

Lecture Notes in Computer Science 3300
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Leopoldo Bertossi Anthony Hunter
Torsten Schaub (Eds.)

Inconsistency
Tolerance

13

Volume Editors

Leopoldo Bertossi
Carleton University, School of Computer Science
Herzberg Building, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6
E-mail: bertossi@scs.carleton.ca

Anthony Hunter
University College London, Department of Computer Science
Gower Street, London WC1E 6BT, UK
E-mail: a.hunter@cs.ucl.ac.uk

Torsten Schaub
Universität Potsdam, Institut für Informatik
August-Bebel-Str. 89,14482 Potsdam, Germany
E-mail: torsten@cs.uni-potsdam.de

Library of Congress Control Number: 2004117075

CR Subject Classification (1998): H.2, D.2, F.3, F.4

ISSN 0302-9743
ISBN 3-540-24260-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11373957 06/3142 5 4 3 2 1 0

Preface

The idea for this book arose after we had organized a meeting on inconsistency
tolerance at Dagstuhl in Germany in the summer of 2003. We approached a number
of eminent researchers in the field to contribute to the first book devoted to the
subject. The net result is a collection of papers that provide an exciting coverage of
some of the key aspects of the field.

All the chapters in the collection were anonymously reviewed, chapters by editors
of the book being submitted for anonymous review by the other editors. Reviewing
was undertaken by other authors involved in the project and by external reviewers.
We are particularly grateful to the external reviewers as we believe they made a very
significant contribution to all the chapters. The external reviewers included Ofer
Arieli, Pablo Barcelo, Diego Calvanese, Sergio Greco, Jerome Lang, Domenico
Lembo, Peter McBrien, Nic Wilson, and Peter Wood.

October 2004 Leo Bertossi

Anthony Hunter
Torsten Schaub

Table of Contents

Introduction to Inconsistency Tolerance
Leopoldo Bertossi, Anthony Hunter, Torsten Schaub………...……………… 1

Consistency of XML Specifications
Marcelo Arenas, Wenfei Fan, Leonid Libkin………..……………………… 15

Consistent Query Answers in Virtual Data Integration Systems
Leopoldo Bertossi, Loreto Bravo………………………………….………… 42

Representing Paraconsistent Reasoning via Quanitfied Propositional Logic
Philippe Besnard, Torsten Schaub, Hans Tompits, Stefan Woltran………..... 84

On the Computational Complexity of Minimal-Change Integrity Maintenance
in Relational Databases

Jan Chomicki, Jerzy Marcinkowski…………..……………………………. 119

On the Computational Complexity of Paraconsistent Inference Relations
Sylvie Coste-Marquis, Pierre Marquis…………..…………………………. 151

Approaches to Measuring Inconsistent Information
Anthony Hunter, Sébastien Konieczny………....………………………….. 191

Inconsistency Issues in Spatial Databases
Andrea Rodríguez…………………………………………………………… 237

Relevant Logic and Paraconsistency
John Slaney….……………………………………………………………… 270

Author Index....………….…………………………………………………… 295

Introduction to Inconsistency Tolerance

Leopoldo Bertossi1, Anthony Hunter2, and Torsten Schaub3,�

1 School of Computer Science,
Carleton University,

1125 Colonel By Drive,
Ottawa, K1S 5B6, Canada
bertossi@scs.carleton.ca

2 Department of Computer Science,
University College London

Gower Street, London WC1E 6BT, UK
a.hunter@cs.ucl.ac.uk
3 Institut fur Informatik,
August-Bebel-Strasse 89,

D-14482 Potsdam, Germany
torsten@cs.uni-potsdam.de

Abstract. Inconsistency arises in many areas in advanced computing.
Examples include: Merging information from heterogeneous sources; Ne-
gotiation in multi-agent systems; Understanding natural language dia-
logues; and Commonsense reasoning in robotics. Often inconsistency is
unwanted, for example, in the specification for a plan, or in sensor fusion
in robotics. But sometimes inconsistency is useful, e.g. when lawyers look
for inconsistencies in an opposition case, or in a brainstorming session
in research collaboration. Whether inconsistency is unwanted or useful,
there is a need to develop tolerance to inconsistency in application tech-
nologies such as databases, knowledgebases, and software systems. To
address this, inconsistency tolerance is being built on foundational tech-
nologies for identifying and analysing inconsistency in information, for
representing and reasoning with inconsistent information, for resolving
inconsistent information, and for merging inconsistent information. In
this introductory chapter, we consider the need and role for inconsis-
tency tolerance, and briefly review some of the foundational technologies
for inconsistency tolerance.

1 The Need for Inconsistency Tolerance

Traditionally the consensus of opinion in the computer science community is
that inconsistency is undesirable. Many believe that databases, knowledgebases,
and software specifications, should be completely free of inconsistency, and try
to eradicate inconsistency from them immediately by any means possible. Others

� Affiliated with the School of Computing Science at Simon Fraser University, Burnaby,
Canada.

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 1–14, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 L. Bertossi, A. Hunter, and T. Schaub

address inconsistency by isolating it, and perhaps resolving it locally. All seem
to agree, however, that data of the form q and ¬q, for any proposition q cannot
exist together, and that the conflict must be resolved somehow.

This view is too simplistic for developing robust software or intelligent sys-
tems, and furthermore, fails to use the benefits of inconsistent information in
intelligent activities, or to acknowledge the fact that living with inconsistency
seems to be unavoidable. Inconsistency in information is the norm in the real-
world, and so should be formalized and used, rather than always rejected.

There are cases where q and ¬q can be perfectly acceptable together and
hence need not be resolved. Consider for example an income tax database where
contradictory information on a taxpayer can be useful evidence in a fraud inves-
tigation. Maybe the taxpayer has completed one form that states the taxpayer
has 6 children (hence the tax benefits for that) and completed another that
states the taxpayer has 0 children. Here, this contradictory information needs
to be kept and reasoned with. A similar example is in law courts where lawyers
on opposing sides (for prosecution and defence) will seek contradictions in the
opposition. Moreover, they will try to direct questions and to use evidence to
engineer the construction of contradictions.

In other cases, q and ¬q serve as a useful trigger for various logical actions.
Inconsistency is useful in directing reasoning, and instigating the natural pro-
cesses of argumentation, information seeking, multi-agent interaction, knowledge
acquisition and refinement, adaptation, and learning.

In a sense, inconsistency can be seen as perfectly acceptable in a system, or
even desirable in a system, as long as the system has appropriate mechanisms
for acting on the inconsistencies arising [27]. Of course, there are inconsistencies
that do need to be resolved. But, the decision to resolve, and the approach to
resolution, need to be context-sensitive. There is also the question of when to
resolve inconsistencies. Immediate resolution of inconsistencies can result in the
loss of valuable information if an arbitrary choice is made on what to reject.
Consider for example the requirements capture stage in software engineering.
Here premature resolution can force an arbitary decision to be made without
the choice being properly considered. This can therefore overly constrain the
requirements capture process.

The call for robust, and intelligent, systems, has led to an increased interest in
inconsistency tolerance in computer science. However, introducing inconsistency
tolerance is a difficult and challenging aim. In the next section, we consider some
of the problems, at the level of formal logic, arising from inconsistency. Then, in
the subsequent section, we review a range of foundational technologies for use
in developing inconsistency tolerance.

2 Problems Arising from Inconsistency

Classical mathematical logic is very appealing for knowledge representation and
reasoning: The representation is rich and the reasoning powerful. Furthermore,
classical reasoning is intuitive and natural. The appeal of classical logic however,

Introduction to Inconsistency Tolerance 3

extends beyond the naturalness of representation and reasoning. It has some very
important and useful properties which mean that it is well-understood and well-
behaved, and that it is amenable to automated reasoning.

Much of computer science is based on classical logic. Consider for exam-
ple hardware logic, software specifications, SQL databases, and knowledgebase
systems. Classical logic is therefore a natural starting point for considering in-
consistency tolerance. Inconsistency is very much a logical concept, and so we
should consider the effect of inconsistency on classical logic.

Unfortunately, inconsistency causes problems in reasoning with classical logic.
In classical logic, anything can follow from an inconsistent set of assumptions.
Let Δ be a set of assumptions, let � be the classical consequence relation, and
let α be a formula, then Δ � α denotes that α is an inference from Δ using
classical logic. A useful definition of inconsistency for a set of assumptions Δ is
that if Δ � α and Δ � ¬α then Δ is inconsistent. A property of classical logic is
that if Δ is inconsistent, then for any β in the language, Δ � β. This property
results from the following proof rule, called ex falso quodlibet, being a valid proof
rule of classical logic.

α ¬α

β

So inconsistency causes classical logic to collapse. No useful inferences follow
from an inconsistent set of assumptions. It can be described as exploding, or
trivialised, in the sense that all formulae of the language are consequences of
inconsistent set of assumptions.

Since much of computer science is based on classical logic, the collapse of
it in the face of inconsistency is a profound problem. We need to define the
mechanisms for handling information in terms of a logic. So if classical logic is
not appropriate for inconsistent information, we need to look elsewhere for a
logic for inconsistency tolerance, or we need to consider mechanisms on top of
classical logic to manage the information.

Even if we adopt a logic that does not collapse, i.e. ex falso quodlibet does
not hold, we still need ways to handle the conflicting information. If we have a
database that contains both α and ¬α, we may need to answer the query “is α
true?”. An obvious strategy is that we only answer queries after we have cleaned
the data by removing information to restore consistency. Another strategy is to
take credulous approach to answering queries and so answer positively if the
fact is in the database irrespective of the existence of its complement: In this
case the answer would be “yes”. A third strategy is to take a skeptical approach
to answering queries and so answer positively if the fact is in the database
and its complement is not: In this case the answer would be “no”. A fourth
strategy is a qualified credulous approach which refines the credulous inference
with information about the existence of its complement.

The strategy of restoring consistency is not necessarily simple. For a set of
formulae Δ, one option is to remove the union of the minimally inconsistent
subsets to fix the inconsistency. Consider the set of beliefs.

Δ = {α, α → β, β → γ, δ → ¬β, δ}

4 L. Bertossi, A. Hunter, and T. Schaub

There is only one minimally inconsistent subset of Δ:

{α, α → β, δ → ¬β, δ}.

To revise Δ, we can subtract the minimally inconsistent subset, and use
the remainder as the revised knowledgebase. This is the same as taking the
intersection of the maximally consistent subsets as the revised knowledgebase.
So the revised knowledgebase is {β → γ}. From this example, we see that the
subtraction of the minimally inconsistent subset from the knowledgebase is quite
drastic. An alternative is just to remove the smallest number of assumptions in
order to restore consistency. Given Δ, we only need to remove one formula to
restore consistency. There are four possible clauses we could choose for this:

α
α → β
δ → ¬β

δ

So this gives us four choices for a revised set of assumptions. Each of these
choices is a maximally consistent subset.

Δ1 = {α, β → γ, δ → ¬β, δ}
Δ2 = {α, α → β, β → γ, δ}

Δ3 = {α, α → β, β → γ, δ → ¬β}
Δ4 = {α → β, β → γ, δ → ¬β, δ}

Clearly, such a revision is much more modest. But then we see we have a
choice to make which may call for further knowledge and/or further strategies.

The conclusion we can draw from the discussions and examples in this section
is that whilst classical logic is very useful in computer science, it needs to be
adapted for use with inconsistent information, and that adapting it can involve
some difficult issues. This has been the subject of much research, some of which
we touch upon in the next section.

3 Foundational Technologies for Inconsistency Tolerance

Inconsistency tolerance is being built on foundational technologies for identifying
and analysing inconsistency in information, for representing and reasoning with
inconsistent information, for resolving inconsistent information, and for merging
inconsistent information.

The central position is that the collapse of classical logic in cases of inconsis-
tency should be circumvented. In other words, we need to suspend the principle
of absurdity (ex falso quodlibet) for many kinds of reasoning. A number of useful
proposals have been made in the field of paraconsistent logics.

In addition, we need strategies for analysing inconsistent information. This
need has in part driven the approach of argumentation systems which compare

Introduction to Inconsistency Tolerance 5

pros and cons for potential conclusions from conflicting information. Also impor-
tant are strategies for isolating inconsistency and for taking appropriate actions,
including resolution actions. This calls for uncertainty reasoning and meta-level
reasoning. Furthermore, the cognitive activities involved in reasoning with in-
consistent information need to be directly related to the kind of inconsistency.
So, in general, we see the need for inconsistency tolerance giving rise to a range
of technologies for inconsistency management.

3.1 Consistency Checking

In order to manage inconsistency in knowledge, we need to undertake consis-
tency checking. However, consistency checking is inherently intractable in the
propositional case. To address this problem of the intractability, we can consider
using (A) tractable subsets of classical logic (for example binary disjunctions
of literals [30]), (B) heuristics to direct the search for a model (for example in
semantic tableau [56], GSAT [67], and constraint satisfaction [22]), (C) some
form of knowledge compilation (for example [53, 19]), and (D) formalization of
approximate consistency checking based on notions described below, such as
approximate entailment [49, 66], and partial and probable consistency.

Heuristic approaches, which have received a lot of attention in automated
reasoning technologies and in addressing constraint satisfaction problems, can
be either complete such as semantic tableau or Davis-Puttnam procedure [20] or
incomplete such as in the GSAT system [68]. Whilst in general, using heuristics
to direct search has the same worst-case computational properties as undirected
search, it can offer better performance in practice for some classes of theories.
Note, heuristic approaches do not tend to be oriented to offering any analysis of
theories beyond a decision on consistency.

In approximate entailment, classical entailment is approximated by two se-
quences of entailment relations. The first is sound but not complete, and the
second is complete but not sound. Both sequences converge to classical entail-
ment. For a set of propositional formulae Δ, a formula α, and an approximate
entailment relation |=i, the decision of whether Δ |=i α holds or Δ �|=i α holds
can be computed in polynomial time.

Partial consistency takes a different approach to approximation. Furthermore,
consistency checking for a set of formulae Δ can be prematurely terminated when
the search space exceeds some threshold. When the checking of Δ is prematurely
terminated, partial consistency is the degree to which Δ is consistent. This can
be measured in a number of ways including the proportion of formulae from
Δ that can be shown to form a consistent subset of Δ. Maximum generalized
satisfiability [57] may be viewed as an example of this.

Yet another approach is probable consistency checking [40]. Determining the
probability that a set of formulae is consistent on the basis of polynomial time
classifications of those formulae. Classifications for the propositional case can be
based on tests including counting the number of different propositional letters,
counting the multiple occurrences of each propositional letter, and determining
the degree of nesting for each logical symbol. The more a set of formulae is

6 L. Bertossi, A. Hunter, and T. Schaub

tested, the greater the confidence in the probability value for consistency, but
this is at the cost of undertaking the tests.

Identifying approximate consistency for a set of formulae Δ is obviously not
a guarantee that Δ is consistent. However, approximate consistency checking is
useful because it helps to focus where problems possibly lie in Δ, and to prioritize
resolution tasks. For example, if Δ and Γ are two parts of a larger knowledgebase
that is thought to be inconsistent, and the probability of consistency is much
greater for Δ than Γ , then Γ is more likely to be problematical and so should
be examined more closely. Similarly, if Δ and Γ are two parts of a larger knowl-
edgebase that is thought to be inconsistent, and a partial consistency identified
for Δ is greater than for Γ , then Γ seems to contain more problematical data
and so should be examined more closely by the user.

In databases, inconsistency is a notion relative to the satisfaction of a given
set of integrity constraints (ICs), which are properties of the admissible database
states. They impose semantic restrictions on the data in order to capture the
correspondence of the data with the outside world that is being modelled by
the database. We say that the database is inconsistent when the ICs, expressed
as logical formulas, are not satisfied by the database, which can be seen as a
first-order structure [64].

From this point of view, checking satisfaction of integrity constraints amounts
to determining is a sentence is true in the given database. This can be easily done
by posing and answering a query to/from the database. Taking into account that
databases evolve as updates on it are executed, it becomes necessary to check
every database state generated in this way. This process can be simplified using
an inductive approach [54]: If the database was consistent before executing a
certain update, then according to the kind of update and the kind of IC, it may
be necessary to check only a formula that is much simpler that the original IC; or
nothing at all if the update is irrelevant to the IC at hand [13]. Most approaches
to consistency handling in database are directed to either detect potential incon-
sistencies, so that a problematic update is rejected before execution, or to accept
the update even if an inconsistency is produced, but then detect or make a di-
agnosis of the data participating in the inconsistency, followed by an additional,
remedial or compensating update that restores or enforces consistency [32, 16].

Clearly each approach to making consistency checking viable involves some
form of compromise, and none is perfect for all applications. We therefore need a
variety of approaches with clearly understood foundations and inter-relationships
with other approaches. Furthermore, different techniques may give us different
perspectives on inconsistencies in a given knowledgebase.

3.2 Paraconsistent Logics

Reasoning with inconsistency involves some compromise on the inferential ma-
chinery of classical logic. There is a range of proposals for logics (called para-
consistent logics) for reasoning with inconsistency. Each of the proposals has
advantages and disadvantages. Selecting an appropriate paraconsistent logic for
an application depends on the requirements of the application.

Introduction to Inconsistency Tolerance 7

Types of paraconsistent logic that are proving to be of use for knowledge rep-
resentation and reasoning in intelligent computing systems include: (1) Weakly-
negative logics which use the full classical language, but a subset of the classical
proof theory [21, 5]; (2) Four-valued logics which use a subset of the classical
language and a subset of the classical proof theory, together with an intuitive
four-valued semantics [6, 63, 4]; (3) Signed systems which involve renaming all
literals in a theory and then restoring some of the original theory by progressively
adding formal equivalences between the original literals and their renamings [10];
and (4) Quasi-classical logic which uses classical proof theory but restricts the
notion of a natural deduction proof by prohibiting the application of elimination
proof rules after the application of introduction proof rules [11, 35, 36].

These options behave in quite different ways with sets of assumptions. None
can be regarded as perfect for handling inconsistent information in general.
Rather, they provide a spectrum of approaches. However, in all the approaches
the aim is to stay close to classical reasoning, since, as we have acknowledged,
classical logic has many appealing features for knowledge representation and
reasoning.

Paraconsistent logics are central to developing tolerance to inconsistency. Key
research frontiers on this subject include: (1) developing a deeper understand-
ing of the relationship of paraconsistency and substructural logics (for more
information see Chapter 9 by John Slaney entitled “Relevant Logic and Para-
consistency”); (2) developing a deeper understanding of the computational com-
plexity of paraconsistent logics (for more information see Chapter 6 by Sylvie
Coste-Marquis and Pierre Marquis entitled “On the Complexity of Paraconsis-
tent Inference Relations”); (3) developing automated reasoning technology for
paraconsistent logics such via quantified Boolean formulae (for more informa-
tion see Chapter 4 by Philippe Besnard, Torsten Schaub, Hans Tompits, and
Stefan Woltran entitled “Representing Paraconsistent Reasoning via Quantified
Boolean Formulae”).

3.3 Argumentation Systems

Argumentation is an important cognitive activity that draws on conflicting
knowledge for decision-making and problem solving. It normally involves identi-
fying relevant assumptions and conclusions for a given problem being analysed.
Furthermore, this often involves identifying conflicts, resulting in the need to
look for pros and cons for particular conclusions. This may also involve chains
of reasoning, where conclusions are used in the assumptions for deriving further
conclusions. In other words, the problem may be decomposed recursively.

Coalition Systems. These are based on identifying sets of arguments that de-
fend each other against counter-arguments by banding together for self-defence.
The seminal proposal that can be described as using coalitions is by Dung [24].
This approach assumes a set of arguments, and a binary “attacks” relation be-
tween pairs of arguments. A hierarchy of arguments is then defined in terms of
the relative attacks “for” and “against” each argument in each subset of the

8 L. Bertossi, A. Hunter, and T. Schaub

arguments. In this way, for example, the plausibility of an argument could be
defended by another argument in its coalition (i.e. its subset).

Coherence Systems. One of the most obvious strategies for handling inconsis-
tency in a knowledgebase is to reason with consistent subsets of the knowledge-
base. This is closely related to the approach of removing information from the
knowledgebase that is causing an inconsistency. In coherence systems, an argu-
ment is based on a consistent subset of a inconsistent set of formulae — the incon-
sistency arises from the conflicting views being represented. Further constraints,
such as minimality or skeptical reasoning, can be imposed on the consistent sub-
set for it to be an allowed argument. This range of further constraints gives us
a variety of approaches to argumentation including [52, 14, 7, 8, 25, 2, 34, 12].

Defeasible Logics. There are a number of proposals for defeasible logics. The
common feature for these logics is the incorporation of a defeasible implication
into the language. Defeasible logics have their origins in philosophy and were
originally developed for reasoning problems similar to those addressed by non-
monotonic logics in artificial intelligence. In [59, 60], Pollock conceptualises the
notions of reasons, prima facie reasons, defeaters, rebutting defeaters, and un-
dercutting defeaters, in terms of formal logic. Arguments can then be defined
as chains of reasons leading to a conclusion with consideration of potential de-
featers at each step. Different types of argument occur depending on the nature
of the reasons and defeaters. This has provided a starting point for a number
of proposals for logic-based argumentation including abstract argument systems
[71], conditional logic [55], and ordered logic [47].

There are many proposals for formalisms for logic-based argumentation. For
general reviews of formalisms for argumentation see [31, 70, 61, 17]. Furthermore,
some of these formalisms are being developed for applications in legal reasoning
[62], in medical reasoning and risk assessment [26], and in agent-based systems
[58]. A review of argumentation systems that relate proposals to potential appli-
cation areas in knowledge engineering, decision-support, multi-agent negotiation,
and software engineering, is given in [15].

3.4 Inconsistency Analysis

Given an inconsistent set of formulae Δ, we may need to know more about the
nature of the inconsistency and the nature of information being offered by Δ. In
some sense, we may desire inconsistency analysis based on notions that can be
measured in Δ.

The seminal work on measuring inconsistency is by Shannon [69]. This work,
based on probability theory, can be used in a logical setting when the worlds are
the possible events. This work is also the basis of Lozinskii’s work [51] for defining
the quantity of information of a formula (or knowledgebase) in propositional
logic. But this definition is not suitable when the knowledgebase is inconsistent.
In this case, it has no classical model, so we have no “event” to count. To address
this, models of maximal consistent subsets of the knowledgebase are considered.

Introduction to Inconsistency Tolerance 9

Another related measure is the measure of contradiction. It is usual in clas-
sical logic to use a binary measure of contradiction: a knowledgebase is either
consistent or inconsistent. This dichotomy is obvious when the only deductive
tool is classical inference, since inconsistent knowledgebases are of no use. But,
as we have identified earlier, there are now a number of paraconsistent logics
developed to draw non-trivial conclusions from an inconsistent knowledgebase.
So this dichotomy is not sufficient to describe the measure of contradiction of a
knowledgebase, one needs more fine-grained measures.

Some interesting proposals have been made for this including: Consistency-
based analyses that focus on the consistent and inconsistent subsets of a knowl-
edgebase [39]; Information theoretic analyses that adapt Shannon’s information
measure [51, 72]; Probabilistic semantic analyses that consider maximal consis-
tent probability distributions over a set of formulae [42, 43]; Epistemic actions
analyses that measure the degree of information in a knowledgebase in terms of
the number of actions required to identify the truth value of each atomic proposi-
tion and the degree of contradiction in a knowledgebase in terms of the number of
actions needed to render the knowledgebase consistent [44]; and Model-theoretic
analyses that are based on evaluating a knowledgebase in terms of three or four
valued models that permit an “inconsistent” truth value [33, 37, 38].

This topic is the basis of Chapter 7 by Anthony Hunter and Sebastien
Konieczny entitled “Approaches to Measuring Inconsistent Information”.

3.5 Belief Revision

Given a knowledgebase Δ, and a revision α, belief revision theory is concerned
with the properties that should hold for a rational notion of updating Δ with
α. If Δ ∪ α is inconsistent, then belief revision theory assumes the requirement
that the knowledge should be revised so that the result is consistent.

The AGM axioms, by Alchurron, Gardenfors and Makinson [1, 29], are pos-
tulates to delineate the behaviour of revision functions for belief sets (consider
this as the set of all inferences obtained from a set of formulae). In the revision
operation, as little of the belief set is changed as possible in order to include
some new information. This requirement to change as little as possible precludes
the change from a consistent set to an inconsistent set. In other words, some
beliefs will be removed in order to maintain consistency.

The postulates appear as rational and intuitive properties that would be
highly desirable. However, delivering efficient and effective systems that meet the
postulates has proved to be challenging. There have been many developments of
belief revision theory including iterated belief revision [18, 48], and relating belief
revision to database updating [41]. These also offer intuitive abstract constraints
for revision/updating. For a review of belief revision theory see [23].

There are some more concrete proposals for knowledgebase merging that ad-
here to belief revision postulates. In Konieczny and Pino Perez [45], there is a
proposal for merging beliefs based on semantically characterizing interpretations
which are “closest” to some sets of interpretations. But the approach does not

10 L. Bertossi, A. Hunter, and T. Schaub

exploit any meta-level information such as preferences. The approach has been
generalized by considering merging with respect to integrity constraints [46].

Another approach that extends belief revision theory, called arbitration op-
erators, is by Liberatore and Schaerf [50]. This is a form of merging restricted to
merging only two knowledgebases and it forces the result to be the disjunction
of the two original knowledgebases.

Proposals for belief revision that incorporate priorities include ordered theory
presentations [65] and prioritized revision [28]. In ordered theory presentations,
if a formula is less preferred than another which contradicts it, those aspects
of it which are not contradicted are preserved. This is done by adopting an in-
ferentially weaker formula to avoid the contradiction with the more preferred
formula. This merging can be undertaken in an arbitrarily large partially order-
ing of formulae. In prioritized revision, a belief revision operator is defined in
terms of selecting the model that satisfies the new belief and is nearest to the
existing beliefs. The measure of nearness can be used in iterated belief revision
where the more preferred items are used in later revisions.

Similar in spirit to belief revision is the recent work on consistent query an-
swering in databases [3, 9]. The idea, as opposed to traditional approaches to
inconsistency handling, is to live with an inconsistent database, but obtaining
only consistent information (with respect to given integrity constraints) when
queries are answered. That consistent information is the one that is invariant or
persists under all possible minimal ways of restoring consistency of the database.
There may be several alternative minimal repairs for a database, in consequence
what is consistently true in a database instance is what is true in a collection of
other instances that are the minimally repaired version of the original one. This
approach shares many similarities with the problem of updating a database seen
as a logical theory (or a model) by means of a set of sentences (the integrity con-
straints). In this case, the data is flexible, subject to repair, but the integrity con-
straints are hard, not to be given up. So, what is consistently true is what is true
wrt to the revised database. A more precise comparison can be found in [3, 9].

4 Towards Viable Technologies

We are now at an exciting stage in the development of inconsistency tolerance.
Rich foundations are being established, and a number of interesting and comple-
mentary application areas are being explored in decision-support, multi-agent
systems, database systems, and software engineering.

Key frontiers in developing viable applications technologies include: Inte-
grating data from heterogeneous databases (for more information see Chapter 3
by Leo Bertossi and Loreto Bravo entitled ”Consistent Query Answers in Vir-
tual Data Integration Systems”); Computational complexity issues in integrity
maintenance (for more information see Chapter 5 by Jan Chomicki and Jerzy
Marcinkowski entitled ”On the Computational Complexity of Minimal-Change
Integrity Maintenance in Relational Databases”; Representing and reasoning
with spatial data (for more information see Chapter 8 by Andrea Rodriguez

Introduction to Inconsistency Tolerance 11

entitled ”Inconsistency Issues in Spatial Databases”; and Computational com-
plexity issues in handling XML specifications (for more information see Chapter
2 by Marcelo Arenas, Leonid Libkin and Wenfei Fan entitled ”Consistency of
XML specifications”).

5 Conclusions

In this introduction, we have highlighted the need for inconsistency tolerance
in order to create more robust and more intelligent computing systems. Incon-
sistency tolerance is being built on foundational technologies of identifying and
analysing inconsistency in information, for representing and reasoning with in-
consistent information, for resolving inconsistent information, and for merging
inconsistent information. Inconsistency tolerance is now being developed for a
range of applications in database, knowledgebase and software systems.

References

1. C Alchourron, P Gardenfors, and D Makinson. On the logic of theory change:
partial meet contraction and revision functions. Journal of Symbolic Logic, 50:510–
530, 1985.

2. L Amgoud and C Cayrol. On the acceptability of arguments in preference-based
argumentation. In G Cooper and S Moral, editors, Proceedings of the 14th Con-
ference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, 1998.

3. M Arenas, L Bertossi, and J Chomicki. Consistent query answers in inconsistent
databases. In Proc. ACM Symposium on Principles of Database Systems (PODS
99), pages 68–79, 1999.

4. O Arieli and A. Avron. The value of the four values. Artificial Intelligence, 102:97–
141, 1998.

5. D Batens. Paraconsistent extensional propositional logics. Logique et Analyse,
90–91:195–234, 1980.

6. N Belnap. A useful four-valued logic. In G Epstein, editor, Modern Uses of
Multiple-valued Logic, pages 8–37. Reidel, 1977.

7. S Benferhat, D Dubois, and H Prade. Argumentative inference in uncertain and in-
consistent knowledge bases. In Proceedings of Uncertainty in Artificial Intelligence,
pages 1449–1445. Morgan Kaufmann, 1993.

8. S Benferhat, D Dubois, and H Prade. A logical approach to reasoning under incon-
sistency in stratified knowledge bases. In Symbolic and Quantitative Approaches
to Reasoning and Uncertainty, volume 956 of Lecture Notes in Computer Science,
pages 36–43. Springer, 1995.

9. L Bertossi and J Chomicki. Query answering in inconsistent databases. In G Saake
J Chomicki and R van der Meyden, editors, Logics for Emerging Applications of
Databases. Springer, 2003.

10. Philippe Besnard and Torsten Schaub. Signed systems for paraconsistent reason-
ing. Journal of Automated Reasoning, 20:191–213, 1998.

11. Ph Besnard and A Hunter. Quasi-classical logic: Non-trivializable classical reason-
ing from inconsistent information. In C Froidevaux and J Kohlas, editors, Symbolic
and Quantitative Approaches to Uncertainty, volume 946 of Lecture Notes in Com-
puter Science, pages 44–51, 1995.

12 L. Bertossi, A. Hunter, and T. Schaub

12. Ph Besnard and A Hunter. A logic-based theory of deductive arguments. Artificial
Intelligence, 128:203–235, 2001.

13. J Blakeley, N Coburn, and P Larson. Updating derived relations: detecting ir-
relevant and autonomously computable updates. ACM Transactions on Database
Systems, 14(3):369–400, 1989.

14. G Brewka. Preferred subtheories: An extended logical framework for default rea-
soning. In Proceedings of the Eleventh International Conference on Artificial In-
telligence, pages 1043–1048, 1989.

15. D Carbogim, D Robertson, and J Lee. Argument-based applications to knowledge
engineering. Knowledge Engineering Review, 15:119–149, 2000.

16. S Ceri, P Fraternali, S Paraboschi, and L Tanca. Automatic generation of pro-
duction rules for integrity maintenance. ACM Transactions on Database Systems,
19(3):367–422, 1994.

17. C Chesnevar, A Maguitman, and R Loui. Logical models of argument. ACM
Computing Surveys, 32:337–383, 2001.

18. A Darwiche and J Pearl. On the logic of iterated belief revision. Artificial Intelli-
gence, 89:1–29, 1997.

19. A Darwiche. Compiling knowledge into decomposible negation normal form. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJ-
CAI’99), pages 284–289, 1999.

20. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7:201–215, 1960.

21. N C da Costa. On the theory of inconsistent formal systems. Notre Dame Journal
of Formal Logic, 15:497–510, 1974.

22. R Dechter and J Pearl. Network-based heuristics for constraint-satisfaction prob-
lems. Artificial Intelligence, 34:1–38, 1987.

23. D Dubois and H Prade, editors. Handbook of Defeasible Resoning and Uncertainty
Management Systems, volume 3. Kluwer, 1998.

24. P. Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence,
77:321–357, 1995.

25. M Elvang-Goransson and A Hunter. Argumentative logics: Reasoning from clas-
sically inconsistent information. Data and Knowledge Engineering, 16:125–145,
1995.

26. J Fox and S Das. Safe and Sound: Artificial Intelligence in Hazardous Applications.
MIT Press, 2000.

27. D Gabbay and A Hunter. Making inconsistency respectable 1: A logical framework
for inconsistency in reasoning. In Fundamentals of Artificial Intelligence, volume
535 of Lecture Notes in Computer Science, pages 19–32. Springer, 1991.

28. D Gabbay and O Rodrigues. A methodology for iterated theory change. In Practi-
cal Reasoning, volume 1085 of Lecture Notes in Computer Science. Springer, 1996.

29. P Gardenfors. Knowledge in Flux. MIT Press, 1988.
30. M Garey and D Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, 1979.
31. J Gebhardt and R Kruse. Background and perspectives of possibilistic graphical

models. In A Hunter and S Parsons, editors, Applications of Uncertainty For-
malisms, Lecture Notes in Computer Science. Springer, 1998.

Introduction to Inconsistency Tolerance 13

32. M Gertz and W Lipeck. An extensible framework for repairing constraint viola-
tions. In S Jajodia et al., editor, Integrity and Internal Control in Information
Systems, IFIP TC11 Working Group 11.5, First Working Conference on Integrity
and Internal Control in Information Systems: Increasing the confidence in Infor-
mation Systems, Zurich, Switzerland, December 4-5, 1997, pages 89–111. Chapman
Hall, 1997.

33. J Grant. Classifications for inconsistent theories. Notre Dame Journal of Formal
Logic, 19:435–444, 1978.

34. R Haenni, J Kohlas, and N Lehmann. Probabilistic argumentation systems. In
D Gabbay and Ph Smets, editors, Handbook of Defeasible Reasoning and Uncer-
tainty Management Systems, Volume 5, pages 221–288. Kluwer, 2000.

35. A Hunter. Reasoning with contradictory information using quasi-classical logic.
Journal of Logic and Computation, 10:677–703, 2000.

36. A Hunter. A semantic tableau version of first-order quasi-classical logic. In Quanti-
tative and Qualitative Approaches to Reasoning with Uncertainty, LNCS. Springer,
2001. 544–556.

37. A Hunter. Measuring inconsistency in knowledge via quasi-classical models. In Pro-
ceedings of the 18th National Conference on Artificial Intelligence (AAAI’2002),
pages 68–73. MIT Press, 2002. ISBN 0-262-51129-0.

38. A Hunter. Evaluating the significance of inconsistency. In Proceedings of the
International Joint Conference on AI (IJCAI’03), pages 468–473, 2003.

39. A Hunter. Logical comparison of inconsistent perspectives using scoring functions.
Knowledge and Information Systems Journal, 2004. (in press).

40. A Hunter. Probable consistency checking for sets of propositional clauses. In
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, volume 2711
of Lecture Notes in Computer Science. Springer, 2003. pages 464 - 476.

41. H Katsuno and A Mendelzon. On the difference between updating a knowledgebase
and revising it. Belief Revision, pages 183–203, 1992.

42. K Knight. Measuring inconsistency. Journal of Philosophical Logic, 31:77–98, 2001.
43. K Knight. Two information measures for inconsistent sets. Journal of Logic,

Language and Information, 12:227–248, 2003.
44. S Konieczny, J Lang, and P Marquis. Quantifying information and contradic-

tion in propositional logic through epistemic actions. In Proceedings of the 18th
International Joint Conference on Artificial Intellignce (IJCAI’03), 2003. in press.

45. S Konieczny and R Pino Perez. On the logic of merging. In Proceedings of the
Sixth International Conference on Principles of Knowledge Representation and
Reasoning (KR98), pages 488–498. Morgan Kaufmann, 1998.

46. S Konieczny and R Pino Perez. Merging with integrity constraints. In Anthony
Hunter and Simon Parsons, editors, Qualitative and Quantitative Approaches to
Reasoning and Uncertainty (ECSQARU’99), volume 1638 of Lecture Notes in Com-
puter Science. Springer, 1999.

47. E Laenens and D Vermeir. A fixpoint semantics for ordered logic. Journal of Logic
and Computation, 1:159–185, 1990.

48. D Lehmann. Belief revision, revised. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’95), pages 1534–1540, 1995.

49. H Levesque. A logic of implicit and explicit belief. In Proceedings of the National
Conference on Artificial Intelligence (AAAI’84), pages 198–202, 1984.

50. P Liberatore and M Schaerf. Arbitration (or how to merge knowledgebases). IEEE
Transactions on Knowledge and Data Engineering, 10:76–90, 1998.

51. E Lozinskii. Information and evidence in logic systems. Journal of Experimental
and Theoretical Artificial Intelligence, 6:163–193, 1994.

14 L. Bertossi, A. Hunter, and T. Schaub

52. R Manor and N Rescher. On inferences from inconsistent information. Theory and
Decision, 1:179–219, 1970.

53. P Marquis. Knowledge compilation using prime implicates. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI’95), pages 837–
843, 1995.

54. J-M. Nicolas. Logic for improving integrity checking in relational data bases. Acta
Informatica, 18:227–253, 1982.

55. D Nute. Defeasible reasoning and decision support systems. Decision Support
Systems, 4:97–110, 1988.

56. F Oppacher and E Suen. HARP: A tableau-based theorem prover. Journal of
Automated Reasoning, 4:69–100, 1988.

57. C Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
58. S Parsons, C Sierra, and N Jennings. Agents that reason and negotiate by arguing.

Journal of Logic and Computation, 8:261–292, 1998.
59. J Pollock. Defeasible reasoning. Cognitive Science, 11:481–518, 1987.
60. J Pollock. How to reason defeasibly. Artificial Intelligence, 57:1–42, 1992.
61. H Prakken and G Vreeswijk. Logical systems for defeasible argumentation. In

D Gabbay, editor, Handbook of Philosophical Logic. Kluwer, 2000.
62. H Prakken. Logical Tools for Modelling Legal Argument. Kluwer, 1997.
63. G Priest. Reasoning abuot truth. Artificial Intelligence, 39:231–244, 1989.
64. R Reiter. Towards a logical reconstruction of relational database theory. In

M.Brodie, J.Mylopoulos, and J. Schmidt, editors, On Conceptual Modeling, pages
191–233. Springer-Verlag, 1984.

65. M Ryan. Representing defaults as sentences with reduced priority. In Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International
Conference. Morgan Kaufmann, 1992.

66. M Schaerf and M Cadoli. Tractable reasoning via approximation. Artificial Intel-
ligence, 74:249–310, 1995.

67. B Selman, H Levesque, and D Mitchell. A new method for solving hard satisfiability
problems. In Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI’92), pages 440–446, 1992.

68. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard sat-
isfiability problems. In P. Rosenbloom and P. Szolovits, editors, Proceedings of
AAAI’92, pages 440–446. AAAI Press, 1992.

69. C Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 1948.

70. D Vermeir, E Laenens, and P Geerts. Defeasible logics. In Handbook of Defeasible
Reasoning and Uncertainty Management, volume 2. Kluwer, 1998.

71. G Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90:225–279,
1997.

72. P Wong and Ph Besnard. Paraconsistent reasoning as an analytic tool. Journal of
the Interest Group in Propositional Logic, 9:233–246, 2001.

Consistency of XML Specifications

Marcelo Arenas1, Wenfei Fan2, and Leonid Libkin1

1 Department of Computer Science, University of Toronto
{marenas, libkin}@cs.toronto.edu

2 University of Edinburgh & Bell Laboratories
wenfei@research.bell-labs.com

Abstract. Specifications of XML documents typically consist of typing
information (for example, a DTD), and integrity constraints (for exam-
ple, keys and foreign keys). We show that combining the two may lead
to seemingly reasonable specifications that are nevertheless inconsistent:
there is no XML document that both conforms to the DTD and satis-
fies the constraints. We then survey results on the complexity of consis-
tency checking, and show that, depending on the classes of DTDs and
constraints involved, it ranges from linear time to undecidable. Further-
more, we show that for some of the most common classes of specifications
checking consistency is intractable.

1 Introduction

Although a number of dependency formalisms were developed for relational
databases, functional and inclusion dependencies are the ones used most often.
In fact, two subclasses of functional and inclusion dependencies, namely, keys
and foreign keys, are most commonly found in practice. Both are fundamental to
conceptual database design, and are supported by the SQL standard [34]. They
provide a mechanism by which one can uniquely identify a tuple in a relation
and refer to a tuple from another relation. They have proved useful in update
anomaly prevention, query optimization and index design [1, 41].

XML (eXtensible Markup Language [11]) has become the prime standard
for data exchange on the Web. XML data typically originates in databases. If
XML is to represent data currently residing in databases, it should support keys
and foreign keys, which are an essential part of the semantics of the data. A
number of key and foreign key specifications have been proposed for XML, e.g.,
the XML standard (Document Type Definition, DTD) [11], XML Data [31] and
XML Schema [40]. Keys and foreign keys for XML are important in, among
other things, query optimization [37], data integration [7, 8, 22, 27], and in data
transformations between XML and database formats [9, 18, 25, 26, 32, 38, 39].

XML data usually comes with a DTD1 that specifies how a document is
organized. Thus, a specification of an XML document may consist of both a DTD

1 Throughout the chapter, by a DTD we mean its type specification; we ignore its
ID/IDREF constraints since their limitations have been well recognized [12, 24].

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 15–41, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

16 M. Arenas, W. Fan, and L. Libkin

and a set of integrity constraints, such as keys and foreign keys. A legitimate
question then is whether such a specification is consistent, or meaningful: that
is, whether there exists an XML document that both satisfies the constraints
and conforms to the DTD.

In the relational database setting, such a question would have a trivial answer:
one can write arbitrary (primary) key and foreign key specifications in SQL,
without worrying about consistency. However, DTDs (and other schema speci-
fications for XML) are more complex than relational schema: in fact, XML docu-
ments are typically modeled as node-labeled trees, e.g., in XSLT [19], XQuery [10],
XML Schema [40], XPath [20] and DOM [3]. Consequently, DTDs may interact
with keys and foreign keys in a rather nontrivial way, as shown in the following
examples.

Example 1. As a simple example, consider the DTD given below:

<!ELEMENT db (foo)>
<!ELEMENT foo (foo)>

Observe that there exists no finite XML tree conforming to this DTD, and
hence this specification – that consists only of a DTD and no constraints – is
inconsistent. �

Example 2. To illustrate the interaction between XML DTDs and key/foreign
key constraints, consider a DTD D, which specifies a (nonempty) collection of
teachers:

<!ELEMENT teachers (teacher+)>
<!ELEMENT teacher (teach, research)>
<!ELEMENT teach (subject, subject)>

It says that a teacher teaches two subjects. Here we omit the descriptions of
elements whose type is string (i.e., PCDATA in XML).

Assume that each teacher has an attribute name and each subject has an
attribute taught by. Attributes are single-valued. That is, if an attribute l is
defined for an element type τ in a DTD, then in a document conforming to the
DTD, each element of type τ must have a unique l attribute with a string value.
Consider a set of unary key and foreign key constraints, Σ:

teacher .name → teacher ,

subject .taught by → subject ,
subject .taught by ⊆FK teacher .name.

That is, name is a key of teacher elements, taught by is a key of subject
elements and it is also a foreign key referencing name of teacher elements. More
specifically, referring to an XML tree T , the first constraint asserts that two
distinct teacher nodes in T cannot have the same name attribute value: the
(string) value of name attribute uniquely identifies a teacher node. It should

Consistency of XML Specifications 17

. . .

. . .
teacher

teachers

teacher

research

“Web DB”

teach

subject

“Joe”

“Joe”
@name

”XML” @taught by
“Joe”

@taught by“DB”

subject

Fig. 1. An XML tree conforming to D

be mentioned that two notions of equality are used in the definition of keys: we
assume string value equality when comparing name attribute values, and node
identity when it comes to comparing teacher elements. The second key states
that the taught by attribute value uniquely identifies a subject node in T . The
third constraint asserts that for any subject node x, there is a teacher node y
in T such that the taught by attribute value of x equals the name attribute value
of y. Since name is a key of teacher, the taught by attribute of any subject
node refers to a unique teacher node.

Obviously, there exists an XML tree conforming to D, as shown in Figure 1.
However, there is no XML tree that both conforms to D and satisfies Σ. To see
this, let us first define some notation. Given an XML tree T and an element
type τ , we use ext(τ) to denote the set of all the nodes labeled τ in T . Similarly,
given an attribute l of τ , we use ext(τ.l) to denote the set of l attribute values
of all τ elements. Then immediately from Σ follows a set of dependencies:

|ext(teacher .name)| = |ext(teacher)|,
|ext(subject .taught by)| = |ext(subject)|,
|ext(subject .taught by)| ≤ |ext(teacher .name)|,

where | · | is the cardinality of a set. Therefore, we have

|ext(subject)| ≤ |ext(teacher)|. (1)

On the other hand, the DTD D requires that each teacher must teach two
subjects. Since no sharing of nodes is allowed in XML trees and the collection
of teacher elements is nonempty, from D follows:

1 < 2 · |ext(teacher)| = |ext(subject)|. (2)

18 M. Arenas, W. Fan, and L. Libkin

Thus |ext(teacher)| < |ext(subject)|. Obviously, (1) and (2) contradict each
other and as an immediate result, there exists no XML document that both
satisfies Σ and conforms to D. In particular, the XML tree in Figure 1 violates
the key subject .taught by → subject . �

This example demonstrates that a DTD may impose dependencies on the
cardinalities of certain sets of objects in XML trees. These cardinality constraints
interact with keys and foreign keys. More specifically, keys and foreign keys
also enforce cardinality constraints that interact with those imposed by DTD.
This makes the consistency analysis of keys and foreign keys for XML far more
intriguing than its relational counterpart.

The constraints in this example are fairly simple: there is an immediate anal-
ogy between such XML constraints and relational keys and foreign keys. There
have been a number of proposals for supporting more powerful keys and foreign
keys for XML (e.g., [11, 12, 40, 31]). Not surprisingly, the interaction between
DTDs and those complicated XML constraints is more involved.

In light of this we are interested in the following family of the consistency (or
satisfiability) problems, where C ranges over classes of integrity constraints:

PROBLEM : SAT(C).
INPUT : A DTD D, a set Σ of C-constraints.
QUESTION : Is there an XML document that conforms to

D and satisfies Σ?

In other words, we want to validate XML specifications statically, at compile-
time. The main reason is twofold: first, complex interactions between DTDs
and constraints are likely to result in inconsistent specifications, and second, an
alternative dynamic approach to validation (simply check a document to see if
it conforms to the DTD and satisfies the constraints) would not tell us whether
repeated failures are due to a bad specification, or problems with the documents.

This chapter presents the complexity of the consistency analysis of XML
specifications. We consider DTDs and a variety of XML keys and foreign keys
commonly encountered in real-life XML specifications.

The next section gives a brief introduction to XML DTDs and XML docu-
ments. It is followed by the definitions of two basic forms of XML constraints,
namely, absolute constraints that hold in the entire document, and relative con-
straints that only hold in a part of the document. Section 4 is devoted to the
consistency analyses of XML specifications with absolute constraints, and Sec-
tion 5 considers relative constraints. Extensions of the basic XML constraints
by means of path expressions (regular expressions and XPath [20]), such as
constraints proposed by XML Schema [40], are treated in Section 6. Finally,
Section 7 identifies open problems for further study, and provides references to
the original papers.

Consistency of XML Specifications 19

2 DTDs and XML Trees

In this section, we present a formalism of XML DTDs [11] and review the XML
tree model.

Document Type Definition. We formalize the notion of DTDs as follows
(cf. [11, 15, 35, 23]).

Definition 1. A DTD (Document Type Definition) is defined to be D = (E, A,
P , R, r), where:

– E is a finite set of element types;
– A is a finite set of attributes, disjoint from E;
– for each τ ∈ E, P (τ) is a regular expression α, called the element type

definition of τ :

α ::= S | τ ′ | ε | α|α | α, α | α∗,

where S denotes the string type, τ ′ ∈ E, ε is the empty word, and “|”, “,”
and “∗” denote union, concatenation, and the Kleene closure, respectively.
In this chapter we also use the following shorthands: α+ for (α, α∗) and α?
for (ε|α). We refer to the set of E types appearing in P (τ) as the alphabet
of P (τ).

– for each τ ∈ E, R(τ) is a set of attributes in A;
– r ∈ E and is called the element type of the root. �

We normally denote element types by τ and attributes by l, and assume that
r does not appear in P (τ) for any τ ∈ E. We also assume that each τ in E \ {r}
is connected to r, i.e., either τ appears in P (r), or it appears in P (τ ′) for some
τ ′ that is connected to r.

Example 3. Let us consider the DTD D given in Example 2. In our formalism,
D can be represented as (E, A, P, R, r), where E = {teachers, teacher , teach,
research, subject}, A = {name, taught by}, r = teachers and P , R are as follows:

P (teachers) = teacher+ R(teachers) = ∅
P (teacher) = teach, research R(teacher) = {name}
P (teach) = subject , subject R(teach) = ∅
P (subject) = S R(subject) = {taught by}
P (research) = S R(research) = ∅

�

XML Trees. An XML document is typically modeled as a node-labeled tree.
Below we describe valid XML documents w.r.t. a DTD, along the same lines as
XQuery [10], XML Schema [40] and DOM [3].

Definition 2. Let D = (E, A, P, R, r) be a DTD. An XML tree T conforming
to D, written T |= D, is defined to be (V, lab, ele, att, val, root), where

20 M. Arenas, W. Fan, and L. Libkin

– V is a finite set of nodes;
– lab is a function that maps each node in V to a label in E ∪A∪ {S}; a node

v ∈ V is called an element of type τ if lab(v) = τ and τ ∈ E, an attribute
if lab(v) ∈ A, and a text node if lab(v) = S;

– ele is a function that for any τ ∈ E, maps each element v of type τ to a
(possibly empty) list [v1, ..., vn] of elements and text nodes in V such that
lab(v1) . . . lab(vn) is in the regular language defined by P (τ);

– att is a partial function from V ×A to V such that for any v ∈ V and l ∈ A,
att(v, l) is defined iff lab(v) = τ , τ ∈ E and l ∈ R(τ);

– val is a partial function from V to string values such that for any node
v ∈ V , val(v) is defined iff lab(v) = S or lab(v) ∈ A;

– root is the root of T : root ∈ V and lab(root) = r.

For any node v ∈ V , if ele(v) is defined, then the nodes v′ in ele(v) are
called the subelements of v. For any l ∈ A, if att(v, l) = v′, then v′ is called an
attribute of v. In either case we say that there is a parent-child edge from v to
v′. The subelements and attributes of v are called its children. The graph defined
by the parent-child relation is required to be a rooted tree. �

Intuitively, V is the set of nodes of the tree T . The mapping lab labels every
node of V with a symbol (tag) from E ∪A∪ {S}. Text nodes and attributes are
leaves. For an element x of type τ , the functions ele and att define the children
of x, which are partitioned into subelements and attributes according to P (τ)
and R(τ) in the DTD D. The subelements of x are ordered and their labels
satisfy the regular expression P (τ). In contrast, its attributes are unordered and
are identified by their labels (names). The function val assigns string values
to attributes and text nodes. We consider single-valued attributes. That is, if
l ∈ R(τ) then every element of type τ has a unique l attribute with a string
value. Since T has a tree structure, sharing of nodes is not allowed in T .

For example, Figure 1 depicts an XML tree valid w.r.t. the DTD given in
Example 2.

Our model is simpler than the models of XQuery [10] and XML Schema [40]
as DTDs support only one basic type (PCDATA or string) and do not have com-
plex type constructs. Furthermore, we do not have nodes representing names-
paces, processing instructions and references. These simplifications allow us to
concentrate on the essence of the DTD/constraint interaction. It should further
be noticed that they do not affect the lower bounds results in the chapter. It is
also worth mentioning that we consider ordered XML trees in this paper, but
removal of ordering does not affect the semantics of XML constraints and the
complexity of their consistency and implication analyses.

Notation. In this chapter, we also use the following notation. Referring to an
XML tree T , if x is a τ element in T and l is an attribute in R(τ), then x.l denotes
the l attribute value of x, i.e., x.l = val(att(x, l)). If X is a list [l1, . . . , ln] of
attributes in R(τ), then x[X] = [x.l1, . . . , x.ln]. We write |S| for the cardinality
of a set S.

Given a DTD D = (E, A, P, R, r) and element types τ, τ ′ ∈ E, a string
τ1.τ2. · · · .τn over E is a path in D from τ to τ ′ if τ1 = τ , τn = τ ′ and for

Consistency of XML Specifications 21

each i ∈ [2, n], τi is a symbol in the alphabet of P (τi−1). Moreover, we define
Paths(D) = {p | there is τ ∈ E such that p is a path in D from r to τ}.

We say that a DTD is non-recursive if Paths(D) is finite, and recursive oth-
erwise. We also say that D is a no-star DTD if the Kleene star does not occur in
any regular expression P (τ) (note that this is a stronger restriction than being
∗-free, which is a well-accepted concept with a standard definition [42]: a regular
expression without the Kleene star yields a finite language, while the language
of a ∗-free regular expression may still be infinite as it allows boolean operators
including complement).

3 Integrity Constraints for XML

We consider two forms of constraints for XML: absolute constraints that hold on
the entire document, denoted byAC, and relative constraints that hold on certain
sub-documents, denoted by RC. Below we define both classes of constraints. A
variation of AC using regular expressions will be defined in Section 6.1.

3.1 Absolute Keys and Foreign Keys

A class of absolute keys and foreign keys, denoted by AC∗,∗
K ,FK (we shall ex-

plain the notation shortly), is defined for element types as follows. An AC∗,∗
K ,FK

constraint ϕ over a DTD D = (E, A, P, R, r) has one of the following forms:

– Key : τ [X] → τ , where τ ∈ E and X is a nonempty set of attributes in R(τ).
An XML tree T satisfies this constraint, denoted by T |= τ [X] → τ , if

∀x, y ∈ ext(τ) (x[X] = y[X] → x = y).

– Foreign key : τ1[X] ⊆FK τ2[Y], where τ1, τ2 ∈ E, X and Y are nonempty lists
of attributes in R(τ1) and R(τ2), respectively, and |X| = |Y |. This constraint
is satisfied by a tree T , denoted by T |= τ1[X] ⊆FK τ2[Y], if T |= τ2[Y] → τ2,
and in addition

∀x ∈ ext(τ1) ∃ y ∈ ext(τ2) (x[X] = y[Y]).

That is, τ [X] → τ says that the X-attribute values of a τ element uniquely
identify the element in ext(τ), and τ1[X] ⊆FK τ2[Y] says that the Y -attribute
values of a τ2 element uniquely identify the element in ext(τ2) and the list of
X-attribute values of every τ1 node in T must match the list of Y -attribute
values of some τ2 node in T . We use two notions of equality to define keys: value
equality is assumed when comparing attributes, and node identity is used when
comparing elements. We shall use the same symbol ‘=’ for both, as it will never
lead to ambiguity. It is worth remarking that keys and foreign keys are defined
in terms of XML attributes, which are of the string type and can not be null
values.

22 M. Arenas, W. Fan, and L. Libkin

Constraints of AC∗,∗
K ,FK are generally referred to as multi-attribute constraints

as they may be defined with multiple attributes. An AC∗,∗
K ,FK constraint is said to

be unary if it is defined in terms of a single attribute; that is, |X| = |Y | = 1 in the
above definition. In that case, we write τ.l → τ for unary keys, and τ1.l1 ⊆FK
τ2.l2 for unary foreign keys. For example, the set of constraints considered in
Example 2 are unary. As in relational databases, we also consider primary keys:
for each element type, at most one key can be defined.

Example 4. To illustrate keys and foreign keys of AC∗,∗
K ,FK , let us consider a

DTD D1 = (E1, A1, P1, R1, r1), where E1 = {school , course, student , subject ,
enroll , name}, A1 = {student id , course no, dept}, r1 = school and P1, R1 are
as follows:

P1(school) = course∗, student∗ R1(school) = ∅
P1(course) = subject , enroll∗ R1(course) = {dept , course no}
P1(student) = name R1(student) = {student id}
P1(subject) = S R1(subject) = ∅
P1(enroll) = ε R1(enroll) = {student id}
P1(name) = S R1(name) = ∅

Typical AC∗,∗
K ,FK constraints over D1 include:

student .student id → student ,
course[dept , course no] → course,

enroll .student id ⊆FK student .student id ,

The first two constraints are keys in AC∗,∗
K ,FK and the last constraint is a

foreign key. The first and the last constraint are unary. �

We shall use the following notation for subclasses of AC∗,∗
K ,FK : subscripts

K and FK denote keys and foreign keys, respectively. When the primary key
restriction is imposed, we use subscript PK instead of K. The superscript ‘∗’
denotes multi-attribute, and ‘1’ means unary. The first of these superscripts
refers to keys, and the second to foreign keys.

In this chapter we shall be dealing with the following subclasses of AC∗,∗
K ,FK :

– AC∗,1
K ,FK is the class of multi-attribute keys and unary foreign keys;

– AC∗,1
PK ,FK is the class of primary multi-attribute keys and unary foreign keys;

– AC1,1
K ,FK is the class of unary keys and unary foreign keys;

– AC1,1
PK ,FK is the class of primary unary keys and unary foreign keys;

– AC∗
K is the class of multi-attribute keys.

Since every foreign key implicitly contains a key, the class AC1,∗
K ,FK of unary

keys and multi-attributes foreign keys is equal to AC∗,∗
K ,FK . Thus, we do not

consider AC1,∗
K ,FK in this chapter.

Consistency of XML Specifications 23

3.2 Relative Keys and Foreign Keys

Since XML documents are hierarchically structured, one may be interested in
the entire document as well as in its sub-documents. The latter gives rise to
relative integrity constraints [12, 13], that only hold on certain sub-documents.
Below we define relative keys and foreign keys. Recall that we use RC to denote
various classes of such constraints. We use the notation x ≺ y when x and y are
two nodes in an XML tree and y is a descendant of x.

A class of relative keys and foreign keys, denoted by RC∗,∗
K ,FK , is defined as

follows. An RC∗,∗
K ,FK constraint ϕ over a DTD D = (E, A, P, R, r) has one of

the following forms:

– Relative key : τ(τ1[X] → τ1), where τ, τ1 ∈ E and X is a nonempty set of
attributes in R(τ1). It says that relative to each node x of element type τ ,
the set of attributes X is a key for all the τ1 nodes that are descendants of
x. That is, if a tree T conforms to D, then T |= ϕ if

∀x ∈ ext(τ) ∀ y, z ∈ ext(τ1)
(
(x ≺ y) ∧ (x ≺ z) ∧ y[X] = z[X] → y = z

)
.

– Relative foreign key : τ(τ1[X] ⊆FK τ2[Y]), where τ, τ1, τ2 ∈ E, X and Y are
nonempty lists of attributes in R(τ1) and R(τ2), respectively, and |X| = |Y |.
It indicates that for each x in ext(τ), X is a foreign key of descendants of x
of type τ1 that references a key Y of τ2-descendants of x. That is, T satisfies
ϕ, denoted by T |= τ(τ1[X] ⊆FK τ2[Y]), if T |= τ(τ2[Y] → τ2) and T satisfies

∀ x ∈ ext(τ) ∀ y ∈ ext(τ1)
(
(x ≺ y) →

∃ z ∈ ext(τ2) ((x ≺ z) ∧ y[X] = z[Y])
)
.

Here τ is called the context type of ϕ. Note that absolute constraints are a
special case of relative constraints when τ = r: i.e., r(τ [X] → τ) is the usual
absolute key. As in the case of absolute constraints, a relative constraint is said
to be unary if it is defined in terms of a single attribute; that is, |X| = |Y | = 1 in
the above definition. In that case, we write τ(τ1.l → τ) for relative unary keys,
and τ(τ1.l1 ⊆FK τ2.l2) for relative unary foreign keys.

Example 5. Let us consider an XML document that for each country lists its
administrative subdivisions (e.g., into provinces or states), as well as capitals of
provinces. A DTD is given below and an XML document conforming to it is
depicted in Figure 2.

<!ELEMENT db (country+)>
<!ELEMENT country (province+, capital)>
<!ELEMENT province (capital)>

Each country has a nonempty sequence of provinces and a capital, and for
each province we specify its capital. Each country and province has an attribute
name.

Now suppose we want to define keys for countries and provinces. One can
state that country name is a key for country elements. It is also tempting to

24 M. Arenas, W. Fan, and L. Libkin

. . .

.
capital

capital

province

capital

province capital@name
“Belgium”

country

db

country

@name
“Limburg”

“Maastricht”

“Brussels”
“Limburg”

@name

“Hasselt”

“Amsterdam”

“Holland”
@name

Fig. 2. An XML document storing information about countries and their administra-
tive subdivisions

say that name is a key for province, but this may not be the case. The example
in Figure 2 clearly shows that. Which Limburg one is interested in probably
depends on whether one’s interests are in database theory, or in the history of
the European Union. To overcome this problem, we define name to be a key for
province relative to a country; indeed, it is extremely unlikely that two provinces
of the same country would have the same name. Thus, our constraints are:

country.name → country,

country(province.name→ province).

The first constraint is like those we have encountered before: it is an ab-
solute key, which applies to the entire document. The second one is a relative
constraint which is specified for sub-documents rooted at country elements. It
asserts that for each country, name is a key of province elements. Note that
relative constraints are somewhat related to the notion of keys for weak entities
in relational databases (cf. [41]). �

Following the notation for AC, we denote subclasses of RC as follows:

– RC∗,1
K ,FK : the class of relative multi-attribute keys and unary foreign keys;

– RC∗,1
PK ,FK : the class of relative primary multi-attribute keys and unary for-

eign keys;
– RC1,1

K ,FK : the class of relative unary keys and unary foreign keys;
– RC1,1

PK ,FK : the class of relative primary unary keys and unary foreign keys;
– RC∗

K : the class of relative multi-attribute keys.

As in the case of absolute constraints, every relative foreign key implicitly
contains a relative key and, hence, the class RC1,∗

K ,FK of unary keys and multi-
attributes foreign keys is equal to RC∗,∗

K ,FK . Thus, there is no need to consider
RC1,∗

K ,FK .

Consistency of XML Specifications 25

4 Consistency of Absolute Keys and Foreign Keys

In this section we study the complexity of the consistency problem for absolute
keys and foreign keys. We show that, in general, this problem is undecidable,
and we identify several special cases of the problem that are decidable.

4.1 Undecidability of Consistency

The following result shows that in general it is not possible to verify statically
whether an XML specification is consistent.

Theorem 1. SAT(AC∗,∗
K ,FK) is undecidable. �

This theorem was proved in [23] by showing that the implication problem
associated with keys and foreign keys in relational databases is undecidable, and
then reducing (the complement of) the implication problem to the consistency
problem for AC∗,∗

K ,FK constraints.
Given this negative result, it is desirable to find some restrictions on AC∗,∗

K ,FK
that lead to decidable cases. We identify several of these classes in the next
subsections.

4.2 Multi-attribute Keys

The reason for the undecidability of SAT(AC∗,∗
K ,FK) is that the implication prob-

lem for functional and inclusion dependencies in relational databases can be
reduced to it [23]. However, this implication problem is known to be decidable
– in fact, in cubic time – for single-attribute inclusion dependencies [21], thus
giving us hope to get decidability for multi-attribute keys and unary foreign
keys.

While the decidability of the consistency problem for AC∗,1
K ,FK is still an open

problem, a closely-related problem, the consistency problem for multi-attribute
primary keys and unary foreign keys, SAT(AC∗,1

PK ,FK), has shown to be decidable
[4]. Recall that a set Σ of AC∗,1

K ,FK constraints is said to be primary if for
each element type τ , there is at most one key in Σ defined for τ elements.
The decidability of SAT(AC∗,1

PK ,FK) is shown by proving that, complexity-wise,
the problem is equivalent to a certain extension of integer linear programming
studied in [33]:

PROBLEM : PDE (Prequadratic Diophantine Equations).
INPUT : An integer n ×m matrix A, a vector b ∈ Zn, and a

set E ⊆ {1, . . . , m} × {1, . . . , m} × {1, . . . , m}.
QUESTION : Is there a vector x ∈ Nm such that Ax ≤ b and

xi ≤ xj · xk for all (i, j, k) ∈ E?

Note that for E = ∅, this is exactly the integer linear programming prob-
lem [36]. Thus, PDE can be thought of as integer linear programming extended

26 M. Arenas, W. Fan, and L. Libkin

with inequalities of the form x ≤ y · z among variables. It is therefore NP-hard,
and [33] proved an NEXPTIME upper bound for PDE. The exact complexity of
the problem remains unknown.

Recall that two problems P1 and P2 are polynomially equivalent if there
are PTIME reductions from P1 to P2 and vice versa. It is shown in [4] that
SAT(AC∗,1

PK ,FK) and PDE are polynomially equivalent. The following theorem is
an immediate consequence of this result.

Theorem 2. SAT(AC∗,1
PK ,FK) is NP-hard, and can be solved in NEXPTIME. �

Obviously the exact complexity of SAT(AC∗,1
PK ,FK) cannot be obtained with-

out resolving the corresponding question for PDE, which appears to be quite
hard [33].

The result of Theorem 2 can be generalized to disjoint AC∗,1
K ,FK constraints:

that is, a set Σ of AC∗,1
K ,FK constraints in which for any two keys τ [X] → τ and

τ [Y] → τ (on the same element type τ) in Σ, X ∩Y = ∅. The proof of Theorem
2 applies almost verbatim to show the following.

Corollary 1. The restriction of SAT(AC∗,1
K ,FK) to disjoint constraints is NP-

hard, and can be solved in NEXPTIME. �

4.3 Unary Keys and Foreign Keys

One important subclass of AC∗,∗
K ,FK is AC1,1

K ,FK , the class of unary keys and
unary foreign keys. A cursory examination of existing XML specifications reveals
that most keys and foreign keys are single-attribute constraints, i.e., unary. In
particular, in XML DTDs, one can only specify unary constraints with ID and
IDREF attributes.

The exact complexity of SAT(AC1,1
K ,FK) was established in [23] by showing

that this problem is polynomially equivalent to linear integer programming [36]:

PROBLEM : Linear Integer Programming.
INPUT : An integer n×m matrix A and vector b ∈ Zn.
QUESTION : Is there a vector x ∈ Nm such that Ax ≤ b?

Given that linear integer programming is known to be NP-complete, the
following theorem is an immediate consequence of the polynomial equivalence of
the two problems.

Theorem 3. SAT(AC1,1
K ,FK) is NP-complete. �

Since all the flavors of the consistency problem presented so far are in-
tractable, we next want to find suitable restrictions that admit polynomial-time
algorithms. For instance, one might think that the primary key restriction would
simplify the consistency analysis ofAC1,1

K ,FK constraints. Unfortunately, as shown
in [23], this is not the case.

Theorem 4. SAT(AC1,1
PK ,FK) remains NP-complete. �

Consistency of XML Specifications 27

A more natural way of putting restrictions appears to be by specifying what
kinds of regular expressions are allowed in the DTDs. However, the hardness re-
sult can be proved even for DTDs with neither recursion nor the Kleene star [23].
In the rest of this section, we show that the hardness result for SAT(AC1,1

K ,FK)
is very robust, and withstands severe restrictions on constraints and DTDs:
namely, a bound on the total number of constraints, and a bound on the depth
of the DTD. However, imposing both of these bounds simultaneously makes
SAT(AC1,1

K ,FK) tractable.
Recall that for a non-recursive DTD D, the set Paths(D) is finite. We define

the depth of a non-recursive DTD D as maxp∈Paths(D) length(p), denoted by
Depth(D). By a depth-d SAT(AC1,1

K ,FK) we mean the restriction of SAT(AC1,1
K ,FK)

to pairs (D, Σ) with Depth(D) ≤ d. By a k-constraint SAT(AC1,1
K ,FK) we mean

the restriction of the consistency problem to pairs (D, Σ) where |Σ| ≤ k. A
k-constraint depth-d SAT(AC1,1

K ,FK) is a restriction to (D, Σ) with |Σ| ≤ k and
Depth(D) ≤ d. The following theorem was proved in [4].

Theorem 5. For non-recursive no-star DTDs:

a) both k-constraint SAT(AC1,1
K ,FK) and depth-d SAT(AC1,1

K ,FK) are NP-hard, for
k ≥ 2 and d ≥ 2.

b) for any fixed k, d > 0, the k-constraint depth-d SAT(AC1,1
K ,FK) is solvable in

NLOGSPACE. �

4.4 Linear Time Decidable Cases

While the general consistency problem is undecidable, it is possible to identify
some decidable cases of low complexity. The first one is checking whether a DTD
has a valid XML tree. This is a special case of the consistency problem, namely,
when the given set of AC∗,∗

K ,FK constraints is empty. A more interesting special
case involves keys only.

It was shown in [23] that the problem of verifying whether a given DTD
has a valid XML tree can be reduced to the emptiness problem for a context
free grammar. Given that this reduction can be computed in linear time and
the emptiness problem for a context free grammar can be solved in linear time
(cf. [30]), the problem of checking whether a DTD has a valid XML tree can
be solved in linear time. It was also shown in [23] that given any DTD D and
any set Σ of keys in AC∗

K over D, Σ can be satisfied by an XML tree valid
w.r.t. D if and only if D has a valid XML tree. Thus, the following theorem is
a consequence of our previous discussion.

Theorem 6. The following problems are decidable in linear time:

a) Given any DTD D, whether there exists an XML tree valid w.r.t. D.
b) SAT(AC∗

K). �

28 M. Arenas, W. Fan, and L. Libkin

4.5 The Implication Problem

Another classical problem, which is closely related to the consistency problem,
is the implication problem for a class of constraints C, denoted by Impl(C). Here,
we consider it in the presence of DTDs. We write (D, Σ) � φ if for every XML
tree T , T |= D and T |= Σ imply T |= φ. The implication problem Impl(C) is to
determine, given any DTD D and any set Σ ∪ {φ} of C constraints, whether or
not (D, Σ) � φ.

The simple result below gives us lower bounds for the complexity of impli-
cation, if we know the complexity of the consistency problem. Recall that for a
complexity class K, coK stands for {P̄ | P ∈ K}.

Proposition 1. For any class C of XML constraints that contains AC1,1
PK ,FK , if

SAT(C) is K-hard for some complexity class K that contains DLOGSPACE, then
Impl(C) is coK-hard. �

Along the same lines as Section 4.3 one can define k-constraint Impl(AC1,1
K ,FK)

and depth-d Impl(AC1,1
K ,FK). Proposition 1 in fact remains intact under the depth-

d and the k-constraint restrictions for d ≥ 2 and k ≥ 2. It has also been
shown [23] that Impl(AC∗

K) is decidable in linear time. From these and the lower-
bounds established for the consistency problem, we derive:

SAT(AC1,1
K ,FK)

Undecidable
SAT(AC∗,∗

K ,FK)

SAT(AC∗,1
K ,FK)

SAT(AC∗,1
PK ,FK)SAT(AC∗

K)

SAT(AC1,1
PK ,FK)depth-d SAT(AC1,1

K ,FK)

k-constraint depth-d SAT(AC1,1
K ,FK)

NP-complete
k-constraint SAT(AC1,1

K ,FK)

LINEAR TIME NP-complete

NP-complete NP-complete

NLOGSPACE

NP-hard, in NEXPTIME

NP-hard

Fig. 3. A summary of the known complexity bounds for the consistency problem for
absolute keys and foreign keys

Consistency of XML Specifications 29

Corollary 2. For the implication problem for XML constraints,

– Impl(AC∗,∗
K ,FK) is undecidable;

– both k-constraint Impl(AC1,1
K ,FK) and depth-d Impl(AC1,1

K ,FK) are coNP-hard
for d ≥ 2 and k ≥ 2, and so is Impl(AC∗,1

PK ,FK);
– Impl(AC∗,1

PK ,FK) is coNP-hard, and so are Impl(AC∗,1
K ,FK) (and its restriction

to disjoint constraints) and Impl(AC1,1
PK ,FK);

– Impl(AC∗
K) is in linear time. �

4.6 Summary

Figure 3 shows a summary of the lower and upper bounds for the consis-
tency problem for absolute keys and foreign keys. Note that in many cases
we have matching lower and upper bounds. Also notice that for k-constraint
SAT(AC1,1

K ,FK), depth-d SAT(AC1,1
K ,FK) and k-constraint depth-d SAT(AC1,1

K ,FK)
we are only considering non-recursive no-star DTDs.

5 Consistency of Relative Keys and Foreign Keys

In this section we study the consistency problem for relative keys and foreign
keys. Relative constraints appear to be quite useful for capturing information
about (hierarchical) XML documents that cannot possibly be specified by abso-
lute constraints. However, it turns out that the complexity of their consistency
analysis is, in general, higher than the complexity of the consistency problem
for absolute constraints. In particular, we show that even for relative unary con-
straints the consistency problem is undecidable. In light of this negative result,
we also identify some special cases of this problem that are decidable.

5.1 Undecidability of Consistency Analysis

Given that RC∗,∗
K ,FK contains AC∗,∗

K ,FK as a proper subclass, from Theorem 1 we
obtain the following corollary.

Corollary 3. SAT(RC∗,∗
K ,FK) is undecidable. �

Since SAT(AC∗,1
PK ,FK), the consistency problem associated with absolute multi-

attribute keys and unary foreign keys, is decidable, one would be tempted to think
that SAT(RC∗,1

PK ,FK), the consistency problem for relative multi-attribute keys
and unary foreign keys, is also decidable. Even more, given that SAT(AC1,1

K ,FK)
is NP-complete, one would be tempted to believe that SAT(RC1,1

K ,FK), the consis-
tency problem for relative unary keys and foreign keys, must be decidable. How-
ever, it was shown in [4] that SAT(RC1,1

K ,FK) is not decidable, even if the primary
key restriction is imposed.

Theorem 7. SAT(RC1,1
PK ,FK) is undecidable. �

30 M. Arenas, W. Fan, and L. Libkin

book*

@number

author*

@name

@isbn

book*

author*@isbn

@name @number

library

chapter*

section*

@title

@name @affiliation

author info*

chapter*

section*

@title

library

(a) A hierarchical structure (b) A non-hierarchical structure

Fig. 4. Two schemas for storing data in a library

This undecidability was established by reduction from the Hilbert’s 10th problem
[29], a well known undecidable problem.

Corollary 4. SAT(RC∗,1
K ,FK), SAT(RC∗,1

PK ,FK) and SAT(RC1,1
K ,FK) are undecid-

able. �

5.2 Decidable Hierarchical Constraints

Often, relative constraints for XML documents have a hierarchical structure.
For example, to store information about books we can use the structure given
in Figure 4 (a), with four relative constraints:

library(book .isbn → book), (3)
book(author .name → author), (4)
book(chapter .number → chapter), (5)
chapter(section.title → section). (6)

(3) says that isbn is a key for books, (4) says that two distinct authors of the
same book cannot have the same name and (5) says that two distinct chapters
of the same book cannot have the same number. Constraint (6) asserts that two
distinct sections of the same chapter cannot have the same title.

This specification has a hierarchical structure: there are three context types
(library, book, and chapter), and if a constraint restricts one of them, then it does
not impose a restriction on the others. For instance, (3) imposes a restriction
on the children of library, but it does not restrict the children of book. To verify
if there is an XML document conforming to this schema, we can separately
solve three consistency problems for absolute constraints: one for the subschema
containing the element types library, book and isbn; another for book, author,
name, chapter and number; and the last one for chapter, section, and title.

Consistency of XML Specifications 31

On the other hand, the example in Figure 4 (b) does not have a hierarchical
structure. In this case, author info stores information about the authors of books,
and, therefore, the following relative foreign key is included:

library(author .name ⊆FK author info.name).

In this case, nodes of type author are restricted from context types library
and book. Thus, we cannot separate the consistency problems for nodes of types
library and book.

The notion of hierarchical relative constraints was introduced in [4]. Below
we introduce this notion via the notion of hierarchical DTDs and sets of rela-
tive constraints. Then, we show that the consistency problem for these kinds of
DTDs and sets of constraints is decidable and show that under some additional
restrictions, it is PSPACE-complete.

Let D = (E, A, P, R, r) be a non-recursive DTD and Σ be a set of RC1,1
K ,FK -

constraints over D. We say that τ ∈ E is a restricted type if τ = r or τ is the
context type of some Σ-constraint. A restricted node in an XML tree is a node
whose type is a restricted type. The scope of a restricted node x is the subtree
rooted at x consisting of: (1) all element nodes y that are reachable from x by
following some path τ1.τ2. · · · .τn (n ≥ 2) such that for every i ∈ [2, n − 1], τi

is not a restricted type, and (2) all the attributes of the nodes mentioned in
(1). For instance, a node of type book in the example shown in Figure 4 (a) is
a restricted node and its scope includes a node of type book and some nodes of
types author, name, chapter and number.

Given two restricted types τ1 and τ2, we say that τ1, τ2 are a conflicting pair
in (D, Σ) if the scopes of the nodes of types τ1 and τ2 are related by a foreign
key. Formally, τ1, τ2 ∈ E are a conflicting pair in (D, Σ) iff τ1 �= τ2 and (1) there
is a path in D from τ1 to τ2 and τ2 is the context type of some constraint in Σ;
and (2) there is τ3 ∈ E such that τ2 �= τ3 and there exists a path in D from τ2 to
τ3 and for some τ4 ∈ E, either τ1(τ3.l3 ⊆FK τ4.l4) or τ1(τ4.l4 ⊆FK τ3.l3) is in Σ.
As an example, library and book in Figure 4 (b) are a conflicting pair, whereas
they are not in Figure 4 (a).

If a specification (D, Σ) does not contain conflicting pairs, then (D, Σ) is said
to be hierarchical [4]. We define the language HRC1,1

K ,FK as {(D, Σ) | D is a non-
recursive DTD, Σ is a set of RC1,1

K ,FK -constraints and (D, Σ) is hierarchical}. In
this case, the input of SAT(HRC1,1

K ,FK) is (D, Σ) ∈ HRC1,1
K ,FK , and the problem

is to determine whether there is an XML tree conforming to D and satisfying Σ.
It was shown in [4] that if a HRC1,1

K ,FK -specification is consistent, then a
tree conforming to D and satisfying Σ can be constructed hierarchically, never
looking at more than the scope of a single restricted node. More precisely, it was
shown in [4] that:

Theorem 8. SAT(HRC1,1
K ,FK) is PSPACE-hard. The problem can be solved in

EXPSPACE. �

The exponential space upper bound can be lowered by imposing some further
conditions on the “geometry” of constraints involved: namely, that for any inclu-

32 M. Arenas, W. Fan, and L. Libkin

sion constraint τ(τ1.l1 ⊆FK τ2.l2), τ1.l1 and τ2.l2 are not too far from each other.
Formally, let D be a non-recursive DTD and Σ a set of RC1,1

K ,FK -constraints over
D such that (D, Σ) is hierarchical. Given d > 1, (D, Σ) is d-local if, whenever
τ1, τ2 are restricted types, τ2 is a descendant of τ1 and no other node on a path
from τ1 to τ2 is a context type of a Σ-constraint, then the length of that path is
at most d.

Let d-HRC1,1
K ,FK be the language {(D, Σ) | (D, Σ) ∈ HRC1,1

K ,FK and is d-
local}. It was shown in [4] that:

Theorem 9. For any d > 1, SAT(d-HRC1,1
K ,FK) is PSPACE-complete. �

5.3 A Linear Time Decidable Case

As in the case of absolute keys, it can be shown that given any DTD D and any
set Σ of keys in RC∗

K over D, Σ can be satisfied by an XML tree valid w.r.t. D
if and only if D has a valid XML tree. Thus, the following theorem is analogous
to Theorem 6.

Theorem 10. SAT(RC∗
K) can be solved in linear time. �

SAT(RC1,1
K ,FK)

SAT(RC∗,1
K ,FK)

SAT(RC∗,1
PK ,FK)SAT(RC∗

K)

SAT(RC∗,∗
K ,FK)

SAT(RC1,1
PK ,FK)SAT(HRC1,1

K ,FK)

SAT(d-HRC1,1
K ,FK)

Undecidable

Undecidable

Undecidable UndecidableLINEAR TIME

UndecidablePSPACE-hard, in EXPSPACE

PSPACE-complete

Fig. 5. A summary of the complexity bounds for the consistency problem for relative
keys and foreign keys

Consistency of XML Specifications 33

For implication of relative constraints, note that RC1,1
PK ,FK and HRC1,1

K ,FK

contain AC1,1
PK ,FK . Thus from Proposition 1 and the lower-bounds for consistency

analyses presented above. we derive:

Corollary 5. For implication of relative constraints,

– Impl(RC1,1
PK ,FK) is undecidable, and so are Impl(RC∗,1

K ,FK), Impl(RC∗,1
PK ,FK),

Impl(RC1,1
K ,FK) and Impl(AC∗,1

PK ,FK);
– Impl(HRC1,1

K ,FK) is PSPACE-hard. �

5.4 Summary

Figure 5 shows a summary of the complexity for the consistency problem for
relative keys and foreign keys.

6 Consistency of Path-Expression Constraints

All the XML constraints that we have seen so far are defined for element types
and in terms of attributes. As XML data is hierarchically structured, it is com-
mon to find path expressions in query languages for XML (e.g., XQuery [10],
XSLT [19]). For the same reason, one is often interested in constraints specified
with path expressions, either regular expressions [12, 13] or XPath [20] expres-
sions [40]. In this section, we consider two classes of XML constraints defined
with path expressions, namely, an extension of absolute constraints with regular
expressions, and the class of constraints proposed by XML Schema [40] that is
an extension of absolute constraints with XPath expressions.

6.1 Consistency of Regular Expression Constraints

To capture the hierarchical nature of XML data, we extend AC∗,∗
K ,FK to define

absolute constraints on a collection of elements identified by a regular path
expression.

We define a regular (path) expression over a DTD D = (E, A, P, R, r) as
follows:

β ::= ε | τ | | β.β | β ∪ β | β∗,

where ε denotes the empty word, τ is an element type in E, ‘ ’ stands for wildcard
that matches any symbol in E and ‘.’, ‘∪’ and ‘∗’ denote concatenation, union
and Kleene closure, respectively. We assume that β is of the form r.β′ where β′

does not include r; thus, ‘ ’ is just a shorthand for E \ {r}. A regular expression
defines a language over the alphabet E, which will be denoted by β as well.

Recall that a path in a DTD is a list of E symbols, that is, a string in E∗. Any
pair of nodes x, y in an XML tree T with y a descendant of x uniquely determines
the path, denoted by ρ(x, y), from x to y. We say that y is reachable from x by
following a regular expression β over D, denoted by T |= β(x, y), iff ρ(x, y) ∈ β.

34 M. Arenas, W. Fan, and L. Libkin

For any fixed T , let nodes(β) stand for the set of nodes reachable from the root
by following the regular expression β: nodes(β) = {y | T |= β(root, y)}. Note
that for any element type τ ∈ E, nodes(r. ∗.τ) = ext(τ).

We now define the class ACreg
K ,FK of XML keys and foreign keys with reg-

ular expressions. Here we only consider unary constraints. An XML ACreg
K ,FK

constraint ϕ over a DTD D = (E, A, P, R, r) has one of the following forms:

– Key : β.τ.l → β.τ , where τ ∈ E, l ∈ R(τ) and β is a regular expression over
D. An XML tree T satisfies this constraint, denoted by T |= β.τ.l → β.τ , if

∀x, y ∈ nodes(β.τ) (x.l = y.l → x = y).

– Foreign key : β1.τ1.l1 ⊆FK β2.τ2.l2, where τ1, τ2 ∈ E, l1 ∈ R(τ1), l2 ∈ R(τ2)
and β1, β2 are regular expressions over D. An XML tree T satisfies this
constraint, denoted by T |= β1.τ1.l1 ⊆FK β2.τ2.l2, if T |= β2.τ2.l2 → β2.τ2
and

∀x ∈ nodes(β1.τ1) ∃ y ∈ nodes(β2.τ2) (x.l1 = y.l2).

In other words, an ACreg
K ,FK constraint β.τ.l → β.τ defines a key for the

set nodes(β.τ) of elements, i.e., all the elements reachable via the regular path
expression β.τ ; similarly, an ACreg

K ,FK constraint of the form β1.τ1.l1 ⊆FK β2.τ2.l2
defines a foreign key for the set nodes(β1.τ1) of elements that references elements
in the set nodes(β2.τ2).

Example 6. Consider the XML document depicted in Figure 6, which conforms
to the following DTD for schools:

<!ELEMENT r (students, courses, faculty, labs)>
<!ELEMENT students (student+)>
<!ELEMENT courses (cs340, cs108, cs434)>
<!ELEMENT faculty (prof+)>
<!ELEMENT labs (dbLab, pcLab)>
<!ELEMENT student (record)> /* similarly for prof
<!ELEMENT cs434 (takenBy+)> /* similarly for cs340, cs108
<!ELEMENT dbLab (acc+)> /* similarly for pcLab

Here we omit the descriptions of elements whose type is string (PCDATA).
Assume that each record element has an attribute id, each takenBy has an at-
tribute sid (for student id), and each acc (account) has an attribute num. One
may impose the following constraints over the DTD of that document:

r. ∗.(student ∪ prof).record .id → r. ∗.(student ∪ prof).record ,

r. ∗.cs434 .takenBy .sid ⊆FK r. ∗.student .record .id ,

r. ∗.dbLab.acc.num ⊆FK r. ∗.cs434 .takenBy .sid .

The first constraint says that id is a key for all records of students and pro-
fessors. The other constraints specify foreign keys, which assert that cs434 can
only be taken by students, and only students who are taking cs434 can have an
account in the database lab. �

Consistency of XML Specifications 35

.
. . .

. . .

record

@id

acc accrecordtakenBy takenBy

@num @num@id@sid @sid

r

courses labsfacultystudents

studentstudent dbLab pcLabprofprofcs108cs340 cs434

Fig. 6. An XML document

Both an upper and a lower bound for SAT(ACreg
K ,FK) were established in

[4]. The lower bound already indicates that the problem is perhaps infeasible
in practice, even for very simple DTDs. Finding the precise complexity of the
problem remains open, and does not appear to be easy. In fact, even the current
proof of the upper bound is quite involved, and relies on combining the techniques
from [23] for coding DTDs and constraints as integer linear inequalities, and
from [2] for reasoning about constraints given by regular expressions by using
the product automaton for all the expressions involved in the constraints.

Theorem 11. SAT(ACreg
K ,FK) is PSPACE-hard, and can be solved in NEXP-

TIME. �
The PSPACE-hardness of SAT(ACreg

K ,FK) can be proved even for non-recursive
DTDs without the Kleene star [4].

Observe that ACreg
K ,FK is a proper extension of the class AC1,1

K ,FK of unary
constraints: substituting r. ∗.τ for τ in AC1,1

K ,FK constraints yields equivalent
ACreg

K ,FK constraints. Similarly, an extension of multi-attribute AC∗,∗
K ,FK con-

straints can be defined in terms of regular expressions, denoted by ACreg(∗,∗)
K ,FK .

The undecidability of the consistency problem for ACreg(∗,∗)
K ,FK is immediate from

Theorem 1.

For the implication analysis of regular-expression constraints, from Proposi-
tion 1 it follows immediately:

Corollary 6. Impl(ACreg
K ,FK) is PSPACE-hard, and Impl(ACreg(∗,∗)

K ,FK) is undecid-
able.

Observe that there are practical ACreg
K ,FK constraints that are not expressible

inAC1,1
K ,FK , e.g., the foreign keys given in Example 6 are not definable inAC1,1

K ,FK .
In other words, ACreg

K ,FK is strictly more expressive than AC1,1
K ,FK .

36 M. Arenas, W. Fan, and L. Libkin

6.2 Consistency of XML Schema Specifications

All the results shown so far are for DTDs and keys and foreign keys. These
days, the prime standard for specifying XML data is XML Schema [40]. It is
a rather rich language that supports specifications of both types and integrity
constraints. Its types subsume DTDs [11], and its constraints – even keys and
foreign keys – have a slightly different semantics from what has been primarily
studied in the database literature. In this section we investigate specifications
that consist of a DTD and a set of constraints with the semantics proposed by
XML Schema. We show that this little change of semantics complicates things
considerably, as far as consistency checking is concerned.

Example 7. Recall that given any DTD D and any set Σ of keys in AC∗
K (RC∗

K)
over D, Σ can be satisfied by an XML tree valid w.r.t. D if and only if D
has a valid XML tree. Thus, any XML specification (D, Σ) where D is non-
recursive and Σ is a set of keys in AC∗

K (RC∗
K) is consistent. We show here that

a specification in XML Schema may not be consistent even for non-recursive
DTDs in the absence of foreign keys.

Consider the following specification S = (D, Σ) for biomedical data, where
D is the following DTD:

<!ELEMENT seq (clone+)>
<!ELEMENT clone (DNA, gene)>
<!ELEMENT gene (DNA)>

and Σ contains only one key:

seq .clone. ∗.DNA→ seq .clone.

The DTD describes a nonempty sequence of clone elements: each clone has a
DNA subelement and a gene subelement, and gene in turn has a DNA subelement,
while DNA carries text data (PCDATA). The key in Σ attempts to enforce the
following semantic information: there exist no two clone elements that have the
same DNA no matter where the DNA appears as their descendant. We note that the
syntax of XML Schema constraints (to be formally introduced later) is different
from the syntax for XML constraints presented so far in that it allows a regular
expression (∗.DNA in our example) to be the identifier of an element type.

This specification is inconsistent. XML Schema requires that for any XML
document satisfying a key, the identifier (that is, ∗.DNA in our example) must
exist and be unique. However, as depicted in Fig. 7, in any XML document that
conforms to the DTD D, a clone element must have two DNA descendants. Thus,
it violates the uniqueness requirement of the key in Σ. �

The goal of this section is to show that the interaction of types with integrity
constraints under the XML Schema semantics is more complicated than under
the usual semantics for XML constraints. To focus on the nature of the interac-
tion and to simplify the discussion, we first consider XML Schema specifications
in which the type is a DTD and the constraints are absolute keys. We show that

Consistency of XML Specifications 37

gene

DNA DNA

clone clone

DNA geneDNA

. . .

seq

Fig. 7. An XML document conforming to the DTD D shown in Example 7

keys of XML Schema already suffice to demonstrate the complications caused
by the interaction between types and constraints.

Before showing the main result of the section, we need to define the syntax
and semantics of absolute keys for XML Schema specifications. Given a DTD
D = (E, A, P, R, r), a key over D is a constraint of the form

P [Q1, . . . , Qn] → P, (7)

where n ≥ 1 and P , Q1, . . . , Qn are regular expressions over the alphabet E∪A.
If n = 1, then the key is called unary and is denoted by P.Q1 → P . Expression
P is called the selector of the key and is a regular expression conforming to the
following BNF grammar [40] (abusing the XPath syntax):

selector ::= path | path ∪ selector
path ::= r. ∗.sequence
sequence ::= τ | | sequence.sequence

Here τ ∈ E and ∗ represents any possible finite sequence of node labels. The
expressions Q1, . . . , Qn are called the fields of the key and are regular expressions
conforming to the following BNF grammar [40]:

field ::= path | path ∪ field
path ::= ∗.sequence.last | sequence.last
sequence ::= ε | τ | | sequence.sequence
last ::= τ | | @l | @

Here @ is a wildcard that matches any attribute and @l ∈ A. This grammar
differs from the one above in allowing the final step to match an attribute node.

Definition 3. Given an XML tree T = (V, lab, ele, att, val, root), T satisfies
the constraint P [Q1, . . . , Qn] → P , denoted by T |= P [Q1, . . . , Qn] → P , if

1) For each x ∈ nodes(P) and i ∈ [1, n], there is exactly one node yi such that
T |= Qi(x, yi). Furthermore, lab(yi) ∈ A or lab(yi) = S.

2) For each x1, x2 ∈ nodes(P), if y1
i , y2

i are the only nodes such that T |=
Qi(x1, y

1
i) and T |= Qi(x2, y

2
i) (i = 1, . . . , n), and val(y1

i) = val(y2
i) for

every i ∈ [1, n], then x1 = x2. �

38 M. Arenas, W. Fan, and L. Libkin

That is, P [Q1, . . . , Qn] → P defines a key for the set nodes(P) of elements,
i.e., the nodes reachable from the root by following path P , by asserting that
the values of Q1, . . . , Qn uniquely identify the elements in nodes(P). It further
asserts that starting from each element in nodes(P) there is a unique label path
conforming to the regular expression Qi (i ∈ [1, n]).

Observe that condition 1 in the previous definition requires the uniqueness
and existence of the fields involved. For example, the XML tree depicted in Fig. 7
does not satisfy the key seq .clone. ∗.DNA → seq .clone because the uniqueness
condition imposed by the key is violated. Uniqueness conditions are required by
the XML Schema semantics, but they are not present in various earlier proposals
for XML keys coming from the database community [12, 13, 23, 4].

