high-quality software. This paper describes the
goals and architecture of the Spec# programming system, consisting of the object-
oriented Spec# programming language, the Spec# compiler, and the Boogie static
program verifier. The language includes constructs for writing specifications that
capture programmer intentions about how methods and data are to be used, the
compiler emits run-time checks to enforce these specifications, and the verifier
can check the consistency between a program and its specifications.

1 Introduction

Software engineering involves the construction of correct and maintainable software.
Techniques for reasoning about program correctness have strong roots in the late 1960’s
(most prominently, Floyd [26] and Hoare [34]). In the subsequent dozen years, sev-
eral systems were developed to offer mechanical assistance in proving programs cor-
rect (see, e.g., [38, 28, 52]). To best influence the process by which a software engineer
works, one can aim to enhance the engineer’s primary thinking and working tool: the
programming language. Indeed, a number of programming languages have been de-
signed especially with correctness in mind, via specification and verification, as in, for
example, the pioneering languages Gypsy [2] and Euclid [39]. Other languages, perhaps
most well-known among them Eiffel [55], turn embedded specifications into run-time
checks, thereby dynamically checking the correctness of each program run.

Despite these visionary underpinnings and numerous victories over technical chal-
lenges, current software development practices remain costly and error prone (cf. [57,
53]). The most common forms of specification are informal, natural-language docu-
mentation, and standardized library interface descriptions (of relevance to this paper,
the .NET Framework, see, e.g., [62]). However, numerous programmer assumptions
are left unspecified, which complicates program maintenance because the implicit as-
sumptions are easily broken. Furthermore, there’s generally no support for making sure
that the program works under the assumptions the programmer has in mind and that
the programmer has not accidentally overlooked some assumptions. We think program
development would be improved if more assumptions were recorded and enforced. Re-
alistically, this will not happen unless writing down such specifications is easy and
provides not just long-term benefits but also immediate benefits.

The Spec# programming system is a new attempt at a more cost effective way
to produce high-quality software. For a programming system to be adopted widely,
it must provide a complete infrastructure, including libraries, tools, design support,
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integrated editing capabilities, and most importantly be easily usable by many pro-
grammers. Therefore, our approach is to integrate into an existing industrial-strength
platform, the .NET Framework. The Spec# programming system rests on the Spec#
programming language, which is an extension of the existing object-oriented .NET
programming language C#. The extensions over C# consist of specification constructs
like pre- and postconditions, non-null types, and some facilities for higher-level data
abstractions. In addition, we enrich C# programming constructs whenever doing so
supports the Spec# programming methodology. We allow interoperability with exist-
ing .NET code and libraries, but we guarantee soundness only as long as the source
comes from Spec#. The specifications also become part of program execution, where
they are checked dynamically. The Spec# programming system consists not only of a
language and compiler, but also an automatic program verifier, called Boogie, which
checks specifications statically. The Spec# system is fully integrated into the Microsoft
Visual Studio environment.

The main contributions of the Spec# programming system are

– a small extension to an already popular language,
– a sound programming methodology that permits specification and reasoning about

object invariants even in the presence of callbacks,
– tools that enforce the methodology, ranging from easily usable dynamic checking

to high-assurance automatic static verification, and
– a smooth adoption path whereby programmers can gradually start taking advantage

of the benefits of specification.

In this paper, we give an overview of the Spec# programming system, its design,
and the rationale behind its design. The system is currently under development.

2 The Language

The Spec# language is a superset of C#, an object-oriented language targeted for the
.NET Platform. C# features single inheritance whose classes can implement multiple
interfaces, object references, dynamically dispatched methods, and exceptions, to men-
tion the features most relevant to this paper. Spec# adds to C# type support for distin-
guishing non-null object references from possibly-null object references, method speci-
fications like pre- and postconditions, a discipline for managing exceptions, and support
for constraining the data fields of objects. In this section, we explain these features and
rationalize their design.

2.1 Non-null Types

Many errors in modern programs manifest themselves as null-dereference errors, sug-
gesting the importance of a programming language providing the ability to discrimi-
nate between expressions that may evaluate to null and those that are sure not to (for
some experimental evidence, see [25, 23]). In fact, we would like to eradicate all null-
dereference errors.

We have opted to add type support for nullity discrimination to Spec#, because we
think types offer the easiest way for programmers to take advantage of nullity distinc-
tions. Backward compatibility with C# dictates that a C# reference type T denote a
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possibly-null type in Spec# and that the corresponding non-null type get a new syntax,
which in Spec# we have chosen to be T ! .

The main complication in a non-null type system arises in addressing non-null fields
of partially constructed objects, as illustrated in the following example:

class Student : Person {
Transcript ! t ;
public Student(string name,EnrollmentInfo! ei)

: base(name) {
t = new Transcript(ei);

}

Since the field t is declared of a non-null type, the constructor needs to assign a non-
null value to t . However, note that in this example, the assignment to t occurs after the
call to the base-class constructor (as it must in C#). For the duration of that call, t is
still null, yet the field is already accessible (for instance, if the base-class constructor
makes a dynamically dispatched method call). This violates the type safety guarantees
of the non-null type system.

In Spec#, this problem is solved syntactically by allowing constructors to give ini-
tializers to fields before the object being constructed becomes reachable by the program.
To correct the example above, one writes:

class Student : Person {
Transcript ! t ;
public Student(string name,EnrollmentInfo! ei)

: t(new Transcript(ei)),
base(name) {

}

Spec# borrows this field-initialization syntax from C++, but a crucial point is that
Spec#, unlike C++, evaluates field initializers before calling the base-class constructor.
Note that such an initializing expression can use the constructor’s parameters, a useful
feature that we deem vital to any non-null type design. Spec# requires initializers for
every non-null field.

Spec# allows non-null types to be used only to specify that fields, local variables,
formal parameters, and return types are non-null. Array element types cannot be non-
null types, avoiding both problems with array element initialization and problems with
C#’s covariant arrays.

To make the use of non-null types even more palatable for migrating C# program-
mers, Spec# stipulates the inference of non-nullity for local variables. This inference is
performed as a dataflow analysis by the Spec# compiler.

We have settled on this simple non-null type system for three reasons. First, prob-
lems with null references are endemic in object-oriented programming; providing a so-
lution should be very attractive to a large number of programmers. Second, our simple
solution covers a majority of useful non-null programming patterns. Third, for condi-
tions that go beyond the expressiveness of the non-null type system, programmers can
use method and class contracts, as described below.
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2.2 Method Contracts

Every method (including constructors and the properties and indexers of C#) can have
a specification that describes its use, outlining a contract between callers and imple-
mentations. As part of that specification, preconditions describe the states in which the
method is allowed to be called, and hence are the caller’s responsibility. Postconditions
describe the states in which the method is allowed to return. The throws set and its asso-
ciated exceptional postconditions limit which exceptions can be thrown by the method
and for each such exception, describe the resulting state. Finally, frame conditions limit
the parts of the program state that the method is allowed to modify. The postconditions,
throws set, exceptional postconditions, and frame conditions are the implementation’s
responsibility. Method contracts establish responsibilities, from which one can assign
blame in case of a contract-violation error.

Uniform error handling in modern programming languages is often provided by an
exception mechanism. Because the exception mechanisms in C# and the .NET Frame-
work are rather unconstrained, Spec# adds support for a more disciplined use of excep-
tions to improve the understandability and maintenance of programs. As a prelude to
explaining method contracts, we describe the Spec# view of exceptions.

Exceptions. Spec# categorizes exceptions according to the conditions they signal.
Looking at exceptions as pertaining to particular methods, Goodenough [29] catego-
rizes exceptions into two kinds of failures, which we call client failures and provider
failures. A client failure occurs when a method is invoked under an illegal condition,
that is, when the method’s precondition is not satisfied. We further refine provider fail-
ures into admissible failures and observed program errors. An admissible failure occurs
when a method is not able to complete its intended operation, either at all (e.g., the par-
ity of a received network packet is wrong) or after some amount of effort (e.g., after
waiting on input from a network socket for some amount of time). The set of admis-
sible failures is part of the contract between callers and implementations. An observed
program error is either an intrinsic error in the program (e.g., an array bounds error)
or a global failure that’s not particularly tied with the method (e.g., an out-of-memory
error).

An important consideration among these kinds of exceptions is whether or not one
expects a program ever to catch the exception. Admissible failures are part of a pro-
gram’s intended possible behaviors, so we expect correct programs to catch and handle
admissible failures. In contrast, correct programs never exhibit client failures or ob-
served program errors, and it’s not even clear how a program is to react to such errors.
If the program handles such failures at all, it would be at the outermost tier of the ap-
plication or thread.

Because of these considerations, Spec# follows Java [30] by letting programmers
declare classes of exceptions as either checked or unchecked. Admissible failures are
signaled with checked exceptions, whereas client failures and observed program errors
are signaled using unchecked exceptions.

In Spec#, any exception class that implements the interface ICheckedException is
considered a checked exception. For more information about the exception design in
Spec#, see our companion paper on exception safety [49].
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ArrayList .Insert Method (Int32, Object)

Inserts an element into the ArrayList at the specified index.

public virtual void Insert(int index , object value);

Parameters

– index The zero-based index at which value should be inserted.
– value The Object to insert. The value can be a null reference.

Exceptions

Exception Type Condition
ArgumentOutOfRangeException index is less than zero.

–or–
index is greater than Count .

NotSupportedException The ArrayList is read-only.
–or–
The ArrayList has a fixed size.

Fig. 1. The .NET Framework documentation for the method ArrayList .Insert .

Preconditions. Perhaps the most important programmer assumption is the precondi-
tion. Here is a simple example of a method with a precondition:

class ArrayList {
public virtual void Insert(int index ,object value)

requires 0 <= index && index <= Count ;
requires !IsReadOnly && !IsFixedSize;

{ . . . }

The precondition specifies that the index into which the object is to be inserted in the ar-
ray list must be within bounds, and that the list can grow. To enforce these preconditions,
the Spec# compiler emits run-time checks that throw a RequiresViolationException ,
indicating a client failure, if a precondition is not met. If the user invokes Boogie on a
call site, then Boogie attempts to verify statically that these preconditions hold at the
call site, reporting an error if it cannot.

The .NET Framework documentation for this method is shown in Figure 1. There is
a subtle difference between the .NET documentation for Insert and our specification of
it above. Both specifications state what’s expected of the caller; the difference lies in the
action taken in the event that preconditions are violated. To support this typical robust-
programming style of .NET Framework specifications, Spec#’s preconditions can have
otherwise clauses. These can be used to tell the compiler to use a specified exception,
rather than the default RequiresViolationException , in the event that a precondition
violation is detected at run time:
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class ArrayList {
void Insert(int index ,object value)

requires 0 <= index && index <= Count
otherwise ArgumentOutOfRangeException;

requires !IsReadOnly && !IsFixedSize
otherwise NotSupportedException;

{ . . . }
Since it represents a client failure, the exception used in an otherwise clause must be
an unchecked exception.

Postconditions. Method specifications can also include postconditions. For example,
one can specify the postconditions of Insert as follows:

ensures Count == old(Count) + 1;
ensures value == this[index ];
ensures Forall{int i in 0 : index ; old(this[i ]) == this[i ]};
ensures Forall{int i in index :old(Count); old(this[i ]) == this[i + 1]};

These postconditions say that the effect of Insert is to increase Count by 1, to insert
the given value at the given index, and to keep all other elements in their same relative
positions. This example also shows some other Spec# specification features: In the first
line, old(Count) denotes the value of Count on entry to the method. In the third line,
the special function Forall is applied to the comprehension of the boolean expression
old(this[i ]) == this[i ] , where i ranges over the integer values in the half-open
interval from 0 to less than index . Comprehensions and quantifiers are syntactically
restricted in such a way that the compiler can always generate code that computes them.

Boogie attempts to verify each implementation of Insert against these postcondi-
tions. When Boogie’s verification is successful, then the run-time checks (which would
throw an EnsuresViolationException in this case) are not needed since they would
never fail.

For run-time checking, we have adopted Eiffel’s mechanism for evaluating old(E ) .
On entry to a method, the expression E of any old(E ) occurring in a postcondition is
evaluated and the resulting value is saved away. Then, whenever (and if) this value of
old(E ) is needed during the evaluation of the postcondition, the saved value of E is
used. Note that the value of old(E ) may in fact not be needed during the evaluation of
the postcondition due to short-circuit boolean expressions or because the method does
not terminate normally.

The example above also illustrates a more general point about the differences be-
tween checking contracts statically and dynamically. Boogie has knowledge about the
program and its built-in data structures. It also has support for quantifiers and can there-
fore check the postconditions of Insert statically. Contracts that use procedural ab-
straction, however, can be a problem for static modular checking, since such checking
has access only to a limited part of the program. Likewise, contracts that use higher-
level data structures can be a problem for static checking, because of limitations of
decisions procedures and axiomatizations of some theories. Here, dynamic checking is
straightforward. On the other hand, the dynamic checking of postconditions can be quite
involved when old expressions mention quantified variables, as exemplified above.
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Though we expect the bulk of specifications to be simple, the more general point is
that Spec# supports expressive specifications even when those specifications push the
limits of today’s checking technology.

Exceptional postconditions. As in Java, each method whose invocation may result in
a checked exception must account for that exception in the method’s throws set. For
example, the declaration

char Read()
throws SocketClosedException;

{ . . . }

where SocketClosedException is a checked exception class, allows the method to
throw any checked exception whose allocated type is a subclass of SocketClosedEx -
ception , but is not allowed to throw any other checked exception. The Spec# compiler
holds every implementation to its throws set by a conservative control-flow analysis. A
throws clause in Spec# can only mention checked exceptions.

Spec# allows a throws declaration to be combined with a postcondition that takes
effect in the event that the exception is thrown. For example, the exceptional postcon-
dition in

void ReadToken(ArrayList a)
throws EndOfFileException ensures a.Count == old(a.Count);

{ . . . }

says that the length of a is unchanged in the event that the method results in an
EndOfFileException .

Without further restrictions, it would be possible for a program to foil the compiler’s
throws-set analysis, which would then undermine Spec#’s guarantee that every checked
exception is accounted for. Consider the following example:

void ExceptionScam() {
Exception e = new MyCheckedException();
throw e;

}

The root of the exception class hierarchy, Exception , is an unchecked exception (be-
cause it comes from C#, where all exceptions are unchecked). Since checked exceptions
are subtypes of Exception , the throw statement in ExceptionScam would have the
effect of throwing a checked exception even though the method does not advertise it.
Spec# prevents this: whenever the static type of a thrown expression is an unchecked
exception and the static analysis cannot guarantee that the dynamic type is likewise
unchecked, then the compiler inserts a run-time check that detects any violation of
Spec#’s distinction between checked and unchecked exceptions.

For more information about exceptions in Spec#, see our companion paper on ex-
ception safety [49].
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Frame conditions. Spec# method contracts also include modifies clauses (also
known as frame conditions), which restrict which pieces of the program state a method
implementation is allowed to modify. For example, in the class

class C {
int x , y;
void M () modifies x ; { . . . }

method M is permitted to have a net effect on the value of x , whereas the value of y
on exit from the method must have the same value as on entry.

Any realistic design of modifies clauses includes some facility for abstracting over
program state that for reasons of information hiding cannot be mentioned in the method
contract. For example, the implementation of ArrayList .Insert is going to modify
the private representation of the ArrayList , but private variables are not allowed to be
mentioned explicitly in the contract of a public method. Instead, a wildcard can be used.
For example, the specification

modifies thisˆArrayList ;

allows any field of this declared in class ArrayList to be modified. Spec# also sup-
ports other flavors of wildcards (see [4]), which additionally address the problem of
specifying the modification of state in subclasses (cf. [42]).

But wildcards are still just a partial solution to the frame problem, because they
don’t extend to aggregate objects. For example, the ArrayList implementation con-
sists of an array and a count. The modifies clause above allows the count and the
reference to the array to be changed, but does not give explicit permission to modify
the array elements. To deal with aggregate objects, Spec# uses a concept of ownership.
We say that the ArrayList owns its underlying array, that the array is committed to the
ArrayList . Modifications to the state of committed objects do not need to be mentioned
explicitly in the modifies clause. For more details, see [4], which also describes the
connection between ownership and object invariants.

Frame conditions serve as documentation and are used and enforced by Boogie,
but they are currently not enforced at run time. There are two reasons for not checking
modifies clauses at run time. First, they can be prohibitively expensive, since the
checking must compare arbitrarily large portions of the heap in a method’s pre-state
and post-state. Second, we are aiming for a smooth transition to Spec# from C#; we do
not want to incur run-time errors in C# programs that otherwise are correct.

Inheritance of specifications. In Spec#, a method’s contract is inherited by the
method’s overrides. The run-time checks evoked by the method contract are thus also
inherited. Not only does this make the specifications more definitive and reliable than
today’s documentation, but the Spec# specifications also make the code of an imple-
mentation easier to read, since today’s manually written code for checking precondi-
tions can be rather lengthy.

A method override can add more postconditions by declaring additional ensures
clauses. The override can add exceptional postconditions only for those exceptions that
are already covered by the throws set. The override is not allowed to give any modifies
clause: enlarging the frame would be unsound, and shrinking the frame can be done with
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an added postcondition. Spec# does not allow any changes in the precondition, because
callers expect the specification at the static resolution of the method to agree with the
dynamic checking.

Methods declared in an interface can have specifications, just like the methods de-
clared in a class. Interfaces give rise to a form of multiple inheritance, because a class
can inherit a method signature from the superclass and its implemented interfaces.
Traditionally, these inherited specifications are combined [63], which is what Spec#
does for postconditions. Spec# also combines exceptional postconditions, but the in-
herited specifications must have identical throws sets. If a class implements an interface
method, then the interface declaration of the method must have a frame condition that is
a superset of the class implementation of the method. Spec# does not combine precon-
ditions, unless they are the same, for the reason explained above. Since the obvious def-
initions of “the same” are either syntactic and brittle, or semantic and require theorem
proving, Spec# uses the radical solution of allowing multiple inherited specifications
only when these have no requires clauses.

We give an example that shows Spec#’s radical precondition solution not to be too
draconian. Consider the following interfaces:

interface I { void M (int x ) requires x <= 10; }
interface J { void M (int x ) requires x >= 10; }

Suppose a class C wants to implement both interfaces I and J . In this case, Spec#
does not allow C to provide one shared implementation for I .M and J .M . Instead,
class C needs to give explicit interface method implementations for M :

class C : I , J {
void I .M (int x ) { . . . }
void J .M (int x ) { . . . }

(Explicit interface method implementations are a feature of C#.) Because an explicit
interface method implementation cannot be accessed other than through the interface,
it gets its contract straight from the interface.

Taken together, the Spec# rules for contract inheritance guarantee that a derived
specification always properly obeys the behavioral subtyping rules [22, 24].

2.3 Class Contracts

Specifying the rules for using a library or abstraction is done primarily through method
contracts, which spell out what’s expected of the caller and what the caller can expect
in return from the implementation. To specify the design of an implementation, one
primarily uses specifications that constrain the value space of the implementation’s data.
These specifications are called object invariants and spell out what is expected to hold
of each object’s data fields in the steady state of the object. For example, the class
fragment

class AttendanceRecord {
Student [ ]! students;
bool[ ]! absent ;
invariant students.Length == absent .Length;

declares that the lengths of the arrays students and absent are to be the same.



58 Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte

As we can see from the simple example above, it is not possible for an object in-
variant always to hold, because it is not possible in the language to change the lengths
of two arrays simultaneously. This is why we say the object invariant holds in steady
states, which essentially means that the object is not currently being operated on. Fol-
lowing our methodology for object invariants [4, 46, 7], Spec# makes explicit when an
object is in its steady state versus when it is exposed, which means the object is vul-
nerable to modifications. Spec# introduces a block statement expose that explicitly
indicates when an object’s invariant may temporarily be broken: the statement

expose (o) {
S ;

}
exposes the object o for the duration of the sub-statement S , which may then operate
on the fields of o . Because field modifications in an object-oriented program tend to
be encapsulated in the class that declares the field, the expression o is usually this .
The object invariant is supposed to hold again at the end of the expose statement and
Spec# enforces this with a run-time check. Object invariants are also checked at the end
of constructors (though there’s some flexibility that allows the initial check of an object
invariant to be performed elsewhere; we omit the details here).

By default, whenever a class or any of its superclasses has a declared invariant,
every public method of the class has an implicit

expose (this) { . . . }

around the method body. Our preliminary experience suggests that this default removes
most of the need for explicit expose statements. In situations where reentrancy is
desired, the default can be disabled by a custom attribute on the method.

Exposing an object is not idempotent. That is, it is a checked run-time error if
expose (o) . . . is reached when o is already exposed. In this way, the expose mech-
anism is similar to thread-non-reentrant mutexes in concurrent programming, where
monitor invariants [35] are the analog of our object invariants. If exposing were idem-
potent, then one would not be able to rely on the object invariant to hold immediately
inside an expose block, in the same way that the idempotence of thread-reentrant mu-
texes means that one cannot rely on the monitor invariant to hold at the time the mutex
is acquired.

For Spec#’s object-invariant methodology to be sound, all modifications of a field
o.f must take place while the object o is exposed. Furthermore, the methodology uses
an ownership relation to structure objects into a tree-shaped hierarchy. The relation is
state dependent, which allows ownership transfer. Such modifications and ownerships
are enforced by Boogie, but are not enforced at run time.

Object invariants can be declared in any class. To support modular checking of
invariants, so that a class does not need to know the invariants of its superclasses and
future subclasses, object invariants are partitioned into class frames according to the
class that declares each invariant [4, 18]. The expose mechanism deals with class
frames.

To reduce the programmer’s initial cost of adding expose statements and to handle
non-virtual methods in a more backward compatible way (see [4]), Spec# allows one
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expose statement to expose more than one class frame. To explain this feature, we first
need to show the more general form of the expose statement in Spec#, which is

expose (o upto T ) { . . . }

where T is a superclass of the static type of the expression o . If “upto T ” is omit-
ted, T defaults to the static type of expression o . More precisely than we described it
above, the statement exposes all of o ’s class frames from above its currently exposed
class frame through T (also exposing the class frame T itself). Non-idempotence re-
quires that at least one class frame is exposed as part of the operation. At the end of the
expose block, the class frames that were exposed on entry are un-exposed, and the
object invariant for each of those class frames is checked. This is done at run time using
compiler-emitted dynamically dispatched methods that check the invariants.

Exposing an unknown number of class frames, and in particular checking the in-
variants for class frames whose declarations may not be in scope, poses a problem for
modular, static verification. Therefore, we use a stricter model for expose in Boogie.
In particular, whereas the precondition for

expose (o upto T ) { . . . }

as enforced by run-time checks is that o ’s T class frame is un-exposed—that is, that
the o ’s most-derived un-exposed class frame is a subclass of T —Boogie strengthens
this precondition by requiring o ’s most-derived un-exposed class frame to be exactly
T . This way, Boogie is able to find all the object invariants that it needs to check at
the end of the expose block. In effect, this difference in policy between the run-time
behavior and what’s enforced by Boogie means that programmers can start writing and
running Spec# programs more easily, but then may need to exert additional effort in
order to obtain the higher confidence in the program’s correctness assured by Boogie
(just as additional effort is required to make sure Boogie’s modification and ownership
rules are satisfied).

Object invariants are allowed to mention only constants, fields, array elements, state
independent methods, and confined methods. A method is state independent if it does
not depend on mutable state. A confined method may depend on the state of owned
objects. The Spec# compiler includes a conservative effect analysis to check that these
properties are obeyed.

Spec# also supports class invariants, which are useful to document assumptions
about static fields. Methodology and constraints for class invariants are similar to those
for object invariants, except that there is no inheritance [45]. The expose statement
simply takes a class instead of an object as a parameter.

2.4 Other Details

Exceptions within contracts. If an exception is thrown during the evaluation of a
contract in Spec#, then the exception is wrapped in a contract evaluation exception and
propagated. This is in contrast to the run-time evaluation of contracts in JML, where
such exceptions are caught and the surrounding formula is treated as if it returned a
boolean value according to certain rules, see [15].
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Custom attributes on specifications. C# provides custom attributes as a way to attach
arbitrary data to program structures, such as classes, methods, and fields. A custom
attribute is compiled into metadata whose standard format allows various applications
to read the custom attributes attached to a particular declaration. Spec# also allows each
specification clause to be annotated with custom attributes.

Custom attributes allow users of third-party tools to mark up specifications in tool-
specific ways. For instance, the Spec# compiler uses the Conditional custom attribute
to control which specifications are emitted as run-time checks in the current build. For
example, for the following method

int BinarySearch(object[ ]! a,object o, int lo, int hi)
requires 0 <= lo && lo <= hi && hi <= a.Length;
[Conditional(“DEBUG”)] requires IsSorted(a, lo, hi);

{ . . . }

the compiler emits run-time checks for both preconditions in the debug build, but emits
a check only for the first precondition in the non-debug build. This supports the common
programming style of debugging assertions (see, e.g., [54]).

Purity. We want to have the property that a program that runs correctly with all con-
tract checking enabled also runs correctly if some of the contract checking is disabled.
Therefore, we require all expressions appearing in contracts to be pure, meaning that
they have no side effects and do not throw any checked exceptions. The compiler en-
forces this condition using a conservative effect system. We are considering more lib-
eral definitions of purity, such as observational purity [8] and that afforded by the heap
analysis of Sălcianu and Rinard [59].

3 System Architecture

Architecturally, the Spec# programming system consists of the compiler, a runtime li-
brary, and the Boogie verifier. The compiler has been fully integrated into the Microsoft
Visual Studio environment in terms of the project system, build process, design tools,
syntax highlighting, and the IntelliSense context-sensitive editing and documentation
assistance.

The Spec# compiler differs from an ordinary compiler in that it does not only pro-
duce executable code from a program written in the Spec# language, but also preserves
all specifications into a language-independent format. Having the specifications avail-
able as a separate, compiled unit means program analysis and verification tools can
consume the specifications without the need to either modify the Spec# compiler or to
write a new source-language compiler.

The Spec# compiler can preserve the specifications in the same binary with the com-
piled code because it targets the Microsoft .NET Common Language Runtime (CLR)
[11]. The CLR provides rich metadata facilities for associating many types of informa-
tion with most elements of the type system (types, methods, fields, etc.). The Spec#
compiler attaches a specification to each program component for which a specification
exists. (Technically, the specifications are preserved as strings in custom attributes. All
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names are fully resolved; while this renders the format quite verbose, it makes it much
easier for any tools consuming it.)

As a result, we made the design decision to have Boogie consume compiled code,
rather than source code. An additional benefit is that Boogie can be used to verify code
written in other languages than Spec#, as long as there is an out-of-band process for
attaching contracts to such code. We use such a process to attach specifications to the
.NET Framework Base Class Library (BCL), see Section 3.3.

3.1 Run-Time Checking

Spec# preconditions and postconditions are turned into inlined code. We do this not
only for performance reasons, but also to avoid creating extra methods and fields in
the compiled code. All such inlined code is tagged so that code corresponding to the
Spec# contracts can be differentiated from the code that comes from the rest of the
Spec# program. Such separation is required by any analysis tool that consumes Spec#
contracts from the metadata. For instance, Boogie must be able to determine if the non-
contract code in a method meets its postcondition, rather than the combination of the
non-contract code followed by the code that checks the postcondition. The inlined code
evaluates the conditions and, if violated, throws an appropriate contract exception.

To check object invariants, the compiler adds a new method to each class that de-
clares an invariant. Special object fields, such as the invariant level [4] and owner of an
object [46], are added to the super-most class that uses Spec# features within each sub-
tree of the class hierarchy. As we mentioned in Section 2, the runtime does not enforce
the whole methodology; for instance, run-time checking does not check that an object
is exposed before updating a field. This means that an error may go undetected at run
time that would be caught by Boogie.

3.2 Static Verification

From the intermediate language (including the metadata), Spec#’s static program ver-
ifier, Boogie, constructs a program in its own intermediate language, BoogiePL. Boo-
giePL is a simple language with procedures whose implementations are basic blocks
consisting mostly of four kinds of statements: assignments, asserts, assumes, and pro-
cedure calls (cf. [48]).

An inference system processes the BoogiePL program using interprocedural ab-
stract interpretation [16, 58] to obtain properties such as loop invariants. Any derived
properties are added to the program as assert statements or assume statements. The
BoogiePL program then goes through several transformations, ending as a verification
condition that is fed to an automatic theorem prover. The transformations, such as cut-
ting all loops to derive an acyclic control flow graph by introducing havoc statements,
are done in a way that preserves the soundness of the analysis. A havoc statement as-
signs an arbitrary value to a variable; introducing havoc statements for all variables
assigned to in a loop causes the theorem prover to consider an arbitrary loop iteration.
All feedback from the theorem prover is mapped back onto the source program before
it is delivered to the user [44]. The result is that programmers interact with Boogie’s
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prover only by making changes at the program source level, for instance by adding
contracts.

Currently, Boogie uses the Simplify theorem prover [19], but we intend to switch to
a new experimental theorem prover being developed at Microsoft Research.

3.3 Out-of-Band Specifications and Other Goodies

All .NET applications use the Base Class Library (BCL) in one form or the other. Thus
we want to provide specifications for the entire BCL. This gives any client an immediate
benefit even before writing a single contract.

But this raises a problem: how to provide a mechanism for attaching Spec# con-
tracts to code that was written without them? (Note that we cannot modify the BCL
even if we would use its implementation, since doing so would break versioning.) Out-
of-band specifications, that is, specifications for code external to Spec#, are compiled
into a Spec# repository. The repository is consulted in case the Spec# compiler or Boo-
gie encounters a method or class for which it requires a specification (i.e., when the
compiler emits run-time checks or when Boogie generates verification conditions), but
the method or class in the original code does not have an attached specification.

Writing contracts for self-contained examples is easy, but realistic programming is
highly dependent on libraries, such as the BCL. A large obstacle then is obtaining con-
tracts for the existing libraries. A companion project is working on semi-automatically
generating contracts for existing code. It has automatically extracted almost three thou-
sand preconditions for the current version of the BCL.

We have plans to build an explainer that translates Spec# method contracts into
natural-language documentation entries. For example, it seems that one could trans-
late preconditions and throws sets into the stylized exception tables used in the .NET
documentation, see Figure 1. This could better keep the documentation accurate and
up-to-date.

Lastly, we are planning a tool for translating Spec# into plain C#. (There are still
some problems, like figuring out what to do with field initializers, that we need to ad-
dress.) This tool will allow the use of Spec# within the normal development process.
For instance, most Microsoft development groups insist on building their products us-
ing only official Microsoft compilers. In this context, Spec# would function as a pre-
compiler; however, it is this invisibility that is important to gaining acceptance in a
rigorous build environment.

4 Related Work

A number of programming languages have been designed especially with correctness or
verification in mind. These include the pioneering languages Gypsy [2], Alphard [64],
Euclid [39], and CLU [50], which offered different degrees of formality. In Gypsy,
which was the first language to include specifications as an integral part of the program-
ming language, the specifications integrated in the source program were aimed directly
at program verification via an interactive theorem prover. Alphard was designed around
a programming methodology for designing and proving object-like data structures, but
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the proofs were done by hand. In Euclid, specifications written in the programming lan-
guage’s boolean expressions were checked at run time, with the idea that more compli-
cated specifications, which were supplied in comments, would be used by some external
program-verification tool. The CLU programming methodology prominently included
specifications, but these were recorded only as stylized comments.

Three modern systems with contracts that have had a direct effect on practical pro-
grams are Eiffel [55], SPARK [3], and B [1].

Eiffel [55] is an object-oriented language with almost 20 years of use. The standard
library is well documented through contracts, so contracts fall prominently within the
purview of programmers. The contracts are enforced dynamically. However, without
a full methodology for modifies clauses and for object invariants in the presence of
callbacks, it would not be possible to obtain modular static verification.

SPARK [3] is a limited subset of Ada, without many dynamic language features like
references, memory allocation, and subclassing, yet large enough to be useful for many
embedded applications. Praxis Critical Systems has used SPARK in the development of
several industrial programs, and their measurements indicate that the rigor provided by
SPARK can be cost effective [14]. SPARK offers a selection of static tools, from light-
weight sanity checking to full verification with an interactive theorem prover. Compat-
ibility with an existing language has been a high priority in the design of SPARK, just
like for Spec#, but their approach is quite different from ours. By ruling out difficult
features of Ada, SPARK achieves the property that any SPARK program can be com-
piled by any standard Ada compiler while retaining its SPARK meaning (all SPARK
specifications are placed in stylized Ada comments, and thus they are not used by the
compiler). To meet our goal of migrating normally skilled programmers to a higher-
integrity language, we have been unable to follow SPARK’s approach of designing a
subset of an existing language. Instead, we have designed Spec# to be a superset of an
existing language, aiming to support easy and gradual adoption of its new features.

The B approach [1] uses a different methodology for writing programs: starting
from full specifications and supporting a machine-aided process for stepwise refining
the specifications into compilable programs. The resulting programs are similar in ex-
pressiveness to SPARK programs. This methodology, which has been used with success
for example in constructing the Paris Metro braking system software, produces only cor-
rect programs. However, the skills needed to go through the refinement process make
for a steep learning curve for the system and become a barrier for many programmers.
It is also not obvious how to extend the methodology to more expressive abstractions,
like those in object-oriented programs today.

The Java Modeling Language (JML) [40, 41] is a notation for writing specifications
for Java programs. JML specifications, which include rich flavors of method contracts,
are recorded in Java source code as stylized comments. An impressive array of tools
have been build around JML, including tools for documentation, run-time checking,
unit testing, light-weight contract checking, and program verification [13]. Spec# pro-
vides a more focused methodology than JML, which for example has yet to adopt a full
story for object invariants in the presence of callbacks. The design space of Spec# is
somewhat less constrained than JML, since JML does not seek to alter the underlying
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programming language (which, for example, has let Spec# introduce field initializers
and expose blocks).

The language AsmL [33] has many of the same aspirations as Spec#: to be an ac-
cessible, widely-used specification language tailored for object-oriented .NET systems.
However, AsmL is oriented toward supporting model-based development with its facil-
ities for model programs, test-case generation, and meta-level state exploration [6]. Our
experiences in using AsmL for interface specification [9], run-time verification [10],
and an on-going project with a product group [5] contributed to the design of Spec#.
The companion testing tool SpecExplorer [31], currently in use within Microsoft, uses
the Spec# language to provide model-based testing with features for test-case genera-
tion, explicit-state model checking, and run-time conformance checking.

The Anna [51] specification language for Ada lets programmers write down impor-
tant design decisions. The specifications are compiled into run-time checks.

The first mechanical systems for proving programs correct were conceived and built
several decades ago. These include the early, but not entirely automatic, systems of
King [38, 37] and Deutsch [21], Gypsy [28], and the Stanford Pascal Verifier [52].
More recent program verifiers include Penelope (for Ada) [32] and LOOP (for Java
and JML) [61], both of which require interactive theorem proving.

Setting early efforts by Sites [60] and German [27] into full motion, the Extended
Static Checker for Modula-3 (ESC/Modula-3) [20] changed the rules of the game by
leveraging the power of an automatic theorem prover not for proving the full functional
correctness of programs, but for the limited aim of finding common errors in programs.
Continuing in that tradition, ESC/Java [25] wrapped that technology with a simpler
contract language (a subset of JML), aiming to deliver a practical high-precision tool
for normally skilled programmers. A key ingredient that enables these ESC tools to do
useful checking is the willingness to miss certain errors, since that can lead to a simpler
specification language and to better odds for the automatic theorem prover to succeed
(see also [43]). Boogie attempts to completely verify a program without missing errors;
its ability to do so is bound to depend on the simplicity of the specifications.

Spec# provides a limited type system for non-null types. A more comprehensive
type-system solution has been proposed by Fähndrich and Leino [23]. Their design
deals with the complication of non-null fields by introducing additional raw types for
partially-constructed objects.

Various abstraction facilities that help define modifies clauses in modern object-
oriented languages have been proposed (e.g., [47, 56, 42]).

Our methodology for object invariants and modifies clauses relies on object own-
ership to impose a structure on the heap [4, 46, 7]. Similar effects have been achieved
by ownership types and other alias-confinement strategies (e.g., [17, 12]). The earliest
such use we’ve seen dates back to Alphard [64], where the modifier unique specifies
that a field points to an owned object.

5 Concluding Remarks

The foundation of the Spec# programming system is the Spec# programming method-
ology, the Spec# language, the Spec# compiler, and the Boogie static program verifier.
The methodology prescribes for the first time how to deal soundly with object invariants
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and subclasses in a modular setting. The Spec# language embodies the methodology:
Spec# enriches C# with non-null types, contracts, checked exceptions, comprehensions,
and quantifications. The Spec# compiler uses a combination of static-analysis tech-
niques and run-time checks to guarantee soundness of the language. The verifier tries
to check the consistency between a program and its specifications.

We are trying to make the Spec# system a practically useful software tool that en-
ables normally skilled programmers to write down and verify their assumptions. There-
fore, we start from a familiar programming language and use the metaphor of type
checking for exposing the new capabilities of our static checking technology. We do
not offer a way to axiomatize new mathematical theories. Rather our design focus is
on limited, partial functional specifications, those that can be written using boolean
expressions of the language and quantifiers.

We have designed Spec# to provide incremental benefit as programmers use more of
its features. Even without writing their own specifications, programmers get immediate
benefit as their Spec# code is checked against the partially specified Base Class Library.
Programmers gradually receive more benefit as they add, for example, non-null types
and preconditions to their code.

Our design of Spec# has focused on sequential programs, but we are already ex-
tending our methodology to styles of concurrent programs [36]. It seems plausible that
Spec# could also be of direct help in building secure applications. It would be interest-
ing to explore the combination of our methodology with the stack walking mechanism
of code access security in the context of existing libraries for permissions, authentica-
tion, and cryptography.
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Abstract. The growing complexity of new smart card platforms, in-
cluding multi-subscription or multi-application functionalities, led up to
more and more difficulty in testing such systems. In previous work, we
have introduced a new method for automated test generation from state-
based formal specifications (B abstract machines, UML/OCL models,
Z specifications). This method uses cause-effect analysis and boundary
computation to produce test cases as sequences of operation invocations.
This method is embedded in a model-based test generator which has been
exercised on several applications in the domain of smart card software
(GSM 11-11 application, electronic purse system and Java Card trans-
action mechanism). In all these applications, a B abstract machine was
built specifically for automatic test generation by an independent valida-
tion team. Writing a specific formal model for testing has been shown to
be cost-effective, and has the advantages that it can be tailored towards
the desired test objectives. This paper focuses on showing the applica-
tion of this test generation process from formal models in the context
of Smart Card applications. We describe how the test generation can be
controlled by using several model coverage criteria. These criteria are of
three kinds: multiple condition coverage, boundary-value coverage and
behavior coverage. This makes it possible to generate a systematic mini-
mal test suite achieving strong coverage results. The test engineer chooses
the criteria depending on the application test objectives and then fully
controls the test generation process.

Keywords: Automated test generation, functional testing, boundary
testing, formal specifications, smart card standard.

1 Introduction

In the current industrial practice, more than 50% of the effort of smart card
software development is devoted to dynamic testing, i.e. testing based on code
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execution. Currently, the validation process results in multiple and expensive
phases of testing activity. Testing covers several aspects. Schematically, there
are three families of dynamic testing:

– Unit testing is carried out during the programming activity. It makes sure
that each elementary element (procedure, module, method...) has a correct
behavior, and aims at avoiding errors in these elementary elements during
the execution.

– Functional testing aims at ensuring the correctness of operations and their
conformance to the functional requirements (standards or in-house specifi-
cations).

– Performance testing (load testing or stress testing), aims at ensuring the
system performance when it is subject to significant competition in the access
to resources (processor, memory, disk, network...).

This paper focuses on functional testing (or functional validation) on the
basis of automated test generation and execution from a formal model of the
smart card software under validation.

Currently, the industrial practice for functional testing is mainly manual and
empirical. On the basis of technical requirements documentation, the validation
engineers manually design test cases and write test scripts which are executed
on the system under test. The difficulties of this approach are well-known. The
empiricism of the test design prevents functional coverage of the specifications
to be guaranteed; the quality of functional testing essentially depends on the
know-how of the validation engineer, with poor rationale and reproducibility. So
it is very difficult to control the duration of the testing phase and to determine
its end. This constitutes an indicator of the low maturity of the validation pro-
cess. The limits of these empirical practices are being reinforced by the increase
in the complexity of the systems to be validated. Indeed, what was controllable
at a certain level of complexity can not be anymore when the possibilities of
interactions within the system strongly increase. Let us take the example of
Pin Code management in GSM Smart Cards. In the 2G standard (i.e. GSM
11.11 [1]), manually designing the tests was feasible to obtain various scenarios
(including wrong CHV1 or CHV2 attempts, decreasing the CHV counter, block-
ing the CHV, unblocking, ...) and a good coverage of functionalities. With the
arrival of 3G cards and new standards (i.e. ETSI TS 102 221 [2]), the complexity
of multiple Pin and administration codes, with security domains and different
levels of applications, leads to great difficulty in managing the test design using
informal methods.

The need to offer better methods and tools for functional testing has given
rise to a large amount of research on generating tests from a formal model
of the specifications, see for example [3–7]. Formal methods, and particularly
model-oriented notations such as UML/OCL [8] and B [9] allow an abstract
formalization of the expected behavior of the system under test. These notations
are well-suited for modeling smart card software because of the expressiveness
and abstraction level of set-oriented logic constructs. Moreover the definition of
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an explicit model helps along both test case generation and expected results (i.e.
the test oracle) synthesis.

These last few years, a number of studies and industrial applications on
model-based testing for smart card software validation were conducted with doc-
umented success. It concerns smart card applications or operating systems. For
example, [10] presents results on the CEPS (Common Electronic Purse Specifi-
cations) standard, [11] shows validation results on the GSM 11-11 standard, [12]
uses automated test generation on the WAP Identity Module (WIM) and [13]
describes results applied to the Java Card transaction mechanism. So, model-
based techniques can be apply at different levels of smart card software: from
applications on the basis of the modeling of the APDU to the validation of some
parts of the JCVM or JCRE. This approach makes it possible to really validate
a smart card product at the system, subsystem or component level, against its
requirement specifications.

In previous work [14, 15], we have presented a new technology for automated
test generation from B formal models which produces test cases as sequences of
operations invocations. The underlying method is based on a symbolic animation
of the formal model and uses several testing strategies like cause-effect analysis
and boundary computation [16]. This technology has been extensively exercised
for smart card applications and is now productized under the name LEIRIOS
Test Generator (ltg). ltg makes it possible to generate tests cases and oracle
from the formal model and to translate these abstract generated test cases into
executable test scripts for a particular smart card test execution environment.
This allows a fully automated process for functional testing using a formal model
of the smart card application under test as an input and producing the verdict
assignment for each generated test case.

This paper focuses on mastering the test generation process from formal mod-
els in the context of smart card applications. We describe how test generation
can be controlled by using several model coverage criteria. These criteria are of
three kinds: multiple condition coverage, boundary-value coverage and behavior
coverage. This makes it possible to systematically generate a minimal test suite
achieving strong coverage results. The test engineer chooses the criteria depend-
ing on the application test objectives and then fully controls the test generation
process.

Therefore, the paper is organized as follows. Firstly, we present the test gen-
eration process using the ltg technology in the context of smart card software
validation. Secondly, we describe the implementation of this method using a sim-
plified version of a smart card application. This application is modeled with the
B notation.

2 Test Generation Using Leirios Test Generator Tool

The Leirios Test Generator (ltg) tool results from research undertaken in the
Laboratory of Computer Science of the University of Franche-Comté (LIFC) [14,
15, 17]. ltg is based on the symbolic animation of formal specifications and vari-
ous test generation strategies (i.e. cause-effect testing and boundary testing [16]).
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The symbolic animation makes it possible to traverse the reachability graph of
the formal model to generate test cases (as sequences of operations) on the sys-
tem under test.

ltg provides three user interfaces (see Figure 1):

– the animation interface allows to validate the formal model by simulating its
execution,

– the test generation interface makes it possible to drive the generation process
through coverage and selection criteria,

– the reification interface makes it possible to concretize the generated abstract
test cases into test scripts executable on the system under test.

Fig. 1. Test generation process

ltg can currently process three notations:

– statecharts (STATEMATE) [18],
– B notation [9],
– UML class and state diagram with OCL constraints [8].

