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Preface 

It is an honor and great pleasure to write a preface for this postproceedings of the 6th 
International Workshop on Information Hiding. In the past 10 years, the field of data 
hiding has been maturing and expanding, gradually establishing its place as an active 
interdisciplinary research area uniquely combining information theory, cryptology, 
and signal processing. 
 
This year, the workshop was followed by the Privacy Enhancing Technologies 
workshop (PET) hosted at the same location. Delegates viewed this connection as 
fruitful as it gave both communities a convenient opportunity to interact. 
 
We would like to thank all authors who submitted their work for consideration. Out of 
the 70 submisions received by the program committee, 25 papers were accepted for 
publication based on their novelty, originality, and scientific merit. We strived to 
achieve a balanced exposition of papers that would represent many different aspects 
of information hiding. All papers were divided into eight sessions: digital media 
watermarking, steganalysis, digital forensics, steganography, software watermarking, 
security and privacy, anonymity, and data hiding in unusual content. This year, the 
workshop included a one-hour rump session that offered an opportunity to the 
delegates to share their work in progress and other brief but interesting contributions.  
 
The program committee consisted of Ross J. Anderson (University of Cambridge, 
UK), Jan Camenisch (IBM Zurich Research Laboratory, Switzerland), Christian 
Collberg (University of Arizona, USA), Ingemar J. Cox (University College London, 
UK), John McHugh (SEI/CERT, USA), Ira S. Moskowitz (Naval Research 
Laboratory, USA), Job Oostveen (Philips Research, Netherlands), Richard C. Owens 
(University of Toronto), Fabien A.P. Petitcolas (Microsoft Research, UK), Andreas 
Pfitzmann (Dresden University of Technology, Germany), Mike Reiter (Carnegie 
Mellon University, USA), and Jessica Fridrich (SUNY Binghamton, USA). 
 
The following external reviewers participated in the review process: Richard Clayton 
(University of Cambridge, UK), Farid Ahmed (The Catholic University of America, 
USA), Dogan Kesdogan (Aachen University of Technology, Germany), Hany Farid 
(Dartmouth College, USA), Deepa Kundur (Texas A&M University, USA), Slava 
Voloshinovsky (CUI, University of Geneva, Switzerland), Fernando Perez-Gonzales 
(University of Vigo, Spain), Nasir Memon (Polytechnic University, USA), Scott 
Craver (Princeton University, USA), Li Wu Chang (Naval Research Laboratory, 
USA), Lisa Marvel (University of Delaware, USA), Frederic Deguillaume (CUI, 
University of Geneva, Switzerland), Andrei Serjantov (University of Cambridge, 
UK), Rainer Böhme (Dresden University of Technology, Germany), Andreas 
Westfeld (Dresden University of Technology, Germany), George Danezis (University 
of Cambridge, UK), Sandra Steinbrecher (Dresden University of Technology, 
Germany), Phil Sallee (Booz Allen Hamilton, USA), Richard E. Newman (University 
of Florida, USA), Paul Syverson (Naval Research Laboratory, USA), John 
McDermott (Naval Research Laboratory, USA), Dagmar Schönfeld (Dresden 



VI           Preface 

University of Technology, Germany), Tim McChesney (Naval Research Laboratory, 
USA), Karen Spärck Jones (University of Cambridge, UK), Sebastian Clau  (Dresden 
University of Technology, Germany), Sorina Dumitrescu (McMaster University, 
Canada), Elke Franz (Dresden University of Technology, Germany), Edward Carter 
(University of Arizona, USA), Andrew Huntwork (University of Arizona, USA), 
Saumya Debray (University of Arizona, USA), Kelly Heffner (University of Arizona, 
USA), Ginger Myles (University of Arizona, USA), Clark Thomborson (University of 
Auckland, New Zealand), Jasvir Nagra (University of Auckland, New Zealand), 
Viktor Raskin (Purdue University, USA), Nicholas Hopper (Carnegie Mellon 
University, USA), Aweke Lemma (Philips Digital Systems Laboratories, The 
Netherlands), Gerhard Langelaar (Philips Digital Systems Laboratories, The 
Netherlands), Frans Willems (Technical University of Eindhoven, The Netherlands), 
Fons Bruekers (Philips Research, The Netherlands), Arno van Leest (Philips 
Research, The Netherlands), Michiel van der Veen (Philips Research, The 
Netherlands), and Ton Kalker (Hewlett-Packard, USA). 
 
This year, for the first time this workshop had two program chairs, one for multimedia 
watermarking and steganography (myself) and the second for anonymous 
communication, covert channels, and privacy (Mike Reiter). I would like to thank 
Mike for helping me with the review process and managing the communication with 
authors. 
 
The general chair Richard C. Owens and his assistant Alison Bambury did a 
wonderful job organizing the event. Many thanks to them for such a tasteful selection 
of a comfortable meeting place. The workshop was held at The Radisson located on 
the Ontario Waterfront. In the evening of the second day, the attendees had an 
opportunity to relax at a dinner cruise while admiring the Ontario city silhouette lit by 
fireworks for Victoria Day.  
 
Special thanks belong to Tim Olson from Microsoft Conference Management 
Services. The submission of papers and reviews as well as notification of authors and 
reviewers was greatly simplified both for the authors and program committee 
members. 
 
Finally, I would like to thank The Information and Privacy Commissioner/Ontario, 
The Centre for Innovation Law Policy, and Bell University Laboratories for their 
sponsorship of this workshop. 
 
 
 
September 2004                               Jessica Fridrich 

SUNY Binghamton 
       New York, USA 
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An Implementation of, and Attacks on,

Zero-Knowledge Watermarking

Scott Craver, Bede Liu, and Wayne Wolf

Department of Electrical Engineering
Princeton University

Abstract. A problem of considerable theoretical interest in digital wa-
termarking is that of asymmetric, or zero-knowledge watermarking. In
this problem, we wish to embed a watermark in a piece of multimedia
and later prove that we have done so, but without revealing information
that can be used by an adversary to remove the signal later.
In this paper we develop a watermarking system based on the ambiguity
attack method outlined in [14], constructing a vector-based watermark-
ing system applicable to images, audio and video. An example of image
watermarking is provided. We also outline some important attacks and
thus important design principles for asymmetric watermarking systems.

1 Introduction

A problem of considerable interest in recent years is the asymmetric watermark-
ing problem: can we prove that a watermark has been embedded in a piece of
multimedia without providing the information that would allow its removal?

Several methods to solve this problem have been proposed, some of which
have since been broken, and some of which possess properties we would like to
remove, such as the need for a trusted third party. Still other ideas are embry-
onic, such as the watermarking approach based on ambiguity attacks outlined
but not implemented in [14]. An overview of various asymmetric watermarking
techniques can be found in [3].

In this paper we develop a watermarking system based on the ambiguity
attack method, mechanizing the process of constructing counterfeit watermarks
for a blind detector. Real and counterfeit watermarks are then used in a zero-
knowledge proof to show that at least one of a set of watermarks is valid. This
yields a general algorithm for vector-based watermarking applicable to images,
audio and video multimedia.

We also discuss some of the design principles we have encountered in the
development of this system. In analyzing zero-knowledge watermarking systems,
we find that some are vulnerable to ambiguity attacks, which we continue to
stress are a serious problem in asymmetric watermarking systems and not to be
ignored. This problem highlights general design philosophies regarding what a
watermark is meant to mean, and what we are attempting to prove when passing
data through a detector.

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 1–12, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 Scott Craver, Bede Liu, and Wayne Wolf

2 The Still Very Serious Problem of Ambiguity Attacks

Ambiguity attacks, once an easily preventable curiosity, become a critical prob-
lem in zero-knowledge watermarking, perhaps partially because they are mis-
takenly regarded as trivial application issues [5,2,6]. However, if one does not
carefully design a watermarking scheme to rule out these attacks, they may
never be preventable. We provide several examples of such attacks on existing
systems.

2.1 The Basic Attack

The basic attack is very simple: find an arbitrary signal that sets off the water-
mark detector. Then, claim that this signal is a watermark. This is often very
easy, and it can be performed by inspection of both the detector structure and
the multimedia to be attacked. For example, for a correlator detector, we can
construct a counterfeit signal consisting of the multimedia itself, attenuated and
perhaps processed to disguise it. This signal will naturally correlate with the
original signal.

In symmetric systems, this is prevented by requiring a watermark to be the
output of a secure hash w = h(seed). Now, an arbitrary signal can not easily
be found for which a seed can be presented; and so the seed is evidence that
a watermark was legitimately added, rather than found in place. This is a well
known, simple and effective remedy, perhaps enough to relegate this attack to
the domain of “implementation issues.”

The problem now is that in an asymmetric system, a watermark owner cannot
simply produce the seed or the watermark as proof of its authenticity. The
parameters of the new problem can disallow the usual remedy, allowing this
simple but serious vulnerability to appear.

2.2 An Example

A straightforward example is proposed in [7], in which a wartermark is embedded
in data and a randomly selected subset of coefficients is revealed. For security,
this subset is immersed in a random vector with each coefficient of a public
watermark being either a coefficient of the secret vector or a random value. This
signal is detectable as long as the embedding is sufficiently strong.

How do we prevent someone from presenting as a watermark any vector
that correlates with the data, or encodes an arbitrary message? Proving that
a randomly selected subset, immersed within a random vector, is drawn from
a legal watermark is indeed difficult. To be fair, however, the authors do not
propose this scheme specifically for proof of ownership applications, in which
ambiguity attacks are a problem. In other so-called “digital rights management”
applications, these attacks less important.
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2.3 Another Example

A watermarking system proposed in [15] outlines a method of secure, blinded
correlation. In this system, multimedia data and watermarks are represented as
vectors, and detection consists of correlation followed by thresholding—all of
which the authors are able to perform in a blinded domain. Given a commit-
ment of an image vector I and a commitment of a watermark vector w, one
can compute their dot-product and compare this result to a threshold without
revealing w.

Thus, one is able to prove in zero knowledge (and this the authors establish
rigorously) that a watermark signal w sets off a detector D(w, I). The authors
provide both a blind and non-blind case, although we will focus on the less
ambiguous case of blind watermarking.

The simple vulnerability of this protocol, by itself, is that anyone can find a
signal w for which D(w, I) = 1. The attacker has access to the signal itself and
D(I, I) = 1 for a correlator detector. Likewise, the attacker can use all sorts of
signals derived from I. Under the blinding conditions of the protocol, there is
no way of determining if this trivial form of cheating is taking place, so anyone
can prove the presense of a watermark in anything.

Knowledge of such a vector w is therefore not valuable information and does
not need to be proven by any protocol. By analogy, imagine a zero-knowledge
proof that one knows a factor of an integer n. Anyone can pass this test because
everybody knows a factor of n. What is valuable is a proof that one knows a
nontrivial factor or a legally constructed watermark.

Thus, the basic ambiguity attack cannot be prevented by the standard rem-
edy. The authors in [15] propose a trusted third party to prevent ambiguity;
images are registered with an authority who performs the watermarking, com-
putes the blinded versions of mark and image, and provides a verifiable certificate
to the image owner. Images are not allowed to be registered if they are “similar”
to one previously registered. Given a third party of such capabilities, however,
do we need asymmetric watermarking at all? The trusted third party can simply
perform the detection itself.

2.4 Discussion

The important problem with asymmetric watermarking is not that these attacks
are possible; but that whenever they are possible, they are difficult to prevent. In
our experience analyzing and desigining asymmetric watermarking systems, we
find that a successful scheme should be designed from the start with resistance to
ambiguity. Only by luck can we expect an ambiguity-related flaw to be patchable
in implementation.

We also observe that this class of vulnerabilities highlights an important
semantic issue regarding watermarking in general: we are not trying to prove
that a watermark signal is detectable; we are trying to prove that a signal has
been embedded. These are very different notions, and ambiguity attacks generally
disguise examples of the former as examples of the latter.
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This semantic requirement for watermarking can in turn be considered a
special case of the nontriviality requirement of a zero-knowledge proof: to be
useful, it should demonstrate that one possesses valuable knowledge, knowledge
not available to everybody—or in more concrete terms, there should be people
who can not pass the protocol, making the ability to pass the protocol valuable
in some way1. This nontriviality requirement is not actually part of the definition
of a zero-knowledge proof as defined in textbooks on the subject [10,11,8].

3 An Implementation of Public-Key Watermarking Using
Ambiguity Attacks

As described in [14], we can use ambiguity attacks constructively, as components
in a watermarking system. The idea is simple: if there is no way for an adversary
to distinguish a valid watermark from an invalid one, as is commonly the case, we
can conceal a real watermark in a collection of false ones using zero-knowledge
protocols to demonstrate that at least one is real.

The fake watermarks are components of the original multimedia signal. They
are not added, but already reside “within” the multimedia, in the sense that they
set off a watermark detector. In a sense, we decompose the multimedia signal
into a sum of false watermarks plus residual data; thus removing a large number
of false watermarks is the same as removing a significant part of the image or
audio clip.

Note that we use zero-knowledge protocols not to show that a watermark
is detectable; the detection process has no asymmetric properties. Rather, we
focus our zero-knowledge efforts on verification, showing in zero knowledge that
at least one of a collection of watermarks is legal.

If we embed Mr watermarks and find Mf counterfeit watermarks, and an
attacker can selectively damage K watermarks, the probability of a successful
attack is

Pattack =
(

Mf

K −Mr

)
/

(
Mf + Mr

K

)
... a value roughly equal to pMr , where p is the fraction K/(Mr +Mf) of wa-

termarks the attacker can damage. We expect the collection of real watermarks
to fall within a power budget, so that increasing Mr is not a matter of adding
more power, but dividing that same power among more watermarks. Thus, at-
tack probability drops exponentially with Mr, although we will see a penalty in
detector probability unless we make the watermarks longer.

Note that by adding multiple marks rather than one, we avoid the oracle
attack of removing each watermark one at a time, in M separate challenges,
until the protocol cannot succeed. We also note that this attack probability
will in practice be small but macroscopic: a probability of 2−64, for instance,
1 Or the dual efficiency requirement: a zero-knowledge proof of something everyone

knows should take zero steps.
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Fig. 1. Basic watermarking using invertibility attacks. Left, the original image I
is watermarked with w, then a sufficiently large number of fake watermarks are
found by inspection. Then, the set of watermarks is published, without disclosing
which watermark is legitimate.

is unrealistic. However, this is the probability of the attacker defeating a legal
challenge by the watermark owner, a time-consuming process not amenable to
brute-force. If Pattack is as large as 1/10000, an attacker need “only” lose 5000
lawsuits before defeating the watermarking system.

3.1 Implentation: The Gaussian Case

Consider first that we have a data signal to watermark which is a vector s of
Gaussian random variables, independent and identically distributed ∼ N(0, σ2

s).
For practical purposes, we construct a signal vector s from an image or audio clip
by extracting and processing a collection of features, usually in the frequency
domain. Ideally, the extracted features are both well-behaved and significant, in
the sense that damaging the features will greatly damage the multimedia.

In any case, we wish to generate Mr real watermark vectors {Wk}, and also
decompose our N -dimensional vector s into into Mf false watermarks {Zk}. To
accomplish this, we require that a watermark also be a vector of iid Gaussian
random variables ∼ N(0, σ2

w), σw < σs.
Since a sum of Gaussian vectors is itself a Gaussian vector, we can easily

generate a decomposition of s into {Zk} as follows:
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Algorithm 1 A decomposition of s into false watermarks

1. Compute K random watermarks Y1 · · ·Yk, such that Y =
∑

i Yi is approxi-
mately the same length as s.

2. Generate an arbitrary (random) orthonormal matrix A such that AY = (1+
λ)s.

3. Set Zi = AYi, and Mf = K.

Since these vectors will be very large, of dimension N ∼ 100000, we need
an efficient method of generating and applying an orthonormal transformation.
Fortunately, there is indeed a linear-time algorithm for both generating such an
A, and computing Ax for a vector x, without constructing huge matrices. This
takes advantage of the fact that all coefficients of s and

∑
Yi are nonzero with

high probability, facilitating Gaussian elimination.

3.2 Error Probabilities

Note that the number of false watermarks will be approximately Mf = σ2
s/σ2

w,
and so our attack probability is wholly dependent upon the chosen watermark
strength. If Alice has a power budget σ2

A, then she can choose a value for σ2
w to

make Mf large, and then add Mr = σ2
A/σ2

w watermarks.
Meanwhile, consider the detector false alarm and miss probabilities. For a

watermark detected by correlation, we have for the maximum-likelihood detec-
tor,

pf = pm = 1− Φ(

√
(N)σw

2σs
)

...where N is the dimensionality of the vectors. This means that a weaker σw

(and thus a large M) must be compensated by increasing N . For a fixed pf , N
and M are directly proportional.

A note about so-called false-alarm “probabilities”: in security applications,
false alarms do not occur at random, but are often engineereed. Hence pf should
be intepreted not as a probability, but as an indicator of the feasibility of a
brute-force attack. If an attacker randomly generates legal watermarks in hopes
of finding one which sets of the detector (an attack which can not be prevented),
he will succeed after approximately 1/2pf attempts. This is the attacker’s worst-
case scenario, and so pf should be far smaller than is needed in signal processing
applications. We tentatively choose pf = 2−56, with a plan to choose smaller
values in the future.

Of course, if we can choose N as large as we want, we can make all direct
attack probabilities as small as we wish, while making added watermarks as
weak, and thus imperceptible, as we wish. However, images only contain so much
information, and extracting hundreds of thousands of useful feature coefficients
can be impractical.
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Fig. 2. Watermark parameters. False alarm probability is dictated by both N
and watermark power. Meanwhile, mark power determines the number of false
watermarks, which along with Alice’s and Bob’s power budgets, determine the
probability of a successful mark removal.

3.3 An Attack

So far we have been considering the case of independent vector coefficients. If
in practice we have (and, in practice, we have) vectors of coefficients which
are not independent, there is an attack on the above scheme: false watermark
vectors will not appear to be white, because the rotation turns each watermark
into a significant component of s plus orthogonal noise. The fraction of a false
watermark’s energy that lies along s will decrease with M , and so statistical
effects of s will become harder to detect with larger M . iid and can thus be
differentiated from false ones.

For this reason, we must ensure the data vectors are well-behaved, likely by
whitening the coefficients. There are two caveats which need to be told to the as-
piring watermark designer: one, that any whitening process must be robustness-
preserving, so that large changes in the whitened data look or sound bad in the
original data; and also that the damage inflicted by a watermark in the whitened
domain does not inflict too much damage in the original.

The second caveat is that some whitening tricks are insecure; not only should
the whitening process whiten false watermarks, but the inverse process should
color real watermarks. One whitening trick consists of pseudorandomly scram-
bling samples, a method which does not truly whiten data but does eliminate
detectable correlations to any algorithm without the scrambling key. In this case,
descrambling whitened fake watermarks will reveal colored fake watermarks;
meanwhile, a descrambled real watermark will still appear white.
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4 Applying the Zero-Knowledge Protocol

Upon constructing the above vectors {wk} and {zk}, the entire collection can
be provided, in random order, for detection purposes. To prove that some wa-
termarks are legitimate, we can have them constructed by a one-way process,
namely modular exponentiation. Computing H = ah(modp) for a prime p, gen-
erator a and random h, we can convert the bits of H into independent Gaussian
random variables using standard methods such as described in [9]. Conversely,
we can compute counterfeit bit strings which generate given false watermarks
under the same methods. Thus we have integers {Hk} = {Wk} ∪ {Zk}, the first
set of which are integers for which we know a discrete logarithm, and the second
set of which are arbitrary integers.

Protocol 1 A zero-knowledge watermark verification protocol using invertibility
attacks

1. Alice sends Bob the collection of integers {Hk}
2. Bob renders these as Gaussian vectors, and verifies they are detectable in a

test image I.
3. Alice blinds each Hk with a randomly selected exponent: Bk = abk ., yielding

the set {HkBk}.
4. Alice reorders the set {HkBk} and sends it to Bob.
5. Bob knows a and p, and depending on the outcome of a coin toss challenges

Alice to either:
(a) Reveal all blinding exponents {bk}, to verify that each blinded mark is

a legally blinded version of a member of the set {Hk}.
(b) Select one of the marks HkBk (the blinded version of a real watermark,

which is therefore of the form ax+bk(modp−1), ) and reveal its logarithm.
6. Alice reveals the desired value(s).
7. The blinding factors bk are discarded. New ones will be constructed for every

iteration of this protocol.

This is a straightforward extension of the zero-knowledge proof using discrete
logarithm, described in numerous textbooks [10,11,8] �

5 Results

We applied the above technique to features extracted from DCT and LOT co-
efficients of monochrome images. Our pre-conditioned data consists of the N
frequency coefficients of highest magnitude, ordered spatially. The choice of co-
efficients must be published to prevent some mismatch attacks.

After comparing full-frame DCTs with block DCTs and LOTs, we decided
that a block-based DCT is preferable in terms of the amount of damage inflicted
by an attacker. In practice, we hope to find an embedding method with a decently
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Fig. 3. Blinding of real and false watermarks. Each watermark is multiplied by a
blinding factor constructed from a random exponent bi. Then they are shuffled,
and the results passed to Bob. At this point Alice can prove she knows the
logarithm of at least one blinded, shuffled value.

high power budget for Alice σA, allowing the embedding of multiple marks, with
a suitable limit on the attacker’s power as well. By using a block-based DCT of
size 32, we allow about p < 1/4 of the signals to be damaged, while Mf is very
small, e.g. Mf < 8 for N = 60000. This gives an attack probability of 2−16, or
about 215 separate challenges.2

We also find that N cannot be raised far beyond our chosen values; our
algorithm uses about half of the monochrome image’s energy for the signal s.
Examples are shown in figure 4 and figure 5.

2 Rather than calling this a probability, we could perhaps say that is a measure of
difficulty of brute force, in this case expressed in units of inverse-lawsuits.
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Fig. 4. Watermarked images. Upper left is the original, upper right, an image
with one watermark. Below left, an image with four marks, below right, eight
marks.

5.1 Applications Beyond Copyright Marking

The above discussion assumed that the purpose of the robust watermark is
copyright verification—that is, the embedded watermark is evidence of some
kind of ownership, which can be shown without revealing the watermark itself.
Other applications may also exist for this watermarking approach.

One possibility is fragile or forensic watermarking, in which the watermark
is used to locate alterations to an image. In this case, the real and false water-
marks can be used as a sort of certificate of the image’s authenticity—similar at
least conceptually to a photographic negative. Just as removal of the legitimate
watermark is difficult, so too is re-embedding the legitimate watermark after a
portion of the image is replaced. This is because the adversary does not know
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Fig. 5. Attacked images. In the first row, an image with 5 and 10 published
watermarks removed. In the second row, 20 and 40 published watermarks are re-
moved. In the third row, 80 and then all 200 published watermarks are removed.
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which marks are real, and making all watermarks detectable again is tantamount
to replacing the altered image content.

6 Conclusion

We implement one zero-knowledge watermarking technique outlined in [14], de-
veloping a general approach to vector-based watermarking. Unlike other systems,
this system publishes all watermark data to allow normal detection, and reserves
zero-knowledge protocols for watermark verification. Our approach establishes
quantitative estimates for brute-forcing probabilities, and outlines a method for
constructing false watermarks from random vectors.
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Abstract. Recently, there are active discussions on the possibility of
non-invertible watermarking scheme. A non-invertible scheme prevents
an attacker from deriving a valid watermark from a cover work. Re-
cent results suggest that it is difficult to design a provably secure non-
invertible scheme. In contrast, in this paper, we show that it is possible.
We give a scheme based on a cryptographically secure pseudo-random
number generator (CSPRNG) and show that it is secure with respect to
well-accepted notion of security. We employ the spread spectrum method
as the underlying watermarking scheme to embed the watermark. The
parameters chosen for the underlying scheme give reasonable robustness,
false alarm and distortion. We prove the security by showing that, if there
is a successful attacker, then there exists a probabilistic polynomial-time
algorithm that can distinguish the uniform distribution from sequences
generated by the CSPRNG, and thus contradicts the assumption that
the CSPRNG is secure. Furthermore, in our scheme the watermark is
statistically independent from the original work, which shows that it is
not necessary to enforce a relationship between them to achieve non-
invertibility.

1 Introduction

There are many discussions on the uses of watermarking schemes in resolving
ownership disputes. An interesting and well-known scenario is the inversion at-
tacks studied by Craver et al. [7]. Under this scenario, Alice has the original image
I and a secret watermark WA. She releases the watermarked image Ĩ = I + WA

into the public domain. Given Ĩ and not knowing WA, Bob (who is an attacker)
wants to find a watermark WB that is present in both Ĩ and I. If such a water-
mark WB is found, Bob can create confusion of the ownership by claiming that:
(1) Ĩ is watermarked by his watermark WB, and (2) the image Ĩ −WB is the
original. If Bob can successfully and efficiently find such WB, we say that the
scheme is invertible.

Craver et al. [7] give an attacker when the underlying watermarking scheme
is the well-known spread spectrum method. To overcome such attackers, they

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 13–24, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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propose a protocol that employs a secure hash, and claim that it is non-invertible.
Qiao et al. [8, 9] also give watermarking schemes for video and audio which
are claimed to be non-invertible. Subsequently, there are a number of works
[10, 1, 2] exploiting weaknesses of known non-invertible schemes. Ramkumar et
al. [10] give an attack for the scheme by Craver et al. [7], and they also give an
improved scheme. On the other hand, [1, 2] give a formal definition of ambiguity
attacks and mention that most proposed non-invertible schemes either do not
come with a satisfactory proof of security, or the proofs are flawed. They also
point out that if the false alarm of the underlying watermarking scheme is high
(for e.g. 2−10), then successful ambiguity attacks are possible. However, there
is no mention of cases when the false alarm is low. Thus, it is interesting to
know whether non-invertibility can be achieved when false alarm is low. Due to
the difficulty of obtaining a non-invertible scheme, [2] propose to use a trusted
third party (TTP) to issue valid watermarks. Although using a TTP is provably
secure, there is still a question of whether it can withstand attackers that probe
the system. The development of the studies of non-invertibility seems to lead
to the conclusion that a stand-alone (in the sense that there is no TTP) non-
invertible scheme does not exist. In this paper, in contrast, we argue that with
low false alarm, it is possible to have a non-invertible scheme. We support our
argument by giving a provably secure protocol that employs a cryptographically
secure pseudo-random number generator (CSPRNG). The main idea is to show
that if the scheme is invertible, then the CSPRNG is not secure, and thus lead
to a contradiction.

Our protocol requires a computationally secure one-way function, whose ex-
istence is a major open problem in computer science. Nevertheless, it is well
accepted that such functions exist. In practice, many cryptographic protocols
rely on this unproven assumption.

Actually, we show that our protocol is secure against ambiguity attacks, of
which inversion attacks are a special case. Given a work Ĩ, a successful ambiguity
attack outputs a watermark W that is embedded in Ĩ, and a key K that is used
to generate W . In a weaker form, the attack is also required to output an original
I. In our discussion, we do not require the attacker to do so.

There are two components in our scheme. The first component addresses
the issue of robustness, false alarm and distortion. This component is often
called the underlying watermarking scheme. Due to the theoretical nature of this
problem, we adopt the usual assumption that the hosts and noise are Gaussian,
and distortion is measured by Euclidean 2-norm. In our protocol, we employ the
well-known spread spectrum method as the underlying scheme.

The second component consists of key-management and watermark genera-
tion. In our setting, Alice (the owner) has a secret key KA, and she generates a
watermark WA using a CSPRNG with KA as the seed. Next, she watermarks the
original I using WA. To prove the ownership, Alice needs to reveal (or show that
she knows) KA and WA. Interestingly, our scheme does not use the original I to
derive the key KA, nor the watermark WA. Hence the watermark is statistically
independent from the original. This is in contrast to the method given by Craver
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et al. [7], where Alice computes the hash of the original I, and uses the hash
value h(I) to generate the watermark WA. Hence, to achieve non-invertibility, it
is not necessary to enforce a relationship between the watermark and the original
work.

We give our main idea of our protocol in Section 2. We further give precise
notations and describe the models that we use in Section 3. The details of the
non-invertible scheme will be given in Section 4, followed by a proof of security
in Section 5. Finally we give some remarks (Section 6) and conclude our paper
(Section 7).

2 Main Idea

In our scheme, a watermark W is a sequence of −1 and 1 of length n, i.e.
W ∈ {−1, 1}n. We call W a valid watermark if it is generated by a CSPRNG
using some m-bit seed, where m < n. Thus, the number of valid watermarks is
not more than 2m, and not all sequences in {−1, 1}n are valid watermarks.

Suppose we have a probabilistic polynomial-time algorithm B such that given
any work Ĩ that is embedded using some valid watermark W , B can successfully
find a valid watermark Ŵ embedded in Ĩ with probability that is not negligible3.

Now, we want to use B to construct a polynomial statistical test T that dis-
tinguishes a truly random sequence from a sequence generated by the CSPRNG,
thus lead to a contradiction.

Given a sequence W , T carried out the following steps:

1. Embed W in I to get Ĩ, where I is a randomly chosen work.
2. Ask B for a valid watermark Ŵ embedded in Ĩ.
3. Declare that W is from the random source if B fails to find such a watermark,

and declare that W is generated by the CSPRNG otherwise.

By carefully choosing parameters for the underlying watermarking scheme,
the probability that a valid watermark exists in a randomly chosen Ĩ can be
exponentially small.

Hence, if W is generated by the truly random source, then it is very unlikely
that a valid watermark exists in Ĩ, and thus most of the time, B fails and the
decision by T is correct. On the other hand, if W is indeed generated from the
CSPRNG, the chances that a valid Ŵ can be found is not negligible since B is a
successful attacker. So, with probability that is not negligible, the decision made
by T is correct.

Combining the above 2 cases leads to the conclusion that T can distinguish
the two distributions. This contradicts with the assumption that the pseudo
random number generator is secure. Therefore, no such B exists, and the scheme
is non-invertible as a consequence.

3 W and Ŵ can be different.
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3 Notations and Models

3.1 Overall Setting

A work is a vector I = (x1, x2, . . . , xn) where each xi is a real number. A wa-
termark W is a sequence in {−1, 1}n. A key K is a sequence of m binary bits.
A watermark generator f : {0, 1}m → {−1, 1}n maps a key to a watermark. We
say that a watermark W is valid if and only if w is in the range of f , i.e., it is
generated from some key K by f .

The underlying watermarking scheme consists of an embedder and a detec-
tor. Given an original work I and a watermark W , the embedder computes a
watermarked work Ĩ. Given a work Ĩ and a watermark W , the detector declares
whether W is embedded in Ĩ, or not.

Before watermarking an original work I, Alice chooses a secret key KA and
generates a watermark WA = f(KA). Alice then embeds WA into I. To resolve
disputes of ownership, Alice has to reveal both the secret key KA and the wa-
termark WA. (In zero-knowledge watermarking setting [3, 6], Alice only has to
prove that she knows KA and WA).

In a successful ambiguity attack, given Ĩ, Bob (the attacker) manages to find
a pair KB and WB such that f(KB) = WB and WB is already embedded in Ĩ. A
formal description of ambiguity attacks will be presented in Section 3.3.

It is unreasonable to require a successful attacker to be always able to find
the pair KB and WB for every work Ĩ. Thus, we consider an attacker successful
as long as the probability that he succeeds, on a randomly chosen Ĩ, is non-
negligible (greater than 1/p(n) for some positive polynomial p(·)). Note that the
probability distribution to be used in the definition of a successful attacker is
important in the formulation. In Section 3.3 we will give more details on this.

We measure computational efficiency with respect to n, the number of coef-
ficients in a work. Thus, an algorithm that runs in polynomial time with respect
to n is considered efficient.

3.2 Statistical Models of Works and Watermarked Works

In this section, we give the statistical models of works. Recall that a work I is
expressed as I = (x1, x2, . . . , xn), where each xi is a real number. We assume
that I is Gaussian. That is, the xi’s are statistically independent and follow
zero-mean normal distribution. Thus, to generate a random I, each xi is to
be independently drawn from the normal distribution N (0, 1). Note that the
expected energy E(‖I‖2) is n.

Although the distribution of the original works is Gaussian, the distribution
of the watermarked works is not necessarily Gaussian. Consider the process
where an Ĩr is obtained by embedding a randomly chosen Wr from {−1, 1}n into
a randomly chosen original work I. If the embedder simply adds the watermark
to the original work, then the distribution of such watermarked work Ĩr is the
convolution of the distribution of the watermarks and that of the original works,
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which is not necessarily Gaussian. Let us denote the distribution of Ĩr as Xr and
call it the distribution of randomly watermarked works.

Now, consider the process where a valid watermark Wv is uniformly chosen
(by uniformly choosing the key for the watermark generator), and then the
watermarked work Ĩv is obtained by embedding Wv into a randomly chosen
original work I. Let us denote the distribution of such Ĩv as Xv, and call it the
distribution of valid watermarked works.

For clarity in notation, we use the symbol I to denote an original work, and
add the tilde Ĩ to denote a work drawn from either Xr or Xv

4.

3.3 Formulation of Ambiguity Attacks

We follow the formulation of ambiguity attacks given in [2] with slight but im-
portant modification.

Let B be a probabilistic polynomial-time algorithm. Given some watermarked
work Ĩ, we say that B successfully attacks Ĩ if it outputs a pair (W, K) s.t. Ĩ
contains the watermark W and W = f(K), or outputs a symbol ⊥ to correctly
declare that such pair does not exist. Let us write B(Ĩ) = PASS when the attack is
successful. We denote Pr[B(Ĩ) = PASS] to be the probability that B successfully
attacks a particular Ĩ. The probability distribution is taken over the coin tosses
made by B. Note that for Ĩ there does not exist such a pair (W, K), B has to
output ⊥ and hence is always successful.

We further denote Ĩn to be a work that consists of n coefficients, and that
is randomly drawn from the distribution of valid watermarked works Xv. Let
Pr[B(Ĩn) = PASS] to be the probability that an attack by B is successful. In
this case, the probability distribution is taken over the coin tosses made by B,
as well as the choices of watermarked Ĩn. Then we have the

Definition 1 Let B be a probabilistic polynomial-time algorithm. We say that
B is a successful attacker if, there exists a positive polynomial p(·), s.t. for all
positive integer n0, there exists an integer n > n0, and

Pr[B(Ĩn) = PASS] > 1/p(n).

In other words, B is a successful attacker if B successfully output a watermark-
key pair with probability that is not negligible.

Note that our definition is a slight modification from [2]. The definition in [2]
does not take into account cases where there is no valid watermark in a work.
Moreover, the distribution of the watermarked work Ĩ is taken over the random
choices of the original works. In our formulation, the watermarked work is drawn
from Xv, and we differentiate the case where there are some valid watermarks
in the given work from the case where there is not any.

4 Clearly these two distributions Xr and Xv are different. However, by an argument
similar to that in Section 5, it is not difficult to show that these two distributions
are computationally indistinguishable.
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This modification is important. We cannot simply say that an attacker is
successful if Pr[B(Ĩn) = PASS] is high. This is because we observe that, it is
possible to design a watermarking scheme such that for a randomly chosen work
Ĩ, the probability that it does not contain a valid watermark is very high. In that
case, a trivial algorithm that always declares “can not find a valid watermark” is
correct with high probability, and thus by definition is a successful attacker. Due
to this consideration, we decide to consider Xv in the definition, and separate
the two cases where valid watermarks do or do not exist.

3.4 Cryptographically Secure Pseudo-random Number Generator

Loosely speaking, a pseudo-random number generator (PRNG) takes a seed of
a certain length as input and outputs a string, which is of a longer length than
that of the seed.

A cryptographically secure pseudo-random number generator (CSPRNG) is
a PRNG whose output string cannot be computationally distinguished from a
truly random distribution. Formal definition of the security of CSPRNG is done
in terms of polynomial statistical tests [11]. We follow a simplified definition of
statistical tests used in [4].

Let {0, 1}n be the set of binary strings of length n, and {0, 1}∗ denotes the
set of all binary strings of all lengths. Formally, we have the following definitions.

Definition 2 A PRNG g is a deterministic polynomial-time algorithm g :
{0, 1}m → {0, 1}q(m), for some positive integer m and positive polynomial q(m).

Definition 3 A probabilistic polynomial-time statistical test T is a probabilistic
polynomial-time algorithm that assigns to every input string in {0, 1}∗ a real
number in the interval [0, 1].

In other words, T can be considered as a function T : {0, 1}∗ → [0, 1], which
terminates in polynomial time, and whose output depends also on the coin tosses
during execution. Let rn be the expected output of T over all truly random n-bit
strings drawn uniformly from {0, 1}n, and all coin tosses made by T . We have

Definition 4 A PRNG g passes test T if, for every positive integer t, and
every positive polynomial q(m), there exists a positive integer m0, such that for
all integers m > m0, the expected output of T , given a q(m)-bit string generated
by g, lies in the interval (rq(m) −m−t, rq(m) + m−t), assuming the seed of g is
uniformly distributed over {0, 1}m.

If a PRNG g does not pass a test T , we say that T has an advantage in
distinguishing g from a truly random source. Then we can define CSPRNG as

Definition 5 A CSPRNG is a PRNG g that passes every probabilistic polyno-
mial-time statistical test T .
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In other words, no test T can have an advantage in distinguishing a CSPRNG
g from a truly random source.

In this paper, we employ the CSPRNG due to Blum et al. [4]. A Blum number
N is an integer that is the product of two primes, each congruent to 3 (mod 4).
Let QRN be the set of all quadratic residues in Z

∗
N . That is, x ∈ QRN if and

only if there exists an x0 ∈ Z
∗
N such that x2

0 ≡ x mod N . Let s ∈ QRN be a
seed to the Blum CSPRNG, the i-th bit bi in the output string is computed as

bi = (s2i

mod N) mod 2. (1)

In other words, we compute the output string by squaring the current number
(starting from the seed) to get the next number, and take the least significant
bit as the output.

Following the above notations, we have the

Definition 6 A Blum PRNG is a function g : QRN → {0, 1}q(m) defined as
g(s) = b0, b1, · · · , bq(m)−1, where bi = (s2i

mod N) mod 2, N is a Blum num-
ber of length m, and q(m) is a positive polynomial of m.

It is proved in [4] that, under the well accepted assumption that integer
factorization is hard, this PRNG is secure. That is, it passes every polynomial
statistical test T . We shall refer to it as the Blum CSPRNG.

4 A Non-invertible Scheme

Now, we describe the proposed secure protocol. The parameters for the protocol
are three constants T, k and m.

In the proof of security, the parameters should be expressed in terms of n.
We will choose

k = 1/100, T = nk/2 = n/200, m =
√

n. (2)

4.1 Underlying Watermarking Scheme

The underlying watermarking scheme is essentially the spread spectrum method.
For completeness and clarity, we describe the embedding and detection processes.