Since SAT(AC∗
K) and SAT(RC∗

K), the consistency problems for absolute and
relative keys, respectively, are decidable in linear time, one would be tempted
to think that the consistency problem for keys under the XML Schema seman-
tics can be solved efficiently. Somewhat surprisingly, it was shown in [5] that
this is not the case; the uniqueness and existence condition makes the problem
intractable, even for unary keys and very simple DTDs:

Theorem 12. The consistency problem is NP-hard for unary keys of the form
(7), even for non-recursive no-star DTDs. �

This result shows that the interaction of types and constraints under the
XML Schema semantics is so intricate that the consistency check of XML Schema
specifications is infeasible.

7 Selected Topics and Bibliographic Remarks

This chapter has shown that the consistency analysis of XML specifications with
DTDs and constraints (keys, foreign keys) introduces new challenges and is in
sharp contrast with its trivial counterpart for relational databases. Indeed, in
the presence of foreign keys, compile-time verification of consistency for XML
specifications is usually infeasible: the complexity ranges from NP-hard to unde-
cidable. Worse still, the semantics of XML-Schema constraints makes the con-
sistency analysis of specifications even more intricate.

These negative results suggest that one develops efficient approximate al-
gorithms for static checking of XML specifications. One open question is to
find performance guarantees for the approximate algorithms to prevent excessive
overkill of consistent specifications. The techniques of [4, 5, 23] for establishing
the complexity results of this chapter may help develop such performance guar-
antees; they may also help study consistency of individual XML specifications
with types and constraints.

Another open problem is to close the complexity gaps. However, these are
by no means trivial: for example, SAT(AC∗,1

PK ,FK) was proved to be equivalent
to a problem related to Diophantine equations whose exact complexity remains
unknown. In the cases of SAT(ACreg

K ,FK) and SAT(HRC1,1
K ,FK), we think that it is

Consistency of XML Specifications 39

more likely that our lower bounds correspond to the exact complexity of those
problems. However, the algorithms are quite involved, and we do not yet see a
way to simplify them to prove the matching upper bounds.

Bibliographic Notes. The complexity results of this chapter are taken from [4,
5, 23]: the results for the consistency analysis of absolute constraints were mostly
established by [23]; relative constraints were studied in [4]; and a full treatment
of XML-Schema specifications was given in [5].

Keys, foreign keys and the more general inclusion and functional dependen-
cies have been well studied for relational databases (cf. [1]). The interaction be-
tween cardinality constraints and database schemas has been studied for object-
oriented [16, 17] and extended relational data models [28]. These interactions
are quite different from what we explore in this chapter because XML DTDs are
defined in terms of extended context free grammars and they yield cardinality
constraints more complex than those studied for traditional databases.

A number of specifications for XML keys and foreign keys have been pro-
posed, e.g., XML Schema [40], XML-Data [31]. The notion of relative constraints
was introduced by [12], which was further studied in [13]. It is worth remarking
that although through the use of ID attributes in a DTD [11], one can uniquely
identify an element within an XML document, it is not clear that ID attributes
are intended to be used as keys rather than internal “pointers”. For example,
ID attributes are not scoped. In contrast to keys, they are unique within the
entire document rather than among a designated set of elements. As a result,
one cannot, for example, allow a student (element) and a person (element) to
use the same SSN as an ID. Moreover using ID attributes as keys means that
we are limiting ourselves to unary keys. Finally, one can specify at most one ID
attribute for an element type, while in practice one may want more than one
key.

Other constraints for semi-structured data were studied in, e.g., [2, 14]. In
particular, [14] also studied the interaction between path constraints and tra-
ditional database schemas, which are quite different from XML constraints and
DTDs considered here. Functional dependencies, an extension of XML keys, were
recently proposed to define a normal form for XML documents [6].

Acknowledgments. M. Arenas and L. Libkin are supported in part by grants
from NSERC, BUL, and PREA. W. Fan is supported in part by NSF Career
Award IIS-0093168, NSFC 60228006 and EPSRC GR/S63205/01.

References

1. S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. S. Abiteboul and V. Vianu. Regular path queries with constraints. J. Computer
and System Sciences (JCSS), 58(4):428–452, 1999.

40 M. Arenas, W. Fan, and L. Libkin

3. V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. Le Hors, G. Nicol,
J. Robie, R. Sutor, C. Wilson and L. Wood. Document Object Model (DOM)
Level 1 Specification. W3C Recommendation, Oct. 1998.
http://www.w3.org/TR/REC-DOM-Level-1/.

4. M. Arenas, W. Fan and L. Libkin. On verifying consistency of XML specifications.
In Proc. ACM Symp. on Principles of Database Systems (PODS), pages 259–270,
2002.

5. M. Arenas, W. Fan and L. Libkin. What’s Hard about XML Schema Constraints?
In Proc. Int’l Conf. on Database and Expert Systems Applications (DEXA), pages
269–278, 2002.

6. M. Arenas and L. Libkin. A Normal Form for XML Documents. In Proc. ACM
Symp. on Principles of Database Systems (PODS), pages 85–96, 2002.

7. C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou, P. Velikhov,
and V. Chu. XML-based information mediation with MIX. In Proc. of ACM
SIGMOD Conf. on Management of Data (SIGMOD), pages 597–599, 1999.

8. C. Beeri and T. Milo. Schemas for integration and translation of structured and
semi-structured data. In Proc. Int’l Conf. on Database Theory (ICDT), pages
296–313, 1999.

9. M. Benedikt, C. Chan, W. Fan, J. Freire, and R. Rastogi. Capturing both Types
and Constraints in Data Integration. In Proc. of ACM SIGMOD Conf. on Man-
agement of Data (SIGMOD), pages 277–288, 2003.

10. S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie and J. Siméon.
XQuery 1.0: An XML Query Language. W3C Working Draft, Nov. 2003. http://
www.w3.org/TR/xquery.

11. T. Bray, J. Paoli and C. M. Sperberg-McQueen. Extensible Markup Language
(XML) 1.0. W3C Recommendation, Feb. 1998. http://www.w3.org/TR/REC-xml/.

12. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. Computer
Networks, 39(5):473–487, 2002.

13. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Reasoning about keys
for XML. Information Systems, 28(8):1037–1063, 2003.

14. P. Buneman, W. Fan, and S. Weinstein. Interaction between path and type con-
straints. ACM Trans. on Computational Logic (TOCL), 4(4):530–577, 2003.

15. D. Calvanese, G. De Giacomo, and M. Lenzerini. Representing and reasoning
on XML documents: A description logic approach. J. Logic and Computation,
9(3):295–318, 1999.

16. D. Calvanese and M. Lenzerini. Making object-oriented schemas more expressive.
In Proc. ACM Symp. on Principles of Database Systems (PODS), pages 243–254,
1994.

17. D. Calvanese and M. Lenzerini. On the interaction between ISA and cardinality
constraints. In Proc. IEEE Int’l Conf. on Data Engineering (ICDE), pages 204–
213, 1994.

18. M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram, E. Shekita, and
S. Subramanian. XPERANTO: Publishing object-relational data as XML. In
Proc. Int’l Workshop on the Web and Databases (WebDB), 2000.

19. J. Clark. XSL Transformations (XSLT). W3C Recommendation, Nov. 1999.
http://www.w3.org/TR/xslt.

20. J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation,
Nov. 1999. http://www.w3.org/TR/xpath.

21. S. S. Cosmadakis, P. C. Kanellakis, and M. Y. Vardi. Polynomial-time implication
problems for unary inclusion dependencies. J. ACM, 37(1):15–46, Jan. 1990.

Consistency of XML Specifications 41

22. A. Eyal and T. Milo. Integrating and customizing heterogeneous e-commerce ap-
plications. VLDB Journal, 10(1):16–38, 2001.

23. W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDs.
J. ACM, 49(3):368–406, 2002.

24. W. Fan and J. Siméon. Integrity constraints for XML. In PODS’00, pages 23–34.
25. M. Fernandez, A. Morishima, D. Suciu, and W. Tan. Publishing relational data in

XML: the SilkRoute approach. IEEE Data Eng. Bull., 24(2):12–19, 2001.
26. D. Florescu and D. Kossmann. Storing and querying XML data using an RDMBS.

IEEE Data Eng. Bull., 22(3):27–34, 1999.
27. D. Florescu, L. Raschid and P. Valduriez. A methodology for query reformulation in

CIS using semantic knowledge. Int’l J. Cooperative Information Systems (IJCIS),
5(4):431–468, 1996.

28. P. C. Kanellakis. On the computational complexity of cardinality constraints in
relational databases. Information Processing Letters, 11(2):98–101, Oct. 1980.

29. Y. Matiyasevich. Hilbert’s 10th Problem. MIT Press, 1993.
30. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,

Languages and Computation (2nd Edition). Addison Wesley, 2000.
31. A. Layman, E. Jung, E. Maler, H. Thompson, J. Paoli, J. Tigue, N. Mikula

and S. De Rose. XML-Data. W3C Note, Jan. 1998. http://www.w3.org/TR/
1998/NOTE-XML-data.

32. D. Lee and W. W. Chu. Constraint-preserving transformation from XML document
type to relational schema. In Proc. Int’l Conf. on Conceptual Modeling (ER), pages
323–338, 2000.

33. D. McAllester, R. Givan, C. Witty and D. Kozen. Tarskian set constraints. In
IEEE Symp. on Logic in Computer Science (LICS), pages 138–147, 1996.

34. J. Melton and A. Simon. Understanding the New SQL: A Complete Guide. Morgan
Kaufman, 1993.

35. F. Neven. Extensions of attribute grammars for structured document queries. In
Proc. Int’l Workshop on Database Programming Languages (DBPL), pages 99–116,
1999.

36. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice Hall, 1982.

37. L. Popa. Object/Relational Query Optimization with Chase and Backchase. PhD
thesis, University of Pennsylvania, 2000.

38. J. Shanmugasundaram et al. E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pira-
hesh, and B. Reinwald. Efficiently publishing relational data as XML documents.
In Proc. of Int’l Conf. on Very Large Databases (VLDB), pages 65–76, 2000.

39. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational databases for querying XML documents: Limitations and
opportunities. In Proc. of Int’l Conf. on Very Large Databases (VLDB), pages
302–314, 1999.

40. H. Thompson, D. Beech, M. Malone and N. Mendelsohn. XML Schema. W3C
Recommendation, May 2001 http://www.w3.org/XML/Schema.

41. J. D. Ullman. Database and Knowledge Base Systems. Computer Science Press,
1988.

42. S. Yu. Regular Languages. In G. Rosenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 1, pages 41–110. Springer, 1996.

Consistent Query Answers in
Virtual Data Integration Systems

Leopoldo Bertossi1 and Loreto Bravo2

Carleton University,
School of Computer Science,

Ottawa, Canada
{bertossi, lbravo}@scs.carleton.ca

Abstract. When data sources are virtually integrated there is no com-
mon and centralized mechanism for maintaining global consistency. In
consequence, it is likely that inconsistencies with respect to certain global
integrity constraints (ICs) will occur. In this chapter we consider the
problem of defining and computing those answers that are consistent wrt
the global ICs when global queries are posed to virtual data integration
systems whose sources are specified following the local-as-view approach.
The solution is based on a specification using logic programs with stable
model semantics of the minimal legal instances of the integration system.
Apart from being useful for computing consistent answers, the specifica-
tion can be used to compute the certain answers to monotone queries,
and minimal answers to non monotone queries.

1 Introduction

There is an increasing number of available information sources, many of them on-
line, like organizational databases, library catalogues, scientific data repositories,
etc., and in different formats and ranging from highly structured, like relational
databases, to semi-structured, like data on the web. Many applications need to
access and combine information from several databases, in consequence, a user
(or application) is confronted to many different data sources.

One possibility for attacking this problem consists in bringing a possibly
huge amount of data -that might be required by the application- into one single,
physical, material site; and then making the application interact with this only
data repository. This process is costly in term of storage, design, and refreshment,
which would be necessary when the original sources are updated. That is, we
have complexities that are similar to those involved in the processes associated
to data warehouses, but with the difference that updating the repository could
be more crucial that in data warehouses, where, most likely, decision support
could be achieved without having completely up-to-date data.

An alternative solution consists in keeping the data in their sources. In this
way, if the application needs answers to a query, it has to interact with the
collection of available sources, first determining and selecting those that contain
the relevant information. Next, queries have to be posed to those sources, on an

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 42–83, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Consistent Query Answers in Virtual Data Integration Systems 43

individual basis; and the different results have to be combined. This can be a
long, tedious, complex and error prone process if performed on an ad hoc basis. It
is better to have a general, robust and uniform implementation that supports this
process on a permanent and regular basis. Ideally, the application will interact
with the data sources via a unique -database like - common interface.

A solution in this line consists in the virtual integration of the data sources
via a mediator [75], that is, a software system that offers a common interface to a
set of autonomous, independent and possibly heterogeneous data sources. Under
this paradigm for data integration, the integration is virtual in the sense that the
data stays in the sources, but the user -who interacts with the mediator- feels like
interacting with a single database. The sources most likely do not cooperate with
each other, and the mediator, except for the possibility of asking queries, has
no control on the individual sources. There is no central control or maintenance
mechanism either. It is also desirable that the set of participating sources is
flexible and open.

It is clear that combining data from different and independent sources offers
many and difficult challenges. If the integrated system is expected to keep some
correspondence with the reality it is modelling, then it should keep some gen-
eral, global semantic constraints satisfied. This is difficult to achieve, because
most likely there will be semantic conflicts between pieces of data coming from
different sources. Since there is no central, global integrity enforcement mecha-
nism, and there is no possibility of doing any kind of global data cleaning, as in
the datawarehouse approach to data integration, semantic problems have to be
solved when the application interacts with the integration system.

More specifically, in this chapter we describe novel techniques to solve incon-
sistencies when queries posed to the integration system are answered. That is,
only those answers to a global query that are consistent with the given global
integrity constraints are returned. Apart from the problem of defining the notion
of consistent answers in this scenario, there is the problem of designing query
plans to consistently answering queries.

The mediator, in order to design query plans, needs to know the correspon-
dence between the global relations offered by the mediator’s interface, which de-
termine an external query language, and the relations in the internal databases.
These descriptions of the contents of the internal data sources can be expressed
in different ways. In this chapter we will mostly concentrate to the local as view
approach to data integration, according to which the sources are described as
views of the global relations.

Global integrity constraints (ICs) will be expressed as first order formulas,
and database instances are seen as first order structures with finite relations. We
say that a database instance D is consistent wrt to a set IC of ICs if D satisfies
IC (what is denoted by D |= IC , as usual). Of course, the set of global integrity
constraints IC will be assumed to be logically consistent, in the sense that at
least one database instance satisfies it.

This chapter is structured as follows. In Section 2 we consider virtual data
integration systems, describing in general terms the main elements and issues; in

44 L. Bertossi and L. Bravo

particular, two alternative ways to specify the data contained in the data sources,
in such a way that the mediator can make use of it. In Section 3 the semantics
of virtual data integration systems with open sources under the local-as-view
approach is given in detail. In Section 5 we briefly review the notion of consistent
answer to a query posed to a single relational database, and some methodologies
for computing them. The notion of consistent answer to a query, but now for an
integration system, is defined in Section 6. With the goal of computing consistent
answers in integration systems, in Section 7 logic programs with stable model
semantics are used to specify the class of minimal instances of open integration
systems under LAV. The results presented there are interesting in themselves,
independently from consistent query answering, because they can be used to
compute (ordinary) answers to both monotonic and non monotonic queries in
integration systems, which extend previous results in the area. Section 8 shows
how to compute consistent answers to queries posed to integration systems. The
specification of minimal instances presented in Section 7 is extended in Section
9 to the case where in addition to open sources also closed and both closed and
open sources are available. That specification is presented here for the first time.
In Section 10, some open research issues are indicated. In Section 11 we finalize
with a discussion of related work.

2 Virtual Data Integration Systems

2.1 Mediators for Data Integration

The main features of a mediator based system are: (a) The interaction with
the system via queries posed to the mediator; (b) Updates via the mediator are
not allowed; (c) Data sources are mutually independent and may participate in
different mediated systems at the same time; (d) Sources are allowed to get in
and out; (e) Data is kept in the local, individual sources, and extracted at the
mediator’s request.

Since the mediator offers a database like interface to the user or application,
it has a global or mediated schema, consisting of a set of names for relations
(virtual tables) and their attributes. This schema is application dependent and
determines a (family of) query language(s), like in a usual relational databases
from the user point of view. However, the “database” corresponding to the global
schema is virtual.

A user poses queries to the mediator in terms of the relations in the global
schema. However, in order to answer those global queries, the mediator needs
to knows the correspondence between the global schema and the local schemas.
This is achieved by means of a set of source descriptions, i.e. descriptions of
what data can be found in the different sources. Having this information, when
the mediator receives a query , it develops a query plan that determines: (a) the
portions of data that are relevant to the query at hand, (b) their locations in the
relevant data sources, (c) how to extract that data from the sources via queries,
and (d) how to combine the answers received into a final answer for the user.

Consistent Query Answers in Virtual Data Integration Systems 45

DB3DB1 DB2 DBn

Wrapper Wrapper Wrapper Wrapper

Global Schema Source Descriptions

Plan Generator

Execution Engine

User Interface
Answers

General Architecture of an Integration System

Fig. 1. Architecture of an Integration System

Figure 1 shows the main elements in the architecture of a mediator for virtual
integration of data sources.

The mediator is responsible of solving problems of redundancy, complemen-
tarity, incompleteness, and consistency of data in the integration system. In this
chapter we will consider this last problem, a very relevant one in this context.
For example, what should the mediator do if it is asked about a person’s ID card
number and it gets two different numbers, each coming from a different source?
The two sources, taken independently and separately, may be consistent, but
taken together, possibly not. Such consistency problems are likely and natural
in virtual data integration. Notice that consistency problems in virtual integra-
tion, unlike the “materialized” approaches to data integration, which offer data
reconciliation solutions, cannot be solved a priori, at the physical data level.

Another element shown in Figure 1 is the wrapper. This is a module that is
responsible for wrapping a data source in such a way that the latter can interact
with the rest of integration system. It provides the mediator with data from a
source as requested by the execution engine. In consequence, it presents a data
source as a convenient database, with the right schema and data, the one that
is understood and used by the mediator. Notice that this presentation schema
may be different from the real one, the internal to the data source. Actually, it
may be the case that the source is not at all internally structured as a database,
but this should be transparent to the mediator. All this may require preliminary
transformations, cleaning, etc., before the data can be exported to the integration
system. There is a wrapper (or more) for each data source. In the following, we

46 L. Bertossi and L. Bravo

will assume that each data source has already a wrapper that presents it as a
relational database.

Example 1. Consider a global schema for a database “containing” information
about music albums: CD(Album,Artist ,Year), Contract(Artist ,Year ,Label),
Songs(Album,Song). Now, a user wants to know the name of the label with
which Norah Jones had a contract during 2002. This is asked issuing the following
query to the global system Q : Ans(L) ← Contract(NorahJones, 2002 , L).

Here, predicate Ans will contain the answers, that are to be computed using
the expression on the RHS of this rule. In this case, this is the simple selection
SELECTX=NorahJones,Y =2002 Contract(X, Y, L).

It is a problem that the material data is not in the virtual global relation
Contract , but in the data sources DB1(Album,Artist ,Year), DB2(Album,Artist ,
Year , Label),DB3(Album,Song). In consequence, a query plan is needed in order
to extract and combine the relevant data from the material sources. However,
in order to design such a plan, the mediator needs to know the correspondence
between the virtual global relations and the data sources. �

A key element in the mediator architecture is the set of source descriptions,
i.e. the descriptions of the available sources and their contents (as presented
by the wrapper), which is achieved by establishing the relationships (mappings)
between the global schema and the local schemata. These descriptions are given
by means of a set of logical formulas; similar to the way in which views are
defined in terms of base tables in a relational database, i.e. using queries written
in a query language. Usually those query languages use logical formulas or their
SQL versions.

With respect to how mappings are defined, there are two main approaches
(and combinations of them): (a) Global as View (GAV), under which the relations
in the global schema are described as views of the collection of local relations
[73]; and (b) Local as View (LAV), under which each relation in a local source is
described as a view of the global schema [61]. GLAV denotes a combination of
GAV and LAV [37] where the rules can have more than one atom in the head.
Another approach, called Both as View (BAV), consists on a specification of the
transformation of the local schema into the given global schema, in such a way
that each schema can be seen as defined as in terms of the other schema [65]. In
Section 2.2 we describe and compare the GAV and LAV approaches.

The plan generator gets a user query in terms of global relations and uses
the source descriptions to design a query plan. This is achieved by rewriting the
original query as a set of subqueries that are expressed in terms of the local
relations. The query plan includes prescriptions on how the answers from the
local sources have to be combined. The query rewriting process executed by the
plan generator strongly depends on whether the LAV or the GAV approach is
followed. Still much theoretical and technical research is going on in relation
to query plan generation. The plan is executed by the execution engine. Notice
that it should be the plan generator who takes care of anticipating and solving
potential inconsistencies. It should solve them in advance, when the plan is being
generated. Later in this chapter, we will explore this issue in detail.

Consistent Query Answers in Virtual Data Integration Systems 47

2.2 Description of Data Sources

The global/local schema mappings or, equivalently, the descriptions of the source
contents are expressed through logical formulas that relate the global and local
relations.

Global as View

In this case, the relations in the global schema are described as views over the
tables in the union of the local schemata. This is conceptually very natural,
because views are usually virtual relations defined in terms of material relations
(the tables); and here we have global relations that are virtual and local sources
that are materialized.

Example 2. (example 1 continued) Assume the relation CD is defined as the
view

CD(Album,Artist ,Year) ← DB1(Album,Artist ,Year)
CD(Album,Artist ,Year) ← DB2(Album,Artist ,Year ,Label).

Relation CD is defined as the union of the projections of DB1 and DB2 on
attributes Album,Artist ,Year , i.e. in relational terms, defined by

CD = ΠAlbum,Artist,Year (DB1) ∪ ΠAlbum,Artist,Year (DB2).

The global relation Songs and Label are defined as follows:

Songs(Album,Song) ← DB1(Album,Artist ,Year),DB3(Album,Song).
Contract(Artist ,Year ,Label) ← DB2(Album,Artist ,Year ,Label).

The first view is defined as, first, the join of DB1 and DB3 via attribute
Album, and then, a projection on Album,Song . The second view is defined as
the projection of DB2 over Artist ,Year ,Label .

These views have been defined by means of rules. Each rule specifies that in
order to compute the tuples in the relation in the LHS (the head of the rule), one
has to go to the RHS (the body of the rule) and compute whatever is specified
there. The attributes appearing in the head indicate that they are the attributes
of interest, thus the others (in the body) can be projected out at the end. If
there are more that one rule to compute a same relation, we use all of them and
we take the union of the results, as for the relation CD .

Instead of using a rule as above, we could have used relational algebra (or
relational calculus, or SQL2), in the case of the relation Songs,

Songs = ΠAlbum,Song(DB1 ��Album DB3).

The language of rules is more expressive than relational algebra, e.g. recursive
views can be defined using rules, but not with relational algebra [72]. �

Once the global relations have been defined as views, we may start posing
global queries, i.e. queries expressed in terms of the global relations. The problem
is to answer them considering that the global relations do not contain material
data. Under the GAV approach this is simple, all we need to do is rule unfolding.

48 L. Bertossi and L. Bravo

Example 3. (example 2 continued) Consider the following global query about
the music albums released in the year 2003, with their artists and songs

Ans(Album,Artist ,Song) ← CD(Album,Artist , 2003),Songs(Album,Song).

Since it is expressed in terms of the global schema, the data has to be ob-
tained from the sources, that is, the query has to be rewritten in terms of the
source relations. We do this by unfolding each global relation, replacing it by
its definition in terms of the local relations. We have underlined differently the
goals in the body in order to keep track of the rewriting for each of them.

Ans ′(Album,Artist ,Song) ← DB1(Album,Artist , 2003),
DB1(Album,Artist ,Year),DB3(Album,Song).

Ans ′(Album,Artist ,Song) ← DB2(Album,Artist , 2003 ,Label),
DB1(Album,Artist ,Year),DB3(Album,Song).

These new queries do get answers directly from the sources; and the final
answer is the union of two answer sets, one for each of the rules. �

If, in addition to the view definitions, there are ICs that have to be and are
satisfied by the system, unfolding is not enough for query answering [17, 19] (see
Section 11 for more details).

Local as View

Under the LAV approach, each table in each local data source is described as
a view (i.e. as a query expression) in terms of the global relations. This may
seem somehow unnatural or unusual from the conceptual point of view, and
from perspective of databases practice, because here the views contain the data,
but not the “base tables”. However, as we will see, this approach has some
advantages.

More precisely, in the general situation we have a collection of material data
sources (think of a collection of material relational tables) S1, . . . , Sn, and a
global schema G for the system that integrates data from S1, . . . , Sn. Tables
in S1, . . . , Sn are seen as views over G, and in consequence, they can be defined
by query expressions over the global schema.

Example 4. Consider the sources S1, S2 that are defined by the view expressions

S1: V1(Album,Artist ,Year) ← CD(Album,Artist ,Year),
Contract(Artist ,Year , emi),Year ≥ 1990

S2: V2(Album,Song) ← Songs(Album,Song).

Source S1 contains a table whose entries are albums produced after 1990 by
the label EMI with their artists and years. Source S2 contains one table with
songs and their albums.

Those relations that are not defined as views belong to the global schema G,
in this case, we have the relations: CD(Album,Artist ,Year), Songs(Album,Song),
Contract(Artist ,Year ,Label). �

Consistent Query Answers in Virtual Data Integration Systems 49

Notice that from the perspective of S1, there could be other sources contain-
ing information about albums produced by EMI after 1990, and that comple-
mentary information could be exported to the global system. In this sense, the
information in S1 could be considered as “incomplete” wrt what G contains (or
might contain). In other words, S1 contains only a part of the data of the same
kind in the global system. We will elaborate on this later on. Finally, also notice
that in the example, and this is a general situation under LAV, the definition of
each source does not depend on other sources.

Now we want to answer global queries under LAV.

Example 5. (example 4 continued) The following query posed to G asks for the
songs with its album and the year they were released:

Ans(Album,Song ,Year) ← CD(Album,Artist ,Year),Songs(Album,Song).

This query is expressed as usual, in terms of global relations only, however,
it is not possible to obtain the answers by a simple and direct computation of
the RHS of the query. Now, there is no direct rule unfolding mechanism for the
relations in the body, because we do not have explicit definitions for them. And
the data resides in the sources, which are now defined as views.

We can see that plan generation to extract information from the sources
becomes more complex under LAV than under GAV. Since a query plan is a
rewriting of the query as a set of queries to the sources and a prescription on
how to combine their answers (what is needed in this example), the following
could be a query plan to answer the original query:

Ans ′(Album,Song ,Year) ← V1(Album,Artist ,Year), V2(Album,Song).

The query has been rewritten in terms of the views; and in order to obtain
the final answer, we first extract values for Album,Year from V1; then we extract
the tuples from V2; finally, at the mediator level, we compute the join via Album.

Notice that due to the limited contents of the sources, we only obtain albums
produced by EMI after 1990. �

In LAV we pose a query in terms of certain relations (the global ones), but
we have to answer using the contents of certain views only (the local relations).
In consequence, query plan generation becomes an instance of a more general
and traditional problem in databases, the one of query rewriting using views.

To see this connection more clearly, assume we have a collection of views
V1, . . . , Vn, whose contents have already been computed, and cached or materi-
alized. When a new query Q arrives, instead of computing its answers directly,
we try to use the answers (contents) to (of) V1, . . . , Vn. A problem to consider
consists in determining how much from the real answer do we get by using the
pre-computed views only; and also determining what is the maximum we can get
in terms of the kind of views we have available. The research carried out in query
answering using views [60, 2, 49, 51, 50, 35] and query containment [2, 56, 67, 23]
has become quite relevant to the area of data integration.

50 L. Bertossi and L. Bravo

2.3 Comparison of Paradigms

We have seen that under GAV, rule unfolding makes plan generation simple and
direct. On the other hand, GAV is not flexible to accept new sources or eliminate
sources into/from the system. Actually, adding or deleting sources might imply
modifying the definitions of the global relations.

LAV offers more flexibility to add new sources or delete old ones into/from
the integration system, because a new source is just a new view definition. Other
sources do not need to be considered at this point, because there are no other
sources interfering in the process. Only the plan generator has to be aware of
these changes. On the other side, plan generation is provably more difficult [2,
58, 18, 73].

2.4 Data Integration and Consistency

Notice that, so far, we have not considered any integrity constraints at the global
schema level. Since the data sources are autonomous and possibly updated in-
dependently from the integration system in which they participate and from
other data sources, there is not much we can do wrt to data maintenance at
the global level. However, in virtual data integration, one usually assumes that
certain integrity constraints hold at the global level, and they are used in the
plan generation process [48, 30, 45]. Even more, in some cases the generation of
a query plan is possible because certain integrity constraints (are supposed to)
hold [30].

In general, we cannot be sure that such global integrity constraints hold,
because they are not maintained at the global level. A more natural scenario
is the one where integrity constraints are considered when queries are posed to
the system. In this case, we have the problem -to be addressed in Section 6-
of retrieving information from the global system that is consistent wrt certain
global constraints, but the problem has to be solved at query time, as opposed
to the usual approach in single databases, where all the data in the database is
kept and maintained consistent, independently from potential queries.1 This is
an interesting point of view wrt integrity constraints: they constitute constraints
on the answers to queries rather than on the database states.

Notice that the flexibility to add/remove sources, in particular under
LAV, is likely to introduce extra sources of inconsistencies we have to take
care of.

The global ICs we will consider are first order sentences written in the lan-
guage of the global schema. In particular, they will be universal integrity con-
straints, i.e. sentences of the form ∀x̄ϕ(x̄), where ϕ(x̄) is a quantifier-free formula;
and also referential integrity constraints of the form ∀x̄(P (x̄) → ∃y(Q(x̄′, y)),
where x̄′ ⊆ x̄.

1 Work reported in [11] departs from this practice and considers a more flexible ap-
proach to query answering in databases where databases may be inconsistent, but
only answers to queries are expected to be consistent.

Consistent Query Answers in Virtual Data Integration Systems 51

3 Semantics of Virtual Data Integration Systems

In the rest of this paper, unless otherwise stated, we will concentrate on the LAV
approach (see Section 11 for references on the GAV approach). The semantics of
virtual data integration systems is given in terms of the intended global instances.
This does not mean that such instances are to be computed, but they will allow
us to give a model theoretic semantics to global integrity constraint satisfaction,
to query answers, etc.

A data integration system G under the LAV approach is specified by a set of
view definitions, plus a set of material tables vi corresponding to the views Vi

defined:

G : V1(X̄1) ← ϕ1(X̄ ′
1); v1 (1)

· · · · · · · · ·
Vn(X̄n) ← ϕn(X̄ ′

n); vn

Here, X̄j ⊆ X̄ ′
j , and each vi is an extension (a material relation) for view Vi,

which in its turn is defined as a conjunctive view.
Until further notice we will assume that the system has all its sources open

(also called sound). This means that the information stored in the sources might
be incomplete. The description in (1) plus the openness assumption will deter-
mine a a set of legal global instances. Now we describe how.2

Let D be a global instance, i.e. its domain contains at least the constants
appearing in the source extensions and the view definitions; and has relations
(and contents) for the global schema. We denote with ϕi(D) the set of tuples
obtained by applying to D the definition of view Vi. This gives an extension for
Vi in (wrt) global instance D, which can be compared with vi. We call a global
instance D legal if the computed extension on D of each view Vi contains the
originally given extension vi:

Legal(G) := { global D | vi � ϕi(D); i = 1, . . . , n},

which captures the incompleteness of the sources, because if a view is applied to
a legal instance, the result will be a superset of the elements in the source. Only
legal instances will determine the semantics of G.

Example 6. Consider the system G1 with global relation R(X, Y) and the fol-
lowing open sources

V1(X, Y) ← R(X, Y); v1 = {(a, b), (c, d)}
V2(X, Y) ← R(X, Y); v2 = {(a, c), (d, e)}.

The global instance D for which the relation R has the extension RD =
{(a, b), (c, d), (a, c), (d, e)}3 is legal, because: (a) v1⊆ ϕ1(D)= {(a, b), (c, d), (a, c),

2 A similar semantics can be given in the case of the GAV approach [58].
3 In the rest of this chapter we will use a simpler description for an instance of this

kind. We simple write D = {(a, b), (c, d), (a, c), (d, e)}, because there is only one
global relation. If there were another relation, we write D = {R(a, b), R(c, d), ...}.

52 L. Bertossi and L. Bravo

(d, e)}; and (b) v2 ⊆ ϕ2(D) = {(a, b), (c, d), (a, c), (d, e)}. All supersets of D are
also legal global instances; e.g. {(a, b), (c, d), (a, c), (d, e), (c, e)} ∈ Legal(G), but
no subset of D is legal, e.g. {(a, b), (c, d), (a, c)} /∈ Legal(G). �

Example 7. Let D = {a, b, c, . . . } be the underlying domain. Consider the inte-
gration system G2 defined by

V1(X, Z) ← P (X, Y), R(Y, Z); v1 = {(a, b)}
V2(X, Y) ← P (X, Y); v2 = {(a, c)}.

Each global instance D of the form {P (a, c), P (a, z), R(z, b)}, with z ∈ D is a
legal instance, because v1 ⊆ ϕ1(D) = {(a, b)} and v2 ⊆ ϕ2(D) = {(a, c), (a, z)}.
Any superset of D is also legal, but none of its subsets is. �

Now we can define the intended answers to a global query Q. They are the
certain answers, those that can be obtained from every legal global instance [2]:

CertainG(Q) := {t̄ | t̄ is an answer to Q in D for all D ∈ Legal(G)}.

Example 8. (example 6 continued) Consider the following global query Q posed
to system G1: Ans(X, Y) ← R(X, Y). In this case, CertainG1(Q) = {(a, b), (c, d),
(a, c), (d, e)}. �

The algorithms for constructing query plans should be sound and complete
wrt this semantics, more precisely they should be able to produce plans whose
execution will allow us to get all and only the certain answers from a data
integration system; of course, without explicitly computing all the legal instances
and querying them.

4 Query Plans

There are several algorithms for generating query plans. See [62, 51] for survey
of different techniques. In [45] a deductive methodology is presented. Here we
will briefly describe the inverse rules algorithm (IRA) [29, 30]. This algorithm is
conceptually simple, shows the main issues, and will be used later in this chap-
ter in our solution to the problem of consistent query answering in integration
systems.

Our framework is as follows. We are given a global query Q posed in terms
of the global schema, but we need to go to the sources for the data required to
evaluate Q. The problem is how to do this, or more precisely, how to rewrite Q
in terms of the views available, i.e. in terms of the relations in the sources.

We will assume that we have a set of rules describing the source relations as
conjunctive (Select-Project-Join) views of the global schema [1]. We also assume
that the sources are open.

The input to our problem is a global query expressed, e.g. in Datalog (may be
recursive, but without negation). The expected output is a new Datalog program
expressed in terms of the source relations.

Consistent Query Answers in Virtual Data Integration Systems 53

Example 9. Consider the local relations V1, V2 in sources S1, S2, resp., and the
global relations R1, R2, R3. The set of source descriptions contains

S1: V1(X, Z) ← R1(X, Y), R2(Y, Z), (2)
S2: V2(X, Y) ← R3(X, Y). (3)

The idea behind IRA consists in obtaining, from these descriptions, “inverse
rules” describing the global relations. Let us start from (3). Since V2 is open, it
is contained in the “extension” of the global relation R3. That is, the only way
to get tuples for V2 is by going to pick up tuples from the RHS of (3). In other
terms, we can say that V2 “�” R3, or, equivalently, V2 “⇒” R3. More precisely,
we invert the rule in the description of V2, obtaining

R3(X, Y) ← V2(X, Y),

now, a rule describing R3, which we wanted. If there are (not in this case though)
other rules of this kind describing R3 (from other source description rules con-
taining R3 on the RHS), we just take the union.

Now, wrt inverting rule (2), a first attempt could be

R1(X, Y), R2(Y, Z) ← V1(X, Z),

but this is a strange rule, with a strange head. There are several problems. If
the head is seen as a conjunction, then we may split it into two rules, namely
R1(X, Y) ← V1(X, Z) and R2(Y, Z) ← V1(X, Z), but now the two occurrences
of variable Y are independent, and before it was a shared variable that allowed
us to combine tables R1, R2 by means of a join. This connection is lost now.
Another problem has to do with the unrestricted occurrence of Y in the heads;
there are no conditions on Y in the bodies (this kind of rules are considered
unsafe in databases [72]). It should not be the case that any value for Y is
admissible.

A better approach is as follows: V1(X, Z) ← R1(X, Y), R2(Y, Z) is equiva-
lent to V1(X, Z) ← ∃Y (R1(X, Y)∧R2(Y, Z)) (a join followed by a projection).
Inverting, we obtain ∃Y (R1(X, Y)∧R2(Y, Z)) ← V1(X, Z). This rule has an im-
plicit universal quantification on X, Z, then each value for Y possibly depends
on the values for X, Z, i.e. Y is a function of X, Z. To capture this dependence,
we replace Y by a function symbol f(X, Z) (a so-called “Skolem function”),
obtaining

R1(X, f(X, Z)) ∧R2(f(X, Z), Z) ← V1(X, Z).

As before, we split the conjunction, obtaining the rules R1(X, f(X, Z)) ←
V1(X, Z) and R2(f(X, Z), Z) ← V1(X, Z). In this way, we obtain the following
set V−1 of inverse rules

R1(X, f(X, Z)) ← V1(X, Z)
R2(f(X, Z), Z) ← V1(X, Z)

R3(X, Y) ← V2(X, Y),

which can be used to compute answers to global queries.

54 L. Bertossi and L. Bravo

Notice that we may need other symbolic functions, for dependencies between
variables in the same or other rules. More precisely, we introduce one function
symbol for each variable in the body of a view definition that is not in the head;
and that function appears evaluated in the variables in the head.

Now, assume the following global query Q is posed to the integration system

Ans(X, Z) ← R1(X, Y), R2(Y, Z), R4(X)
R4(X) ← R3(X, Y)
R4(X) ← R7(X)
R7(X) ← R1(X, Y), R6(X, Y).

We can see that the goal R6 cannot be computed, because there is no defi-
nition for it in V−1. Then, R7 cannot be evaluated either; and the rule defining
it can be deleted. For the same reason, the third rule in the query cannot be
evaluated; and can be deleted. In this way we obtain a pruned query Q−:

Ans(X, Z) ← R1(X, Y), R2(Y, Z), R4(X)
R4(X) ← R3(X, Y).

In consequence, the final query produced by the plan generator, using the
IRA, is Q− ∪ V−1. This is a sort of Datalog program, but with functions.

This is all and the best we have to answer the original query. With the new
query program we can compute some answers to Q, but actually, “the most” we
can. The plan can be evaluated, e.g. bottom-up, from concrete source contents
[72]. The final answer may contain some tuples with the function symbol f in
them; but they are eventually deleted.

We will illustrate this process with a different query. Assume that the source
contents are v1 = {(a, b), (a, a), (c, a), (b, a)} and v2 = {(a, c), (a, a), (c, d),
(b, b)}; and the query is now Q′:

Ans(X) ← R1(X, Y), R2(Y, Z), R4(X)
Ans(X) ← R2(X, Y)
R4(X) ← R3(X, Y)
R4(X) ← R1(X, a).

We have the same set V−1 of inverse rules as above, they are the same for all
the queries. So, first we prune the query rules that cannot be evaluated from the
inverse rules. We delete the last rule in the query, because it does not contribute
to R4 (a cannot be an f -value). We obtain the final query consisting of the
rules in V−1 plus the first three rules in Q′. It can be evaluated bottom-up. The
mediator will use the inverse rules applied to the sources, which requires sending
one query to each source, and will obtain

R1 = {(a, f(a, b)), (a, f(a, a)), (c, f(c, a)), (b, f(b, a))}
R2 = {(f(a, b), b), (f(a, a), a), (f(c, a), a), (f(b, a), a)}
R3 = {(a, c), (a, a), (c, d), (b, b)}.

Consistent Query Answers in Virtual Data Integration Systems 55

Using the third rule of Q′, we obtain R4 = {a, c, b}. Now we can evaluate
the first rule in Q′, whose body becomes ΠX(R1 �� R2) ∩ R4 = {a, c, b} ∩
{a, c, b} = {a, c, b}. Then, a, c, b ∈ Ans . From the second rule in Q′ we obtain
f(a, b), f(a, a), f(c, a), f(b, a) ∈ Ans , but these tuples are not considered, because
all the tuples containing function symbols are eliminated from the final answer
set. So, finally Ans = {a, c, b}. �

Given a Datalog query, the query plan obtained for it is a new Datalog
program, but may contain function symbols (strictly speaking, for this reason,
it is not a Datalog program). If the original query does not contain recursion,
neither does the final query. The query plan: (a) does not contain negation, (b)
can be evaluated in a bottom-up manner and always has a unique fix point, (c)
can be constructed in polynomial time in the size of the original query and the
source descriptions.

The plan obtained is the best we can get under the circumstances, i.e. given
the query, the sources and their descriptions. More precisely, for a Datalog query
Q and a set of sources defined as conjunctive views, the query plan generated
with the IRA is maximally contained [2] in the original query Q [30]. In other
words, there is no other query plan that retrieves a set of answers to Q that is
a proper superset of answers to Q produced by IRA.

It is possible to prove [2] that for conjunctive views and Datalog queries (and
open sources), a maximally contained query plan computes all the certain an-
swers. In consequence, the inverse rules algorithm returns all the certain answers
to Datalog queries [30].

We have seen in this section and also in Section 2.2 for the GAV approach,
that the query plan prescribes how to rewrite the original, global, conjunctive
query as a new query expressed in terms of the source relations. The new query
is also a first order or Datalog query. However, for more complex queries, the
“rewriting” may need to be expressed in more expressive languages, e.g. dis-
junctive logic programs with stable model semantics, as in Section 7, in order to
capture a higher data complexity of query answering (see [22] for a discussion
about what should qualify as a query rewriting).

Now, if in addition to the source descriptions, we have a set IC of global
integrity constraints; it is quite likely that they are not going to be satisfied
by (all) the legal instances. In consequence, instead of retrieving the certain
answers to a global query, we might be interested in retrieving those answers
that are consistent wrt IC . This notion is still to be formalized (see Section
6), but having done that, we would expect that the query plans generated by
the mediator should incorporate new elements, responsible for enforcing the
satisfaction of the ICs at the query answer level.

In order to formally define what is a consistent answer to a query to the
integration system, we will appeal to some notions and techniques introduced,
in the context of single, stand alone relational databases, to characterize and
compute answers to queries that are consistent wrt to integrity constraints that
the database may fail to satisfy. We review some of those relevant notions and
techniques in Section 5.

56 L. Bertossi and L. Bravo

5 Consistent Query Answering for Single Databases

Assume we have a single relational database instance D and a set of integrity
constraints (ICs) that D may fail to satisfy. This inconsistent database can still
give us “correct” answers to queries, because not all the data in it participates
in the violation of the ICs. It becomes necessary to define in precise terms what
is the “correct” or “consistent” information in the database; and in particular,
which are the “correct answers” to a query. Having done this, it is necessary to
develop mechanisms for retrieving such consistent answers; but without changing
the database, restoring its consistency. See [11] for an extended discussion about
why this is a natural and important problem. Here we briefly review some notions
and techniques that have been given to attack these problems.

Given a relational database instance D, a query Q, and a set IC of ICs, we
say that a tuple t̄ is a consistent answer to Q in D wrt IC whenever t̄ is an
answer to Q in every repair of D, where a repair of instance D is a database
instance D′, over the same schema and domain, that satisfies IC , and differs
from D by a minimal set of changes (insertions/deletions of whole tuples) wrt
to set inclusion [3].

Intuitively speaking, consistent answers are invariant under minimal ways of
restoring consistency. Repairs are just an auxiliary concept, used to characterize
the consistent answers, but we we are not interested in repairs per se. Actually we
may try to avoid to (explicitly and completely) compute them whenever possible,
because this is an expensive process. In consequence, the ideal situation is the
one in which we are able to compute the consistent answers to Q by posing a
-hopefully- simple new query Q′ to the inconsistent instance D, in such a way
that the standard answers to Q′ are precisely the consistent answers to Q. In
some cases it is possible to generate a new first order query Q′ with that property,
however in other situations, the query Q′ has to be written in some extension of
Datalog, possibly as disjunctive normal programs [41, 27].

Example 10. Consider the database instance D = {P (a), P (b), R(a), R(c)} and
the integrity constraint IC : ∀x(¬P (x) ∨ ¬R(x)), stating that tables P and R
do not intersect. The instance is inconsistent wrt to IC . The two repairs of
D are D1 = {P (a), P (b), R(c)}, D2 = {P (b), R(a), R(c)}. The query Q(x) :
Ans(x) ← P (x) has b as only consistent answer, because P becomes true only
of b in both repairs. The query Q′ consisting of the rules Ans(x) ← P (x) and
Ans(x) ← R(x), has a, b, c as consistent answers, what shows that data is not
cleaned from inconsistencies: the problematic tuple a is still recovered. �

In [11], an alternative repair based semantic was used in the presence of
referential integrity constraints. There, if a tuple is inconsistent (participates in
a violation), the possible ways to repair are deleting the inconsistent tuple or
adding a tuple with null values in the existentially quantified attributes of the
constraint.

In order to compute the consistent answers to queries, two main approaches
have been introduced. One of them is first order (FO) query rewriting (if the
original query is first order) [3, 25, 13]; and the other consists in specification of

Consistent Query Answers in Virtual Data Integration Systems 57

database repairs using disjunctive logic programs with stable model semantics
[4, 47, 7]. The later approach is more general, but more expensive than FO query
rewriting. Despite their higher data complexity, disjunctive programs have to be
applied, also to some first order queries, because in some cases, for complexity
reasons, there is no FO rewriting [26, 20, 38].

5.1 Query Rewriting

Example 11. (example 10 continued) Consider again query Q. Notice that a
tuple t̄ is an answer to the query and at the same time consistent wrt to IC if it
is not in R. In consequence, instead of posing the original query to the original
database, we pose the new query (P (x) ∧ ¬R(x)), which gives us the expected
answer, b, in D.

The extra condition ¬R(x) imposed on the original query is the so-called
residue of the literal P (x) wrt the IC . Notice that this residue can be obtained
by resolution between the query literal and the IC . We write T 1(Q) = (P (x) ∧
¬R(x)). In principle, the new literal appended may have residues of its own
wrt IC . We do not have any in this case, but if we had, we would append
its residues, obtaining T 2(Q), etc. Here, the iteration stopped and we write
Tω(Q) = (P (x) ∧ ¬R(x)). See [3, 25] for details. �

The FO query rewriting based methodology introduced in [3] via the T opera-
tor has some limitations [3, 25]. It cannot be applied to existential or disjunctive
queries, like query Q′ in Example 10, and only universal integrity constraints
can be involved.

5.2 Logic Programming

The second approach consists in representing in a compact form the collection
of all database repairs. This is like axiomatizing a class of models, namely as the
intended models of a disjunctive logic program under the stable model seman-
tics [41]. That is, the repairs correspond to certain distinguished models of the
program, namely, to its stable models.

Once the specification has been given, in order to obtain consistent answers
to a, say, FO query Q, the latter is transformed into a query written as logic
program, which is a standard process [64, 1]; and then, this query program is
“run” together with the program that specifies the repairs. This evaluation can
be implemented on top of DLV, for example; a logic programming system that
computes according to the stable models semantics [31, 59]. We illustrate the
methodology presented in [6] by means of an example. In order to capture the
repair process, the program uses annotation constants, whose intended semantics
is shown in Table 1.

Example 12. (example 10 continued) The repair program Π(r, IC) consists of:

1. Facts: P (a, td), P (b, td), R(a, td), R(c, td).

Whatever was true (false) or becomes true (false), gets annotated with t� (f�):

58 L. Bertossi and L. Bravo

Table 1. Semantic of Annotation Constants

Annotation Atom The tuple P (ā) is...
td P (ā, td) a fact of the database
fd P (ā, fd) a fact not in the database
ta P (ā, ta) advised to be made true
fa P (ā, fa) advised to be made false
t� P (ā, t�) true or becomes true
f� P (ā, f�) false or becomes false
t�� P (ā, t��) true in the repair
f�� P (ā, f��) false in the repair

2. P (X, t�) ← P (X, td)
P (X, t�) ← P (X, ta)
P (X, f�) ← not P (X, td)
P (X, f�) ← P (X, fa) ... the same for R ...

3. P (X, fa) ∨ R(X, fa) ← P (X, t�), R(X, t�)

One rule per IC; that says how to repair the IC, in this case, if x belongs both
to P and R, either delete the tuple from P or from R. Passing to annotations
t� and f� allows to keep repairing the DB wrt to all the ICs until the whole
process stabilizes.

Repairs must be coherent: we use denial constraints at the program level, to
prune the models that do not satisfy them

4. ← P (X, ta), P (X, fa)
← R(X, ta), R(X, fa)

Finally, annotations constants t�� and f�� are used to read off the literals that
are inside (outside) a repair, i.e. they are used to interpret the stable models of
the program as database repairs.

5. P (X, t��) ← P (X, ta)
P (X, t��) ← P (X, td), not P (X, fa)
P (X, f��) ← P (X, fa)
P (X, f��) ← not P (X, td), not P (X, ta). ... etc.

The program has two stable models (and two repairs):

{P (a, td), P (a, t�), P (a, t��), P (b, td), P (b, t�), P (b, t��), R(a, td), R(a, fa),
R(a, f�), R(a, f��), R(c, td), R(c, t�), R(c, t��)} ≡ {P (a), P (b), Q(c)}.

{P (a, td), P (a, fa), P (a, f�), P (a, f��), P (b, td), P (b, t�), P (b, t��),
R(a, td), R(a, t�), R(a, t��), R(c, td), R(c, t�), R(c, t��)} ≡ {P (b), Q(a), Q(c)}.

Consistent Query Answers in Virtual Data Integration Systems 59

If we want the consistent answers to the query (P (x̄) ∧ R(x̄)), for example,
we run the repair program Π(r, IC) together with query program Ans(X) ←
P (X, t��), Q(X, t��), obtaining the answer Ans = ∅, as expected. With the
query Ans(X) ← P (X, t��), Q(X, f��), we obtain the answer Ans = {b}. Fi-
nally, we can pose the disjunctive query Q′ we had in Example 10 by means
of the two rules Ans(X) ← P (X, t��) and Ans(X) ← R(X, t��), obtaining
Ans = {a, b, c}. �

This approach can be used for Datalog∨,¬ queries and universal constraints.
The extension for referential constraints can be found in [11]. We have success-
fully experimented with consistent query answering (CQA) based on specifica-
tion of database repairs using the DLV system [31].

6 Semantics of CQA in Integration Systems

In this section we will assume that we are working under the LAV approach.
Actually, this scenario is more challenging than GAV and inconsistency issues
are more relevant due to the flexibility to insert/delete sources into/from the
system.

Let us first consider an example that will help us motivate our notions of
consistency of an integration system and consistent query answering.

Example 13. (example 8 continued) We found for query Q: R(X, Y), that
CertainG1(Q) = {(a, b), (c, d), (a, c), (d, e)}. Now assume that we have global
functional dependency FD : X → Y . It is not satisfied by D = {(a, b), (c, d), (a, c),
(d, e)}, nor by its supersets, i.e. no legal instance satisfies it. Since the tuples
(a, b), (a, c) participate in the violation of FD , only (c, d), (d, e) should be con-
sistent answers to the query.

Notice that the local functional dependencies V1 : X → Y , V2 : X → Y
are satisfied by the sources. �

A virtual integration system does not have data at the global level. In spite
of this, we would like to be able to characterize such a system as consistent or
not, but we would like to do this on the basis of the data at hand, the one that
is forced to be in the system, avoiding problems of consistency caused by data
that is only potentially contained in the integration system. In this direction we
concentrate on the minimal instances. We will see that this shift of semantics
does not have an impact on query answering for relevant classes of queries in
comparison to the semantics based on the whole class of legal instances.

Definition 1. [10] (a) A minimal global instance of an integration system G is a
legal instance that does not properly contain any other legal instance. We denote
by Mininst(G) the set of minimal instances of G.
(b) We say G is consistent wrt a set of global ICs IC if for every D ∈ Mininst(G)
it holds D |= IC . �

60 L. Bertossi and L. Bravo

Example 14. (example 13 continued) System G1 has only D = {(a, b), (c, d), (a, c),
(d, e)} as minimal instance. There FD does not hold; in consequence, G1 is in-
consistent. �

The minimal instances will play a special role in our treatment of inconsistent
integration systems. Since we have a well defined subclass of legal instances, it
is natural to consider those answers to queries that hold for all the instances in
the class.

Definition 2. [10] The minimal answers to a global query Q posed to an in-
tegration system G are those answers that can be obtained from every minimal
instance. We denote them by MinimalG(Q). �

Example 15. (example 14 continued) For the query Q : Ans(X, Y) ← R(X, Y),
we have MinimalG1(Q) = {(a, b), (c, d), (a, c), (d, e)}, which can be obtained by
querying the only minimal instance. In this case the minimal answers coincide
with the certain answers.

Now consider the query Q′ : Ans(X, Y) ← ¬R(X, Y). On the basis of the un-
derlying domain, we have (a, e) ∈ MinimalG1(Q

′), because the minimal instance
does not contain the tuple (a, e). However, (a, e) /∈ CertainG1(Q

′), because there
are -non minimal- legal instances that contain the tuple (a, e). �

What was shown in the previous example holds in general,namelyCertainG(Q)
� MinimalG(Q); and for monotone queries [1] they coincide; but for queries with
negation, possibly not.

As in the case of a single database, consistent answers will be the answers
that are invariant under the repairs of the system. We make these intuitions
precise.

Definition 3. [10] Let G be an integration system and IC a set of global ICs.

(a) A repair of G wrt to IC is a global instance that satisfies IC , and minimally
differs from a minimal instance (wrt to inclusion of sets of tuples). We denote
by RepairsIC (G) the set of repairs of G wrt IC .
(b) A ground tuple t̄ is a consistent answer to a global query Q wrt IC if for
every D ∈ RepairsIC (G), it holds D |= Q[t̄], i.e. t̄ is an answer to Q in D. We
denote by ConsisIC

G (Q) set of consistent answers to Q. �

Example 16. (example 14 continued) Consider system G1 with the global FD : X
→ Y . Since D = {(a, b), (c, d), (a, c), (d, e)} is the only minimal instance, and
it does not satisfy FD , the system has two repairs wrt FD , namely D1 =
{(a, b), (c, d), (d, e)} and D2 = {(c, d), (a, c), (d, e)}.

Now, for the query Q : Ans(X, Y) ← R(X, Y), we have ConsisFD
G1

(Q) =
{(c, d), (d, e)}, as expected. For the existential query Q′′(X) :Ans(X) ← R(X, Y),
we have ConsisFD

G1
(Q′′) = {a, c, d}. This shows that the value a is not lost

through the repair process and is still recovered as a consistent answer. �

Consistent Query Answers in Virtual Data Integration Systems 61

This example shows that repairs may not be legal instances. The two repairs
in it are not. This flexibility is necessary to make the system repairable. Re-
member that the repairs are just an auxiliary notion that we use to define the
consistent answers to queries.

Here we are considering repairs that treat deletions and insertions of tuples
symmetrically. Other approaches may privilege certain kinds of changes, e.g. in
[20] insertions are preferred to deletions in the presence of referential ICs, with
the purpose of giving a better account of the openness (or incompleteness) of the
sources (see Section 11 for a more detailed discussion of alternative approaches).
However, adapting our specifications and methodologies for query answering to
this kind of special repairs is rather straightforward.

Also notice that an alternative definition of consistent answer in terms of
being true in all consistent legal instances does not always work, because, in
the presence of functional dependencies, most likely there won’t be any consis-
tent legal instances (see Example 13). Nevertheless, this alternative direction is
studied in [57].

Except for strange cases -that we will exclude- where the set of ICs is non
generic [11], i.e. it entails by itself (independently from the data) that a ground
literal belong (or does not belong) to the database, the consistent answers are real
answers. More precisely, for generic ICs, we have ConsisIC

G (Q) � MinimalG(Q)
[10]. If G is consistent wrt IC, then ConsisIC

G (Q) = MinimalG(Q). The problem
with non generic ICs is that they force specific data items, which may have not
been in the original instance, to belong (not to belong) to every (any) repair,
something that can be easily achieved without appealing to ICs. This situation
is illustrated in the following example.

Example 17. (example 16 continued) Assume that, in addition to the functional
dependency, IC also contains the non generic constraint ∀x∀y(x = a ∧ y =
e → R(x, y)), saying that tuple (a, e) belongs to R. In this case, there is only
one repair for G1, namely D3 = {(a, e), (c, d), (d, e)}. Now, ConsisIC

G1
(Q) =

{(a, e), (c, d), (d, e)} �⊆ MinimalG1(Q). �

Having defined what a consistent answer is, we need to find mechanisms for
computing them.

7 Logic Programming Specification of Minimal Instances

In this section we will show how to specify the minimal instances of a virtual
integration system under LAV using logic programs with stable model semantics
[41, 42]. This specification is -as we will see- interesting and useful in itself, but
in Section 8 it will also be used as the basis for computing consistent answers to
queries.

62 L. Bertossi and L. Bravo

7.1 The Simple Specification

We will start by giving a preliminary version of the specification program. This
version is simpler to explain than the general, definitive one, and already contains
the key ideas.

Example 18. (example 7 continued) It is easy to verify that the class of minimal
instances for the system is Mininst(G) = {{P (a, c), P (a, z), R(z, b)} | z ∈ D}.
Now, the set V−1 of inverse rules is

P (X, f(X, Z)) ← V1(X, Z)
R(f(X, Z), Z) ← V1(X, Z)

P (X, Y) ← V2(X, Y).

Inspired by these inverse rules, we give the following specification program
Π(G2):

– Facts: dom(a), dom(b), dom(c), . . . , V1(a, b), V2(a, c).
– P (X, Y) ← V1(X, Z), FY

1 (X, Z, Y),
R(Y, Z) ← V1(X, Z), FY

1 (X, Z, Y),
P (X, Y) ← V2(X, Y).

– FY
1 (X, Z, Y) ← V1(X, Z), dom(Y), choice((X, Z), (Y)).

Here, dom(x) is a domain predicate with elements in D, FY
1 is a predi-

cate corresponding to view V1 and the existential variable Y in its definition;
and choice((X, Z), (Y)) is the choice operator introduced in [39], which non-
determin-istically chooses a unique value for Y for each combination of values
in (X, Z). In this way, the functional dependency X, Z → Y is enforced; and
inclusion of redundant tuples in the global instances is (partly) avoided.

A program with choice Π can be always transformed into a normal program,
SV(Π) [39] with stable model semantics [40]. The so-called choice models of the
original program Π are in one-to-one correspondence with the stable models of
its stable version SV(Π).

In our example, the stable models of SV (Π(G2)) are

Ma = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), R(a, b), P (a, a)};
Mb = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), R(b, b), P (a, b)};
Mc = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), R(c, b)}; etc.

Here we show only their relevant parts, skipping domain atoms, and atoms
containing the F1 predicate. In this example we find a one-to-one correspondence
between the models of Π(G2) and the minimal instances of G2. �

More generally, the preliminary version of the specification contains the fol-
lowing elements:

1. Facts: dom(a) for every constant a ∈ D, and Vi(ā) whenever ā ∈ vi for a
source extension vi in G.

Consistent Query Answers in Virtual Data Integration Systems 63

2. For every view (source) predicate Vi with definition Vi(X̄) ← P1(X̄1), . . . ,
Pn(X̄n), the rule

Pj(X̄j) ← Vi(X̄),
∧

Xl∈(X̄j\X̄)

FXl
i (X̄, Xl).

3. For every predicate FXl
i (X̄, Xl) introduced in 2., the rule

FXl
i (X̄, Xl) ← Vi(X̄), dom(Xl), choice((X̄), (Xl)).

It can be proved [16] that

Mininst(G) ⊆ class of stable models of SV(Π(G)) ⊆ Legal(G). (4)

Queries expressed as logic programs can be answered by running them to-
gether with Π(G) under the cautious stable model semantics (that sanctions as
true what is true of all stable models). As a consequence of (4) we obtain that for
monotone queries Q the answers obtained using Π(G) coincide with CertainG(Q)
and MinimalG(Q).

The inclusions in (4) suggest that equality may not be achieved. The following
example shows that that is the case.

Example 19. Let D = {a, b, c, . . . } be the underlying domain. The system G3 is
defined by

V1(X) ← P (X, Y); v1 = {a}
V2(X, Y) ← P (X, Y); v2 = {(a, c)}.

Here we have Mininst(G3) = {{P (a, c)}}, however, the legal global instances
corresponding to stable models of Π(G3) are of the form {{P (a, c), P (a, z)} | z ∈
D}, that is, we obtain from the program more legal instances (or stable models)
than the minimal instances. The reason is that V2, being open, forces P (a, c) to be
in all legal instances, what makes the same condition on V1 being automatically
satisfied, i.e. no other values for Y are needed. Nevertheless, the choice operator,
as used above, may still choose, and it does, other values z ∈ D.

As mentioned before, the simple version of the specification program for this
system -even not being sound as a specification of the class of minimal instances-
can be used to correctly compute minimal and certain answers to monotone
queries. For instance, consider the following monotonic queries containing com-
parisons

Ans ← P (X, Y), Y �= c (5)
Ans(Y) ← P (a, Y), Y �= c. (6)

The boolean query (5) has answer false in the class {{P (a, c), P (a, z)} | z ∈
D}, because it is not true of all the instances in it. Query (6) has empty answer
in the same class. In the minimal instance {P (a, c)}, the queries have answer
false, and ∅, respectively. We can see that these queries are correctly answered. �

64 L. Bertossi and L. Bravo

At this point we could compare what can be obtained using the simple spec-
ification of minimal instances and what could we obtain by trying to use the
inverse rules algorithm. Notice that the latter algorithm does not consider com-
parisons other than equalities [30]. The inverse rules can be seen as defining a
sort of generic, symbolic instance, which is obtained by propagating the source
contents through the inverses rules (from the bodies to the heads in them) and
the function symbols.

For example, the set V−1 of inverse rules for the system in Example 19 consists
of P (X, f(X)) ← V1(X) and P (X, Y) ← V2(X, Y). If we propagate the values
in the sources, we obtain a “generic instance” containing f -values, namely

Df = {P (a, c), P (a, f(a))}, (7)

that represents a family of legal instances, each of which can be obtained by
interpreting f on the underlying domain D. Basically, this class coincides with
the class we obtained using the program above (and then it represents a superset
of the minimal instances, but a subset of the legal instances). A difference is that
with the specification program we obtain the instances explicitly.

If we attempt to use “instance” (7) to evaluate the queries (5) and (6) (this
is the idea behind the IRA for conjunctive, built-in free queries in [30]), we
obtain, assuming that f(a) is different from c because they are syntactically
different, that the answer to (5) is Ans = true, whereas query (6) gets the
answer Ans = {f(a)}, which, after elimination of the f -value, becomes Ans = ∅.

The problem with this methodology for query answering based on generic
instances with functional values we just attempted, is that it does not capture
the minimal instances, actually the only minimal instance {P (a, c)} is missed by
the assumption that f(a) �= c. In order to make this approach work, we would
have to consider alternative values for function f . Our explicit approach based
on the choice operator achieves this, and can be naturally extended -as we will
do in Section 7.2- in such a way that not only monotonic queries, but also non
monotonic queries containing negation, can be handled correctly (the latter, wrt
the minimal answer semantics).

Example 20. (example 19 continued) Assume G3 is extended with the source
definition V3(X, Y) ← R(X, Y); v3 = {(a, c)}. Then, the minimal instance is
{{P (a, c), R(a, c)}}, and the instances obtained from the program are {{P (a, c),
P (a, z), R(a, c)} | z ∈ D}. Now the query

Ans ← P (X, Y), not R(X, Y) (8)

has answer false both in the minimal instance and in the class of the instances
obtained from the specification program. In the later case, in the sense that the
query is not true in all the models of the program. That is, also in this case the
simple specification is giving us the right minimal answers.

On the other side, the same query evaluated in the new IRA-induced, generic
instance Df = {P (a, c), P (a, f(a)), R(a, c)} has answer true if the functional
term is assumed to be different from c. �

Consistent Query Answers in Virtual Data Integration Systems 65

This example shows that even for some non monotonic queries, the simple
specification program returns the correct minimal answers. It is an interesting
open problem to characterize the class of system descriptions and non monotonic
queries for which the simple specification returns the correct minimal answers
(however, see [16] for some results in this direction). On the other side, a naive
application of the IRA to a query containing negation, as (8), does not give the
correct answer.

It is a natural question as to whether the program with Skolem functions
introduced by IRA (as in [30]) could be used, instead of the functional predicates,
for specifying the repairs, pruning at the end the ground functional terms when
queries are answered. In [16] it is shown -and this applies to both the simple and
refined version of the specification program- that doing so does not necessarily
capture the repairs of the system. The intuitive reason behind is that using the
function symbols may prevent us from detecting violations to the ICs by the
minimal instances. Actually, as Examples 19 and 20 already show, keeping the
functional symbols may fail to properly capture the minimal instances, which is
a problem when queries with negations or comparisons are to be answered.

In this work, when we answer non monotone queries, we are interested in the
minimal answers. Actually, the consistent answers as defined here are a subset of
the minimal answers (see Section 6). Wrt to the certain answers to non monotone
queries, we can see that negated sub-queries can always be made false by adding
extra data to the legal instances of an integration system with open sources. We
believe that the notion of minimal answer to a non monotone query posed to an
open system is the natural notion to use4, instead of the notion of certain answer.

7.2 The Refined Specification

If we want Π(G) to specify only the minimal instances, then the program has to
be refined. The new version Π(G) detects in which cases it is necessary to use the
function predicates. This is achieved by means of a stronger condition, addVi

(X̄),
in the choice rules, i.e. FXl

i (X̄, Xl) ← addVi
(X̄), dom(Xl), choice((X̄), (Xl)),

where addVi(X̄) is true only when the openness of Vi is not satisfied through
other views; and this can be further specified by means of extra rules. The general
refined version is described and analyzed in detail in [16]. For it, the class of
stable models of the program provably coincides with the minimal instances. In
consequence, the program can be used to compute minimal answers to arbitrary
queries and certain answers to monotone queries.

The refined version of the program uses annotation constants to be placed
in an extra argument added to the global relations. Their intended semantics is
given in Table 2. Annotation td is used to read off the atoms in the minimal
instances. The others are annotations that are used to compute intermediate
atoms. We illustrate the refined version by means of an example.

4 Assuming, as we have done in this chapter, that the sources are defined as conjunctive
views or disjunctions thereof. In particular, they are defined without negation.

66 L. Bertossi and L. Bravo

Table 2. Semantic of Annotation Constants for Minimal Models

annotation atom the tuple P (ā) is ...
td P (ā, td) an atom of the minimal legal instances
o P (ā,o) an obligatory atom in all the minimal legal instances
vi P (ā,vi) an optional atom introduced to satisfy the openness of

view Vi

nvi P (ā,nvi) an optional atom introduced to satisfy the openness of a
view other than Vi

Example 21. (example 19 continued) The refined program Π(G3) is:

dom(a), dom(c), ..., V1(a), V2(a, c). (9)
P (X, Y,v1) ← addV1(X), FY

1 (X, Y). (10)
addV1(X) ← V1(X), not auxV1(X). (11)
auxV1(X) ← varV1,Z(X, Z). (12)

varV1,Z(X, Z) ← P (X, Z,nv1). (13)
FY

1 (X, Y) ← addV1(X), dom(Y), choice((X), (Y)). (14)
P (X, Y,o) ← V2(X, Y). (15)

P (X, Y,nv1) ← P (X, Y,o). (16)
P (X, Y, td) ← P (X, Y,v1). (17)
P (X, Y, td) ← P (X, Y,o). (18)

Rules (10) to (13) ensure that if there is an atom in source V1, e.g. V1(ā), and
if an atom of the form P (ā, Y) was not added by view V2, then it is added by rule
(10) with a Y value given by the functional predicate FY

1 (ā, Y). This function
predicate is calculated by rule (14). Rule (15) enforces the satisfaction of the
openness of V2 by adding obligatory atoms to predicate P , and rule (16) stores
this atoms with the annotation nv1 implying that they were added by a view
different from V1. The last two rules gather with annotation td the elements that
were generated by both views. Those are the atoms in the minimal instances.

The only stable model of this program is {dom(a), dom(c), . . . , V1(a), V2(a, c),
P (a, c, td), P (a, c,o), P (a, c, nv1), auxV1(a)}, which corresponds to the only
minimal legal instance {P (a, c)}. �

We have obtained an answer set programming specification of the minimal
instances of an open integration system under LAV. From it, the minimal answers
to complex queries, e.g. non stratified Datalog queries [1], can be computed using
the cautions or skeptical answer set semantics that sanctions as true what is
true of all stable models. Notice that the refined version (and also the simple
version) of the specification program Π(G) is a non stratified program, whose
data complexity [1] is likely to be higher than polynomial [27]. As with the simple
program, the refined program can be used to compute the certain answers to
monotone queries.

Consistent Query Answers in Virtual Data Integration Systems 67

It is interesting to observe that the specification Π(G) we just gave can be
seen as a considerable extension of the original IRA algorithm since it can be
used to obtain the certain answers to monotone queries involving comparisons
(see Example 19), and the minimal answers to non-monotone queries.

There are several issues and possible extensions that are discussed in detail
in [16]. We briefly mention some of them here. First, we do not need to make any
assumption about the underlying domain for the logic programming based spec-
ifications of minimal instances to work properly. All we need is that it -possibly
properly- contains the active domains of the sources and the constants that may
appear in the view definitions. However, if the program is to be run with a
system like DLV, we need to have a finite number of elements in the domain.
We can always simulate the potential infiniteness of the underlying domain by
means of a sufficiently large finite domain [16]. This can be achieved by introduc-
ing fresh constants. This subject related to a finite vs. infinite underlying domain
certainly deserves further investigation. Any case, computing with infinite sta-
ble models has started to receive attention from the answer set programming
community [14].

A possible extension, also discussed in [16], consists in having views defined
by disjunctions of conjunctive queries. Inspiration for the specification programs
can be found in the extension of the IRA to the case of disjunctive sources [29].

We will use the specification of minimal instances as a basis for the compu-
tation of consistent answers (see Section 8). In Section 9, the specification is ex-
tended to the case where also closed sources participate in the integration system.

8 Computing Consistent Answers in Integration Systems

We will see two methodologies for consistently answering queries posed to virtual
integration systems under LAV. The first one, in Section 8.1, is based on first-
order query rewriting. The second one, to be presented in Section 8.2, is much
more general, and provides a solution based on the specification of the repairs
of the minimal instances of an open integration systems. Both methodologies
eventually rely on the specification of minimal instanced presented in Section 7.

8.1 Query Rewriting for CQA

In this section we will describe a methodology, first presented in [10], that pro-
vides a partial solution to the problem of CQA under the LAV approach. It builds
upon the query rewriting approach to CQA for single relational databases de-
scribed in Section 5.1. The limitations of that approach are inherited by the
solution for the case of integration of data sources. In consequence, this solution
applies to queries Q that are conjunctions of literals, but without projection (or
existential quantification); and global integrity constraints that are universal. In
consequence, referential ICs are excluded.

The high level description of the rewriting based algorithm for CQA in in-
tegration system is as follows: Given as input a set IC of global integrity con-
straints, and global query Q that is a conjunction of literals, we do the following

68 L. Bertossi and L. Bravo

Meta−Algorithm (19)

1. Rewrite Q(X̄) into the first-order query Tω(Q(X̄)) using IC .5

2. Transform Tω(Q(X̄)) into a recursion-free Datalog¬ query program Π(Tω

(Q)) (this is straightforward [64]).
3. Find a query plan, Plan(Π(Tω(Q))) to answer the query Π(Tω(Q)) posed

to the global system.
4. Evaluate the query plan on the view extensions of G to compute the answer

set.

A problem with this algorithm is that the program Π(Tω(Q)) may contain
negation, that is introduced at the first step. We give some examples.

Example 22. Consider the integration system

V1(X, Y) ← P (X, Y); v1 = {(a, d)}
V2(X, Z) ← P (X, Y), R(Y, Z); v2 = {(a, b), (b, c)}.

The minimal instances are of the form Duv ={P (a, u), R(u, b), P (b, v), R(v, c),
P (a, d)}, with u, v ∈ D. Now consider the global IC IC : ∀x∀y(¬P (x, y) ∨
¬R(x, y)). The system is inconsistent, because the minimal instances obtained
with u = c, v = a, i.e. Dca = {P (a, c), R(c, b), P (b, a), R(a, c), P (a, d)} is incon-
sistent. The same happens with Dbb. The other minimal instances are consistent.
Then, the repairs are all the Du,v above, except for the last two combinations,
which in their turn contribute with the repairs D1

ca = {R(c, b), P (b, a), R(a, c),
P (a, d)}, D2

ca = {P (a, c), R(c, b), P (b, a), P (a, d)}, D1
bb= {P (a, b), R(b, b), R(b, c),

P (a, d)} D2
bb = {P (a, b), P (b, b), R(b, c), P (a, d)}. Now, consider the query Q :

P (X, Y)?. The only answer to this query in common to all repairs is {P (a, d)},
then this is the only consistent answer.

On the rewriting side, if we want the consistent answers to the same query
relative to IC , we rewrite the query as follows T (Q) : (P (X, Y) ∧ ¬R(X, Y))
(see Example 11), which produces the following query program that contains
negation: Ans(X, Y) ← P (X, Y), not R(X, Y). �

Example 23. (example 6 continued) FD can be written in the form

∀x∀y∀z(¬R(x, y) ∨ ¬R(x, z) ∨ y = z). (20)

If the query Q : R(X, Y)? is posed to the system, we have to find the residues
of R(X, Y) wrt (20), and we obtain after the first step the rewritten query

Tω(Q(X, Y)) : R(X, Y) ∧ ¬∃Z(R(X, Z) ∧ Z �= Y). (21)

5 We are assuming here that T ω(Q(X̄)) produces a finite formula. Conditions for this
to happen in terms of Q and IC are studied in [3, 25]. However, those conditions are
satisfied by the most common universal ICs found in database practice.

Consistent Query Answers in Virtual Data Integration Systems 69

Query (21) is translated into the following Datalog¬ program Π(Tω(Q(X, Y))):

Ans(X, Y) ← R(X, Y), not S(X, Y) (22)
S(X, Y) ← R(X, Z), dom(Y), Y �= Z (23)

dom(a), dom(b), dom(c), dom(d), dom(e), ... (24)

The domain extends the active domain [1] that contains the constants in the
sources and those that may appear in the view definitions. This is a form of mate-
rialization of a domain closure assumption, however we are not necessarily closing
wrt the active domain, but wrt a superset of it that contains fresh constants. This
allows us to correctly compute certain answers (see [16] for a detailed discussion
of this issue). The introduction of the dom predicate in programs is a general
way to make the rules safe [72]. Despite these considerations, in this example,
the domain predicate is not necessary, because (21) is logically equivalent to

Tω(Q(X, Y)) : R(X, Y) ∧ ¬∃Z(R(X, Y) ∧ R(X, Z) ∧ Z �= Y).

In consequence, program Π(Tω(Q(X, Y))) can be written as the set of safe
rules Ans(X, Y) ← R(X, Y), not S(X, Y) and S(X, Y) ← R(X, Y), R(X, Z),
Y �=Z.

At step 3. of algorithm (19), we need a query plan to answer the query
expressed by (22)-(24). As we can see, the query contains negation and compar-
isons. �

Algorithms like IRA are designed to deal with negation-free queries without
comparisons [30]. On the other side, Π(Tω(Q)) does not contain recursion but
contains negation. In consequence, an algorithm like IRA, if it is going to be
applied in this context, has to be extended in order to handle queries that are,
e.g. non recursive Datalog programs with negation and comparisons.

Some very limited extensions of the IRA algorithm have been proposed in or-
der to include negation [10, 74, 35]. However, we can use our specification of the
minimal instances (see Section 7) as a general query plan mechanism for eventu-
ally computing consistent answers to queries. In Algorithm (19) that specification
can be used in the third step. All one needs to do is combine the query obtained
after the second step (with its predicates expanded with a new, final argument
with the annotation td in it) with the specification of the minimal instances.
The combined program is run under the cautions stable model semantics.

Example 24. (example 22 continued) The query Ans(X, Y) ← P (X, Y),
not R(X, Y) has to be combined with the specification of the minimal in-
stances of the integration system, which is essentially the same as the one given
in Example 18. If we want or need6 to use the refined version of the specifi-
cation of minimal instances, then the query has to be first transformed into
Ans(X, Y) ← P (X, Y, td), not R(X, Y, td). �

6 In this example this is not necessary, because the simple program correctly specifies
the class of minimal instances. In [16] sufficient conditions are identified for this to
happen.

70 L. Bertossi and L. Bravo

8.2 CQA from Specifications of Repairs

A more general methodology that the one presented in Section 8.1 is based on
a logic programming specifications of the repairs of the minimal instances of
an integration system. First results were presented in [15], and full details can
be found in [16]. This methodology works for queries expressed in extensions
of Datalog, in particular, for first-order queries; and universal ICs combined
with acyclic sets of referential ICs. In the rest of this section, we will assume
that sources are open, and defined as conjunctive views over the global schema.
However the solution can be extended to combinations of closed and open sources
(see Section 9), and views defined as disjunctions of conjunctive queries [16].

Figure 2 describes the methodology in general terms. In order to compute the
consistent answer to a global query, the query is expressed as a query program,
which is run in combination with other programs that specifies, in two layers, the
minimal instances of the integration systems, first, and then, the repairs of the
minimal instances. Of course, the same specification program can be used with
different queries. The specification of minimal instances is the one presented in
Section 7.

Mappings

Global Relations

Answer Set
Programming(ASP)

specification of a set of
Legal Global Instances

ASP specification of the
repairs

Global ICs

Query
Query Program

(Datalog)

Sources

DLV
Run under skeptical

answer set
semantics

Consistent Answers to
Query

Fig. 2. Computing Consistent Answers

What we have so far is a specification of minimal instances of an open in-
tegration system, but they may not satisfy certain global ICs. In consequence,
we may consider specifying their repairs wrt those ICs. For this we can apply
the ideas and techniques developed to specify repairs of single databases (Sec-
tion 5). Actually, we can combine into a repair program, Π(G, IC), the program
that specifies the minimal instances with a program that specifies the repairs of
each minimal instance. This is because a minimal instance can be seen as (or
is) a single database instance. Instead of a full treatment (see [16]), we give an
example.

Consistent Query Answers in Virtual Data Integration Systems 71

Example 25. (example 21 continued) Consider system G3, but now with the
global integrity constraint Sym: ∀x∀y(P (x, y) → P (y, x)). Since Mininst(G3) =
{{P (a, c)}}, an the only instance does not satisfy Sym, the system is inconsis-
tent.

The repair program, Π(G3,Sym), consists of two layers. The first one is ex-
actly program Π(G3) in Example 21 that specifies the minimal instances; and
the second layer is the following subprogram that repairs the minimal instances;
it builds on the atoms annotated with td in the first layer:

P (X, Y, t�) ← P (X, Y, ta), dom(X), dom(Y).
P (X, Y, t�) ← P (X, Y, td), dom(X), dom(Y).
P (X, Y, f�) ← dom(X), dom(Y), not P (X, Y, td).
P (X, Y, f�) ← P (X, Y, fa), dom(X), dom(Y).

P (X, Y, fa) ∨ P (Y, X, ta) ← P (X, Y, t�), P (Y, X, f�), dom(X), dom(Y).
P (X, Y, t��) ← P (X, Y, ta), dom(X), dom(Y).
P (X, Y, t��) ← P (X, Y, td), dom(X), dom(Y), not P (X, Y, fa).
P (X, Y, f��) ← P (X, Y, fa), dom(X), dom(Y).
P (X, Y, f��) ← dom(X), dom(Y), not P (X, Y, td),

not P (X, Y, ta).
← P (X, Y, ta), P (X, Y, fa).

The stable models of this program are:

M1 = {dom(a), dom(c), . . . , V1(a), V2(a, c), P (a, c,nv1), P (a, c,v2),
P (a, c, td), P (a, c, t�), auxV1(a), P (a, a, f�), P (c, a, f�), P (c, c, f�),
P (a, a, f��), P (c, a, ta), P (c, c, f��), P (a, c, t��), P (c, a, t�),
P (c, a, t��)}.

M2 = {dom(a), dom(c), . . . , V1(a), V2(a, c), P (a, c,nv1), P (a, c,v2),
P (a, c, td), P (a, c, t�), auxV1(a), P (a, a, f�), P (c, a, f�), P (a, c, f�),
P (c, c, f�), P (a, a, f��), P (c, a, f��), P (a, c, f��), P (c, c, f��),
P (a, c, fa)}.

By reading the literals annotated with t��, we see that the first model corre-
sponds to the repair {P (a, c), P (c, a)}; the second one, to the empty repair. �

Repair programs can be given for specifying the repairs of any open integra-
tion system under the LAV approach with conjunctive view definitions; and for
any set of ICs containing universal and acyclic referential integrity constraints
[15, 16].

The restriction to sets of ICs that do not contain cycles in its referential
ICs has to do with limitations of the logic programming based approach to the
specification of repairs of single relational databases as presented in Section 5.
Fundamental, theoretical reasons behind these limitations, that are inherited by
our repair programs for integration systems, are studied in depth in [26, 20, 38].

72 L. Bertossi and L. Bravo

With the repair programs, we can now compute consistent answers to global
queries. Let Q(x̄) be a query posed to an integration system G. The methodology
is as follows. First the query gets its literals annotated with t��, f��, e.g. if the
query is first order, say Q(· · ·P (ū) · · · ¬R(v̄) · · ·), we pass to Q′ := Q(· · ·P (ū,
t��) · · · R(v̄, f��) · · ·). Next, a query program Π(Q′) with an Ans(X̄) predicate is
produced from Q (this is standard [64]). Finally, the programΠ := Π(Q′) ∪Π(G,
IC) is run under the stable model semantics; and the ground atoms Ans(t̄) ∈⋂
{S | S is a stable model of Π} are collected in the answer set to be returned

to the user.

Example 26. (example 25 continued) Consider G3 and the global query Q :
P (X, Y)? From it we generate Q′ : P (X, Y, t��), which in its turn is trans-
formed into the query program Π(Q′) : Ans(X, Y) ← P (X, Y, t��). Next, we
form Π = Π(G3,Sym) ∪Π(Q′), with Π(G3,Sym) as in Example 25.

Now, the models of program Π are those of Π(G3,Sym) but extended with
ground Ans atoms, namely they are: M1 = M1 ∪ {Ans(a, c), Ans(c, a)}; M2 =
M2 ∪∅. Since there are no Ans atoms in common, then query has no consistent
answers (as expected). �

Example 27. (example 16 continued) The program that computes the consistent
answers to query Q(X, Y) : R(X, Y)? from system G1 wrt FD is:

Subprogram for minimal instances:

dom(a). dom(b). dom(c). dom(d). dom(e). . . . V1(a, b). V1(c, d). V2(c, a). V2(e, d).

R(X, Y, td) ← V1(X, Y).
R(Y, X, td) ← V2(X, Y).

Repair subprogram:

R(X, Y, t�) ← R(X, Y, ta), dom(X), dom(Y).
R(X, Y, t�) ← R(X, Y, td), dom(X), dom(Y).
R(X, Y, f�) ← dom(X), dom(Y), not R(X, Y, td).
R(X, Y, f�) ← R(X, Y, fa), dom(X), dom(Y).

R(X, Y, fa) ∨R(X, Z, fa) ← R(X, Y, t�), R(X, Z, t�), Y �= Z,

dom(X), dom(Y), dom(Z).
R(X, Y, t��) ← R(X, Y, ta), dom(X), dom(Y).
R(X, Y, t��) ← R(X, Y, td), dom(X), dom(Y), not R(X, Y, fa).

← R(X, Y, fa), R(X, Y, ta).

Query subprogram:

Ans(X, Y) ← R(X, Y, t��).

Consistent Query Answers in Virtual Data Integration Systems 73

The Ans atom in common to the two stable models are Ans(c, d), Ans(d, e),
then the set of consistent answers to the query is {(c, d), (d, e)}.

Here we have used the simple version of the program that specifies the min-
imal instances. In this case the specification is sound, i.e. it does not compute
any model that does not correspond to a minimal instance. Classes of system
descriptions for which the simple specification has a sound behavior wrt the class
of minimal instances are studied in [16]. The example here falls into one of those
classes. �

The specifications we have presented are sound and complete for CQA for sets
of ICs consisting of universal integrity constraints and acyclic sets of referential
integrity constraints [16]. Views can be defined by disjunctions of conjunctive
formulas; and queries can be arbitrary Datalog¬ queries.

9 Specification of Minimal Instances: Mixed Case

So far we have assumed that all the sources are open. Now we will consider the
mixed case, where some of the sources may be closed or closed and open (clopen).
In consequence, a virtual data integration system will have a description like the
one in (1), but each source will have a label indicating if it is open, closed or
clopen [43]. Intuitively speaking, a closed source contains a superset of the data
of its kind in the system, and the clopen source contains exactly all the data of
its kind in the system.

More precisely, if a material source relation v, defined as the view V (X̄) ←
ϕ

V
(X̄) of the global system, has been defined as a closed (clopen) source, then

in any legal instance D, it must hold v ⊇ ϕ
V
(D) (resp. v = ϕ

V
(D)).

In this section we will describe how to modify the program that specifies the
minimal instances presented in Section 7 when some of the sources are declared
closed or clopen.

Example 28. For the domain D = {a, b, c, . . . }, consider the integration system
G4:

V1(X, Z) ← P (X, Y), R(Y, Z); v1 = {(a, b)} open (25)
V2(X, Y) ← P (X, Y); v2 = {(a, c)} clopen (26)

In Example 18 we had the same sources and definitions, but then they were
all declared open; and we had Mininst(G2) = {{P (a, c), P (a, z), R(z, b)} | z ∈
D}. Now, the label on the second sources forces relation P to be {(a, c)}. In
consequence, we obtain Mininst(G4) = {{P (a, c), R(c, b)}}. �

It is clear that the closed and clopen labels will impose additional restrictions
on the legal instances we had for the purely open case, when all sources are open.
In particular, these labels will never force to add new tuples to the legal instances.
Actually, if a source is declared closed, then that source will contribute with the
empty set of tuples to the minimal instances of the integration system.

74 L. Bertossi and L. Bravo

With open, closed and clopen sources, the sets of legal and minimal instances
will always be subsets of the same sets for the case where the same sources are
all declared open. In order to obtain the minimal instances in the mixed case, all
we have to do is filter out some of the minimal instances obtained in the purely
open case, namely those that violate the closedness condition for some of the
sources. This can be captured at the logic program specification level by means
of a program denial constraint, which has the effect of discarding some of the
stable models.

In the mixed case, the program Πmix(G) that specifies the minimal in-
stances consists of the program Π(G) we had for the open case in Section
7 (as if all the sources were open) plus a denial constraint of the form ←
P1(X̄1), . . . , Pn(X̄n), not V (X̄), for each closed (or clopen) source v with view
definition V (X̄) ← P1(X̄1), . . . , Pn(X̄n). That is, the open sources contribute
with rules to the program, the clopen sources both with rules and program
constraints, and the closed sources with program constraints only.

With these modifications, the obtain the same correspondence between the
stable models of the program Πmix(G) and the minimal instances of the mixed
integration system G.

Example 29. (example 28 continued) The program Πmix(G4) that specifies the
minimal instances of system G4 is:

dom(a). dom(b). dom(c). . . . V1(a, b). V2(a, c).

P (X, Y) ← V1(X, Z), FY
1 (X, Z, Y)

R(Y, Z) ← V1(X, Z), FY
1 (X, Z, Y)

P (X, Y) ← V2(X, Y)
FY

1 (X, Z, Y) ← V1(X, Z), dom(Y), choice((X, Z), (Y))
← P (X, Y), not V2(X, Y).

This program, excluding the last denial, coincides with program Π(G2) in
Example 18, where the same sources and definitions are considered, but all the
sources are open only. With the denial constraint, that enforces the closeness of
source V2, the only stable model of Πmix(G4) is {dom(a), . . . , V1(a, b), V2(a, c),
P (a, c), FY

1 (a, b, c), R(c, b)}, which corresponds to the only minimal instance
{{P (a, c), R(c, b)}}. �

Notice that the solution we have reached via logic programs is similar in spirit
to the solution presented in [43], where the mixed case is treated. There tableaux
with constraints are used to compactly represent the legal instances and obtain
certain answers. The tableaux capture the open part, and the constraints, as in
our solution, the closed part.

Consistent Query Answers in Virtual Data Integration Systems 75

10 Ongoing and Future Work

There are still many relevant open issues in this line of research. Consistency
issues have barely investigated in the context of virtual data integration systems.
Other research results obtained by other authors in this direction are described
in Section 11.

The solution to the problem of certain and consistent query answering in
virtual data integration system under the LAV approach presented in Sections
7 and 8.2, resp. are quite general, and conceptually clear, however many imple-
mentation issues are still open. They have to be addressed in order to use those
solutions in real database applications.

A first step would be to implement certain and consistent query answering
for the most common queries and constraints found in database practice. Ad
hoc mechanisms could be derived from the logic programming specifications. In
this direction, [13] shows how to derive, for some classes of queries, first order
rewritings from the logic programs that specify repairs of single databases. Of
course, by complexity reasons, this is not always possible [11].

In more general terms, the research should be focused on the specialization,
optimization, and evaluation of the logic programs we have presented. Special-
ization has to do with deriving program for particular classes of queries and
constrains from the general ones, that are better behaved in terms of evaluation.
Optimization has to do with producing equivalent programs that can be more
easily evaluated, in particular, the interaction of the logic programming system
with the underlying databases has to be optimized. Some optimizations for CQA
in single databases are introduced in [7, 13].

Evaluation issues are also extremely relevant. They have to do with split-
ting the program, caching intermediate results, reusing previous computations,
localizing computations to the relevant parts of the data sources. Answering a
particular query may not require a full computation of the repairs, but only
partial computation could suffice. It becomes important to detect which are the
relevant portions of data [32].

Query evaluation is a crucial point. Current implementations of answer set
programming are not oriented to the problem of query answering as found in
databases, where open queries are usually posed and a set of answers is returned
to the user. Instead, the emphasis in answer set programming has been placed
on computation of (some) models, and answering ground queries. Actually, the
evaluation methodology in such systems is, in general terms, based on massive
grounding of the program, full computation of stable models, and recollection
of atoms in the intersection of all of them. Grounding is already a problem
if the program is to be grounded on the full active domain of the databases,
because the ground program generated can be huge. See [31, 59] for a discussion
of implementation details.

Query evaluation methodologies that are directed by the query seem to be
necessary for applications in databases, in particular, the development and im-
plementation of “magic sets” methods [1] for disjunctive logic programs under

76 L. Bertossi and L. Bravo

the stable model semantics is a promising area of research. Recent research has
started addressing this problem [46].

Most of the research around query answering in virtual data integration sys-
tems starts from a fixed class of mappings that describe the contents of the
sources. Given a class, the semantics and query answering mechanisms are pro-
vided. However, in spite of the fact that design issues of data integration systems
have been studied [8, 9, 71], the analysis of the impact of particular forms of de-
sign on the syntax of the mappings and on query answering has been largely
neglected. In particular, if would be interesting to investigate how the integra-
tion system is to be designed if certain restrictions on the mappings are to be
satisfied. Determining what is a good design for a virtual data integration in
terms of the query answering features of the system is something that deserves
further investigation.

11 Related Work

Here we will mention only those papers that more or less explicitly consider
consistency issues in virtual data integration systems. Other important papers
on virtual data integration have been cited in the main body of this paper,
including those that assume that certain integrity constraints hold when query
plans are derived.

An early approach to virtual data integration is presented in [68]. There, op-
erations on the relations and attributes in the sources are defined, e.g. meet, join,
aggregate, add. These operators applied to a set of source databases generate
a global virtual database schema. In this way, mappings are derived and ex-
press the global relations as results of a set of operations on the source relations.
When a query is posed, it is translated to the sources relations by considering
the operators in the inverse order in which they where applied.