Each of these notations is translated into the ltg tool intermediate for-
mat [19]. This format is itself translated into a set of constraints that makes it
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possible to symbolically evaluate the system, basis of animation and test genera-
tion process. In this section, we describe each stage of the ltg generation process
in the context of smart card applications on the basis of a B notation modeling.

2.1 Formal Modeling and Test Generation

The automatic generation of functional tests is based on a formal model of
the functional specifications (standard or proprietary requirements) of the sys-
tem under test. This model shows several characteristics. First of all, it is an
abstract functional model: it represents the expected visible behaviors of the
system under test, but it does not integrate the implementation details (it is not
a program nor an architectural representation). However, abstraction of some
features like cryptographic algorithms for example can be done in the formal
model. Then, this model ought to be sufficiently precise to allow the generation
of test cases (as sequences of operations) including expected outputs. The test
cases/expected outputs pair are directly used during test cases execution on the
system under test, to obtain an automated verdict (success or fail). Moreover,
the model can be adapted to the test objectives for a given validation campaign:
if the test purposes only relate to one part of the system (for example because
other parts have been tested elsewhere), the model has to take it into account,
in particular to avoid a useless combinatorial explosion in the test generation.
Finally, the model has to take into account the control and observation points
of the system under test. On one hand, the system under test provides various
commands or APIs to activate the execution. Basically, for smart card software,
it is mainly APDUs or APIs of JCVM byte-code. On the other hand, the behav-
iors of the system can be observed through various output data like status words
for example. These elements must appear in the model so that the tests can be
executed on the system under test (it is not needed to model control points that
cannot be activated, or data that cannot be observed).

In practice, these modeling rules for the test generation are not very con-
straining. It enforces, in fact, good engineering practice. That way, only one
functional model of the system under test is used either as a reference to clar-
ify technical requirements and functional specifications, and as an input of the
automated test generation process. So, this model can be developed before the
test generation phase. In case of proprietary specifications, it helps validating
the requirements during the phase of the requirements elicitation. The model
can also be developed in a specific way for the test generation as a basis of the
functional validation process.

The state of the art in software engineering presents a lot of modeling no-
tations. Various paradigms were exploited to make it possible to characterize
the expected behaviors of a system, and to offer techniques and tools for vali-
dation and verification of the model. ltg uses various notations depending on
application target:

– Statechart diagrams constitute a notation adapted to use the operational
semantics of automata, embedded controllers for example.
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– The B notation allows to model systems with complex data on which specific
treatments are performed. This notation is well-suited to the modeling of
smart card applications or operation systems. B allows a good abstraction
level and balance between data and control modeling.

– The UML notation covers an extremely broad diversity of diagrams (11
diagrams in UML 2.0); this constitutes an advantage from the point of view
of expressivity but a disadvantage since some UML diagrams do not have
precise semantics. The test generation with ltg takes as input UML class
diagrams and state diagrams with OCL constraints in order to obtain enough
precise models.

The smart card application introduced in section 3, and used to illustrate
the ltg test generation process, is formalized with the B notation.

2.2 Driving the Test Generation Process

The generation of tests is steered by the validation engineer on the basis of
coverage and selection criteria set on the model.

The coverage criteria make it possible to choose the model coverage to use
during test generation. Three families of criteria are proposed: the coverage of
decisions, the coverage of variables boundary values, and the coverage of the
behaviors. These criteria allows the validation engineer to control the test case
explosion on either a coarse or fine basis. The selection criteria make it possible
to focus the generation on a part of the model, variables or states in order to
achieve a specific test objective [20].

2.2.1 Coverage Criteria. The user interface allows the validation engineer
to drive the test generation process using some coverage criteria.

Multiple Conditions in the Decisions
A decision is a predicate which determines a specific behavior. It is built from
elementary conditions. When a decision is constituted by a disjunction of con-
ditions, then several levels of coverage can be applied. Each level corresponds to
a coverage criterion as following:

Decision Coverage (DC): A test set achieves DC when each decision is tested
with a true result, and also with a false result.

Decision/Condition Coverage (D/CC): A test set achieves D/CC when
each condition and each decision in the program are tested with a true result,
and also with a false result (it also achieves both DC and CC coverage).

Modified Condition/Decision Coverage (MC/DC): A test set achieves
MC/DC when each condition in the program is forced to true and to false,
in a scenario where that condition is directly correlated with the outcome of
the decision. A condition is directly correlated with its decision if the result
of the decision changes when the result of the condition changes.

Multiple Condition Coverage (MCC): A test set achieves MCC if it exer-
cises all possible combinations of condition outcomes in each decision.
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These criteria correspond to various classical structural coverage criteria
(code coverage). The choice of a criterion directly influences the number of gen-
erated tests. For example, for a decision Cond1 ∨Cond2 ∨Cond3 (where Cond1,
Cond2 and Cond3 are atomic conditions), the DC criterion produces one test,
both D/CC and MC/DC criteria produce three tests whereas MCC criterion
produces eight tests to cover the true decision (each criterion produces one more
test to cover the false decision).

Equivalent Values Coverage
The behaviors resulting from the model can often be activated with some variable
valuation.

The choice for this criterion is a choice of validation. If the test engineer
considers that the values are uniform, then the choice will be made with the
criterion one value. If it appears useful to generate some tests with various
values of a variable, then the criterion All the values will be selected.

Behavior Coverage
The ltg tool aims at covering all the modeled behaviors of the system. The con-
cept of behavior corresponds to a set of modifications of the system state during
the execution of an operation (representing a command, an API or an APDU).
In the B abstract machine notation, a behavior corresponds to an independent
path through the control-flow graph of an operation.

Two coverage criteria are proposed:

– All behaviors: each behavior of each operation is activated at least once in
the test set,

– Pairs of behaviors: each behavior of each operation is activated at least
once in the test set, and is followed by all the executable behaviors of each
operation.

The criterion Pairs of behaviors is to be used with the greatest caution,
because it provides, for N behaviors, at worst N2 test cases.

2.2.2 Selection Criteria. The selection criteria aim at focusing the test
generation on a fragment of the model to finely control the adequacy of the
generated tests with the objectives of the test campaign and to control the
number of generated tests. The following selection criteria are proposed in the
ltg tool:

– Operation selection: the user can choose to test just a part of the modeled
command,

– State variable value selection: the user can choose to focus the test generation
on specific state variables (updated with specific values).

2.3 Generation Method

The ltg test generation method consists of testing all the possible behaviors of
the specification operations, by traversing the boundary states of the system,
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which are states where at least one state variable has a value at an extremum
– minimum or maximum – of its subdomains. This strategy is controlled by the
coverage and selection criteria previously defined. This method is performed as
follows:

1. Partitioning of the model operation to generate all the possible behaviors,
2. Computation of variable domain boundaries from each behavior (called

boundary goals),
3. Generation of test cases obtained, for each boundary goal, by traversing the

constrained reachability graph of the specifications from the initial state to
reach a state satisfying a boundary goal (this state is called boundary state).

In this approach, a test case is a sequence of the abstract operations defined in
the model. The obtained test cases are thus abstract. Therefore, it is necessary
to translate these sequences of invocations in order to obtain executable test
scripts. The step that makes it possible to transform the abstract test cases into
executable concrete scripts, is called reification or concretization step.

2.4 Executable Test Script Generation

Generated test cases define sequences of operation invocations at an abstract
level. More precisely, each operation invocation appears with the signature of the
formal model and the input values are the same as those from the abstract data
model. We defined and implemented a solution for translating the generated test
cases into executable scripts [13]. This solution is as follows. The test engineer
defines two inputs: a test script pattern and a mapping table. The test script
pattern is a source code file in the target language with some tags indicating
where sequences of operation invocations have to be inserted (cf. Figure 2).

The mapping table contains three kinds of information (cf. Figure 3):

1. The operations and the substituted variables on the abstract operations.
2. The monitoring of the variables and the associated operations.
3. The source equivalence instructions of the operations and the variables.

The first kind of information is extracted automatically from the model.
The two others must be given by the test engineer. This table is similar to the
representation mappings defined in [21]. In fact, the variables represent all kinds
of data from the model (as constants). It is possible to define all data values
into the reification process. For example, the modeled values on or off can be
translated into 2 concrete system values 1 and 0.

The mapping table can be used in two ways:

– Putting directly into the table the translation code. This is more simple, but
it has three issues:
• The first issue is mapping, it is not always possible to have a simple

translation from the abstract level data to the concrete one. For example,
if you don’t model the encryption process and you need it for an external
authentication, you must call it into your reification process to compute
the expected result.
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Fig. 2. Pattern example

Fig. 3. Mapping Table example
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• The second issue is source code validation. It is difficult to validate all
code in subpart of the table.

• The third issue is the use of exceptions. It is the case with the JavaCard.
When you use a JavaCard, some expected exceptions must specifically
be catched. This treatment adds complexity into the code and validation,
and it appears to be not practicable to include these exceptions into the
formal model.

– Using an adapter library. This is better for two reasons:
• Table readability because all knowledge is coded into the library
• Library validation can be done before the test generation.

3 Case Study Example

In this section, we show the use of the LTG approach on a simplified example of
the ETSI TS 102 221 smart card standard [2]. This standard specifies the inter-
face between the Integrated Circuit Card (ICC) and the terminal independently
of the manufacturer, card issuer or operator. During the communication, the ICC
is passive: it only answers the requests sent by the terminal. The applications
contained in the terminal access and modify the files of the ICC through defined
functions and by respecting access conditions of each file. The abstraction level
of the presented example only concerns the function used to verify the pin code.

3.1 B Formal Model

Every elementary file of the ICC containing data has its own specific read access
conditions. The relevant access condition must be fulfilled before the requested
action can take place. Three types of access condition can be found in the stan-
dard:

– ALWays: the action can be performed without any restriction,
– NEV er: the action cannot be performed over the ICC terminal interface

(the ICC may perform the action internally),
– PIN (user verification): the action is possible if a correct PIN code has

already been presented to the terminal during the current session.

The PIN level, once satisfied, remains valid until the end of the card session
as long as the corresponding PIN code remains unblocked, i.e. after three con-
secutive wrong attempts, not necessarily in the same card session, the access
rights previously granted by the PIN code are lost immediately.

The function V ERIFY PIN is used to verify the PIN code presented by
the terminal by comparing it with the relevant one stored in the ICC. The
verification process is allowed only if PIN is not blocked. If the presented PIN
code is correct, the number of remaining PIN attempts shall be reset to its initial
value of 3 and the PIN access condition is satisfied. If the presented PIN code
is false, the number of remaining PIN attempts shall be decremented. After 3
consecutive false PIN presentations, not necessarily in the same card session, the
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PIN shall be blocked. This function always returns a status word. This response,
which has the form of a hexadecimal code, takes one of the values described in
Table 1.

Table 1. Potential response codes

Responses Descriptions
codes

9000 Successful PIN verification

63CX Unsuccessful PIN verification (X indicates
the number of further allowed retries)

6983 PIN blocked

A simplified B operation of the V ERIFY PIN function is presented in
Figure 4.

sw1, sw2 ←− VERIFY PIN(code) =̂
PRE

code ∈ {code1, code2, code3}
THEN

IF (counter PIN = 0)
THEN

sw1 := 698 ‖
sw2 := 3

ELSE
IF (PIN = code)
THEN

counter PIN := 3 ‖
sw1 := 900 ‖
sw2 := 0

ELSE
counter PIN := counter PIN − 1 ‖
sw1 := 63C ‖
sw2 := counter PIN − 1

END
END

END;

Fig. 4. V ERIFY PIN B formal specification

3.2 Partition Analysis

To compute test cases, firstly a translation scheme from B generalized substitu-
tions to before-after predicates is performed on the operations of the specifica-
tion. This translation scheme is precisely defined in the B-Book [9]. Basically, it
consists of unfolding predicates along branches, and introducing primed variables
to denote the after values, using the prd rules from [9, Chap. 6].
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Next, the before-after predicates of each operation can be seen as a control
graph. This control graph is built with arcs and nodes where the arcs out of
a node are alternative choices, each arc contains a decision predicate conjoined
with a substitution in predicate form, and each path through the graph is the
conjunction of its arcs. Note that it is a specific kind of control graph because
B abstract machines have no loops. Figure 5 shows the control graph of the
V ERIFY PIN operation (only decision predicates are printed on the arc).

PIN<>code

PIN=code

counetr_PIN<>0

counter_PIN=0

Fig. 5. Control graph of V ERIFY PIN

Each path through this control graph corresponds to one effect (or behavior)
of the operation. That is why one path is called Effect Disjunctive Normal Form
predicate (EDNF ) [22], or more simply, effect predicate. The set of all the ef-
fect predicates corresponds to the set of all possible behaviors of the original B
operation. The use of effect predicate is similar to the commonly-used disjunc-
tive normal form introduced in previous work [3], except that the disjunction
operator is not initially considered as an alternative choice. This view makes it
possible to independently analyze multiple conditions in the decisions applying
one of the coverage criteria introduced in Section 2.2.1.

This way, each coverage criterion on multiple conditions in the decisions
results in one specific control graph. The translation rules to be applied for each
criterion are precisely explained in [22]. The use of such criteria on the running
example has no sense because all the decisions of the V ERIFY PIN operation
are build without disjunction.

The effect predicates, resulting from the control graph of the V ERIFY PIN
operation (Figure 5), are shown in Table 2. Although it does not appear in this
running example, the state invariant is assumed to hold for all the identified
effect predicates.

These generated effect predicates are directly used to generate boundary
goals and hence boundary states, basis of the ltg test generation process.
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Table 2. Effect predicates of V ERIFY PIN

No
Effect predicates

Before After

P1
code ∈ {code1, code2, code3}∧ sw1′ = 698∧
counter PIN = 0 sw2′ = 3

code ∈ {code1, code2, code3}∧ counter PIN ′ = 3∧
P2 counter PIN �= 0∧ sw1′ = 900∧

PIN = code sw2′ = 0

code ∈ {code1, code2, code3}∧ counter PIN ′ = counter PIN − 1∧
P3 counter PIN �= 0∧ sw1′ = 63C ∧

PIN �= code sw2′ = counter PIN − 1

3.3 Boundary Goal Calculation

The next step of the method consists in calculating one or more boundary goals
from the before-state of each effect predicate. This calculation is performed by
applying variable value coverage criteria, introduced in Section 2.2.1, on the
before-state of effect predicates. Each resulting boundary goal is also a set of
constraints that defines a specific value or domain for each variable used in the
considered before-state predicate.

Table 3 shows the boundary goals calculated from the effect predicates of the
V ERIFY PIN operation using the criterion one value and a minimization and
maximization of the natural variable counter PIN .

Table 3. Boundary goals from V ERIFY PIN

Effect Predicates Boundary goals No

P1 counter PIN = 0 BG1

P2

counter PIN = 1
BG21PIN ∈ {code1, code2, code3}

counter PIN = 3
BG22

PIN ∈ {code1, code2, code3}

P3

counter PIN = 1
BG31

PIN ∈ {code1, code2, code3}
counter PIN = 3

BG32
PIN ∈ {code1, code2, code3}

3.4 Test Case Generation

A generated test case corresponds to a sequence of operation invocations. The
test case is divided into four parts (Figure 6) and thus follows the ISO9646
standard [23].

The first stage of the method is to generate a path (the preamble) from the
initial state to each boundary state of the specification. A boundary state is any
state that satisfies a boundary goal.



Mastering Test Generation from Smart Card Software Formal Models 83

postamble

Preamble invocation

Body invocation

Identification invocation

Postamble invocation

preamble identification

body

Fig. 6. Test case constitution

At this boundary state, one or more boundary values are chosen for the input
parameters of the operation invocations of the body, applying one of the value
coverage criteria previously introduced in Section 2.2.1. The selected criterion
is also applied on the input parameters of the effect predicates in a similar
way that it was done on the state variables. The number of operations to be
activated in the body directly depends on the selection criteria introduced in
Section 2.2.1 (one operation for the All the behaviors criterion, and two for the
Pairs of behaviors criterion).

Next, an identification part consists of operation invocations whose aim is
to determine certain observable aspects of the system at the end of the test
body. In addition to the possible output data returned by the operation(s) in
the body, the output values returned by this third part enable to assign a verdict:
the results obtained by the simulation of the specifications are those expected
during the execution of the same sequence on the implementation.

Finally, the postamble makes it possible to take the system from the final
state of the identification part to the final state of the test case. This last part is
used either to reach a specific state in order to link several test cases together,
or to put the system into a final state in order to generate consistent traces.

Table 4 shows the test cases, generated from the V ERIFY PIN operation
and the boundary goals of the Table 3, using the criterion one value for the code
input parameters (the correct code specified through the PIN state variable is
arbitrary assigned to the value code1), and the All the behaviors criterion for the
body. Due to the simplicity of the example, this table only presents the preamble
and the body of the test cases (the initial state of the machine respectively assigns
3 and code1 for the state variables Counter PIN and PIN).

4 Conclusion

Model-based testing technologies are now mature enough to be introduced in
the industrial process of smart card functional testing. This will help to face the
challenge of functional validation of more and more complex smart card software.

These new validation technologies are based on formalizing the specifications
of the smart card products. This will represent a real effort. Yet, the test gen-
eration makes it possible to obtain an immediate return of investment of this
formalization task. In [11], we have shown that including the modeling task, the
automated test generation process saves 30% of manpower compared with the
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Table 4. Test cases generated from V ERIFY PIN

Boundary Goals Preambles Bodies

BG1 VERIFY PIN(code2) VERIFY PIN(code1)
VERIFY PIN(code2)
VERIFY PIN(code2)

BG21 VERIFY PIN(code2) VERIFY PIN(code1)
VERIFY PIN(code2)

BG22 empty VERIFY PIN(code1)

BG31 VERIFY PIN(code2) VERIFY PIN(code2)
VERIFY PIN(code2)

BG32 empty VERIFY PIN(code2)

manual design process. Also, using formal modeling for test generation will help
to reach the EAL-5 level of the common criteria. Model-based testing is not
an intrusive process and can be easily introduced in the current smart card de-
velopment process. Model-based test generators produce executable test scripts
that can directly be introduced in the configuration management system and
run nightly for non-regression testing. The main change concerns the role of the
test engineer: instead of spending a large amount of time writing test scripts
(which is a tedious and error prone task), he/she can concentrate on more high
value work including specification modeling and test verdict analysis.

In this paper, we have described a toolbox for reducing and controlling test
case explosion, which is a crucial issue for the scalability of test generation.
This is mainly based on coverage and selection criteria. It allows the validation
engineer to cleverly steer the generation process.

References

1. European Telecommunications Standards Institute, F-06921 Sophia Antipolis
cedex - France. GSM 11-11 V7.2.0 Technical Specifications, 1999.

2. European Telecommunications Standards Institute, F-06921 Sophia Antipolis
cedex - France. ETSI TS 102 221 V4.4.0 Technical Specifications, 2001.

3. J. Dick and A. Faivre. Automating the generation and sequencing of test cases
from model-based specifications. In Proceedings of the International Conference on
Formal Methods Europe (FME’93), volume 670 of LNCS, pages 268–284. Springer
Verlag, April 1993.

4. P. Stocks and D.A. Carrington. Test templates: a specification-based testing frame-
work. In Proceedings of the 15th International Conference on Software Engineering
(ICSE’93), pages 405–414, Baltimore, Maryland, May 1993. IEEE Computer So-
ciety Press.

5. R. Hierons. Testing from a Z specification. The Journal of Software Testing,
Verification and Reliability, 7:19–33, 1997.

6. L. Van Aertryck, M. Benveniste, and D. Le Metayer. CASTING: a formally based
software test generation method. In 1st IEEE International Conference on Formal
Engineering Methods (ICFEM’97), pages 99–112, 1997.

7. S. Behnia and H. Waeselynck. Test criteria definition for B models. In Proceedings
of the World Congress on Formal Methods (FM’99), volume 1708 of LNCS, pages
509–529, Toulouse, France, 1999. Springer Verlag.



Mastering Test Generation from Smart Card Software Formal Models 85

8. Object Management Group. UML Standard. http://www.omg.org, 2003.
9. J-R. Abrial. The B-BOOK: Assigning Programs to Meanings. Cambridge Univer-

sity Press, 1996. ISBN 0 521 49619 5.
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Abstract. As small, secure devices become more powerful and more
wide spread, it has become desirable to support the dynamic provision-
ing and updating of multiple applications on such devices. This paper
presents a simple mechanism for performing such provisioning and up-
dating, even if the applications are mutually distrustful. The mechanism
extends CLDC JavaTMtechnology with a classfile attribute that carries
the certificates necessary to enable the added security.

1 Background

The work described here was motivated by a number of developments and con-
siderations:

• Small, secure devices, such as smart cards and cryptographic modules, are
becoming more capable.

• Such devices are being used in more complex situations running multiple
applications.

• Updating the software on such devices once deployed is highly desirable, to
provide both new functionality and software fixes, but poses various security
issues.

• A dynamic provisioning mechanism supporting such activity should be small
and simple, because of device limitations and to aid in verification and cer-
tification.

• The Java platform has appeared on small devices and provides dynamic class
loading and some basic security features.

The resulting solution presented here:

• supports the secure incremental replacement and extension of software on
small devices,

• enables distinct trust communities developing distinct applications,
• accomplishes this by extending a common version of the Java platform, and
• enables additional support for capabilities and running untrusted code.
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2 The Java Context

The Java platform was the starting point for this investigation because it already
provides various features supporting security and dynamic provisioning. Unlike
C and C++, for example, it guarantees type and pointer safety. Various Java
versions provide different forms of application isolation. And all versions support
some mechanism for dynamically installing classes.

2.1 The Connected Limited Device Configuration

The work described here is specifically aimed at the next generation of smart
cards and other similar small devices. Thus the technology base used is the Con-
nected Limited Device Configuration (CLDC) version of Java 2 Platform, Micro
Edition (J2METMtechnology) [1]. This version of the Java platform is the small-
est one that supports most standard features of the Java language (in contrast
to the much more restrictive Java CardTMspecification [2]). It outlines a basic
set of libraries and Java virtual machine features. Compliance with the CLDC
specification is demonstrated by passing the CLDC Technology Compatibility
Kit (TCK) tests [3].

The heart of the configuration is the K Virtual Machine (KVM) [4]. The
KVM is a virtual machine designed with the constraints of small devices in
mind. Named to indicate that its size is measured in tens of kilobytes, the KVM
is simple, in order to minimize memory footprint. This simplicity makes the
KVM easy to understand and modify, important characteristics in the context
of security.

2.2 CLDC Security

The CLDC security model [1, section 3.4] defines three types of security, low-level
VM security, application-level security, and end-to-end security.

Low-level VM security is defined as the characteristic that “an application
must not be able to harm the device in which it is running, or crash the virtual
machine itself.” In the context of the KVM this means that CLDC verification
must be done on all classfiles.

End-to-end security refers to network-based solution-oriented security, which
is outside the scope of the CLDC specification.

Application level security is defined as controlling access to external re-
sources, which is done on the larger J2SE TMplatform by the security manager
[5]. The security manager was deemed to have too large a memory footprint for
the CLDC, so a sandbox model is used instead. Specifically:

• Only a limited set of APIs is available (the CLDC libraries, profiles, and
manufacturer-specific classes).

• Such system classes cannot be overridden.
• No user-defined class loaders are allowed.
• No native functions can be dynamically loaded onto the device.
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• The class lookup order may not be manipulated.
• By default, an application may only load classes from its own JAR file.
• In addition, a CLDC implementation need not support multiple concurrent

applications.

The CLDC security model is a good starting point for a more secure platform.
It is small, simple, and relatively static, which is good both for small devices
and for increased security. It has a static set of APIs, system classes, and native
functions, and a single system class loader. It has a simple application model.
It is possible to be compliant with the CLDC and provide greater security than
the CLDC mandates.

2.3 MIDP Security

The Mobile Information Device Profile (MIDP) [6] is a set of additions to the
base CLDC platform that supports mobile phones. Among the additions is a
security mechanism [7], [8]. The MIDP security mechanism is based on two
concepts: protection domains and JAR file signing.

A protection domain is a set of permissions granted an application, and
defines the application’s sandbox (see [9] and [10] for descriptions of nuanced
sandboxes). An application runs in a single protection domain. A MIDP plat-
form may define various domains, but required domains include Manufacturer,
Operator, Third-Party, and Untrusted. Some permissions may only be granted
through interaction with the user of the device (confirming use of the permis-
sion).

JAR file signing is used to verify the authenticity of an application. MIDP
requires that an application reside in a single JAR file, which is typically signed
using X.509 PKI infrastructure, support for which is required by the MIDP
standard. The MIDP device uses the certificates it possesses to authenticate the
application.

This security model has limitations with respect to high security devices.
Specifically:

• Permissions are coarse grained and set when the device is manufactured. A
set of permissions is a priori bound to a domain, and an entire application
then executes in one of those predefined domains.

• Support for X.509 PKI is required, which may not be appropriate and can
be cumbersome.

• User interaction may be required to grant some permissions.

In sum, the MIDP platform has been carefully tuned for mobile phones. High
security devices are different.

2.4 Compatibility and Security Goals

The broad goal of this work is to develop a more secure version of the KVM
(the Secure KVM, or SKVM), with a particular focus on dynamic provisioning.
More specifically:
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• Correct CLDC/KVM applications should not be able to distinguish the
KVM from the SKVM on the basis of observed behavior.

• Correctly implemented secure applications operating normally should not
be able to distinguish the KVM from the SKVM on the basis of observed
behavior.

• Only malicious classes should elicit different behavior from the SKVM than
they would from the KVM.

• The SKVM must pass the proper compatibility tests (the CLDC TCK).

Additionally, the SKVM should be capable of being validated as secure,
specifically achieving FIPS 140-2 certification [11]. FIPS 140-2 is a specifica-
tion drawn up by the National Institute of Standards and Technology, defining
security requirements for cryptographic modules. In addition to being the stip-
ulated requirement for any cryptographic module acquired by the US govern-
ment, FIPS140-2 has become a de facto standard for cryptographic equipment
and provides a level of assurance that the equipment was designed with adequate
consideration of security. The standard spells out requirements in 11 different
areas including physical security, hardware security, software security, and key
management. A cryptographic module can be certified to any of four increasing
levels of assurance. For example, the IBM 4758 has been certified at the highest
level (of the predecessor FIPS 140-1 standard) [12].

3 Key Precepts

A number of key precepts guided the design of the SKVM architecture (see [13],
[14], [15]).

3.1 Simplicity

The overriding precept is simplicity. It has several important benefits:

• It minimizes bugs and possible points of compromise.
• It keeps the system’s memory footprint small.
• It makes the system easier for application developers to understand, which

in turn makes it easier for them to implement secure applications.
• It makes the system easier to validate for security. Such validation typically

involves modeling security state transitions with a state machine (this is the
paradigm required for FIPS 140-2 certification).

3.2 Fail-Safe Design

When a fail-safe system encounters an unanticipated condition, it always lapses
into a conservative, secure state. Such conditions can be genuinely unanticipated
or can be a result of a partial malfunction of the system. No matter how com-
prehensively a system is analyzed, it is unlikely that all possible combinations of
conditions have been anticipated. Fail-safe design ensures that the system makes
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conservative assumptions and lapses into a secure state when an unanticipated
condition is encountered.

A watchdog signal in a battery-powered system is an example of fail-safe
design. As long as periodic signals arrive from the watchdog, the CPU continues
normal operation. If the battery runs low, the periodic watchdog signal is termi-
nated, and the CPU shuts down. Note that if the watchdog signal is interrupted
in any other way (for example, due to physical tampering), the CPU also shuts
down – it lapses into a secure state.

3.3 Static Specification of Security Policy

The ability to modify policy dynamically is usually considered a desirable fea-
ture. For a secure device, it is also a major source of weaknesses. Dynamic mod-
ification of security policy is almost always a cause of subtle bugs. In contrast,
a static security model forces the application developer to consider the security
aspects of the software architecture earlier and more completely in the design
process. A static model is also in general easier to analyze and vet because it is
simpler and usually has fewer states and state transitions than a dynamic model.

3.4 Explicit Specification of Security

The combination of static security specification and fail-safe design dictates that
security issues – specifically the granting of privileges – involve an explicit act
on the part of an object, and that any privilege not explicitly granted is au-
tomatically denied. The SKVM implements this precept within the confines of
the semantics of the Java programming language (hereinafter referred to as the
Language).

As an example of how the Language semantics affects this precept, note that
a class has the right to manipulate those parts of it (including protected data)
that are inherited from its ancestors. Thus when a class grants privileges to
another class, through the Language semantics it automatically and implicitly
grants (some) access to all its ancestors in the inheritance tree.

3.5 Security at the VM Level

Implementing security policy using only classes is attractive for several reasons,
including extensibility and uniformity. However, good security engineering sug-
gests that the core of the security framework be implemented at the VM level.
The challenge is to keep the bare minimum in the VM level and leave as much
as possible at the language level so that a high level of security assurance can
be established without compromising system flexibility.

3.6 Reliance on Data Authenticity, Not Secrecy

Secrets stored on a device, such as symmetric or private keys, introduce poten-
tial vulnerabilities and complicate responses to security compromises. They also
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complicate the device and increase its cost since the device must now defend the
secret against disclosure. In contrast, use of verifiably authentic data, such as
certificates verifiable with public keys, does not create such weaknesses.

The SKVM is designed so that security assurance relies only on the ability
of the device to keep data authentic. The SKVM does not require the device to
keep a secret.

4 The SKVM Security Architecture

This and following sections present the components of the SKVM security ar-
chitecture:

• The notion of trust;
• The implementation of trust;
• The characteristics of other necessary VM features; and
• The application model.

4.1 Owners, Trust Relationships, and the Trust Community

In a well-designed, secure, closed system every class, interface, and package –
every component – has an owner, an entity (nominally a human) with ultimate
responsibility for it.

Systems are often assembled from components developed by different owners.
One owner may or may not trust another, based on their relationship. Owners
that do trust one another form a community, however informally, and grant each
other privileges.

These basic observations are the foundation of the SKVM security architec-
ture. It implements these notions of ownership and trust in the context of the
CLDC.

4.2 Trusted Classes

The SKVM supports trust relationships and trust communities by providing the
framework and features necessary to request and grant privileges. The SKVM
itself maintains no explicit information on trust relationships and trust commu-
nities other than what each class brings in.

Intuitively, a trusted class provides functionality for some trusted community
of owners. Trusted classes are the means by which sensitive information is en-
capsulated. Trusted classes also have privileges and can in turn grant privileges
to other trusted classes.

As mentioned earlier, a trusted class has an owner. It is the responsibility of
the owner to request and obtain the necessary privileges for the trusted class. If
class X needs a particular privilege from class Y , the owner of class X will have
to acquire this privilege from the owner of the class Y . These privileges come
in the form of certificates signed by Y ’s owner and held by class X . They are
verified by the SKVM when class X is loaded.

All the certificates of a trusted class are bundled into a new class attribute
called a trust attribute. (Class attributes are the classfile mechanism used to
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store extra information about a class, and are described in the Java Virtual
Machine Specification [16, section 4.7].)

Classes that do not have a (valid) trust attribute have no privileges and are
untrusted. Untrusted classes are not allowed to load or execute (subject to an
optional feature discussed in Section 7).

4.3 Trusted Classes and Subclassing

The fundamental privilege enforced by the SKVM is a subclassing privilege that
enables one class to install itself as a subclass of another. In some sense this
privilege is the privilege to modify, in a controlled way, the code on the device.
It is referred to as the S privilege. Subclassing also includes the power to access
the protected fields, methods, and constructors of all the superclasses of the
subclassing class, regardless of package.

The owner of the root class java.lang.Object (typically the owner of the
device running the SKVM) grants the S privilege to the trusted owner of each
of Object’s direct subclasses. These owners in turn grant S privileges to owners
they trust. Thus, for the S privilege, the owner of Object can trace a chain of
grants of the S privilege to the owner of every class on the device.

Note that accesses to static and instance methods and fields are controlled
through the Language’s private, protected, and public tagging [17, section 6.6].
Note that the Java Virtual Machine Specification stipulates that accesses have to
be checked at run time [16, sections 5.4.3 and 5.4.4]. Information about private,
protected, and public access permissions are stored in the classfile [16, sections
4.5 and 4.6] to enable such run time checking. Also note that the ability to
subclass a class does not imply the ability to subclass a parent of the class in
the class hierarchy independently.

4.4 Trusted Classes and Packages

The Language employs the package construct to bundle groups of classfiles, not
necessarily related in the class hierarchy, into a single name space [17, chapter
7]. Packages provide a natural way of organizing and referring to classes and
methods. Significantly, classes within a package have access rights to each other’s
protected fields and methods. Each class is contained in exactly one package
(possibly the unnamed package).

In the SKVM, package access must be controlled in order to control access
to protected fields and methods (see [18], page 189).

The mechanism used in the SKVM for controlling package access has three
elements:

• A package has an owner and an owner-managed key-pair, analogous to that
used for subclassing.

• A package’s public key is part of the package’s name. If someone tries to put
a class in a package without the right public key, the class will be put in a
different package. The SKVM simply uses the public key as part of the name
space reference.
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• Every class is in a package. If a class does not specify a package the SKVM
puts it in the unnamed package.

Note that the VM does not have an a priori list of packages. The VM first
knows about a package when a class belonging to the package is loaded (or,
optionally, when installed on the device; see below). The first loaded class defines
the package to the SKVM, and any subsequent classes belonging to the same
package are checked for consistency. It is the responsibility of all classes in a
package to identify the package identically, by name as well as public key.

There may appear to be a security weakness because classes bring in both the
package signature as well as the key with which the signature is verified. In fact,
while a malicious class could generate a fake package key and a signature consis-
tent with this fake key, it would not be able to join an existing package because
it would not be able to replicate the signature associated with the package’s
private key; it would instead be put in a distinct package.

The Language defines an unnamed package and assigns all classes that do not
specify a package name to this unnamed package. A class that does not specify
a package is automatically put into the unnamed package. Any package public
key specified in the trust attribute of a class that does not specify a package
name is ignored.

While the unnamed package is a convenience during code development, a
secure application built for the SKVM should specify packages for all its classes.
To encourage such a practice and to provide higher levels of security assurance,
the SKVM has a flag that, when set, prevents the loading of any class that does
not specify a package. The SKVM by default runs with this flag cleared. Once
set, the flag cannot be cleared without restarting the SKVM.

4.5 Interfaces

With one notable exception, an interface specifies functionality without provid-
ing an implementation [17, chapter 9]. The exception is for static initialized
fields. In such cases, the initializing expression may contain requests to instan-
tiate objects, which may require SKVM privileges. It is therefore necessary to
associate privileges with an interface.

As with a class, an interface has a nominal owner. The owner is responsi-
ble for securing all required privileges for the interface. A trusted interface X
demonstrates that it can extend a trusted interface Y by presenting a certifi-
cate signed by Y . This certificate is analogous to the subclassing certificate and
employs the same data structure and mechanisms.

Note that a class that implements an interface can be independently accessed
and manipulated as a class in its own right. In such cases, normal Language
semantics dictate what can be accessed.

4.6 Inner Classes

The Language allows the definition of inner classes as members of other classes
[17, section 8.1.2]. These inner classes are implemented through compiler intro-
duced source code transformations and appear to the VM as distinct classfiles.
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The SKVM requires a trusted inner class to present a trust attribute, as any
other trusted class would. It is the responsibility of the owner of the trusted
inner class to generate this trust attribute. Of course, any tool that supports
generation of trust attributes may wish to facilitate the construction of attributes
for inner classes. For instance, the tool might handle all name transformations
transparently, and employ the same key-pairs for the inner class as it employs
for the outer, enclosing class.

The source code transformations introduced by the compiler to support inner
classes implement a weakening of access permissions. This is necessary because
there is no support in Java virtual machines for direct access to a private mem-
ber of a class from another class. The specific instances of access permission
weakening are:

• Private inner classes are implemented as package level classes.
• Protected inner classes are implemented as public level classes.
• Private class members (fields or methods) that are visible between classes

(due to the shared scoping relationship between inner and enclosing classes)
are indirectly implemented with package level access. Note that sharing of
private members between classes participating in an inner class relationship
is achieved by a local protocol of access methods that reflect the mode of
access expressed in the source. These methods have package scope and as
such are open to any class within the same package.

Like other VMs, the SKVM cannot reliably identify inner classes and there-
fore cannot determine when such access permissions have been weakened. There-
fore, developers for the SKVM platform must be aware of these issues. The
problems due to weakened access permissions can be avoided by adopting the
following guidelines:

• Classes in an enclosing/inner class relationship should never rely on the
shared scoping of their private members.

• Inner classes should never be declared private or protected.

Following such guidelines will ensure that there is always a one-to-one corre-
spondence between the source level access permissions of a class and its classfile
implementation.

The use of anonymous inner classes should be avoided due to the difficulties
of managing their trust relationships.

The use of non-static inner classes should also be avoided since they are in
a sense syntactic sugar for static inner classes and thus hide detail that makes
security analysis harder.

4.7 Exceptions and Trust Relationships

When an exception occurs in a running program, the VM unwinds the call stack
until the most recently installed relevant exception handler is encountered, which
then catches the exception [17, section 11.3] [16, sections 2.16.2 and 3.10]. The
code that throws the exception is never resumed.
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There are security issues in adopting such a model directly in the SKVM.
For instance, a class could install an exception handler and, at a later stage,
a different class could throw an exception. This second class may not enjoy
any trust relationship with the first class. As a result there is an unanticipated
transfer of control that complicates security analysis and becomes a potential
vulnerability.

Note that exceptions are simply standard objects with the additional prop-
erty that they are derived (indirectly or directly) from java.lang.Throwable.
As such, package access semantics can be leveraged to prevent classes external
to a package from catching exceptions thrown from within the package. A non-
public exception (one whose class definition does not include the public access
modifier) is invisible to all classes outside its package and therefore no handler
in these external classes can explicitly declare to catch exceptions.

Unfortunately, package access semantics do not completely control excep-
tion handlers. It is legal to hold a reference to an object even though the static
type of the reference may preclude any knowledge of the object’s complete type.
This can be achieved with a reference to publicly accessible base type (such as
java.lang.Object). This means that exception handlers can catch exceptions
via base class declarations. The lowest common base class for every exception
is java.lang.Throwable. A handler declared to catch such an exception would
catch package-restricted exceptions. While Language semantics prevent the han-
dler’s scope from using the exception as an instance of its complete type, the
mere fact that it can be caught presents a means to mask out or alter secure
control flow transfer. Thus, a mechanism for preventing this interference is built
into the SKVM.

Each class includes a flag within its trust attribute. If the flag is cleared, then
any package-restricted exception thrown by X can only be caught by exception
handlers within the same package as the throwing class. If this flag is set in class
X , then standard exception semantics are applied when an exception is thrown
by any method in X .

Note that if all classes that potentially throw exceptions set this flag, ex-
ception handling in the SKVM will be identical to, and compatible with, the
KVM.

5 The Trust Attribute

The trust attribute is a collection of data that is attached to each trusted class
and that determines its privileges. The trust attribute is primarily composed
of a number of public keys. The use of these keys to sign and verify privileges
constitutes the crux of the SKVM. The trust attribute is understood by the
SKVM and ignored by other VMs.

With each package P there is an associated key pair (PKP , pkP ), generated
by the owner of the package. With each class X there is an associated key
pair, the subclassing key pair (SKX , skX). The SKVM does not require that
all these key-pairs be distinct. Indeed, a key pair can be employed in multiple
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roles depending on the underlying security policy that the SKVM is enforcing
(subclass and package being the same, for example).

In the following, class X belongs in package P and wishes to subclass Y . The
trust attribute for X is described in Table 1.

Table 1. Components of a Trust Attribute

TX A non-negative integral timestamp indicating the time of cre-
ation of X. This timestamp is used for version control on in-
stallation and loading, and it is assumed that newer versions
have larger timestamps than older versions.

SKX The public key used for verifying attempts to subclass X.

SHY (X|T |Cert) A hash of class X, its timestamp TX , and all the fields in
the trust attribute minus this field, signed by the subclassing
private key of parent class Y . This hash is the signature that
is used to validate the subclassing privilege, as well as the
authenticity of the classfile and the trust attribute.

PKP The public key of the package P (if any) that X belongs in.
This is needed for identification of packages and exception
processing.

PHP (X|T ) The hash of class X and its timestamp TX signed by the
private key pkP of package P . This signature is verified with
the public key PKP and is the means by which the SKVM
knows that class X belongs in package P .

EFX A constant specifying how package-private exceptions are
handled in the face of handlers declared to catch them via
publicly accessible base classes. The constant takes on values
yes (all classes can catch package-private exceptions thrown
by this class) and no (only trusted classes in the same pack-
age as the class throwing the exception can catch it).

The classfile described here refers to the CLDC classfile, which includes the
traditional J2SE classfile and the stack-maps generated by the CLDC preverifier.

The timestamp above is part of the hash in order to validate the time the
class was hashed. This guarantees the integrity of versioning, which is based on
the timestamp.

A rogue class cannot use the public key of another package because it will
not be able to generate the necessary signed hash, since it does not have access
to the private key. The rogue class could generate a separate key pair (in which
case it would have the private key of that pair), but the public keys would not
match the package keys of other classes and the class will end up in its own
package. Since packages are determined by equivalence classes defined on the
relation of “equality of public keys”, it is not possible for a rogue class to forge
admission to a package.
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The EFX flag in the trust attribute is designed to be fail-safe. Specifically,
the false or no setting is the secure setting. It is assumed that the false or no
setting is associated with the zeroed state in the platform (typically integer 0 or
Boolean False).

Now consider what happens when the SKVM receives class X and wishes to
install it. As a trusted class, X subclasses Y and should be installed as its child.
Class X demonstrates that it has this privilege by presenting SHY (X |T |Cert).
This same signature also establishes that the owner of Y has vouched for the
integrity of the contents of X . This can be verified with Y ’s subclassing public
key, which can be found in Y ’s certificate. (Since Y is already installed, its
certificate must have been previously validated.)

Class X proves that it has the privilege of belonging in package P by sub-
jecting the signed hash PHP (X |T ) to verification using the public key stored
with the package. Membership in an existing package is demonstrated by using
the same package public key as an existing class.

6 Contextual Issues

The SKVM as described above requires certain platform support to operate
properly. In particular, classfiles stored on device must be handled correctly,
and specific cryptographic functions must be available.

6.1 When Trust Attributes Are Checked

In general, the arrival and storage of classfiles on a device will occur before
the SKVM needs to load them (as is generally the case with CLDC platforms).
In addition, some of the new classfiles arriving on a device may replace existing
ones. These circumstances make it potentially desirable to check trust attributes
at times other than class loading.

The CLDC specification [1, section 5.3] gives the platform implementor con-
siderable freedom. The classfile lookup order is implementation dependent and a
classpath is not required. It is required that the lookup order cannot be manip-
ulated by the application programmer in any way. (Note that the platform must
read classfiles and JAR files [1, section 5.3.1]. Applications that are “distributed
publicly” on a network open to the public must be in JAR format. Also note
that the JAR file loading boundary required by the CLDC specification is not
necessary in the SKVM, since the SKVM uses a stronger security mechanism.
Nonetheless, the SKVM supports this boundary in strict KVM mode.)

The SKVM follows the CLDC specification and thus does not impose an
ordering or, therefore a particular time for checking trust attributes. The earliest
attributes can be checked is when classfiles arrive on a device; the latest is when
they are executed for the first time (per application), the traditional load time).

Various issues arise that affect order considerations. First, for devices that
may install classfiles from a potentially malicious source, buffer overflow attacks
via classfiles with bogus attributes are possible. A device could be flooded with
apparently proper classfiles that can only be flushed when their attributes are
checked. Second, newly arrived classfiles may dynamically replace a subset of
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the classes in an application, which requires versioning and the rechecking of
attributes.

The way to deal with the buffer overflow problem is to check trust attributes
when classfiles arrive on the platform. Otherwise, classfiles would have to be
kept around indefinitely. Applications must therefore be engineered to install
their classes in an order that allows them to be verified as trusted when they are
installed. The burden of meeting this constraint is on the application designer:
the superclass must be either already installed or immediately available.

One implementation of this checking is to use an arrival buffer. Classes ar-
riving on the device are initially put in this buffer and are moved into classfile
storage when their trust attributes are verified. JAR files are also unpacked in
this buffer. When a classfile arrives its subclassing certificate is checked against
its superclass, if extant. If the trust attribute or superclass is absent, the classfile
is flushed. If the subclassing certificate is valid the classfile is moved to classfile
storage; otherwise it is flushed.