Embedding: Given an original I and a watermark W , the watermarked Ĩ is

Ĩ = I + kW,

where k is a predefined parameter.

Detection: Given a work Î and a watermark W , declare that Î is watermarked
if and only if

Î ·W ≥ T,

where · is the vector inner product and T is a predefined parameter.
For simplicity, we omit normalization in the embedding. Thus, the energy

‖Ĩ‖2 of a watermarked work is expected to be higher than the original work.
Our proof can be modified (but tedious) when normalization is to be included.
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4.2 False Alarm, Robustness, and Distortion (Parameters T and k)

The performance of a watermarking scheme is measured by its false alarm, ro-
bustness and distortion. Detailed analysis can be found in [5]. Here, we are more
concerned with the false alarm.

The false alarm F is the probability that a randomly chosen Ĩ is declared to
be watermarked by a random valid watermark W . That is

F = Pr[Ĩ ·W > T ] (3)

where Ĩ is drawn from the distribution of randomly watermarked works Xr, and
W is uniformly chosen from W the set of valid watermarks.

The false alarm F is small. To see that, consider any given W ∈ W and
Ĩ randomly chosen from distribution Xr, it is not difficult to show that the
distribution (Ĩ ·W ) is a zero-mean normal distribution with standard derivation
δ where δ can be analytically derived. If T = C0δ where C0 > 0 is some positive
constant, then the probability that a random Ĩ satisfies (Ĩ ·W > T ) is less than
exp(−C2

0/2). Using the parameters in (2), δ < 2
√

n. Since T = n/200, it is many
times larger than the standard derivation δ.

For each Wi ∈ W, where 1 ≤ i ≤ |W|, let Fi be the probability that Ĩ ·Wi > T

for random Ĩ from Xr. By the argument above, Fi is exponentially small with
respect to n. More precisely, given the parameters in (2) and random Ĩ from Xr,

Fi = Pr[Ĩ ·Wi > T ] = exp(−din) (4)

for some positive constant di. Therefore,

F =
|W|∑
i=1

Fi Pr[W = Wi] ≤ exp(−C1n) (5)

where C1 is the maximum di in (4), which is a positive constant.
By choosing k = 1/100, the distortion introduced during embedding is 1%

of the original work. We could also choose k to be a slow decreasing function,
for e.g. k = 1/

√
log n, so that the ratio of the distortion over the energy of the

work tends to 0 as n increases. Our proof still holds for this set of parameters.
Similarly, the scheme is very robust. Since the expected inner product of a

watermarked image and the watermark is E[(I +kW ) ·W ] = kn, a noise of large
energy is required to pull the inner product below the threshold T = kn/2. In
this case, for noise with energy n (i.e. same as the original image), the watermark
can still be detected in the corrupted work with high probability.

4.3 Watermark Generation (Parameter m)

A watermark is generated using a CSPRNG f : {0, 1}m → {−1, 1}n where
m ≤ n. Thus, it takes a small seed of m bits and produces a watermark. Note
that this CSPRNG can be easily translated from the Blum CSPRNG by mapping
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the output 0 to −1, and 1 unchanged. Let W to be the range of the function f ,
and it is actually the set of valid watermarks. Clearly, |W| ≤ 2m.

Intuitively, for better security, we should have large m so that given a valid
watermark, it is computationally difficult for an attacker to find the key K, such
that f(K) = W . However, in some applications and our proof, we need the
number of valid watermark to be small, so that it is computationally difficult
for an attacker to find a valid watermark. On the other hand, if m is too small,
an attacker can look for a suitable valid watermark using brute-force search.

In our construction, we choose m =
√

n, thus |W| = 2
√

n. As a result,
it is computationally infeasible to do a brute-force search in the set of valid
watermarks. At the same time, consider a randomly watermarked work Ĩn drawn
from distribution Xr, which is of length n. With the parameters as in (2), the
probability that Ĩn contains any valid watermark W ∈ W is very small. Let us
denote this probability V (n) as a function of n, that is,

V (n) = Pr[∃W ∈ W, Ĩn ·W > T ] (6)

where Ĩn is drawn from Xr. Recall from Section 4.2 that the probability Fi that
a randomly watermarked work can be declared as watermarked by a given valid
watermark Wi ∈ W is exponentially small with respect to n. In particular, Fi ≤
exp(−C1n) for some positive constant C1 and for all 1 ≤ i ≤ |W|. Therefore,

V (n) = 1−
|W|∏
i=1

(1 − Fi) ≤ 1− (1− exp(−C1n))2
m

< 2m exp(−C1n) < exp(−C1n +
√

n)

(7)

where C1 is some positive constant. Note that V (n) is a negligible function of n.

5 Proof of Security

Now, we are ready to prove that the proposed protocol is secure. We assume
that the function f is a CSPRNG. Suppose that there is a successful attacker B
as defined in Definition 1, we want to extend it to a statistical test T that has
an advantage in distinguishing sequences produced by f from that by a truly
random source. Since f is a CSPRNG, this leads to a contradiction, and thus
such a B is impossible.

Given an input W ∈ {−1, 1}n, the following steps are carried out by T :

1. Randomly pick an original work I.
2. Compute Ĩ = I + kW . That is, embed W into I.
3. Pass Ĩ to B and obtain an output.
4. If the output of B is a pair (Ŵ , K̂), such that Ŵ = f(K̂), then T declares

that W is generated by f by outputting a 0. Otherwise B outputs a ⊥, then
T declares that W comes from a random source by outputting a 1.

We want to calculate the expected output of T for the following 2 cases. If
the difference of the expected outputs of these 2 cases is non-negligible, then by
the definitions in Section 3.4, f is not a CSPRNG, thus leads to a contradiction.
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Case 1: W is from a random source. Suppose W is from a random source,
then the probability that there exists a valid watermark Ŵ ∈ W in Ĩ is exactly
the probability V (n) in (7), which is negligible with respect to n as we have
shown in Section 4.3. Hence, we know that T will almost always output a 1
to correctly declare that it is from the random source, except in the unlikely
event E where Ĩ happens to contain a valid watermark. Clearly E happens with
negligible probability V (n). We observe that, when E happens, T may output
a 0 with a probability that is not negligible (since B is a successful attacker).
We consider the obvious worst case (best case for the attacker) that, T always
output 0 when E happens. In this case, the fraction of 0’s output by T is V (n),
which is still negligible. Therefore, let E1(T ) be the expected output of T , we
have

E1(T ) > 1− V (n). (8)

Case 2: W is from the CSPRNG f . Suppose W is generated by f , then W
is a valid watermark. Since B is a successful attacker, by definition B is able to
find a valid watermark Ŵ that is already embedded in Ĩ with a probability that
is not negligible. More specifically, for any positive integer n0,

Pr[B(Ĩ) = PASS] > 1/p(n)

for some positive polynomial p(·) and for some n > n0. Hence, the probability
that T decides that W is from the CSPRNG f is more than 1/p(n). Hence, let
E2(T ) be the expected output of T in this case, and we have

E2(T ) <

(
1− 1

p(n)

)
. (9)

Consider the difference between (8) and (9). Since V (n) is negligible but
1/p(n) is not, the difference cannot be negligible because the sum of two negligi-
ble functions is still negligible. Hence, the difference between E1(T ) and E2(T )
is not negligible. Thus T has an advantage in distinguishing the truly random
source from the the output of f , therefore f by definition is not a CSPRNG,
which is a contradiction. As a result, such a successful attacker B does not exist.

6 Remarks and Future Works

Choice of m. In our construction we require the parameter m to be small.
However, it seems that even if it is large, say m = n/2, the protocol is still secure.
Thus it would be interesting to find an alternative proof that handles large m.

Underlying watermarking scheme. For simplicity in the proof, we use a simple
watermarking scheme, and “discretized” watermark W ∈ {−1, 1}n. The draw
back is that the performance of false alarm, robustness and distortion would be
far from optimal. Recent results in communication theory offer schemes that can
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achieve much higher performance. Thus, we can have much lower false alarm,
with other requirement fixed. On the other hand, it is also not clear whether
we can make these schemes secure against inversion attacks. This is because in
these schemes, the watermark is usually derived from the original in an insecure
manner. It is interesting to investigate this issue. Furthermore, our proof requires
valid watermarks to be “sparsely populated” in {−1, 1}n. On the other hand,
schemes with high performance usually require the watermarks to be densely
populated, so as to reduce the distortion. Therefore, it is interesting to know if
our proof can be extended.

Proving ownership. As mentioned earlier, to prove the ownership of a work
Ĩ, Alice has to show that she knows a pair (KA, WA), such that WA is correctly
generated from KA and is detectable in Ĩ. However, directly revealing such a
pair in the proof might leak out information that leads to successful attacks.
One alternative is to use zero-knowledge interactive proofs to prove the relation-
ship between KA and WA without revealing the actual values. We note that it
is straight forward to apply known zero-knowledge interactive proofs efficiently
in our scheme. This is an advantage of our construction over schemes that in-
volves hash functions (such as [7]), which are difficult to prove using known
zero-knowledge interactive proofs.

Generation of watermarks. In Craver et al. [7], Alice computes a secure hash
of the original I, and uses the hash value h(I) to generate the watermark WA,
which is then embedded into I. It is commonly believed that we need to generate
the watermark from the original in a one-way manner to achieve non-invertibility
since the attacker would be forced to break the underlying one-way function.

Interestingly, our scheme does not use the original I to derive the key KA,
nor the watermark WA. Hence the watermark is statistically independent from
the original. Although we can view the hash value h(I) as the secret key KA in
our setting, our results show that it is not necessary to enforce a relationship
between the watermark and the original work.

7 Conclusions

Resistance to inversion attacks is an important requirement for a secure digital
right management system. Many schemes have been proposed to improve secu-
rity. On the other hand, there are also attacks proposed to break these schemes.
In this paper, we give a provably secure protocol that is resistant to inversion
(and ambiguity) attacks. We prove the security using well accepted techniques in
cryptography. Specifically, we show that if an inversion attack is possible, then
we can computationally distinguish a truly random sequence from a sequence
generated from a cryptographically secure pseudo-random number generator. It
is interesting to investigate how to bring our proposed protocol into practice.
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Abstract. A new method improving watermark robustness against both global 
and local geometrical distortions is presented in this article. The proposed ap-
proach is based on a self-reference concept and exploits special autocorrelation 
features of a spatial template. The template allows identifying both the trans-
formation parameters and translation coordinates. Distortions are estimated and 
reversed on a level as global as possible to maximize watermark recovery effec-
tiveness and minimize a time needed for that purpose. Experimental results 
showed that an inserted watermark could be successfully read even after Stir-
mark attack. 

1   Introduction 

In the course of a few last years intensive research has been done in the field of digital 
watermarking. Many algorithms, methods, techniques and fully functional systems 
hiding information in images have been elaborated. Several industrial solutions have 
also been developed. Nevertheless, an important problem concerning most current 
watermarking methods is their vulnerability to geometrical distortions. Such distor-
tions as translation, scaling, rotation, shearing, projection and random bending do not 
remove the watermark but desynchronize its detection and make automatic decoding 
impossible. Although many systems are more or less robust against global affine 
geometrical transformations, it appears that utilized algorithms are often insecure. Lo-
cal and nonlinear distortions are even more difficult to resist. 

The state of the art methods for detecting watermarks after geometrical distortions 
can be divided into the following groups: 
 methods operating in transformation invariant domain, 
 methods using exhaustive search for an a priori known template, 
 methods exploiting permanent image features, 
 methods inserting some easy to find features, 
 methods exploiting the self-reference of a template, 
 other methods (self similarity, fractals). 

The methods operating in transformation invariant domain often exploit the proper-
ties of Fourier-Mellin transform (FMT) [1][2]. Other methods, like embedding a cir-
cular watermark in Fourier transform domain [3], are to some degree similar to FMT. 
An important property of the discrete Fourier transform (DFT) is that its magnitude is 
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invariant to translations in the spatial domain. Spatial shifts affect only the phase rep-
resentation of an image, thus a watermark inserted into a magnitude spectrum is ro-
bust against cropping. If we represent a DFT magnitude spectrum as a log-polar map, 
both rotation and scaling are converted to a translation that can be estimated by cross-
correlation with the template. Similarly, a log-log map converts aspect ratio changes 
to a translation. However, the effect of more general geometrical transformations can-
not be reversed. Another important disadvantage of those methods is their poor ro-
bustness against JPEG compression and other non-geometrical attacks, because of the 
use of magnitude components, which are less robust and have more visual impact 
than phase components. 

A completely different strategy was presented by Hartung et al. [4]. Hartung pro-
poses an exhaustive search for an a priori known template. The decoder examines 
each combination of scaling, translation or rotation for every small block (e.g. 16x16 
pixels). The authors suggest that only a small percentage of all search positions have 
to be tested. However, this approach, although functioning, is in general very time 
consuming. 

Some researchers present methods exploiting permanent image features. Algho-
niemy and Tewfik [5] propose to compute two indicators to estimate scaling and rota-
tion parameters. The “Edges Standard Deviation Ratio” gives an estimation of the 
scaling factor. The rotation angle is approximated by the “Average Edges Angles Dif-
ference”. These indicators are computed from wavelet maxima locations. 

A more sophisticated approach based on image features was proposed by Bas et al. 
[6]. Firstly, feature points of the image are extracted and a Delaunay tessellation on 
the set of points is performed. Then the mark is embedded inside each triangle of the 
tessellation using a classical additive scheme. The detection is done using correlation 
properties on the different triangles. The presented technique permits automatic re-
synchronization of the watermark after both local and slight global (rotations, scaling) 
geometrical transformations. An important advantage of that method is that the orien-
tation of the signature is carried by the content of the image itself. Celik et al showed 
another example of using certain features of the image itself as a watermark’s syn-
chronization points [7]. Johnson et al proposed a different approach related to the 
concept of permanent image features [8]. A small set of “salient” image points is 
saved as an identification mark of the image. The coordinates of those points are used 
as a key to recover an original size and appearance of geometrically distorted images. 

Another group of methods concerning the synchronization problem insert some 
easy-to-find features to the image. Gruhl and Bender suggested a scheme in which a 
predefined reference pattern (for example multiple cross shapes) is embedded into a 
host image using any of the high bit-rate coding techniques (for example by LSB 
plane manipulation) [9]. Estimation of the geometric transformation of the image is 
achieved by comparing the original shape, size, and orientation of the reference pat-
tern to that found in the transformed image. The drawback of this scheme is its low 
robustness towards compression and noise. Kostopoulos, Skodras and Christodoulakis 
also propose to embed a reference pattern consisting of cross-shaped figures [10]. The 
method uses a predefined set of attacked cross-shaped patterns in order to approxi-
mate a possible attack. However, usability of the proposed scheme is limited to detec-
tion of the predefined geometrical attacks only. 

The same group includes methods inserting “peaks” in Fourier transform domain. 
Pereira and Pun propose to embed the template consisted of a random arrangement of 
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peaks in the Fourier domain [11]. Then a point-matching algorithm between the peaks 
extracted from an image and the reference template points estimates the geometric 
transformation. Another method based on a calibration signal in the Fourier domain 
has been patented by Digimarc Corporation [12]. Unfortunately, template peaks can 
be easily removed by an attacker. In addition, such an operation can improve the qual-
ity of the attacked image [13]. 

The methods exploiting the self-reference of a template have very promising re-
sults. Kutter suggested embedding four shifted copies of the same template [14]. De-
guillaume et al. propose to insert many neighboring copies of a relatively small tem-
plate [15]. A similar approach was presented by Honsinger and Rabbani [16] where a 
watermark itself is copied. Multiple copies of the same pattern produce local peaks in 
an autocorrelation function spectrum. These peaks undergo the same transformations 
as the image, so estimating the transform matrix is possible. The self-reference con-
cept is useful to recover from global geometrical distortions, and with some enhance-
ments, it can help in a local distortions case [17]. However, multiple copies of the 
same small pattern create a possibility of an autocorrelation attack [18].  

Other methods exploit fractal properties and self-similarity of the image [19]. First 
results were promising (robustness to basic geometric transformations), but that con-
cept still needs further research. 

Most of the approaches described above assume that geometrical changes intro-
duced into an image have global, affine character. Local or nonlinear distortions can-
not be detected with those methods mainly because such distortions do not affect 
globally transform domains (Fourier, autocorrelation) and the size of modified regions 
is often smaller then the templates’ size. Unfortunately, small nonlinear distortions, 
which efficiently destroy watermarks, do not result in a sufficient perceptible image 
quality loss, so the watermarking systems that fail to resist such attacks, cannot be 
considered robust and secure. 

It is noteworthy, that some watermarking algorithms do not need perfect decoder 
synchronization and can resist some very small geometrical distortions [20][21]. This 
property can reduce the template search space and enhance the watermark resistance 
to approximation errors. To achieve such synchronization tolerance, a watermark can 
be embedded in mid- or low-frequencies, so its autocorrelation is not as narrow as for 
a high-frequency watermark. 

This work presents a method based on the self-reference concept, allowing estima-
tion and recovering from local or nonlinear geometrical transformations. The water-
mark is decoded after reversing geometrical distortions. 

2   Geometrical Distortions 

Nonlinear geometrical distortions can be introduced in the printing/scanning process 
(it especially depends on scanner quality) or with adequate software. The Stirmark 
benchmarking tool applies some almost unnoticeable geometric distortions: combina-
tion of stretching, rotating, cropping, shifting, and bending by small random amounts. 
Additionally, slight random displacements, both low and high frequency, are applied 
to each pixel [22]. 
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Fig. 1. A regular grid (left) and a grid subjected to Stirmark attack – small local distortions are 
visible (right) 

The Stirmark attack, although nonlinear on the global level, can be considered as a 
composition of affine transforms concerning small local regions of the image. The 
size of those regions is not constant, because the frequency of attack displacements 
varies randomly. The approach proposed herein is based on that observation.  

Geometrical transformations, such as scaling, rotation, shearing or any combina-
tion of them, can be represented as an affine transform: 
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The expression (1) maps each point of the original image from Cartesian coordi-
nates (x, y) to new coordinates (x’, y’) in the transformed image, where a, b, c, d are 
the components of the transformation matrix A and tx, ty are the components of the 
translation vector T. Equation 1 does not describe all possible image distortions, e.g. 
perspective or trapezium-like transformations. However, we can use it for local re-
gions of the image to approximate global, generally non-linear distortion. 

The estimation of affine transformation parameters is decomposed into two parts. 
The A matrix components are calculated with the use of a self-referencing template 
and its autocorrelation. Subsequently the image is transformed to restore the original 
image position. Then the translation is estimated by calculating the cross-correlation 
matrix of a distorted watermarked image and a key-dependant, a priori known tem-
plate. 

3   Self-referencing Template Embedding 

As stated before, the proposed method is based on the self-reference concept. A spe-
cially designed template is used to recover from geometrical distortions. Generally, 
there were two approaches to the self-referencing template design presented in the 
previous work. Kutter proposed embedding four shifted copies of the same template 
in the spatial domain [14]. A schematic view of that idea is depicted on Fig. 2. In 
ideal conditions, the template autocorrelation function has 9 peaks with the strongest 
one in the center. The four peaks on the axes are two times weaker, and four peaks on 
the diagonals are four times weaker then the center one. Such autocorrelation function 
properties enable both identifying parameters of the geometrical transformation (the A 
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matrix) and finding translation of the attacked image (the T vector). Another advan-
tage of the Kutter’s approach is its relatively good resistance to autocorrelation attack, 
because only four copies of the template are embedded into the image. On the other 
hand the scheme makes it difficult to recover from local or non-linear geometrical dis-
tortions. In that case the dx and dy shifts should be small, in order to detect geometri-
cal transformations on local level, but too small shifts can cause unacceptable ap-
proximation errors.  A different problem is overlapping of the shifted copies, which 
can – depending on an implementation - increase visible artifacts (when overlapping 
template pixels) or lower robustness to non-geometrical distortions (when not over-
lapping pixels, but embedding watermark in very high frequencies). 

Another idea assumes inserting into the image multiple adjoining copies of the 
same pattern (Fig. 3)[15][16]. The corresponding autocorrelation function spectrum 
has some very useful features. First of all there are many peaks placed in the corners 
of a regular grid and each peak has the maximum autocorrelation value 1 (in ideal 
conditions). That fact makes it possible to successfully recover even from local and 
non-linear geometrical distortions. Unfortunately, the regular template grid cannot be 
used to identify translation. To obey that drawback another template can be used, or a 
watermark can be embedded in translation invariant domain. However, the first solu-
tion enhances visible artifacts and the second usually reduces watermark robustness 
against non-geometrical attacks, i.e. JPEG compression. 
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Fig. 2. A schematic view of the “shifted-copies” template design [14] and the corresponding 
autocorrelation function graph 

The template proposed herein consists of two parts, which produce periodical 
peaks on the axes of the autocorrelation function graph (Fig. 4). Each part forms a 
narrow rectangle, which is copied along its shorter side. The longer side is as long as 
possible (lengths wx, wy), taking into account performance constraints and the ex-
pected image size. The shorter sides of the rectangles are relatively small (lengths dx 
and dy). The vertical rectangle is copied horizontally, so the copies form strong peaks 
on the OX coordinate axis, whereas the horizontal one is copied in the vertical direc-
tion, which forms peaks on OY. Additionally, every second copy of the template has a 
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negated value of each pixel. This feature lowers visible artifacts, because it reduces 
the risk that an observer would notice a regular pattern on the watermarked image. 
The parts of the template do not overlap, but they have separate locations shown as 
digits and letters on Fig. 4. They jointly fill the whole image surface. 
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Fig. 3. A schematic view of the “multiple-copies” template design [15][16] and the correspond-
ing autocorrelation function graph 
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Fig. 4. A schematic view of the proposed template design and the corresponding autocorrela-
tion function graph 

The initial template (before copying) is a spread spectrum sequence with zero 
mean, distributed on all frequencies and taking into account contrast sensitivity of the 
Human Visual System. It is constructed in discrete cosine transform (DCT) domain in 
order to achieve better robustness against JPEG compression. The embedding process 
is defined as adding the template values to image pixels’ values in specified color 
space (i.e. luminance). 
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The proposed scheme has some advantages comparing to the two described above. 
In ideal conditions the autocorrelation function is defined as: 
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where dx and dy are the parameters of the template and n is an integer. Such proper-
ties allow the decoder to estimate both the geometrical transformation matrix A and 
the translation vector T. Regularly repeated autocorrelation peaks are used to deter-
mine geometrical distortions with good accuracy (approximation and rounding errors 
are minimized). Thanks to small dx and dy intervals it is possible to identify transfor-
mations on local level. Artifacts caused by a regularly repeated pattern are reduced, 
which improves a subjective image quality perception. 

4   Recovering from Geometrical Deformations 

The objective of that operation is to identify geometrical transformations performed 
on the watermarked image. At the initial stage it is necessary to minimize autocorrela-
tion properties of the given image itself, and leave only the predicted template infor-
mation. We use the second derivative of the image as the template prediction, using 
Laplace filters with various kernels (Fig. 5) to approximate the second derivative. 
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Fig. 5. Laplace filter kernels used to predict the hidden template 

For each template prediction thus obtained, the following procedure is executed. 
We choose a fragment of the image and compute its autocorrelation function. At first 
we try to identify geometrical distortions on the global level (i.e. the image was sim-
ply scaled), so initially the chosen fragment covers the whole image. 

Having computed the autocorrelation function values, all the local extreme peaks 
are found. Then we choose the two angles for which the sum of autocorrelation peaks 
is the biggest. Extremes with other angles are filtered out as a noise. For the chosen 
angles, all the extremes are compared to find the period in the sequence of their dis-
tances from the (0, 0) point. That step is carried out with computing for each pair of 
peaks’ distances the equivalent of the greatest common divisor in real numbers do-
main, defined as: 
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RealGCD(a, b) = max{d: a mod d <  & b mod d <  } (3) 

where  is a tolerance. A modified version of Euclidean algorithm is used to calculate 
the extremes’ distances period. The best fitting period for each angle is converted to a 
point in Cartesian coordinates. As a result of the presented sequence of operations, we 
obtain the coordinates of two points and a corresponding summary autocorrelation 
value. The two points represent the original template points (0, dx) and (dy, 0) after 
performing geometrical transformation. If the results of the self-referencing template 
detection for the chosen image block are satisfactory (summary autocorrelation value 
exceeds a given threshold), we can reverse geometrical distortions. Firstly an inverse 
transformation matrix is computed according to the formula: 
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where dx, dy are initial template’s shorter side lengths and (x1, y1), (x2, y2) are the co-
ordinates of periodical peaks found before. Then the image block is transformed with 
A-1 matrix to recover its original position. The transformed block is saved to be used 
in the next step of the algorithm – the translation finding. 

In the case of global affine deformations, most of the found extreme peaks are 
strong, regular and located on two straight lines. In such a situation, we do not need to 
acquire more information to restore the original image position. However, when dis-
tortions are local or nonlinear we do not obtain peaks satisfying the above require-
ments. If that happens, we divide the image into 5 blocks (each four times smaller 
than the divided block – see Fig. 6 (left)) and repeat recursively the template detection 
process for each block. The presented division scheme is a compromise between the 
accuracy of the sliding correlator and the effectiveness of the algorithm. It is also in-
fluenced by partial autocorrelation properties of the template. Thanks to the template 
properties, autocorrelation peaks should be relatively strong on each decomposition 
level until the block size is comparable with the initial template size. 
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Fig. 6. Template division schema (left) and a schematic view of template recovering from some 
example local distortions (right) 

In other words, we terminate the recursion either when we find the two extreme 
peaks fulfilling some requirements (they have to be placed periodically on two 
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straight lines, with the total autocorrelation exceeding a given threshold) or if the 
block size is too small. The result is a list of transformed image fragments. The effects 
of the geometrical transformations that were performed on the watermarked image are 
reversed in the obtained image fragments; however, in general the fragments are not 
yet placed in the original positions. Some watermarking algorithms assume translation 
invariance, but usually synchronization of a decoder in respect of translation allows 
achieving better robustness against non-geometrical distortions (i.e. JPEG compres-
sion, filtering, etc.). Such watermarking schemes as spread-spectrum wavelet or DCT 
watermarking require synchronizing a decoder, so both geometrical distortions and 
translation effects should be reversed. 

5   Restoring the Original Image Placement 

As stated before, the self-referencing template can be used to identify translation of 
the attacked image comparing to the original watermarked image. This is possible, 
because the function that correlates the predicted template (retrieved from the previ-
ous step of the algorithm) with the a priori known template produces, in ideal case, an 
output similar to the autocorrelation of that template (Fig. 4 (right)). The output has a 
strong central peak and many other peaks (two times weaker) on the two straights 
parallel to the axes OX and OY, and crossing in the central peak. The coordinates of 
the main peak follow the translation of the processed image in relation to the water-
marked image. 

In order to reverse the translation, for each image fragment coming from the previ-
ous step of the algorithm, a cross-correlation between the predicted template and the a 
priori known template is computed to find the maximum correlation peak. That peak 
validity is verified using information from the secondary peaks, which should be pre-
sent on the straight lines as described above. The coordinates of the resulting peak are 
used to estimate the translation vector coefficients tx and ty. The image fragment is 
now shifted according to tx and ty, to restore its original position. Finally, all the re-
stored image blocks are painted on the destination image. Blocks with higher correla-
tion are painted on top of worse fitting blocks so that the resulting image is as close to 
the original undistorted image as possible (Fig. 6 (right)).  

Blocks that were too heavily distorted are not recovered and sometimes can form 
“black holes” (Fig. 7). However, watermark information still can be read because of 
the watermark’s itself robustness against non-geometrical artifacts [23]. 

6   Experimental Results 

The performance of the proposed scheme was tested with Stirmark 3.1. The standard 
test images were watermarked with 72 bits of information, without any error correc-
tion. The description of the used watermarking algorithm [23] is not the aim of this 
article. We will only mention that it is a private, key-dependant, spread-spectrum 
scheme,  optimized for JPEG compression robustness. The watermark is embedded in 
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Fig. 7. An original watermarked image “lena.jpg” (left), an image attacked with Stirmark (mid-
dle), and a recovered image (right) – 64-bit watermark was decoded correctly 
 
DCT domain and its decoding routine does not need the original image (blind algo-
rithm). Beside an “information carrier” part of the watermark, the synchronization 
template was embedded into the images, according to the algorithm described herein. 
Throughout the evaluation, the template parameters were set to:  

dx = 32, dy = 32,   - the shorter side of the template rectangle, 
wx = 1024, wy = 1024 - the longer side of the template rectangle. 

The PSNR of the watermarked image was kept not less than 38 dB. The detection 
was done without the presence of the original image. The test case was marked as 
successful, if at least 64 bits of hidden information were decoded correctly. 

The results in  show the effectiveness of the proposed scheme. The syn-
chronization template proved its ability to recover from geometrical distortions in al-
most all cases. Only the cases of 90 degree rotation and 50% scaling were usually not 
detected correctly. However, that limitation could be easily overcome, at a cost of 
time efficiency, by performing template search for pre-transformed image versions:  
rescaled 200%, rotated 90, 180, 270 degrees. 

Table 1

Table 1. Stirmark 3.1 benchmark results 

 

 
Image modifications class Average 

response

Signal enhancement 1.00

 Gaussian 1.00 

 Median 1.00 

 Sharpening 1.00 

 FMLR 1.00 

Compression 0.94

 JPEG 0.89 

 GIF 1.00 

Scaling 0.86

 Without JPEG 90 0.89 

 With JPEG 90 0.83 

Cropping 0.96

 Without JPEG 90 1.00 

 With JPEG 90 0.93 

Shearing 1.00

Rotation 0.92

 Auto-crop 0.93 

  Without JPEG 90 0.92 

  With JPEG 90 0.94 

 Auto-scale 0.92 

  Without JPEG 90 0.92 

  With JPEG 90 0.92 

Other geometric trans. 1.00

 Col & line removal 1.00 

 Flip 1.00 

Random Geometric Dist. 1.00

Overall Performance 0.96 
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Both the synchronization template and the “information hiding” watermark are re-
sistant to non-geometrical distortions. In the experiment, the watermark (in fact its 
“information” part) was robust against JPEG compression up to quality factor equal 
10.  Relative robustness of different watermark parts can be adjusted in the embed-
ding process, with respect that they both influence the image quality. 

For all images, it was possible to decode the watermark even after the “Stirmark” 
attack [22]. The results show that the proposed scheme is applicable and efficient to 
recover from both global and local or non-linear geometrical distortions. The overall 
performance at the level of 0.96 is very high. 

7   Discussion and Conclusions 

The watermarking system is as insecure as its weakest part. Here, although the tem-
plate is created with a secret key, its autocorrelation could be read without the knowl-
edge of the key. It creates a possibility for an attack, aiming to remove synchroniza-
tion template from the watermarked image [13]. Especially, an autocorrelation attack 
is threatening [18]. The proposed scheme to some degree lowers the risk of a success-
ful autocorrelation attack, because the template is constructed from two distinct parts, 
which correlate independently. The naive implementation of the autocorrelation at-
tack would introduce too big artifacts to accept the results. To provide against more 
sophisticated attacks, taking into account the specific template design, it is possible to 
introduce a different, key-dependant method of merging the parts of the template. 

Another threat is an attack that introduces some strong peaks into the autocorrela-
tion function of the watermarked image. This could mislead the decoder. The remedy 
for such an attack is possible but it would heavily influence the computational per-
formance of the detection process – the watermark detector would have to try some 
combinations of the autocorrelation function peaks other than the strongest ones. 

The approach introduces a few novel elements on various stages of template em-
bedding and detection. The template design makes it possible to obtain a high auto-
correlation response for different block sizes. This feature is used during detection, 
which is held on a level as global as it is possible. The same template is used to esti-
mate translation parameters. The use of one template in those two operations allows 
to achieve better robustness with smaller decrease of image quality at the same time. 
Experimental results showed that the described approach survives local geometrical 
attacks, which only a few watermarking systems can resist today. 
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Abstract. A public multiple-access digital watermarking system is stud-
ied, in which two correlated Gaussian covertexts are watermarked in-
dependently and then sent to one authorized receiver via memoryless
Gaussian attack channels. Given two distortion level pairs (D1, D2) and
(D′

1, D
′
2) with respect to the average squared error distortion measure,

an achievable region is given in single-letter information quantities. An
example is also utilized to illustrate the gain of correlated sources over
uncorrelated sources.

1 Introduction

In digital watermarking, a watermark is embedded into a host signal (or a cover-
text) , resulting in a watermarked signal. The watermarked signal can be used for
different purposes ranging from copyright protection, data authentication, fin-
gerprinting, to information hiding in some video applications. In all these cases,
the watermark should be embedded in such a way that the watermarked signal
is robust to certain distortion caused by either standard data processing in a
friendly environment or malicious attacks in an unfriendly environment. Typ-
ically, the effect of standard data processing/malicious attacks is modelled by
statistical attack channels in the information theoretic research of watermark-
ing. Under this framework, a major information theoretic research problem is
to determine best trade-offs among the distortion between the host signal and
watermarked signal, the distortion between the watermarked signal and attacked
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watermarked signal, the embedding rate, and the robustness of the watermarked
signal.

Previously, the above problem was addressed mainly for the watermarking
model in which one covertext is watermarked and then sent to one authorized
receiver via public channels. For instance, a few theoretical results about the wa-
termarking capacity and random watermarking coding error exponent of such a
watermarking model have been reported in [1,3,8,9,12,13] and references therein.

In some applications, however, two or more correlated covertexts may be wa-
termarked independently and then sent to one authorized receiver. For instance,
consider the scenario in which music and video frames are watermarked indepen-
dently, but they will be transmitted in one bit stream and played by one DVD
player. In such a case, there will be two (or more if there are more than two
covertexts) separate watermarking encoders—one for each covertext—and one
joint watermarking decoder. In analogy to multiple-access communications, we
shall call the resulting watermarking model a multiple-access watermarking
model. The model is called private if all covertexts are available to the receiver,
and public if none of the covertexts is available to the receiver.

In this paper, we study the public multiple-access watermarking system with
correlated Gaussian covertexts and give an achievable region in single-letter in-
formation quantities for given distortion levels with respect to the square error
distortion measure. From the multiple-terminal source coding viewpoint, our re-
sult is analogous to that of Slepian and Wolf [11] in the sense that the total
embedding rate of separate encoding is the same as that of joint encoding. The
case of public multiple-access watermarking model with discrete alphabets will
be treated in a campanion[16].

Related to the multiple-access watermarking model we proposed above are
fingerprinting [9,14,15] and parallel Gaussian watermarking [9,10]. In fingerprint-
ing [9,14,15], the covertexts to be watermarked are identical for all fingerprints,
and there are essentially only one encoder and one decoder; the same encoder
is used to generate different fingerprinted copies and the same decoder is used
to detect only one member of the coalition each time. In parallel Gaussian wa-
termarking [10] the watermarking encoders are cooperative and the problem of
total watermarking capacity is addressed.

2 Model Description and Main Result

As a first step in multiple-access watermarking, we consider the watermarking
system shown in Figure 1 with correlated Gaussian covertexts, two separate
encoders, and one joint decoder. We shall call such a system a public multiple-
access Gaussian watermarking system.

In Figure 1, the two users’ watermarks M1 and M2 are independent random
variables uniformly distributed over their respective alphabets M1 and M2,
and the covertexts (SN

1 , SN
2 ) are N independent copies of a jointly Gaussian

random vector (S1, S2) ∼ N

(
0,

[
σ2

S1
ρσS1σS2

ρσS1σS2 σ2
S2

])
, where ρ is the correla-



40 Wei Sun and En-hui Yang

1M

1
NS

2M

2
NS

(1)
Nf

1
NU

1a

1
NX

(2)
Nf

2
NU

2a

2
NX

1
NV 1

1β −

1
NY

2
NV 1

2β −

2
NY

1 2( , )M M

Nϕ

Fig. 1. A public multiple-access Gaussian watermarking system

tion coefficient between S1 and S2. Given a watermark mi and covertext sN
i ,

user i generates a codeword uN
i = f

(i)
N (mi, s

N
i ) ∈ R

N and then forms a ste-
gotext xN

i = uN
i + ais

N
i , where ai > 0. The attacker obtains a forgery Y N

i =
β−1

i (xN
i + V N

i ) where βi > 0 and V N
i is N independent copies of a Gaussian

random variable Vi ∼ N(0, σ2
Vi

). Upon receiving forgeries yN
1 and yN

2 , the sin-
gle decoder ϕN estimates watermarks (m̂1, m̂2). Without ambiguity, let p(s1, s2)
be the pdf of (S1, S2), p(vi) the pdf of Vi, and p(sN

1 , sN
2 ) =

∏N
j=1 p(s1j , s2j),

p(vN
i ) =

∏N
j=1 p(vij) if sN

i = (si1, si2, . . . , siN ) and vN
i = (vi1, vi2, . . . , viN ).

Moreover, we assume that the distortion measure d is the square error distor-
tion, that is, d(x, y) = (x − y)2 for x, y ∈ R, and define for xN , yN ∈ R

N ,
d(xN , yN ) = 1/N

∑N
i=1(xi − yi)2.

The watermarking model described above is a special multiple-access Gaus-
sian watermarking model. Our motivation to study this special model is twofold.
First, in the case of public additive Gaussian watermarking with one sender and
one receiver, Moulin et al [9] showed the optimality of such encoders and at-
tack channels. Second, we want to use this special model to demonstrate that
indeed, joint decoding can afford gains in the total embedding rate over separate
decoding—which is the essence of multiple-access watermarking. Our aim in this
paper is to give an achievable region of this special watermarking model to show
the gains.

Definition 1. A multiple-access watermarking encoder of length N with
rate pair (R1, R2) subject to distortion level pair (D1, D2) is a quadruple (M1,

M2, f
(1)
N , f

(2)
N ) such that f

(i)
N , i = 1, 2, are mappings from Mi ×R

N to R
N sat-

isfying E[d(SN
i , XN

i )] ≤ Di, where XN
i = f

(i)
N (Mi, S

N
i ) + aiS

N
i , and (R1, R2) =

( 1
N log |M1|, 1

N log |M2|). A watermarking decoder ϕN of length N is a map-
ping from R

N × R
N to M1 ×M2 with (m̂1, m̂2) = ϕN (yN

1 , yN
2 ) as an estimate

of (m1, m2).
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Definition 2. Given a multiple-access watermarking encoder (M1,M2, f
(1)
N ,

f
(2)
N ) and distortion level pair (D′

1, D
′
2), if (σ2

Vi
, βi) satisfies E[d(Y N

i , XN
i )] ≤ D′

i,

then (σ2
Vi

, βi) is called an attack channel. Denote by Ai(f
(i)
N , D′

i) the set of all
attack channels.