In [69], a model is presented where the integration system is considered to
have a real global database, and the sources are views obtained by applying
projections and selections to this global database. In this framework, the pos-
sibility of having inconsistencies in the instances is considered. Inconsistency is
reflected in the fact that it can be impossible for the sources to be views of this
single global database instance. For example. Consider the global schema with
a binary relation R with attributes A, B. Let source I have elements {a}, and
source II, elements {b}, and the respective views V1 = ΠA(R), V2 = ΠA(R). In
this case, there is an instance inconsistency, because even though both sources
are views of the single global database and they have the same view definitions,
their elements are different. In order to handle this situation, the notion of ap-
proximate answer is introduced, actually a lower bound and an upper bound
are given, corresponding, respectively, to the intersection and union of all the
possible answers of the rewriting of the query using the views. No complexity
analysis is provided. Global integrity constraints are not considered.

In [19], the use of integrity constraints in a data integration system
under the GAV approach for clopen and open sources is studied. In the

Consistent Query Answers in Virtual Data Integration Systems 77

clopen7 case, the authors argue that the integration system can be seen as a
single database, and therefore, the query answering process in the presence of
ICs can be done appealing to the concept of repair [3] and CQA mechanisms for
single databases [3, 47, 6]. If the sources are open and there are no ICs, queries
can be answered by unfolding. If there are ICs, the semantic is given by the
set of legal instances that satisfy both the open mappings and the integrity con-
straints. Their legal instances can be seen as repairs (in our sense) of the retrieved
global database that is obtained by propagating the source elements through the
mapping. Repairs admit only tuple insertions. Since [19] considers as legal those
databases that satisfy the ICs, it holds that their “certain answers” correspond
to our consistent answers. If there are no legal instances (in their sense), the
integration system is said to be “inconsistent”. In this case, tuple deletions are
also needed in order to achieve consistency.

In [17] the same semantics as in [19] is consider, for GAV and open sources.
There they present an algorithm for rewriting a conjunctive query [1] in order to
retrieve the “certain answers” (our consistent answers). This algorithm handles
foreign key constraints and assumes that the key constraints are preserved by
the mapping, i.e. that the retrieved global instance will not violate the key
constraints. For these integrity constraints there will always be legal instances
(in their sense), and therefore the integration system is consistent. The rewritten
query can be unfolded with the mapping in order to calculate their “certain
answers”. In [19] an implementation of this method is presented. The complexity
of the rewriting is polynomial wrt data complexity.

According to the semantic considered in [17, 19], if a key constraint is not
satisfied, then there is no legal instance. This is why in [57] the loosely-sound
semantic (in opposition to the previous strictly-sound semantic) is introduced.
Now, a database is legal if it is satisfies the integrity constraints and if there is
no other database that is better. A database is better than another if the portion
of the former that is contained in the retrieved global database is greater that
the one of the latter. In this way, we have that the inconsistencies wrt foreign
key constraints are solved by adding tuples to the retrieved global database, and
those wrt key constraints, by deleting a minimal number of tuples from it. The
global instances in this case correspond to a subclass of the repairs introduced
in [10] for integration systems.

In order to compute the legal instances for the loosely-sound semantic, a
Datalog¬ program under cautious stable model semantics is used. This program
calculates a maximal superset of the retrieved global database that satisfies the
key constraints. In order to retrieve the certain answers, the query is transformed
as defined in [17] and added to that program. This approach works for global
relations defined by Datalog queries (and then, GAV is followed). The complexity
of retrieving the “certain answers” becomes co-NP-complete.

7 In several papers, instead of open, clopen and closed, the terms sound, exact and
complete are used, resp.

78 L. Bertossi and L. Bravo

Still under the GAV approach, the results in [57] were extended in [21], con-
sidering key constraints and inclusion dependencies, and also queries that are
expressed as unions of conjunctive queries. For the strictly-sound semantics two
cases are analyzed. In the first case, where only inclusion dependencies (IDs) are
considered, the integration system cannot be “inconsistent”; so there is at least
one legal database. The rewriting of a query becomes the mapping rules plus the
query that is successively unfolded by rules that represent the inclusion depen-
dencies. The second case considers the combination of key dependencies (KDs)
and non-key-conflicting IDs (NKC), i.e. IDs where the target (global) relation
has no key dependencies or where the target attributes are not a strict superset
of the key of the target relation. The rewriting of a query is the same as in the
first case plus some rules that enforce that if a global relation violates a KD,
then all the tuples are an answer to the query.

For the loosely-sound semantics, the rewriting in [21] is expressed with the
same Datalog¬ program presented in [57]. In order to repair wrt the IDs, this
program is coupled with the query rewriting for the case of only IDs and strictly-
sound semantics. The data complexity under the strictly-sound semantics for
NKC integration systems is PTIME. For loosely-sound semantics, it becomes
coNP-complete.

In [32] logic programs for consistent query answering in virtual integration
systems are presented. The GAV approach is followed and the global relations
can be defined using stratified Datalog¬ queries. The ICs considered are universal
integrity constraints and the queries are expressed in non-recursive Datalog¬.
The specification program is a disjunctive Datalog¬ program consisting of three
hierarchically evaluated modules. The first one uses the mapping and the data
sources to compute the “retrieved global database” (as in [19]). The second one
enforces the satisfaction of the integrity constraints through repair rules; and
the third one corresponds to the query. The structure of each of them depends
on the mappings, ICs and query, respectively.

The source of complexity for the program in [32] comes from the second
module. In consequence, optimizations are introduced. The optimization process
consists of three steps: pruning the rules that are not relevant for computing the
answers to the query, next determining and computing the set of facts that need
to be repaired, and finally, recombining the repairs in order to compute the
answers. The second step decomposes the facts in two sets, those that might be
repaired and those that for sure are not going to be repaired. The recombination
process presents the repairs in a compact way in order to query them as a
relational database. For this, an extra attribute marking each fact is added to
each relation. This attribute is a string of zeros and ones. A one (zero) in position
i means that the fact is (not) in the repair i. The facts for which no repairs are
calculated in the second step are marked with ‘111 . . . 11’. The query needs to be
reformulated in order to pose it directly to the marked database. Experiments
show that the optimizations significantly improve the performance of the naive
and direct techniques.

Consistent Query Answers in Virtual Data Integration Systems 79

It seems that the optimizations presented in [32] can be adapted to the logic
programs we have presented for CQA.

Finally, we will just mention that there seem to be interesting connections
between the area of consistently querying virtual data integration systems and
other areas, like querying incomplete databases [66, 44], merging inconsistent
theories [63, 5], semantic reconciliation of data [54], schema mapping [71, 28, 70],
data exchange [33, 34], and query answering in peer-to-peer systems [55, 52, 53,
36, 12, 24].

Acknowledgements: This chapter reports on research funded by DIPUC, CON-
ICYT, FONDECYT, Carleton University Start-Up Grant 9364-01, NSERC Grant
250279-02, CoLogNet. L. Bertossi is Faculty Fellow of the IBM Center for Ad-
vanced Studies, Toronto Lab. We are grateful to Jan Chomicki, Alvaro Cortes,
Claudio Gutierrez, Alberto Mendelzon, Pablo Barcelo, Alon Halevy, Enrico Fran-
coni, Andrei Lopatenko, Ariel Fuxman, and Giuseppe De Giacomo for collabo-
ration, useful conversations and remarks. Comments received from anonymous
referees are highly appreciated.

References

1. Abiteboul, S.; Hull, R. and Vianu, V. Foundations of Databases. Addison-Wesley,
1995.

2. Abiteboul, A. and Duschka, O. Complexity of Answering Queries Using Material-
ized Views. In Proc. ACM Symposium on Principles of Database Systems (PODS
98), 1998, pp. 254-263.

3. Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query Answers in Inconsis-
tent Databases. In Proc. 18th ACM Symposium on Principles of Database Systems
(PODS 99), 1999, pp. 68–79.

4. Arenas, M., Bertossi, L. and Chomicki, L. Answer Sets for Consistent Query
Answering in Inconsistent Databases. Theory and Practice of Logic Programming,
2003, 3(4-5): 393-424.

5. Baral, C., Kraus, S., Minker, J. and Subrahmanian, V. S. Combining Knowledge
Bases Consisting of First-Order Theories.Computational Intelligence,1992, 8:45-71.

6. Barcelo, P. and Bertossi, L. Logic Programs for Querying Inconsistent Databases.
In Proc. International Symposium on Practical Aspects of Declarative Languages
(PADL 03), Springer LNCS 2562, 2003, pp. 208–222.

7. Barcelo, P., Bertossi, L. and Bravo, L. Characterizing and Computing Semantically
Correct Answers from Databases with Annotated Logic and Answer Sets. Chapter
in book Semantics of Databases, Springer LNCS 2582, 2003, pp. 1–27.

8. Batini, C., Lenzerini, M. and Navathe, S.B. A Comparative Analysis of Method-
ologies for Database Schema Integration. ACM Computing Surveys, 1986, 18(4):
323-364.

9. Bergamaschi, S., Castano, S., Vincini, M., and Beneventano, D. Semantic Inte-
gration of Heterogeneous Information Sources. Data and Knowledge Engineering,
2001, 36(3):215-249.

10. Bertossi, L., Chomicki, J., Cortes, A. and Gutierrez, C. Consistent Answers from
Integrated Data Sources. In Flexible Query Answering Systems, Springer LNAI
2522, 2002, pp. 71–85.

80 L. Bertossi and L. Bravo

11. Bertossi, L. and Chomicki, J. Query Answering in Inconsistent Databases. Chapter
in book Logics for Emerging Applications of Databases, J. Chomicki, G. Saake and
R. van der Meyden (eds.), Springer, 2003.

12. Bertossi, L. and Bravo, L. Query Answering in Peer-to-Peer Data Exchange Sys-
tems. arXiv.org paper cs.DB/0401015. To appear in Proc. International Workshop
on Peer-to-Peer Computing & DataBases (P2P&DB 04), Springer LNCS.

13. Bertossi, L. and Bravo, L. In preparation.
14. Bonatti, P. Reasoning with Infinite Stable Models. Artificial Intelligence, 2004,

156(1):75-111.
15. Bravo, L. and Bertossi, L. Logic Programs for Consistently Querying Data Inte-

gration Systems. In Proc. International Joint Conference on Artificial Intelligence
(IJCAI 03), Morgan Kaufmann, 2003, pp. 10–15.

16. Bravo, L. and Bertossi, L. Disjunctive Deductive Databases for Computing Certain
and Consistent Answers to Queries from Mediated Data Integration Systems. To
appear in Journal of Applied Logic (extended version of [15])

17. Cali, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. Data Integration Un-
der Integrity Constraints. In Proc. Conference on Advanced Information Systems
Engineering (CAISE 02), Springer LNCS 2348, 2002, pp. 262–279.

18. Cali, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. On the Expressive
Power of Data Integration Systems. In Proc. of the International Conference on
Conceptual Modeling (ER 02), Springer LNCS 2503, 2002, pp. 338–350.

19. Cali, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. On the Role of Integrity
Constraints in Data Integration. IEEE Data Engineering Bulletin, 2002, 25(3):
39-45.

20. Cali, A., Lembo, D. and Rosati, R. On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In Proc. of the ACM
Symposium on Principles of Database Systems (PODS 03), ACM Press, 2003, pp.
260-271.

21. Cali, A., Lembo, D. and Rosati, R. Query Rewriting and Answering under Con-
straints in Data Integration Systems. In Proc. of the International Joint Conference
on Artificial Intellience (IJCAI 03), Morgan Kaufmann, 2003, pp. 16-21.

22. Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. Y. What is Query
Rewriting? In Proc. of the International Workshop on Knowledge Representation
meets Databases (KRDB 00), CEUR Electronic Workshop Proceedings, 2000, pp.
17-27.

23. Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. Y. View-based Query
Containment. In Proc. of the ACM Symposium on Principles of Database Systems
(PODS 03), ACM Press, 2003, pp. 56–67.

24. Calvanese, D., De Giacomo, G., Lenzerini, M. and Rosati, R. Logical Foundations
of Peer-To-Peer Data Integration. In Proc. of the ACM Symposium on Principles
of Database Systems (PODS 04), ACM Press, 2004, pp. 241-251.

25. Celle, A. and Bertossi, L. Querying Inconsistent Databases: Algorithms and Imple-
mentation. In Computational Logic - CL 2000, Stream: International Conference
on Rules and Objects in Databases (DOOD 00), Springer LNAI 1861, 2000, pp.
942-956.

26. Chomicki, J. and Marcinkowski, J. Minimal-Change Integrity Maintenance Using
Tuple Deletions. arXiv.org paper cs.DB/0212004. To appear in Information and
Computation.

27. Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. Complexity And Expressive
Power Of Logic Programming. ACM Computer Surveys, 2001, 33(3):374-425.

Consistent Query Answers in Virtual Data Integration Systems 81

28. Doan, A., Domingos, P. and Halevy, A. Learning to Match the Schemas of Data
Sources: A Multistrategy Approach. Machine Learning, 2003, 50(3): 279-301.

29. Duschka, O. Query Planning and Optimization in Information Integration. PhD
Thesis, Stanford University, December 1997.

30. Duschka, O., Genesereth, M. and Levy, A. Recursive Query Plans for Data Inte-
gration. Journal of Logic Programming, 2000, 43(1):49-73.

31. Eiter, T., Faber, W.; Leone, N. and Pfeifer, G. Declarative Problem-Solving in
DLV. Chapter in book Logic-Based Artificial Intelligence, J. Minker (ed.), Kluwer,
2000, pp. 79-103.

32. Eiter, T., Fink, M., Greco, G. and Lembo, D. Efficient Evaluation of Logic Pro-
grams for Querying Data Integration Systems. In Proc. International Conference
on Logic Programming (ICLP 03), Springer LNCS 2916, 2003, pp. 163-177.

33. Fagin, R., Kolaitis, P., Miller, R. and Popa, L. Data Exchange: Semantics and
Query Answering. In Proc. Int. Conf on Database Theory (ICDT 03), Springer
LNCS 2572, 2003, pp. 207-224.

34. Fagin, R., Kolaitis, P. and Popa, L. Data Exchange: Getting to the Core. In Proc. of
the ACM Symposium on Principles of Database Systems (PODS 03), ACM Press,
2003, pp. 90-101.

35. Flesca, S. and Greco, S. Rewriting Queries Using Views. Transactions on Knowl-
edge and Data Engineering, 2001, 13(6): 980-995.

36. Franconi, E., Kuper, G., Lopatenko, L., Serafini, L. A Robust Logical and Com-
putational Characterisation of Peer-to-Peer Database Systems. In Proc. Interna-
tional Workshop on Databases, Information Systems and Peer-to-Peer Computing
(DBISP2P 03), Springer LNCS 2944, 2004, pp. 64-76.

37. Friedman, M., Levy, A. and Millstein, T. Navigational Plans for Data Integration.
In Proc. National Conference on Artificial Intelligence (AAAI 99), AAAI Press,
1999, pp. 67-73.

38. Fuxman, A. and Miller, R.J. Towards Inconsistency Management in Data Integra-
tion Systems. In Proceedings of the IJCAI-03 Workshop on Information Integration
on the Web.

39. Giannotti, F., Pedreschi, D., Sacca, D. and Zaniolo, C. Non-Determinism in De-
ductive Databases. In Proc. International Conference on Deductive and Object-
Oriented Databases (DOOD 91), Springer LNCS 566, 1991, pp. 129–146.

40. Gelfond, M. and Lifschitz, V. The Stable Model Semantics for Logic Program-
ming. In Logic Programming, Proceedings of the Fifth International Conference
and Symposium (ICLP/SLP 88), MIT Press, 1988, pp. 1070-1080.

41. Gelfond, M. and Lifschitz, V. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 1991, 9:365–385.

42. Gelfond, M. and Leone, N. Logic Programming and Knowledge Representation -
The A-Prolog Perspective. Artificial Intelligence, 2002, 138(1-2):3-38.

43. Grahne, G. and Mendelzon, A. Tableau Techniques for Querying Information
Sources through Global Schemas. In Proc. of the International Conference on
Database Theory (ICDT 99), Springer LNCS 1540, 1999, pp. 332–347.

44. Grahne, G. Information Integration and Incomplete Information. IEEE Computer
Society Bulletin on Data Engineering, September 2002, pp. 46-52.

45. Grant, J. and Minker, M. A Logic-based Approach to Data Integration. Theory
and Practice of Logic Programming, 2002, 2(3):323-368.

46. Greco, S. Binding Propagation Techniques for the Optimization of Bound Dis-
junctive Queries. IEEE Transactions on Knowledge and Data Engineering, 2003,
15(2):368-385.

82 L. Bertossi and L. Bravo

47. Greco, G., Greco, S. and Zumpano, E. A Logical Framework for Querying and
Repairing Inconsistent Databases. IEEE Transactions on Knowledge and Data
Engineering, 2003, 15(6):1389-1408.

48. Gryz, J. Query Rewriting Using Views in the Presence of Functional and Inclusion
Dependencies. Information Systems, 1999, 24(7):597–612.

49. Gupta, A. and Singh Mumick, I. (eds.) Materialized Views: Techniques, Imple-
mentations, and Applications. MIT Press, 1999.

50. Halevy, A.Y. Theory of Answering Queries Using Views. SIGMOD Record, 2000,
29(4) 40-47.

51. Halevy, A.Y. Answering Queries Using Views: A Survey. VLDB Journal, 2001,
10(4): 270-294.

52. Halevy, A., Ives, Z., Suciu, D. and Tatarinov, I. Schema Mediation in Peer Data
Management Systems. In Proc. of the International Conference on Data Engineer-
ing (ICDE 03), IEEE Computer Society, 2003, pp. 505-518.

53. Halevy, A.Y. Corpus-Based Knowledge Representation. In Proc. International
Joint Conference on Artificial Intelligence (IJCAI 03), Morgan Kaufmann, 2003,
pp. 1567-1572.

54. Hull, R. Managing Semantic Heterogeneity in Databases: A Theoretical Perspec-
tive. In Proc. of the ACM Symposium on Principles of Database Systems (PODS
97), ACM Press, 1997, pp. 51-61.

55. Kementsietsidis, A., Arenas, M. and Miller, R.J. Mapping Data in Peer-to-Peer
Systems: Semantics and Algorithmic Issues. In Proc. of the ACM International
Conference on Management of Data (SIGMOD 03), ACM Press, 2003, pp. 325-
336.

56. Kolaitis, Ph. and Vardi, M. Conjunctive-Query Containment and Constraint Sat-
isfaction. J. Computer and Systems Sciences, 2000, 61(2): 302-332.

57. Lembo, D., Lenzerini, M. and Rosati, R. Source Inconsistency and Incompleteness
in Data Integration. In Proc. International Workshop Knowledge Representation
meets Databases (KRDB 02), CEUR Electronic Workshop Proceedings, 2002.

58. Lenzerini, M. Data Integration: A Theoretical Perspective. In Proc. ACM Sym-
posium on Principles of Database Systems (PODS 02), ACM Press, 2002, pp.
233-246.

59. Leone, N. et al. The DLV System for Konwledge Representation and Reasoning.
arXiv.org paper cs.LO/0211004. To appear in ACM Transactions on Computa-
tional Logic.

60. Levy, A.Y., Mendelzon, A., Sagiv, Y. and Srivastava, D. Answering Queries Using
Views. In Proceedings of the ACM Symposium on Principles of Database Systems
(PODS 95), ACM Press, 1995, pp. 95-104.

61. Levy, A., Rajaraman, A. and Ordille, J. Querying Heterogeneous Information
Sources using Source Descriptions. In Proc. International Conference on Very
Large Databases (VLDB 96), Morgan Kaufmann, 1996, pp. 251–262.

62. Levy, A. Logic-Based Techniques in Data Integration. Chapter in Logic Based
Artificial Intelligence, J. Minker (ed.), Kluwer Publishers, 2000.

63. Lin, J. and Mendelzon, A. Merging Databases under Constraints. International
Journal of Cooperative Information Systems, 1996, 7(1):55-76.

64. Lloyd, J.W. Foundations of Logic Programming. Second ed., Springer-Verlag, 1987.
65. McBrien, P. and Poulovassilis, A. Data Integration by Bi-Directional Schema

Transformation Rules. In Proc. International Conference on Data Engineering
(ICDE 03), IEEE Computer Society, 2003, pp. 227–238.

Consistent Query Answers in Virtual Data Integration Systems 83

66. Meyden, R.v.d. Logical Approaches to Incomplete Information: A Survey. Chapter
in Logics for Databases and Information Systems, J.Chomicki and G. Saake (eds.),
Kluwer, 1998, pp. 307-356.

67. Millstein, T., Halevy, A. and Friedman, M. Query Containment for Data Integra-
tion Systems. Journal of Computer and Systems Sciences, 2003, 66(1): 20-39.

68. Motro A. Superviews: Virtual Integration of Multiple Databases. IEEE Transac-
tions on Software Engineering, 1987, 13(7):785–798.

69. Motro A. Multiplex: A Formal Model for Multidatabases and Its Implementation.
In Proc. International Workshop on Next Generation Information Technology and
Systems, Springer LNCS 1649, 1999, pp. 138–158.

70. Pottinger, R., and Bernstein, Ph. Creating a Mediated Schema Based on Initial
Correspondences. IEEE Data Engineering Bulletin, 2002, 25(3): 26-31.

71. Rahm, E. and Bernstein, Ph.A. A Survey of Approaches to Automatic Schema
Matching. VLDB Journal, 2001, 10:334-350.

72. Ullman, J.D. Principles of Database and Knowledge-Base Systems. Computer
Science Press, 1988.

73. Ullman, J.D. Information Integration Using Logical Views. Theoretical Computer
Science, 2000, 239(2): 189-210.

74. Wei, F. and Lausen, G. Containment of Conjunctive Queries with Safe Negation.
In Proc. International Conference of Database Theory (ICDT 03), Springer LNCS
2572, 2003, pp. 346-360

75. Wiederhold, G. and Genesereth, M. The Conceptual Basis for Mediation Services.
IEEE Expert, 1997, 12(5): 38-47.

Representing Paraconsistent Reasoning via
Quantified Propositional Logic�

Philippe Besnard1, Torsten Schaub2,��, Hans Tompits3, and Stefan Woltran3

1 IRIT-CNRS,
118, route de Narbonne, F–31062 Toulouse Cedex

besnard@irit.fr
2 Institut für Informatik, Universität Potsdam,
Postfach 90 03 27, D–14439 Potsdam, Germany

torsten@cs.uni-potsdam.de
3 Institut für Informationssysteme 184/3, Technische Universität Wien,

Favoritenstraße 9–11, A–1040 Vienna, Austria
{tompits, stefan}@kr.tuwien.ac.at

Abstract. Quantified propositional logic is an extension of classical
propositional logic where quantifications over atomic formulas are per-
mitted. As such, quantified propositional logic is a fragment of second-
order logic, and its sentences are usually referred to as quantified Boolean
formulas (QBFs). The motivation to study quantified propositional logic
for paraconsistent reasoning is based on two fundamental observations.
Firstly, in recent years, practicably efficient solvers for quantified propo-
sitional logic have been presented. Secondly, complexity results imply
that there is a wide range of paraconsistent reasoning problems which
can be efficiently represented in terms of QBFs. Hence, solvers for QBFs
can be used as a core engine in systems prototypically implementing sev-
eral of such reasoning tasks, most of them lacking concrete realisations.
To this end, we show how certain paraconsistent reasoning principles can
be naturally formulated or reformulated by means of quantified Boolean
formulas. More precisely, we describe polynomial-time constructible en-
codings providing axiomatisations of the given reasoning tasks. In this
way, a whole variety of a priori distinct approaches to paraconsistent
reasoning become comparable in a uniform setting.

1 Introduction

Paraconsistent reasoning, that is, reasoning from inconsistent information, is a
central yet rather complex task underlying the vital reasoning capacities of in-

� The third and fourth author were partially supported by the Austrian Science Foun-
dation (FWF) under grant P15068, as well as by the European Commission under
project IST-2001-33570 INFOMIX and the IST-2001-33123 CologNeT Network of
Excellence.

�� Affiliated with the School of Computing Science at Simon Fraser University, Burnaby,
Canada.

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 84–118, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Representing Paraconsistent Reasoning via Quantified Propositional Logic 85

telligent agents. In view of our daily information feed, it even becomes more and
more important every day. As opposed to neighbouring fields like database sys-
tems or nonmonotonic reasoning, whose mainstream has or is about to converge
to a canonical approach, viz. relational algebra or answer-set programming, re-
spectively, the inherent manifoldness of reasoning from inconsistent information
(still) offers a whole variety of different approaches. As a consequence, there is
a lack of implemented systems for paraconsistent reasoning.

In this chapter, we address paraconsistent reasoning from the perspective of
quantified propositional logic, which is an extension of classical propositional logic
where quantifications over atomic formulas are permitted. As such, quantified
propositional logic is a fragment of second-order logic, and its sentences are
usually referred to as quantified Boolean formulas (QBFs).

The motivation to study quantified propositional logic for paraconsistent rea-
soning is based on two fundamental observations. Firstly, in recent years, prac-
ticably efficient solvers for quantified propositional logic have been presented.
Secondly, in view of results from complexity theory, a wide range of paraconsis-
tent reasoning problems can be efficiently represented in terms of QBFs. Hence,
solvers for QBFs can be used as a core engine in systems prototypically imple-
menting several of such reasoning tasks, most of them lacking concrete realisa-
tions.

The basic contribution of this chapter is to illustrate how paraconsistent
reasoning principles can be naturally formulated or reformulated by means of
quantified Boolean formulas. That is to say, we are interested in encodings of
paraconsistency in terms of QBFs. More specifically, given a paraconsistent in-
ference relation �p, we provide a mapping Tp[·; ·], assigning, to each theory T
and each formula ϕ, a QBF Tp[T ; ϕ] such that

1. T �p ϕ iff Tp[T ; ϕ] is valid in quantified propositional logic,
2. the size of Tp[T ; ϕ] is polynomial in the size of T and ϕ, and
3. determining the validity of QBFs resulting from translation Tp[·; ·] is not

computationally harder than checking inference under �p.

Hence, encodings of this kind provide axiomatisations of the respective inference
relation which are efficiently computable. In this way, a whole variety of a priori
distinct approaches to paraconsistent reasoning can be compared in a uniform
setting.

Our chapter is organised as follows. We start with an introduction to quanti-
fied propositional logic in Section 2, including basic intuitions, historical remarks,
formal preliminaries, and complexity issues. Notably, this section introduces half
a dozen basic QBF modules that can be used as building blocks for assembling
axiomatisations of numerous reasoning tasks. These modules are then used in
Section 3 to conduct three case-studies, demonstrating how existing approaches
to paraconsistent reasoning can be axiomatised and thus implemented by means
of QBFs.

86 P. Besnard et al.

2 Quantified Propositional Logic

2.1 Overview and Motivation

As mentioned previously, the language of quantified propositional logic is an
extension of classical propositional logic in which formulas may contain quantifi-
cations over propositional atoms. Sentences of this language are called quantified
Boolean formulas (QBFs), and often in the literature one identifies this term with
the language of quantified propositional formulas simpliciter.

As in first-order logic, the quantifiers permitted in quantified propositional
logic are either existential or universal. We illustrate the underlying ideas by
some simple examples.

Consider the propositional formula

(p → q) ∧ (q → p). (1)

Clearly, setting both p and q jointly to either true or false makes (1) true,
otherwise the formula evaluates to false. Hence, (1) is satisfiable but not valid.

Imagine we want to talk about satisfiability or validity within the logical
language itself. In other words, we want to capture the meta-linguistic concept
of truth assignments within a suitable extension of the object language. To this
end, we express a proposition of form

“there exist truth assignments to p and q such that (p → q) ∧ (q → p)
evaluates to true”

in the language of QBFs, using the formula

∃p∃q
(
(p → q) ∧ (q → p)

)
. (2)

Analogously, in order to talk about validity of a formula, say of (1), we may
write

∀p∀q
(
(p → q) ∧ (q → p)

)
. (3)

Hence, we extended the alphabet of classical propositional logic by two quan-
tifier symbols, ∃ and ∀. We call ∃ the existential (Boolean) quantifier symbol and
∀ the universal (Boolean) quantifier symbol. By the intuitive meaning of quan-
tifiers, we immediately get that QBF (2) evaluates to true, whereas QBF (3)
evaluates to false.

However, using the extended language, we can construct further formulas,
for instance,

∃p∀q
(
(p → q) ∧ (q → p)

)
; or (4)

∀p∃q
(
(p → q) ∧ (q → p)

)
. (5)

Formula (4) can be interpreted like this:

“Does there exist a truth assignment to p such that, for all truth assign-
ments to q, formula (1) evaluates to true?”

Representing Paraconsistent Reasoning via Quantified Propositional Logic 87

By inspecting the usual truth conditions for (p → q) ∧ (q → p), it is clear
that this is not the case. On the other hand, QBF (5) evaluates to true.

QBFs of form (2)–(5) are all closed QBFs since each variable v occurs in the
scope of a quantifier ∃v or ∀v. Open formulas like

∃q
(
(p → q) ∧ (q → p)

)
(6)

can be evaluated, analogously to open formulas in predicate logic, with respect
to interpretations, i.e., given truth assignments for the free variables (in our case,
p).

All formulas (1)–(6) are well-formed QBFs. So, each classical propositional
formula is a fortiori a QBF. Moreover, for every atom p, we allow the unary
operators ∃p and ∀p to appear “anywhere” in a QBF, not just at the beginning
of a formula. For instance,

∃p
(
∃q (p → q) ∧ ∀q (q → p)

)
is also a well-formed QBF. It is left to the reader to show that this formula
evaluates to true.

In general, QBFs can be seen as a conservative extension of classical proposi-
tional logic, i.e., to each QBF we can assign a logically equivalent propositional
formula. However, the advantage of QBFs is their compactness: to express a QBF
as a logically equivalent propositional formula, one has to face an exponential
increase of the formula size, in general.

In summarising, one may consider QBFs as an extension of classical proposi-
tional logic in which reasoning over truth assignments within the object language
can be expressed. A different way to think of QBFs is to regard them as a sub-
class of second-order logic, restricting predicates to be of arity 0, and therefore
to consider formulas without function symbols and object variables.

2.2 Usability of QBFs

Historically, among the first logical analyses of systems dealing with quantifiers
over propositional variables are the investigations due to Russell (“theory of im-
plication” [63]) and �Lukasiewicz and Tarski (“erweiterter Aussagenkalkül” [45]),
not to mention the monumental Principia Mathematica [70]. The particular
idea of quantifying propositional variables was extended in Leśniewski’s system
of protothetic logic [42, 65] where variables whose values are truth functions are
allowed and quantification is defined over these variables.1

However, it took several decades until, in the beginning of the seventies of
the last century, propositional quantification got into the spotlight of computer
science, in particular of the new and developing field of complexity theory [34].

1 A more elaborate overview on these early historical aspects of propositional quan-
tification can be found in §28 of Church’s Introduction to Mathematical Logic [21].

88 P. Besnard et al.

Meyer and Stockmeyer [48] were the first who showed that the evaluation prob-
lem for QBFs is complete for the complexity class PSPACE—this class comprises
all problems which can be decided by deterministic Turing machines with a space
requirement polynomially related to the representation size of the problem. In
fact, what was considered there were Boolean expressions, and the quantifiers
were part of the problem description and not of the language. Already in [47],
the same authors introduced the polynomial hierarchy [67] as an analogue to
the arithmetic hierarchy of recursion theory. Starting from ΣP

1 = NP (NP com-
prises all problems which can be decided by nondeterministic Turing machines
in polynomial time), they defined classes ΣP

k+1, for k ≥ 1,

“as the family of sets of words accepted in nondeterministic polynomial
time by Turing machines with oracles for sets ΣP

k ” [48].

In that paper, it was already shown that each member of the hierarchy pos-
sesses a complete decision problem, given by the evaluation problem of QBFs
having a specific quantifier structure (viz., of QBFs being in prenex normal
form2 and such that both the leading quantifier and the number of quantifier
alternations is fixed). Other classes, like ΠP

k and ΔP
k , which are today identified

as basic components of the polynomial hierarchy, first appeared in [67, 72].
In view of the above completeness results, the evaluation problem for QBFs

plays the same role for the respective classes of the polynomial hierarchy as
the satisfiability problem for classical propositional logic, sat, does for the cen-
tral complexity class NP. More precisely, hardness for a particular class in the
polynomial hierarchy can be shown by reducing the evaluation problem for the
respective class of QBFs into the problem under consideration (see [41, 66, 16]
for prominent PSPACE-completeness results, or [36, 30] for complexity results
for nonmonotonic logics which reside on the second level of the polynomial hier-
archy). On the other hand, if we know membership for a problem in some class
of the polynomial hierarchy, we are guaranteed that there must exist an efficient
encoding in terms of QBFs having a restricted number of quantifier alternations.

Note that the latter observation allows us to find appropriate translation
schemas into QBFs such that the resultant formulas can be employed to decide
the original problem. Moreover, in many cases, satisfying truth assignments to
the free variables in such QBFs correspond to solutions of the original reasoning
task. Such encodings provide us thus with a uniform axiomatisation for all the
considered problems, which leads to further insights as well as allowing the com-
parison of differing problems in a well-studied and common setting. In fact, this
is one of the aims of this article, where different paraconsistent reasoning princi-
ples are represented as QBFs, summarising and extending previous work [12, 13].
Other application areas of this general methodology, such as expressing planning
problems or different forms of nonmonotonic reasoning in terms of QBFs, is re-
ported, e.g., in [60, 6, 69, 27, 31, 68, 25, 28, 53].

2 The notion of a prenex normal form for QBFs is defined analogously as for formulas
in first-order logic; cf. also Section 2.4 for more details.

Representing Paraconsistent Reasoning via Quantified Propositional Logic 89

However, the practical impact of this line of research clearly depends on the
capabilites of suitable QBF-solvers which can be applied as underlying inference
engines in order to solve the reduced problems. In contrast to similar methods
using reductions to sat, where impressive results have been achieved by em-
ploying sophisticated sat-solvers (for instance in the area of planning [37, 38]),
practical implementations for evaluating QBFs lagged behind for quite a long
time. This changed when Kleine-Büning et al. [39] presented the first imple-
mented QBF-solver, which was based on a generalisation of the resolution prin-
ciple [62]. Later, an alternative—and more promising—approach was presented
by Cadoli et al. [17] relying on an adaption of the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [24, 23] for propositional logic to quantified proposi-
tional logic. Starting from this seminal paper, a number of other solvers for QBFs
have been developed, like, e.g., the systems described in [32, 35, 43, 61, 73], which
are based on improvements of the DPLL procedure for QBFs and by adapting
several methods known from propositional logic, or by introducing new meth-
ods. It is worth mentioning that one of these solvers was also designed to run
on a distributed system [32, 64]. Hence, the availability of such a parallel algo-
rithm, and the fact that we can represent a complex problem by means of QBFs
faithfully, we directly obtain a distributed decision procedure for this particular
problem. This convenient situation obviously avoids designing special-purposed
distributed algorithms for the problem under consideration.

Recently, Ayari and Basin [6] argued that DPLL procedures need not to be
the best choice in general, and an alternative approach for solving QBFs was
thus put forth (a similar idea is also outlined in [54]). These new ideas promise to
be very efficient, at least on some particular classes of QBFs, a situation similar
to the case when binary decision diagrams (BDDs) [15, 49] were proposed to
evaluate QBFs.

2.3 Formal Postulates of Quantified Propositional Logic

Definition 1. The alphabet (or signature) of the language of quantified propo-
sitional logic consists of the following items:

1. a countable set of propositional variables (or atoms);
2. the logical constants “�” and “⊥”;
3. the logical connectives “¬”, “ ∨ ”, “ ∧ ”, “ → ”, and “ ≡ ”;
4. the quantification symbols “∃” and “∀”; and
5. the auxiliary symbols “(” and “)”. �

Definition 2. The set of quantified Boolean formulas (QBFs), or (well-
formed) formulas of quantified propositional logic, is inductively defined as fol-
lows:

1. any propositional variable and any logical constant is a QBF;
2. if Φ is a QBF, then (¬Φ) is a QBF;
3. if Φ and Ψ are QBFs, then (Φ ∧ Ψ), (Φ ∨ Ψ), (Φ → Ψ), and (Φ ≡ Ψ) are

QBFs;

90 P. Besnard et al.

4. if p is a propositional variable and Φ is a QBF, then (∃p Φ) and (∀p Φ) are
QBFs;

5. the only QBFs are those given by 1–4. �

We tacitly assume the usual conventions concerning the ommission of paren-
theses in formulas where no ambiguities can arise. Furthermore, we use upper-
case Greek letters as meta-variables for QBFs, whilst lower-case Greek letters
stand for propositional formulas (i.e., quantifier-free QBFs).

By a theory we understand a finite set of quantifier-free formulas. Often,
we identify a theory, T , with the (finite) conjunction of its elements

∧
φ∈T φ.

Furthermore, for T = ∅, we define
∧

φ∈T = �.
Let Q ∈ {∃,∀} be a quantifier symbol. For a formula Qp Ψ , we call Ψ the

scope of Qp. Moreover, given a finite set P of atoms, QP Ψ stands for any QBF
Qp1Qp2 . . . QpnΨ such that the variables p1, . . . , pn are pairwise distinct and
P = {p1, . . . , pn}.

Our definition of quantified Boolean formulas is rather unrestricted in two
ways: Firstly, in contrast to some formalisations of QBFs in the literature, we
allow quantifiers to appear anywhere in a formula. Secondly, we do not stipulate
any restriction on the quantification, i.e., we do not require that a quantified
variable p in Qp Φ (Q ∈ {∃,∀}) occurs in the scope Φ of Qp. For example,
(∃p (q ∧ r)) is a QBF, and so is (∃p (∀p (p → q))).

As usual, an occurrence of a variable p in a QBF Φ is free iff it does not
appear in the scope of a quantifier Qp, otherwise the occurrence of p is bound.
If Φ contains no free variable occurrences, then Φ is closed, otherwise Φ is open.
Furthermore, Φ[p1/Ψ1, . . . , pn/Ψn] denotes the result of uniformly substituting
in Φ each free occurrence of a variable pi by a formula Ψi, for 1 ≤ i ≤ n.

The semantics of quantified propositional logic is based on the following no-
tion. Let P be a non-empty set of atoms. A (two-valued) interpretation, I, (over
P) is a function assigning to each atom from P an element from {t, f}. If I(p) = t,
then p is true under I, otherwise p is false under I. We usually view interpreta-
tions as subsets of P such that p is true under I just in case p ∈ I. Interpretations
induce truth values of general formulas recursively in the following way.

Definition 3. Let P be a non-empty set of atoms and Φ a QBF such that all
atoms occurring in Φ belong to P . The truth value, vI(Φ), of Φ under an inter-
pretation I : P → {t, f} is defined by the following conditions:

1. if Φ = �, then vI(Φ) = t, and if Φ = ⊥, then vI(Φ) = f ;
2. if Φ = p, for an atom p, then vI(Φ) = I(p);
3. if Φ = ¬Ψ , then vI(Φ) = t if vI(Ψ) = f , otherwise vI(Φ) = f ;
4. if Φ = (Φ1 ∧Φ2), then vI(Φ) = t if vI(Φ1) = vI(Φ2) = t, otherwise vI(Φ) = f ;
5. if Φ = (Φ1 ∨ Φ2), then vI(Φ) = t if vI(Φ1) = 1 or vI(Φ2) = 1, otherwise

vI(Φ) = f ;
6. if Φ = (Φ1 → Φ2), then vI(Φ) = t if vI(Φ1) = f or vI(Φ2) = t, otherwise

vI(Φ) = f ;
7. if Φ = (Φ1 ≡ Φ2), then vI(Φ) = t if vI(Φ1) = vI(Φ2), otherwise vI(Φ) = f ;

Representing Paraconsistent Reasoning via Quantified Propositional Logic 91

8. if Φ = ∀p Ψ , then vI(Φ) = t if vI(Ψ [p/�]) = vI(Ψ [p/⊥]) = t, otherwise
vI(Φ) = f ;

9. if Φ = ∃p Ψ , then vI(Φ) = t if vI(Ψ [p/�]) = t or vI(Ψ [p/⊥]) = t, otherwise
vI(Φ) = f .

Observe that it obviously holds that

vI(∀p Ψ) = vI(Ψ [p/�] ∧ Ψ [p/⊥]) and
vI(∃p Ψ) = vI(Ψ [p/�] ∨ Ψ [p/⊥]).

We say that Φ is true under I if vI(Φ) = t, otherwise Φ is false under I.
If vI(Φ) = t, then I is a model of Φ. If Φ possesses some model, then Φ is
satisfiable, otherwise Φ is unsatisfiable. If Φ is true under every interpretation,
then Φ is valid. As usual, we also write |= Φ to express that Φ is valid.

It is easily seen that the truth value of a QBF Φ under interpretation I
depends only on the free variables in Φ. Hence, without loss of generality, for
determining the truth value of QBFs, we may restrict our attention to interpre-
tations which contain only atoms occurring free in the given QBF. In particular,
closed QBFs are either true under every interpretation or false under every inter-
pretation, i.e., they are either valid or unsatisfiable. So, for closed QBFs, there is
no need to refer to particular interpretations. As well, if a closed QBF Φ is valid,
we say that Φ evaluates to true, and, correspondingly, if Φ is unsatisfiable, we
say that Φ evaluates to false. Two formulas (i.e., ordinary propositional formu-
las or QBFs) are (logically) equivalent iff they possess the same models. Thus,
formulas Φ and Ψ are logically equivalent iff Φ ≡ Ψ is valid.

We also use |= to refer to the semantic consequence relation between a theory
(i.e., a finite set of propositional formulas) and a propositional formula, defined
in the usual way. Accordingly, for a theory T , the deductive closure of T , i.e.,
the set of all semantic consequences of T , is given by Cn(T) = {ϕ | T |= ϕ}.
Furthermore, var(T) denotes the set of all atoms occurring in T .

Similar to classical first-order logic, there are several results concerning the
shifting and renaming of quantifiers. We list some fundamental relations below
and refer the interested reader to [29, 71] for a fuller discussion.

Proposition 1. Let p, q be atoms and Q ∈ {∀,∃}. Furthermore, let Φ, Ψ be
QBFs such that Ψ does not contain free occurrences of p. Then,

1. |= (¬∃p Φ) ≡ ∀p(¬Φ),
2. |= (¬∀p Φ) ≡ ∃p(¬Φ),
3. |= (Ψ ◦Qp Φ) ≡ Qp(Ψ ◦ Φ), for ◦ ∈ {∧ , ∨ , →}, and
4. |= (Qq Ψ) ≡ (Qp Ψ [q/p]).

2.4 Computational Complexity

We assume the reader familiar with the basic concepts of complexity theory
(see, e.g., [52] for a comprehensive introduction). Relevant for our purposes are

92 P. Besnard et al.

the elements of the polynomial hierarchy [67], introduced in [48] as a computa-
tional analogue to the arithmetic hierarchy of recursion theory, consisting of the
following sequence of classes:

ΔP
0 = ΣP

0 = ΠP
0 = P,

and, for all k ≥ 0,

ΔP
k+1 = PΣP

k , ΣP
k+1 = NPΣP

k , and ΠP
k+1 = co-ΣP

k+1.

Here, P is the class of all problems solvable on a deterministic Turing machine
in polynomial time; NP is similarly defined but using a nondeterministic Turing
machine as underlying computing model; and, for complexity classes C and A,
the notation CA stands for the relativised version of C, consisting of all problems
which can be decided by Turing machines of the same sort and time bound as in
C, only that the machines have access to an oracle for problems in A. As well,
co-C is the class of all problems which are complementary to the problems in C.
We note that NP = ΣP

1 , co-NP = ΠP
1 , and P = ΔP

1 .
The cumulative polynomial hierarchy is given by the union

⋃∞
k=0 ΣP

k . We say
that a problem is located at the kth level of the polynomial hierarchy iff it is
contained in ΔP

k+1 and it is either ΣP
k -hard or ΠP

k -hard.
A further relevant family of complexity classes is given by the sequence of

classes DP
k , k ≥ 1, where each DP

k consists of all problems expressible as the
conjunction of a problem in ΣP

k and a problem in ΠP
k . Notice that, for all k ≥ 1,

ΣP
k ⊆ DP

k ⊆ ΣP
k+1 holds; in fact, both inclusions are widely conjectured to be

strict. Moreover, any problem in DP
k can be solved with two ΣP

k oracle calls, and
is thus intuitively easier than a problem complete for ΔP

k+1.
The classes ΣP

k and ΠP
k are closely related to the evaluation problem of

QBFs—in particular, to QBFs which are given in prenex normal form: A QBF
Φ is in prenex normal form iff it is of the form

Q1P1Q2P2 . . . QnPn φ,

where φ is a propositional formula, Qi ∈ {∃,∀} such that Qi �= Qi+1 for 1 ≤ i ≤
n−1, and Pi are disjoint sets of propositional variables for 1 ≤ i ≤ n. If Q1 = ∃,
then Φ is called an (n, ∃)-QBF, and if Q1 = ∀, then Φ is called an (n, ∀)-QBF.
Without going into details, we mention that any QBF is easily transformed into
an equivalent QBF in prenex normal form (by applying, among other reduction
steps, the equivalences depicted in Proposition 1).

Proposition 2. For every k ≥ 1, we have that

1. deciding the truth for closed (k,∃)-QBFs is ΣP
k -complete, and

2. deciding the truth for closed (k,∀)-QBFs is ΠP
k -complete.

These complexity results are central for our subsequent encodings. In partic-
ular, we are interested in representing a given paraconsistent inference relation
�p via a QBF-encoding Tp[·; ·] such that

Representing Paraconsistent Reasoning via Quantified Propositional Logic 93

1. Tp[·; ·] is faithful, i.e., for each theory T and each formula ϕ, T �p ϕ iff
Tp[T ; ϕ] evaluates to true,

2. Tp[T ; ϕ] is computable in polynomial time, for each theory T and each for-
mula ϕ, and

3. determining the truth values of the QBFs resulting from Tp[·; ·] is not com-
putationally harder than checking inference under �p.

The translation Tp[·; ·] is then called an adequate translation. For instance, if
checking T �p ϕ, for a given theory T and a given formula ϕ, is known to be in
complexity class ΣP

2 , our desired translation Tp[T ; ϕ] should lead, for each T and
ϕ, to a (2,∃)-QBF, i.e., a QBF with at most one quantifier alternation, whose
size is polynomial in the size of T and ϕ.

2.5 Basic QBF-Modules

We next discuss how QBFs can be employed to express some fundamental rea-
soning tasks concerning the consistency of propositional theories. Computing
tasks of this kind will be required frequently throughout the paper as subtasks
for other problems. Hence, the “modules” discussed in this section play the role
of “building blocks” for the subsequent encodings of different paraconsistent
reasoning tasks.

Expressing consistency. First of all, since existential quantification refers to sat-
isfiability, we are easily capable to decide whether a given theory W is consistent,
i.e., whether W �|= ⊥. Indeed, simply define

Cons [W] = ∃P (
∧

ψ∈W

ψ),

where P = var(W). Hence, Cons [W] is always closed, and the following relation
is easily seen:

Proposition 3. A theory W is consistent iff Cons [W] evaluates to true.

We now extend this simple module as follows. Assume we have given two
propositional theories, W and R, and we want to identify all subsets S ⊆ R such
that W ∪ S is consistent, i.e., our task is to compute all subsets of R consistent
with W .

The basic idea is to use new atoms such that the truth assignments to these
atoms correspond to the possible subsets of R. More precisely, let G = {gφ | φ ∈
R} be a set of new variables, not occurring in W or R. Variables from G are
called “guessing variables”, since they are used to guess a certain subset of R.

Consider the following encoding:

ConsG[W ; R] = ∃P
(∧

ψ∈W

ψ ∧
∧

φ∈R

(gφ → φ)
)
,

where P consists of all variables occurring in R or W . Observe that we now have
an open QBF where the guessing variables G are free. The relation between

94 P. Besnard et al.

subsets of R which are consistent with W and models of ConsG[W ; R] is a one-
to-one correspondence, as desired:

Proposition 4. Let W and R be theories, and G = {gφ | φ ∈ R} a set of
variables not occurring in W or R. Moreover, let S ⊆ R and I ⊆ G such that,
for each φ ∈ R, φ ∈ S iff gφ ∈ I.

Then, W ∪ S is consistent iff ConsG[W ; R] is true under I.

Example 1. Consider W = {¬p ∨ ¬q} and R = {p, q}. All proper subsets of R
are consistent with W , but W ∪R is inconsistent. For R as given, we choose

G = {gp, gq}

as corresponding set of guessing variables.
Consider now the encoding ConsG[W ; R], given by

∃pq
(
(¬p ∨ ¬q) ∧ (gp → p) ∧ (gq → q)

)
. (7)

It can be checked that all interpretations I ⊂ G are models of (7), but the
interpretation I = G is not a model of (7). This coincides with the observation
that exactly the proper subsets of R, viz. S1 = ∅, S2 = {p}, and S3 = {q}, are
consistent with W , while S4 = {p, q} is not.

Expressing maximal consistent subsets. We also require to express the maximal
subsets of R which are consistent (with some W). For instance, in the above
example, we should rule out the subset S1 = ∅, since S1 ⊂ S2 (as well as
S1 ⊂ S3) and thus S1 is not maximal.

Formally, a subset S of R is maximal consistent (with W) iff S is consis-
tent (with W) and each S′ with S ⊂ S′ is inconsistent (with W). Due to the
monotonicity of classical propositional logic, the following characterisation is
equivalent:

Proposition 5. Let W and R be theories, and S ⊆ R.
Then, S is maximal consistent with W iff

1. W ∪ S is consistent, and
2. for each φ ∈ (R \ S), W ∪ S ∪ {φ} is inconsistent.

We express these tests as follows: For any theories W and R, let G = {gφ |
φ ∈ R} be a set of variables such that G ∩ var(W ∪R) = ∅. Then, define

ConsG
max[W ; R] = ConsG[W ; R] ∧

∧
φ∈R

(
¬gφ → ¬ConsG\{gφ}[W ∪{φ}; R \ {φ}]

)
.

Intuitively, ConsG
max[W ; R] guesses a subset S of R (via atoms G). With the

first conjunct ConsG[W ; R], it is checked whether the guess is consistent with W .
The second conjunct checks maximality for S as follows: For each φ ∈ R, if φ is

Representing Paraconsistent Reasoning via Quantified Propositional Logic 95

contained in the guess (i.e., if gφ is true), we are immediately done. Otherwise,
¬ConsG\{gφ}[W ∪ {φ}; R \ {φ}] must evaluate to true. Observe that we use the
same set G in this module (except for removing φ, which itself is “added” to
the first argument W) as in the previous test. Hence, we check whether S is not
consistent with W ∪ {φ}. This coincides precisely with the second condition in
Proposition 5.

The formal result is as follows:

Proposition 6. Let W and R be theories, and G = {gφ | φ ∈ R} a set of
variables not occurring in W or R. Moreover, let S ⊆ R and I ⊆ G such that,
for each φ ∈ R, φ ∈ S iff gφ ∈ I.

Then, S is maximal consistent with W iff ConsG
max[W ; R] is true under I.

Expressing minimal models. Besides the selection of maximal subsets satis-
fying a certain criterion, it is sometimes also necessary to characterise subsets
which are minimal with respect to a specific condition. Indeed, a widely-used
method in nonmonotonic reasoning is inference based on minimal models. In
such an approach, the inference relation is specified not in terms of all models of
a given theory but only in terms of models which are minimal with respect to a
certain ordering. Following the seminal work of McCarthy [46], minimal-model
reasoning can be expressed in terms of a schema of second-order logic, known as
circumscription schema (or circumscription for short). However, in the propo-
sitional case, instances of the circumscription schema are actually nothing else
than specific QBFs. In the following, we characterise models which are minimal
with respect to a specific ordering in terms of a QBF module corresponding to
propositional circumscription.

Let T be a theory and (P, Q, Z) a partition of var(T). Assume two models I
and I ′ of T , and define I ≤P ;Z I ′ iff the following conditions are satisfied:

1. {q ∈ Q | vI(q) = t} = {q ∈ Q | vI′(q) = t};
2. {p ∈ P | vI(p) = t} ⊆ {p ∈ P | vI′(p) = t}.

A model I of T is called (P ; Z)-minimal if no model I ′ of T with I ′ �= I
satisfies I ′ ≤P ;Z I.

Informally, the partition (P, Q, Z) can be interpreted as follows: The set P
contains the variables to be minimised, Z are those variables that can vary in
minimising P , and the remaining variables Q are fixed in minimising P .

For a theory T and a partition (P, Q, Z) of var(T), where P = {p1, . . . , pn}
and Z = {z1, . . . , zm}, we define the QBF Circ[T ; P ; Z], called the (parallel)
circumscription (schema) of P in T , as

T ∧ ∀P̃ ∀Z̃
((

T{P/P̃ , Z/Z̃} ∧
∧

1≤i≤n

(p̃i → pi)
)
→

∧
1≤i≤n

(pi → p̃i)
)
,

where P̃ = {p̃1, . . . , p̃n} and Z̃ = {z̃1, . . . , z̃m} are sets of new variables corre-
sponding to P and Z, respectively, and T{P/P̃ , Z/Z̃} results from T by uniform
substitution of the variables in P̃ ∪ Z̃ for those in P ∪ Z.

Now, the main property of Circ[T ; P ; Z] is given by the following result:

96 P. Besnard et al.

Proposition 7 ([46]). Let T be a theory, (P, Q, Z) a partition of var(T), and
I ⊆ var(T).

Then, I is a (P ; Z)-minimal model of T iff I is a model of Circ[T ; P ; Z].

Derivability testing. Finally, we define further modules for expressing derivabil-
ity. Recall that, for any theory T and any propositional formula ϕ, it holds that
T |= ϕ iff T ∪ {¬ϕ} is inconsistent. We thus define

Deriv [W ; ϕ] = ¬Cons [W ∪ {¬ϕ}]

and obtain the following property:

Proposition 8. For any theory W and any formula ϕ, W |= ϕ iff Deriv [W ; ϕ]
is valid.

More generally, defining

DerivG[W ; R; ϕ] = ¬ConsG[W ∪ {¬ϕ}; R]

yields the following characterisation:

Proposition 9. Let W and R be theories, ϕ a formula, and G = {gφ | φ ∈ R}
a set of variables not occurring in W , R, or ϕ. Moreover, let S ⊆ R and I ⊆ G
such that, for each φ ∈ R, φ ∈ S iff gφ ∈ I.

Then, W ∪ S |= ϕ iff DerivG[W ; R; ϕ] is true under I.

3 QBFs for Paraconsistent Reasoning: Case Studies

In this section, we show how QBFs can be successfully used to express different
families of paraconsistent inference relations, exploiting the basic QBF modules
introduced above. We first deal with formalisms based on maximal-consistent
subsets. Afterwards, in Section 3.2, we discuss a class of inference relations using
a consistency-driven rewriting technique based on Reiter’s default logic. Finally,
Section 3.3 is devoted to approaches using minimal-model reasoning in many-
valued logics.

3.1 Reasoning from Maximal-Consistent Subsets

A simple but very popular approach to reasoning from an inconsistent knowl-
edge base is reasoning from consistent subsets [59, 58, 14, 51, 7, 8]. Consider an
inconsistent knowledge base in the form of a theory T :

φ ∧ (ψ → ϕ); (8)
ψ ∧ ¬φ; (9)

(ψ ∧ ϕ) → η; (10)
(ψ ∧ ¬η) ∨ ¬φ; (11)
φ ∨ ψ ∨ ϕ ∨ η. (12)

Representing Paraconsistent Reasoning via Quantified Propositional Logic 97

Clearly, this theory is inconsistent. One way to proceed is to consider the
maximal consistent subsets of T , which are:

S = {(8), (10), (12)};
S′ = {(8), (11), (12)};
S′′ = {(9), (10), (11), (12)}.

Let us see what follows from these maximal consistent subsets of T :

– S entails φ and ψ → (ϕ ∧ η).
– S′ entails φ and ψ ∧ ϕ ∧ ¬η.
– S′′ entails ¬φ and ψ, as well as ϕ → η.

Among the most cautious conclusions are those formulas that follow from the
intersection of S, S′, and S′′:

φ ∨ ψ ∨ ϕ ∨ η.

Definition 4. Let T be a theory. A formula ϕ is a free consequence of T , sym-
bolically T �free ϕ, iff ϕ is entailed by the intersection of all maximal consistent
subsets of T .

In the above example, φ ∨ ψ ∨ ϕ ∨ η ∨ χ is a free consequence of T , for any
formula χ. By contrast, φ ∨ ψ is not a free consequence of T even though φ ∨ ψ
is entailed by S and similarly by S′ as well as by S′′. Thus, free consequences
need not be very informative and other notions have been introduced in the
literature.

According to [20], a systematic account of reasoning from consistent subsets
arises from distinguishing between selection mechanisms (among consistent sub-
sets) and reasoning principles (to be applied to the selected consistent subsets).

In the general case, T is a prioritised theory, which means that it comes in
the form T = T1 ∪ · · · ∪ Tn (possibly, n = 1), where each Ti is a stratum such
that strata with lower index contain formulas of greater importance. We assume
the Ti’s to be disjoint whereas not all authors do so. Here, we use the partition
requirement in order to keep things simple. A subtheory of a prioritised theory T
is of the form S = S1 ∪ · · · ∪Sn such that Si = Ti ∩S for i = 1, . . . , n. Moreover,
the level of a subtheory of T is defined by a(S) = min{i ∈ {1, . . . , n} | Si �= Ti}.

Definition 5. Given T = T1∪· · ·∪Tn, we define the orderings �t (“subtheory-
based preference”), �bo (“best-out preference”), and �incl (“inclusion-based
preference”) as follows, where S = S1 ∪ · · · ∪ Sn and S′ = S′

1 ∪ · · · ∪ S′
n range

over the set of all consistent subtheories of T :

– S �t S′ iff S ⊂ S′;
– S �bo S′ iff a(S) < a(S′); and
– S �incl S′ iff there exists some k ∈ {1, . . . , n} such that Sk ⊂ S′

k and
Si = S′

i, for all i ∈ {1, . . . , k − 1}.

98 P. Besnard et al.

Then, a consistent subtheory of T is σ-preferred iff it is maximal with respect
to �σ, where σ ranges over {t,bo, incl}. Also, σ(T) denotes the set of all σ-
preferred subtheories of T .

Considering that all formulas in the above example form the unique stratum
of T , we get that σ(T) = {S, S′, S′′} in all three cases for σ (i.e., t, bo, and
incl). A more interesting situation is T being stratified, e.g., as follows:

T1 = {(8), (9)}; T2 = {(10)}; T3 = {(11), (12)}.

Clearly, introducing strata cannot alter �t, and the t-preferred subtheories
of T are still as above: {S, S′, S′′}. Although �bo depends in general on strata,
it happens here that the bo-preferred subtheories of T are also the same. The
incl-preferred subtheories of T are just S and S′′.

Definition 6. Let T = T1 ∪ · · · ∪ Tn be a prioritised theory, ϕ a propositional
formula, and σ ∈ {t,bo, incl}. Then,

– ϕ is an exi-σ consequence of T , written T �exi-σ ϕ, iff ϕ ∈
⋃

S∈σ(T) Cn(S),
– ϕ is a uni-σ consequence of T , written T �uni-σ ϕ, iff ϕ ∈

⋂
S∈σ(T) Cn(S),

and
– ϕ is an arg-σ consequence of T , written T �arg-σ ϕ, iff ϕ ∈

⋃
S∈σ(T)Cn(S)

but ¬ϕ /∈
⋃

S∈σ(T) Cn(S).

Considering that all formulas in our example form the unique stratum of T ,
we get that φ ∨ ψ is a uni-t consequence of T , whereas ψ ∧ ¬φ is an exi-t
consequence of T because ψ ∧ ¬φ is entailed by S′′ even though it is neither
entailed by S nor S′. However, ψ ∧ ¬φ fails to be an arg-t consequence of T .
A reason is that φ (from which ¬(ψ ∧ ¬φ) is classically deduced) is entailed by
S, and analogously by S′. An example of an arg-t consequence of T is ψ.

Assume now that T is equipped with the stratification given above. uni-
t consequences and uni-bo consequences are the same as in the non-stratified
case. On the other hand, (ψ ∧ ϕ) → η is a new uni-incl consequence. Moreover,
φ ∧ ψ ∧ ¬η is no longer an exi-incl consequence. Accordingly, (ψ ∧ ϕ) → η
is a new arg-incl consequence.

All these notions compare, by way of set-inclusion of the respective sets of
consequences of a given theory, as depicted in Figure 1 (cf. also [20]).

Hence, the free consequences of a given theory T comprise the smallest set of
consequences of T and the set of exi-t consequences is the largest (apart from
the classical consequences Cn(T)).

Other notions have been defined as well, either in the non-prioritised case or
in the prioritised case, most of them technically involved.

The complexity of checking exi-σ, uni-σ, and arg-σ consequences, for σ ∈
{t,bo, incl}, was analysed in [19]. There, the following results were shown: The
problem of deciding whether a formula is an exi-σ consequence of a given theory
is ΣP

2 -complete for σ ∈ {t,bo, incl}. The corresponding problem for uni-t and
uni-incl consequences is ΠP

2 -complete, while for uni-bo it is known to be in
ΔP

2 . As for arg-σ, the problem is in ΔP
3 , for each σ ∈ {t,bo, incl}.

Representing Paraconsistent Reasoning via Quantified Propositional Logic 99

EXI-T

EXI-BO

ARG-T ARG-BO

EXI-INCL

ARG-INCL

UNI-INCL

UNI-BOUNI-T

FREE

Fig. 1. Relations between different paraconsistent inference relations based on maximal
subsets

Encodings. From our considerations in Section 2.5, it is quite easy to construct
QBF encodings for expressing exi-t, uni-t, and arg-t consequences. Indeed, it
just suffices to combine the modules ConsG

max[·; ·] and DerivG[·; ·] in a suitable
manner, for a set G of guessing variables. More precisely, given a theory T and a
formula ϕ, we use simultaneously the modules ConsG

max[∅; T] and DerivG[∅; T ; ϕ])
to check whether a guess for a subset S ⊆ T is maximal consistent and whether ϕ
is entailed by S, respectively. Observe that the same set G of guessing variables
is used for expressing both tasks. If there exists at least one interpretation I ⊆ G
making both ConsG

max[∅; T] and DerivG[∅; T ; ϕ]) true, we directly get an encoding
for exi-t consequences. If under each I ⊆ G which is a model of ConsG

max[∅; T],
also DerivG[∅; T ; ϕ]) is true, then we have an encoding for uni-t consequences.

100 P. Besnard et al.

Finally, arg-t consequences are easily encoded via two independent tests for
checking exi-t inference.

Theorem 1. Let T be a theory, ϕ a formula, and G = {gφ | φ ∈ T} a set of
new guessing atoms not occurring in T or ϕ. Then,

1. T �exi-t ϕ iff Texi-t[T ; ϕ] = ∃G
(
ConsG

max[∅; T] ∧ DerivG[∅; T ; ϕ]
)

is valid,
2. T �uni-t ϕ iff Tuni-t[T ; ϕ] = ∀G

(
ConsG

max[∅; T] → DerivG[∅; T ; ϕ]
)

is valid,
and

3. T �arg-t ϕ iff Targ-t[T ; ϕ] = Texi-t[T, ϕ] ∧ ¬Texi-t[T,¬ϕ] is valid.

Observe that the size of each of the above encodings is clearly polynomial
in the size of T and ϕ. Hence, each of the encodings is computable in polyno-
mial time. Furthermore, it is easy to check that Texi-t[T ; ϕ] can be transformed
in polynomial time into a (2,∃)-QBF, whilst Tuni-t[T ; ϕ] can be transformed,
likewise in polynomial time, into a (2,∀)-QBF, for each T and ϕ. Therefore, re-
calling that checking exi-t and uni-t consequence is complete for ΣP

2 and ΠP
2 ,

respectively, both Texi-t[·; ·] and Tuni-t[·; ·] are adequate.
Concerning Targ-t[T ; ϕ], since this encoding can be transformed in polynomial

time into an equivalent QBF which is the conjunction of a (2,∃)-QBF and a
(2,∀)-QBF, for each T and ϕ, it follows that checking arg-t consequence is not
only in ΔP

3 but actually in the easier class DP
2 .

Next, we consider the notion of free consequence. To this end, we call, for a
given theory T , the set of all φ ∈ T which are a uni-t consequence of T the free
base of T .

The following property is also observed in [7].

Proposition 10. Let T be a theory. Then, a formula ϕ is a free consequence of
T iff ϕ is classically entailed by the free base of T .

Note that, by definition, the free base of T is given by T ∩
⋂

S∈t(T) Cn(S).
Hence, Proposition 10 expresses that T �free ϕ just in case T∩

⋂
S∈t(T) Cn(S) |=

ϕ. By the properties of Cn(·), this in turn entails that T �free ϕ only if ϕ ∈⋂
S∈t(T) Cn(S), which rephrases the relation that every free consequence of T is

a uni-t consequence of T , as depicted in Figure 1.

Theorem 2. Let T be a theory, ϕ a formula, and G = {gφ | φ ∈ T} a set of
new guessing variables.

Then, T �free ϕ iff

Tfree[T ; ϕ] = ∀G
(∧

φ∈T

(
Tuni-t[T, φ] → gφ

)
→ DerivG[∅; T ; ϕ]

)

is valid.

We now turn our attention to the other approaches considered, where priori-
tised theories are used to realise a more fine-grained selection mechanism among
consistent subsets. As it turns out, the basic reasoning principles exi-σ, uni-σ,

Representing Paraconsistent Reasoning via Quantified Propositional Logic 101

and arg-σ are encoded along the lines of Theorem 1, but we have to replace the
module ConsG

max[T] in an appropriate way.
We start with the consequence relations based on best-out preference. The

encoding relies on the following proposition.

Proposition 11. Let S = S1 ∪ . . . ∪ Sn be a consistent subset of a prioritised
theory T = T1 ∪ . . . ∪ Tn, with Si = S ∩ Ti.

Then, S is bo-preferred iff T1 ∪ . . . ∪ Ta(S) is inconsistent or S = T .

This motivates the subsequent encoding, which works as follows. First,
ConsG[∅; T] yields all consistent subsets of T via the guessing variables G. By the
above result, we have that T is bo-preferred whenever T is consistent. Hence,
if each gφ ∈ G is assigned to true, we are done. Otherwise, for a guessed subset
S ⊂ T , the encoding checks, for i = 1, . . . , n, that whenever i is the level, a(S),
of S, then T1 ∪ . . . ∪ Ta(S) is inconsistent. Recall that the level of a subtheory S
of T is defined by a(S) = min{j ∈ {1, . . . , n} | Sj �= Tj}.

Lemma 1. Let T = T1∪ . . .∪Tn be a prioritised theory and G = G1∪ . . .∪Gn =
{gφ | φ ∈ T} a set of corresponding guessing variables. Moreover, let S ⊆ T and
I ⊆ G such that, for each φ ∈ T , φ ∈ S iff gφ ∈ I.

Then, S is bo-preferred iff BOG[T], given by

ConsG[∅; T]∧
(
¬G →

∧
i=1,...,n

(
(G1 ∧ . . .∧Gi−1 ∧¬Gi) → ¬Cons [T1∪. . .∪Ti]

))
,

is true under I.

In accord to Theorem 1, we obtain the following encodings for expressing
the relations �exi-bo, �uni-bo, and �arg-bo, respectively, by replacing the module
ConsG

max[∅; T] by BOG[T] in the corresponding translations.

Theorem 3. Let T be a prioritised theory, ϕ a formula, and G = {gφ | φ ∈ T}
a set of new guessing atoms not occurring in T or ϕ. Then,

1. T �exi-bo ϕ iff Texi-bo[T ; ϕ] = ∃G
(
BOG[T] ∧ DerivG[∅; T ; ϕ]

)
is valid,

2. T �uni-bo ϕ iff Tuni-bo[T ; ϕ] = ∀G
(
BOG[T] → DerivG[∅; T ; ϕ]

)
is valid, and

3. T �arg-bo ϕ iff Targ-bo[T ; ϕ] = Texi-bo[T, ϕ] ∧ ¬Texi-bo[T,¬ϕ] is valid.

Similar as for arg-t consequences, the encoding Targ-bo[·; ·] yields that check-
ing arg-bo consequences lies in the easier subclass DP

2 of ΔP
3 . Moreover, al-

though the encoding Texi-bo[·; ·] is adequate, Tuni-bo[·; ·] is not because checking
uni-bo consequences is in ΔP

2 but Tuni-bo[T ; ϕ] can be transformed in polynomial
time into an equivalent (2,∀)-QBF, for any T and ϕ. However, we can simplify
Tuni-bo[·; ·] using the following observation:

Proposition 12. For a prioritised theory T = T1∪ . . .∪Tn and a formula ϕ, we
have that T �uni-bo ϕ iff there exists some i ∈ {0, . . . , n} such that T1 ∪ . . . ∪ Ti

is consistent and T1 ∪ . . . ∪ Ti |= ϕ.

102 P. Besnard et al.

Observe that the case i = 0 is required for dealing with the case where T1
is already inconsistent. We thus obtain the following optimised encoding for
checking uni-bo consequences, avoiding explicit quantifier alternations:

Theorem 4. Let T = T1 ∪ . . . ∪ Tn be a prioritised theory, and ϕ a formula.
Then, T �uni-bo ϕ iff

∨
i=0,...,n

(
Cons [T1 ∪ . . . ∪ Ti] ∧ Deriv [T1 ∪ . . . ∪ Ti; ϕ]

)
is valid.

Finally, we define a module for expressing the incl-preferred subsets of a
given prioritised theory. The following result is the basis for this module, albeit
other characterisations are also possible.

Proposition 13. Given a consistent subtheory S = S1∪ . . .∪Sn of a prioritised
theory T = T1 ∪ . . . ∪ Tn, it holds that S is incl-preferred iff, for each i ∈
{1, . . . , n} and each φ ∈ Ti \ S, S1 ∪ . . . ∪ Si ∪ {φ} is inconsistent.

This leads to the following encoding:

Lemma 2. Let T = T1∪ . . .∪Tn be a prioritised theory and G = G1∪ . . .∪Gn =
{gφ | φ ∈ T} a set of corresponding guessing atoms. Moreover, let S ⊆ T and
I ⊆ G such that, for each φ ∈ T , φ ∈ S iff gφ ∈ I.

Then, S is incl-preferred iff

InclG[T] = ConsG[∅; T] ∧
∧

i=1,...,n,φ∈Ti

(
¬gφ → ¬ConsGi

φ [{φ}, T i
φ]

)

is true under I, where Gi
φ = (G1∪ . . .∪Gi)\{gφ} and T i

φ = (T1∪ . . .∪Ti)\{φ}.

Again, the encodings for checking exi-incl, uni-incl, and arg-incl conse-
quences, respectively, follow the same pattern as for the previous variants.

Theorem 5. Let T be a prioritised theory, ϕ a formula, and G = {gφ | φ ∈ T}
a set of new guessing atoms not occurring in T or ϕ. Then,

1. T �exi-incl ϕ iff Texi-incl[T ; ϕ] = ∃G
(
InclG[T] ∧ DerivG[∅; T ; ϕ]

)
is valid,

2. T �uni-incl ϕ iff Tuni-incl[T ; ϕ] = ∀G
(
InclG[T] → DerivG[∅; T ; ϕ]

)
is valid,

and
3. T �arg-incl ϕ iff Targ-incl[T ; ϕ] = Texi-incl[T ; ϕ] ∧ ¬Texi-incl[T ;¬ϕ] is valid.

Analogous to the previous encodings we have that Texi-incl[·; ·] and Tuni-incl[·; ·]
are adequate, whilst Targ-incl[·; ·] exhibits that checking arg-incl consequences
lies actually in DP

2 .

3.2 Signed Systems

The basic idea behind the approach taken by signed systems [11] is as follows.
An inconsistent theory is transformed into a consistent one by renaming all
literals occurring in the theory. Then, some of the original contents of the theory
is restored by introducing progressively formal equivalences linking the original

Representing Paraconsistent Reasoning via Quantified Propositional Logic 103

literals to their renamings. This is done as long as consistency is preserved.
The overall approach provides us with a family of paraconsistent consequence
relations.

For illustration, consider a theory containing the four statements

p, ¬p, q, (¬q ∨ r). (13)

Clearly, this theory is inconsistent. We start with transforming the theory by
renaming all of its literals:

p+, p−, q+, (q− ∨ r+).

The renamings indicate what renamed literals were denials of each other—
making explicit whether the renamed literals were “positive” or “negative”. In
this way, we obtain a signed theory. Then, we restore some of the original con-
tents of the theory by progressively introducing formal equivalences of the form
p+ ≡ ¬p−, linking the original literals to their renamings. We do this up to the
point where introducing any further equivalence would reinstate inconsistency.
As a result, we can apply classical logic to reason from this signed theory ex-
tended with increasingly many equivalences (actually, the equivalences we use
are slightly different because we deal at once with the signed and unsigned lan-
guage). Then, a later interpretation of the signed formulas gets us back to the
original language, classical inferences having thus been turned into seemingly
paraconsistent ones.

The primary technical means for dealing with “signed theories” is default
logic [57], whose central concepts are default rules along with their induced
extensions of an initial set of premises. A default rule (or default for short)
α : β

γ has two types of antecedents: a prerequisite α which is established if α is
derivable and a justification β which is established if β is consistent. If both
conditions hold, the consequent γ is concluded by default. For convenience, we
denote the prerequisite of a default δ by prereq(δ), its justification by justif(δ),
and its consequent by conseq(δ). Accordingly, for a set D of defaults, we de-
fine prereq(D) = {prereq(δ) | δ ∈ D}, justif(D) = {justif(δ) | δ ∈ D}, and
conseq(D) = {conseq(δ) | δ ∈ D}.

A default theory is a pair (D, T) where D is a set of default rules and T is a
set of propositional formulas. A set E of formulas is an extension of (D, T) iff
E =

⋃
n∈ω En, where E1 = T and, for n ≥ 1, En+1 = Cn(En) ∪ {γ | α : β

γ ∈
D, α ∈ En,¬β �∈ E}. We refer the reader for further details on default logic to
the literature [57, 9].

The formal approach behind signed systems can then be described as follows.
We start with a finite set of propositional formulas (i.e., a theory) T . Then, we
proceed as follows. First, we transform T into conjunctive normal form (CNF).3

This is a conjunction of disjunctions of literals, or simply a set of clauses. In this

3 Such a transformation is not strictly necessary; see [11] on how this is avoided by
distinguishing among positive and negative formula occurrences.

104 P. Besnard et al.

way, T is transformed into a finite set of clauses. It is worth noticing that this
transformation does not affect the logical contents of the original theory.

Next, we rename the propositions in T as follows. Let ϕ be a formula in CNF.
Then, we define ϕ± as the formula obtained from ϕ by replacing each occurrence
of ¬p by p− and by replacing all remaining occurrences of p by p+. In this way,
we turn the initial theory T into the consistent theory T± = {φ± | φ ∈ T}. This
is so because each formula φ of T is substituted by a formula φ± which is always
a positive formula.

Finally, we consider the default theory comprised of T± and a set of default
rules DP = {δp | p ∈ P}, where P is a suitably chosen set of propositional atoms
and

δp =
: p+ ≡ ¬p−

(p ≡ p+) ∧ (¬p ≡ p−)
, (14)

for each p ∈ P . Intuitively, such default rules provide means for closing
the gap between T± and T . That is, by checking whether the justification
p+ ≡ ¬p− is consistent, we test whether or not we can reintroduce the “law
of (non-)contradiction” for the proposition p without getting an inconsistent
theory. If this is the case, we “restore” the original meaning of the propositions
p+ and p− by adding the equivalences p ≡ p+ and ¬p ≡ p−. Considering in turn
each propositional letter p, we are thus gradually restoring the original contents
of the theory—except that we stop at the borderline of inconsistency by leaving
blank all propositions involved in genuine contradictions.

Consider the theory
{p,¬p, q, (q → r)}. (15)

Transforming the elements of this theory into CNF yields the theory given
in (13), i.e., {p,¬p, q, (¬q ∨ r)}. Next, we rewrite this set of clauses into the
consistent theory

{p+, p−, q+, (q− ∨ r+)} (16)

by substituting ¬p,¬q by p−, q− and p, q, r by p+, q+, r+, respectively.
We then proceed by adding, for each propositional atom occurring in the

original theory, a corresponding default rule as defined in (14). This yields three
default rules δp, δq, and δr, since the original theory is built from the proposi-
tional atoms p, q, and r. In full detail, δp, δq, δr have the following form:

: p+ ≡ ¬p−

(p ≡ p+) ∧ (¬p ≡ p−)
,

: q+ ≡ ¬q−

(q ≡ q+) ∧ (¬q ≡ q−)
,

: r+ ≡ ¬r−

(r ≡ r+) ∧ (¬r ≡ r−)
.

Consider the default theory obtained from theory (16) along with the three
latter default rules: (

{δp, δq, δr}, {p+, p−, q+, (q− ∨ r+)}
)
. (17)

Clearly, the first default rule is inapplicable, since its justification p+ ≡ ¬p−

is inconsistent in the presence of p+ and p−. In contrast, the second and the
third default rule are applicable and consequently restore the original meaning

Representing Paraconsistent Reasoning via Quantified Propositional Logic 105

of q+, q−, r+ , and r−.4 Accordingly, we obtain a single extension containing the
propositions q and r (from the alphabet of our inconsistent initial theory) along
with p+, p−, q+, r+.

Using this definition, we define the first family of paraconsistent consequence
relations based on signed theories:

Definition 7. Let T be a theory, ϕ a propositional formula, and E the set of
all extensions of (DP , T±). Moreover, for each set S of formulas and signed
formulas, let ΠS = {conseq(δp) | p ∈ P,¬justif(δp) �∈ S}. Then,

– ϕ is a credulous unsigned5 consequence of T , symbolically written as T �c ϕ,
iff ϕ ∈

⋃
E∈E Cn(T± ∪ΠE),

– ϕ is a skeptical unsigned consequence of T , symbolically written as T �s ϕ,
iff ϕ ∈

⋂
E∈E Cn(T± ∪ΠE), and

– ϕ is a prudent unsigned consequence of T , symbolically written as T �p ϕ,
iff ϕ ∈ Cn(T± ∪

⋂
E∈E ΠE).

For illustration, consider the inconsistent theory T = {p, q,¬p∨¬q}. For ob-
taining the above paraconsistent consequence relations, T is turned into the de-
fault theory (DP , T±) =

(
{δp, δq}, {p+, q+, p−∨q−}

)
. We obtain two extensions,

viz. Cn(T± ∪ {conseq(δp)}) and Cn(T± ∪ {conseq(δq)}). The following relations
show how the different consequence relations behave: on the one hand, we have
T �c p, T ��s p, and T ��p p, but, on the other hand, for instance, it holds that
T �c p ∨ q, T �s p ∨ q, and T ��p p ∨ q.

For a complement, the following “signed” counterparts are defined.

Definition 8. Given the prerequisites of Definition 7, we say that

– ϕ is a credulous signed consequence of T , symbolically written as T �±
c ϕ,

iff ϕ± ∈
⋃

E∈E Cn(T± ∪ΠE),
– ϕ is a skeptical signed consequence of T , symbolically written as T �±

s ϕ,
iff ϕ± ∈

⋂
E∈E Cn(T± ∪ΠE), and

– ϕ is a prudent signed consequence of T , symbolically written as T �±
p ϕ, iff

ϕ± ∈ Cn(T± ∪
⋂

E∈E ΠE).

As shown in [11], these relations compare to each other in the following way:

Proposition 14. Let Ci(T) = {ϕ | T �i ϕ} and similarly C±
i (T) =

{ϕ | T �±
i ϕ}, for i ∈ {p, s, c}. Then, we have

4 Notice that the contribution of a default rule like δr to the theory formation process is
in no way sufficient for deriving r, even though it is a necessary condition. Applying δr

merely re-establishes the original meaning of r and ¬r from r+ and r−, respectively.
In our example, r is derived from q and ¬q ∨ r due to the preceding restoration of q
and r.

5 The term “unsigned” indicates that only unsigned formulas are taken into account.

106 P. Besnard et al.

1. Ci(T) ⊆ C±
i (T), and

2. Cp(T) ⊆ Cs(T) ⊆ Cc(T) and C±
p (T) ⊆ C±

s (T) ⊆ C±
c (T).

That is, signed derivability gives more conclusions than unsigned derivability,
and within each series of consequence relations the strength of the relation is
increasing. For a detailed formal elaboration, along with further refined conse-
quence relations, we refer the reader to [11].

Encodings. In [12], it was shown that, given a theory T , the outcome of the
different paraconsistent consequence relations solely depends on those defaults
δp from DP where p occurs in T . With a slight abuse of notation, in what follows
we write DT to denote this particular set of defaults for a given T .

The next result is of importance, since it leads us to a simple appealing
encoding to compute the extensions of the kind of default theories under con-
sideration.

Proposition 15. Let T be a theory, (DT , T±) its corresponding default theory,
and C ⊆ DT .

Then, Cn(T± ∪ conseq(C)) is an extension of (DT , T±) iff justif(C) is max-
imal consistent with T±.

Reconsider our example theory T = {p,¬p, q,¬q ∨ r} and its corresponding
default theory (17), having justif(DT) = {p+ ≡ ¬p−, q+ ≡ ¬q−, r+ ≡ ¬r−}.
It is quite easy to see that T± = {p+, p−, q+, q− ∨ r+} is not consistent with
p+ ≡ ¬p−, but with {q+ ≡ ¬q−, r+ ≡ ¬r−}. Thus, justif({δq, δr}) is the maximal
subset of justif(D) consistent with T . We thus get as single extension the deduc-
tive closure of T±∪conseq({δq, δr}) = T±∪{q ≡ q+,¬q ≡ q−, r ≡ r+,¬r ≡ r−}
yielding Cn(p+, p−, q+, q, r+, r).

Indeed, Proposition 15 gives us a suitable basis for the desired QBF-encodings
which represent a more compact axiomatics than the encodings given in [27] for
arbitrary default theories.

Theorem 6. Let T be a theory, (DT , T±) its corresponding default theory, and
G = {gδ | δ ∈ DT } a set of new guessing variables. Moreover, let C ⊆ DT and
I ⊆ G such that, for each δ ∈ DT , δ ∈ C iff gδ ∈ I.

Then, the set Cn(T± ∪ conseq(C)) is an extension of (DT , T±) iff the QBF
ConsG

max[T±; justif(DT)] is true under I.

Having a characterisation of the extensions in terms of models of QBFs,
it is quite easy to decide the respective paraconsistent consequence relations.
In particular, encodings for the relations �c, �±

c , �s, and �±
s are obtained by

combining, in a suitable way, the above encoding with the module for expressing
derivability.

Theorem 7. Let T be a theory, ϕ a formula, and (DT , T±) as before. Moreover,
let G = {gδ | δ ∈ DT } be a set of guessing variables. Then,

Representing Paraconsistent Reasoning via Quantified Propositional Logic 107

1. T �c ϕ iff

Tc [T ; ϕ] = ∃G
(
ConsG

max[T±; justif(DT)] ∧ DerivG[T±; conseq(DT);ϕ]
)

is valid,
2. T �s ϕ iff

Ts [T ; ϕ] = ∀G
(
ConsG

max[T±; justif(DT)] → DerivG[T±; conseq(DT);ϕ]
)

is valid,
3. T �±

c ϕ iff T ±
c [T ; ϕ] = Tc [T ; ϕ±] is valid, and

4. T �±
s ϕ iff T ±

s [T ; ϕ] = Ts [T ; ϕ±] is valid.

Observe that the sets DT , justif(DT), and conseq(DT) have the same cardi-
nality. Hence, in the above result, one set of guessing variables, G, is sufficient.

It remains to deal with the prudent consequence relations. To begin with, as
pointed out in [11], the inference relation �p captures the notion of free conse-
quence. Hence, Tfree[·; ·] can be used as encoding for �p. However, for a more
direct encoding of prudent consequence, we can show the following property:

Lemma 3. Let T be a theory, (DT , T±) its corresponding default theory, and ϕ
a formula.

Then, the following conditions are equivalent:

1. T �p ϕ;
2. for each C ⊆ DT , if, for each δ ∈ DT , T �s conseq(δ) only if δ ∈ C, then

T± ∪ conseq(C) |= ϕ.

This leads to the following encoding:

Theorem 8. Let T be a theory, (DT , T±) its corresponding default theory, ϕ a
formula, and G = {gδ | δ ∈ DT } a set of new guessing variables.

Then, T �p ϕ iff

∀G
(∧

δ∈DT

(
T ±

s [T±; conseq(δ)] → gδ

)
→ DerivG[T±; conseq(DT);ϕ]

)

is valid.

An encoding for T �±
p ϕ is easily obtained by replacing ϕ by ϕ± in the above

encoding.
Similar to the paraconsistent inference relations based on maximal subsets,

the complexity of the signed and unsigned inference relations is located at the
second level of the polynomial hierarchy. This was shown in [12] on the basis of
the above encodings, by inspecting the quantifier order of the resultant QBFs.6

As well, the respective encodings are adequate.

6 Incidentally, the complexity results for �s and �±
s have independently been obtained

by Coste-Marquis and Marquis as well [22].

108 P. Besnard et al.

3.3 Multi-valued Approaches

The idea underlying the three-valued approaches to paraconsistent reasoning is
to counterbalance the effect of contradictions by providing a third truth value,
accounting for contradictory propositions. As already put forth in [55], this pro-
vides us with inconsistency-tolerating three-valued models. However, this ap-
proach turns out to be rather weak in that it invalidates certain classical in-
ferences, even if there is no contradiction. Intuitively, this is because there are
too many three-valued models, in particular those assigning the inconsistency-
tolerating truth-value to propositions that are unaffected by contradictions. For
instance, the three-valued logic LP [55] denies inference by disjunctive syllogism.
That is, ψ is not derivable from the (consistent!) premise (φ∨ψ)∧¬φ. As pointed
out in [22], this deficiency applies also to the closely related paraconsistent sys-
tems J3 [26], L [44], and RP [33]. As a consequence, none of the aforementioned
systems coincides with classical logic when reasoning from consistent premises.

The pioneering work to overcome this deficiency was done by Priest [56].
The key idea is to restrict the set of three-valued models by taking advantage of
some preference criterion that aims at “minimising inconsistency”. In this way,
a “maximum” of a classically inconsistent knowledge base should be recovered.
While minimisation is understood in Priest’s seminal work [56], proposing his
logic LPm, as preferring three-valued models as close as possible to two-valued
interpretations, the overall approach leaves room for different preference criteria.
Another criterion is postulated in [10] by giving more importance to the given
knowledge base. In this approach, one prefers three-valued models that are as
similar as possible to two-valued models of the knowledge base in the sense that
those models assign true to as many items of the knowledge base as possible.
Furthermore, [40] considers cardinality-based versions of the last two preference
criteria. Even more criteria are conceivable by distinguishing symbols having
different importance.

Syntactically, we use propositional formulas in the standard way, but adopt
the semantics as follows. A three-valued interpretation, M , is a function assigning
to each atom a truth value from {t, f, o}. Intuitively, the truth value o takes care
for contradictory propositions. In general, the assignment of truth values to
arbitrary formulas, given a three-valued interpretation M , is realised by means
of a function vM (·), which is specified according to the following truth tables,
under the usual condition that vM (p) = M(p), for any atom p:

⊥
f

�
t

¬
t f
f t
o o

∧ t f o

t t f o
f f f f
o o f o

∨ t f o

t t t t
f t f o
o t o o

→ t f o

t t f o
f t t t
o t f o

(18)

We sometimes leave an interpretation M implicit and simply write φ : x
instead of vM (φ) = x, for x ∈ {t, f, o}. Also, with a slight abuse of notation,
an interpretation may be specified as a finite set of expressions of form p : x,

Representing Paraconsistent Reasoning via Quantified Propositional Logic 109

where p is an atom and x is as before, containing only the relevant elements and
omitting the implicit part.

A three-valued model of a formula φ is an interpretation that assigns either t or
o to φ. Modelhood extends to sets of formulas in the standard way. Accordingly,
given a set T of formulas and a formula φ, we define T |= φ if each model of T is a
model of φ. Whenever necessary, we write |=3 and |=2 to distinguish three-valued
from two-valued entailment.

Note that the truth value of φ → ψ differs from that of ¬φ∨ψ only in the case
of a three valued interpretation M with vM (φ) = o and vM (ψ) = f , resulting
in vM (φ → ψ) = f and vM (¬φ ∨ ψ) = o. This difference is prompted by the
fact that t and o indicate modelhood, which motivates the assignment of the
same truth values to φ → ψ no matter whether we have φ : t or φ : o. This
has actually to do with the difference between modus ponens and disjunctive
syllogism: The latter yields ψ from φ ∧ ¬φ ∧ ¬ψ because φ ∨ ψ follows from φ.
The overall inference seems wrong because, in the presence of φ ∧ ¬φ, φ ∨ ψ is
satisfied (by φ : o) with no need for ψ to be t. As pointed out in [40], one may
actually view the connective → as

“the ‘right’ generalisation of classical implication because → is the in-
ternal implication connective [5] for the defined inference relation in the
sense that a deduction (meta)theorem holds for it: T ∪ {φ} |=3 ψ iff
T |=3 φ → ψ.”

On the other hand, a formula composed of the connectives ¬,∨, and ∧ can
never be inconsistent; that is, each such formula has at least one three-valued
model [18]. Finally, we mention that the entailment problem for |=3 is co-NP-
complete, no matter whether → is included or not [50, 18, 22].

As mentioned previously, Priest’s logic LPm [56] was conceived to overcome
the failure of disjunctive syllogism in LP [55]. LP amounts to the three-valued
logic obtained by restricting the language to formulas in which only the con-
nectives ¬,∨, and ∧ are permitted (and defining φ → ψ as ¬φ ∨ ψ). In LPm,
modelhood is then limited to models containing a minimal number of proposi-
tional variables being assigned o. This allows for drawing

“all classical inferences except where inconsistency makes them doubtful
anyway” [56].

Formally, the consequence relation of LPm can be defined as follows.

Definition 9. For three-valued interpretations M and N , define the partial or-
dering M ≤m N iff, for each atom p, vM (p) = o implies vN (p) = o. Then,
T |=m ϕ iff every three-valued model of T that is minimal with respect to ≤m is
a three-valued model of ϕ.

Unlike this, the approach of Besnard and Schaub [10] prefers three-valued
models that assign the truth value t to as many items of the knowledge base T
as possible:

110 P. Besnard et al.

Definition 10. For three-valued interpretations M and N , define the partial
ordering M ≤n N iff {φ ∈ T | vM (φ) = o} ⊆ {φ ∈ T | vN (φ) = o} . Then,
T |=n ϕ iff every three-valued model of T that is minimal with respect to ≤n is
a three-valued model of ϕ.

The major difference between the two approaches defined above is that the
restriction of modelhood in LPm focuses on models as close as possible to two-
valued interpretations, whilst the approach of Definition 10 aims at models next
to two-valued models of the considered premises. According to [10], the effects
of making the formula select its preferred models can be seen by looking at
T = {p,¬p, (¬p ∨ q)}: While LPm yields two ≤m-preferred models, {p : o, q : t}
and {p : o, q : f}, from which one obtains p∧¬p, the second approach yields q as
additional conclusion. In fact, {p : o, q : t} is the only ≤n-preferred model of the
premises {p,¬p, (¬p∨q)}; it assigns t to (¬p∨q), while this premise is attributed
o by the second ≤m-preferred model {p : o, q : f}. Hence, the latter is not ≤n-
preferred. So, while T �|=m q and T |=n q, we note that T ∪ {(p ∨ ¬q)} �|=l q
for l = m, n. On the other hand, |=n is clearly more syntax-dependent than
|=m since the items within the knowledge base are used for distinguishing ≤n-
preferred models.

In fact, both inference relations |=m and |=n amount to their classical (two-
valued) counterpart, whenever the set of premises is classically consistent. Also,
it is shown in [22] that deciding entailment for |=m and |=n is ΠP

2 -complete, no
matter whether → is included or not. A logical analysis of both relations can be
found in [40] and in the original literature [56, 10].

Encodings. We start with an encoding of the underlying three-valued logic in-
troduced above by means of classical propositional logic.

To this end, we introduce, for each atom p, a globally new atom p′ and define
P ′ = {p′ | p ∈ P} for a given set P of atoms.