With respect to the versioning issue, the SKVM requires the trust attribute
of each classfile to include a time stamp. The trust attribute checker (whenever
run) inspects the time stamps, validates the newest class, and discards the old
class (or marks it as to be deleted if the old classfile is being used by a running
application).

Rechecking of attributes can be done in one of two ways. If attribute check-
ing is done at installation then the installation of a replacement class in turn
requires that classes granted privileges by it must be rechecked, if anything in its
attribute has changed. If checking is done dynamically, then no extra processing
is necessary. (Note that binary compatibility is important but is not an SKVM
issue; it is rather handled by the VM in due course.)

6.2 Cryptographic Support

The SKVM requires cryptographic support to enforce security. Specifically, it
requires two functions, one for digital signature support and one for crypto-
graphic hash computation. The SKVM provides basic implementations of these
functions, but allows deployment of custom versions.

The basic functions are RSA with a 1024-modulus key as the signature al-
gorithm, and MD5 as the cryptographic hash function. RSA is a public key
algorithm. It operates by creating two keys, a public key and a private key. As
the names suggest, the private key is kept private and used for signing certifi-
cates while the public key is made known to everyone for verifying certificate
signatures. MD5 is a collision-free message digest, or hash function. It computes
a 128-bit hash value of an array of data.

Note that RSA is a de facto standard and has the advantage of very rapid
signature verification times. However, this is at the expense of rather large sig-
natures. This is not an issue for the subclass privilege, which is verified only
on class loading and can be discarded afterwards. However, instantiation certifi-
cates (described in Section 7) have to be maintained in the VM, and each such
certificate requires 1024 bits (128 bytes) of storage.



Secure, Fine-Grained Dynamic Provisioning on Small Devices 99

If standard RSA certificate size is found to be unacceptable, either elliptic-
curve RSA, which is secure with approximately 155bits (≈ 20 bytes), or DSA, for
which the signatures are 2×160 = 320bits (40 bytes), can be employed. However,
there is a (running time) performance penalty in the use of either ECC or DSA.
In addition, DSA optimizes signing at the expense of verification and can be up
to 100 times slower than RSA.

Message Authentication Codes (MAC) are an alternative to public key based
hash-and-sign signatures. While MACs are considerably less demanding in terms
of storage and computation time, a MAC requires a symmetric secret key. The
use of MACs should be avoided because they make SKVM integrity depend on
secrets internal to the SKVM, violating the precept against secrecy. Additionally,
they require infrastructure for the storage and management of secret keys, and
require the secure transmission of classfiles (since keys appear in the clear in the
trust attribute). Nevertheless, the choice remains with the platform owner.

Platform owners can integrate custom signature and hash algorithms into the
SKVM. However, for security reasons, these must be integrated at the VM level,
and not at the class level, in keeping with the precept of static specification.

Note that the SKVM architecture does not specify how subclassing and in-
stantiation verification keys are to be managed. Nor does it stipulate how the
system protects itself against other forms of attack on public key systems such
as spoofing and man-in-the-middle. Such issues depend on the requirements of
the application and the trusted community. Note however that since all keys are
public keys (unless MACs are used), confidentiality is not required and there
is therefore no need to store secrets. All that is required is that the keys be
authentic, and the mechanism by which classfiles are loaded ensures this.

6.3 Security-Related Exceptions

The SKVM throws an exception when a privilege verification fails. Depending on
the circumstances, IllegalSubclassException or IllegalPackageException
is thrown by the VM when a privilege certificate could not be verified successfully.
When the VM throws one of these exceptions it uses an instance created at VM
startup. Establishing whether or not an exception being propagated resulted
from a security violation is thus reduced to a simple object pointer comparison.

6.4 SKVM Applications and Their Development

SKVM applications are CLDC applications: programs with a main method [1,
section 3.2]. An application’s component classes are loaded when necessary.
When the class containing the main method is loaded, the application is regis-
tered and is then run. Class loading is controlled by the security mechanisms
described above.

The SKVM employs a Java Application Manager, or JAM, similar to JAMs
used with the KVM. The JAM assumes that there is local storage (typically
a file system or a local database) that stores installed classes and from which



100 William R. Bush et al.

classes can be loaded. The SKVM architecture does not require that the com-
plete application be resident – components may be loaded dynamically over a
communication channel – although an implementation may impose this restric-
tion. The JAM starts the SKVM and indicates to it which application (which
classfile with a main method) should be run.

For the purposes of defining trusted communities and establishing the initial
trust relationships, the CLDC library can be thought of as owned by the plat-
form. Applications wishing to execute on the platform will have to request and
obtain privileges to subclass the CLDC library.

If the platform is one of many being issued by an authority (such as a payment
token being issued by a credit card company) then all platforms may share a
common CLDC owner and hence have identical subclassing and instance-creation
public keys.

For development purposes, a platform authority can release a version of the
platform with a different CLDC signing key-pair created purely for application
development, with the private key released to developers. This allows the devel-
opers to sign their classes each time they are changed, without having to request
the authority to do so. When the application is complete, it is installed on the
production platform with a different set of keys, with the CLDC signing key
kept private.

The SKVM architecture does not support multiple applications running in
the same virtual machine (but rather multiple suppliers of code). The goal of
such support is to protect applications from each other to a degree comparable
with process isolation on a standard operating system, less protection than the
SKVM aims to provide.

The KVM supports the KVM Debug Wire Protocol [19], a debugging proto-
col that is a subset of the JDWP standard. The SKVM implements the KDWP,
but only during debugging. It obviously must be removed for deployment. The
KDWP may be enhanced to display the additional information present in the
SKVM, such as that pertaining to trusted and untrusted space.

The security support in the SKVM is enabled by configuration settings. Given
fail-safe design principles, these settings default to secure modes. However, they
can be set so that all security features in the SKVM visible to developers are
disabled, with the result that the SKVM is identical in function to the KVM.

For backward compatibility, the SKVM can be initiated in strict KVM mode.
In this mode, SKVM security features are disabled. Trust attributes are not
required for any of the classes. Strict KVM mode is enabled if the class containing
the main method has no security attribute. The KVM default restriction that
all classes in an application be in a single JAR file is enforced in strict KVM
mode [1, section 3.4.2.3].

7 Additional Optional Functionality
in the Trust Attribute

The trust attribute mechanism presented above can be extended with addi-
tional information to support other, optional, security-related features besides
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dynamic provisioning. The specific extensions explored in the SKVM involve
implementing a form of capability-based control and enabling limited execution
of untrusted classes.

7.1 Support for Capability-Oriented Design
Good object-oriented and secure programming practice mandates the factoring
and encapsulation of data. This factoring enables a capability-based style of pro-
gramming [20], in which a capability is represented by an object, and references
to that object are controlled. Ideally, all references to a capability object would
be monitored, and unauthorized uses prevented, but the overhead of checking
all references is too great.

A simpler (less powerful, and less secure) mechanism can be constructed to
control the creation of objects (as capabilities) and references to static fields and
methods. With this compromise scheme, the creation of capabilities is monitored
but their use is not. Class-based references are also monitored.

This mechanism has been implemented in the SKVM via another trust at-
tribute privilege: the privilege to create a new instance of (that is, instantiate)
an object and reference its static methods and fields. This privilege is referred
to as the A (“access”) privilege, with the sense of accessing the resources of a
class.

7.2 Domains
In practice the access privilege can be burdensome to administer. A collection
of classes may want to share the privilege to access one another’s class resources
(instantiation and access to static methods and fields), especially if the classes
have been developed together, provide a coherent module of functionality, or
are within a shared security perimeter. To reduce the burden of maintaining
individual class access privileges, the SKVM supports domains.

A domain privilege is shared among a group of classes in a domain and
allows each class to instantiate all other classes in the domain and reference
their static methods and fields. With domains, individual access privileges for
each class are no longer required. A class may be in only one domain. Domains,
reflecting security concerns only (as opposed to name space issues), are distinct
from packages, but may be made coincident with them.

Typically, domains allow groups of classes that reference each other frequently
(whether through instantiation or static method or field access) to do so without
needing to verify access privileges each time. Such privilege verification involves
verifying a signature against a public key and can be costly in execution time as
well as memory (to store the signature). With domains, an inter-class resource
access is permitted as long as the domain membership keys of the accessing
and accessed class are equal. In this way, domains simplify application design,
application development, and SKVM implementation.

7.3 Additions to the Trust Attribute to Support Capabilities
With each class X there is the associated class resource access key pair (AKX ,
akX).
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With each domain D there is an associated key pair (DKD, dkD) generated
by the owner of the domain.

Consider a class X that belongs in package P and domain D and wishes to
access the resources in class Z (not in domain D). The additional components
of the trust attribute for X relating to capabilities for this type of access are
described in Table 2.

Table 2. Components of a Trust Attribute for supporting Capabilities

AKX A public key used to verify access requests to the resources
of class X.

AHZ(X|T ) A hash of class X and its timestamp TX signed by the class
resource access private key of class Z. This signature is ver-
ified with the public key AKZ . Note that there are as many
hashes of the form AHZ(X|T ) as there are resources that X
needs to access from different classes.

DKD The public key of the domain D that X belongs in. This key
determines the identity of the domain.

DHD(X|T ) The hash of class X and its timestamp TX signed by the
private key dkD of domain D. This signature is verified with
the public key DKD and is the means by which the SKVM
knows that class X belongs in domain D.

If class X now wishes to create an instance of class Z, it demonstrates that
it has this privilege by having the signed hash AHZ(X |T ), which can be verified
with AKZ , the public key found in Z’s certificate.

Class X proves that it has the privilege of belonging in domain D by sub-
jecting the signed hash DHD(X |T ) to verification using the public key stored
with the domain. Membership in an existing domain is demonstrated by using
the same domain public key as an existing class.

The ability to subclass or to create an object implies the ability to subclass
or initialize any parent as part of the act of subclassing or creating the object.
These are standard Language rules. Note however that the ability to subclass or
create an object does not imply the ability to subclass or create an object of a
parent class in the class hierarchy independently. The operation on the parent
class can only happen as a direct and automatic result of the operation on the
class itself. For example, if class X has permission to create an object of class
B, which subclasses A, then it does not follow that X can explicitly create an
object of class A. To do so requires that X have explicit permission from A.

As with packages, a rogue class cannot use the public key of another domain
because it will not be able to generate the necessary signed hash, since it does
not have access to the private key. The rogue class could generate a separate key
pair (in which case it would have the private key of that pair), but the public
keys would not match the domain keys of other classes and the class will end up
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in its own domain. Since domains are determined by equivalence classes defined
on the relation of “equality of public keys”, it is not possible for a rogue class to
forge admission to a domain.

7.4 Loading and Executing Untrusted Classes

Untrusted classes are ones without any trust attributes (as distinguished from
classes with invalid trust attributes, which are mistrusted). Such classes can pro-
vide useful, CLDC-standard functionality if their execution is strictly controlled.

In the SKVM this is done by keeping untrusted classes in a sandbox and
allowing trusted classes to grant privileges to untrusted ones. The degree to
which trusted classes are prepared to grant privileges to untrusted classes defines
the extent of the sandbox; the sandbox is not fixed or defined a priori.

When untrusted classes arrive on the SKVM platform they can be placed in
their own arrival buffer, to preclude a buffer overflow attack on the trusted class
arrival buffer.

7.5 Untrusted Classes and Privileges

Untrusted classes rely on trusted classes for all their privileges. Since untrusted
classes have no certificates, from a security standpoint they are indistinguishable
from one another. Privileges are granted uniformly to all untrusted classes. These
privileges take three forms:

• An untrusted class may be allowed to subclass a trusted class. Like all other
privileges granted to untrusted classes, this is a privilege that the trusted
class in question must grant explicitly.

• In the capability-based style discussed above, and similar to a trusted class,
an untrusted class may be granted the privilege to create a new instance of a
trusted class. Again, this is a privilege that is explicitly granted by a trusted
class to all untrusted classes uniformly.

• An untrusted class may be granted or denied the power to call a trusted
method (usually static) or access a trusted field. This power is in addition
to the Language’s standard access control mechanisms, and is necessary for
historical reasons.

Privileges granted to untrusted classes are specified with flags in the trust
attribute of the trusted class. In addition, flags associated with each method
and field in the trusted class indicate whether the method can be called from,
or the field accessed from, an untrusted class. This enables an application to
run untrusted classes written to the standard CLDC API while retaining some
measure of control.

It would be simpler to have a flag that indicated whether all methods and
fields in a trusted class could be accessed from untrusted classes. This would be
sufficient if the trusted aspects of an application were well factored into specific
trusted classes. Although most of the CLDC library can be handled with such a
flag, there are cases in CLDC that break this principle. It is in general desirable
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from a security factorization standpoint that SKVM applications be designed to
use class-level security rather than relying on method-level or field-level control.

There have been attempts in the various releases of the Language to enu-
merate which functions in the core libraries are exposed to sandboxed classes.
The flag mechanism provides a means by which such selective exposure can be
accomplished. The flag mechanism also provides control over static methods
and fields in classes like java.lang.System that cannot be instantiated. This
is important since untrusted classes may need access to some fields and meth-
ods (such as java.lang.System.out) while other fields and methods (such as
java.lang.System.exit) should not be accessible.

7.6 Additions to the Trust Attribute to Support Untrusted Classes

For a class X , Table 3 describes the additional components of the trust attribute
that relate to untrusted classes.

Table 3. Components of a Trust Attribute for supporting Untrusted Classes

SFX A binary flag indicating if objects can subclass X without
privileges. If the flag is false, then untrusted classes cannot
subclass X and trusted classes need to present the appropri-
ate certificate (signed hash) in order to subclass X success-
fully. If the flag is true, then all classes can subclass X as
long as Language semantics are obeyed.

NFX A flag specifying if objects can instantiate X without privi-
lege. If the flag is false, then an object can only instantiate X
by presenting the appropriate certificate. If the flag is true,
then all classes can instantiate X as long as Language se-
mantics are obeyed.

MFX A constant specifying if all objects can invoke static methods
in X. The constant takes on values yes (all static methods
in X can be invoked by any object, subject to standard Lan-
guage semantics), no (static methods in X can only be in-
voked by an object that presents the appropriate certificate),
and byMethod (flags associated with each static method
determine if the method can be invoked without privilege).

FFX A constant specifying if all objects can access static fields
in X. The constant takes on values yes (all static fields in
X can be accessed by any object, subject to standard Lan-
guage semantics), no (static fields in X can only be accessed
by an object that presents the appropriate certificate), and
byField (flags associated with each static field determine if
the field can be accessed without privilege).

These flags are designed to be fail-safe. Specifically, the false or no setting of
the SFX , NFX , MFX , and FFX flags are secure settings. It is assumed that the
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false or no setting is associated with the zeroed state in the platform (typically
integer 0 or Boolean False).

8 Implementation

A version of the SKVM has been implemented using the KVM code base version
1.03. The implementation includes basic support for secure dynamic provision-
ing, support for capabilities, and support for untrusted classes.

In general, changes to the KVM were small and localized.

8.1 Secure Dynamic Provisioning

Seven files (out of 24) required modification, and one small file was added. The
details of these changes are shown in Table 4. The total increase in size, in lines
of code, is 4%.

Table 4. Code size overhead of Secure Dynamic Provisioning

File LoC in base KVM Additional LoC for SKVM % Increase

class.c 1985 216 11%

collector.c 2096 54 3%

crypto.c 0 124 100%

frame.c 1149 6 1%

hashtable.c 718 76 11%

loader.c 2957 381 13%

nativeCore.c 1287 12 1%

pool.c 437 46 11%

total 23759 915 4%

This increase consists of enhancements to: identify and process trusted classes
(loader); manage certificates (hashtable), privileges (collector), and other run-
time structures (crypto); perform privilege checks (class, nativeCore, and pool);
and handle exceptions (frame).

Additionally, a stand alone tool was written to annotate classfiles with prop-
erly constructed trust attributes.

8.2 Capabilities

Support for capabilities pushed the total code size increase to 6%, to a total of
24272 lines. The details of these changes are shown in Table 5.
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Table 5. Code size overhead of Capabilites

File Additional LoC for Capabilities

class.c 243

frame.c 4

loader.c 266

This further increase consists of enhancements to: process the capability-
based privileges (loader); handle domain intersection and resource access checks
(class); and handle exceptions (frame).

8.3 Untrusted Classes

Support for untrusted classes bumped the total code size increase to 7%, to a
total of 24538 lines. The details of these changes are shown in Table 6.

Table 6. Code size overhead of Untrusted Classes

File Additional LoC for Untrusted Classes

loader.c 171

pool.c 95

This final increase consists of enhancements to: process the untrusted class
privileges (loader); and handle access checks (pool). The details of these changes
are shown in Table 6.

9 Status and Further Work

As described above, a prototype version of the SKVM has been implemented
based on the standard KVM. There are other, more recent CLDC implementa-
tions that are potentially better platforms on which to base the SKVM (such as
[21]). Further work with the SKVM will be done using one of these implementa-
tions. Such work will include various size and performance measurements (such
as the space overhead for certificates and the runtime overhead for capability
support).

The next major step in demonstrating the feasibility and value of the SKVM
will be porting it to a cryptographic module. This task may expose platform and
deployment issues. It will also enable real-world testing of SKVM applications.

The subsequent step will be the FIPS certification of the SKVM. This effort
will require precise definition of the operation and implementation of the SKVM.

A possible enhancement involves untrusted classes. If it is determined that
they are truly useful on a secure platform, they can be completely isolated in their
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own execution environment [22]. They could be given their own heap, execution
stack, and resource limits.

References

1. Connected, Limited Device Configuration, Specification Version 1.1 ; Sun Microsys-
tems, May 2002; http://java.sun.com/products/cldc.

2. Java Card Technology for Smart Cards; Zhiqun Chen; Addison-Wesley; June 2000.
3. CLDC Technology Compatibility Kit version 1.0a User’s Guide; Sun Microsystems;

February 2001.
4. Information on the KVM can be found at http://java.sun.com/products/cldc.
5. Inside Java 2 Platform Security ; Li Gong; Addison-Wesley; October 1999.
6. Mobile Information Device Profile for Java 2 Micro Edition, Version 2.0 ; Java

Community Process, November 2002; http://java.sun.com/products/midp.
7. “MIDP 2.0 Security Enhancements”; Otto Kolsi, Teemupekka Virtanen; Proceed-

ings of the 37th Annual Hawaii International Conference on System Sciences
(HICSS’04); January 2004.

8. “Understanding MIDP 2.0’s Security Architecture”; Jonathan Knudsen; Febru-
ary 2003; http://developers.sun.com/techtopics/mobility/midp/articles/

permissions/

9. “MAPbox: Using Parameterized Behavior CLasses to Confine Untrusted Applica-
tions”; Anurag Acharya, Mandar Raje; Proceedings of the 9th USENIX Security
Symposium; August 2000.

10. “A Flexible Containment Mechanism for Executing Untrusted Code”; David S.
Peterson, Matt Bishop, Raju Pandey; Proceedings of the 11th USENIX Security
Symposium; August 2002.

11. Security Requirements for Cryptographic Modules; NIST FIPS PUB 140-2, 25 May
2001.

12. Building the IBM 4758 Secure Coprocessor ; Joan G. Dyer, Mark Lindemann,
Ronald Perez, Reiner Sailer, Leendert van Doorn, Sean W. Smith, Steve Wein-
gart; IEEE Computer; October 2001; pp. 57-66.

13. Secrets and Lies; Bruce Schneier; John Wiley and Sons, 2000.
14. Applied Cryptography, Second Edition; Bruce Schneier; John Wiley and Sons; 1996.
15. Security Engineering: A Guide to Building Dependable Distributed Systems; Ross

Anderson; John Wiley and Sons; 2001.
16. The Java Virtual Machine Specification, Second Edition; Tim Lindholm, Frank

Yellin; Addison-Wesley, April 1999.
17. The Java Language Specification, Second Edition; James Gosling, Bill Joy, Guy

Steele, Gilad Bracha; Addison-Wesley, June 2000.
18. Securing Java; Gary McGraw, Edward W. Felten; John Wiley and Sons, 1999.
19. KVM Debug Wire Protocol (KDWP), Version 1.0 ; Sun Microsystems; 26 February

2001.
20. “Programming Semantics for Multiprogrammed Computations”; Jack Dennis, Earl

Van Horn; Communications of the ACM ; March 1966; pp. 143-155.
21. “A Java Virtual Machine Architecture for Very Small Devices”; Nik Shaylor, Doug

Simon, Bill Bush; Proceedings of the 2003 ACM SIGPLAN conference on Lan-
guages, Compilers, and Tools for Embedded Systems, June 2003, pp. 34-41.

22. “A Secure Java Virtual Machine”; Leendert van Doorn; Proceedings of the 9the
USENIX Security Symposium ; August 2000.



ESC/Java2: Uniting ESC/Java and JML

Progress and Issues in Building and Using ESC/Java2,
Including a Case Study Involving the Use of the Tool
to Verify Portions of an Internet Voting Tally System

David R. Cok1 and Joseph R. Kiniry2

1 B65 MC01816
Eastman Kodak R & D Laboratories

Rochester, NY 14650-1816, USA
cok@frontiernet.net

2 Department of Computer Science, University College Dublin,
Belfield, Dublin 4, Ireland�

kiniry@acm.org

Abstract. The ESC/Java tool was a lauded advance in effective static
checking of realistic Java programs, but has become out-of-date with
respect to Java and the Java Modeling Language (JML). The ESC/Java2
project, whose progress is described in this paper, builds on the final
release of ESC/Java from DEC/SRC in several ways. It parses all of JML,
thus can be used with the growing body of JML-annotated Java code;
it has additional static checking capabilities; and it has been designed,
constructed, and documented in such a way as to improve the tool’s
usability to both users and researchers. It is intended that ESC/Java2 be
used for further research in, and larger-scale case studies of, annotation
and verification, and for studies in programmer productivity that may
result from its integration with other tools that work with JML and
Java. The initial results of the first major use of ESC/Java2, that of the
verification of parts of the tally subsystem of the Dutch Internet voting
system are presented as well.

1 Introduction

The ESC/Java tool developed at DEC/SRC was a pioneering tool in the ap-
plication of static program analysis and verification technology to annotated
Java programs [13]. It was a successor to the ESC/Modula-3 tool [22], using
many of the same ideas, but targeting a “mainstream” programming language.
ESC/Java operates on full Java programs, not on special-purpose languages. It
acts modularly on each method (as opposed to whole-program analysis), keeping
the complexity low for industrial-sized programs, but requiring annotations on
methods that are used by other methods. The program source and its specifica-
tions are translated into verification conditions; these are passed to a theorem
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prover, which in turn either verifies that no problems are found or generates a
counterexample indicating a potential bug. The tool and its built-in prover op-
erate automatically with reasonable performance and need only program anno-
tations against which to check a program’s source code. The annotations needed
are easily read, written and understood by those familiar with Java and are par-
tially consistent with the syntax and semantics of the separate Java Modeling
Language (JML) project [1, 19]. Consequently, the original ESC/Java (hereafter
called ESC/Java) was a research success and was also successfully used by other
groups for a variety of case studies (e.g., [16, 17]).

Its long-term utility, however, was lessened by a number of factors. First, as
companies were bought and sold and research groups disbanded, there was no
continuing development or support of ESC/Java, making it less useful as time
went by. As a result of these marketplace changes, the tool was untouched for
over two years and its source code was not available.

The problem of lack of support was further compounded because its match
to JML was not complete, and JML continued to evolve as research on the needs
of annotations for program checking advanced. This unavoidable divergence of
specification languages made writing, verifying, and maintaining specifications
of non-trivial APIs troublesome (as discussed in Section 5).

Additionally, JML has grown significantly in popularity. The activities of
several groups [1, 3, 19, 27, 28] generated a number of tools that work with JML.
Thus, many new research tools worked well with “modern” JML, but ESC/Java
did not.

Finally, some of the deficiencies of the annotation language used by ESC/Java
reduced the overall usability of the tool. For example, frame conditions were
not checked, but errors in frame conditions could cause the prover to reach
incorrect conclusions. Also, the annotation language lacked the ability to use
methods in annotations, limiting the annotations to statements only about low-
level representations.

The initial positive experience of ESC/Java inspired a vision for an industrial-
strength tool that would also be useful for ongoing research in annotation and
verification. Thus, when the source code for ESC/Java was made available, the
authors of this paper began the ESC/Java2 project.

This effort has the following goals: (1) to make the source consistent with
the current version of Java; (2) to fully parse the current version of JML and
Java; (3) to check as much of the JML annotation language as feasible, consis-
tent with the original engineering goals of ESC/Java (usability at the expense
of full completeness and soundness); (4) to package the tool in a way that en-
ables easy application in a variety of environments, consistent with the licensing
provisions of the source code release; and (5) as a long-term goal, and if appro-
priate, to update the related tools that use the same code base (Calvin, RCC,
and Houdini [12]) and to integrate with other JML-based tools. This integration
will enable testing the tool’s utility in improving programmer productivity on
significant bodies of Java source; the tool will also serve as a basis for research
in unexplored aspects of annotation and static program analysis.
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We have released over seven alpha versions of ESC/Java2. The latest ver-
sion is available on the web1 and we encourage experimentation and feedback.
The source code is available (and additional contributors are welcome) and is
subject to fairly open licensing provisions. The discussion below of various fea-
tures of JML and ESC/Java2 is necessarily brief; more detail is available in the
implementation notes that are part of an ESC/Java2 release.

The subsequent sections will discuss the most significant changes in creating
ESC/Java2, the extensions to static checking, the backwards incompatibilities
introduced, unresolved semantic issues in JML, and the direction of the ongoing
work in this project. Also discussed is ESC/Java2’s first serious use: the verifi-
cation of portions of the tally subsystem of the Dutch Internet voting system.

Appendices list the details of the enhancements to ESC/Java and those fea-
tures of JML that are not yet implemented in ESC/Java2. We fully acknowledge
that the on-going work described here builds on two substantial prior efforts:
the definition of the Java Modeling Language and the production of ESC/Java
and the Simplify prover in the first place.

2 JML Example

The Java Modeling language is described in detail in several other publications
([19] and various papers listed at [1]), so here we will give just one example
showing some of the syntax. The class in Fig. 1 uses an array to implement a
List. A few methods with partial specifications are shown. They demonstrate
the following features of JML:

– JML annotations are contained in comments beginning with //@ or /*@.
– model import statements declare classes imported for use in annotations.
– spec public indicates that the field named seq has public visibility in spec-

ifications.
– The invariant states that after construction seq is never null and is an array

with Objects as elements.
– The requires keyword states a precondition for the reverse method, namely

its argument is presumed to be non-null.
– The modifies keyword states a frame condition for the reverse method,

namely that the only fields that are assigned during its execution are the
elements of the out argument.

– The signals keyword states a postcondition for the reverse method that
must hold if an exception is thrown, in this case that it never throws a
NullPointerException.

– The ensures keyword states a postcondition for the reverse method that
must hold if the method terminates normally.

– The model declaration declares a public field used in specifications, typically
as an abstract representation of the class. In this case, the class represents
a List.

1 http://www.niii.kun.nl/ita/sos/projects/escframe.html
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//@ model import java.util.List;

//@ model import java.util.ArrayList;

public class Example {

/*@ spec_public */ private Object[] seq;

//@ in list;

//@ maps seq[*] \into list;

//@ invariant seq != null && \elemtype(\typeof(seq)) == \type(Object);

//@ requires out != null;

//@ modifies out[*];

//@ signals (NullPointerException) false;

//@ ensures seq.length > 0 ==> out[0] == seq[seq.length-1];

public void reverse(Object[] out) {

int i = 0;

int j = seq.length;

while (i < seq.length) out[i++] = seq[--j];

}

//@ public model List list;

//@ private represents list <- toList(seq);

/*@ requires input != null;

@ ensures \result != null;

@ pure

@ private model List toList(Object[] input) {

@ List list = new ArrayList(input.length);

@ for (int i=0; i<input.length; ++i) list.add(input[i]);

@ return list;

@ }

@*/

//@ requires i >= 0 && i < length();

//@ modifies list;

public void insert(int i, Object o) { seq[i] = o; }

//@ private normal_behavior

//@ ensures \result == seq.length;

//@ pure

public int length() { return seq.length; }

}

Fig. 1. A List class with a partial specification

– The represents statement indicates the relationship between the value of
the model field and the implementation.

– The next set of declarations constitute a model method declaration and its
specifications; a model method is only used in annotations and need not have
an implementation.
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– The modifies clause on the insert method indicates that it may modify
the value of the model field list or any field in its datagroup; the in and map
annotations on the declaration of seq stipulate that the seq field and its array
elements are in the list datagroup.

– The pure modifier on the length method indicates that that method has no
side effects (it does not assign to any fields).

This class will compile with javac and will pass all the checks of the jml
checker. If it is subjected to the ESC/Java2 tool described in this paper, three
warnings are produced, correctly pointing out three potential problems with this
code:

– The default constructor does not set the value of seq to a non null array as
required by the invariant.

– The assignment to out[i++] on line 16 is problematic because the index
may be too large for the array; this is fixed by stating that the length of out
must be equal to the length of seq.

– An additional warning on that line indicates that the type of the out array
may possibly not allow assignments of Object references to its elements.

3 Changes to DEC/SRC ESC/Java

Creating ESC/Java2 required a number of changes to the ESC/Java tool. Here
we present the most significant of these.

3.1 Java 1.4

The original work was performed from 1998 to 2000, and Java has evolved since
then2. The addition required by Java 1.4 is support for the Java assert state-
ment.

JML itself contains a similar assert statement. Hence, the user may make
a choice between two behaviors. A Java assert statement may be interpreted
simply as another language feature whose behavior is to be modeled. The corre-
sponding behavior is to raise an AssertionError exception under appropriate
circumstances. Alternatively, a Java assert statement may be interpreted as a
JML assert statement. In this case, the static checker will report a warning if
the assertion predicate cannot be established. Both alternatives are available
through user-specified options.

3.2 Current JML

The Java Modeling Language is a research project in itself; hence the JML
syntax and semantics are evolving and are somewhat of a moving target (and
2 In fact, Java 1.5 went beta recently. No work has begun on parsing or statically

checking Java 1.5 code. Interested parties are welcome to contact the authors with
regard to this topic.
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there is as yet no complete reference manual). However, the core language is
reasonably stable. The following are key additions that have been implemented;
other changes that relate primarily to parsing and JML updates are listed in the
Appendix:

– inheritance of annotations and of non null modifiers that is consistent with
the behavioral inheritance of JML;

– support for datagroups and in and maps clauses, which provides a sound
framework for reasoning about the combination of frame conditions and
subtyping;

– model import statements and model fields, routines, and types, which allow
abstraction and modularity in writing specifications;

– enlarging the use and correcting the handling of scope of ghost fields, so that
the syntactic behavior of annotation fields matches that of Java and other
JML tools.

In addition, all of the differences between JML and ESC/Java noted in the JML
Reference Manual have been resolved3.

3.3 New Verification Checks

Though all of JML is parsed, not all of it is currently checked. ESC/Java con-
centrated on checking for possible unexpected exceptions arising from condi-
tions such as null pointers or out-of-bounds array indices, since these did not
need annotations to be found; annotations were used, however, to state condi-
tions on method arguments or class fields that would preclude such errors. Thus
ESC/Java was capable of checking the pre- and post-conditions of methods as
well. However, these could only be expressed at a low-level given the limitations
of the ESC/Java input language.

The expanded capabilities of ESC/Java2 allow more thorough checking at a
higher level of abstraction. This has required only minor changes in the back-
ground axioms used by the theorem prover (mostly regarding primitive types,
though additions to handle the semantics of String objects are needed). Most
of the changes are implemented by the appropriate translation of JML features
into the theorem prover’s input logic. The space available in this paper permits
only a summary of the embedding of the above into the underlying ESC/Java
logic4.

Static checking of the following features has been added to that performed
by ESC/Java.

The constraint and initially clauses. These two clauses are variations on the
more common invariant clause. They apply to the whole class. A constraint
states a condition that must hold between the pre-state and the post-state of
every method of a class. For example,
3 The tools still differ in (a) the search order for refinement files on the classpath and

(b) which methods may be declared as helper methods.
4 Subsequent papers are planned that will describe these embeddings in more detail.
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constraint maxSize == \old(maxSize);
states that maxSize is not changed by any method of the class. It is implemented
by adding the predicate as a postcondition of every (non-helper) method in the
type (and its derived types).

Similarly, initially states a condition that must hold of every object after
construction. It is implemented by adding its predicate as a postcondition of
every (non-helper) constructor of the type (but not of its derived types).

The \not modified expression. The not modified construct is a way of saying,
within a postcondition, that a particular expression has the same value in the
pre-state and the post-state. That is,

\not modified(x+y) ≡ ( (x+y) == \old(x+y) ) .
Uses of the expression in postconditions are expanded inline according to this
definition.

Checking of datagroups and frame conditions. JML contains syntax to define
datagroups [24]. With datagroups, the items in an assignable clause may rep-
resent sets of program locations, and those sets may be extended by subtypes.
Each specification case of a routine may be guarded by a precondition and may
specify the set of store locations that may be assigned to.

There are a number of cases to be considered in a full implementation. We
will discuss just one here: an assignment statement that has a left-hand side of
expr.field. For this to be a legal assignment with respect to the specifications,
either (a) the expr must evaluate to an object that has been allocated since the
beginning of the execution of the method, or (b) it must be the case that for
every specification case of the method containing the assignment for which the
precondition is true (in the pre-state) there is at least one store location in the
list of assignable locations that matches expr.field. To match, the field names
must be the same and the expr values must evaluate to the same object. The
matching is complicated by the variety of syntax (e.g. expr.* matches any field
of expr) and by the fact that a given field designation may have an accompanying
datagroup and the match may be to any element of the datagroup. All of this
syntax is parsed, and checks are implemented in the logic except where induction
is needed to handle recursive definitions.

Recursive definitions of frame conditions (arising from recursive structures
such as linked lists and trees) are indeed the most substantial complication
in checking datagroups. As an example, consider the datagroup of all of the
‘next’ fields of a linked list. ESC/Java2 currently deals with this by unrolling
the recursion to a fixed depth; since in ESC/Java loops are also unrolled to a
fixed number of iterations, this solution handles common cases of iterating over
recursive structures.

Annotations containing method and constructor calls. JML, but not ESC/Java,
allows pure method and constructor calls (that is, methods and constructors
without side-effects) to be used in annotations. This allows both a degree of
abstraction and more readable and writable specifications.
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ESC/Java2 supports the JML syntax and also performs some static checking.
The underlying prover, Simplify, does support function definitions and reasoning
with functions. But, as is the rule in first-order logic, the result of a function
in Simplify depends only on its arguments and not on hidden arguments or on
global structures referenced by the arguments. Consequently there is a mismatch
between the concept of a pure method in Java and the concept of a function in
the prover. However, a moderate degree of checking can be performed without
resorting to a full state-based translation and logic if we (a) identify some meth-
ods as functions, where possible, (b) include the current state of the heap as an
additional uninterpreted parameter, and (c) incorporate the specifications of the
called method as additional axioms.

Dynamic allocations of objects using constructors are simply static method
calls that return new objects and are treated in the same way as other method
calls. The logic includes axioms that ensure that a newly allocated object is
distinct (reference values are unequal) from any previously allocated object.
Dynamic allocations of arrays are translated into first-order logic as functions
without difficulty, as they were in ESC/Java.

model fields and represents clauses. The combination of represents clauses
and model fields provides a substantial benefit in abstraction, especially since
the representations may be provided by a subtype [8]. Simple representations
can be implemented in ESC/Java2 by inlining the representation wherever the
model field is used in an annotation. However, that proves not to be workable
in larger systems. Instead, we translate instances of model fields as functions
of the object that owns them and the global state (because model fields can
depend upon fields in other, non-owner, objects). This allows a useful degree of
reasoning when combined with the class invariants that describe the behavior of
the model fields.

The Simplify theorem prover used by both ESC/Java and ESC/Java2 remains
unchanged, except for being compiled for a new platform (Apple’s OS X). It is
written in Modula-3 and consequently requires compilation for each supported
platform. Although the prover has definite limitations, as pointed out below,
revising it would be a significant project in its own right.

3.4 Backwards Incompatibilities

The ESC/Java specification language and JML arose separately; there was some
initial but incomplete work to unify the two [20]. The ESC/Java2 project intends
to have the tool reflect JML as precisely as reasonable. In some cases, discussion
about differences resulted in changes to JML. In a few cases, some backwards
incompatibilities in ESC/Java were introduced. The principal incompatibilities
are these:

– The semantics of inheritance of specification clauses and of non null mod-
ifiers was modified to match that defined by JML, since the work on JML
resulted in an interpretation consistent with behavioral subtyping. JML has
a standalone also keyword that indicates there are inherited explicit or
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implicit specifications; its interpretation of specification inheritance is con-
sistent with behavioral subtyping. By contrast, ESC/Java’s use of inher-
ited specifications had limitations and was a known source of soundness
problems [23]. See the section titled “Inheritance and non null” in the
ESC/Java2 Implementation Notes for more details [10].

– The specification modifies \everything is now the default frame axiom.
– The syntax and semantics of initially, readable if and monitored by

have changed.
– ESC/Java2 forbids bodies of (non-model) routines to be present in non-Java

specification files.

4 Unresolved Semantic Issues

The work on ESC/Java2 has been useful in exposing and resolving semantic
issues in JML. Since ESC/Java2 is built on a different source code base than
other JML tools, differences of interpretation in both syntax and semantics arise
on occasion. These are generally resolved and documented via mailing list dis-
cussions5 by interested parties. There are, however, still unresolved issues, most
of which are the subject of ongoing research.

– pure routines: It is convenient and modular to use model and Java methods
within specifications (model methods are methods defined for annotations
only and not part of the Java source, such as the toList method in Fig. 1). The
semantics of such use is clearer and simpler if such routines are pure, that is,
they do not have side-effects6. This is important when evaluating annotations
during execution, since the checking of specifications should not affect the
operation of the program being checked. Side-effects also complicate static
reasoning. However, some side-effects are always present, such as changes
to the stack or heap or external effects such as the passage of time. Some
are often overlooked but can be consequential, such as locking a monitor.
Others the programmer may see as innocuous, benevolent side-effects, such
as maintaining a private cached value or logging debugging information in an
output file. An interpretation of the combination of purity and benevolent (or
ignorable) side-effects that is suitable for both static and run-time checking
and is convenient and intuitive for users is not yet available. (See also the
discussion of purity checking in [18].)

– exceptions in pure expressions: The expressions used in annotations must
not have side-effects, but they may still throw exceptions. In that case the
result is ill-defined. A semantics that is suitable for both run-time checking
and static verification needs to be established.

5 See jmlspecs-interest@lists.sourceforge.net,
jmlspecs-developers@lists.sourceforge.net, and
jmlspecs-escjava@lists.sourceforge.net or the corresponding archives at
http://sourceforge.net/projects/jmlspecs

6 Non-pure methods may be used within annotations in model programs, which are
not discussed in this paper.
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– initialization: The authors are not aware of any published work on specifying
the initialization of classes and objects in the context of JML; initial work
formalizing \not initialized was only recently completed for the Loop
tool. This task includes providing syntax and semantics for Java initializa-
tion blocks, JML’s initializer and static initializer keywords, and
formalizing the rules about order of initialization of classes and object fields
in Java.

– datagroups : The in and maps clauses and the datagroup syntax are designed
to allow the specification of frame conditions in a sound way that is extensible
by derived classes. We do not yet have experience with the interaction among
datagroups, the syntax for designating store locations, and either reasoning
about recursive data structures or checking them at run-time.

– unbounded arithmetic: Chalin [7] has proposed syntax and semantics to en-
able specifiers to utilize unbounded arithmetic in a safe way within annota-
tions. Tool support and experience with these concepts is in progress. Axioms
and proof procedures will be needed to support this work in static checkers.

There are other outstanding but less significant issues concerning helper anno-
tations, model programs and the weakly, hence by, measured by, accessible
and callable clauses.

5 Usage Experience to Date

The SoS group at the University of Nijmegen, along with other members of
the European VerifiCard Project7, has used ESC/Java for several projects. For
example, Hubbers, Oostdijk, and Poll have performed verifications of Smart
Card applets using several tools, including ESC/Java [17]. Hubbers has also
taken initial steps integrating several JML-based tools [16].

These and other VerifiCard projects relied upon the specifications of the
Java Card 2.1.1 API written and verified by Poll, Meijer, and others [26]. This
specification originally came in two forms: one “heavyweight” specification that
used JML models, heavyweight contract specifications, and refinements, and
another “lightweight” specification that was meant to be used with ESC/Java
and other verification tools like Jack, Krakatoa, and the Loop tool [2, 4, 25].

Writing, verifying, and maintaining these two specifications was a trouble-
some experience. Because of limitations of various tools which depended upon the
specifications, several alternate forms of specifications were required. Addition-
ally, it was sometimes the case that the alternate forms were neither equivalent
nor had obvious logical relationships among them.

This experience was one of the motivators for the SoS group’s support of this
work on ESC/Java2. Now that multiple tools are available that fully cover the
JML language, the incidence of specification reuse is rising and painful mainte-
nance issues are becoming a thing of the past. As a result, early evidence for the
success of this transition is beginning to appear.
7 http://www.verificard.org/
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5.1 Transitional Verifications

First, the specifications of a small case study [5] were updated and re-verified
by one of this paper’s authors (Kiniry) using ESC/Java2. The original work de-
pended upon “lightweight” JML specifications of core Java Card classes and the
verification was performed with ESC/Java and the Loop tool. The re-verification
effort used the full “heavyweight” Java and Java Card specifications and was ac-
complished in a single afternoon by an ESC/Java expert.

Second, several members of the SoS group are contributing to updating the
“heavyweight” JML specifications of the Java Card API. As a part of this work,
the Gemplus Electronic Purse case study, which has been verified partially with
ESC/Java [6] and partially with the Loop tool [5], is being re-verified completely
with ESC/Java2 using “heavyweight” specifications.

Finally, recent attempts at verifying highly complex Java code examples writ-
ten by Jan Bergstra and originally used as stress-tests for the Loop tool have
been encouraging. Methods that originally took a significant amount of interac-
tive effort to verify in PVS are now automatically verified in ESC/Java2, much
to the surprise of some of the Loop tool authors. This work has caused some
re-evaluation of the balance between interactive and automated theorem proving
in the SoS group.

5.2 Verification of an Electronic Voting Subsystem

The first major partial verification using ESC/Java2 took place in early 2004.
The Dutch Parliament decided in 2003 to construct an Internet-based remote

voting system for use by Dutch expatriates. The SoS group was part of an expert
review panel for the system and also performed a black-box network and system
security evaluation of this system in late 2003. A recommendation of the panel
was that a third party should construct a redundant tally system. Such a second
system would ensure a double-check of the election count with an independent
system. It was also thought that such an external implementation would provide
some third-party review of the original work, as the new implementation would
depend entirely upon system design documentation and data artifacts (e.g. can-
didate and vote files); no source code would be shared, or even seen, by the team
implementing the redundant system.

The SoS group bid on the construction of this new system, emphasizing the
fact that they would use formal methods (specifically, JML and ESC/Java2) to
specify, test, and verify the tally system. The bid was successful; as a result the
SoS group was contracted to write the tally system.

The most challenging aspect of the contract was not the use of formal meth-
ods. Instead, it was the strict time requirements of the contract, as the system
was to be used in the upcoming European elections. In particular, the SoS group
was asked to construct the vote counting system (henceforth called the KOA
system) in approximately four weeks, with only three developers.

Development Methodology. To approach this problem, the three developers
(Dr. Engelbert Hubbers, Dr. Martijn Oostdijk, and the second author) parti-
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tioned the system into three subcomponents: file I/O, graphical I/O, and core
data structures and algorithms. It was decided that, due to the challenges in-
herent in full system verification and the restricted time allotted to the project,
while all subsystems would be annotated with JML, only the third “core” sub-
system (Dr. Kiniry’s responsibility) would be fully elaborated in specification.

Additionally, ESC/Java2 would only be used on the core subsystem. In the
allotted time a “best-effort” verification would be attempted, in addition to
all other standard software engineering practices. This approach is a standard
strategy for lightweight use of formal methods [9].

Table 1. KOA System Summary

File I/O Graphical I/O Core

classes 8 13 6
methods 154 200 83
NCSS 837 1,599 395
Specs 446 172 529
Specs:NCSS 1:2 1:10 5:4

Table 1 summarizes the size (in number of classes and methods), complexity
(non-comment size of source, or NCSS for short), and specification coverage
of the three subsystems, as measured with the JavaNCSS tool version 20.40
during the week of 24 May, 2004. Assertions were counted by simply counting
the number of uses of appropriate core specification keywords (requires, ensures,
invariant, non null, in, set, and modifies).