Definition 3. The error probability of coding of an encoder (M1,M2, f
(1)
N ,

f
(2)
N ) and a decoder ϕN subject to attack channels (σ2

Vi
, βi) ∈ Ai(f

(i)
N , D′

i), i = 1, 2

is defined by Pe(f
(1)
N , f

(2)
N , ϕN , σ2

V1
, β1, σ

2
V2

, β2)
�= Pr{(M̂1, M̂2) = (M1, M2)}.

Definition 4. A rate pair (R1, R2) is achievable subject to distortion level
pairs (D1, D2) and (D′

1, D
′
2) if for every ε > 0, there exist a sequence of en-

coders (M1,M2, f
(1)
N , f

(2)
N ) of length N with rate pair (R1− ε, R2− ε) subject to

distortion level pair (D1, D2) such that

sup
(σ2

V1
,β1)∈A1(f

(1)
N ,D′

1)

sup
(σ2

V2
,β2)∈A2(f

(2)
N ,D′

2)

inf
ϕN∈GN

Pe(f
(1)
N , f

(2)
N , ϕN , σ2

V1
, β1, σ

2
V2

, β2)→0

as N → ∞, where GN is the set of all decoders with length N . The closure of
the set of all achievable pairs is defined as the capacity region subject to the
distortion level pairs (D1, D2) and (D′

1, D
′
2).

Now we are ready to state the main result of the present paper.

Theorem 1. Given distortion level pairs (D1, D2) and (D′
1, D

′
2) with respect to

the average square error distortion measure, letWi(Di) be the set of all memory-
less channels Wi(ui|si) with input Si and real-value output Ui such that (Si, Ui)
is jointly Gaussian and Ed(Si, Xi) ≤ Di, where Xi = Ui + aiSi. Then the fol-
lowing region is achievable ⋃

i=1,2,Wi∈Wi(Di)

C(W1, W2),

where C(W1, W2) denotes the region of pairs (R1, R2) such that⎧⎨⎩
0 ≤ R1 ≤ I(U1; U2, Y1, Y2)− I(U1; S1),
0 ≤ R2 ≤ I(U2; U1, Y1, Y2)− I(U2; S2),
0 ≤ R1 + R2 ≤ I(U1, U2; Y1, Y2)− I(U1, U2; S1, S2),

βi =
σ2

Xi

σ2
Xi

−D′
i

and σ2
Vi

= β2
i D′

i − (βi − 1)2σ2
Xi

, i = 1, 2.

Discussions and remarks:

– The region is characterized in single-letter information quantities.
– The technique of random bin coding and typical sequence is utilized to prove

the achievability.
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– From the main result, R1 + R2 can achieve maxWi∈Wi(Di),i=1,2[I(U1, U2; Y1,
Y2)− I(U1, U2; S1, S2)], which in formula is similar to the capacity in case of
joint encoding [9]. On the other hand, in Slepian and Wolf’s model [11] two
memoryless correlated sources are encoded separately and decoded jointly,
and their surprising result is that the total rate is the same as that of joint
encoding of correlated sources. So, from a viewpoint of source coding the
result in the paper is analogous to that of [11] about encoding of correlated
sources.

– For facilitating watermarking distortion constraints we restrict memoryless
channels Wi(ui|si) such that (Si, Ui) is jointly Gaussian. However, the re-
sult still holds for memoryless channels without such restriction if typical
sequence is defined in a more elaborate manner.

3 Preliminaries on Typical Sequences

In this section we give the definitions of typical sequence and jointly typical
sequence and some of their properties; detailed treatment on typical sequences
can be found in [5].

Definition 5. Let X be a random variable with pdf p(x) and finite differential
entropy H(X), and ε > 0 be a small number. If xN = (x1, x2, . . . , xN ) ∈ R

N

satisfies ∣∣∣∣− 1
N

log p(x1, x2, . . . , xN )−H(X)
∣∣∣∣ ≤ ε

where p(x1, x2, . . . , xN ) =
∏N

j=1 p(xj), then xN is called ε-typical with respect to

p(x). Denote by A
(N)
ε (X) the set of all such xN .

Definition 6. Let (X, Y ) be a random vector with joint pdf p(x, y) and marginal
pdfs p(x), p(y). For ε > 0 and N , define the joint typical set A

(N)
ε (X, Y ) with

respect to p(x, y) as follows:

A(N)
ε (X, Y ) =

⎧⎨⎩(xN , yN) ∈ R
N × R

N :

∣∣− 1
N log p(xN )−H(X)

∣∣ ≤ ε∣∣− 1
N log p(yN )−H(Y )

∣∣ ≤ ε∣∣− 1
N log p(xN , yN)−H(X, Y )

∣∣ ≤ ε

⎫⎬⎭
if p(x, y) = p(x)p(y), and

A(N)
ε (X, Y ) =

⎧⎨⎩(xN , yN ) ∈ R
N × R

N :

∣∣− 1
N log p(xN )−H(X)

∣∣ ≤ ε∣∣− 1
N log p(yN)−H(Y )

∣∣ ≤ ε

| 1N
∑N

j=1 xjyj | ≤ ε

⎫⎬⎭
if p(x, y) = p(x)p(y) and E[X ]E[Y ] = 0, where p(x1, x2, . . . , xN ) =

∏N
j=1 p(xj),

p(y1, y2, . . . , yN ) =
∏N

j=1 p(yj), and p(x1, x2, . . . , xN , y1, y2, . . . , yN ) =∏N
j=1 p(xj , yj). The pair (xN , yN ) ∈ A

(N)
ε (X, Y ) is called jointly ε-typical.
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Moreover, for any given yN ∈ A
(N)
ε (Y ), let A

(N)
ε (X, yN ) denote the set of all

xN ∈ A
(N)
ε (X) such that (xN , yN ) ∈ A

(N)
ε (X, Y ). Similarly, A

(N)
ε (X, Y, Z, ...)

can be defined to designate the set of all jointly ε-typical sequence (xN , yN , zN , ...)
with respect to the joint pdf p(x, y, z, ...) of (X, Y, Z, ...).

Lemma 1. [5] Let (X, Y ) be a random vector with joint pdf p(x, y) and ε > 0
be a small number. Then for sufficiently large N

(1) 2−N [H(X)+ε] ≤ p(xN ) ≤ 2−N [H(X)−ε] for any xN ∈ A
(N)
ε (X);

(2) Pr{XN ∈ A
(N)
ε (X)} > 1− ε;

(3) (1− ε)2N [H(X)−ε] ≤
∫

A
(N)
ε (X)

dxN ≤ 2N [H(X)+ε].

(4) Pr{(XN , Y N ) ∈ A
(N)
ε (X, Y )} > 1− ε;

(5) (1− ε)2N [H(X,Y )−ε] ≤
∫

A
(N)
ε (X,Y )

dxNdyN ≤ 2N [H(X,Y )+ε].

Lemma 2. Let (X, Y ) be a random vector with joint pdf p(x, y) and ε > 0 be a
small number. Then for sufficiently large N ,

a) with probability at least 1− ε, Y n = yn satisfies

Pr{(XN , Y N ) is jointly ε2-typical|Y N = yN} ≥ 1− ε; (1)

b) with probability at least 1−
√

ε, Y n = yn satisfies

(1−
√

ε)2N [H(X|Y )−2ε] ≤
∫

A
(N)
ε (X,yN )

dxN ≤ 2N [H(X|Y )+2ε]; (2)

c) with probability at least 1−
√

ε, Y n = yn satisfies

(1−
√

ε)2−N [I(X;Y )+3ε] ≤
∫

A
(N)
ε (X,yN )

p(xN )dxN ≤ 2−N [I(X;Y )−3ε]. (3)

The proof of the lemma will be given in the Appendix.

4 The Optimal Attack Channel

For any given watermarking encoders f
(1)
N , f

(2)
N , let σ2

f
(i)
N

= 1
N E(XN

i )2, where

XN
i = f

(i)
N (Mi, S

N
i ) + aiS

N
i and (XN

i )2 denotes the sum of the squared value of
components of XN

i . If σ2

f
(i)
N

≤ D′
i, i = 1, 2, then the attacker can always choose

the forgery Y N
i = 0, resulting in a zero embedding rate for encoder f

(i)
N . So, we

assume σ2

f
(i)
N

> D′
i, and let

A∗
i (f

(i)
N , D′

i) = {(σ2
Vi

, βi) : β−2
i σ2

Vi
+ (β−1

i − 1)2σ2

f
(i)
N

= D′
i}.
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Then

sup
(σ2

Vi
,βi)∈Ai(f

(i)
N ,D′

i),i=1,2

inf
ϕN∈GN

Pe(f
(1)
N , f

(2)
N , ϕN , σ2

V1
, β1, σ

2
V2

, β2)

= sup
(σ2

Vi
,βi)∈A∗

i (f
(i)
N ,D′

i),i=1,2

inf
ϕN∈GN

Pe(f
(1)
N , f

(2)
N , ϕN , σ2

V1
, β1, σ

2
V2

, β2).

Now, let σ2
Vi

= β2
i D′

i − (βi − 1)2σ2

f
(i)
N

, and define

f(σ2
1 , σ2

2)= sup
(σ2

Vi
,βi)∈A∗

i (f
(i)
N ,D′

i):σ
2
Vi

=σ2
i ,i=1,2

inf
ϕN∈GN

Pe(f
(1)
N , f

(2)
N , ϕN , σ2

V1
, β1, σ

2
V2

, β2).

Then f(σ2
1 , σ2

2) is a non-decreasing function of σ2
1 , σ2

2 . So the optimal attack
channel must meet a) β−2

i σ2
Vi

+ (β−1
i − 1)2σ2

f
(i)
N

= D′
i, and b) σ2

Vi
should be

as large as possible. It is easy to see that as a function of βi, σ2
Vi

achieves the

maximum at βi =
σ2

f
(i)
N

σ2

f
(i)
N

−D′
i
. Therefore, in the following, we shall fix the optimal

βi and the corresponding σ2
Vi

for the given encoders f
(i)
N , i = 1, 2.

5 Proofs

This section is devoted to the proof of our main result, that is, for any channels
Wi(·|·) ∈ Wi(Di), (R1, R2) ∈ C(W1, W2) is achievable with respect to distortion
level pairs (D1, D2) and (D′

1, D
′
2). Let ε > 0 be sufficiently small and N large

enough.

5.1 Random Coding Scheme

To show the achievability, the following random bin coding argument is em-
ployed.

– Codebook Generation: For each watermark mi ∈ Mi = {1, 2, . . . ,
2N(Ri−3ε)}, i = 1, 2, user i generates at random ti = 2N [I(Ui;Si)+2ε] vectors
Ci(mi) = {ũN

i (mi, 1), . . . , ũN
i (mi, li), . . . , ũN

i (mi, ti)}, of which each compo-
nent is generated independently by a real-valued random variable Ũi with
the same pdf as Ui, which is derived from Wi. Denote the codebook of user
i as Ci = {Ci(mi)}2

N(Ri−3ε)

mi=1 .
– Encoding: For any given watermark mi and covertext sN

i , user i chooses
the first ũN

i (mi, li) in Ci(mi) such that (ũN
i (mi, li), sN

i ) is jointly ε-typical
with respect to the joint pdf of (Ui, Si) determined by Wi(·|·), and then
generates a stegotext xN

i = ũN
i (mi, li) + ais

N
i . If no such a ũN

i (mi, li) is
found in Ci(mi), then an encoding error is declared, and let the output be
zero.
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– Decoding: Given yN
1 and yN

2 , the decoder finds (ũN
1 (m̂1, l1), ũN

2 (m̂2, l2)) ∈
C1 × C2 such that (ũN

1 (m̂1, l1), ũN
2 (m̂2, l2), yN

1 , yN
2 ) is jointly ε-typical with

respect to the joint pdf of (U1, U2, Y1, Y2), and then decodes the watermarks
(m̂1, m̂2).
Note that Xi = Ui+aiSi , Yi = β−1

i (Xi+Vi) and Vi ∼ N(0, σ2
Vi

) where βi, σ
2
Vi

are specified in the main theorem. So Wi induce a joint pdf of (U1, U2, Y1, Y2),
which is used for decoding.

5.2 Analysis of Error Probability of Coding

For any deterministic codebook C = (C1, C2), let Pe(C1, C2) be the error prob-
ability of coding averaged over all Mi, S

N
i . Since the watermarks are drawn

uniformly, without loss of generality, it’s assumed M1 = m1 ,M2 = m2, and let

Pe(C) =
∫

sN
1

∫
sN
2

p(sN
1 , sN

2 ) Pr{(M̂1, M̂2) = (m1, m2)|m1, m2, s
N
1 , sN

2 }dsN
1 dsN

2

and Pe = EPe(C) be the error probability averaged over the random codebook
C = (C1, C2).

– Encoding Error: For a codebook C = (C1, C2), let E(C1, C2) be the event
that an encoding error occurs, that is,⋃
i=1,2

{SN
i ∈ A(N)

ε (Si)}
⋃

i=1,2

sN
i ∈A

(N)
ε (Si)

{(ũN
i , sN

i ) ∈ A(N)
ε (Ui, Si) for all ũN

i ∈ Ci(mi)}.

Then

Pr{E(C1, C2)} ≤
∑

i=1,2

Pr{SN
i ∈ A(N)

ε (Si)}

+
∑

i=1,2

∫
sN

i ∈A
(N)
ε (Si)

Pr{(ũN
i , sN

i ) ∈ A(N)
ε (Ui, Si) for all ũN

i ∈ Ci(mi)}d sN
i

≤ 2ε + δ(C1, C2), (4)

where the last inequality follows Lemma 1-(2), and

δ(C1, C2)=
∑

i=1,2

∫
sN

i ∈A
(N)
ε (Si)

Pr{(ũN
i , sN

i ) �∈ A(N)
ε (Ui, Si) for all ũN

i ∈ Ci(mi)}d sN
i .

In virtue of the inequality (1− t)m ≤ exp(−tm), one has

EC1,C2δ(C1, C2) =
∑

i=1,2

∫
sN

i ∈A
(N)
ε (Si)

EC1,C2 Pr{(ŨN
i , sN

i ) ∈ A(N)
ε (Ui, Si)

for all ŨN
i ∈ Ci(mi)}d sN

i

=
∑

i=1,2

∫
sN

i ∈A
(N)
ε (Si)

(
Pr{(ŨN

i , sN
i ) ∈ A(N)

ε (Ui, Si)}
)2N [I(Ui;Si)+2ε]

d sN
i
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(a)

≤
∑

i=1,2

∫
sN

i ∈A
(N)
ε (Si)

(
1− 2−N [I(Ui;Si)+ε]

)2N [I(Ui;Si)+2ε]

d sN
i

≤ 2−2Nε

for sufficiently large N , where (a) follows Lemma 2-(c). Therefore, by the
Markov Inequality,

Pr{δ(C1, C2) > 2−2Nε−1} ≤ EC1,C2δ(C1, C2)
2−2Nε−1 ≤ 2−2Nε−1

. (5)

Combing (4) and (5) yields

Pr{E(C1, C2)} ≤ 3ε (6)

with high probability as N goes to infinity.
– Distortion Constraints: For a codebook C, let

BC(i) = {sN
i ∈ R

N : encoding sN
i is successful},

B̄C(i) = {sN
i ∈ R

N : encoding sN
i is not successful}.

Then

E[d(XN
i , SN

i )|C] =
∫

BC(i)

p(sN
i )d(xN

i , sN
i )dsN

i +
∫

B̄C(i)

p(sN
i )(sN

i )2/NdsN
i

≤
∫

BC(i)

p(sN
i )d(xN

i , sN
i )dsN

i + D0 Pr{B̄C(i)}

≤
∫

BC(i)

p(sN
i )d(xN

i , sN
i )dsN

i + 3εD0

by (6), where D0 is a constant. If sN
i ∈ BC(i), then there exists ũN

i ∈ Ci(mi)
such that (sN

i , ũN
i ) is jointly ε-typical, and it is easy to verify that∣∣∣∣∣∣ 1

N

∑
j

s2
ij − σ2

Si

∣∣∣∣∣∣ <
2σ2

Si

log e
ε,

∣∣∣∣∣∣ 1
N

∑
j

ũ2
ij − σ2

Ui

∣∣∣∣∣∣ <
2σ2

Ui

log e
ε.

Moreover, | 1N
∑N

j=1 sij ũij | < ε if Si and Ui are independent, and
∣∣∣ 1
N

∑
j sij ũij

−E(SiUi)| <
ε(3−ρ2

i )σSi
σUi

ρi log e if Si and Ui are dependent and ρi = 0.
Since Wi are chosen such that (Si, Ui) is jointly Gaussian and Ed(Si, Xi) <
Di, we have

(ai − 1)2σ2
Si

+ σ2
Ui

+ 2(ai − 1)E(UiSi) < Di − δ′,

where δ′ can be as small as possible. Thus, d(xN
i , sN

i ) = 1
N

∑N
j=1(xij −

sij)2 < (ai − 1)2σ2
Si

+ σ2
Ui

+ 2(ai − 1)E(UiSi) + δ < Di − δ′ + δ, where δ =
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(ai − 1)2

2σ2
Si

log e +
2σ2

Ui

log e +2(ai − 1) (3−ρ2
i )σSi

σUi

ρi log e

]
ε. So, with high probability

E[d(XN
i , SN

i )|C] ≤ Di + δ + 3εD0 − δ′. Since δ and ε can small enough, for
any codebook C, with high probability the encoding distortion constraints
are met.

– Decoding Error: Fix a codebook C = (C1, C2). For any (sN
1 , sN

2 ) ∈
A

(N)
ε (S1, S2). Define the following events:

A1(sN
1 , sN

2 ) =
{
no (ũN

1 , ũN
2 ) ∈ C1 × C2 such that (ũN

1 , ũN
2 , Y N

1 , Y N
2 )

∈ A(N)
ε (U1, U2, Y1, Y2)

}
,

A2(sN
1 , sN

2 ) =
{
∃(ũN

1 , ũN
2 ) ∈ C1(m1)× C2(m̂2) such that

(ũN
1 , ũN

2 , Y N
1 , Y N

2 ) ∈ A(N)
ε (U1, U2, Y1, Y2) and m̂2 = m2

}
,

A3(sN
1 , sN

2 ) =
{
∃(ũN

1 , ũN
2 ) ∈ C1(m̂1)× C2(m2) such that

(ũN
1 , ũN

2 , Y N
1 , Y N

2 ) ∈ A(N)
ε (U1, U2, Y1, Y2) and m̂1 = m1

}
,

A4(sN
1 , sN

2 ) =
{
∃(ũN

1 , ũN
2 ) ∈ C1(m̂1)× C2(m̂2) such that (ũN

1 , ũN
2 , Y N

1 , Y N
2 )

∈ A(N)
ε (U1, U2, Y1, Y2) and m̂1 = m1 and m̂2 = m2

}
.

In the following, we shall analyze the probabilities of events Aj(sN
1 , sN

2 ), j =
1, 2, 3, 4.
(I). On the one hand, the probability of successful encoding sN

i and mi is
greater than 1 − ε/2. On the other hand, if encoding sN

i and mi is suc-
cessful, then there exist codewords ũN

1 , ũN
2 such that (ũN

1 , ũN
2 , sN

1 , sN
2 ) ∈

A
(N)
ε (U1, U2, S1, S2). Moreover, as N →∞,

Pr{(ũN
1 , ũN

2 , Y N
1 , Y N

2 ) ∈ A(N)
ε (U1, U2, Y1, Y2)| successful encoding} ≥ 1−ε/2

since the attack channel is memoryless.
Thus, as N →∞

EC1,C2 Pr{A1(sN
1 , sN

2 )} ≤ 1− (1 − ε/2)2 ≤ ε. (7)

(II).

EC1,C2 Pr{A2(sN
1 , sN

2 )|A1(sN
1 , sN

2 )}
(c)

≤ 2N [I(U2;S2)+R2−ε]

∫
(ũN

1 ,yN
1 ,yN

2 )∈A
(N)
ε (U1,Y1,Y2)

p(ũN
1 , yN

1 , yN
2 ) (8)(

Pr{(ŨN
2 , ũN

1 , yN
1 , yN

2 ) ∈ A(N)
ε (U2, U1, Y1, Y2)}

)
dũN

1 dyN
1 dyN

2

(d)

≤ 2−N [I(U2;U1,Y1,Y2)−R2−I(U2;S2)+ε−ε1], (9)

where (c) follows from the fact that ŨN
2 is independent of ŨN

1 , Y N
1 , Y N

2 since
m2 is transmitted and M̂2 = m2, and ε1 → 0 as N →∞, and (d) is derived
from Lemma 2-(c). In a symmetrical manner, we have
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EC1,C2 Pr{A3(sN
1 , sN

2 )|A1(sN
1 , sN

2 )} ≤ 2−N [I(U1;U2,Y1,Y2)−R1−I(U1;S1)+ε−ε2],
(10)

where ε2 → 0 as N →∞.
(III).

EC1,C2 Pr{A4(sN
1 , sN

2 )|A1(sN
1 , sN

2 )} ≤
∫

(yN
1 ,yN

2 )∈A
(N)
ε (Y1,Y2)

p(yN
1 , yN

2 )

·
∑

ŨN
1 �∈C1(m1),ŨN

2 �∈C2(m2)

(ŨN
1 ,ŨN

2 )∈A
(N)
ε (U1,U2)

Pr{(ŨN
1 , ŨN

2 , yN
1 , yN

2 ) ∈ A(N)
ε (U1, U2, Y1, Y2)}

≤
∫

(yN
1 ,yN

2 )∈A
(N)
ε (Y1,Y2)

p(yN
1 , yN

2 )
∑

ŨN
1 �∈C1(m1),ŨN

2 �∈C2(m2)

(ŨN
1 ,ŨN

2 )∈A
(N)
ε (U1,U2)

2−N [I(U1,U2;Y1,Y2)−ε3].

By noting that the number of pairs (ũN
1 , ũN

2 ) ∈ C1 × C2

⋂
A

(N)
ε (U1, U2) for

any fixed C1 and C2 is about 2N [I(U1,U2;S1,S2)+R1+R2 , one has

EC1,C2 Pr{A4(sN
1 , sN

2 )|A1(sN
1 , sN

2 )}
≤ 2−N [I(U1,U2;Y1,Y2)−I(U1,U2;S1,S2)−R1−R2−ε3],

where ε3 → 0 as N →∞.

Since
0 ≤ R1 < I(U1; U2, Y1, Y2)− I(U1; S1),
0 ≤ R2 < I(U2; U1, Y1, Y2)− I(U2; S2),
0 ≤ R1 + R2 < I(U1, U2; Y1, Y2)− I(U1, U2; S1, S1),

one has Pe < 7ε as N →∞. Note the probability Pe depends on the attack chan-
nel which is determined by the random code instead of the desired deterministic
code. We denote the attack channel A(W1, W2), and rewrite Pe as Pe(W1, W2).
Also the attack channel depending on the encoders (f (1)

N , f
(2)
N ) is designed by

A(f (1)
N , f

(2)
N ) and the corresponding probability is denoted by Pe(f

(1)
N , f

(2)
N ).

Since the random variable A(f (1)
N , f

(2)
N ) converges to A(W1, W2) in probability

for large enough N , with high probability

A(f (1)
N , f

(2)
N )(y1, y2|x1, x2) < (1 + ε)A(W1, W2)(y1, y2|x1, x2).

Thus, with high probability Pe(f
(1)
N , f

(2)
N ) < (1 + ε)N Pe(W1, W2) < 8ε. The

proof is finished.

6 Gains Obtained from the Correlated Sources

In this section, we will give an example to illustrate the gain region obtained by
using correlated covertext sources over independent ones.
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Let D1, D2 be the distortion levels of two users, and D′ = (D′
1, D

′
2) be the

distortion level of the attacker and let σ2
i = σ2

Si
. Let Xi = biSi + Zi for some

bi > 0 and Ui = αiSi + Zi, where Zi are Gaussian random variables with mean
zero and variance σ2

Zi
= Di− (bi−1)2σ2

1 and is independent of all other random
variables, and let

βi =
σ2

Xi

σ2
Xi
−D′

i

, αi =
σ2

Zi

σ2
Zi

+ βiD′
i

.

It is easy to verify that the covariance matrix of the random vector (U1, U2, Y1, Y2)
is given by ⎡⎢⎢⎢⎢⎢⎣

σ2
U1

α1α2ρσ1σ2
(α1b1σ2

1+σ2
Z1

)

β1

α1b2ρσ1σ2
β2

α1α2ρσ1σ2 σ2
U2

α2b1ρσ1σ2
β1

(α2b2σ2
2+σ2

Z2
)

β2
(α1b1σ2

1+σ2
Z1

)

β1

α2b1ρσ1σ2
β1

σ2
Y1

b1b2ρσ1σ2
β1β2

α1b2ρσ1σ2
β2

(α2b2σ2
2+σ2

Z2
)

β2

b1b2ρσ1σ2
β1β2

σ2
Y2

⎤⎥⎥⎥⎥⎥⎦ ,

from which all information quantities for calculation of the achievable region can
be derived.

Example: Let σ1 = 10, σ2 = 10, D1 = 40, D2 = 40, D′
1 = 10, D′

2 = 10. If
the two users’ covertexts are uncorrelated, that is, ρ = 0, then capacity of user i
is 1.118519599 bits. While if ρ = 0.5, 0.9, point (1.118519608, 1.118519608) and
(1.118519642, 1.118519642) are achievable respectively. A typical region is shown
in Figure 2.

0ρ =

0ρ ≠
2R

1R

Fig. 2. The gain region

7 Conclusion

In this paper we give in single-letter information quantities an achievable region
of a public multiple-access Gaussian watermarking system in which two cover-
texts are generated by correlated Gaussian sources, and from a viewpoint of
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source coding our result is analogous to that of Slepian and Wolf in the sense
that the total rate of separate encoding is the same as that of joint encoding.
Moreover an example is utilized to demonstrate the gain region of correlated
covertext sources over uncorrelated ones.

Appendix

Proof of Lemma 2: a) Let B be the event that (XN , Y N ) are jointly ε2-typical,
and ByN the event that (XN , yN ) are jointly ε2-typical for yN ∈ A

(N)
ε (Y ). Then

by the Markov Inequality

Pr{Y N = yN : Pr{BY N |Y N = yN} ≥ 1− ε}
= 1− Pr{Y N = yN : Pr{Bc

Y N |Y N = yN} ≥ ε}

≥ 1−
E[Pr{Bc

Y N |Y N}]
ε

= 1− Pr{Bc}
ε

≥ 1− ε,

where Ac denotes the complementary event of A.
b) For any yN ∈ A

(N)
ε (Y ), it is easy to verify that in view of Lemma 1, we

have

2−N(H(X,Y )+ε)

∫
xN∈A

(N)
ε (X,yN )

dxN ≤
∫

xN∈A
(N)
ε (X,yN )

p(xN , yN)dxN

≤ p(yN ) ≤ 2−N(H(Y )−ε)

which implies the ∫
xN∈A

(N)
ε (X,yN )

dxN ≤ 2N [H(X|Y )+2ε]

On the other hand, it follows from a) that with probability at least 1 − √ε,
Y n = yN ∈ A

(N)
ε (Y ) satisfies

Pr{A(N)
ε (X, yN )|Y N = yN} ≥ 1−

√
ε (11)

In view of Lemma 1 again, we have for any yN ∈ A
(N)
ε (Y ) satisfying (11),

2−N(H(Y )+ε)(1 −
√

ε) ≤
∫

xN∈A
(N)
ε (X,yN )

p(xN , yN)dxN

≤ 2−N(H(X,Y )−ε)

∫
xN∈A

(N)
ε (X,yN )

dxN

which, together with (11), implies (2). This completes the proof of b).
c) For yN ∈ A

(N)
ε (Y ) satisfying (2), it follows from Lemma 1 that

(1−
√

ε)2−N [I(X;Y )+3ε] = (1−
√

ε)2N [H(X|Y )−2ε] · 2−N [H(X)+ε]

≤
∫

A
(N)
ε (X,yN )

p(xN )dxN ≤ 2−N [H(X)−ε] · 2N [H(X|Y )+2ε]

= 2−N [I(X;Y )−3ε].

��



On Achievable Regions 51

References

1. R. J. Barron, B. Chen and G. W. Wornell, The duality between information
embedding and source coding with side information and some applications, IEEE
Trans. Inform. Theory, vol. 49, pp. 1159-1180, May 2003.

2. B. Chen and G. W. Wornell, Quantization index modulation: A class of provably
good methods for digital watermarking and information embedding, IEEE Trans.
Inform. Theory, vol. 47, pp. 1423-1443, May 2001.

3. A. S. Cohen and Amos Lapidoth, The Gaussian Watermarking Game, IEEE
Trans. Inform. Theory, vol. 48, pp. 1639-1667, June 2002.

4. M. H. M. Costa, Writing on dirty paper, IEEE Trans. Inform. Theory, vol. 29,
pp. 439-441, May 1983.

5. T. M. Cover and J. A. Thomas, Elements of Information Theory, New York: John
Wiley & Sons, 1991.

6. I. Cox, M. Miller and J. Bloom, Digital Watermarking, Elsevier Science: Morgan
Kaufmann Publishers, 2001.

7. S. I. Gel’fand and M. S. Pinsker, Coding for channel with random parameters,
Probl. Contr. Inform. Theory, Vol. 9, no. 1, pp. 19–31, 1980.

8. N. Merhav, On Random Coding Error Exponents of Watermarking Systems,
IEEE Trans. Inform. Theory, Vol. 46, pp. 420–430, March 2000.

9. P. Moulin and J. A. O’Sullivan, Information-theoretic analysis of information
hiding, IEEE Trans. Inform. Theory, vol. 49, pp. 563–593, March 2003.

10. P. Moulin and M. K. Mihcak, The Parallel-Gaussian Watermarking Game, IEEE
Trans. Inform. Theory, vol.50, pp. 272 - 289, Feb. 2004.

11. D. Slepian and J. K. Wolf, Noiseless coding of correlated information sources,
IEEE Trans. Inform. Theory, Vol. 19, pp. 471–480, July 1973.

12. A. Somekh-Baruch and N. Merhav, On the Error Exponent and Capacity Games
of Private Watermarking Systems, IEEE Trans. Inform. Theory, vol. 49, pp. 537-
562, March 2003.

13. A. Somekh-Baruch and N. Merhav, On the Capacity Game of Public Watermark-
ing Systems,IEEE Trans. Inform. Theory, vol. 50, pp. 511 - 524. March 2004.

14. A. Somekh-Baruch and N. Merhav, On the capacity game of private fingerprint-
ing systems under collusion attacks, available at http://www-ee.technion.ac.il/∼
merhav/.

15. J. K. Su, J. J. Eggers and B. Girod, Capacity of Digital Watermarks Subjected to
an Optimal Collusion Attack, European Signal Processing Conference (EUSIPCO
2000), Tampere, Finland, September 2000.

16. W. Sun and E. H. Yang, On the Capacity Regions of Public Multiple-Access
Digital Watermarking Systems, in preparation.



Fixed-Distortion Orthogonal Dirty Paper Coding for
Perceptual Still Image Watermarking

Andrea Abrardo and Mauro Barni

Department of Information Engineering, University of Siena
Via Roma 56, 53100 Siena, ITALY

{abrardo barni}@dii.unisi.it

Abstract. A new informed image watermarking technique is proposed incorpo-
rating perceptual factors into dirty paper coding. Due to the equi-energetic na-
ture of the adopted codewords and to the use of a correlation-based decoder, in-
variance to constant value-metric scaling (gain attack) is automatically achieved.
By exploiting the simple structure of orthogonal and Gold codes, an optimal in-
formed embedding technique is developed, permitting to maximize the water-
mark robustness while keeping the embedding distortion constant. The maximum
admissible distortion level is computed on a block by block basis, by using Wat-
son’s model of the Human Visual System (HVS). The performance of the wa-
termarking algorithm are improved by concatenating dirty paper coding with a
turbo coding (decoding) step. The validity of the assumptions underlying the the-
oretical analysis is evaluated by means of numerical simulations. Experimental
results confirm the effectiveness of the proposed approach.

1 Introduction

Several digital watermarking methods trying to put into practice the hints stemming
from the information-theoretic analysis of the watermarking game have been proposed.
The main merit of these schemes, globally termed as informed watermarking algo-
rithms, is that they permit to completely reject the interference between the cover signal
and the watermark, thus leading to systems in which, in the absence of attacks, a zero
error probability is obtained.

Random binning coding (or dirty paper coding) lies at the hearth of the informed
watermarking approach [1]. To be specific, let us introduce an auxiliary source of ran-
domness U , let B indicate the set with all the possible to-be-hidden messages, and let
2nR be the number of messages contained in it. Finally, let C be the source emitting
the cover feature sequence. The embedder first generates a codebook U consisting of
2nRt entries (call them u’s) which are randomly generated so to span uniformly the set
of typical sequences of U (for a tutorial introduction to typical sequences see [2, 3]).
Then U is randomly (and uniformly) split into 2nR bins (sub-codebooks) each contain-
ing 2n(Rt−R) codewords. It is then possible to associate each message b ∈ B to a bin
of U . In order to transmit a message b, the embedder looks at the host feature sequence
c that is going to host the message, then an entry in the bin indexed by b is looked for
which is jointly typical with c. Next it maps the cover features c into a marked fea-
ture sequence cw which is jointly typical with u and c . At the other side, the decoder

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 52–66, 2004.
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receives a sequence r. In order to estimate the transmitted message, the decoder looks
for a unique sequence u∗ in U which is jointly typical with r and outputs the message
corresponding to the bin u∗ belongs to. The decoder declares an error if more than one,
or no such typical sequence exists. If R is lower than the watermarking capacity then
it is possible to choose Rt so that the error probability averaged over al possible codes
U tends to 0 as the length n of the transmitted sequence tends to infinity. The major
problem with the random binning approach is that when n increases the dimension of
the codebook becomes unmanageable, thus calling for the construction of structured
codebooks allowing for an efficient search.

The most popular solution to put the random binning approach into practice is
through the use of lattice based codebooks [4, 5, 6, 7]. The major weakness of the lat-
tice approach, is that these schemes are vulnerable against constant value-metric scaling
of the host features, a very common operation which consists in multiplying the host
feature sequence by a constant factor g which is unknown to the decoder.

To overcome this problem, Miller et al. [8, 9] proposed to use equi-energetic code-
books and a correlation-based decoder, so that invariance to the presence of the constant
gain g is automatically achieved. Their system relies on a dirty paper Trellis in which
several paths are associated to the same message.

Of course equi-energetic codes do a much worse job in uniformly covering the host
feature space, hence it is necessary to devise a particular embedding strategy which per-
mits to move the host features sequence into a point within the decoding region associ-
ated to the to-be-transmitted message. This can be done either by fixing the watermark
robustness and trying to minimize the embedding distortion, or by fixing the embedding
distortion while maximizing the watermark robustness. In [8, 9], a sub-optimum, fixed-
robustness, embedding strategy is proposed. In [10], the simple structure of orthogo-
nal, and pseudo-orthogonal, codes is exploited to derive an optimum fixed-robustness
embedding algorithm leading to performance which are superior to those obtained by
Miller et al. with the further advantage of a reduced computational burden.

A difficulty with the fixed-robustness approach, is that the robustness constraint
does not allow to take perceptual factors into account. As a matter of fact, in order to
diminish the visibility1 of the watermark, it is desirable that some features are marked
less heavily than others, leading to a constraint on the maximum allowable distortion.
In this paper, we extend the analysis contained in [10], to develop a fixed-distortion em-
bedding algorithm for still image watermarking. Then we will use such an algorithm to
incorporate perceptually driven considerations within the embedding step. Watermark
embedding is performed in the block-DCT domain, since the Human Visual System
(HVS) behavior is better modelled by working in the frequency domain. More specifi-
cally, we rely on the popular Watson’s model [11, 12] measuring the maximum allow-
able distortion a block-DCT coefficient can sustain before the modification becomes
visible. Watson’s measure is used to constrain the maximum allowable embedding dis-
tortion on a block-by block basis.

Experiments and simulations were carried out to validate both the effectiveness of
the proposed embedding strategy and to estimate the overall performance of the new
watermarking system in terms of invisibility and robustness. In particular, the experi-

1 We focus on still image watermarking.
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ments demonstrated an excellent robustness against attacks involving scaling of the host
features and a moderate robustness against more classical attacks such as noise addition
and JPEG compression. Watermark invisibility was satisfactorily reached as well.

This paper is organized as follows. In section 2 the basic ideas behind dirty pa-
per coding by means of orthogonal codes are reviewed. In section 3 the optimal algo-
rithm for fixed-distortion embedding is derived, and the extension to quasi-orthogonal
dirty paper coding presented. Section 4 explains how perceptual factors are incorpo-
rated within the fixed-distortion embedding scheme. The adoption of multistage (turbo)
decoding to improve the overall performance of the system is described in section 5.
Simulation and experimental results are presented in section 6. Finally, in section 7
some conclusions are drawn and directions for future research highlighted.

2 Orthogonal Dirty Paper Coding

In this section we briefly review the basic ideas of orthogonal dirty paper coding. For a
more detailed analysis readers are referred to [10].

Let c represent the cover feature vector of length n = 2w and U a real n × n
unitary matrix such as UT U = In

2. Each column of U, say it ui, i = 0, . . . , n − 1,
represents one out of n available codewords that can be associated to the information
blocks to be embedded within c. It is then assumed that a block of k bits is transmitted
every side information block of length n and that each k-bit block is associated with
one codeword which will be referred to as the carrier codeword. Note that, since the
number of available codewords is n, a clear limit exists for k, i.e., k ≤ log2(n), or,
equivalently, k ≤ w.

Let now consider a partition of U into 2k disjoint subsets Ql, l = 0, . . . , 2k−1, such
that

⋃
Ql

= U . Assume that a one-to-one predefined mapping p = β(l) exists between
each possible k-bit information sequences bl, l = 0, . . . , 2k − 1 and the subsets Qp,
p = 0, . . . , 2k − 1. This means that each k-bit information sequence can be associated
to one out of 2w−k carrier codewords ui. Of course we must define a strategy to solve
the above ambiguity, i.e. we must define how the carrier codeword is chosen among all
the codewords in the same bin. Let us start by considering that this strategy has already
been defined, and let us indicate the chosen carrier codeword by um. We will go back
to the choice of um at the end of this section.

We now consider the case in which an AWGN attack is present. In this scenario, de-
noting by cw the transmitted n-dimensional column vector, the received n-dimensional
column vector r can be expressed as:

r = cw + n, (1)

n being an additive white Gaussian noise vector with variance σ2
n, i.e., n ∼ N (0, σn).