Let M be a three-valued interpretation over a set P of atoms. We define the
associated two-valued interpretation, aM

2 , over P ∪ P ′ by setting

aM
2 (p) = aM

2 (p′) = t if M(p) = t,
aM
2 (p) = aM

2 (p′) = f if M(p) = f, and
aM
2 (p) = f and aM

2 (p′) = t if M(p) = o,

for any atom p ∈ P . Conversely, for a given two-valued interpretation I ⊆ P ∪P ′

satisfying vI(p → p′) = t, for any p ∈ P , we define the associated three-valued
interpretation, aI

3, by setting

aI
3(p) =

{
I(p) if I(p) = I(p′),
o if I(p) = f and I(p′) = t,

for any p ∈ P .
Moreover, we need the following parameterised translation:

Definition 11. For any atom p and any propositional formula φ and ψ, we
define

Representing Paraconsistent Reasoning via Quantified Propositional Logic 111

1. (a) τ [p; t] = p,
(b) τ [p; f] = ¬p′,
(c) τ [p; o] = ¬p ∧ p′,

2. (a) τ [¬φ; t] = τ [φ; f],
(b) τ [¬φ; f] = τ [φ; t],
(c) τ [¬φ; o] = τ [φ; o],

3. (a) τ [φ ∧ ψ; t] = τ [φ; t] ∧ τ [ψ; t],
(b) τ [φ ∧ ψ; f] = τ [φ; f] ∨ τ [ψ; f],
(c) τ [φ ∧ ψ; o] = ¬τ [φ ∧ ψ; f] ∧ ¬τ [φ ∧ ψ; t],

4. (a) τ [φ ∨ ψ; t] = τ [φ; t] ∨ τ [ψ; t],
(b) τ [φ ∨ ψ; f] = τ [φ; f] ∧ τ [ψ; f],
(c) τ [φ ∨ ψ; o] = ¬τ [φ ∨ ψ; t] ∧ ¬τ [φ ∨ ψ; f],

5. (a) τ [φ → ψ; t] = τ [φ; f] ∨ τ [ψ; t],
(b) τ [φ → ψ; f] = ¬τ [φ; f] ∧ τ [ψ; f],
(c) τ [φ → ψ; o] = ¬τ [φ; f] ∧ τ [ψ; o].

For computing the three-valued models of a set T of formulas, we use

N [T] =
∧

φ∈T

¬τ [φ; f].

For example, consider T = {p,¬p, (¬p ∨ q)}. We get:

N [T] = ¬τ [p; f] ∧ ¬τ [¬p; f] ∧ ¬τ [(¬p ∨ q); f]
= ¬¬p′ ∧ ¬τ [p; t] ∧ ¬(τ [¬p; f] ∧ τ [q; f])
= ¬¬p′ ∧ ¬p ∧ ¬(τ [p; t] ∧ ¬q′)
= ¬¬p′ ∧ ¬p ∧ ¬(p ∧ ¬q′).

Now, the latter formula is equivalent to p′ ∧ ¬p ∧ (¬p ∨ q′), which is in
turn equivalent to p′ ∧¬p by absorption. Hence, N [T] possesses four two-valued
models (over {p, p′, q, q′}), viz.

I1 = {p′}, I2 = {p′, q}, I3 = {p′, q′}, and I4 = {p′, q, q′}.

In order to establish a correspondence among the four two-models of N [T]
and the three three-valued models of T , assigning o to p and varying on q, the
relation between the underlying sets of atoms P = {p, q} and P ′ = {p′, q′}
must be fixed. In fact, this is accomplished by adding r → r′ for every r ∈ P .
Observe that in the above example, I2 does not have a corresponding three-
valued interpretation.

In this way, we obtain the following result.

Theorem 9. Let ϕ be a formula with P = var(ϕ), let P ′ = {p′ | p ∈ P}, and
let x ∈ {t, f, o}.

Then, the following conditions hold:

1. For any three-valued interpretation M over P , if vM (ϕ) = x, then∧
p∈P (p → p′) ∧ τ [ϕ; x] is true under aM

2 , the associated two-valued in-
terpretation of M .

112 P. Besnard et al.

2. For any two-valued interpretation I over P ∪ P ′, if
∧

p∈P (p → p′) ∧ τ [ϕ; x]
is true under I, then vaI

3
(ϕ) = x, where aI

3 is the associated three-valued
interpretation of I.

Since the formula τ [ϕ; t] ∨ τ [ϕ; f] ∨ τ [ϕ; o] is clearly a tautology of classical
logic, we immediately get the following relation between the three-valued models
of a theory and the two-valued models of the corresponding encoding:

Corollary 1. Let T be a theory with P = var(T), and let P ′ = {p′ | p ∈ P}.
Then, there is a one-to-one correspondence between the three-valued models

of T and the two-valued models of the formula∧
p∈P

(p → p′) ∧ N [T], (19)

with N [T] =
∧

φ∈T ¬τ [φ; f].
In particular, the three-valued model of T corresponding to a two-valued model

I of (19) is given by the associated three-valued interpretation aI
3 of I.

For illustration, consider T = {p,¬p, (¬p ∨ q)} along with

(p → p′) ∧ (q → q′) ∧N [T],

which is equivalent to

(p → p′) ∧ (q → q′) ∧ (p′ ∧ ¬p).

Unlike above, we obtain now as two-valued models I1, I3, and I4 being in
a one-to-one correspondence with the three three-valued models, {p : o, q : t},
{p : o, q : o}, and {p : o, q : f}, of T , respectively.

Before dealing with the reductions for the inference relations |=m and |=n,
it is instructive to see that the results developed so far already allow for a
straightforward encoding of three-valued entailment, and, in particular, inference
in logic LP [55]:

Theorem 10. Let T be a theory with var(T) = P , and let ϕ be a formula.
Then, T |=3 ϕ iff Deriv [

∧
p∈P (p → p′) ∧ N [T];¬τ [ϕ; f]] is valid.

To be precise, we obtain (original) inference in LP [55] when restricting T
and ϕ to formulas whose connectives are among ¬, ∧, and ∨ only.

Let us now turn to Priest’s logic LPm [56]. For this, we must, roughly speak-
ing, enhance the encoding of LP in order to account for the principle of “min-
imising inconsistency” used in LPm. This is accomplished by means of the QBF
module expressing propositional circumscription, as defined in Section 2.5.

Theorem 11. Let T be a theory with P = var(T), and let ϕ be a propositional
formula. Furthermore, let G = {gp | p ∈ var(T)} be a set of new variables, and
let Q = P ∪ P ′ ∪G ∪ var(ϕ).

Then, T |=m ϕ iff

∀Q
(
Circ[(

∧
p∈P

(
(p → p′) ∧ (gp ≡ τ [p; o])

)
∧ N [T];G; P ∪ P ′] → ¬τ [ϕ; f]

)
is valid.

Representing Paraconsistent Reasoning via Quantified Propositional Logic 113

To be precise, we obtain (original) inference in LPm [56] when restricting T
and ϕ to formulas whose connectives are among ¬, ∧, and ∨ only.

We obtain an axiomatisation of Besnard and Schaub’s approach [10] in a
completely analogous fashion:

Theorem 12. Let T , P , and ϕ be as in Theorem 11, let G = {gφ | φ ∈ T} be a
set of new guessing variables, and let Q = P ∪ P ′ ∪G ∪ var(ϕ).

Then, T |=n ϕ iff

∀Q
(
Circ[(

∧
p∈P (p → p′) ∧

∧
φ∈T (gφ ≡ τ [φ; o]) ∧ N [T];G; P ∪ P ′] → ¬τ [ϕ; f]

)
is valid.

It is a straightforward matter to check that the encodings given in the above
theorems are adequate with respect to checking the corresponding inference re-
lations. We also mention that alternative translations of the considered three-
valued paraconsistent logics into QBFs are given in [13], based on different QBF
modules for expressing the minimisation principles employed in the relations
|=m and |=n, respectively. Furthermore, although we do not detail it here, we
stress that other multi-valued paraconsistent logics can analogously be treated in
terms of reductions to QBFs. As a case in point, similar to the characterisations
given in Theorems 11 and 12, [3] describes in effect axiomatisations of various
four-valued paraconsistent logics into two-valued quantified propositional logic
based on specific forms of propositional circumscription.

4 Conclusion

In this chapter, we discussed how differing approaches to paraconsistent reason-
ing can be expressed in a uniform framework by means of quantified propositional
logic. We have started by introducing basic formulas that are used as building
blocks for modeling advanced reasoning tasks. To a turn, we have demonstrated,
by means of three case-studies, how specific paraconsistent inference problems
can be mapped onto decision problems of QBFs.

The overall approach has several benefits. To begin with, it allows us to com-
pare distinct approaches by looking at their axiomatisation as QBFs. Moreover,
this axiomatisation provides an executable specification that can be given to
existing QBF-solvers. In view of the considerable sophistication offered nowa-
days by these solvers, we obtain prototypical implementations with a relatively
efficient performance.

The idea of encoding paraconsistent formalisms by means of QBFs is also
investigated in [2]; interestingly, this approach uses signed formulas, as described
in Section 3.2, for expressing inferences while preferences are expressed by QBFs.
The idea of signed systems has recently been applied to database repair [4]. In
this context, it is an interesting question in how far approaches to database
repair and consistent query answering using annotated logics [1] (as a form of
multi-valued logics) can be encoded by means of QBFs.

114 P. Besnard et al.

References

1. M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent
databases. In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS ’99), pages 68–79. ACM
Press, 1999.

2. O. Arieli. Paraconsistent preferential reasoning by signed quantified Boolean for-
mulae. In Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI 2004), 2004. To appear.

3. O. Arieli and M. Denecker. Reducing preferential paraconsistent reasoning to
classical entailment. Journal of Logic and Computation, 13(4):557–580, 2003.

4. O. Arieli, M. Denecker, B. V. Nuffelen, and M. Bruynooghe. Database repair
by signed formulae. In Proceedings of the Third Conference on Foundations of
Information and Knowledge Systems (FoIKS ’04), volume 2942 of Lecture Notes
in Computer Science, pages 14–30. Springer-Verlag, 2004.

5. A. Avron. Simple consequence relations. Information and Computation, 92:105–
139, 1991.

6. A. Ayari and D. Basin. QUBOS: Deciding quantified Boolean logic using proposi-
tional satisfiability solvers. In M. Aagaard and J. O’Leary, editors, Proceedings of
the Fourth International Conference on Formal Methods in Computer-Aided De-
sign (FMCAD 2002), volume 2517 of Lecture Notes in Computer Science, pages
187–201. Springer-Verlag, 2002.

7. S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and
inconsistent knowledge bases. In Proceedings of the Ninth Conference on Uncer-
tainty in Artificial Intelligence (UAI ’93), pages 411–419, 1993.

8. S. Benferhat, D. Dubois, and H. Prade. Some syntactic approaches to the handling
of inconsistent knowledge bases: A comparative study. Part 1: The flat case. Studia
Logica, 58(1):17–45, 1997.

9. P. Besnard. An Introduction to Default Logic. Springer-Verlag, 1989.
10. P. Besnard and T. Schaub. Circumscribing inconsistency. In Proceedings of the

15th International Joint Conference on Artificial Intelligence (IJCAI ’97), pages
150–155. Morgan Kaufmann Publishers, 1997.

11. P. Besnard and T. Schaub. Signed systems for paraconsistent reasoning. Journal
of Automated Reasoning, 20:191–213, 1998.

12. P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Paraconsistent reasoning via
quantified Boolean formulas, I: Axiomatising signed systems. In S. Flesca, S. Greco,
N. Leone, and G. Ianni, editors, Proceedings of the Eighth European Conference
on Logics in Artificial Intelligence (JELIA ’02), volume 2424 of Lecture Notes in
Computer Science, pages 320–331. Springer-Verlag, 2002.

13. P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Paraconsistent reasoning via
quantified Boolean formulas, II: Circumscribing inconsistent theories. In Proceed-
ings of the Seventh European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU ’03), volume 2711 of Lecture Notes in
Computer Science, pages 528–539. Springer-Verlag, 2003.

14. G. Brewka. Preferred subtheories: An extended logical framework for default rea-
soning. In N. S. Sridharan, editor, Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence (IJCAI ’89), pages 1043–1048. Morgan Kauf-
mann Publishers, 1989.

15. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986.

Representing Paraconsistent Reasoning via Quantified Propositional Logic 115

16. T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1–2):165–204, 1994.

17. M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified
Boolean formulae. In Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI ’98), pages 262–267. AAAI Press/MIT Press, 1998.

18. M. Cadoli and M. Schaerf. On the complexity of entailment in propositional mul-
tivalued logics. Annals of Mathematics and Artificial Intelligence, 18:29–50, 1996.

19. C. Cayrol, M. Lagasquie-Schiex, and T. Schiex. Nonmonotonic reasoning: From
complexity to algorithms. Annals of Mathematics and Artificial Intelligence, 22(3–
4):207–236, 1998.

20. C. Cayrol and M.-C. Lagasquie-Schiex. Non-monotonic syntax-based entailment:
A classification of consequence relations. In C. Froidevaux and J. Kohlas, editors,
Proceedings of the Third European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning and Uncertainty (ECSQARU ’95), volume 946 of Lecture
Notes in Computer Science, pages 107–114. Springer-Verlag, 1995.

21. A. Church. Introduction to Mathematical Logic, Volume I. Princeton University
Press, 1956.

22. S. Coste-Marquis and P. Marquis. Complexity results for paraconsistent inference
relations. In D. Fensel, F. Giunchiglia, D. McGuiness, and M. Williams, editors,
Proceedings of the Eighth International Conference on Principles of Knowledge
Representation and Reasoning (KR ’02), pages 61–72. Morgan Kaufmann Pub-
lishers, 2002.

23. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, 1962.

24. M. Davis and H. Putman. A computing procedure for quantification theory. Jour-
nal of the ACM, 7(3):201–215, 1960.

25. J. Delgrande, T. Schaub, H. Tompits, and S. Woltran. On computing solutions
to belief change scenarios. In S. Benferhat and P. Besnard, editors, Proceedings
of the Sixth European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU ’01), volume 2143 of Lecture Notes in
Computer Science, pages 510–521. Springer-Verlag, 2001.

26. I. D’Ottaviano and N. da Costa. Sur un problème de Jaśkowski. In Comptes
Rendus de l’Académie des Sciences de Paris, volume 270, pages 1349–1353, 1970.

27. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving advanced reasoning tasks
using quantified Boolean formulas. In Proceedings of the 17th National Conference
on Artificial Intelligence (AAAI 2000), pages 417–422. AAAI Press/MIT Press,
2000.

28. U. Egly, R. Pichler, and S. Woltran. On deciding subsumption problems. In
Proceedings of the Fifth International Symposium on the Theory and Applications
of Satisfiability Testing (SAT 2002), pages 89–97, 2002.

29. U. Egly, H. Tompits, and S. Woltran. On quantifier shifting for quantified Boolean
formulas. In Proceedings of the SAT 2002 Workshop on Theory and Applications
of Quantified Boolean Formulas (QBF 2002), pages 48–61, 2002.

30. T. Eiter and G. Gottlob. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Annals of Mathematics and Artificial Intelligence,
15(3–4):289–323, 1995.

31. T. Eiter, V. Klotz, H. Tompits, and S. Woltran. Modal nonmonotonic logics revis-
ited: Efficient encodings for the basic reasoning tasks. In U. Egly and C. Fermüller,
editors, Proceedings of the Eleventh International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods (TABLEAUX 2002), volume
2381 of Lecture Notes in Computer Science, pages 100–114. Springer-Verlag, 2002.

116 P. Besnard et al.

32. R. Feldmann, B. Monien, and S. Schamberger. A distributed algorithm to evaluate
quantified Boolean formulas. In Proceedings of the 17th National Conference on
Artificial Intelligence (AAAI 2000), pages 285–290. AAAI Press/MIT Press, 2000.

33. A. Frisch. Inference without chaining. In J. McDermott, editor, Proceedings of the
Tenth International Joint Conference on Artificial Intelligence (IJCAI ’87), pages
515–519. Morgan Kaufmann Publishers, 1987.

34. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman,
1979.

35. E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE: A system for deciding
quantified Boolean formulas satisfiability. In R. Goré, A. Leitsch, and T. Nipkow,
editors, Proceedings of the First International Joint Conference on Automated Rea-
soning (IJCAR 2001), volume 2083 of Lecture Notes in Computer Science, pages
364–369. Springer-Verlag, 2001.

36. G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and
Computation, 2(3):397–425, 1992.

37. H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic. In
L. Aiello, J. Doyle, and S. Shapiro, editors, Proceedings of the Fifth International
Conference on Principles of Knowledge Representation and Reasoning (KR ’96),
pages 374–384. Morgan Kaufmann Publishers, 1996.

38. H. Kautz and B. Selman. Planning as satisfiability. In B. Neumann, editor, Pro-
ceedings of the Tenth European Conference on Artificial Intelligence (ECAI ’92),
pages 359–363. John Wiley & Sons, 1992.

39. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quantified Boolean
formulas. Information and Computation, 117(1):12–18, 1995.

40. S. Konieczny and P. Marquis. Three-valued logics for inconsistency handling. In
S. Flesca, S. Greco, N. Leone, and G.Ianni, editors, Proceedings of the Eighth
European Conference on Logics in Artificial Intelligence (JELIA ’02), volume 2424
of Lecture Notes in Computer Science, pages 332–344. Springer-Verlag, 2002.

41. R. E. Ladner. The computational complexity of provability in systems of modal
propositional logic. SIAM Journal on Computing, 6(3):467–480, 1977.

42. S. Leśniewski. Grundzüge eines neuen System der Grundlagen der Mathematik.
Fundamenta Mathematica, 14:1–81, 1929.

43. R. Letz. Lemma and model caching in decision procedures for quantified Boolean
formulas. In U. Egly and C. Fermüller, editors, Proceedings of the Eleventh Inter-
national Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 2002), volume 2381 of Lecture Notes in Computer Science,
pages 160–175. Springer-Verlag, 2002.

44. H. Levesque. A knowledge-level account of abduction. In N. S. Sridharan, editor,
Proceedings of the Eleventh International Joint Conference on Artificial Intelli-
gence (IJCAI ’89), pages 1061–1067. Morgan Kaufmann Publishers, 1989.

45. J. �Lukasiewicz and A. Tarski. Untersuchungen über den Aussagenkalkül. Comptes
Rendus Séances Société des Sciences et Lettres Varsovie, 23(Cl. III):30–50, 1930.

46. J. McCarthy. Circumscription - A form of nonmonotonic reasoning. Artificial
Intelligence, 13:27–39, 1980.

47. A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In 13th Annual Symposium on Switching
and Automata Theory, pages 125–129, 1972.

48. A. R. Meyer and L. J. Stockmeyer. Word problems requiring exponential time. In
ACM Symposium on Theory of Computing (STOC ’73), pages 1–9. ACM Press,
1973.

Representing Paraconsistent Reasoning via Quantified Propositional Logic 117

49. S. Minato. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer,
1996.

50. D. Mundici. Satisfiability in many-valued sentential logic is NP-complete. Theo-
retical Computer Science, 52(1-2):145–153, 1987.

51. B. Nebel. Belief revision and default reasoning: Syntax-based approaches. In
J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the Second Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR
’91), pages 417–428. Morgan Kaufmann Publishers, 1991.

52. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
53. D. Pearce, H. Tompits, and S. Woltran. Encodings for equilibrium logic and logic

programs with nested expressions. In P. Brazdil and A. Jorge, editors, Proceedings
of the Tenth Portuguese Conference on Artificial Intelligence (EPIA ’01), volume
2258 of Lecture Notes in Computer Science, pages 306–320. Springer-Verlag, 2001.

54. D. Plaisted, A. Biere, and Y. Zhu. A satisfiability procedure for quantified Boolean
formulae. Discrete Applied Mathematics, 130:291–328, 2003.

55. G. Priest. Logic of paradox. Journal of Philosophical Logic, 8:219–241, 1979.
56. G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
57. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2):81–132,

1980.
58. N. Rescher. Plausible Reasoning. Van Gorcum, Amsterdam, 1976.
59. N. Rescher and R. Manor. On inference from inconsistent premises. Theory and

Decision, 1:179–219, 1970.
60. J. Rintanen. Constructing conditional plans by a theorem prover. Journal of

Artificial Intelligence Research, 10:323–352, 1999.
61. J. Rintanen. Improvements to the evaluation of quantified Boolean formulae. In

T. Dean, editor, Proceedings of the 16th International Joint Conference on Arti-
ficial Intelligence (IJCAI ’99), pages 1192–1197. Morgan Kaufmann Publishers,
1999.

62. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, 1965.

63. B. Russell. The theory of implication. American Journal of Mathematics,
28(2):159–202, 1906.

64. S. Schamberger. Ein paralleler Algorithmus zum Lösen von Quantifizierten
Boole’schen Formeln. Master’s thesis, Universität Gesamthochschule Paderborn,
2000.

65. J. Srzednicki and Z. Stachniak, editors. Lesniewski’s Systems Protothetic. Dor-
drecht, 1998.

66. R. Statman. Intuitionistic propositional logic is polynomial-space complete. The-
oretical Computer Science, 9:67–72, 1979.

67. L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1–22, 1976.

68. H. Tompits. Expressing default abduction problems as quantified Boolean formu-
las. AI Communications, 16:89–105, 2003.

69. H. Turner. Polynomial-length planning spans the polynomial hierarchy. In
S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of the Eighth Eu-
ropean Conference on Logics in Artificial Intelligence (JELIA ’02), volume 2424
of Lecture Notes in Computer Science, pages 111–124. Springer-Verlag, 2002.

70. A. N. Whitehead and B. Russell. Principia Mathematica, volume 1–3. Cambridge
University Press, 1910–13.

71. S. Woltran. Quantified Boolean Formulas – From Theory to Practice. PhD thesis,
Technische Universität Wien, Institut für Informationssysteme, 2003.

118 P. Besnard et al.

72. C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Com-
puter Science, 3(1):23–33, 1976.

73. L. Zhang and S. Malik. Towards a symmetric treatment of satisfaction and conflicts
in quantified Boolean formula evaluation. In P. V. Hentenryck, editor, Proceedings
of the Eighth International Conference on Principles and Practice of Constraint
Programming (CP 2002), volume 2470 of Lecture Notes in Computer Science, pages
200–215. Springer-Verlag, 2002.

On the Computational Complexity of
Minimal-Change Integrity Maintenance in

Relational Databases�

Jan Chomicki1 and Jerzy Marcinkowski2

1 Dept. of Computer Science and Engineering,
University at Buffalo,

Buffalo, NY 14260-2000
chomicki@cse.buffalo.edu

2 Instytut Informatyki,
Wroc�law University,

51-151 Wroc�law, Poland
Jerzy.Marcinkowski@ii.uni.wroc.pl

Abstract. We address the problem of minimal-change integrity main-
tenance in the context of integrity constraints in relational databases.
Using the framework proposed by Arenas, Bertossi, and Chomicki [5], we
focus on two basic computational issues: repair checking (is a database
instance a repair of a given database?) and consistent query answers (is
a tuple an answer to a given query in every repair of a given database?).
We study the computational complexity of both problems, delineating
the boundary between the tractable and the intractable. We review rel-
evant semantical issues and survey different computational mechanisms
proposed in this context. Our analysis sheds light on the computational
feasibility of minimal-change integrity maintenance. The tractable cases
should lead to practical implementations. The intractability results high-
light the inherent limitations of any integrity enforcement mechanism,
e.g., triggers or referential constraint actions, as a way of performing
minimal-change integrity maintenance.

1 Introduction

Inconsistency is a common phenomenon in the database world today. Even
though integrity constraints successfully capture data semantics, the actual data
in the database often fails to satisfy such constraints. This may happen because
the data is drawn from a variety of independent sources as in data integration
(see Lenzerini’s survey [57]), or the data is involved in complex, long-running
activities like workflows.

How to deal with inconsistent data? The traditional way is to not allow the
database to become inconsistent by aborting updates or transactions leading to

� This material is based upon work supported by the National Science Foundation
under Grant No. IIS-0119186 and UB start-up funds.

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 119–150, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

120 J. Chomicki and J. Marcinkowski

integrity violations. We argue that in present-day applications this scenario is be-
coming increasingly impractical. First, if a violation occurs because of data from
multiple, independent sources being merged (a scenario identified by Lin and
Mendelzon [58]), there is no single update responsible for the violation. More-
over, the updates have typically already committed. For example, if we know
that a person should have a single address but multiple data sources contain
different addresses for the same person, it is not clear how to fix this violation
through aborting some update. Second, the data may have become inconsistent
through the execution of some complex activity and it is no longer possible to
trace the inconsistency to a specific action.

In the context of triggers or referential integrity, more sophisticated methods
for handling integrity violations have been developed. For example, instead of
being aborted an update may be propagated. In general, the result is at best a
consistent database state, typically with no guarantees on its distance from the
original, inconsistent state (the research of Ludäscher, May, and Lausen [59] is
an exception).

In our opinion, integrity restoration should be a separate process that is
executed after an inconsistency is detected. Such an approach is also advocated
by Embury et al. [36] under the name of data reconciliation. The restoration
should have a minimal impact on the database by trying to preserve as many
tuples as possible. This scenario is called from now on minimal-change integrity
maintenance.

We claim that a central notion in the context of integrity restoration is that
of a repair [5]. A repair is a database instance that satisfies integrity constraints
and minimally differs from the original database (which may be inconsistent).

One can interpret the postulate of minimal change in several different ways,
depending on whether the information in the database is assumed to be correct
and complete. If the information is complete but not necessarily correct (it may
violate integrity constraints), the only way to fix the database is by deleting
some parts of it. This is a common approach in data warehousing. On the other
hand, if the information is both incorrect and incomplete, then both insertions
and deletions should be considered. Thus, in some data integration approaches,
for example the work of Lenzerini, Lembo, and Rosati [56, 57], the completeness
assumption is not made. For large classes of constraints, e.g., denial constraints,
the restriction to deletions has no impact, since only deletions can remove in-
tegrity violations. Another dimension of change minimality is whether updates
to selected attributes of tuples are considered as a way to remove integrity vio-
lations.

Regardless of what notion of minimal change is assumed, a basic computa-
tional problem in the context of integrity maintenance is repair checking, namely
checking whether a given database instance is a repair of the original database.
The complexity of this problem, under different notions of minimal change, is
studied in the present paper. Repair checking algorithms can typically be con-
verted to algorithms for nondeterministically computing repairs.

On the Computational Complexity of Minimal-Change Integrity 121

Sometimes when the data is retrieved online from multiple, autonomous
sources, it is not possible to restore the consistency of the database by con-
structing a single repair. In that case one has to settle for computing, in re-
sponse to queries, consistent query answers [5], namely answers that are true
in every repair of the given database. Such answers constitute a conservative
“lower bound” on the information present in the database. The problem of com-
puting consistent query answers is the second computational problem studied
in the present paper. The notion of consistent query answer proposed by Are-
nas, Bertossi and Chomicki [5] has been used and extended in many papers
[6, 7, 8, 4, 9, 11, 12, 16, 20, 19, 21, 27, 28, 25, 34, 41, 45, 46, 49, 62, 64]. This research
has been surveyed by Bertossi and Chomicki [14].

We describe now the setting of our results. We analyze the computational
complexity of repair checking and consistent query answers along several different
dimensions. We characterize the impact of the class of queries and the class of
integrity constraints under consideration.

Our results shed light on the computational feasibility of minimal-change
integrity maintenance. The tractable cases should lead (and to some degree al-
ready have led) to practical implementations. The intractability results highlight
the inherent limitations of any integrity enforcement mechanism, e.g., triggers
or referential constraint actions [59, 60], as ways of performing minimal-change
integrity maintenance.

The plan of the paper is as follows. In the first three sections, we discuss
first-order (or equivalently: relational algebra) queries. In Section 2, we define
the basic framework. In Section 3, we consider denial constraints, for which
repairs are obtained by deleting facts. In Section 4, we discuss more general uni-
versal constraints and inclusion dependencies, under different notions of repair.
In Section 5, we study aggregation queries in the presence of functional depen-
dencies. In Section 6, we summarize related research and in Section 7 we draw
conclusions and discuss future work. Several key proofs are presented in detail.
Other proofs can be found in the original sources.

2 Basic Notions

In the following we assume we have a fixed relational database schema R con-
sisting of a finite set of relations (which are finite sets of tuples). We also have
an infinite set of attributes (column labels) U from which relation attributes are
drawn. We have a fixed, infinite database domain D, consisting of uninterpreted
constants, and an infinite numeric domain N consisting of all rational numbers.
Those domains are disjoint. The database instances can be seen as finite, first-
order structures over the given schema, that share the domains D and N . Every
attribute in U is typed, thus all the instances of R can only contain in a sin-
gle attribute either uninterpreted constants or numbers. Since each instance is
finite, it has a finite active domain which is a subset of D ∪ N . (The property
that attribute values are atomic is often called First Normal Form or 1NF.) As
usual, we allow the standard built-in predicates over N (=, �=, <, >,≤,≥) that

122 J. Chomicki and J. Marcinkowski

have infinite, fixed extensions. With all these elements we can build a first order
language L.

2.1 Integrity Constraints

Integrity constraints are closed first-order L-formulas. In the sequel we will de-
note relation symbols by P, P1, . . . , Pm, tuples of variables and constants by
x̄1, . . . , x̄m, and quantifier-free formulas referring to built-in predicates by ϕ.

In this paper we consider the following basic classes of integrity constraints:

1. Universal integrity constraints: L-sentences

∀x̄1, . . . , x̄n.
(m∨

i=1

Pi(x̄i) ∨
n∨

i=m+1

¬Pi(x̄i) ∨ ϕ(x̄1, . . . , x̄n)
)
.

We assume that all variables appearing in positive literals appear also in
at least one negative literal.

2. Denial constraints: L-sentences

∀x̄1, . . . , x̄n.
(n∨

i=1

¬Pi(x̄i) ∨ ϕ(x̄1, . . . , x̄n)
)
.

They are a special case of universal constraints.
3. Binary constraints: universal constraints with at most two occurrences of

database relations.
4. Functional dependencies (FDs): L-sentences

∀x̄1x̄2x̄3x̄4x̄5.
(
¬P (x̄1, x̄2, x̄4) ∨ ¬P (x̄1, x̄3, x̄5) ∨ x̄2 = x̄3

)
.

They are a special case of binary denial constraints. A more familiar
formulation of the above FD is X → Y where X is the set of attributes of
P corresponding to x̄1 and Y the set of attributes of P corresponding to x̄2
(and x̄3).

5. Referential integrity constraints,also known as inclusion dependencies (INDs):
L-sentences

∀x̄1 ∃x̄3.
(
¬P1(x̄1) ∨ P2(x̄2, x̄3)

)
,

where the x̄i’s are sequences of distinct variables, with x̄2 contained in x̄1;
and database relations P1, P2. Again, this is often written as P1[Y] ⊆ P2[X]
where X (resp. Y) is the set of attributes of P2 (resp. P1) corresponding
to x̄2. If P1 and P2 are clear from the context, we omit them and write
the dependency simply as Y ⊆ X. If an IND can be written without any
existential quantifiers, then it is called full.

Several examples of integrity constraints are presented later in Examples 1,
2, and 8.

Given a set of FDs and INDs IC and a relation P1 with attributes U1, a
key of P1 is a minimal set of attributes X of P1 such that IC entails the FD

On the Computational Complexity of Minimal-Change Integrity 123

X → U1. In that case, we say that each FD X → Y ∈ IC is a key dependency
and each IND P2[Y] ⊆ P1[X] ∈ IC (where P2 is also a relation) is a foreign key
constraint. If, additionally, X is the primary (one designated) key of P1, then
both kinds of dependencies are termed primary.

The above constraint classes are the most common in database practice.
They exhaust the constraints supported by present-day database management
systems. The SQL:1999 standard [60] proposes general assertions that can be
expressed using arbitrary SQL queries (and thus subsume arbitrary first-order
constraints). However, such constraints have not found their way into practical
DBMS implementations yet and are unlikely to do so in the near future. In fact,
most systems allow only restricted versions of FDs and INDs in the form of key
dependencies and foreign key constraints, resp.

Definition 1. Given a database instance r of R and a set of integrity constraints
IC , we say that r is consistent if r � IC in the standard model-theoretic sense;
inconsistent otherwise.

We assume that we are dealing with satisfiable sets of constraints.

2.2 Repairs

Given a database instance r, the set Σ(r) of facts of r is the set of ground facts
{P (ā) | r � P (ā)}, where P is a relation name and ā a ground tuple. (There
is clearly a straightforward correspondence between r and Σ(r). However, we
will find it more convenient to talk about the set of facts true in a first-order
structure than about the structure itself.)

Definition 2. The distance Δ(r, r′) between database instances r and r′ is de-
fined as the symmetric difference of r and r′:

Δ(r, r′) =
(
Σ(r)−Σ(r′)

)
∪

(
Σ(r′)−Σ(r)

)
.

Definition 3. For the instances r, r′, r′′ , r′ ≤r r′′ if Δ(r, r′) ⊆ Δ(r, r′′), i.e., if
the distance between r and r′ is less than or equal to the distance between r and
r′′.

Definition 4. Given a set of integrity constraints IC and database instances r
and r′, we say that r′ is a repair of r w.r.t. IC if r′ � IC and r′ is ≤r-minimal
in the class of database instances that satisfy IC.

We denote by RepairsIC(r) the set of repairs of r w.r.t. IC. This set is
nonempty because IC is satisfiable.

We will study in Section 4 some notions of repair that differ from that in
Definition 4. Also, there is clearly a connection between the above notion of
repair and the concepts of belief revision [42]. We discuss this connection in
Section 6.

124 J. Chomicki and J. Marcinkowski

2.3 Queries

Queries are formulas over the same language L as the integrity constraints. A
query is closed (or a sentence) if it has no free variables. A closed query without
quantifiers is also called ground. Conjunctive queries [24, 2] are queries of the
form

∃x̄1, . . . x̄m.
(
P1(x̄1) ∧ · · · ∧ Pm(x̄m) ∧ ϕ(x̄1, . . . , x̄m)

)
where the variables of xi are disjoint from that of xj if i �= j, and ϕ(x̄1, . . . , x̄m)
is a conjunction of built-in atomic formulas. A conjunctive query is simple if it
has no repeated relation symbols and ϕ is of the form c1(x̄1) ∧ · · · ∧ cm(x̄m).

The following definition is standard [2]:

Definition 5. A tuple t̄ is an answer to a query Q(x̄) in an instance r iff r |=
Q(t̄).

2.4 Consistent Query Answers

Given a query Q(x̄) to r, we want as consistent answers those tuples that are
unaffected by the violations of IC , even when r violates IC .

Definition 6. [5] A tuple t̄ is a consistent answer to a query Q(x̄) in a database
instance r w.r.t. a set of integrity constraints IC iff t̄ is an answer to query Q(x̄)
in every repair r′ of r w.r.t. IC. An L-sentence Q is consistently true in r w.r.t.
IC if it is true in every repair of r w.r.t. IC. In symbols:

r |=IC Q(t̄) ⇐⇒ r′ |= Q(t̄) for every repair r′ of r w .r.t. IC.

Note: If the set of integrity constraints IC is clear from the context, we omit
it for simplicity.

2.5 Examples

Example 1. Consider the following instance of a relation Person

Name City Street
Brown Amherst 115 Klein
Brown Amherst 120 Maple
Green Clarence 4000 Transit

and the functional dependency Name → City Street . Clearly, the above instance
does not satisfy the dependency. There are two repairs: one is obtained by re-
moving the first tuple, the other by removing the second. The consistent answer
to the query Person(n, c, s) is just the tuple (Green,Clarence,4000 Transit).
On the other hand, the query ∃s. Person(n, c, s) has two consistent answers:
(Brown,Amherst) and (Green,Clarence). Similarly, the query

Person(Brown,Amherst, 115 Klein) ∨ Person(Brown,Amherst, 120 Maple)

On the Computational Complexity of Minimal-Change Integrity 125

is consistently true in the given instance of Person. Notice that for the last two
queries the approach based on removing all inconsistent tuples and evaluating
the original query using the remaining tuples gives different, less informative
results.

Example 2. We give here some examples of denial constraints. Consider the re-
lation Emp with attributes Name, Salary, and Manager, with Name being the
primary key. The constraint that no employee can have a salary greater that that
of her manager is a denial constraint:

∀n, s, m, s′,m′.
(
¬Emp(n, s,m) ∨ ¬Emp(m, s′, m′) ∨ s ≤ s′).

Similarly, single-tuple constraints (CHECK constraints in SQL2) are a special case
of denial constraints. For example, the constraint that no employee can have a
salary over $200000 is expressed as:

∀n, s, m.
(
¬Emp(n, s,m) ∨ s ≤ 200000

)
.

Note that a single-tuple constraint always leads to a single repair which consists
of all the tuples of the original instance that satisfy the constraint.

2.6 Computational Problems

We consider here the following complexity classes:

– P : the class of decision problems solvable in polynomial time by deterministic
Turing machines;

– NP: the class of decision problems solvable in polynomial time by nondeter-
ministic Turing machines;

– co-NP: the class of decision problems whose complements are solvable in NP;
– Σp

2 : the class of decision problems solvable in polynomial time by nondeter-
ministic Turing machines with an NP oracle;

– Πp
2 : the class of decision problems whose complements are solvable in Σp

2 ;
– AC0: the class of decision problems solvable by constant-depth, polynomial-

size, unbounded fan-in circuits (AC0 ⊂ P).

Assume a class of databases D, a class of queries Q and a class of integrity
constraints C are given. We study here the complexity of the following problems:

– repair checking, i.e., the complexity of the set

BIC = {(r, r′) : r, r′ ∈ D ∧ r′ ∈ RepairsIC(r)},

– consistent query answers, i.e., the complexity of the set

DIC,Φ = {r : r ∈ D ∧ r |=IC Φ},

126 J. Chomicki and J. Marcinkowski

for a fixed sentence Φ ∈ Q and a fixed finite set IC ∈ C of integrity constraints.
This formulation is called data complexity (introduced by Chandra and Harel
[23] and Vardi [63]), because it captures the complexity of a problem as a func-
tion of the number of tuples in the database instance only. The database schema,
the query and the integrity constraints are assumed to be fixed. (This is not the
only relevant notion of complexity. Under combined complexity, also introduced
by Vardi [63], the constraints and the query are also part of the input. However,
in the database context the consensus is that data complexity is of paramount
importance, because the size of the database is typically several orders of magni-
tude larger than the size of the constraints and the query. Thus, data complexity
reflects the real computational cost of evaluating a query more faithfully than
combined complexity. Consequently, almost all existing results about the com-
plexity of computing consistent query answers are about data complexity, the
work of Cal̀ı, Lembo, and Rosati [20] being an exception.)

It is easy to see that even under a single key FD, there may be exponentially
many repairs and thus the approach to computing consistent query answers by
generating and examining all repairs is not feasible.

Example 3. Consider the functional dependency A → B and the following family
of relation instances rn, n > 0, each of which has 2n tuples (represented as
columns) and 2n repairs:

rn

A a1 a1 a2 a2 · · · an an

B b0 b1 b0 b1 · · · b0 b1

On the other hand, Definitions 4 and 6 immediately yield the following result.

Proposition 1. For every set of universal constraints F and L-sentence Φ, BF

is in co-NP and DF,Φ is in Πp
2 .

Proof. An instance r′ is not a repair of r if it violates the integrity constraints or
there is another instance r′′ which satisfies the constraints and is closer (in the
sense of ≤r) to r than r′. The first condition can be checked in P; the second,
in NP.

A sentence Φ is not consistently true in r if there is a repair r′ of r in which
Φ is false. Any repair r′ of r can only contain tuples with the same constants as
those occurring in the tuples of r. Thus the size of r′ is polynomially bounded.
Therefore, checking if there is a repair r′ of r in which Φ is false can be done in
NP with an NP oracle, i.e., it is in Σp

2 .

In fact, BF is in co-NP not only for universal but also for arbitrary first-order
constraints. On the other hand, for non-universal constraints (e.g., INDs), the
size of a repair cannot always be bounded and thus even the decidability of DF,Φ

is not guaranteed.

On the Computational Complexity of Minimal-Change Integrity 127

3 Denial Constraints

A distinctive property of denial constraints is that their violations can only be
removed by deleting tuples from the database. Therefore, repairs (in the sense
of Definition 4) are always subsets of the original database. This property has
a positive influence on the computational complexity of integrity maintenance.
Most of the notions of repair that differ for broader classes of constraints (see
Section 4) coincide in the case of denial constraints.

3.1 Query Rewriting

Query rewriting is based on the following idea: Given a query Q and a set of
integrity constraints, construct a query Q′ such that for every database instance
r the set of answers to Q′ in r is equal to the set of consistent answers to Q
in r.

Query rewriting was first proposed by Arenas, Bertossi, and Chomicki [5]
in the context of domain relational calculus. The approach presented there was
based on concepts from semantic query optimization (Chakravarthy, Grant, and
Minker [22]), in particular the notion of a residue.

Residues are associated with literals of the form P (x̄) or ¬P (x̄) (where x̄ is a
vector of different variables of appropriate arity). For each literal P (x̄) and each
constraint containing ¬P (x̄) in its clausal form (possibly after variable renam-
ing), a local residue is obtained by removing ¬P (x̄) and the quantifiers for x̄ from
the (renamed) constraint. For each literal ¬P (x̄) and each constraint containing
P (x̄) in its clausal form (possibly after variable renaming), a local residue is
obtained by removing P (x̄) and the quantifiers for the variables occurring only
in x̄ from the (renamed) constraint. Finally, for each literal the global residue
is computed as the conjunction of all local residues (possibly after normalizing
variables).

Intuitively, the residues of a literal represent the conditions that must be true
if the literal is true (and thus its negation is false).

Example 4. The constraint

∀n, s, m, s′,m′.
(
¬Emp(n, s,m) ∨ ¬Emp(m, s′, m′) ∨ s ≤ s′)

produces for Emp(n, s,m) the following local residues:

∀s′,m′.
(
¬Emp(m, s′,m′) ∨ s ≤ s′)

and
∀s′,m′.

(
¬Emp(m′, s′, n) ∨ s′ ≤ s

)
.

The global residue is the conjunction of the local residues.

We consider queries that are conjunctions of positive and negative literals.
The rewritten query is obtained in two steps. First, for every literal, an expanded
version is constructed as the conjunction of this literal and its global residue.
Second, the literals in the query are replaced by their expanded versions.

128 J. Chomicki and J. Marcinkowski

Example 5. Under the constraint

∀n, s, m, s′,m′.
(
¬Emp(n, s,m) ∨ ¬Emp(m, s′, m′) ∨ s ≤ s′),

the query Emp(n, s,m) is rewritten into

Emp(n, s,m) ∧ ∀s′,m′.
(
¬Emp(m, s′, m′) ∨ s ≤ s′)

∧ ∀s′,m′.
(
¬Emp(m′, s′, n) ∨ s′ ≤ s

)
.

A set of constraints is generic if it does not imply any ground literal. The
results by Arenas, Bertossi, and Chomicki [5] imply the following:

Proposition 2. For every generic set F of binary denial constraints and quan-
tifier-free L-sentence Φ(t̄) where

Φ = P1(x̄1) ∧ · · ·Pm(x̄m) ∧ ¬Pm+1(x̄m+1) ∧ · · · ∧ ¬Pn(x̄n) ∧ ϕ(x̄1, . . . , x̄n)

and t̄ is a vector of constants, DF,Φ(t̄) is in P.

This is because query rewriting is done in a database-independent way and
thus does not increase data complexity. In fact, since data complexity of evalu-
ating first-order queries is in AC0, so is DF,Φ.

The paper [5] shows that query rewriting is also applicable to full inclusion
dependencies. But then the literal expansion step might need to be iterated
until no changes occur. Also, care needs to be taken about the termination of
the expansion (this is addressed by Celle and Bertossi [21]). However, query
rewriting does not generalize to non-binary constraints, general INDs, or queries
involving disjunction or quantifiers. The latter is particularly disappointing, since
disjunctions or existential quantifiers in queries are necessary to extract partial
information from the database. For example, in Example 1, we would like to be
able to derive from the database that Brown lives in Amherst at 115 Klein or
120 Maple. Moreover, non-binary constraints and disjunctions do not necessarily
lead to intractability, as shown below.

3.2 Conflict Hypergraph

Given a set of denial constraints F and an instance r, all the repairs of r with
respect to F can be succinctly represented as the conflict hypergraph. This is a
generalization of the conflict graph defined by Arenas, Bertossi, and Chomicki
[7] for FDs only.

Definition 7. The conflict hypergraph GF,r is a hypergraph whose set of vertices
is the set Σ(r) of facts of an instance r and whose set of edges consists of all
the sets

{P1(t̄1), P2(t̄2), . . . Pl(t̄l)}
such that P1(t̄1), P2(t̄2), . . . Pl(t̄l) ∈ Σ(r), and there is a constraint

∀x̄1, x̄2, . . . , x̄l.
(
¬P1(x̄1) ∨ ¬P2(x̄2) ∨ . . . ∨ ¬Pl(x̄l) ∨ ¬ϕ(x̄1, x̄2, . . . , x̄l)

)
in F such that P1(t̄1), P2(t̄2), . . . Pl(t̄l) violate together this constraint, which
means that there exists a substitution ρ such that ρ(x̄1)= t̄1,ρ(x̄2) = t̄2, . . . ρ(x̄l)=
t̄l and ϕ(t̄1, t̄2, . . . t̄l) is true.

On the Computational Complexity of Minimal-Change Integrity 129

Note that there may be edges in GF,r that contain only one vertex. Also,
the size of the conflict hypergraph is polynomial in the number of tuples in the
database instance.

Example 6. The conflict graph of the instance of the relation Emp from Example
1 is represented in Figure 1.

Brown Amherst 115 Klein

Green Clarence 4000 Transit

Brown Amherst 120 Maple

Fig. 1. Conflict hypergraph

By an independent set in a hypergraph we mean a subset of its set of vertices
which does not contain any edge.

Proposition 3. For each repair r′ of r w.r.t. F , Σ(r′) is a maximal independent
set in GF,r, and vice versa.

Proof. Take an instance r′ such that Σ(r′) is not a maximal independent set in
GF,r. Then it contains an edge or is not maximal. In the first case, it means that
r′ violates the constraints; in the second, that r′ is not minimal in ≤r. On the
other hand, if r′ is not a repair, then it violates the constraints or is not minimal
in ≤r. In both cases, Σ(r′) is not a maximal independent set.

Proposition 3 yields the following result:

Proposition 4. [4] For every set of denial constraints F and L-sentence Φ, BF

is in P and DF,Φ is in co-NP.

Proof. Checking whether r′ satisfies F is in P. The repair r′ has also to be a
maximal subset of r′ that satisfies F . Checking that property can be done as
follows: try all the tuples t̄ in r− r′, one by one. If r′ ∪ {t̄} satisfies F , then r′ is
not maximal. Otherwise, if for no such tuple t̄, r′∪{t̄} satisfies F , no superset of
r′ can satisfy F (violations of denial constraints cannot be removed by adding
tuples) and r′ is maximal. The fact that DF,Φ is in co-NP follows immediately
from the definition of consistent query answer.

Note that the repairs of an instance r can be computed nondeterministically
by picking a vertex of GF,r which does not belong to a single-vertex edge and
adding vertices that do not result in the addition of an entire edge.

130 J. Chomicki and J. Marcinkowski

3.3 Positive Results

Theorem 1. [27, 28] For every set F of denial constraints and a ground sentence
Φ, DF,Φ is in P.

Proof. We assume the sentence is in CNF 1, i.e., of the form Φ = Φ1∧Φ2∧ . . . Φl,
where each Φi is a disjunction of ground literals. Φ is true in every repair of r if
and only if each of the clauses Φi is true in every repair. So it is enough to provide
a polynomial algorithm which will check if a given ground clause is consistently
true in an instance r.

It is easier to think that we are checking if a ground clause is not consistently
true in r. This means that we are checking, whether there exists a repair r′ in
which ¬Φi is true for some i. But ¬Φi is of the form

P1(t̄1) ∧ P2(t̄2) ∧ . . . ∧ Pm(t̄m) ∧ ¬Pm+1(t̄m+1) ∧ . . . ∧ ¬Pn(t̄n),

where the t̄j ’s are tuples of constants. WLOG, we assume that all the facts in
the set {P1(t̄1), . . . , Pn(t̄n))} are mutually distinct.

The nonderministic algorithm selects for every j, m + 1 ≤ j ≤ n, Pj(t̄j) ∈
Σ(r), an edge Ej ∈ GF,r such that Pj(t̄j) ∈ Ej , and constructs a set of facts S
such that

S = {P1(t̄1), . . . , Pm(t̄m)} ∪
⋃

m+1≤j≤n,Pj(t̄j)∈Σ(r)

(Ej − {Pj(t̄j)})

and there is no edge E ∈ GF,r such that E ⊆ S. If the construction of S succeeds,
then a repair in which ¬Φi is true can be built by adding to S new facts from
Σ(r) until the set is maximal independent. The algorithm needs n −m nonde-
terministic steps, a number which is independent of the size of the database (but
dependent on Φ), and in each of its nondeterministic steps selects one possibility
from a set whose size is polynomial in the size of the database. So there is an
equivalent polynomial-time deterministic algorithm.

In the case when the set F of integrity constraints consists of only one FD
per relation the conflict hypergraph has a very simple form. It is a disjoint union
of full multipartite graphs. If this single dependency is a key dependency, then
the conflict graph is a union of disjoint cliques. Because of this very simple
structure we hoped that it would be possible, in such a situation, to compute in
polynomial time the consistent answers not only to ground queries, but also to
all conjunctive queries. As we are going to see now, this is only possible if the
conjunctive queries are suitably restricted.

Theorem 2. [27, 28] Let F be a set of FDs, each dependency over a different
relation among P1, P2, . . . , Pk. Then for each closed simple conjunctive query Q,

1 This assumption does not reduce the generality of our results, because every ground
query can be converted to CNF independently of the database, and thus without
affecting the data complexity of query evaluation. However, from a practical point
of view, CNF conversion may lead to unacceptably complex queries.

On the Computational Complexity of Minimal-Change Integrity 131

there exists a closed query Q′ such that for every database instance r, r |=F Q
iff r |= Q′. Consequently, DF,Q is in P.

Proof. We present the construction for k = 2 for simplicity; the generalization
to an arbitrary k is straightforward. Let P1 and P2 be two different relations of
arity k1 and k2, resp. Assume we have the following FDs: Y1 → Z1 over P1 and
Y2 → Z2 over P2. Let ȳ1 be a vector of arity |Y1|, ȳ2 a vector of arity |Y2|, z̄1 and
z̄′
1 vectors of arity |Z1|, and z̄2 and z̄′

2 vectors of arity |Z2|. Finally, let w̄1, w̄
′
1, w̄

′′
1

(resp. w̄2, w̄
′
2, w̄

′′
2) be vectors of arity k1 − |Y1| − |Z1| (resp. k2 − |Y2| − |Z2|). All

of the above vectors consist of distinct variables. The query Q is of the following
form

∃ȳ1, z̄1, w̄1, ȳ2, z̄2, w̄2.
(
P1(ȳ1, z̄1, w̄1)∧P2(ȳ2, z̄2, w̄2)∧c1(ȳ1, z̄1, w̄1)∧c2(ȳ2, z̄2, w̄2)

)
.

Then, the query Q′ (which is also closed) is as follows:

∃ȳ1, z̄1, w̄1, ȳ2, z̄2, w̄2∀z̄′
1, w̄

′
1, z̄

′
2, w̄

′
2∃w̄′′

1 , w̄′′
2 .

(
P1(ȳ1, z̄1, w̄1) ∧ P2(ȳ2, z̄2, w̄2)

∧c1(ȳ1, z̄1, w̄1) ∧ c2(ȳ2, z̄2, w̄2) ∧
(
P1(ȳ1, z̄

′
1, w̄

′
1) ∧ P2(ȳ2, z̄

′
2, w̄

′
2) ⇒

P1(ȳ1, z̄
′
1, w̄

′′
1) ∧ P2(ȳ2, z̄

′
2, w̄

′′
2) ∧ c1(ȳ1, z̄

′
1, w̄

′′
1) ∧ c2(ȳ2, z̄

′
2, w̄

′′
2)

))
.

Chomicki and Marcinkowski [28] describe the generalizations of Theorems
1 and 2 to the non-ground case. The generalized version of the algorithm pre-
sented in the proof of Theorem 1 has been implemented as a part of a database
middleware system Hippo [25, 26].

The above line of research is continued by Fuxman and Miller [41]. They
make the observation that the query

Q1 ≡ ∃e1, e2, s.
(
R(e1, s) ∧R(e2, s) ∧ e1 �= e2

)
is consistently false if and only if there is a perfect matching in the graph of
the relation R (the first argument of R is understood to be the key here). This
implies that Q1 is an example of a tractable query which cannot be answered
by query rewriting (see the discussion earlier in this section), because perfect
matching is not first order definable. Fuxman and Miller [41] generalize this
perfect matching technique to a wider class of queries on databases over binary
schemata.

3.4 Negative Results

We show now that Theorems 1 and 2 are the strongest possible (assuming the
arity of relations is not restricted), because relaxing any of their conditions leads
to co-NP-completeness. This is the case even though we limit ourselves to key
FDs.

Theorem 3. [27, 28] There exist a key FD f and a closed conjunctive query

Q ≡ ∃x, y, y′, z.
(
R(x, y, c) ∧R(z, y′, d) ∧ y = y′),

for which D{f},Q is co-NP-complete.

132 J. Chomicki and J. Marcinkowski

Proof. Reduction from MONOTONE 3-SAT. The FD is A → BC. Let β =
φ1 ∧ . . . φm ∧ψm+1 . . .∧ψl be a conjunction of clauses, such that all occurrences
of variables in φi are positive and all occurrences of variables in ψi are negative.
We build a database rβ with the facts R(i, p, c) if the variable p occurs in the
clause φi and R(i, p, d) if the variable p occurs in the clause ψi. Now, there is an
assignment which satisfies β if and only if there exists a repair of the database
rβ in which Q is false.

As an example, consider the following monotone formula

β0 = s ∧ (p ∨ q) ∧ ¬p ∧ (¬q ∨ ¬s).

The corresponding database rβ0 contains the following facts:

R(1, s, c), R(2, p, c), R(2, q, c), R(3, p, d), R(4, q, d), R(4, s, d).

Clearly, β0 is unsatisfiable. Also, Q is true in every repair of rβ0 .
To show the ⇒ implication, select for each clause φi one variable pi which

occurs in this clause and whose value is 1 and for each clause ψi, one variable
pi which occurs in ψi and whose value is 0. The set of facts {R(i, pi, c) : i ≤
m} ∪ {R(i, pi, d) : m + 1 ≤ i ≤ l} is a repair in which the query Q is false. The
⇐ implication is even simpler.

Note that the query in Theorem 3 is nonsimple.

Theorem 4. [27, 28] There is a set F of two key dependencies and a closed
conjunctive query Q ≡ ∃x, y. R(x, y, b), for which DF,Q is co-NP-complete.

The above result was obtained first in a slightly weaker form – for non-key
FDs – in [7, 4].

Theorem 5. [27, 28] There exist a denial constraint f and a closed conjunctive
query Q ≡ ∃x, y. R(x, y, b), for which D{f},Q is co-NP-complete.

For the co-NP-hard cases identified above, no approach to the computation of
consistent query answers based on query rewriting can work. This is because (a)
such approaches produce queries that are evaluable in AC0, and (b) the relevant
co-NP-complete problems are not in AC0.

4 Beyond Denial Constraints

4.1 Different Notions of Repair

The basic notion of repair (Definition 4) requires that the symmetric difference
between a database and its repair is minimized. But as we have seen, in the
context of denial constraints every repair is a subset of the database. Thus,
insertions are not used in constructing repairs. The situation is different for
more general constraints.

On the Computational Complexity of Minimal-Change Integrity 133

Example 7. Consider the integrity constraint ∀x.
(
¬P (x)∨R(x)

)
and the database

{P (1)}. Then there are two repairs: ∅ and {P (1), R(1)}.

Allowing repairs constructed using insertions makes sense if the information
in the database may be incomplete2. The latter is common in data integration
applications where the data is pulled from multiple sources, typically without any
guarantees on its completeness. On the other hand, if we know that the data in
the database is complete but possibly incorrect, as in data warehousing applica-
tions, it is natural to consider only repairs constructed using deletions. Current
language standards like SQL:1999 [60] allow only deletions in their repertoire
of referential integrity actions. Moreover, the restriction to deletions guaran-
tees that the number of repairs is finite. This restriction is also beneficial from
the computational point of view, as we will see later. Note that the symmet-
ric restriction to insertions would make sense only in the context of inclusion
dependencies: denial constraints cannot be fixed by insertions.

Example 8. Consider a database with two relations Employee(SSN,Name) and
Manager(SSN). There are functional dependencies SSN → Name and Name →
SSN , and an inclusion dependency Manager[SSN] ⊆ Employee[SSN]. The
relations have the following instances:

Employee
SSN Name
123456789 Smith
555555555 Jones
555555555 Smith

Manager
SSN
123456789
555555555

The instances do not violate the IND but violate both FDs. If we consider
only the FDs, there are two repairs: one obtained by removing the third tuple
from Employee, and the other by removing the first two tuples from the same
relation. However, the second repair violates the IND. This can be fixed by
removing the first tuple from Manager. So if we consider all the constraints,
there are two deletion-only repairs:

Employee
SSN Name
123456789 Smith
555555555 Jones

Manager
SSN
123456789
555555555

and

Employee
SSN Name
555555555 Smith

Manager
SSN
555555555

2 Incompleteness here does not mean that the database contains indefinite informa-
tion in the form of nulls or disjunctions [61]. Rather, it means that Open World
Assumption is adopted, i.e., the facts missing from the database are not assumed to
be false.

134 J. Chomicki and J. Marcinkowski

Finally, insertions may lead to infinitely many repairs of the form

Employee
SSN Name
123456789 c
555555555 Smith

Manager
SSN
123456789
555555555

where c is an arbitrary string different from Smith (this is forced by one of the
FDs).

Example 9. To see the plausibility of repairing by insertion, consider Example 1
again. Suppose the only constraint is that City is a foreign-key, referencing the
key of another relation Cities. Then if Clarence does not occur as a key value
in the current instance of Cities, then one possible repair is to delete the tuple
〈Green,Clarence, 4000 Transit〉 (the city name may be erroneous). But it is also
possible that not all the cities are in the current instance of Cities, thus another
way of resolving the inconsistency is to insert a tuple with city name = Clarence
into Cities. If Cities has more than one attribute, then infinitely many such re-
pairs arise (all possible values for the nonkey attributes have to be considered).
In practice, the nonkey attributes will receive null values in such a case.

In the next subsection, we will consider deletion-only repairs. Afterwards, we
will revert to Definition 4.

4.2 Repairing by Deletion

We modify here Definition 4 to allow only repairs obtained by deletion of one
or more tuples from the original instance. The definition of consistent query
answers remains unchanged.

We also use B−
I (resp. D−

I,Φ) to denote the problem of repair of repair checking
(resp. consistent query answers), in order to indicate that due to the different
notion of repair those problems are different from the corresponding problems
BI and DI,Φ studied earlier.

We establish first a general relationship between the problems of repair check-
ing and consistent query answers.

Theorem 6. In the presence of full foreign key constraints, the problem of repair
checking is logspace-reducible to the complement of the problem of consistent
query answers.

Proof. We discuss here the case of the database consisting of a single relation
R0. Assume r is the given instance of R0 and r′ is an another instance of R0
satisfying the set of integrity constraints IC. We define a new relation S0 having
the same attributes as R0 plus an additional attribute Z. Consider an instance
s of S0 built as follows:

– for every tuple (x1, . . . , xk) ∈ r′, we add the tuple (x1, . . . , xk, c1) to s;
– for every tuple (x1, . . . , xk) ∈ r − r′, we add the tuple (x1, . . . , xk, c2) to s.

On the Computational Complexity of Minimal-Change Integrity 135

Consider also another relation P having a single attribute W , and a foreign
key constraint i0 : P [W] ⊆ S0[Z]. The instance p of P consists of a single tuple
c2. We claim that P (c2) is consistently true in the database instance consisting
of s and p w.r.t. IC ∪ {i0} iff r′ is not a repair of r w.r.t. IC.

We now characterize the computational complexity of repair checking and
consistent query answers for FDs and INDs.

Proposition 5. For every set of INDs I and L-sentence Φ, B−
I and D−

I,Φ are
in P.

Proof. For a given database instance r, a single repair is obtained by deleting
all the tuples violating I (and only those).

We consider now FDs and INDs together. We want to identify the cases where
both repair checking and computing consistent query answers can be done in P.
The intuition is to limit the interaction between the FDs and the INDs in the
given set of integrity constraints in such a way that one can use the polynomial-
time results presented earlier.

Lemma 1. [28] Let IC = F ∪ I be a set of constraints consisting of a set of
key FDs F and a set of foreign key constraints I but with no more than one key
per relation. Let r be a database instance and r′ be the unique repair of r with
respect to the foreign key constraints in I. Then r′′ is a repair of r w.r.t. IC if
and only if it is a repair of r′ w.r.t. F .

Proof. The only thing to be noticed here is that repairing r′ with respect to key
constraints does not lead to new inclusion violations. This is because the set of
key values in each relation remains unchanged after such a repair (which is not
necessarily the case if we have relations with more than one key).

Corollary 1. Under the assumptions of Lemma 1, B−
IC is in P.

The repairs w.r.t. IC = F ∪ I of r are computed by (deterministically)
repairing r w.r.t. I and then nondeterministically repairing the result w.r.t. F
(as described in the previous section).

We can also transfer the polynomial-time results about consistent query an-
swers obtained for FDs only.

Corollary 2. Let Φ a quantifier-free L-sentence or a simple conjunctive closed
L-query. Then under the assumptions of Lemma 1, D−

IC,Φ is in P.

Unfortunately, the cases identified above are the only ones we know of in
which both repair checking and consistent query answers are in P.

For acyclic INDs (and arbitrary FDs), the repair checking problem is still
in P. Surprisingly, consistent query answers becomes in this case a co-NP-hard
problem, even in the case of key FDs and primary key foreign key constraints.
If we relax any of the assumptions of Lemma 1, the problem of consistent query
answers becomes intractable, even under acyclicity.

136 J. Chomicki and J. Marcinkowski

Definition 8. [2] Let I be a set of INDs over a database schema R. Consider a
directed graph whose vertices are relations from R and such that there is an edge
E(P,R) in the graph if and only if there is an IND of the form P [X] ⊆ R[Y] in
I. A set of inclusion dependencies is acyclic if the above graph does not have a
cycle.

Theorem 7. [28] Let IC = F ∪ I be a set of constraints consisting of a set of
FDs F and an acyclic set of INDs I. Then B−

IC is in P.

Proof. First compare r and r′ on relations which are not on the left-hand side of
any IND in I. Here, r′ is a repair if and only if the functional dependencies are
satisfied in r′ and if adding to it any additional tuple from r would violate one of
the functional dependencies. Then consider relations which are on the left-hand
side of some INDs, but the inclusions only lead to already checked relations.
Again, r′ is a repair of those relations if and only if adding any new tuple (i.e.
any tuple from r but not from r′) would violate some constraints. Repeat the
last step until all the relations are checked.

The above proof yields a nondeterministic polynomial-time procedure for
computing the repairs w.r.t. IC = F ∪ I.

To our surprise, Theorem 7 is the strongest possible positive result. The
problem of consistent query answers is already intractable, even under additional
restrictions on the FDs and INDs.

Theorem 8. [28] There exist a database schema, a set IC of integrity con-
straints consisting of key FDs and of an acyclic set of primary foreign key con-
straints, and a ground atomic query Φ such that D−

IC,Φ is co-NP-hard.

We show also that relaxing the acyclicity assumption in Theorem 7 leads to
the intractability of the repair checking problem (and thus also the problem of
consistent query answers), even though alternative restrictions on the integrity
constraints are imposed.

Theorem 9. [28] There exist a database schema and a set IC of integrity con-
straints, consisting of one FD and one IND, such that B−

IC is co-NP-hard.

Theorem 10. [28] There exist a database schema and a set IC of integrity
constraints, consisting of key FDs and foreign key constraints, such that B−

IC is
co-NP-hard.

We complete the picture by considering arbitrary FDs and INDs.

Theorem 11. [28] For an arbitrary set IC of FDs and INDs, B−
IC is co-NP-

complete.

Theorem 12. [28] For an arbitrary set IC of FDs and INDs, and quantifier-free
L-sentence Φ, D−

IC,Φ is Πp
2 -complete.

On the Computational Complexity of Minimal-Change Integrity 137

Proof. The membership in Πp
2 follows from the definition of consistent query

answer. We show Πp
2 -hardness below.

Consider a quantified boolean formula β of the form

β ≡ ∀p1, p2, . . . pk∃q1, q2, . . . ql ψ

where ψ is quantifier-free and equals to ψ1 ∧ ψ2 ∧ . . . ψm, where ψi are clauses.
We will construct a database instance rβ , over a schema with a single relation
R(A,B,C,D), such that R(a, a, ψ1, a) is a consistent answer if and only if β is
true. The integrity constraints will be A → B and C ⊆ D.

There are 3 kinds of tuples in rβ . For each occurence of a literal in ψ we have
one tuple of the first kind (we adopt the convention that ψm+1 is ψ1):

– R(pi, 1, ψj , ψj+1) if pi occurs positively in ψj ,
– R(qi, 1, ψj , ψj+1) if qi occurs positively in ψj ,
– R(pi, 0, ψj , ψj+1) if pi occurs negatively in ψj ,
– R(qi, 0, ψj , ψj+1) if qi occurs negatively in ψj .

For each universally quantified variable pi we have two tuples of the second
kind: R(pi, 1, ai, ai) and R(pi, 0, ai, ai). Finally, there is just one tuple of the
third kind: R(a, a, ψ1, a).

Consider a repair s of rβ . Call s white if it does not contain any tuple of
the first kind. Call s black if for each clause ψi of ψ, s contains some tuple of
the form R(, , ψi, ψi+1). We claim, that each repair of rβ is either white or
black. Indeed, if some R(, , ψj , ψj+1) is in s (i.e. if s is not white) then, since
the C ⊆ D constraint is satisfied in s, there must be some tuple of the form
R(, , ψj−1, ψj) in s. But the last implies that also some R(, , ψj−2, ψj−1) must
be in s, and so on.

Notice, that it follows from the C ⊆ D constraint that if a repair s is white,
then R(a, a, ψ1, a) cannot be in s. On the other hand, it is easy to see that if s
is black, then R(a, a, ψ1, a) is in s.

Now, for a repair s of rβ define σ1
s (respectively σ2

s) as the substitution
resulting from projecting the set of the tuples of the first (resp. second) kind in s
on the first two attributes. Notice that σ1

s and σ2
s agree on the shared arguments:

this is since s satisfies the functional dependency. From the construction of rβ it
follows that if s is black then σ1

s(ψ) is true (for each ψj there is either a variable x
occurring positively in ψ, such that σ1

s(x) = 1 or variable x occurring negatively
in ψ, such that σ1

s(x) = 0).
To end the proof we need to show that β is false if and only if there exists

some white repair of rβ .
Suppose β is false. Let σ be such a valuation of the variables p1, p2, . . . pk that

the formula σ(β) (with free variables q1, q2, . . . ql) is not satisfiable. The set sσ of
all the tuples from rβ which are of the form R(pi, σ(pi), ai, ai) is consistent. So
there exists a repair s such that sσ ⊆ s. But if s is black then σ1

s is a substitution
which agrees with σ and satisfies ψ, which is a contradiction. So s must be white.

For the opposite direction, suppose β is true, and s is some white repair of
rβ . This means that s contains only tuples of the second kind, and the projection

138 J. Chomicki and J. Marcinkowski

of s on the first two attributes is some valuation σ of the variables p1, p2, . . . pk.
Since β is true, there exists a valuation σ′ of the variables q1, q2, . . . ql such that
σ′σ(ψ) is true. Now, the union of s and the set of all the tuples of the first kind
which are of the form R(pi, σ(pi), ψj , ψj+1) or of the form R(qi, σ

′(qi), ψj , ψj+1)
is a consistent superset of s, which contradicts the assumption that s was a
repair.

4.3 Repairing by Insertion and Deletion

Cal̀ı, Lembo, and Rosati [20] study the complexity of query answering when the
database is possibly not only inconsistent but also incomplete. Like in the paper
of Arenas, Bertossi, and Chomicki [5] and the follow-up work, consistency is
defined by means of integrity constraints, and an answer to a query is understood
to be consistent if it is true in all possible repairs. Six definitions of the notion
of repair are considered by Cal̀ı, Lembo, and Rosati [20], only one of which
coincides with Definition 4. Each of those notions postulates that a repair satisfy
the integrity constraints.

The sound, exact, and complete semantics do not impose any minimality
conditions on repairs. The sound semantics requires that a repair is a superset
of the database; the exact semantics – that it is equal to the database; and
the complete semantics – that it is a subset of the database. Because an empty
database satisfies any set of FDs and INDs, it is a repair under the complete
semantics. Therefore, in this case there is no nontrivial notion of consistent
query answer. The exact semantics is uninteresting for a different reason: the set
of repairs is empty if the database violates the constraints, and consists of the
original database if the constraints are satisfied. The sound semantics is suitable
if the constraints consist of INDs only; in the presence of FDs, the set of repairs
may be empty (this is because the violations of FDs cannot be fixed by tuple
insertions). However, solving a violation of an inclusion dependency by adding
new tuples may lead to new violations, of other dependencies, and thus there is
no clear upper bound on the size of a minimal repair, under the sound semantics.
So one can expect the problem of consistent query answers to be undecidable
here. And indeed, this undecidability is proved by Cal̀ı, Lembo, and Rosati [20].

To present the decidable cases identified by Cal̀ı, Lembo, and Rosati [20], we
need to introduce some definitions.

Definition 9. Let IC = F ∪ I be a set of constraints consisting of a set of key
FDs F (with at most one key per relation) and a set of INDs I. Then an IND
P [X] ⊆ R[Y] ∈ I is non-key-conflicting w.r.t. F if either: (1) no nontrivial key
FD is defined for R in F , or (2) Y is not a strict superset of the key of R.

Theorem 13. [20] Let IC = F ∪ I be a set of constraints consisting of a set of
key FDs F (with at most one key per relation) and a set of non-key-conflicting
INDs I. Let Q be a union of conjunctive queries. Then the problem of consistent
query answers is in P (under sound semantics).

On the Computational Complexity of Minimal-Change Integrity 139

Notice that Theorem 13 to some degree parallels Lemma 1. One has to bear
in mind, however, that those results use different semantics of consistent query
answers due to different notions of repair.

The notion of repair under the sound semantics is not powerful enough if
some functional dependencies can be violated in the original database (the set of
repairs may be empty). This observation leads to the notions of loosely-complete,
loosely-sound, and loosely-exact semantics. Under those semantics, repairs are
constructed by adding tuples, as well as by deleting them. The loosely-complete
semantics does not impose the requirement that the set of deleted tuples be
minimal in a repair; therefore, the empty database is a repair and, as under the
complete semantics, the notion of consistent query answer is trivial. The notion
of repair under the loosely-exact semantics is identical to that of Definition 4.
Finally, loosely-sound semantics requires only that the set of deleted tuples is
minimized.

Cal̀ı, Lembo, and Rosati [20] show that for general key FDs and INDs the
problem of consistent query answers under loosely-sound and loosely-exact se-
mantics is undecidable. The decidable cases identified in that paper involve again
non-key-conflicting INDs.

Theorem 14. [20] Let IC = F ∪ I be a set of constraints consisting of a set of
key FDs F (with at most one key per relation) and a set of non-key-conflicting
INDs I. Let Q be a union of conjunctive queries. Then the problem of con-
sistent query answers is co-NP-complete (under loosely-sound semantics) and
Πp

2 -complete (under loosely-exact semantics).

Contrasting Theorem 14 with Theorem 13, we see that the loosely-sound
semantics augments the sound semantics with the nondeterministic choice of
the set of tuples to be deleted. The loosely-exact semantics adds another level
of nondeterminism.

We conclude by noting that none of the six notions of repair coincides with
the one proposed by Chomicki and Marcinkowski [28]. The latter notion, by
forcing the repairs to be subsets of the original database, makes the problem of
consistent query answers decidable (Theorem 12).

4.4 Repairing by Attribute Modification

In the framework of Arenas, Bertossi and Chomicki [5], which was adapted by the
follow-up papers [6, 7, 8, 4, 9, 11, 12, 20, 21, 27, 28, 34, 41, 45, 46, 49, 62], the small-
est unit to be deleted from (or added to) a database in the process of repairing
is a tuple. A different choice is made by Wijsen [64] where tuples themselves are
being repaired. The idea there is that even a tuple that violates the integrity
constraints can possibly still yield some important information. Wijsen’s moti-
vating example is a relation of arity 5 containing information on dioxin levels in
food samples. The attributes of this relation are: the sample number, the sample
date, the analysis date, the lab and the dioxin level. The integrity constraint is
”the sample date must be prior to the analysis date”. This is a denial constraint,
thus the only thing that can be done with a tuple violating this constraint is

140 J. Chomicki and J. Marcinkowski

dropping it, possibly getting rid of the number and other data of the sample,
which may indicate an alarming dioxin level.

Example 10. Consider the relation Emp with attributes Name, Salary , and Man-
ager , where Name is the primary key. The constraint that no employee can have
a salary greater than that of her manager is a denial constraint:

∀n, s, m, s′,m′.
(
¬Emp(n, s,m) ∨ ¬Emp(m, s′, m′) ∨ s ≤ s′).

Consider the following instance of Emp that violates the constraint:

Name Salary Manager
Jones 120K Black
Black 100K Black

Under Definition 4, this instance has two repairs: one obtained by deleting
the first tuple and the other – by deleting the second tuple. It might be more
natural to consider the repairs obtained by adjusting the individual salary values
in such a way that the constraint is satisfied.

The basic idea of the approach proposed by Wijsen [64] is to define the
notion of repair by means of the ordering defined by the subsumption of tableaux,
instead of the ordering ≤r defined by set inclusion (Definition 3). A tableau is a
generalization of a relation: tuples can have not only constants but also variables
as components. Wijsen [64] considers only single-relation databases.

Definition 10. [64] If S and T are two tableaux, then:

– S subsumes T (S � T) if there is a substitution σ such that σ(T) ⊆ S;
– S one-one subsumes T (S � T) if there is a substitution σ such that σ(T) ⊆

S and |σ(T)| = |T |.

Definition 11. [64] A tableau T subsatisfies a set of integrity constraints IC if
there is a relation R satisfying IC and such that R � T . A fix, with respect to
IC, of a relation D is any tableau T such that

(i) D � T and T subsatisfies IC;
(ii) T is subsumption-maximal among tableaux satisfying (i).
A repair of D is now any minimal relation D1 which satisfies IC and for

which there exists a fix T of D such that D1 � T .

The notion of consistent query answer in Wijsen’s framework is that of Def-
inition 6 in which the notion of repair of Definition 4 is substituted by that of
Definition 11.

Example 11. If the dioxin database contains just one tuple

〈120, 17Jan2002, 16Jan2002, ICI, 150〉,

then there are two fixes of it:

〈120, x, 16Jan2002, ICI, 150〉

On the Computational Complexity of Minimal-Change Integrity 141

and
〈120, 17Jan2002, y, ICI, 150〉.

A repair is any database resulting from the first fix by substituting for x any
date prior to 16 Jan 2002 or from the second fix by substituting for y any date
later than 17 Jan 2002. In each repair there is a tuple with the dioxin level 150.

The class of integrity constraints considered by Wijsen consists of tuple-
and equality-generating dependencies [55, 2]. The first are simply universal Horn
constraints, the second – restricted denial constraints. The queries studied by
Wijsen [64] are conjunctive queries.

Wijsen [64] considers cases where answers to conjunctive queries can be com-
puted by means of early repairs, which means, that for a given relation D, another
relation D′ is computed, such that a query is consistently true in D if and only
if the query is true in D′. There are questions left open by the paper regarding
the size of D′, and in consequence, regarding the efficiency of this algorithm.
Recently [Jef Wijsen, unpublished], NP-hardness of repair checking has been
established under Definition 11 of repair:

Theorem 15. There exists a denial constraint φ0 with one database literal, such
that repair checking is NP-hard.

Note that for denial constraints repair checking under Definition 4 is in P.
Thus, unless P = NP , there is a considerable computational price for using Wi-
jsen’s framework.

We note that the notions of repair discussed so far do not exhaust all the
possibilities. For example, in Example 11 the database could also be repaired by
swapping the values of the second and third attributes.

5 Aggregation

So far we have considered only first-order queries but in databases aggregation
queries are also important. In fact, aggregation is essential in scenarios, like data
warehousing, where inconsistencies are likely to occur and keeping inconsistent
data may be useful.

We consider here a restricted scenario: there is only one relation and integrity
constraints are limited to functional dependencies. Thus, every repair in the sense
of Definition 4 is a maximal consistent subset of the given instance. Aggregation
queries consist of single applications of one of the standard SQL-2 aggregation
operators (MIN, MAX, COUNT(*), COUNT(A), SUM, and AVG). Even in this case,
it was shown by Arenas, Bertossi and Chomicki [7] that computing consistent
query answers to aggregation queries is a challenging problem for both semantic
and complexity-theoretic reasons.

142 J. Chomicki and J. Marcinkowski

Example 12. Consider the following instance r of the relation Emp:

Name Salary Manager
Brown 50K Black
Brown 70K Black
Green 40K Brown

It is inconsistent w.r.t. the FD: Name → Salary . The repairs are:

Name Salary Manager
Brown 50K Black
Green 40K Brown

Name Salary Manager
Brown 70K Black
Green 40K Brown

If we pose the query

SELECT MIN(Salary) FROM Emp

we should get 40K as a consistent answer: MIN(Salary) returns 40K in each
repair. Nevertheless, if we ask

SELECT MAX(Salary) FROM Emp

then the maximum, 70K, comes from a tuple that participates in the violation
of the FD. Actually, MAX(Salary) returns a different value in each repair: 50K
or 70K. Thus, there is no consistent answer in the sense of Definition 6. �

We give a new, slightly weakened definition of consistent answer to an aggre-
gation query that addresses the above difficulty.

Definition 12. [7] Given a set of integrity constraints F , an aggregation query
f and a database instance r, the set of possible answers Possf

F (r) is defined as

Possf
F (r) = {f(r′) | r′ ∈ RepairsF (r)}.

The greatest-lower-bound (glb) answer glbF (f, r) to f w.r.t. F in r is defined as

glbF (f, r) = glb Possf
F (r).

The least-upper-bound (lub) answer lubF (f, r) to f w.r.t. F in r is defined as

lubF (f, r) = lub Possf
F (r).

�

According to this definition, in Example 12, 50K (resp. 70K) are the glb-
answer (resp. lub-answer) to the query

SELECT MAX(Salary) FROM Emp.

Notice that the interval [glb answer,lub answer] represents in a succinct form a
superset of the values that the aggregation query can take in all possible repairs
of the database r w.r.t. a set of FDs. The representation of the interval is always
polynomially sized, since the numeric values of the endpoints can be represented
in binary.

On the Computational Complexity of Minimal-Change Integrity 143

Example 13. Along the lines of Example 3, consider the functional dependency
A → B and the following family of relation instances Sn, n > 0:

rn

A a1 a1 a2 a2 a3 a3 · · · an an

B 0 1 0 2 0 4 · · · 0 2n

The aggregation query SUM(B) takes all the exponentially many values be-
tween 0 and 2n+1 − 1 in the (exponentially many) repairs of the database [7].
An explicit representation of the possible values the aggregation function would
then be exponentially large. Moreover, it would violate the 1NF assumption. On
the other hand, the glb/lub representation has polynomial size. �

Arenas et al. [4] provide a complete classification of the tractable and intractable
cases of the problem of computing consistent query answers (in the sense of Defi-
nition 12) to aggregation queries. Its results can be summarized as follows:

Theorem 16. [4] The problem of computing glb/lub answers is in P for all the
aggregate operators except COUNT(A), if the set of integrity constraints contains
at most one non-trivial FD.

Theorem 17. [4] The problem of checking whether the glb-answer to a query is
≤ k and the problem of checking whether the lub-answer to a query is ≥ k are
NP-complete for COUNT(A) already in the presence of one non-trivial FD, and
for the remaining operators in the presence of more than one non-trivial FD.

For the aggregate operators MIN, MAX, COUNT(*) and SUM and a single FD,
the glb- and lub-answers are computed by SQL2 queries (so this is in a sense
an analogue of the query rewriting approach for first-order queries discussed
earlier). For AVG, however, the polynomial-time algorithm is iterative and cannot
be formulated in SQL2.

Example 14. Continuing Example 12, the greatest lower bound answer to the
query

SELECT MAX(Salary) FROM Emp

is computed by the following SQL2 query

SELECT MAX(C) FROM
(SELECT MIN(Salary) AS C
FROM Emp
GROUP BY Name).

�

Arenas et al. [7, 4] identify some special properties of conflict graphs in re-
stricted cases, paving the way to more tractable cases. For example, for two FDs
and the relation schema in Boyce-Codd Normal Form, the conflict graphs are

144 J. Chomicki and J. Marcinkowski

claw-free and perfect [15], and computing lub-answers to COUNT(*) queries can
be done in P.

Given the intractability results, it seems appropriate to find approximations
to consistent answers to aggregation queries. Unfortunately, “maximal indepen-
dent set” seems to have bad approximation properties [51].

6 Related Work

We only briefly survey related work here. Arenas, Bertossi and Chomicki [5, 14]
provide a more comprehensive discussion.

There are several similarities between our approach to consistency handling
and those followed by the belief revision community [42]. Database repairs (Defi-
nition 4) coincide with revised models defined by Winslett [65]. Winslett’s frame-
work is mainly propositional. However, Chou and Winslett [29] study a prelim-
inary extension to first order knowledge bases. Those papers concentrate on
the computation of the models of the revised theory, i.e., the repairs in our
case. Comparing our framework with that of belief revision, we have an empty
domain theory, one model: the database instance, and a revision by a set of
ICs. The revision of a database instance by the ICs produces new database in-
stances, the repairs of the original database. We consider a specific notion of
minimal change, namely one that minimizes the set of literals in the symmetric
differences of two instances. Other possibilities have also been explored in the
belief revision community, for example minimizing the cardinality of symmetric
difference, as proposed by Dalal [30].

The complexity of belief revision (and the related problem of counterfactual
inference which corresponds to our computation of consistent query answers) in
the propositional case is exhaustively classified by Eiter and Gottlob [35]. They
show, among others, that counterfactual inference under Winslett’s semantics is
Πp

2 -complete. Subsequently, they provide a number of restrictions on the knowl-
edge base and the revision formula to reduce the complexity. We note that among
the constraint classes considered in the current paper, only universal constraints
can be represented propositionally by grounding. However, such grounding re-
sults in an unbounded revision formula, which prevents the transfer of any of
the polynomial-time upper bounds obtained by Eiter and Gottlob [35] into our
framework. Similarly, their lower bounds require different kinds of formulas from
those that we use.

The need to accommodate violations of functional dependencies is one of the
main motivations for considering disjunctive databases (studied, among others,
by Imieliński, van der Meyden, Naqvi, and Vadaparty [53, 54, 61] and has led to
various proposals in the context of data integration (Agarwal et al. [3], Baral et
al. [10], Dung [32], and Lin and Mendelzon [58]). There seems to be an intriguing
connection between relation repairs w.r.t. FDs and databases with disjunctive
information [61]. For example, the set of repairs of the relation Person from
Example 3 can be represented as a disjunctive database D consisting of the
formulas

On the Computational Complexity of Minimal-Change Integrity 145

Person(Brown,Amherst, 115 Klein) ∨ Person(Brown,Amherst, 120 Maple)

and
Person(Green,Clarence, 4000 Transit).

Each repair corresponds to a minimal model of D and vice versa. We conjec-
ture that the set of all repairs of an instance w.r.t. a set of FDs can be represented
as a disjunctive table (with rows that are disjunctions of atoms with the same
relation symbol). The relationship in the other direction does not hold, as shown
by the folowing example [4].

Example 15. The set of minimal models of the formula

(p(a1, b1) ∨ p(a2, b2)) ∧ p(a3, b3)

cannot be represented as a set of repairs of any set of FDs. �

Known tractable classes of first-order queries over disjunctive databases typ-
ically involve conjunctive queries and databases with restricted OR-objects [53,
54]. In some cases, like in Example 3, the set of all repairs can be represented
as a table with OR-objects. But in general a correspondence between sets of
repairs and tables with OR-objects holds only in the very restricted case when
the relation is binary, say R(A,B), and there is one FD A → B [4]. Imieliński,
van der Meyden, and Vadaparty [54] provide a complete classification of the
complexity of conjunctive queries for tables with OR-objects. It is shown how
the complexity depends on whether the tables satisfy various schema-level cri-
teria, governing the allowed occurrences of OR-objects. Since there is no exact
correspondence between tables with OR-objects and sets of repairs of a given
database instance, the results of the paper [54] do not directly translate to our
framework, and vice versa. A different interesting direction to explore in this
context is to consider conditional tables, proposed by Imieliński and Lipski [52],
as a representation for infinite sets of repairs, as in Example 8.

There are several proposals for language constructs specifying nondetermin-
istic queries that are related to our approach: witness, proposed by Abiteboul,
Hull and Vianu [2], and choice, proposed by Giannotti, Greco, Pedreschi, Saccà,
and Zaniolo [43, 44, 47]. Essentially, the idea is to construct a maximal subset
of a given relation that satisfies a given set of functional dependencies. Since
there is usually more than one such subset, the approach yields nondeterminis-
tic queries in a natural way. Clearly, maximal consistent subsets (choice models
[43]) correspond to repairs. Datalog with choice [43] is, in a sense, more general
than our approach, since it combines enforcing functional dependencies with in-
ference using Datalog rules. Answering queries in all choice models (∀G-queries
[47]) corresponds to our notion of computation of consistent query answers (Def-
inition 6). However, the former problem is shown to be co-NP-complete and no
tractable cases are identified. One of the sources of complexity in this case is the
presence of Datalog rules, absent from our approach. Moreover, the procedure
proposed by Greco, Saccà and Zaniolo [47] runs in exponential time if there are
exponentially many repairs, as in Example 3. Also, only conjunctions of literals
are considered as queries by Greco, Saccà and Zaniolo.

146 J. Chomicki and J. Marcinkowski

A purely proof-theoretic notion of consistent query answer comes from Bry
[17]. This notion, described only in the propositional case, corresponds to evalu-
ating queries after all the tuples involved in inconsistencies have been eliminated.
No complexity results have been established for Bry’s approach.

Representing repairs as answer sets of logic programs with disjunction and
classical negation has been proposed in a number of papers [6, 8, 12, 34, 45, 46, 49,
62]. Those papers consider computing consistent answers to first-order queries.
While the approach is very general, no tractable cases beyond those already
implicit in the results of Arenas, Bertossi and Chomicki [5] are identified. This
is because the classes of logic programs used are Πp

2 -complete [31]. Eiter et
al. [34] propose several optimizations that are applicable to logic programming
approaches. One is localization of conflict resolution, another - encoding tuple
membership in individual repairs using bitvectors, which makes possible efficient
computation of consistent query answers using bitwise operators. However, we
have seen in Example 3 even in the presence of one functional dependency there
may be exponentially many repairs [4]. With only 80 tuples involved in conflicts,
the number of repairs may exceed 1012! It is clearly impractical to efficiently
manipulate bitvectors of that size.

7 Conclusions and Future Work

We envision several possible directions for future work.
First, one can consider various preference orderings on repairs. Such orderings

are often natural and may lead to further tractable cases. Some preliminary work
in this direction is reported by Greco et al. [45, 48].

Second, the connection between the semantics of repairs and the complexity
of repair checking and consistent query answers should be investigated further,
in particular the impact of adopting a cardinality-based minimality criterion for
repairs.

Third, a natural scenario for applying the results developed in this paper is
query rewriting in the presence of distributed data sources [33, 50, 57]. Abiteboul
and Duschka [1] show, among others, that assuming that data sources are com-
plete has a negative influence on the computational complexity of query answer-
ing. However, originally, this line of work didn’t address problems due to database
inconsistency. Only recently the research on data integration [13, 16, 19, 56] has
started to deal with issues involved in data sources being inconsistent. These
works largely remain within the answer-set-based paradigm discussed above. A
new scenario for data integration, data exchange, has been recently proposed by
Fagin et al. [37]. In this scenario, a target database is materialized on the basis of
a source database using source-to-target dependencies. In the presence of target
integrity constraints, a suitable consistent target database may not exist. This
issue is not considered by Fagin et al. [37]. The work of Cal̀ı, Lembo and Rosati
[20], discussed earlier, can be viewed as addressing the problem of consistent
query answering in a restricted data exchange setting.

On the Computational Complexity of Minimal-Change Integrity 147

Finally, as XML is playing an increased role in data integration, it would
be interesting and challenging to develop the appropriate notions of repair and
consistent query answer in the context of XML databases. A first attempt in this
direction is reported by Flesca et al. [40]. It is limited, however, since it does not
consider DTDs. Recent integrity constraint proposals for XML have been made
by Buneman et al. [18] and Fan, Kuper, and Siméon [38, 39].

Acknowledgments

The comments of Jef Wijsen, Ariel Fuxman, and the anonymous referees are
gratefully acknowledged.

References

1. O. Abiteboul and O. Duschka. Complexity of Answering Queries Using Materi-
alized Views. In ACM Symposium on Principles of Database Systems (PODS),
pages 254–263, 1998.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

3. S. Agarwal, A. M. Keller, G. Wiederhold, and K. Saraswat. Flexible Relation: An
Approach for Integrating Data from Multiple, Possibly Inconsistent Databases.
In IEEE International Conference on Data Engineering (ICDE), pages 495–504,
1995.

4. M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad. Scalar
Aggregation in Inconsistent Databases. Theoretical Computer Science, 296(3):405–
434, 2003.

5. M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent
Databases. In ACM Symposium on Principles of Database Systems (PODS), pages
68–79, 1999.

6. M. Arenas, L. Bertossi, and J. Chomicki. Specifying and Querying Database Re-
pairs Using Logic Programs with Exceptions. In International Conference on Flex-
ible Query Answering Systems (FQAS), pages 27–41. Springer-Verlag, 2000.

7. M. Arenas, L. Bertossi, and J. Chomicki. Scalar Aggregation in FD-Inconsistent
Databases. In International Conference on Database Theory (ICDT), pages 39–53.
Springer-Verlag, LNCS 1973, 2001.

8. M. Arenas, L. Bertossi, and J. Chomicki. Answer Sets for Consistent Query An-
swering in Inconsistent Databases. Theory and Practice of Logic Programming,
3(4–5):393–424, 2003.

9. M. Arenas, L. Bertossi, and M. Kifer. Applications of Annotated Predicate Cal-
culus to Querying Inconsistent Databases. In International Conference on Com-
putational Logic, pages 926–941. Springer-Verlag, LNCS 1861, 2000.

10. C. Baral, S. Kraus, J. Minker, and V. S. Subrahmanian. Combining Knowledge
Bases Consisting of First-Order Theories. Computational Intelligence, 8:45–71,
1992.

11. P. Barcelo and L. Bertossi. Repairing Databases with Annotated Predicate Logic.
In S. Benferhat and E. Giunchiglia, editors, Ninth International Workshop on Non-
Monotonic Reasoning (NMR02), Special Session: Changing and Integrating Infor-
mation: From Theory to Practice, pages 160–170, 2002.

148 J. Chomicki and J. Marcinkowski

12. P. Barcelo and L. Bertossi. Logic Programs for Querying Inconsistent Databases. In
International Symposium on Practical Aspects of Declarative Languages (PADL),
pages 208–222. Springer-Verlag, LNCS 2562, 2003.

13. L. Bertossi, J. Chomicki, A. Cortes, and C. Gutierrez. Consistent Answers from
Integrated Data Sources. In International Conference on Flexible Query Answering
Systems (FQAS), pages 71–85, Copenhagen, Denmark, October 2002. Springer-
Verlag.

14. L. Bertossi and J. Chomicki. Query Answering in Inconsistent Databases. In
J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging Ap-
plications of Databases, pages 43–83. Springer-Verlag, 2003.

15. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM,
1999.

16. L. Bravo and L. Bertossi. Logic Programs for Consistently Querying Data Integra-
tion Systems. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 10–15, 2003.

17. F. Bry. Query Answering in Information Systems with Integrity Constraints. In
IFIP WG 11.5 Working Conference on Integrity and Control in Information Sys-
tems, pages 113–130. Chapman &Hall, 1997.

18. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. Computer
Networks, 39(5):473–487, 2002.

19. A. Cali, D. Lembo, and R. Rosati. On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In ACM Symposium on
Principles of Database Systems (PODS), pages 260–271, 2003.

20. A. Cali, D. Lembo, and R. Rosati. Query rewriting and answering under constraints
in data intergation systems. In International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 16–21, 2003.

21. A. Celle and L. Bertossi. Querying Inconsistent Databases: Algorithms and Imple-
mentation. In International Conference on Computational Logic, pages 942–956.
Springer-Verlag, LNCS 1861, 2000.