The size of the code and specifications gives a strong indication of the com-
plexity of the verification effort. Longer methods take significantly more time
to specify and verify than short ones. Classes with many methods, on the other
hand, do not necessarily take much more time to deal with than shorter classes,
as effort is coupled to the complexity of the methods, their specs, and the class
invariants (e.g., many short, simple methods are trivial to verify, while one long
method might take days).

There is very little inheritance in this system. Visual components all inherit
from a top-level Task class which implements all state changes in response to
external input, and the I/O classes inherit from an AbstractObjectReader, an
Apache licensed helper class. Other than that, all classes have no parent (beside
Object).

Because there is little inheritance and we adopt a closed-system view on
the vote tally system (no classloading is permitted), ESC/Java2’s weak strong
support for specifying and reasoning about dynamic binding is not an issue.

Specification Coverage and Methodology. Unsurprisingly, the GUI portion
of KOA is the largest subsystem with the lightest specification coverage, having
approximately 1 annotation for every 10 lines of code. The focus of the GUI
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subsystem specification is a finite state machine that represents the state of the
GUI. The state of the KOA application is tightly coupled to this GUI state
machine as the vote counting process is highly serialized.

CLEARED CANDIDATES_IMPORTED

PUBLIC_KEY_IMPORTED

PRIVATE_KEY_IMPORTED

VOTES_COUNTED

REPORT_GENERATED

VOTES_IMPORTEDINIT

VOTES_DECRYPTED

Fig. 2. KOA State Diagram

Figure 2 contains a diagram that summarizes this state machine. The state
of the system is represented in a (spec public) field “state” of the main class
of the application. The state machine is formally modeled using the standard
mechanisms developed in the past by the SoS Group [15].

The file I/O subsystem exhibits better specification coverage, much of which
focuses on contracts to ensure that data-structures in the core subsystem are
properly constructed according to the contents of input files.

The core subsystem understandably has the highest specification coverage,
at over one line of specification for every line of code. This part of the system was
designed by contract, and a small-step development process was used through-
out (i.e., every time a single line of the specification or the code was changed
ESC/Java2 was re-executed). Contractual specifications (e.g., requires/ensures-
style and invariants) accounted for the vast majority of the specification; asser-
tions and invariants were only used to assist the verification process.

The verification of the key properties of the system, particularly the property
of having a correct tally of votes, are directly tied to the overall state of the
system using invariants of the form

invariant (state >= <STATE>) ==> (state-field != null);
where the states of the system form a total order. Such an invariant says that, if
the state of the system is at least <STATE>, then the appropriate representation
for that state, captured in the state-field’s datatype is well-formed. This is a
strong claim because if state-field is non-null, then not only is it initialized,
but all of its invariants hold.

At this time, verification coverage of the core subsystem is good, but not
100%. Approximately 10% of the core methods (8 methods) are unverified due
to issues with ESC/Java’s Simplify theorem prover (e.g., either the prover does
not terminate or terminates abnormally, as discussed below). Another 31% of
the core methods (26 methods) have postconditions that cannot be verified,
typically due to completeness issues discussed above, and 12% of the methods
(10 methods) fail to verify due to invariant issues, most of which are due to
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suspected inconsistencies in the specifications of the core Java class libraries
or JML model classes. The remaining 47% (39 methods) of the core verifies
completely.

Since 100% verification coverage was not possible in the timeframe of the
project, and to ensure the KOA application is of the highest quality level possible,
a large number unit tests were generated with the jmlunit tool for all core classes.
A total of nearly 8,000 unit tests were generated, focusing on key values of the
various datatypes and their dependent base types. These tests cover 100% of the
core code and are 100% successful.

Impressions of ESC/Java2. ESC/Java2 made a very positive impression
on the KOA developers. Its increased capabilities as compared to ESC/Java,
particularly with regards to handling the full JML language, the ability to reason
with models and specifications with pure methods, are very impressive. And,
while the tool is still classified as an “alpha” release, we found it to be quite
robust (perhaps unsurprising given its history, the use of JML and ESC/Java2
in and on its own source code, and the fact that it is passed through seven alpha
releases thus far). But there are still a number of issues with ESC/Java2 and
JML that were highlighted by the KOA verification effort.

The primary issues that arose include:

– String semantics in ESC/Java2 are incomplete. In particular, one cannot
reason effectively about String concatenation or equality. While Java Strings
are certainly a non-trivial type, they are effectively a pseudo-base type be-
cause of their widespread use. Thus, it is vital that this issue be addressed
as soon as possible.

– Issues with reasoning about “representation-less” model variables. If a class
declares a model variable but provides no statement about how that model
relates to the implementation of the class (using a represents clause or
similar), then ESC/Java2 cannot verify assertions that use the model. We
believe that a representation-less model variable is equivalent to a ghost
variable since it is being used as a specification-only variable in an API spec.
Thus, by replacing problematic model variables with ghost variables in API
specifications we can successfully perform verifications using the APIs. This
problem indicates either a problem with the design and/or use of model
variables in JML, or an implementation issue with ESC/Java2.

– Inconsistencies and ambiguities in the specification of core APIs, particularly
classes in the java.lang and java.util packages and JML model classes.
This is the first large-scale verification effort using “full” JML specifications
of the core JDK. These “full” specifications are much more complete and
complex than those that were used with ESC/Java. As these core specifica-
tions have never been formally analyzed for consistency or completeness, it is
not surprising that the KOA verification effort had problems with their use.
It is expected that over time, with more use by a range of JML-compatible
tools the core specifications will become more consistent and complete to
the benefit of all JML tool users.
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– Completeness issues with first-order predicates. First-order predicates are
expressed with the forall and exists constructs in JML. Only some of
these predicates can be used and/or verified in JML-based tools, including
ESC/Java2. Unfortunately, many of the most interesting invariants in non-
trivial systems can only be expressed using such constructs. Thus, more focus
needs to be put on understanding and reasoning about such assertions.

– Aliasing issues and specification convenience constructs for such. As usual,
reasoning about reference types and avoiding aliasing was one of the key
issues in verifying the KOA application. For example, frequently we wished
to say that the elements of a set of references were pairwise unequal. The only
way to state this in JML today is quite cumbersome, thus the introduction
of a new specification construct for such seems warranted.

– The Simplify prover backend and alternate provers. Simplify is a relatively
robust automatic first-order prover, especially given its age and the fact that
no one has supported it in many years. Unfortunately, Simplify sometimes
fails catastrophically in one of two ways: it crashes due to an internal excep-
tion or assertion failure, or it (rarely) consumes as much memory as possible
and halts. Neither of these situations is reasonable, of course, but as there
is no support for Simplify, the problems indicated by these affects are rarely
correctable. It is our intention to initially augment, then eventually replace,
Simplify with an alternative modern, supported prover.

6 Ongoing Work

The work on ESC/Java2 is continuing on a number of fronts.

Language issues. Two obvious and related ongoing tasks are the completion of
additional features of JML, accompanied in some cases by additional research to
clarify the semantics and usability of outstanding features of JML. Usage of JML
is now broad enough that an accompanying formal reference document would
be valuable. As tools such as ESC/Java2 become more widely used, users will
also appreciate attention to performance, to the clarity of errors and warnings,
and to the overall user experience such tools provide.

Case studies. The current implementation supports the static checking of a
stable core of JML. With this initial implementation of frame condition check-
ing, of model fields, represents clauses and use of routine calls in annotations,
ESC/Java2 can now be used on complex and abstract specifications of larger
bodies of software. Consequently, there is a considerable need for good experi-
mental usage studies that confirm that this core of JML is useful in annotations,
and that the operation of ESC/Java2 (and Simplify) on that core is correct and
valuable.

Verification logic. The logic into which Java and JML are embedded in both
ESC/Java and ESC/Java2, by design and admission of the original authors,
neither identifies all potential errors (e.g., because not all aspects of Java are
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modeled in the logic) nor avoids all false alarms (e.g., because of limitations
in the prover). This was the result of an engineering judgment in favor of per-
formance and usability. Research studying expanded and larger use cases may
show whether this design decision is generally useful in practical static check-
ing or whether a fuller and more complicated state-based logic is required for
significant results to be obtained.

A related issue is the balance between automated and manual proof con-
struction. Use of verification logics will likely be limited to narrow specialties
as long as proof construction is a major component of the overall programming
task. Thus, automation is essential, though it is expected that full automation
is infeasible. The degree of automation achievable will continue to be a research
question. However, we believe that broad adoption of automated tools for pro-
gram checking will require that users only need interact at high levels of proof
construction.

User feedback. The purpose of using theorem provers for static analysis, run-
time assertion checking, or model checking is to find errors and thereby improve
the correctness of the resulting software. Thus, the orientation of a tool must
be towards effectively finding and interpreting examples of incorrect behavior. A
complaint (e.g., [14]) in using such technologies is that it is difficult to determine
a root cause from the counterexample information provided by the tool, whether
it is a failed proof or an invalid test or execution history. The ESC/Java project
implemented some work towards appropriately pruning and interpreting coun-
terexample and trace information [21], but there remains room for improvement.
Machine reading of the Simplify output coupled with other tools is also a means
to easier interpretation [11].

Tool integration. Finally, though not part of this specific project, an integration
of tools that support JML would be beneficial for programmer productivity.
A productive programmer’s working environment for a large-scale project that
uses these tools would need them to be integrated in a way that they seamlessly
communicate with one another. A programmer using the tools would naturally
move among the various tasks of designing, writing, testing, annotating, verifying
and debugging, all the while reading, writing and checking specifications. Design,
specifications and code might all be built up incrementally. Thus, the tools would
need to be integrated in a way that allows efficient and iterative behavior.

7 Conclusion

The progress and case studies described above have shown that ESC/Java2 is
ready for serious evaluation and use, even in its early “alpha” releases. Our
ability to verify large portions of a critical, public system in a very short time
frame is a strong statement about the state of the tool and the underlying theory
of extended static checking.

Additional evidence comes from several groups around the world that are
using ESC/Java2 for instruction and research. We are aware of over a half dozen
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groups that are using ESC/Java2 for new research in verification, and nearly ten
courses are using it for instruction in software engineering, verification, peda-
gogical instruction of Java, and grading. We continue to see growing interest in
ESC/Java2, verification, and extended static checking in general.

One can observe this work in tool creation and evaluation from a number
of perspectives. Certainly such work creates working prototypes that test in
practice theories of programming and specification language semantics. It also
exercises and validates ideas in automated logical reasoning. We prefer to use
the viewpoint of programming productivity, particularly given the industrial
working environment of the first author. In that context we observe the existence
and general use across multiple research groups of the combination of various
tools that support using JML with Java programs; this suggests to us that the
syntax and semantics of the core of JML are sufficiently useful and natural to
provide a basis for future wider use. With respect to logical reasoning, a useful
degree of automation is achievable in at least some aspects of static checking
tasks; removing the details of proof construction from a programmer’s tasks is
essential to larger scale acceptance of such tools.

However, the surrounding issues are as relevant to programmer acceptance
and productivity. Tools must have intuitive and unsurprising behavior. They
must be efficient in elapsed run-time, but also in the time needed to interpret
and act upon the results. They must integrate well with other tools of the same
family and with commonly used programmer’s working environments.

There is progress on enough of the above vectors that one might well be
optimistic about the eventual success of the enterprise as a whole. After all, the
goal need not be fully automated verification of an arbitrary computer program.
Reflect that a computer-produced proof of a mathematical conjecture that can-
not be understood at least in its broad outlines by mathematicians leaves those
mathematicians unsatisfied and unsettled with respect to the proof. Similarly,
we expect that “verifications” of programs whose overall design is incomprehen-
sible to readers of the program (not to mention its author) will not engender
much confidence in the verification. If programming is writing for others and we
expect that the authors could explain their programs to their colleagues, we may
well have a chance at being able to explain those programs to a computer.
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A Principal Changes to ESC/Java

Language semantics
– inheritance of annotations and of non null modifiers that is consistent with

the behavioral inheritance of JML;
– support for datagroups and in and maps clauses, which provides a sound

framework for reasoning about the combination of frame conditions and
subtyping;

– model import statements and model fields, routines, and types, which allow
abstraction and modularity in writing specifications;

– enlarging the use and correcting the handling of scope of ghost fields, so that
the syntactic behavior of annotation fields matches that of Java and other
JML tools;

Language parsing
– parsing of all of current JML, even if the constructs are ignored with respect

to typechecking or verification;
– support for refinement files, which allow specifications to be supplied in files

separate from the source code or in the absence of source code;
– heavyweight annotations, which allow some degree of modularity and nest-

ing;
– auto model import of the org.jmlspecs.lang package, similar to Java’s

auto import of java.lang;
– generalizing the use of \old, set statements and local ghost variables, to

provide more flexibility in writing specifications;
– introduction of the constraint, represents, field, method, constructor,

\not modified, instance, old, forall, pure keywords as defined in JML;
– consistency in the format of annotations in order to match the language

handled by other JML tools;
– equivalence of \TYPE and java.lang.Class;
– a beginning of a semantics for String objects, namely the freshness of the

result of built-in + and equality and inequality of String literals.

In addition, all of the differences between JML and ESC/Java noted in the JML
Reference Manual have been resolved.

B Aspects of JML Not Yet Implemented in ESC/Java2

Though the core is well-supported, there are several features of JML which are
parsed and ignored, some of them experimental or not yet endowed with a clear
semantics, and some in the process of being implemented. For those interested
in the details of JML and ESC/Java2, the features that are currently ignored
are the following:

– checking of access modifiers on annotations and of the strictfp, volatile,
transient and weakly modifiers;

– the clauses diverges, hence by, code contract, when, and measured by;
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– the annotations within implies that and for example sections;
– some of the semantics associated with the initialization steps prior to con-

struction;
– multi-threading support beyond that already provided in ESC/Java;
– serialization;
– annotations regarding space and time consumption;
– full support of recursive maps declarations;
– model programs;
– some aspects of store-ref expressions;
– verification of anonymous and block-level classes;
– verification of set comprehension and some forms of quantified expressions;
– implementation of modifies \everything within the body of routines.
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Abstract. A Java Card applet is, in general, not allowed to access fields
and methods of other applets on the same smart card. This applet iso-
lation property is enforced by dynamic checks in the Java Card Virtual
Machine. This paper describes a refined type system for Java Card that
enables static checking of applet isolation. With this type system, firewall
violations are detected at compile time. Only a special kind of downcast
requires dynamic checks.

1 Introduction

The Java Card technology allows applications – so-called Java Card applets – to
run on smart cards. Several applets can run on a single card and share a common
object store. Since the applets on a card may come from different, possibly
untrusted sources, a security policy ensures that an applet, in general, cannot
inspect or manipulate data of other applets. To enforce this applet isolation
property, the Java Card Virtual Machine establishes an applet firewall, that is,
it performs dynamic checks whenever an object is accessed, for example, by field
accesses, method invocations, or casts. If an access would violate applet isolation,
a SecurityException is thrown.

Dynamically checking applet isolation is unsatisfactory for two reasons: (1) It
leads to significant runtime overhead. (2) Accidental attempts to violate the
firewall are detected at runtime, that is, after the card with the defective applet
has been issued, which could lead to enormous costs. In this paper, we sketch a
refined type system for the Java Card language that allows one to detect most
firewall violations statically by checks on the source code level. This type system
serves three important purposes:

1. It reduces the runtime overhead caused by dynamic checks significantly.
2. Most firewall violations are detected at compile time. At runtime, only cer-

tain casts can lead to SecurityExceptions. These casts occur when static
fields are accessed and when a reference is passed to another applet and then
retrieved again. Programmers and verifiers can focus on these cast expres-
sions when reasoning about applet isolation.

3. The refined type information provides formal documentation of the kinds of
objects handled in a program such as entry point objects, global arrays, etc.,
and complements informal documentation, especially, of the Java Card API.
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In this paper, we are only interested in checking applet code and do not
consider the Java Card Runtime Environment (JCRE) implementation.

Overview. In the remainder of this introduction, we describe the applet fire-
wall and our approach. Section 2 presents the refined type system, which tracks
context information statically. Type safety is proved in Section 3. Based on the
refined type information, context conditions can check applet isolation stati-
cally. These static checks are explained in Section 4. We discuss the presented
and related work in Sections 5 and 6.

1.1 Applet Firewall

The applet firewall essentially partitions the object store of a smart card into
separate protected object spaces called contexts [24, Sec. 6]. It allows object
access across contexts only in certain cases. In this subsection, we describe con-
texts, object access across contexts, and the dynamic checks that enforce the
firewall.

Contexts. Each applet installed on a smart card belongs to exactly one applet
context. This context is determined by the package in which the applet class
is declared. It contains the applet objects and all objects created by method
executions in that context. The operating system of the card is contained in
the Java Card Runtime Environment (JCRE) context. At any execution point,
there is exactly one currently active context (in instance methods, this context
contains this). When an object of context C invokes a method m on an object in
context D, a context switch occurs, that is, D becomes the new currently active
context. Upon termination of m, C is restored as the currently active context.

Class objects do not belong to any context. There is no context switch when a
static method is invoked. Static fields can be accessed from any context. Objects
referenced by static fields belong to an applet context or to the JCRE context.

Firewall Protection. We say that an object is accessed if it serves as receiver
for a field access, array element access, or method invocation, if its reference is
used to evaluate a cast or instanceof expression, or if the object is an exception
that is thrown. In general, an object can only be accessed if it is in the currently
active context (see below for object access across contexts). To enforce this rule,
the Java Card Virtual Machine performs dynamic checks. If an object is accessed
that is not in the currently active context, a SecurityException is thrown.

Object Access Across Contexts. The Java Card applet firewall allows cer-
tain forms of object access across contexts:

(1) Applets need access to services provided by the JCRE. These services
are provided by JCRE entry point objects. These objects belong to the JCRE
context but can be accessed by any object. There are permanent entry point
objects (PEPs for short), temporary entry point objects (TEPs for short), and
global arrays. Global arrays share many properties of TEPs: References to global
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arrays and TEPs cannot be stored in fields. An applet can invoke methods on
entry point objects, but not access their fields.

(2) Interaction between applets is enabled by shareable interface objects (SIOs
for short). An object is an SIO if its class transitively implements the Shareable
interface. An applet can get a reference to an SIO of another applet by invoking a
static method of the JCRE. Access to SIOs is severely restricted. An applet can
invoke those methods of an SIO which are declared in an interface that extends
Shareable. However, it can neither access fields of SIOs nor cast an SIO to a
type other than a shareable interface [24].

(3) The JCRE has access to objects in any context.

Example. The following faulty implementation of two cooperating applets illus-
trates the dynamic checks of the applet firewall. Fig. 1 shows the implementation
of a client applet. We assume that the client and a server applet are installed on
the same card, but are contained in different packages.

public class Status {
private boolean success;
public Status(boolean b) { success = b; }
public boolean isSuccess() { return success; }

}

public interface Service extends Shareable {
Status doService();

}

public class Client extends Applet {
public void process(APDU apdu) {

AID svr = ...; // server ’s AID
Shareable s = JCSystem.getAppletShareableInterfaceObject(svr, (byte)0);
Service ser = (Service)s ; // legal cast : s refers to a Service object
Status sta = ser.doService (); // invocation is legal
if (sta . isSuccess ()) // leads to SecurityException

...
}

}

Fig. 1. Implementation of a client applet. All classes are implemented in the same
package. package and import clauses are omitted for brevity. We assume that a server
applet is implemented in a different package.

The following interaction is initiated by method process: By invoking the
static method JCSystem.getAppletShareableInterfaceObject, the client re-
quests an SIO from the server. This call returns an SIO that is cast to the
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shareable interface Service. The client then invokes doService on the SIO.
This invocation yields a new Status object that is used to check whether the
service was rendered successfully.

This interaction leads to a SecurityException: The client and server ap-
plet reside in different contexts. The Service SIO and the Status object be-
long to the context of the server. When the invocation sta.isSuccess() is
checked, none of the three cases for object access across contexts applies: (1) The
Status object is not an entry point object. (2) Since Status does not implement
Shareable, the Status object is not an SIO. (3) Since method process is exe-
cuted on an Applet object, the currently active context is an applet context, not
the JCRE context. Therefore, the access is denied and the exception is thrown.
To correct this error, one would have to use an interface that extends Shareable
instead of class Status.

1.2 Approach

To detect firewall violations at compile time, we adapt ownership type systems
for alias control [11, 17, 19]. Whereas these type systems focus on restricting
references between different contexts, we permit references between arbitrary
contexts, but restrict the operations that can be performed on a reference across
context boundaries.

Our type system augments every reference type of Java with context infor-
mation that indicates (1) whether the referenced object is in the currently active
context, (2) whether it is a PEP, (3) whether it is a TEP or a global array, or
(4) whether it can belong to any context. Type rules guarantee that every execu-
tion state is well-typed, which means, in particular, that the context information
is correct. We use downcasts to turn references of kind (4) into references of more
specific types. For such casts, dynamic checks guarantee that the more specific
type is legal. Otherwise, a SecurityException is thrown.

To check an applet with our type system, its implementation as well as the
interfaces of applets it interacts with and of the Java Card API must be enriched
by refined type information. This information is used to impose additional con-
text conditions on expressions to guarantee that the firewall is respected.

In the execution of a program that is type correct according to our type
system, only the evaluation of downcast expressions requires dynamic firewall
checks and might lead to SecurityExceptions. Thus, casts point programmers
at the critical spots in a program, which simplifies code reviews and testing.
Moreover, they allow standard reasoning techniques to be applied to show that
no SecurityException occurs [23].

2 The Type System

A type system expresses properties of the values and variables of a programming
language that enable static checking of well-definedness of operations and their
application conditions, in this case, Java Card’s firewall constraints.
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2.1 Tagged Types

In order to know whether an operation is legal in Java Card, we need information
about the context in which the operation is executed. The basic idea of our
approach is to augment reference types with context information.

Since we are interested in checking applet code, we consider statements and
expressions that are executed in an applet context. From the point of view of
an applet context, C, we can distinguish (a) internal references to objects in C,
(b) PEP references, (c) TEP references including global arrays, and (d) references
to objects in any context.

In the type system, this distinction is reflected by the context tags i for
internal, p for PEP, t for TEP and global arrays, and a for any. The a-tag is used
for references to non-TEP objects in contexts that are not known statically. For
checking applet isolation, it would be desirable to have more precise information
about the context of an object. However, the sharing mechanism through method
JCSystem.getAppletShareableInterfaceObject does not provide any static
information about the context of the returned SIO.

A tagged type is either a simple tagged type for primitive values or class
instances, or a tagged array type.

Simple Tagged Types. Let TypeId denote the set of declared type identifiers of
a given Java Card program; then the tagged type system comprises the following
types for primitive values and class instances:

SimpleTaggedType = {booleanT, intT, . . . ,nullT} ∪ ({i, p, t, a} × TypeId)

Except for the null-type, which is used to type the null literal, all reference
types in the tagged type system are denoted as a pair of a tag and a Java type.
In actual code examples we will use the keywords intern, pep, tep, and any
instead of the symbols used for the formalization.

Tagged Types. In general, an array type has two tags: The array tag specifies
the context that contains the array object, whereas the element tag specifies the
context of the array elements relatively to the context of the array object. For
instance, an array of type intern any Object[] belongs to the currently active
context and stores objects belonging to any context.

Global arrays serve as temporary entry points to the JCRE context. There-
fore, we use the tep tag to mark an array as global. For instance, the APDU
buffer, a global array of bytes, has type tep byte[]. Since the element type is
a primitive type here, there is no element tag.

Formally, a tagged type is either a simple tagged type or an array type. Since
Java Card does not provide multi-dimensional arrays, the array elements have a
simple tagged type. Permanent entry point arrays do not exist in Java Card.

TaggedType = SimpleTaggedType ∪ ({i, t, a} × SimpleTaggedType)
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Notation. In the following, the meta-variables S and T denote Java types; TS
and TT range over TaggedType. Calligraphic S and T can stand for Java types or
TaggedTypes. It is often convenient to use a tuple notation for tagged reference
types. (γ, T ) is the simple tagged type for objects of Java type T with tag γ.
(γ,TT) is a tagged array type with element type TT. (γ, T ) can be the type of
both a class instance or an array.

Subtyping on Tagged Types. The subtype relation � on tagged types fol-
lows Java’s subtype relation �J on Java types. It is the smallest reflexive and
transitive relation satisfying the following axioms.

(1) (γ, T ) � (γ, java.lang.Object) (2) nullT � (γ, T )
(3) (i, T ) � (a, T ) (4) (p, T ) � (a, T )
(5) (γ, S) � (γ, T ) ⇔ S �J T (6) (γ, (δ, S)) � (γ, (δ, T )) ⇔ S �J T

Every reference type is a subtype of the tagged type for Object, provided that
both types have the same tag (1). The null-type is a subtype of any tagged
reference type (2). intern and pep types are subtypes of the corresponding any
type (3,4). Note that there is no such axiom for tep types. tep types must not
be subsumed under any types to prevent TEPs from being stored in fields or
arrays (see Section 4.1). Two tagged types with the same tag are subtypes iff the
corresponding Java types are subtypes (5). Covariant array subtyping requires
runtime checks for each array update. For tagged types, these checks would
involve context information and could throw SecurityExceptions. To avoid
such checks, we allow only limited covariant subtyping of tagged array types.
Two tagged array types can only be subtypes if they have the same element
tag (6). That is, covariant subtyping is only possible in terms of Java types,
but not of tags. For instance, if S is a subtype of T then intern intern S is a
subtype of intern intern T, but not of intern any S.

Since Java Card imposes weaker restrictions on PEPs than on TEPs, we could
allow pep types to also be subtypes of the corresponding tep types, and forbid
downcasts from tep to pep. We omitted this subtype relation for simplicity.

Casts. Casts on tagged types work analogously to Java. A downcast can be
used to specialize the tagged type of an expression, in particular, the context
information. For instance, an expression of type (a, T ) can be cast to (i, T ). A
runtime check ensures that the refined context information is correct. If not, a
SecurityException is thrown.

Example. Fig. 2 shows the Service interface and the Client class from Fig. 1
with tagged type information. The return type of Service.doService is internal
since the method creates a new Status object in the context in which it is
executed (the context of the server applet). When doService is invoked from the
client context, the returned Status object is external to the client context and
must, thus, be tagged any. The type rules that enforce these tags are discussed
in the next subsection. The static checks that detect the firewall violation are
presented in Sec. 4.
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public interface Service extends Shareable {
intern Status doService();

}

public class Client extends Applet {
public void process(tep APDU apdu) {
pep AID svr = ...; // server ’s applet id is a PEP
any Shareable s =

JCSystem.getAppletShareableInterfaceObject(svr, (byte)0);
any Service ser = (any Service)s ; // ser is in general extern
any Status sta = ser.doService (); // sta is also extern
if (sta . isSuccess ()) // static firewall check fails

...
}

}

Fig. 2. Service interface and Client class with tagged types.

2.2 Tagged Type Rules

In the tagged type system, a type judgment of the form � e :: TT means that
expression e is well-typed and has tagged type TT. � s expresses that statement
s is well-typed. In the formalization, we omit the declaration environment and
all rules that handle the environment. Instead, we use [f ], TP , and TR to denote
the tagged type of a field f , the (sole) parameter type, and the return type of
a method, respectively. A more complete formalization of Java’s type system
including declaration environments is presented in [20, 22, 12].

Fig. 3 shows the most interesting rules of the tagged type system. Since the
type rules for statements are trivial, we focus on expressions here. In the type
rules, premises marked by (�) are only needed for static checks of applet isolation.
These premises will be discussed in Section 4.1. The function ShareItf? yields
whether the argument is an interface that extends Shareable.

For brevity, we do not present the rules for exceptions. Like all reference
types, exceptions are tagged. For throw and try statements, as well as for the
declaration of exceptions in method signatures, the normal Java rules apply
based on the subtyping of tagged types. The rules for method invocations treat
exceptions analogously to normal return values.

Object Creation, Cast, and instanceof. Newly created objects always be-
long to the currently active context. Therefore, the type of the new expression
has tag intern (T-New and T-NewArray). For simplicity, we assume that a new
expression directly returns a fresh object without calling a constructor.

The tagged type of a cast expression is the type TT appearing in the cast
operator (T-Cast). For simplicity, we do not allow upcasts. That is, TT has to be
a subtype of the expression type TS. Upcasts can be simulated by an assignment
to a local variable of the desired type.
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T-New
	 new T() :: (i, T )

T-NewArray 	 e :: intT
	 new TT[e] :: (i,TT)

T-Cast
	 e :: TS TT � TS

(�) TS = (a,S) ∧ TT = (γ, T ) ⇒ (S �J Shareable1 ∧ ShareItf?(T ) ∨ S = T )

	 (TT) e :: TT

T-Instanceof
	 e :: TS

(�) TS = (a,S) ∧ TT = (γ, T ) ⇒ (S �J Shareable1 ∧ ShareItf?(T ) ∨ S = T )

	 e instanceof TT :: booleanT

T-Invoke

	 e1 :: TS 	 e2 :: TT TS ∗ TT � TP
(�) TS = (a,S) ⇒ ShareItf?(S)

	 e1.m(e2) :: TS ∗ TR
T-SInvoke

	 e :: TS
TS � TP

	 T.m(e) :: TR

T-FRead

	 e :: TS
(�) TS = (i,S)

	 e.f :: [f ]
T-FWrite

	 e1 :: TS 	 e2 :: TT TT � [f ]
(�) TS = (i, S) (�) TT �= (t, T )

	 e1.f=e2 :: TT

T-SRead
	 T.f :: [f ]

T-SWrite
	 e :: TT TT � [f ] (�) TT �= (t, T )

	 T.f=e :: TT

T-ARead
	 e1 :: (γ,TE) 	 e2 :: intT (�) γ = i ∨ γ = t

	 e1[e2] :: (γ,TE) ∗ TE

T-AWrite

	 e1 :: (γ,TE) 	 e2 :: intT 	 e3 :: TT (γ,TE) ∗ TT � TE
(�) γ = i ∨ γ = t (�) TT �= (t, T )

	 e1[e2]=e3 :: TT

Fig. 3. Tagged type rules.

Method Invocation. For simplicity, we assume that methods have exactly one
formal parameter.

The rule for the invocation of instance methods (T-Invoke) has to handle
context switches. Consider for example the invocation ser.doService in Fig. 2.
The declared return type of doService is intern because the result object is
intern to the server context in which the method is executed. When doService
is invoked from the client context, the returned Status object is external to the
client context and, therefore, must be tagged any. This adaption of the tag is
described by the ∗-operator, which combines two tagged types. It is defined as
follows:

1 We write S �J Shareable to express that S is a Java type, which is a subtype of
Shareable.
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∗ : TaggedType × TaggedType → TaggedType
(γ, T ) ∗ (i,S) = (a,S), if γ �= i
(γ, T ) ∗ TS = TS, in all other cases

The ∗-operator tags the parameter or result as any when the invocation could
lead to a context switch (γ �= i) and an internal reference is passed to or returned
by the method.

Static methods are always executed in the currently active context. Therefore,
in rule T-SInvoke, the tags do not need to be adapted by the ∗-operator.

Field and Array Access. The type of a field read is the declared type of the
field, [f ] (T-FRead, T-SRead). T-FWrite and T-SWrite check that the tagged
type of the right-hand side of a field update is a subtype of the declared type of
the field.

Besides the rules for accessing static fields, there is also a requirement for
their declaration: Since class objects do not belong to any context, static fields
must not have an intern type.

Tagged element types specify the context of array elements relatively to the
context of the array object. Therefore, the ∗-operator is used to combine the
tagged array type, (γ,TE), with the tagged element type, TE, to determine the
type of an array read access (T-ARead). Similarly, the ∗-combination of the
array type and the type of the right-hand side expression of an array update has
to be a subtype of the element type (T-AWrite).

2.3 Annotations for the Java Card API

To typecheck applet implementations, tags have to be added to the Java Card
API. In particular, these tags determine which objects are entry point objects.
Fig. 4 illustrates such API annotations for three methods of class JCSystem. Ac-
cording to the API specifications, method getAID returns an AID object that is
a PEP. getAppletShareableInterfaceObject takes a pep AID and returns a
reference to an SIO in any applet context, hence the result type any Shareable.
Method makeTransientByteArray illustrates that exceptions thrown by the
JCRE are TEPs. Since the method creates a new array in the context in which
it is called, the result type has tag intern.

3 Dynamic Semantics

In this section, we formalize and prove type safety based on an operational se-
mantics of a subset of Java Card. Although we have proved type safety for the full
language, we omit primitive types, arrays, and exceptions in this formalization
for simplicity.

3.1 State Model

We build on the formalization of the state model of Java presented in [23]. In
the following, we summarize those aspects that are specific to Java Card such
as the treatment of contexts.
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public final class JCSystem {
static pep AID getAID() {...}
static any Shareable getAppletShareableInterfaceObject

(pep AID serverAID, byte parameter) {...}
static intern byte[ ] makeTransientByteArray(short length, byte event)

throws tep NegativeArraySizeException, tep SystemException {...}
// other methods omitted

}

Fig. 4. Tags for selected methods of the Java Card API.

Contexts, Objects, and Values. A Context is either the JCRE context or an
applet context, defined by a package name. A key property of the formalization
is that each object “knows” the context it belongs to and whether it is a PEP
or TEP. Since we do not consider primitive types here, a Value is either a
reference to an object or null. Sorts PackageId, ClassId, and ObjId stand for
package names, class names, and object identifiers (addresses), respectively. The
function ctxt yields the context an object belongs to.

Context = jcreC
| appletC( PackageId )

Value = ref( Object )
| null

Object = o( ClassId, ObjId,Context )
| pepo( ClassId,ObjId )
| tepo( ClassId, ObjId )

ctxt : Value → Context ∪ {undef}
ctxt(ref(o(T, O, C))) = C
ctxt(ref(pepo(T, O))) = jcreC
ctxt(ref(tepo(T, O))) = jcreC
ctxt(null ) = undef

In addition to these definitions, we use the following functions: typeof yields the
dynamic Java type of a value. pepo? and tepo? test whether an object is a PEP
or a TEP.

Object Stores. The state of an object is given by the values of its instance
variables. We assume a sort Location for the instance variables of objects and
the static fields of classes. The functions

iv : Value × FieldId → Location ∪ {undef}
sv : ClassId × FieldId → Location ∪ {undef}

are used to create a location from a value (or class) and a field name (sort
FieldId).

The state of all objects in the current execution state is formalized by an
abstract data type Store with the following functions:

( ) : Store × Location → Value
〈 := 〉 : Store × Location × Value → Store
〈 , 〉 : Store × ClassId × Context → Store

new : Store × ClassId × Context → Object
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OS(L) yields the value of location L in store OS. OS〈L := V 〉 yields the object
store that is obtained from OS by updating location L with value V . OS〈T, C〉
yields the object store that is obtained from OS by allocating a new object of type
T in context C. new(OS , T, C) yields a reference to a new object of type T in
context C. The functions for object creation, OS 〈T, C〉 and new(OS , T, C), are
connected by appropriate axioms. Since these axioms as well as other properties
of the above functions are not needed in this paper, we refer the reader to [23]
for their axiomatization.

Program States. Program states are formalized as mappings from identifiers
to values. A designated variable C contains the currently active context. We
use $ as identifier for the current object store. We assume that each method has
exactly one formal parameter, p. VarId is the set of identifiers for local variables.

State ≡ (VarId ∪ { this, p } → Value ∪ {undef}) ∪
({ $ } → Store) ∪ ({ C } → Context)

For σ ∈ State, we write σ(x) for the application to a variable or parameter
identifier x. In static methods, we set σ(this) = null. By σ[x := V ], we denote
the state that is obtained from σ by updating variable x with value V . An
analogous notation is used for the current object store, $, and the currently
active context, C. initS denotes the state that is undefined for all variables, $,
and C.

3.2 Operational Semantics

The operational semantics has two kinds of transitions: σ :: e → V, σ′ expresses
that the evaluation of expression e in state σ yields value V and final state σ′.
For statements, σ : s → σ′ expresses that the execution of statement s in state
σ leads to state σ′. Since the rules for statements are the usual Java rules, we
omit them here and refer the reader to [21].

The rules for expressions are found in Fig. 5. In the rules, we mark the
premises for the dynamic firewall checks with “(�)”. We refer to the semantics
including the dynamic firewall checks as strong semantics, whereas the weak
semantics does not contain these checks. In the following, we use → and →� to
denote transitions in the weak and strong semantics, respectively.

Following Drossopoulou and Eisenbach [12], we assume that all expressions
are annotated with their static types. These annotated versions of the expressions
are produced by the type rules, although we leave that implicit in Fig. 3. In the
semantics rules, the static Java type of an expression e is denoted by [e].

The most complex rule handles invocations of instance methods (S-Invoke).
impl(T, m) yields the implementation of method m in type T . This implementa-
tion can be inherited from a superclass. First, the receiver and actual parameter
expressions are evaluated. Next, the implementation of the dynamically-bound
method m is executed in a state that maps the formal parameters to the actual
parameters and $ to the store after evaluating the actual parameter. The new
currently active context is the context of the receiver object. That is, a context
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S-New
σ :: new T() → new(σ($), T, σ(C)), σ[$ := σ($) < T, σ(C) >]

S-Cast

σ :: e → V, σ′ ttype(V, σ(C)) � TT
(�) ctxt(V ) = σ(C) ∨ pepo?(V ) ∨ tepo?(V )∨
(typeof(V ) �J Shareable ∧ ShareItf?(TT ))

σ :: (TT )e → V, σ′

S-Invoke
σ :: e1 → V 1, σ′ σ′ :: e2 → V 2, σ′′ V 1 �= null,

initS [this := V 1, p := V 2, $ := σ′′($), C := ctxt(V 1)] : impl(typeof(V 1), m) → σ′′′

(�) ctxt(V 1) = σ(C) ∨ pepo?(V 1) ∨ tepo?(V 1) ∨ ShareItf?([e1])

σ :: e1.m(e2) → σ′′′(res), σ′′[$ := σ′′′($)]

S-SInvoke
σ :: e → V, σ′ initS [p := V, $ := σ′($), C := σ(C)] : impl(T, m) → σ′′′

σ :: T.m(e) → σ′′′(res), σ′[$ := σ′′′($)]

S-FRead
σ :: e → V, σ′ V �= null (�) ctxt(V ) = σ(C)

σ :: e.f → σ′($)(iv(V, f)), σ′

S-FWrite

σ :: e1 → V 1, σ′ σ′ :: e2 → V 2, σ′′ V 1 �= null
(�) ctxt(V 1) = σ(C) (�) ¬tepo?(V 2)

σ :: e1.f = e2 → V 2, σ′′[$ := σ′′($) < iv(V 1, f) := V 2 >]

S-SRead
σ :: T.f → σ($)(sv(T, f)), σ

S-SWrite
σ :: e → V, σ′ (�) ¬tepo?(V )

σ :: T.f = e → V, σ′[$ := σ′($) < sv(T, f) := V >]

Fig. 5. Selected rules of the operational semantics.

switch may occur. The return value of the method is stored in the special vari-
able, res. The strong semantics requires in addition that the receiver object is
in the currently active context, an entry point object, or that the static type of
the receiver is a shareable interface2. These conditions correspond to the firewall
checks described in Section 1.1.

3.3 Type Safety

Type safety w.r.t. tagged types means that the tag of the static type of a program
element e correctly reflects the context the object denoted by e belongs to. For
2 The Java Card documentation [24] formulates these rules for bytecode instructions.

Java bytecode provides different instructions for methods declared in classes and
interfaces. This distinction is reflected in our uniform invocation rule by referring to
the static type of the receiver.
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instance, the object held by a local variable of type intern T in an execution
state σ has to belong to the currently active context of σ.

Most Specific Tagged Types. An object knows its class, whether it is a
PEP, a TEP, or an ordinary object, and its context. Tagged types approximate
this information statically. The best approximation for an object X relative to
a context C is determined by ttype(X, C). In particular, for a non-entry point
object X , ttype(X, C) yields an intern type if X is in context C and an any
type if X belongs to a different context. For example, if X is an instance of class
T in context C, then the most specific tagged type relative to context C is (i, T )
because X is intern to C. (a, T ) would also be a valid tagged type for X , but is
not the most specific one. Function ttype is defined as follows:

ttype : Value × Context → TaggedType

ttype(ref(o(T, O, C)), C) = (i, T )

ttype(ref(o(T, O, C)), D) = (a, T ) for C �= D

ttype(ref(pepo(T, O)), D) = (p, T )

ttype(ref(tepo(T, O)), D) = (t, T )

ttype(null, D) = nullT

Well-Typed States. Based on the function ttype, we can define well-typed
states: The most specific tagged type for a variable and a context has to be a
subtype of the declared type of the variable (written as [v] for a variable v).

Definition 1 (Well-Typed States). A state is well-typed if (1) the local vari-
ables and formal parameters are correctly typed relative to the currently active
context; (2) all instance variables X.f are correctly typed relative to the context
of X; (3) all static fields T.f are correctly typed relative to any context:

wt : State → Bool
wt(σ) ⇔ (∀v ∈ VarId ∪ {this, p} : ttype(σ(v), σ(C)) � [v]) ∧

(∀L ∈ Location : L = iv(X, f) ⇒ ttype(σ($)(L), ctxt(X)) � [f ]) ∧
(∀L ∈ Location : L = sv(T, f) ⇒ ∀C ∈ Context : ttype(σ($)(L), C) � [f ])

For objects that are neither PEPs nor TEPs, ttype uses the context argument
C to determine whether the object is internal to C (tag i) or not (tag a). If a
local variable or formal parameter is typed intern, the referenced object has to
be in the currently active context, σ(C). If an instance field f is typed intern,
the object referenced by X.f has to be in the same context as X . Since static
fields can be read and written from any context, they cannot be typed intern.
Requiring that the object X referenced by static field T.f is correctly typed
relative to any context enforces that X is a permanent entry point object or [f ]
has tag any.

Java Card is type safe w.r.t. the tagged type system. That is, the type rules
– without the static firewall checks – ensure that tags correctly reflect dynamic
context information. Type safety does not rely on the dynamic firewall checks.
That is, it can be proved based on the weak operational semantics.
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Theorem 1 (Type Safety). If the evaluation of a well-typed expression e
starts in a well-typed state, σ, and terminates then the final state, σ′, is well-
typed and has the same currently active context as σ. The resulting value is
correctly typed:

� e :: TT ∧ σ :: e → V, σ′ ∧ wt(σ) ⇒ wt(σ′) ∧ ttype(V, σ′(C)) � TT ∧ σ(C)=σ′(C)

If the execution of a well-typed statement s starts in a well-typed state, σ,and
terminates then the final state, σ′, is well-typed and has the same currently active
context as σ:

� s ∧ σ : s → σ′ ∧ wt(σ) ⇒ wt(σ′) ∧ σ(C) = σ′(C)

The proof of this theorem uses the following auxiliary lemma. This lemma
is used to relate (i) the argument of a method call to the context in which the
method is executed and (ii) the result of a call to the context of the caller.

Lemma 1 (Combination Lemma). Let TS be the tagged type of object X
relative to a context C. (i) If TT is the tagged type of value Y relative to C, then
the tagged type of Y relative to the context of X is a subtype of TS ∗ TT. (ii) If
TT is the tagged type of value Y relative to the context of X, then the tagged
type of Y relative to C is a subtype of TS ∗TT.
(i) X �= null ∧ ttype(X, C) = TS ∧ ttype(Y, C) = TT ⇒ ttype(Y, ctxt(X)) � TS ∗ TT

(ii) X �= null ∧ ttype(X, C) = TS ∧ ttype(Y, ctxt(X)) = TT ⇒ ttype(Y, C) � TS ∗ TT

Proof: The proof of Lemma 1 runs by case distinction on the tags of TS and
TT. It is straightforward and, therefore, omitted.

Proof of Type Safety. The proof of Theorem 1 runs by rule induction on the
rules of the weak operational semantics. For brevity, we show only the most in-
teresting case, calls of instance methods. Consider the invocation e1.m(e2). We
have to prove that if the evaluation of the call starts in a well-typed state then
(1) the state in which the implementation of m is executed is well-typed. This
is necessary to establish the induction hypothesis for the method implementa-
tion; (2) the induction hypothesis holds for the final state of the evaluation of
e1.m(e2). In the following, TS, TT, TP, and TR are used like in the type rule
T-Invoke (Fig. 3).