Upon receiving a sequence r, the decoder performs the estimation of the î-th carrier
sequence by evaluating:

î = arg max
i=0,...,n−1

(
rT ui

)
(2)

2 The set with the n columns of U gives the codebook U
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where T stands for transpose operation. The estimated transmitted sequence bl̂ cor-
responds to the sequence associated to the bin uî belongs to. Note that the decoding
rule outlined above, together with the equi-energetic nature of the carrier codewords,
ensures that the watermark is robust against multiplication by a scale factor g.

2.1 Constant Robustness Embedding

In order to derive the optimum fixed-robustness embedding strategy, a parameter mea-
suring the robustness of the watermark is needed. To this aim, we propose to use the
maximum pairwise error probability between the transmitted codewords and all the
codewords of U belonging to a bin Qj with j = l, where by l we indicated the in-
dex associated to the transmitted information sequence. Even if such a probability does
not coincide with the true error probability of the system, it can be shown [13] that if
the attack noise is not too strong, the maximum pairwise error probability is a good
approximation of the true error probability3.

With the above observations in mind, and by denoting with Pe(m, q) the pairwise
(error) probability that the receiver decodes the sequence uq instead of the carrier se-
quence um, we have:

Pe(m, q) = Prob
{
cw

T (um − uq) + z < 0
}

(3)

where z ∼ N
(
0, σn

√
|um − uq|

)
. By exploiting the well known approximation [13]:

Pe(m, q) ∼=
1
2

exp

⎧⎨⎩
[
− cw

T (um − uq)√
2σn

√
|um − uq|

]2
⎫⎬⎭ , (4)

and by proceeding as in [10], the fixed robustness embedding problem can be formu-
lated as follows: evaluate the transmitted n-dimensional column vector cw that mini-
mizes the distortion Δ = (cw − c)T (cw − c), subject to the linear constraint:

cw
T um − cw

T uq ≥ S , ∀q|uq /∈ Ql, (5)

with:

S = 2

√
Pc ×

(
10−

DNR
10

)
× log

(
1

2P ∗
e

)
, (6)

where is is assumed that the attacker uses the maximum noise power allowed to him,
P ∗

e indicates the target error probability, Pc = E[‖c‖2], and where DNR indicates the
Data to Noise Ratio defined as

DNR = 10log10

(
Pc

σ2
n

)
. (7)

3 On the other hand, when the attack noise gets high, the system performance deteriorates
rapidly, hence making the above analysis useless.
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Since the columns of the unitary matrix U represent an orthonormal basis for R
n, it is

possible to express the error vector e = cw − c as a linear combination of ui’s, i.e.,

e = Ua, (8)

where a = (a0, a1, . . . , an−1)T is the column vector with the weights of the linear

combination. Given the above, it is straightforward to observe that Δ = ‖a‖2 =
n−1∑
h=0

a2
h

and aT UT ui = ai. Accordingly, our problem is equivalent to find the vector a such
that:

a = argmin
ah

(
n−1∑
h=0

a2
h

)
subject to :

am − aq + cT um − cT uq ≥ S , q|uq /∈ Ql

(9)

or:

a = argmin
am, aq

(
a2

m +
∑

q|uq /∈Ql

a2
q

)
subject to :

aq ≤ am − S + χq,m , q|uq /∈ Ql

(10)

where χq,m = cT um − cT uq. The constraint in (10) can be reformulated as:

aq = min (0, am − S + χq,m) (11)

Indeed, if am−S+χq,m is greater than or equal to zero, the value of aq which minimizes
the error Δ while fulfilling the constraint is aq = 0. Conversely, if am − S + χq,m is
lower than zero the minimum is obtained at the edge, i.e., for aq = am − S + χq,m.
Accordingly, the minimization problem can be expressed as:

a = arg min
am

⎛⎝a2
m +

∑
q∈Cl

a2
q

⎞⎠
aq = min (0, am − S + χq,m) q|uq /∈ Ql (12)

Note that the problem is now formulated as a mono dimensional minimization problem
in the unknown am. Such a minimum can be easily computed by means of a numeric
approach (e.g., see [14]).

Having defined the optimum embedding rule, we now go back to the choice of um.
By recalling that the decoder takes its decision by maximizing the correlation between
r and all the codewords in U , we decided to choose the carrier codeword which maxi-
mizes the correlation with c, i.e.

um = argmax
us∈Ql

cT us . (13)
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3 Fixed Distortion Embedding

We now want to re-formulate the embedding problem by fixing the distortion Δ and
maxime the watermark robustness, i.e. minimize the maximum pairwise error probabil-
ity. To do so, we can rely on the analysis reported in the previous section, however it is
necessary that a closed form expression for Δ is obtained. Let us start by denoting with
χ̃q,m the reordered set of χq,m, so that χ̃0,m ≤ χ̃1,m, . . . ,≤ χ̃d−1,m, where d is the
dimension of χq,m, i.e., d = n − 2w−k. Of course, the unknown term am will satisfy
one of the following mutually exclusive conditions:

(I) S − am < χ̃0,m

(II) χ̃0,m ≤ S − am < χ̃d−1,m (14)

(III) S − am ≥ χ̃d−1,m

Let us first assume that condition (I) holds. In this case, since χ̃0,m ≤ χ̃q,m, it is also
verified am − S + χ̃q,m ≥ 0, that is, directly from (12), aq = 0. Besides, since in this
case the minimization function is Δm = a2

m and since for hypothesis am > S − χ̃0,m,
we have

a(0)
m = max (0, S − χ̃0,m) , (15)

and

Δ(0)
m = [max (0, S − χ̃0,m)]2 , (16)

where the apex 0 means that am and Δm are evaluated by assuming S − am < χ̃0,m.
If case (II) holds, it is of course possible to find an index f , for which:

χ̃f,m ≤ S − am < χ̃f+1,m. (17)

Hence, am − S + χ̃q,m > 0, for q > f , and am − S + χ̃q,m ≤ 0, for q ≤ f . We thus
obtain directly from (12) aq = 0, for q > f , and aq = am − S + χ̃q,m, for q ≤ f . The
distortion becomes:

Δm = a2
m +

f∑
q=0

(am − S + χ̃q,m)2 . (18)

Since in this case Δm is a quadratic form of am, the computation of the minimum
distortion subject to (17), say it Δ

(f)
m , is straightforward. Indeed, since the derivative of

(18) is zero for

am = âm =
S(f + 1)

f + 2
−

f∑
q=0

χ̃q,m

f + 2
, (19)

the value of am which gives the minimum, call it a
(f)
m , is:

a(f)
m =

⎧⎨⎩ âm, for S − χ̃f+1,m ≤ âm < S − χ̃f,m

S − χ̃f+1,m, for âm < S − χ̃f+1,m

S − χ̃f,m, for âm ≥ S − χ̃f,m.
(20)
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Note that for high values of f , equation (19) can be rewritten as:

a(f)
m
∼= S −

f∑
q=0

χ̃q,m

f + 1
≥ S − χ̃f,m. (21)

We will assume in the following that (21) holds for each f . By considering (21) and
(20), we obtain:

a
(f)
m = S − χ̃f,m,

Δ
(f)
m = (S − χ̃f,m)2 +

f∑
q=0

(χ̃q,m − χ̃f,m)2 .
(22)

Finally, by means of similar considerations, we have for case (III):

a
(d−1)
m = S − χ̃d−1,m,

Δ
(d−1)
m = (S − χ̃d−1,m)2 +

d−1∑
q=0

(χ̃q,m − χ̃d−1,m)2 .
(23)

According to the above considerations, the distortion minimization problem can be ex-
pressed as:

hm = arg min
h=0,...,d−1

Δ
(h)
m

am = a
(hm)
m

Δm = Δ
(hm)
m .

(24)

Note that (24) allows to evaluate the minimum distortion for a given robustness S and
a given m. Such an estimation can be performed by computing all the d possible values
of the error Δm and selecting the minimum.

The above procedure can be easily managed so that the inverse problem, that is to
evaluate the maximum robustness S for a given error Δ, is addressed. Firstly, observe
from (22) that a given error Δ can be achieved only if

f∑
q=0

(χ̃q,m − χ̃f,m)2 < Δ (25)

Accordingly, the search must be restricted to the set of values f which satisfy (25), say
{0, 1, . . . , d′ − 1}, with d′ ≤ d. Now, for a given Δ, it is possible to derive from (23)

and (22) the robustness parameter S
(h)
m , with h ∈ {0, 1, . . . , d′ − 1}, as:

S(h)
m = χ̃h,m +

√√√√Δ−
h∑

q=0

(χ̃q,m − χ̃h,m)2, (26)

Accordingly, the maximum robustness problem can be expressed as:

pm = arg max
p=0,...,d′−1

S
(p)
m

am = a
(pm)
m ,

(27)

Note that both (27) and (24) can be evaluated by means of an exhaustive procedure over
all d possible values of Δ

(h)
m and S

(h)
m , respectively.
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3.1 Quasi-Orthogonal Dirty Paper Coding

As in [10], to further improve the performance of the proposed system we replace the or-
thogonal codes with quasi-orthogonal sequences, so to increase the number of available
codewords for a given sequence length n. Specifically, we use Gold sequences of length
n since their cross-correlation properties ensure that different sequences are almost or-
thogonal among them [13]. Accordingly, the matrix U is now a rectangular n× h ma-
trix with column vectors ui, i = 1, . . . , h, representing a set of h Gold sequences with
length n. Gold sequences have been widely studied in the technical literature, partic-
ularly for spread spectrum applications, for their autocorrelation and cross-correlation
functions that are reminiscent of the properties of white noise. Specifically, in the fol-
lowing we will assume that ui are normalized Gold sequences [15] with ui(l) = ± 1√

n
,

∀i, l . Note that all Gold sequences have the same norm, thus ensuring that the decoder
performance are invariant with respect to multiplication by a gain factor g. In this case,
for a given length n = 2w − 1, the number of possible Gold sequences that are char-
acterized by good periodic cross-correlation properties is n + 2. Since each cyclic shift
of any Gold sequence is still characterized by the same properties, the overall number
of Gold sequences that can be considered for information embedding is h = n(n + 2).
Note that, as required to write (8), Gold sequences are a frame for R

n, hence ensuring
that every element of R

n can be expressed as a linear combination of the ui’s.
Let us now consider the distortion introduced by watermark embedding, we have:

d =

∣∣∣∣∣
h∑

i=1

aiui

∣∣∣∣∣
2

=
h∑

i=1

a2
i +

∑
i�=j

aiajuT
i uj . (28)

We can argue that, due to the particular properties of Gold sequences, the first term of
the above equation is predominant with respect to the second one, even if the second
term is not exactly equal to zero due to the non perfect orthogonality of Gold sequences.
Such an assumption will be validated through numerical simulations in section 6. By
relying on the above observations, the fixed distortion constraint can still be replaced

by a constraint on
m∑

i=1

a2
i .

4 Perceptual Dirty Paper Coding

The analysis carried out in the previous section gives the possibility of fixing the em-
bedding distortion. This turns out to be a very useful feature if we want to give to
the embedding systems a perceptually-flavored behavior. More specifically, we con-
sider the watermarking of still images in the block-DCT domain. The host image is first
partitioned into non-overlapping 8× 8 blocks, that then are DCT-transformed. For each
DCT block a set of intermediate frequency coefficients is extracted to form the host fea-
ture vector. In our implementation we considered 12 DCT coefficients for each block,
more specifically after zig-zag scanning the DCT block we skip the first 3 coefficients
and select the next 12 ones.

At this point we need a system to measure the maximum amount of distortion that
can be tolerated by each coefficient before the watermark becomes visible. Though
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many algorithms are available to this aim, we decided to adopt the approach proposed
by Watson in [11] for its simplicity.

At a general level Watson’s visual model consists of three main parts: a sensitiv-
ity function giving the visibility of a visual stimulus as a function of frequency; two
masking components, taking into account the capacity of the host image to mask the
stimulus; and a pooling function to consider how visual stimuli at different frequencies
combine together to form the final visual appearance of the composite stimulus.

The sensitivity function is given as a table specifying for each DCT position the
smallest magnitude (Just Noticeable Difference - JND) of the corresponding DCT co-
efficient that is visible in the absence of any masking components. Let us denote the, so
to say, threshold values contained in the sensitivity table by t(i, j), where the indexes
i and j indicate the position of the DCT coefficient within the 8 × 8 block. The exact
values of the sensitivity table depends on a number of parameters, including viewing
conditions, environment lightness, etc. Here we used the values given in [12]. To take
into account luminance masking, Watson suggests to modify the threshold values as:

tl(i, j, k) = t(i, j)
(

C(0, 0, k)
C0,0

)0.649

, (29)

where C(0, 0, k) is the DCT coefficient of the k-th block and C0,0 is the average value of
all the DCT coefficients of the image. Note that the modified thresholds vary from block
to block due to the presence of the C(0, 0, k) term. Finally, the modified thresholds
tl(i, j, k) are adjusted to take into account iso-frequency contrast masking, leading to a
final masked threshold (or slack) given by:

s(i, j, k) = max{tl(i, j, k); ‖C(i, j, k)‖0.7tl(i, j, k)0.3}. (30)

Of course a different s(i, j, k) is obtained for each coefficient, however in our case we
need to specify the same distortion, for all the n coefficients bearing the same bit. For
this reason the embedder considers an average distortion computed as:

Δ2
max,av =

∑
s(i, j, k)2

n
, (31)

where the sum is extended to all the n coefficients hosting the same bit. Note that
since typically n is larger than 12, the sum spans several DCT blocks. For instance, for
n = 32, the sum spans three blocks4.

At this point the fixed distortion embedding algorithm described in the previous
section is applied to embed the bit of the information message into the host features.
Note that a different distortion constraint is applied to DCT blocks hosting different
bits, hence each bit will be characterized by a different robustness.

5 Multistage Decoding

As we pointed out at the end of the previous section, bit hosted by different DCT blocks
are characterized by different levels of robustness. As an extreme case, for some blocks

4 We neglect border effects for simplicity.
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the admissible distortion may be so low that the embedding algorithm fails to enter the
correct decoding region. In other words, in certain regions the interference of the host
image can not be rejected completely, leading to a non-null error probability even in the
absence of attacks. In order to improve the robustness of the watermark, an additional
channel coding step prior to orthogonal (or Gold) dirty paper coding is introduced. More
specifically a turbo coding (decoding) step is performed prior to watermark embedding.
To this aim, let us observe that the detection strategy (2) generates hard estimates of the
bits bl = (bl,0, . . . , bl,k−1). On the other hand, when dealing with multistage decoding
it is preferable that the inner decoder produces soft estimates to be delivered to the outer
decoder [13]. In order to provide the outer decoder with a soft estimate of the hidden
bit, we follow the same approach described in [10]. Let the sets I1,s and I0,s be defined
as:

I1,s = {l : bl,s = 1} ,
I0,s = {l : bl,s = 0} , (32)

that is I1,s (I0,s) represents the set of 2k−1 sequences bl for which the s-th bit is 1 (0).
Then we use the following soft estimate of the s-th bit:

vs = P1,s − P0,s = max
ui∈Ql,l∈I1,s

(
rT ui

)
− max

ui∈Ql,l∈I0,s

(
rT ui

)
. (33)

The sign of (33) determines the hard estimate of the s-th bit and its absolute value
represents the soft output information that can be used by the outer decoder.

It is worth pointing out that the above soft decoding strategy can be applied to any
kind of binary outer coder’s structure. In this paper, the outer code is the Rc = 1/2
binary punctured parallel concatenated turbo coder presented in [16] which allows to
achieve error correction performance that are very close to the theoretical Shannon
limit.

We conclude this section by highlighting the necessity of scrambling the to-be-
hidden bits after the turbo encoder, prior to embedding. This is because due to the
coherence of natural still images, the DCT blocks characterized by a very low admissi-
ble distortion are likely to be contiguous, hence resulting in the introduction of bursty
errors. The scrambler avoids this problem by transforming bursty errors into isolated
errors. Of course, de-scrambling is applied at the decoder prior to turbo decoding.

6 Simulations and Experimental Results

The validity of the above analysis and the performance of the watermarking scheme
deriving from it, have been tested by means of both numerical simulations and exper-
imental tests. Simulations aimed at validating the fixed distortion embedding strategy
derived theoretically. This is a necessary step when we use Gold sequences instead of
orthogonal codewords, since the analysis we carried out relies on the assumption that
the second term in equation (28) is negligible with respect to the first one. In figure 1 the
histogram of the actual embedding distortion d (measured in terms of of DWR) when
a target DWR of 15dB was asked is shown. The histogram was built by applying the
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Fig. 1. Histogram of the actual DWR when a target DWR of 15dB is asked, for Gold
sequences of length 32 (a) and 64 (b).
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Fig. 2. Histogram of the second term in equation (28) when a target DWR of 15dB
is asked, for Gold sequences of length 31 (a) and 63 (b). The histograms should be
compared with the value of

∑
i a2

i , that, for DWR = 15dB, is approximately equal to
0.0316 (we let Pc = 1).

embedding algorithm to several cover sequences. As it can be seen the actual DWR is
slightly higher than the target one. In figure 2 the histogram of the second term in equa-
tion (28) is plotted (linear scale). As it can be verified the error we made by neglecting
this term is negligible. As a matter of fact with DWR = 15dB, and since in our simu-
lations we let Pc = 1, we have that

∑
i a2

i = 10−1.5 ≈ 0.0316 which is much higher
than the values reported in figure 2. In addition in most of the cases this term turns out
to be negative, hence ensuring that the actual distortion is lower than the target one.

In order to estimate the overall performance of the system, a selection of the results
we obtained on real images is now described. For sake of brevity we describe only
the performance of the algorithm based on Gold sequences. Similar results (actually,
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slightly worse) were obtained for the orthogonal case, which, on the other hand, ensured
a much faster embedding phase.

6.1 Watermark Invisibility

We fist checked whether the proposed fixed distortion strategy actually ensures the in-
visibility of the watermark. To do so, we built a database of 40 1024 × 1024 images,
and embedded the watermark in all of them by letting n = 32 and k = 1, 2, thus obtain-
ing an overall rate of 1/64 and 1/32 respectively. We visually inspected all the marked
images and the watermark resulted to be invisible in all the cases: the observer could
individuate the watermark only by comparing two magnified versions of the original
and watermarked images on a high resolution monitor. No visual artifact was perceived
by looking at the images in normal conditions or by looking at the images after printing
by means of a high quality printer.

For all the images we measured the DWR (data to watermark ratio) both by consid-
ering only the watermarked DCT coefficients and globally, i.e. by exploiting the fact the
not all the DCT coefficients are marked. The results we obtained are reported in table 1.
In the same table, the Watson distance [12] between the watermarked and the original
images is also given.

Table 1. Objective measures of the distortion introduced by the watermark. The results
have been obtained by averaging those obtained on a test database consisting of 40 1024
× images. By DWRall, DWRsel and Dwats, the DWR computed on the overall image,
the host DCT coefficients and the Watson distance are meant respectively.

Rate DWRall(db) DWRsel (db) DWats (db)
n = 32, k = 2 37.46 13.24 17.43
n = 32, k = 1 37.52 13.12 17.49

6.2 Watermark Robustness

With regard to robustness, given the fixed distortion embedding strategy we adopted,
we first had to evaluate whether host signal rejection was actually achieved or not (the
admitted distortion could not be enough to ensure that the right decoding region is en-
tered). Hence we tried to detect the watermark on the marked images in the absence of
attacks. We repeated this test on all the images of the database and no errors were found.
Then we considered a number of attacks involving scaling (not necessarily uniform) of
the host features. In particular we considered histogram stretching, histogram equaliza-
tion and sharpening. In all the cases the watermark was successfully recovered with no
errors in all the images of the database. To give an idea of the robustness of our system
against this kind of attacks, two examples of images attacked by means of histogram
equalization are shown in figure 3. As it can be seen the attack strength may be very
high, and amplitude scaling of DCT coefficients highly non-uniform, nevertheless the
watermark is correctly retrieved.
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As a second test we considered robustness against white noise addition. More specif-
ically the watermarked image was impaired by spatially adding a white Gaussian noise,
with increasing variance. The results we obtained demonstrate only a moderate robust-
ness against this kind of attack. For example, when the variance of noise is set to 10, the
bit error probability was equal to 1.1 · 10−1 (k = 1). Note that adding a white Gaussian
noise with variance 10 results in a visible, yet slight, degradation of the marked image. It
has to be noted, though, that such an attack results in an average WNR - computed only
on the host features - approximately equal to -2 db, and that for negative WNR values,
a high robustness can only be achieved for lower rates (or by relaxing the invisibility
constraint).

Fig. 3. Robustness against histogram equalization. Despite the great difference between
the marked (left) and the marked and attacked (right) images, no decoding error was
found.
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Similar considerations hold when robustness against JPEG compression is consid-
ered. The results we obtained in this case are summarized in table 2.

Table 2. Robustness against JPEG compression. The bit error probability averaged over
all the images of the database is given as a function of the JPEG quality factor (Q).

Rate Q = 90 Q = 80 Q = 70

n = 32, k = 2 0 1.2 · 10−2 0.34
n = 32, k = 1 0 3 · 10−3 1.2 · 10−1

7 Conclusions

By relying on the simple structure of orthogonal and Gold sequences, we have presented
a new dirty paper coding watermarking scheme. The main merit of the proposed scheme
is the use of an optimum embedding strategy, which permits to maximize the robustness
of the watermark for a fixed distortion. Another advantage of the new scheme is that
due to the equi-energetic nature of the codewords and to the adoption of a correlation-
based decoder, robustness against value-metric scaling is automatically achieved, thus
achieving a very good robustness against common image processing tools such as image
enhancement and histogram manipulation. We have also shown how the performance of
the system are improved by concatenating the dirty paper code with an outer turbo code.
To this aim, we had to introduce a new soft dirty paper decoding scheme which allows
the iterative multistage decoding of the concatenated codes. The validity of the pro-
posed techniques has been assessed through experimental results which demonstrated
an excellent behaviour from the point of view of watermark invisibility and robustness
against attacks involving scaling of the host features.

Several directions for future work remain open, including the usage of more pow-
erful spherical codes [17, 18, 19] instead of the simple orthogonal codes used here and
the adoption of more sophisticated HVS models to improve watermark invisibility.
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Abstract. In this paper, we introduce a new feature-based steganalytic method 
for JPEG images and use it as a benchmark for comparing JPEG steg-
anographic algorithms and evaluating their embedding mechanisms. The detec-
tion method is a linear classifier trained on feature vectors corresponding to 
cover and stego images. In contrast to previous blind approaches, the features 
are calculated as an L1 norm of the difference between a specific macroscopic 
functional calculated from the stego image and the same functional obtained 
from a decompressed, cropped, and recompressed stego image. The functionals 
are built from marginal and joint statistics of DCT coefficients. Because the 
features are calculated directly from DCT coefficients, conclusions can be 
drawn about the impact of embedding modifications on detectability. Three dif-
ferent steganographic paradigms are tested and compared. Experimental results 
reveal new facts about current steganographic methods for JPEGs and new de-
sign principles for more secure JPEG steganography.  

1   Introduction 

Steganography is the art of invisible communication. Its purpose is to hide the very 
presence of communication by embedding messages into innocuous-looking cover 
objects. Each steganographic communication system consists of an embedding algo-
rithm and an extraction algorithm. To accommodate a secret message in a digital 
image, the original cover image is slightly modified by the embedding algorithm. As 
a result, the stego image is obtained. 

Steganalysis is the art of discovering hidden data in cover objects. As in cryptana-
lysis, it is assumed that the steganographic method is publicly known with the excep-
tion of a secret key. Steganography is considered secure if the stego-images do not 
contain any detectable artifacts due to message embedding. In other words, the set of 
stego-images should have the same statistical properties as the set of cover-images. If 
there exists an algorithm that can guess whether or not a given image contains a se-
cret message with a success rate better than random guessing, the steganographic 

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 67-81, 2004. 
 Springer-Verlag Berlin Heidelberg 2004 



68           Jessica Fridrich 

system is considered broken. For a more exact treatment of the concept of steg-
anographic security, the reader is referred to [1,2]. 

1.1  Steganalytic Methods 

Several trends have recently appeared in steganalysis. One of the first general stega-
nalytic methods was the “chi-square attack” by Westfeld [3]. The original version of 
this attack could detect sequentially embedded messages and was later generalized to 
randomly scattered messages [4,5]. Because this approach is based solely on the first 
order statistics and is applicable only to idempotent embedding operations, such as 
LSB (Least Significant Bit) flipping, its applicability to modern steganographic 
schemes, that are aware of the Cachin criterion [2], is rather limited. 

Another major stream in steganalysis is based on the concept of a distinguishing 
statistic [6]. In this approach, the steganalyst first carefully inspects the embedding 
algorithm and then identifies a quantity (the distinguishing statistics) that changes 
predictably with the length of the embedded message, yet one that can be calibrated 
for cover images. For JPEG images, this calibration is done by decompressing the 
stego image, cropping by a few pixels in each direction, and recompressing using the 
same quantization table. The distinguishing statistic calculated from this image is 
used as an estimate for the same quantity from the cover image. Using this calibra-
tion, highly accurate and reliable estimation of the embedded message length can be 
constructed for many schemes [6]. The detection philosophy is not limited to any 
specific type of the embedding operation and works for randomly scattered messages 
as well. One disadvantage of this approach is that the detection needs to be custom-
ized to each embedding paradigm and the design of proper distinguishing statistics 
cannot be easily automatized. 

The third direction in steganalysis is formed by blind classifiers. Pioneered by 
Memon and Farid [7,15], a blind detector learns what a typical, unmodified image 
looks like in a multi-dimensional feature space. A classifier is then trained to learn the 
differences between cover and stego image features. The 72 features proposed by 
Farid are calculated in the wavelet decomposition of the stego image as the first four 
moments of coefficients and the log error between the coefficients and their globally 
optimal linear prediction from neighboring wavelet modes. This methodology com-
bined with a powerful Support Vector Machine classifier gives very impressive re-
sults for most current steganographic schemes. Farid demonstrated a very reliable 
detection for J-Steg, both versions of OutGuess, and for F5 (color images only). The 
biggest advantage of blind detectors is their potential ability to detect any embedding 
scheme and even to classify embedding techniques by their position in the feature 
space. Among the disadvantages is that the methodology will always likely be less 
accurate than targeted approaches and it may not be possible to accurately estimate 
the secret message length, which is an important piece of information for the stegana-
lyst. 

Introducing blind detectors prompted further research in steganography. Based on 
the previous work of Eggers [8], Tzschoppe [9] constructed a JPEG steganographic 
scheme (HPDM) that is undetectable using Farid’s scheme. However, the same 
scheme is easily detectable [10] using a single scalar feature – the calibrated spatial 
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blockiness [6]. This suggests that it should be possible to construct a very powerful 
feature-based detector (blind on the class of JPEG images) if we used calibrated 
features computed directly in the DCT domain rather than from a somewhat arbitrary 
wavelet decomposition. This is the approach taken in this paper. 

1.2  Proposed Research 

We combine the concept of calibration with the feature-based classification to devise 
a blind detector specific to JPEG images. By calculating the features directly in the 
JPEG domain rather than in the wavelet domain, it appears that the detection can be 
made more sensitive to a wider type of embedding algorithms because the calibration 
process (for details, see Sec. 2) increases the features’ sensitivity to the embedding 
modifications while suppressing image-to-image variations. Another advantage of 
calculating the features in the DCT domain is that it enables more straightforward 
interpretation of the influence of individual features on detection as well as easier 
formulation of design principles leading to more secure steganography. 

The proposed detection can also be viewed as a new approach to the definition of 
steganographic security. According to Cachin, a steganographic scheme is considered 
secure if the Kullback-Leibler distance between the distribution of stego and cover 
images is zero (or small for -security). Farid’s blind detection is essentially a reflec-
tion of this principle. Farid first determines the statistical model for natural images in 
the feature space and then calculates the distance between a specific image and the 
statistical model. This “distance” is then used to determine whether the image is a 
stego image. In our approach, we change the security model and use the stego image 
as a side-information to recover some statistics of the cover image. Instead of measur-
ing the distance between the image and a statistical model, we measure the distance 
between certain parameters of the stego image and the same parameters related to the 
original image that we succeeded to capture by calibration. 

The paper is organized as follows. In the next section, we explain how the features 
are calculated and why. In Section 3, we give the details of the detection scheme and 
discuss the experimental results for OutGuess [11], F5 [13], and Model Based Steg-
anography [12,14]. Implications for future design of steganographic schemes are 
discussed in Section 4. The paper is summarized in Section 5. 

2   Calibrated Features 

Two types of features will be used in our analysis – first order features and second 
order features. Also, some features will be constructed in the DCT domain, while 
others in the spatial domain. In the whole paper, scalar quantities will be represented 
with a non-bold italic font, while vectors and matrices will always be in bold italics. 
The L1 norm is defined for a vector (or matrix) as a sum of absolute values of all 
vector (or matrix) elements. 

All features are constructed in the following manner. A vector functional F is ap-
plied to the stego JPEG image J1. This functional could be the global DCT coefficient 
histogram, a co-occurrence matrix, spatial blockiness, etc. The stego image J1 is de-
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compressed to the spatial domain, cropped by 4 pixels in each direction, and recom-
pressed with the same quantization table as J1 to obtain J2. The same vector functional 
F is then applied to J2. The final feature f is obtained as an L1 norm of the difference 

 

1
)()( 21 LJJf FF .    (1) 

 
The logic behind this choice for features is the following. The cropping and recom-
pression should produce a “calibrated” image with most macroscopic features similar 
to the original cover image. This is because the cropped stego image is perceptually 
similar to the cover image and thus its DCT coefficients should have approximately 
the same statistical properties as the cover image. The cropping by 4 pixels is impor-
tant because the 8 8 grid of recompression “does not see” the previous JPEG com-
pression and thus the obtained DCT coefficients are not influenced by previous quan-
tization (and embedding) in the DCT domain. One can think of the cropped 
/recompressed image as an approximation to the cover image or as a side-information. 
The use of the calibrated image as a side-information has proven very useful for de-
sign of very accurate targeted steganalytic methods in the past [6]. 
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2.1 First Order Features 

The simplest first order statistic of DCT coefficients is their histogram. Suppose the 
stego JPEG file is represented with a DCT coefficient array dk(i, j) and the quantiza-
tion matrix Q(i, j), i, j = 1,…,8, k = 1, …, B. The symbol dk(i, j) denotes the (i, j)-th 
quantized DCT coefficient in the k-th block (there are total of B blocks). The global 
histogram of all 64k DCT coefficients will be denoted as Hr, where r = L, …, R, L = 
mink,i,j dk(i, j) and R = maxk,i,j dk(i, j). 

There are steganographic programs that preserve H [8,10,11]. However, the 
schemes in [8,9,11] only preserve the global histogram and not necessarily histo-
grams of individual DCT modes. Thus, we add individual histograms for low fre-
quency DCT modes to our set of functionals. For a fixed DCT mode (i, j), let , r = 
L, …, R, denote the individual histogram of values d

ij
rh

k(i, j), k = 1, …, B. We only use 
histograms of low frequency DCT coefficients because histograms of coefficients 
from medium and higher frequencies are usually statistically unimportant due to the 
small number of non-zero coefficients. 
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To provide additional first order macroscopic statistics to our set of functionals, we 
have decided to include “dual histograms”. For a fixed coefficient value d, the dual 
histogram is an 8 8 matrix  d

ijg
B

k k
d
ij jiddg

1
)),(,( ,    (2) 

where (u,v)=1 if u=v and 0 otherwise. In words, is the number of how many times 
the value d occurs as the (i, j)-th DCT coefficient over all B blocks in the JPEG im-
age. The dual histogram captures how a given coefficient value d is distributed 
among different DCT modes. Obviously, if a steganographic method preserves all 
individual histograms, it also preserves all dual histograms and vice versa. 

d
ijg

2.2 Second Order Features 

If the corresponding DCT coefficients from different blocks were independent, then 
any embedding scheme that preserves the first order statistics – the histogram – 
would be undetectable by Cachin’s definition of steganographic security [2]. How-
ever, because natural images can exhibit higher-order correlations over distances 
larger than 8 pixels, individual DCT modes from neighboring blocks are not inde-
pendent. Thus, it makes sense to use features that capture inter-block dependencies 
because they will likely be violated by most steganographic algorithms. 

Let Ir and Ic denote the vectors of block indices while scanning the image “by 
rows” and “by columns”, respectively. The first functional capturing inter-block de-
pendency is the “variation” V defined as 

 

||||

|),(),(| |),(),(| 
8

1,

1||

1
)1()(

8

1,

1||

1
)1()(

cr

ji

I

k
kIkI

ji

I

k
kIkI

II

jidjidjidjid

V

c

cc

r

rr

.  (3) 

 
Most steganographic techniques in some sense add entropy to the array of quantized 
DCT coefficients and thus are more likely to increase the variation V than decrease. 

Embedding changes are also likely to increase the discontinuities along the 8 8 
block boundaries. In fact, this property has proved very useful in steganalysis in the 
past [6,10,12]. Thus, we include two blockiness measures B ,  = 1, 2, to our set of 
functionals. The blockiness is calculated from the decompressed JPEG image and 
thus represents an “integral measure” of inter-block dependency over all DCT modes 
over the whole image: 
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In the expression above, M and N are image dimensions and xij are grayscale values 
of the decompressed JPEG image. 

The final three functionals are calculated from the co-occurrence matrix of 
neighboring DCT coefficients. Recalling the notation, L  dk(i, j)  R, the co-
occurrence matrix C is a square D D matrix, D = R – L + 1, defined as follows 
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The co-occurrence matrix describes the probability distribution of pairs of neighbor-
ing DCT coefficients. It usually has a sharp peak at (0,0) and then quickly falls off. 
Let C(J1) and C(J2) be the co-occurrence matrices for the JPEG image J1 and its cali-
brated version J2, respectively. Due to the approximate symmetry of Cst around 
(s, t) = (0, 0), the differences Cst(J1) – Cst(J2) for (s, t) {(0,1), (1,0), (–1,0), (0,–1)} 
are strongly positively correlated. The same is true for the group (s, t) {(1,1), (–1,1), 
(1,–1), (–1,–1)}. For practically all steganographic schemes, the embedding changes 
to DCT coefficients are essentially perturbations by some small value. Thus, the co-
occurrence matrix for the embedded image can be obtained as a convolution C P(q), 
where P is the probability distribution of the embedding distortion, which depends on 
the relative message length q. This means that the values of the co-occurrence matrix 
C P(q) will be more “spread out”. To quantify this spreading, we took the following 
three quantities as our features: 
 
N00=C0,0(J1)–C0,0(J2)             (6) 
N01=C0,1(J1)–C0,1(J2)+C1,0(J1)–C1,0(J2)+C–1,0(J1)–C–1,0(J2)+C0,–1(J1)–C0,–1(J2) 
N11=C1,1(J1)–C1,1(J2)+C1,–1(J1)–C1,–1(J2)+C–1,1(J1)–C–1,1(J2)+C–1,–1(J1)–C–1,–1(J2) . 
 
The final set of 23 functionals (the last three are directly features) used in this paper is 
summarized in Table 1. 

3   Steganalytic Classifier 

We used the Greenspun image database (www.greenspun.com) consisting of 1814 
images of size approximately 780 540. All images were converted to grayscale, the 
black border frame was cropped away, and the images were compressed using an 
80% quality JPEG. We selected the F5 algorithm [13], OutGuess 0.2 [11], and the 
recently developed Model based Steganography without (MB1) and with (MB2) 
deblocking [12,14] as three examples of different steganographic paradigms for JPEG 
images. 
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Each steganographic technique was analyzed separately. For a fixed relative mes-
sage length expressed in terms of bits per non-zero DCT coefficient of the cover 
image, we created a training database of embedded images. The Fisher Linear Dis-
criminant classifier was trained on 1314 cover and 1314 stego images. The general-
ized eigenvector obtained from this training was then used to calculate the ROC curve 
for the remaining 500 cover and 500 stego images. The detection performance was 
evaluated using detection reliability  defined below.  
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The reason why we used in our tests message lengths proportional to the number of 
non-zero DCT coefficients in each image was to create stego image databases for 
which the detection is approximately of the same level of difficulty. In our experi-
ence, it is easier to detect a 10000-bit message in a smaller JPEG file than in a larger 
JPEG file. The testing was done for the following relative embedding rates expressed 
in bpc (Bits Per non-zero DCT Coefficient), bpc = 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8. If, 
for a given image, the bpc rate was larger than the maximal bpc rate bpc  deter-
mined by the image capacity, we took bpc  as the embedding rate. The only excep-
tion to this rule was the MB2 method, where we took 0.95 bpc  as the maximal rate 
because, for the maximal embedding rate, the deblocking algorithm in MB2 fre-
quently failed to embed the whole message. Fig. 1 shows the capacity for all three 
methods expressed in bits per non-zero DCT coefficient. 

max

max

max

The detection results were evaluated using ‘detection reliability’   defined as 
 

 = 2A–1,     (7) 
 

where A is the area under the Receiver Operating Characteristic (ROC) curve, also 
called an accuracy. We scaled the accuracy in order to obtain  = 1 for a perfect de-
tection and  = 0 when the ROC coincides with the diagonal line (reliability of detec-
tion is 0). The detection reliability for all three methods is shown in Table 2. 
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Fig. 1. Capacity for the tested techniques expressed in bits per non-zero DCT coefficient. The 
capacity for MB1 is double that of MB2. The F5 and MB1 algorithms provide the highest 
capacity 

 
Table 2. Detection reliability  for F5 with matrix embedding (1, k, 2k – 1), F5 with turned off 
matrix embedding (1,1,1), OutGuess 0.2 (OG), Model based Steganography without and with 
deblocking (MB1 and MB2, respectively) for different embedding rates (U = unachievable 
rate) 

bpc F5 F5_111 OG MB1 MB2 
0.05 0.2410 0.6451 0.8789 0.2197 0.1631 
0.1 0.5386 0.9224 0.9929 0.4146 0.3097 
0.2 0.9557 0.9958 0.9991 0.7035 0.5703  
0.4 0.9998 0.9999 U 0.9375 0.8243  
0.6 1.0000 1.0000 U 0.9834 U 
0.8 1.0000 1.0000 U 0.9916 U 

 
One can clearly see that the OutGuess algorithm is the most detectable. Also, it pro-
vides the smallest capacity. The detection reliability is relatively high even for em-
bedding rates as small as 0.05 bpc and the method becomes highly detectable for 
messages above 0.1 bpc. To guarantee a fair comparison, we have tested F5 both with 
and without matrix embedding because some programs could be easily adapted to 
incorporate it (e.g., OutGuess). Turning off the matrix embedding, the F5 algorithm 
still performs better than OutGuess. The matrix embedding significantly decreases the 
detectability for short messages. This is understandable because it improves the em-
bedding efficiency (number of bits embedded per change). Because OutGuess needs 
to reserve a relatively large portion of coefficients for the correction step, its embed-



Feature-Based Steganalysis for JPEG Images           75 

ding efficiency is lower compared to F5. This seems to have a bigger impact on the 
detectability than the fact that OutGuess preserves the global histogram of DCT coef-
ficients. 
 