22. U. S. Chakravarthy, J. Grant, and J. Minker. Logic-Based Approach to Seman-
tic Query Optimization. ACM Transactions on Database Systems, 15(2):162–207,
1990.

23. A. K. Chandra and D. Harel. Computable Queries for Relational Databases. Jour-
nal of Computer and System Sciences, 21:156–178, 1980.

24. A. Chandra and P. Merlin. Optimal Implementation of Conjunctive Queries in
Relational Databases. In ACM SIGACT Symposium on the Theory of Computing
(STOC), pages 77–90, 1977.

25. J. Chomicki, J. Marcinkowski, and S. Staworko. Computing Consistent Query
Answers Using Conflict Hypergraphs. Submitted, 2004.

26. J. Chomicki, J. Marcinkowski, and S. Staworko. Hippo: A System for Computing
Consistent Answers to a Class of SQL Queries. In International Conference on
Extending Database Technology (EDBT), pages 841–844. Springer-Verlag, LNCS
2992, 2004. System demo.

27. J. Chomicki and J. Marcinkowski. On the Computational Complexity of Consistent
Query Answers. Technical Report arXiv:cs.DB/0204010, arXiv.org e-Print archive,
April 2002.

28. J. Chomicki and J. Marcinkowski. Minimal-Change Integrity Maintenance Using
Tuple Deletions. Information and Computation, 2004. To appear. Earlier version:
Technical Report cs.DB/0212004, arXiv.org e-Print archive.

29. T. Chou and M. Winslett. A Model-Based Belief Revision System. Journal of
Automated Reasoning, 12:157–208, 1994.

On the Computational Complexity of Minimal-Change Integrity 149

30. M. Dalal. Investigations into a Theory of Knowledge Base Revision. In National
Conference on Artificial Intelligence, St.Paul, Minnesota, August 1988.

31. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive
Power of Logic Programming. ACM Computing Surveys, 33(3):374–425, 2001.

32. Phan Minh Dung. Integrating Data from Possibly Inconsistent Databases. In
International Conference on Cooperative Information Systems (COOPIS), pages
58–65, Brussels, Belgium, 1996. IEEE Press.

33. O.M. Duschka, M.R. Genesereth, and A.Y. Levy. Recursive Query Plans for Data
Integration. Journal of Logic Programming, 43(1):49–73, 2000.

34. T. Eiter, M. Fink, G. Greco, and D. Lembo. Efficient Evaluation of Logic Programs
for Querying Data Integration Systems. In International Conference on Logic
Programming (ICLP), pages 163–177, 2003.

35. T. Eiter and G. Gottlob. On the Complexity of Propositional Knowledge Base
Revision, Updates, and Counterfactuals. Artificial Intelligence, 57(2-3):227–270,
1992.

36. S. M. Embury, S. M. Brandt, J. S. Robinson, I. Sutherland, F. A. Bisby, W. A.
Gray, A. C. Jones, and R. J. White. Adapting integrity enforcement techniques
for data reconciliation. Information Systems, 26(8):657–689, 2001.

37. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics
and Query Answering. In International Conference on Database Theory (ICDT),
pages 207–224. Springer-Verlag, LNCS 2572, 2003.

38. W. Fan, G. Kuper, and J. Simeon. A Unified Constraint Model for XML. Computer
Networks, 39(5):489–505, 2002.

39. W. Fan and J. Simeon. Integrity Constraints for XML. Journal of Computer and
System Sciences, 66(1):254–201, 2003.

40. S. Flesca, F. Furfaro, S. Greco, and E. Zumpano. Repairs and Consistent Answers
for XML Data with Functional Dependencies. In International XML Database
Symposium, pages 238–253. Springer-Verlag, LNCS 2824, 2003.

41. A. Fuxman and R. Miller. Towards Inconsistency Management in Data Integration
Systems. In IJCAI-03 Workshop on Information Integration on the Web (IIWeb-
03), 2003.

42. P. Gärdenfors and H. Rott. Belief Revision. In D. M. Gabbay, J. Hogger, C,
and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 4, pages 35–132. Oxford University Press, 1995.

43. F. Giannotti, S. Greco, D. Sacca, and C. Zaniolo. Programming with Non-
determinism in Deductive Databases. Annals of Mathematics and Artificial In-
telligence, 19(3-4), 1997.

44. F. Giannotti and D. Pedreschi. Datalog with Non-deterministic Choice Computes
NDB-PTIME. Journal of Logic Programming, 35:75–101, 1998.

45. G. Greco, S. Greco, and E. Zumpano. A Logic Programming Approach to the
Integration, Repairing and Querying of Inconsistent Databases. In International
Conference on Logic Programming (ICLP), pages 348–364. Springer-Verlag, LNCS
2237, 2001.

46. G. Greco, S. Greco, and E. Zumpano. A Logical Framework for Querying and
Repairing Inconsistent Databases. IEEE Transactions on Knowledge and Data
Engineering, 15(6):1389–1408, 2003.

47. S. Greco, D. Sacca, and C. Zaniolo. Datalog Queries with Stratified Negation and
Choice: from P to DP . In International Conference on Database Theory (ICDT),
pages 82–96. Springer-Verlag, 1995.

150 J. Chomicki and J. Marcinkowski

48. S. Greco, C. Sirangelo, I. Trubitsyna, and E. Zumpano. Preferred Repairs for
Inconsistent Databases. In International Database Engineering and Applications
Symposium (IDEAS), pages 202–211. IEEE Computer Society Press, 2003.

49. S. Greco and E. Zumpano. Querying Inconsistent Databases. In International Con-
ference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR),
pages 308–325. Springer-Verlag, LNCS 1955, 2000.

50. A. Y. Halevy. Answering Queries Using Views: A Survey. VLDB Journal,
10(4):270–294, 2001.

51. D. S. Hochbaum. Approximating Covering and Packing Problems: Set Cover,
Vertex Cover, Independent Set, and Related Problems. In D. S. Hochbaum, editor,
Approximation Algorithms for NP-Hard Problems. PWS Publishing Co., 1997.

52. T. Imieliński and W. Lipski. Incomplete Information in Relational Databases.
Journal of the ACM, 31(4):761–791, 1984.

53. T. Imieliński, S. Naqvi, and K. Vadaparty. Incomplete Objects - A Data Model for
Design and Planning Applications. In ACM SIGMOD International Conference
on Management of Data, pages 288–297, Denver, Colorado, May 1991.

54. T. Imieliński, R. van der Meyden, and K. Vadaparty. Complexity Tailored Design:
A New Design Methodology for Databases With Incomplete Information. Journal
of Computer and System Sciences, 51(3):405–432, 1995.

55. P. C. Kanellakis. Elements of Relational Database Theory. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, chapter 17, pages
1073–1158. Elsevier/MIT Press, 1990.

56. D. Lembo, M. Lenzerini, and R. Rosati. Source Inconsistency and Incompleteness
in Data Integration. In 9th International Workshop on Knowledge Representation
meets Databases (KRDB’02), Toulouse, France, 2002.

57. M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM Symposium
on Principles of Database Systems (PODS), pages 233–246, 2002. Invited talk.

58. J. Lin and A. O. Mendelzon. Merging Databases under Constraints. International
Journal of Cooperative Information Systems, 7(1):55–76, 1996.

59. B. Ludäscher, W. May, and G. Lausen. Referential Actions as Logical Rules. In
ACM Symposium on Principles of Database Systems (PODS), pages 217–227, 1997.

60. Jim Melton and Alan R. Simon. SQL:1999 Understanding Relational Language
Components. Morgan Kaufmann, 2002.

61. R. van der Meyden. Logical Approaches to Incomplete Information: A Survey. In
J. Chomicki and G. Saake, editors, Logics for Databases and Information Systems,
chapter 10, pages 307–356. Kluwer Academic Publishers, Boston, 1998.

62. D. Van Nieuwenborgh and D. Vermeir. Preferred Answer Sets for Ordered Logic
Programs. In European Conference on Logics for Artificial Intelligence (JELIA),
pages 432–443. Springer-Verlag, LNAI 2424, 2002.

63. M. Y. Vardi. The Complexity of Relational Query Languages. In ACM Symposium
on Theory of Computing (STOC), pages 137–146, 1982.

64. J. Wijsen. Condensed Representation of Database Repairs for Consistent Query
Answering. In International Conference on Database Theory (ICDT), pages 378–
393. Springer-Verlag, LNCS 2572, 2003.

65. M. Winslett. Reasoning about Action using a Possible Models Approach. In
National Conference on Artificial Intelligence, pages 79–83, 1988.

On the Complexity of
Paraconsistent Inference Relations

Sylvie Coste-Marquis and Pierre Marquis�

CRIL-CNRS/Université d’Artois,
rue de l’Université - S.P. 16,
F-62307 Lens Cedex - France

{coste, marquis}@cril.univ-artois.fr

Abstract. Reasoning in a non-trivial way from inconsistent pieces of
information is a major challenge in artificial intelligence, and its impor-
tance is reflected by the number of techniques designed so far for dealing
with inconsistency (especially the few ones reported in this handbook).
Many of these techniques have been investigated in depth from a logical
point of view, but far less to what concerns the computational complexity
aspects. The purpose of this chapter is to present in a structured way
the main complexity results identified so far for paraconsistent inference
based on multi-valued propositional logics.

1 Introduction

Classical logic cannot be used as such to deal with inconsistent information since
every formula can be derived from a contradiction. This well-known trivialization
problem leads to consider that an inconsistent information base is totally mean-
ingless: Since all contradictory formulas are equivalent and since a replacement
(meta)theorem holds in classical logic, every contradictory base can be substi-
tuted by the boolean constant false, i.e., the unique irreducible contradiction.
In order to escape from such a problem and offer a way to exploit inconsistent
information bases in a cleverer way, paraconsistent inference relations must be
considered. Using such inference relations, every formula is not a consequence
anymore of every (classically) inconsistent formula.

The trivialization of classical entailment in presence of inconsistency appears
as an important issue in AI for several reasons. A major reason is that it is
actually a concrete problem: Like the beliefs of human beings in everyday life, the
beliefs of artificial agents can easily be jointly inconsistent, especially when their
databases are large or when they integrate information stemming from several
sources (sensors, other agents, etc.). The problem is all the most salient when
societies of agents are considered instead of individuals: Due to their different

� Many thanks to the anonymous reviewers of this chapter for many interesting com-
ments. Many thanks as well to the Région Nord / Pas-de-Calais, the IUT de Lens
and the IRCICA Consortium for their support.

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 151–190, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

152 S. Coste-Marquis and P. Marquis

abilities and evolutions, agents have often conflicting beliefs about some topics,
even if they share some consistent pieces of knowledge. Would it be rational to
consider the common belief of such a society as meaningless? Clearly, intuition
gives a negative answer: Since inconsistencies are typically local (i.e., they are due
to proper subparts of the information base), it would be definitely unreasonable
to accept that everything (or nothing) follows from the available information
base whenever this information base is inconsistent.

Assume for instance that a given agent has the following beliefs, encoded as
a propositional formula Σ (it will serve as a running example throughout the
chapter):

Example 1. Σ = a ∧ ¬a ∧ (a ∨ b) ∧ c ∧ (¬c ∨ d)
The agent has contradictory beliefs about the truth value of a (for instance,

because she received conflicting evidence about it, she has been told by a reliable
acquaintance that a holds, and by a second as reliable acquaintance that a does
not hold). She also has fully consistent pieces of beliefs, a∨b, c and ¬c∨d. Because
Σ is inconsistent, every formula is a logical consequence of Σ. Nevertheless,
because the unique contradiction in Σ concerns only a and ¬a, it does not seem
always relevant to conclude that the agent has trivial beliefs. In particular, since
Σ does not tell anything about atom e, an expected conclusion could be that
e is undetermined (i.e., contingent) given Σ in the sense that neither e nor ¬e
are consequences of Σ. In addition, since c and ¬c∨ d do not participate to any
contradiction, it is not absurd to desire viewing them as consequences of Σ as
well.

A second factor explaining the prominence of the trivialization problem in AI
is the close connection it has with the problem of handling exceptions, another
main challenge in AI. Indeed, an exception to a rule is just a case which contra-
dicts the rule. As a matter of fact, many interesting approaches to inconsistency
tolerant reasoning can be used to address the exception handling issue as well (as
we will see, most valuable paraconsistent inference relations are non-monotonic
ones), and the connections between belief revision (in the AGM framework) and
rational inference relations are known for a while [39, 38]. Nevertheless, it must
be noted that paraconsistency and non-monotony are two logically independent
notions: One can find inference relations that are paraconsistent and monotonic
(e.g., inference in LP , see Section 3.2), one can find as well inference relations
that are paraconsistent and non-monotonic (e.g., inference in LPm, see Section
3.3) while a third (non-empty) family gathers inference relations that are not
paraconsistent and monotonic (e.g., classical entailment) and a last family con-
sists of inference relations that are neither paraconsistent nor monotonic (e.g.,
circumscription).

In the following, we assume that the information at hand are beliefs, and
the main goal is the inference one: Making explicit some pieces of beliefs hidden
in implicit ones. This issue contrasts with the problem of aggregating mutually
inconsistent goals (or preferences or desires). The latter problem is not less con-
crete than the inference problem from inconsistent beliefs — on the contrary, it
is at the core of both multicriteria decision making and group decision making

On the Complexity of Paraconsistent Inference Relations 153

— and connections exist between the two issues (e.g., belief merging operators
can also be used to goal fusing in some situations). However, the main objectives
are different ones: On the one hand, it consists in characterizing consequences
of a belief base; on the other hand, it consists in determining a global preference
relation over goals.

The significance of handling inconsistent beliefs in AI is reflected by the
many approaches developed so far to address the paraconsistency issue under its
various forms. Let us just mention paraconsistent logics, belief revision, belief
merging, reasoning from preferred consistent subsets, knowledge integration, ar-
gumentative logics, purification, etc. All these words actually name many differ-
ent techniques described in an abundant literature (see [10, 44, 65] for a survey).

The large number of such techniques can be explained by the fact that para-
consistency can be achieved in various ways, depending on the exact nature of
the problem at hand (hence, the available information at the start). Thus, when
Σ represents the (conflicting) beliefs of several agents, a merged base giving the
beliefs of the group of agents can be designed by logically weakening some lo-
cal belief bases (associated to the agents) in order to restore global consistency
[43, 54, 68, 49, 50]. Several weakening mechanisms can be used: Dilation [16] is at
work when merging operators based on a selection of models are considered (a
i-dilation of a belief base φ for a “distance” d is obtained by adding to the set of
its models all these interpretations which are at a distance at most i ∈ IN from
a model of φ), formula inhibition is used within merging operators based on a
selection of formulas. Thus, when Σ is an inconsistent set of formulas, focus-
ing on the consistent subsets – eventually restricted to the most preferred ones,
when some preferential information can be exploited – is sufficient to give rise
to several families of paraconsistent inference relations (depending on the entail-
ment principle under consideration, e.g., the skeptical one) [67, 36, 41, 5, 62, 7, 20].
Such techniques are closely related to so-called syntax-based approaches to be-
lief revision [58, 59] and to the framework for supernormal default reasoning
with priorities from [18]. Variable forgetting can be used as well as a weakening
mechanism [52]. Another way to give rise to paraconsistent inference relations
consists in associating to each inferred formula a justification under the form of
a subset of Σ used to derive it, and by reasoning on such arguments whenever
some mutually inconsistent formulas can be derived. This is the basic idea of ar-
gumentative logics, see e.g., [29, 33, 17]. It can be sophisticated through the use
of preferential information in order to consider some arguments more acceptable
than some other arguments [1].

Now, there are several definitions of what a paraconsistent logic is; in this
chapter, the following (quite restricted) definition is considered: A propositional
logic 〈L,�L〉 where L is a propositional language and �L a binary relation over L
is said to be paraconsistent whenever there exists a belief base Σ ∈ L and a query
γ ∈ L s.t. Σ is classically inconsistent and Σ ��L γ nevertheless. Thus, within
a paraconsistent logic, the trivialization issue of inference is addressed in some
situations when the input consists of a single inconsistent formula (representing
the belief base) and a query.

154 S. Coste-Marquis and P. Marquis

Compared with the other approaches listed above, paraconsistent logics (stric-
to sensu) give more basic ways to address the trivialization issue. Indeed, belief
revision, belief merging, knowledge integration, reasoning from preferred incon-
sistent subsets and purification need some extra-logical information in order to be
well-defined and avoid trivializing. Such extra-logical information can be rather
poor (a splitting between the belief base and the revision formula in the belief
revision setting, a set (or multi-set) organization of the elementary (or agents)
beliefs in a belief merging scenario) or rather sophisticated (preference relations
over the beliefs, knowledge gathering actions for purification) but they are re-
quired. Thus, none of the approaches listed above will be considered further in
this chapter.1

Several (non mutually exclusive) techniques can be used to define an inference
relation that avoid trivialization from an inconsistent formula (see [65] for a
brilliant survey of them). One of them consists in making the truth value of α
(more or less) independent from the truth value of ¬α (e.g., this is what is done
in Cω logic [24] and the whole family of Ci logics). A second one consists in
restricting the proof theory of classical logic so as to retain only a subset of the
classical proofs as admissible (this is at work in quasi-classical logic [15, 45]). A
third one consists in preventing inconsistent belief bases from having no model,
through the consideration of more general notions of interpretations. Several
multi-valued logics are related to this line of research (among others, see [27, 6,
37, 53, 63, 64, 13, 14, 2, 3, 48, 56]).

Just like belief revision or belief merging gather many operators from which
many inference relations are induced, there is no universal consensus on what
paraconsistent inference should be but several intuitions of what is expected.
While paraconsistent inference relations designed so far share some common
principles (for instance, any irrelevant piece of belief would not be considered as
a consequence of some inconsistent belief bases – stepping back to the previous
example, e would never be considered as a conclusion from Σ), they do not give
the same closure (set of consequences) for all inconsistent belief bases Σ. On
the previous example, some approaches lead to consider b as a conclusion of Σ
(given that the conjunction Σ has both ¬a and a∨ b among its conjuncts) while
others reject such a conclusion (given the logically strongest conjunct a of Σ,
a∨ b is considered irrelevant). Both approaches look reasonable in some specific
contexts (thus, it can be the case that a ∨ b is an explicit belief whose origin
differs from the one of a and that the agent wants to keep it but the opposite
conclusion also makes sense in other situations). This tends to show that a purely
descriptive approach to paraconsistency (i.e., modeling paraconsistent inference
by considering how human beings reason in presence of inconsistency) is hard
to be achieved when a so simple input (an inconsistent formula, nothing else) is
considered.

1 The definition of paraconsistency we used also sets aside several logics that are
usually considered as paraconsistent logics, like Jaśkowski’s discussive logic [46], one
of the first logic defined so far to address the inconsistency handling issue.

On the Complexity of Paraconsistent Inference Relations 155

This raises the issue of how to evaluate and compare paraconsistent inference
relations. Several independent criteria can be used for such a purpose. A first
criterion consists in investigating the logical properties of the relations. Many
normative postulates which should be satisfied by common-sense inference re-
lations have been proposed so far. For instance, it is interesting to determine
whether the paraconsistent inference relation under consideration �L satisfies
reflexivity, transitivity, ... It is also valuable to determine whether �L is sub-
classical (i.e., a subset of classical entailment) whenever the fragment of L from
which both the belief bases and the queries are built up can be viewed as well as
a fragment of classical propositional logic. It is interesting to determine whether
usual metatheorems hold (substitution theorem, deduction theorem, compact-
ness theorem, ...) and whether sound and complete axiomatisations (à la Hilbert
or à la Gentzen) have been exhibited. All those logical features give a first di-
mension for a comparison. In the following, we will not focus on them but let
the reader look at the bibliography for more about the logical aspects of the
inference relations we consider (the logical dimension of paraconsistent relations
is already presented with much details in several papers from the literature, in
particular [65]).

Another criterion is the cautiousness one; it is important to consider this
dimension together with the logical one since it is quite easy to design strongly
rational inference relations which are useless just because they are too cautious
(they do not lead to consider as consequences of a base many ones which are
expected).

In this chapter, we mainly consider a third criterion, orthogonal to the previ-
ous ones but very relevant from an AI perspective: The computational complexity
one. Indeed, in order to be able to simulate a paraconsistent inference relation
on a computer, the computational resources (time and space) required must
be taken into account. Complexity theory offers theoretical tools (especially,
complexity classes and reductions) for a fine-grained classification of the compu-
tational difficulties. Particularly, it helps in identifying the complexity sources
within a problem; polynomial reductions among problems are useful when they
show the existence of a translation from the decision problem associated to a
given paraconsistent relation to the decision problem associated to another one;
this is particularly significant when sophisticated algorithms have been designed
for the latter: It is then possible to take advantage of them for solving the former
decision problems, avoiding thus an expensive software development (further-
more, if there is no guarantee that it is computationally valuable to do so from
the practical side, it can actually be the case). Anyway, identifying complexity
results for paraconsistent inference relations gives a third dimension allowing the
comparison of these relations. From an AI point of view, it can make sense to
prefer a more tractable inference relation over a less tractable one, even if the
latter exhibits a more rational behavior than the former.

Quite surprisingly, the complexity of paraconsistent inference relations has
been investigated only for the past few years. This contrasts with many other ap-
proaches to inconsistency tolerant reasoning for which many complexity results

156 S. Coste-Marquis and P. Marquis

have been obtained; indeed, complexity results for belief revision can be found
in [31, 60], complexity results for belief merging in [47], complexity of reason-
ing from preferred consistent subsets in [60, 20, 32], complexity of argumentative
reasoning in [26, 25, 30].

It is also amazing to compare the (few) number of papers dedicated to the
study of the complexity of paraconsistent inference relations to the (quite large)
number of papers where such inference relations have been pointed out. Subse-
quently, we do not claim that this chapter covers exhaustively the complexity
results for all the paraconsistent inference relations from the literature:2 Much
work remains to be done at that time to reach such a goal. The present chap-
ter can be considered as a first step toward this objective. The focus is laid
on paraconsistent inference relations based on propositional multi-valued logics.
Especially, we do not consider first-order paraconsistent logics in the following
(the extension to the first-order case does not raise any technical difficulty in
general and, as expected, the corresponding inference relations are typically not
recursive, see [65] for details). Furthermore, we refrain ourselves to presenting
the various proof systems (typically, tableau-based) that have been designed so
far for the inference relations considered in this chapter, unless the existence of
such systems gives a reduction from which a membership result or a hardness
one can be derived (again, we let the reader look at the bibliography to learn
more about proof systems for paraconsistent inference relations).

The rest of this chapter is organized as follows. After some formal preliminar-
ies (Section 2), we present in Section 3 many paraconsistent inference relations
based on multi-valued logics; we focus on relations introduced in [27, 6, 37, 53, 63,
64, 69, 15, 13, 14, 44, 2, 48, 56] for which complexity results have been identified in
[53, 19, 21, 55, 11, 48, 56]. Each relation is illustrated on the running example and
its main logical properties are given. Then Section 4 presents complexity results
for such relations in the general case and in some restricted cases. Finally, we
conclude the chapter in Section 5.

2 Formal Preliminaries

In this section, we briefly present the basic notions about propositional logic and
complexity theory necessary to understand the rest of the chapter. More details
about such notions can be found e.g., in [34] and [40, 61].

2.1 Propositional Logic

Given a denumerable set PS of propositional symbols, PROP2
PS denotes the

propositional language built up from PS, the boolean constants true and false,
and the connectives ¬, ∨, ∧ in the standard way. ⇒ can also be introduced as a
connective, where α ⇒ β is a short for (¬α) ∨ β. The elements of PROP2

PS are

2 For instance, we do not consider here inference relations based on multimodal logics
for representing incoherent beliefs [57].

On the Complexity of Paraconsistent Inference Relations 157

called formulas. V ar(Σ) denotes the set of propositional symbols occurring in
the formula Σ. The size of a formula Σ noted |Σ|, is the number of occurrences
of symbols and connectives used to write it.

For every subset V of PS , LV is the set of literals built up from the proposi-
tional symbols of V . A negative literal is a literal of the form ¬x, where x ∈ PS .
A symbol from PS is also called a positive literal. The complementary literal of
a positive literal l = x (resp. a negative literal l = ¬x) is l̄ = ¬x (resp. l̄ = x).
Every finite disjunction of literals is called a clause and every finite conjunction
of literals is called a term. A positive clause contains only positive literals. A
CNF formula is a (finite) conjunction of clauses, also viewed as a set of clauses
when it is convenient. A k-CNF formula is a CNF formula in which every clause
contains no more than k literals (where k is a non-negative integer). A Krom
formula is a CNF formula in which every clause contains at most two literals. A
Horn (resp. reverse Horn) CNF formula is a CNF formula in which each clause
contains at most one positive (resp. negative) literal. A formula Σ is renamable
Horn CNF if and only if there exists a substitution σ from LPS to LPS s.t.
σ(l) = l for every literal l of LPS except those of a set L, and for every literal l
of L, σ(l) = l̄ and σ(l̄) = l, and σ(Σ) is a Horn CNF formula. A belief base is a
finite, conjunctively-interpreted, set of formulas from PROP2

PS . A DNF formula
is a finite disjunction of terms. An NNF (Negation Normal Form) formula is a
formula from PROP2

PS s.t. the scope of any occurrence of ¬ in the formula is a
propositional symbol.

Formulas are interpreted in the classical way. An interpretation over PROP2
PS

is a mapping I which associates every propositional symbol to one of the two
truth values of TWO = {0, 1}. The semantics of a formula Σ is a boolean
function: A truth value can be associated to Σ as long as an interpretation I is
considered. I(Σ) denotes the truth value taken by Σ within I; it is defined in
the usual compositional way. When I is s.t. I(Σ) = 1, I is said to be a model
of Σ, noted I |=2 Σ; otherwise, I is a counter-model of Σ. When a formula has
no model (resp. no counter-model), it is said to be unsatisfiable or inconsistent
(resp. valid). The binary relation |=2 over PROP2

PS is defined by Σ |=2 γ if and
only if every model of Σ is a model of γ. |= is referred to as logical entailment:
Whenever Σ |=2 γ holds, γ is said to be a logical consequence of Σ. Whenever
Σ |=2 Φ and Φ |=2 Σ both hold, Σ and Φ are said to be logically equivalent,
noted Σ ≡2 Φ.

2.2 Computational Complexity

A decision problem (encoded as a language) belongs to P (resp. NP) if and only if
there exists a deterministic (resp. non-deterministic) Turing machine which can
classify every instance of it in a number of computational steps polynomially
bounded in the input size. The decision problems of P are usually considered as
efficiently solvable.

Because a deterministic Turing machine can be considered as a non-determi-
nistic one, the inclusion P ⊆ NP is established. However, the converse is the
famous open problem: P ?= NP (which is conjectured false). Among all the prob-

158 S. Coste-Marquis and P. Marquis

lems in NP, the hardest ones are those from which every problem in NP can be
polynomially many-one reduced: Such problems are referred to as NP-complete.
If any of them has a polynomial (deterministic) algorithm, then P = NP holds.
Accordingly, it is believed that it is impossible to solve NP-complete problems in
deterministic polynomial time. sat, the problem of determining whether a propo-
sitional formula in CNF is satisfiable, is the prototypical NP-complete problem.
Its complementary problem unsat (which consists in determining whether a
propositional formula in CNF is unsatisfiable) is not necessarily in NP (in con-
trast to P, NP is not known to be closed under complementation). unsat is
assigned to the class coNP which contains the complementary problems to prob-
lems in NP. It is conjectured that NP �= coNP.

Let X be a class of decision problems. PX (resp. NPX) is the class of all
decision problems that can be solved in polynomial time using a deterministic
(resp. non-deterministic) Turing machine which can use an oracle for deciding
the membership to X for “free” (i.e., within a constant, unit time). The classes
Δp

k, Σp
k and Πp

k (with k ∈ IN) can be defined by:

– Δp
0 = Σp

0 = Πp
0 = P,

– Δp
k+1 = PΣp

k ,
– Σp

k+1 = NPΣp
k ,

– Πp
k+1 = coΣp

k+1.

Thus, Σp
1 = NP and Πp

1 = coNP. For any integer k, the complexity class Dp
k

contains every decision problem that belongs to the intersection of a language
from Σp

k and a language from Πp
k . The polynomial hierarchy PH is the union of

all Σp
k (for k integer). A decision problem is said to be at the kth level of the

polynomial hierarchy if and only if it belongs to Δp
k+1, and is either Σp

k-hard
or Πp

k -hard. While it is easy to check that Δp
k ⊆ Σp

k , Δp
k ⊆ Πp

k , Σp
k ⊆ Dp

k,
Πp

k ⊆ Dp
k, Dp

k ⊆ Δp
k+1 hold for every k, it is unknown whether the inclusions

are proper (but it is strongly conjectured that they are). Indeed, it is strongly
believed that the polynomial hierarchy does not collapse (at any level), i.e., is a
truly infinite hierarchy (for every integer k, PH �= Σp

k).

3 Multi-valued Logics and Related Frameworks

In this section, we successively describe the syntax and the semantics of many
paraconsistent multi-valued logics introduced so far, and some related propo-
sitional systems [15, 45, 27, 6, 37, 53, 63, 64, 13, 14, 2, 48, 56]. On this ground, we
present a dozen of paraconsistent inference relations (both monotonic ones and
non-monotonic ones). Their complexity will be given and discussed in the fol-
lowing section.

3.1 Syntax and Semantics

The logics considered in this chapter are typically based on the following propo-
sitional languages, or on proper fragments of them:

On the Complexity of Paraconsistent Inference Relations 159

Definition 1 (PROP4
PS PROP3

PS PROP2
PS).

Let PS be a finite set of propositional symbols.

– PROP4
PS is the propositional language over PS inductively generated from

the constant symbols true, false, both, and unknown and the connectives ¬,
∨, ∧, ⊃, ⊕, and ⊗.

– PROP3
PS is the propositional language over PS inductively generated from

the constant symbols true, false and both and the connectives ¬, ∨, ∧, ⊃,
and ⊕.

– PROP2
PS is the propositional language over PS inductively generated from

the constant symbols true and false and the connectives ¬, ∨, ∧, and ⊃.

As we will see, the constant symbols both, unknown, the consensus connective
⊗ and the gullability connective ⊕ are not interpreted in a classical way, using
only the two standard “truth values” 0 (falsum) and 1 (verum). This explains
why they are not used to generate formulas from PROP2

PS , which coincides
with a standard language for classical propositional logic. We can observe from
the definition that PROP2

PS is a proper subset of PROP3
PS and that PROP3

PS
is a proper subset of PROP4

PS ; none of the constants both, unknown (resp.
unknown) and the connectives ⊕, ⊗ (resp. ⊗) can be used to generate formulas
from PROP2

PS (resp. PROP3
PS) because the set of “truth values” under consid-

eration must be closed under the connectives.
Proper fragments of PROP2

PS consist of the set of formulas generated from
PS and the three connectives ¬, ∨, ∧ (the so-called {¬,∨,∧} fragment also
referred to as the monotonic fragment), and the subset of it containing all CNF
formulas.

We must now explain how the formulas of PROP4
PS and its subsets can be

interpreted. Obviously, a key feature of multi-valued logics from the semantics
point of view is the presence of non-standard “truth values”, i.e., different from
the classical ones (0, denoting falsity and 1 denoting truth). The two additional
“truth values” considered in such a setting are denoted ⊥ and �. Intuitively, ⊥
denotes lack of information, while � indicates inconsistency. The latter “truth
value” � is central when the goal is to achieve paraconsistency.

Definition 2 (Interpretations).
A 4-interpretation (resp. a 3-interpretation, a 2-interpretation) over PS is a
total function I from PS to FOUR = {0, 1,�,⊥} (resp. THREE = {0, 1,�},
TWO = {0, 1}).

Some alternative definitions of the set of “truth values” are sometimes given;
for instance, FOUR can be defined as TWO × TWO, or as the power set of
TWO . All these definitions are equivalent to the one given here, the intuition is
that ⊥ means “neither true nor false” while � means “both true and false”.

Whatever the definition, it is useful to associate FOUR with two (partial)
orderings, the usual truth ordering ≤t for which 0 is the least element, 1 is the
greatest element and � and ⊥ are incomparable, and the knowledge ordering
≤k for which ⊥ is the least element, � is the greatest element and 0 and 1 are

160 S. Coste-Marquis and P. Marquis

≤k

0 1

⊥

⊥

≤t

Fig. 1. FOUR

incomparable. FOUR with ≤t and ≤k is a bilattice, called Belnap’s billatice. It
is often represented by the double Hasse diagram given on Figure 1.

For every 4-interpretation I over PS , we define I(true) = 1, I(false) = 0,
I(both) = �, I(unknown) = ⊥. Thus, the non-classical constants are mainly
used to denote the corresponding non-classical “truth values” within the object
language. Table 1 gives the truth table of the remaining connectives.

Table 1. Truth tables

α β ¬α α ∧ β α ∨ β α ⊃ β α ⊗ β α ⊕ β

0 0 1 0 0 1 0 0
0 1 1 0 1 1 ⊥ 	
0 	 1 0 	 1 0 	
0 ⊥ 1 0 ⊥ 1 ⊥ 0
1 0 0 0 1 0 ⊥ 	
1 1 0 1 1 1 1 1
1 	 0 	 1 	 1 	
1 ⊥ 0 ⊥ 1 ⊥ ⊥ 1
	 0 	 0 	 0 0 	
	 1 	 	 1 1 1 	
	 	 	 	 	 	 	 	
	 ⊥ 	 0 1 ⊥ ⊥ 	
⊥ 0 ⊥ 0 ⊥ 1 ⊥ 0
⊥ 1 ⊥ ⊥ ⊥ 1 ⊥ 1
⊥ 	 ⊥ 0 1 1 ⊥ 	
⊥ ⊥ ⊥ ⊥ ⊥ 1 ⊥ ⊥

It can be observed that the semantics of the gullability connective ⊕ (resp.
the consensus connective ⊗) is the supremum (resp. infimum) w.r.t. ≤k; thus, ⊕
(resp. ⊗) plays a role similar to the one of the classical connective ∨ (resp. ∧)
but w.r.t. the knowledge ordering (and not the truth one).

Now, the semantics I(φ) of a formula φ from PROP4
PS in I is defined com-

positionally in the usual way (every connective is truth functional).

On the Complexity of Paraconsistent Inference Relations 161

The semantics of a formula from PROP3
PS (resp. PROP2

PS) in a 3-interpre-
tation (resp. a 2-interpretation) is obtained by considering the reductions of the
previous truth tables to THREE (resp. TWO).

A further step to obtain inference relations consists in defining the set of
designated values. Unlike many other multi-valued logics, the set considered in
FOUR and its restriction THREE is {1,�}. Accordingly, a formula φ is satisfied
in a world I when its semantics in I is at least 1 w.r.t. the knowledge ordering.

Once this is stated, the following notions of models can be defined:

Definition 3 (Models).
Let I be a 4-interpretation (resp. a 3-interpretation, a 2-interpretation) I over
PS and φ be a formula from PROP4

PS (resp. PROP3
PS , PROP2

PS). I is a 4-
model (resp. a 3-model, a 2-model) of φ if and only if I(φ) ∈ {1,�}. We note
4-mod(Σ) (resp. 3-mod(Σ)) the set of all 4-models (resp. 3-models) of a formula
Σ from PROP4

PS (resp. PROP3
PS).

Now, equivalence can be defined: Two formulas φ and ψ from PROP4
PS (resp.

PROP3
PS) are said to be equivalent, noted φ ≡4 ψ (resp. φ ≡3 ψ) if and only if

they have the same set of 4-models (resp. 3-models). Note that a stronger notion
of equivalence exists (two formulas are strongly equivalent when their semantics
coincide in every interpretation) and that a replacement metatheorem holds for
the strong notion but not for the weak one in the general case. For instance,
while a ∨ ¬a ≡3 b ∨ ¬b holds, it is not the case that ¬(a ∨ ¬a) ≡3 ¬(b ∨ ¬b)
(a ∨ ¬a and b ∨ ¬b are not strongly equivalent in THREE).

Because � is a designated value, it can be the case that a formula from
PROP2

PS that is classically inconsistent has some 4-models (and this is what
was expected in the purpose of avoiding trivialization). For instance:

Example 2. Let Σ = a ∧ ¬a ∧ (a ∨ b) ∧ c ∨ (¬c ∧ d). Σ has no 2-model. The
4-interpretation given by I(a) = �, I(b) = 1, I(c) = 1 and I(d) = 1 is a 4-model
of Σ. This interpretation can also be considered as a 3-model of Σ.

Contrariwise to what this example may suggest, it is not the case that incon-
sistency is always avoided in FOUR or in THREE ; some formulas in PROP4

PS
(resp. PROP3

PS) have no 4-models (the simplest one reduces to the constant
false). Hence, only a weak form of paraconsistency is achieved in the general
case (some inconsistent theories are not trivial ones, but not all of them). Nev-
ertheless, it is easy to prove (by structural induction) that the interpretation
mapping every symbol from PS to � is a 3-model (hence, a 4-model) of every
formula from the {¬,∨,∧} fragment.

Other connectives can be considered in the languages PROP4
PS and PROP3

PS ,
as syntactic sugars. In particular:

– φ ⇔ ψ =def (φ ⊃ ψ) ∧ (ψ ⊃ φ);
– φ → ψ =def (φ ⊃ ψ) ∧ (¬ψ ⊃ ¬φ);
– φ ↔ ψ =def (φ → ψ) ∧ (ψ → φ);
– φ! =def φ ∧ ¬φ;

162 S. Coste-Marquis and P. Marquis

– �φ =def (¬φ ⊃ false) ∧ ¬(φ ⊃ ¬φ);
– φ ≤ ψ =def (�φ ∧�ψ) ∨ (�¬φ ∧�¬ψ) ∨ (¬�ψ ∧ ¬�¬ψ);
– %φ =def ¬�¬φ;
– ∼ φ =def �¬φ;
– &φ =def �φ ∨�¬φ.

The language considered in [6] is the restriction of PROP2
PS where ⊃ is not

nestable. The language used in [2] to define FOUR is the extension of PROP4
PS

where → and ↔ are used as additional (binary) connectives. The language of
the logic of 3-inference of [53] (resp. the language of LP [63] or equivalently the
language of RP [37]) is the propositional language over PS generated from the
constant false and the connectives ¬, ∧, ∨ (resp. from the connectives ¬, ∧, ∨);
⊃ and ⇔ are also introduced but as syntactic sugars (φ ⊃ ψ =def ¬φ ∨ ψ and
φ ⇔ ψ =def (φ ⊃ ψ)∧(ψ ⊃ φ)). The language of LPm [63, 64] is the propositional
language over PS generated from the connectives ¬, ∧, ∨ and !.3 The language of
J3 is the propositional language over PS generated from the connectives ¬, ∧, ∨,
⊃, ⇔, �, %, ∼, &. The language considered in [13] is the propositional language
over PS generated from the constants true, false and the connectives ¬, ∧, ∨,
⊃, ⇔, �, ≤. The language considered in [14] is the propositional language over
PS generated from the connectives ¬, ∧, ∨, ⊃ and ⇔.

The semantics of all such derived connectives can be easily defined by consid-
ering their truth tables. For instance, �φ means that φ is necessarily true, i.e.,
for every 4-interpretation I over PS , I(�φ) = 1 if I(φ) = 1 and I(�φ) = 0 oth-
erwise. All these additional connectives can be directly incorporated in PROP3

PS
and PROP2

PS since both THREE and TWO are closed w.r.t. any of them. When
the truth values of TWO are considered, only, ⊃ and → coincide and are equiv-
alent to classical material implication (especially, we have φ ⊃ ψ ≡2 (¬φ)∨ψ for
every φ, ψ ∈ PROP2

PS); in the same vein, ⇔ and ↔ coincide and are equivalent
to classical equivalence, and we have φ ≡2 �φ ≡2 %φ, ¬φ ≡2∼ φ, φ! ≡2 false,
and &φ ≡2 true for every φ ∈ PROP2

PS . None of these equivalences holds as
soon as � is considered as an additional “truth value”.

The main observation here is that the incorporation of such additional con-
nectives into PROP4

PS or PROP3
PS does not increase the expressiveness of the

corresponding logic:4 As PROP2
PS is functionally complete for TWO , PROP4

PS
is functionally complete for FOUR (Theorem 3.8 from [2]) and PROP3

PS is func-
tionally complete for THREE (Theorem 5.1 from [2]). This contrasts with the
language of J3 [27] (and its restrictions like LP [63], RP [37] and the logic of
3-inference of Levesque [53]) which includes neither ⊕ nor both, and despite the

3 To be more precise, ! is introduced as a notation of the metalanguage in [63], and
an element of the object language in [64].

4 Nevertheless, like in classical logic, it may have an impact on the succinctness of the
language; for instance, despite the fact that every classical propositional formula has
an equivalent CNF form, it is well-known that a formula like a1 ⇔ a2 ⇔ . . . ⇔ an

where every ai ∈ PS cannot be represented by an equivalent CNF formula of size
polynomial in n.

On the Complexity of Paraconsistent Inference Relations 163

presence of other connectives, is not expressive enough to enable the represen-
tation of a formula equivalent to both (see [35]). The functional completeness of
PROP4

PS (resp. PROP3
PS) w.r.t. FOUR (resp. THREE) explains why the focus

has been laid on them; in some sense, all the logics considered in this paper
(including classical logic) are restrictions of FOUR.

3.2 Monotonic Inference Relations

Let us now define some paraconsistent inference relations. The simplest one are
based on model containment.

Definition 4 (|=4-inference and |=3-inference).
Let Σ and γ be two formulas from PROP4

PS (resp. PROP3
PS). We note Σ |=4 γ

(resp. Σ |=3 γ) if and only if every 4-model (resp. 3-model) of Σ is a 4-model
(resp. 3-model) of γ.

Example 3. Let Σ = a ∧ ¬a ∧ (a ∨ b) ∧ c ∨ (¬c ∧ d). We have Σ |=4 a, Σ |=4 ¬a
and Σ |=4 c, but we have neither Σ |=4 b, nor Σ |=4 d. Similar conclusions
can be derived using |=3 instead of |=4. However, |=3 and |=4 do not coincide:
true |=3 a∨¬a holds while true |=4 a∨¬a does not hold since interpreting a as
⊥ leads to interpret a ∨ ¬a as ⊥ as well.

Since J3, LP , RP 5 and Levesque’s logic of 3-inference can be viewed as
restricted cases of THREE (what differs is the underlying language which is a
subset of PROP3

PS), the corresponding inference relations are just restrictions
of |=3:

Definition 5 (|=J3-inference, |=L-inference and |=LP -inference).
Let Σ and γ be two formulas from the language of J3 (resp. Levesque’s logic of
3-inference, LP). We note Σ |=J3 γ (resp. Σ |=L γ, Σ |=LP γ) if and only if
every 3-model of Σ is a 3-model of γ.

|∼ =|=4, (resp. |=3, |=J3 , |=L and |=LP) is obviously four-valued (resp. three-
valued) preferential, i.e., it satisfies the following properties (provided that � in
(RW) denotes |=4 (resp. |=3)):
(Ref) α|∼α Reflexivity
(LLE) If α and β are strongly equivalent

and α|∼γ, then β|∼γ Left Logical Equivalence
(RW) If α|∼β and β � γ, then α|∼γ Right Weakening
(Or) If α|∼γ and β|∼γ, then α ∨ β|∼γ Or

(Cut) If α ∧ β|∼γ and α|∼β, then α|∼γ Cautious Cut
(CM) If α|∼β and α|∼γ, then α ∧ β|∼γ Cautious Monotony

These properties have been stated in the framework of classical logic [51],
but they can be extended to multi-valued settings in a straightforward way as
above (such an extension has also been considered in [2]).

5 Actually, we have |=RP = |=LP . In order to save some space, we will mainly focus
on |=LP in the following.

164 S. Coste-Marquis and P. Marquis

|=4, |=3, |=J3 , |=L and |=LP are even monotonic since the set of 4-models
(resp. 3-models) of Σ ∧ φ is a subset of the set of 4-models (resp. 3-models)
of Σ. As the previous example illustrates, the relations |=4, |=3, |=J3 , |=L and
|=LP are also paraconsistent [2]: There exist classically inconsistent formula Σ ∈
PROP2

PS whose closure w.r.t. any of the above mentioned relation is not the
whole language PROP2

PS . Furthermore, the restrictions of such relations over
PROP2

PS are proper subsets of the classical entailment relation (noted |=2 here
instead of |= for homogeneity). Stated otherwise, |=4, |=3, |=J3 , |=L and |=LP are
sub-classical over PROP2

PS (they can be viewed as approximations by default of
classical entailment).

As usual when approximations are concerned, an important question is: What
is the quality of the approximation? In this context, what are the classical conse-
quences missed? And specifically, what happens when Σ is classically consistent?

Unfortunately, the news are not so good: |=4, |=3, |=J3 , |=L and |=LP typically
miss many expected consequences. A reason is that the disjunctive syllogism
inference rule of classical logic fails for each of them. Thus, we do not have

c ∧ (¬c ∨ d) |=4 d

because every 4-interpretation I s.t. I(c) = � and I(d) = 0 is a 4-model of
c ∧ (¬c ∨ d), but not a 4-model of d. Thus, on the running example, d is not
found as a consequence of Σ despite the fact it comes logically from the sub-
formulas c and ¬c ∨ d of Σ which are not involved in a contradiction. Since the
disjunctive syllogism inference rule fails, none of the relations above coincides
with |=2 on PROP2

PS in the situation Σ is classically consistent - while we would
expect it.

3.3 Non-monotonic Inference Relations

Inference Based on Preferred Models. In order to circumvent such diffi-
culties, more refined inference relations have been pointed out. The principle is
to focus on some preferred models of Σ in order to keep as much information as
possible. Preferential information typically characterize a preordering ≤ over the
set of interpretations, and the ≤-preferred models of a base Σ are defined as the
models of Σ that are minimal w.r.t. ≤. This approach leads to the paraconsistent
inference relations |=4

I1, |=4
I2, |=LPm , |=BS and other variants.

Let us first consider |=4
I1 and |=4

I2 [2]. Each of these relations is characterized
by a specific preference criterion. The first one consists in giving more credit to
the 4-models of Σ which minimize the amount of inconsistent beliefs in Σ. The
second one consists in preferring the 4-models of Σ which are as close as possible
to its classical models. In a formal way, two (partial) preorderings ≤1 and ≤2
over the set of 4-interpretations over PS are used:

– I ≤1 J if and only if {x ∈ PS | I(x) ∈ {�}} ⊆ {x ∈ PS | J(x) ∈ {�}};
– I ≤2 J if and only if {x ∈ PS | I(x) ∈ {�,⊥}} ⊆ {x ∈ PS | J(x) ∈ {�,⊥}}.

The preferred 4-models of Σ w.r.t. the first (resp. second) preference criterion
is the set of 4-models of Σ which are minimal w.r.t. ≤1 (resp. ≤2).

On the Complexity of Paraconsistent Inference Relations 165

Definition 6 (|=4
I1-inference and |=4

I2-inference).
Let Σ and γ be two formulas from PROP4

PS . We note Σ |=4
I1 γ (resp. Σ |=4

I2 γ)
if and only if every 4-model of Σ minimal in its set w.r.t. ≤1 (resp. ≤2) is a
4-model of γ.

Example 4. Let Σ = a∧¬a∧(a∨b)∧c∧(¬c∨d). We have Σ |=4
I1 d and Σ |=4

I2 d
(while we do not have Σ |=4 d). On the contrary, we have neither Σ |=4

I1 b nor
Σ |=4

I2 b; the reason is that a∧ (a∨ b) is strongly equivalent to a in FOUR (this
shows that Σ is independent from b, so the impossibility to derive b is in some
sense expected).

In [2], it is shown that both |=4
I1 and |=4

I2 are valuable inference relations
since they are (four-valued) preferential, i.e., any of them satisfies reflexivity,
left logical equivalence, right weakening, or, cautious monotony and cautious
cut. They are also paraconsistent and sub-classical over PROP2

PS . Contrariwise
to |=4, they are non-monotonic: While ¬a∧ (a∨ b) |=4

I1 b and ¬a∧ (a∨ b) |=4
I2 b

hold, none of these two relations holds any longer when ¬a ∧ (a ∨ b) is logically
strengthened by conjoining it with a. Hence, the scope of disjunctive syllogism
remains limited whenever these inference relations are considered. Actually, this
is mandatory under the paraconsistency requirement whenever the inference
relation is s.t. α ∨ β is a consequence of α since ex contradictione quodlibet
sequitur comes from their unrestricted interaction (known as Lewis independent
argument, cf. [65]):

¬α,
α

α ∨ β
disj.intro

β
disj. syllogism

Similarly, none of |=4
I1 and |=4

I2 is a transitive relation (and obviously, this
contrasts with |=4). Thus, while ¬a∧ a |=4

I1 ¬a∧ (a∨ b) and ¬a∧ (a∨ b) |=4
I1 b,

we do not have ¬a ∧ a |=4
I1 b (the same example can be used to show that |=4

I2
is not transitive, mutatis mutandis).

Nevertheless, every classical model of a formula Σ of PROP4
PS is minimal in

the set of 4-models of Σ w.r.t. any of the two preorderings. Therefore, both |=4
I1

and |=4
I2 coincide with |=2 on the PROP2

PS fragment whenever Σ is classically
consistent.

Finally, each of |=4
I1 and |=4

I2 is a proper superset of |=4 but those relations
do not coincide (see counterexamples in [2]).

Similar preference criteria have been considered in a three-valued framework
[63, 64] in order to design the logic LPm, less cautious than LP . Formally, the
partial preordering ≤LPm

over the set of 3-interpretations over PS defined by
I ≤LPm

J if and only if {x ∈ PS | I(x) ∈ {�}} ⊆ {x ∈ PS | J(x) ∈ {�}} is
considered:6

6 Obviously, the sole difference between ≤1 - equal to ≤2 when ⊥ is not allowed - and
≤LPm is the underlying set of non-classical interpretations.

166 S. Coste-Marquis and P. Marquis

Definition 7 (|=LPm
-inference).

Let Σ and γ be two formulas from the language of LPm. We note Σ |=LPm
γ

if and only if every 3-model of Σ that is minimal in its set w.r.t. ≤LPm
is a

3-model of γ.

Example 5. Let Σ = a ∧ ¬a ∧ (a ∨ b) ∧ c ∧ (¬c ∨ d). We have Σ |=LPm
d (while

we do not have Σ |=3 d). But, we do not have Σ |=LPm b.

|=LPm is (three-valued) preferential, non-monotonic, paraconsistent and sub-
classical over PROP2

PS . Unlike |=3, it is not transitive. Like |=4
I1 and |=4

I2, it
coincides with |=2 on the PROP2

PS fragment whenever Σ is classically consistent.
Other preference criteria result from giving more significance to the syntax of

the database (especially, considering an additional comma connective). Indeed,
when Σ is a finite set of formulas, it is possible to give more credit to the 3-
models of Σ which maximize (w.r.t. ⊆) the subset of formulas from Σ interpreted
to 1. Formally, a partial preordering ≤BS over the set of 3-interpretations over
PS can be defined as follows: I ≤BS J if and only if {φ ∈ Σ | I(φ) = 1} ⊇ {φ ∈
Σ | J(φ) = 1}. On this ground, another inference relation can be defined:

Definition 8 (|=BS-inference).
Let Σ be a finite set of formulas and γ be a formula from the language considered
in [13]. We note Σ |=BS γ if and only if every 3-model of every formula from Σ
minimal in its set w.r.t. ≤BS is a 3-model of γ.

Example 6. Let Σ = {a,¬a, (a∨b), c, (¬c∨d)}. We have Σ |=BS d. We also have
Σ |=BS b (while we do not have Σ |=LPm

b).

|=BS is three-valued preferential if left logical equivalence is stated as: If E ∪
{α}|∼γ and � (α ↔ β) then E∪{β}|∼γ (a set is required instead of a formula). It
is also paraconsistent and coincides with |=2 on the PROP2

PS fragment whenever
Σ is a classically consistent set.

Other Inference Relations Other inference relations have been investigated
in [21, 48]. A basic idea consists in characterizing inference in other ways than
set containment, e.g., using reductio ad absurdum.7

Definition 9 (|=4,inc-inference and |=3,inc-inference).
Let Σ, γ be two formulas from PROP4

PS . Σ |=4,inc γ (resp. Σ |=3,inc γ) if and
only if Σ ∧ ¬γ has no 4-model (resp. no 3-model).

Such inference relations make sense when the language is not restricted to the
monotonic fragment (or a subset of it); otherwise, they trivialize to the empty

7 Another approach would consist in taking advantage of material implication and in
defining |=4,⊃ by Σ |=4,⊃ γ if and only if |=4 Σ ⊃ γ, and similarly for the three-
valued setting. However, it is easy to prove that |=4,⊃ coincides with |=4, while |=3,⊃

coincides with |=3.

On the Complexity of Paraconsistent Inference Relations 167

relation since every formula from the monotonic fragment has a 4-model and a
3-model.

Other relations can be defined by taking advantage of additional mechanisms.
Among such mechanisms are the following ones:

– considering only argumentative consequences of the belief bases.
– selecting the consequences of the belief base that are necessarily true.
– selecting as consequences of the belief base formulas that are so to speak “at

least as true” as the belief base.

Definition 10 (|=4,arg
≤ -inference, |=4,1

≤ -inference and |=4,t
≤ -inference).

Let ≤ be a binary relation over the set of all 4-interpretations over PS. Let Σ, γ
be two formulas from PROP4

PS . We define Σ |=4
≤ γ by ∀I ∈ min(4-mod(Σ),≤),

I(γ) ∈ {1,�}. Then:

– Σ |=4,arg
≤ γ if and only if Σ |=4

≤ γ and Σ �|=4
≤ ¬γ.

– Σ |=4,1
≤ γ if and only if ∀I ∈ min(4-mod(Σ),≤), I(γ) = 1.

– Σ |=4,t
≤ γ if and only if ∀I ∈ min(4-mod(Σ),≤), I(Σ) ≤t I(γ).

Example 7. Let Σ = a ∧ ¬a ∧ (a ∨ b) ∧ c ∧ (¬c ∨ d). We have:

– Σ |=4,arg
≤1

c and Σ |=4,arg
≤1

d

– Σ |=4,1
≤1

c and Σ |=4,1
≤1

d

– Σ |=4,t
≤1

c and Σ |=4,t
≤1

d and Σ |=4,t
≤1

a

– Σ |=4,arg
≤2

c and Σ |=4,arg
≤2

d

– Σ |=4,1
≤2

c and Σ |=4,1
≤2

d

– Σ |=4,t
≤2

c and Σ |=4,t
≤2

d and Σ |=4,t
≤2

a

Let us now present some logical properties for these three inference relations.
|=4,arg

≤ , |=4,1
≤ and |=4,t

≤ satisfy or, cautious cut and cautious monotony but they
satisfy neither monotony nor right weakening in the general case. Neither |=4,arg

≤
nor |=4,1

≤ satisfy reflexivity in general, but |=4,t
≤ does. |=4,1

≤ satisfies left logical
equivalence but none of |=4,arg

≤ or |=4,t
≤ does.

Again, similar inference relations can be stated in a three-valued setting.
[48] investigated the logical properties of such relations, as well as their relative
cautiousness, in the general case (i.e., for any ≤). A similar analysis has also
been conducted in the specific case preorderings ≤ are considered. In particular,
we considered both the universal ordering (i.e., the minimal 3-models of Σ are
all its 3-models), ≤LPm , ≤BS (assuming that Σ is a finite set of formulas), and
the variant of the latter based on cardinality instead on set containment. All the
relations under consideration are paraconsistent and non-monotonic (when the
universal ordering is not chosen).

168 S. Coste-Marquis and P. Marquis

One of the purposes for designing these relations is to derive paraconsistent
inference relations more discriminating toward their consequences. Indeed, the
three-valued inference relations depicted before suffer from a relative myopia:
They do not make sufficient distinctions between the conclusions they provide
given a belief base Σ. For instance, let Σ = �a ∧ b ∧ c ∧ ¬c. Both a, b and
c are consequences of Σ but they have different epistemic status w.r.t. Σ: a
is necessary in Σ (it must be true, and only true, in every model of Σ), b is
plausible since we have some evidence about its truth but no evidence about its
falsity, and c is only possible since we have contradictory evidence about it.

Beyond S-3 Logic. As we will see in the next section, taking a preference
relation into account in order to retain only the 3-models that are as close as
possible to the classical ones (in a certain sense) has a computational cost. The
complexity of the corresponding inference relations is at least one level higher in
the polynomial hierarchy compared with |=3. This just reflects that preference
handling is a source of complexity (this is not a major surprise for any reader
aware of the complexity of many preferential (and not paraconsistent) infer-
ence relations): Looking for preferred models requires searching an exponential
space, and this source of complexity is typically orthogonal to the other source
(exponentially many preferred models are possible).

In order to avoid such a complexity shift while refining |=3 nevertheless, an
approach is S-3 logic [69]. In a nutshell, instead of preferring only those models
of the base Σ that are “as classical as possible” (or “as consistent as possible”),
all the models of Σ that are classical over a prespecified set of symbols are kept.
Thus, S-3-models are 3-models that are classical over the set S of propositional
symbols. More formally, given a subset S of PS , an S-3-model I of Σ ∈ PROP3

PS
is any 3-model of Σ s.t. ∀x ∈ S, I(x) �= �. Whenever S is fixed (and a part of
the input), determining whether a given 3-model I of Σ is an S-3-model of it
can be achieved in polynomial time (while the problem of determining whether
a given 3-model I of Σ is a 3-model of it that is minimal w.r.t. ≤LPm cannot
be achieved in polynomial time – under the standard assumptions of complexity
theory).

Given such a notion of S-3-model, another inference relation can be defined:

Definition 11 (|=3
S-inference).

Let S be a subset of PS. Let Σ and γ be two formulas from PROP3
PS . We note

Σ |=3
S γ if and only if every S-3-model of Σ is an S-3-model of γ.

Now, the problem with S-3-logic is that a classically inconsistent belief base Σ
may also be S-3-inconsistent, even if it is 3-consistent (especially when it is from
the monotonic fragment). This happens when S contains all the propositional
symbols that are brought into play in a conflict of Σ:

Example 8. Let Σ = a ∧ ¬a ∧ (a ∨ b) ∧ c ∧ (¬c ∨ d). Σ has no {a}-3-model.

In order to deal with the inconsistencies that may be revealed when using
S-3 inference in PROP3

PS , it was suggested in [56] to focus on some subsets S′ of

On the Complexity of Paraconsistent Inference Relations 169

S, the ones for which the corresponding inference relations are not trivial. The
approach is similar to the standard coherence-based approach to inconsistency
handling, except that the inference relation is weakened by removing symbols
from S instead of removing explicit beliefs from Σ:

Definition 12 (Consistent subsets).
Let Σ be a belief base from PROP3

PS . Let S ⊆ PS and S0 ⊆ S s.t. Σ �|=3
S0

false.
A consistent subset S′ of S w.r.t. Σ and S0 is a subset of S containing S0 and
s.t. Σ �|=3

S′ false. S(Σ, S, S0) denotes the set of all consistent subsets of S w.r.t.
Σ and S0.

In this definition, S0 is a given set of symbols which must be interpreted
classically. The condition Σ �|=3

S0
false means that the set of consequences of

Σ is not the whole language PROP3
PS . Note that the existence of such a set S0

(possibly empty) is ensured provided that Σ is 3-consistent.

Example 9. Let Σ = a ∧ ¬a ∧ (a ∨ b) ∧ c ∧ (¬c ∨ d). Every subset S of PS s.t.
a �∈ S is a consistent subset of Σ.

Among the consistent subsets, we are interested in those from which the max-
imum amount of information is kept but trivialization is avoided. This calls for a
selection policy P which aims at pointing out a preferred subset of S(Σ, S, S0).
In [56], the authors adhered to a skeptical approach: Any piece of belief is con-
sidered as a consequence of Σ given S and S0 if and only if it is S′-3 entailed by
Σ for every preferred consistent subset S′ of S w.r.t. Σ and S0.

Definition 13 (|≈P,S0
S -inference).

Let Σ be a belief base from PROP3
PS and S0 be a subset of PS s.t. Σ �|=3

S0
false.

Let P be a selection policy s.t. SP(Σ, S, S0) is a subset of S(Σ, S, S0) and let γ
be a formula from PROPPS . γ is a consequence of Σ w.r.t. P and S0, noted
Σ |≈P,S0

S γ, if and only if ∀S′ ∈ SP(Σ, S, S0), Σ |=3
S′ γ.

Example 10. Let Σ = a ∧ ¬a ∧ (a ∨ b) ∧ c ∧ (¬c ∨ d). If S = (∅, {b, c, d})
and SP(Σ, S, S0) = {{b, c, d}}, we have Σ |≈P,S0

S d. We also have Σ |≈P,S0
S a,

Σ |≈P,S0
S ¬a but Σ � |≈P,S0

S b.

Many selection policies for consistent subsets that are similar to the ones
defined for consistent subbases in the standard coherence-based approach to
inconsistency handling [62, 7, 8] are given in [56]. Thus, the possibilistic policy
PO (or best-out), the linear-order policy LO, the inclusion-preference policy IP
(or discrimin) and the lexicographic policy LE (or leximin) have been defined
for stratified S (i.e., S is given by a totally ordered partition of its propositional
symbols); such policies consist in selecting the minimal elements in SP(Σ, S, S0)
w.r.t. the corresponding preorderings.

Every |≈P,S0
S inference relation is a proper subset of |=3

S and is equal to it
when Σ �|=3

S false for many reasonable P (including PO, LO, IP, LE). The
family of |≈P,S0

S inference relations also includes |=3 (just set S to ∅). All these

170 S. Coste-Marquis and P. Marquis

relations are paraconsistent when Σ is assumed to be 3-consistent. However, in
contrast to |=3

S that is monotonic, the |≈P,S0
S inference relations are typically

non-monotonic:

Example 11. Let Σ = ¬a∧(a∨b). If S = (∅, {a, b}) and SP(Σ, S, S0) = {{a, b}},
we have Σ |≈P,S0

S b. Now, if Σ = a∧¬a∧ (a∨ b), then {a, b} may not belong any
longer to SP(Σ, S, S0). If this set becomes SP(Σ, S, S0) = {{a}}, then we have
Σ � |≈P,S0

S b.

3.4 Other Related Systems for Paraconsistent Inference

We finally describe two logical approaches to paraconsistency that are related
to the propositional multi-valued logics framework: Quasi-classical logic [15, 44]
and the signed systems for paraconsistent inference [14].

Quasi-classical Logic. As explained before, ex contradictione quodlibet se-
quitur is obtained whenever full disjunctive syllogism (or more generally res-
olution) and disjunction introduction are allowed inference rules. Removing any
of those rules is a drastic way to escape from trivialization in presence of incon-
sistency. However, it clearly leads to too cautious inference relations.

Quasi-classical logic, as defined in [15] and in [45], relies on the idea that it
is sufficient to limit the way resolution and disjunction introduction interact in
order to avoid trivialization in presence of inconsistency. In this logic, an appli-
cation of the resolution rule can never follow an application of the disjunction
introduction rule; additionally, applications of the resolution rule that would
produce an inconsistency (i.e., the empty clause) are forbidden.

The language of quasi-classical propositional logic is the restriction of PROP2
PS

where no constant symbols occur.
Quasi-classical logic has a simple proof theory; when considering CNF for-

mulas only, it is sufficient to consider the resolution rule and the disjunction
introduction rule (disjunction and conjunction being implicitly taken as associa-
tive and commutative). Starting from a CNF formula Σ, a CNF γ is derivable if
and only if each clause of it is derivable, and a clause is derivable if and only if
it has a resolution proof from Σ in which the empty clause does not occur and
no applications of the resolution rule follow an application of the disjunction
introduction rule.

Example 12. Let Σ = a∧¬a∧ (a∨ b)∧ c∧ (¬c∨ d). Here is a proof of d from Σ:

c,¬c ∨ d

d
resolution

Here is a proof of b from Σ:

¬a, a ∨ b

b
resolution

On the Complexity of Paraconsistent Inference Relations 171

Here is a proof of d ∨ e from Σ:

c,¬c ∨ d
d

resolution

d ∨ e
disj.intro.

Contrastingly, neither the empty clause nor e are derivable from Σ in quasi-
classical logic.

Quasi-classical logic also has a semantics w.r.t. which the proof theory is
sound and complete. In order to define the quasi-classical logic entailment rela-
tion |=QC , we first need to make precise the underlying notion of interpretation,
as well as the notions of strong satisfaction and weak satisfaction. The first part
is easy: An interpretation in quasi-classical logic (QC interpretation for short)
is a 4-interpretation over PS . For the other notions, our presentation slightly
departs from the one reported in [15, 44] so as to keep as much as possible the
notations used in this chapter:

Definition 14 (Strong Satisfaction).
The notion of strong satisfaction of a formula Σ (from the language of quasi-
classical logic) by a QC interpretation I, noted I |=s Σ, is defined as follows:

– If α ∈ PS, then I |=s α if and only if I(α) ∈ {1,�};
– If α ∈ PS, then I |=s ¬α if and only if I(α) ∈ {0,�};
– If α1 ∨ . . . ∨ αn is a clause, then I |=s α1 ∨ . . . ∨ αn if and only if there

exists i ∈ 1 . . . n s.t. I |=s αi and for every i ∈ 1 . . . n, if I |=s ᾱi then
I |=s α1 ∨ . . . ∨ αi−1 ∨ αi+1 ∨ . . . ∨ αn;

– I |=s α ∧ β if and only if I |=s α and I |=s β;
– I |=s (¬¬α) ∨ β if and only if I |=s α ∨ β;
– I |=s ¬(α ∧ β) ∨ γ if and only if I |=s ¬α ∨ ¬β ∨ γ;
– I |=s ¬(α ∨ β) ∨ γ if and only if I |=s (¬α ∧ ¬β) ∨ γ;
– I |=s α ∨ (β ∧ γ) if and only if I |=s (α ∨ β) ∧ (α ∨ γ);
– I |=s α ∧ (β ∨ γ) if and only if I |=s (α ∧ β) ∨ (α ∧ γ);
– I |=s (α ⊃ β) ∨ γ if and only if I |=s ¬α ∨ β ∨ γ;
– I |=s ¬(α ⊃ β) ∨ γ if and only if I |=s (α ∧ ¬β) ∨ γ.

Clearly enough, the definition for disjunction is more restricted than the clas-
sical definition. Actually, the notion of strong satisfaction implicitly translates
the formula into CNF whenever disjunction applies to more sophisticated sub-
formulas than literals. As to clauses α1 ∨ . . . ∨ αn, it asks at least one disjunct
to be satisfied, and in addition, when the interpretation strongly satisfies a com-
plementary literal ᾱi (i ∈ 1 . . . n), it must satisfy the subclause obtained by
removing αi in the clause. This is necessary to restore the connection between a
literal and its complementary literal which is decoupled when 4-interpretations
are considered (remember that |=4 does not satisfy the disjunctive syllogism).

The notion of strong satisfaction can be relaxed to the less demanding notion
of weak satisfaction defined by:

172 S. Coste-Marquis and P. Marquis

Definition 15 (Weak satisfaction).
The notion of weak satisfaction of a formula Σ (from the language of quasi-
classical logic) by a QC interpretation I, noted I |=w Σ, is defined as follows:

– If α ∈ PS, then I |=w α if and only if I(α) ∈ {1,�};
– If α ∈ PS, then I |=w ¬α if and only if I(α) ∈ {0,�};
– I |=w α ∨ β if and only if I |=w α or I |=w β;
– I |=w α ∧ β if and only if I |=w α and I |=w β;
– I |=w (¬¬α) ∨ β if and only if I |=w α ∨ β;
– I |=w ¬(α ∧ β) ∨ γ if and only if I |=w ¬α ∨ ¬β ∨ γ;
– I |=w ¬(α ∨ β) ∨ γ if and only if I |=w (¬α ∧ ¬β) ∨ γ;
– I |=w (α ⊃ β) ∨ γ if and only if I |=w ¬α ∨ β ∨ γ;
– I |=w ¬(α ⊃ β) ∨ γ if and only if I |=w (α ∧ ¬β) ∨ γ.

When I |=s Σ holds, I is said to be a strong model of Σ. When I |=w Σ
holds, I is said to be a weak model of Σ. Obviously, every strong model of Σ is
a weak model of Σ but the converse does not hold in the general case.

It is not very difficult to show that every CNF formula Σ has a strong model
(hence a weak one as well), even if it is classically inconsistent (the interpretation
I s.t. I(x) = � for every x ∈ PS does the job).

Definition 16 (|=QC-inference).
Let Σ and Φ be two formulas from the language of quasi-classical logic. We have
Σ |=QC Φ if and only if for every QC interpretation I, if I |=s Σ, then I |=w Φ.

A detailed study of the logical properties of quasi-classical inference is given
in [45]; it is shown that quasi-classical entailment satisfies reflexivity, monotony,
and-introduction, or-elimination and consistency preservation, but none of supr-
aclassicality, right modus ponens, conditionalization, deduction, cut, transitivity,
unit cumulativity, right weakening and left logical equivalence is satisfied.

An interesting feature of quasi-classical logic is that it coincides with classical
entailment in the clausal case when the CNF belief base Σ is consistent and the
CNF query γ does not contain any valid clauses.

Finally, let us note that quasi-classical logic has been extended recently to
quasi-classical possibilistic logic [28]. This logic extends both possibilistic logic
and quasi-classical logic, whilst preserving their merits. Thus, conflicts taking
place at the same level of certainty are handled as in quasi-classical logic, while
the remaining conflicts are handled as in possibilistic logic. |=QΠL denotes the
corresponding paraconsistent inference relation.

Signed Systems for Paraconsistent Inference. To conclude this section, let
us consider the paraconsistent inference relations introduced in [14] in a default
logic approach.

In Besnard and Schaub’s work [14], the language used is the set of NNF
formulas from PROP2

PS , i.e., formulas built up from the connectives ¬, ∧, ∨,

On the Complexity of Paraconsistent Inference Relations 173

only, and for which the scope of every occurrence of ¬ is a propositional symbol
from PS .8 Every formula Σ is associated to a default theory 〈Σ±, DΣ〉 where:

– Σ± is a formula in the language PROP2
PS± where PS± = {x+ | x ∈ PS} ∪

{x− | x ∈ PS}; Σ± is obtained by replacing in Σ every occurrence of a
positive literal x by the positive literal x+ and every occurrence of a negative
literal ¬x by the positive literal x−.

– DΣ = {δx | x ∈ PS} is a set of default rules

δx =
: x+ ⇔ ¬x−

(x⇔ x+) ∧ (¬x⇔ x−)

Negation is given a special treatment; first, every literal is rendered indepen-
dent from its negation through renaming; then the corresponding dependence re-
lations are re-introduced in a parsimonious way, so that no inconsistency occurs.
Based on the extensions of the default theory 〈Σ±, DΣ〉, several paraconsistent
consequence relations can be defined, especially the relations �s and �±

s :

Definition 17 (�s-inference and �±
s -inference).

Let Σ and γ be two formulas from PROP2
PS .

– γ is a skeptical unsigned consequence of Σ, noted Σ �s γ, if and only if γ
belongs to every extension of 〈Σ±, DΣ〉.

– γ is a skeptical signed consequence of Σ, noted Σ �±
s γ, if and only if γ±

belongs to every extension of 〈Σ±, DΣ〉.

Example 13. Let Σ = a ∧ ¬a ∧ (a ∨ b) ∧ c ∧ (¬c ∨ d). Σ is associated with:

– Σ± = a+ ∧ a− ∧ (a+ ∨ b+) ∧ c+ ∧ (c− ∨ d+).

– DΣ = { : x+ ⇔ ¬x−

(x⇔ x+) ∧ (¬x⇔ x−)
| x ∈ PS}.

This default theory has two extensions. We have:

– Σ �s c ∧ d ∧ (a ∨ b) but Σ ��s a, Σ ��s ¬a and Σ ��s b.
– Σ �±

s c ∧ d ∧ a ∧ ¬a ∧ (a ∨ b) but Σ ��±
s b.

Reflexivity is satisfied by �±
s while it is not ensured for �s. On the contrary,

right weakening is ensured for �s but not for �±
s . Both �±

s and �s coincide with
classical entailment as soon as Σ is (classically) consistent.

Other inference relations can be obtained by considering other inference
mechanisms (credulous inference, prudent inference), other ways to render each
propositional symbol independent from its negation, other kinds of extensions
when some preferential information (under the form of a total preordering over
PS) are available. It must be noted that, unsurprisingly, taking advantage of
such preferential information does not lead to a complexity shift (see [11] for
details).

8 The NNF assumption can be relaxed through the notion of polarity (see [14]) but
every occurrence of a subformula φ ⇔ ψ must be replaced first by (φ ⊃ ψ)∧(ψ ⊃ φ).

174 S. Coste-Marquis and P. Marquis

4 Complexity Results

4.1 Main Results

In this section, we report the complexity of inference problems for the different
(paraconsistent) inference relations presented in the previous section. For each
inference relation considered �L, the decision problem is defined as follows:

Definition 18 (Decision Problem for �L).
Input: A pair 〈Σ, γ〉 (plus a possibly stratified subset S of PS for the relations
for which this is relevant) of formulas from the language L of the logic 〈L,�L〉
considered.
Question : Does Σ �L γ hold?

Complexity results for most of the relations come from [53, 19] for the mono-
tonic ones and from [21, 48] for the non-monotonic ones. [55] gives complexity
results for quasi-classical logic and [28] for quasi-possibilistic logic. The complex-
ity of the inference relations based on signed systems have been investigated in
[21, 11]. Finally, [56] presents complexity results for the |≈P,S0

S relations.

Proposition 1. The complexity of the decision problem for �L has been identi-
fied as follows:

– coNP-complete when �L is |=4, |=3, |=J3 , |=LP , |=L, |=3
S, |=4,inc, |=3,inc.

– Δp
2[O(log n)]-complete when �L is |≈PO,S0

S .

– Δp
2-complete when �L is |≈LO,S0

S or |≈LE,S0
S .

– Πp
2 -complete when �L is |=4

I1, |=4
I2, |=LPm , |=BS, �±

s , �s, |≈IP,S0
S , |=4,1

≤1
,

|=4,1
≤2

, |=4,t
≤1

, |=4,t
≤2

, |=3,1
≤LPm

or |=3,t
≤LPm

.

– Dp
2-complete when �L is |=4,arg

≤1
, |=4,arg

≤2
or |=3,arg

≤LPm
.

To conclude this section, let us sketch some of the proofs of the results given
in the proposition above (the remaining ones can be found in [19, 55, 56]).

All the membership proofs are easy. For any relation �L among |=4, |=3,
|=J3 , |=LP , |=L, |=3

S , membership can be easily proven by showing that the
corresponding complementary problems are in NP, thanks to the following non-
deterministic algorithm:

1. Guess an interpretation I over V ar(Σ) ∪ V ar(γ);
2. Check that I is a model of Σ but not a model of γ

By interpretation (resp. model) here, it is meant a 4-interpretation (resp. a
4-model) when |=4 is concerned, an S-3-interpretation (resp. an S-3-model) when
|=3

S is concerned, and a 3-interpretation (resp. a 3-model) otherwise.
Themembershipresults for|=4,inc,|=3,inccomes froma similar non-deterministic

algorithm (only step. 2 changes and consists in checking that I is a model of
Σ ∧ ¬γ).

On the Complexity of Paraconsistent Inference Relations 175

For any relation �L among |=4
I1, |=4

I2, |=LPm
, |=BS , membership is proven

by showing that the corresponding complementary problems are in Σp
2 . This is

achieved through the following non-deterministic algorithm:

1. Guess an interpretation I over V ar(Σ) ∪ V ar(γ);
2. Check that I is a model of Σ minimal w.r.t. ≤

through a call to an NP oracle;
3. Check that I is not a model of γ

This time, by interpretation (resp. model), it is meant a 4-interpretation
(resp. a 4-model) when |=4

I1 or |=4
I2 is concerned, a 3-interpretation (resp. a

3-model) otherwise.
Indeed, checking that I is not minimal w.r.t. any relation ≤ that can be

decided in deterministic polynomial time can be easily done in non-deterministic
polynomial time, just by guessing an interpretation J over V ar(Σ) ∪ V ar(γ),
and by checking in deterministic polynomial time that J is a model of Σ, and
that J ≤ I holds while I ≤ J does not hold. Obviously, ≤=≤1, ≤2, ≤LPm or
≤BS can be decided in deterministic polynomial time.

A similar non-deterministic algorithm can be used for |=4,1
≤1

, |=4,1
≤2

, |=3,1
≤LPm

(resp. |=4,t
≤1

, |=4,t
≤2

, |=3,t
≤LPm

) (only step. 3 changes and consists in checking that
I(γ) �= 1 (resp. I(Σ) �≤t I(γ))).

As to �±
s , �s, the membership results are are direct consequences of Theorem

5.2 from [42] (see also [70]) showing that skeptical default reasoning is in Πp
2 in

the general case.
As to the relations |≈PO,S0

S , |≈LO,S0
S , |≈IP,S0

S and |≈LE,S0
S , the membership

results come from modular and faithful polytime translations from the inference
problem for such relations to the corresponding inference problems from strat-
ified belief bases (Proposition 3.11 from [56]), and the membership results for
the latter decision problems as reported in [60, 20].

As to the argumentative relations |=4,arg
≤1

, |=4,arg
≤2

or |=3,arg
≤LPm

, the membership
results come directly from the definitions and the membership results for |=4

≤1
,

|=4
≤2

and |=3
≤LPm

.

All the hardness proofs come from the corresponding restrictions to the CNF
case, except to what concerns |=4, |=3, |=J3 , |=LP , |=L, |=4,inc, |=3,inc.

As to |=4, hardness comes from the following polytime reduction from the
canonical NP-complete problem sat; let Σ be a CNF formula s.t. V ar(Σ) =
{x1, . . . , xn}; we have that Σ is classically consistent if and only if Σ∧

∧n
i=1(xi∨

¬xi) �|=4 ∨n
i=1(xi ∧ ¬xi) (see [19]).

As to |=3, |=J3 , |=LP , |=L, hardness comes from the following polytime re-
duction from sat; let Σ be a CNF formula s.t. V ar(Σ) = {x1, . . . , xn}; we have
that Σ is classically consistent if and only if Σ �|=3 ∨n

i=1(xi ∧ ¬xi) (see [19]).
As to |=4,inc and |=3,inc, we associate in polynomial time to any CNF Σ the

formula Σ� obtained by replacing in Σ every occurrence of any literal l by �l.
Now, Σ has a 2-model if and only if Σ� has a 4-model if and only if Σ� has a
3-model, due to the truth table of �. Accordingly, Σ is classically consistent if
and only if Σ� �|=4 new if and only if Σ� �|=3 new, where new ∈ PS \ V ar(Σ).

176 S. Coste-Marquis and P. Marquis

4.2 Restrictions

Let us now give more specific results, obtained by imposing further restrictions
to the decision problem.

The CNF Case. Significant decreases in complexity can be obtained for some
inference relations when Σ and γ are restricted to CNF formulas (from PROP2

PS).

Proposition 2. The complexity of the decision problem for �L has been identi-
fied as follows in the case Σ and γ are CNF formulas (from PROP2

PS):

– trivial (i.e., in time O(1)) when �L is |=4,inc or |=3,inc because such relations
are empty.

– in P when �L is |=4 or |=3, |=J3 , |=LP or |=L.

– coNP-complete when �L is |=3
S.

– Δp
2[O(log n)]-complete when �L is |≈PO,S0

S .

– Δp
2-complete when �L is |≈LO,S0

S or |≈LE,S0
S .

– Πp
2 -complete when �L is |=4

I1, |=4
I2, |=LPm

, |=BS, �±
s , �s, |≈IP,S0

S , |=4,1
≤1

,
|=4,1

≤2
, |=4,t

≤1
, |=4,t

≤2
, |=3,1

≤LPm
or |=3,t

≤LPm
.

– Dp
2-complete when �L is |=4,arg

≤1
, |=4,arg

≤2
or |=3,arg

≤LPm
.

Again, let us sketch some of the proofs of the results given in the proposition
above. The Πp

2 -hardness proof for |=LPm
is fully detailed; it is a bit long, but

on the one hand, it is central (in the sense that the other Πp
2 -hardness proofs

are based on it) and on the other hand, it exhibits an interesting connection
with the notion of conflict (a minimally inconsistent subset of formulas), which
is at the core of many approaches to inconsistency tolerant reasoning based on
formula inhibition.

Membership to P for |=4 or |=3, (and their restrictions |=J3 , |=LP or |=L)
intuitively comes from the fact that the disjunctive syllogism rule fails for each
of them. Thus, when Σ and γ are CNF formulas, Σ |=4 γ holds (resp. Σ |=3 γ
holds) if and only if every clause of γ is subsumed by a clause from Σ (resp. every
clause of γ is subsumed by a clause from Σ or it contains a pair of complementary
literals) [53].

Hardness for |=3
S simply comes from the fact that classical entailment is

coNP-hard and coincides with |=3
S when S = PS .

Hardness for |≈PO,S0
S comes from the Δp

2[O(log n)]-hardness of inference from
stratified belief bases interpreted under the possibilistic policy (Theorem 6.5 from
[60]) and a (modular and faithful) polytime translation of this inference problem
into the decision problem for |≈PO,S0

S -inference (Proposition 3.10 in [56]).
Similarly, hardness for |≈LO,S0

S (resp. |≈LE,S0
S) comes from the Δp

2-hardness
of inference from stratified belief bases interpreted under the linear-order policy

On the Complexity of Paraconsistent Inference Relations 177

(Theorem 5.9 from [60]) (resp. the lexicographic policy (see [20])) and a (modu-
lar and faithful) polytime translation of such inference problems from stratified
belieb bases into the corresponding decision problem for |≈LO,S0

S -inference (resp.
|≈LE,S0

S) (again, see Proposition 3.10 in [56]).
Hardness for |=4

I1 and |=4
I2 comes from hardness for |=LPm , together with the

fact that in the fragment {¬,∧,∨, true, false}, we have Σ |=4
I2 γ if and only if

Σ |=LPm
γ and when in addition γ is a CNF formula that does not contain any

valid clause, we have Σ |=4
I1 γ if and only if Σ |=LPm

γ (Proposition 5.4 from [2]).
Hardness for �±

s and |≈IP,S0
S , comes from the fact that �±

s and |≈IP,∅
PS coincide

with |=LPm on the monotonic fragment (see Propositions 3.8 and 3.9 in [56] and
Lemma 5).

The Πp
2 -hardness results for |=LPm

, �s, |=BS remain to be proven. Let us do
it in a gentle way, through a number of intermediate lemmata. We first need the
following notions:

Definition 19. Let Σ = {φ1, . . . , φn} be a finite set of formulas from PROP2
PS .

Let α be a formula from PROP2
PS .

– A subset S of Σ is an α-conflict of Σ if and only if S ∪ {α} is classically
inconsistent but every proper subset of it is consistent. We note Conf(Σ, α)
the set of all formulas φi from Σ where φi belongs to at least one α-conflict
of it. When α ≡2 true holds, an α-conflict of Σ is simply referred to as a
conflict of Σ.

– A var-conflict of Σ is a subset V of V ar(Σ) s.t. there exists a conflict S of
Σ satisfying V = V ar(S).

– A minimal var-conflict of Σ is a var-conflict of Σ that is minimal w.r.t. ⊆.

Given a CNF formula Σ = {φ1, . . . , φn} (we represent it as the set of its
clauses instead of the conjunction of them for simplicity), we are going to prove
successively that:

(1) Determining whether φi ∈ Σ does not belong to any conflict of Σ is Πp
2 -hard

(this holds even in the case when φi is a propositional symbol).
(2) Determining whether p ∈ V ar(Σ) does not belong to any minimal var-

conflict of Σ is Πp
2 -hard.

(3) Determining whether p ∈ V ar(Σ) satisfies Σ |=LPm
p (resp. Σ �s p) is

Πp
2 -hard.

We prove (1) by considering a polynomial reduction from the inference prob-
lem related to WIDTIO belief revision operator [71]. Let Σ = {φ1, . . . , φn} be a
finite set of formulas from PROP2

PS . Let α be a formula from PROP2
PS . Let us

recall that the revised database Σ◦W α can be defined up to classical equivalence
by the formula α ∧

∧
φi∈Σ\Conf(Σ,α) φi. Eiter and Gottlob proved in [31] that

the corresponding inference problem is Πp
2 -hard. Looking carefully at the proofs

of Lemma 6.2 and Theorem 8.2 from [31], it is easy to show that Σ ◦W p
?
|= q

remains Πp
2 -hard in the restricted case when Σ is a classically consistent CNF

178 S. Coste-Marquis and P. Marquis

formula, p and q are propositional variables from PS , q ∈ Σ, and p �∈ Σ (espe-
cially, we can assume without loss of generality that the matrix of the 2−QBF∀
formula E used in the proof of Lemma 6.2 is a CNF formula). On this ground,
we prove the following lemma:

Lemma 1. Let Σ = {φ1, . . . , φn} be a classically consistent CNF formula. Let
p and q be two propositional symbols from PS, q ∈ Σ, and p �∈ Σ. Determining
whether q does not belong to any p-conflict of Σ is Πp

2 -hard.

Proof of the lemma: It is sufficient to show that Σ ◦W p |=2 q holds if and only if
q does not belong to any p-conflict of Σ. In order to simplify a bit the writing,
let us note no − conflict(Σ, p) =def Σ \ Conf(Σ, p) (this is the set of formu-
las from Σ not appearing in any p-conflict of it). The “only-if” way is obvious
since Σ ◦W p ≡2 p ∧

∧
φi∈no−conflict(Σ,p) φi and q ∈ no − conflict(Σ, p) by as-

sumption. Conversely, let us assume that Σ ◦W p |=2 q holds and there exists
a p-conflict S of Σ s.t. q ∈ S. First of all, Σ ◦W p |=2 q holds if and only if
no − conflict(Σ, p) |=2 ¬p ∨ q. Now, let S′ = S \ {q}. Since S |=2 ¬p, we also
have S′ ∪ {q} |=2 ¬p, or equivalently S′ |=2 ¬q ∨ ¬p. Moreover, by minimality
of a conflict, we have S′ �|=2 ¬p. Consider the subset S′ ∪ no − conflict(Σ, p) of
Σ. By monotony of |=, we have S′ ∪no − conflict(Σ, p) |=2 (¬q ∨¬p)∧ (¬p∨ q).
This is equivalent to state that S′∪no − conflict(Σ, p) |=2 ¬p. Accordingly, this
implies that there exists a p-conflict S′′ ⊆ S′ ∪ no − conflict(Σ, p) of Σ. Since
S′ �|=2 ¬p, this implies that S′′ ∩ no − conflict(Σ, p) �= ∅, contradiction. �

Let us now show that considering conflicts (instead of p-conflicts) is sufficient:

Lemma 2. Let Σ = {φ1, . . . , φn} be a classically consistent CNF formula. Let
p be a propositional symbol from PS and φi a clause from Σ. φi belongs to a
p-conflict of Σ if and only if φi belongs to a conflict of Σ ∪ {p} and φi �≡2 p.

Proof of the lemma: Let us first show that S is a p-conflict of Σ if and only if
S∪{p} is a conflict of Σ∪{p}. Obviously, we have S |=2 ¬p if and only if S∪{p}
is inconsistent. It remains to show that ∀φi ∈ S, S \ {φi} �|=2 ¬p if and only if
∀φi ∈ S ∪ {p}, (S ∪ {p}) \ {φi} �|=2 false.

– “if” way: Assume that there exists φi ∈ S∪{p} s.t. (S∪{p})\{φi} |=2 false.
If φi �= p, then we have (S ∪ {p}) \ {φi} = (S \ {φi}) ∪ {p}. Accordingly, we
have (S\{φi})∪{p} |=2 false, which contradicts our assumption (minimality
of a p-conflict).
Otherwise, φi = p and (S ∪{p}) \ {φi} is a subset of S, hence a subset of Σ.
The fact that (S ∪ {p}) \ {φi} |=2 false contradicts the assumption that Σ
is consistent.

– “only-if” way: Assume that there exists φi ∈ S s.t. S \ {φi} |=2 ¬p. This is
equivalent to state that (S \ {φi}) ∪ {p} |=2 false.
If φi �= p, then we have (S \ {φi}) ∪ {p} = (S ∪ {p}) \ {φi}. Accordingly,
we have (S ∪ {p}) \ {φi} |=2 false, with φi ∈ S, which contradicts our
assumption (minimality of a conflict).

On the Complexity of Paraconsistent Inference Relations 179

Otherwise, φi = p and (S\{φi})∪{p} = S, hence a subset of Σ. The fact that
(S \ {φi}) ∪ {p} |=2 false contradicts the assumption that Σ is consistent.

Once this is established, it is sufficient to show that p does not belong to any
p-conflict of Σ in the case p ∈ Σ. Assume that this is not the case: Let S be a p-
conflict of Σ s.t. p ∈ S. Let S′ = S \{p}. Since S = S′∪{p} and S is a p-conflict,
we have S′ ∪ {p} |=2 ¬p. This is equivalent to state that S′ |=2 ¬p through the
(meta)deduction theorem for propositional logic. Hence, S′ is a p-conflict of Σ
and a proper subset of S, which contradicts the existence of S. �

We are now ready to prove (1): To every triple 〈Σ = {φ1, . . . , φn}, p, φi〉
where Σ is a classically consistent CNF formula, p �∈ Σ and φi ∈ Σ, we associate
in polynomial time the ordered pair 〈Σ ∪ {p}, φi〉. From Lemma 2, φi does not
occur in any p-conflict of Σ if and only if φi does not occur in any conflict of
Σ ∪ {p} or φi = p. Now, the case φi = p can be excluded since p �∈ Σ. The
Πp

2 -hardness result given in Lemma 1 completes the proof.
In order to prove (2), we associate in polynomial time to every ordered pair

〈Σ = {φ1, . . . , φn}, φi〉 (where Σ is a CNF formula and φi a clause from Σ) the
following ordered pair: 〈

⋃
φi∈Σ{φi∨¬newi, newi}, newi〉, where {new1, . . . , newn}

are new symbols from PS \V ar(Σ). We have that φi belongs to a conflict of Σ if
and only if newi belongs to a minimal var-conflict of

⋃
φi∈Σ{φi ∨¬newi, newi}.

Indeed, S ⊆ Σ is a conflict of Σ if and only if Snew = {φj∨¬newj , newj | φj ∈ S}
is a conflict of

⋃
φi∈Σ{φi ∨ ¬newi, newi} (intuitively, this is just a naming op-

eration, hence every conflict is mainly preserved and no new conflict is added).
The point is that every conflict Snew of

⋃
φi∈Σ{φi ∨ ¬newi, newi} gives rise to

a minimal var-conflict V ar(Snew) of it by construction (this is not the case in
general). The Πp

2 -hardness result stated in (1) completes the proof.
In order to prove (3), we first prove the two following lemmata:

Lemma 3. Let Σ = {φ1, . . . , φn} be a CNF formula and p ∈ V ar(Σ). p belongs
to a minimal var-conflict of Σ if and only if there exists a 3-model I of Σ that
is minimal w.r.t. ≤LPm

in its set and s.t. I(p) = �.

Proof of the lemma: We assume that no clause φi in Σ contains both a literal
and its negation. This assumption can be done without loss of generality since
removing such classical tautologies from Σ does not change the set of its conflicts,
hence the set of its minimal var-conflicts and does not change the set of its 3-
models (every tautological clause is interpreted as 1 or � in THREE).

– “if” way: Let I be a 3-model of Σ that is minimal w.r.t. ≤LPm in its set
and s.t. I(p) = �. Let us show that p belongs to a minimal var-conflict of
Σ. Let Σp =def {φi ∈ Σ | ∀x ∈ V ar(φi) if x �= p, then I(x) �= �} be the
set of clauses from Σ whose symbols are classically interpreted in I, expect
possibly for p. Σp can be partitioned into three sets:
• The subset Σ+

p of Σp containing all the clauses in which p appears as a
literal.

• The subset Σ−
p of Σp containing all the clauses in which ¬p appears as

a literal.

180 S. Coste-Marquis and P. Marquis

• The subset Σ∗
p of Σp containing all the clauses in which p does not appear

(as a symbol).
Since I is minimal w.r.t. ≤LPm

in the set of 3-models of Σ and I(p) = �, it
must be the case that Σp is classically inconsistent (otherwise there would
exist a 2-model J of Σ+

p and the 3-interpretation J ′ defined by J ′(x) = J(x)
for every x ∈ V ar(Σ+

p) and J ′(x) = I(x) otherwise would be a 3-model of Σ
s.t. J ′ ≤LPm I and I �≤LPm J ′: The minimality of I would be questioned).
Accordingly, there exists at least one conflict of Σp, hence at least one conflict
of Σ.