Part 1: TTthis denotes the tagged type of the implicit parameter of m’s imple-
mentation. TTthis = (i, S), where S is the class in which m is implemented.
That is, typeof(V 1) �J S.

wt(σ)
⇒ [induction hypothesis for σ :: e1 → V 1, σ′ and σ′ :: e2 → V 2, σ′′]

wt(σ′′) ∧ ttype(V 1, σ(C)) � TS ∧ ttype(V 2, σ(C)) � TT
⇒ [Lemma 1 (i), V 1 �= null ]

wt(σ′′) ∧ ttype(V 2, ctxt(V 1)) � TS ∗ TT
⇒ [TTthis = (i, S), typeof(V 1) �J S; TS ∗ TT � TP]

wt(σ′′) ∧ ttype(V 1, ctxt(V 1)) � TTthis ∧ ttype(V 2, ctxt(V 1)) � TP
⇒

wt(initS [this := V 1, p := V 2, $ := σ′′($), C := ctxt(V 1)])
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Part 2:

wt(σ)
⇒ [induction hypothesis for σ :: e1 → V 1, σ′ and σ′ :: e2 → V 2, σ′′]

wt(σ′′) ∧ ttype(V 1, σ′(C)) � TS ∧ σ(C) = σ′′(C) ∧ σ′(C) = σ′′(C)
⇒ [induction hypothesis for method implementation]

wt(σ′′) ∧ wt(σ′′′) ∧ ttype(V 1, σ′(C)) � TS ∧ σ(C) = σ′′(C) ∧ σ′(C) = σ′′(C)
⇒ [res is a local variable of m’s implementation with type TR]

wt(σ′′) ∧ wt(σ′′′) ∧ ttype(V 1, σ′′(C)) � TS ∧
ttype(σ′′′(res), ctxt(V 1)) � TR ∧ σ(C) = σ′′(C)

⇒ [Lemma 1 (ii), V 1 �= null ]
wt(σ′′[$ := σ′′′($)]) ∧ ttype(σ′′′(res), σ′′[$ := σ′′′($)](C)) � TS ∗ TR ∧
σ(C) = σ′′[$ := σ′′′($)](C)

�

Type Progress. Besides type safety, progress is an interesting property of a
type system: Progress means that a well-typed program can actually be executed,
that is, applying the rules of the operational semantics does not lead to stuck
configurations. We do not prove progress formally in this paper. However, one can
easily show that the tagged type system guarantees progress if the original Java
Card type system does: (1) If a program PtJC is well-typed in the tagged type
system, then the Java Card program PJC obtained from PtJC by omitting all
tags is well-typed in the Java Card type system, because the tagged type system
only imposes additional checks. (2) Besides minor differences for object creation
and cast, the strong operational semantics for PJC and PtJC are identical. That
is, since PJC can be executed (progress of the Java Card type system), PtJC

can be executed as well. (3) The weak operational semantics is obtained from
the strong operational semantics by omitting several requirements. Therefore,
PtJC can also be executed in the weak operational semantics.

4 Checking Applet Isolation

Tagged types provide a conservative approximation of runtime context informa-
tion. This information can be used to impose static checks that guarantee that
an applet respects the applet firewall at runtime. In the following, we explain
these checks and prove that they enforce applet isolation.

4.1 Static Checks

Applet isolation is enforced by additional checks in the tagged type rules (Fig. 3),
which are marked by (�). We will explain these premises below.

Object Creation, Cast, and instanceof. Object creation is always allowed
(T-New, T-NewArray). In Java Card, even finding out type information about
objects in other applet contexts is considered a security violation. Therefore,
casts are allowed if the object is in the currently active context, if it is an entry
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point object, or if the object’s class implements Shareable and the object is cast
into a shareable interface. That is, the cast is legal if the object is intern, TEP,
or PEP. For tag any, we check that the object’s class implements Shareable
and that it is cast into a shareable interface (T-Cast). Moreover, we allow casts
from any T to intern T or pep T to refine the tagged type information. The
rule for instanceof expressions (T-Instanceof) is analogous.

Method Invocation. Instance methods can be invoked on objects (including
arrays) in the currently active context, on PEPs and TEPs, and if the static
type of the receiver is a shareable interface. Rule T-Invoke requires that if the
receiver can be in any context (tag any), then its static Java type must be a
shareable interface. Static methods can be invoked from any context and need
no checks (T-SInvoke).

Field and Array Access. As mentioned in Section 1.1, Java Card forbids
field access on objects (including the length field of arrays) not in the currently
active context. Therefore, the type of the receiver must have tag intern (T-
FRead, T-FWrite). Since it is not allowed to store TEPs in fields, the right-hand
side of a field update must not have tag tep. Static fields can be accessed from
any context. Therefore, only the check for TEP objects is required (T-SRead,
T-SWrite).

Access to an array element is only allowed if the array is either in the currently
active context or a global array. Therefore, rules T-ARead and T-AWrite require
the tag of the receiver expression to be intern or tep. Like for field updates, the
tagged type of the right-hand side of an array update must not have tag tep.

Example. In the example in Fig. 2, the firewall violation would be detected
statically. Since sta has tag any, the invocation sta.isSuccess() does not
pass the static checks of rule T-Invoke: Status is a class and does not implement
Shareable.

4.2 Applet Isolation Lemma

The static checks described above guarantee applet isolation: Each Java Card
program with tagged types that passes the static checks behaves like the cor-
responding Java Card program with dynamic checks. That is, every Java Card
program that can be correctly tagged does not throw SecurityExceptions (ex-
cept for the dynamic checks for casts).

Theorem 2 (Applet Isolation). Let e be an expression that can be typed in the
tagged type system and that passes the static firewall checks. If e’s evaluation in
a well-typed state σ terminates normally then the evaluation of the corresponding
Java Card expression without tags, ê, in σ terminates normally in the same final
state and yields the same value:

�� e :: TT ∧ σ :: e → V, σ′ ∧ wt(σ) ⇒ σ :: ê →� V, σ′



A Type System for Checking Applet Isolation in Java Card 145

where �� e :: TT denotes that e is well-typed and passes the static firewall checks.
→ and →� denote transitions in the weak and strong semantics, respectively.

Note that omitting tags from expressions makes those casts dispensable that
do not change the Java type of an expression. For instance, for a variable v of
tagged type (a, T ), omitting the tags from the cast (i T )v yields v. For such cast
expressions, the implication of the theorem is trivially true.

Proof of Applet Isolation. The proof of Theorem 2 runs by rule induction
on the weak operational semantics. It uses type safety of the tagged type system
and the static firewall checks. Again, we show the proof for the most interesting
case: the invocation of instance methods.

Since we have the transition σ :: e → V, σ′, we know that all premises of
rule S-Invoke in the weak semantics hold. Applying the induction hypothesis
to these premises yields the corresponding premises in the strong semantics.
It remains to show that the additional premise in the strong semantics holds:
ctxt(V 1) = σ(C) ∨ pepo?(V 1) ∨ tepo?(V 1) ∨ ShareItf?([e1]).

From the premise σ :: e1 → V 1, σ′ and type safety (Theorem 1), we get
ttype(V 1, σ(C)) � TS. We may assume that TS is a reference type (γ, [e1]). We
continue by case distinction on the tag γ:

1. Case i: Subtyping on tagged types gives that ttype(V 1, σ(C)) has tag i. The
definition of ttype yields V 1 = ref(o(S, O, σ(C))) for some S, O. Therefore,
ctxt(V 1) = σ(C).

2. Case p: Analogously to Case i, we get V 1 = ref(pepo(S, O)) for some S, O.
Therefore, pepo?(V 1) holds.

3. Case t: This case is analogous to Case p.
4. Case a: The static firewall check of rule (T-Invoke) gives directly the result

ShareItf?([e1])
�

Theorem 2 shows that well-typedness and the static firewall checks guar-
antee that execution of an expression does not violate the firewall at runtime.
Therefore, the checks can be used to enforce applet isolation statically.

5 Discussion

In this section, we discuss the expressiveness of our type system, the overhead
it imposes on programmers, and its possible applications.

5.1 Expressiveness

The proposed type system does not significantly limit the expressiveness of Java
Card: Almost all ordinary Java Card programs can be handled, possibly by
introducing additional downcasts. This flexibility is due to the fact that any
types are supertypes of the corresponding intern and pep types. Therefore,
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variables that may hold references to objects in various contexts can be typed
any, and casts can be used when such variables are read. In such situations, the
expressiveness of the type system comes at the price of runtime checks. However,
extra downcasts are only needed for two purposes: (1) when an internal object
is stored in a static field and then read again (recall that static fields must not
have intern types); (2) when an internal object is passed to a different context
and then retrieved again (e.g., from a container in a different context).

The only pattern that cannot be typed in our type system is when a vari-
able may hold a reference to a TEP or a non-TEP object. In such cases, the
variable can neither be typed tep nor any. However, this situation is extremely
uncommon since TEPs must not be stored in fields or arrays.

As presented in this paper, the tagged type system does not support con-
travariant subtyping, which prevents certain implementations that are admissible
in Java Card. Assume that a class C inherits a method void m(intern T p)
from its superclass, D, and implements a shareable interface, I, that declares
void m(any T p). Without tags, C would be a legal Java Card implementa-
tion, but C is forbidden by the tagged type system since it does not imple-
ment I’s void m(any T p). However, this is not a serious restriction: If D’s
implementation of m can handle parameter objects in other contexts, the pa-
rameter p should be declared any. Otherwise, C has to override the method
anyway, and contravariant subtyping would allow C to widen the signature of m
to void m(any T p). Extending the tagged type system to contravariant sub-
typing w.r.t. tags is straightforward but omitted in this paper for simplicity.

5.2 Defaulting

The static safety of our type system comes at the price of some extra work for
programmers, who have to add tags to their programs. However, for the majority
of types, the tags can be determined easily. Except for static fields and program
elements involved in the interaction with the JCRE or other applets, all tags
are usually intern. Therefore, we can use intern as default tag for most types.
More precisely, we default each untagged occurrence of a Java type T to the
tagged type (δ, T ), where δ is:

– pep if T = AID;
– tep if T = APDU or T is an exception class in the Java Card API;
– any if T is an interface extending Shareable or if the occurrence of T is in

the declaration of a static field;
– intern otherwise.

These defaults reduce the overhead significantly. For instance, all tags of the
Java Card API methods in Fig. 4 could be omitted. Although method process
in Fig. 2 communicates with the JCRE and another applet, only the tags for the
cast (any Service)s and the declaration any Status sta have to be specified
manually. The fact that defaulting does not work in the latter case already
indicates the error in the program. Usually, a well-formed applet does not hold
references of type any T if T is not an interface that extends Shareable.
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The cases in which defaulting is not sufficient are (1) the extra downcasts
needed for reading static fields and (2) arrays of type byte[], which are heavily
used as internal objects and as global arrays for the APDU buffer.

An alternative to default tags would be type inference. Since inference has
been applied to the complex context information in ownership type systems [2,
9], we assume that inference would be applicable here as well. We used defaulting
since it works for modular programs.

5.3 Applications

In Section 4, we have shown that the type system can be used to check Java
Card’s applet isolation statically. The static context information can also be used
to enforce stricter policies. For instance, an applet can easily be prevented from
interacting with other applets by checking that no program element has tag any
in the applet’s code. Note that this policy cannot be enforced by just forbidding
calls to JCSystem.getAppletShareableInterfaceObject since applets can also
exchange references through static fields.

Our main motivation was to simplify the verification of source programs by
checking applet isolation syntactically before verifying the program. Therefore,
the type system is applied to source programs. However, the type system can
easily be adapted to bytecode. An adapted bytecode verifier [16] could check
applet isolation at load time. In that case, a modified virtual machine would
only have to check applet isolation for downcasts from any types to intern or
pep types. This would lead to a significantly faster program execution without
weakening the security of the Java Card platform.

6 Related Work

The presented type system benefited from the work on ownership type systems
[1, 2, 9, 11]. Like in these type systems, objects are grouped into contexts, and
types approximate context information statically. However, ownership type sys-
tems provide hierarchic context structures, whereas the contexts in Java Card
are flat. Like readonly references in the Universe type system [19, 17], the work
presented here permits references between different contexts, but restricts the op-
erations that can be performed on such references. Both Universes and the type
system presented here use downcasts to specialize context information. Due to
these commonalities, we expect that both type systems can be easily integrated
into one type system that facilitates the verification of Java Card programs.

Most ownership type systems use owner parameters to keep track of the con-
text an object belongs to. A similar mechanism could be useful in our work to
provide more fine-grained context information than any tags do, and to make
downcasts with dynamic context checks dispensable. However, references to SIOs
are obtained through calls to JCSystem.getAppletShareableInterfaceObject.
The most specific tagged result type for this method is any Shareable since it
is not known statically from which context a reference is requested.
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Similarly to Confined Types [8], Java Card provides one context per package.
However, with Confined Types only the code in package P can modify objects
in the context for P , whereas Java Card only uses the package structure to
determine which applets share one context. The code that modifies the objects
of an applet can reside in arbitrary packages.

Several static analyses for information flow between Java Card applets have
been published. Bieber et al. [6, 7] present an approach that allows smart card
issuers to verify statically by model checking that an applet satisfies a pre-defined
security policy. This analysis is complementary to applet isolation. It is able to
detect illicit information flow between several applets, whereas the applet firewall
controls the interaction between two applets.

Caromel et al. [10] propose a dataflow analysis to infer context information
statically. This information is then used to point programmers to potential fire-
wall violations. Éluard and Jensen [13] combine a dataflow analysis with quan-
tified conditional constraints to check more fine-grained sharing policies such as
sharing between designated applets rather than all applets on a card. In con-
trast to dataflow analyses, the tagged type system allows programmers to record
design decisions about applet sharing in the code, which serves as additional
documentation and enables modular checking. Checking applet isolation based
on dataflow analyses is too expensive to be performed on-the-fly by a virtual
machine; our type system could be easily checked by a bytecode verifier.

The Java Card platform and, in particular, the applet firewall, have been
formalized in different frameworks [5, 14]. These formalizations have been used
to formally verify applet isolation and confidentiality properties [3, 4, 15]. With
our type system, applet isolation can be mostly checked syntactically.

7 Conclusions

We presented a refined type system for Java Card that allows one to check
applet isolation mostly statically. In theory, our type system can replace almost
all dynamic firewall checks. However, unless all applets on a card are checked by
our type system and a refined bytecode verifier, the dynamic checks have to stay
in place to prevent applets from untrusted sources from violating the firewall.
Still, the type system is useful to detect possibly fatal errors at compile time.

Our approach to checking applet isolation is complementary to formal verifi-
cation of applet properties. Using this type system reduces the verification effort
significantly since applet isolation does not have to be proved for each method
call, field access, instanceof, etc. as it is the case in plain Java Card. On the other
hand, verification techniques can be applied to prove that downcasts do not lead
to SecurityExceptions. As future work, we plan to implement the type system
in our verification tool Jive.
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Abstract. The JAVA CARD transaction mechanism can ensure that a
sequence of statements either is executed to completion or is not ex-
ecuted at all. Transactions make verification of JAVA CARD programs
considerably more difficult, because they cannot be formalised in a logic
based on pre- and postconditions. The KeY system includes an interac-
tive theorem prover for JAVA CARD source code that models the full JAVA

CARD standard including transactions. Based on a case study of realistic
size we show the practical difficulties encountered during verification of
safety properties. We provide an assessment of current JAVA CARD source
code verification, and we make concrete suggestions towards overcoming
the difficulties by design for verification. The main conclusion is that
largely automatic verification of realistic JAVA CARD software is possible
provided that it is designed with verification in mind from the start.

1 Introduction

As JAVA CARD technology is picking up speed it becomes more and more inter-
esting to employ formal analysis techniques in order to ensure that JAVA CARD

applications work as intended. Formal approaches to JAVA CARD application de-
velopment encompass a wide spectrum from byte code to source code, from fully
automated to highly interactive, and from abstract to fully concrete semantics
(see Section 5 for a brief overview).

Our work is aimed at JAVA CARD source code verification with full modelling
of all semantic aspects. This includes the JAVA CARD transaction mechanism that
ensures a sequence of statements either being executed to completion or not being
executed at all. The underlying technology, described in Section 2.2, is theorem
proving in an expressive logic, in which programs and their requirements are
formalised. Fully automatic inference in this context is in general unachievable,
but one goal of the presented work was to find out just how far automation
reaches.

The experiments described in this paper were made with the KeY theorem
prover, which is an interactive verification system for JAVA CARD featuring a
complete formalisation of atomic transactions [4]. It is part of the KeY system
[1], an integrated tool for informal and formal development of object-oriented
software described in Section 2.1. This paper makes the following contributions:

G. Barthe et al. (Eds.): CASSIS 2004, LNCS 3362, pp. 151–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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– An experience report about the verification of parts of a JAVA CARD elec-
tronic purse application (Demoney) of realistic complexity [23]. The code
includes atomic transactions. To our best knowledge, this is the first report
on verification of JAVA CARD source programs with transactions without
any simplification or abstraction. The case study and the experiments are
described in Section 3.

– An assessment of current source code verification technology: what can be
automatically proven in terms of LoC, complexity, etc.? Which desirable re-
quirements can be expressed and which not? This is discussed in Section 4.1.

– An analysis of the limitations of current technology and how they can be
overcome. We explain why the Demoney case study had to be partially
refactored to make verification feasible. In particular, we make concrete sug-
gestions towards overcoming the difficulties by design for verification in Sec-
tion 4.2.

The main conclusion we draw in this paper is that largely automatic verification
of realistic JAVA CARD software is in the realm of the possible, but it is essential
to move from post hoc verification to a more aggressive approach, where software
is designed with verification in mind from the start.

2 Background

2.1 The KeY Project

The work presented in this paper is part of the KeY project1 [1]. The main goals
of KeY are to (1) provide deductive verification for a real world programming
language and to (2) integrate formal methods into industrial software develop-
ment processes. For the first goal a deductive verification tool, the KeY Prover,
has been developed. The verification is based on a specifically tailored version of
Dynamic Logic – JAVA CARD Dynamic Logic (JAVA CARD DL), which supports
most of sequential JAVA including the full JAVA CARD language specification.
For the second goal we enhance a commercial CASE tool with functionality for
formal specification and deductive verification. The design and specification lan-
guages of our choice are respectively UML (Unified Modelling Language) and
OCL (Object Constraint Language), which is part of the UML standard. The
KeY system translates OCL specifications into JAVA CARD DL formulae, whose
validity can then be proved with the KeY Prover. All this is tightly integrated
into a CASE tool, which makes formal verification as transparent as possible to
the untrained user.

Of course, the use of OCL is not mandatory: logically savvy users of the KeY
system can write their proof obligations directly in JAVA CARD DL and use its
full expressive power. As we see later, this is even relatively straightforward.

2.2 JAVA CARD Dynamic Logic

We give a very brief introduction to JAVA CARD DL. We are not going to present
or explain any of its sequent calculus rules. Dynamic Logic [28, 17] can be seen
1 http://www.key-project.org
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as an extension of Hoare logic. It is a first-order modal logic with parametric
modalities [p] and 〈p〉 for every program p (we allow p to be any sequence of legal
JAVA CARD statements). In the Kripke semantics of Dynamic Logic the worlds
are identified with execution states of programs. A state s′ is accessible from
state s via p, if p terminates with final state s′ when started in state s.

The formula [p]φ expresses that φ holds in all final states of p, and 〈p〉φ
expresses that φ holds in some final state of p. In versions of DL with a non-
deterministic programming language there can be several final states, but JAVA

CARD programs are deterministic, so there is exactly one final state (when p
terminates) or no final state (when p does not terminate). The formula φ → 〈p〉ψ
is valid if, for every state s satisfying precondition φ, a run of the program p
starting in s terminates, and in the terminating state the postcondition ψ holds.
The formula φ → [p]ψ expresses the same, except that termination of p is not
required, that is ψ needs only to hold if p terminates.

JAVA CARD DL is axiomatised in a sequent calculus to be used in deductive
verification of JAVA CARD programs. The detailed description of the calculus can
be found in [2]. The calculus covers all features of JAVA CARD, such as exceptions,
complex method calls, atomic transactions (see below), JAVA arithmetic. The full
JAVA CARD DL sequent calculus is implemented in the KeY Prover. The prover
itself is implemented in JAVA. The calculus is implemented by means of so-called
taclets [3], that avoid rules being hard coded into the prover. Instead, rules can
be dynamically added to the prover. As a consequence, one can, for example,
use different versions of arithmetic during a proof: idealised arithmetic, where all
integer types are infinite and do not overflow, or JAVA arithmetic, where integer
types are bounded and exhibit overflow behaviour [6].

To sum up the description of JAVA CARD DL and to give the reader an im-
pression of concrete JAVA CARD DL formulae, we present a simple JAVA CARD DL
proof obligation:

card.balance
.= b � 〈card.charge(amount);〉 card.balance .= b + amount

It says that if the card object’s balance attribute is equal to b in the initial
state, then the execution of method charge with argument amount terminates
normally (no exception thrown) and afterwards the card object’s initial balance
is increased by amount. The validity of this proof obligation under JAVA integer
semantics depends on whether charge() accounts for overflow, the type of the
+ operator, etc.

2.3 Strong Invariants

While working on one of the JAVA CARD case studies [27] it became apparent
that the specification semantics based on the initial and final states of a program
is not enough to specify and verify some JAVA CARD safety properties. It turned
out that the JAVA CARD applet in question was not “rip-out safe”: it is possible
to destroy the applet’s functionality by removing (ripping out) the JAVA CARD

device from the card reader (terminal) while the applet on the card executes.
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As a result of this the applet’s memory may become corrupted and left in an
undefined state, causing malfunctioning of the applet.

To avoid such errors one has to be able to specify and verify the property
that a certain invariant on the objects’ data is maintained at any time during
applet execution and, in particular, in case of abrupt termination. Usually, class
invariants (in OCL and elsewhere) are interpreted with respect to pre/post state
semantics, that is, if the invariant holds before a method is executed then it holds
again after the execution of a method. This semantics does not suffice to ensure
properties of data in intermediate states during method’s execution. To solve
this problem, we introduced strong invariants, which allow to specify properties
about all intermediate states of a program2.

For example, the following strong invariant (expressed in pseudo OCL) says
that we do not allow partially initialised PersonalData objects at any point in
our program. In case the program is abruptly terminated we should end up with
either a fully initialised object or an uninitialised (empty) one:

context PersonalData throughout:
not self.empty implies
self.firstName <> null and self.lastName <> null and self.age > 0

To introduce the notion of a strong invariant it was necessary to extend
the JAVA CARD DL with a new modal operator [[·]] (“throughout”), which closely
corresponds to Temporal Logic’s � operator. In the extended logic, the semantics
of a program is a sequence of all states the execution passes through when started
in the current state (its trace). Using [[·]], it is possible to specify properties of
intermediate states in traces of terminating and non-terminating programs. And
such properties (typically strong invariants and safety constraints) can be verified
using the JAVA CARD DL calculus extended with additional sequent rules for the
“throughout” modality [4].

2.4 JAVA CARD Atomic Transactions

There is one particular aspect of JAVA CARD that makes the “throughout” ex-
tension considerably more complicated than expected, namely, the JAVA CARD

transaction mechanism. The transaction mechanism allows a programmer to en-
force atomicity of sequences of JAVA CARD statements. It is typically used to
ensure consistency of related data that have to be updated simultaneously.

The memory model of JAVA CARD differs somewhat from JAVA’s memory
model [12, 31–33]. In smart cards there are two kinds of writable memory: per-
sistent memory (EEPROM), which is preserved between card sessions, and tran-
sient memory (RAM), whose contents disappears when power loss occurs, for
example, when the card is removed from the reader. Hence, every memory loca-
tion in JAVA CARD (variable or object field) is either persistent or transient. The

2 In extended static checking a closely related concept called object invariants is used
[21]. The semantics of OCL invariants is interpreted in the strong sense in [36], where
a temporal extension of OCL is introduced.
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JAVA CARD language specification gives the following rules (slightly simplified for
this presentation): all objects (including the reference to the currently running
applet, this, and arrays) are created in persistent memory. Therefore, in JAVA

CARD assignments such as “o.attr = 2;”, “this.a = 3;”, and “arr[i] = 4;”
all have a permanent character; that is, the assigned values will be kept after the
card loses power. A programmer can create an array with transient elements,
but currently there is no possibility to make objects (fields) other than array
elements transient. All local variables are transient.

The distinction between persistent and transient objects is very important
since these two types of objects are treated in a different way by JAVA CARD’s
transaction mechanism. The following are the JAVA CARD system calls for trans-
actions with their description:

JCSystem.beginTransaction() begins an atomic transaction. From this point
onwards, until the transaction finishes, all assignments to fields of objects
are executed conditionally, while assignments to transient variables or array
elements are executed unconditionally (immediately).

JCSystem.commitTransaction() commits the transaction. All conditional as-
signments are committed (in one atomic step).

JCSystem.abortTransaction() aborts the transaction. All the conditional as-
signments are rolled back to the state in which the transaction started. As-
signments to transient variables and array elements remain unchanged (as if
there were no transaction in progress).

A “throughout” property (formula) has to be checked after every single field
or variable assignment which, according to the JAVA CARD runtime environment
specification [32], is atomic. Such checks have to be suspended, however, when
a transaction is in progress, because the assignments inside a transaction are
not atomic, only the whole transaction is atomic. Moreover, as already said,
each transaction can either finish successfully, in which case it commits all the
conditional assignments, or it can fail and in that case the transaction is aborted
and all the conditional assignments have to be rolled back. The logic has to
account for the possibility of an abort and for the difference between persistent
and transient data.

Observe that the possibility of an aborted transaction affects even the se-
mantics of the standard modal operators 〈·〉 and [·], because an abort affects the
final state of the program. Details of how the extension of JAVA CARD DL that
deals with transactions is handled in the calculus can be found in [4]. We do
not repeat the technical solution in this paper, but we stress that the details are
rather involved and surprisingly complex. The KeY Prover implements the whole
extension of JAVA CARD DL with “throughout” and transaction mechanism. To
our knowledge the KeY Prover is the only prover for JAVA CARD programs that
fully handles JAVA CARD transactions.

When a strong invariant has been specified for a JAVA CARD program, say,
for a class C, each of C’s methods can be a subject to verification with respect
to the strong invariant. A typical proof obligation for a method m() involving a
strong invariant looks as follows:
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(Inv ∧ Pre ∧ StrongInv) → [[C :: m();]] StrongInv

Inv stands for a standard (weak) invariant of class C and Pre stands for the
method’s precondition. Apart from those two premises one also has to assume
that the strong invariant StrongInv holds before method m() is executed to
establish that StrongInv holds throughout the execution of m().

3 Case Study: JAVA CARD Electronic Purse

The case study presented here is based on the JAVA CARD electronic purse ap-
plication Demoney [23]. While Demoney has not all the features of a purse
application actually used in production, it is provided by Trusted Logic S.A. as
a realistic demonstration application that includes all major complexities of a
commercial program.

Our target program is a somewhat refactored fragment of Demoney and con-
centrates on the important aspects of the application to highlight our verification
results. The Demoney source code is at present not publicly available, and we
do not show it. The program we verified is, however, very close to Demoney
and follows the Demoney specification [23]. We deviate from Demoney mainly
in that our program is designed to make verification simpler. We discuss these
issues in detail in Section 4.2.

The safety properties that we discuss here were directly motivated by the
ones described in [24]. In fact the property we prove (that the current balance
of the purse is always in sync with the balance recorded in the most recent log
entry) for the processSale method presented in Section 3.4 is exactly the one
described in [24, Section 3.5]. The example mentioned there is also based on the
Demoney application.

3.1 The LogRecord Class

The UML class diagram of our program is shown in Figure 1. The basic class
is LogRecord which is used to store data about a single purse transaction. The
data consists of the new balance after the transaction (balance:short), trans-
action identifier (transactionId:int) and transaction date (date:SaleDate).
Additionally, the attribute empty states if a particular instance of LogRecord is
in use.

Such an attribute is characteristic for the JAVA CARD platform, which is a
memory constrained device and in general does not possess a garbage collector.
To avoid memory overflow during execution all objects are allocated during the
initialisation phase of JAVA CARD applets and the programmer keeps track of
which objects are already in use, for example by introducing attributes like
empty3. The LogRecord class contains only one method, which is responsible for
assigning values to its attributes:
3 Some design and implementation choices in our example may seem artificial (for

example, the value of empty never changes from false to true), but the point was
to illustrate certain critical issues.
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0..*

LogRecord

-balance:short=-1

-date:SaleDate=null

-transactionId:int=-1

-empty:boolean=true

+LogRecord()

+setRecord(balance:short,date:SaleDate,transId:int):void

LogFile

-logFileSize:int=20

-currentRecord:int

-log:LogRecord[]=new LogRecord[logFileSize]

+LogFile()

+addRecord(balance:short,date:SaleDate,transId:int):void

Purse

logFile:LogFile=new LogFile()

balance:short=1000

+Purse()

+processSale(amount:short,sellerId:int):void

Fig. 1. Purse application class diagram

public void setRecord(short balance, SaleDate date, int transId) {

this.balance = balance;

this.date = date;

this.transactionId = transId;

this.empty = false;

}

3.2 Specification and Verification of setRecord

Regarding data consistency, the main property one needs to establish about the
class LogRecord is to assure that at any point all the instances of this class that
are in use are properly initialised. Expressed in (pseudo) OCL this property
reads:

context LogRecord throughout:
not self.empty implies
self.balance >= 0 and self.transactionId > 0 and self.date <> null

This states that all attributes of LogRecord objects that are in use have proper
values at any point in time. We want to prove that the method setRecord
preserves this strong invariant. In order to do this, one needs a precondition
saying that the parameters that are passed to setRecord have proper values.
The resulting JAVA CARD DL proof obligation in the actual notation used by the
KeY Prover is:

!self = null

& balance >= 0 & !date = null & transId > 0

& (self.empty = FALSE ->

(self.balance >= 0 & !self.date = null & self.transactionId > 0))
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-> [[{ self.setRecord(balance, date, transId); }]]

(self.empty = FALSE ->

(self.balance >= 0 & !self.date = null & self.transactionId > 0))

This is proved automatically with 230 rule applications in 2 seconds4. If we
change the strong invariant into a weak invariant, that is, replace the throughout
modality in the formula above with a diamond modality, the resulting proof
obligation is (as expected) also provable (125 rules, less than 2 seconds).

Observe that the order of attribute assignments in setRecord’s body is cru-
cial for the strong invariant to hold. If we change setRecord’s implementation
to

public void setRecord(short balance, SaleDate date, int transId) {

this.empty = false;

this.balance = balance;

this.date = date;

this.transactionId = transId;

}

then it does not preserve the strong invariant anymore, while it still preserves
the weak invariant. When trying to prove the strong invariant for this imple-
mentation the prover stops after 248 rule applications with 6 open proof goals.
The proof for the weak invariant proceeds in the same fashion as for the previous
implementation.

3.3 The Purse Class

The Purse class is the top level class in our design. The Purse stores a cyclic
file of log records (each new entry allocates an unused entry object or overwrites
the oldest one), which is represented in a class LogFile. LogFile allocates an
array of LogRecord objects, keeps track of the most recent entry to the log and
provides a method to add new records – addRecord.

The Purse class provides only one method – processSale. It is responsible
for processing a single sale performed with the purse – debiting the purchase
amount from the balance of the purse and recording the sale in the log file.
To ensure consistency of all modified data, JAVA CARD transaction statements
are used in processSale’s body. Figure 2 shows the UML sequence diagram
of processSale. The total amount of code invoked by processSale amounts
to less than 30 lines, however, it consists of nested method calls to 5 different
classes.

3.4 Specification and Verification of processSale

As stipulated in [24], we need to ensure consistency of related data. In our case,
this means to express that the state of the log file is always consistent with the
4 All the benchmarks presented in this paper were run on a Pentium IV 2.6GHz

Linux system with 512MB of memory. The version of the KeY Prover used (0.1200)
is available on request. The prover was run with JAVA 1.4.2.
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current state of the purse. More precisely, we state that the current balance of
the purse is always equal to the balance stored in the most recent entry in the
log file. The corresponding strong invariant expressed in pseudo OCL is:

context Purse throughout:
self.logFile.log.get(self.logFile.currentRecord).balance = self.balance

Since processSale is the method that modifies both the log file and the state
of the purse, we have to show that it preserves this strong invariant. The most
important part of the resulting proof obligation expressed in JAVA CARD DL is
the following:

JCSystem.transactionDepth = 0

& !self = null

& !self.logFile = null

& !self.logFile.log = null

& self.logFile.currentRecord >= 0

& self.logFile.currentRecord < self.logFile.log.length

& self.logFile.log[self.logFile.currentRecord].balance = self.balance

-> [[{ self.processSale(amount, sellerId); }]]

self.logFile.log[self.logFile.currentRecord].balance = self.balance

This proof obligation is proved automatically by the KeY Prover modelling the
full JAVA CARD standard (see Section 3.6) in less than 2 minutes (7264 proof
steps).

3.5 Post Hoc Verification of Unaltered Code

We just reported on successful verification attempts of a refactored and par-
tial version of the Demoney purse application. When it comes to capabilities
and theoretical features of the KeY Prover there is nothing that prevents us in
principle from proving properties about the real Demoney application. There
are, however, some design features in Demoney that make the verification task
difficult. We discuss them in detail in Section 4.2.

We also proved total correctness proof obligations for two simple, but com-
pletely unaltered, methods of Demoney called keyNum2tag and keyNum2keySet.
This was possible, because the problems discussed in Section 4.2 below stayed
manageable in these relatively small examples. It was crucial that the KeY Prover
allows to prove properties of unaltered JAVA code. This implies that, in princi-
ple, JAVA code does not have to be prepared, translated, or simplified in any way
before it can be processed by the prover. Unaltered JAVA source programs are
first-class citizens in Dynamic Logic. JAVA CARD DL formulae simply contain
references to source code locations such as this:

fr.trustedlogic.demo.demoney.Demoney self;

byte keyNum;

byte result;

...

result = self.keyNum2tag(keyNum);
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As the source code we proved properties about was given beforehand, what we
did can be called post hoc verification.

3.6 Performance

We emphasise that all mentioned proofs were achieved fully automatically. What
it means for the user is that there is no interaction required during the proof
and, as a consequence, the user does not have to understand the workings of the
JAVA CARD DL calculus.

Table 1. Performance of KeY Prover for examples discussed in the text

Proof Obligation Time (sec.) Steps Branches

[[setRecord]] 2.0 230 20

〈setRecord〉 1.5 125 6

[[setRecord]]F 2.1 248 6 open

〈keyNum2tag〉D 3.3 392 18

〈keyNum2keySet〉D 5.5 640 33

[[processSale]]1 41.4 3453 79

[[processSale]]2 51.3 4763 248

[[processSale]]3 111.1 7264 338

F Failed proof attempt
D Methods from Demoney (full pre/post behavioural specification)
1 Ideal arithmetic, no null pointer checks
2 Ideal arithmetic, with null pointer checks
3 JAVA arithmetic, with null pointer checks

Table 1 summarises proof statistics relating to the examples discussed pre-
viously. Some explanations about the three different versions of the proof for
processSale are due: the KeY Prover allows to use different settings for the
rules used during a proof. One of those settings concerns the kind of arithmetics
(see Section 2.2). When ideal arithmetic is used, then all integer types are con-
sidered to be infinite and, therefore, without overflow. When JAVA arithmetic is
used, the peculiarities of integer types as implemented in JAVA are taken into
account: different range (byte, short, etc.), finiteness, and cyclic overflow.

Another prover setting is the null value check. When switched off, many
variables with object references are assumed to be non null without bothering
to prove this fact. When switched on, the prover establishes the proper value
of every object reference. Obviously, proofs involving null checks are more ex-
pensive. The checks for index out of bounds in arrays are always performed by
the prover. The benchmark for the third version of processSale represents the
prover’s behaviour with support for the full JAVA CARD standard.

Figure 3 shows a screenshot of the KeY Prover with a successful proof for
the third version of processSale.
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Fig. 3. KeY Prover window with successful proof

4 Results

4.1 Verification Technology

Although we so far managed to verify only a small and partly refactored part of
Demoney, we are encouraged by what we could achieve. The verified programs
contain many complex features: nearly every statement can throw an exception,
many JAVA arithmetic and array types occur, there are several nested method
calls and, above all, JAVA CARD transactions that may cause subtle errors.

The largest example involves about 30 lines of source code. This may not seem
much, but it clearly indicates that methods and classes of non-trivial size can be
handled. In addition, the next version of the KeY prover will support composition
of proofs including a treatment of representation exposure by computation of
modifier sets [7]. Consequently, we expect that formal verification of JAVA CARD

programs comparable to Demoney is achievable before long.
On the other hand, there are also serious limitations. To start with, we ob-

served that verification of the more complex methods of the unaltered Demoney
program results in specifications and proof obligations that simply become too
long and complex. In our opinion, this problem must be attacked by moving
from post hoc verification to design for verification, see the following section.

It would be desirable to have a more formal statement here relating types of
programs and proof complexity. The problem is that even loop-free JAVA CARD

programs contain control structures like exceptions and transactions that have a
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global effect on control flow. Taking away all critical features yields an uninter-
esting programming language, while leaving them in renders general statements
on proof complexity (at least the ones we could think of) simply untrue.

A principal obstacle against automating program verification is the necessity
to perform induction in order to handle loops (and recursion). In most cases,
the induction hypothesis needs to be generalised, which requires considerable
user skill. There is extensive work on automating induction proofs, however,
mostly for simple functional programming languages as the target. Only recently,
preliminary work for imperative target languages [29, 16] appeared. If, however,
Demoney is a typical JAVA CARD application, then loops might be much less of a
problem than thought: of 10 loops in Demoney (9 for, 1 while) most are used to
initialise or traverse arrays of known bounds. Such loops do not require induction
at all. The next version of the KeY Prover contains a special automated rule for
handling them. Our analysis showed that at most one loop in Demoney perhaps
needs induction. There is no recursion.

Speed and automated theorem proving support, for example, for arithmetic
properties, need to be improved in order to achieve an interactive working mode
with the prover, which is not possible with proofs that in some cases take min-
utes. There is no principal obstacle here; for example, the speed increased by an
order of magnitude since we began the case study.

An important question is whether we are able to express all relevant require-
ments. There is no agreement on standard requirements for JAVA CARD, but the
report [24] can serve as a guideline. Many of the security properties related there
can be expressed in JAVA CARD DL including strong invariants. In the present
paper we concentrated on data consistency in connection with atomic transac-
tions. The examples included also overflow control. In [14] it was shown that
also information flow properties are expressible. We have strong evidence that
also memory allocation control, error control and even the well-formedness of
transactions can be formulated. For example, the following two properties, taken
from [24] can be formulated in JAVA CARD DL: (i) no TransactionException
related to well-formedness is thrown, (ii) only ISOExceptions are thrown at the
top level of an applet.

The main limitation of the currently used version of JAVA CARD DL is the
impossibility to express complex temporal relationships between the execution
of different code fragments to establish advanced control flow properties such as
a certain temporal order on method calls. This requires more complex temporal
operators than “throughout” or some kind of event mechanism, and is a topic
for future research. On the specification side, some work was done in [34], while
[8] looked at abstracted byte code in a model checking framework.

4.2 Design for Specification and Verification

The way Demoney is designed and coded causes certain technical complications
both when specifying and proving safety properties of programs with transac-
tions. We demonstrate two issues and discuss their impact on the process of
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specification and verification of JAVA CARD programs. Thereby, we give guide-
lines for the design of JAVA CARD applications to avoid such problems.

Byte Arrays. Following the specification in [23, p. 17] Demoney implements a
cyclic log file in a very similar fashion to our Purse class. Demoney stores more
information than our program in a single log record, but that’s not an issue
when it comes to formal verification. The major difference is that each single log
record is implemented as a byte array instead of an object (of class LogRecord
in our case). We suspect that the main reason for implementing a log record
as a byte array is to ease the transportation of log data to the card terminal.
Another reason, explicitly mentioned in the specification, is to follow the schema
of recording data in the form of TLVs (Tag-Length-Value). Finally, because of
memory costs in smart cards, byte arrays are still much used to save some small
memory overhead one has to pay for object instances and booleans5.

The use of a byte array instead of an object type has consequences for
the verification process. To start with, JAVA CARD allows only one dimensional
arrays, which means that one cannot explicitly declare in a JAVA CARD program
that a log file is a two-dimensional array. So instead of saying

byte[][] logFile;

one has to say

Object[] logFile;

and then allocate this data structure by saying:

logFile = new Object[logFileSize];

for(short i=0; i<logFile.length; i++)

logFile[i] = new byte[LOG_RECORD_SIZE];

Since this is a dynamic allocation, there is no static information on the type of
elements in the logFile array. Statically, one can only deduce that those ele-
ments are of type Object. In the verification process however, such information
has to be made more precise. Since it cannot be deduced statically, it has to be
included in the assumptions (that is, preconditions) of a proof obligation explic-
itly. In JAVA CARD DL this requires use of existential quantifiers and lengthy
Dynamic Logic expressions. In many cases, existential quantification makes it
harder to find a proof automatically. If, instead, one declares a logFile as

LogRecord[] logFile;

the situation is much clearer from the prover’s point of view. The only assump-
tion needed in this case is that the elements of the logFile array are not null.
In general it would also require a quantifier (universal), but in the special case
of our program we are only interested in two elements of this array, so that the
following assumption is sufficient:
5 The last point was confirmed by Renaud Marlet, Trusted Logic S.A., in personal

communication.
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!logFile[currentRecord] = null &

!logFile[(currentRecord + 1) % logFileSize] = null

This, together with the declaration of logFile, is enough for the prover to
establish type information about all relevant elements of logFile. Moreover, if
the logFile is statically allocated right after it is declared,

LogRecord[] logFile = new LogRecord[20];

then no assumptions about the elements of logFile are necessary at all. The
logFile example is not an isolated case, as one can find several occurrences of
declarations of Object arrays in Demoney.

The second issue with the use of byte arrays for storing log records is related
to arithmetics. The strong invariant for our Purse class states:

self.logFile.log[self.logFile.currentRecord].balance = self.balance

The type of attribute balance both in LogRecord and in Purse is short. When
the byte array is used for storing log record data, then the value of balance is
stored in two byte elements of this array. Comparing such a two byte value
stored in an array to a short value becomes a bit complicated:

self.logFile.log[self.logFile.currentRecord][OFF_BALANCE] =

castToByte((self.balance - castToByte(self.balance % 256)) / 256) &

self.logFile.log[self.logFile.currentRecord][OFF_BALANCE + 1] =

castToByte(self.balance % 256)

This specification expression is based on an educated guess of how the JAVA

CARD API method Util.setShort [31] is implemented (setShort is a native
method and its implementation is not disclosed). Expanding the Dynamic Logic
function symbol castToByte results in another modulo operation. Also note that
all arithmetic function symbols have JAVA types and must be checked against
overflow. Proving with expressions such as the one shown above is difficult, if
not practically unfeasible.

We sum up the problems associated to byte arrays: (1) typing information is
difficult to establish, causing very complicated preconditions, and (2) comparison
of short values unwrapped into two byte values requires the use of complex
expressions involving modulo arithmetics. Both problems have serious impact
on the size of proofs and automation.

The use of byte arrays is partially steered by the TLV standard. We do not
argue with the purpose or usability of this standard in smart card technology,
and we accept its motivations, such as the performance and space optimisation
of JAVA CARD applets. It seems obvious, however, that some things have to be
traded off to ease formal specification and verification of JAVA CARD programs.

One general guideline would be to use object types to store any kind of non-
primitive data, at least if they are persistent (for transient data there is no choice
but an array in JAVA CARD). Furthermore, serialise objects only if necessary
(in case of JAVA CARD for communication). As part of a bigger picture one
should consider to decouple application functionality from the communication
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model. Such a decoupled design is likely to allow decomposable, and thus easier,
verification. It is more robust, too. We point to the fact that the examples
presented in [24] follow for the most part the guideline of using object types
instead of byte arrays for storing data.

Cyclic Indexing of Arrays. Another problematic issue for specification and ver-
ification is the way information on the most recent record in the log file is kept
and updated in Demoney. This is rather a problem of coding conventions and
not a design issue. Demoney’s cyclic file class has an attribute that stores the
index of the next record to be used – nextRecordIndex. In order to access the
most recent entry in the log, one writes an expression like:

logFile[(nextRecordIndex - 1) % logFileSize] ...