Table 3. Detection reliability for individual features for all three embedding algorithms for 
fully embedded images (for fully embedded images, F5 with matrix embedding and without 
matrix embedding coincide) 

Method 
Functional/feature F5 OutGuess 0.2 MB1 MB2 
Global histogram 0.9936 0.8110 0.1224 0.0359 

Indiv. histogram for (2,1) 0.9343 0.6625 0.6166 0.3775 
Indiv. histogram for (3,1) 0.9940 0.7521 0.1018 0.0606 
Indiv. histogram for (1,2) 0.8719 0.6353 0.4686 0.3828 
Indiv. histogram for (2,2) 0.9827 0.7879 0.5782 0.3499 
Indiv. histogram for (1,3) 0.9879 0.7718 0.0080 0.0095 

Dual histogram for –5 0.1294 0.0853 0.1350 0.1582 
Dual histogram for –4 0.1800 0.2727 0.0338 0.0448 
Dual histogram for –3 0.2188 0.4239 0.6675 0.3239 
Dual histogram for –2 0.2939 0.9921 0.2724 0.0733 
Dual histogram for –1 0.4824 0.9653 0.7977 0.4952 
Dual histogram for 0 0.9935 0.6160 0.2697 0.0859 
Dual histogram for 1 0.5101 0.4068 0.6782 0.3336 
Dual histogram for 2 0.2740 0.8437 –0.0058 0.0311 
Dual histogram for 3 0.1990 0.7060 0.0904 0.1208 
Dual histogram for 4 0.1421 0.1933 0.0169 0.0100 
Dual histogram for 5 0.1315 0.1055 0.4097 0.2540 

Variation 0.7891 0.5576 0.7239 0.2337 
L1 blockiness 0.9908 0.1677 0.5749 0.2737 
L2 blockiness 0.9411 0.1064 0.2485 0.2253 

Co-occurrence N00 0.9997 0.4180 0.8818 0.6088 
Co-occurrence N01 0.9487 0.9780 0.8433 0.5569 
Co-occurrence N11 0.9954 0.9282 0.7873 0.4957 

 
Both MB1 and MB2 methods clearly have the best performance of all three tested 

algorithms. MB1 preserves not only the global histogram, but all marginal statistics 
(histograms) for each individual DCT mode. It is quite remarkable that this can be 
achieved with an embedding efficiency slightly over 2 bits per change (compared to 
1.5 bits per change for F5 and roughly 1 for OutGuess 0.2). This is likely because 
MB1 does not avoid any other coefficients than 0 and its embedding mechanism is 
guaranteed to embed the maximal number of bits given the fact that marginal statis-
tics of all coefficients must be preserved. The MB2 algorithm has the same embed-
ding mechanism as MB1 but reserves one half of the capacity for modifications that 
bring the blockiness of the stego image to its original value. As a result, MB2 is less 
detectable than MB1 at the expense of a two times smaller embedding capacity. Both 
methods perform better than F5 with matrix embedding and are significantly better 
than F5 without matrix embedding. Even for messages close to 100% capacity, the 
detection of MB2 is not very reliable. An ROC with  = 0.82 does not allow reliable 
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detection with a small false positive rate (c.f., Fig. 2). Never the less, in the strict 
formulation of steganographic security, whenever the embedded images can be dis-
tinguished from cover images with a better algorithm than random guessing, the steg-
anography is detectable. Thus, we conclude that the Model based Steganography is 
detectable using our feature-based approach on our test database. 

 

 
F5 

 
OG 

 
MB1 

 
MB2 

Fig. 2. ROC curves for embedding capacities and methods from Table 2. 
 
For each steganographic method, we also measured the influence of each individ-

ual feature f as its detection reliability (f) obtained from the ROC curve calculated 
from the single feature f and no other features. We acknowledge that the collection of 
individual reliabilities (f) does not have to necessarily capture the performance of 
the whole detection algorithm in the 23 dimensional space. This is because it is possi-
ble that none of the individual features themselves has any distinguishing power, yet 
the collection of all features achieves a perfect detection. Never the less, we use (f) 
as an indication of how much each feature contributes to the detection. 

In Table 2, we show the influence of each feature for each steganographic method 
for the maximal bpc rate. In the next section, we interpret the results and draw con-
clusions concerning the existing and future design principles of steganographic 
schemes for JPEG images. 

We note that in our tests, we did not include double compressed images. It is 
likely that such images would worsen our detection results. In agreement with the 
conclusion reached in [6], the double compression needs to be first estimated and 
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then corrected for during the feature calibration. Although we have not tested this, we 
believe that the feature-based blind steganalysis would work in this case as well. 

4   Implications for Steganography 

The F5 algorithm uses a non-idempotent embedding operation (subtracting 1) to pre-
vent the attacks based on the chi-square attack and its generalizations [3–5]. It also 
makes sure that the global stego image histogram is free of any obvious artifacts and 
looks “natural”. In fact, it has been argued by its authors [13] that the stego image 
looks as if the cover image was originally compressed with a lower JPEG quality 
factor. However, the F5 predictably modifies the first order statistics and this is why 
the first six functionals are so influential (see Table 2). It is also not surprising that 
the dual histogram for 0 has a big influence because of the shrinkage. Note that the 
second-order statistics significantly contribute to the detection as well. Most features 
with the exception of dual histograms have high influence on detection. 

OutGuess 0.2 was specifically designed to preserve the global coefficient histo-
gram. However, OutGuess does not have to necessarily preserve the individual histo-
grams or the dual histograms, which is reflected by a relatively large influence for 
these functionals in Table 2. The most influential functional is the dual histogram for 
the values –1 and –2. This is again, understandable, considering the embedding 
mechanism of OutGuess. The values –1 and –2 determine the maximum correctable 
capacity of the method and thus form the most changed pair of values during the 
embedding (and the correction step). Although the coefficient counts are preserved, 
their positions in the JPEG file are highly disturbed, which is why we see a very high 
influence of features based on dual histograms for values –1 and –2. Another reason 
why OutGuess is more detectable than F5 is its low embedding efficiency of 1 bit per 
change compared to 1.5 for F5. 

Considering the large influence of the dual histogram, it seems feasible that one 
could design a targeted steganalytic scheme of the type described in [6] by using the 
dual histograms for values –1 and –2 as the distinguishing statistic. This is an exam-
ple how the blind analysis may, in turn, give us direct ideas how to estimate the 
length of the embedded message. 

What is somewhat surprising is that the global histogram also has quite a large in-
fluence on detection, despite the fact that it is preserved by OutGuess. We will revisit 
this peculiar finding when we discuss the results for Model Based Steganography 
below. Another seemingly surprising fact is that although L1 blockiness proved very 
useful in designing successful attacks against OutGuess [6], its influence in the pro-
posed detection scheme is relatively small (0.16). This fact is perhaps less surprising 
if we realize that the distinguishing statistic in [6] was the increase of blockiness after 
full re-embedding rather than the blockiness itself, which appears to be rather vola-
tile. 

Looking at the results in Table 1 and 2, there is no doubt that the Model Based 
Steganography [12,14] is by far the most secure method out of the three tested para-
digms. MB1 and MB2 preserve not only the global histogram but also all histograms 
of individual DCT coefficients. Thus, all dual histograms are also preserved. More-
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over, MB2 also preserves one second-order functional – the L1 blockiness. Thus, we 
conclude that the more statistical measures an embedding method preserves, the more 
difficult it is to detect it. Consequently, our analysis indicates that it is possible to 
increase the security of JPEG steganographic schemes by identifying a set of key 
macroscopic statistical features that should be preserved by the embedding. It is most 
likely not necessary to preserve all 23 features to substantially decrease the detectabil-
ity because many of the features are not independent. 

One of the most surprising facts revealed by the experiments is that even features 
based on functionals that are preserved by the embedding may have substantial influ-
ence. One might intuitively expect that such features would have very small influ-
ence. However, as shown in the next paragraph, preserving a specific functional does 
not automatically mean that the calibrated feature will be preserved. Let us take a 
closer look at the L1 blockiness as an example. 

Preserving the blockiness along the original 8 8 grid (solid lines) does not mean 
that the blockiness along the shifted grid will also be preserved (see Fig. 2). This is 
because the embedding and deblocking changes are likely to introduce distortion into 
the middle of the blocks and thus disturb the blockiness feature, which is the differ-
ence between the blockiness along the solid and dashed lines. Consequently, it is not 
surprising that features constructed from functionals that are preserved still have 
some residual (and not necessarily small) influence in our feature-based detection. 
This is seen in Table 2 for both OutGuess 0.2 and the Model Based Steganography. 
Therefore, the designers of future steganographic schemes for JPEG images should 
consider adding calibrated statistics into the set of quantities that should be preserved 
during embedding. 

We further point out that the features derived from the co-occurrence matrix are 
very influential for all three schemes. For the Model based Steganography, these 
features are, in fact, the most influential. The MB2 method is currently the only JPEG 
steganographic method that takes into account inter-block dependencies between 
DCT coefficients by preserving the blockiness, which is an “integral” measure of 
these dependencies. Not surprisingly, the scalar blockiness feature does not capture 
all higher-order statistics of DCT coefficients. Thus, it seems that the next generation 
of steganographic methods for JPEG images should preserve both the marginal statis-
tics of DCT coefficients and the probability distribution of coefficient pairs from 
neighboring blocks (the co-occurrence matrix). Eventually, if the stego algorithm 
preserved all possible statistics of the cover image, the embedding would be pre-
sumably undetectable. Although this goal will likely never be achieved, as the em-
bedding algorithm preserves more “orthogonal or independent” statistics, its detect-
ability will quickly decrease. We firmly believe that incorporating a model for the co-
occurrence matrices and preserving it would probably lead to significantly less de-
tectable schemes. The Model based Steganography [14] seems to be an appropriate 
guiding principle to achieve this goal. However, the embedding operation should not 
be idempotent, otherwise targeted attacks based on re-embedding (c.f., the attack on 
OutGuess [6]) could likely be mounted. 
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Fig. 2. Blockiness is preserved along the solid lines but not necessarily along the dashed lines 
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5   Summary and Future Research 

In this paper, we developed a new blind feature-based steganalytic method for JPEG 
images. Each feature is calculated as the L1 norm of the difference between a specific 
functional of the stego image and its cropped/recompressed version. This “calibra-
tion” can be interpreted as using the stego image as side information to approximately 
recover some parameters of the cover image. As a result, the calibration decreases 
image-to-image variations and thus enables more accurate detection.  

The features were calculated directly in the DCT domain as first and higher order 
statistics of DCT coefficients. This enables easier explanation of the impact of em-
bedding modifications on detection as well as direct interpretation of the detection 
results and easy formulation of design principles for future steganographic methods. 

We have applied the detection to several current steganographic schemes some of 
which are aware of the Cachin criterion [2]. The experimental results were carefully 
evaluated and interpreted. Conclusions concerning current and future steganographic 
schemes for JPEGs were also drawn. In particular, we concluded that 

 
1. Secure steganographic schemes must preserve as many statistics of DCT co-

efficients as possible. It is not enough to preserve the marginal statistics, e.g., 
the histograms. DCT coefficients exhibit block-to-block dependencies that 
must be preserved as well. 

2. A scheme that preserves more statistics is likely to be more secure than a 
scheme that preserves fewer statistics. Surprisingly, preserving more statistics 
may not necessarily lead to small capacity, as shown by Model Based Steg-
anography. This is also because many statistical features one can identify in 
an image are likely to be dependent. 

3. Even though a scheme may preserve a specific statistic (X) of the cover 
JPEG image X, the calibrated statistic (Compress(Crop(X))) calculated from 
the cropped/recompressed image may not necessarily be preserved, thus 
opening the door for attacks. Future steganographic schemes should add cali-
brated statistics to their set of preserved statistics. 
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4. For all tested schemes, one of the most influential features of the proposed 
detection was the co-occurrence matrix of DCT coefficients (5), which is the 
probability distribution of coefficient pairs from neighboring blocks. We hy-
pothesize that a scheme that preserves marginal statistics of DCT coefficients 
and the co-occurrence matrix (which captures block-to-block dependencies) 
is likely to exhibit improved resistance to attacks. For this purpose, we pro-
pose the Model Based Steganography paradigm [12,14] expanded by the 
model for joint probability distribution of neighboring DCT coefficients. 

 
Although the calibration process is very intuitive, we currently do not have a quanti-
tative understanding of how much information about the cover image can be obtained 
from the stego image by calibration. For example, for images that contain periodic 
spatial structures with a period that is an integer multiple of 8, the calibration process 
may give misleading results (c.f., the spatial resonance phenomenon [6]). In this case, 
it may be more beneficial to replace the cropping by other operations that will also 
break the block structure of JPEG images, such as slight rotation, scaling, or random 
warping. Further investigation of this issue will be part of our future research. 

In the future, we also plan to replace the Fisher Linear Discriminant with more so-
phisticated classifiers, such as Support Vector Machines, to further improve the de-
tection reliability of the proposed steganalytic algorithm. We also plan to develop a 
multiple-class classifier capable of recognizing stego images produced by different 
embedding algorithms (steganographic program identification). 
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Abstract. We introduce a steganalytic method which takes advantage
of statistics that were preserved to prevent the chi-square attack. We
show that preserving statistics by skipping certain groups of pixels—apart
from reducing the maximum payload—does not diminish the ability to
recognise steganographic modifications. The effect is quite reverse: The
new detection method works more reliably than the chi-square attack,
if the same message was embedded by overwriting least significant bits
and straddled over the whole image.

1 Introduction

Steganography means “covered writing.” Steganographic programs are capable
of embedding a message into innocuous looking carrier media. Carrier media
can be digitised images sent as E-mail attachments or found in eBay offers. The
carrier medium is slightly modified by the embedding function so that an attacker
should not perceive such changes. Steganography is one way to communicate
confidentially: non-involved persons do not notice whether the secret message
exists or not.

If cryptography is used to communicate secretly, a third party may still no-
tice when an encrypted message is sent. However, she cannot read its content.
In some countries, such as China, there are legal restrictions for the usage of
cryptography [11]. People that are not allowed to encrypt their E-mail may fall
back to steganography and embed their secrets in images to transfer them un-
noticeable to the receiver.

Beside the topmost goal of changing the carrier medium as inconspicuously
as possible, steganographic algorithms try to implement other helpful properties,
such as a large payload and an error-free readability of the embedded content
after transmission over a distorted channel (e. g., in a radio contact). It is obvious
that these are conflicting goals. For example, steganographic changes are less
recognisable if payloads keep small.

Apparently, it is hard to satisfy the theoretical security conditions [2,10,16] in
practical implementations. Hence, new algorithms are proven to be secure against
known attacks and obvious derivations. It is for this reason, that steganalysis, the
art of detecting steganographic changes, is so successful in forms and manners
[9,15]. Steganalytic attacks aim to detect the use of steganography.

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 82–96, 2004.
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There is a recurrent alternation of improved embedding methods and success-
ful attacks breaking these. Following this tradition, we analyse a steganographic
algorithm that was presented by Franz at the last workshop [3]. She constructed
this algorithm to overcome histogram attacks. Her new algorithm is based on
an embedding function that overwrites the least significant bits (LSB) of a car-
rier. The pure application of this method is detectable by visual and statistical
chi-square attacks [15]. So, Franz restricts the embedding function to selected
pixels to keep the histogram (first order statistics) together with the image struc-
ture (second order statistics). These measures secure the algorithm against the
aforementioned attacks.1

This paper is structured as follows: In the next section we describe the embed-
ding algorithm proposed in [3], which was designed to preserve statistical prop-
erties (PSP) of the carrier image. This algorithm basically extends the method
of overwriting the least significant bits (LSB) to prevent chi-square attacks pre-
sented in [15]. Then, in Sect. 3, we outline an attacking strategy which exploits
the preserved statistics. As the embedding algorithm keeps some relevant distri-
butions in the co-occurrence matrix, an attacker can reproduce the classification
criteria applied while embedding. A comparison between the resulting two sets
of usable and unusable pixels reveals typical embedding artefacts of the PSP
method, which is therefore detectable. Our experimental results (see Sect. 4) in-
dicate that the proposed attack detects PSP steganography even more reliably
than the chi-square attack does on simple LSB embedded data of comparable
capacity. In Sect. 5, we describe possible countermeasures and discuss their im-
pact on capacity and security. A final conclusion for future improvements of
steganographic algorithms is given in Sect. 6.

2 “Preserving Statistical Properties” Algorithm

The “Preserving Statistical Properties” (PSP) algorithm is an extension to the
widely used method of overwriting the least significant bits (LSB) in digitised me-
dia data. Both algorithms, LSB as well as PSP, embed steganographic messages
into the spatial domain representation of uncompressed or losslessly compressed
image data. Given a X × Y sized greyscale image B = {0, . . . , N − 1}X,Y with
N possible shades, let

Sk = {(x, y)|bx,y = k}, 0 ≤ x < X, 0 ≤ y < Y, 0 ≤ k < N

be the set of pixels in B with shade k. Obviously the shades Sk are disjoint with
each other. Both algorithms assume that the shades S0,...,N−1 can be grouped
into N

2l groups G of 2l shades (l = 1, 2, . . .), so that a replacement with any
member of the same group is imperceptible. Let G be the set of all groups G in
a given image. The information which shade bx,y of the visually indistinguish-
able group members actually occurs at a certain position (x, y) can be used for

1 As recent analyses showed vulnerable cases against the RS attack [7], Franz addresses
the problem that the new method does not consider all higher order statistics [5].
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steganographic messages. Grouping shades that differ only in the least significant
bit, is the most common way to fulfil this assumption. This leads to |G| = N/2
groups

Gk = S2k ∪ S2k+1, 0 ≤ k < |G|,

and a maximum steganographic capacity of one bit per pixel. The imperceptibil-
ity assumption is plausible for the least significant bit, because adjacent shades
differ minimum in brightness and are at most exposed to quantisation noise.
Further generalisations, e. g., colour components of true colour images or indices
in sorted palette entries, are extraneous to the following considerations and we
therefore forgo a detailed discussion.

The presented LSB method is known to be vulnerable against the chi-square
attack presented in [15]. Overwriting the least significant bits according to a
uniform distributed message equalises the individual within-group distributions.
These pair wise adjustments can be reliably detected by a chi-square goodness-
of-fit test between the empirical distributions of |S2k|, and |S2k+1|, respectively,
against the expected distribution for a maximum embedded message

|S2k|+ |S2k+1|
2

=
|Gk|
2

, 0 ≤ k < |G|.

The PSP algorithm was designed to resist the chi-square attack and intro-
duces two countermeasures, such as classification of groups and skewness cor-
rected embedding. Both measures are adaptive, i. e., they depend on the content
of the carrier image, and both reduce the maximum length of the hidden mes-
sage.

In this paper, we use the term classification of groups to describe a pre-
selection process, which distinguishes groups G+ ⊂ G that are safe for LSB
embedding from G− = G\G+, that are not. The chi-square attack is success-
ful against LSB embedding, because even heavily unequal distributions of group
members are equalised during embedding. Typical skewness between group mem-
bers results from plain surfaces as well as from saturated areas in the carrier
image. To preserve these characteristics, within-group dependency tests are run
on co-occurrence matrices C for each group Gk. Only those groups Gk ∈ G+

that fail the dependency tests are classified as “safe groups” and thus are used
for embedding.

A co-occurrence matrix is a transition histogram between adjacent pixels for
a defined relation in the spatial domain. It contains the frequency of a certain
shade depending on the shade of a defined neighbour. As described in [3], we
calculate

ci,j = |{(i, j)|bx,y = i ∧ bx+Δx,y+Δy = j}|,

0 ≤ i, j < N, 0 ≤ x < X, 0 ≤ y < Y

for each of the following relations (Δx, Δy) ∈ {(1, 0), (−1, 1), (0, 1), (1, 1)} and
test the within-group dependency with four fourfold contingency tables (cf. Ta-
ble 1). The relevant entries for the dependency calculations are marked boldface
in the following co-occurrence matrix
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Table 1. Contingency table for classification of group Gk

(x, y) (x + Δx, y + Δy)

∈ S2k ∈ S2k+1

∑
∈ S2k c2k,2k c2k,2k+1 c′2k

∈ S2k+1 c2k+1,2k c2k+1,2k+1 c′2k+1∑
c′′2k c′′2k+1 n

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0,0 c1,0 c2,0 c3,0 . . . c2k,0 c2k+1,0 . . . c254,0 c255,0

c0,1 c1,1 c2,1 c3,1 . . . c2k,1 c2k+1,1 . . . c254,1 c255,1

c0,2 c1,2 c2,2 c3,2 . . . c2k,2 c2k+1,2 . . . c254,2 c255,2

c0,3 c1,3 c2,3 c3,3 . . . c2k,3 c2k+1,3 . . . c254,3 c255,3

...
...

...
...

. . .
...

...
. . .

...
...

c0,2k c1,2k c2,2k c3,2k . . . c2k,2k c2k+1,2k . . . c254,2k c255,2k

c0,2k+1 c1,2k+1 c2,2k+1 c3,2k+1 . . . c2k,2k+1 c2k+1,2k+1 . . . c254,2k+1 c255,2k+1

...
...

...
...

. . .
...

...
. . .

...
...

c0,254 c1,254 c2,254 c3,254 . . . c2k,254 c2k+1,254 . . . c254,254 c255,254

c0,255 c1,255 c2,255 c3,255 . . . c2k,255 c2k+1,255 . . . c254,255 c255,255

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The test statistics χ2 is calculated according to the following equation

χ2 =
n(c2k,2kc2k+1,2k+1 − c2k,2k+1c2k+1,2k)2

c′2k c′2k+1 c′′2k c′′2k+1

.

We assume independency for values less than χ2 < 3.84, corresponding to a
significance level of pα > 0.05. If one of the four tests rejects the null hypothesis,
the whole group is classified as unsafe and excluded from embedding.[4]

For example, 40 shades (15%) of our example image shown in Fig. 1 were ex-
cluded. They cover 29.9% of the surface and are marked white in Fig. 2. Further
examinations with our test database indicate an average share of 43% of the
shades classified as unsafe causing an average loss of 30% of usable pixels.

As a second modification, the PSP algorithm overwrites the least significant
bits with exactly the same distribution as found in the carrier to avoid changes
in the first order statistics. This systematic change is the Achilles’ heel of LSB
embedding and enables successful chi-square attacks with simple histogram ana-
lyses. In contrast, PSP makes effort to adopt the message distribution to the
prior proportion by adding additional bits of required value and subsequently
permuting the message [3]. This second modification limits the capacity of group
Gk to 2 ·min(|S2k|, |S2k+1|) on average. Assuming a perfectly matching code, the
upper bound for the capacity of group Gk can be described with the entropy
relation [14]
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Fig. 1. Example greyscale image

Fig. 2. Steganographically useable pixels in the example image
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Hk = −|S2k| log2

|S2k|
|Gk|

− |S2k+1| log2

|S2k+1|
|Gk|

.

However, the method employed by Franz does not achieve this limit. Using an
arithmetic decoding operation, as proposed in [13], offers a more elegant way to
preserve first order statistics—but not the exact frequencies—while embedding
message bits.

Both measures together, group classification and adaptive message distribu-
tion2, make PSP embedding secure against chi-square attacks (cf. Sect. 4).

Figure 3 contrasts LSB embedding with PSP embedding on a typical gradi-
ent part taken from an example image. The white zigzag lines separate shades
belonging to different groups. For demonstration purpose, we assume that the
shades S4 and S5 are excluded from embedding in the PSP case. Also, on the
bottom line, the combined co-occurrence matrices are given for the four applied
relations

(Δx, Δy) ∈
{

(1, 0) (−1, 1)
(0, 1) (1, 1)

}
,

→ ↙
↓ ↘

where combined means that the respective elements of the four resulting co-
occurrence matrices are printed in each cell.

As the histograms in the middle indicate, the PSP method is not vulnerable
to pair wise levelling of shade frequencies: The first order statistics from the
carrier histogram are successfully preserved.

3 A Detection Strategy for PSP Steganography

A closer look at the co-occurrence matrices reveals that both embedding schemes
leave noticeable traits outside the framed within-group contingency tables. Ac-
cording to the PSP algorithm, groups with high within-group dependencies in the
co-occurrence matrix are excluded to prevent a complete erasure of those typi-
cal dependencies from the image. In fact, interdependencies in the co-occurrence
matrix do not only occur inside the frames. Nevertheless, these within-group
dependencies are the only information taken into account for the classification
decision.

The PSP scheme does not prevent an attacker from evaluating the between-
group dependencies. In addition, the preservation of the first order statistics
enables the attacker to re-evaluate the classification decisions and separate used
from excluded groups. Strong differences in the higher order statistics between
the two classes are a reliable indicator for PSP type steganography.

To construct our attack we need some assumptions about the characteristics
of image data. So we state that adjacent pixels correlate strongly, i. e., with
high probability they differ only minor in brightness. The majority of dissimilar
neighbours of pixels in Sk is expected to be a subset of Sk−1∪Sk+1. For example,
in our test database we found almost 60% of dissimilar adjacent pixels differing

2 Meanwhile Franz calls these measures CCM and Histo, respectively [5].
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Fig. 3. Comparison of LSB and PSP embedding

by only ±1 in brightness. Hence, any pixel in S<2k, darker than the shades in
uniformly distributed Gk, is with higher probability neighbour of the darker
pixels in S2k ∈ Gk than the brighter ones in S2k+1 ∈ Gk, and vice versa. Still
under the assumption that |S2k| = |S2k+1|, we assert

P (bx,y = a|bx′,y′ = 2k + 1) < P (bx,y = a|bx′,y′ = 2k) for a ≤ 2k,

P (bx,y = a|bx′,y′ = 2k + 1) > P (bx,y = a|bx′,y′ = 2k) else,

with x′ = x+Δx, y′ = y+Δy, and 1 ≤
√

Δx2 + Δy2 < 2. This relation leads to
a typical structure in the co-occurrence matrix C. Table 2 shows the two relevant
columns for a group Gk and the expected individual proportions between the
corresponding frequencies.
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Table 2. Structure of Gk columns before embedding

(x′, y′) (x, y)
∈ S2k ∈ S2k+1

∈ S0 c2k,0 > c2k+1,0

∈ S1 c2k,1 > c2k+1,1

...
... >

...
∈ S2k−1 c2k,2k−1 > c2k+1,2k−1

∈ S2k c2k,2k > c2k+1,2k

∈ S2k+1 c2k,2k+1 < c2k+1,2k+1

∈ S2k+2 c2k,2k+2 < c2k+1,2k+2

...
... <

...
∈ SN−2 c2k,N−2 < c2k+1,N−2

∈ SN−1 c2k,N−1 < c2k+1,N−1∑
|S2k| = |S2k+1|

As PSP embedding preserves the distribution within the groups and does
not mind the neighbourhood relations, it is indistinguishable from a random
permutation within each group. Given that Gk ∈ G+, it is usable for embedding.
The random permutation of the shades within Gk equalises the frequencies for
S2k and S2k+1 in relation to all other shades in the co-occurrence matrix. The
post-embedding structure of the Gk columns in C is shown in Table 3.

Table 3. Structure of Gk columns after PSP embedding

(x′, y′) (x, y)
∈ S2k ∈ S2k+1

∈ S0 c2k,0 = c2k+1,0

∈ S1 c2k,1 = c2k+1,1

...
... =

...
∈ S2k−1 c2k,2k−1 = c2k+1,2k−1

∈ S2k c2k,2k = c2k+1,2k

∈ S2k+1 c2k,2k+1 = c2k+1,2k+1

∈ S2k+2 c2k,2k+2 = c2k+1,2k+2

...
... =

...
∈ SN−2 c2k,N−2 = c2k+1,N−2

∈ SN−1 c2k,N−1 = c2k+1,N−1∑
|S2k| = |S2k+1|

We can distinguish the pre- and post-embedding structures shown in Tables 2
and 3 with a contingency test. For this purpose, we interpret a pair of columns
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Table 4. Gk columns after embedding with imbalanced frequencies of S2k and
S2k+1

(x′, y′) (x, y)
∈ S2k ∈ S2k+1

∈ S0 c2k,0 < c2k+1,0

∈ S1 c2k,1 < c2k+1,1

...
... <

...
∈ S2k−1 c2k,2k−1 < c2k+1,2k−1

∈ S2k c2k,2k < c2k+1,2k

∈ S2k+1 c2k,2k+1 < c2k+1,2k+1

∈ S2k+2 c2k,2k+2 < c2k+1,2k+2

...
... <

...
∈ SN−2 c2k,N−2 < c2k+1,N−2

∈ SN−1 c2k,N−1 < c2k+1,N−1∑
|S2k| < |S2k+1|

(x′, y′) (x, y)
∈ S2k ∈ S2k+1

∈ S0 c2k,0 > c2k+1,0

∈ S1 c2k,1 > c2k+1,1

...
... >

...
∈ S2k−1 c2k,2k−1 > c2k+1,2k−1

∈ S2k c2k,2k > c2k+1,2k

∈ S2k+1 c2k,2k+1 > c2k+1,2k+1

∈ S2k+2 c2k,2k+2 > c2k+1,2k+2

...
... >

...
∈ SN−2 c2k,N−2 > c2k+1,N−2

∈ SN−1 c2k,N−1 > c2k+1,N−1∑
|S2k| > |S2k+1|

from C as a contingency table and perform a chi-square test for dependency.
The former structure is supposed to show a noticeable dependency, the latter
not. We further refer to this procedure as between-group dependency test.

Even if we drop the assumption that the membership is uniformly distributed
between S2k and S2k+1 within Gk, we still expect dependencies in the carrier
image, modulated by the proportion S2k : S2k+1:

|S2k| · ca,2k+1 < |S2k+1| · ca,2k for a < 2k,

|S2k| · ca,2k+1 > |S2k+1| · ca,2k else.

As the PSP scheme uses adaptive skewness correction, the imbalanced sit-
uation is quite probable. Nevertheless, there are still different directions of the
inequality relations between adjacent columns of the co-occurrence matrix, which
are equally aligned in the groups “permuted” after the PSP embedding operation
(cf. Table 4). These alignments are also recognised as independently distributed
events by the contingency test. Hence, the skewness correction does not weaken
our ability to distinguish between permuted and original groups.

Certain practical obstacles impede using these analyses to guide a precise at-
tack on PSP embedding. At first, the columns of the co-occurrence matrix hold
a lot of low frequency entries that bias the outcome of the chi-square between-
group dependency test. Secondly, we have to take into account that the above
mentioned interrelations apply to all of the four co-occurrence matrices repre-
senting the four relations. We tackle these problems by first summing up the
four matrices and then erasing rows with row sums less than a minimum count
q. All images, whether with or without a PSP embedded message, contain a
certain amount of groups that pass the between-group dependency test. Only
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the test results of the actually usable groups in G+ contain valuable information
for an attacker about the application of PSP steganography. Therefore, the at-
tacker has to gain knowledge, which groups belong to G+. Fortunately, this is
not difficult, because the PSP scheme preserves the relevant statistics so that
the receiver is able to recalculate the initial classification of groups as shown in
Sect. 2.

The final step of the proposed attack is an inference from a set of between-
group dependency tests to the existence of steganographic content. Since the
tests are not accurate for all groups, we cannot expect independency for all
members of G+. Therefore we allow a certain number of tests below a threshold
t to pass the between-group dependency test on a pα < 0.01 significance level.
It seems sensible to choose q dependent on the number of pixels X · Y and the
threshold t on the number of groups |G|. These refinements are subject to further
research.

In brief, the attack procedure can be summarised in four steps:

1. Classify all groups according to the embedding scheme,
2. calculate and sum co-occurrence matrices for four relations,
3. test between-group dependencies in column pairs for all usable groups,
4. count positive tests and compare with threshold value.

Our experimental results described in the following section provide a proof of
concept for the proposed attack.

4 Experimental Results

To evaluate the practical capabilities of the proposed attack we assembled a test
database T0 of 100 greyscale images sized X × Y = 284× 213 pixels (N = 256
shades). The images were randomly drawn from a large number of high resolution
photographs from a digital camera. An 8 : 1 size reduction ensures that possible
compression artefacts of the initial JPEG encoding are effectively removed [6].
The small images were stored as losslessly compressed PNG files and analysed
with the R software for statistical computing [8,12].

To compare the LSB and PSP embedding schemes, we prepared three test
sets:

1. T1: LSB embedding of uniformly distributed random bits using 100% of the
capacity (i. e., 1 bit per pixel),

2. T2: PSP embedding of uniformly distributed random bits using 100% of the
capacity (between 0.1 and 1.0 bits per pixel, depending on the image, mean
μ = 0.77),

3. T3: LSB embedding of uniformly distributed random bits using the respective
maximum capacity of T2.

The images of all test sets (T0, . . . , T3) were exposed to the chi-square attack
with a threshold criteria of pα < 0.01, as well as to the proposed PSP attack



92 Rainer Böhme and Andreas Westfeld

Table 5. Summary of experimental attacks

Attack Test set, algorithm Results
FALSE TRUE

Chi-square attack
T0: Plain carrier 92 8
T1: LSB (full capacity) 0 100

T2: PSP (max capacity) 92 8
T3: LSB (limited PSP cap.) 22 78

Proposed attack
T0: Plain carrier 94 6
T2: PSP (max capacity) 0 100

Test data: 100 greyscale images sized 284 × 213 pixel, N = 256

with a maximum number of passed tests of t = 8, and a minimum row sum of
co-occurrence cells q = 10. The results are presented in Table 5.

As expected, the chi-square attack reliably identified all LSB steganograms
with full capacity usage. However, we noted that eight percent of the tests of
pristine material led to a false positive. The same attack applied to the PSP
embedded images was comparably ineffective. The preservation of first order
statistics successfully prevents chi-square attacks.

Even if invisible to the chi-square attack, all PSP steganograms can be de-
tected with the proposed attack, although the absolute message length is only a
fractional amount of the LSB capacity. In fact, four images with less than 20%
of the respective LSB capacity are reliably detected. Regarding the number of
false positives, the discriminatory power of the PSP attack seems to exceed the
chi-square attack, even though the numbers are too small to provide strong ev-
idence. The tests on T3 reveal that passing on full capacity and accepting a
reduced message length with the well known LSB algorithm is comparatively
safer than using the more sophisticated PSP scheme.

To evaluate the stability over different utilisations of capacity between the
two embedding schemes with their respective attacks, we gradually reduced the
message lengths embedded with the PSP method. In addition, precisely the same
amount of bits embedded with PSP was also LSB embedded in the respective
images to build a comparison group. As the results in Table 6 indicate, the pro-
posed PSP attack provides higher detection rates for high capacity utilisations.

5 Discussion of Countermeasures

The proposed attack basically exploits the removal of inter-dependencies between
adjacent pixels belonging to different groups. A rather näıve approach to tackle
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Table 6. Attack reliability against capacity usage

Attacks
Capacity usage Embedding density chi-square proposed

% of max. PSP capacity av. msg. bits per pixel # of hits
out of 100

# of hits
out of 100

100% 0.77 78 100
75% 0.58 62 88
50% 0.39 45 38
25% 0.20 35 14

Test data: 100 greyscale images sized 284 × 213 pixel, N = 256

this problem could be the exclusion of all pixels with neighbours of other groups.
So the set of usable pixels will be reduced to those pixels completely surrounded
by neighbours of their own group Gk,

G′
k = {(x, y)|(x + Δx, y + Δy) ∈ Gk, ∀Δx, Δy ∈ {−1, 0, 1}}.

This modification obviously withstands the proposed attack because the
between-group interdependencies are kept untouched. However, only a tiny set
of pixels meets this strict condition. For example, our test image contains only
15 usable pixels depicted black in Fig. 4. The comparably larger count of grey
pixels in Fig. 4 are also surrounded by the same group but were classified as
unsafe according to the PSP classification. Because of the vanishing capacity it
is hard to say whether an adapted attack regarding the more distant neighbours
(2 ≤

√
Δx2 + Δy2 < 3) fails because of the low sample size or is generally im-

possible. Experiments with larger samples of images with higher resolution are
subject to further research.

Regarding this low residual capacity, the LSB algorithm may be a comparably
safe alternative. In addition, the security can be further increased by implement-
ing the advices from [15], e. g., to replace LSB overwriting by a more suitable
operation such as incrementing or decrementing.

Adaptive embedding, i. e., regarding the carrier structures, is a promising
principle for steganography but also opens new pitfalls because the receiver has
to recover the structural information to extract the message. For example, the
PSP method implements its adaptive mechanism on a group wise classification
that can be reproduced both by the receiver but also by an attacker. On the
one hand, it is important that the receiver is able to recover all necessary in-
formation to extract the message. On the other hand, any information about
which pixels are actually usable, gives also an advantage to the attacker: By
contrasting the two groups in relevant statistics, she can reveal systematic char-
acteristics that are typical for the embedding scheme but rarely observable in
pristine carrier data. We will briefly outline two measures to avoid these prob-
lems. At first, the “meta-information approach” aims to hide the classification
information by encrypting and embedding it into the safest parts of a carrier.
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Fig. 4. Pixels surrounded by the same group in our test image. Black pixels
belong to safe groups in G+, grey to unsafe

So, the receiver decodes the meta-information before using it to extract the pay-
load message. Second, the “selection channel approach” [1] completely avoids
the share of meta-information concerning the usable positions. Parity encoding
ensures that the receiver is always able to extract the message without knowl-
edge about the actually altered bits. Both approaches unfortunately reduce the
maximum message length.

6 Conclusion

The presented attack against a steganographic algorithm that preserves some
relevant statistics puts into question, whether a rather fussy preservation helps
to increase security and therefore should be included in future embedding al-
gorithms. This does not imply that the preservation of statistics is generally a
bad idea, but the way it is achieved—i. e., skipping certain “dangerous” groups
while modifying others—makes the discussed scheme vulnerable to the proposed
attack.

In addition, the exact preservation of statistics that are used for the clas-
sification decision enables an attacker to reproduce this decision. This practice
causes the sender to give up her superiority of information.

Since first and higher order statistics do heavily vary between different pic-
tures, and given an attacker who has no possibility to guess or estimate these
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parameters of the carrier, a moderate change of them does not necessarily weaken
security. It may be wise, to refocus further development of steganographic meth-
ods from compulsive preservation of parameters to the avoidance of typical—and
hence conspicuous—patterns and artefacts. For instance, the promising model-
based approach for steganography [13] already employs some of these ideas, even
though an adversary can still reproduce the distribution model.