Now, Σ∗
p is classically satisfiable since the restriction of I to V ar(Σ∗

p) is a
(partial but classical) model of it. Since p (resp. ¬p) is a pure literal in Σ+

p

(resp. Σ−
p) (i.e., ¬p (resp. p) does not appear as a literal in any clause of

the set), every conflict of Σp contains at least one clause from Σ−
p and one

clause from Σ+
p . In particular, every conflict of Σp is s.t. p ∈ V ar(S).

It remains to show that p belongs to every minimal var-conflict of Σ. If it
were not the case, for every conflict S of Σp, there would exist a conflict
S′ of Σ s.t. p �∈ V ar(S′) and V ar(S′) ⊂ V ar(S). Let φi be any clause
from Σ \Σp. By construction, there exists at least one propositional symbol
xi �= p occurring in φi s.t. I(xi) = � and xi �∈ V ar(Σp). Every conflict
S′ containing φi is s.t. xi ∈ V ar(S′), and this prevents V ar(S′) ⊂ V ar(S)
from being true since V ar(S) ⊆ V ar(Σp) whenever S is a conflict of Σp.
Accordingly, every conflict S′ of Σ s.t. V ar(S′) ⊂ V ar(S) does not contain
any clause from Σ \Σp; in other words, S′ is a conflict of Σp, hence it must
satisfy p ∈ V ar(S′), contradiction.

– “only-if” way: Let VConf (Σ) be the set of all minimal var-conflicts of Σ.
Let us first recall the following notion of a minimal hitting set (cf. [66]):

Definition 20 (Minimal Hitting Set). Let E be a finite set and C a
set of subsets of E (i.e., C ⊆ 2E). Let I be a subset of E.
• I is a hitting set of C if and only if ∀S ∈ C, I ∩ S �= ∅.
• I is a minimal hitting set of C if and only if I is a hitting set of C and

no proper subset of I is a hitting set of C.

If p is a propositional symbol belonging to a minimal var-conflict of Σ,
then there exists a minimal hitting set Hp of VConf (Σ) s.t. p ∈ Hp (the
minimality requirement is important here, the conclusion would not hold if
any var-conflict were considered).

Once this is observed, it is sufficient to show that for every minimal hitting
set H of VConf (Σ), there exists a 3-model IH of Σ that is minimal w.r.t.
≤LPm and s.t. ∀x ∈ V ar(Σ), I(x) = � if and only if x ∈ H.
Indeed, let Σ∗

H = {φi ∈ Σ | V ar(φi) ∩ H = ∅}. Let us show that Σ∗
H is

classically satisfiable. If it were not the case, Σ∗
H would include a conflict

S so there would exist a minimal var-conflict V of Σ∗
H s.t. V ⊆ V ar(S).

This means that there would exist at least one conflict SV of Σ∗
H s.t. V =

V ar(SV). Since Σ∗
H ⊂ Σ, SV would be a conflict of Σ, there would also exist

a minimal var-conflict V ′ of Σ s.t. V ′ ⊆ V . Since H is a minimal hitting

On the Complexity of Paraconsistent Inference Relations 181

set of VConf (Σ) and V ′ ∈ VConf (Σ), there exists a variable x s.t. x ∈ V ′

and x ∈ H. Since V ′ ⊆ V ⊆ V ar(S), we must have x ∈ V ar(S) but since
S ⊆ Σ∗

H and x ∈ H, no clause of S can contain x as a symbol, contradiction.
We conclude that a 2-model I of ΣH exists.

Now, since every clause φi from Σ except those from Σ∗
H contains at

least one symbol from H (by definition of Σ∗
H), every 3-interpretation J s.t.

J(x) = � for every x ∈ H also satisfies J(φi) = �. Since H ∩V ar(Σ∗
H) = ∅,

the 3-interpretation IH defined by IH(x) = � whenever x ∈ H and IH(x) =
I(x) otherwise is well-defined. By construction, IH is a 3-model of Σ.

It remains to show that IH is minimal w.r.t. ≤LPm . This comes directly
from the fact that H is a minimal hitting set of VConf (Σ). Indeed, let us
assume that IH is not a minimal 3-model of Σ w.r.t. ≤LPm

. Then there
exists x ∈ H and a 3-model IH′ of Σ minimal w.r.t. ≤LPm

s.t. for every
y ∈ V ar(Σ), if IH′(y) = �, then IH(y) = �, and IH′(x) �= �. This implies
that the set H ′ of propositional symbols interpreted as � in IH′ is a proper
subset of H. Since H is a minimal hitting set of VConf (Σ), this implies that
there exists at least one minimal var-conflict V ∈ VConf (Σ) s.t. H ′∩V = ∅.
This means that no conflict SV of Σ s.t. V ar(SV) = V contains an element
of H ′ as a symbol. Since IH′ restricted to the symbols outside H ′ behaves
classically and IH′ is a 3-model of Σ, IH′ is a classical model of SV . This
contradicts the fact that SV is a conflict.

�

Lemma 4. Let Σ = {φ1, . . . , φn} be a CNF formula and p ∈ V ar(Σ). Let
new ∈ PS \V ar(Σ). There exists a 3-model I of Σ that is minimal w.r.t. ≤LPm

in its set and s.t. I(p) = � if and only if Σ ∪ {p∨ new,¬p∨ new} �|=LPm
new if

and only if Σ ∪ {p ∨ new,¬p ∨ new} ��s new.

Proof of the lemma:

– We first prove that there exists a 3-model I of Σ that is minimal w.r.t. ≤LPm

in its set and s.t. I(p) = � if and only if Σ∪{p∨new,¬p∨new} �|=LPm
new.

It is obvious that the expansion of Σ with the two clauses p ∨ new and
¬p ∨ new does not create any new conflict, hence any new minimal var-
conflict. Accordingly, the 3-models of Σ that are minimal w.r.t. ≤LPm

are
exactly the 3-models of Σ∪{p∨new,¬p∨new} that are minimal w.r.t. ≤LPm

(see the “only-if” side of the proof of Lemma 3). Let I be a 3-model of Σ that
is minimal w.r.t. ≤LPm

in its set and s.t. I(p) = �. Since new �∈ V ar(Σ),
the minimality requirement ensures that there exists a 3-model I0 of Σ that
is minimal w.r.t. ≤LPm and s.t. I0(new) = 0. Since I0 also is a 3-model of
Σ ∪ {p∨ new,¬p∨ new} that is minimal w.r.t. ≤LPm

, it cannot be the case
that Σ ∪ {p ∨ new,¬p ∨ new} |=2 new. Conversely, let I0 be a 3-model of
Σ ∪ {p ∨ new,¬p ∨ new} that is minimal w.r.t. ≤LPm

and s.t. I0(new) = 0.
Since I0 is a 3-model of both p∨new and ¬p∨new, it must be the case that
I0 is a 3-model of both p and ¬p, which requires that I0(p) = �. Since I0
also is a 3-model of Σ that is minimal w.r.t. ≤LPm , the conclusion follows.

– Let us now prove that Σ′ �|=LPm
new if and only if Σ′ ��s new, where

Σ′ = Σ ∪ {p ∨ new,¬p ∨ new}. Let us first prove the following lemma:

182 S. Coste-Marquis and P. Marquis

Lemma 5. Let Σ and γ be two formulas from PROP2
PS .9 We have Σ �±

s γ
if and only if Σ |=LPm

γ.

Proof of the lemma: By definition, γ is a skeptical signed consequence of Σ if
and only if γ± belongs to every extension of 〈Σ±, DΣ〉. From Theorems A.1
and A.2 of [14], this is equivalent to state that γ± belongs to every extension
of supernormal default theory 〈Σ±, {x+ ⇔ ¬x− | x ∈ PS}〉. Now, from the
well-known preferred models characterization of skeptical inference, this is
still equivalent to state that every preferred (2-)model of Σ± is a 2-model
of γ±, where the preferred models of Σ± are the minimal models of Σ±

w.r.t. the partial ordering ≤ over TWOPS±
defined by I ≤ J if and only if

{x ∈ PS | I(x+) = I(x−)} ⊆ {x ∈ PS | J(x+) = J(x−)} (indeed, I satisfies
x+ ⇔ ¬x− if and only if I(x+) �= I(x−)).

By construction, Σ± is a monotone (positive) formula from PROP2
PS± .

As a consequence, if I is a 2-model of Σ± s.t. I(x+) = I(x−) = 0 for
some x ∈ PS , then every interpretation J that coincides with I for every
propositional symbol from PS± (except possibly on x+ and x−) is still a
2-model of Σ±. This is specifically the case for any interpretation J s.t.
J(x+) �= J(x−). Since J < I holds (where < is the strict ordering associated
with ≤), every preferred model M of Σ± is s.t. for every symbol x ∈ PS ,
we do not have M(x+) = M(x−) = 0. Denoting (TWOPS±

)∗ the subset of
all interpretations I from TWOPS±

s.t. for every x ∈ PS , we do not have
I(x+) = I(x−) = 0, every preferred model M of Σ± belongs to (TWOPS±

)∗.
Now, every interpretation I from (TWOPS±

)∗ can be associated to the 3-
interpretation 3(I) over PS defined by 3(I)(x) = I(x+) and 3(I)(¬x) =
I(x−) for every variable x ∈ PS . It is obvious that 3(.) is a bijection from
both sets of interpretations. It is also obvious to show (by structural induc-
tion on φ ∈ PROP2

PS) that I is a 2-model of the monotone (positive) formula
φ± from PROP2

PS± if and only if 3(I) is a 3-model of φ.
Finally, we know that Σ |=LPm

γ holds if and only if every preferred 3-
model of Σ is a 3-model of γ, where the preferred 3-models of Σ are the
minimal 3-models of it w.r.t. ≤LPm

. Since every preferred model of Σ± can
be associated to a 3-model of Σ through the 3(.) bijection, and since for
every pair of interpretations I and J from (TWOPS±

)∗, we have I ≤ J if
and only if 3(I) ≤LPm

3(J), we obtain that M is a preferred model of Σ±

w.r.t. ≤ if and only if 3(M) is a preferred 3-model of Σ w.r.t. ≤LPm , which
concludes the proof. �

Thanks to this lemma, we know that we have that Σ′ �|=LPm new if and
only if Σ′ ��s new, where Σ′ = Σ ∪ {p ∨ new,¬p ∨ new} if and only if
we have that Σ′ ��±

s new if and only if Σ′ ��s new. This equivalence is
quite obvious since new and new+ always appear in the same extensions of
〈Σ±, DΣ′〉; indeed, every extension of 〈Σ′±, DΣ′〉 contains the consequent

9 Note that ⊃ and ⇔ are considered as syntactic sugars here (φ ⊃ ψ =def (¬φ) ∨ ψ
and φ ⇔ ψ =def (φ ⊃ ψ) ∧ (ψ ⊃ φ)).

On the Complexity of Paraconsistent Inference Relations 183

formula (new ⇔ new+)∧ (¬new ⇔ new−) because the corresponding justi-
fication (new+ ⇔ ¬new−) is (classically) consistent with Σ′ (no occurrence
of ¬new appears in Σ′). �

(3) is a straightforward consequence of (2), Lemma 3 and Lemma 4.
The hardness of |=BS finally remains to be proven. Let us reduce the inference

problem of LPm to the inference problem for the logic of [13]. Let Σ be a CNF
formula and γ a symbol. We associate to 〈Σ, γ〉 in polynomial time the following
ordered pair 〈{Σ ∧ new ∧ ¬new} ∪

⋃
p∈V ar(Σ)∪V ar(γ){p ∨ ¬p}, γ〉, where new ∈

PS \ (V ar(Σ)∪V ar(γ)). We have Σ |=LPm
γ if and only if {Σ ∧new∧¬new}∪⋃

p∈V ar(Σ)∪V ar(γ){p∨¬p} |=BS γ. Indeed, since new does not occur elsewhere in
Σ or γ, we have Σ |=LPm γ if and only if Σ∧new∧¬new |=LPm γ. Accordingly, it
is sufficient to consider the 3-models I of Σ s.t. I(new) = �. Once this is stated,
let us observe that the set S of 3-models I of Σ over V ar(Σ)∪ V ar(γ)∪ {new}
s.t. I(new) = � coincide with the set of 3-models of {Σ ∧ new ∧ ¬new} ∪⋃

p∈V ar(Σ)∪V ar(γ){p ∨ ¬p} over V ar(Σ) ∪ V ar(γ) ∪ {new}. Indeed, for every
propositional symbol p and every 3-interpretation I, we always have I(p∨¬p) ∈
{1,�}. Now, it remains to show that ≤LPm

and ≤BS coincides over S. To do it,
it is sufficient to remark that for every I ∈ S, (1) we have I(Σ∧new∧¬new) = �
(this explains why new has been introduced), and (2) for every p ∈ V ar(Σ) ∪
V ar(γ), we have I(p) = � if and only if I(p∨¬p) = �. This completes the proof
of Πp

2 -hardness of |=BS-inference in the case when the belief base is a finite set
of CNF formulas and the query a symbol.

Hardness for |=4,arg
≤1

and |=4,arg
≤2

comes from the hardness result for |=3,arg
≤LPm

and the fact that |=4
≤1

, |=4
≤2

and |=3
≤LPm

coincide when Σ is CNF and γ a literal
(see Proposition 5.4 from [2]). Since |=3

≤LPm
is Πp

2 -hard in this situation, it is
sufficient to point out a polytime reduction that maps every tuple 〈Σ1, p1, Σ2, p2〉
(where Σ1 and Σ2 are CNF formulas and p1 and p2 are propositional symbols)
to a pair 〈Σ, γ〉 (where Σ and γ are CNF formulas) s.t. Σ |=3,arg

≤LPm
γ if and only

if Σ1 |=3
≤LPm

p1 and Σ2 �|=3
≤LPm

p2. Without loss of generality, we can assume
that Σ1 and Σ2 share no propositional symbols. Let us take Σ = Σ1 ∧ Σ2 ∧
new2 ∧ ¬new2 and γ = (p1 ∨ new1) ∧ (¬p2 ∨ new2), where new1 and new2 are
new propositional symbols, not occurring in V ar(Σ1) ∪ V ar(Σ2) ∪ {p1, p2}.

Let us first assume that Σ1 |=3
≤LPm

p1 and Σ2 �|=3
≤LPm

p2. If Σ1 |=3
≤LPm

p1,
then Σ |=3

≤LPm
p1∨new1 because V ar(Σ1)∩V ar(Σ2) = ∅; furthermore, we nec-

essarily have Σ |=3
≤LPm

¬p2 ∨ new2 because, by construction, every 3-model
I of Σ is s.t. I(new2) = �; hence, Σ |=3

≤LPm
γ. It remains to show that

Σ �|=3
≤LPm

¬γ. We have ¬γ ≡3 (¬p1 ∨¬new2)∧ (¬new1 ∨¬new2)∧ (¬p1 ∨ p2)∧
(¬new1 ∨ p2). Since Σ2 �|=3

≤LPm
p2, there exists a ≤LPm-preferred 3-model I2 of

Σ2 s.t. I2(p2) = 0; since new1 �∈ V ar(Σ2), the 3-interpretation I ′
2 that coincides

with I2 on every symbol, except possibly on new1 and satisfies I ′
2(new1) = 1,

also is a ≤LPm
-preferred 3-model of Σ2. Accordingly, I ′

2(¬new1 ∨ p2) = 0 and
Σ2 �|=3

≤LPm
¬new1 ∨ p2; now, since V ar(Σ1)∩ V ar(Σ2) = ∅ and new1 and new2

184 S. Coste-Marquis and P. Marquis

are new propositional symbols, we obtain that Σ �|=3
≤LPm

¬new1 ∨ p2, hence
Σ �|=3

≤LPm
¬γ.

Conversely, let us assume that Σ |=3,arg
≤LPm

γ and prove that Σ1 |=3
≤LPm

p1

and Σ2 �|=3
≤LPm

p2. If Σ |=3
≤LPm

p1 ∨ new1, then it must be the case that
Σ1 |=3

≤LPm
p1; otherwise, there would exist a ≤LPm -preferred 3-model I1 of Σ1

s.t. I1(p1) = 0; since new1 �∈ V ar(Σ1), the 3-interpretation I ′
1 that coincides with

I1 on every symbol, except possibly on new1 and satisfies I ′
1(new1) = 0, also

is a ≤LPm
-preferred 3-model of Σ1. Accordingly, I ′

1(p1 ∨ new1) = 0, and since
V ar(Σ1) ∩ V ar(Σ2) = ∅ and new1 and new2 are new propositional symbols,
we would have Σ �|=3

≤LPm
p1 ∨ new1, contradiction. Finally, it is the case that

Σ2 �|=3
≤LPm

p2. Otherwise, we would have Σ2 |=3
≤LPm

(¬p1 ∨ p2) ∧ (¬new1 ∨ p2),
hence Σ |=3

≤LPm
(¬p1 ∨ p2)∧ (¬new1 ∨ p2). Since by construction every 3-model

I of Σ is s.t. I(new2) = �, we also have Σ |=3
≤LPm

(¬p1 ∨ ¬new2) ∧ (¬new1 ∨
¬new2). As a consequence, we obtain that Σ |=3

≤LPm
¬γ, contradiction.

The complexity of |=QC and |=QΠL has been identified in [55] and [28], re-
spectively, when both Σ and γ are CNF formulas:

Proposition 3. The complexity of the decision problem for |=QC and |=QΠL is
coNP-complete when both Σ and γ are CNF formulas.

The membership proof is by a reduction to classical entailment (more specifi-
cally, by a modular and faithful polytime translation to classical logic, see Propo-
sitions 1 and 2 in [55]).

Tractability Results. As to |=4 or |=3, tractability is achieved as soon as the
query is a CNF formula when the belief base belongs to the monotonic fragment
[19]. Tractability is still the case for |=4 when the base is a DNF formula, while
|=3 remains coNP-complete in this situation [19].

Other tractability results for |=3
S and the |≈P,S0

S relations can be obtained by
imposing in addition that |S| is bounded (see Theorem A.3 in [69] and Proposi-
tion 3.15 in [56]).

Proposition 4. The complexity of the decision problem for �L is in P in the
case when Σ and γ are CNF formulas (from PROP2

PS) and the size of S ⊆ PS
is bounded, when �L is |=3

S, |≈PO,S0
S , |≈LO,S0

S , |≈IP,S0
S or |≈LE,S0

S .

Clearly enough, under the CNF assumption – a strict subset of the monotonic
fragment –, the key for tractability is the fact that the size of S is bounded (hence
only polynomially many S-3-interpretations are to be considered).

Finally, the translation from the decision problem for |=QC (in the CNF
case) to the decision problem for classical entailment reported in [55] gives
two tractable subcases as by-products: The decision problem for |=QC for CNF
queries γ is in P given that the base Σ is a Krom formula or a renamable Horn
k-CNF formula (see Propositions 4 and 5 in [55]).

On the Complexity of Paraconsistent Inference Relations 185

5 Conclusion

The main purpose of this chapter was to put together in a coherent way complex-
ity results for paraconsistent inference relations defined in multi-valued proposi-
tional settings (or related frameworks), and already identified in the literature.
In a nutshell, the corresponding decision problems are located at the first or the
second level of the polynomial hierachy; to be more precise, the relations under
consideration are either as hard as classical entailment (coNP), or mildly harder
(Δp

2[O(log n)] or Δp
2), or finally strongly harder (Πp

2 -complete or Dp
2-complete)

(under the usual assumptions of complexity theory); only few tractable cases
have been exhibited.

The complexity results above can be related to similar complexity results
for belief revision [31, 60] and reasoning from preferred consistent subsets in
[60, 20, 32]. Actually,the Πp

2 -hardness of the problem of determining whether a
given formula is a consequence of a belief base revised according to the WIDTIO
policy – or equivalently, whether it is a so-called free consequence of a stratified
belief base – has been exploited in some of the hardness proofs for non-monotonic
relations. Conversely, some reductions to inference problems considered in belief
revision or when reasoning from preferred consistent subsets can be used to
prove membership results (even if we did not systematically adhere to such an
approach when presenting membership results).

Roughly, the derived results show the complexity of paraconsistent inference
to vary from P in some restricted cases to the first level of the polynomial hierar-
chy for many monotonic relations and even to the second level of the polynomial
hierarchy for the non-monotonic ones. This reflects that there is typically a com-
putational price to be paid for preserving more beliefs through the exploitation
of preferential information (contrariwise to the model checking problem when
no preferences are considered, determining whether a given interpretation is a
preferred model of a belief base is intractable). It is interesting to observe that
tractability is obtained in restricted situations when classical entailment is not
tractable (under the standard assumptions of complexity theory). For instance,
|=4, |=3 and its restrictions are tractable when the belief base is a CNF formula
and clausal queries are considered, only. Indeed, restricting the language to its
clausal fragment is sufficient to lower the complexity of many monotonic rela-
tions (this can be easily explained by the fact that each clause from the belief
base can be considered independent to the other ones in the sense that the dis-
junctive syllogism fails). Contrastingly, focusing on the clausal fragment is not
sufficient to decrease the complexity of the non-monotonic relations.

Among the inference relations considered before, |≈LE,S0
S and |=QC (when

CNF formulas are considered) appear as achieving an interesting compromise in
the sense that many expected consequences are preserved while complexity re-
mains at the first level of the polynomial hierarchy. Furthermore, |≈P,S0

S relations
allow for resource-bounded reasoning by limiting the size of S.

Much work remains to be done in this area. First, the complexity of many
propositional paraconsistent inference relations is still unknown; this is particu-
larly the case for many proof-theoretically defined relations.

186 S. Coste-Marquis and P. Marquis

Second, the tractability islands are not so numerous, especially for the most
sophisticated relations that have been considered, so it is important to identify
ways to deal with the complexity of paraconsistent inference relations. In such
an objective, one can improve existing inference engines so as to increase the set
of instances that are feasible from the practical side. Importantly, the complex-
ity results we have reported show the existence of polynomial reductions from
decision problems for paraconsistent inference to complete problems at the first
or at the second level of the polynomial hierarchy; among the latter problems
are, on the one hand, validity problems for quantified boolean formulas (QBFs)
– including unsat as a specific case – and on the other hand, for the prob-
lems located at the second level of the polynomial hierarchy, inference problems
for many non-monotonic logics considered in AI (e.g., skeptical reasoning from
default theories, forms of closed-world reasoning) for which automated deduc-
tion tools have been developed). If such reductions are practically feasible, it is
possible to take advantage of existing QBFs solvers and other programs for non-
monotonic inference to implement forms of paraconsistent inference. Observing
that QBFs solvers are more and more efficient in practice over years, this possi-
bility is particularly interesting. In fact, reductions (and among them, modular
and faithful translations) have already been exploited to encode several non-
monotonic paraconsistent inference problems into validity problems for QBFs or
circumscriptive inference problems (see [11, 4, 12]). Of course, it would be nice
to compare from the empirical side the performances of such reduction-based
approaches with the ones achieved by implementations of some proof systems
(usually, tableau-based) for paraconsistent inference.

Another approach consists in circumventing complexity, and three main tech-
niques prevail: Restriction, approximation and compilation. We have mainly fo-
cused on the first technique, showing for instance that quasi-classical inference
is tractable under clausal queries when the belief base is a Krom formula or
a renamable Horn k-CNF formula. Many other tractable fragments for classi-
cal satisfiability appear as interesting candidates to be investigated. The second
technique is at work in [56]; approximation is used for reaching two goals: Con-
sidering |=3

S with a bounded S instead of its superset |=2 allows for ensuring
tractability, while considering |≈LE,S0

S instead of its superset |=3
S is sufficient for

avoiding trivialization when it would occur. Similar ideas could be applied to
other inference relations. Finally, it seems that the last technique mentioned
above (compilation) has almost never been used in the purpose of enhancing
paraconsistent inference; the principle would be to pre-process the belief base
during an off-line compilation stage so as to obtain better performances when
queries are considered at the on-line stage. In the case when a translation to
inference problems from stratified belief bases exist (as for the |≈P,S0

S relations),
it is possible to take advantage of some recent work about the compilation of
stratified belief bases (see in particular [9, 22, 23]). Developing other compilation
techniques for paraconsistent inference or fitting the compilation techniques for
classical inference to paraconsistent inference is another perspective for further
research.

On the Complexity of Paraconsistent Inference Relations 187

References

1. L. Amgoud and C. Cayrol. On the acceptability of arguments in preference-based
argumentation framework. In Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence, pages 1–7, Madison (WI), 1998.

2. O. Arieli and A. Avron. The value of four values. Artificial Intelligence, 102:97–141,
1998.

3. O. Arieli and A. Avron. A model-theoretic approach for recovering consistent data
from inconsistent knowledge bases. Journal of Automated Reasoning, 22(2):263–
309, 1999.

4. O. Arieli and M. Denecker. Reducing preferential paraconsistent reasoning to
classical entailment. Journal of Logic and Computation, 13(4):557–580, 2003.

5. C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEE
Transactions on Knowledge and Data Engineering, 3(2):208–220, 1991.

6. N. Belnap. Modern Uses of Multiple-Valued Logic, chapter A useful four-valued
logic, pages 8–37. Reidel, 1977.

7. S. Benferhat, C. Cayrol, D. Dubois, J. Lang, and H. Prade. Inconsistency man-
agement and prioritized syntax-based entailment. In Proceedings of the 13th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’93), pages 640–645,
Chambéry (France), 1993.

8. S. Benferhat, D. Dubois, and H. Prade. How to infer from inconsistent beliefs
without revising. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI’95), pages 1449–1455, Montreal (Canada), 1995.

9. S. Benferhat, S. Kaci, D. Le Berre, and M.-A. Williams. Weakening conflicting
information for iterated revision and knowledge integration. Artificial Intelligence,
153(1–2):339–371, 2004.

10. Ph. Besnard and A. Hunter. Handbook of Defeasible Reasoning and Uncertainty
Management Systems, volume 2, chapter Introduction to actual and potential con-
tradictions, pages 1–11. Kluwer Academic, 1998.

11. Ph. Besnard, T. Schaub, H. Tompits, and S. Woltran. Paraconsistent reasoning via
Quantified Boolean Formulas I: Axiomatizing signed systems. In Proceedings of
the 8th European Conference on Logics in Artificial Intelligence (JELIA’02), pages
320–331, Cosenza (Italy), 2002.

12. Ph. Besnard, T. Schaub, H. Tompits, and S. Woltran. Paraconsistent reasoning
via Quantified Boolean Formulas II: Circumscribing inconsistent theories. In Pro-
ceedings of the 7th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, pages 528–539, Aalborg (Denmark), 2003.

13. Ph. Besnard and T. Schaub. Circumscribing inconsistency. In Proceedings of the
15th International Joint Conference on Artificial Intelligence (IJCAI’97), pages
150–155, Nagoya (Japan), 1997.

14. Ph. Besnard and T. Schaub. Signed systems for paraconsistent reasoning. Journal
of Automated Reasoning, 20:191–213, 1998.

15. P. Besnard and A. Hunter. Quasi-classical logic: Non-trivializable classical reason-
ing from inconsistent information. In Proceedings of the European Conference on
Symbolic and Quantitative Approaches to Reasoning and Uncertainty, volume 946
of LNAI, pages 44–51, Fribourg (Switzerland), 1995. Springer-Verlag.

16. I. Bloch and J. Lang. Towards mathematical morpho-logics. In Proceedings of
the 8th International Conference on Information Processing and Management of
Uncertainty in Knowledge based Systems (IPMU’00), pages 1405–1412, Madrid
(Spain), 2000.

188 S. Coste-Marquis and P. Marquis

17. A. Bondarenko, P. Dung, R.A. Kowalski, and F. Toni. An abstract, argumentation-
theoretic framework for default reasoning. Artificial Intelligence, 93:63–101, 1997.

18. G. Brewka. Preferred subtheories: An extended logical framework for default rea-
soning. In Proceedings of the 11th International Joint Conference on Artificial
Intelligence (IJCAI’89), pages 1043–1048, Detroit (MI), 1989.

19. M. Cadoli and M. Schaerf. On the complexity of entailment in propositional mul-
tivalued logics. Annals of Mathematics and Artificial Intelligence, 18:29–50, 1996.

20. C. Cayrol, M.-C. Lagasquie-Schiex, and Th. Schiex. Nonmonotonic reasoning:
From complexity to algorithms. Annals of Mathematics and Artificial Intelligence,
22(3–4):207–236, 1998.

21. S. Coste-Marquis and P. Marquis. Complexity results for paraconsistent infer-
ence relations. In Proceedings of the 8th International Conference on Knowledge
Representation and Reasoning (KR’02), pages 61–72, Toulouse (France), 2002.

22. S. Coste-Marquis and P. Marquis. On stratified belief base compilation. Annals of
Mathematics and Artificial Intelligence, 42(4):399–442, 2004.

23. A. Darwiche and P. Marquis. Compiling propositional weighted bases. Artificial
Intelligence, 157:81–113, 2004.

24. N. C. A. da Costa. On the theory of inconsistent formal systems. Notre Dame
Journal of Formal Logic, 15:497–510, 1974.

25. Y. Dimopolos, B. Nebel, and F. Toni. Finding admissible and preferred arguments
can be very hard. In Proceedings of the 7th International Conference on Knowledge
Representation and Reasoning (KR’00), pages 53–61, Breckenridge (CO), 2000.

26. Y. Dimopoulos, B. Nebel, and F. Toni. Preferred arguments are harder to compute
than stable extensions. In Proceedings of the 16th International Joint Conference
on Artificial Intelligence (IJCAI’99), pages 36–41, Stockholm (Sweden), 1999.

27. I.M.L. D’Ottaviano and N.C.A. da Costa. Sur un problème de Jaśkowski. Technical
report, Comptes Rendus de l’Académie des Sciences de Paris, 1970.

28. D. Dubois, S. Konieczny, and H. Prade. Quasi-possibilistic logic and its measures
of information and conflict. Fundamenta Informaticae, 57(2–4):101–125, 2003.

29. P. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77:321–357, 1995.

30. P. Dunne and T.J.M. Bench-Capon. Coherence in finite argument systems. Arti-
ficial Intelligence, 141:187–203, 2002.

31. Th. Eiter and G. Gottlob. On the complexity of propositional knowledge base
revision, updates, and counterfactuals. Artificial Intelligence, 57:227–270, 1992.

32. Th. Eiter and Th. Lukasiewicz. Default reasoning from conditional knowledge
bases: Complexity and tractable cases. Artificial Intelligence, 124(2):169–241, 2000.

33. M. Elvang-Goransson and A. Hunter. Argumentative logics: Reasoning from clas-
sically inconsistent information. Data and Knowledge Engineering, 16:125–145,
1995.

34. H.B. Enderton. A mathematical introduction to logic. Academic Press, New York,
1972.

35. R.L. Epstein. Propositional Logics, volume 1, chapter The Semantic Foundations
of Logic. Kluwer Academic, 1990.

36. R. Fagin, J.D. Ullman, and M.Y. Vardi. On the semantics of updates in databases.
In Proceedings of the 2nd ACM Symposium on Principles of Database Systems
(PODS’83), pages 352–355, 1983.

37. A.M. Frisch. Inference without chaining. In Proceedings of the 10th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’87), pages 515–519, Milan
(Italy), 1987.

On the Complexity of Paraconsistent Inference Relations 189

38. P. Gärdenfors and D. Makinson. Relations between the logic of theory change and
nonmonotonic logic. In The Logic of Theory Change, pages 185–205, 1990.

39. P. Gärdenfors. Belief revision and nonmonotonic logic: Two sides of the same
coin? In Proceedings of the 9th European Conference on Artificial Intelligence,
pages 768–773, Stockholm (Sweden), 1990.

40. M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory
of NP -completeness. Freeman, 1979.

41. M.L. Ginsberg. Counterfactuals. Artificial Intelligence, 30:35–79, 1986.
42. G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and

Computation, 2:397–425, 1992.
43. J. Grant and V.S. Subrahmanian. Reasoning in inconsistent knowledge bases.

IEEE Transactions on Knowledge and Data Engineering, 7(1):177–189, 1995.
44. A. Hunter. Handbook of Defeasible Reasoning and Uncertainty Management Sys-

tems, volume 2, chapter Paraconsistent logics, pages 11–36. Kluwer Academic,
1998.

45. A. Hunter. Reasoning with contradictory information using quasi-classical logic.
Journal of Logic and Computation, 10(5):677–703, 2000.

46. S. Jaśkowski. Propositional calculus for contradictory deductive systems. Studia
Logica, 24:143–167, 1969.

47. S. Konieczny, J. Lang, and P. Marquis. DA2 merging operators. Artificial Intelli-
gence, 157(1-2):49–79, 2004.

48. S. Konieczny and P. Marquis. Three-valued logics for inconsistency handling. In
Proceedings of the 8th European Conference on Logics in Artificial Intelligence
(JELIA’02), volume 2424 of Lecture Notes on Artificial Intelligence, pages 332–
344, Cosenza (Italy), 2002. Springer-Verlag.

49. S. Konieczny and R. Pino Pérez. On the logic of merging. In Proceedings of the 6th

International Conference on Knowledge Representation and Reasoning (KR’98),
pages 488–498, Trento (Italy), 1998.

50. S. Konieczny. On the difference between merging knowledge bases and combining
them. In Proceedings of the 7th International Conference on Knowledge Represen-
tation and Reasoning (KR’00), pages 135–144, Breckenridge (CO), 2000.

51. S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial Intelligence, 44(1-2):167–207, 1990.

52. J. Lang and P. Marquis. Resolving inconsistencies by variable forgetting. In Pro-
ceedings of the 8th International Conference on Knowledge Representation and
Reasoning (KR’02), pages 239–250, Toulouse (France), 2002.

53. H.J. Levesque. A knowledge-level account of abduction (preliminary version). In
Proceedings of the 11th International Joint Conference on Artificial Intelligence
(IJCAI’89), pages 1061–1067, Detroit (MI), 1989.

54. J. Lin. Integration of weighted knowledge bases. Artificial Intelligence, 83(2):363–
378, 1996.

55. P. Marquis and N. Porquet. Computational aspects of quasi-classical entailment.
Journal of Applied Non-Classical Logics, 11(3–4):295–312, 2001.

56. P. Marquis and N. Porquet. Resource-bounded paraconsistent inference. Annals
of Mathematics and Artificial Intelligence, 39(4):349–384, 2003.

57. J.-J. Ch. Meyer and W. Van der Hoek. Handbook of Defeasible Reasoning and
Uncertainty Management Systems, volume 2, chapter Modal logics for representing
incoherent knowledge, pages 37–75. Kluwer Academic, 1998.

58. B. Nebel. Belief revision. In P. Gärdenfors, editor, Cambridge Tracts in Theoretical
Computer Science, volume 29, chapter Syntax-based approaches to belief revision,
pages 52–88. Cambridge University Press, Cambridge, 1992.

190 S. Coste-Marquis and P. Marquis

59. B. Nebel. Base revision operations and schemes: Semantics, representation and
complexity. In Proceedings of the 11th European Conference on Artificial Intelli-
gence, pages 341–345, Amsterdam (Netherlands), 1994.

60. B. Nebel. Belief revision. In D. Dubois and H. Prade, editors, Handbook of De-
feasible Reasoning and Uncertainty Management Systems, volume 3, chapter How
hard is it to revise a belief base?, pages 77–145. Kluwer Academic, 1998.

61. Ch. H. Papadimitriou. Computational complexity. Addison–Wesley, 1994.
62. G. Pinkas and R.P. Loui. Reasoning from inconsistency: A taxonomy of prin-

ciples for resolving conflict. In Proceedings of the 3rd International Conference
on Knowledge Representation and Reasoning (KR’92), pages 709–719, Cambridge
(MA), 1992.

63. G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
64. G. Priest. Minimally inconsistent LP. Studia Logica, 50:321–331, 1991.
65. G. Priest. Handbook of Philosophical Logic, volume 6, chapter Paraconsistent Logic,

pages 287–393. Kluwer Academic, 2002.
66. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–

95, 1987.
67. N. Rescher and R. Manor. On inference from inconsistent premises. Theory and

Decision, 1:179–219, 1970.
68. P.Z. Revesz. On the semantics of arbitration. International Journal of Algebra and

Computation, 7(2):133–160, 1997.
69. M. Schaerf and M. Cadoli. Tractable reasoning via approximation. Artificial

Intelligence, 74:249–310, 1995.
70. J. Stillman. The complexity of propositional default logics. In Proceedings of the

10th National Conference on Artificial Intelligence, pages 794–799, San Jose (CA),
1992.

71. M. Winslett. Cambridge Tracts in Theoretical Computer Science, chapter Updating
logical databases. Cambridge University Press, 1990.

Approaches to Measuring Inconsistent
Information

Anthony Hunter1 and Sébastien Konieczny2

1 Department of Computer Science,
University College London, Gower Street,

London WC1E 6BT, UK
a.hunter@cs.ucl.ac.uk

2 CRIL-CNRS, Université d’Artois, 62300 Lens, France
konieczny@cril.univ-artois.fr

Abstract. Measures of quantity of information have been studied ex-
tensively for more than fifty years. The seminal work on information
theory is by Shannon [67]. This work, based on probability theory, can
be used in a logical setting when the worlds are the possible events. This
work is also the basis of Lozinskii’s work [48] for defining the quantity of
information of a formula (or knowledgebase) in propositional logic. But
this definition is not suitable when the knowledgebase is inconsistent. In
this case, it has no classical model, so we have no “event” to count. This
is a shortcoming since in practical applications (e.g. databases) it often
happens that the knowledgebase is not consistent. And it is definitely
not true that all inconsistent knowledgebases contain the same (null)
amount of information, as given by the “classical information theory”.
As explored for several years in the paraconsistent logic community, two
inconsistent knowledgebases can lead to very different conclusions, show-
ing that they do not convey the same information. There has been some
recent interest in this issue, with some interesting proposals. Though a
general approach for information theory in (possibly inconsistent) logi-
cal knowledgebases is missing. Another related measure is the measure
of contradiction. It is usual in classical logic to use a binary measure
of contradiction: a knowledgebase is either consistent or inconsistent.
This dichotomy is obvious when the only deductive tool is classical in-
ference, since inconsistent knowledgebases are of no use. But there are
now a number of logics developed to draw non-trivial conclusions from
an inconsistent knowledgebase. So this dichotomy is not sufficient to de-
scribe the amount of contradiction of a knowledgebase, one needs more
fine-grained measures. Some interesting proposals have been made for
this. The main aim of this paper is to review the measures of infor-
mation and contradiction, and to study some potential practical appli-
cations. This has significant potential in developing intelligent systems
that can be tolerant to inconsistencies when reasoning with real-world
knowledge.

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 191–236, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

192 A. Hunter and S. Konieczny

1 Introduction

Traditionally the consensus of opinion in the computer science community is
that inconsistency is undesirable. Many believe that databases, knowledgebases,
and software specifications, should be completely free of inconsistency, and try
to eradicate inconsistency from them by any means possible. Others address
inconsistency by isolating it, and perhaps resolving it locally. All seem to agree,
however, that data of the form q and ¬q, for any proposition q cannot exist
together, and that the conflict must be resolved somehow.

This view is too simplistic for developing robust intelligent systems, and
furthermore, it fails to use the benefits of inconsistency in intelligent activities.
Inconsistency in information is the norm in the real-world, and so should be
formalized and used, rather than always rejected [23].

There are cases where q and ¬q can be perfectly acceptable together and
hence need not be resolved. Consider for example an income tax database where
contradictory information on a taxpayer can be useful evidence in a fraud inves-
tigation. Maybe the taxpayer has completed one form that states the taxpayer
has 6 children (and hence get the tax benefits for that) and completed another
that states the taxpayer has 0 children. In other cases, q and ¬q serve as a useful
trigger for various logical actions. Inconsistency is useful in directing reasoning,
and instigating the natural processes of argumentation, information seeking,
multi-agent interaction, knowledge acquisition and refinement, adaptation, and
learning.

Of course, there are inconsistencies that do need to be resolved. But, the de-
cision to resolve, and the approach to resolution, needs to be context-sensitive.
There is also the question of when to resolve inconsistencies. Immediate res-
olution of inconsistencies can result in the loss of valuable information if an
arbitrary choice is made on what to reject. Consider for example the require-
ments capture stage in software engineering. Here premature resolution can force
an arbitary decision to be made without the choice being properly considered.
This can therefore overly constrain the requirements capture process.

Similarly when working with distributed databases, it cannot be expected
that there are no conflicts between the databases. Conflicts in this case can have
different meanings. It can sometimes denote an error in some database, in which
case we can simply use a database repair. But more often conflicts will denote
deeper disagreement between sets of databases, with no easy repair. So, in this
case, resolution of all conflicts is not the solution, since we need to keep track
of the conflict. The straighforward reason is that “having no information about
some fact” or “having contradictory information about some fact” cannot be
regarded as having the same epistemic status. After a repair of a set of databases,
either we forget all information about the facts in conflict, or we decide what
is the correct answer (among the conflicting ones). But, for the user (human or
software), it is not the same thing to receive an answer “the fact A is true” or
“the fact A seems to be true, but there is a conflict about it”. Such answers,
needed in high-level reasoning systems, require us to not resolve the conflicts
(see for example [12]).

Approaches to Measuring Inconsistent Information 193

The call for robust, and intelligent, systems, has led to an increased interest
in inconsistency tolerance in computer science. The central position is that the
collapse of classical logic in cases of inconsistency should be circumvented. In
other words, we need to suspend the axiom of absurdity (ex falso quodlibet) for
many kinds of reasoning. A number of useful proposals have been made in the
field of paraconsistent logics (see for example [28, 13]).

In addition, we need strategies for analysing inconsistent information. This
need has in part driven the approach of argumentation systems which compare
pros and cons for potential conclusions from conflicting information (for reviews
see [58, 14]). Also important are strategies for isolating inconsistency and for
taking appropriate actions, including resolution actions. This calls for uncer-
tainty reasoning and meta-level reasoning. Furthermore, the cognitive activities
involved in reasoning with inconsistent information need to be directly related
to the kind of inconsistency. So, in general, we see the need for inconsistency
tolerance giving rise to a range of technologies for inconsistency management.
These in turn call for richer ways of describing and comparing conflicts.

Comparing heterogeneous sources often involves comparing conflicts. Sup-
pose we are dealing with a group of clinicians advising on some patient, a group
of witnesses of some incident, or a set of newspaper reports covering some event.
These are all situations where we expect some degree of inconsistency in the
information. Suppose that the information by each source i is represented by
the set Φi. Each source may provide information that conflicts with the domain
knowledge Ψ . Let us represent Φi∪Ψ by Δi for each source i. Now, we may want
to know whether one source is more inconsistent than another — so whether Δi

is more inconsistent that Δj — and in particular determine which is the least
inconsistent of the sources and so identify a minimal Δi in this inconsistency
ordering. We may then view this minimal knowledgebase as the least problem-
atical or most reliable source of information. This point is close to the notion of
verisimilitude, as initiated by Popper [57, 44, 63].

When an autonomous system works with a set of information, beliefs, knowl-
edge, preferences, ... expressed in a logical form (we will talk about pieces of
information in the following instead of always specifying information, belief,
knowledge, preferences), the notion of informational content of a piece of infor-
mation and the notion of amount of contradiction are of crucial interest. Effec-
tively, in many high-level reasoning tasks one needs to know what is the amount
of information conveyed by a piece of information and/or what is the amount
of contradiction involved with this piece of information. This is particularly im-
portant in complex information about the real world where inconsistencies are
hard to avoid.

While information measures enable us to say how “valuable” a piece of in-
formation is by showing how precise it is, contradiction measures enable us to
say how “unvaluable” a piece of information is by showing how conflicting it is.
As joint/conditional information measures are useful to define a notion of perti-
nence of a new piece of information with respect to an old one (or more generally
for a set of information), joint/conditional contradiction measures can be useful

194 A. Hunter and S. Konieczny

to define a notion of conflict between pieces of information, that can be useful
for many applications. These two measures are to a large extent independent of
one another, but needed in numerous applications, for instance:

– In diagnosis, some initial assumptions stating that each component works
normally are made; those assumptions may conflict with actual observations.
Measuring the conflict of the resulting base may be a good indication about
how hard it will be to identify the faulty components.

– In belief revision, when an agent receives a new piece of information which
contradicts her previous beliefs, evaluating how much this information is
conflicting with the previous beliefs can be useful to decide whether the
agent accepts or rejects the new piece of information.

– In belief merging, degrees of information and contradiction can be the basis
on which one can decide whether to take account or not of the information
being conveyed by an agent. If the degree of contradiction of the information
given by an agent is high, it may be relevant to reject the information, since
there is some significant evidence that the source is not reliable; however,
this must be balanced by the quantity of information furnished by the agent,
especially when she also gives some important and uncontroversial pieces of
information.

One of the applications discussed above concerns the problem of iterated
belief revision. The problem of belief revision is to incorporate a new piece of
information which is more reliable than (and conflicting with) the old beliefs of
the agent. This problem has received a nice answer in the work of Alchourron,
Gardenfors, Makinson [1] in the one-step case. But when one wants to iterate
revision (i.e. to generalize it to the n-step case), there are numerous problems
and no definitive answer has been reached in the purely qualitative case [16, 22].
Using a partially quantitative framework, some proposals have given interesting
results (see e.g. [69, 68]). Here “partially quantitative” means that the incoming
piece of information needs to be labelled by a degree of confidence denoting how
strongly we believe it. The problem in this framework is to justify the use of such
a degree, what does it mean exactly and where does it come from. So if one can
define composite measures, from the information measure and the contradiction
measure, then one can define several policies for the agent (we can figure out an
agent who accepts a new piece of information only if it brings more information
than contradiction, etc). We can then use the “partially quantitative” framework
to derive revision operators with a nice behaviour. In this setting, since the degree
attached to the incoming information is not a given data, but computed directly
from the incoming information and the agent policy (behaviour with respect
to information and contradiction, encoded by a composite measure) then the
problem of the justification of the meaning of the degrees is avoided.

Another related application is the use of degrees of conflict and information
to the problem of belief merging. Given a set of agents with conflicting beliefs,
the problem of belief merging is to know how to define the beliefs of the group.
A natural way to define the result of the merging is to see the group as a set of
agents involved in a game (this can be intuitively explained as a modelisation of

Approaches to Measuring Inconsistent Information 195

a human meeting), and look for winning coalitions of agents. An example of a
definition of coalition can be a set of agent with consistent beliefs (or minimal
conflicting ones) and a maximal joint degree of information. Then for deter-
mining the winning coalition we can look at the degree of conflict and define
the winning coalition as the one which is minimally conflicting with the others.
Other interesting strategies can be defined as well.

These two examples show that the conjoint use of degree of information
and contradiction can open a huge scope of research. The two given examples
are actually original approaches to revision and fusion. Similar examples can
be found for other reasoning tasks. This highlights the fact that we need to
develop and study degrees of contradiction and degrees of information in logical
frameworks to be able to carry out correctly those reasoning tasks.

We cover in the next section some preliminary definitions for notation, and
then in the following section we discuss some key dimensions for measuring in-
consistent information. In the subsequent five sections, we consider five key ap-
proaches to measuring inconsistent information: Consistency-based analysis that
focuses on the consistent and inconsistent subsets of a knowledgebase in Section
4; Information theoretic analysis that is an adaptation of Shannon’s information
measure in Section 5; Probabilistic semantic analysis that assumes a probability
distribution over a set of formulae in Section 6; Epistemic actions analysis that
measures the degree of information in a knowledgebase in terms of the number
of actions required to identify the truth value of each atomic proposition and the
degree of contradiction in a knowledgebase in terms of the number of actions
needed to render the knowledgebase consistent in Section 7; and in Section 8
model-theoretic analyses that are based on evaluating a knowledgebase in terms
of three or four valued models that permit an “inconsistent” truth value. We fol-
low this range of approaches with a section covering two potential applications
areas, namely multi-agent negotiation and analysis of heterogeneous sources of
information. Finally, we discuss what has been achieved so far in this subject,
and some possible research issues.

2 Preliminaries

For a set X, let ℘(X) be the power set of X. Let LPSi be a language composed
from a set of atoms PS and a set of logical connectives and let �i ⊆ ℘(LPSi)×
LPSi denote the consequence relation for that language. Let Δ ⊆ LPSi be a
knowledgebase and let α ∈ LPSi be a formula. Let |=i be a satisfaction relation
for LPSi, let Modelsi(Δ) = {M | M |=i α for all α ∈ Δ} be the set of models
for Δ in some logic i and let Wi be the set of models for the language LPSi. Let
Consequencesi(Δ) = {α | Δ �i α}.

For classical logic, we drop the subscript. So � is the classical consequence
relation and LPS is the usual set of classical formulae formed from a set of
atoms and the usual logical connectives using the usual inductive definition.
If LPS is a set of first-order formulae, then each variable in each formula is

196 A. Hunter and S. Konieczny

in the scope of a universal or existential quantifier as usual. For Δ ⊆ LPS ,
Consequences(Δ) = {α | Δ � α}.

When it is not ambiguous we will not write the subscript PS, so we will
simply write Li for LPSi, and L for LPS .

If Γ ∈ ℘(L), then Atoms(Γ) returns the set of atom symbols used in Γ .

Definition 1. Let Δ be a knowledgebase and let � be the classical consequence
relation.

CON(Δ) = {Π ⊆ Δ|Π �� ⊥}
INC(Δ) = {Π ⊆ Δ|Π � ⊥}
MC(Δ) = {Π ∈ CON(Δ)|∀Φ ∈ CON(Δ)Π �⊂ Φ}
MI(Δ) = {Π ∈ INC(Δ)|∀Φ ∈ INC(Δ)Φ �⊂ Π}
FREE(Δ) =

⋂
MC(Δ)

Hence MC(Δ) is the set of maximally consistent subsets of Δ; MI(Δ) is the
set of minimally inconsistent subsets of Δ; and FREE(Δ) is the set of information
that all maximally consistent subsets of Δ have in common. We also have the
following relationship.

FREE(Δ) =
⋂

MC(Δ) = Δ−
⋃

MI(Δ)

Example 1. Let Δ = {α,¬α, α → β,¬α → β, γ}. So MC(Δ) = {Φ1, Φ2}, where
Φ1 = {α, α → β,¬α → β, γ}, and Φ2 = {¬α, α → β,¬α → β, γ}. From
this, FREE(Δ)=

⋂
MC(Δ)={α → β,¬α → β, γ}, and MI(Δ) = {Ψ}, where Ψ

= {α,¬α}.

We can consider a maximally consistent subset of a database as capturing a
“plausible” or “coherent” view on the database. For this reason, the set MC(Δ)
is important in many of the definitions presented in Section 4. Furthermore, we
consider FREE(Δ), which is equal to

⋂
MC(Δ), as capturing all the “uncontro-

versial” information in Δ. In contrast, we consider the set
⋃

MI(Δ) as capturing
all the “problematical” data in Δ.

3 Dimensions of Measuring Inconsistency

To move beyond classifying a set of formulae using a binary classification (of
consistent or inconsistent), we need to consider some of the dimensions we have
available for measuring inconsistency.

First, there are many ways of defining inconsistency. It is a logical concept.
But, there are different ways that we can view it in a language and the reasoning
with that language. Inconsistency can also be viewed in the semantics. We start
by considering five ways of describing inconsistency that all apply to classical
logic. In classical logic, all these definitions of inconsistency coincide (i.e. when
�i is the classical consequence relation and Modelsi(Δ) is the set of classical
models of Δ).

Approaches to Measuring Inconsistent Information 197

Inconsistency as Explosive Reasoning. Explosive reasoning is reasoning that
allows the derivation of every formula of the language in case of inconsis-
tency. In other words, if Consequencesi(Δ) = Li, then Δ is inconsistent.

Inconsistency as Conflicting Inferences. The knowledgebase Δ is inconsis-
tent when there is the inference of both Δ �i α and Δ �i ¬α for some α ∈ Li.

Inconsistency as Inference of a Contradiction Formulae. If the contra-
diction formula, denoted ⊥, is an atom in Li, it can be treated in the proof
theory �i as logically equivalent to any inconsistent formula. So if Δ �i ⊥,
then Δ is inconsistent. In classical logic any inconsistent formula is equivalent
to any other inconsistent formula. So in an infinite classical logic language,
there is an infinite number of inconsistent formulae.

Inconsistency as Trivial Reasoning. A trivial inference is an inference α
from a knowledgebase Δ such that α is not a tautology and Atoms(Δ) ∩
Atoms({α}) = ∅. So if Δ �i α and α is a trivial inference then Δ is inconsis-
tent by trivial reasoning from �i.

Inconsistency as a Lack of a Model. If Modelsi(Δ) = ∅, then Δ is incon-
sistent. The motivation for this is that a model is a possible coherent view
of the world involving Δ. So if there is no such view, then Δ is regarded
as inconsistent. This definition holds for numerous logics including classical
logic.

The first description of inconsistency, i.e. “inconsistency as explosive reason-
ing”, is a stronger definition than any of “inconsistency as inference of a con-
tradiction formulae”, “inconsistency as conflicting inferences”, or “inconsistency
as trivial reasoning”, in the sense that an inconsistency by the first definition,
is an inconsistency by the other three. Whilst the above five descriptions ap-
ply to classical logic, there are many other logics for which one or more of the
above descriptions apply. Below we consider two further descriptions that apply
to some logics, though neither apply to classical logic.

Inconsistency as an Inconsistent Truth Value. Let B be an inconsistent
truth value. Let α ∈ Δ. If for all models of Δ, α is assigned B, then α
is inconsistent, and hence Δ is inconsistent. Whilst this does not hold for
classical logic, many-valued logics, and hence many-valued models, can be
used to evaluate a set of classical formulae (see for example [6, 29]).

Inconsistency as Delineated Falsity. Instead of a single falsity symbol, we
can adopt numerous falsity sumbols of the form ⊥k and defined as αk → ⊥k

for some αk (for a brief review see [10]). This notion of inconsistency does
not have the same status as the ones above. It introduces several levels of
inconsistency, whereas all the other definitions above only give a dichotomy
inconsistent/consistent. Note that those different levels of inconsistency can
be related to the ones obtained in possibilistic logic, where the formulae
deduced at a level above the inconsistency level are still safe consequences
of the base, despite the presence of an inconsistency [19, 20, 8].

When we have more complex information as input, we can state several other
candidate definitions for inconsistency. This extra information may be a set

198 A. Hunter and S. Konieczny

of plans, constraints, norms, properties, etc. Inconsistency can then be viewed
operationally. Some kinds of operational definitions include:

Inconsistency as Unrealisability. If Δ is a plan or specification for some-
thing, and it is unrealisable, then Δ is inconsistent (perhaps in the context
of the environment for the plan or specification);

Inconsistency as Rule Violation. If some rule is violated, then the agent,
process, entity, etc. that caused the violation is inconsistent.

Inconsistency as Violation of Normality. If in a set, most of the elements
have some property X, then the elements of the set that do not have this
property, are inconsistent with respect to X.

It is interesting to note that these last three types of inconsistency, de-
fined in terms of two distinct types of information — a knowledgebase plus
constraints/plans/norms/properties — can be either more or less demanding
than by the “classical” one. If the constraints/plans/norms/properties give some
domain of interest, then the base will be considered inconsistent only if there
is a conflict on the domain. In other words, we can have a conflict on vari-
ables/formulae outside of the domain without the conflict being considered in-
consistent by these definitions. In this case it is less demanding than the classical
definition. Conversely when the constraints/plans/norms/properties give what
can be regarded as a situation of “unrealisability”: For example, if the three
atoms a, b and c cannot all be true at the same time, and so the base {a,b,c} is
classically consistent but it is not consistent for “unrealisability”.

All these ten different definitions for inconsistency offer different features
of a logic that can be analysed. In this review, we can see that not all these
possibilities have been considered yet.

Having selected a definition for inconsistency, together with a language and
an underlying logic, there are a number of dimensions that we may wish to
consider in a framework for analysing inconsistent knowledgebases in that logic.
We consider some of these dimensions below.

Atomic Inconsistency. To be able to measure inconsistency, we need a formal-
isation of an atomic inconsistency: An indivisable and discrete representation
of contradictory information. There are a number of choices depending on
whether we want to take a semantic or syntactic approach, and on which
underlying logic we use. The main options are to put the atomicity either
on formulae or on the propositional letters. So the options we will consider
here are (1) minimal inconsistent subset of formulae and (2) a propositional
letter assigned with an inconsistent truth value. Another possibility which
we do not consider further in this review is regarding each delineated falsity
as an atomic inconsistency.

Number of Inconsistencies. Once we have a notion of atomic inconsistency,
we can count them. Increasing the number of inconsistencies in a knowledge-
base may or may not be a factor that increases the measure of inconsistency
for that knowledgebase.

Approaches to Measuring Inconsistent Information 199

Size of Inconsistency. Once we have a notion of atomic inconsistency, we can
consider the size of each atomic inconsistency, since they are not necessarily
the same size. Suppose we use “minimal inconsistent subset” as the defini-
tion for an atomic inconsistency. Suppose also that Δ1 and Δ2 are minimal
inconsistent subsets of some knowledgebase Δ, and |Δ1| ≤ |Δ2| holds, then
Δ2 is a bigger inconsistency than Δ1. This is only one way we may choose
to evaluate the size of an inconsistency. Increasing the size of inconsistency
may or may not be a factor that increase the measure of inconsistency.

Degree of Information. Measuring the amount of information in a message
or source is well established with proposals such as Shannon’s information
theory. In the usual applications of Shannon’s information theory, incon-
sistent information contains no information. This coincides with a classical
logic perspective of inconsistency (i.e. there are no models of inconsistent
information, and as a result it represents no information). However, informa-
tion about the real-world frequently, or normally, incorporates inconsistency,
and yet it is still informative. So the intuition that inconsistent information
contains useful information, leads to proposals for measuring the degree of
information in the context of inconsistency.

Further dimensions that we may consider include the following two. The
first of these could be described as a composite measure, using both degree of
information and degree of contradiction, and the second of these requires further
(meta-level) information.

Ratio of Information to Noise. When considering inconsistent information,
if there is a relatively large amount of information when compared with the
amount of inconsistency, then that source is likely to be more acceptable than
a source that has a relatively low amount of information when compared with
the amount of inconsistency.

Significance of Inconsistency. As an illustration of the need to evaluate sig-
nificance, consider two news reports on a World Cup match, where the first
report says that Brazil beat Germany 2-0, and the second report says that
Germany beat Brazil 2-0. This is clearly a significant inconsistency. Now
consider two news reports on the same football match, where the first re-
port says that the referee was Pierluigi Collina and the second report says
that the referee was Ubaldo Aquino. This inconsistency would normally be
regarded as relatively insignificant.

Amongst the five approaches to measuring inconsistent information in this
review, namely consistency-based analysis, information-theoretic analysis, anal-
ysis of probabilistic semantic, analysis of epistemic actions, and model-theoretic
analysis, we see these dimensions drawn out.

200 A. Hunter and S. Konieczny

4 Consistency-Based Analyses

One of the most obvious strategies for handling inconsistency in a knowledgebase
is to reason with consistent subsets of the knowledgebase. This is closely related
to the approach of removing information from the knowledgebase that is causing
an inconsistency (see for example [52, 7, 21]).

To measure the information, and the degree of inconsistency, we can take
cardinality of the Δ and MI(Δ) sets as the basis of an analysis. We can use this
for the following ratio that captures the relative incompatibility of the formulae
in the knowledgebase.

Definition 2. The incompatibility ratio for a knowledgebase Δ ⊆ LPS is
defined as follows.

|MI(Δ)|
|Δ|

Example 2. Let Δ = {α,¬α, β,¬β, γ, δ, γ ∧ δ}

|MI(Δ)|
|Δ| =

2
7

Whilst this ratio provides an abstraction of the conflicts in the information
in Δ, it says nothing about the relative size of the minimal inconsistent subsets,
or the overlaps between members of MI(Δ). Also the syntax sensitivity can be
problematical.

Example 3. Let Δ1 = {α ∧ β,¬α ∧ ¬β} and Δ2 = {α ∧ ¬α, β ∧ ¬β}.

|MI(Δ1)|
|Δ1|

=
1
2

|MI(Δ2)|
|Δ2|

=
2
2

These shortcomings in part stem from this measure being insufficiently fine
grained. To address this, we will now review an approach based on scoring func-
tions that provides a deeper consistency-based analysis of the inconsistencies
arising in a set of formulae.

For a knowledgebase Δ, a scoring function S is from ℘(Δ) into the natural
numbers defined so that S(Γ) gives the number of minimally inconsistent subsets
of Δ that would be eliminated if the subset Γ was removed from Δ [34]. This
characterization offers an alternative means for articulating, in general terms, the
nature of inconsistency in a set of formulae. Knowledgebases can be compared
using their scoring functions giving an ordering relation over databases that can
be described as “more conflicting than”.

Definition 3. Let Δ ⊆ LPS. Let S be the scoring function for Δ defined as
follows, where S : ℘(Δ))→ N and Γ ∈ ℘(Δ)

S(Γ) = |MI(Δ)| − |MI(Δ− Γ)|

Approaches to Measuring Inconsistent Information 201

The scoring function for a database is an abstraction of the information we
have about the database, and it says much about the inconsistencies arising in
the database.

Example 4. Let Δ = {α,¬α, β ∧ ¬β}, where S is the scoring function for Δ,
defined as follows:

S({α}) = 1 S({¬α}) = 1 S({β ∧ ¬β}) = 1
S({α,¬α}) = 1 S({α, β ∧ ¬β}) = 2 S({¬α, β ∧ ¬β}) = 2

S({α,¬α, β ∧ ¬β}) = 2

Example 5. Let Δ = {α ∧ ¬α, β, γ}, where S is the scoring function for Δ,
defined as follows:

S({α ∧ ¬α}) = 1 S({β}) = 0 S({γ}) = 0
S({α ∧ ¬α, β}) = 1 S({α ∧ ¬α, γ}) = 1 S({β, γ}) = 0

S({α ∧ ¬α, β, γ}) = 1

We can make a few simple observations regarding scoring functions. Where S
is the scoring function for Δ, S(∪MI(Δ)) = S(Δ) = |MI(Δ)| and S(FREE(Δ)) =
0. Also from the scoring function for a database Δ, it is straightforward to
calculate the cardinality of FREE(Δ) and ∪MI(Δ). However, there is no simple
way for determining the cardinality of the set of maximally consistent subsets
of a database directly from the scoring function for the database.

Proposition 1. Let ≤ be the usual ordering relation over N. For Γi, Γj ∈ ℘(Δ),
where S is the scoring function for Δ,

S(Γi ∩ Γj) ≤ min({S(Γi), S(Γj)})

max({S(Γi), S(Γj)}) ≤ S(Γi ∪ Γj)

Note, S(Γi) + S(Γj) ≤ S(Γi ∪ Γj) does not necessarily hold as illustrated
below.

Example 6. Let S be the scoring function for Δ, and let Γ1 = {¬α, α ∧ β},
and let Γ2 = {β, α ∧ ¬β}, and let Δ = Γ1 ∪ Γ2. So S(Γ1) = S(Γ2) = 3, but
S(Γ1 ∪ Γ2) = 4.

We can compare databases using the scoring function for each database. For
this we define score orderings.

Definition 4. A score ordering, denoted ≤, is defined as follows1. Assume
Δi and Δj are of the same cardinality and Si is the scoring function for Δi,

1 Note, we are now using the ≤ symbol for the usual ordering over the natural numbers
and as defined here for an ordering over score functions. Hopefully, this overloading
of the symbol will not cause confusion.

202 A. Hunter and S. Konieczny

and Sj is the scoring function for Δj. Si ≤ Sj holds iff there is a bijection
f : ℘(Δi))→ ℘(Δj) such that the following condition is satisfied:

∀Γ ∈ ℘(Δi), Si(Γ) ≤ Sj(f(Γ))

Note, Si < Sj iff Si ≤ Sj and Sj �≤ Si. Also, Si * Sj iff Si ≤ Sj and Sj ≤ Si.
We say Δj is more inconsistent than Δi iff Si ≤ Sj.

Example 7. Let Δ1 = {α,¬α} and Δ2 = {α, β ∧ ¬β}. Let S1 be the scoring
function for Δ1 and S2 be the scoring function for Δ2, and so S2 < S1.

S1({α}) = 1 S2({α}) = 0
S1({¬α}) = 1 S2({β ∧ ¬β}) = 1
S1({α,¬α}) = 1 S2({α, β ∧ ¬β}) = 1

Example 8. Consider Δ1 = {α∧¬α, β, γ} and Δ2 = {α∧¬α, β ∧¬β, δ}. If S1 is
the scoring function for Δ1, and S2 is the scoring function for Δ2, then S1 < S2.

We can consider scoring functions as giving information about the overlaps
of the minimally inconsistent subsets. For example, for Δi and Δj , if |Δi| =
|Δj | and |MI(Δi)| = |MI(Δj)| and Si ≤ Sj then the inconsistencies are more
overlapping in Δj . In other words, more of the formulae are in more minimally
inconsistent subsets. In case we want to compare sets of different cardinality, we
can add dummy propositions to the smaller set to make it the same size as the
larger set. These dummy propositions are literals that do not appear elsewhere
and so can be assumed to not be in any of the minimally inconsistent subsets of
the database.

For each n ∈ N, the score ordering ≤ over knowledgebases is reflexive and
transitive, but not antisymmetric. The following result shows in part how a
score ordering can be viewed as an aggregation of parameters including the
relative number of minimally inconsistent formulae and the relative number of
free formulae.

Proposition 2. If |Δi| = |Δj |, and Si is the scoring function for Δi, and Sj is
the scoring function for Δj, then

Si ≤ Sj implies |MI(Δi)| ≤ |MI(Δj)|
Si ≤ Sj implies |FREE(Δi)| ≥ |FREE(Δj)|

Note, the converse does not hold.

With the same assumptions as those for Proposition 2, we do not get that
Si ≤ Sj implies |MC(Δi)| ≤ |MC(Δj)| or that it implies |MC(Δi)| ≥ |MC(Δj)|.
This is captured in the following example.

Example 9. Consider Δ1 = {α, β} and Δ2 = {α,¬α}. So S1 ≤ S2 and |MC(Δ1)| ≤
|MC(Δ2)|. Now consider Δ3 = {α,¬α} and Δ4 = {β ∧ ¬β, γ ∧ ¬γ}. So S3 ≤ S4
and |MC(Δ3)| ≥ |MC(Δ4)|.

Approaches to Measuring Inconsistent Information 203

Clearly, scoring functions are syntax sensitive in the sense that we may have
two knowledgebase Δ1 and Δ2 where Consequences(Δ1) = Consequences(Δ2)
and S1 is the scoring function for Δ1 and S2 is the scoring function for Δ2, but
S1(Δ1) �= S2(Δ2). Scoring functions may also be regarded as being prone to
semantic insensitivity. To illustrate semantic insensitivity, consider the following
two examples.

Example 10. Consider Δ1 and Δ2 below. Let S1 be the scoring function for Δ1
and S2 be the scoring function for Δ2.

Δ1 = {α,¬α}
Δ2 = {α ∧ β,¬α ∧ β}

Here, S1 * S2 and so the scoring functions do not differentiate Δ1 and Δ2. Yet
it could be argued that semantically Δ2 implies more (such as if paraconsistent
logic inference were used) than Δ1.

Example 11. Consider Δ1 and Δ2 below. Let S1 be the scoring function for Δ1
and S2 be the scoring function for Δ2.

Δ1 = {α ∧ β ∧ γ, α ∧ ¬β ∧ γ,¬α ∧ β ∧ ¬γ}
Δ2 = {α ∧ β ∧ γ, α ∧ ¬β ∧ γ,¬α ∧ β ∧ γ}

Here, the formulae in Δ1 and Δ2 are pairwise inconsistent, and the resulting
scoring functions are such that S1 * S2. It may be argued that Δ2 is less
inconsistent than Δ1 since all formulae in Δ2 agree on γ.

In response to the arguments raised in Example 10 and 11, we believe that
this kind of semantic insensitivity is useful in some applications. We believe that
when a connective is used, it is used with some intent. So for example, whilst α∧β
and α, β are semantically equivalent, we may need to differentiate them also.
This intent depends on the applications area, but to illustrate in negotiation,
consider a strategy for weakening the preferences (represented by a set of classical
formulae) of an agent is take a subset of the preferences. So if an agent starts
with {α ∧ β} as its preferences then the only possible weakening (using the ⊆
relation) is {}. Whereas if the agent starts with {α, β} then weakenings also
include {α} and {β}. In this application, the preference α ∧ β is intended to
mean that α∧β must occur together, and so if the preference α is dropped then
so is the preference β.

In fact, this question is related to the status of the “comma” connective. In
classical logic (in the consistent case) {α∧β} and {α, β} are logically equivalent.
That shows that the comma in the second knowledgebase has exactly the same
meaning as a conjunction. But as soon as the knowledgebase is not consistent, a
lot of approaches give a different meaning to the comma and to the conjunction.
As explained above, this can be sensible if the ∧ connective means that the
conjuncts must absolutly occur together, whereas it is not the case with the
comma. This difference can be very intuitive, but it is not mandatory. And this
choice leads to different approaches.

204 A. Hunter and S. Konieczny

The general conclusion we draw from this discussion is that the syntax sensi-
tivity, and the semantic insensitivity, found in scoring functions is useful in some
applications.

5 Information Theoretic Analyses

First we consider how information theory can be used to measure the information
content of propositional formulae [70].

Table 1. A 3 × 3 grid denoting 9 possible locations for an object

β1 β2 β3

α1 × ×
α2

α3

Example 12. Let φ be a formula in the classical language composed of the follow-
ing propositional letters {α1, α2, α3, β1, β2, β3}. Now consider that φ represents
the location of an object where there are 9 possible positions in a 3 × 3 grid
(cf. Table 1). Information can be collected on the position in the grid. Now if
we receive two messages: The first states that the position is α1 and the second
states that the position is ¬β2. From these two statements, we can conclude that
the position is α1 ∧ (β1 ∨ β3). This is represented by the × symbol in Table 1.

The basic idea behind Shannon’s measure of information is that informa-
tion eliminates possibilities. The more unlikely a piece of information, the more
information is conveyed when that piece of information is asserted.

Definition 5. Let φ be a piece of information, and let P (φ) be the probability
of φ occuring. Shannon’s information measure I is

I(φ) = −logP (φ)

We can illustrate the use of Shannon’s Information measure by the following
example.

Example 13. Returning to Example 12, we can use the 3×3 grid as a probability
space and we can assume a uniform distribution over this space (i.e. each position
in the grid is equally probable). Using Definition 5 for φ = α1 and φ′ = α1∧¬β2,
we get

I(φ) = −log
3
9

= 0.48 I(φ′) = −log
2
9

= 0.65

Information theory can be used to measure the information content of sets
of consistent formulae. The information in a set Γ , composed from n different
atom symbols, is the logarithm of the number of models (2n) divided by the
number of models of Γ [48]. This idea can be traced back to Kemeny [35] and
Hintikka [27], so we will call this measure the Kemeny and Hintikka measure of
information.

Approaches to Measuring Inconsistent Information 205

Definition 6. Let Γ be a consistent set of formulae, let n be the number of
atoms in the language LPSi, and let Models(Γ) denote the collection of models
for Γ . The information value of Γ is defined by the following equation.

I(Γ) = log2
2n

|Models(Γ)|
Rewriting this equation, we get the following.

I(Γ) = n− log2|Models(Γ)|

Notice that with this definition, if the set of formulae Γ is inconsistent, then
the measure of information does not work. To address this, Lozinskii extends this
approach to measure the information content of sets of inconsistent formulae.
The information in a set Γ , composed from n different atom symbols, is the
logarithm of the number of models (2n) divided by the number of models for the
maximum consistent subsets of Γ .

Definition 7. Let Γ be a consistent set of formulae, let n be the number of
atoms in the language LPSi, and let MC(Γ) be the set of maximally consistent
subsets of Γ (see Definition 1). For each Δ ∈ MC(Γ), if M(Δ) is the collection
of models of Δ, then the collection of quasi-models is defined by

U(Γ) =
⋃
{Models(Δ) | Δ ∈ MC(Γ)}

The information value of Γ is defined by the following equation

Il(Γ) = n− log2|U(Γ)|

This measure increases with additions of consistent information and decreases
with additions of inconsistent information.

Example 14. For Δ = {α∨β, α∨¬β,¬α∧ γ}, Γ = Δ∪{¬γ}, and Γ ′ = Δ∪{δ}

Il(Γ) < Il(Δ) Il(Γ ′) > Il(Δ)

However, the approach is syntax sensitive, in the sense discussed in Section
4, as illustrated by the following example.

Example 15. For Δ = {α∨ β, α∨¬β,¬α∧ γ}, and Δ′ = {α∨ β, α∨¬β,¬α, γ},
but Il(Δ′) < Il(Δ).

To address this syntax sensitivity, a normal form can be used for application
of Lozinskii’s measure. One proposal is to rewrite all formulae into conjunctive
normal form, and then exhaustively apply conjunction elimination and resolution
[70]. Returning to Example 15, if we use this normal form of the knowledgebases,
then they have the same result using Lozinskii’s measure.

It should be noted, whether or not we use a normal form, this information-
theoretic approach does not provide a direct evaluation of inconsistency since for
example, the value for {α} is the same as for {α,¬α, β}. As a result, we stress
this approach provides a measure of information that may be inconsistent rather
than a measure of the inconsistencies in the information.

An interesting application of Lozinskii’s measure is in a form of belief revision
[50].

206 A. Hunter and S. Konieczny

6 Analysis of Probabilistic Semantics

There is an inconsistency analysis framework, with a probabilistic semantics,
that assigns a measure of consistency in the range [0, 1] for each set of propo-
sitional formulae [37, 39]. For a set of formulae that contains a formula that is
contradictory (logically equivalent to falsity), the measure of consistency is 0.
For a set of formulae that is consistent, the measure of consistency is 1.

For any set of formulae, the measure of consistency is directly proportional
to the size of the minimal inconsistent subsets. This conceptualizes the intuition
that the more formulae required to obtain an inconsistency, the more tolerable
the set becomes. Since, any formula equivalent to falsity causes that set to have
a measure of consistency of 0, the framework collapses a number of interesting,
different kinds of knowledgebase, to the same value. In this sense, the framework
is less-fined grained than the other measures presented in the next sections in
the propositional case.

On the other hand this measure is the only one among those presented here
that takes into account the number of formulae required to lead to the inconsis-
tency.

It is also possible to define two information measures based on the measure
of consistency [39].

6.1 Probabilistic Measure of Consistency

First one needs to define a probability function over formulae:

Definition 8. A probability function on L is a function P : L → [0, 1] s.t. :

– if |= α, then P (α) = 1
– if |= ¬(α ∧ β), then P (α ∨ β) = P (α) + P (β)

See [55] for more details on this definition. In the finite case, this defini-
tion gives a probability distribution on interpertations, and the probablity of a
formula is the sum of the probabilities of its models2.

Then the measure of consistency is defined as [37] :

Definition 9. Let Δ be a knowledgebase.

– Δ is η−consistent (0 ≤ η ≤ 1) if there exists a probability function P such
that P (α) ≥ η for all α ∈ Δ.

– Δ is maximally η−consistent if η is maximal (i.e. if γ > η then Δ is not
γ−consistent).

So the notion of maximally η−consistency can be used as a measure of con-
tradiction. This is a direct formalisation of the fact that the more formulae are

2 It can be also defined, like in[37, 39], in terms of the logical formulae corresponding
to the models of the knowledgebase (maximally coherent conjunction of literals of
L).

Approaches to Measuring Inconsistent Information 207

required to produced the inconsistency, the less the inconsistency is important.
As easily seen, in a finite setting, a knowledgebase Δ is 0−consistent if and only
if there is a contradictory formula (i.e. a formula logically equivalent to falsity)
in it. And Δ is 1−consistent if and only if the knowledgebase is consistent. Let
us see some examples to illustrate the non-extremal cases:

Example 16. Δ = {a, b,¬a ∨ ¬b} is maximally 2
3−consistent. Δ = {a ∧ b,¬a ∧

¬b, a∧¬b} is maximally 1
3−consistent, whereas each of its subsets of cardinality

2 is maximally 1
2−consistent.

For minimal inconsistent sets of formulae, computing the probabilistic mea-
sure of consistency is easy.

Proposition 3. If Γ ∈ MI(Δ), then Γ is maximally |Γ |−1
|Γ | −consistent.

For a general knowledgebase, there is no direct way to compute it. But a
lower bound can be stated:

Proposition 4. If Δ is finite and Γ ⊆ Δ is a smallest minimally inconsistent
subset of Δ, then Δ is |Γ |−1

|Δ| −consistent.

In fact, as underlined in [37], it can be computed using the simplex method.

6.2 Probabilistic Measures of Information

From this probabilistic measure of consistency, one can define two probabilistic
measures of information [39]. Let us first give some definitions:

Definition 10. Let Δ be a knowledgebase.

– A probability function P is Pareto optimal for Δ if there is no probability
function P ∗ such that P ∗(α) ≥ P (α) for all α ∈ Δ and P ∗(β) > P (β) for
one β ∈ Δ.

– A probability function P is Δ−consistent if Δ is maximally η−consistent
and P (α) ≥ η for all α ∈ Δ.

– A probability function P is Rawls optimal for Δ if it Δ−consistent and
Pareto optimal for Δ.

Definition 11. Let us note respectively RΔ and VΔ, the set of Rawls optimal
probability functions for Δ and the set of Δ−consistent probability functions.

Proposition 5. Let Δ be a knowledge base. A probability function is Pareto/Rawls
optimal only if P (α) = 1 for all α ∈ FREE(Δ).

The entropy [67] of a probability function P is defined as

H(P) = −
∑

ω∈W
P (ω) log2 P (ω)

Let X be a set of probabiliy functions, then ME(X) is a random maximum
entropy function from X. Then the two probabilistic measures of information are:

208 A. Hunter and S. Konieczny

Definition 12. Let Δ be a knowledgebase.

– IL
k1(Δ) = |L| −H(ME(RΔ))

– IL
k2(Δ) = |L| −H(ME(VΔ))

These two definitions are two direct generalization of Kemeny and Hintikka
measure of information (see definition 6) that do not trivialize to 0 when the
knowledgebase is not consistent.

In terms of this probabilistic semantics the information measure of Kemeny
and Hintikka of a knowledgebase is the size of the language minus the entropy of
the probabilistic function that has a maximum entropy while giving a probability
1 to all of the formulae of the knowledgebase.

This view trivializes when the knowledgebase is not consistent, since, in this
case, it is not possible to give a probability 1 to all the formulae of the knowledge-
base. The two definitions proposed in Definition 12 are the two more intuitive
modifications of this intuition to fit the inconsistent case. The second one (IL

k2)
takes the maximum entropy probabilistic function that maximizes the minimum
probability of the formulae of the knowledgebase. The first one (IL

k1) takes the
maximum entropy probabilistic function that gives a probability 1 to the maxi-
mum of formulae of the knowledgebase (the free formulae of the knowledgebase)
and a maximum probability to each of the other formulae of the knowledgebase.
So, in both cases, the requirement of giving probability 1 to all the formulae of
the knowledgebase, is “minimally” changed.

Let us see what those measures give on some simple example.

Example 17. Δ = {a, b, c,¬a∧¬b}. Δ is maximally 1
2−consistent. As FREE(Δ) =

{c}, for the first information measure, the probabilistic function must satisfy
P (c) = 1. The only probability distribution on interpretations that is Rawls
optimal is P ({¬a,¬b, c}) = 1

2 and P ({a, b, c}) = 1
2 . So IL

k1(Δ) = 2. For the second
information measure, we only consider Δ−consistent probabilistic functions, and
the one of maximum entropy is the one that gives a probability of 1

4 to all of
{¬a,¬b, c}, {¬a,¬b,¬c}, {a, b, c} and {a, b,¬c}. So IL

k2(Δ) = 1. Note that on
this example Lozinskii’s measure of information gives IL

l (Δ) = 2.

Knight advocates the superiority of those two measures on the one proposed
by Lozinskii, since they take into account the knowledgebase as a whole (i.e.
all the formulae of the knowledgebase), whereas Lozinskii’s, which is based on
maximal consistent subsets, takes into account only some subsets of the knowl-
edgebase.

Indeed, the two approaches (Lozinskii and Knight) give significant different
results on some illustrating case. See the following example.

Example 18. Let α be a non-tautological consistent formula, and let Δ = {α,¬α}.
Then IL

l (Δ) = 0 for all α. But, this is not the case for Knight’s measures of
information. Since they are based on a probability distribution on interpetations
and on maximum entropy, the result depends on the number of interpretations
in α and its negation.

Approaches to Measuring Inconsistent Information 209

For example if α is a conjunction of atoms α = a1 ∧ . . .∧ ak. Then for k = 1,
then IL

k1(Δ) = IL
k2(Δ) = 0, for k = n, then IL

k1(Δ) = IL
k2(Δ) = |L|− 1

2−
1
2 log2

1
n .

So IL
k1 and IL

k2 increase with the number of conjuncts.

To know what behaviour is the more intuitive one is not an easy task. We
think that both behaviours have pro and cons.

But both approaches are highly syntax sensitive, in particular, they make a
distinction between {a∧b} and {a, b}. This is not the case with some of the other
approaches presented in the rest of this paper. Let us see this on the following
example:

Example 19. Let Δ = {a, b,¬a∨¬b} and Δ′ = {a∧ b,¬a∨¬b}. Then IL
k1(Δ) =

IL
k2(Δ) = 0.42 and IL

l (Δ) = 1. While IL
k1(Δ

′) = IL
k2(Δ

′) = 0.21 and IL
l (Δ) = 0.

Note that Lozinskii’s approach is immune to the presence of a contradictory
formula (i.e. adding a contradictory formula to a knowledgebase does not change
the measure of information). IL

k1(Δ) is dependent to the addition of contradictory
formulae: adding a contradictory formulae decreases the measure of information.
So it seems that this measure melds together information and contradiction.
Whereas IL

k2(Δ) trivializes as soon as the knowledgebase contains a contradictory
formula.

Note that the three measures by Lozinskii and Knight trivialize as soon as
the knowledgebase contains only one formula that is contradictory. This is not
the case with the measures presented in the following sections.

7 Analysis of Epistemic Actions

An alternative approach to quantifying degrees of information and contradiction
in propositional logic is based on a framework of “epistemic actions” [40]. Each
epistemic action (called also test) reduces inconsistency and/or gains informa-
tion. The degree of information in a knowledgebase is based on the number (or
the cost) of actions needed to identify the truth value of each atomic proposition:
The lower the cost, the more information is contained in the base. The degree of
contradiction in a knowledgebase is based on the number (or the cost) of actions
needed to render the knowledgebase classically consistent. Both measurements
are dependent on the language, logic, and tests used.

So this framework does not define a unique measure of contradiction (and
information), but a wide familly of such measures. Since instantiating the pa-
rameters of the framework allows to define different measures. The main param-
eter is the underlying logic. Each propositional logic that satisfies some basic
requirements can be used here, leading to different definitions of measures of
contradiction (and measures of information). Another important parameter is
the available epistemic actions (called tests in the following). Specifying the set
of available tests, allows us to make a distinction between atoms/formulae. It
can for example be used to state that only some atoms are of interest (i.e. con-
tradiction or lack of information on the remaining atoms is not important), or

210 A. Hunter and S. Konieczny

that some atoms/formulae are more important (or more difficult to test) than
other ones. We will present here only the measures of contradiction, see [40] for
more details and for the definition of the corresponding measures of information.

One of the aim of this approach is to be able to say something on a single
contradictory formula. Another way to express this idea is to say that in this
approach the connector ∧ is the same as the comma connective (i.e. {α, β}
must be considered exactly as {α ∧ β}). So in this section we will consider that
the knowledgebase is a single formula (since, with the above hypothesis, we
can take equivalently the formula that is the conjunction of all formulae of the
knowledgebase).

So this approach needs an underlying propositional logic LPSi that is required
to have the following components :

1. A consequence relation |=i on LPSi × LPSi.
2. An acceptance function Ai ⊆ LPSi × LPSi: Ai(Δ, α) means that given the

knowledgebase Δ, α is accepted as true information (we say that Δ accepts
α). By default, acceptance is defined by: Ai(Δ, α) iff (Δ |=i α and Δ �|=i ¬α).
We say that Δ is informative about α iff exactly one of Ai(Δ, α) or Ai(Δ,¬α)
holds, and that Δ is fully informative iff for any α ∈ LPSi, Δ is informative
about α.

3. A contradiction indicator Ci ⊆ LPSi × LPSi: if Ci(Δ, α) holds, then we say
that Δ is contradictory about α. By default, we define Ci(Δ, α) iff (Δ |=i α
and Δ |=i ¬α). Δ is said to be contradiction-free iff for every α ∈ LPSi, we
do not have Ci(Δ, α).

4. A weak revision operator � : LPSi × LPSi → LPSi: Δ � α represents the
new knowledgebase obtained once taking account of the observation α into
the knowledgebase Δ. For the sake of generality, we are not very demanding
about �. The only requirement is that Δ � α |=i α, which expresses that
our tests are assumed reliable (each test outcome must be true in the actual
world). In the following we will simply refer to these operators as revision
operators (omitting the weak).

Let us now define the set of tests (a test is an action that allows to truthfully
know the truth value of a formula) that will be allowed to be used for computing
the measure of contradiction.

Definition 13. A test context CLP Si
(w.r.t. LPSi) is a pair 〈T, c〉 where T is a

finite set of tests and c is a cost function from T to N∗ (the set of strictly positive
integers). The outcome to any test tα ∈ T is one of α, ¬α, where α ∈ LPSi. We
say that tα is the3 test about α . A context is said to be :

– standard iff ∀tα ∈ T , we have c(tα) = 1 (every test has a unit cost).
– universal iff for every α ∈ LPSi, there is a test tα ∈ T .
– atomic iff the testable formulae are exactly the atoms of the language (tx ∈ T

iff x ∈ PS).

3 It is assumed, without loss of generality, that at most one test tα of T is about α for
each α ∈ LPSi.

Approaches to Measuring Inconsistent Information 211

Definition 14. Given a test context CLP Si
, a test plan π is a finite binary tree;

each of its non-terminal nodes is labelled with a test action tα; the left and right
arcs leaving every non-terminal node labelled with tα are respectively labelled
with the outcomes α and ¬α. An (outcome) trajectory 〈o1, . . . , on〉 with respect
to π is the sequence of test outcomes on a branch of π. The cost of a trajectory
〈o1, . . . , on〉 with respect to π is defined as

∑n
i=1 c(tαi

), where each tαi
is the test

labelling the node of π reached by following the path 〈o1, . . . , oi−1〉 from the root
of π.

Test plans are the basic tool used to determinate the tests needed to remove
the inconsistency. It is the number (or more generally the cost) of the tests
needed that will give the measure of contradiction for a knowledgebase.

Definition 15. Let π be a test plan and Δ the initial knowledgebase.

– The application of π on Δ is the tree apply(π, Δ), isomorphic to π, whose
nodes are labelled with knowledgebases defined inductively as follows:
• the root ε of apply(π, Δ) is labelled with Δ(ε) = Δ;
• let n be a node of apply(π, Δ), labelled with the knowledgebase Δ(n),

whose corresponding node in π is non-terminal and labelled with tα; then
n has two children in apply(π, Δ), labelled respectively with Δ(n)�α and
Δ(n) � ¬α.

– π purifies α given Δ iff for every terminal node n of apply(π, Δ), Δ(n) is
not contradictory about α (i.e., not CL(Δ(n), α)).

– π (fully) purifies Δ iff it eliminates all contradictions in Δ, i.e., iff for any
terminal node n of apply(π, Δ), Δ(n) is contradiction-free.

The degree of contradiction of Δ measures the minimal effort necessary to
purify Δ.

Note that, clearly enough, it can be the case that there is no plan to purify
a formula (if the test context is not atomic and not universal).

Definition 16. Let us define the cost c(π) of a test plan π as the maximum of
the costs of its trajectories. Then the degree of contradiction of Δ is defined by
dC(Δ) = min({c(π) | π purifies Δ}). When no plan purifies Δ, we let dC(Δ) =
+∞.

In the previous definition, we actually define pessimistic degrees of contra-
diction (because the cost of a plan is defined as the maximum cost among its
trajectories); this principle, consisting in assuming the worst outcome, is known
in decision theory as Wald criterion. Other criteria could be used instead, such
as the optimistic criterion obtained by replacing max by min. Also interesting,
the criterion obtained by first using max and then min for tie-breaking, or the
leximax criterion, allow for a better discrimination than the pure pessimistic
criterion.

The interest of this framework is that we can define different degrees of
contradiction, depending of the chosen underlying logic. We will only give an

212 A. Hunter and S. Konieczny

example of such instanciation here for illustrating the definition (see [40] for
other examples).

We focus here on the LPm logic as defined in [59]. This choice is mainly
motivated by the fact that this logic is simple enough and has an inference
relation that coincides with classical entailment whenever the knowledgebase is
classically consistent (this feature is not shared by many paraconsistent logics).

– The language of LPm is built up from the connectives ∧, ∨, ¬, → and the
constants �, ⊥.

– An interpretation ω for LPm maps each atom to one of the three “truth
values” false, both, true, the third truth value both meaning intuitively
“both true and false”. 3PS is the set of all interpretations for LPm. “Truth
values” are ordered as follows: false <t both <t true.
• M(�) = true, M(⊥) = false
•M(¬α) = both iff M(α) = both

M(¬α) = true iff M(α) = false
• M(α ∧ β) = min≤t

(M(α), M(β))
• M(α ∨ β) = max≤t

(M(α), M(β))

• M(α → β) =
{

true if M(α) = false
M(β) otherwise

– The set of models of a formula α is ModelsLP (α) = {M ∈ 3PS | M(α) ∈
{true, both}}.
Define M ! = {x ∈ PS | M(x) = both}.
Then min(ModelsLP (α)) = {M ∈ ModelsLP (α) | �M ′ ∈ ModelsLP (α) s.t. M ′! ⊂
M !}.
The consequence relation is defined by Δ |=LPm α iff min(ModelsLP (Δ)) ⊆
ModelsLP (α).

– The definitions of ALPm(Δ, α) and CLPm(Δ, α) are those by default; CLPm(Δ, α)
holds only if Δ has no classical model.

We have also to define the revision operator. Actually, the issue of revision in
paraconsistent logic has never been considered so far. Expansion is not satisfac-
tory as a revision operator for LPm because it does not enable the purification
task when Δ has no classical model ω (i.e., such that ω(x) �= both for each
x ∈ PS), whatever the test context. Among the many possible choices, we have
considered the following revision operator, defined model-theoretically (for the
sake of brevity, we characterize only its restriction to the case the revision for-
mula α is a literal l).

Let force(M, l) be the interpretation of 3PS defined by (for every literal l = x
or ¬x):{

force(M, x)(x) = true
∀y ∈ PS, y �= x, force(M, x)(y) = M(y){
force(M,¬x)(x) = false
∀y ∈ PS, y �= x, force(M, x)(y) = M(y)

Then the revision operator is defined by:

ModelsLP (Δ � l) =
{
{M |= Δ | M(l) = true} if this set is non-empty,
{force(M, l) | M |= Δ and M(l) = both}, otherwise.

Approaches to Measuring Inconsistent Information 213

Example 20. Given the standard atomic test context, we have:

– dC({�}) = 0
– dC({a}) = 0
– dC({a ∧ b}) = 0
– dC({a ∧ b ∧ ¬a}) = 1
– dC({a ∧ b ∧ ¬a ∧ ¬b}) = 2

Let us see the result on a more complex example:

a ∧ (¬a ∨ b) ∧ (¬b ∨ c) ∧ (¬c ∨ ¬a)

�
�

���

a
�

�
���

¬a

a ∧ b ∧ (¬b ∨ c) ∧ ¬c

�
�

���

c
�

�
���

¬c

¬a ∧ (¬b ∨ c)

a ∧ b ∧ c a ∧ b ∧ ¬b ∧ c

�
�

���

b
�

�
���

¬b

a ∧ b ∧ ¬c a ∧ ¬b ∧ ¬c

Fig. 1. Degree of contradiction in LPm

Example 21. Let us consider the base Δ = {a∧ (¬a∨ b)∧ (¬b∨ c)∧ (¬c∨¬a)}.
Figure 1 reports a plan of minimal cost (given the standard atomic context)
which purifies Δ. So the degree of contradiction of Δ is 3.

Note that what we define here is a measure of contradiction. To obtain a mea-
sure of coherence, as in the other sections, it is enough to define IL

klm(LPm)
(Δ) =

|L| − dC(Δ) while considering the standard atomic test context.

Proposition 6. Every knowledgebase that has a model ∈ 3PS has a finite degree
of contradiction given any atomic or universal test context.

Another example of instantiation with a paraconsistent logic can be obtained
by taking the QC logic (see Section 8.2) as underlying logic. The revision operator
in this case is the same one than for LPm.