Modulo arithmetics is used to calculate the actual index. If we add the way the
nextRecordIndex is updated, that is

nextRecordIndex = (nextRecordIndex + 1) % logFileSize;

then the prover has to establish the validity of equations such as:

index = (((index - 1) % logFileSize) + 1) % logFileSize

where all arithmetic function symbols have JAVA types and must be checked
against overflow. This is certainly not impossible, but it adds substantially to the
complexity of the resulting first-order proof obligations and, in connection with
other phenomena, can make the problems too difficult to prove automatically.

To avoid these complications, we suggest two simple guidelines. The first is to
keep track of those indices that are relevant for specification and verification, in-
stead of those for implementation (or simply keep both kinds of indices). The sec-
ond is to avoid modulo operations, if possible. The update of nextRecordIndex
can be easily rewritten as:

nextRecordIndex++;

if (nextRecordIndex == logFileSize)

nextRecordIndex = 0;

This program fragment might not be as simple and fast as the one before, but
it considerably eases verification.

We believe that if the problems mentioned in this section were not present
we would be able to verify automatically that Demoney’s performTransaction
method preserves the kind of strong invariant that we had in our Purse class.

Discussion. Asking a programmer to rewrite the code to ease verification may
seem unrealistic. It may look as if we put the burden of making verification feasi-
ble on the programmer instead of enabling the prover handle arbitrarily complex
programs. This is not the case. Our aim is to make the KeY prover powerful
enough to deal with complex JAVA CARD code, however, one cannot expect a
prover to deal with baroque programs optimised for performance. A trade-off
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has to be found. The guidelines we proposed are simple to follow and, in addi-
tion, make sense from a software engineering point of view. In particular, we do
not assume that the programmer has any knowledge of the theorem prover.

Another counter argument against rewriting the code is that abstraction and
interface specification should be used to simplify the verification process and get
around some of the problems we described above. We fully agree with this, where
this possibility is applicable, but in the context of JAVA CARD applet verification
it is not so. For example, when one proves a rip-out related property, one cannot
abstract away from the implementation of the API methods, because the actual
implementation of an API method affects the intermediate states of the program
being verified.

5 Related Work

A version of Dynamic Logic that extends pure Dynamic Logic with trace modal-
ities “throughout” and “at least once” was first presented in [5]. The axiomati-
sation of transactions was provided in [4]. Paper [18] proposes another approach
to reasoning about rip-out properties (called card tears there). It presents a
theoretical framework for dealing with card tears and transactions based on
global program (method) transformation (as opposed to the KeY approach of
local transformations). This paper does not report on any practical verifica-
tion attempts. In [34] temporal constructs are introduced to the JAVA Modelling
Language (JML), but they refer to sequences of method invocations and not to
sequences of intermediate program states.

Paper [19] is closely related to our work in the sense that it reports on
successful verification attempts of a commercial JAVA CARD applet with different
verification tools (ESC/JAVA2, Jive, Krakatoa, LOOP). The security property
under consideration, also mentioned in Section 4.1, is that only ISOExceptions
are thrown at the top level. Transaction related properties are not investigated.
Like in the present study, it is stressed that two-dimensional byte arrays and
the use of byte arrays in general are problematic in JAVA CARD verification,
and have serious impact on the size and complexity of proofs. One of the main
results is that subtle bugs were found in the applet.

GemPlus provides a JAVA CARD case study similar to Demoney [10], also
a purse application and publicly available6. We do not use it at the moment,
because it contains a large number of features that detract from the basic issues
and make it less suitable as a starting point for JAVA CARD verification. In
addition, it was not developed further in the last three years.

Related work in JAVA CARD verification can be classified according to several
criteria. Working on byte code avoids the problems of source code availability
and compiler trustworthiness, but makes full verification more difficult due to
information loss during compilation. An overview of work done on the byte code
level is provided in [9] – we concentrate on efforts targeted at source code: here,
one can distinguish between methods that attempt complete modelling of the
6 http://www.gemplus.com/smart/enews/st1/pacap.html
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JAVA CARD semantics and those that do not. The latter include model checking
and extended static checking.

Model checking is based on a suitable abstraction of the execution model,
which in the Bandera project [13] is JAVA, and of the requirements. The ad-
vantages are full automation of the model checking phase, trace generation for
counter models, and treatment of concurrent JAVA programs. The drawback is
the need for abstraction which poses difficulties for programs containing JAVA

arithmetic and other inductive data structures. Bandera handles JAVA, not JAVA

CARD, and hence no transactions. In design-by-contract [25] and extended static
checking (ESC) [15] JAVA source code is decorated with annotations from a
restricted language. Annotated programs (via an intermediate representation)
undergo a dynamic analysis that produces first-order verification conditions for
a theorem prover. The analysis does not attempt to be complete, but it is fully
automatic and produces warnings, when annotations are potentially violated.
ESC is related to our strong invariants, because arbitrary code locations can
be annotated with object invariants [21]. An approximation of strong invariants
within ESC can be obtained by annotating every program point with the desired
invariant7. Again, atomic transactions are not supported, as the target language
is JAVA.

Closest to our approach are source code verifiers for JAVA based on various
program calculi. The LOOP tool [20] translates JAVA source code with JML
specifications into theories for the PVS theorem prover. JAVA semantics is de-
scribed with co-algebras and uses higher-order logic as an internal representation.
Higher-order logic is also used to formalise syntax and semantics of a JAVA frag-
ment in Isabelle [35] and in the Krakatoa tool [22]. In the latter JAVA programs
and their JML specifications are translated into an intermediate, mostly func-
tional, language, then proof obligations are generated, which in turn are proved
with the Coq proof assistant. The Jive system [26] is based on an extended
Hoare style calculus, Jack [11] on weakest precondition calculus, and KIV [30]
on Dynamic Logic. The last three systems are closely related to the KeY Prover
in that they all axiomatise JAVA with logical rules that can be seen as a small
step operational semantics and proofs can be interpreted as symbolic execution
with induction. The differences lie in the details and scope of the axiomatisation
as well as support for automation. As far as we know, KeY is the only system
that supports strong (object) invariants and, in particular, the semantics of JAVA

CARD transactions.

6 Conclusions

In this paper, we presented and analysed a case study concerned with formal
specification and verification of JAVA CARD programs. Our results show that
largely automated formal verification of realistic JAVA CARD applications without
abstraction is possible in the near future. It is possible already now provided that
applications are designed with verification in mind from the start. We gave a
7 We thank Rustan Leino for pointing this out.
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number of simple design guidelines that drastically simplify proofs while creating
only a moderate performance overhead. We believe this to be acceptable, because
even in the smart card world, performance restrictions become less of an issue.
Besides, a small memory overhead seems an acceptable price for provably correct
programs.

We concentrated in this case study on safety (data consistency) properties in
the presence of transactions and possible arithmetic overflow. Information flow,
memory allocation, well-formedness of transactions, and error analysis would
be possible to formulate, but we cannot say anything about feasibility at this
time. Temporal relationships between the execution of different code fragments
as needed to enforce an order on method calls are a topic for future research.

Acknowledgements

We would like to thank Renaud Marlet of Trusted Logic S.A. for providing the
Demoney case study. We also thank the organisers of CASSIS’04 for the oppor-
tunity to present this work. We thank the following people for reading drafts
of this paper and providing valuable feedback: Renaud Marlet, Steffen Schlager,
and Martin Giese. The anonymous reviewers helped with their constructive crit-
icism and pointers to relevant literature to improve the paper.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
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Abstract. Security policies are rules that constrain the behaviour of
a system. Different, largely unrelated sets of rules typically govern the
physical and logical worlds. However, increased hardware and software
mobility forces us to consider those rules in an integrated fashion. We
present SPIN models of four case studies where mobility plays a role.
At present our models are ad-hoc. In each case the model captures both
the system of interest and its security policy. The model is then formally
checked against a security principle. The model checking activity shows
examples of policies that are too weak to cope with mobility.

1 Introduction

Security policies are important both in the physical and the logical world. By a
policy we mean “a rule that defines a choice in the behaviour of a system” [1].
A security policy rules out behaviour “that has been deemed unacceptable” [2].
A spatial security policy constrains this further by ruling out behaviour tied
to particular locations [3]. Physical events may affect logical security and vice
versa. For example a user moving a laptop with access to confidential data from
a secure to an insecure environment must loose all authorisations on the data
immediately. The problem we intend to solve is finding a means to analyse secu-
rity policies from the point of view of logical and physical mobility. The urgency
of solving this problem is caused by increased mobility. For example (small) mo-
bile computing equipment is easily carried out of a building, past unsuspecting
security guards, regardless of any measures like encryption, or tamper resistance.
Mobility thus ties logical and physical security together, causing new and, as we
will show, unanticipated security problems to arise.

We propose a first step towards an analysis method, with initial tool support.
The method is based on developing a formal model of a system with its security
policy, and on using a model checker to analyse the combination. From the
analysis we are able to predict the occurrence of security problems that would
not have occurred without mobility. We present case studies from four different
domains to illustrate the method.

In our work, we do not distinguish between logical mobility (mobile code
that roams from one processing and networking context to another) and phys-
ical mobility [4] (non-mobile code on mobile hardware that is carried from one
network context to another by its user). In both cases, the execution context of

G. Barthe et al. (Eds.): CASSIS 2004, LNCS 3362, pp. 172–191, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Modelling Mobility Aspects of Security Policies 173

some code under study changes, which is the level of abstraction at which we
work.

Our method consists of manually creating (1) an abstract model of a system
of interest, (2) its security policy and (3) a security design principle that the
combination of (1) and (2) should satisfy.

The system model should be able to generate all possible behaviours of the
system of interest, including behaviours of hacked versions of the system. For
example consider the UNIX ping command, which normally makes a charac-
teristic sequence of system calls. Hacked versions of ping would make different
sequences of system calls.

The security policy should constrain the behaviours of the system model to
desirable (safe) behaviours. For example, an execution monitoring system might
allow ping to make a raw socket call (which requires root permission), but no
other potentially dangerous systems calls.

The security principle finally constrains the joint behaviour of the system
and its security policy to something the system designer would have had in
mind when creating the system. In the case of ping this might be the principle
of the least privilege, which would ensure that root permission is only used once,
for the raw socket call.

We express our system, policy and principle in Promela, the input language
of the SPIN model checker [5] as follows:

A System of interest is characterised by a trace of relevant events, for exam-
ple system calls, or messages across a network. This is modelled in a most
general way to capture only the essence of the system, particularly its mo-
bility aspects. The system is modelled in SPIN by global data, channels and
processes.

A Security Policy constrains the behaviour of the system to acceptable (safe)
behaviour. The policy constrains traces of events using the same terms as
the system, e.g. system calls, network messages etc. The policy is modelled
by one or more processes.

A Security Principle is a design guideline for the system and the policy. To
make the principle operational we translate it into a specification for the
system and its policy, which, in our case studies, takes the form of a SPIN
trace declaration (See [5, Page 485] for the technical reason why we use trace
declarations rather than LTL formulae).

The system, policy and principle satisfy:

(system ‖ policy) |= principle

We use SPIN to analyse a system and policy with respect to a principle; a
system and policy that does not abide by the principle gives rise to concrete
counter examples. We demonstrate the approach by presenting four case studies
in subsequent sections. In each case we identify system, policy, and principle.
SPIN then shows that no deadlock can occur in (system ‖ policy). This shows
that we are working with sensible models that admit behaviour satisfying the
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security policy. However, model checking (system ‖ policy) |= principle gives
traces showing that the principle can be violated. In all but the first case study
(which is intended as an introductory example) the violations can be attributed
to mobility.

Our modelling methodology is based on a combination of techniques devel-
oped by Alan Mycroft and his group from Cambridge, UK, for dynamic security
policies in the logical domain (security policy abstraction [6]) and the physical
domain (spatial security policy [3]). We extend the Cambridge work in the log-
ical domain [6] by adding mobility considerations. Both works from Cambridge
propose policy languages but no realised tool support. The inspiration for using
SPIN by way of tool support comes from the work of Cheng et al [7], who also
use SPIN to model check security policies, however without consideration of ei-
ther mobility or the physical domain. A third source of inspiration is formed by
the work of Sekar et al [8], who present a system which automatically derives
models from code. Model checking is then used to analyse models with respect
to a choice of security policies. Sekar et al do not consider physical mobility.

The four subsequent sections discuss one case study each. The final section
concludes and discusses further work.

2 Ping

The first case study concerns the UNIX utility ping, which sends an IP packet to
a network node, reporting on the availability of the destination and on the per-
formance of the connection. Making the connection requires root permission (for
the socket call), which is potentially dangerous and should thus be minimised.
This is captured by the principle of the least privilege, which states that [9]:
“Every program and every user of the system should operate using the least
set of privileges necessary to complete the job”. In the case of ping (and other
commands) the principle translates into dropping root permission after executing
the first socket system call.

This case study shows that the translation of a general principle such as
least privilege to the case at hand is relative to the design charter that is given
a-priori. In this case study, we assume that the design of the ping utility is
within the design charter, while the design of the UNIX operating system is not.
Consequently, it is a given that some system calls needed in the ping utility need
root permission, which results in the translation of the principle of least privilege
as given above. If the design of UNIX itself would have been within the design
charter of this case study, most probably a solution would have been chosen in
which the ping utility would not need root permission.

2.1 The System

We model behaviour by traces of system calls, which is abstract because we ig-
nore the parameters of the system calls and any associated calculations. At the
same time, naming system calls is concrete because we distinguish system calls
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that do not need root permission, and which could be collapsed. The Promela
enumeration type mtype below mentions the same system calls as used by Mad-
havapeddy et al [6].
mtype = {

LibC_exit, LibC_gethostbyname, LibC_gettimeofday, LibC_printf, SysCall_brk,
SysCall_mprotect, SysCall_recvfrom, SysCall_sendto, SysCall_sigaction, SysCall_socket

} ;

We use a synchronous channel to connect the ping system to the ping policy.
A message consists of one of the symbols LibC_exit . . . SysCall_socket.
chan c = [0] of {mtype} ;

The ping system is modelled abstractly by the process ping_system. The
behaviour generated encompasses all possible traces of the ten system calls in
the enumeration type mtype. This represents considerably more behaviour than
real ping commands would exhibit and includes for example hacked versions of
ping. This gives us a good model of reality.
active proctype ping_system() {

do
:: c!LibC_exit :: c!LibC_gethostbyname
:: c!LibC_gettimeofday :: c!LibC_printf
:: c!SysCall_brk :: c!SysCall_mprotect
:: c!SysCall_recvfrom :: c!SysCall_sendto
:: c!SysCall_sigaction :: c!SysCall_socket
od

}

2.2 The Policy

The ping policy below represents an abstract version of the security policy de-
scribed by Madhavapeddy et al [6]. (We have abstracted away from the fact that
extra brk and printf system calls are always allowed.)

We define C pre-processor macros corresponding to the language constructs
of the same name proposed by Madhavapeddy et al [6]. (The backward slashes
at the end of each line except the last ensure that the macro definition extends
across multiple lines.)

#define optional( x ) \
if \
:: x \
:: skip \
fi

#define multiple( x ) \
do \
:: x \
:: break \
od

The first non-deterministic choice below represents a call to ping that re-
sponds with a usage message. The second choice represents ping doing its proper
work, i.e. a socket call, optionally followed by a call to LibC_gethostbyname etc.
active proctype ping_policy() {

do
:: c?LibC_printf ;

c?LibC_exit
:: c?SysCall_socket ;

optional(c?LibC_gethostbyname) ;
c?LibC_printf ;
multiple(c?SysCall_sigaction) ;
multiple(c?SysCall_sendto ; c?SysCall_recvfrom ; optional(c?SysCall_brk)) ;

od
}
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To understand how the ping system and the policy interact, compare the send
actions c!. . . of ping_system to the receive actions c?. . . of ping_policy. This
comparison reveals that the former is prepared to engage in any send action,
whereas the latter is prepared only to engage in specific receive actions. This
then explains how the policy constrains the generic behaviour of the system. We
use the same technique throughout the paper to effectuate the security policies.

The separation of system and policy thus provides a convenient way to talk
about the system (which is general) and the policy (which constrains general be-
haviour to specific behaviour). To indicate that this not an entirely trivial result
we point out that many other ping implementations are possible that cannot
be constrained to conform to the policy, for example a version of ping_system
where the do . . . od above would be replaced by if . . . fi.

The security policy still permits attacks, for example mimicry attacks [10],
which subtly alter the pattern of system calls to achieve malicious intent while
avoiding detection by an IDS. Our use of a security principle below also captures
this type of attack.

2.3 The Principle

The ping policy must satisfy the principle of the least privilege. This is mentioned
but not explicitly specified as such by Madhavapeddy et al [6]. As stated before,
the principle is interpreted as ping must drop root permission after one socket
call, which we model here by saying that one socket call is ok, but not two.
This is captured by the trace declaration below, which matches a trace that has
exactly one SysCall_socket. When model checking, SPIN tries to find a sample
trace that does not match the trace declaration, which is then a counter example
for the desired principle.

#define anything_but_socket() \
c?LibC_exit

:: c?LibC_gethostbyname \
:: c?LibC_gettimeofday
:: c?LibC_printf \
:: c?SysCall_brk
:: c?SysCall_mprotect \
:: c?SysCall_recvfrom
:: c?SysCall_sendto \
:: c?SysCall_sigaction

trace {
do
:: anything_but_socket()
:: c?SysCall_socket -> break
od ;
do
:: anything_but_socket()
od

}

2.4 Analysis

Model checking the parallel composition of ping_system, mobility as well as
ping_policy against the built in formulae of the SPIN model checker (absence
of deadlock) shows no errors. This demonstrates that the model is indeed a
sensible one because behaviours are possible that satisfy the security policy.

Model checking the system and the policy against the principle reveals traces
that do not match the trace declaration, i.e. traces that violate the principle. A
concrete example is SysCall_socket; LibC_printf; SysCall_socket. To rem-
edy the situation we have several options. For example we could replace do . . .
od in the ping policy by if . . . fi, because then only one socket call would result.
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A better alternative would be to exit the loop once the second non-deterministic
choice has completed, because this allows an arbitrary number of ‘usage’ message
to be generated but one ‘proper’ ping call.

The results seem trivial but we should like to point out that our system
model and security policy are indeed representative for current intrusion detec-
tion systems. Therefore it is encouraging that SPIN has been able to discover a
problem with our system and policy.

3 Database Application

The second case study investigates the separation of testing and production
environments in a modern central database application. The application consists
of three layers: data, business logic and presentation. The data and business logic
layers reside on a central server. There are two datasets: one with production
data and one with randomised test data. The business logic layer accepts network
connections from the presentation layer, which consists of Java applets available
throughout the organisation. Upon accepting a connection from a presentation
layer client, the business logic layer should check the physical location of the
client in a configuration database and depending on this location, use either
the production or test dataset. We treat the presentation layer and the data
base layer as the system, and the business logic layer as the policy because the
business logic layer decides what constitutes acceptable behaviour.

3.1 The System

We define the symbols necessary for our example. Test_0 represents the test
data, Data_0 . . . Data_3 represent production data. The symbols Test_Env and
Production_Env identify the test and production environments, and Connect
. . . Reply represent commands exchanged between the three layers of the system.

mtype = {
Test_0, Data_1, Data_2, Data_3, Test_Env, Production_Env,
Connect, Disconnect, Request, Reply

}

The model comprises three processes (representing the presentation, business
logic and database layers) and two synchronous channels connecting the layers.
p2b connects the presentation to the business logic layer and b2d connects the
business logic layer to the database layer. The message header may be Connect
. . . Reply. Depending on the message header, the message body may be one of
Test_0 . . . Data_3 or Test_Env or Production_Env.

chan p2b = [0] of {mtype, mtype} ;
chan b2d = [0] of {mtype, mtype} ;

The presentation layer process below generates an almost arbitrary sequence
of requests for both production and test environments. The only form of protocol
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obeyed is that the presentation layer insists that it receives a reply after each
request. The database layer reports test or production data as appropriate.

active proctype presentation_layer() {
mtype data ;

end:
do
:: p2b!Connect(Test_Env)
:: p2b!Connect(Production_Env)
:: p2b!Request(Test_Env) ->

p2b?Reply(data)
:: p2b!Request(Production_Env) ->

p2b?Reply(data)
:: p2b!Disconnect(Test_Env)
:: p2b!Disconnect(Production_Env)
od

}

active proctype database_layer() {
mtype data ;

end:
do
:: b2d?Request(Production_Env) ->

if
:: data = Data_1 ;
:: data = Data_2 ;
:: data = Data_3
fi ;
b2d!Reply(data)

:: b2d?Request(Test_Env) ->
b2d!Reply(Test_0)

od
}

3.2 The Policy

The business logic layer process mediates between the presentation and the
database layers, ensuring behaviour consistent with the business rules. In par-
ticular the business logic layer insists that applications make data base requests
only when connected to the data base. Each request is passed on to the database
layer, indicating whether to use the test or production data base. (The function
eval ensures that the body of the Reply message matches exactly with the
current value of data).

active proctype business_logic_layer() {
mtype env, data ;

end:
do
:: p2b?Connect(env) ->

do
:: p2b?Request(env) -> b2d!Request(env) ; b2d?Reply(eval(data)) ; p2b!Reply(data)
:: p2b?Disconnect(env) -> break
od

od
}

3.3 The Principle

The principle of interest is that “Testing and production environments are phys-
ically separated”. This is enforced by checking that once connected from a par-
ticular environment, all following request messages emanate from that same en-
vironment until a disconnect message arrives, again from the same environment.
An implementation that checks the location once for each connection suffices
in the case of a fixed network. In the case of a mobile network that supports
roaming, this does not suffice.

trace {
do
:: p2b?Connect(Test_Env) ->

do
:: p2b?Request(Test_Env) -> p2b?Reply(_)
:: p2b?Disconnect(Test_Env) -> break
od
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:: p2b?Connect(Production_Env) ->
do
:: p2b?Request(Production_Env) -> p2b?Reply(_)
:: p2b?Disconnect(Production_Env) -> break
od

od
}

3.4 Analysis

Model checking the system and the policy against the principle reveals (as ex-
pected) that the presentation layer is ill behaved because message sequences with
arbitrary test and production environment parameters are generated. The follow-
ing trace gives a concrete counter example for our principle: Connect(Test_Env),
Request(Production_Env).

The problem lies in the business logic layer (the policy), which should con-
strain the presentation layer to correct behaviour. Incorporating the principle in
the form of a trace declaration points out this deficiency of the business logic
layer. The business logic layer might implement the principle using eval(env)
instead of plain env in the receive actions for Request and Disconnect. This
would constrain the environment of the call to match the value of the env vari-
able exactly.
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Fig. 1. Mall with a vending machine and a point of sale terminal (pos) at the shop,
and an automated teller machine (atm) and the traditional counter at the bank.

4 Smart Cards

The third case study investigates the behaviour of next generation smart cards,
which are the object of study in the European Inspired project1. The principle of
interest here is Be reluctant to trust. To operationalise this principle we propose
security policies that can be customised by the card issuer as well as the card
holder. The concrete example that we will study is of (1) a card holder who
states that she does not permit applets to be loaded (i.e. smart card management)
1 http://www.inspiredproject.com
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other than when she is at the bank and (2) a card issuer who states that a
payment transaction at a vending machine must always be followed by a loyalty
transaction. Using a smart card that operates under the Be reluctant to trust
principle would give the user trust in the system because the user can hold the
bank responsible for all the applets on the card. This would also mean that a
shop could not load a loyalty applet unless the permission to load applets is
explicitly delegated to the shop.

4.1 The System

Following Madhavapeddy et al [6] we assume a tree-shaped world model. Figure 1
shows a shopping mall at the root of the tree, a shop and a bank are at the
intermediate layer, and four smart card readers at the leaves.

We use synchronous channels to model the identity of the (physically sep-
arated) parties. Three channels connect to the physical locations, four to the
smart card readers and another three to the applets. The last three are shown
here, the former are defined in the macros run_leaf and run_node below.

chan loyalty = [0] of {chan} ;
chan payment = [0] of {chan} ;
chan management = [0] of {chan} ;

We need two kinds of processes: one type representing interior nodes (em-
bedded in macro run_node) and one for leaf nodes (macro run_leaf). (The
macros generate both a channel with the given name, for example vending, and
corresponding process proc_vending.) To model mobility, each process allows
an applet to travel from any of its input channels to any of its output channels.
In the node process this means that an applet can be received either from the
parent of the node, or from one of the children. Similarly, the applet can be
moved on to the parent or one of the children.

#define run_node(parent, left, right) \
chan parent = [0] of {chan} ; \
active proctype proc_##parent() { \

chan applet ; \
end: \

do \
:: if \

:: parent?applet :: left?applet :: right?applet \
fi ; \
if \
:: parent!applet :: left!applet :: right!applet \
fi \

od \
}

A leaf process can exchange applets with the parent only. An applet can in
principle be executed on a smart card connected to a smart card reader located
at the leaf. This is modelled by sending the identity of the node onto the applet
channel thus: applet!parent. A leaf makes a non-deterministic choice whether
to execute the applet or not.
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#define run_leaf(parent) \
chan parent = [0] of {chan} ; \
active proctype proc/**/parent() { \

chan applet ; \
end: \

do \
:: parent?applet ; \

if \
:: applet!parent \
:: skip \
fi ; \
parent!applet \

od \
}

The world is instantiated to the configuration shown in Figure 1 by the seven
macro calls below.

run_leaf(vending) run_leaf(pos)
run_node(shop, vending, pos)
run_leaf(atm) run_leaf(counter)
run_node(bank, atm, counter) run_node(mall, shop, bank)

The system described above is general. It allows free travel of applets, and is
prepared to interact with any applet at any of the nodes. This is too liberal, and
we need a policy to constrain the resulting behaviour to acceptable behaviour.

4.2 The Policy

The init process represents the policy that constrains the behaviour of the sys-
tem. The init process begins by injecting a loyalty applet, a payment applet
and a management applet into the system (via the parent channel of the root
node mall). Eventually the mall will return the three applets, whence the sys-
tem terminates. During its life time, the init process is prepared to receive the
identity of the host of any of the applets on the corresponding channels payment,
loyalty, and management, indicating that the relevant applet is executed while
the smart card is connected to the indicated reader.

init {
chan host ;
mall!loyalty ;
mall!payment ;
mall!management ;

end:
do
:: loyalty?host :: payment?host
:: management?host :: mall?eval(loyalty)
:: mall?eval(payment) :: mall?eval(management)

od
}

4.3 The Principle

The trace specification below represents the principle Be reluctant to trust as
operationalised by the two customised policies: one for the smart card issuer
and one for the smart card holder. The first non-deterministic choice below
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represents a payment transaction at the vending machine that must be followed
by a loyalty transaction at the vending machine. The second non-deterministic
choice represents that the only possibility for a management transaction to take
place is at the counter of the bank. The other non-deterministic choices represent
the remaining desirable behaviour.

trace {
end:

do
:: payment?eval(vending) ;loyalty?eval(vending)
:: management?eval(counter) :: payment?eval(pos)
:: payment?eval(atm) :: payment?eval(counter)
:: loyalty?eval(vending) :: loyalty?eval(pos)
:: loyalty?eval(atm) :: loyalty?eval(counter)
od

}

4.4 Analysis

Model checking reveals (again as expected) that the system is ill behaved be-
cause the applets roam freely and therefore execute when the principle prohibits
this. A concrete counter example shows that after some preliminaries the man-
agement applet travels to the point of sale terminal thus: mall!management,
shop!management, pos!management. There the management applet executes,
which is modelled by sending the identity of the host back to the init pro-
cess: management!pos. The violation of the card holder specific part of the
principle can be prevented in the policy by replacing :: management?host by
:: management?eval(counter). It is not easy to enforce also the card issuer
specific part of the principle as this links two events (the payment and the loy-
alty transaction) that could in principle be separated by an arbitrary number
of unrelated events. To introduce such linkage into the policy, a notion of his-
tory would have to be included, for example by adding a variable to the model.
This shows that the separation of principle and policy brings at least notational
convenience that would not be available otherwise.

5 Peer to Peer Music Sharing

The last case study concerns a peer to peer music sharing system [11]. The
model of the relevant processes, message flows and computations is given in
Figure 2. The boxes denote processes and their internal actions, the arrows
denote messages exchanged between the processes. We will discuss each of the
processes and messages below. The model is abstract in the sense that:

– We assume that there are two different classes of users: music (1) producers
and (2) consumers; there are valid and expired (3) leases; there are valid
and invalid (4) payment tokens; there is (5) music in plain text form, (6)
encrypted music, and (7) watermarked music; there are (8) keys and there
are (9) fingerprints. All of the above 9 categories are assumed to be distinct
and incompatible, for example a fingerprint cannot be confused with the
identification of music.
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Fig. 2. Abstract Music2Share Protocols.

– We assume: (a) a simplistic peer network where peers do not actively redis-
tribute or copy content; (b) the existence of a secure mechanism for looking
up the fingerprint for the desired music; (c) idealised encryption, fingerprint-
ing and watermarking.

– We assume that the producer and the server form a secure domain, that
the client and the smartcard form another secure domain, and finally that
the communication between the client and the server is secure. We make no
security assumptions about the peers.

– Without loss of generality, we distinguish precisely two users, two pieces of
music, two lengths of lease, two keys etc. This could be extended but no
significant new lessons would be learned from doing so.

– We model small numbers of the different parties of the protocol, except the
Server, which is centralised. Distributing the server could be accomplished
but this would be a refinement that should remain invisible at the chosen
level of abstraction.

– We assume synchronous communication so that the network does not have
to store messages. We also assume the network to be reliable.

Under the assumptions above we are now able to present the two main sce-
narios of use: uploading and downloading music.

Scenario 1: upload. Starting top left in Figure 2, the producer chooses some
music and uploads it onto the server (Upload message). The server receives the
music, and calculates the fingerprint that will henceforth identify the music.
The server then chooses an encryption key, and encrypts the music. The key
is stored with the fingerprint for future use. An appropriate peer stores the
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encrypted music (Store message) for future reference. At some point in time the
server decides that the lease of the music expires and invalidates the key (not
shown in the diagram).

Scenario 2a: successful download. Starting bottom right in Figure 2, the con-
sumer chooses some music (identified by its fingerprint) and requests the music
from a client (Download request). We assume the client receives a valid token
from the smartcard by way of payment (Token message). The client then asks
the server for the key (Unlock request). We also assume that the lease has not
expired so that the client receives a valid key (Unlock reply). The client also
receives the encrypted music from the P2P network (Fetch message). The music
can now be decrypted and watermarked with the identity of the consumer. The
result is sent back to the consumer (Download reply).

Scenario 2b: failed download. The scenario will change if either payment could
not be arranged (because the valid tokens of the smart card ran out), or when the
lease has expired. In both cases the consumer receives an appropriate apology,
but no music.

5.1 The System

The relevant symbols of the model are:

mtype {
Download, Fetch, Store, Unlock, Payment, Upload,
Alice, Bob, Alice_Music, Bob_Music, No_Music,
Long_Lease, Short_Lease, Expired_Lease, Valid_Token, Invalid_Token,
Bach, Mozart, Bach_Cipher, Mozart_Cipher, Bach_Key, Mozart_Key,
Bach_Fingerprint, Mozart_Fingerprint

}

Here Download . . . Upload represent the different messages that may be trans-
mitted; Alice, and Bob are the users wishing to download music; Alice_Music,
and Bob_Music represent music watermarked by the identity of the user who
downloaded the music; No_Music is a place holder for music whose lease has
expired; Long_Lease . . . Expired_Lease represents three different lengths of
lease for shared music; Valid_Token, and Invalid_Token represent two pos-
sible payment token values; Bach, and Mozart represent two pieces of music;
Bach_Cipher, and Mozart_Cipher represent the encrypted versions of the two
pieces of music; Bach_Key, and Mozart_Key represent the encryption keys for the
two pieces of music; Bach_Fingerprint, and Mozart_Fingerprint represent the
fingerprints of the two pieces of music.

For technical reasons, we need a macro ord (below) to map Mozart_Finger-
print to 0 and Bach_Fingerprint to 1. NIL represents an out-of-band (error)
symbol.

#define ord(m) (m - Mozart_Fingerprint)
#define NIL 0



Modelling Mobility Aspects of Security Policies 185

Keys. We assume a unique key for each piece of music. (In addition to C pre-
processor macros, SPIN also offers its own variety of macro, the inline):

inline choose_key(plain, key) {
if
:: plain==Bach -> key=Bach_Key
:: plain==Mozart -> key=Mozart_Key
fi

}

Given a plain text, choose_key returns the corresponding key.

Fingerprinting and watermarking. Similarly for each piece of music there is a
unique fingerprint:

inline fingerprint(plain, id) {
if
:: plain==Bach -> id=Bach_Fingerprint
:: plain==Mozart -> id=Mozart_Fingerprint
fi

}

Once the user has downloaded her Bach or her Mozart, the music is water-
marked for her personal use. We are no longer interested in the particular piece
of music, only in the user for whom it has been watermarked. An invalid plain
text is returned as an invalid marked result No_Music.

inline watermark(plain, user, marked) {
if
:: plain!=NIL && user==Alice -> marked=Alice_Music
:: plain!=NIL && user==Bob -> marked=Bob_Music
:: else -> marked=No_Music
fi

}

It should be possible to check whether a piece of content has been water-
marked with the correct user identity. No_Music does not have a watermark. An
incorrect watermark causes a SPIN assertion to fail:

inline check_watermark(user, marked) {
if
:: user==Alice && marked==Alice_Music -> skip
:: user==Bob && marked==Bob_Music -> skip
:: marked==No_Music -> skip
:: else -> assert(false)
fi

}

Encryption and decryption. For each piece of music there is one cipher text:

inline encrypt(plain, key, cipher) {
if
:: plain==Bach && key==Bach_Key -> cipher=Bach_Cipher
:: plain==Mozart && key==Mozart_Key -> cipher=Mozart_Cipher
fi

}

With a valid key, the cipher text decrypts uniquely to the original plain text.
With an invalid (expired) key, the result is NIL:
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inline decrypt(cipher, key, plain) {
if
:: cipher==Bach_Cipher && key==Bach_Key -> plain=Bach
:: cipher==Mozart_Cipher && key==Mozart_Key -> plain=Mozart
:: else -> plain=NIL
fi

}

Network. The Music2Share network is modelled using two synchronous channels:
one for request messages and another for reply messages. (Channels in SPIN
are bi-directional). The channels carry messages with two parameters, where the
message header is always one of Download . . . Upload.

chan request=[0] of { mtype, mtype, mtype }
chan reply=[0] of { mtype, mtype, mtype }

Server. The key server is the only centralised component. The server must create
and store keys, it must fingerprint and encrypt music, locate a suitable peer to
store encrypted music, and it must serve keys.

Keys are stored together with a lease, which is decremented each time a key
is served. This models the process of lease expiry. The data type declaration
below defines type record holding a key and a lease.

typedef record {
mtype key ;
mtype lease ;

}

The Server itself sits in an endless loop waiting for one of two types of
messages Upload and Unlock on the request channel.

proctype Server() {
mtype cipher, id, key, plain, user ;
record store[2] ;
byte lease ;
do
:: request?Upload(plain, lease) ->

fingerprint(plain, id) ;
choose_key(plain, key) ;
store[ord(id)].key = key ; store[ord(id)].lease = lease ;
encrypt(plain, key, cipher) ;
request!Store(id, cipher)

:: request?Unlock(id, user) ->
if
:: store[ord(id)].lease > Expired_Lease ->

store[ord(id)].lease-- ;
key = store[ord(id)].key

:: else ->
key = NIL

fi ;
reply!Unlock(key, user)

od
}

Upon receipt of an Upload message with given plain text and lease, the
server calculates the fingerprint id, chooses a key, stores the key and the lease
in at the appropriate entry ord(id) in the array store, encrypts the plaintext
with the key yielding a cipher, and finally transmits a Store request onto the
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network, expecting an appropriate peer to pickup the request and to store the
cipher text. This completes the handling of the upload request, no acknowledge-
ment is returned to the requestor of the upload (The network is assumed to be
reliable at the chosen level of abstraction).

An Unlock request message with a fingerprint id and identity user causes
the server to check the expiry of the lease for the music with the fingerprint id.
If the lease has expired an invalid key (NIL) is created, otherwise the lease is
shortened and the correct key retrieved. The key is posted on the reply channel,
expecting the requestor of the unlock message to pick it up.

Peer. A peer is a simple process that serves only to store and communicate the
cipher text corresponding to a particular fingerprint.

proctype Peer(mtype id) {
mtype cipher ;
request?Store(eval(id), cipher) ;
do
:: request?Store(eval(id), cipher)
:: request!Fetch(id, cipher)
od

}

Before the peer enters its main loop, it expects a Store message with the
initial cipher text. (The expression eval(id) states that the actual parameter
of the message must have exactly the same value as the variable id; the variable
cipher on the other hand will be bound to what ever actual value is offered by
an incoming message). In the main loop, the peer either offers the cipher text
to a Client in need of the cipher text, or is ready to receive an updated cipher
text. If a second process is waiting for a request!Store and a third process
is waiting for a request?Fetch, both transactions are enabled. In this case a
non-deterministic choice is made as to which transaction proceeds first.

Smart card. The Smart card represents a source of pre-paid tokens.

proctype Smartcard() {
do
:: request?Payment(_, _) ->

if
:: reply!Payment(Valid_Token, NIL) :: reply!Payment(Invalid_Token, NIL)
fi

od
}

The tokens may run out, which is modelled by the Invalid_Token. Subse-
quent valid tokens are the result of recharging the card (not explicitly modelled).

Client. The Client mediates between the consumer of music and the Music2Share
system.

proctype Client() {
mtype cipher, id, key, plain, marked, user ;
do
:: request?Download(id, user) ->

request!Payment(NIL, NIL) ;
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if
:: reply?Payment(Valid_Token, _) ;

request?Fetch(eval(id), cipher) ;
request!Unlock(id, user) ;
reply?Unlock(key, eval(user)) ;
decrypt(cipher, key, plain) ;
watermark(plain, user, marked) ;
reply!Download(marked, user)

:: reply?Payment(Invalid_Token, _) ->
reply!Download(No_Music, user)

fi
od

}

The Client sits in an endless loop waiting for Download messages for a given
fingerprint id and user. The first action is to check payment. If unsuccessful a
NIL result is returned. Otherwise we Fetch the appropriate cipher text from
a Peer. (No request message is necessary here as the peers offer cipher text
unsolicited.) Then the client requests the key for the content. The reply message
is matched to the identity of the user. After decryption and watermarking the
marked music is returned to the consumer who posted the download request.

The client receives an invalid key if the lease is expired. In this case the
marked result will also be NIL.

5.2 The Policy

The producer and the consumer form the endpoints in the value chain, and
as such decide the policy for acceptable behaviour. The producer’s policy is to
upload a choice of music; the consumer downloads a choice of music.

proctype Producer() {
do
:: request!Upload(Mozart, Long_Lease) :: request!Upload(Bach, Short_Lease)
od

}

The Producer repeatedly tries to upload Mozart (on a long lease) and Bach,
on a short lease. Further combinations could be added freely.

proctype Consumer(mtype user) {
mtype marked ;
do
:: request!Download(Bach_Fingerprint, user) ->

reply?Download(marked, eval(user)) ;
check_watermark(user, marked)

:: request!Download(Mozart_Fingerprint, user) ->
reply?Download(marked, eval(user)) ;
check_watermark(user, marked)

od
}

The Consumer does the opposite of the producer: the consumer tries to
Download content, checking that the downloaded content is indeed for the in-
tended user. The content is identified by its fingerprint; we assume but do not
model here the existence of a secure mechanism for looking up the fingerprint
for the desired music.
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Initialisation. The initialisation takes care that all processes are started with
the appropriate parameters. Here we choose non-deterministically whether to
use Alice or Bob as the consumer.

init {
atomic {

run Server() ;
run Peer(Bach_Fingerprint) ; run Peer(Mozart_Fingerprint) ;
run Smartcard() ; run Client() ; run Producer() ;
if
:: run Consumer(Alice) :: run Consumer(Bob)
fi

}
}

There is one Server, for all other processes we assume that at most two
versions exist.

5.3 The Principle

The system policy states that she gets the music she has asked for, unless the
lease expires, or she fails to pay. This is captured by the check_watermark
assertion: a failed assertion implies that the policy is violated. This represents
acceptable behaviour (from the point of view of the producer) but not desirable
behaviour (because the consumer does not get value for money). The guiding
principle is thus value for money, translated into a trace declaration requiring
on the one hand that each time a consumers pays, he or she is guaranteed to get
music, and on the other hand that when the customer cannot pay, she gets no
music.

trace {
do
:: reply?Payment(Valid_Token, _) ;

reply?Unlock(_, _) ;
if
:: reply?Download(Alice_Music, _) :: reply?Download(Bob_Music, _)
fi

:: reply?Payment(Invalid_Token, _) ;
reply?Download(No_Music, _)

od
}

5.4 Analysis

Model checking the system and the policy reveals that the system does not cause
failed assertions, showing that the policy is satisfied. However, the principle may
be violated, because the server refuses to deliver an appropriate key once the lease
on the music expires. A concrete trace is a little too long to show here; suffice to
say that payment takes place, before we request the key. So if the lease expires
and no key is forthcoming the user does not get value for money. Swapping the
order of payment and key delivery would solve the problem, but at the same
time we might introduce a new problem, whereby a key gets delivered for which
payment may not be forthcoming. Further study is needed to identify a suitable
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business policy which would help to decide which alternative is preferred. The
point here is that our methodology causes the right questions to be asked during
the design stage.

A further point to note is that the trusted computing base (TCB) of the
system is small: the producer, client, server and smart card must be secure, but
the peers and the consumers do not have to be secure. The peers and the traffic
to and from the peers is encrypted by the protocol, and may thus be transported
freely on an open network. The music received by the consumer is watermarked
with her identity, so that she can play and copy it for her own use, but if she
tries to sell it, the watermark will reveal her identity.

6 Conclusions

We are able to model systems, security policies and security principles formally
thus: (system ‖ policy) |= principle .

We have applied this idea to four case studies, showing how unexpected
security problems arise that violate the principle.

In each of the four case studies the system is abstract, the policy is involved
but the principle is short and clear. The systems and policies are more difficult
to understand because of the concurrency involved. The principles by contrast
are not concurrent.

None of the systems satisfy the relevant principle because of the mobility,
showing that model checking leads to insight in the case studies.

SPIN’s trace declarations are relatively inflexible. It would be useful to either
increase the flexibility by changing the SPIN implementation, by generating trace
declarations from higher level policies, or a combination of the two approaches.

We are planning to work on a language for policy patterns based on e.g.
Ponder [1], from which SPIN models can be generated automatically. This would
make it easier for practitioners to use our method. A particular challenge is
to relate counter examples generated by the model checker back to the input
language.

Finally we should like to investigate ways in which our models of policies and
principles can be incorporated in applications by way of execution monitoring.
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Abstract. Explicit-State Model Checking is a well-studied technique for the ver-
ification of concurrent programs. Due to exponential costs associated with model
checking, researchers often focus on applying model checking to software units
rather than whole programs. Recently, we have introduced a framework that al-
lows developers to specify and model check rich properties of Java software units
using the Java Modeling Language (JML). An often overlooked problem in re-
search on model checking software units is the problem of environment genera-
tion: how does one develop code for a test harness (representing the behaviors of
contexts in which a unit may eventually be deployed) for the purpose of driving
the unit being checked along relevant execution paths?
In this paper, we build on previous work in the testing community and we focus
on the use of coverage information to assess the appropriateness of environments
and to guide the design/modification of environments for model checking soft-
ware units. A novel aspect of our work is the inclusion of specification coverage
of JML specifications in addition to code coverage in an approach for assessing
the quality of both environments and specifications. To study these ideas, we have
built a framework called MAnTA on top of the Bogor Software Model Check-
ing Framework that allows the integration of a variety of coverage analyses with
the model checking process. We show how we have used this framework to add
two different types of coverage analysis to our model checker (Bogor) and how
it helped us find coverage holes in several examples. We make an initial effort
to describe a methodology for using code and specification coverage to aid in
the development of appropriate environments and JML specifications for model
checking Java units.

1 Introduction

Building concurrent object-oriented software to high levels of assurance is often very
challenging due to the difficulty of reasoning about possible concurrent task interleav-
ings and interference of interactions with shared data structures. Over the past years,
several projects have demonstrated how model checking technology can be applied to
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detect flaws in several types of software systems [1, 10, 12] including concurrent object-
oriented systems [6, 3, 19]. Model checking is very useful for the analysis of concurrent
systems because it can explore all the program states represented by possible execution
interleavings of the threads in a system, spotting very intricate errors. However, the ex-
haustive nature of model checking makes it difficult to scale to large systems. This lack
of scalability is due mainly to the state-space explosion problem: as systems become
more complex, the state space grows exponentially, making it very difficult to analyze
large systems without having the analysis exhaust available memory.