Nevertheless, we suppose that adaptive embedding is a promising practice
but classification criteria need to be carefully selected. Using or avoiding shades
globally may be problematic in two senses. At first, it raises the danger of mis-
classifications. For example, a bright shade covering large parts of the sky in our
example image also occurs in the lower part. The dependencies in the sky cause
a global exclusion of the whole group, even if it could be used for data hiding
in the lower part. Vice versa, a shade that is independent at the overwhelming
majority of occurrences may be classified as usable even if some occurrences in a
“dangerous” context give an attacker strong evidence for steganographic modifi-
cations. The second problem of global classification concerns large numbers. The
statistical tests of an attacker tend to become the more reliable the more obser-
vations she has. Given the situation that a defined message could be transferred
either in one large or in several tiny images, we face the following obscurity.
With global criteria, the probability of detection increases with the amount of
data per pass, i. e., one large image is more dangerous than several tiny images.
Therefore, we suggest to research local adaptive mechanisms to reduce numbers
and keep detection rates low and independent from the actual image size.

As final conclusion we state that a sophisticated selection of positions for
embedding is not necessarily inferior to random selection.

Acknowledgement

The work on this paper was supported by the Air Force Office of Scientific
Research under the research grant number FA8655-03-1-3A46. The U. S. Gov-
ernment is authorised to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation there on. The views and con-
clusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of
the Air Force Office of Scientific Research, or the U. S. Government.

References

1. Anderson, R. J., Petitcolas, F. A.P.: On the Limits of Steganography. IEEE Journal
on Selected Areas in Communications 16 (1998) 474–481

2. Cachin, C.: An Information-Theoretic Model for Steganography. In: Aucsmith, D.
(ed.): Information Hiding. Second International Workshop, LNCS 1525, Springer-
Verlag, Berlin Heidelberg (1998) 306–318

3. Franz, E.: Steganography Preserving Statistical Properties. In: Petitcolas, F.A.P.
(ed.): Information Hiding. 5th International Workshop, LNCS 2578, Springer-
Verlag, Berlin Heidelberg (2003) 278–294
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Abstract. We consider methods for answering reliably the question of
whether an image contains hidden data; the focus is on grayscale bitmap
images and simple LSB steganography. Using a distributed computation
network and a library of over 30,000 images we have been carefully evalu-
ating the reliability of various steganalysis methods. The results suggest a
number of improvements to the standard techiques, with particular ben-
efits gained by not attempting to estimate the hidden message length.
Extensive experimentation shows that the improved methods allow reli-
able detection of LSB steganography with between 2 and 6 times smaller
embedded messages.

1 Introduction

Steganography aims to transmit information invisibly, embedded as impercep-
tible alterations to cover data; steganalysis aims to unmask the presence of
such hidden data. Although by no means the most secure method of embedding
data in images, LSB steganography tools are now extremely widespread. It is
well known that embedding near-to-maximum size messages in images using the
LSB technique is quite reliably detectable by statistical analysis [1,2] but that
spreading fewer embedded bits around the cover image makes the steganalyst’s
task much more difficult [3].

In this paper we present improved steganalysis methods, based on the most
reliable detectors of thinly-spread LSB steganography presently known [4,5,6],
focussing on the case when grayscale bitmaps are used as cover images. They
arise as a result of observations from a distributed steganalysis project, under-
taken in response to a general call at the 2002 Information Hiding Workshop for
thorough evaluation of the reliability of steganalysis techniques. The project uses
a network of computers to provide speedy computation of steganalysis statistics
over large image libraries, making it easy to see where improvements can arise.
An outline of the project, and the first results, can be found in [7].

The aims of this paper are a) to suggest improved steganalysis statistics for
LSB steganography, b) to use large image libraries to give experimental evidence
of the improvement, and c) to examine closely the upper limits on bit rate which
keep LSB steganography undetectable. We do not give theoretical analysis of
the improved statistics and in no way claim that they are necessarily optimal;
our intention is simply to advance the state of the art.

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 97–115, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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1.1 Scope

We take on the role of an “information security officer”, a hypothetical Warden
whose job it is to scrutinise electronic communication. We want to answer the
simple classification question – whether a given image has hidden data or not
– and our work is currently focussed solely on the reliability of steganalysis
methods to answer this question. Each steganalysis method will be statistic (a
function of the input image) designed to discriminate between the two cases.
Thus we are looking for a hypothesis test, where the null hypothesis is that
no data is hidden, and the alternative hypothesis is that data is hidden1. We
have to presuppose a fixed method of embedding data and a fixed length of
hidden message, so that both null and alternative hypotheses are simple (not
depending on an unknown parameter). Then it becomes possible to simulate the
distributions taken by steganalysis statistics in both cases.

A good steganalysis statistic would give higher values in the case of hidden
data and lower values otherwise; the Warden’s only sensible strategy is to reject
the null hypothesis (make a positive diagnosis of steganography) when the statis-
tic exceeds a certain threshold. But in practice the distributions (histograms) of
the statistic in the case of null and alternative hypotheses will overlap so there
is no threshold which will make the detector work perfectly. Varying the de-
tection threshold plays off the likelihood of false positive results against missed
detections (false negative results), and it is the graph of these two probabilities,
the Receiver Operating Characteristic (ROC) curve, which fully describes the
reliability of a particular statistic against a particular hidden message length.2

A key assumption in this paper is that false positive results are consid-
ered more serious than missed detections. If most images which come under
the scrutiny of the information security officer are innocent it is important that
false positives do not swamp true detections. So for the rest of this work we will
assume that the Warden requires a detector with a fairly low false positive rate
(in the region of 1-10%) and also that the steganographer acts repeatedly, so
that even a missed detection rate of 50% is acceptable because eventually they
would be caught. We recognise that the numbers involved are fairly arbitrary
but it is necessary to start somewhere.

For now we are not interested in more advanced analysis of suspect images
such as estimates of hidden message length [4,8,5], except in as much as they
function as discriminating statistics for the simple classification problem. Such
threshold-free statistics are popular, but the lack of a detection threshold is
illusory because an information security officer would have to know whether

1 Some other authors have reversed the designation of null and alternative hypothesis,
but our exposition fits better with the accepted norms of statistics.

2 Pierre Moulin has pointed out that randomized detectors are optimal, and in the case
when the ROC curve is concave can improve performance up to its convex closure.
But to exploit this does require a genuinely simple alternative hypothesis and this is
not likely to be the case in practice – the Warden does not have advance warning of
the amount of hidden data to expect. So for now we ignore this issue, although the
reader may wish mentally to take the convex closure of the ROC curves displayed.
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to interpret a particular estimated message length as significantly higher than
zero or not. A more precise measure of the certainty of a positive diagnosis is
the p-value of an observation, which can be computed for any type of statistic.
Furthermore, we asked in [7] whether statistics designed to estimate the hidden
message length were suboptimal for the simple classification problem and we will
show here that the answer is yes.

1.2 LSB Steganography

Here we consider simple Least Significant Bit (LSB) steganography, long-known
to steganographers, in which the hidden message is converted to a stream of bits
which replace the LSBs of pixel values in the cover image. When the hidden
message contains less bits than the cover image has pixels, we assume that
the modifications are spread randomly around the cover image according to a
secret key shared with the intended recipient of the stego image. This sort of
steganography is only suitable for images stored in bitmap form or losslessly
compressed. One should clearly distinguish this method (perhaps best called
LSB replacement) from an alternative described in [9], where the cover pixel
values are randomly incremented or decremented so that the least significant
bits match the hidden message (this should perhaps be called LSB matching).
In the latter case the message is still conveyed using the LSBs of the pixel values
of the image, but the simple alteration to the embedding algorithm makes it
much harder to detect. None of the methods discussed here will detect this
alternative form of steganography, and indeed it is a much more difficult task
to do so: a detector for LSB matching in full colour bitmaps is described in [2]
but it is ineffective for grayscale covers; another detector which works for full
colour images is described in [10] but it is only reliable for very large embedded
messages and barely effective for grayscale covers.

LSB replacement is by no means the best – or even a sensible – stegano-
graphic method. However we consider it extremely worthy of study because of
its widespread use. A large majority of freely available steganography software
makes use of LSB replacement, but there is a more important reason: it can be
performed without any special tools at all. Imagine, for example, a steganogra-
pher trying to send secrets out of a corporation. If the corporation takes infor-
mation security seriously then the very presence of any steganographic software
on an employee’s computer is certain to be noticed and is prima facie evidence
of wrongdoing, regardless of the undetectability of the actual messages. But a
canny steganographer can simply go to a UNIX-style commandline and type

perl -n0777e ’$_=unpack"b*",$_;split/(\s+)/,<STDIN>,5;
@_[8]=~s{.}{$&&v254|chop()&v1}ge;print@_’
<input.pgm >output.pgm secrettextfile

to embed a message (backwards) in the LSBs of the pixels in a PGM image (the
PGM format is common and there are widely installed commandline tools to
convert from JPEG, BMP or other formats, and then back to BMP if necessary
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for transmission). This 80 character Perl code is short enough to memorise, and
fairly small modifications can be made to spread the embedding around the
cover image. The more sophisticated methods of embedding cannot easily be
performed without special software3. This is why, for now, we focus on LSB
replacement.

1.3 Pairs, RS, and Couples Steganalysis

We summarise the methods for the detection of LSB steganography on which
our later work builds. Nothing in this section is new and details are omitted;
the reader is referred to the original papers for a proper explanation of how
each statistic works. We re-present the detection statistics of [4,5,6] in a way
which emphasises their fundamental similarities. Firstly, all are “threshold-free”
statistics which aim to estimate the length of a hidden message, and we assume
that the method is used to answer the simple classification problem by accepting
the null hypothesis if the estimated length is less than a certain threshold. Pairs
Analysis was designed with paletted images in mind, but there is no theoretical
reason why it should not work for grayscale images; RS was designed with colour
images in mind, although it works by treating each colour component separately
and as such is really a grayscale method.

In each case two measurements are made: in this work we will write Q(p)
and Q′(p) for random variables which are the two measurements when 2p is
the amount of embedded data4. In each of [4,5,6] either theoretical calculation
or experimental evidence shows that the expectations of Q(p) and Q′(p) are
(precisely or a close approximation to) a quadratic in p. For a given image with
an unknown amount of embedded data (possibly zero) we can observe Q(p) and
Q′(p), and also Q(1−p) and Q′(1−p) by flipping all LSBs. In each case it is also
possible to obtain Q(0.5) and Q′(0.5), either by theoretically derived calculation
or by randomizing the LSB plane of the image. Finally, in each of the cases of
Pairs, RS and Couples we make the assumption that Q(0) = Q′(0) – an assumed
property of natural images – and the correctness of this assumption is the major
factor in the accuracy of the final estimate. The law of large numbers means
that the values of the random variables Q(p) and Q′(p) will be close to their
expectations; there is now sufficient information to solve for the parameter p ([6]
includes detailed calculations). The measurements Q and Q′ differ for the three
methods, although they are not dissimilar.

In Pairs Analysis [5], due to Fridrich et al, first colour cuts are formed by
scanning through and selecting only pixels which fall into each pair of values
(0,1), (2,3), and so on. The colour cuts are concatenated to form a single stream,

3 The exception is LSB matching, which can be done using code not much larger than
that above. There is an urgent need for a improved detectors for LSB matching,
especially when the embedded message is not of full length or for grayscale covers.

4 p is the proportion of pixels with flipped LSBs, which is the expected proportion
when 2p pixels are used for steganography because about half of the pixels would
have carried the correct LSB already.
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a re-ordering of the pixels of the original image. The measure Q is the relative
homogeneity of the LSBs of this stream, the proportion of adjacent pixels with
the same LSB. The measure Q′ is calculated in the same way except that the
pairs of values used to form the colour cuts are the dual pairs (255,0), (1,2),
(3,4), etc.

Also due to Fridrich et al. is the method of RS [4], also called dual statistics.
Here the image is sectioned into groups of pixels; the size of the group is variable
but in [4] it is either a four-by-one horizontal rectangle, or a two-by-two square.
A “mask” is applied to each block – the mask specifies that certain pixels in it
should have their LSBs flipped. Each group is classified as regular, singular, or
neither, depending on whether the noise within the pixel group (as measured by
the mean absolute value of the differences between adjacent pixels) is increased,
decreased, or unchanged after this flipping; we denote the proportion of regular
and singular groups as R and S. The classification is repeated using the dual
form of flipping 1 ↔ 2, 3 ↔ 4, . . . , 255 ↔ 0; call the proportion of regular and
singular groups under the dual flipping R′ and S′. The two measurements finally
used by RS steganalysis are Q = R− S and Q′ = R′ − S′; under the additional
assumption that both R = R′ and S = S′ for natural images it becomes possible
to derive Q(0.5) and Q′(0.5) theoretically rather than resort to experimentation.

The third detection method we consider here is due to Dumitrescu et al ;
it was presented in [6] where it was called Sample Pairs Analysis. The same
technique was discovered independently (but not published) by this author and
termed Couples Analysis. For this paper we use the latter name, partly out of
familiarity and partly because “Sample Pairs” could easily be confused with
“Pairs”. It is conceptually the simplest method of the three under consideration,
and also has the most complete theoretical analysis. We will later show that it
is also marginally the most accurate. Consider the set of all horizontally and
vertically adjacent pairs of pixels in the image. Let Ek be the proportion of
pairs of pixels which a) differ in value by k and b) of which the lower of the two
values is even. Ok is the same but with the lower of the two values odd. Suitable
measurements are Qi = E2i+1 and Q′

i = O2i+1; in [6] it is shown that Qi and Q′
i

(for each i) satisfy the properties listed above of Q and Q′; after some analysis
the authors suggest using Q =

∑
i Qi and Q′ =

∑
i Q′

i. It is also possible to
compute Q(0.5) and Q′(0.5) exactly, without randomizing the LSB plane.

2 Experimental Programme

Experimental results come from our distributed steganalysis project (see [7] for
some details). In order to evaluate the performance of a particular steganalysis
algorithm against a particular method of steganography we need to approximate
the distributions of the discriminating statistic in the two cases of absence and
presence of hidden data. We do so using a number of large sets of sample images.
We also need to repeat with varying amounts of hidden data to establish the
level at which steganography becomes detectable. So for each steganography
algorithm under consideration, and each steganalysis method being tested, with
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a number of message sizes, we compute the discriminating statistic before and
after embedding a random message.

Because the number of combinations of steganalysis algorithms (each with
a large number of variations), message sizes, and thousands of images to test
with the possibility of subjecting them to pre-embedding JPEG compression, is
so large we will need millions of computations. This is distributed to network of
machines, with the results stored in a relational database. At the time of writing
there had been up to 50 machines used at once in the network, and the results
database contained over 13 million rows. Results are then extracted, analysed to
produce ROC curves for each set of parameters (steganography method, amount
of hidden data, steganalysis statistic, image set, etc.) and graphed.

2.1 Sample Results

Figure 1 shows some of the results from the database. The chart displayed shows
the ROC curves for a small set of 1200 uncompressed images, when 10% LSB
steganography (i.e. 0.1 bits per pixel) is used and the images are tested with the
standard RS statistic of [4]. The experiment has been repeated with the cover
images first resampled down to a number of different sizes, and it is instructive
to see what a difference this makes to the reliability of the RS statistic.
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Fig. 1. ROC curves for a set of 1200 uncompressed images, originally 1024×768
but resampled down to a variety of smaller sizes. In each case 10% steganography
has been used, and tested against the standard RS statistic of [4]

Compare the curves for the two sets resizes to 640 × 480 and 320 × 240. It
turns out (ROC curve not displayed) that the performance of the RS statistic
in the 640× 480 images when 0.1 bits per pixel steganography is embedded is
approximately the same as for the 320 × 240 images when 0.17 bits per pixel
LSB steganography is used. This is not contrary to the instinctively obvious fact
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that larger images can carry larger messages securely, but it does indicate that
the increase is not proportional.

Figure 1 also illustrates the general shape of ROC curves, which tend to fall
dramatically when the false positive rate goes below a certain level. Thus it is not
often useful to fix a particular false-positive rate and compare different statis-
tics’ reliability rates at this point. A more reasonable one-dimensional measure
of performance, and one we quote on occasion, is the level of false positives when
the threshold is set for 50% reliability. We find that this often serves as a fair
summary of the performance. At the end we will focus on an even more partic-
ular case, determining the minimum embedding rate for which 50% reliability is
achieved with a 5% false positive rate.

When choosing which ROC curves to show we will focus on “interesting”
cases – we will choose a steganography embedding rate so that the performance
is neither too near perfect (in which case any differences are as likely due to
chance as anything else) or too poor (because results of that nature are not
interesting). We will also scale the x-axis (false positive rate) so that the graph
shows only areas of interest (in particular we will not show false positive rates of
more than 10%). The y-axis will always run over reliability rates of 0% to 100%.

2.2 Image Sets Used for Testing

In [7] we gave two important examples which warn of some of the difficulties
in evaluating steganalysis algorithms. Firstly, we found that cover images which
have been JPEG compressed can lead to vastly different reliability of detection,
even after the JPEG images were substantially reduced in size in an attempt to
“wash out” the compression artifacts. Secondly we found that different resam-
pling methods used to resize sets of images also resulted in different performance
when steganalysis methods were tested against them. This makes it clear that
there is no such thing as a universally “representative” set of natural images for
the purposes of testing steganalysis.

We address this issue in part by obtaining a number of large sets of images
and using each set separately, to be sure of covering all image types and also to
expose any differences in performance with the eventual aim of explaining them.
So in subsequent testing we will use:

Image Set A: 2200 simulated uncompressed images, all 512 × 512. The
“simulation” of uncompressed images is performed by taking very large and
mildly compressed JPEG files and reducing (in view of the warnings of [7] we
have used a mixture of resampling algorithms). These images are “high-quality”
in the sense that out-of-focus and incorrectly exposed images have been removed.
Since they are uncompressed we will also repeat experiments by pre-compressing
them, to measure how much the statistics’ reliability depends on this factor.

Image Set B: 5000 JPEG images, all sized 900×600. Each is compressed at
JPEG quality factor 75. These came from a royalty-free image library purchased
by the author. The photographs are of quite good quality in terms of exposure
and focus, but they appear to have been scanned in from 35mm film and some
show granularity. Some have a small black border.
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Image Set C: 10000 JPEG images, sizes varying between 890 × 560 and
1050×691. The JPEG compression levels vary from approximately quality factor
50 to 75. These images came from another royalty-free image library, but the
quality of pictures is not as good as Set B; some images are blurred or incorrectly
exposed.

Image Set D: 7500 JPEG images of very variable quality. They were ob-
tained from an open image library which the public may contribute to. Accord-
ingly the images’ provenance cannot be verified, but they clearly come from a
very wide range of sources. The quality is extremely variable – there are a few
blurred, grainy and distorted pictures included. Most of the images are sized be-
tween 800× 600 and 1024× 768. The JPEG compression levels are fairly evenly
distributed between approximately quality factors 50 and 90.

It will be seen that Image Set A is “difficult” for the steganalyst, in that the
statistics’ reliability is worse over this set than the others (and this seems the
general case for uncompressed images). Set C is the “easiest”. Set D is expected
to be difficult because of its heterogeneity. Our image library contains other sets
but in the interests of space we do not report results for them.

One may ask why we test the spatial-domain LSB steganography method
against images which have been stored in JPEG format, especially given the
technique of JPEG compatability analysis [11]. One reason is that we have found
it extremely hard to obtain large sets of images which can be guaranteed never
to have undergone compression or other distortions. Furthermore the fact is that
most natural images are stored in JPEG format and, just as we are examining
LSB steganography for its ease of use and prevalence, we want to test against
all likely types of cover image. The casual steganographer may well only have
access to JPEG compressed images. Finally, we believe that JPEG compatability
analysis can be avoided if simple global operations such as very mild blurring or
change of contrast are applied to the JPEG images before LSB embedding.

3 Improved Detection Methods and Experimental
Evidence

In the main body of this paper we will suggest a number of improved detectors
for LSB steganography. In each case we outline a steganalysis method and give
some experimental evidence (in the form of ROC curves) of improved reliability.
However it is impossible to display the ROC curves of every combination of
image set, embedding rate, variation of detection statistic, and so on; we select a
representative sample for display and will also comment on the extent to which
the improvements hold in general. We begin with a recap of the improvements
suggested in [7]; all subsequent results are new research. A table summarising
the performance of all the statistics over all Image Sets can be found in Sect. 4.

3.1 Improved Pairs & Better RS Masks

RS Steganalysis depends on the particular choice of “mask”, which determines
how pixels are grouped and which are flipped during the noise measurements.
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In the presentation of [4] the authors mention two masks – the horizontal row
[0, 1, 1, 0] and the square [1, 0; 0, 1] – without commenting on why they were
chosen. In [7] we investigated a number of other masks and found that a perfor-
mance improvement could be obtained using the square [0, 0, 0; 0, 1, 0; 0, 0, 0]
instead. (The noise measurement used in the RS calculation is extended to two-
dimensional masks by summing differences between both all horizontal and all
vertical pixel pairs.)

Pairs Analysis was substantially improved by excluding some pixels from the
homogeneity measurement, namely those pixels which were not adjacent in the
original image. This amounts to splitting the colour cuts into small subsequences
of originally adjacent pixels and measuring the homogeneity within those sub-
sequences. The rest of the algorithm is identical to the standard Pairs method
(repeating for the alternative pairs of values and solving the same quadratic
equation to find an estimate of hidden message length).
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Fig. 2. ROC curves showing the reliability gained by using the suggested RS
“mask” and the Improved Pairs measure. The curves are generated from the
15000 images in Image Sets B and C combined; the hidden message length is 3%

Figure 2 shows the effects of these improvements on the ROC curves in one
instance. 15000 JPEG images had 3% steganography embedded: here the false
positive rate needed to achieve 50% reliability has reduced from 2.7% to 1.2%
when the RS mask is switched from the standard [0, 1, 1, 0] to the improved
[0, 0, 0; 0, 1, 0; 0, 0, 0], and the modification to Pairs Analysis has reduced it
from 5.3% to 2.7%. Similar improvements are observed across all Image Sets
and with all message sizes. In [7] we gave ROC curves showing that in some
circumstances the improved Pairs statistic becomes more reliable than the RS
method (this is particularly noticeable in the case of uncompressed images, as
will be seen in Table 1).

One other minor improvement we mention here, which is not reported in [7],
is a simplification of the RS statistic. Recall that the RS message-length estimate
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is computed from two measures Q = R − S and Q′ = R′ − S′, where R and R′

represent the number of regular pixel groups under LSB flipping and dual flipping
according to the mask, and S and S′ the singular groups. It is easy to see that
the results of [4] show that the measures R and R′ alone suffice to estimate the
hidden message length, using the assumption that R = R′ for natural images,
so long as one is prepared to determine R(0.5) by randomizing the LSB plane
of the image under consideration. The same applies to S and S′. We have found
that just using R and R′ to estimate the hidden message length is actually more
reliable than the full RS method (this does not apply to S and S′, which alone
make a very poor detector). This is a surprising result but the improvement is
not very substantial and we do not display ROC curves to illustrate it; Table 1
illustrates the incremental advantage sufficiently.

3.2 Improving Couples Analysis

As described in [6] Couples Analysis is in fact marginally more reliable than
conventional RS steganalysis (see Tab. 1). However the testing performed for
that paper was very limited and this may have lead the authors to miss an
important feature.

Recall that there are a number of alternative measures, Qi = E2i+1 and
Q′

i = O2i+1 for i ≥ 0 (where Ek is the proportion of pairs of pixels which differ
by k and of which the lower is even, Ok analogously for odd). Let us write
p̂i for the estimated hidden message length computed using Qi and Q′

i, and p̂
for the estimate described in [6], which uses Q =

∑
i Qi and Q′ =

∑
i Q′

i. The
authors claim that p̂ is “more robust” than the p̂i, a conclusion we generally agree
with (although not without reservation as there have been a few circumstances,
involving mildly JPEG compressed covers, when p̂1 was observed to be superior
to p̂).

However a much more useful fact is that the different estimators p̂i are gener-
ally uncorrelated. Figure 3, left, shows a scattergram of p̂0 against p̂1 generated
by the images in Set B (with no embedded data); there is no visible relationship,
and the Pearson correlation coefficient is only −0.0365. Image Sets C and D
have similar results; the uncompressed Image Set A gives a higher correlation
coefficient of 0.1743 but this is still quite a weak relationship. The power of
these uncorrelated statistics is that it is much less likely that an image with no
hidden data would show up as a false positive for both statistics. So we could set
thresholds for p̂0 and p̂1 and give a positive diagnosis of steganography only if
both are exceeded. Furthermore, one need not stop at using two statistics. We
also found fairly weak correlation between the other p̂i statistics, although the
correlation does rise with i, and the reliability falls. After some experimentation
we determined that taking the three values p̂0, p̂1, and p̂2, and setting the same
threshold for each gave the best overall performance. This amounts to using
min(p̂0, p̂1, p̂2) as the discriminating statistic5.
5 We do not claim that this combination of the p̂i is necessarily optimal, merely that

it is the best we could find; an interesting direction for further research is to find the
best ways to combine all of the various detection statistics in the optimal way.
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Fig. 3. Left, A scattergram plotting the message-length estimates p̂0 (x-axis)
against p̂1 (y-axis). No correlation is evident. Right, ROC curves showing how
the reliability of the conventional Couples statistic p̂ varies as the covers are pre-
compressed (shaded lines), and the improvements gained by using min(p̂0, p̂1, p̂2)
instead (black lines). The covers used are the 2200 uncompressed images in Set A
(unmarked lines), and the experiment is repeated with the covers pre-compressed
using JPEG quality factors of 90 (lines marked with triangles) and 50 (lines
marked with circles). 3% steganography has been used

Figure 3, right, shows the results. The ROC curves are all generated from
Image Set A, with the experiment repeated with the covers first JPEG com-
pressed using quality factors of 90 and 50. In the case of uncompressed covers
the false positive rate needed to achieve 50% reliability has reduced from 10.7%
to 1.5% (a dramatic improvement indeed!). For the mildly JPEG compressed
covers it has reduced from 4% to 2.7%, and for the quite heavily compressed
quality factor 50 images it has reduced from 5.1% to 1.7%. It is curious that
the relative performance of the Couples statistic, as JPEG compression of the
covers varies, is exactly reversed by the improved method. Other observations
suggest that mildly compressed covers have particular properties which destroy
the accuracy of the estimate p̂1 (but do not affect p̂0 or p̂2 nearly as seriously);
further research is called for to see if this can be mitigated.

This modified method of Couples Analysis is now substantially more re-
liable than any of the conventional steganalysis statistics (see Tab. 1) in an-
swering the simple classification question. However the discrimination statistic
min(p̂0, p̂1, p̂2) is no longer an unbiased estimate of the hidden message length
(it will underestimate).

3.3 Dropping the Message Length Estimate

In [7] we asked whether the use of a statistic designed to estimate the hidden
message length could be improved upon, given that we only want to answer the
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Fig. 4. Left, the effect of switching to the relative difference statistic in RS ste-
ganalysis – the ROC curve shown is generated from the 7500 images in Set D and
compares the conventional RS statistic (with mask [0, 1, 1, 0]), the version with
the improved mask [0, 0, 0; 0, 1, 0; 0, 0, 0], and using the relative difference be-
tween R and R′ (computed with the mask [0, 1, 1, 0]). The experiment is repeated
with both 5% (marked lines) and 10% (unmarked lines) steganography. Right, a
similar comparison between conventional Couples Analysis, the improved Cou-
ples analysis using min(p̂0, p̂1, p̂2), and finally using (Q0 −Q′

0)/(Q0 + Q′
0), with

both 3% (marked lines) and 5% (unmarked lines) steganography. The second
diagram was generated from the combined 15000 images in Sets B and C

simple question of whether data is hidden or not. We have just seen a statistic
which does the latter better at the expense of the former.

Let us return to the most important assumptions which underlie Pairs, RS,
and Couples – that Q(0) = Q′(0) in natural images. A simple and obvious
statistic to consider is therefore Q − Q′, which should be near zero in natural
images and (one can show in each of the cases of Pairs, RS and Couples) generally
moves away from zero as data is hidden. Unfortunately the magnitudes of Q and
Q′ can differ appreciably between images, usually depending on how noisy the
image under consideration is; therefore a more robust measure is the relative
difference (Q − Q′)/(Q + Q′). One can compute Q and Q′ according to any of
the methods of Pairs, RS, or Couples. In the case of RS we have found it better
to ignore the S and S′ components and use the relative difference between R
and R′ instead.

These statistics are no longer any use for determining the hidden message
length. On the other hand we might hope that, uncluttered by the additional
observations and quadratic equation needed to do so, they are a reasonable way
to answer the simple classification question.
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Figure 4, left, shows the result of switching to the relative difference statistic
in the case of both RS and Couples (there is some improvement in doing the
same with Pairs, but the results are not so good and we do not show them
here). We display the ROC curves for the conventional RS statistic, the version
with the better mask, and the relative difference statistic6. These curves were
generated using Image Set D but similar results are seen across all image sets.
We have displayed ROC curves for both 5% and 10% embedded message rates
to demonstrate that improvement is evident across a range of embedding levels.
At the 5% embedding level the false positive rate at which 50% reliability is
achieved has fallen from 7.5% (standard mask) and 5.5% (improved mask) to
3.2% with the relative difference statistic.

The right-hand chart in Fig. 4 shows the improvement as we move from the
conventional Couples statistic, to the minimum-of-3 statistics described in the
previous section, to the relative difference statistic. In this case we have used
the relative difference between Q0 and Q′

0 – we investigated a number of other
statistics based on relative differences between combinations of Qi’s but found
that Q0 and Q′

0 was almost always the outstandingly most reliable. The level of
improvement is similar to that observed for RS.

3.4 To Overlap or Not to Overlap

Each of the methods of Pairs, RS and Couples involve performing some cal-
culation on pixel groups. For RS the groups are shaped as the mask and the
calculation is to see whether noise is increased or reduced after LSB flipping
and dual flipping. For Pairs and Couples the groups are simply pairs of pixels
adjacent in the image and/or the colour cuts and the calculation is to measure
homogeneity (whether the two pixels are equal) or classifying the pair of pixels
in one of Ek or Ok by measuring their difference. We ask whether the groups
should be disjoint or overlap. Since Pairs measures homogeneity is it clear that
the groups of pairs must overlap so that every pair of adjacent pixels is consid-
ered. The authors of [6] clearly intended the groups in Couples to overlap (“all
pairs of two spatially adjacent samples”). It is not clear whether the RS groups
used in [4] were intended to overlap.

We firmly expected that using overlapping groups (in any of the methods of
Pairs, RS or Couples) would give at best an insignificant improvement over not
doing so, since it parallels a result of [7] in which using the same pixels twice
was demonstrated to confer no particular advantage. Indeed this is exactly what
we found in the case of the statistics which give estimates of the hidden message
length. Most surprisingly, the story was quite different for the relative difference
statistics: in these cases there was frequently quite a good improvement when
using non-overlapping groups.

Figure 5 shows some of the advantages of using non-overlapping groups. The
ROC curves displayed are for the relative difference between the measures R and
6 using the standard mask [0, 1, 1, 0]; we have observed that the other masks no longer

give improved reliability when the relative difference statistic is used and indeed
many are much worse.
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Image Set C,           
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Fig. 5. ROC curves showing the benefits of non-overlapping groups. The two
statistics shown are both computed as the relative difference between R and R′

(the proportions of regular groups, under the mask [0, 1, 1, 0]), but one statistic
uses overlapping groups and the other disjoint groups. 2% steganography was
used. The experiment is repeated for three sets of images: Image Set A precom-
pressed using JPEG quality factor 90, and Image Sets B and C

R′ (computed using the mask [0, 1, 1, 0]) with overlapping and non-overlapping
groups of pixels, with 2% steganography. Since the mask is 4 pixels long the latter
has only 1/4 as many groups, but (for a reason as yet unexplained) gives better
reliability. The improvement shown for Image Set A (the graph shown is from the
case when the images are precompressed using JPEG quality factor 90) and Set B
is significant but not dramatic. For Image Set C it is more pronounced. Generally,
improved reliability is seen with any length of hidden message and with both
the RS- and Couples-based relative difference statistics, although the extent of
the improvement varies. In uncompressed covers there is little improvement.

3.5 Reducing Outliers by Segmenting

The final improvement we suggest is still work-in-progress. Our aim is to mitigate
the sometimes alarming outliers in the null distributions, natural images which
have a large bias (estimated hidden message length when there is no hidden
message). We have observed that very large bias sometimes occurs in certain
textures in an image when the rest of the image is quite normal – the overall
bias comes out too high due to the influence of this abnormal texture. This differs
from the situation when LSB steganography is present, where one expects to see
a higher message-length estimate in all parts, assuming that the LSB flipping
has been spread randomly over the whole image.

We have tried segmenting images according to their texture content and
computing the discrimination statistics for each segment, then discarding outliers
by taking the median (or a similar centrally weighted measure) of the values for
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each segment. The picture on the top left of Fig. 6 is a good example. Under
the standard RS statistic this image (one of Set A) has a bias of 0.0651, by no
means the most extreme outlier in the data sets but still a substantial error. We
segment the image according to content and compute the bias for each segment;
the results are displayed in the picture on the top right of Fig. 6. The median of
the biases for each segment is 0.0052, a much smaller error.

To perform the segmentation we chose the method of [12], partly because it
avoids oversegmentation in highly detailed images without human intervention,
and partly because an implementation is available for download. As can be seen
from the pictures in Fig. 6 its choice of segments is sometimes rather surprising,
but it does seem to separate different textures quite well. We make no claim that
this segmenting method is in any way optimal for steganalysis purposes (indeed
one might hope to perform segmentation according to the steganalysis statistics
themselves); the results here are intended as a springboard for further research
into the issue.

Segmentation is not particularly fast so we restricted our attention to adding
segmentation to the best-performing statistics found so far (non-overlapping rel-
ative difference between R and R′ or Q0 and Q′

0). We adjusted the segmentation
parameters so that most images were segmented into 6-12 segments and found
that lower false positive rates were given by taking roughly the 30th percentile
out of the statistics computed for individual segments (this biases the results
low, trading worse reliability at high false positives for better reliability at low
false positives – precisely the sort of trade we want to make).

The graph in Fig. 6 shows the benefits of using segmentation, comparing the
relative difference between the non-overlapping versions of R and R′ statistic
with and without segmentation. 3% steganography was embedded in Image Sets
B, C and D. The improvement in the case of Set C is particularly good, with the
false positive rate needed to achieve 50% reliability dropping from 0.26% to less
than 0.08%. When segmentation was added to the Couples Q0 and Q′

0 relative
difference statistic there was also an improvement, but not as much (ROC curves
not shown). We hope to improve more on these results after further investigation.

4 Summary of Results and Conclusions

We conclude with a summary of the improvements made by these new detection
statistics. It is necessary to simplify, so we have used a definition of “reliable”
detection as meaning 5% false positives and at most 50% missed detections
(we recognise that these figures are arbitrary but they are in keeping with the
philosophy that false positives are more severe than false negatives – such a
detector would be reasonably useful for an Information Security Officer who
would only make a definite diagnosis of steganography after seeing a number of
positive results coming from the same person). We measured the lowest level of
steganography for which such reliability is attained by each statistic, repeating
for each Image Set, and also subjected the covers of Image Set A to JPEG
compression at mild (quality factor 90), moderate (75) and strong (50) levels so
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Fig. 6. Above, the results of segmentation. Below, ROC curves showing the ben-
efits; the statistic used is the non-overlapping version of the relative difference
between R and R′, as computed using the mask [0, 1, 1, 0]. The segmenting statis-
tic takes the 30th percentile of the estimates for each segment. 3% steganography
was embedded

as to examine this factor. Table 1 contains the results, starting with conventional
methods, then listing the improved versions of Pairs and RS suggested in [7] and
then displaying the statistics suggested in this paper. The segmenting statistic
was not tested against Image Set A because initial results showed no likelihood
of improvement.

The table shows, amongst other things, that relative difference statistics
(computed using non-overlapping groups) are much better than the alterna-
tives, and that segmenting images is a promising direction for further work. The
exception is for the only set of uncompressed images, when the improved ver-
sion of Couples Analysis performs the best (and note that none of the optimal
statistics is capable of estimating the hidden message length). For each Image
Set the best-performing statistic will reliably detect LSB steganography at be-
tween 2 and 6 times lower rates than the conventional methods, and there is a
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Table 1. Final results. The table shows the lowest bit rate (in bits per pixel)
of LSB steganography which can be “reliably” detected by the various methods
and for each image set. Here we take reliable detection to mean 50% or higher
probability of detection when the false positive rate is 5%. Entries in the table
higher than 0.04 are accurate to 0.005; entries between 0.01 and 0.04 are accurate
to 0.002, and entries below 0.01 are accurate to 0.001

Statistic
Image Set A w/compression Image Image Image

None q.f. 90 q.f. 75 q.f. 50 Set B Set C Set D

Conventional Pairs 0.100 0.085 0.060 0.060 0.040 0.018 0.070

Conventional RS 0.110 0.045 0.050 0.055 0.028 0.016 0.070

Conventional Couples 0.090 0.040 0.050 0.050 0.030 0.014 0.065

RS with optimal mask 0.100 0.038 0.045 0.050 0.022 0.012 0.055

Improved Pairs 0.080 0.050 0.030 0.028 0.030 0.012 0.050

RS R only 0.105 0.040 0.040 0.050 0.026 0.014 0.060

Improved Couples 0.032 0.030 0.020 0.018 0.020 0.038 0.036

Relative difference of R, R′ 0.065 0.026 0.022 0.022 0.022 0.012 0.036

*Relative difference of R, R′ 0.065 0.022 0.018 0.020 0.020 0.006 0.032

Couples Q1 relative difference 0.085 0.030 0.016 0.012 0.028 0.009 0.034

*Couples Q1 relative difference 0.085 0.028 0.012 0.008 0.024 0.006 0.028

*Relative difference of R, R′ with segmenting 0.014 0.005 0.020

* indicates alternative versions using non-overlapping groups

suggestion that the best improvements come from the most highly compressed
images. Since some improvement has been observed across all Image Sets we can
be confident that the new statistics are genuinely and significantly more reliable.