So this approach is highly configurable (underlying logic, test context), lead-
ing to several different particular measures of contradiction. It is less syntax-
sensitive than the approaches in the previous sections, since a set of formulae

214 A. Hunter and S. Konieczny

is considered exactly as the conjunction of those formulae. This can be an ad-
vantage or a drawback, depending on the intended application. But the main
advantage is that it does not trivialize when facing a single contradictory for-
mula.

8 Model-Theoretic Analyses

Arguably, the most important logical language to analyse is that of classical logic.
So far in this review we have considered a variety of approaches. Syntactic analy-
sis is an obvious starting point for use with classical formulae. Useful alternatives
for analysing classical formulae, which we have considered in previous sections,
are based on information theory analysis, probability theory, and epistemic ac-
tions. Another alternative, which we consider in this section, is model-theoretic
analysis. In this, inconsistent information is analysed in terms of the models of
the information. Obviously this is not possible using classical models, because
there is no model of a set of inconsistent formulae. To address this, we can use
a three or four valued semantics, where one of the truth values denotes “incon-
sistency”. In this section, we briefly consider an approach based on three-valued
logic, and then review a framework based on quasi-classical logic which uses a
four-valued semantics. Both of them can be used with a set of classical formulae.

8.1 Analysis of Three-Valued Models

In the proposal for three-valued models by [47], and a similar proposal by [26], a
3-interpretation is a truth assignment into {true,false} that does not map both
a literal and its complement into false. This is extended to clauses so that a
3-interpretation satisfies a clause if and only if it satisfies some of the literals in
the clause.

Example 22. For the set of formulae {α,¬α ∨ ¬β, β}, there are three 3-inter-
pretations that satisfy: (X1) α,¬α, β are true and ¬β is false; (X2) α, β,¬β
are true and ¬α is false; and (X3) α,¬α, β,¬β are true.

As shown by Grant [26], the 3-interpretations for a set of formulae can be
analysed to obtained a degree of inconsistency. For this, the functions CCount and
ICount are introduced. For a 3 interpretation X, CCount(X) gives the number
of atoms in X for which either the atom or its complement is assigned false,
and ICount(X) gives the number of atoms in X for which both the atom and its
complement are assigned true. So CCount gives the number of atoms that are
regarded as consistent, and ICount gives the number of atoms that are regarded
as inconsistent, for X. In addition, LCount gives the total number of literals that
are assigned by X. So LCount(X) = CCount(X) + (2× ICount(X)).

Definition 17. The degree of inconsistency for a 3-interpretation X (in the
finite case) is the ratio

IncG(X) =
CCount(X)
LCount(X)

Approaches to Measuring Inconsistent Information 215

Example 23. So, on the previous example, we have IncG(X1) = 1/3, IncG(X2) =
1/3 and IncG(X3) = 0.

This definition has been generalized by Grant to deal with countable 3-
interpretations, and to take into account the domain for the 3-interpretations.
A problem with the proposal is that it takes into account “too many mod-
els”. Consider the small knowledgebase in Example 22 for which there are three
3-interpretations. With quasi-classical (QC) logic reviewed in the next subsec-
tion, only the third 3-interpretation would be considered a model. The intuition
behind this is that if we consider disjunctive syllogism, or equivalently, the reso-
lution proof rule, as being applicable here, then neither the first 3-interpretation
nor the second 3-interpretation would be valid models for this set of formulae.

As we shall see below, QC logic has a more constrained semantics and proof
theory resulting in a “more appropriate” selection of models, and as a conse-
quence, a measure of consistency can be defined with some useful properties.
However, when we consider analysing first-order QC models, we will see how
Grant’s degree of inconsistency can also be harnessed.

8.2 Analysis of Quasi-classical Models

Quasi-classical (QC) logic, a form of paraconsistent logic can be used as the basis
of a framework, to measure inconsistency [31, 32, 33]. In this, each inconsistent
set of formulae is reflected in the quasi-classical models for the set, and then the
inconsistency is measured in the models.

Review of Propositional QC Logic. We review the propositional version of
quasi-classical logic (QC Logic) [9, 29]. The language of propositional QC logic
is that of classical propositional logic.

Let α be an atom, and let ∼ be a complementation operation such that ∼α
is ¬α and ∼(¬α) is α. The ∼ operator is not part of the object language, but it
makes some definitions clearer.

Definition 18. Let α1∨..∨αn be a clause that includes a disjunct αi and n > 1.
The focus of α1 ∨ .. ∨ αn by αi, denoted ⊗(α1 ∨ .. ∨ αn, αi), is defined as the
clause obtained by removing αi from α1 ∨ .. ∨ αn.

Example 24. Let α ∨ β ∨ γ be a clause where α, β, and γ are literals. Hence,
⊗(α ∨ β ∨ γ, β) = α ∨ γ.

Focus is used to capture a form of resolution in the semantics of QC logic. A
model in QC logic is a form of Herbrand model.

Definition 19. Let A be a set of atoms. Let O = {+α | α ∈ A}∪{−α | α ∈ A}
be the set of objects defined as follows, where +α is a positive object, and −α is
a negative object. We call any X ∈ ℘(O) a QC model. So X can contain both
+α and −α for some atom α.

216 A. Hunter and S. Konieczny

For each atom α ∈ L, and each X ∈ ℘(O), +α ∈ X means that in X there
is a reason for the belief α and −α ∈ X means that in X there is a reason
for the belief ¬α. This effectively gives us a four-valued semantics. Though for
non-atomic formulae the semantics, defined next, is significantly different to [6].

Definition 20. Let |=s be a satisfiability relation called strong satisfaction.
For a model X, we define |=s as follows, where α1, ..., αn are literals in L, n > 1,
and α is a literal in L.

X |=s α iff there is a reason for the belief α in X

X |=s α1 ∨ ... ∨ αn

iff [X |=s α1 or ... or X |=s αn]
and ∀i s.t. 1 ≤ i ≤ n

[X |=s∼αi implies X |=s ⊗(α1 ∨ ... ∨ αn, αi)]

For α, β, γ ∈ L, we extend the definition as follows,

X |=s α ∧ β iff X |=s α and X |=s β
X |=s ¬¬α ∨ γ iff X |=s α ∨ γ
X |=s ¬(α ∧ β) ∨ γ iff X |=s ¬α ∨ ¬β ∨ γ
X |=s ¬(α ∨ β) ∨ γ iff X |=s (¬α ∧ ¬β) ∨ γ
X |=s α ∨ (β ∧ γ) iff X |=s (α ∨ β) ∧ (α ∨ γ)
X |=s α ∧ (β ∨ γ) iff X |=s (α ∧ β) ∨ (α ∧ γ)

Definition 21. For X ∈ ℘(O) and Δ ∈ ℘(L), let X |=s Δ denote that X |=s α
holds for every α in Δ. Let QC(Δ) = {X ∈ ℘(O) | X |=s Δ} be the set of QC
models for Δ.

A key feature of the QC semantics is that there is a model for any formula,
and for any set of formulae.

Example 25. Let Δ = {¬α ∨ ¬β ∨ γ,¬α ∨ γ,¬γ}, where α, β, γ ∈ A, and let X
= {−α,−β,−γ}. So X |=s ¬α, X |=s ¬β and X |=s ¬γ. Also, X |=s∼γ. Hence,
X |=s ¬α ∨ γ, and X |=s ¬α ∨ ¬β, and so, X |=s ¬α ∨ ¬β ∨ γ. Hence every
formula in Δ is strongly satisfiable in X.

Strong satisfaction is used to define a notion of entailment for QC logic. There
is also a natural deduction proof theory for propositional QC logic [29] and a
semantic tableau version for first-order QC logic [30]. Entailment for QC logic
for propositional CNF formulae is coNP-complete, and via a linear time transfor-
mation these formulae can be handled using classical logic theorem provers [53].

The definitions for QC models and for strong satisfaction provide us with the
basic concepts for measuring inconsistency. QC logic exhibits the nice feature
that no attention needs to be paid to a special form that the formulae in a set of
premises should have. This is in contrast with other paraconsistent logics where
two formulae identical by definition of a connective in classical logic may not

Approaches to Measuring Inconsistent Information 217

yield the same set of conclusions. For example, in QC logic, β is entailed by both
{(¬α → β),¬α} and {α∨β,¬α} and γ is entailed by {γ ∧¬γ} and {γ,¬γ}. QC
logic is much better behaved in this respect than other paraconsistent logics such
as Cω [17], and consistency-based logics such as [7]. Furthermore, the semantics
of QC logic directly models inconsistent sets of formulae.

Definition 22. Let Δ ∈ ℘(L). Let MQC(Δ) ⊆ QC(Δ) be the set of minimal QC
models for Δ, defined as follows:

MQC(Δ) = {X ∈ QC(Δ) | if Y ⊂ X, then Y �∈ QC(Δ)}

Example 26. Consider the following sets of formulae.

MQC({α ∧ ¬α, α ∨ β,¬α ∨ γ})
= {{+α,−α,+β,+γ}}

MQC({¬α ∧ α, β ∨ γ})
= {{+α,−α,+β}, {+α,−α,+γ}}

MQC({α ∨ β,¬α ∨ γ})
= {{+β,+γ}, {+α,+γ}, {−α,+β}}

Whilst four-valued logic [6] also directly models inconsistent sets of formulae,
there are too many Belnap models in many situations. Consider for example
{α∨β,¬α}. There is one minimal QC model {−α,+β}, but there are a number
of Belnap models that satisfy this set. QC logic has a reduced number of models
because of the constraint in the definition of strong satisfaction for disjunction
that ensures that if the complement of a disjunct holds in the model, then
the resolvent should also hold in the model. This strong constraint means that
various other proposals for many-valued logic will tend to have more models for
any given knowledgebase than QC logic. This increases the number of models
that need to be analysed and it underspecifies the nature of the conflicts. These
shortcomings of Belnap’s four-valued logic also apply to three-valued logics such
as 3-interpretations by [47], and a similar proposal by [26].

Measuring Coherence of QC Models. We now consider a measure of in-
consistency called coherence [31]. The opinionbase of a QC model X is the set of
atomic beliefs (atoms) for which there are reasons for or against in X, and the
conflictbase of X is the set of atomic beliefs with reasons for and against in X.

Definition 23. Let X ∈ ℘(O).

Conflictbase(X) = {α | +α ∈ X and − α ∈ X}
Opinionbase(X) = {α | +α ∈ X or − α ∈ X}

In finding the minimal QC models for a set of formulae, minimization of
each model forces minimization of the conflictbase of each model. As a result of
this minimization, if Δ ∈ ℘(L), and X, Y ∈ MQC(Δ), then Conflictbase(X) =
Conflictbase(Y).

Increasing the size of the conflictbase, with respect to the size of the opin-
ionbase, decreases the degree of coherence, as defined below.

218 A. Hunter and S. Konieczny

Definition 24. The Coherence function from ℘(O) into [0, 1], is given below
when X is non-empty, and Coherence(∅) = 1.

Coherence(X) = 1− |Conflictbase(X)|
|Opinionbase(X)|

If Coherence(X) = 1, then X is a totally coherent, and if Coherence(X) = 0,
then X is totally incoherent, otherwise, X is partially coherent/incoherent.

Example 27. Let X ∈ MQC({¬α ∧ α, β ∧ ¬β, γ ∧ ¬γ}), Y ∈ MQC({α,¬α ∨
¬β, β, γ}), and Z ∈MQC({¬α, β,¬γ∧γ}). So Coherence(X) = 0, Coherence(Y) =
1/3, and Coherence(Z) = 2/3.

Different minimal QC models for the same knowledgebase are not necessarily
equally coherent, since different models for the same knowledgebase may have
different opinionbases, though they will have the same conflictbase.

Example 28. Let Δ = {α,¬α, β ∨ γ, β ∨ δ}, and let X = {+α,−α,+β} and
Y = {+α,−α,+γ,+δ}. So MQC(Δ) = {X, Y }, and Coherence(X) = 1/2 and
Coherence(Y) = 2/3.

We extend coherence to knowledgebases as follows.

Definition 25. Let Δ ∈ ℘(L). Assign Coherence(Δ) the maximum value in
{Coherence(X) | X ∈ MQC(Δ)}.

Example 29. Let Δ = {φ ∧ ¬φ, α ∨ (β ∧ γ ∧ δ)} and Δ′ = {φ ∧ ¬φ, (α ∧ β) ∨
(γ ∧ δ)}. Also let X1 = {+φ,−φ,+α}, X2 = {+φ,−φ,+β,+γ,+δ}, Y1 =
{+φ,−φ,+α,+β}, and Y2 = {+φ,−φ,+γ,+δ}. So, MQC(Δ) = {X1, X2} and
MQC(Δ′) = {Y1, Y2}. Also, Coherence(X1) = 1/2, Coherence(X2) = 3/4,
Coherence(Y1) = 2/3, andCoherence(Y2) = 2/3.SoCoherence(Δ) > Coherence(Δ′).

Note that the definition of the coherence of a knowledgebase is an optimistic
one, since it is based on the maximal coherence value of its models. But taking
other aggregation functions could be interesting. For example taking a leximax
function would allow for more discrimination. And taking the minimum or a
mean can lead to other interesting measures. Such generalisations have not been
considered yet, but can be a starting point for further work.

Significance Functions. The QC logic framework for measuring inconsistency
has been extended to measuring the significance of inconsistencies arising in QC
models, and thereby in sets of formulae [32]. The approach is based on specify-
ing the relative significance of incoherent models using additional information,
encoded as a mass assignment, which is defined below.

Definition 26. A mass assignment m for O is a function from ℘(O) into
[0, 1] such that:

(1) If X ⊆ O and Coherence(X) = 1, then m(X) = 0

(2) ΣX⊆O m(X) = 1

Approaches to Measuring Inconsistent Information 219

Condition 1 ensures mass is only assigned to models that contain conflicts
and condition 2 ensures the total mass distributed sums to 1. A mass assign-
ment can be localized on small subsets of O, spread over many subsets of O, or
limited to large subsets of O. A mass assignment can be regarded as a form of
metaknowledge, and so it needs to be specified for an application area, where
the application area is characterized by O.

Example 30. Let O = {+α,−α,+β,−β}. A mass assignment m is given by
m({+α,−α}) = 0.2 and m({+β,−β} = 0.8. Another mass assignment m′ is
m′({+α,−α}) = 0.2, m′({+α,−α,−β}) = 0.6, and m′({+α,−α,+β,−β}) =
0.2.

A significance function gives an evaluation of the significance of the conflicts
in a QC model. This evaluation is in the range [0, 1] with 0 as least significant
and 1 as most significant.

Definition 27. Let m be a mass assignment for O. A significance function
for O, denoted S, is a function ¿from ℘(O) into [0, 1]. A mass-based signifi-
cance function for m, denoted Sm, is a significance function defined as follows
for each X ∈ ℘(O).

Sm(X) = ΣY ⊆Xm(Y)

The definitions for mass assignment and mass-based significance correspond
to mass assignment and belief functions (respectively) in Dempster-Shafer the-
ory [66]. However, here they are used to formalise significance rather than un-
certainty.

Proposition 7. Let m be a mass assignment for O. If Sm is a significance
function, then the following property of simple cumulativity holds for all X, Y ∈
℘(O): X ⊆ Y implies Sm(X) ≤ Sm(Y).

Given that simple cumulativity holds, we see that specifying significance in
terms of mass assignment is more efficient than directly specifying the signifi-
cance.

Proposition 8. Let m be a mass assignment for O. Let Sm be a mass-based
significance function. For all X, Y ∈ ℘(O),

(1) Sm(X ∪ Y) ≥ (Sm(X) + Sm(Y)− Sm(X ∩ Y))
(2) Sm(X) + Sm(Xc) ≤ 1

So mass-based significance is not additive. Also the remaining significance
need not be for the complement of X (ie, Xc). Some may be assigned to models
not disjoint from X. We now consider some constraints on mass assignments
that give useful properties for mass-based significance.

Definition 28. Let m be a mass assignment for O. m is focal iff for all X ∈
℘(O) m(X) ≥ 0 when Coherence(X) = 0 and m(X) = 0 when Coherence(X) >
0. m is solo iff for all {+α,−α} ∈ ℘(O) m({+α,−α}) ≥ 0 and for all other
X ∈ ℘(O), m(X) = 0.

220 A. Hunter and S. Konieczny

A focal mass assignment puts the mass onto the totally incoherent models,
and a solo mass assignment puts the mass on the smallest totally incoherent
models. For all m, if m is a solo mass assignment for O, then m is focal mass
assignment for O. Significance is additive for totally incoherent models when the
mass assignment is solo.

Proposition 9. Let m be a solo mass assignment for O. Let Sm be a mass-based
significance function and let X ∈ ℘(O). If Coherence(X) = 0, then Sm(X) +
Sm(Xc) = 1.

A useful feature of a focal mass-based significance function is that as the
number of conflicts rises in a model, then the significance of the model rises.
This is formalized by the following notion of conflict cumulativity.

Proposition 10. Let m be a focal mass assignment for O. If Sm is a signifi-
cance function, then the following property of conflict cumulativity holds for all
X, Y ∈ ℘(O): Conflictbase(X) ⊆ Conflictbase(Y) implies Sm(X) ≤ Sm(Y).

We now extend the significance functions to knowledgebases. Since MQC(Δ)
is not necessarily a singleton, the significance for a set of formulae Δ is the lowest
significance obtained for an X ∈ MQC(Δ). This means we treat the information
in Δ as a “disjunction” of QC models, and we regard each of those models as
equally acceptable, or equivalently we regard each of those models as equally
representative of the information in Δ. As with Definition 25, the following
definition is an optimistic view, in the sense that taking the higher coherence
value and lower significance value is better.

Definition 29. Let Δ ∈ ℘(L). We extend the definition for a significance func-
tion Sm to knowledgebases as follows:

Sm(Δ) = min({Sm(X) | X ∈ MQC(Δ)})

Someknowledgebases have zero significance.Clearly, ifΔ �� ⊥, thenSm(Δ)=0.

Example 31. Let Ω = {+α,−α,+β,−β,+γ,−γ}. Let m({+α,−α,+β}) = 0.3,
m({+α,−α}) = 0.6, and m({+β,−β,+γ}) = 0.1. So Sm({α∧¬α, β ∨ γ}) = 0.6

In order to determine the set O for which a mass function is defined, we can
use the delineation function as follows.

Definition 30. For Δ ∈ ℘(L), Delineation(Δ) = {+α,−α | α ∈ Atoms(Δ)}.

Example 32. Let Δ1 = {¬α, α ∨ β,¬β}, Δ2 = {α ∨ β,¬α ∧ α}, and Δ3 =
{β,¬α ∨ ¬β}. Let O = Delineation(Δ1 ∪ Δ2 ∪ Δ3) = {+α,−α,+β,−β}. Also
let m({+α,−α,+β,−β}) = 0.2 and m({+α,−α}) = 0.8. So Sm(Δ1) = 1,
Sm(Δ2) = 0.8, and Sm(Δ3) = 0.

The next result captures a notion of monotonicity for mass-based significance.

Approaches to Measuring Inconsistent Information 221

Proposition 11. Let Δ ∈ ℘(L) and α ∈ L. Let m be a mass assignment for
Delineation(Δ ∪ {α}). If Sm is a significance function, then Sm(Δ) ≤ Sm(Δ ∪
{α}).

Another approach to analysing the significance of inconsistency is possibility
theory [19]. Let (φ, α) be a weighted formula where φ is a classical formula and
α ∈ [0, 1]. A possibilistic knowledgebase B is a set of weighted formulae. An
α-cut of a possibilistic knowledgebase, denoted B≥α, is {(ψ, β) ∈ B | β ≥ α}.
The inconsistency degree of B, denoted Inc(B), is the maximum value of α
such that the α-cut is inconsistent. Possibility theory can also be used to extend
classical logic, so that the proof rules propagate the possibility weights. This
logic is called possibilistic logic and it offers complementary reasoning to that
offered by QC logic.

Possibilistic logic and QC logic can be combined to give quasi-possibilistic
logic [18]. This combined logic can handle plain conflicts taking place at the
same level of certainty, as in QC logic, and take advantage of the stratification
of the knowledgebase into certainty layers for introducing gradedness in conflict
analysis, as in possibilistic logic. Moreover, quasi-possibilistic logic can be used
to generalize the QC logic framework for measuring the degree and significance
of inconsistencies.

Compromising on Inconsistency. In the following, we define the compromise
relation to prefer knowledgebases with models with a greater opinionbase and a
smaller conflictbase.

Definition 31. Let Δ, Δ′ ∈ ℘(L). The compromise relation, denoted ,, is
defined as follows:

Δ , Δ′ iff ∀X ∈ MQC(Δ) and ∃Y ∈ MQC(Δ′)
such that Conflictbase(X) ⊆ Conflictbase(Y)
and Opinionbase(Y) ⊆ Opinionbase(X)

We read Δ , Δ′ as Δ is a preferred compromise to Δ′. Let Δ ≺ Δ′ denote
Δ , Δ′ and Δ′ �, Δ. Also let Δ * Δ′ denote Δ , Δ′ and Δ′ , Δ.

Example 33. If Δ = {α ∧ β ∧ γ}, and Δ′ = {α ∧ ¬α, β ∨ γ}, then Δ ≺ Δ′, since
the following hold,

MQC(Δ) = {{+α,+β,+γ}}
MQC(Δ′) = {{+α,−α,+β}, {+α,−α,+γ}}

Example 34. If Δ = {α∧¬α∧β} and Δ′ = {β}, then Δ �, Δ′, and Δ′ �, Δ, since
MQC(Δ) = {{+α,−α,+β}} and MQC(Δ′) = {{+β}}. Though Coherence(Δ) <
Coherence(Δ′).

222 A. Hunter and S. Konieczny

Example 35. If Δ = {α ∨ β} and Δ′ = {α ∨ γ}, then Δ �, Δ′, and Δ′ �,
Δ, since MQC(Δ) = {{+α}, {+β}} and MQC(Δ′) = {{+α}, {+γ}}. Though
Coherence(Δ) = Coherence(Δ′).

We now motivate the compromise relation. For checking whether Δ , Δ′

holds, we want to compare the minimal QC models of Δ with the minimal QC
models of Δ′. First, we want each minimal QC model of Δ to have a conflictbase
that is a subset of the conflictbase of each minimal QC model of Δ′. Second, we
want for each minimal QC model X of Δ, for there to be a minimal QC model
Y of Δ′ such that the opinionbase of Y is a subset of the opinionbase of X. This
is to ensure that Δ is not less conflicting than Δ′ because Δ has less information
in it. The reason we use the condition Opinionbase(Y) ⊆ Opinionbase(X) rather
than Y ⊆ X is that if Y is more conflicting than X, then this will be reflected
in the membership of Y but not in the membership of Opinionbase(Y). The
reason we only seek one minimal QC model of Δ′ for the comparison with all
the minimal QC models of Δ is so that we can handle disjunction in Δ′ as
illustrated by Example 33. Useful properties of the compromise relation include
it is a pre-order relation and it is syntax independent.

Let us note that, although the compromise relation and coherence function
are logically independent notions, they are “philosophically” related, since in
both case it is better when the conflicts decrease or when the information in-
crease.

Measuring First-Order Inconsistency. Using the first-order version of quasi-
classical logic [30], the QC logic framework for measuring inconsistency has been
extended to first-order logic [33]. In first-order QC logic, the strong satisfaction
relation is extended for universal and existential quantification.

– A QC model M , with a variable assignment A, satisfies a formula ∃Xα if
and only M satisfies α with some variable assignment A′ that differs from
A in at most the assignment for X.

– A QC model M , with a variable assignment A, satisfies a formula ∀Xα if
and only if M satisfies α with all variable assignments A′ that differ from A
in at most the assignment for X.

As with propositional QC logic, the models are a form of Herbrand model.
The definitions for minimal QC model, for coherence, and for compromise rela-
tion can be used with first-order information.

In another development, the degree of inconsistency as presented by Grant
[26], has been incorporated into the QC logic framework for measuring inconsis-
tency in first-order information [25]. In this, both the language and the domain is
taken into account. In the following, we restrict the presentation to a first-order
language with constant symbols and no function symbols.

Definition 32. For a language L = 〈P, C〉, where P is a set of predicates rep-
resented in the form P (n), with P being the predicate symbol and n being the
arity of the predicate, C is a set of constants, and D is a domain,

Groundatoms(L, D) = {P (c1, .., cn) | P (n) ∈ P and c1, .., cn ∈ D}

Approaches to Measuring Inconsistent Information 223

This is used for a measure as a ratio between 0 and 1 whose denominator is
the total possible number of inconsistencies in the bistructure.

Definition 33. The measure of inconsistency for a model M in the context of
a language L and a domain D is given by the ModelInc function giving a value
in [0, 1] as follows.

ModelInc(M,L, D) =
|Conflictbase(M)|
|Groundatoms(L, D)|

Example 36. Let L = 〈{P (2), R(1)}{}〉. Hence, P is a binary predicate and R is
a monadic predicate. Let D = {a, b, c}, and M = {+P (a, a), −P (a, a), +R(a),
−R(b), +P (b, c)}, |Groundatoms(L, D)| = 12 (9 ground atoms for P and 3 for
R). Conflictbase(M) = {P (a, a)}. Hence, ModelInc(M,L, D) = 1

12 .

The ModelInc definition provides the basis of a richer framework for compar-
ing first-order formulae. In the following example, we compare some inconsistent
formulae. For this, we consider the preferred QC models: These are the minimal
QC models with a minimal conflictbase. Given a language L and a domain D, the
value of ModelInc is the same for all preferred QC models for a knowledgebase.

Example 37. Let L = 〈{P (2)}, {}〉 and D = {a, b, c}.

1. Δ1 = {∀x∀y(P (x, y) ∧ ¬P (x, y))} has one preferred QC model which is
represented by M1 = {+P (a, a),−P (a, a), . . . ,+P (c, c),−P (c, c)},
so ModelInc(M1,L, D) = 9

9 = 1. M1 is totally inconsistent.
2. Δ2 = {∃x∃y(P (x, y) ∧ ¬P (x, y))} has 9 preferred QC models. One of them

is M21 = {−P (a, b),
+ P (a, b)}, so ModelInc(M21,L, D) = 1

9 .
3. Δ3 = {∀x∃y(P (x, y)∧¬P (x, y))} has 9 preferred QC models. One is M31 =
{+P (a, a),
− P (a, a), +P (b, c),−P (b, c), +P (c, a),−P (c, a)}, so ModelInc(M31,L, D) =
3
9 = 1

3 .
4. Δ4 = {∃x∀y(P (x, y)∧¬P (x, y))} has 3 preferred QC models. One is M41 =
{+P (b, a),
− P (b, a), +P (b, b),−P (b, b), +P (b, c),−P (b, c)}, so ModelInc(M41,L, D) =
3
9 = 1

3 .

Comparing quantified formulae is potentially important in diverse applica-
tions such as analysing systems specifications and analysing sources of infor-
mation as a precursor to selecting sources for merging. These applications po-
tentially include consideration of information that violates integrity constraints.
This framework incorporates a notion of quasi-equality, which is weaker than
classical equality, but can be formalized as an extension to QC logic for reason-
ing about integrity constraint violations.

224 A. Hunter and S. Konieczny

9 Choosing a Good Measure

In the previous sections we have presented the existing measures of contradiction
and of information for (possibly) inconsistent information. We have tried to
highlight the advantages and the typical uses of each of its measures. In this
section, we will try to compare them in order to highlight their differences and
to guide the choice of a particular measure.

9.1 Logical Properties

A very convenient way to compare several approaches to the same problem is
to propose a set of logical properties, aiming at capturing the typical wanted
behaviours, and to compare the approaches with respect to the properties satis-
fied/dissatisfied.

Setting these properties have several advantages: first, it allows to “abstract”
the discussion, i.e. to drop the discussion from the examples that are the partic-
ular approaches, for a discussion on the wanted behaviour for the given problem.
Second, it gives a mean to compare the different approaches and to highlight the
differences of behaviour and underlying rationale (in a much more explicit way
that when building examples that are correctly handled by one approach and
badly by an other). Thirdly, this allows us to define in one shot a whole family
of methods (the ones that satisfy a set of properties), instead of only one par-
ticular one. And in the case where there is only one approach satisfying a set of
properties, then it usually gives a nice comprehensive definition of the approach.

Setting a set of properties have usually accelerated the development of a cor-
responding field. We can cite for example the work of Arrow for social choice
theory (voting theory) [3], Savage for decision theory [64]. In artificial intel-
ligence, the same happened for non-monotonic inference relations [51, 43, 46],
belief revision [1, 24], and belief merging [62, 41, 42].

So, it might be of great interest to find a set of logical properties for infor-
mation measures (that allows non-trivial information content for inconsistent
information), and for contradiction measures.

Information Measures. Lozinskii [49] gives a set of properties that a measure
of quantity of information should satisfy.

He stated those properties in first order logic. Recasted in propositional logic,
those conditions can be summarized as follows. I is a function from LPS to a
numeric scale with least element 0 such that:

1. If Δ = ∅, then I(Δ) = 0
2. If Δ = {a ∈ LPS} ∪ {¬a | a ∈ LPS}, then I(Δ) = 0
3. If Δ is consistent, and α is a consequence of Δ, then I(Δ ∪ {α}) = I(Δ)
4. If Δ∪{α} is consistent and α is not a consequence of Δ, then I(Δ∪{α}) >

I(Δ)
5. If Δ is consistent and α is a consequence of Δ, then I(Δ ∪ {¬α}) < I(Δ)
6. If ∀a ∈ LPS Δ � a or Δ � ¬a, then ∀Δ′ I(Δ) ≥ I(Δ′)

Approaches to Measuring Inconsistent Information 225

The first condition states that an empty knowledgebase contains no informa-
tion. The second condition states that if a knowledgebase contains all the atoms
and their negation of the language, it gives also no information. In the first con-
dition it was caused by a lack of information, in the second one it is because
of an overload of (contradictory) information. The third condition states that
adding a consequence of a knowledgebase does not change anything of the infor-
mation content. That implies, in particular, an irrelevance of syntax, since there
is no difference between an explicit formula of Δ and an implicit one4. It says
also that several occurrences of the same formula (or several way to derive the
same formula), do not improve the information content. The fourth condition
says that adding a (consistent) formula that is not a consequence of a consistent
knowledgebase increases the amount of information. The fifth condition says
that adding a (consistent) formula that contradicts a consistent knowledgebase
decreases the amount of information. This condition relates the contradiction
of a base and its information content. Thus, as expected, the introduction of a
contradiction decreases the amount of information. The sixth condition states
that a complete knowledgebase, thus having exactly one classical model, has the
highest possible information content. This condition is quite natural, and quite
close to the idea of Shannon’s information theory.

It is not surprising that the information measure Il(Δ) of section 5 satisfies
those conditions.

Knight in [39, 38] propose also a set of logical properties for measures of
quantity of information. Most of them are equivalent to Lozinskii’s ones. The
different ones are:

7. 0 ≤ I(Δ) ≤ |PS|
8. I({α}) = 0 if and only if � α or � ¬α
9. If Δ and Δ′ are logically equivalent5, then I(Δ) = I(Δ′)

Condition 7 simply puts bounds on the value of the information measure.
Putting 0 as minimum is quite natural (and is already asked in Lozinskii’s con-
ditions). So the addition of this property is to put a maximum on the value. It is
clear that in a finite setting, the information value must have an upper bound,
but we are not sure that giving a precise bound is useful (taking any strictly
increasing function of |PS| would basically give the same thing, as acknowledge
by Knight [39]). Condition 8 states that the only singleton knowledgebase having
null information value are tautologies and contradictions. Condition 9 is an irrel-
evance of syntax condition, basically saying that we can exchange any formula
of a knowledgebase by a logically equivalent one without changing the amount
of information in the knowledgebase.

Those two last conditions are not similar to the previous ones. They basically
say that information measures can cope with inconsistency only because we work

4 An explicit formula of a knowledge base is a formula α ∈ Δ. An implicit formula of
a knowledge base is a formula α /∈ Δ and Δ � α.

5 We say that two knowledgebases are logically equivalent if for each formula of a base,
there is a formula in the other base that is logically equivalent to the first one.

226 A. Hunter and S. Konieczny

with sets of formulae. But if one is faced with a unique inconsistent formula, it
continues to have a null information value. So it is a very strong assumption
that forbids consideration of inconsistent formulae. Whereas the information
measures proposed by Knight and Lozinskii satisfy those two properties, the one
proposed by Konieczny et al. [40] do not satisfy them, since they differentiate
the information content of inconsistent formulae.

In addition, there are also two conditions on the relation between the language
and the information value. The first one is given by Lozinskii in [48], the second
one by Knight [39, 38].

9. If PS ⊆ PS′, then maxΔ∈LP S
(I(Δ)) ≤ maxΔ′∈LP S′ (I(Δ′))

10. If PS ⊆ PS′, then IΔ∈LP S
(Δ) = IΔ∈LP S′ (Δ)

Condition 10 says that extending the language does not change the informa-
tion content of a given knowledgebase. But, as expected, condition 9 says that
extending the language allows to express more things, and so the upper bound
of the information measure in the extended language is higher than the one in
the original language.

One can think of other meaningful conditions, but the ones given here seem
to be a good place to begin.

Contradiction Measures. The story is not the same for contradiction mea-
sures. It is much more difficult to state properties for contradiction measures
than for information ones. Since classical logic is not the right tool for talking
about inconsistency, it is difficult to state interesting logical properties using
only classical logic.

In order to state the wanted properties, one should need to use a para-
consistent logic. But there are a lot of different paraconsistent logics (see e.g.
[28, 13, 60]), so choosing a particular logic is already a real, non-trivial commit-
ment. So one has to be careful for avoiding stating ad hoc properties, according
to a given paraconsistent logic.

This maybe explains why there is not yet any proposal of such set of prop-
erties for contradiction measures. But this is an interesting and important open
question.

9.2 Comparison of the Measures

Let us first talk about the information measures presented in this paper. For
comparing Lozinskii’s measure (section 5) and Knight’s ones (section 6.2), Let
us quote Knight [39]:

“For when we look at proper subsets of Γ we fail to account for the affect
the remaining sentences of Γ have on the sentences of the subset. Thus
the author asserts the superiority of IL

k1 - and, indeed, IL
k2 - over such

information measures as Lozinskii’s [48, 49] that analyze the information
of a set by breaking it up into its maximal consistent subsets.”

Approaches to Measuring Inconsistent Information 227

So, one drawback of Lozinskii’ measure is that it is a “local” one, that takes
into account subsets of the whole base, but not the base as a whole for the com-
putation of the measure of information, whereas Knight’s measures are “global”
ones since they keep the knowledgebase in one piece. However, the maximal con-
sistent subset semantics seem to be natural for a lot of people (it is for example
the basis for several inference relations [52, 5, 4]), and if one looks at an inconsis-
tent knowledgebase as a knowledgebase “polluted” by some false sentences, then
trying to find the “plausible” information in the maximal consistent subsets can
be sensible. Finally, as underlined in section 9.1, those two measures work with
sets of formulae (with a single inconsistent formula still having a null informa-
tion value). This behaviour can be discussed, and can be interesting for some
applications. But, in some cases, one can wish to try to get some information
from an inconsistent formula. In this case, the previous measures cannot be used.
In this case, the information measure proposed by Konieczny et al. (section 7),
based on epistemic tests, still succeeds in extracting some non-null information
from a single inconsistent formula.

As for contradiction measures, the main measures presented in this paper
are, first the scoring functions of section 4. The obtained score ordering allows
to compare the contradiction level of different knowledgebases. Another contra-
diction measure is given by Knight’s η−consistency (section 6.1). The idea here
is also based on minimal inconsistent subsets, and, roughly, a knowledgebase is
more contradictory than another one, if the contradictions (minimal inconsistent
subsets) require more formulae. Intuitively, the more formulae are needed to pro-
duce a contradiction, the less the contradiction is strong. Knight illustrates this
idea on the lottery paradox: saying that, if there is a sufficiently large number of
tickets, a given lottery ticket is6 not winning, but it is a fact that one of the tickets
will win the lottery. That can be written: Γ = {¬w1, . . . ,¬wn, w1∨. . .∨wn}. This
knowledgebase is clearly inconsistent, but it seems sensible to say that the bigger
n, the more tolerable the inconsistency. As for information measures, the two
previous approaches trivialize when they are applied to singleton knowledgebase,
i.e. to only one formula. They both give the maximal contradiction value to an
inconsistent formula. And, even more arguably than for information measures, it
is important to be able to discriminate several inconsistent formulae. This can be
achieved by the degree of contradiction proposed by Konieczny et al. (section 7),
that do not take the formulae as atomic inconsistencies, but take propositional
variables to this aim. In this framework, it is the (maximum) number of tests
required for get rid of all inconsistencies that determine the degree of contradic-
tion. In the same way, Grant’s degree of inconsistency (section 8.1) and Hunter’s
degree of coherence take the propositional variable as atomic inconsistency, so
they can cope with singleton inconsistent knowledgebase. Those two approaches
can be used to measure the amount of contradiction in a knowledgebase. But in
both cases, the amount of contradiction is related to the amount of information
of the base. Basically, a knowledgebase is less contradictory than another one if it

6 more exactly it is rational to believe that a given (random) ticket is not winning.

228 A. Hunter and S. Konieczny

has a model that has a lowest noise7 ratio than the models of the second one. The
main difference between the two approaches lies in the underlying chosen logic.
To be able to talk about models for classically inconsistent knowledgebase, one
has to choose an underlying paraconsistent logic. Grant starts from Levesque
3-valued logic [47, 26], whereas Hunter starts from quasi-classical logic [9, 29].
Quasi-classical logic seems more adequate to handle inconsistent information (it
has, for example, a more constrained semantics), so the degree of coherence of
Hunter may seem more adequate that Grant’s degree of inconsistency. Finally
let us note the degree of significance of section 8.2, that allows us to compare the
amount of contradiction in several knowledgebases when the potential contra-
dictions are not as important. It often happens in real life that some parts of the
agents beliefs are more important than others8, so contradictions that concern
the important beliefs are much more problematic than the ones concerning the
less important ones. So if one can weight the importance of the (worries induced
by potential) contradictions, the degree of significance allows us to measure the
contradiction amount of a given knowledgebase.

10 Towards Applications

Formalisation of analyses of inconsistency information has been driven by more
intelligent techniques for handling inconsistent information in applications. In
this section, we briefly review two emerging applications, namely negotiation
between agents and comparing heterogeneous sources of information, using two
of the techniques we have presented in this review.

10.1 Negotiation Between Agents

For the following example of negotiation, we will keep the domain knowledge
separate from the perspectives of the participants. In other words, we will con-
sider the domain knowledge as being correct and not subject to negotiation.
This will allow us to focus our attention on the perspectives of the participants.
Note, we are not presenting a general framework for negotiation between agents.
Rather we are trying to show how measurement of inconsistency can be used to
evaluate each cycle in a negotiation to gauge how well the negotiation is proceed-
ing. Formalisation of multi-agent negotiation is currently the subject of much
research (see for example [2, 56]). Potentially, measures of inconsistency can be
incorporated in an existing formalisation for multi-agent negotiation.

Example 38. Consider three members of a family who are discussing their wishes
for their next family car. Let the domain knowledge Ψ be:

7 amount of “contradiction” compared to the amount of “information”.
8 For example, an agent can posses some beliefs that have no importance for its goals,

thus having very small importance.

Approaches to Measuring Inconsistent Information 229

red→ fast
fast→ ¬fuelEfficient
offRoad→ expensive
sporty→ (expensive ∧ (black ∨ red ∨ white))
¬expensive→ under$20K
cabriolet→ ¬bigCapacity
fuelEfficient→ ¬offRoad

Let the initial preferences (requirements or demands) for each family member
(participant 1, participant 2, and participant 3) be represented by Φ1

1, Φ2
1 and

Φ3
1 respectively.

Φ1
1 = {red, offRoad}

Φ2
1 = {¬expensive, fuelEfficient}

Φ3
1 = {sporty, cabriolet, bigCapacity}

So the starting point of the discussions is captured by Δ1.

Δ1 = Ψ ∪ Φ1
1 ∪ Φ2

1 ∪ Φ3
1

Let S1 be the scoring function for Δ1. Now consider S1 for some subsets of Δ1.

S1({red}) = 1 S1({bigCapacity}) = 1
S1({sporty}) = 1 S1({offRoad}) = 2
S1({fuelEfficient}) = 2 S1({¬expensive}) = 2
S1({cabriolet}) = 1 S1({red, bigCapacity}) = 2

S1(Φ1
1) = S1({red, offRoad}) = 3

S1(Φ2
1) = S1({¬expensive, fuelEfficient}) = 4

S1(Φ3
1) = S1({sporty, cabriolet, bigCapacity}) = 2

S1(Δ1) = 5

We see from S1 that each of the preferences is individually inconsistent with
the domain knowledge. We also see that Φ2

1 has the highest score (4) of the initial
preferences and it would be a good starting point for discussion.

Suppose after some discussion, Φ1
1 is changed to Φ1

2 by participant 1, Φ2
1

to Φ2
2 by participant 2, and Φ3

1 to Φ3
2 by participant 3, as follows. How this

multi-agent discussion is conducted is beyond the scope of this review. Potential
formalisms for this include [2, 56]. However, we do assume that aim of the multi-
agent discussion is that some of the agents have weakened their positions. The
measurement of inconsistency is intended to monitor this.

Φ1
2 = {red ∨ black, sporty ∨ offRoad}

Φ2
2 = {¬expensive}

Φ3
2 = {sporty, bigCapacity}

This intermediate point is captured by Δ2.

Δ2 = Ψ ∪ Φ1
2 ∪ Φ2

2 ∪ Φ3
2

230 A. Hunter and S. Konieczny

Let S2 be the scoring function for Δ2. Now consider S2 for some subsets of Δ2.

S2({sporty}) = 1
S2({¬expensive}) = 2
S2({sporty ∨ offRoad}) = 1
S2(Δ2) = 2

We see that S2 < S1. Furthermore, we see that the preference for ¬expensive
is the most problematical.

Now suppose after further discussion, Φ2
2 is changed to Φ2

3 by participant 2,
and Φ3

2 is changed to Φ3
3 by participant 3.

Φ1
3 = {red ∨ black, sporty ∨ offRoad}

Φ2
3 = {interestFreeCredit, diesel}

Φ3
3 = {sporty ∨ offRoad, bigCapacity}

This final situation is captured by Δ3.

Δ3 = Ψ ∪ Φ1
3 ∪ Φ2

3 ∪ Φ3
3

Let S3 be the scoring function for Δ3. We see that S3 < S2. Also for all Γ ∈ Δ3,
we have S3(Γ) = 0. So Δ3 could be regarded as an acceptable end-point.

In the above example, we see that the scoring functions allow us to focus on
the more problematical data, and use this to facilitate conflict resolution.

10.2 Comparing Heterogeneous Sources

We now return to the problem of comparing sources, discussed in the introduc-
tion. Here we consider how the compromise relation introduced in Section 4 can
be used directly to reject sources of information that are too inconsistent. A
threshold can be fixed and any source of information that is above this thresh-
old is automatically rejected. For example, if we set the threshold at 0.5, then
any report represented as a set of formulae Φ that together with background
knowledge Ψ is such that coherence of Φ ∪ Ψ < 0.5, then “more than half of the
information” in Φ is contradictory with respect to the background knowledge.
Similarly, for infinite models, a selected profile can be used as a threshold for
rejection of sources of information.

Definition 34. Let Φi, Φj , Ψ ∈ ℘(L). A qualified compromise relation ,Ψ

is defined as follows, where Φi and Φj are sources and Ψ is background knowledge.

Φi ,Ψ Φj iff Φi ∪ Ψ , Φj ∪ Ψ

When using a qualified compromise relation, there may be an assumption
that the background knowledge is correct, and we rank sources by their conflicts
with the background knowledge.

Approaches to Measuring Inconsistent Information 231

Example 39. Let Δ incorporate a standard axiomatization for the equality pred-
icate, denoted =, and the “less-than-or-equal-to” predicate, denoted ≤. Also
suppose we know that the list price of a new Ferrari Maranello is $200K. We
represent this as Cost(Ferrari) = $200K, and add this to the following back-
ground knowledge in Δ.

∀X Cost(X) ≤ $1K→ Cost(X) ≤ $2K
∀X Cost(X) ≤ $2K→ Cost(X) ≤ $3K

:
∀X Cost(X) ≤ $199K→ Cost(X) ≤ $200K

In general, the lower the purported value of a Ferrari in a report, the greater
the number of formulae in the background knowledge that are contradicted. Now
consider Report 1 with the information Cost(Ferrari) = $150K and Report 2
with the information Cost(Ferrari) = $15K. With this, we see Report 1 is a
preferred compromise to Report 2, and that Report 1 with Δ is more coherent
than Report 2 with Δ.

Cost(Ferrari) = $150K ,Δ Cost(Ferrari) = $15K

We could extend the above example so that we have the following holding
for any numbers V1 and V2 when V1 ≤ V2.

Cost(Ferrari) = $V1 ,Δ Cost(Ferrari) = $V2

The situation above is reflected in many real-world situations where there is
a range of possible values for the facts that are being reported, and the facts that
take values “further away” from those delineated by the background knowledge
are regarded as more inconsistent.

As an alternative approach to dealing with heterogeneous sources, we may
assume that the sources are all individually consistent with the background
knowledge, but combinations of sources are inconsistent. The , or ,Ψ relations
may then be used over all possible unions of sources. In either case, we may then
choose to select the n least compromised sources of information. These n sources
could then be used in some form of merging process such as arbitration [41, 42].

11 Discusssion

Current techniques for measuring the degree of inconsistency in a set of formulae
are underdeveloped. There has been a marked increased interest in the past three
years as reflected by new published articles on the subject. This has resulted in a
range of interesting proposals based on syntactic coherence, information theory,
probability theory, epistemic actions, and three/four-valued models. But it is a
subject that is very much in flux. At this stage it is unclear what would constitute
an ideal framework for measuring inconsistency: Though it seems that there is

232 A. Hunter and S. Konieczny

no unique measure of inconsistency. There are good arguments for a variety of
factors to be taken into account.

Concerning the degree of inconsistency, there are two main ideas developed
independently in the approaches presented in this paper. The first idea is to
state that the importance of the conflict is reflected by the number of formulae
of the knowledgebases implied in the contradiction. The more formulae needed,
the less important the conflict. Another idea is to state that the importance of
the conflict is described by the number of atoms on which we have contradictory
information. An interesting question, in the quest for definition of “the” degree
of consistency, is to know if it is possible to meld these two ideas, in order to
take these two sensible intuitions into account.

Suggestions for desirable properties are at a tentative stage. More inter-
relationships between proposals need to be established. And perhaps most sig-
nificantly, potential applications need to be developed. Since the more we know
about how they can or should be used, the better we can develop the formalisms.
In addition, there is a need to consider how some other formalisms in knowledge
representation and reasoning are relevant to the subject.

Other formalisms in knowledge representation and reasoning that touch on
the subject include: Diagnostic systems for which there are preferences for certain
kinds of consistent subsets of inconsistent information [36, 61]; Belief revision for
which epistemic entrenchment is an ordering over formulae which reflects the
preference for which formulae to give up in case of inconsistency [24] and the
Dalal distance which provides a model-theoretic characterisation of how incon-
sistent a formulae is with a consistent set of formulae [15]; Coherence-based
reasoning (for drawing inferences from inconsistent information) for which there
is a preference for inferences from some consistent subsets (e.g. [11, 7]); Para-
consistent logics for which there is an object operator denoting “acceptable”
inconsistency that can be used to differentiate acceptable and unacceptable in-
consistencies [13]; Approximate entailment for which two sequences of entailment
relation are defined (the first is sound but not complete, and the second is com-
plete but not sound) which converge to classical entailment [65]; and Partial
consistency checking for which checking is terminated after the search space
exceeds a threshold and so gives a measure of partial consistency of the data
[54]. Whilst none of these proposals provide a direct definition for degree of in-
consistency, there are clearly some important issues in common that could be
explored.

As to the choice of a particular degree of inconsistency or degree of infor-
mation, one important criterion, not mentionned until now, is its computational
complexity. So a study of the complexity of the different proposals exposed in
this paper should be a valuable work. And an open question is to know if there is
a correlation between the discriminating power of the different approaches and
their computational compelxity.

Finally, an interesting proposal for analysing the coherence of explanations
could form an interesting development of the consistency-based analysis in Sec-
tion 4. In the process of finding an explanation for some observations, there

Approaches to Measuring Inconsistent Information 233

may be multiple theories that are mutually incompatible, but each constitutes
an explanation for the observations. Consider a set of observation and a set of
possible explanations Δ. A set Γ ⊆ Δ is a support for O in some context I iff
Γ ∪ I implies O and no subset does so. Now we may have a number of these
supports for O, and we may wish to evaluate the quality of the formulae that
are used in them. In [45], a general framework for measuring support coherence
is based on the average use of formulae in the supports. Highly coherent theories
are those whose formulae that are tightly coupled to accounts for observations,
while low coherence theories may contain disjointed and isolated statements.

Acknowledgements

The authors are grateful to Eliezer Lozinskii, Kevin M. Knight, and the anony-
mous referees for helpful feedback on this paper. The second author is supported
by the IUT de Lens, the Université d’Artois, the Région Nord/Pas-de-Calais, and
by the European Community FEDER Program. Both authors are grateful to the
Royal Society and CNRS for funding travel while collaborating on this review.

References

1. C. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change:
partial meet contraction and revision functions. Journal of Symbolic Logic, 50:510–
530, 1985.

2. L. Amgoud, S. Parsons, and N. Maudet. Arguments, dialogue, and negotia-
tion. In Proceedings of the 14th European Conference on Artificial Intelligence
(ECAI’2000), 2000.

3. K. J. Arrow. Social choice and individual values. Wiley, New York, second edition,
1963.

4. C. Baral, S. Kraus, J. Minker, and V. S. Subrahmanian. Combining knowledge
bases consisting of first-order theories. Computational Intelligence, 8(1):45–71,
1992.

5. C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEE
Transactions on Knowledge and Data Engineering, 3(2):208–220, 1991.

6. N. Belnap. A useful four-valued logic. In G Epstein, editor, Modern Uses of
Multiple-valued Logic, pages 8–37. Reidel, 1977.

7. S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and
inconsistent knowledge bases. In Proceedings of Uncertainty in Artificial Intelli-
gence, pages 1449–1445. Morgan Kaufmann, 1993.

8. S. Benferhat, D. Dubois, and H. Prade. An overview of inconsistency-tolerant
inferences in prioritized knowledge bases. In Fuzzy Sets, Logic and Reasoning
about Knowledge, volume 15 of Applied Logic Series, pages 395–417. Kluwer, 1999.

9. Ph. Besnard and A. Hunter. Quasi-classical logic: Non-trivializable classical rea-
soning ¿from inconsistent information. In C Froidevaux and J Kohlas, editors,
Symbolic and Quantitative Approaches to Uncertainty, volume 946 of Lecture Notes
in Computer Science, pages 44–51, 1995.

234 A. Hunter and S. Konieczny

10. Ph. Besnard and A. Hunter. Introduction to actual and potential contradictions.
In Ph Besnard and A. Hunter, editors, Handbook of Defeasible Resoning and Un-
certainty Management Systems, volume 2, pages 1–9. Kluwer, 1998. (Series editors:
Dov Gabbay and Ph Smets).

11. G. Brewka. Preferred subtheories: An extended logical framework for default rea-
soning. In Proceedings of the Eleventh International Conference on Artificial In-
telligence, pages 1043–1048, 1989.

12. L. Cholvy and C. Garion, Querying Several Conflicting Databases. Journal Of
Applied Non-Classical Logics, 14(3):295–327, 2004.

13. W. Carnielli and J. Marcos. A taxonomy of C systems. In Paraconsistency: The
Logical Way to the Inconsistent, pages 1–94. Marcel Dekker, 2002.

14. C. Chesnevar, A. Maguitman, and R. Loui. Logical models of argument. ACM
Computing Surveys, 32:337–383, 2001.

15. M. Dalal. Investigations into a theory of knowledge base revision: Preliminary
report. In Proceedings of the 7th National Conference on Artificial Intelligence
(AAAI’88), pages 3–7. MIT Press, 1988.

16. A. Darwiche and J. Pearl. On the logic of iterated belief revision. Artificial Intel-
ligence, 89:1–29, 1997.

17. N. C. da Costa. On the theory of inconsistent formal systems. Notre Dame Journal
of Formal Logic, 15:497–510, 1974.

18. D. Dubois, S. Konieczny, and H. Prade. Quasi-possibilistic logic and its measures
of information and conflict. Fundamenta Informaticae, 57:101–125, 2003.

19. D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In Handbook of Logic in
Artificial Intelligence and Logic Programming, volume 3, pages 439–513. Oxford
University Press, 1994.

20. D. Dubois and H. Prade. Properties of measures of information in evidence and
possibility theories. Fuzzy Sets and Systems, 24:161–182, 1987. Reprinted in Fuzzy
Sets and Systems, supplement to Vol. 100, 35-49, 1999.

21. M. Elvang-Goransson and A. Hunter. Argumentative logics: Reasoning from clas-
sically inconsistent information. Data and Knowledge Engineering, 16:125–145,
1995.

22. N. Friedman and J. Y. Halpern. Belief revision: a critique. In Proceedings of
the Fifth International Conference on Principles of Knowledge Representation and
Reasoning (KR’96), pages 421–431, 1996.

23. D. Gabbay and A. Hunter. Making inconsistency respectable 1: A logical framework
for inconsistency in reasoning. In Fundamentals of Artificial Intelligence, volume
535 of Lecture Notes in Computer Science, pages 19–32. Springer, 1991.

24. P. Gärdenfors. Knowledge in Flux. MIT Press, 1988.
25. J. Grant and A. Hunter. Measuring inconsistency in knowledgebases. Technical

report, UCL Department of Computer Science, 2004.
26. J. Grant. Classifications for inconsistent theories. Notre Dame Journal of Formal

Logic, 19:435–444, 1978.
27. J. Hintikka. On semantic information. Information and Inference, pages 3–27,

1970.
28. A. Hunter. Paraconsistent logics. In Dov Gabbay and Ph Smets, editors, Handbook

of Defeasible Resoning and Uncertainty Management Systems, volume 2, pages 11–
36. Kluwer, 1998.

29. A. Hunter. Reasoning with contradictory information using quasi-classical logic.
Journal of Logic and Computation, 10:677–703, 2000.

Approaches to Measuring Inconsistent Information 235

30. A. Hunter. A semantic tableau version of first-order quasi-classical logic. In Quanti-
tative and Qualitative Approaches to Reasoning with Uncertainty, LNCS. Springer,
2001. 544–556.

31. A. Hunter. Measuring inconsistency in knowledge via quasi-classical mod-
els. In Proceedings of the 18th National Conference on Artificial Intelligence
(AAAI’2002), pages 68–73. MIT Press, 2002. ISBN 0-262-51129-0.

32. A. Hunter. Evaluating the significance of inconsistency. In Proceedings of the
International Joint Conference on AI (IJCAI’03), pages 468–473, 2003.

33. A. Hunter. Measuring inconsistency in first-order knowledge. Technical report,
UCL Department of Computer Science, 2003.

34. A. Hunter. Logical comparison of inconsistent perspectives using scoring functions.
Knowledge and Information Systems Journal, 2004. (in press).

35. J. Kemeny. A logical measure function. Journal of Symbolic Logic, 18:289–308,
1953.

36. J. De Kleer and B. Williams. Diagnosing multiple faults. Artificial Intelligence,
32:97–130, 1987.

37. K. M. Knight. Measuring inconsistency. Journal of Philosophical Logic, 31:77–98,
2001.

38. K. M. Knight. A theory of inconsistency. PhD thesis, The university of Manchester,
2002.

39. K. M. Knight. Two information measures for inconsistent sets. Journal of Logic,
Language and Information, 12:227–248, 2003.

40. S. Konieczny, J. Lang, and P. Marquis. Quantifying information and contradiction
in propositional logic through epistemic tests. In Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intellignce (IJCAI’03), pages 106–111, 2003.

41. S. Konieczny and R. Pino-Pérez. On the logic of merging. In Proceedings of
the Sixth International Conference on Principles of Knowledge Representation and
Reasoning (KR98), pages 488–498. Morgan Kaufmann, 1998.

42. S. Konieczny and R. Pino-Pérez. Merging information under constraints: a quali-
tative framework. Journal of Logic and Computation, 12(5):773–808, 2002.

43. S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial Intelligence, 44:167–207, 1990.

44. T. Kuipers, editor. What is closer-to-the-truth? Rodopi, Amsterdam, 1987.
45. R. Kwok, N. Foo, and A. Nayak. Coherence of laws. In Proceedings of the Inter-

national Joint Conference on AI (IJCAI’03), 2003.
46. D. Lehmann and M. Magidor. What does a conditional knowledge base entail?

Artificial Intelligence, 55:1–60, 1992.
47. H. Levesque. A logic of implicit and explicit belief. In Proceedings of the National

Conference on Artificial Intelligence (AAAI’84), pages 198–202, 1984.
48. E. Lozinskii. Information and evidence in logic systems. Journal of Experimental

and Theoretical Artificial Intelligence, 6:163–193, 1994.
49. E. Lozinskii. Resolving contradictions: A plausible semantics for inconsistent sys-

tems. Journal of Automated Reasoning, 12:1–31, 1994.
50. E. Lozinskii. On knowledge evolution: Acquisition, revision, contraction. Journal

of Applied Non-Classical Logic, 7:177–212, 1997.
51. D. Makinson. Handbook of Logic in Artificial Intelligence and Logic Programming,

volume III, chapter General Pattern in nonmonotonic reasoning, pages 35–110.
Clarendon Press, Oxford, 1994.

52. R. Manor and N. Rescher. On inferences from inconsistent information. Theory
and Decision, 1:179–219, 1970.

236 A. Hunter and S. Konieczny

53. P. Marquis and N. Porquet. Computational aspects of quasi-classical entailment.
Journal of Applied Non-classical Logics, 11:295–312, 2001.

54. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
55. J. B. Paris. The uncertain reasoner’s companion: a mathematical perspective. Num-

ber 39 in Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, 1994.

56. S. Parsons, M. Wooldridge, and L. Amgoud. Properties and complexity of some
formal inter-agent dialogues. Journal of Logic and Computation, 2003.

57. K. Popper. Conjectures and Refutation. Routlege and Kegan Paul, London, 1963.
58. H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In

D Gabbay, editor, Handbook of Philosophical Logic. Kluwer, 2000.
59. G. Priest. Minimally inconsistent LP. Studia Logica, 50:321–331, 1991.
60. G. Priest. Paraconsistent logic. In Handbook of Philosophical Logic, volume 6.

Kluwer, 2002.
61. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–

95, 1987.
62. P. Revesz. On the semantics of arbitration. International Journal of Algebra and

Computation, 7:133–160, 1997.
63. M. Ryan and P. Y. Schobbens. Belief revision and verisimilitude. Notre Dame

Journal of Formal Logic, 36(1):15–29, 1995.
64. L. J. Savage. The foundations of statistics. Dover Publications, New York, 1971.

Second revised edition.
65. M. Schaerf and M. Cadoli. Tractable reasoning via approximation. Artificial

Intelligence, 74:249–310, 1995.
66. G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.
67. C. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27:379–423, 1948.
68. W. Spohn. Ordinal conditional functions: a dynamic theory of epistemic states. In

W. L. Harper and B. Skyrms, editors, Causation in Decision, Belief Change, and
Statistics, volume 2, pages 105–134. Princeton University Press, 1987.

69. M. Williams. Iterated theory base change: A computational model. In Proceedings
of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95),
pages 1541–1547, 1995.

70. P. Wong and Ph. Besnard. Paraconsistent reasoning as an analytic tool. Journal
of the Interest Group in Propositional Logic, 9:233–246, 2001.

Inconsistency Issues in Spatial Databases

Andrea Rodŕıguez

Department of Computer Science
University of Concepción, Chile

andrea@udec.cl
http://inf.udec.cl/~ andrea

Abstract. This chapter analyzes inconsistency issues in spatial
databases. In particular, it reviews types of inconsistency, specification
of integrity constraints, and treatment of inconsistency in multiple rep-
resentations and data integration. The chapter focuses on inconsistency
associated with the geometric representation of objects, spatial relations
between objects, and composite objects by aggregation. The main contri-
bution of this paper is a survey of existing approaches to dealing with in-
consistency issues in spatial databases that emphasizes the current state
of the art and that outlines research issues in the context of inconsistency
tolerance.

1 Introduction

During the past several years traditional databases have been enhanced to in-
clude spatially referenced data. This type of data is an essential component of
existing applications such as Geographic Information Systems (GIS), Computer-
Aided Design (CAD), multimedia information systems, data warehousing, and
NASA’s Earth Observing System (EOS).

Spatial databases have been defined as database systems with a model and
query language that support spatial data types and provide spatial indexing and
efficient algorithms for spatial query processing [37]. Unlike classical database
theory, where the content of databases is abstract, in spatial databases the con-
tent has some interpretation and laws of real geometry hold. This interpretation
induces to much diverse classes of data structures and data manipulations. Spa-
tial databases have no clear separation between what is handled by the database
management system (DBMS) and what is handled by the software application
[48]. For example, it is not always clear whether or not an operation that finds
the shortest path in a network is part of the spatial DBMS. Consequently, there
is no consensus of what properties and features should be part of spatial data
manipulation languages.

In spatial databases, theory about spatial information is used to define spa-
tial data models or geomatic models. Spatial data models represent information
about the n-dimensional real space Rn, a space that is infinite and cannot be
represented with an extensional data model. Operations in spatial databases

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 237–269, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

238 A. Rodŕıguez

may or may not depend on the spatial data model underlying the data repre-
sentation, an issue related to the concept of genericity that was introduced in
classical databases [13] and then applied in the domain of spatial databases by
Paredaens et. al [47] [48].

The integration of spatial data into traditional database systems requires
addressing nontrivial issues at various levels. They range from ontological is-
sues about the conceptualization of space to more technical issues about access
mechanisms and file management [58]. As consequence, progress in SDBMS is
the result of an interdisciplinary research effort. The treatment of inconsistency
of spatial data also requires an interdisciplinary approach. Consistency of spatial
information must deal with ontological issues concerning physical reality [18] [34]
(e.g., an object can only have one physical location at a time). It needs to con-
sider the appropriate conceptual frameworks for analyzing spatial consistency
[24] [30] [43] [63], such as models for consistency at multiple representational
levels or granularities. It also concerns the specification language of integrity
constraints [9] [41] and the design of computational-geometry algorithms to im-
plement consistency checkers.

This chapter analyzes inconsistency issues in spatial databases. Its main con-
tribution is a survey of existing approaches to dealing with inconsistency issues
that emphasizes the state of the art and outlines research issues in the context
of inconsistency tolerance. The chapter focuses on the geometric representation
of objects (i.e., location and shape), spatial relations between objects, and com-
posite objects by aggregations. Positional information is often imprecise in spatial
databases, which may result in conflicting geometric representations of objects
(i.e., two different geometric representations for the same object). Spatial re-
lations play an important role in spatial databases, since they are usually the
basis for specifying integrity and query constraints [28]. Spatial relations are
typically derived from positional information; however, they may not be affected
by conflicting objects’ geometric representations because objects may hold the
same spatial relation in these representations [53]. Nested aggregations are fun-
damental abstraction mechanisms for modeling spatial phenomena. For example,
countries contain states that contain counties. Aggregations impose requirements
for data modeling and data consistency with respect to the relationships between
parts and wholes.

The organization of this chapter is as follows. Section 2 gives a brief overview
of spatial databases. Section 3 discusses the types and sources of inconsistency
in spatial information. Section 4 discusses the specification of constraints, con-
sistency at multiple representational levels, and consistency in the integration of
spatial information. Section 5 addresses inconsistency tolerance of spatial infor-
mation. Final conclusions are given in Section 6.

2 Spatial Database Overview

Spatial database systems consist of data about objects and properties in the
world with respect to their locations [54]. These systems deal with diverse kinds

Inconsistency Issues in Spatial Databases 239

of data, from natural to man-made features, which demands specific models
that both capture the semantics of spatial data and also offer a high level of
abstraction. At an abstract level, spatial objects can be atomic or complex.
Atomic spatial objects are composed of a description and a spatial-component
(e.g., a landparcel has a code number and a geometric component represented
by a surface), and by aggregation, complex spatial objects are composed of a
description and a set of spatial objects (e.g., a sport club may be composed of a
sport field, tennis court, gymnasium, and so on).

Abstractions that need to be supported in a SDBMS are partitions and net-
works [37]. A partition represents either a spatial feature or space cell. Partitions
are commonly used to represent thematic layers or maps (e.g., soil-type maps
and administrative boundaries). A network is seen as a graph embedded in the
plane with nodes (e.g., places) that are connected by edges (e.g., highways, rivers,
channels, and so on). Other collections of spatial objects that are often relevant
to spatial databases are nested partitions (e.g., a country is an aggregation of
states and a state is an aggregation of counties) and triangular irregular networks
(TIN) (e.g., terrain digital models).

Applications of spatial information, in particular geospatial applications, dif-
fer from traditional data applications for the following reasons [65]:
– Spatial information deals with spatial and non-spatial data, where the defi-

nition of spatial data types should be closed under the operations applicable
to them.

– Data are highly structured by the notion of object aggregation.
– The existence of user-defined operations that require an extensible underly-

ing model.
– Functions exist at both a low-level of abstraction (e.g., functions over points,

lines and polygons) and a high-level of abstraction (e.g., functions over maps
and configurations).

As an example of what is the kind of data that are modeled in a spatial
database, consider the case of a land information system (LIS) composed of
landparcels and information related to land ownership (Figure 1). A landparcel
is a spatial object that has a spatial component (e.g., a landparcel may be
represented by a surface) and attributes describing properties of the land (e.g.,
identification, owner, use, and so on). Aggregations of landparcels are sections
in the LIS. Geometric operations may be defined at the level of an individual
landparcel (e.g., the area of a landparcel) or at the level of thematic maps (e.g.,
the merge of landparels with topographic information). In addition to operations
handled by the data manipulation language, a user may need to define a new
operation over the landparcels’ geometries. For example, a user may want to
define a function that detects particular shapes of landparcels. This implies that
the underlying data model must allow the definition of new types of operations.

2.1 Spatial Data Models or Geomatic Models

Spatial modelers often make the classical distinction between field-based and
entity-based view of the space [22] [59]. In the field-based view of the space, each

240 A. Rodŕıguez

Fig. 1. A conceptual model of a portion of a land information system in UML

point in the space has one or more attribute values that are typically defined
by continuous functions in coordinates x and y (e.g., temperature, altitude, and
pollution). The view of the space is a continuous field that represents a phe-
nomenon whose attribute values vary with the position in the space. In this
view, the concept of entity or object is irrelevant. In the entity-based view of
the space, by contrast, space is composed of spatial objects that are entities
with explicit identity. Each of these views of space can be represented by using
different spatial data models.

Spatial data models depend on the operations that have to be defined and
the efficiency needs of the implementation. One of the simplest and common
models is the spaguetti model or vector model [54]. Although the vector model
is usually associated with an entity-based view of the space (e.g., Figure 1), it
can also model a field-view of the space (e.g., a digital elevation model that is
represented by a triangulated irregular network TIN). This model has efficient
algorithms for detecting properties of spatial objects (e.g., overlapping, intersec-
tion, and spatial inclusion). In this model, the information in a n-dimensional
space is represented by using m-dimensional geometric primitives, with m < n.
The common types of primitives used in this model are, where <> are lists, []
are tuples and {} are sets:

– Points or zero-dimensional primitives (e.g., the locations of utility poles can
be represented by points): [x : real, y : real].

– Polylines or one-dimensional primitives, whose data structure is a finite list
of points (e.g., the access roads to landparcels can be represented by one-
dimensional primitives) : < point >.

– Polygons or two-dimensional primitives are also represented by a list of
points, but this list represents a non self-intersecting closed polylines
(Figure 2) (e.g., the spatial component of a landparcel is described by a
two-dimensional primitive): < points >. By aggregation, complex polygons
or regions are sets of polygons: {polygon}.

Inconsistency Issues in Spatial Databases 241

Fig. 2. Polylines: (a) closed and non self-intersecting polyline and (b) closed and self-
intersecting polyline

Fig. 3. An example of the Vector Model

Using the Vector Model, in a two-dimensional space, for example, any spatial
object is presented by points or polylines, which are considered zero- and one-
dimensional geometric primitives, respectively (Figure 3). In a tree-dimensional
space, a polyhedra is represented by the boundaries of which contain planar
facets (i.e., surfaces), polylines, and points.

Other types of models that concern with practical issues of efficiency are
the raster model and the piano model [38] [39] [55], which are often, but not
always, seen as the typical way to model a field view of the space. The raster
model intentionally represents spatial information by a finite number of cells or
raster points, where the infinite number of points associated with a cell share the
same properties. The main problem of this model is the needed approximation of
geometric elements to raster points of cells (Figure 4). The piano model combines
techniques of space-filling curves and quadtrees [55]. This model encodes a linear
order of cells that partition a space while maintaining locality (i.e., cells close to
each other in the space are also close to each other in the linear order). This linear
order is done recursively for a grid that is obtained by hierarchical subdivision
of the space (Figure 4).

242 A. Rodŕıguez

Fig. 4. The Vector Model, Raster Model, and Piano Model

Focusing on theoretical issues of an entity-based view of the space, other
models are the topological model and the constraint model. The topological model
addresses data manipulation that is topological in nature. This type of data
manipulation involves concepts such as adjacency, connectivity and containment.
For example, a query that can efficiently solve in this type of models is “find
landparcels that are adjacent to the landparcel whose identifier is equal to X.”

A topological model can be seen as a planar network, with the following
primitives of interest:
– Points are pairs of real numbers: [x : real, y : real].
– Nodes are tuples composed of a point and a list of arcs in which the node is

one of the extremes: [point, < arc >].
– Arcs are tuples composed of a starting node, ending node, left polygon, right

polygon and list of internal points of the arcs :
[start node, end node, left polygon, right polygon, < point >].

– Polygons are lists of arcs < arc >.
– Regions are sets of polygons {polygon}.

To make clear the difference between the Vector model and Topological
model, consider the same spatial objects represented with these two models in
Figure 5. The difference between the two models is that the topological model
handles explicitly common boundaries and adjacency between polygons.

The constraint model defines any geometrical figure by an elementary ge-
ometry expressed by first-order logic over the real numbers [42]. The constraint
data model aims to handle infinite relations (i.e., infinite sets of points in a
space), which are represented by quantifier-free formulas. For example, consider
the same objects A and B in Figure 5, the corresponding representations in the
constraint model are:

Object Constraint-based Representation
A y ≥ 5 ∧ y ≤ 2x + 3 ∧ y ≤ −x + 12 ∧ y ≤ x + 2

B y ≤ 7 ∧ y ≤ x + 2 ∧ y ≤ 2x− 9 ∧ y ≤ −2x + 11

Inconsistency Issues in Spatial Databases 243

Fig. 5. Comparing representations of two landparcels in the Vector Model and Topo-
logical Model

In addition to the geometric representation of spatial objects (i.e., position
and shape of objects), spatial relations between objects play an important role in
spatial information systems, since such relations refer to the way people perceive,
reason, and describe spatial information in a variety of languages [28]. Models
of spatial information may be more or less efficient to determine spatial rela-
tions. Positional information is often used for determining the spatial relations
between objects and, therefore, these relations can be determined when spatial
data models, such as the vector or raster models, are used. Spatial relations
such as adjacency and containment, however, do not require absolute positional
data [11] and are efficiently handled with the topological model. For example,
one could say that two objects meet because they share a common boundary,
disregarding the exact location of the objects.

Common spatial relations are typically grouped into three kinds: topological,
orientation, and distance [61] [66]. Topological relations deal principally with
the concept of connectivity and are invariant under topological transformations,
such as rotation, translation, scaling. Orientation relations presuppose the ex-
istence of a vector space and are subject to changes under rotation, while they
are invariant under translation and scaling. Distance relations express spatial
properties that reflect the concept of a metric and, therefore, they change under
scaling, but are invariant under translation and rotation. Among these spatial
relations, topological relations have spurred much recent research [17] [20] [25]
[28] [46]. They are considered to capture the essence of a spatial configuration
−topology matters, metric refines [11].

In summary, spatial databases deal with objects that have a position in a
space as well as with spatial relations among these objects. Different models
of spatial information exist that address the geometric representation of spatial

244 A. Rodŕıguez

objects, some of them concerning theoretical issues and others concerning issues
of efficiency. It is still a research challenge to create models for spatial information
that combine a solid theoretical foundation with efficiency considerations.

2.2 Data Model and Query Language

The previous Section has reviewed models for the geometric representation of
spatial objects. Such models have been integrated into traditional database man-
agement systems to profit from well established data models and data structures
of traditional database systems. This Section concentrates on the extended re-
lation model, one of the possible data models that supports the representation
and querying of spatial objects. The extended relational model is the widest used
model in current spatial database management systems. Descriptions of other
models, such as the object-oriented data model and the constraint data model
can be found in [42][44][59][65].

In extended relational systems, end users manipulate values whose types are
basic, such as integer or characters, but also abstract data types (ADT) that are
accessible through the operations defined on them [35] [62]. In these systems,
each type of spatial objects corresponds to a relation that contains a geometric-
type attribute, such as region or line, among others. A link between relations is
handled through the standard mechanism of relational schemas; i.e., by means
of a foreign key.

Consider, for example, the cadastral application system presented in Figure 1.
The corresponding data schema in the SQL data definition language (DDL) is:

create table Township(town code: integer, name: string
geometry: region, Primary Key (town code))

create table Section(town code: integer, section code: integer,
geometry: region, Primary Key(section code),
Secondary Key(town code))

create table LandParcel(section code: integer, parcel code: integer,
geometry: region, Primary Key(parcel code),
Secondary Key(section code))

create table Person(person id: integer, name: string,
Primary Key(person id))

create table Ownership(person id: integer, parcel code: integer,
Primary Key(person id,parcel code),
Foreign Key(person id), Foreign Key(parcel code))

A spatial selection query in SQL based on the previous schema could be
“find the identifier of the town that contains the landparcel whose parcel code
is equal to X:

select t.town code from Township t, LandParcel l
where l.parcel code= ’X’ and inside(l.geometry,t.geometry)

The answer to this query will be inconsistent if two o more towns’ identifiers
(town code) are retrieved, since a lanparcel must only be part of one town. A

Inconsistency Issues in Spatial Databases 245

more complex query is, for example, “create a map and retrieve the area from the
aggregation of landparcels grouped by sections.” Such query could be expressed
in SQL as:

select area(o.geometry), sum(l.geometry) from LandParcel l, Section o
where o.section code = l.section code group by l.section code

The query answer is inconsistent if the area of the aggregation is different to
the area of the spatial component of section (i.e., if area(sum(l.geometry)) �=
area(o.geometry))), since the aggregation of the geometric parts should be equal
to the geometric whole.

3 Types and Sources of Inconsistency of Spatial
Information

Spatial information systems often must deal with different kinds of data imper-
fections, which can be classified into uncertainty, imprecision/vagueness, incom-
pleteness, and inconsistency [7] [10] [49]. Uncertainty is a kind of data imper-
fection that arises from the lack of information about the state of the world
(e.g., “if the distance between Santiago and Concepción is unknown, the time
that takes to travel from Santiago to Concepción is uncertain”); imprecision is
a kind of data imperfection that arises from the granularity of the language
used to make an imprecise statement (e.g., “Santiago is located in America”);
vagueness is a kind of imprecision that arises from the use of terms when there
are cases for which it is difficult to decide if they are covered or not by a par-
ticular concept (e.g., “Santiago is close to Concepción”); incompleteness is a
kind of imperfection that arises from the absence of some data values (e.g., a
missing road in a transportation network); and inconsistency is a kind of data
imperfection that arises from the coexistence of two contradictory facts (e.g.,
“Concepción is located at 500 km from Santiago” and “Concepción is located at
600 km from Santiago”).

From an ontological perspective, Frank [34] distinguishes consistency rules
that capture the meaning of space and time. At a bottom level, the physical
reality, which is independent of human-perception, satisfies “natural laws,” rules
that are thought to be universal; for example, the speed of an object is related
to the acceleration. At the physical-observation level; that is, the physical reality
observed through instruments, data should follow the distribution of measure-
ment values according to the expected error. For example, the distance that is
measured by an instrument must not be too different from the calculated distance
between two stored points. At the object-property level, objects should satisfy
necessary conditions. For example, a stadium must be composed of a sport field.
At the social-definition level, context constrains the consistency of data in the
form of X counts as Y in context Z. For example, a historical building is a build-
ing older than 150 years, but this is true in the context of Chile. Finally, at the
cognitive-agent level (i.e., agents are people or organizations), there should be no
contradiction with respect to the common understanding of reality by an agent.

246 A. Rodŕıguez

For example, an organization (i.e., an agent) is composed of sub-agents that are
departments of the organization. Consistency rules at this level enforce that each
of the sub-agents behaves consistently with the organization’s view of the world.

Considering ideas from [18] [69], spatial inconsistencies can be related to, but
they are not the same than, forms of error. From the perspective of the type of
characteristics the inconsistency refers to, inconsistency is related to what are
called primary or secondary forms of error. The primary form of error corre-
sponds to a wrong description of location or characteristics/qualities of spatial
objects. A typical case is the conflicting geometric representation of a spatial
object; for example, having an integrity constraint that states that objects have
only one location, there is an inconsistency derived from a primary type of error
if there exist more than one location for a spatial object. This type of inconsis-
tency occurs because there exist differences in data accuracy or precision, but
also because many observations of spatial phenomena are essentially vague. For
example, the boundaries of cities, mountains, and oceans cannot be determined
with precision, which may make two observers record two different locations for
the same object.

In general, an inconsistency associated with a primary error violates a basic
principle of location or attribute uniqueness. In spite of the desirable condition of
positional uniqueness, spatial information often deal with inaccurate coordinates
and imprecise data. Topological facts; however, may not require data about po-
sitions of objects [53] to be consistent. There may exist different geometric repre-
sentations of objects (i.e., inconsistency); however, the spatial relations between
objects may be the same in these representations (Figure 6).

Fig. 6. A configuration of two objects with two different geometric representations,
but with the same topological relation disjoint between objects

A spatial inconsistency related to a secondary error refers to a contradiction
between stored data and constraints associated with structural definitions of
geometric primitives. For example, a surface must be bounded by closed and
non self-intersecting polylines. Inconsistency may also be related to semantic
contradictions, such as when a road overlaps a body of water. These types of
inconsistency, structural or semantic, depend on the spatial domain, and they
are captured by rules that should be expressed within the data model.

Some relevant characteristics of spatial applications that should be considered
in the treatment of consistency are [8] [53]:

Inconsistency Issues in Spatial Databases 247

– Spatial information deals with spatial and non-spatial data. In addition to
inconsistency of non-spatial data, inconsistency may occur between spatial
and non-spatial or within spatial data.

– Many spatial data are inherently vague, which may lead to conflicting data.
Vagueness may make observations of a same spatial phenomenon be different
and, therefore, have conflicting representations.

– Topological and other spatial relations are very important and are usually
implicitly represented. Spatial relations are typically derived through data
manipulation such that checking topological inconsistency involves not only
to check stored facts in a database; but also to check for results of data
manipulation.

– A modification in a spatial database may cause simultaneous updates in a
large number of records. Depending on a spatial representation, a modifica-
tion of an object’s boundary may affect the representation of its neighboring
objects’ boundaries as well. For example, two partitions of the space that
share a common boundary may need an update at the same time when one
of them changes its boundaries; otherwise, partitions could overlap, which
contradicts the definition of partitions of a space.

– Spatial databases may need to treat different levels of detail in the spatial
representation. These representations may be handled as duplicate informa-
tion or may be generated dynamically through a generalization process. For
example, you may need to keep the representation of a city as a region and
a point, depending on the visualization needs of an application. Since du-
plication of information may occur, it is necessary to keep consistency of
multiple representational levels (e.g., a region cannot be a line at a coarse
representation).

– Many queries are defined in terms of combinations of functions that exist
at both a low-level of abstraction (e.g., geometry types) and a high-level
of abstraction (e.g., maps, configurations). For example, a query may be to
select the location of a lanparcel or may be to obtain a map by the merge of
lanparcels with transportation networks.

As a conclusion, differences between traditional databases and spatial data-
bases are based on the interpretation of data. The spatial domain brings up
different types of inconsistency that may require ad-hoc treatments. A con-
tradiction of facts in a traditional database is commonly determined by the
property of equality of attribute values. In spatial databases, however, a spa-
tial attribute (e.g., a region that represents a spatial object) is not only a
single value, it underlies a model of the space composed of a number of geo-
metric primitives. In this context, data consistency does not only concern with
the comparison of spatial attribute values, but also, the analysis of contradic-
tions between the stored data and the model of spatial information (e.g., a
polygon that is represented by a self-intersecting polyline contradicts the clas-
sical model where a polygon is defined by a closed and non self-intersecting
polyline).

248 A. Rodŕıguez

4 Work on Consistency in Spatial Databases

Research in the area of consistency in spatial databases has tried to clarify con-
cepts about types of consistency, incorporate integrity constraints at different
levels of the database design, and conceptualize consistency problems in gener-
alization and information-integration processes. In all cases, the research effort
has focused on how to detect or prevent inconsistencies. Although issues about
inconsistency tolerance have been addressed for traditional relational databases,
spatial databases have not handled explicitly inconsistency tolerance in query
answering.

4.1 Integrity Constraints in Spatial Databases

Inconsistency arises when integrity constraints are violated. Thus, constraints
must be taken into account when updating a database so that the semantics
and quality of data are preserved. In the spatial domain, integrity constraints
have been mainly used for preventing structural inconsistency (i.e., inconsis-
tency between stored data and rules of geometric primitives), whereas conflict-
ing information about positional information has been treated as a problem of
data accuracy.

In addition to traditional integrity constraints concerning static, transition,
and transactional aspects of databases systems [31], rules about spatial data
must ensure consistent updating of spatial information (i.e., consistency of the
geometric representation of objects with respect to a model of spatial informa-
tion). A typical classification of these spatial constraints is [18] :

– Topological constraints. Topological constraints are those constraints that
address geometrical properties and spatial relations. They may be associ-
ated with structural considerations, such as that partitions only meet or are
disjoint, or topological conditions, such as centerlines must meet at inter-
sections. Considering a subset of topological constraints, Servigne et al. [57]
defined topo-semantic constraints as those that relate geometry with seman-
tic conditions, as in the constraint that a city’s administrative region must
be contained within its corresponding city limits.

– Semantic integrity constraints. These constraints are concerned with the
meaning of geographic features; for example, landparcels are not contained
in building blocks.

– user-defined integrity constraints. These types of constraints are equivalent to
business rules in non-spatial DBMS; for example, legal rules that constraints
the installation of a gas station in a given region.

Like in traditional database systems, constraints at a conceptual and logical
level in spatial databases are inherited by the implementation or physical level.
These constraints are translated into a proprietary scripting language or into ex-
plicit constraints coded in the application programs [31]. At a logical level, Hadzi-
lacos and Tryfona [41] describe a logical model with definitions of constraints
based on topological relations. They state that it is possible but cumbersome to
define topological constraints based on absolute positions. Therefore, they use a

Inconsistency Issues in Spatial Databases 249

Table 1. Definition of topological relations between regions

δδ ◦◦ δ◦ ◦δ Relation

disjoint ∅ ∅ ∅ ∅

meet ¬∅ ∅ ∅ ∅

overlap ¬∅ ¬∅ ¬∅ ¬∅

cover ¬∅ ¬∅ ¬∅ ∅

covered by ¬∅ ¬∅ ∅ ¬∅

contain ∅ ¬∅ ¬∅ ∅

inside ∅ ¬∅ ∅ ¬∅

equal ¬∅ ¬∅ ∅ ∅

formal framework for defining topological relations [25] [27] upon which integrity
constraints are specified. This framework defines topological relations between
subsets of a classical topological space by the emptiness or non-emptiness of
the two-by-two intersections of the subsets’ interiors (◦) and boundaries (δ).
Table 1 summarizes the resulting eight possible topological relations between
two polygons. This table indicates, for example, that a disjoint relation exists
when the intersections between boundaries, between interiors, between boundary
and interior, and between interior and boundary are the empty set.

Within Hadzilacos and Tryfona’s framework [41], spatial relations and in-
tegrity constraints are expressed by using first-order logic. Atomic topologi-
cal formulae in combination create topological sentences. Atomic topological
formulae include geometric operators over objects, elementary topological rela-
tions between objects, and comparison between objects’ attributes. For exam-
ple, consider the following statement in natural language of a semantic integrity
constraint in a cadastral application: land-parcels are not contained in build-

250 A. Rodŕıguez

ing blocks. The formal specification of this constraint for land parcels lp and
building blocks bl based on the topological relations defined in Table 1 is:

∀(lp, bl)[¬inside(lp, bl) ∧ ¬covered by(lp, bl)] (1)

Some topological constraints define geometric primitives or some spatial de-
pendences of composite objects. Consider, for example, partitions of a space.
To define a partition rule in first-order logic, one needs to consider predicates
of the type Pi(x), with x being an interior point of an object Pi. The spatial
aggregation of partitions P0() . . . Pn() into W (), assuming that partitions can
only meet or be disjoint, where meet and disjoint were defined in Table 1:

∀(Pi, Pj) [meet(Pi, Pj) ∨ disjoint(Pi, Pj)] (2)

is then defined by the statement that a point x in the aggregation must belong
to one partition Pi():

∀(x)[W (x) ≡ (P0(x) ∨ P1(x) ∨ . . . ∨ Pn(x))] (3)

A graph-based model of maps has also been used to establish topological
integrity constraints of objects and their aggregations as a map [53]. This model
makes it possible to guarantee the consistency of a map through database up-
dates with respect to a set of topological constraints over vertices, edges and
faces on the map graph. Theses integrity constraints are equivalent to the math-
ematical axioms of maps that are defined by a graph that is plane, connected,
nonseparable and formed by edges that are straight lines bounding internal faces.

Some attempts have been made to provide end users with easy mechanisms
that hide the logic in specifying constraints [19] [52] [57]. An early work by
Pizarro et al. [52] presents a visual language that depicts unacceptable database
states. This visual language can then generate first-order predicates of spatial
constraints. Another study allows users to define constraints in an English-like
fashion. Basic components of the language are entity classes, relations, and qual-
ifiers (e.g., forbidden, at least n times, at least most n times, or exactly n times)
[57]. Following the same idea, Crockcroft’s work [19] extends the previous spec-
ification to include attribute values in the topological constraints. For example,
a butterfly valve must not intersect a pipe if the diameter of the pipe is greater
than 40 inches. This interface for end-users is a standalone software tool that is
integrated with a Geographic Information System (GIS).

4.2 Consistency at Multiple Representational Levels

The problem of multiple representations consists of data changing their geo-
metric and topological structure due to changes in scale. Conceptually, multiple
representations may be considered as different data sets that cover the same
area with different levels of detail. Within the context of assessing consistency
at multiple representations, topological relations are considered to be first-class
information, which must prevail in case of conflicts [24] [29] [30] [43]. This means

Inconsistency Issues in Spatial Databases 251

Fig. 7. Two representations of the same object

that, at different scales, there is no inconsistency in having different geometric
representations of a same object if some topological constraints are satisfied.

Initially, topological consistency was treated at the low level of data struc-
tures, counting nodes and arcs to assure that an object’s topology is complete
[45]. This strategy accounts for changes in the geometry of objects, but it does
not assure consistency of the relations between objects. For example, it does not
handle consistency of the topological changes that may occur when, at a coarse
representation, several parts become a single object or when holes of objects
disappear. Figure 7 shows an object at two different representational levels. In
a detailed representation, the object is composed of two holes and, in a more
coarse representation, the two holes become only one. In both representations,
however, the number of nodes and edges are the same.

Considering objects’ relations, Egenhofer et al. [24] present a framework that
treats consistency at multiple representational levels based on the comparison of
topological invariants [26]. They defined two types of equivalence: object equiva-
lence and relation equivalence between different representations. This framework
assumes that changes of topology through consecutive representational levels can
be ordered by a similarity relation ”topologically less general than or topologi-
cally as general as” (≤), a relation that is reflexive, antisymmetric, and transitive.
In this context, a representation is characterized by a set of topological invariants
(T (Oi

x)) of an object (Ox) at a given representation (i), and a set of topological
invariants between objects (T (Oi

x, Oi
y)) at a given representation (i).

The set of topological invariants of an object A (T (A)) is described by the
relation matrix between the generalized object A∗ (i.e., the object A without
holes) and the object A’s holes HA

i , and by the component invariant tables for
the boundary-boundary intersections between holes and between the generalized
object and the holes. The topological invariants of the boundary-boundary inter-
sections include the sequence of intersections and the dimension of these intersec-
tions (i.e., zero-dimensional or point, one-dimensional or line). For example, Fig-
ure 8 shows a region A with three holes HA

1 . . . HA
3 , the relation matrix of the gen-

eralized region A∗ and the holes HA
i , and the component invariant tables for the

boundary-boundary intersections. In this case, there is one boundary intersection
between A∗ and HA

1 and two boundary intersections between HA
2 and HA

3 .

252 A. Rodŕıguez

Fig. 8. A region A with three holes HA
1 . . . HA

3 , the relation matrix between the gen-
eralized region A∗ and the component invariant tables for the boundary-boundary
intersections

The topological invariants between objects is characterized by the relation
matrix between objects and by the topological invariants of the boundary-
boundary intersections between objects. These invariants are the sequence of
intersections, dimension of the intersections, type of intersections (i.e., an inter-
section crosses into or out of an object), and boundedness of boundary-boundary
intersections (i.e., whether or not the components of boundary intersection are
inside of the union of objects). As an example, consider the configuration in
Figure 9 with two objects at a given representational level and their correspond-
ing relation table and component invariant table of their boundaries.

Fig. 9. A configuration with two objects and its corresponding relation table and com-
ponent invariant tables

Egenhofer et al. classify the set of topological equivalences between repre-
sentations into three types of similarity and three types of homeomorphism
(Table 2). Within this framework, two representational levels are topologically

Inconsistency Issues in Spatial Databases 253

Table 2. Types of equivalence between representations Si and Sj

Type Rule
object-similar ∀(Oi

x ∈ Si, O
j
x ∈ Sj)

[Si ≤ Sj ⊃ T (Oi
x) ≤ T (Oj

x)]
relation-similar ∀(Oi

x, Oi
y ∈ Si, O

j
x, Oj

y ∈ Sj)
[Si ≤ Sj ⊃ T (Oi

x, Oi
y) ≤ T (Oj

x, Oj
y)]

similar ∀(Oi
x, Oi

y ∈ Si, O
j
x, Oj

y ∈ Sj)
[Si ≤ Sj ⊃ (T (Oi

x, Oi
y) ≤ T (Oj

x, Oj
y))∧

(T (Oi
x) ≤ T (Oj

x)) ∧ (T (Oi
y) ≤ T (Oj

y))]
object-homeomorphic ∀(Oi

x ∈ Si, O
j
x ∈ Sj)

[Si ≤ Sj ⊃ T (Oi
x) = T (Oj

x)]
relation-homeomorphic ∀(Oi

x, Oi
y ∈ Si, O

j
x, Oj

y ∈ Sj)
[Si ≤ Sj ⊃ T (Oi

x, Oi
y) = T (Oj

x, Oj
y)]

homeomorphic ∀(Oi
x, Oi

y ∈ Si, O
j
x, Oj

y ∈ Sj)
[Si ≤ Sj ⊃ (T (Oi

x, Oi
y) = T (Oj

x, Oj
y))∧

(T (Oi
x) = T (Oj

x)) ∧ (T (Oi
y) = T (Oj

y))]

consistent if they satisfied the conditions of topological homeomorphism; that is,
if they have the same topological invariants and relation matrices. Two different
representational levels may also be consistent if they satisfy some basic condi-
tions of topological similarity (≤) from a coarse to a detailed representation.
The basic assumption when defining these consistency rules is that the goal of
a coarse representation is to reduce the complexity of objects. For objects with
holes, this means that the number of holes should be reduced in a coarse rep-
resentation. Likewise, the number of boundary-boundary intersections between
holes and between a generalized region and a hole should get smaller. If the topo-
logical relation between holes change, it changes from disjoint to meet. Thus,
the dimension may increase from one to another representation. For example, if
two holes are moved closer to each other, a component intersection that meets
in a node may change to a meet in an edge. Like these basic rules, many other
rules exist for objects with holes and for relations between objects with holes in
different representations, which can be found in [24].

Figure 10 shows a case of relation homomorphism, because both represen-
tations have the same relation matrices, except for the fact that in the repre-
sentation j a disjoint relation between objects Bi and HA is dropped; and the
representations have identical component invariant tables for the relations be-
tween non-empty boundaries intersections (i.e., T (Ai, Bi) = T (Aj , Bj)). In this
case, the representation j may be considered a coarse or less detailed represen-
tation than the representation i.