For these reasons, many reseachers believe that it is most natural to apply model
checking to software units, or modules, instead of whole systems. Specifically, soft-
ware model checking is often envisioned as part of a development and quality assur-
ance methodology in which it is incorporated with unit testing. When model checking
a software unit, one typically desires to specify/check as much of the unit’s behavior as
possible in the hope of detecting as many bugs as possible. In the past, model check-
ers have only supported checking of temporal property specifications with simple state
predicates and assertions. To enhance the ability of developers to specify meaningful
properties of software units, we have recently extended Bogor[20], our software model
checking framework, to support checking of rich specifications [19], written in JML
(Java Modeling Language, [16]). Using JML, developers can specify class invariants
and method pre/post-conditions that contain detailed constraints on variables and data
structures using various forms of universal and existential quantification over heap-
allocated data.

To apply model checking to software units (with or without JML specifications),
a developer needs to follow an approach that is similar in many respects to the steps
involved in traditional unit testing. In unit testing, one develops a test harness that
makes method calls into the unit for specific sets of parameter values and examines
the results of the method calls for invalid results (indicating failed test). When applying
model checking to software modules, one must similarly use a test harness (also termed
a closing environment or an environment) to drive the unit through particular execu-
tion paths. The scale and complexity of a software unit’s interface may vary greatly:
a unit may consist of multiple classes and interfaces that expose fields and methods
through a variety of mechanisms, such as, reference, method call, inheritance and inter-
face implementation. Consequently, a general environment for a unit must be designed
to accommodate all legal modes of external interaction. The environment will sequence
those interactions to represent the behavior of program contexts in which the unit will
be used in a larger piece of software.

Since model checking aims to exhaustively explore program execution paths, it is
important for the environment used in model checking units to generate, to as large an
extent as possible, the execution paths through the unit that will occur when the unit is
actually deployed as part of a larger software system. Constructing such environments
for the purpose of model checking is surprisingly difficult. For example, [18] note that
it took several months to construct an environment that correctly modeled the context
of the DEOS real-time operating system scheduler. Furthermore, in recent work, Engler
and Musuvathi [7] describe proper environment construction as one of the main im-
pediments to applying model checking as opposed to other techniques including static
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analysis for bug-finding in source code. Our work on the Bandera Environment Gen-
eration tools [22, 21] provides basic support that addresses many of the challenges en-
countered in the DEOS case study, but it does not treat the complexities that arise when
model checking units with JML specifications. In this setting one encounters additional
questions: how complete is the test harness when it comes to stressing all the behaviors
referred to by the specification?, and dually, how complete are the specifications with
respect to all the behaviors that are exercised by the test harness upon the module?

Since an environment determines the behaviors of the system that are explored dur-
ing model checking it directly influences the cost of checking and the ability to find
bugs. In this paper, we seek to build on extensive work done in the testing community
and emphasize various types of coverage as a means of (a) determining the suitability
of an environment, and (b) guiding the construction and refinement of environments. A
variety of strategies for developing environments based on coverage are possible, for
example, generalizing a given environment to increase coverage or adding additional
environments that provide complementary coverage. Previous work on model checking
has used code coverage information to guide heuristic search strategies [9] and to deter-
mine the completeness of analysis of large software systems including TCP implemen-
tations [17]. In this paper, we view the collection and use of coverage information as an
integral part of a model checker’s implementation and application, focusing specifically
on its interaction with the checking of strong specifications written in JML. In partic-
ular, we use coverage information to not only determine adequacy of the environment,
but we also distinguish the notions of code coverage and specification coverage for the
purpose of addressing several interesting questions about the relationships between the
code of the unit, the specification of the unit, and the environment(s) used to check a
unit.

– In addition to determining the code coverage for a given unit with respect to an
environment, what are appropriate notions of coverage for a specification?

– For effective bug-finding with respect to a specification, are both high specification
coverage and code coverage required?

– If there is a mismatch between code and specification coverage, what revisions of
the environment, code or specification might this suggest?

– How is the cost of checking and the ability to find bugs sensitive to the number and
generality of environments used to achieve a given level of coverage?

To experiment with these ideas, and to begin to answer some of these questions, we have
built an extensible framework in Bogor called MAnTA (Model-checking Analysis of
Test-harness Adequacy) for implementing the collection of a variety of forms of cov-
erage information. We describe how we have used MAnTA to implement two cover-
age estimation procedures and show how we have used them to find coverage holes in
some of our models, triggering the refinement of the test harnesses for these systems.
We summarize lessons learned and attempt to lay out a methodology that uses cover-
age information to help developers build environments that are appropriate for model
checking units with strong specifications such as can be written in JML.

The rest of the paper is organized as follows. Section 3 discusses the general archi-
tecture of the MAnTA framework, its major components, and how it can be configured
for effective estimation of coverage metrics in Bogor. In section 4 we show the results
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of experiments conducted using MAnTA to implement two different types of coverage
estimation analyses and briefly discuss the benefits and implications of these results to
the application of coverage metrics in model checking. Section 5 presents some preced-
ing work in the area of coverage metrics estimation for model checking as well as some
other related works. Finally, in section 6 we conclude giving some conclusions drawn
from the experiences in this research.

2 The Need for Coverage Metrics in Model Checking

Slogans associated with model checking proclaim that it represents “exhaustive verifi-
cation” and that it “explores all possible states” have misled many users to believe that
if a model checker completes with no specification violations reported then the system
is free of errors. We believe that it is commonplace for errors in specifications and en-
vironment encodings to lead to “successful” checks that are essentially meaningless,
since they explore only a tiny portion of the behavior of the system.

Consider Figure 1 which shows excerpts of a concurrent implementation of a linked
list from [15]. To analyze this code we must construct an environment. In general, one
strives to develop environments that:

– are concurrent in order to expose errors related to unanticipated interleavings
– are non-deterministic in ordering method calls in order to expose errors related to

unanticipated calling sequences

Unfortunately, the degree of concurrency and non-determinism in an environment are
precisely the factors that lead to exponential explosion in the cost of model checking.
For these reasons, users of model checkers typically develop restricted environments
that have a limited number of threads where each thread implements only a specific
pattern of method calls. We took this approach when developing the environment shown
in Figure 2.

When we fed the linked queue code with the driver to the model checker, the model
checker reported no specification violations. Upon examining MAnTA’s output, we
found that the code coverage was rather low. The problem lies in the method run()
of the class Process. All processing done by each thread reduces to inserting an item
into the list and then removing an item from the list. After some assessment, it is not
so hard to see that by doing this, every thread is guaranteed that prior to extracting an
element from the list, on any execution trace, the list is never empty.

The linked queue class implements the following blocking discipline: when a client
tries to extract an object and the list is empty, it will block the client thread and make
it wait until there is something (see method take()). However, as shown in Figure 3,
all the code that implements the blocking behavior of the list is never executed by our
given test harness (the figure shows all the code that was not covered by the test harness
in a shaded area). This code was never exercised because the method is never called in a
context where the list is empty. Thus, when using a model checker to analyze code units
which are closed with the addition of an environment , a “no violations” result from the
model checker cannot by itself give confidence that the unit being analyzed satisfies its
specification.
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Fig. 1. A Concurrent Linked-list-based Queue Example (excerpts)

Using the results of MAnTA, we were able to redesign the environment to increase
the level of coverage significantly. In this case, we generalized the environment to allow
for more general calling sequences in the thread.

With a model checker alone, there is no tool support to indicate potential problems
with the environment. We believe that this problem is especially important in our con-
text where we are model checking JML specifications which typically specify more
details about a program’s state than specification languages traditionally used in model
checking. Accordingly, we seek to develop forms of automated tool support not only for
environment generation (as in our earlier work [21]), but also for providing feedback on
the quality of environments in terms of both code coverage and specification coverage.

3 MAnTA Architecture

With MAnTA, we seek to provide a flexible framework that will allow different cov-
erage metrics to be included as an integral part of the model checking process. Users
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Fig. 2. A test harness for the concurrent linked queue program

Fig. 3. Portion of method take() not executed by test harness
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Fig. 4. Bogor Architecture

can add an extra layer of confidence to the verification process simply by activating
Bogor’s default coverage analyses through MAnTA options. In addition, users can eas-
ily include their own implementation of coverage estimation algorithms to customize
coverage information for specific reasoning goals or to experiment with new coverage
algorithms. Indeed, one of our primary goals in developing the MAnTA framework is
to support our continuing research on exploiting coverage metrics in model checking.

MAnTA is built on top of the Bogor software model checking framework. Figure 4
shows the architecture of Bogor, as presented in [19]. The framework is composed of
loosely coupled modules, each one enclosing a different aspect of the model checking
process. The ISearcher controls the exploration of the state space graph. The IExpEval-
uator is the module that computes the value of side-effect free expressions by accessing
the heap and all relevant local activation records. Each module can easily be extended to
add extra functionality. For example, in the work by Dwyer et al. in [5], the ISearcher
was extended to add partial order reductions to the model checker. Also, in [20], the
IActionTaker was extended to allow the verification of methods’ frame conditions.

Building on this flexibility, MAnTA accumulates coverage information by moni-
toring specific events in any of the Bogor modules. This is achieved with the use of
an Observer pattern [8]: MAnTA modules can subscribe to relevant events of specific
Bogor modules. For example, the module for structural coverage described in section
4.1 subscribes to the ITransformer module and observes each transition that is executed,
using this information to perform the analysis. Similarly, the specification analysis mod-
ule in section 4.2 observes the commands executed by the IActionTaker looking for the
execution of assertions.

Figure 5 shows the simple architecture of the MAnTA framework. The IManta-
Manager module takes care of initialization and finalization of all the modules that
implement specific coverage estimation analyses. The IMantaCoverageAnalyzer inter-
face provides the point of implementation for different coverage estimation algorithms.
To incorporate a particular coverage analysis into MAnTA, one simply specifies the
implementing classes and the manager loads them during the initialization period.

3.1 An Example

We illustrate the configuration aspects of the framework with the linked queue exam-
ple from Figure 1. Suppose we wanted to model check this program and implement
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Fig. 5. MAnTA Architecture

two types of coverage analysis – the structural and specification analyses that we will
describe in detail in Sections 4.1 and 4.2. First we specify options in the Bogor configu-
ration file that indicate the implementation of the analysis manager (we will choose the
default manager) and indicate the number of analysis modules that will be executed.
IMantaManager=DefaultMantaManager
IMantaManager .analyzers . size=2

Now, we have to specify the implementation classes that MAnTA will use for each
analysis. Notice that MAnTA does not need to know about the specifics of every anal-
ysis. All it needs to know is the name of the classes that implement the analyses to be
able to load them:
IMantaManager .analyzers . 0=MantaEdgeCoverageAnalyzer
IMantaManager .analyzers . 1=MantaSimpleBooleanCoverageAnalyzer

Finally we specify the options for each of the analyzers. Structural coverage does
not require an option. The specification coverage analyzer takes a few options from
the configuration file that indicate particular locations to be monitored. For example,
suppose we want to monitor the post-condition of the method insert(Object) in
the linked queue program. We specify the following options:
MantaSimpleBooleanCoverageAnalyzer . analyzeAll=false
MantaSimpleBooleanCoverageAnalyzer . monitoredLocations . size=1
MantaSimpleBooleanCoverageAnalyzer . monitoredLocations. 0=insert ( ) , locSpec2

The first option tells the analyzer that we are interested in specific locations and not
in all the specification formulas. The second and third options specify the size of the
set of locations that we want to monitor and the method name and location label for
the program point that we want to monitor. To be able to refer to a specific location we
simply label the program point with a Java label as shown in Figure 1. However, it is not
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mandatory to refer to specific locations in order to monitor them. A common analysis
will involve monitoring all the pre and post-conditions (and invariants). To do so, the
three lines shown previously turn into:
MantaSimpleBooleanCoverageAnalyzer . analyzeAll=true

which tells the analyzer to monitor all pre-conditions, post-conditions and invariants
checking.

At the end of the model checking run, the coverage manager invokes a finalization
method on each module and collects the results. The coverage analyses results are re-
ported from the analyzers to the manager in the form of an IMantaCoverageInformation
object. This interface provides an uniform way to present the results, regardless of the
type of analysis.

4 Case Studies

We have applied MAnTA to analyze coverage information during model checking of
a collection of six Java programs with JML specifications. Model checking Java pro-
grams with Bogor is achieved by compiling Java byte codes into BIR (Bandera Inter-
mediate Representation) [19]; BIR is a guarded-assignment language with primitives
for defining all of the object-oriented features of Java. There is a direct correspondence
between Java source lines, byte codes and sequences of BIR transitions. This facili-
tates the mapping of analysis results, including coverage information, calculated on the
BIR model back to the input Java program. Figure 6 shows the BIR translation of the
method put(Object) in the linked queue example. JML specifications are encoded
as embedded assertions in the BIR model. Assertions are inserted during the translation
process and correspond to JML pre and post-conditions, and invariants checking; only
partial support for assertion generation from JML is implemented in the current toolset.
For more details, we refer the reader to [20].

MAnTA, as a Bogor extension, operates on BIR models. In this section we describe
our experiences with MAnTA while implementing two coverage analyses. The first ex-
ample shows the implementation of structural coverage based on branch coverage. We
report some interesting findings concerning some of our existing models and issues with
their test harnesses. The second example is the implementation of a boolean satisfaction
analysis. We report results for the same set of systems as the structural analysis case.

4.1 Structural Coverage Estimation with MAnTA

The first type of coverage analysis that we implemented on top of MAnTA was branch
coverage. The classical definition of branch coverage is ensuring that each branch of
a decision point (for example, an if statement) is executed at least once. For the BIR
program model this is achieved by determining the proportion of transitions that are
exercised during model checking. The information returned by the analysis is the per-
centage of transitions executed and information about the actual transitions that were
not executed (location within the model, etc.).

The implementation of this analysis was very straightforward. As with each MAnTA
analysis, the module implementing the analysis must implement the coverage ana-
lyzer interface of Figure 5. During the initialization period, the module constructs a
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Fig. 6. A Concurrent Linked-list-based Queue Example (excerpts)

set NotExecuted, containing references to all the possible transitions in the system.
This module subscribe to the ITransformer; every time a transition is executed, the tran-
former notifies the analyzer, and the analyzer removes the transition reference from the
set NotExecuted.

We tested this coverage analysis implementation in all the models used in our work
for [20]. All these programs are annotated with JML [16], which is one of the speci-
fication languages that we used for verifying properties in Bogor. Table 1 summarizes
the results we obtained for each program. Most of the model checks exhibited high
structural coverage. The reason none of the numbers are over 90% is because there is
some dead code in each model that is generated by our compiler. We estimate that those
models with coverage around 85% have around 95% coverage. They would not have
100% or close to it in part because our BIR models also model exceptional code, which
is not exercised by our environments. It is possible, of course, to trigger exceptional
code by defining appropriate environments. Two examples achieved significantly lower
levels of coverage: LinkedQueue, from Figure 1, and ReplicatedWorkers.

When we model checked the LinkedQueue example with the structural coverage
enabled we found a couple of surprises. First, we found an error in the model – specifi-
cally, in a fragment of the model derived from translating one of the JML specification
annotations by hand to overcome a limitation in our compiler. An error in the hand
translation yielded an assertion check that was short-circuited and, hence, never been
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Table 1. Percentage of structural coverage for all the systems analyzed

Model Total Number Number of Coverage
of Transitions Unexplored Transitions Percentage

LinkedQueue 231 103 55.41%
BoundedBuffer 163 31 81.21%

RWVSN 238 34 85.71%
DiningPhilosophers 210 28 86.67%
ReplicatedWorkers 585 195 66.67%

checked. Second, as shown in Table 1, the coverage percentage for this program was
very low (55.4%). It turns out that the environment for this program was inadequate for
exercising certain implementation behaviors. As discussed in section 2, this was caused
by failure to execute code in method take().

The other program that also had low structural coverage is the ReplicatedWorkers.
This time the low coverage was due to the fact that our compiler generates BIR code for
abstract classes. Bogor only needs the concrete classes to perform the checking, there-
fore all the code generated from the abstract classes is never executed. Based on these
observations, we are modifying the code generation of the compiler and the manner in
which coverage information is accumulated to (a) avoid reporting spurious coverage
problems (e.g., like those associated with abstract classes) and (b) incorporate options
that allow the user to selectively mask non-coverage reports for different types of code
such as exception handlers.

4.2 Boolean Coverage Estimation with MAnTA

Structural analysis was very useful in spotting environment limitations. However, as we
mentioned in section 1, we are also interested in analyses that help extract information
coverage at the specification level.

Coverage analysis at the specification level has been found useful in the past for
specification refinement. For example, Hoskote et al. [13] show how they used a cov-
erage analysis similar to the one described in [4] to refine the specification of several
circuits from a microprocessor design. In our case, we are very interested in this type of
analysis because of our goal of checking strong JML specifications. The type of spec-
ifications that can be expressed in JML are very rich in terms of expressing complex
properties of heap allocated data, and in covering all the different behavioral cases of
a method. Writing this type of specification is very hard and demands a lot of exper-
tise. Even when written by an expert, the potential for overlooking or over-constraining
aspects of method behavior is significant. We believe that coverage analysis can be
successfully used for specification debugging.

In this section we describe an analysis we implemented for this purpose. This ad-
ditional coverage estimation analysis is a simple boolean satisfaction analysis. Again,
the implementation only involved developing the logic of the coverage analysis module
and configuring the coverage framework to interact with the model checker. The cov-
erage criterion was a simple monitoring policy: for each boolean expression, determine
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Table 2. Number of formulas not satisfied during model checking

Model Total Number of Number of Unsatisfied
Monitored Formulas Formulas

LinkedQueue 20 2
BoundedBuffer 15 0

RWVSN 14 0
DiningPhilosophers 40 0
ReplicatedWorkers 25 0

whether there are sub-formulas of the expression that are never satisfied. If there are
such formulas, then report them as possible coverage problem, along with their posi-
tion in the source code.

Table 2 summarizes the results of the analyses. The only program that showed lack
of coverage under this criterion was the LinkedQueue example. Figure 7 shows the two
methods that had a problem of low coverage.

This analysis uncovers problems in different methods than the structural coverage
analysis. For method put() the tool reports that the condition x == null is never
satisfied in the precondition. This is to be expected since this condition corresponds
to exceptional behavior. In some sense, the structural coverage test also uncovered the
same issue because it reported that the throw instruction was never executed. But the
boolean analysis gives a more direct indication of the conditions that led to the throw
code not being covered.

For the extract2() method the tool reports that \result == null never
holds in the postcondition. After looking carefully we note that this condition corre-
sponds to the case when the list is empty. We already determined, with the information
from the previous test, that the list was never made empty. However, the problem has
now been exposed at a different point. In the first test, we spotted the problem from the
code. Now, we do so from the specification. This phenomenon suggests that these two
techniques are complementary in the types of coverage problems they can find. They
uncovered the same problem from different perspectives.

Fig. 7. Methods in LinkedQueue that had unsatisfied formulas
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4.3 Discussion

The basic forms of coverage analyses we implemented have demonstrated that indi-
vidual coverage analyses can be effectively integrated with model checking to provide
useful information about the quality of environments. We believe that multiple coverage
analyses, when aggregated, can yield additional benefit on top of what can be obtained
by using them independently.

To see this, let us consider together the results obtained in Sections 4.1 and 4.2. For
the LinkedQueue example, both analyses showed that there was a behavior, namely the
blocking behavior of the list, that was not being exposed. On one hand, the structural
analysis spotted this problem by pointing directly at the portion of code that was not
being executed. On the other, the boolean analysis uncovered the same problem, but
this time pointing at a specification case that was never enabled. Independently, the two
analysis would give the same benefit: find a gap in the coverage produced by an envi-
ronment. However, when run together they provide two extra benefits and we discuss
them in turn.

First, the obvious extra benefit is the increase in the reliability of the reports given
by each analysis. Certainly, if both analysis point at the same problem, then the chances
are higher that the problem is actually a concern and not just some superficial issue (as
discussed previously, some analyses may report spurious or superficial coverage prob-
lems, as is the case for structural analysis when it pointed to transitions corresponding
to abstract classes). The second benefit, not so apparent, but extremely useful, is in the
way in which, when working together, these two analyses can help not only by provid-
ing estimation of coverage, guiding in that way the refinement of the test harness, but
also in the verification process itself by uncovering potential errors, both in the imple-
mentation and in the specification.

To see this last point keep in mind the duality of these two approaches. For each por-
tion of the model not covered, every analysis should report some information in the form
of transitions not-executed and conditions not-enabled, for structural and boolean anal-
ysis, respectively. Now, consider Figure 8-a. Suppose further that it is model checked
with an environment such that the method is always called in a state where b==true.
Obviously, the boolean satisfaction analysis will report that the pre-condition !b is
never true. However, the structural analysis will report complete coverage. This mis-
match suggests that the implementation is missing code that represents the specification
that is not covered, otherwise that code would be reported as not executed. Or if the code
is not missing, then it must contain bugs because it does not match the specification. In
fact, when we examine this code we can see that the implementation is incomplete. As
can be seen, results from analyses, that separate would be disconnected information,
together have helped to find a bug.

Notice that a model checker would not be able to find this bug because the environ-
ment is incomplete in the first place. And the boolean analysis by itself only suggests
that the environment should be refined. Indeed, after refining the environment the model
checker would spot the error, but this would require another model checking run. On
the other hand, by analyzing the information from the coverage analyses, we can find
the same bug with much less effort.

Similarly, if we look at Figure 8-b, and if we consider the same environment, we
see that in this case we have the opposite situation. Now, the structural analysis would
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Fig. 8. Example methods that show how structural and boolean analysis can be complemented
for finding bugs and debugging the specification

report that a portion of the method is never executed. However, the boolean satisfaction
analysis would report that the specification is completely covered. Indeed, the imple-
mentation is correct with respect to the specification. However, the mismatch between
the two analysis suggests the possibility that the specification is not complete. This must
be true for otherwise there would be some portion of the specification that would not be
covered because the state space that it represents is never explored. If the specification
is already totally satisfied, it means that it is insensitive to the code that was not exe-
cuted. In fact, when we look at the specification we see that, indeed, the specification is
incomplete: it does not handle the case when b == false. All this would lead to a
refinement of the specification to include the case that is not handled (if that is what we
really want). In this case, the benefit is not in finding bugs in the implementation, but in
specification debugging.

Coverage-Enabled Model Checking. All the concepts presented above suggest a gen-
eral methodology for software verification using model checking extended with these
coverage analyses:

– Run the model checker on the system to be verified with the two coverage analysis
extensions described in this work.

– If the structural analysis reports complete coverage, but the boolean analysis reports
incomplete coverage, then there is potential for an incomplete implementation (a
bug caused by missing code for a specification case).

– If the structural analysis reports incomplete coverage, but the boolean analysis re-
ports complete coverage, then there is potential for an incomplete specification (at
the very least, the specification is insensitive to the code that was not covered).

– If both analyses report incomplete coverage, there should be a correspondence of
non-covered cases from one analysis to the other (as in our example in sections
4.1 and 4.2). If such correspondence exists, then the coverage problems can be
attributed to the test harness. Otherwise, there is potential for implementation/spec-
ification incompleteness, depending on which analysis has an unmatched non-cov-
erage case.

Note that this extra benefit cannot be achieved if only the model checker is run,
or if the analyses are included but done independently. For example, suppose we have
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Fig. 9. Simple transition system and a specification to be verified

the case where the specification is incomplete and it does not cover some code that,
additionally, is not executed by the test harness. The model checker would not detect
the problem because from the point of view of the model checker there is no problem:
the implementation satisfies the specification. The boolean analysis alone would not
report any problem, and the structural analysis would simply point out that the test
harness must be refined to cover the code not-executed.

Also, notice that this methodology will only detect incomplete specification cases
when it is accompanied by the same incompleteness in the test harness. For example,
in figure 8-b, if the test harness does cover the case when b == false, then both
analyses, structural and boolean, achieve 100% coverage and nothing can be inferred.
Spotting these specification incompleteness cases is another interesting direction that
we want to pursue.

5 Related Work

Although coverage estimation has not received as much attention as other areas in
model checking, there is still some work that has been done to address this problem.
Among the most significant works in this area is the work done by Chockler et al. [4].
However, their definition of the coverage problem is slightly different. The concern in
their work is the following: given a model and a specification, how much of the system
state space is relevant to the specification. For example, consider the simple transition
system in Figure 9. The specification shown with the system holds in the initial state
because any of the two outgoing paths lead to the state where q is always true. How-
ever, the third state, where r is true, is totally insensitive to this specification. Under this
definition of coverage we say that the node is not covered by the specification, so we
have to refine the properties. To find these states, this technique would change the value
of specific variables (for example, p) in each state and run the model checker. Those
nodes in which the property does not fail, are nodes insensitive to the specification, and
thus not covered.

The information obtained with this type of analysis gives a rough estimation of the
proportion of behaviors covered by the specification. This approach, although useful,
has several shortcomings. First of all, some specifications necessarily refer to only a
portion of the states, due to the nature of the property they express. In this case, the
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specification does not need to be refined and the coverage information is not very use-
ful. Second, the cost of the analysis is the same as that of model checking itself (two
model checks must be run – the first “regular” check, and then a second in which the
values of the basic propositions are negated). However, as we show in this paper, by
simply adding some book-keeping procedures to the model checker algorithm, some
very useful coverage information can be gathered to support model refinement, at a
much lower cost. For example, the structural analysis we implement simply needs to
keep track of the transitions that are executed.

The combination of specification and structural coverage analysis yields results that
are similar to that obtained by [4], but with much less effort. In that work, the analysis
detects portions of the state space that are not covered by any aspect of the specification,
pointing directly at those points of the state space. However, to do this an execution
separate from the verification run must be made, which is as expensive as the model
checking itself. On the other hand, our approach can be run while model checking the
system, and the analysis information is done by monitoring the checking process. This
monitoring is very inexpensive (with respect to one analysis, although the cost will
grow as more analyses are attached to the framework). Nevertheless, our system won’t
point directly at the regions of the state space that are not covered and requires insight
from the user to find this regions, once the evidence of the potential problem is found.

Another idea, explored by the same researchers mentioned in the previous para-
graph, is the concept of vacuity checking [14]. This is a boolean satisfaction analysis.
The idea is to verify that there are no formulas in the system that are being trivially
satisfied, that is, that are proven correct by the model checker, but their truth is inde-
pendent of the model. They show, surprisingly enough, how vacuity checking is harder
to perform than one might imagine and that it can be very common in several models.
Again, the usefulness of this analysis is limited just to some cases. Although vacuous
formulas in specifications might be more common than expected, the calculation tends
to be fairly expensive, yielding information about just one specific type of errors. For
example, the approach described in the previous paragraph would also detect this for-
mulas because the whole system would be insensitive to the formula. To see this, just
consider what happens if p is made false in the initial state of the system in Figure 9.
In this case, the formula is vacuously satisfied in all the states of the system, and would
be detected because every state would be insensitive to this formula. Although it would
be more expensive, the cost would be amortized by all the other type of errors that this
approach would also find.

Musuvathi and Engler have used some coverage metrics in the verification of a TCP
implementation using model checking [17]. Their coverage metric is based on simple
line coverage, that is, whether a line of code is executed or not. However, their usage of
the metric and motivation is quite different from ours. They use the coverage metrics to
evaluate the effectiveness of the state space reduction techniques implemented in their
model checker. However, they do note how identifying unexplored portions of the state
space can help refine the test harness used to model check a system. Similarly, SPIN
[11] has had for some time a feature through which it reports statements that are never
reached.
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In another similar line of work, Groce and Visser explore the use of coverage metrics
to make heuristic-based model checking [9]. The coverage metric they use is branch
coverage, which is exactly the one used in our structural coverage analysis. However,
the purpose of this work is to use the information to both estimate the effectiveness of
partial checks and use the branch coverage measure as a value function to guide the
search in heuristic model checking.

Although the coverage metrics reported in the works mentioned in the previous two
paragraphs are equivalent to our structural coverage, there are several differences in the
usage of the metrics and in the motivations. The main difference is that, while those fo-
cus on using the metric to obtain a measure of how much of the state space is explored
(useful in bounded search or when the model checker runs out of memory, i.e., partial
checks), our focus is to use the metric to refine test harnesses used to model check open
systems. Also, we have integrated the structural coverage with a specification cover-
age and proposed exploiting this integration to enhance the verification. This has to do
with the main motivation for our work: we want to check strong specifications in soft-
ware units and are deeply interested in verifying the depth to which the specifications
are covered. Our interest in refining the test harnesses is focused towards increasing
specification coverage rather than code coverage. This is why we have integrated the
structural analysis with a boolean analysis for the specification.

The Bandera Environment Generator (BEG) project [21], takes another approach
to providing tool support for deriving appropriate test harnesses and environments. It
focuses on automatically generating test harnesses from high-level specifications of
orderings of calls to the module being tested and from information gathered from au-
tomated static analysis (e.g., about side-effects and aliases) of the code being analyzed.
It lets the user specify: (a) the components that are relevant for the verification, (b)
constraints over these components, and (c) certain assumptions about the environment
(such as the order in which methods in the unit being analyzed should be called), and
then generates an environment made up of stubs and driving code that then is translated
to the model checker language. Although the work in BEG is certainly relevant to the
coverage issue, it is rather complementary to the work presented herein: BEG tries to
generate adequate environments that achieve good coverage from user provided infor-
mation (such as a regular expression indicating a pattern of method calls to the unit
under test), whereas MAnTA estimates the coverage achieved by a given environment
(whether it is generated automatically or by hand). For example, even though the user
provides a regular expression to specify the ordering of unit method calls in the test
harness, this ordering may still not give good coverage (and MAnTA can be used to
detect these situations).

The coverage problem has been studied extensively by the testing community [2].
In this case, all the studies made in test coverage, for example [23], are directly relevant
to the work presented in this paper. Several notions of structural coverage have been
developed by the testing community. For example, there is the concept of node cover-
age, branch coverage, path coverage, etc. All this work includes potential lessons to be
applied in monitoring coverage in model checking.
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6 Conlusions

This paper presented MAnTA – a coverage analysis framework built on top of the Bo-
gor software model checking framework to guide effective construction of environ-
ments for model checking. MAnTA allows a variety of coverage analyses of both code
(e.g., branch coverage) and specification (e.g., boolean satisfaction of method pre/post-
conditions) to be integrated in the model checking process. Since model checking is
exhaustive (i.e., all interleavings are considered), thus, the results of the coverage anal-
yses can pinpoint deficiencies in the environments used in the system. For example, a
branch analysis can be used to determine code regions that are not exercised due to the
specificity of the environment. Another example, the exercised behaviors of a particular
method may not be sufficient because it always satisfy a specific pre-condition of the
method instead of each of the pre-conditions of the method.

MAnTA eases the incorporation of these kinds of coverage analyses by providing
a plugable API for adding new coverage analyses. We showed the effectiveness of the
framework by easily incorporating widely used coverage analyses in the testing com-
munity as well as by implementing a novel specification coverage analysis. We showed
how the analyses can uncover common deficiencies in test harnesses with respect to
code and specification. Therefore, we believe that MAnTA can be used to guide ana-
lysts when constructing environments such as usually done in unit testing.
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Abstract. The early validation of components specifications requires
a proven correct formalization of the functional behavior. We use the
ACL2 theorem prover the establish safety properties on it. After the
first design step, we automatically translate the synthesizable VHDL
into a functional form. The combination of symbolic simulation, auto-
matic transfer function extraction, and theorem proving is used to show
that the VHDL design is functionally compliant to the specification. The
approach is demonstrated on a SHA-1 cryptographic circuit.

1 Introduction

Ensuring the correctness of circuits for safety-critical applications requires a
rigorous design flow. Ideally, a formalized functional specification should first
be thoroughly validated, and subsequent design steps should be proved correct,
until the “synthesizable register transfer level” is reached, from which automatic
synthesis software produces the physical design. In reality, the time pressure put
over the designers is so high that verification software must be largely automatic
to be effectively adopted.

The numeric simulation of test cases will probably remain the primary method
to gain initial confidence in the design, at all levels of abstraction. This is partic-
ularly true for the validation of the initial behavioural specification, which corre-
sponds to the first machine-readable model. Depending on the task, the type of
circuit, and the initial specification level, one among many possible languages are
used. Popular ones are: SystemC for mixed hardware/software systems, Matlab
for hardware DSP operators, CCS or CHP for asynchronous designs, Verilog or
VHDL for register transfer level (RTL) hardware.

A large number of errors are revealed by numeric simulation; but to pro-
vide a better quality assurance, formal methods are subsequently invoked, to
validate initial specifications, or prove the correctness of a design step. Starting
from RTL and below, where the design is expressed in terms of logical types,
propositional logic functions for combinational circuits and finite state machines
(FSM) for sequential circuits are routinely extracted from the design description.
Efficient combinations of logic function representations (BDD’s), symbolic algo-
rithms (state space traversal, SAT solving, recursive learning, test generation)
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and model reduction techniques are currently implemented in commercial soft-
ware. Designers have reported verifying combinational circuits with hundreds
of ports and millions of gates, by checking their equivalence with a logic level
“golden” circuit [5]. Control logic with several hundred memorizing bits has
been submitted to property checkers: the validity of temporal logic formulas is
computed on the reachable states of the underlying FSM model.

These Boolean level techniques are not applicable at the initial phases of a
project, where the specification is expressed in terms of arithmetic operations
and high-level algorithms. Here, the data types and the number of objects are
not bounded, and the underlying model has not a fixed size. Yet, it is essential
to establish (1) the functional validity of the specification and of the initial im-
plementation choices, before investing extensive effort at more detailed levels;
(2) that the manually derived synthesizable RTL correctly implements the spec-
ification. Both needs can be successfully addressed with mechanized theorem
proving systems, which present reasoning capabilities, in particular induction,
that free the proof argument from the data size complexity.

Writing the first formal model of the functional specification is, by necessity,
a manual process. The source information comes from specification documents
written in the traditional mixture of English sentences, drawings, timing dia-
grams, and expected responses to test scenarios. This is the reason why it is of
particular importance, for the credibility of this model, that it be both efficiently
executable on numerical values, and input to a reasoning engine that can prove
mathematical and safety properties on that same model. We use the ACL2 theo-
rem prover [4] for its ability to reuse libraries of pre-verified function definitions
and theorems, for its high degree of automation, and its efficiency. The ACL2
model, being written in LISP, is both executable and formally verifiable in logic.
To validate the functional specification, we first execute its formal Lisp model
on the standard test benches to check that the returned result is as expected;
then, we prove sanity theorems and basic mathematical properties on the Lisp
model. This provides, as far as possible, a “correct” functional specification.

Building the synthesizable RTL is also a manual process, during which all
the essential design choices are performed, leading to a model that is extensively
simulated on numeric tests. In this paper, we consider VHDL as design language,
but all the following would apply to Verilog as well. To prove that the RTL
correctly implements the specification, no simple equivalence can be exhibited,
as encoding details and timing information have enriched the model. To perform
the verification, a functional model must be extracted from the RTL design,
prior to showing the existence of a “correct implementation relation” between
selected circuit output and state variables on the one hand side, and the result
returned by the specification on the other hand side, taking into consideration
the necessary type conversions and circuit computation cycles. To automate this
task, we translate the RTL design into a functional format, simulate the model
symbolically for one clock cycle, in effect corresponding to several simulation
iterations, and extract the transition function for each output and state variable
of the design. On the fly simplifications are performed by rewrite rules. The



Combining Several Paradigms for Circuit Validation and Verification 231

resulting functional model, thus mechanically extracted from the RTL design, is
proved compliant to the Lisp specification, using the ACL2 theorem prover.

In this paper, we present the semantic foundations for this method, and il-
lustrate its application on the design of a cryptographic component for a secure
smart card reader. We show how the SHA hash algorithms have been specified,
keeping as parameter the input message length, block size, and word size of
the circuit. A design is proven to correctly implement the SHA-1, for arbitrary
messages. The article is organized as follows. Section 2 describes the running
benchmark application. Section 3 summarizes the specification validation. Sec-
tion 4 describes the principles of the automatic state machine extraction from a
VHDL design, and section 5 is an overview of its application to the SHA-1 im-
plementation verification; sections 4 and 5 constitute the core, and the original
contribution of this paper. Finally, section 6 relates our approach to previous
works and presents our conclusions.

2 The SHA Algorithm

The Secure Hash Algorithm (SHA) is a standardized hash function [1], which
processes an arbitrary input message of bounded size seen as a bit stream, and
produces a short fixed size message digest, with the following property: any al-
teration to the initial input message will result, with a very high probability,
in a different message digest. Several versions of the SHA differ in the maxi-
mum input message size (2m with m=64 or 128), component word size (32 or
64 bits), and message digest size (d bits, with d = 160, 256, 384 or 512). The
applications of this algorithm include fast encryption, password storage and ver-
ification, computer virus detection, etc. Our interest in the SHA was motivated
by the cooperative project ISIA2 with several industrial partners, aiming at the
definition, design and verification of a circuit for secure communications between
a computer and a terminal smart card reader. A SHA-1 component, designed
at L2MP, is included in the circuit. Security considerations were at the heart of
the project. It was thus of utmost importance to guarantee the correctness of
the system components dedicated to security, and formal methods were applied
both to the validation of the functional specification, and to the verification of
the implementation.

The principle of the SHA-1 is shown on Figure 1. The input message M, a
bit sequence of arbitrary length L< 264, undergoes two preprocessing steps:

– Padding: M is concatenated by bit 1, followed by k bits 0, followed by the
64-bit binary representation of number L. k is the least non-negative solution
to the equation: (L+1+k) mod 512 = 448. As a result, the padded message
holds on a multiple of 512 bits.

– Parsing: The padded message is read in blocks of 512 bits. After reading
each block, it must be decided if it is the last block.

The computation of the message digest is an 80-iteration algorithm
over each message block, in order; a block is viewed as a sequence of 32 bit
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Fig. 1. Secure Hash Algorithm

words, which are selected and combined with the contents of five 32-bit internal
registers, using XOR and shift operations. At the start of the computation, the
internal registers are initialized with predefined constants; after processing each
block, they contain the digest obtained so far, that serves as initial values if the
message holds more blocks.

According to the SHA-1 standard [1], the digest phase operates on the 16
words Wi (0 ≤ i ≤ 15) of a padded block in order to generate 80 words. The first
sixteen words are made of the padded block itself. The 64 remaining words are
computed by XORing and shifting previous words as follows, where Sn indicates
a n-bit left shift operation:

for t=16 to 79
Wt=S1 (Wt−3 XOR Wt−8 XOR Wt−14 XOR Wt−16) endfor.

Likewise, the five main variables A, B, C, D, E are generated by:

for t=0 to 79 do
TEMP=S5(A) + ft (B, C, D) + E + Wt + Kt;
E=D; D=C; C=S30(B); B=A; A=TEMP;

endfor.

where ft are the functions and Kt the constants defined in the SHA-1 standard.
Before entering the loop, the main variables A, B, C, D, E are initialized by
constant values H0, H1, H2, H3, H4 that are specified in the standard.

When one block has been processed, the values of Hi are:
H0 = H0+A; H1 = H1+B; H2 = H2+C; H3 = H3+D; H4 = H4+E;
When the last block has been processed, the message digest is the concate-

nation of the last values of H0, H1, H2, H3, H4.
In order to store only sixteen W words and not eighty, the SHA-1 standard

proposes an alternate algorithm where the Wt and the five main variables are
computed in the same loop, and where each Wt starting from t=16 is written in
place of Wt mod 16. This alternate version was chosen to optimize the hardware
space.
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Example: Consider the SHA-1 algorithm applied to the message “abc”. The
length of the message is 8×3 = 24. The padded message is: “abc”, followed with
bit 1, followed with 448 − (24 + 1) = 423 bits 0, and then the message length.
The resulting 512-bit padded message is:

0 1 1 0 0 0 0 1
︸ ︷︷ ︸

a

0 1 1 0 0 0 1 0
︸ ︷︷ ︸

b

0 1 1 0 0 0 1 1
︸ ︷︷ ︸

c

1

423
︷ ︸︸ ︷

0 0 ..0 0

64
︷ ︸︸ ︷

0 0 ..0 1 1 0 0 0

The message digest (in hexadecimal) for “abc” is:
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D.

Validation of the Formal Functional Specification

The SHA-1 algorithm is formalized in Lisp; the detailed model can be found in
[2], and is executed on the test benches given in the standard document to check
that the returned result is as expected. A complementary validation is obtained
by proving the mathematical properties of the algorithm, using the ACL2 the-
orem prover. In effect, a more general model has been written, to capture the
common principles of the four versions of the SHA algorithm: SHA-1, SHA-256,
SHA-384 and SHA-512, which differ essentially in the sizes of the message blocks,
word, and digest. Seventy function definitions and over a hundred basic lemmas
were written. Among the safety theorems that were proven for the SHA-1:

– The length of the padded message is a non-zero multiple of 512.
– The last 64 bits of the padded message represent the binary coding of the

length.
– The first L bits of the padded message represent the initial message.
– The bits between the end-of-the-message bit and the last 64 bits are all 0.
– After parsing the padded message, the result is a vector of blocks, each of

512 bits.
– The final result of the SHA-1 is a five 32-bit words message digest.

Due to the nature of the digest computation, there is no easy to write mathe-
matical expression for it. The Lisp code of the iterative algorithm is the function
definition.

3 Extraction of the Formal Model from the VHDL

The RTL design is written in the so-called synthesizable subset of VHDL [3]
Two data abstraction levels are usually considered: (1) the logic level, where all
data is encoded as bits and bit-vectors; (2) the high-level, where control states
remain symbolic, and arithmetic operations operate on mathematical integers.
The extraction of a Mealy finite state machine (FSM) from a logic-level RTL
design is at the basis of all sequential verification tools [6],[7]. At this level, all
memorizing variables are considered state elements, the control and the operative
parts are not distinguished. Despite the introduction of “word level decision
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diagrams”, drastic data reduction must be performed on the source text before
proceeding with the FSM extraction, lest we face a combinational explosion of
the model representation. The method thus preferably applies to control logic
verification. A formal and complete treatment can be found in [8].

In contrast, despite the existence of various formal semantics proposals for
VHDL [9], and of the use of theorem proving techniques to verify soundness
properties on the language definition [10], the authors are not aware of an effi-
cient FSM extraction tool for the implementation verification of high-level cir-
cuits that are data oriented. Models such as Finite State Machine with Data
path have proved useful for the high-level synthesis of control-dominated cir-
cuits [11], and the verification of the synthesized resulting RTL [12]. However, to
our knowledge, no such model could be proved compliant to an abstract algorith-
mic specification, essentially due to the lack of adequate link to an appropriate
proof system. This is precisely where our work takes all its significance.

The method we developed takes as input a clock synchronized sequential
circuit, and builds a finite state machine, where all states transition functions
and output functions are written in a normalized conditional format, and the
time unit is the clock cycle. In the absence of memorizing element, according to
the semantics of synthesizable VHDL [3], the combinational circuit is a special
simple case that has no state and no state transition function. The originality
of our method is the static stabilization of signal propagation in combinational
logic, which corresponds to a re-ordering and fixed-point computation over the
concurrent signal assignment statements of the VHDL model.

3.1 Rewriting the Source Model into an Elementary Language

We recall that a VHDL description is a component, defined by an entity dec-
laration together with a corresponding architecture body (boldface are VHDL
reserved words). The entity declares the interface signals, and possibly defines
constraints on the inputs, and some type and constant declarations. The ar-
chitecture imports the entity declarations, and may have its own declarative
part: local types, functions, procedures, constants, embedded components and
signals. From the entity and the architecture declarative part, we extract the
lists of input, output and local signals, and store their characteristics (i.e. name,
type, initial value, etc).

The architecture statement part describes the behavior of all these objects.
It is a set of concurrent statements: processes, signal assignments, component in-
stantiations, generate statements that macro-generate repetitive or conditional
statement blocks. It is essential to understand that the architecture statements
are concurrent and unordered: the language semantics ensure that the results
of a simulation run do not depend on the occurrence order of concurrent state-
ments. In particular, a signal has a current value and one or more future values
(only one future value is needed in the synthesizable subset that we consider in
this paper). A signal assignment computes its right-hand side expression with
the current values of signals, and assigns the future value of its left-hand side.
When all signal assignments and all processes have been computed in all the
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components of the description, this is the end of one simulation cycle. Current
values are replaced by future values, and an event is detected for each signal
that had a current value change. At any point in simulated time, several sim-
ulation cycles may be necessary to propagate signal changes in combinational
logic.