Also important to note is the vast difference in reliability as the statistics are
tested across the different Image Sets. One should therefore view the improved
bit rates as relative to the conventional ones. We have already commented that
image size makes a difference to steganalysis reliability, but it is clear that JPEG
compression does too and there may be other factors as yet uncovered. Thus it is
impossible to say that there is a definitive “safe” bit rate, below which steganog-
raphy cannot be detected. It would appear, though, that a steganographer who
chooses their covers carefully can still transmit quite a lot of hidden data (and
this paper excludes any discussion of adaptive techniques for choosing where to
embed, let alone methods other than LSB). This also suggests an interesting
line of future research, where suspect images are classified in some way so that
the best statistic for that particular type of image can be used. The issue is so
complex that a learning machine may be necessary.
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In conclusion, we have suggested a number of improved methods for deciding
whether a grayscale bitmap contains LSB steganography or not. Thanks to the
distributed steganalysis project we are able to give extensive experimental evi-
dence of the extent of the improvement. This depends entirely on the particular
weight one gives to false positive or negative results, but we have shown that
when the aim is to reduce false positives (and when a fairly arbitrary definition
of “reliable” is made) the new statistics allow reliable detection of between 2 and
6 times less embedded data than the previously best methods. In most cases,
however, we have not tried to give a theoretical explanation of why the improve-
ment occurs – our new methods are heuristic and there is no claim of optimality.
We hope that the results presented here will stimulate research to this end.
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Abstract. This paper presents a fast algorithm to detect the least significant bit 
(LSB) steganography. Our approach is inspired by the work of Dumitrescu et 
al. [1] who detected LSB steganography via sample pair analysis. Our new 
algorithm combines with the statistical measures developed in [1] and a new 
least square estimation. The motivation comes from the high accuracy and 
robustness of the least square method used in parameter estimation. Plentiful 
experimental results show that our novel method has much lower false alarm 
rate of 5% than that of 13.79% in [1]. Meanwhile, the estimating precision of 
our algorithm is about 9% higher than that of the algorithm [1] if the embedding 
ratio is less than 10%, and the speed of our algorithm is also about 15% faster 
than the algorithm [1]. Some theoretical derivations are also included. 

1   Introduction 

As a new art of covert communication, the main purpose of steganography is to 
convey messages secretly by concealing the very existence of messages under digital 
media files, such as images, audio, or video files. Similar to cryptanalysis, 
steganalysis attempts to defeat the goal of steganography. A popular digital 
steganography technique is so-called least significant bit (LSB) embedding. Because 
LSB steganography has many advantages such as conceal capability is excellent, 
capacity of message embedded into image is large, and its realization is easily, it may 
be used widely in the Internet. So, reliable detection of LSB steganography of images 
is a valuable topic to study. 

Recently, there are a lot of methods for detection of LSB steganography. It is 
impossible for us to provide an exhaustive review. The algorithms discussed here are 
examples that are representative of the literatures. Fridrich et. al.[2] developed a 
steganographic method for detection of LSB embedding in 24-bit color images (the 
Raw Quick Pairs-RQP method). The RQP method is based on analyzing close pairs of 
colors created by LSB embedding. It works reasonably well as long as the number of 
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unique colors in the cover image is less than 30% of the number of pixels. Stefan 
Katzenbeisser[3][4] proposed a steganalysis method based on Laplace transform. The 
embedding process can be treated as adding noise to images. The Laplace filtering 
causes obviously differences between the histograms of the covert images and those 
of the original images. Thus one can make a decision via keenness. This method is 
simple. It, however, needs training and its decision precision is low. 

Fridrich et. al.[5] also presented a powerful RS method (regular and singular 
groups method) for detection of LSB embedding that utilizes sensitive dual statistics 
derived from spatial correlations in images. This method counts the numbers of the 
regular group and the singular one respectively, describes the RS chart, and constructs 
a quadratic equation. The length of message embedded in image is then estimated by 
solving the equation. This approach is suitable for color and gray-scale images.     
The literature [6] introduced a steganalytic method for detection of LSB embedding 
via different histograms of image. If the embedding ratio is bigger (more than 40%), 
the result is more accurate than that of the RS method. The speed of this method is 
fast and the detection result is better than RS method for uncompressed images. 
However, if the embedding ratio is less than 40%, the performance is not as good as 
that of RS method. 

S. Dumitrescu et. al.[1] detected the LSB steganography via sample pair analysis 
(SPA). When the embedding ratio is more than 3%, this method can estimate the 
embedding ratio with relatively high precision. The average error of estimates is 
0.023. The false alarm rate is 13.79%. Dumitrscu also proved some key observations 
on which the RS method based. SPA method can be realized easily, and its speed is 
fast, so it can be able to analysis the large number of images. 

Being enlightened by SPA method, we improved on it by adding a least square 
estimation. We propose a novel steganalysis algorithm via finite-state machine and 
least square method, which we call the algorithm LSM shortly. Simulations show that 
it has the following advantages:  Detection is available under more relaxed conditions, 
the false alarm rate can be played down from 13.79% to 5%, the estimating precision 
is about 9% higher than that of SPA method if the embedding ratio is lower than 10%, 
and the speed of detection is about 15% faster than that of SPA method.  

This paper is structured as follows. In Section 2, we will introduce the principle of 
SPA method as the base of our new method. In Section 3, we describe the principle of 
LSM method. Section 4 presents the detailed detection steps of the new approach. 
Then, in Section 5, we present our experimental results. 

2   Principle of SPA Method 

The principle of SPA method is based on finite-state machine theory. Assuming that 
the digital signal is represented by the succession of samples s , a sample 
pair means a two-tuple 

Nss ,,, 21

Njiss ji ,1),,( . Let P  be a multiset of two tuples ( ), 

where  and v  are the values of two samples. Denote by D  the submultiset of P  
that consists of sample pairs of the form (

vu,

u n

), nu u  or ( ),unu , where n  is a fixed 
integer, . For each integer , , denote by C  the 120 bn m 12 1b0 m m
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submultiset of P  that consists of the sample pairs whose values differ by m  in the 
first ( ) bits (i.e., by right shifting one bit and then measuring the difference). 1b

2mX 2mD
12b

12bD

mX 21, 2,Y

)
)

(   )i
(  )ii

)

nC,
'n

( )iii

nX
,' nn CY

Let ,111 mC mmm CDY 1212 , m0 22 1b , and X , 
.For natural images, the literature [1] presented the hypotheses: 

12bY

. 1212 mm YEXE                                                (1) 

The multiset C , , is partitioned into four trace submultisets 
, Y . Clearly C is closed, but its four trace submultisets are not but 

convert reciprocally under the LSB embedding operations. This phenomenon can be 
described with the finite-state machine (see Fig. 1).  
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Fig. 1.  Finite-state machine whose states are trace multisets of C . 1,mm
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Fig. 2.  Finite-state machine associated with C . 0

 
For each modification pattern 11,01,10,00  and any , denote by PA ),( A  

the probability that the sample pairs of A  are modified with pattern  as a result of 
the embedding. Let  be the length of the embedded message in bits divided by the 
total number of samples in an image. Then  

p

;)2/1(,00 2pP  
  );2/1(2/),10(,01 ppP                                                              (2) 

2)2/(,11 pP . 
Let  be the multisets of the original (clean) signal, and 

 the multisets of the signal tampered by LSB embedding. According 
to the transitions within the finite-state machines in the Fig.1 and 2, Sorina Dumitrscu 
et al. derived the following quadratic equations for estimating 
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p  if LSB 
steganography is done via random embedding: 



An Improved Sample Pairs Method for Detection of LSB Embedding           119 

|||)|2|(|
2

||
4

)1(|| 12122

2
2

12 mmmmm XXDpCppX ,                       (3) 

and 

             |'||)'|2|'(|
2

||
4

)1(| 12122

2
2

12 mmmmm YYDpCppY| ,                        (4) 

where 1 . Using 22 1bm 1m  instead  of  (3), we can get  m
2

|'||)'|2|'(|
2

||
4

)1(|| 1212221
2

12 mmmmm XXDpCppX  .                  (5) 

From (4) and (5) together with the hypotheses (1), one finally obtains the following 
quadratic equation to estimate the value of p : 
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The smaller root of quadratic equation (6) [or (7)] is the estimated value of p . 
Considering the estimating precision, the literature [1] used the hypotheses  
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instead (1), derived the more robust quadratic equations to estimate the value of p : 
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and  
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The literature [1] gave the experiential values of i , j  and the decision threshold. 
When ,  and the threshold is 0.018, the estimate value by solving 
the equations is relatively precise, and the average error is 0.023. 

%3p 30,0 ji

3   Principle of LSM Method 

The precision of SPA is based on the hypotheses (1) or (8). Once the hypotheses do 
not hold, the quadratic equations above will not hold.  Hence, when the embedding 
ratio is small, the errors of those hypotheses will lead the decision error. Thus when 
there are not embedded messages in images, the false alarm rate is high. In fact, the 
false alarm rate presented by the literature [1] is 13.79%. Table 1 tabulates the false 
alarm rates when and the missing rates when in [1].  0p 0p
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Table 1. Probability of wrong decision with the decision threshold set at 0.018. 

Embedding 
ratio 0% 3% 5% 10% 15% 20% 

Error 
probability 0.1379 0.1103 0 0 0 0 

 

In this section, we will give further analysis for trace submultisets X , 
, and present a new algorithm to estimate the embedded rate precisely when 

the embedded rate is low.  

mm X 212 ,

122 , mm YY

Actually, 12mXE  is not absolutely equal to 12mYE , and neither is 
j

im
mXE 12  equal to 

j

im
mYE 12 . Let |||| 1212 mmm XY  ( m0  ), 

where the difference  is small for natural signals. Subtracting (5) from (4) yields 
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Similarly, we have 
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Note that m  can take any of different 2  values, thus we can construct 
different  equations. 

11b

12 1b

Considering the perfect accuracy and robustness of least square method for 
parameters estimate, we use least square method to estimate the embedding ratio for 
the different 2  equations. The procedure of our estimation is as follows. 11b
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where, . After differentiating for (13), we have the following 
equation:  
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By solving equation (14), we can find a p  such that the  is minimal.   ),,( pjiS
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Usually, this equation has three real roots. To determine which root is the estimated 
value of  among these three roots, we should consider the second order derivative 
of (13), namely 

p
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If the root p  of (14) such that (15) is larger than 0, and (  is relative small, then, 

by (11) and (13), S  is the least value at . Thus the p is the 

value we want to estimate.  
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In conclusion, the improved algorithm estimates the length of embedding message 
by solving a third order equation. The new LSM algorithm need a hypothesis that 

2
1212 )1(|||| pXY mm

0i 5j

 is small for each m . The conditions of our hypothesis are 
more relax than that in [1]. It is precision and robust enough for our LSM algorithm to 
take  and . 

4   The LSM Algorithm 

We now describe our detection algorithm. 
Input: A set BMP images for detecting. 
Output: The embedding ratio p  for each image I  in G , and a decision whether 

or not I  contains hiding messages.  
Step1. Prepare the cardinalities of the trace multisets. 

For 0 and a given image 5m I  in G , we compute the following constants. 

|| mC : The number of those pairs whose values differs by m after right shifting 
one bit. 

|| 1mC : The numbers of those pairs whose values differ by m after right 
shifting one bit. 

1

|| 2mD : The numbers of those pairs whose values differ by . m2
|| 22mD : The numbers of those pairs whose values differ by 22m . 
|| 12mX : The numbers of those pairs whose values differ by 2 1m  and in which 

the even component is larger. 
|| 12mY : The numbers of those pairs whose values differ by 2 1m   and in which 

the odd component is larger. 
Step 2. Establish the cubic equation. 
For each m, 0 , we calculate  5m

4
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and get the following cubic equation: 
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Step 3. Find the appropriate root. 
Solve the cubic equation (16) and get the real roots . Find  

such that  
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If satisfy (17) we chose the qp, p  such that 44 )1(
),,(

)1(
),,(

q
qjiS

p
pjiS . Then the p  is the 

embedding ratio of hidden messages in the image I .  
Step 4. Make a decision. 
If p>0.018 then  is a stego-image, otherwise  is a nature image. I I

5   Experimental Results 

5.1 Validity and Reliability Test 

The new LSB steganalytic algorithm is implemented on a PC with P3 933 MHz CPU 
and 128M-memory. Firstly, we selected 4 standard test images (see Fig.3) with 

 pixels for being tested by our algorithm. We created a series of steg-images 
by embedding secret messages into the four images using random LSB replacement 
method with embedding ratios 0,3%,5%,10%,20%,…,100%. Then we estimated the 
embedding ratio from those steg-images using RS method, SPA method and our LSM 
method, respectively. Table 2 lists the estimated results which indicate that our new 
algorithm is more effective and reliable than RS method and SPA method. 

512512

 

 
            (a) lena                  (b) peppers                 (d) milkdrop                (e) lake 

Fig. 3.  4 standard test images. 

5.2 Correct Rate Test 

To compare the correct rate of our algorithm with RS method and SPA method, we 
did the same experiments for test image database with 150 images of both JPG and 
BMP types, including a wide range of natural images. Some of these are standard 
images (Such as barb, balloon, bird, couple, girl, goldhill, etc.), and some images are 
captured using digital camera or scanner, and the others are nonstandard images. We 
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selected 0.03 as the threshold of RS method, and 0.018 as the thresholds for SPA 
method and LSM method. The correct rates of experimental results are shown in the 
Table 3. 

 
 

Table 2.  Test results of 4 standard images (in percent). 
 

Lena peppers milkdrop lake 
 

RS SPA LSM RS SPA LSM RS SPA LSM RS SPA LSM 

0 1.43 0.49 0.19 1.48 0.65 0.26 1.89 1.26 0.76 1.20 0.82 0.48 

3 4.63 3.51 2.81 4.40 3.61 3.34 1.55 1.81 2.19 1.81 2.02 2.39 

5 6.35 5.37 4.72 6.55 5.56 5.09 3.40 3.54 4.17 3.93 3.81 4.12 

10 11.91 10.77 10.20 11.66 10.71 10.56 8.71 9.08 9.45 8.93 9.05 9.26 

20 22.19 21.23 20.40 22.90 21.05 20.83 18.91 19.21 19.54 21.55 20.63 20.14 

30 32.22 31.27 30.57 32.70 31.03 30.07 29.42 28.42 29.51 30.28 29.81 30.58 

40 41.48 40.69 40.26 41.90 40.46 40.20 39.37 39.40 39.52 42.34 40.86 40.46 

50 51.36 50.48 49.99 52.98 50.77 50.50 50.56 51.15 50.20 53.23 50.93 50.07 

60 61.23 60.56 60.18 59.81 60.40 60.00 58.55 58.26 58.01 58.68 61.24 60.04 

70 70.48 70.31 70.21 72.07 70.62 70.33 72.44 70.89 70.87 72.26 70.85 69.63 

80 79.89 78.77 79.05 79.67 78.65 79.04 80.61 78.36 78.88 80.16 78.89 78.84 

90 91.07 89.07 89.99 91.08 90.70 90.19 90.85 90.43 89.69 89.27 89.21 88.81 

100 96.60 97.72 98.95 96.95 97.80 99.16 100 99.20 98.78 99.21 99.10 100 

 
 

Table 3.  Correct rates of judgments (in percent). 
 

standard images (50) images  of ours (50) others images (50) 
 

RS SPA LSM RS SPA LSM RS SPA LSM 

0 90 84 96 94 88 94 76 80 96 

3 68 94 94 82 87 100 78 88 98 

5 84 94 100 100 99 100 96 100 100 

10 96 98 100 100 100 100 98 100 100 

15 98 100 100 100 100 100 100 100 100 

20 98 100 100 100 100 100 100 100 100 

30 100 100 100 100 100 100 100 100 100 

40 100 100 100 100 100 100 100 100 100 

50 100 100 100 100 100 100 100 100 100 

60 100 100 100 100 100 100 100 100 100 

70 100 100 100 100 100 100 100 100 100 

80 100 100 100 100 100 100 100 100 100 

90 100 100 100 100 100 100 100 100 100 

100 100 100 100 100 100 100 100 100 100 
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Compared to RS method and SPA algorithm, our method can greatly decrease the 
false alarm rate, which is about 5% now. Meanwhile, the missing rate is decreased. 
From Table 3, we can also find that when the embedding ratio is 3% the estimation 
accuracy is average 12.67% higher than that of the SPA method, and when the 
embedding ratio is 5% the estimation accuracy is average 6.59% higher than that of 
the SPA method. If the embedding ratio is more than 10%, three methods’ missing 
ratios are all about 0. 

5.3 Absolute Average Error Analysis 

Fig.4, Fig.5 and Fig.6 describe the absolute average error of the three types of test 
image sets respectively. 
 

 
 Fig. 4.  Result of standard images. 

 

 
Fig. 5.  Result of images of ours. 
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Fig. 6.  Result of nonstandard images.    

5.4  Standard Deviation Analysis 

Fig.7, Fig.8 and Fig.9 describe the absolute average error of the three types of test 
image sets respectively. 

 
Fig. 7.  Result of standard images. 

 
Fig. 8.   Result of images of ours. 



126           Peizhong Lu et al. 

 
Fig. 9.  Result of nonstandard images. 

 
From Fig.4 to Fig.9, we can obtain that the absolute average error and the standard 

deviation of LSM analysis method are smaller than these of RS method and SPA 
method. 

5.5 Speed of Detection 

Fig.10 compares detection speeds of three methods. We can see that the speed of our 
new method is faster than that of RS method and SPA method. 
 

 
Fig. 10.  Comparison of detection speed.  

5.6 Range of Parameter  m

Table 4 gives the test results using our method ( m  is from 0 to 10). From Table 4 we 
know that our approach can get almost same results when m  varies from 0 to 10 or 
from 0 to 5. So we choose  varying from 0 to 5 in practice. m
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Table 4.  Test results for different range of . m
 

50 standard images 50 image of ours 50 nonstandard images Test 
result

embedding  
Ratio 

Correct 
Rate 

Mean 
(%) 

Test 
Time(s)

Correct 
Rate 

Mean 
(%) 

Test 
Time(s)

Correct 
Rate 

Mean 
(%) 

Test 
Time(s) 

m=5 96% 0.617 20.64 94% 0.663 84.90 96% 0.666 10.58 
0% 

m=10 96% 0.596 40.80 96% 0.673 172.43 96% 0.673 20.67 

m=5 94% 3.118 23.06 100% 3.571 76.33 98% 3.384 9.12 
3% 

m=10 94% 3.144 48.64 100% 3.528 164.85 98% 3.381 19.30 

6   Conclusions 

In this paper, we improve the detection of LSB steganography via sample pair 
analysis proposed by Sorina Dumitrescu [1] by least square method. Our novel 
method has following advantages: the more relax premise condition, the lower false 
alarm rate, the more accurate estimation of embedding ratio and the faster detection 
speed. 
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Abstract. A digitally altered photograph, often leaving no visual clues
of having been tampered with, can be indistinguishable from an authentic
photograph. As a result, photographs no longer hold the unique stature as
a definitive recording of events. We describe several statistical techniques
for detecting traces of digital tampering in the absence of any digital
watermark or signature. In particular, we quantify statistical correlations
that result from specific forms of digital tampering, and devise detection
schemes to reveal these correlations.

1 Introduction

The advent of low-cost and high-resolution digital cameras, and sophisticated
photo-editing software, has made it remarkably easy to manipulate and alter
digital images. In addition, digital forgeries, often leaving no visual clues of hav-
ing been tampered with, can be indistinguishable from authentic photographs.
And while the technology to manipulate digital media is developing at break-
neck speeds, the technology to contend with its ramifications is lagging behind.

Digital watermarking has been proposed as a means by which an image can
be authenticated (see, for example, [12, 3] for general surveys). Within this
broad area, several authentication schemes have been proposed: embedded sig-
natures [10, 24, 25, 18, 2], erasable fragile watermarks [11, 9], semi-fragile water-
marks [16, 23, 28, 15], robust tell-tale watermarks [27, 14, 28], and self-embedding
watermarks [8]. All of these approaches work by either inserting at the time of
recording an imperceptible digital code (a watermark) into the image, or ex-
tracting at the time of recording a digital code (a signature) from the image
and re-inserting it into the image. With the assumption that tampering will
alter a watermark, an image can be authenticated by verifying that the ex-
tracted watermark is the same as that which was inserted. The major drawback
of this approach is that a watermark must be inserted at precisely the time of
recording, which would limit this approach to specially equipped digital cam-
eras. This method also relies on the assumption that the watermark cannot be
easily removed and reinserted — it is not yet clear whether this is a reasonable
assumption (e.g., [4]).
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In contrast to these approaches, we describe a class of statistical techniques
for detecting traces of digital tampering in the absence of any watermark or sig-
nature. These approaches work on the assumption that although digital forgeries
may leave no visual clues of having been tampered with, they may, nevertheless,
alter the underlying statistics of an image. Consider, for example, the creation
of a digital forgery that shows a pair of famous movie stars, rumored to have a
romantic relationship, walking hand-in-hand. Such a photograph could be cre-
ated by splicing together individual images of each movie star and overlaying the
digitally created composite onto a sunset beach. In order to create a convincing
match, it is often necessary to (1) re-size, rotate, or stretch portions of the im-
ages; (2) apply luminance non-linearities (e.g., gamma correction) to portions of
the image in order to adjust for brightness differences; (3) add small amounts of
noise to conceal evidence of tampering; and (4) re-save the final image (typically
with lossy compression such as JPEG). Although these manipulations are often
imperceptible to the human eye, they may introduce specific correlations into
the image, which when detected can be used as evidence of digital tampering.
In this paper, we quantify statistical correlations that result from each of these
specific forms of digital tampering, and devise detection schemes to reveal the
correlations. The effectiveness of these techniques is shown on a number of simple
synthetic examples and on perceptually credible forgeries.

2 Re-sampling

Consider the scenario in which a digital forgery is created by splicing together
two, or more, individual images. In order to create a convincing match, it is often
necessary to re-size, rotate, or stretch the images, or portions of them. These
manipulations require re-sampling an image onto a new sampling lattice using
some form of interpolation. Although, the re-sampling of an image is often im-
perceptible, specific correlations are introduced in the re-sampled image. When
detected, these correlations represent evidence of tampering. We describe the
form of these correlations, and propose an algorithm for detecting them in any
portion of an image.

For purposes of exposition we will first describe how and where re-sampling
introduces correlations in 1-D signals, and how to detect these correlations. The
relatively straight-forward generalization to 2-D images is then presented.

2.1 Re-sampling Signals

Consider a 1-D discretely-sampled signal x[t] with m samples. The number of
samples in this signal can be increased or decreased by a factor p/q to n samples
in three steps [21]:

1. up-sample: create a new signal xu[t] with pm samples, where xu[pt] = x[t],
t = 1, 2, ..., m, and xu[t] = 0 otherwise.

2. interpolate: convolve xu[t] with a low-pass filter: xi[t] = xu[t]  h[t].
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3. down-sample: create a new signal xd[t] with n samples, where xd[t] = xi[qt],
t = 1, 2, ..., n. Denote the re-sampled signal as y[t] ≡ xd[t].

Different types of re-sampling algorithms (e.g., linear, cubic) differ in the form of
the interpolation filter h[t] in step 2. Since all three steps in the re-sampling of a
signal are linear, this process can be described with a single linear equation. De-
noting the original and re-sampled signals in vector form, x and y, respectively,
re-sampling takes the form: y = Ap/qx, where the n×m matrix Ap/q embodies
the entire re-sampling process. For example, the matrices for up-sampling by a
factor of 4/3 and 2/1 using linear interpolation have the form:

A4/3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0.25 0.75 0 0
0 0.50 0.50 0
0 0 0.75 0.25
0 0 0 1

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, A2/1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0.5 0.5 0
0 1 0
0 0.5 0.5
0 0 1

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

Depending on the re-sampling rate, the re-sampling process will introduce
correlations of varying degrees between neighboring samples. For example, con-
sider the up-sampling of a signal by a factor of two using linear interpolation.
Here, the odd samples of the re-sampled signal y take on the values of the origi-
nal signal x, i.e., y2i−1 = xi, i = 1, . . . , m. The even samples, on the other hand,
are the average of adjacent neighbors of the original signal: y2i = 0.5xi+0.5xi+1,
where i = 1, . . . , m − 1. Note that since each sample of the original signal
can be found in the re-sampled signal, i.e., xi = y2i−1 and xi+1 = y2i+1, the
above relationship can be expressed in terms of the re-sampled samples only:
y2i = 0.5y2i−1 +0.5y2i+1. That is, across the entire re-sampled signal, each even
sample is precisely the same linear combination of its adjacent two neighbors.
In this simple case, at least, a re-sampled signal could be detected (in the ab-
sence of noise) by noticing that every other sample is perfectly correlated to its
neighbors. To be useful in a general forensic setting we need, at a minimum, for
these types of correlations to be present regardless of the re-sampling rate.

Consider now re-sampling a signal by an arbitrary amount p/q. In this case
we first ask, when is the ith sample of a re-sampled signal equal to a linear
combination of its 2N neighbors, that is:

yi
?=

N∑
k=−N

αkyi+k, (2)

where αk are scalar weights (and α0 = 0). Re-ordering terms, and re-writing the
above constraint in terms of the re-sampling matrix yields:

yi−
N∑

k=−N

αkyi+k =0 ⇒ (ai·x)−
N∑

k=−N

αk(ai+k·x)=0 ⇒
(

ai−
N∑

k=−N

αkai+k

)
·x=0,

(3)



Statistical Tools for Digital Forensics 131

where ai is the ith row of the re-sampling matrix Ap/q, and x is the original
signal. We see now that the ith sample of a re-sampled signal is equal to a linear
combination of its neighbors when the ith row of the re-sampling matrix, ai,
is equal to a linear combination of its neighboring rows,

∑N
k=−N αkai+k. For

example, in the case of up-sampling by a factor of two (A2/1 in Equation (1)),
the even rows are a linear combination of the two adjacent odd rows. Note
also that if the ith sample is a linear combination of its neighbors then the
(i − kp)th sample (k an integer) will be the same combination of its neighbors,
that is, the correlations are periodic. It is, of course, possible for the constraint
of Equation (3) to be satisfied when the difference on the left-hand side of the
equation is orthogonal to the original signal x. While this may occur on occasion,
these correlations are unlikely to be periodic.

2.2 Detecting Re-sampling

Given a signal that has been re-sampled by a known amount and interpolation
method, it is possible to find a set of periodic samples that are correlated in
the same way to their neighbors. For example, consider the re-sampling matrix,
A4/3, of Equation (1). Here, based on the periodicity of the re-sampling matrix,
we see that, for example, the 3rd, 7th, 11th, etc. samples of the re-sampled sig-
nal will have the same correlations to their neighbors. The specific form of the
correlations can be determined by finding the neighborhood size, N , and the set
of weights, α, that satisfy: ai =

∑N
k=−N αkai+k, Equation (3), where ai is the

ith row of the re-sampling matrix and i = 3, 7, 11, etc. If, on the other-hand,
we know the specific form of the correlations, α, then it is straight-forward to
determine which samples satisfy yi =

∑N
k=−N αkyi+k, Equation (3).

In practice, of course, neither the re-sampling amount nor the specific form
of the correlations are typically known. In order to determine if a signal has
been re-sampled, we employ the expectation/maximization algorithm (EM) [5]
to simultaneously estimate a set of periodic samples that are correlated to their
neighbors, and the specific form of these correlations. We begin by assuming that
each sample belongs to one of two models. The first model, M1, corresponds to
those samples that are correlated to their neighbors, and the second model,
M2, corresponds to those samples that are not (i.e., an outlier model). The EM
algorithm is a two-step iterative algorithm: (1) in the E-step the probability
that each sample belongs to each model is estimated; and (2) in the M-step the
specific form of the correlations between samples is estimated. More specifically,
in the E-step, the probability of each sample, yi, belonging to model M1 is given
by Bayes’ rule:

Pr{yi∈M1 | yi}=
Pr{yi | yi∈M1}Pr{yi∈M1}

Pr{yi | yi∈M1}Pr{yi∈M1}+Pr{yi | yi∈M2}Pr{yi∈M2}
,(4)

where equal priors are assumed, i.e., Pr{yi ∈ M1} = Pr{yi ∈ M1} = 1/2. We
also assume that:
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Pr{yi | yi ∈M1} =
1

σ
√

2π
exp

⎡⎢⎣−
(
yi −

∑N
k=−N αkyi+k

)2

2σ2

⎤⎥⎦ , (5)

and that Pr{yi | yi ∈ M2} is uniformly distributed over the range of possible
values of the signal y. The variance, σ, of the above Gaussian distribution is es-
timated in the M-step. Note that the E-step requires an estimate of α, which on
the first iteration is chosen randomly. In the M-step, a new estimate of α is com-
puted using weighted least-squares, that is, minimizing the following quadratic
error function:

E(α) =
∑

i

w(i)

(
yi −

N∑
k=−N

αkyi+k

)2

, (6)

where the weights w(i) ≡ Pr{yi ∈M1 | yi}, Equation (4), and α0 = 0. This error
function is minimized by computing the gradient with respect to α, setting the
result equal to zero, and solving for α, yielding:

α = (Y T WY )−1Y T Wy, (7)

where the ith row of the matrix Y is given by:
[
yi . . . yN+i−1 yN+i+1 . . . y2N+i

]
,

and W is a diagonal weighting matrix with w(i) along the diagonal. The E-step
and M-step are iteratively executed until a stable estimate of α is achieved.

Shown in Fig. 1 are the results of running EM on an original and re-sampled
(by a factor of 4/3) signal. Shown on the top is the original signal where each
sample is annotated with its probability of being correlated to its neighbors
(the first and last two samples are not annotated due to border effects — a
neighborhood size of five (N = 2) was used in this example). Similarly, shown
on the bottom is the re-sampled signal and the corresponding probabilities. In
the latter case, the periodic pattern is obvious, where only every 4th sample
has probability 1, as would be expected by an up-sampling by a factor of 4/3,
Equation (1). As expected, no periodic pattern is present in the original signal.

The periodic pattern introduced by re-sampling depends, of course, on the
re-sampling rate. As a result, it is possible to not only uncover traces of re-
sampling, but to also estimate the amount of re-sampling. It is not possible,
however, to uniquely determine the specific amount of re-sampling as there are
re-sampling parameters that yield similar periodic patterns. 1 There is also a
range of re-sampling rates that will not introduce periodic correlations. For ex-
ample, consider down-sampling by a factor of two (for simplicity, consider the
case where there is no interpolation, i.e., yi = x2i). In this case, the rows of
the re-sampling matrix are orthogonal to one another, and as a result no row
can be written as a linear combination of its neighboring rows. In general, the
detectability of any re-sampling can be estimated by generating the re-sampling
matrix and determining if neighboring rows are linearly dependent.
1 In general, two re-sampling rates p1/q1 and p2/q2 will generate similar periodic

patterns if either {p1/q1} = {p2/q2}, or {p1/q1} = 1 − {p2/q2}, where {·} denotes
the fractional part of a number.
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Fig. 1. A signal with 32 samples (top) and this signal re-sampled by a factor of
4/3 (bottom). Each sample is annotated with its probability of being correlated
to its neighbors. Note that for the up-sampled signal these probabilities are
periodic, while for the original signal they are not.

2.3 Re-sampling Images

In the previous sections we showed that for 1-D signals re-sampling introduces
periodic correlations and that these correlations can be detected using the EM
algorithm. The extension to 2-D images is relatively straight-forward. As with
1-D signals, the up-sampling or down-sampling of an image is still linear and
involves the same three steps: up-sampling, interpolation, and down-sampling —
these steps are simply carried out on a 2-D lattice. Again, as with 1-D signals, the
re-sampling of an image introduces periodic correlations. Consider, for example,
the simple case of up-sampling by a factor of two using linear interpolation. In the
re-sampled image, the pixels in odd rows and even columns will be the average
of their two closest horizontal neighbors, while the pixels in even rows and odd
columns will be the average of their two closest vertical neighbors. That is, the
correlations are, as with the 1-D signals, periodic. And in the same way that EM
was used to uncover periodic correlations in 1-D signals, the same approach can
be used with 2-D images.

2.4 Results

For the results presented here, we built a database of 200 grayscale images in
TIFF format. These images were 512 × 512 pixels in size. Each of these im-
ages were cropped from a smaller set of twenty-five 1200 × 1600 images taken
with a Nikon Coolpix 950 camera (the camera was set to capture and store
in uncompressed TIFF format). Using bi-cubic interpolation these images were
up-sampled, down-sampled, rotated, or affine transformed by varying amounts.
Although we will present results for grayscale images, the generalization to color
images is straight-forward — each color channel would be independently sub-
jected to the same analysis as that described below.

For the original and re-sampled images, the EM algorithm described in Sec-
tion 2.2 was used to estimate probability maps that embody the correlation
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image probability map (p) |F(p)|

unadulterated

up-sampling

(10%)

down-sampling

(2.5%)

rotation
(5◦)

affine

Fig. 2. Shown in the top row is an unadulterated image, and shown below are
images re-sampled with different parameters. Shown in the middle column are
the estimated probability maps that embody the spatial correlations in the im-
age. The magnitude of the Fourier transforms of these maps are shown in the
right-most column. Note that only the re-sampled images yield periodic maps.
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forgery original

probability map (p) |F(p)|

Fig. 3. Shown along the top row is a forgery and the original image. The forgery
consists of removing a stool and splicing in a new floor taken from another image
(not shown here) of the same room. Shown below is the estimated probability
map (p) of the forgery, and the magnitude of the Fourier transform of a region in
the new floor (left) and on the original floor (right). The periodic pattern (spikes
in |F(p)|) in the new floor suggest that this region was re-sampled.

between each pixel and its neighbors. The neighborhood size was fixed through-
out to be 5 × 5. Shown in Fig. 2 are several examples of the periodic patterns
that emerged due to re-sampling. In the top row of the figure are (from left to
right) the original unadulterated image, the estimated probability map and the
magnitude of the central portion of the Fourier transform of this map (for display
purposes, each Fourier transform was independently auto-scaled to fill the full
intensity range and high-pass filtered to remove the lowest frequencies). Shown
below this row are images uniformly re-sampled (using bi-cubic interpolation)
with different parameters. For the re-sampled images, note the periodic nature
of their probability maps and the corresponding localized peaks in their Fourier
transforms.
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Shown in Fig. 3 is an example of our detection algorithm applied to an im-
age where only a portion of the image was re-sampled. That is, the forged image
contains a region that was re-sampled (up-sampled, rotated, and non-linearly
distorted). Shown are the original photograph, the forgery, and the estimated
probability map. Note that the re-sampled region is clearly detected - while the
periodic pattern is not particularly visible in the spatial domain at the reduced
scale, the well localized peaks in the Fourier domain clearly reveal its presence
(for display purposes, the Fourier transform was auto-scaled to fill the full in-
tensity range and high-pass filtered to remove the lowest frequencies).

It may seem, at first glance, that the detection of re-sampling correlations
will be sensitive to simple counter-attacks — for example, small amounts addi-
tive noise. We have found, however, that due to the global nature of the EM
estimation, the correlations can be detected even in the presence of additive
noise and luminance non-linearities (e.g., gamma correction). A full exploration
of the robustness is beyond the scope of this paper.

3 Double JPEG Compression

Tampering with a digital image requires the use of a photo-editing software such
as Adobe PhotoShop. In the making of digital forgeries an image is loaded into
the editing software, some manipulations are performed, and the image is re-
saved. Since most images are stored in JPEG format (e.g., a majority of digital
cameras store images directly in JPEG format), it is likely that both the origi-
nal and forged images are stored in this format. Notice that in this scenario the
forged image is double JPEG compressed. Double JPEG compression introduces
specific artifacts not present in singly compressed images (this observation has
also been noted in [17]). Note that evidence of double JPEG compression, how-
ever, does not necessarily prove malicious tampering. For example, it is possible
for a user to simply re-save a high quality JPEG image with a lower quality. The
authenticity of a double JPEG compressed image should, however, be called
into question. We start by giving a short description of the JPEG compression
algorithm and then quantify the artifacts introduced by double compression.

3.1 JPEG Compression

JPEG is a standardized image compression procedure proposed by a commit-
tee with the same name JPEG (Joint Photographic Experts Committee). To be
generally applicable, the JPEG standard [1] specified two compression schemes:
a lossless predictive scheme and a lossy scheme based on the Discrete Cosine
Transform (DCT). The most popular lossy compression technique is known as
the baseline method and encompasses a subset of the DCT-based modes of op-
eration. The encoding of an image involves three basic steps [26]:

1. Discrete Cosine Transform (DCT): An image is divided into 8 × 8 blocks
in raster scan order (left to right, top to bottom), shifted from unsigned
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to signed integers (e.g., from [0, 255] to [−128, 127]), and each block’s DCT
computed.

2. Quantization: The DCT coefficients obtained in the previous step are uni-
formly quantized, i.e., divided by a quantization step and rounded off to
the nearest integer. Since quantization is a non-invertible operation this step
represents the main source of information loss.

3. Entropy Encoding: This step involves lossless entropy compression that trans-
forms the quantized DCT coefficients into a stream of compressed data. The
most frequently used procedure is Huffman coding, although arithmetic cod-
ing is also supported.

The decoding of a compressed data stream involves the inverse of the previ-
ous three steps, taken in reverse order: entropy decoding, de-quantization, and
inverse DCT.

3.2 Double Quantization

Consider the example of a generic discrete 1-D signal x[t]. Quantization is a
point-wise operation that is described by a one-parameter family of functions: 2

qa(u) =
⌊u

a

⌋
, (8)

where a is the quantization step (a strictly positive integer), and u denotes a
value in the range of x[t]. De-quantization brings the quantized values back to
their original range: q−1

a (u) = au. Note that the function qa(u) is not invertible,
and that de-quantization is not the inverse function of quantization. Double
quantization is a point-wise operation described by a two-parameter family of
functions:

qab(u) =
⌊⌊u

b

⌋ b

a

⌋
, (9)

where a and b are the quantization steps (strictly positive integers). Notice that
double quantization can be represented as a sequence of three steps: quantization
with step b, followed by de-quantization with step b, followed by quantization
with step a.

Consider an example where the samples of x[t] are normally distributed in the
range [0, 127]. To illustrate the nature of the double quantization artifacts, we
quantize the signal x[t] in four different ways, and show the resulting histograms,
Fig. 4. Shown along the top row of this figure are the histograms of the same
signal quantized with steps 2 and 3. Shown in the bottom row are the histograms
of the same signal double quantized with steps 3 followed by 2, and 2 followed
by 3. When the step size decreases (bottom left) some bins in the histogram

2 For the purpose of illustration and in order to make the analysis easier we will use
the floor function in the quantization function. Similar results can be shown if integer
rounding is used instead.
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Fig. 4. Shown along the top row are histograms of single quantized signals with
steps 2 (left) and 3 (right). Shown in the bottom row are histograms of double
quantized signals with steps 3 followed by 2 (left), and 2 followed by 3 (right).
Note the periodic artifacts in the histograms of double quantized signals.

are empty. This is not surprising since the first quantization places the samples
of the original signal into 42 bins, while the second quantization re-distributes
them into 64 bins. When the step size increases (bottom right) some bins contain
more samples than their neighboring bins. This also is to be expected since the
even bins receive samples from four original histogram bins, while the odd bins
receive samples from only two. In both cases of double quantization, note the
periodicity of the artifacts introduced into the histograms.