While the work by Egenhofer et al. [24] addresses consistency at multiple
representational levels of objects with holes, a work by Tryfona and Egenhofer
[63] focuses on the computational assessment of topological consistency across
multiple representational levels of objects with disconnected parts. They define
that the generalized region A∗ of an object A with disconnected parts Ai is the
union of all its parts and all relevant connectors ΔAij between parts Ai and

254 A. Rodŕıguez

Fig. 10. Two relation-homeomorphic representations

Fig. 11. Derivable relation between an aggregate object A and object B

Aj . A connector ΔAij between parts Ai and Aj is the region that links Ai and
Aj , filling the exterior between the two parts such that Ai, ΔAij , and Aj are
connected. The basic rules of the generalized object A∗ and the parts Ai are:

∀(i)[A∗coversAi] (4)
∀(i �= j)[Ai disjoint Aj] (5)

∀(i �= j)[Ai meetΔAij ∧Aj meet ΔAij] (6)

The goal of Tryfona and Egenhofer’s work was to determine the relation be-
tween the generalized object A∗ and another object B from the relations between
B and A’s parts. This derivation is based on the analysis of the topological in-
variants defined by the set intersections of interior, boundary and exterior of
objects [26], and on the consistency-checking of scenes [30]. For example, con-
sider the case of two disjoint parts A0 and A1 and a third object B that contains
A1 (Figure 11). Then, a unique possible relation of the generalized object A∗

with respect to B is overlap. A constraint of a relation between an object B and
A∗ is terms of an A’s part Ai can be expressed by:

∀(A∗, B)[overlap(A∗, B) ≡ ∃(Ai)[overlap(Ai, B)]] (7)

In summary, multiple representations in spatial databases may not imply in-
consistent information, but rather, merely different levels of detail or scale. In
such cases, topological consistency at the level of objects and objects’ relations
must be analyzed. Analyses of consistency at multiple representational levels
are not included in current commercial DBMS, they are running as ad-hoc ap-
plications. From the perspective of consistency in spatial databases, models of
consistency at multiple representational levels lack the specification in a formal
language for their treatments as integrity constraints.

Inconsistency Issues in Spatial Databases 255

4.3 Consistency in Spatial Information Integration

This Section discusses consistency in spatial information integration that con-
siders cases where spatial data sets to be integrated contain the same features
or objects, which can be extracted from several sources at different times. The
treatment of consistency when integrating data sets with different features (e.g.,
combining cadastral with water resource data) depends on the semantics of the
features involved.

The integration of the same features from different sources may vary in relia-
bility, accuracy and scale of representation. Thus, integrating spatial information
may create conflicts due to the different representations for the same features
concerning, for example, shape, dimension, and positional accuracy. As exam-
ple, Figure 12 shows two objects, A and B, with different representations at the
same representational level, each coming from a different source. The example in
Figure 12 is inconsistent with respect to a constraint that specifies that objects
must have only one geometric representation.

Fig. 12. Different representations of two objects

In the context of data integration, different types of consistency at the same
representational level are distinguished [1]:
– Total consistency occurs when two configurations or data sets (i.e., when

elements or objects that compose configurations) are identical.
– Partial consistency occurs when partial configurations are identical (i.e.,

when subsets of elements that compose configurations are identical).
As mentioned in Section 4.2 of consistency at multiple representational levels,

two aspects of consistency when comparing data sets are object-based equiva-
lence and relation-based equivalence. Object-based equivalence analyzes objects
individually, so that it is possible to classify types of consistency in terms of the
existence, shape, dimension, size, and degree of detail of objects. Relation-based
equivalence focuses on objects’ relationships, which are classified into topologi-
cal, directional, or relative size equivalence.

The common approach to integrating different representations has assumed
that when no further information exists about the origin of data, both represen-
tations are considered to equally contribute to the integration of information. In

256 A. Rodŕıguez

cases of multiple representational levels, a preliminary step is to check whether
or not different representational levels are consistent. When representational lev-
els are consistent, a more detailed level can be mapped onto and integrated into
a less detailed level; that is, into a representation generated by a generalization
process. If, at a common representational level, two different representations
exist, partial consistency may still be possible (i.e., parts of the different repre-
sentations of an object or configuration are identical). The idea is to merge both
representations in such a way that the resulting representation is modeled as a
vague or unclear one. In modeling these unclear boundaries, three alternatives
are found [24]:
– Fuzzy models [2][56][64][71], which are based on fuzzy set theory and have

been applied to spatial uncertainty. Fuzzy set theory is an extension of clas-
sical boolean set theory that deals with different degrees of possibility that
an individual is a member of a set or that a given statement is true [70].
Examples of fuzzy spatial objects are mountains, cities, and oceans.

– Probabilistic models [12][33], which are based on probability theory to model
positional and measurement uncertainty. Probabilistic approaches model un-
certainty by determining a degree of membership of an entity in a set in terms
of statistically defined functions. An example of an unclear boundary that
can be modeled by a probabilistic model is the water level of a lake that is
not certainly known.

– Exact models [15][16][21][32], which map data models for spatial objects with
sharp boundaries onto spatial objects with broad boundaries.

Consider an example of a fuzzy representation of indeterminate regions
(Figure 13). A membership function for area A can be specified in 8, where
B stands for the region that is definitely outside of A, A/B is a region that can
be part of A or B, and da and db are the distances from a point (x, y) in the
region A/B to the core area of the region A (i.e. region where μA(x, u) = 1) and
the core area of the region B (i.e., region where μA(x, u) = 0):

μA(x, y) =

⎧⎨
⎩

1 if(x, y) ∈ A ∧ (x, y) /∈ B
1− da/(da + db) if(x, y) ∈ A ∧ (x, y) ∈ B
0 if(x, y) /∈ A ∧ (x, y) ∈ B

(8)

In the context of data integration, fuzzy theory can be used in the integra-
tion of two representations that overlap (i.e., a partial consistency). In such case,

Fig. 13. A fuzzy region

Inconsistency Issues in Spatial Databases 257

one could consider that the overlapping areas or intersections between objects
from different representations are the core areas of the integrated objects (i.e.,
dark grey of Figure 13 with membership function equal to 1) and the differ-
ences between the union and the intersection of representations are the unclear
boundary of objects (i.e., light grey region with membership function in the
range [0 . . . 1]). The regions outside of objects in both representations are con-
sidered outside of the integrated objects. Following an exact approach to handle
indeterminate boundaries, a broad boundary is associated with objects whose
boundaries are unclear after integration. In the example of Figure 14, regions
of broad boundaries are the regions that result from the difference between the
union and intersection of objects in both representations, that is, the regions
that do not clearly belong to the geometric representations of objects.

Fig. 14. Example of integration of spatial data based on previous knowledge of datasets

There are various possible strategies that can formalize the integration of
more than one observation about location in a region with broad boundaries.
These strategies make distinctions depending on the contextual information that
characterizes the quality of representations [69]. For example, consider configu-
rations in Figure 14, and assume that we know that both configurations (i.e.,
ω1 and ω2) are not accurate (i.e, there exist errors in positional information)
then, only the intersection of both representations can be considered consistent
(i.e., option (a) in Figure 14). If we consider that configuration ω2 does not in-
clude regions that it should (i.e., incomplete representation), the union of both
representations is considered consistent (i.e., option (b) in Figure 14).

Focusing on the integration of topological relations, the relation between ob-
jects with broad boundaries are described by an intersection matrix between in-
teriors (◦) (i.e., between the core of objects), broad boundaries (Δ) (i.e., between
the unclear regions of objects), and exteriors (−) [15] [60][67][68] (Figure 15). For
topological relationships between regions with broad boundaries, 44 realizable
matrices are possible.

Each intersection matrix of objects with broad boundaries has a set of topo-
logical relations that are realizable when considering changes from the core to
the broad boundary of an object. In the case of Figure 15, three possible relations
are realizables: disjoint, meet and overlap. Figure 16 shows these three alterna-
tives when one considers that the geometry of objects change from the core to

258 A. Rodŕıguez

Fig. 15. Intersection matrix of objects with broad boundaries

Fig. 16. Possible relations between objects with broad broundaries

Fig. 17. Integration of two representations

the broad boundaries. In this figure, gray lines represent the core boundary and
broad boundary of objects.

To discuss the integration of different representations, consider the example
in Figure 17, where two representations of two objects are integrated, resulting
in objects with broad boundaries. The intersection of both representations define
the core of objects and the difference between the union and the intersection de-
fines the broad boundaries for each object. The idea here is not to analyze what
the boundaries of individual objects are, but the relationship between objects;
that is, what relationships are possible between the objects given that the in-
tegration of two representations results in objects with broad boundaries. From
the point of view of consistency, if the analysis of broad boundaries determines
that there exists only one possible relation between objects based on two repre-
sentations, there is no conflicting information about the spatial relation between

Inconsistency Issues in Spatial Databases 259

objects even in presence of different representations of objects. In presence of
multiple possible relations and a constraint that enforces a unique relation be-
tween objects, multiple representations are inconsistent. In the example of Fig-
ure 17, the broad boundaries (Δ) make possible that objects are disjoint, meet or
overlap, that is, consistency cannot be guarantee based on both representations.

In the same way than models for handling multiple representational levels
of spatial objects, applications that integrate spatial information run as ad-hoc
implementations, that is, they are user-defined applications rather than tools
incorporated into current DBMS. These models also lack the specification in a
formal language for their treatments as integrity constraints.

5 Consistency Tolerance in Spatial Databases

Although there has been active research on creating efficient spatial databases,
the treatment of inconsistency in spatial databases is still a problem for cur-
rent spatial information systems [8] [23]. The models described in the previous
Sections about consistency at multiple representational levels and for data in-
tegration can be used in defining strategies for treating inconsistency in spatial
databases; however, these models have not been integrated into a query process
that explicitly addresses the answer and process of data despite the fact that
the data are inconsistent (i.e., inconsistency tolerance). Inconsistency tolerance
can be used to one’s advantage when accessing or integrating data from different
sources, or when it is inconvenient or impractical to enforce integrity constraints
during data updates.

In traditional databases, studies have addressed inconsistency tolerance in
query answers [3] [6] of a relational database schema with a set of integrity
constraints over this schema. From these studies, possible alternatives for dealing
with inconsistency in query answering are: ignoring inconsistency (i.e., using
conflicting data in the answer), eliminating inconsistency data (i.e., considering
none of the conflicting data for answer; data cleaning), and considering the
consistent answer that belongs to all consistent states of the database based on
minimum repairs. Conceptually, these alternatives could be applied in the spatial
domain when issuing queries that rely on spatial operations from the relational
algebra with spatial criteria.

For example, consider a spatial database that has conflicting representations
of spatial objects (conflicting representation of object A in Figure 18).

Using an extended relational database, the data set in Figure 18 is repre-
sented by a relation Spatial Object with the following instances, where regioni

represents a value of the geometric primitive region:

Spatial Object Name Region
A region1
A region2
B region3
C region4
D region5

260 A. Rodŕıguez

Fig. 18. An inconsistent database with different representations of an object A and a
query defined by a window @rectangle

Having the functional dependency Name → Region, meaning that the Name
functionally determines Region, the relation Spatial Object violates the func-
tional dependency, since there are two tuples with value A in attribute Name.
In this example, two selection queries based on a space window (i.e., a rectan-
gular area of the space @rectangle) that was defined by a user are:

1 select clipping(r.geometry,@rectangle)
from Regions r
where Overlaps(r.geometry,@rectangle)

2 select r.geometry
from Regions r
where Overlaps(r.geometry,@rectangle)

The first query returns the geometric parts of objects that overlap the win-
dow (@rectangle). The second query, on the other hand, returns the complete
geometry of objects that totally or partially overlap the window. In answering
these queries, the three alternatives of ignoring, eliminating, and considering
minimum repairs of traditional databases can be applied (Figure 19). For the
first query, ignoring inconsistency will return the geometric parts of both con-
sistent and inconsistent data that overlap the query window. In this case, the
conflicting representations of object A lay outside the overlapping region with
the query window such that the answer does not have conflicting information.
The situation is different, however, in the option of ignoring inconsistency for the
second query, since the answer in that case will contain conflicting information,
that is, two representations of object A that partially overlap the query window.
In both queries, eliminating inconsistency data will not consider the conflicting
data, that is, the geometry of object A is not considered as part of the answer.

The option of minimum repairs returns all the answers that belong to the
result of query evaluation in every repair [6]. In this database, there are two possi-
ble repairs, each of them considering only one tuple of object A. In answering the
first query in Figure 19, both repairs contain the same geometric area of objects
A, B, and C that overlap the query window (Figure 20); therefore, these areas

Inconsistency Issues in Spatial Databases 261

Fig. 19. Alternatives to consistent query answers from the inconsistent database

Fig. 20. Minimum repairs of the database

are part of the consistent answer. For answering the second query, since it is the
complete geometry of objects that overlap the query window what is retrieved,
only objects B and C can be considered consistent answers to this query.

The previous example of the second query illustrates that in the case of
minimum repairs, one could consider two further alternatives that depend on the
granularity of the determination of inconsistency in the geometric representation
of spatial objects. One option is to take the geometry of an object as a whole,
which is the basic case described before when making the repairs based on the
complete geometries of objects (Figure 20). The second alternative of minimum
repairs is to consider that the geometry of an object can be partially inconsistent,
in which case, the repair of the database takes the consistent parts of objects’
representations. Partial consistency may be defined by the part of the geometric
representation of objects that is equivalent in conflicting information, that is, the
intersection of geometric representations. For example, in the previous database,
one of the representations of object A is inside of the other one such that the
former corresponds to the intersection of both representations. This intersection
region, by definition, is present in all representations of object A and, therefore,
it is part of the database repair (Figure 21). In the example of the query 2 in
Figure 19, the intersection of the geometric attribute of both tuples with value
A in attribute Name will be considered in the answer.

262 A. Rodŕıguez

Fig. 21. The minimum repair of the database that considers partial consistency

Other interesting queries are those that uses criteria defined by spatial rela-
tions between objects. Spatial relations are usually derived during the query
process, and they may not require accurate data about positional informa-
tion. This type of query involves spatial joins between relations, which con-
struct the pairs of tuples from the relations whose spatial components sat-
isfy spatial predicates. When querying by spatial relations between objects,
inconsistency with respect to the representation of objects (i.e., location and
shape of objects) may not affect the consistency with respect to the spatial
relation between objects (e.g., even with conflicting positional information ex-
ists, objects can still hold the same topological relation). What is more, by
considering some metric refinements of topological relations (i.e., relative size
and distance of objects) [36], one could also determine that objects keep the
same topological relations despite the fact that they have conflicting geometric
representations.

Consider the same database of spatial objects in Figure 18 and the following
two selection queries based on a criteria of spatial relations between objects,
where the difference is in the selection component (i.e., regions’ ids or regions’
geometries):

1 select r1.id
from Regions r1, Regions r2
where r2.id =′ B′ and Overlaps(r1.geometry, r2.geometry)

2 select r1.geometry
from Regions r1, Regions r2
where r2.id =′ B′ and Overlaps(r1.geometry, r2.geometry)

In answering these queries, the geometric representation is needed for apply-
ing the spatial criteria. The answer to the first query, however, does not concern
the selection of the geometric representation of objects, but the selection of ob-
jects’ ids. Thus, since the spatial criteria is satisfied in both representations of
A, the answer to the query is the same in all repairs of the database. For the
second query, in contrast, the answer is the geometric representation of objects
so that, even if the spatial criteria is satisfied in all repairs of the database, the
answer cannot include conflicting information (Figure 22).

Inconsistency Issues in Spatial Databases 263

Fig. 22. Alternatives to consistent query answers from the inconsistent database

Fig. 23. Aggregation of inconsistency representations by modeling objects with broad
boundary

A different perspective for handling conflicting representations in answering
a query is the use of broad boundaries in a query concerning the geometric
aggregation of objects. This idea of objects with broad boundaries could be
related to the way aggregate functions have been treated in consistent query
answering from inconsistent traditional databases [4] [5] [14]. A consistent answer
to an aggregation query is defined as a minimum interval such that the value of
the aggregation function in every repair of the database belongs to this minimum
interval. The end-points of the minimum interval corresponds to the greatest
lower bound and the least upper bound answers to the query in the database.

In a query by aggregation of objects’ geometry, two different geometric rep-
resentations may lead to different aggregate objects. Answering a query may
then involve treating the aggregate object as an object with broad boundaries,
that is, an object with a crisp boundary defined by the intersection of all pos-
sible aggregations, and with a broad boundary defined by t the union of all
aggregations (Figure 23). In this case, the minimum interval of possible answer
are limited by the greatest lower bound that corresponds to the crisp region
and the least upper bound that corresponds to the region defined by the broad
boundary.

The previous examples have described conceptually the use of different al-
ternatives for dealing with inconsistency tolerance with respect to geometric
representations, without taking in consideration the computational mechanisms
for obtaining consistent answers. Other examples with different types of inconsis-
tencies, such as semantic inconsistency and topological inconsistency, and more
complex queries are also possible. In all cases, much work need to be done with
respect to what repairs and consistent answers are in spatial databases.

264 A. Rodŕıguez

The treatment of inconsistency tolerance raises new issues respect to topolog-
ical constraints. In such cases, the inconsistency is not the result of conflicting
information about the position of objects, but rather of a lack of consistency
with the rules that define the primitives of representation. For example, a typi-
cal structural constraint of a polygon is to be bounded by a non self-intersecting
and closed polyline. The satisfaction of topological constraints ensures that some
computational-geometry algorithms can be successfully executed; however, not
all of these algorithms require the same structural constraints. For example, the
boundary of a region must be defined by a closed polyline in order to calculate
the area of a region. On the other hand, a closed and non self-intersecting poly-
line is the requirement of an algorithm for determining whether or not a point
is inside of a region. So, if one only wants to compute the area of a polygon,
polylines only need to be closed. This analysis may imply that topological con-
straints may be associated with the particular use of spatial operators rather
than with a general definition of geometric primitives.

6 Conclusions

This chapter presents a review of the work on inconsistency in spatial databases.
It discusses the kinds and origins of inconsistency, the specification of integrity
constraints, and the treatment of inconsistency for representations at different
levels and for data integration. Further, it discusses how inconsistency tolerance
can be introduced in querying inconsistent spatial databases. This review high-
lightes issues about composite objects and spatial relations in the treatment of
inconsistency.

Summarizing, important issues for the treatment of inconsistency that were
discussed are:

– Inconsistency may relate to conflicting information with respect to positional
or qualitative attributes of objects or to contradictions with respect to struc-
tural and semantic rules. Structural conditions of geometric primitives have
been typically expressed as integrity constraints.

– Integrity constraints may refer to the geometric representation of objects by
making reference to conditions on the geometric types of objects (i.e., point,
polylines, regions), or they may refer to the semantic of spatial objects (e.g.,
a road cannot run into a body of water). Thus, constraints can be expressed,
for example, by points or aggregations of points (i.e, by geometric primitives),
or by objects or aggregations of objects (i.e., by objects that have a semantic
meaning, such as rivers, building and roads).

– Queries concerning spatial relations may not need a unique geometric rep-
resentation of objects and, therefore, such queries are less sensitive to con-
flicting positional information.

– Definitions of composite objects deal with sets of objects and impose con-
straints between wholes and parts to enforce consistency.

– Geometric information about spatial objects can be considered as a whole
unit (i.e., a geometric representation is consistent or inconsistent as a whole)

Inconsistency Issues in Spatial Databases 265

or can be considered as an aggregation of spatial parts (i.e., a geometric
representation is consistent, partially consistent, or totally inconsistent).

– Multiple representation levels with respect to different scales may be nec-
essary in information systems. In such cases, multiple representations are
considered consistent if they satisfy basic topological constraints.

– Different definitions of consistent answers and database repairs can be ap-
plied to spatial databases based on the interpretation and use of the geo-
metric representations.

Since this chapter has outlined issues concerning the treatment of incon-
sistency of spatial databases, it leaves the door open for exploring aspects of
formalization and implementation of mechanisms for consistent query answering
from inconsistent spatial databases. Although it was not discussed in the chap-
ter, there is an increasing interest in the research community of spatial databases
toward the management of spatial-temporal applications. These types of appli-
cations raise issues of temporal, spatial, and spatial-temporal consistency [40]
[50] [51].

Acknowledgment. Andrea Rodŕıguez’s research work is partially funded by
CONICYT under grant FONDECYT 1030301.

References

1. A. Abdelmoty and C. Jones. Towards maintening consistency in spatial databases.
In Proceedings of the Sixth International Conference on Information and Knowl-
edge Management, pages 293–300, Las Vergas, USA, 1997. ACM Press.

2. D. Altman. Fuzzy set theory approaches for hadling imprecision in spatial analysis.
International Journal of Geographic Information Science, 8(3):271–289, 1994.

3. M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent
databases. In ACM Symposium on Principles of Database Systems (PODS), pages
68–79, 1999.

4. M. Arenas, L. Bertossi, and J. Chomicki. Specifying and querying database repairs
using logic programs with exceptions. In International Conference on Flexible
Query Answering Systems (FGAS), pages 27–41. Springer-Verlag, 2000.

5. M. Arenas, L. Bertossi, and J. Chomicki. Answer sets for consistent query answer-
ing in inconsistent databases. Theory and Practice of Logic Programming, 3(4 &
5):393–424, 2003.

6. L. Bertossi and J. Chomicki. Query answering in inconsistent databases. In
J. Chimicki, G. Saake, and R. van der Meyden, editors, Logics for Emerging Ap-
plications of Databases. Springer-Verlag, 2003.

7. P. Bonnissone and R. Tong. Reasoning with uncertainty in expert systems. Inter-
national Journal of Man and Machine Studies, 22:241–250, 1985.

8. K. Borges, C. Davis, and A. Laender. Integrity constraints in spatial databases.
In Database Integrity: Challenges and Solutions. Ideas Group, 2002.

9. K. Borges, A. Laender, and C. Davis. Spatial integrity constraints in object ori-
ented geographic data modeling. In C. Bauzer-Medeiros, editor, ACM International
Symposium on Advances in GIS, pages 1–6. ACM Press, 1999.

266 A. Rodŕıguez

10. P. Bosc and H. Prade. An introduction to fuzzy set and possibility theory based
approaches to the treatment of uncertainty and imprecision in datatabase man-
agement systems. In A. Motro and P. Smets, editors, Uncertainty Management in
Information Systems: From Needs to Solutions, pages 285–324. Kluwer Academic
Publishers, 1997.

11. T. Bruns and M. Egenhoger. Similarity of spatial scenes. In International Sympo-
sium on Spatial Data Handling SDH’96, pages 31–42, Delf, The Netherlands, 1996.
Taylor and Francis.

12. P. Burrough. Natural objects with undeterminate boundaries. In A. Frank, editor,
Geographic Objects with Indeterminate Boundaries GISDATA, pages 3–28. Taylor
& Francis, 1996.

13. A. Chandra and D. Harel. Computable queries for relational database systems.
Journal of Computer and System Sciences, 21(2):156–178, 1980.

14. J. Chomicki. Consistent query answering: Recent developments and future direc-
tions. In S. Jajodia and L. Strous, editors, Working Conference on Integrity and
Internal Control in Information Systems, Lousanne, Switzerland, 2003. Kluwer
Publishers.

15. E. Clementini and P. Di Felice. An algebraic model for spatial objects with unde-
terminate boundaries. In A. Frank, editor, Geographic Objects with Indeterminate
Boundaries, pages 155–169, London, 1996. Taylor & Francis.

16. E. Clementini and P. Di Felice. Approximate topological relations. International
Journal of Approximate Reasoning, 16:73–204, 1997.

17. E. Clementini, J. Sharma, and M. Egenhofer. Modeling topological relations:
Strategies for query preprocessing. Computers and Graphics, 18(6):815–822, 1994.

18. S. Cockcroft. A taxonomy of spatial integrity constraints. GeoInformatica,
1(4):327–343, 1997.

19. S. Cockcroft. Modelling spatial data integrity constraints at the metadata level.
In D. Pullar, editor, GeoComputation, Brisbane, Australia, 2001.

20. A. Cohn, B. Bennett, J. Gooday, and N. Gotts. Representing and reasoning with
qualitative spatial relations about regions. In O. Stock, editor, Spatial and Tem-
poral Reasoning, pages 97–134. Kluwer Academic Publishers, 1997.

21. G. Cohn and N. Gotts. The ’egg-yolk’ representation of regions with indeterminate
boundaries. In A. Frank, editor, Geographic Objects with Indeterminate Bound-
aries, pages 171–187, London, 1996. Taylor & Francis.

22. H. Couclelis. People manipulate objects (but cultivate fields): Beyond the raster-
vecter debate in gis. In A. Frank, I. Campari, and U. Formentini, editors, Theories
and Methods of Spatio-Temporal Reasoning in Geographic Space. LNCS vol. 639,
pages 65–77. Springer-Verlag, 1992.

23. M. Egenhofer. Consistency revisited. GeoInformatica, 1(4):323–325, 1997.
24. M. Egenhofer, E. Clementini, and P. Di Felice. Evaluating inconsistency among

multiple representations. In Spatial Data Handling, pages 901–920, Edinburg, Scot-
land, 1994.

25. M. Egenhofer and R. Franzosa. Point-set topological spatial relations. International
Journal of Geographical Information Systems, 5(2):161–174, 1991.

26. M. Egenhofer and R. Franzosa. On the equivalence of topological relations. Inter-
national Journal of Geographical Information Systems, 8(6):133–152, 1994.

27. M. Egenhofer and J. Herring. Categorizing topological spatial relations between
point, line, and area objects. Technical Report Report 94-1, National Center for
Geographic Information Analysis, 1994.

Inconsistency Issues in Spatial Databases 267

28. M. Egenhofer and D. Mark. Naive geography. In A. Frank and W. Kuhn, editors,
Theoretical Basis for Geographic Information Systems COSIT’95, pages 1–14, Sem-
mering, Austria, 1995. Springer-Verlag.

29. M. Egenhofer and J. Sharma. Topological consistency. In P. Bresnahan, E. Corwin,
and D. Cowen, editors, Proceedings of the 5th International Symposium on Spatial
Data Handling, pages 335–343, Charleston, USA, 1992. IGU Commission of GIS.

30. M. Egenhofer and J. Sharma. Assessing the consistency of complete and incomplete
topological information. Geographical Systems, 1(1):47–68, 1993.

31. R. Elsmari and S. Navathe. Fundamentals of Database Systems. Addison Wesley,
3er edition edition, 2000.

32. M. Erwing and M. Schneider. Vague regions. In 5th Int. Symposium on Advances
in Spatial Databases SSD97. LNCS 1262, pages 298–320. Springer-Verlag, 1997.

33. J. Finn. Use of the average mutual information index in evaluating error and
consistency. International Journal of Geographic Information Science, 7(4):349–
366, 1993.

34. A. Frank. Tiers of ontology and consistency constraints in geographical information
systems. International Journal of Geographic Information Science, 15(7):667–678,
2001.

35. G. Gardarin, J.P. Cheiney, G. Kiernan, D. Pastre, and H. Stora. Managening
complex objects in an extensible relational DBMS. In Proceedings of Very Large
Data Bases, 1989.

36. F. Gody and A. Rodŕıguez. A quantitative description of spatial configurations. In
D. Richardson and P. van Oosterom, editors, Proceedings of the 10th Symposium
on Spatial Data Handling, pages 299–311. Springer, 2002.

37. R. Güting. An introduction to spatial database systems. VLDB Journal, 3:357–
399, 1994.

38. R. Güting and M. Schneider. International Symposium on Spatial Databases, Lec-
ture Notes in Computer Science Vol. 692, chapter Realms: A Foundation for Spatial
Data Types in Database Systems, pages 14–35. Springer-Verlag, 1993.

39. R. Güting and M. Schneider. Realm-based spatial data types: The rose algebra.
Technical Report 141-3-93, Fern Universität, Hagen, 1993.

40. R. Guüting, M. Böhlen, M. Erwing, C. Jensen, N. Lorentzos, M. Schneider, and
M. Vazirgiannis. Foundation for representing and querying moving objects. ACM
Transactions on Database Systems, 25(1):1–42, 2000.

41. T. Hadzilacos and N. Tryfona. A model for expressing topological constraints in
geographic databases. In A. Frank, I. Campari, and U. Formentini, editors, The-
ories and Methods of Spatio-Temporal Reasoning in Geographic Space COSIT92,
pages 252–268, Pisa, Italy, 1992. Springer-Verlag.

42. P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. Journal of
Computer and System Sciences, 51(1):26–52, 1995.

43. B. Kuipers, J. Paredaens, and J. den Busshe. On topological equivalence of spatial
databases. In F. Afrati and Ph. Kolaitis, editors, 6th International Conference on
Database Theory ICDT97, LNCS 1186, pages 432–446. Springer Verlag, 1997.

44. G. Kuper, L. Libkin, and J. Paredaens. Constraint Databases. Springer-Verlag,
2000.

45. R. Laurini and D. Thompson. Fundamentals ofr Spatial Information Systems.
Academic Press, 1992.

46. D. Papadias and Y. Theodoridis. Spatial relations, minimum bounding rectangles
and spatial data structures. International Journal of Geographical Information
Science, 11(2):111–138, 1997.

268 A. Rodŕıguez

47. J. Paredaens, J. Van den Bussche, and D. Van Gucht. Towards a theory of spatial
databases queries. In Proceedings of the 13th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 128–288. ACM Press, 1994.

48. J. Paredaens and B. Kuipers. Data models and query languages for spatial
databases. Data Knowledge Engineering, 25(1-2):29–53, 1998.

49. S. Parson. Current approaches to handling imperfect information in data and
knowledge bases. IEEE Transactions on Knowledge and Data Engineering,
8(3):353–371, 1996.

50. D. Pfoser and C. Jensen. Capturing the uncertainty of moving-object representa-
tions. In R. Güting, D. Papdias, and F. Lochovsky, editors, Proceedings of the 6th
International Symposium on the Advances in Spatial Databases, pages 111–132.
Springer Verlag, 1999.

51. D. Pfoser and N. Tryfona. Capturing fuzziness and uncertainty of spatiotemporal
objects. In A. Caplinskas and J. Eder, editors, 5th East-European Conference on
Advances in Databases and Information Systems ADBIS01. LNCS 2151, pages
112–126, Lithuania, 2001. Springer Verlag.

52. A. Pizzaro, A. Klinger, and A. Cardenas. Specification of spatial integrity con-
straints in pictorical databases. Computer, 22(12):59–71, 1989.

53. L. Plümer and G. Gröger. Achieving integrity constraints in geographic information
systemsd. GeoInformatica, 1(4):345–367, 1997.

54. P. Ragaux, M. Scholl, and A. Voisard. Spatial Databases: with Application in GIS.
Academic Press, 2002.

55. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

56. M. Schneider. Metric operations on fuzzy spatial objects in databases. In Proceed-
ings of the 8th ACm Symposium on Geographic Information Systems, pages 21–26,
Washington DC, 2000. ACM Press.

57. S. Servige, T. Ubeda, A. Puricelli, and R. Laurini. A methodology for spatial
consistency improvement of geographic databases. GeoInformatica, 4:7–24, 2000.

58. S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice Hall, 2003.
59. S. Shekhar, M. Coyle, B. Goyal, D.-R. Liu, and S. Sarkar. Data models in geo-

graphic information systems. Comm. ACM, 40(4):103–111, 1997.
60. J. Stell and M. Worboys. Stratified map spaces. In T. Poiker and N. Chrisman,

editors, Spatial Data Handling, pages 180–189, British Columbia, Canada, 1998.
Taylor & Francis.

61. O. Stock. Spatial and Temporal Reasoning. Kluwer Acaddemic Publishers, 1997.
62. M. Stonebraker and L.A. Rowe. The design of POSTGRES. In Proceedings of

ACM SIGARCT-SIGMOD, pages 340–355, 1986.
63. N. Tryfona and M. Egenhofer. Consistency among parts and aggregates: A com-

putational model. Transactions on GIS, 1(3):189–206, 1997.
64. E. Usery. A conceptual framwork and fuzzy set implementation for geographic

features. In A. Frank, editor, Geographic Objects with Undeterminate Boundaries
GISDATA, pages 71–85. Taylor & Francis, 1996.

65. A. Voisard and B. David. A database pespective on geospatial data modeling.
IEEE Transactions on Knowledge and Data Engineering, 14(2):226–246, 2002.

66. M. Worboys. A geometric model for planar geographical objects. International
Journal of Geographical Information Systems, 6(5):353–372, 1992.

67. M. Worboys. Computation with imprecise geographic data. Journal of Computers,
Environment and Urvan Systems, 22:85–106, 1998.

68. M. Worboys. Imprecision in finite resolution spatial data. GeoInformatica, 2:257–
280, 1998.

Inconsistency Issues in Spatial Databases 269

69. M. Worboys and E. Clementini. Integration of imperfect spatial information. Jour-
nal of Visual Languages and Computing, 12:61–80, 2001.

70. L. Zadeh. Fuzzy sets. Information and Control, 8:338–358, 1965.
71. F. Zhan. Approximate analysis of binary topological relations between geographic

regions with indeterminate boundaries. Soft Computing, 2:28–34, 1988.

Relevant Logic and Paraconsistency

John Slaney�

The Australian National University
and National ICT Australia,

Canberra, Australia
John.Slaney@anu.au.edu

Abstract. This is an account of the approach to paraconsistency as-
sociated with relevant logic. The logic fde of first degree entailments
is shown to arise naturally out of the deeper concerns of relevant logic.
The relationship between relevant logic and resolution, and especially the
disjunctive syllogism, is then examined. The relevant refusal to validate
these inferences is defended, and finally it is suggested that more needs
to be done towards a satisfactory theory of when they may nonetheless
safely be used.

1 Why Paraconsistency?

The core business of logic is to underpin reasoning. The distinction is impor-
tant: a logic is a theory ; reasoning is a process. The activities of a reasoner
are not dictated by logic, but are described by it in the sense that logic is-
sues permissions—assurances that certain forms of inference will never lead into
error—and restrictions. The restrictions are not on inferences, for the reasoner
may of course reason invalidly if it so wishes, but on the formation of theories not
closed under the principles enunciated in the logic. Thus logic is a guide to rea-
soning as well as a description of it: a “normative science”, as Ramsey succinctly
put it.1 That sets up the central paradox of the philosophy of logic: norms are
necessarily prior to the behaviour they circumscribe or guide, but phenomena
are prior to the science that describes them, so how is such a normative science
possible? The nature of logic will not be settled in this paper, but we may at
least investigate an important issue that bears directly upon it.

The problem arises in matching logic to the activity of reasoning with in-
consistent information. Such reasoning is desirable in practice, and apparently
rational, yet accommodating it challenges the most basic principles on which
standard formal logic is built. The standard view of contradictions is that they
are (necessarily) false, so no inference with contradictory premisses can lead into
error: if you start from a contradiction, you are already in error, so it simply

� National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council.

1 This conversational remark of Ramsey’s, reported by Wittgenstein in the Philosoph-
ical Investigations, applies equally to other formal sciences such as grammar.

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 270–293, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Relevant Logic and Paraconsistency 271

does not matter what inference you make. That is, logic validates the argument
form:

A ¬A

B

On the other side of the coin, the classical account prohibits theories which
are inconsistent in the sense of containing a contradiction but for which it is a
non-trivial question what else they contain. This prohibition is not consonant
with reasoning practice, in which it is fairly common to encounter bodies of
information which are inconsistent in ways which should not inhibit reasoning.

Three examples of such reasoning situations in which giving up in the face
of inconsistency is not an appropriate response will serve as illustrations:

1. Database management: data integration. It is common for databases to make
available data from many sources, and important for them to be able to do this
while imposing strong integrity constraints. Since the sources may have overlap-
ping domains, in which they may conflict, and since they are not always expected
to satisfy the integrity constraints, especially when taken in combination with
each other, there arises a need for the deductive part of the database to cope
with inconsistency. Many techniques for this have been suggested, sometimes
based on nonmonotonic reasoning because it is expected that consistency should
be restored through repeated revision of the data over time. However, the static
logical description of inconsistent data also demands to be taken seriously, es-
pecially as there may be cases in which the inconsistency of the global database
is undetected at the time of query answering and in which data may become
obsolete and be replaced faster than the corpus can be checked for consistency
and corrected.

2. Software engineering: merging specifications. Software specifications must fre-
quently be put together from many sources, fragments being in different lan-
guages and contributed by different experts. There may be indeterminacy as to
whether an apparent conflict (one expert says that a transition from state a to
state b is possible, while another says that a transition from state α to state β
is impossible) is to be resolved by distinguishing between a and α, b and β or
whether it should remain in the proto-specification as a genuine disagreement,
perhaps to be cleaned up later in some way. A standard move is to represent the
amalgamated specification in a logical framework where the “truth values” are
tuples of values (true, false, unknown) standing for the opinions of the various
experts from whom the fragments are taken. An alternative is to use a four-
valued scheme to allow the cases in which we have been told that something is
true, told that it is false, both or neither. The logical manipulation of this “useful
4-valued logic” [4] requires paraconsistency in order to cope with the truth value
gaps and gluts without collapse.

3. Epistemic logic: first order beliefs. It is usual in doxastic and epistemic logic
to consider belief sets closed under logical entailment rather than sets of propo-
sitions immediately and explicitly available to an agent. This concentration on

272 J. Slaney

implicit beliefs is essential to any treatment based on normal [multi-]modal log-
ics, since it is an outcome of the K principles that the belief sets in question are
deductively closed—the theories of agents rather than their explicit contents.
The question of whether an agent believes p is then one of whether p follows log-
ically from the agent’s explicit beliefs, not one of whether p is actually present
to the agent. Thus it does not lie open to introspection. In a language as rich as
first order logic, indeed, it does not lie open to effective determination at all. It is
thus quite possible for an agent to arrive at a belief that p, unaware (explicitly)
that ¬p follows from its beliefs, and thus (implicitly) to embrace a contradiction.
This situation is not particularly abnormal, and calls for paraconsistent logical
treatment, not for dismissal as a case that “cannot happen”.

There are three styles of approach to such inconsistency, very likely each
with its appropriate range of applications. Firstly, the inconsistent theory may
be regarded as a temporary departure from a previously consistent one and the
problem as one of restoring consistency by revision or some other type of non-
monotonic reasoning. Secondly, the formulae whose consequences are (globally)
inconsistent may be treated like soft constraints in an overconstrained CSP, and
“large” consistent subtheories sought without necessarily changing the inconsis-
tent theory. Of course, these two responses may be combined in various ways.
The third approach is to regard the inconsistent theory as logically respectable
just as it stands, and therefore to adopt a genuinely paraconsistent logic as the
underlying theory of valid inference. It is this third option which is the subject
of the present paper.

Paraconsistency requires inconsistent theories to be entertained without col-
lapse into triviality, and hence affects most directly the logic of negation. How-
ever, the logic of negation is obtained by fitting an account of denial into the
framework provided by positive logic. Accordingly, it is with the negation-free
part of logic that we begin the next section.

2 The Relevant Approach

There are many paraconsistent systems on the menu, but one of the oldest and
most systematically developed is relevant logic [2, 3, 21, 23] in which paraconsis-
tency is not itself the main motivation but arises naturally out of other concerns.
Those other concerns historically included securing relevance—most simply that
in the propositional part of the logic, no implication should be accounted valid
unless antecedent and consequent share a variable. The classical inference from
p ∧ ¬p to q of course violates even this simple relevance requirement. However,
the deeper motivation of the relevant family of logics is to formalise a notion
of proof in which part of what constitutes a derivation of a conclusion from as-
sumptions is that the assumptions be used in deriving the conclusion, and to
marry this structural condition on derivations with systematic logical properties
such as a decent deduction theorem and, importantly, with a very “ordinary”
account of the familiar truth-functional connectives.

Relevant Logic and Paraconsistency 273

2.1 Relevant Positive Logic

Their truth-functional character gives the operations of conjunction and dis-
junction all of their logical properties from the relevant point of view. This puts
relevant logic in the same family as intuitionist logic and the usual modal logics,
rather than that of linear logic and the other substructural systems, as regards
its treatment of the extensional connectives. Semantically, these connectives are
evaluated at each world using only information local to that world—specifically,
the values of the conjuncts or disjuncts at that world—in the standard way.
This results in the set of “positive first-degree entailments” which may be char-
acterised using ∧ and ∨ as multiary connectives thus:

1. Where p1, . . . , pm and q1, . . . , qn are all atomic,
p1 ∧ . . . ∧ pm � q1 ∨ . . . ∨ qn iff for some i ≤ m and j ≤ m, pi = qj .

2. A1 ∧ . . . ∧ Ai−1 ∧ (B ∨ C) ∧ Ai+1 ∧ . . . ∧ Am � D iff
A1 ∧ . . . ∧ Ai−1 ∧ B ∧ Ai+1 ∧ . . . ∧ Am � D and
A1 ∧ . . . ∧ Ai−1 ∧ C ∧ Ai+1 ∧ . . . ∧ Am � D

3. A � B1 ∨ . . . ∨ Bj−1 ∨ (C ∧ D) ∨ Bj+1 ∨ . . . ∨ Bn iff
A � B1 ∨ . . . ∨ Bj−1 ∨ C ∨ Bj+1 ∨ . . . ∨ Bn and
A � B1 ∨ . . . ∨ Bj−1 ∨ D ∨ Bj+1 ∨ . . . ∨ Bn

Algebraically, the structures modelling this fragment of logic are simply dis-
tributive lattices. That is, a “propositional structure” for this logic is a set on
which are defined binary operations ∧ (meet) and ∨ (join) each of which is
idempotent, commutative and associative, such that:2

a ∧ (a ∨ b) = a

a ∨ (a ∧ b) = a

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

A model in such a propositional structure is just a homomorphism from the
formula algebra into the lattice in the obvious sense, lattice meet corresponding
to conjunction and lattice join to disjunction. There is nothing specific to relevant
logic about this: the story for classical logic is exactly the same, as it is for
intuitionist logic and many others. This is worth emphasising, since it is a feature
of the relevant approach that it does not depend on any strange definition of
entailment or the like, but agrees totally with the standard logics as regards the
basic truth-functional connectives.

Classically, negation and implication are basic truth-functional connectives
as well. Relevantly, although we shall urge below that negation can reasonably
be regarded as truth-functional, implication is something else. The relevant the-
ory of implication belongs firmly to the tradition of substructural logic. There

2 As a trivial fact of lattice theory, only one of the first two and one of the last two of
these postulates are needed, but all four are given here to emphasise the complete
duality of the two operations.

274 J. Slaney

is a semantic account, to be sure, but the fundamental intuitions concerning
implication are deduction-theoretic in nature.

The essence of the implication operation, → , is encapsulated in the deduction
equivalence:

Γ � A→B iff Γ, A � B

That is, some information Γ suffices for an implication A→B iff the as-
sumption of A in the context of Γ suffices for B. The implication records the
availability of an inference from A to B. This much, too, is common to clas-
sical logic, intuitionist logic, the whole range of substructural logics, several
many-valued logics and others. Those logics tend, however, to disagree about
the details of which entailments hold among formulae involving the implication
operator. Does (p→q)→p entail p? Does (p→q)→(q→p) entail q→p? Does p
entail q→q? Does p→(p→q) entail p→q? These questions are not answered by
the deduction equivalence alone, but by the underlying theory of how inference
is structured, which differs from logic to logic. Differences at that level affect the
account of what it is to “assume A in the context of Γ”, and hence the possible
readings of the compound object Γ, A.

The fundamental idea of relevant implication is simple: a derivation of B is
not “from” a structure Γ, A as required for the deduction equivalence unless A
is in the appropriate sense used in reaching B. The paradigm cases of “use”
are clear: both premises are used in an application of the rule of detachment
in which D is derived from C and C→D, but the first premise is not used in
the derivation of D from C and D by the rule of iteration. Use is transitive, so
whatever is used in deriving lemmas from axioms is used in the derivation of a
theorem from those axioms by means of the lemmas.

The implicational fragment of the standard relevant logic R results by making
this guiding idea rigorous in a very natural way. Let X, Y , etc be the sets of
assumptions used in derivations. Note that the sets of assumptions correspond
in general to multisets of formulae, since nothing prevents two or more distinct
assumptions of the same formula. We write X : A to mean that A is derived
relevantly from assumptions X. Now the introduction and elimination rules for
the implication connective → are simple and obvious. For introduction, we have

X : B

X \ {x} : A→B

where x is an assumption of the formula A and (for relevance) it is required that
x ∈ X. The elimination rule is detachment, as is familiar:

X : A→B Y : A

X ∪ Y : B

To get the calculus started, it is of course relevantly fine to derive a formula
from an assumption of itself, though not in general from a set of assumptions of
which it happens to be a member, since there may be no way to use all the side

Relevant Logic and Paraconsistency 275

assumptions in the derivation. It will be apparent that this logic is the pure im-
plication fragment of the substructural logic BCIW: that which allows collections
of formulae to have the associative and commutative character of multisets, and
allows the structural rule of contraction, but disallows weakening. Thus, despite
its appearance and reputation as something exotic, the relevant logic of implica-
tion is actually a logic very much in the mainstream tradition: it is in fact exactly
like intuitionist pure implicational logic except for the extra feature that due at-
tention is paid to which assumptions are used and which are idle. In particular, it
does not involve violent departures from logical tradition such as non-transitive
entailment relations, restrictions on the nesting of connectives or special treat-
ment for formulae of some distinguished kind such as inconsistent ones.

R is natural, given the motivation, but it is not the only possibility. There is
not one relevant logic, just as there is not one modal logic, but a family, since the
interpretation of the guiding notion of “relevance” is an equivocal matter. The
paradigm cases of “use” may indeed be clear, but more delicate questions soon
arise. Does the order of assumptions matter? – that is, is the effect of assuming
B in the context of A different from that of assuming A in the context of B? For
the standard relevant logic R there is no difference, but the systems T and E
originally preferred by Anderson and Belnap [2] do make a distinction. Again,
how are uses to be counted? Have we used all of the assumptions in deriving A
from A, A? Not according to R: if you want to discharge A twice you have to use
it twice; in the semi-relevant system RM [7] however, repetitions don’t count.
Conversely, according to R, once an assumption is in play it may be used as often
as it takes to reach a conclusion, and then discharged in just one step, whereas
in the weaker system C, whose pure implication fragment is that of linear logic,
once an assumption is used it is consumed so to use it twice you must assume
it twice. Different decisions as to the structural rules lead to different logics,
although in a straightforward sense the meaning of the implication connective
is the same in all of them.

It is not part of the present purpose to examine the differences between the
many logics in the relevant family. Still less is it to declare one of them the
One True Logic. Rather let it be noted that they are all constructed by fitting
together the stable and relatively uncontroversial classical theory of conjunc-
tion and disjunction with a weakening-free substructural logic of implication.
Because the fundamental motivation for the former is semantic, based on the
“truth tables” for the dual pair of lattice connectives, while the latter arises
from considerations concerning the structure of deduction and is thus essentially
proof-theoretic, combining the two is not trivial. Specifically, the principle of
distributivity of ∧ over ∨ and vice versa is proof-theoretically unnatural ex-
cept in the context of intuitionist logic and the like in which the fine distinctions
required for substructurality are obliterated. The relevant logics, however, derive
their distinctive character from the way in which they manage to maintain both
the “intensional” and the “extensional” subtheories as motivated above, while
combining them without restriction in the richer logic.

276 J. Slaney

To specify the relevant positive logic R+ deductively, we use two ways of
combining assumptions: the formulae A1 through An may be collected into a
set {A1, . . . , An} or a multiset [A1, . . . , An].3 The set represents “pooling” infor-
mation, with no particular consideration for which subset is used in making a
deduction, while the multiset represents pieces of information which have been all
been used in combination. Bunching of formulae under these two operations may
be nested arbitrarily: any formula A is both an S-bunch (“set bunch”) and an
M-bunch (“multiset bunch”); any non-singleton set of M-bunches is an S-bunch
and any non-singleton multiset of S-bunches is an M-bunch. Our notation fol-
lows standard practice (e.g. [25]) whereby the comma-separated list X1, . . . , Xn

stands for {X1, . . . , Xn} while the semicolon-separated list X1; . . . ; Xn stands
for [X1, . . . , Xn]. We also write Γ (Δ) in the normal way to indicate a bunch in
which Δ occurs in some place as a sub-bunch, so Γ (Δ′) differs from it exactly in
that Δ′ occurs instead of Δ in that particular place. The logic may be presented
in natural deduction style as a calculus of sequents with bunches of formulae on
the left and single formulae on the right. The axioms are the sequents of the
form A � A and the logical (introduction and elimination) rules are:

Γ � A Δ � B
(∧I)

Γ, Δ � A ∧ B

Γ � A ∧ B
(∧E)

Γ � A

Γ � A ∧ B
(∧E)

Γ � B

Γ � A ∨ B Δ(A) � C Δ(B) � C
(∨E)

Δ(Γ) � C

Γ � A
(∨I)

Γ � A ∨ B

Γ � B
(∨I)

Γ � A ∨ B

Γ � A→B Δ � A
(→E)

Γ ; Δ � B

Γ ; A � B
(→I)

Γ � A→B

Note that the arrow goes with intensional (multiset) combination of assump-
tions, while conjunction goes with extensional (set) combination.

There are also structural rules marking the difference between sets and mul-
tisets. Both operations, symbolised by the comma and semicolon respectively,
are associative and commutative, and both satisfy contraction in the form:

3 The idea of formulating these logics with two operations for combining assump-
tions goes back at least to Dunn [8] and has since become fairly standard and been
elaborated by many authors [5, 6, 12, 20, 21, 25, 26].

Relevant Logic and Paraconsistency 277

Γ (Δ, Δ) � A
(W-set)

Γ (Δ) � A

Γ (Δ; Δ) � A
(W-multiset)

Γ (Δ) � A

Set combination, though not multiset combination, also satisfies the standard
rule of weakening:

Γ (Δ) � A
(K-set)

Γ (Δ, Δ′) � A

A small but important detail is that the empty set ∅ and the empty multiset I
are different objects satisfying the conditions ∅, Γ = Γ and I; Γ = Γ respectively.
Formula A is a logical theorem iff I � A is provable.

All of this looks very much as normal, except for the well-motivated dis-
tinction between assumptions which have been combined and those which just
co-occur. The very ordinariness of the system is what needs to be stressed: this
is a logic in the mainstream tradition of logical theory—static, monotonic and
with a familiar look. But for a few wrinkles, it could have been proposed by
Frege or Tarski.

Semantically, too, it is much what should be expected of a marriage between
a substructural treatment of implication and a truth functional account of the
lattice connectives. On the substructural side, the fundamental semantic idea
is that of combining two bodies of information, and in particular taking one
such body to supply the available inferences and applying it to another which
supplies the facts available to serve as inputs to those inferences. Thus if the first
body contains the information that all tigers are carnivores (an inference ticket)
and the second gives us the information that Timmy is a tiger (a fact), then by
applying the first to the second we may deduce that Timmy is a carnivore.

Formally [22] a frame for a logic in the relevant family is a set of evaluation
points, which may be thought of as bodies of information, or information states.
The set is partially ordered by increasing strength—intuitively, by inclusion of
the information. We write x ≤ y to mean y is stronger than x. More gener-
ally, there is a ternary relation defined on the set: Rxyz means that z contains
everything that can be derived from y by applying an inference warranted by
x.4 What properties does this relation have? In the basic case, nothing beyond
monotonicity. That is, if x or y is weakened, or if z is strengthened, the relation
Rxyz still holds. In the case of particular logics such as R there are more pos-
tulates on the relation, just as there are in the semantic stories corresponding
to modal logics stronger than K, but these are best considered as additions to
the basic theory, again as in the modal case. There is one more component to a
frame: a distinguished point 0 representing the truth, or the real world, or that
which is logically correct. Its characteristic property is that if it says that x is
included in y then x is really included in y. That is, R0xy iff x ≤ y.

4 We have sometimes [26] written Rxyz as y ≤x z which is suggestive of the meaning:
y is contained in z from the perspective of x. However, the neutral ‘R’ notation is
standard in the literature and is followed here for that reason.

278 J. Slaney

A model in such a frame is a function assigning to each atomic formula p
a set of points, intended to be those points at which p is evaluated to “true”.
Naturally, this satisfies a heredity condition that the set assigned to p is closed
under ≤. The modelling condition for implications is the obvious one: A→B
holds at a point x iff x warrants the inference from A to B; that is, for all points
y and z such that Rxyz, if A holds at y then B holds at z. The true formulae
in a model are those which hold at 0, and the valid formulae on a frame (or set
of frames) are those which are true in all models on that frame (or on all frames
in that set).

Accounting for the lattice connectives ∧ and ∨ is simple: require the evalu-
ation points to be world-like in that they treat truth-functional operators truth-
functionally. That is, A ∧ B holds at x iff A holds at x and B holds at x, and
A ∨ B holds at x iff A holds at x or B holds at x.

To secure the usual relevant logic R, it is necessary to impose conditions
saying that the “application” of points to each other is associative, commutative
and square-increasing:

1. Rabc&Rcde =⇒ ∃x(Rbdx&Raxe)
2. Rabc =⇒ Rbac
3. Raaa

Of course, these postulates are not inescapable: other logics in the family
result by modifying them in various ways, just as they result proof-theoretically
by modifying the structural rules governing premise combination. For a wide
range of such modifications, the first degree logic (with no nested arrows) is
invariant, and conversely the positive logic is a conservative extension of the
pure implication fragment.5

2.2 Negation

Just as there are many choices along the route to relevant positive logic, the
motivating considerations being insufficiently precise to determine how those
choices are to be made, so there are several more or less natural ways to add
negative particles to the logic. One possible addition is an “absurd” constant ⊥
with its characteristic property that it (relevantly) entails everything, or equiv-
alently that it holds in no world. This constant is in some sense out of the spirit
of the relevant view, though its addition is easily seen to be conservative over
the positive logic and since it is a connective, not containing variables, it does
not break the relevance conditions such as variable-sharing. It allows a sort of
negation to be defined as in intuitionist logic:

¬̂A =df A→⊥

However, this kind of negation will hardly do for relevant knowledge repre-
sentation purposes, since what we typically do with negation is to deny things

5 Completeness theorems and similar results for logics in the relevant family may be
found in many places: in [22] for instance, or more accessibly in [9] or [23].

Relevant Logic and Paraconsistency 279

on the grounds that we think they are false, and few of these things, we may
suppose, are so false that they relevantly imply absolutely everything. Absurd
negation, then, is too strong. On the other hand, relevant minimal negation is
rather weak. This is obtained by introducing the constant f without any distin-
guishing properties, and defining another kind of negation:

∼̂A =df A→ f

This is better, but suffers from the usual drawback of minimal negation, that
it does not yield much of a theory because there is nothing to mark the constant
f as a negative expression.

A more interesting possibility, yielding a much less trivial account of nega-
tion, is to add to the language a connective corresponding to the operation of
boolean complement [18]. This is easy enough both syntactically and semanti-
cally. Deductively, add to the system of positive logic outlined above the new
connective, here symbolised by overscoring, with the rules:

Γ, A � B Γ,A � B
SLEM

Γ � B

Γ � A Γ � A
ECQ

Γ � B

Note that in the rule SLEM (strong law of the excluded midddle) the boolean
negation goes essentially with the comma of set combination, establishing it as
a connective in the truth functional group, like ∧ . Note also that both this rule
and ECQ (ex contradictione quodlibet) are quite out of keeping with the concern
for relevance. The addition to relevant positive logic is conservative, however, so
there is a sense in which it does not upset relevant insights.

On the semantic side, boolean negation is naturally introduced by giving
it the expected classical truth table at each world. To secure the necessary
model-theoretic properties, however, the worlds need to be unordered. What
that amounts to is that a new “base” world 0′ be added with the property that
R0′xy iff x = y. It must then be shown that such an addition does not change
the set of valid inferences in the old vocabulary, so that every counter-model
to a nontheorem of the positive logic remains so after the addition of 0′. In the
case of a well-behaved propositional logic like R, this is routine, though in some
cases, especially in richer vocabularies, it may be nontrivial.

The question of whether to add a boolean negation to relevant logic has
traditionally divided the community of relevant logicians. There are those who,
like the founders of the field Anderson and Belnap, wish to have none of it, and
others such as Martin and Meyer [17] who wish to embrace it—at least as a kind
of recommended optional extra. Certainly the relevant use criterion for valid
implication does not sit well with inference principles such as SLEM: the latter
allows the conclusion that there is a relevant deduction of B from Γ even in the
case where all the work was done by the A and A and in which Γ may have

280 J. Slaney

been introduced by the explicitly irrelevant weakening rule K-set. Certainly also
boolean negation does not readily mix with the relevant implication connective.
Even the apparently innocent addition of relevant contraposition in the form

(A→B)→(B→A)

has unfortunate side effects such as the loss of conservative extension results.6

The standard approach to negation in relevant logics, also to be found in lin-
ear logic [13] and �Lukasiewicz many-valued logics [15] among others, is to weaken
the boolean theory sufficiently to bring it into line with the positive logic while
keeping its most important systematic property of being an involution in the
lattice sense—a dual automorphism of period 2. That is, it has the effect of
reversing the order of implication, dualising the other connectives and maintain-
ing left-right symmetry in the logical system. Its characteristic properties are
equivalences:

¬¬A -� A

¬A→¬B -� B→A

A→¬B -� B→¬A

¬A→B -� ¬B→A

¬(A ∧ B) -� ¬A ∨ ¬B

¬(A ∨ B) -� ¬A ∧ ¬B

Of course, there are one-way inference principles involving negation as well.
In R, for instance, as a result of the structural rule of exchange (commutativity
of the semicolon in the deductive system given above) we have

1. A -� (A→A)→A

from which, on substituting ¬A for A, rewriting ¬A→¬A as A→A and contra-
posing,

2. ¬A -� A→¬(A→A)

hence

3. A→¬A -� A→(A→¬(A→A))

so by contraction (W-multiset) and rewriting A→¬(A→A) as ¬A:

4. A→¬A � ¬A

This strong reductio principle does not hold in all logics in the relevant family;
Anderson and Belnap [2] postulated it by fiat for their systems T and E, but in
general it fails in systems without exchange and contraction. One of its outcomes

6 See for example [23], p.379. With strong contraposition as above, we have
A→(A→C), (A→B)→C � C which is not valid in R.

Relevant Logic and Paraconsistency 281

is the provability of the truth table tautologies in the vocabulary of ∧ , ∨ and ¬,
in virtue of the theorem A ∨ ¬A. To prove this, note that A ∧ B entails A ∨ C,
as a special instance of which A ∧ ¬A entails A ∨ ¬A. But A ∨ ¬A is equivalent
to ¬(A ∧ ¬A), so by the strong reductio principle we have both ¬(A ∧ ¬A) and
A ∨ ¬A as theorems of R.

As logical rules sufficing to govern negation in the deductive calculus, we may
take this pair:

Γ ; A � ¬B Δ � B
(¬I)

Γ ; Δ � ¬A

Γ ;¬A � B Δ � ¬B
(¬E)

Γ ; Δ � A

Note that relevant negation is defined using multiset (use-sensitive) combi-
nation of assumptions and that it thus fits well into the substructural theory of
implication underlying the intensional side of relevant logic.

It also fits the truth-functional account of the extensional connectives, with
the twist that paraconsistency and its converse are allowed. Suppose that truth
and falsehood are neither collectively exhaustive nor mutually exclusive, but
rather are treated in the formal semantics of logic as two independent properties
that propositions may have. That is, at each point in a frame, there are those for-
mulae which are asserted, or accepted, or true according to that point, and there
are those which are denied, rejected, false according to that point. A particular
formula may be simply accepted, simply rejected, both accepted and rejected (if
the evaluation is confused) or neither (if the evaluation is incomplete). Another
view of the matter is that each evaluation point presents two theories: one con-
sists of the formulae asserted and the other of the formulae not denied. Both
of these theories are required to be closed under logic. The distinctive feature
of the relevant semantics for negation is that to each evaluation point a there
corresponds another a∗ which asserts just what the first fails to deny, denies
just what the first fails to assert. The conditions governing evaluation points in
frames apply to both equally. Clearly a∗∗ = a. Equally clearly, if a is contained in
b then b∗ is contained in a∗. In fact, to secure the full force of relevant reasoning
with negation, this last condition holds also under assumptions, meaning that
if Rabc then Rac∗b∗. Naturallly, ¬A holds at a point a iff A does not hold at
a∗. The classical, boolean account of negation results by imposing the condition
a∗ = a but relevant logic, leaving open the paraconsistent possibilities, does not
require such a strong condition.7

7 There is a large literature on this kind of negation and the semantic postulates
governing it. The ’star’ operation on worlds is due to Routley and was featured in
[22], since when it has been attacked and defended many times. See [3] for an entry
point to the literature.

282 J. Slaney

As in the case of the { ∧ , ∨ } fragment, the logic of ∧ , ∨ and ¬ arises
directly from the truth functional semantics. Atomic formulae may or may not
be true, and orthogonally to that may or may not be false. Compound formulae
have truth conditions and falsehood conditions exactly as in the boolean case
except that the two are independent. Thus A ∧ B is true iff its two conjuncts
are both true (whether or not they are false as well) and false iff at least one of
them is false (whether or not it is also true). Dually, A ∨ B is true iff at least
one disjunct is true and false iff they are both false. ¬A is true iff A is false and
false iff A is true. A entails B iff B is true on every valuation on which A is
true and A is false on every valuation falsifying B. This scheme gives rise to the
logic fde of “first degree entailments” [2]. To check whether A entails B in fde
it suffices to reduce A to disjunctive normal form and B to conjunctive normal
form; the logic validates all of the DeMorgan laws, distribution principles and
other moves necessary for this reduction. Then A entails B iff each disjunct of
DNF(A) separately entails each conjunct of CNF(B). A disjunct of DNF(A) is
a conjunction of literals and a conjunct of CNF(B) is a disjunction of literals;
the former entails the latter in fde iff they have a literal in common.

fde is a well known paraconsistent logic. The reason for taking so long to
come to this point is to emphasise that in the context of relevant logic fde is not
an arbitrary choice but arises naturally from the background motivations and
is of a piece with the larger logical system. In particular, it represents a theory
of negation in harmony with the positive logic to which it is added. In the next
section fde will be defended against some common objections, after which it will
be noted that the first degree entailments themselves do not form an adequate
logical system but stand in need of extension to something like a logic in the
relevant tradition.

3 Disjunctive Syllogism: Baby or Bathwater?

It is easy enough to set up a logic to omit some unwanted principle of inference—
here the inference from a contradiction to an arbitrary conclusion—but less easy
to do this in such a way as not to lose with it too many other principles which
are not so unwanted. A common view is that the weakened logic should remain
as close as possible to classical logic while avoiding the “bad” principle, where
“as close as possible” is taken to mean that as many inference forms as possible
should be retained, and perhaps that outside the disputed area (say, in consistent
domains) the logic should be exactly classical. The logic fde draws criticism on
this point, usually for failing to validate the classical principle of the disjunctive
syllogism in the form

A ∨ B ¬A
(DS)

B

Undeniably, we sometimes reason in this way: ‘Somebody has eaten the last
cookie, and it’s not me, so it must be you!’ Simply denying that the disjunctive

Relevant Logic and Paraconsistency 283

syllogism is valid reasoning will not do, for such ordinary episodes of inference
should be accounted for rather than legislated away.

On the other hand, from a paraconsistent point of view the case against DS is
strong. Most famously, it is clearly implicated in the derivation of ECQ through
the ancient argument re-discovered some eighty years ago by C. I. Lewis:

A
(∨I)

A ∨ B ¬A
(DS)

B

In the light of this argument, every paraconsistent logic must either disallow
∨I, disallow DS or somehow allow that a two-step argument whereby a conclu-
sion is derived from a lemma which is derived from an assumption is not really
a derivation of the conclusion from the assumption. Of the possible suspects
here, DS looks by far the most guilty. Consider the premises of DS. What does
(A ∨ B) ∧ ¬A amount to? By the distributivity of ∧ and ∨ , it amounts to
(A ∧ ¬A) ∨ (B ∧ ¬A). And we have no reason to think that entails B if we are
not already wedded to the doctrine that its first disjunct does. The classical rea-
soning to obtain B from (A ∧ ¬A) ∨ (B ∧ ¬A) is that the first disjunct A ∧ ¬A
just cannot be the case and so can be ignored, leaving the second, from which B
obviously follows. But if we are in a reasoning situation in which inconsistency is
a serious possibility and in which we do not take A ∧ ¬A to entail B, it simply
is not true that the first disjunct can be ignored. In particular, in the Lewis
argument, the classical thought is that because of the ¬A, the A ∨ B can’t come
from A, so it must come from B—but this is just plain wrong, because the A ∨ B
did come from A, whatever the other premise says.

What, then, of the desideratum of staying as close as possible to classical
logic? Is fde not throwing away the baby with the bathwater, retreating from
well-motivated and useful logical principles just to be able to entertain theories
of a kind nobody really wants to regard as first-class inhabitants of logical space?

There appear to be three reasons for wanting a paraconsistent logic to retain
DS in spite of the prima facie case against it. The first is that it is essential
to keeping the logic “almost classical”. The second is that it is needed: that
reasoning would be hamstrung without it. The third, which is perhaps the most
persuasive in practice but also the least defensible is that it is just obviously good
reasoning. This last reason is also puzzling. It rests, presumably, on examples like
the one above (‘Someone has eaten the last cookie. . . ’). Yet we have seen that in
the paraconsistent context, DS is equally obviously not good reasoning, so how
is this conflict of “obvious” intuitions to be resolved? A first step is to note that
too hasty generalisation from a meagre set of examples is the enemy of logical
good sense. It may be true that we regard the reasoning in the above example
as rational, but it by no means follows that whatever plausible formalisation
we make of it may be applied with equal rationality to quite different types of
reasoning. We shall return below to this question of what it is to apply locally
inferential principles which are globally invalid, and in what sense it may be
rational to do so.

284 J. Slaney

The argument that DS is part of keeping as much as possible of classical
logic is unconvincing. There is a particular reason why the classical paradigm
is not a suitable goal for paraconsistent logic: classically, negation is the central
connective, whereas in paraconsistent logic it occcupies a less important place.
The mainspring of classical inference is the absolute intolerance of inconsistency,
whereas a guiding principle of (monotonic) paraconsistent logic is that it is pos-
sible to come to rest on a contradiction without the collapse of all rationality. In
a sense, the paradigm classical inference form is resolution: inference is driven
by the existence of a clash (a contradiction) and only by that, and what infer-
ence does is to remove the clash leaving whatever parametric literals happen to
be around. In paraconsistent logic, where even if there is nothing else around p
and ¬p together do not necessarily call for any action, resolution as classically
construed8 is an unmotivated style of reasoning. If paraconsistent logic is worth
anything, it is a decent theory of reasoning in inconsistent theories whereas clas-
sical logic furnishes no such thing. And it is not a virtue of a good theory that
it stays as close as possible to a bad one.

The remaining plea for DS, and for resolution more generally, is the pragmatic
one that reason cannot get by without it. This may be an important considera-
tion, though opponents of the classical paradigm should not concede the point
until it has been established. Naturally, whether resolution is needed depends
on the alternatives to it, and the best view of that at present is that not enough
is known to enable it to be settled.

4 First Degree Entailment and Beyond

The relevant abandonment of DS, and of the classical tenet that inference is
driven by the need to avoid contradictions, is not an arbitrary choice of response
to the Lewis argument and the like, but is an outcome of a systematic account of
logic. This account indeed stays within the orthodox logical tradition, but at a
deeper level than just maintaining certain individual theorems. It is like classical
logic and the other mainstream systems in that it allows unlimited nesting of
connectives, validates cut, is monotonic everywhere and admits semantic treat-
ment in terms of truth-preservation at worlds. However, the fragmentary logic
fde which emerges from relevant logic is capable of being examined on its own
terms as a medium for paraconsistent reasoning, and then of being re-extended
to a full system which may eventually fit that application better than the parent
relevant logic.

The best explanation of the potential value of fde in computer science ap-
plications comes by comparing it with a reasonable alternative in the form of a
“vector of values” system. The domain is software specification, and in particu-

8 There are other construals of resolution, as a form of cut rule, which is of course
fine from a relevant perspective as from many others. The complaint is only about
the view of it as resolving a clash, which makes sense only in a theory where clashes
need to be resolved.

Relevant Logic and Paraconsistency 285

lar the fusion of partial specifications gleaned from several experts or users. On
a specific question such as whether a transition is possible from state s1 to state
s2, each expert may either assert ‘yes’, assert ‘no’ or be agnostic. This makes
it natural to represent the expert’s opinions in a three-valued fashion, where
the values stand for ‘true’, ‘false’ and ‘unknown’. It is quite standard to adopt
the usual three-valued matrices, associated with Kleene, to extend the trivalent
valuation to compound formulae. If there are several experts, then instead of
obtaining just one of the three values, we obtain a vector, one value per expert.
The logical operations such as conjunction, disjunction and negation extend in a
pointwise fashion to operations on such vectors of values, permitting a semantic
representation of the situation in which partial and possibly conflicting pieces of
information are combined.

It may be suspected that since epistemic values are in question here, a multi-
agent epistemic logic along modal lines could be a better option, but in fact in
the attempt to build a theory as to the truth of the matter, rather than one as
to the beliefs of the experts, many-valued approaches seem to perform not too
badly. Let us therefore consider some advantages and shortcomings of fde as
opposed to the vector approach. A first striking difference is that fde remains
four-valued irrespective of the number of experts, whereas the vector-valued
logic (henceforth VVL) has 3k values where there are k experts. This extra
complexity of VVL is more apparent than real, however, because the theories
in the vector do not interact: the value (true, false or unknown) in each vector
position can be calculated independently of the values in other positions, so the
calculation of the value of a compound is no worse than linear in the number of
experts (and in the length of the formula, of course). Still, for fde it is linear in
just the formula length.

In a sense, the four values of fde are an abstraction from those of VVL. In
passing from VVL to fde, information is lost: the information as to who said
what. All that remains is whether at least one expert said ‘true’, and whether at
least one said ‘false’. The notion of the relationship between the logics as one of
abstraction must, however, be treated with care, because the function taking a
vector to the corresponding “abstracted” value is not a homomorphism between
the two algebras (Figure 1). That is, they go on to treat compounds in very
different ways.

Consider a simple case in which two experts a and b disagree about proposi-
tion p. a says p and b says ¬p. Suppose neither of the experts has any opinion
about q. What should we conclude about the compounds p ∧ q and p ∨ q? On
the VVL approach, p ∧ q is false for expert b because p is, and it is unknown
for expert a because for a it stands or falls with the unknown q. So it has value
〈?,⊥〉. Similarly, p ∨ q gets value 〈�, ?〉. In fde however, the conjunction and
disjunction come out simply false and simply true respectively. I have seen in-
credulity at this: if we are confused about p, how can disjoining it with something
about which we have no information at all remove the confusion and leave pure
truth? We shall return to this response below, but for now note that there is
a reasonable story to tell in reply: consider p ∨ q; we have been told that it is

286 J. Slaney

���

�?�
?�� ��?

�⊥�
??� �??

⊥�� ?�? ��⊥
�⊥? ?⊥�

⊥?� ??? �?⊥

⊥⊥⊥

⊥?⊥
?⊥⊥⊥⊥?

⊥�⊥
??⊥⊥??

�⊥⊥?⊥?⊥⊥�
⊥�??�⊥

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

VVL

=⇒

�

⊥

� �
�

�
�

�
�

�

�
�

�

�
�

�

fde

=⇒	

	
	 	

�
	 	

� 	 �
� �

� � �

⊥

⊥
⊥⊥

�
⊥⊥

�⊥�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Fig. 1. The four values of fde as an abstraction of the twenty-seven vector values of
three experts. The star represents ‘confused’ and the circle represents ‘no value’. Note
that with the trivial exception of ‘no value’, the preimages of the fde values are not
sublattices of the VVL values

true, since we have been told that p by someone who is an expert on p (we
have also been told ¬p, but never mind). Nobody, however, has told us that the
disjunction is false, because nobody has any evidence against q. Therefore, the
only truth value we have for p ∨ q is ‘true’.9

Consider another case, in which fde appears closer to the intuitively correct
view than VVL. Again the experts disagree about p, a saying p and b saying
¬p. This time, however, they also disagree about q: a says ¬q and b says q.
What now of p ∧ q and p ∨ q? On the VVL approach, the disjunction is true
and the conjunction false, because the two experts agree on that much although
their reasons for the compound assertions are completely opposite. On the fde
approach, however, we mark p ∧ q as false, because an expert has said that p is
false (and for good measure another expert has said that q is false), but we also
mark it as true for the very good reason that we have expert testimony that p
is true and also that q is true. Therefore we take the experts in combination to

9 We also have ‘unknown’, but this is better seen as the lack of a truth value than a
third value in the same sense as the other two. On the fde story, at any rate, each
proposition has a set of truth values, the values in the sets being just the classical
‘true’ and ‘false’.

Relevant Logic and Paraconsistency 287

be confused, or in disagreement, about p ∧ q, and similarly about p ∨ q. This
is surely right: it is quite possible that a is the dominant expert about p and
b about q, in which case it is quite correct to mark p ∧ q as true despite their
opinions to the contrary. Each of them has a reason to regard the conjunction
as simply false and the disjunction as simply true, and of course we have these
reasons as well, but we also have, as they do not, sufficient expert testimony to
regard the conjunction as true and the disjunction false.

At the level of representation of simple propositions, therefore, fde compares
reasonably well with certain other natural approaches to paraconsistent theory-
building. It is worth pausing to note some more features of the logic. Importantly,
there is a sense in which classical resolution-based reasoning can be reconstructed
in fde, despite the invalidity of resolution as such. For this purpose it is conve-
nient to enrich the logic slightly by adding the sentential constants t (true) and
f (false). Intuitively, t is the infinite conjunction of all tautologies: we may think
of it as

∧
i(Ai ∨ ¬Ai). Dually, we may think of f, the minimally contradictory

proposition, as
∨

i(Ai ∧ ¬Ai). Now any resolution inference of the form

A ∨ B ¬B ∨ C

A ∨ C

may be reproduced in fde with the addition of the false constant:

A ∨ B ¬B ∨ C

A ∨ C ∨ f

Hence where there is classically a derivation of the empty clause from a set
of clauses, in fde there is an analogous resolution derivation of f from the same
set of clauses. More generally, any classical resolution derivation of any formula
A has a corresponding fde derivation of A ∨ f. Of course, in fde, A ∨ f does not
imply A, because we cannot generally overlook the possibility that the situation
in which we are reasoning is itself inconsistent and contains f. However, for
showing the inconsistency of a set of clauses by resolution, fde lacks nothing in
comparison with classical logic, and for deriving an arbitrary conclusion, it is
as good provided we are prepared to tack the precautionary “. . . or I contradict
myself” onto the conclusion.

fde is, however, inadequate for all but the most basic knowledge representa-
tion purposes. The reason is that it cannot express generality. It lacks quantifiers.
Without the means to say that all men are mortal, all tigers are carnivores, all
footballers are bipeds and so forth, there is no hope of serving the essential
purpose of representing lawlike conditions or knowledge about relationships be-
tween sorts. Of course, it can easily be equipped with the familiar ‘∀x’ and ‘∃x’
with the obvious semantics, but this hardly helps. The problem is that it is not
sufficient that the language contains some particles that look like quantifiers: to
function as quantifiers, they have to validate the right inference forms. Just as
an arrow is not an implication connective unless it satisfies a rule of detachment,
so a variable-binding operator is not a universal quantifier unless it features
appropriately in the passages of inference:

288 J. Slaney

(a) Let ABC be a triangle;
then . . . 〈some reasoning〉 . . .ABC has an acute angle;
therefore every triangle has an acute angle.

(b) All footballers are bipeds;
Socrates is a footballer;
therefore Socrates is a biped.

These principles for the introduction and elimination of universal quantifiers
are central to the logic of generality, and have nothing to do with the presence
or absence of given structural rules or with attitudes towards inconsistency.
In order to formalise such reasoning, a logic must contain, or have a way of
securing, quantifiers as binary operators on formulae. It is not enough to be
able to express ‘Everything is a biped’: there must be a way to say that every
footballer is a biped. Classically, of course, ‘Everything is either a biped or else
not a footballer’ will suffice, but in a weaker logic such as fde it will not because
it does not validate argument (b) above.

The effect of introducing a binary universal quantifier is to add an implication
operator to the logic. If there is an implication → in the language, the unary
quantifier produces a binary one by the usual move of parsing ‘All A are B’ as
∀x(A→B). Conversely, if there is a suitable binary universal quantifier (∀x :
A)B expressing ‘All A are B’, it can be used to define A→B neatly, if a little
artificially, as (∀y : A)B where y is a variable not occurring free in either A or B.
In previous work on this subject [27] it was suggested that if fde is to be equipped
with universal and existential quantifiers in the most basic way, without stepping
outside the truth functional part of the logic, the semantic conditions for these
should be as follows. The notion of satisfaction (truth under an assignment to
variables) has to be accompanied by a dual notion of dissatisfaction (falsehood
under assignment to variables) in the obvious way. Then:

1. (∀x : A)B is satisfied by a valuation v iff B is satisfied by all x-variants of v
that satisfy A and A is dissatisfied by all x-variants of v that dissatisfy B.

2. (∀x : A)B is dissatisfied by a valuation v iff for some x-variant v′ of v, A is
satisfied by v′ and B is dissatisfied by v′.

3. (∃x : A)B is satisfied by a valuation v iff some x-variant of v satisfies both
A and B.

4. (∃x : A)B is dissatisfied by a valuation v iff every x-variant of v either
dissatisfies A or dissatisfies B.

This gives the implication connective the matrix:

→ � © � ⊥
� � © ⊥ ⊥
© � � © ©
� � © � ⊥
⊥ � � � �

Relevant Logic and Paraconsistency 289

The valid formulae are those which always take values � or � (if they were
required to take only � then even A→A would not be valid). Now an interesting
thing has happened, for the logic BN4 with this implication matrix does not
contain the relevant logic R. It rejects the structural rule of contraction (W-
multiset) since©→(©→⊥) evaluates to � and so does not imply©→⊥ which
evaluates to ©. In fact, the four-valued structure contains the three-valued logic
of �Lukasiewicz as the subalgebra on {�,©,⊥} and also the (unique) three-valued
matrix for R, as the subalgebra on {�,�,⊥}. We may note that no connective
definable on the four values of fde is an implication in the sense of R.

R accommodates paraconsistency without strain, and has fde as its truth
functional fragment, but it does not fit the interpretation of © as the lack of a
truth value. As already noted, R has the theorem scheme A ∨ ¬A which requires
that in any R model either A or ¬A is true at the base world 0. Hence although
there can be worlds in which A has no truth value, the real world cannot be
one of them. This is not necessarily fatal to the advertised use of fde and its
implicative extensions, to account for fusion of theory fragments, since after all
even if the experts’ knowledge leaves gaps, we may reasonably suppose that
reality does not have gaps. However, it does suggest that we might do well to
examine alternatives to the R theory of implication in the hope of finding a
plausible logic with fde as its extensional fragment that can have as a model the
partial and inconsistent theory resulting from amalgamating expert opinions.

While there are many options for enhancing fde with an implication in the
relevant family, one particularly attractive suggestion [25] is the paraconsistent
version of Nelson’s logic [19] of constructible falsity, called NP in [14]. A frame
for this system is a set of information states, partially ordered by inclusion. As
in the models of fde, truth and falsehood are independently assigned at states
in the frame, subject to the heredity condition that both truth and falsehood are
preserved under the inclusion order. This gives rise to two modelling relations
|=+ (makes true) and |=− (does not make false). The semantics of conjunction,
disjunction and negation at each state are as in fde while implication is evalu-
ated:

w |=+ A→B iff for every x such that w ⊆ x,
(i) if x |=+ A then x |=+ B;
(ii) if x |=− A then x |=− B.

w |=− A→B iff w �|=+ A or w |=− B.

Evidently, the four-valued matrix of BN4 is the special case in which there
is only one information state in the frame, so this logic is a refinement of the
“truth functional” implication most naturally associated with fde.

NP is a strong logic, an extension of linear logic with a distinctly intuitionist
flavour. It does not validate contraction, but comes as close to it as possible,
validating the structural rule

Γ ; Γ ; Δ � A Γ ; Δ; Δ � A

Γ ; Δ � A

290 J. Slaney

This is not the place to go into a detailed account of constructible falsity. The
interested reader would do well to start with [14] for a readable account and entry
to the literature. NP has been noted not only half a century ago by Nelson and
others, but more recently by a number of writers [1, 10, 11, 30] who see it as useful
especially in the context of logic programming. What is worth noting is that it
represents, at least arguably, an advance on R for the purposes of paraconsistent
reasoning such as occurs in merging databases or system specifications. In the
first place, it has the four-valued characteristic matrix of BN4 as a model,
and in the second place it is decidable in polynomial space, unlike R which is
undecidable [28] and whose decidable fragments such as the pure implication
fragment tend to have EXPSPACE-hard decision problems [29].

5 Finally: The Disjunctive Syllogism Again

Here we are thinking of the logics of constructible falsity as substructural systems
related to the relevant logics, rather than in the more usual way as intuitionist
logic with a “strong” negation. They wear both aspects, of course. Like R and
the other relevant logics, they have fde as their fragment of entailments between
extensional formulae, and therefore do not validate DS or resolution. the remain-
ing task for the present paper is to revisit DS and consider the status of reasoning
in that way in the framework of paraconsistent logics such as R or NP.

As noted in the opening section, logics which do not validate DS nonetheless
do not prohibit its use in reasoning. They offer no guarantee that such reasoning
will never go awry, and indeed those of their models which show the disputed
principle to be invalid also show how it is unreliable. They provide examples of
the circumstances in which it fails. In the case of DS, these examples are the
obvious ones of inconsistent theories which should be regarded as non-trivial.

This also points to a set of circumstances in which resolution and DS are
rational principles to use: those circumstances in which there is no threat of
inconsistency (even in counter-factual suppositions) or at least in which no in-
consistent state of information can possibly be of any interest. We must note
carefully that taking ourselves to be in such circumstances is not a mater of
making an assumption of consistency: an extra assumption cannot make an
inconsistent theory consistent, even if the extra assumption is “. . . and this is
consistent”. Rather it is a methodological decision to regard any contradiction
as rendering the reasoning state absolutely useless. As already observed,10 reso-
lution derivations can be copied inside paraconsistent logics which contain fde
provided ‘. . . ∨ f’ is tacked onto every conclusion. We can choose to disregard
the caveat, inferring A from A ∨ f, if we wish, provided we do not care about
the lack of a first-class logical guarantee for the move.

There is a class of reasoning situations in which an invalid rule such as DS may
be applied with more logical backing, namely in making deductions in theories

10 This observation has been made frequently enough before, by R. Meyer and D.
Batens among others, so no claims of originality are made for it here.

Relevant Logic and Paraconsistency 291

in which the rule, though not derivable, is provably admissible. This is general:
admissibility is all that is required, though of course derivability is the most
direct argument for admissibility no matter what the logic. It is worth rehearsing
the commonest technique for showing the admissibility of DS in theories based
on relevant logics such as R since this is independently interesting and widely
applicable (though hardly new, having been around for 35 years or so [2]).

Consider some logic L in the relevant family. By a theory we mean a set θ of
formulae closed under L entailment in the sense that where A1, . . . , An � B in
L if {A1, . . . , An} ⊆ θ then B ∈ θ. We say that θ is prime if wherever it contains
a disjunction A ∨ B it contains either A or B, that it is normal if it is prime and
consistent, and that it is regular if it contains all the theorems of L. The key
to showing that θ is closed under resolution is to show that θ is the intersection
of its normal supertheories. For classical logic, this amounts to Lindenbaum’s
lemma (θ is the intersection of its maximal consistent supertheories) but for L it
must be remembered that maximal theories are not in general normal, and that
the lemma is not true of arbitrary θ—it is a rather special feature that must be
proved again for each individual case. Clearly, if A ∨ B and ¬A ∨ C are both in
θ, then every normal supertheory of θ contains B ∨ C, because it either contains
A or contains B and either contains ¬A or contains C, and it does not contain
both A and ¬A, so if θ is the intersection of such theories, it too contains B ∨ C.
Adding unification to resolution for the purposes of this observation is merely a
technical detail.

The standard procedure is to construct normal extensions of θ by metaval-
uation, a technique dating back at least to the 1950s and Harrop’s work on
intuitionist logic. Where N is a nontheorem of θ, there is by Zorn’s lemma a
maximal θ′ extending θ while excluding N (with appropriate machinery to deal
with existentials as always in completeness proofs). Now set T to agree with θ′

on atomic formulae, define it to contain A ∧ B iff it contains both A and B,
A ∨ B if it contains A or contains B, and ∃xA iff it contains At

x for some term
t free for x in A. ¬A ∈ T iff both A /∈ T and ¬A ∈ θ′. Similarly, A→B ∈ T
iff both A→B ∈ θ′ and if A ∈ T then B ∈ T . Finally, ∀xA ∈ T iff At

x ∈ T for
every t free for x in A and ∀xA ∈ θ′. It remains to show that T is normal (which
is trivial) and that θ ⊆ T ⊆ θ′ (which is not trivial). The hard part of the proof
is usually to show that all the axioms of θ are in T .

Many piecemeal results by metavaluation have been established, including
crucially the cases in which θ is the set of theorems of a logic such as R or E.
Some special theories have also been shown to admit DS, including the infinitary
arithmetic R##, and some others have been shown not to admit DS, including
the relevant Peano arithmetic R# [16]. The technique has also been elaborated
to deal with contraction-free logics in the family such as C and NP [24] but there
remain serious limits to what has been done. Most annoyingly, the technique
has been restricted to regular theories—this is natural, since in regular theories
the closure conditions are just detachment and adjunction, the logical theorems
supplying the rest—but many irregular theories are closed under resolution too,
and it would be satisfying to have a routine way of applying metavaluations to
them.

292 J. Slaney

6 Conclusion

Relevant logic, considered as a family of systems rather than one specific theory,
presents a coherent approach to paraconsistent reasoning while remaining within
the mainstream logical tradition in many ways. This is not to deny a place to
nonmonotonic reasoning as a way of restoring consistency in flawed theories,
nor to soft constraint solving as an approach to overconstrained problems. It
is merely to offer a logical point of view from which inconsistent theories may
be admitted as first class logical citizens without putting an end to critical
rationality.

An examination of one common source of resistance to the relevant approach,
the supposed plausibility of resolution and its special case the disjunctive syllo-
gism, suggests that these are in fact poorly motivated in inconsistent contexts,
and that there is no particular virtue in trying to maximise preservation of
them. It does, however, open the issue of when these inference forms can be
used responsibly. To that question there is as yet no completely satisfactory
answer.

What is clear, however, is that a thoroughgoing paraconsistency, seen as logi-
cal reasoning of the plain deductive variety rather than as a process of reconciling
conflicting but individually consistent theories, is an option and is in tune with
an account of logic that stands on its own terms, rather than as paraconsistent
superstructure on a classical foundation.

References

1. S. Akama. Tableaux for Logic Programming with Strong Negation. Proceedings
of the Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX’97), 1997, 31–42.

2. A. R. Anderson and N. D. Belnap. Entailment: The Logic of Relevance and Neces-
sity, Vol 1. Princeton University Press, Princeton, 1975.

3. A. R. Anderson, N. D. Belnap and J. M. Dunn. Entailment: The Logic of Relevance
and Necessity, Vol 2. Princeton University Press, Princeton, 1992.

4. N. D. Belnap. A Useful Four-Valued Logic. Dunn and Epstein (eds), Modern Uses
of Multiple-Valued Logics, Reidel, Dordrecht, 1977: 8–37.

5. N. D. Belnap. Display Logic. Journal of Philosophical Logic 11 (1982): 375–417.
6. R. Brady. Universal Logic. Cambridge University Press, Cambridge, 2001.
7. J. M. Dunn. Algebraic Completeness Results for R-mingle and its Extensions.

Journal of Symbolic Logic 35 (1970): 1–13. Reprinted in [2].
8. J. M. Dunn. A ‘Gentzen’ System for Positive Relevant Implication. Journal of

Symbolic Logic 38 (1974): 356–357 (abstract). Reprinted in [2].
9. J. M. Dunn. Relevance Logic and Entailment. in D. Gabbay and F. Günthner (eds)

Handbook of Philosophical Logic Vol. 3, Reidel, Dordrecht, 1986: 117–229.
10. T. Eiter, N. Leone and D. Pearce. Assumption Sets for Extended

Logic Programs. JFAK. Essays dedicated to Johan van Benthem on
the occasion of his 50th birthday. Amsterdam University Press, 1999.
http://www.illc.uva.nl/j50/contribs/pearce/.

Relevant Logic and Paraconsistency 293

11. M. Gelfond. Representing Knowledge in A-Prolog. Computational Logic 2408:
‘Logic Programming and Beyond: Essays in honour of Robert A. Kowalski’ (2002):
413–451.

12. S. Giambrone and A. Urquhart. Proof theories for Semilattice Relevant Logics.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 33 (1987:
301–304.

13. J.-Y. Girard. Linear Logic. Theoretical Computer Science 50, 1987: 1–101.
14. I. Hasuo and R. Kashima. A Proof-Theoretical Study on Logics with

Constructible Falsity. Report C-165, research Reports on Mathemat-
ical and Computing Sciences, Tokyo Institute of Technology, 2003,
http://www.is.titech.ac.jp/research/research-report/C/

15. J. �Lukasiewicz. Selected Works (ed. L. Borkowski), North-Holland, Amsterdam,
1970.

16. R. K. Meyer and H. Friedman. Whither Relevant Arithmetic? Journal of Symbolic
Logic 57 (1992): 824–831.

17. R. K. Meyer and E. P. Martin. Logic on the Australian Plan. Journal of Philo-
sophical Logic 15 (1986): 305–332.

18. R. K. Meyer and R. Routley, Classical Relevant Logics, I and II. Studia Logica 32
(1973): 51–66 and 33 (1973): 183–194.

19. D. Nelson. Constructible Falsity. Journal of Symbolic Logic 14 (1949): 16–26.
20. D. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications.

Kluwer, Dordrecht, 2002.
21. Relevant and Substructural Logics. in D. Gabbay and J. Woods (eds) Handbook of

the History and Philosophy of Logic forthcoming.
22. R. Routley and R. Meyer. Semantics of Entailment. in H. Leblanc (ed) Truth,

Syntax, Modality, North Holland, 1973: 194–243.
23. R. Routley, V. Plumwood, R. Meyer and R. Brady. Relevant Logics and their

Rivals. Ridgeview, Atascadero CA, 1982.
24. J. Slaney. Reduced Models for Relevant Logics Without WI. Notre Dame Journal

of Formal Logic 28 (1987): 395–407.
25. J. Slaney. A General Logic. Australasian Journal of Philosophy 68 (1990): 74–88.
26. J. Slaney and R. Meyer. Logic for Two: The Semantics of Distributive Substruc-

tural Logics. Proceedings of the Conference on Qualitative and Quantitative Prac-
tical Reasoning (ECSQARU-FAPR) (1997): 554–567.

27. J. Slaney. The Implications of Paraconsistency. Proceedings of the 12th Interna-
tional Joint Conference on Artificial Intelligence (1991): 1052–1057.

28. A. Urquhart. The Undecidability of Entailment and Relevant Implication. Journal
of Symbolic Logic 49 (1984): 1059–1073.

29. The Complexity of Decision Procedures in Relevance Logic. J. M. Dunn and A.
Gupta (ed), Truth or Consequences: Essays in Honour of Nuel Belnap, Kluwer,
Dordrecht, 1990: 77–95.

30. H. Wansing. The Logic of Information Structures (LNAI 681). Springer-Verlag,
Berlin, 1993.

Author Index

Arenas, Marcelo 15

Bertossi, Leopoldo 1, 42
Besnard, Philippe 84
Bravo, Loreto 42

Chomicki, Jan 119
Coste-Marquis, Sylvie 151

Fan, Wenfei 15

Hunter, Anthony 1, 191

Konieczny, Sébastien 191

Libkin, Leonid 15

Marcinkowski, Jerzy 119
Marquis, Pierre 151

Rodríguez, Andrea 237

Schaub, Torsten 1, 84
Slaney, John 270

Tompits, Hans 84

Woltran, Stefan 84

	Frontmatter
	Introduction to Inconsistency Tolerance
	Consistency of XML Specifications
	Consistent Query Answers in Virtual Data Integration Systems
	Representing Paraconsistent Reasoning via Quantified Propositional Logic
	On the Computational Complexity of Minimal-Change Integrity Maintenance in Relational Databases
	On the Complexity of Paraconsistent Inference Relations
	Approaches to Measuring Inconsistent Information
	Inconsistency Issues in Spatial Databases
	Relevant Logic and Paraconsistency
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