Inside a process, a function or a procedure, statements are sequential,
with semantics similar to usual programming languages, except for wait syn-
chronization statements, which are specific to simulation. In particular, a locally
declared variable has only one value, and an assignment to a variable immedi-
ately assigns this unique value.

Because of the syntactic complexity of VHDL, we identified a small list of
most primitive statements, in terms of which the more elaborate ones can be ex-
pressed. We rewrite sequential statements (wait, assert, signal assignment,
variable assignment, if, while, for, procedure call, case) and concurrent
statements (sequential process, signal assignment, component instantiation,
generate statement) to a subset that contains only signal and variable assign-
ments, component instantiations, procedure calls, if statements and processes.
This first transformation greatly simplifies the subsequent extraction of the de-
sign functional model.

Rewriting Sequential Statements

Let SequentialV HDL be the sublanguage of sequential statements. It is de-
rived from the Seq non terminal symbol, according to the abstract syntax
defined in Table 7 (Appendix A). Let Seq NormalizeV HDL be the sequen-
tial sublanguage constructed over the reduced set of primitive sequential state-
ments: variable assignments, signal assignments, if conditional and procedure
call. Seq NormalizeV HDL is derived from the Seq Norm non-terminal symbol
defined in Table 7 (Appendix A).

Function Seq Rewrite rewrites a block of sequential statements into a nor-
malized sequential block, according to the following principle:

– signal assignments, variable assignments and procedure calls are left un-
changed

– assert statements, wait synchronizations, for loops, case conditionals and
elsif clauses are rewritten into primitive if...then...else conditionals.

Rewriting Concurrent Statements

Similarly, let ConcurrentV HDL be the sublanguage of concurrent statements,
derived from the Conc non terminal symbol in Table 8 (Appendix A). Let
Conc NormalizeV HDL be the concurrent sublanguage constructed over the re-
duced set of primitive concurrent statements: signal assignments, component
instantiations and process statements. Conc NormalizeV HDL is derived from
the Conc Norm non-terminal symbol (Table 8, Appendix A) ).

Function Conc Rewrite rewrites a block of concurrent statements into a
normalized concurrent block as follows:
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– simple signal assignments, and component instantiations are left unchanged
– conditional and selected signal assignments are given a simple nested if...then

...else equivalent right-and side expression (not compliant to the VHDL syn-
tax)

– for...generate and if...generate are expanded
– Seq Rewrite is called on the statement part of all processes

The full inductive definitions of Seq Rewrite and Conc Rewrite are given
in Appendix A.

3.2 Modeling the Normalized Primitive Language

The extraction of the functional design semantics takes as input the result of
the application of Seq Rewrite and Conc Rewrite, and produces a list of as-
signments, exactly one for each signal and variable assigned in the design. This
resulting list of assignments models the computation performed by one simula-
tion cycle.

An assignment takes the form NextSig(s, IF expression) if s is a signal,
ChangeV ar(v, IF expression) if v is a variable: NextSig replaces the future
value of the signal with the value specified by IF expression, whereas ChangeV ar
replaces the current value of the variable. IF expression may be a constant,
Boolean, arithmetic or if-then-else conditional expression.

For readability, we define the target functional language for the semantic
model in pseudo-code, and assume bool expression and arith expression to be
self-explanatory. Table 1 gives the abstract syntax. In our implementation, a
Lisp syntax is adopted.

Table 1. Language of the target semantic model

Seq Assign ::= nil | Nextsig(s, IF expression) | ChangeV ar(v, IF expression)
| Seq Assign1; Seq Assign2

IF expression ::= bool expression | arith expression
| IF (condition, IF expression1, IF expression2)

Conc Assign ::= Nextsig(s, IF expression) | Conc Assign1; Conc Assign2

Modeling the sequential behavior
TransSeq : Seq NormalizeV HDL −→ Seq Assignments

Let Seq Assignments be the sublanguage derived from Seq Assign (see Ta-
ble 1).

Function TransSeq takes as input a list of sequential statements in a process,
and produces the list of single assignments to each modified signal and variable.
The difficulty consists in transforming several assignments to a same object,
under successive, and possibly non disjoint conditional statements, into a single
assignment, where all conditions are grouped in the right-hand side. TransSeq

is defined by structural induction over the primitive sequential statements.
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Table 2. Semantic function extraction for sequential statement blocks

1. TransSeq(target <= expression)
�
= NextSig(target, expression)

2. TransSeq(target := expression)
�
= ChangeV ar(target, expression)

3. TransSeq (procedure name[(parameter list)])
�
= the application of the

TransSeq to the body of the procedure, and the replacement
of the object names with the corresponding ones given in the call.

4. TransSeq (if condition then Seq Norm endif
�
=

Distribute(IF (condition,TransSeq(Seq Norm),nil))

TransSeq (if condition then Seq Norm1 else Seq Norm2 endif
�
=

Distribute(IF (condition, TransSeq(Seq Norm1),
TransSeq(Seq Norm2)))

5. TransSeq (Seq Norm1; Seq Norm2)
�
=

Group(TransSeq(Seq Norm1),TransSeq(Seq Norm2))

In Table 2:

– Cases 1 to 3 are straightforward.
– Case 4 corresponds to the processing of a conditional statement. First,

the statement is transformed into an intermediate IF (condition, then −
part, else − part), and TransSeq is called recursively on the then − part
and the else − part, both in Seq NormalizeV HDL . Then, the resulting IF
form, where all leaf statements are calls to NextSig or ChangeV ar, is fed
to function Distribute which moves the condition to the right-hand sides
of all assignments of the then − part and the else − part. A single assign-
ment is produced for objects that are assigned in both the then-part and the
else-part. The details of function Distribute can be found in Appendix B.

– Case 5 corresponds to consecutive sequential blocks. After translation by
TransSeq, two lists of assignments are produced. Objects assigned in the first
list must be rewritten in the right-hand side of assignments in the second
list. Double assignments are eliminated in the process. This transformation
is done by function Group, fully defined in Appendix B.

Example: In the following small sample of the control part of SHA (Table 3),
describing the behavior of the component in the final state (cnt reset), we show
a VHDL nested if statement, and its transformation into two signal assignments.

Modeling the Concurrent Behavior

TransConc : Conc NormalizeV HDL −→ Conc Assignments

Let Conc Assignments be the sublanguage derived from Conc Assign (see Ta-
ble 1): it is simply a list of invocations to function Nextsig, performing concur-
rent signal assignments. Function TransConc is applied to the statement part
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Table 3. Transformation of if-statement into signal assignments

VHDL Translated assignments

if CNT=’0’ then
if bl=”000000” then

done<=’1’; etat<=idle;
else etat<=init;
end if;

else etat<=cnt reset;
end if;

NextSig (etat,
IF (cnt = ’0’,

IF (bl=“000000”, idle, init),
cnt reset))

NextSig (done,
IF (cnt=’0’ and bl=“000000”,

’1’, NextSig (done)))

of a component architecture, which is a block of concurrent statements, and
produces the list of assignments to all local and output signals of the compo-
nent. TransConc is defined by structural induction over the primitive concurrent
statements. In Table 4:

– Case 1 corresponds to the simple signal assignment with a (possibly con-
ditional) expression. According to the VHDL semantics, the assignment is
performed only if there was an event on one or more signals in the right-
hand side expression; a signal has an event at a simulation cycle if its value at
the previous simulation cycle is different from the current one. This inserted
condition is denoted: Event(Sensitivity(cond expression)). Sensitivity re-
turns the list of signals in an expression, i.e. the sensitivity signals for the
target.

– Case 2 is the concurrent process with a sensitivity list (list of signals such that
an event on one of them resumes the process execution). Function TransSeq

is first invoked on the sequential statements block in the process, distributing
the sensitivity list condition on all statements. Then Update replaces all
occurrences of operator ChangeV ar with Nextsig, and all occurence of the
memorizing mark Nextsig(s) with s, for all signals assigned in the process.

– Case 3 is the component instantiation. Label is the name of the instance,
and the actual generic values, and input-output ports of the component are
provided at this point. Local objects are prefixed with the instance name, to
guarantee unique naming, as several instances of a component may be used
in a model.

– Case 4 stands for concurrent statement lists, it is straightforward.

3.3 Symbolic Simulation

Function Step computes the value (IF expression) of the memory and output
signals of the design, after one simulation cycle. It is the direct functional model
of the VHDL simulation semantics, and consists in the composition of all the
NextSig constructed in the previous section:

Step : I × M × O −→ M × O
Step (Input, Memory, Output) =

TransConc(Conc Rewrite(architecture body))
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Table 4. Semantic function extraction for concurrent statement blocks

1. TransConc (target <= cond expression)
�
=

NextSig(target, IF (Event (Sensitivity (cond expression)),
TransConc (cond expression), target)

2. TransConc ([label:] process [(sensitivity list)] [is] process declarative part

begin Seq Norm end process [label])
�
=

Update (Distribute (IF (Event (sensitivity list),
TransSeq (Seq Norm), nil)))

3. TransConc (label : component name [generic map (association list)])

[port map (association list)]
�
=

in-line replacement of the component instantiation by the result of
the application of Transconc on the corresponding architecture
statement block, renaming alllocal objects X by label/X, and
replacing all the generic parameters and ports by values provided
in the respective association list

4. TransConc (Conc1
Bl; Conc2

Bl)
�
= TransConc(Conc1

Bl);TransConc(Conc2
Bl)

Usually a VHDL design needs several simulation cycles (called delta cycles) to
become stable. We adopt symbolic simulation to stabilize the design by executing
the following algorithm:

for simulation time=1 to time max do
Input = Get test vectors (simulation time);
Do (Memory next,Output next) = Step(Input, Memory, Output);

Memory last = Memory; Memory = Memory next;
Output = Output next;

while Event (Sync signals);
Input last = Input;

end for;

For each design object obj ∈ Input ∪ Memory ∪ Output, we define three
variables: obj last (the value at the previous cycle), obj (the current value), and
obj next (the new value being computed); all are initialized with a symbolic
value that corresponds to their names. Sync signals ⊆ Input ∪ Memory is the
set of (assignment and process) sensitivity list signals.

At each simulation cycle, the input values can be numeric or symbolic. The
current expressions of memory signals and outputs are computed using the al-
ready extracted and normalized assignments. During this computation, the ex-
pressions are simplified using static rules; some of these rules are shown in Ta-
ble 5. Then, the simulated objects are updated. The computation is repeated if
an event occurs in one of the synchronization signals.

The inputs are considered stable during the internal stabilization loop. The
designer controls the synchronizing inputs at each time point. For clock-synchro-
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Table 5. IF-expression simplification rules

IF (True,Y, Z) −→ Y
IF (False,Y, Z) −→ Z
IF (IF (A,B, C), X, Y ) −→ IF (A,IF (B,X, Y ), IF (C,X, Y ))
IF (X,Y, Y ) −→ Y
fn (A1, A2, ..., IF (X,Y, Z)...An) −→

IF (X,fn(A1, A2, ..., Y, ..., An), fn(A1, A2, ..., Z, ..., An))

nized designs, the model of interest is the result of two simulation times, when
the clock successively takes value ’1’ and ’0’, i.e. a clock cycle.

3.4 The State Machine

Function Sim step models the state machine transition function. Sim step
takes as parameters the inputs of the design and the state of the machine (i.e.
the memory and output signals) at simulation cycle k, and produces the state
of the machine at simulation cycle k + n (k, n are naturals, n is the number of
simulation cycles needed for the stabilization).

Sim step : I × M × O −→ M × O

Sim step (Input, Memory, Output)
�
=

(NextSig s1(parameter list1), ..., NextSig sn(parameter listn))

The body of Sim step is the composition of the IF expressions obtained
by symbolic simulation. For each si ∈ Memory ∪ Output, we define a function
NextSig si(parameter list) = IF expressioni , where IF expressioni is the
final IF expression computed in si by the symbolic simulation of the previous
section.

The general state machine is defined as a recursive function that takes a
sequence of inputs (one symbolic value/input signal/clock cycle) and an initial
state and returns the state obtained after consuming all inputs.

System : Input Seq × M × O −→ M × O

System (nil, Memory, Output)
�
= (Memory, Output)

System ((Input.Input Seq), Memory, Output)
�
=

System(Input Seq,Sim step(Input, Memory, Output))

We use Mathematica to perform the symbolic simulation and extract the
functional model, to benefit from its pattern-matching algorithm, rewriting fea-
tures, and efficient symbolic computation needed during the stabilization phase.
Functions Sim step and System are translated to Lisp, and subsequently in-
put to the ACL2 theorem prover. As Mathematica uses a functional language,
the translation to Lisp is mainly a syntactic one. Slight modifications in object
names are done as needed to avoid conflicts with ACL2 key words. Standard
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VHDL operations on Boolean and bit vectors are replaced with corresponding
operations defined and proved correct in ACL2.

We have developed a “book” (library of functions and proved ACL2 theo-
rems) on bit vectors that models the Numeric bit VHDL package (two’s com-
plement binary arithmetic, high-order bit on the left, with logical, arithmetic,
shift, and numeric conversion operations).

Along with the functions above, information about inputs and state variables
are translated to Lisp and two predicates are created: hyp input(input), which
states the type for each input element of the design, and hyp mem(mem), which
states the type for each state variable of the design.

4 Case Study: SHA-1

The VHDL description of SHA-1 is clock-synchronized, so a step of the state
machine model corresponds to a clock cycle. In the VHDL design provided to
us, all outputs are memorizing, so the model is a Moore machine.

The SHA-1design is intended for use with a RAM, that holds the message
blocks; so the RAM is added to the state of the Moore machine. We model
the RAM as a list of pairs (address, cell content), where address is a symbol.
The message to be processed by the SHA algorithm starts at address base.
Function sha vhdl, defined similarly to System, simulates the circuit. It takes
two parameters: the sequence of inputs L-input and the state st. st is composed
of three parts: memory is the set of all internal signals of the SHA-1, out is the
set of output signals, and ram models the external RAM. The length of L-input
gives the number of clock cycles, and L-input represents the list of symbolic or
numeric values for the SHA input ports at each clock cycle:

(inputs cycle-1 inputs cycle-2 ... inputs cycle-k)
If the inputs list is empty, the computation is finished and sha vhdl returns

the state st. Otherwise, the next state is computed, and memory, out and ram
are updated, by calling the step function Sim step. Although effectively gen-
erated in Lisp, we give function sha vhdl in pseudo code, for legibility. Again,
this model is executable, and we have initially checked it using the test benches
provided in the SHA standard.

function sha vhdl(L input, st) returns state is
if empty(L input) return st;
else memory=st[0]; out=st[1]; ram=st[2]; inp=car(L input);

(new ram,new out)=
Sim step(concat(read ram(memory, ram), inp), memory, out);

new ram= write ram(new mem, ram);
return sha vhdl(cdr(L input), concat(new mem, new out, new ram));

endif

At this point, we have two models of SHA-1 in the functional Lisp subset
of ACL2: the translation by hand of the standard FIPS-180-2 sha norm (20
functions) which has no timing information, and the automatic translation of
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the VHDL description sha vhdl (35 functions), which is clock cycle accurate.
Clearly, sha norm involves a time abstraction with respect to sha vhdl, and
the two models are not directly equivalent.

To prove that the VHDL implementation is compliant to the functional
specification, we must show that, whatever the input message, the execution
of sha vhdl for the appropriate number of clock cycles (until the computation
is done) returns the same message digest as the one returned by sha norm. The
main theorem states:

For any positive integer nb, for any message of nb blocks, after the execution
of sha vhdl for 3+(342*nb) clock cycles, the system is in its final state (done=1)
and the values of the state variables H0, H1, H2, H3, H4 are equal to the result
of sha norm on the same message.

The inputs are the symbolic vectors of Table 6, where X stands for “don’t
care”, nb bv is the binary representation of nb on 6 bits, base is a bit-vector of
size 12. nb bv and base are symbolic.

Table 6. The symbolic input for sha vhdl

Cycle 1 2 3 ...

Input input cycle 1 input cycle 2 input

Reset 1 0 0 ...
Start X 1 X ...
Reset done X X X ...
Nb bloc X nb bloc nb bloc ...
Base addr X X base addr ...

Sha-vhdl needs 3 clock cycles to initialize the system and set a, b, c, d, e to
their initial values; then it needs 342 clock cycles to compute the digest for one
block. The 342 cycles are decomposed as: 16 for reading the first 16 words, 320
to compute an intermediate digest, 3 to combine the results with the initial hash
values of the block, 2 to store the message digest obtained so far. The last cycle
returns to the digest computation for the next block, or to the idle state.

The above could let the reader believe that we are performing simulation.
This is not the case. Although the actual number of cycles is precisely depicted
in our model, the reasoning engine considers the initial value of all memories
and registers as arbitrary, and nb to be an unbounded (but finite) natural inte-
ger. Induction is performed over nb. The key intermediate theorem used in the
induction is: starting from state init, after 342 clock cycles, if the number of
blocks to be processed is higher than 0, the system is in the init state, otherwise
it is in the idle state, and in both cases H0, H1, H2, H3, H4 hold the same digest
as computed by sha norm.

In turn, to prove the above theorem, a stepwise approach must be adopted,
which proves that each main computation step of the overall sha vhdl is equiva-
lent with some intermediate digest function. Then, the compliance between these
intermediate functions and the sha norm must be proved.
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Here is an overview of the stepwise approach (it follows the VHDL state
machine of SHA):

– Starting from state init, after 1 cycle the system is in the sha init state and
the memory has not changed;

– Starting from state sha init, after 16 cycles, the system is in the compute w
state and the first 16 steps of the digest algorithm are computed;

– Starting from state compute W , after 320 cycles, the system is in the result
state, the RAM is modified and the state variables a, b, c, d, e, hold the
result of the last 64 steps of the digest computation:

– Starting from state result, after 3 cycles, the system is in cnt reset, the
number of blocks to be processed is decremented and the state variables a,
b, c, d, e are added to the state variables h0, h1, h2, h3, h4, which hold the
hash values during the computation.

– Starting from state cnt reset, after 2 cycles, if the number of blocks to be
processed is higher than 0, the system is in init state, otherwise it is in the
idle state, done is 1 and the values of a, b, c, d, e are available as output.

Few theorems are proved by symbolic execution. Most of them are proved by
generalization followed by induction. All theorems are using a large number of
properties that we proved about bit-vectors, about operations with bit vectors
(logical, arithmetic, concatenation, shifting, conversions, etc), and about the
RAM. The total proof, including the two models, needed 150 functions and 750
theorems, from which 45% are reusable. One of the difficulties of the proof was to
find the intermediate digest functions. Also the generalization and the definition
of the right induction schemes required some experience with the prover.

5 Related Works and Conclusion

Symbolic simulation was proposed in 1979 by J. Darringer [5], but the early
implementations could not handle large circuits for lack of effective simplifica-
tion techniques; when the condition is a symbolic term, all alternative paths of
conditional statements had to be explored, and the simulation tree grew expo-
nentially.

The BDD representation of Boolean expressions gave a new start to symbolic
techniques. At switch and gate-level, Bryant and Seger proposed the successful
“symbolic trajectory evaluation” (STE) [14], a restricted form of model checking
for a limited class of LTL formulas: states are abstracted with ternary logic
(encoded with BDD pairs), and symbols are used to encode the inputs and parts
of the initial state. To reduce the size explosion of BDD’s, generalized graph
structures, the inclusion of SAT and the use of quaternary logic have enhanced
the capacity of generalized STE to enable the verification of FIFO memory [15].
Derived from these works, a commercial symbolic simulator from Innologic can
handle realistic size circuits, still described at the logic and switch level.

These technologies are not applicable at the initial design levels, when a
specification involves abstract data types rather than their Boolean encoding.
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To simplify symbolic simulation, reduce algebraic expressions and control the
expansion of the simulation tree, most proposed solutions use an automated
reasoning tool. The PVS reasoning system has been experimented on the Java
processor JEM1 produced at Rockwell Collins Advanced Technology [16]. The
automatic theorem prover ACL2 was shown to be more efficient to implement
a symbolic simulator for the same application [17]. Taking Common Lisp as
input format for its models, ACL2 can execute the simulation both numerically
and symbolically, which is a practical advantage. A systematic approach for
using ACL2 as a symbolic simulation engine was proposed by J. Moore as a
support to the previous reference [18]. On this base, the simulation semantics of
a subset of VHDL were defined in ACL2 in order to simulate a VHDL design
symbolically [3].

The work discussed in this paper aims at providing a more efficient and
more compositional model for conventional design languages. Stabilizing combi-
national signals dynamically, during symbolic simulation, in ACL2 was too space
consuming. The rewriting and fixed point computation capabilities of Mathemat-
ica brought an elegant and automatic solution to the problem of computing the
transfer function for combinational operations at compile time. By combining
Mathematica for symbolic simulation [20] and the construction of the state ma-
chine model, and ACL2 for reasoning about this model, and proving that it
correctly implements an abstract function, we have been able to prove a real
design correct. To our knowledge, this is the first mechanized verification flow
to apply theorem proving technology and check that a design written in VHDL
correctly implements an algorithm. We stress two important characteristics of
the formal model on which we reason: (1) it is executable, and can be applied to
numeric test cases for conventional debugging; (2) its complexity is independent
of the bit width of the data objects.

Despite the fact that the formal model is automatically generated from the
design description, the VHDL writing style has a large impact on the quality
of the semantic model produced by our prototype system. In addition, expert
knowledge is needed to direct the proof, and the use of this technology involves
a significant initial investment. Our ongoing work includes the application of
the tool to a wide variety of circuit types (on-chip communications, specialized
operators, DSP, etc), and the development of the appropriate ACL2 libraries,
with the objective of providing modeling guidelines and proof strategies for use
by verification engineers outside our research group.
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Appendix A: Rewrite Rules for the VHDL Statements

Rewriting Sequential Statements

Table 7. Abstract syntax of sequential statements in VHDL

Seq ::= target <= expression | target := expression | null
| [label] assert condition [report expression] [severity expression]
| procedure name [(parameter list)]
| if condition then Seq [elsif statement] endif
| case condition is case alternative end case
| for identifier in expression1 direction expression2 loop Seq end loop
| Seq1 ; Seq2

| [label] wait on sensitivity list ; Seq
| [label] wait until condition ; Seq

elsif statement ::= else Seq | elsif condition elsif Seq elsif statement
case alternative ::= when choice => Seq

| when choice => Seq case alternative
direction ::= to | downto
choice ::= expression | others
Seq Norm ::= target <= expression | target := expression

| procedure name [(parameter list)]
| if condition then Seq Norm1 [else Seq Norm2] endif
| Seq Norm1 ; Seq Norm2

Seq Rewrite : SequentialV HDL −→ Seq NormalizeV HDL

Seq Rewrite (target <= expression)
�
= target <= expression

Seq Rewrite (target := expression)
�
= target := expression

Seq Rewrite (procedure name [(parameter list)])
�
=

procedure name [(parameter list)]
Seq Rewrite ([label] assert condition [report expression]

[severity expression])
�
=

if condition then label:=true else label:= false endif

Seq Rewrite (if condition then Seq [elsif statement] endif)
�
=

if condition then Seq Rewrite (Seq)
[else Seq Rewrite (elsif statement)] endif

The definition of Seq Rewrite for the sub-block elsif statement is given below:

Seq Rewrite (else Seq)
�
= Seq Rewrite (Seq)

Seq Rewrite(elsif condition then Seq elsif statement)
�
=

if condition then Seq Rewrite (Seq)
else Seq Rewrite (elsif statement) endif

Seq Rewrite(case expression is when choice => Seq end case)
�
=

if (expression = choice) then Seq Rewrite (Seq) endif

Seq Rewrite (case expression is when others => Seq end case)
�
=

Seq Rewrite (Seq)
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Seq Rewrite (case expression is

when choice => Seq case alternative end case)
�
=

if (expression = choice) then Seq Rewrite (Seq)
else Seq Rewrite (case expression is case alternative end case) endif

Seq Rewrite (for identifier in expression1 to expression2 loop Seq end loop)
�
=

identifier := expression1 ; Seq Rewrite (Seq);
identifier := succ(expression1 ); Seq Rewrite (Seq);
identifier := expression2 ; Seq Rewrite (Seq)

When direction is downto, the predecessor function pred replaces the successor
function succ.

Seq Rewrite (Seq1 ; Seq2)
�
= Seq Rewrite (Seq1) ; Seq Rewrite (Seq2)

Seq Rewrite ([label] wait on sensitivity list ; Seq)
�
=

if Event(sensitivity list) then Seq Rewrite (Seq) endif

Seq Rewrite ([label] wait until condition ; Seq)
�
=

if Event(condition) and condition then Seq Rewrite (Seq) endif

Rewriting Concurrent Statements

Table 8. Abstract syntax of concurrent statements in VHDL and their normalized
form

Conc ::= [label:] process [(sensitivity list)] [is] process declarative part
begin Seq end process [label]

| target <= conditional forms
| with expression select target <= selected forms
| label: generation scheme generate Conc end generate [label]
| label: component name [generic map (association list)]

[port map (association list)]
| Conc1 ; Conc2

conditional forms ::= expression
| expression when condition else conditional forms

selected forms ::= expression when choice
| expression when choice selected forms

generation scheme ::= for identifier in expression1 direction expression2

| if condition
Conc Norm ::= target <= cond expression

| label: component name [generic map (association list)]
[port map (association list)]

| ([label:] process [(sensitivity list)] [is] process declarative part
begin Seq Norm end process [label])

| Conc Norm1 ; Conc Norm2

cond expression ::= bool expression | arith expression
| if condition then cond expression1 [else cond expression2 endif
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Conc Rewrite : ConcurrentV HDL −→ Conc NormalizeV HDL

Conc Rewrite ([label:] process [(sensitivity list)] [is] process declarative part

begin Seq end process [label])
�
=

([label:] process [(sensitivity list)] [is] process declarative part
begin Seq Rewrite(Seq) end process [label])

Conc Rewrite (target <= conditional forms)
�
=

target <= Conc Rewrite (conditional forms)

Conc Rewrite (expression)
�
= expression

Conc Rewrite (expression when condition else conditional forms)
�
=

if condition then expression
else Conc Rewrite (conditional forms) endif

Conc Rewrite (with expression select target <= selected forms)
�
=

target <= Conc Rewrite(with expression select selected forms)

Conc Rewrite (with expression1 select expression2 when others)
�
=

expression2

Conc Rewrite (with expression1 select expression2 when choice)
�
=

if expression1=choice then expression2 endif

Conc Rewrite (with expression1 select expression2 when choice select forms)
�
=

if expression1=choice then expression2

else Conc Rewrite (with expression1 select select forms) endif

Conc Rewrite (label: for identifier in expression1 direction expression2

generate Conc end generate [label])
�
=

replace identifier with expression1 in Conc Rewrite (Conc);
replace identifier with succ(expression1 ) in Conc Rewrite (Conc);
replace identifier with expression2 in Conc Rewrite (Conc)

Similary when direction is downto.

Conc Rewrite (label: if condition generate Conc end generate [label])
�
=

if condition then Conc Rewrite (Conc) endif
Conc Rewrite (label: component name [generic map (association list)]

[port map (association list)])
�
=

label: component name [generic map (association list)]
[port map (association list)]

Conc Rewrite (Conc1; Conc2)
�
=

Conc Rewrite (Conc1) ; Conc Rewrite (Conc2)

Appendix B: Functions for the Construction
of the Semantic Model

Distribute transforms an if statement into a list of sequential assignments.
IF Statements = {IF (condition, Seq Assign1, Seq Assign2) with
Seq Assign1 , Seq Assign2 ∈ Seq Assignments}
Distribute: IF Statements −→ Seq Assignments

Distribute (IF (condition, Seq Assign1 , Seq Assign2))
�
= Seq Assign3

where Seq Assign3 is defined below:
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– if signal s is assigned in the two branches:
NextSig (s, expression1) ∈ Seq Assign1 and
NextSig (s, expression2) ∈ Seq Assign2,
then NextSig (s, IF (condition, expression1, expression2)) ∈ Seq Assign3.

– if variable v is assigned in the two branches:
ChangeVar (v, expression1) ∈ Seq Assign1 and
ChangeVar (v, expression2) ∈ Seq Assign2,
then ChangeVar (v, IF (condition, expression1, expression2)) ∈ Seq Assign3.

– if variable v is assigned only in one branch:
ChangeVar (v, expression1) ∈ Seq Assign1 and
ChangeVar (v, expression2) ∈ Seq Assign2 implies
ChangeVar (v, IF (condition, expression1, v)) ∈ Seq Assign3.
ChangeVar (v, expression1) ∈ Seq Assign1 and
ChangeVar (v, expression2) ∈ Seq Assign2 implies
ChangeVar (v, IF (condition, v, expression2)) ∈ Seq Assign3.

– if a signal s is assigned only in one branch, it is memorizing in the other branch
where this is marked by an empty assignment NextSig(s). Marking the place where
the signal is memorizing helps to combine correctly the sequential statements,
without losing information.
NextSig (s, expression1) ∈ Seq Assign1 and
NextSig (s, expression2) ∈ Seq Assign2 implies
NextSig (s, IF (condition, expression1, NextSig (s))) ∈ Seq Assign3.
NextSig (s, expression1) ∈ Seq Assign1 and
NextSig (s, expression2) ∈ Seq Assign2 implies
NextSig (s, IF (condition, NextSig (s), expression2)) ∈ Seq Assign3.

Group takes two lists of assignments and for each assigned object it computes a
new assignment.

Group : Seq Assignments Seq Assignments −→ Seq Assignments

Group(Seq Assign1, Seq Assign2)
�
= Seq Assign3, as follows:

– if a variable v is assigned only in Seq Assign1:
ChangeVar (v, expression1) ∈ Seq Assign1 and
ChangeVar (v, expression2) ∈ Seq Assign2,
then ChangeVar (v, expression1) ∈ Seq Assign3.

– if a signal s is assigned only in Seq Assign1:
NextSig (s, expression1) ∈ Seq Assign1 and
NextSig (s, expression2) ∈ Seq Assign2,
then NextSig (s, expression1) ∈ Seq Assign3.

– if a variable v is assign in Seq Assign2 - ChangeVar (v, expression) ∈ Seq Assign2,
then ChangeVar (v, new expression) ∈ Seq Assign2, where new expression =
expression[v′/expression′], for all variable v́, vóccurs in expression and ChangeVar

(v́, expression)́ ∈ Seq Assign1.
– if a signal s is assigned in Seq Assign2 - NextSig (s, expression) ∈ Seq Assign2,

then NextSig (s, new expression) ∈ Seq Assign3, where
new expression = expression[v′/expression′,NextSig(s)/expression′′], for all variable v́,

vócurrs in expression and ChangeVar (v́, expression)́ ∈ Seq Assign1, and NextSig

(s, expressioń’) Seq Assign1. expression[v′/expression′] is expression where all oc-
currences of vẃere replaced by expressioń.
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Abstract. This short paper introduces the issues and challenges of next genera-
tion Java-based smart card platforms. Betting on a continuous evolution toward
open computing devices, next generation cards will consist in embedded Java
micro-server platforms. Those platforms will be able to serve various types of
services and applications thanks to two important system features: adaptability
and maintainability. Two features that have to be carefully taken into account in
the research perspectives described in this paper: real Java for cards, cards inte-
gration in a networked world, and flexible and adaptable cards.

1 Introduction

The research perspectives described in this paper leverage the vision of generic, adapt-
able, and maintainable smart cards that will meet the requirements of both the adjust-
ment of smart card systems to the environment and the persistence of smart card ap-
plications in an evolving environment. The technology used to implement these smart
card systems blur classical boundaries such as those between distributed and embedded
systems, those between low- and high-end card platforms, or those between pre- and
post-issuance (the term “post-issuance” describe the ability for smart cards to host and
to run applications after they have been issued [3]). Thus, the goal of research perspec-
tives is to bring some consistency to the possible solutions to these issues.

The emergence of powerful and personal services supported by multi-purpose de-
vices has the potential to dramatically enrich the range of applications that smart cards
will be able to serve. With the right platform and infrastructure in place, these smart
cards will radically leverage card businesses as they enable card makers to offer to their
customers solutions to implement and deliver complex and flexible business services.
In consequence, the second goal of these research perspective is to participate in the
understanding of this new possibilities by explaining and describing the research topics
and their challenges.

This paper is organized as follows. Research perspectives are presented within the
following three categories:

� This paper is an author’s reviewed version of a previous paper. This revision is for the only pur-
pose of accompanying the author’s invited talk to the CASSIS 2004 conference. The previous
paper by Jean-Jacques Vandewalle and Gilles Grimaud has been published (but couldn’t be
presented) in the proceedings of the Smart Objects Conference (SOC’2003), Grenoble, 15-17
May 2003.

G. Barthe et al. (Eds.): CASSIS 2004, LNCS 3362, pp. 250–256, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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– “Real Java for smart cards”; this category reminds the central place of Java in smart
cards, the Java limitations of the current Java Card 2.x specifications, and the will to
provide a new ground-breaking release for next generation Java-based smart card;

– “Cards integration in a networked world”; extends the notion of interoperability
from the current point of view of portability of Java Card programs to any Java
Card platforms to integration of Java Card programs with other programs residing
outside of the card;

– “Flexible and adaptable cards”; refines the use of Java to support multi-application
smart cards, to the use of Java to support well-tailored customization of the card
system depending on the target needs.

2 Real Java for Smart Cards

2.1 State-of-the-Art

Java Card [1] is now seen as the dominating platform for high-end microprocessor-
based smart cards. And according to market analysts [2] this trend should continue for
at least the next four years. Smart card vendors are focusing their strategy on this tech-
nology and an important part of their research and development resources is working
on Java Card. There is no important development of a proprietary multi-application
operating system in none of the major smart card companies.

Despite Java Card lives up to its promise, Java Card is not without challenges.
Looking at standard Java, we see that the main Java strengths are well designed object-
oriented language, cross-platform compatibility, virtual machine support for applica-
tion sandboxing, garbage collection to guard against memory leaks, tight integration
with other Java systems (back-ends, servers, three-tier architecture, etc.), and its in-
dustry and tools support. Java Card takes benefits from some of these strengths but it
misses lots of them because of its stripped-down version to adapt to small devices. This
stripped-down version has resulted in choices introducing issues that are difficult to
solve without a re-foundation of the specifications.

2.2 Issues

These issues with the Java platform as it is defined by the current Java Card specifica-
tions are three-fold:

1. The very stripped-down version of Java provided by the Java Card 2.x specifications
is targeted to very low-end chips. Therefore, drastic choices have been made that
yield to very poor specifications in term of functionality compared to “standard
Java”. For instance, these drastic choices are optional integer numbers, no multi-
threading, no (or optional) garbage-collection, specific file format different from the
class file format that prevents on-board linking and reflection, a persistent memory
model, etc.

2. Due to the specialization of the Java Card specifications to the smart card specific
device and its constraints (for instance, see the APDU class specification), the Java
Card platform is hard to understand, to handle, and to master by traditional Java de-
velopers that do not have any competencies in smart card technologies. Moreover,
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this specialization does not permit to take benefits from the plethora of standard
Java tools and has not encouraged the creation of interoperable, productive and
easy-to-use tools to help smart card developers build applications.

3. Finally, because the Java Card specifications only consider the execution platform
(virtual machine and runtime environment) plus the standard APIs, they miss some
aspects of the smart card life cycle such as its initialization, its personalization,
the way applications are installed during the pre-issuance stage, or during the post-
issuance stage.

2.3 Challenges

In order to overcome the limitations and difficulties raised by the above mentioned
issues (mainly, the ones in the first two categories), the Java Card specifications will
surely evolve toward a ground-breaking release with the following principles: to target
high-end (and possibly at the same time low-end) 32-bit chip platforms and take benefits
of their new hardware capabilities, to get closer to mainstream Java functionality, to ease
development and deployment processes, and to bypass the bottleneck of the specific
smart card ISO 7816 communication protocols. Research perspectives should clearly
enclose these principles. But it is also important that research perspectives don’t only
adopt an on-card standpoint, but also adopt a system standpoint in which a smart card
is seen as part of global systems, as well as a flexible system by itself. These two last
aspects complement the vision of a radically new and richer Java-based platform for
smart cards. They are discussed in the two following sections.

3 Cards Integration in a Networked World

3.1 State-of-the-Art

One of the most promising feature for paying the price of Java in smart cards was the
cross-platform compatibility brought by the use of Java and by the Java Card specifi-
cations. Looking backward, we now know that it wasn’t painless. For instance, mobile
networks operators using a Java Card from one card manufacturer had to virtually re-
develop the applications to run on different vendor’s Java cards. Card vendors have
made substantial progress during the past year to make the cards interoperable. In GSM
business, SIM card vendors are stepping up their efforts to bring about true interoper-
ability through the SIMAlliance they have formed. Outside of the GSM world, Visa and
the U.S. government are concentrating their efforts to ensure that the applications they
wish to run on smart cards work on cards from multiple vendors. Thus, cross-platform
compatibility can still be seen as an important challenge the card industry has to cope
with.

The need for a true interoperability of the card platform within information systems
is one of the feature for which it is worth paying the price of Java in smart cards. This
kind of interoperability can be better described as the set of technologies for card in-
tegration in information systems. So far, some limited efforts have been done on this
topic. They are limited to generic, multi-purpose sets of APIs for supporting interop-
erability of smart cards and card readers within the Windows operating system series
(PC/SC), within the Java environments (OCF), or within the Linux world (Muscle).
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This sets of APIs suffers from incompatibility and limited functionality because they
are stuck with the card platform capabilities and because they only abstract the commu-
nication link to smart card applications to the level of messages exchanged with client
applications running on the terminal where the card is plugged in. Messages have to
be constructed by hand according to the card application specification, multiple and
multiplexed communication channels are difficult (even impossible) to manage concur-
rently, reverse communication from the card applications and distant accesses from the
network are not supported.

Efforts to overcome some of these bottlenecks are appearing with the 2.2 release
of Java Card [7] in which the Remote Method Invocation (RMI) technology enables
better integrated distributed operations from Java client applications, and opens up the
door for distant accesses as it has been shown using the Jini technology [4]. Also, the
Java Card 2.2 release offers multiple logical channels (at most 4), which enables mul-
tiple client applications communicating concurrently with multiple card applications.
Nevertheless, all of these initiatives are still quite limited technologies to achieve an
efficient integration of card devices and operations within networked applications.

3.2 Issues
Networked applications is about connecting information systems and exchanging in-
formation. They provide a great opportunity to make information more convenient to
use and to be pieced together in order to achieve a common goal such as a complex
service requiring, for example, distributed data and distributed processing. Fueling per-
sonalized services with power and flexibility is the key issue for getting new products to
market more quickly and with the ability to make these products evolving according to
the customer’s needs. Notable examples of this evolution are the numerous attempts to
deploy m/e-commerce applications carried out by many companies. These applications
mix two visions that are apparently conflicting:

1. the assembly of complex and context-rich data (catalogues, orders, locations, con-
tracts, etc.) with the cooperation of various information system sources (manufac-
turers, retailers, brokers, bankers, etc.), and;

2. the users’ needs, because users expect services that are personalized, ubiquitous,
non-intrusive regarding their privacy, secure, and fitted to their ever changing habits.

To summarize, information must be at the same time gathered for the client goals
and available from different places with strong constraints of trust and convenience.

Though smart card platforms have been recognized as a key technology to lever-
age the development of such applications they suffer from many handicaps–e.g., their
reduced internal hardware and software features, their very specific hardware and soft-
ware interfaces, and their low-level development tools-among them their lack of inter-
operability with information system is a crucial one because it prevents easy ways of
building end-to-end solutions incorporating smart card operations.

3.3 Challenges
One of the research perspectives is about providing application developers with Java
Card supported technologies that will ease the card integration, and that will support
the end-to-end argument [6]. These technologies range into the following categories:
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– a standard communication protocol stack able to interconnect with diversity of net-
works, allowing distant accesses, and supporting multiple bi-directional communi-
cation exchanges at the same time;

– the support of multiple (non predefined and non frozen) application models to be
able to interconnect with any current or future information system, such as informa-
tion systems based on message-oriented middleware, mobile code infrastructure, or
object-oriented invocation broker;

– the use of “standard” Java components to take benefits from the existing Java tools
and from the widespread use of Java components (file format, idioms, APIs, etc.)
in the information systems surrounding smart cards.

4 Flexible and Adaptable Cards

4.1 State-of-the-Art and Issues

Java Card has been marketed as the ideal platform for multi-application smart cards.
Technically speaking, it is not erroneous. The flexibility to offer new services and to up-
date data without physically swapping out the chip card is supported by Java Card. But
there is a missing gap in Java Card security and management characteristics because the
Java Card specifications do not define how an application is uploaded or removed from
a card, nor who may add or delete applications from a card. Visa played a central role
in promoting a system called Open Platform that specifies how these functions ought
to be performed. In late 1999, Visa turned Open Platform to an industry consortium,
GlobalPlatform, hoping to create a standard card manager specification that would be
used by many industries.

The features provided by the GlobalPlatform application-management piece are
dedicated and specific to the current state-of-the-art Java Card platforms. Moreover,
they only bring flexibility for the management of the card applications and not for the
platform itself.

One issue is to broaden this flexibility to the platform itself in order to make the
next generation Java-based card platform adaptable to different needs according to the
content and service providers requirements. This broaden flexibility and adaptation
capabilities can be implemented in two ways: either statically for building the well-
tailored Java-based card platform configuration before issuance, or dynamically in or-
der to adapt on the fly the Java-based card platform to new application management
rules or to different application models from those installed originally.

4.2 Challenges

Finally, another research perspective is about providing application issuers with Java
Card supported technologies that will ease the card flexibility and adaptation in order
to allow the platform to incorporate at best the only needed features for the context in
which they operate and the applications they serve. These technologies range into the
following categories:



Smart Card Research Perspectives 255

– a dedicated and powerful dynamic linking model (DLM) adapted to smart cards.
Today the smart card linking model is mostly off-card and static though DLM pro-
vides one of the main benefit of Java. DLM enables just-in-time code loading and
linking, and thus implies minimal space consumption that is crucial for limited de-
vices. But smart cards as well as others embedded devices; use static models (e.g.,
for classes preloaded in ROM). The goal is to extend the Java DLM to allow coex-
istence between dynamic and static linking models;

– an extended application-management component able to dynamically manage the
applications and the platform extensions (like application model required libraries
and services). To that extent, a key feature of the Java platform is the dynamic code
loading supported by the Class Loader component. This component does not exist
in Java Card because the platform uses exclusively a static linking model. Without a
Class Loader component, code management (and thus application management) [5]
is difficult to extend and to adapt in the context of an virtual machine that acts as
an application server and that supports code mobility;

– the introspective nature of the Java-based card platform itself, which enables to
apply instrumentation and architecture/assembly/factory tools for statically com-
posing and building a dedicated configuration of the platform that reflects the state
suitable for its usage;

– complementary to the previous point, the design of some pieces of the Java-based
card platform as pluggable components that could be chosen among available in-
stances (for instance, data-link layers for the communication stacks, applications
models-required libraries) in order to configure the platform to its target usage;

– the use of “standard” Java mechanisms and components (for instance, serializa-
tion or standard Java service management technologies) to implement the above-
mentioned technologies while taking benefits from the existing mechanisms, and
leveraging on their associated tools.

5 Conclusions

We have defined next generation Java-based smart card as a platform enabling the ef-
ficient development, deployment and management of the on-card parts of networked
applications. For that purpose, the platform has to provide a powerful and efficient
execution environment as well as a flexible and operable management context within
constrained environments. Such a platform also has to offer an harmonized interface to
operate the services in a distributed and dynamic fashion required by m/e-commerce
and m/e-services operations. For that purpose, the platform has to provide a standard
way of communication within different types of networks as well as a rich and evolving
framework for different application models.

Dealing only with the platform is not sufficient. Other technologies also have to be
developed and should be added to these research perspectives. Some of them are quite
independent of the platform capabilities. But some are tightly linked to the platform and
then would benefit from being intimately developed in synergy with the platform. Most
evident ones are: secure Java technologies, delegation of operations to card, and card
management. Their efficiency and reliability have to be precisely measured whether or
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not they are developed in convergence with the card platform, or with the possibility to
influence some features of the card platform.
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