To better understand why the double quantization of a signal introduces
periodic artifacts, we will analyze the dependence between the histograms of
single and double quantized signals. Consider first the case of a single quantized
signal denoted by xa[t] = qa(x[t]), and denote the histograms of the original
and quantized signals by H(u) and Ha(v). Since qa(·) is a many-to-one function,
several values from the range of x[t] will map onto the same value in the range
of xa[t], i.e., several bins from H contribute to a bin in Ha. For example, let v
denote a value in the range of xa[t], then the values in the range of x[t] that map
to it are in the range [av, av+(a−1)]. Therefore, the relationship between H(u)
and Ha(v) is given by: Ha(v) =

∑a−1
k=0 H(av + k). Note that there are exactly a

bins in the original histogram that contribute to each bin in the histogram of the
quantized signal. Consider next the case of a double quantized signal denoted
by xab[t] = qab(x[t]), and let its histogram be denoted by Hab(v). In contrast to
the single quantization case, the number of bins of H that contribute to a bin
of Hab will depend on the double quantized bin value. Let v be a value in the
range of xab[t]. Denote umin and umax as the smallest and largest values of u in
the range of x[t] that map to v, that is, they satisfy the following:⌊⌊u

b

⌋ b

a

⌋
= v. (10)

Using the following property of the floor function:

�z� = m ⇒ m ≤ z < m + 1, (11)
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where z is an arbitrary real number and m an integer, Equation (10) implies:

v ≤
⌊u

b

⌋ b

a
< v + 1 ⇔ a

b
v ≤

⌊u

b

⌋
<

a

b
(v + 1). (12)

Since �u/b� is an integer , Equation (12) can be rewritten using the ceiling
function to include only integers:⌈a

b
v
⌉
≤
⌊u

b

⌋
≤
⌈a

b
(v + 1)

⌉
− 1. (13)

From Equation (13) it can be seen that umin must satisfy:⌊umin

b

⌋
=
⌈a

b
v
⌉
⇒ umin =

⌈a

b
v
⌉

b, (14)

while umax must satisfy:⌊umax

b

⌋
=
⌈a

b
(v+1)

⌉
−1 ⇒ umax =

(⌈a

b
(v+1)

⌉
−1

)
b+(b−1)=

⌈a

b
(v+1)

⌉
b−1.

(15)

Since double quantization is a monotonically increasing function, it follows that
all the values between umin and umax will map to v through double quantization.
The relationship between the original and double quantized histogram then takes
the form:

Hab(v) =
umax∑

u=umin

H(u). (16)

Note that the number of original histogram bins, n(v), contributing to bin v in
the double quantized histogram depends on v, and from Equations (14) and (15),
can be expressed as:

n(v) = umax − umin + 1 = b
(⌈a

b
(v + 1)

⌉
−
⌈a

b
v
⌉)

. (17)

Note that n(v) is a periodic function with period b, i.e., n(v) = n(v+b). This pe-
riodicity is the reason periodic artifacts appear in histograms of double quantized
signals.

From Equation (17), the double quantization artifacts shown in Fig. 4 can
now be explained. Consider first the case of double quantization using steps
b = 3 followed by a = 2, (bottom-left panel in Fig. 4). The number of original
histogram bins contributing to double quantized histogram bins of the form
(3k + 2) (k integer) is given by:

n(3k+2) = 3
(⌈

2
3
(3k + 3)

⌉
−
⌈

2
3
(3k + 2)

⌉)
= 3

(
2k + 2− 2k −

⌈
4
3

⌉)
= 0.

(18)
This is consistent with the observation that every (3k + 2)nd (k integer) bin
of the double quantized histogram is empty. In the second example of double
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quantization in Fig. 4, b = 2 and a = 3, it can be shown that n(2k) = 4 and
n(2k + 1) = 2 (k integer). Again, this is consistent with the periodic artifacts
shown in the bottom-right panel of Fig. 4.

There are cases when the histogram of a double quantized signal does not
contain periodic artifacts. For example, if in Equation (17) a/b is an integer
then n(v) = a. Note that the same result is obtained if the signal were single
quantized with step a. In this case, single and double quantization of a signal
yields the same histogram, therefore it is impossible to distinguish between the
two. Notice also in Equation (16) that the histogram of the double quantized
signal, Hab, depends on the values of the histogram of the original signal H . It
is conceivable that histograms of original signals may contain naturally occuring
artifacts that could mask those introduced by double quantization. While this
may happen on occasion, such artifacts do not occur often.

3.3 Results

Given an image in JPEG format, our task is to detect if the image has been
double compressed. To this end, the histograms of the DCT coefficients are
computed. If these histograms contain periodic patterns, then the image is very
likely to have been double compressed. Shown in Fig. 5 are the DCT coefficients
and their histograms for an image that has been single JPEG compressed with
qualities 75 (Fig. 5(a)) and 85 (Fig. 5(c)), and double JPEG compressed with
qualities 85 followed by 75 (Fig. 5(b)), and 75 followed by 85 (Fig. 5(d)). The
DCT coefficients are shown as images (auto-scaled to fill the full intensity range)
where each pixel corresponds to a 8 × 8 block of the JPEG compressed image,
and its intensity represents the coefficient value. These coefficients correspond
to DCT frequencies (1, 1) (the DC component) and (2, 2). Note the presence
of periodic artifacts in the histograms of the DCT coefficients of the double
compressed images (Fig. 5(b) and 5(d)). Note also that these types of artifacts
are not present in single compressed images (Fig. 5(a) and 5(c)). These periodic
artifacts are particularly visible in the Fourier domain as strong peaks in the
mid and high frequencies, Fig. 5(e).

The periodic patterns introduced by double JPEG compression depend on
the quality parameters. As a result, it is possible to detect not only if an image
has been double compressed, but also the compression qualities that have been
used. The second parameter can be found from the quantization table stored
in the JPEG file. The first parameter can be inferred from the location of the
frequency peaks in the Fourier transforms of the DCT coefficient histograms.

4 Luminance Non-linearities

In order to enhance the perceptual quality of digital images, imaging devices
often introduce some form of luminance non-linearity. The parameters of this
non-linearity are usually dynamically chosen and depend on the camera and
scene dynamics — these parameters are, however, typically held constant within
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Fig. 5. Shown in the top four panels are DCT coefficients for two frequencies
((1, 1) and (2, 2)), and their histograms for single and double compressed JPEG
images: (a) single JPEG compression with quality 75, (b) double JPEG compres-
sion with quality 85 followed by 75, (c) single JPEG compression with quality 85,
(d) double JPEG compression with quality 75 followed by 85. Shown in panel (e)
are the Fourier transforms of three zero-meaned histograms. Note the periodic
artifacts introduced by double quantization (panels 2, 3) reflected by the high
frequency peaks in the Fourier transforms.
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an image. The presence of several distinct non-linearities in an image is a sign
of possible tampering. For example, imagine a scenario where two images are
spliced together. If the images were taken with different cameras or in different
lightning conditions, then it is likely that different non-linearities are present in
the composite image. It is also possible that local non-linearities are applied in
the composite image in order to create a convincing luminance match.

We have previously proposed a technique to estimate parametric models of
geometric and luminance non-linearities from digital images [6, 7]. This technique
exploits the fact that a non-linear transformation introduces specific correlations
in the Fourier domain. These correlations can be detected and estimated using
tools from polyspectral analysis. This same technique can be employed to detect
if an image contains multiple non-linearities. We describe below how luminance
non-linearities introduce specific correlations, and how these correlations can be
estimated.

4.1 Non-linearities and Correlations

Pointwise non-linear transformations introduce specific correlations in the fre-
quency domain. To understand the form of these correlations, consider a one-
dimensional discrete signal composed of a sum of two sinusoids with different
phases and amplitudes: x[t] = a1 cos(ω1t+φ1)+a2 cos(ω2t+φ2). Consider also a
generic non-linear function g(·) and its Taylor series expansion where the various
scalar constants and terms of degree higher than two are ignored: g(u) ≈ u+u.2.
The non-linearly transformed signal takes the form:

g(x[t]) = −0.5(a2
1 + a2

2) + a1 cos(ω1t + φ1) + a2 cos(ω2t + φ2) +
0.5a2

1 cos(2ω1t + 2φ1) + 0.5a2
2 cos(2ω2t + 2φ2) + a1a2 cos((ω1 + ω2)t +

(φ1 + φ2)) + a1a2 cos((ω1 − ω2)t + (φ1 − φ2)). (19)

Note that the non-linear transform introduced several new harmonics at fre-
quencies 2ω1, 2ω2, ω1 + ω2, and ω1−ω2. Note also that the phases of these new
harmonics are correlated to the phases of the original ones. For example, the
phase of harmonic (ω1 + ω2) is equal to the sum of the phases of ω1 and ω2,
and the phase of harmonic 2ω1 is the double of the phase of harmonic ω1. These
type of correlations generalize to any type of underlying signal and pointwise
non-linearity.

These phase correlations can be detected and estimated using tools from
polyspectral analysis. Let X(ω) denote the Fourier transform of x[t]: X(ω) =∑∞

t=−∞ x[t]e−itω . The power spectrum is a commonly employed tool to esti-
mate second order correlations: P (ω) = E{X(ω)X∗(ω)}, where E{·} is the
expected value operator, and ∗ denotes the complex conjugate. However the
power spectrum is blind to higher-order correlations of the kind introduced
by pointwise non-linearities. These correlations can be detected and estimated
using higher-order spectra (see [20] for a thorough review). For example, the
bispectrum can be employed to estimate third-order correlations: B(ω1, ω2) =
E{X(ω1)X(ω2)X∗(ω1 + ω2)}.
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It can be seen intuitively that the bispectrum reveals correlations between
harmonically related frequencies, such as [ω1, ω1, 2ω1], [ω2, ω2, 2ω2], [ω1, ω2, ω1 +
ω2], and [ω1, ω2, ω1 − ω2]. Under the assumption that the signal is ergodic, the
bispectrum can be estimated as follows: divide x[t] into N (possibly overlapping)
segments, compute the Fourier transform of each segment k: Xk(ω), compute
an average estimate of the bispectrum using the Fourier transform of individual
segments B̂(ω1, ω2) = 1/N

∑N
k=1 Xk(ω1)Xk(ω2)X∗

k (ω1 + ω2). The bispectrum
has the undesired property that its value at bi-frequency (ω1, ω2) depends on
P (ω1), P (ω2), and P (ω1 + ω2). For analysis purposes, it is useful to work with
normalized quantities. To this end, we employ the bicoherence [13] (a normalized
bispectrum), defined as:

b(ω1, ω2) =
|B(ω1, ω2)|

(E{|X(ω1)X(ω2)|2}E{|X(ω1 + ω2)|2})1/2
. (20)

Note that the bicoherence is a real valued quantity, unlike the bispectrum. It
is fairly straightforward to show using the Schwartz inequality 3 that the bi-
coherence is guaranteed to take values in [0, 1]. Just like the bispectrum, the
bicoherence can be estimated as:

b̂(ω1, ω2) =
1
K |
∑

k Xk(ω1)Xk(ω2)X∗
k(ω1 + ω2)|((

1
K

∑
k |Xk(ω1)Xk(ω2)|2

) (
1
K

∑
k |Xk(ω1 + ω2)|2

))1/2
. (21)

This estimator will be used to measure third-order correlations.

4.2 Detecting Multiple Non-linearities

For simplicity, we assume that pointwise luminance non-linearities can be mod-
eled with a one parameter family of functions of the form: g(u) = uγ , where u de-
notes the intensity of a pixel normalized in the interval [0, 1]. We have previously
shown that higher order correlations introduced by a non-linear transformation
are proportional to the value of the parameter γ [6]. The following technique is
used to blindly estimating the value of γ:

1. sample a range of inverse gamma values 1/γ,
2. for each 1/γ in the selected range, apply the inverse function g−1(u) = u1/γ

to the signal, and compute the mean bicoherence
∑π

ω1,ω2=−π b̂(ω1, ω2) .
3. select the inverse value 1/γ that minimizes the mean bicoherence.

Blindly estimating the value of γ from a gamma corrected image requires com-
puting the bicoherence of a 2-D signal, a four-dimensional quantity. In order to
avoid computational and memory requirements, the analysis will be restricted
to horizontal and vertical scan lines of an image. This is reasonable since lu-
minance non-linearities are usually pointwise transformations, and the type of
3 Given two vectors x and y, the Schwartz inequality states: ‖x‖‖y‖ ≥ |x · y|, where
‖ · ‖ denotes vector norm, and · denotes scalar product.
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Fig. 6. Top panel: a natural image (left), and the same image whose top portion
was gamma corrected with γ = 1.8 (right). The images are 1200× 1600 pixels in
size. Bottom panel: Estimated gamma values from horizontal scan lines, where
the black dots correspond to estimates from the unadulterated image, and the
white dots correspond to estimates from the image whose upper half has been
gamma corrected. Each data point corresponds to a running average over 60
scan lines.

correlations introduced in 1-D are similar to those in 2-D. The technique to es-
timate γ from an image is based on the one used for 1-D signals, as described
above.

Shown in the top portion of Fig. 6 is a natural image (1200 × 1600 pixels
in size) and the same image whose upper half has been gamma corrected with
γ = 1.8. The bottom portion shows the estimated gamma values from horizontal
scan lines of the unadulterated image (black dots) and the gamma corrected
image (white dots). Notice that the values of the gamma estimates from scan
lines that span the upper half of the tampered image are generally inconsistent
with the lower half.

5 Signal to Noise Ratio

Digital images have an inherent amount of noise introduced either by the imaging
process or digital compression. The amount of noise is typically uniform across
the entire image. If two images with different noise levels are spliced together, or
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if small amounts of noise are locally added to conceal traces of tampering, then
variations in the signal to noise ratio (SNR) across the image can be used as
evidence of tampering. Measuring the SNR is non-trivial in the absence of the
original signal. Several blind SNR estimators have, however, been proposed [22].
We first describe one such estimator, M2M4 [19], and then show its effectiveness
in locally measuring noise variance (so as to be invariant to the underlying
signal strength, we analyze the noise variance instead of the ratio of signal to
noise variances).

We begin by assuming an additive noise model: y[t] = x[t] + w[t], where x[t]
is the uncorrupted signal with variance S and w[t] is the noise with variance N .
Denote the second and forth moments of the corrupted signal as M2 = E

{
y2[t]

}
and M4 = E

{
y4[t]

}
, where E {·} is the expected value operator. Assuming that

the signal and noise are independent and zero-mean, it can be shown [22] that:

M2 = S + N and M4 = kxS2 + 6SN + kwN2, (22)

where kx = E
{
x4[t]

}
/(E

{
x2[t]

}
)2 and kw = E

{
w4[t]

}
/(E

{
w2[t]

}
)2 are the kur-

toses of the original signal and noise. Solving Equation (22) for S and N yields:

S =
M2(kw − 3)±

√
(9 − kxkw)M2

2 +M4(kx+kw − 6)
kx + ky − 6

and N =M2−S. (23)

Note that this estimator assumes a known kurtosis for the original signal and the
noise, kx and kw. In general these quantities may not be known. In the results
presented below, we assume that they are known. In the future, the kurtosis of
the original signal can be estimated from a region of an image that is believed
to be authentic, and the kurtosis of the noise can be estimated by, for example,
assuming Gaussian noise (kw = 3), or modeling the noise statistics of JPEG
compression.

Shown in the top row of Fig. 7 is an original image, and this image with
additive white Gaussian noise with SNRs of 30dB (N=0.08 × 10−3) and 10dB
(N=7.62× 10−3) added locally to only the car. Shown in the bottom row of this
figure are the estimated noise variances from overlapping (by 32 pixels) 64× 64
blocks. The average estimated noise variances, for the blocks overlapping the
car, are 0.25× 10−3 and 7.20× 10−3. Notice that the estimator is easily able to
detect different noise levels in the image.

6 Discussion

We have described a set of statistical tools for detecting traces of digital tam-
pering in the absence of any digital watermark or signature. We have quantified
the nature of statistical correlations that result from specific forms of digital
tampering, and have devised detection schemes to reveal these correlations. We
are currently developing other tools that, in the same spirit of those presented
here, reveal statistical correlations that result from a variety of different manip-
ulations that are typically necessary to create a convincing digital forgery. We
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original 30dB 10dB

Fig. 7. Shown on the top row is an original image and this image with noise
added locally to the car. Shown on the bottom row are the locally estimated
noise variances (on the same log scale).

are also analyzing the sensitivity and robustness to counter-attack of each of the
schemes outlined in this paper.

There is little doubt that counter-measures will be developed to foil each of
the detection schemes outlined in this paper. Our hope, however, is that as more
authentication tools are developed it will become increasingly more difficult to
create convincing digital forgeries. In addition, as the suite of detection tools
expands we believe that it will become increasingly harder to simultaneously foil
each of the detection schemes.
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Abstract. Computational forensic engineering is the process of identi-
fication of the tool or algorithm that was used to produce a particular
output or solution by examining the structural properties of the out-
put. We introduce a new Relative Generic Forensic Engineering (RGFE)
technique that has several advantages over the previously proposed ap-
proaches. The new RGFE technique not only performs more accurate
identification of the tool used but also provides the identification with a
level of confidence. Additionally, we introduce a generic formulation (in-
teger linear programming formulation) which enables rapid application
of the RGFE approach to a variety of problems that can be formulated
as 0-1 integer linear programs.
The key innovations of the RGFE technique include the development
of a simulated annealing-based (SA) CART classification technique and
a generic property formulation technique that facilitates property reuse.
We introduce instance properties which enable an enhanced classification
of problem instances leading to a higher accuracy of algorithm identifica-
tion. Finally, the single most important innovation, property calibration,
interprets the value for a given algorithm for a given property relative to
the values for other algorithms. We demonstrated the effectiveness of the
RGFE technique on the boolean satisfiability (SAT) and graph coloring
(GC) problems.

1 Introduction

Software and hardware piracy resulted in a loss of over $59 billion globally be-
tween 1995 and 2000, and continues to induce an average of $12 billion each year
in the United States alone. Intellectual Property Protection techniques (IPP),
such as watermarking and fingerprinting, have been proposed as solutions. These
techniques have shown significant potential. However, they introduce additional
overhead on each application of the tool and IP, and they cannot be applied
to tools which already exist. Computational forensic techniques removes these
limitations. At the point of suspected algorithm or tool infringement, forensic en-
gineering can be applied to show that the tool was used to produce the suspected
output. The overhead of the technique is only applied once, off-line. Addition-
ally, the technique can be applied to any existing design or software tool. The
underlying approach is to examine the structural properties of the output of
different tools for a specific problem and use statistical analysis to identify the
tool which was used to create a particular output (infringed).

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 148–163, 2004.
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Not only does forensic engineering have application for IPP, but it is impor-
tant to note that it has a number of other applications, which in many situations
have even higher economical impact. For instance, forensic engineering can be
used for optimization algorithm development, as a basis for developing or improv-
ing other IPP techniques, for the development of more powerful benchmarking
tools, for enabling security, and facilitating runtime prediction. More specifi-
cally, computational forensic engineering can be used to perform optimization
algorithm tuning, algorithm development, and analysis of algorithm scaling.

RGFE can be applied to an arbitrary problem which can be formulated as a
0-1 linear programming problem. In this generic formulation, properties of the
problem are extracted and used to analyze the structure of both instances of the
problem and the output or solutions of a representative set of tools. Using the
information gathered, the RGFE technique builds and verifies a Classification
and Regression Tree (CART) model to represent the classification of the observed
tools. Once built, the CART model can be used to identify the tool used to
generate a particular instance output. This RGFE approach consists of three
phases: Property Collection, Modeling, and Validation. The key enabling factors
in the property collection phase are the ability to extract properties of a given
problem systematically and to conduct calibration of these properties to reflect
the differences between solutions generated by the tools. We briefly outline the
key novelties of the RGFE technique.

– Generic Forensic Engineering. We introduce a generic flow for the RGFE
technique that allows it to be applied to a variety of optimization problems
with minimal retargeting.

– Generic Property Formulation. A systematic way to develop instance
and solution properties for different problems allows the generic RGFE tech-
nique to be applied to a variety of optimization problems. The generic prop-
erty formulation is applied to a problem which has been formulated in terms
of an objective function and constraints. Special emphasis is placed on the
widely used 0-1 ILP formulation.

– Instance Properties. Problem instances have varying complexity which is
often dependent upon particular structural aspects of the instance. Addition-
ally, different algorithms perform differently depending on the complexity or
structure of the problem instance it is presented with. We introduce instance
properties which provide a measure for comparing instances and therefore
facilitate more accurate analysis and classification of the algorithms.

– Calibration. Calibration is performed on both instance and solution prop-
erties in order to place the data into the proper perspective. For instance
properties, calibration provides a way to scale and classify the instances,
while the solution properties for each algorithm are calibrated per instance
to place the data into the proper perspective to differentiate the algorithms.

– One-out-of-any Algorithms. The technique must be able to classify al-
gorithms not only in terms of the algorithms which have been previously
analyzed but also as an unknown algorithm.

– CART model. We have developed a new CART model for classification.
The key novelty is that the new CART model does not only partition the
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solution space so that classification can be conducted but also maximizes
the volume of space that indicates solutions that are created by none of the
observed algorithms. The CART model is created using a SA algorithm.

2 Preliminaries

In this section, we briefly summarize research in the areas which are most directly
related: intellectual property protection, forensic analysis, and statistical meth-
ods. Additionally, we discuss the relationship between the computation forensic
engineering technique and the proposed RGFE approach. Finally, we briefly dis-
cuss the generic formulation, the boolean satisfiability problem, algorithms, and
the generic formulation for the SAT problem.

Due to the rapidly increasing reuse of intellectual property (IP) such as IC
cores and software libraries, intellectual property protection (IPP) has become
a mandatory step in the modern design process. Recently, a variety of IPP
techniques, such as watermarking, obfuscation, and reverse engineering, have
attracted a great deal of attention [1].

We use non-parametric statistical techniques for classification because they
can be applied to data which has arbitrary distributions and without any as-
sumptions on the densities of the data [2]. The Classification and Regression
Trees (CART) model is a tree-building non-parametric technique widely used for
the generation of decision rules for classification. The SA optimization technique
originates from statistical mechanics and is often used to generate approximate
solutions to very large combinatorial problems [3]. Bootstrapping is a classifi-
cation validation technique that assesses the statistical accuracy of a model. In
the case of nonparametric techniques, bootstrapping is used to provide standard
errors and confidence intervals [2].

The Computational Forensic Engineering (CFE) [4] technique identifies an
algorithm/tool, which has been used to generate a particular previously unclas-
sified output, from a known set of algorithms/tools. This technique is composed
of four phases: feature and statistics collection, feature extraction, algorithm
clustering, and validation.

In the feature and statistics collection phase, solution properties of the prob-
lem are identified, quantified, analyzed for relevance and selected. Furthermore,
preprocessing of the problem instances is done by pertubating the instances -
removing any dependencies the algorithms have on the instance format. In the
next phase, each of the pertubated instances are processed by each of the algo-
rithms and the solution properties are extracted. The algorithm clustering phase
then clusters the solution properties in n-dimensional space, where n is the num-
ber of properties. The n-dimensional space is then partitioned into subspaces for
each algorithm. The final step validates the accuracy of the partitioned space.

This approach performed well on both the graph coloring and boolean sat-
isfiability problem. However, that was the case only under a number of limiting
assumptions. The computational forensic engineering technique performed al-
gorithm classification on one-out-of-k known algorithms, and was tested on a
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variety of different instances. However many of these instances had similar in-
stance structures. This forensic engineering technique is problem specific and is
not easily generalizable to other problems. Lastly, the CFE technique performed
analysis of the techniques in the form of blackboxes.

The RGFE technique eliminates several major limitations of the CFE tech-
nique. The technique performs one-out-of-any classification instead on one-out-
of-k. In this case, output of an algorithm that was never previously analyzed can
be classified as unknown. The key enabler for the effectiveness of the Relative
Generic Forensic technique is the calibration of problem instances. By identify-
ing, analyzing, and classifying instances by their properties, the quality of the
RFGE classification is expanded to another dimension enabling more statisti-
cally sound classification. Additionally, we present a generic formulation and
generic property formulation that enables the application of this technique to
numerous optimization problems.

The boolean satisfiability (SAT) problem has a variety of applications in
many areas such as artificial intelligence, VLSI design and CAD, operations
research, and combinatorial optimization [5]. Probably the most well-known ap-
plications of SAT in CAD are Automatic Test Pattern Generation [6]. Other
applications include logic verification, timing analysis, delay fault testing, FPGA
routing, and combinational equivalence checking [5]. Formally, the boolean sat-
isfiability problem can be defined in the following way.

Problem: Boolean Satisfiability
Instance: A set U of variables and a collection C of clauses over U.
Question: Is there a satisfying truth assignment for C?

Many different techniques have been developed for solving the boolean sat-
isfiability problem. Techniques such as backtrack search [7], local search [8],
continuous formulation and recursive learning [9] are among the most popu-
lar. Additionally, several public domain software packages are available such as
GRASP [9], GSAT [10] and Sato [7].

3 Forensic Engineering Flow

In this section, we introduce the RGFE technique. The technique operates on
a problem instance in the generic formulation, ILP. Our implementation is re-
stricted to instances that are formulated as 0-1 ILP. The technique consists of
two stages: analysis and evaluation. In the analysis stage, the goal is to clas-
sify the behavior of algorithms for a specific problem specified using the 0-1
ILP format with a high confidence. The flow of the analysis stage is presented
graphically in Figure 1 and using a pseudo code format in Figure 2.

The analysis stage of the RGFE technique, shown in Figure 1, is composed
of three phases: property collection, model building, and validation phases. The
property collection phase defines, extracts, and calibrates instance and solution
properties for the given optimization problem. In the modeling phase, the rele-
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Fig. 1. Overall flow of the RGFE technique: Analysis Stage.

vant properties are used to develop a CART classification scheme. The last phase
tests and validates the quality of the CART model.

In this phase, the main steps are property selection and property calibration.
We begin by selecting generic instance properties that will assist in classifying
the characteristics of the given problem. The solution properties are selected to
characterize the decisions or the optimization mechanisms used by an algorithm
on a particular type of instance. Once a set of properties have been selected for
the targeted optimization problem, we proceed to extract each of the properties
from our representative sets of instances and algorithms.

In the final steps, relevant properties are identified. Relevant properties are
properties which aid in distinguishing the algorithms from each other. If a prop-
erty yields the same value for all (or a great percentage of) instances or all
algorithms, then it is not useful in the classification process, and is excluded
from further consideration. Lastly, principal component analysis is performed
in order to eliminate the set of properties which provide similar information as
other sets of properties. All of the steps in the property collection phase are
encapsulated in Figure 2, lines 1, 2, and 9-14.

In the modeling phase, the calibrated properties are used to model the behav-
ior of each of the algorithms. This is accomplished by representing each solution
from each of the available algorithms as a point in n-dimensional space. Each
dimension represents either a solution or an instance property. The number of
dimensions, n, is the total number of properties. Once the space is populated
with the extracted data, we apply a generalized CART approach (see Section
6). The validation stage is an iterative process which uses the statistical tech-
niques, bootstrapping and learn-and-test, to validate and improve the quality of
the CART model.
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Input: Representative Set of Instances, Ii,
Representative Set of Algorithm, Aj .

Algorithm:
1. P S

k = Define Solution Properties;
2. P I

l = Define Instance Properties;
3. while (LT < threshold && < UT ){
4. if(exceed UT )
5. Add instances to Ii and restart;
6. while (E < threshold && < UT ){
7. if(exceed UT )
8. Add instances to Ii and restart;
9. Solij = Run each instance, Ii, on every algorithm, Aj ;
10. VI,A,P = Extract Properties P from I and Sol;
11. Calibrate Properties(VI,A,P );
12. RS

p = Identify Relevant Solution Properties (P S
k );

13. RI
q = Identify Relevant Instance Properties (P I

l );
14. Principal Component Analysis(VI,A,R);
15. N = Build n-Dimensional Space (R, I, VI,A,R);
16. M = Use Sim. Anneal. to develop CART model (N);
17. E = Evaluate CART using Bootstrapping(M);

}
18. LT = Evaluate CART using Learn and Test (M);

}
19. C = Build Confidence Interval (M);

Fig. 2. Pseudo-code for the RGFE technique.

Fig. 3. Flow of the Evaluation Stage.

The overall RGFE goal is to be able to correctly classify the output of an
unknown algorithm. Once the Analysis stage has completed, this goal of classi-
fication is done in the evaluation stage. The evaluation process, shown in Figure
3, begins with property extraction of both instance properties and solution prop-
erties from the unknown instance and algorithm output. The properties that are
extracted are the set of properties that we used to build the final CART model
in the analysis stage. Next, the properties are properly calibrated according to
the selected calibration scheme for each property. The calibrated properties of
the unknown instance and solution are then evaluated by the CART model. The
algorithm that the CART model classifies the output into is the algorithm which
produced the solution with the confidence level of the algorithm in the model,
which was found at the end of the analysis stage.

Note that the analysis stage of the approach must only be performed once for
a set of observed algorithms. However, once the analysis stage is done, the eval-
uation stage can be applied repeatedly. Only when new algorithms are observed
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must the analysis process be repeated. In order to correctly classify the new ob-
served algorithm(s), the properties must be recalibrated to take into account the
new algorithm(s). In some cases, it may be necessary to define new properties
and to process additional instances on each of the observed algorithms in order
to achieve a high confidence level.

4 Calibration

Calibration is the mapping of raw data values to values which contain the max-
imum amount of information to facilitate a particular task, which in this case
is algorithm classification. We introduce calibration using an example. Consider
two different SAT instances, par8-2-c and par8-1-c, solved using the GRASP
and Walksat SAT algorithms. We evaluate the instances and solutions with the
solution property of non-important variables.Non-important variables are vari-
ables that may switch their assignment in such a way that the correctness of the
obtained solution is preserved. For par8-2-c the property values were 0.529 for
GRASP and 0.706 for WalkSAT, and for par8-1-c, 0.391 and 0.594 respectfully.

Without calibration, by considering only these two instances, we would as-
sociate a range of 0.39 to 0.59 to the GRASP solutions and of 0.53 to 0.71 to
the Walksat solutions. These two ranges overlap and therefore classification is
difficult. The reason is obvious; the two instances have different structure. There
is intrinsically many more non-important variable in the instance par8-2-c than
in par8-1-c. Calibration can compensate for this difference in instances. For ex-
ample, we see that in both cases, GRASP has a property value approximately
20% lower than that of Walksat for this property. Calibration of the values with
respect to the other algorithms enables proper capturing of the relationships
between the algorithms, which is not visible from the raw values.

We have developed two calibration schemes. The first calibration approach
is a rank-ordered scheme. For each property value on a particular instance, we
rank each of the algorithms. Using these rankings, a collaborative ranking for
the property is built by examining the rankings of each of the algorithms on
all instances. Additional consideration must be made on how to resolve any ties
in ranking, and how to combine rankings for individual instances. One can use
either average ranking, median ranking, or some other function of ranking on
the individual instances. In our experimentations we used modal ranking - where
the ranking of each algorithm is defined as the rank that was detected on the
largest number of instances.

Rank-order calibration schemes are simple to implement and are robust
against data outliers. However, rank order schemes eliminate the information
about the relationship between numerical values for a given property of the al-
gorithms. Additionally, the property after rank order calibration does not provide
a mechanism for stating an unpopulated region. Unpopulated regions are nec-
essary for the RGFE technique to classify output from an algorithm which has
not be observed or studied in the model. Rank-based property calibration can
only classify unobserved areas when multiple properties are consider together.
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The second type of calibration mechanism is a scale-based scheme. In these
types of techniques, calibration is done by mapping the data values from the
initial scale on to a new scale. Possible types of data-mapping are normalization
against the highest or lowest value, against the median, or against the average
value. We use a scheme where the smallest value on all instances is mapped to
value 0, the largest value to value 1, and all other values are mapped according
to the formula: xnew = xinit−xs

xl−xs
, where xinit is the initial value for the property,

xs is the smallest value, and xl is the largest value prior to calibration.
The advantage of a scale-based scheme is, in principle, higher resolution and

more expressive power than a rank order scheme. However, these types of ap-
proaches can be very sensitive to data outliers - a few exceptionally large or small
values. For a scale-based scheme, each of the property values may be plotted on
a segment after data-interpretation on the absolute values has been applied. Re-
gions of the segment which are populated by a particular algorithm are defined
as classification regions for these algorithms. Regions of the segment which are
not populated by any algorithm are specified as unclassified.

5 Properties

There are two key benefits for developing properties in the generic form (0-1
ILP). The first is a conceptual benefit, while the second is software reuse. The
conceptual benefit is that treating properties in a generic form greatly facilitates
the process of identifying new properties for newly targeted optimization prob-
lems. The software reuse benefit lies in the fact that many properties that are
developed for one optimization problem can be easily reused for forensic analysis
of other optimization problems. Therefore, software for the extraction of these
properties need only be written once.

Note that although many problems can be specified using the generic for-
mat, often a specific optimization problems have specific features. For example,
depending on the problem, the generic formulation may or may not have an
objective function. Specifically, the SAT problem contains an empty objective
function; as long as all the constraints are satisfied, the value of the objective
function is irrelevant. Other properties to consider include the types of variables
that appear in the constraints (positive only, negative only, or both), the weights
of the variables in the constraints (are they all the same or not), does the objec-
tive function contain all of the variables in the problem or only a subset, and so
forth. The key is to identify the essential properties of the problem and develop
a quantitative way to measure them.

Note that the solution properties can also be extracted in the generic form
by mapping the solution output of the algorithms to the generic solution form,
then computing the property values. We illustrate the steps in Figure 4.

The representative set of instances for the problem are used both in their
standard representation and in generic form. On the right side of the Property
Extraction phase, the instances are converted into generic form and then in
this form the instance property extraction methods are applied. The instance
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Fig. 4. Procedure for generic property extraction.

property values are collected and passed on to the calibration step. On the
left side of Figure 4, the representative set of algorithms executes each of the
instances in the representative set. The solutions for each algorithm on each
instance are converted to the generic solution formulation, which is then given
to the solution property extraction method along with the original instance in
its generic formulation. The solution property values for the given algorithm and
instance are collected and the data passes to the calibration phase.

We have developed a number of generic instance properties which we illus-
trate with their representative meaning for the SAT problem.

[I1] Constraint Difficulty. Each constraint in the problem formulation contains co-
efficients for each variable appearing in the constraint and the value (b-value) on
the right-hand side of the constraint. The goal of constraint difficulty is to provide
a measure of how much effort and attention the algorithm places on a given con-
straint. For example, in the SAT formulation, each constraint represents a single
clause, and therefore all variables have unit weight. The b-value of the constraint
is dependent on the number of positive and negative literals in the constraint.
Therefore, in this case this generic property summarizes information about the
size of the clauses in the instance. The aggregate information about constraints
can be expressed using statistical measures such as average and variance, which
we actually used in our system.

[I2] Ratio of Signs of Variables. The key observation is that some variables tend
to appear in all constraints in a single form, while others variables will appear in
multiple forms and have more balanced appearance counts. For this property, we
assume, without loss of generality, that all coefficients b are positive. In the prob-
lem formulation, analysis of the positive, negative, and x-weighted, occurrences
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of a variable can be examined with respect to the total number of occurrences
of the variable in the instance. In the SAT problem, we can use this property to
identify the tendency of a variable in the instance to be assigned true or false.
Again, various statistical measures can be used to aggregate this information. We
use average and variance.

[I3] Ratio of Variables vs. Constraints. This property can be applied to all or a
subset of variables in all or a subset of the constraints in the instance. It provides
insight into the difficulty of these constraints. A low number of variables in a large
number of constraints can imply that the constraints are difficult to satisfy due
to the fact that numerous constraints are dependent on the same variables.

[I4] Bias of a Variable. We measure the bias of a variable to be assigned to either
zero or one, based on the number of constraints which would benefit from the
variable being assigned each way.

[I5] Probability of satisfying constraints. This property considers the difficulty
of satisfying each constraint based on the variables, weights of the variables, and
its b-value. We define the probability of the constraint to be satisfied as shown
below.

P(constraint satisfied) = 1 - [
⋃

vi
P(variable assigned opposite of constraints

benefit)].

Solution properties analyze the relationship of the solution and structure of
the problem instance. We have developed the following properties.

[S1] Non-important variables. This property identifies variables that received an
assignment which has no effect on the objective function or on the satisfiability
of the constraints. Therefore, the goal is identify variables which are not crucial
to the solution of the problem. Constructive and greedy algorithms tend to find
solutions which have a high number of variables which are not crucial to the
solution.

[S2] Variable(s) Flip with k% of Constraints still satisfied. While the non-
important variables property aims at identifying variables that have no bearing
on the solution of the instance, this property attempts to measure the importance
of the variables which impact the objective function and/or the constraints.

[S3] Constraint Satisfaction. This property aims at identifying the extent to which
the constraint was satisfied. For example, for constraints of the type Ax ≥ b, we
can define the property as the value of Ax(sol)−b

Ax(max)−b
. This equation evaluates how

much more the constraint was satisfied over the required level by considering the
solution’s Ax value less the required value against the maximum possible value
less the requirement. This formulation is applied to each constraint in the SAT
problem. In the case of SAT, this property translates to the level to which each
clause is satisfied by the solution.

[S4] Variable Tendency. In many cases, constructive algorithms follow the natural
tendencies presented by the instance. More specifically, variables that have all
positive coefficients have an intrinsic inclination to be assigned a value of 1, and
vice versa. This property tries to quantify to what extent this tendency was
followed by a particular type of algorithm. A measure of variable tendency is the
number of variables which were assigned according to the ratio of its positive and
negative appearances of a variable in the SAT problem.
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6 Model Building and Validation

In this section, we discuss the modeling phase of the RGFE technique. We begin
with a discussion concerning how clustering and classification of the property
data for the tools is achieved. The Classification and Regression Trees (CART)
model is adopted and generalized for classification, and we analyze the benefits
of the model and its application. Finally, we present details on the use of SA
to generate the CART model. The starting point for the development of the
classification model is that each solution for each algorithm for a given prob-
lem is represented as a point in n-dimensional space, where n is the number of
solution and instance properties. The goal of classification is to partition the
space into subspaces that classify regions populated mainly, or in the ideal case
only, by solutions produced by a particular algorithm. We define A + 1 classi-
fication classes, where A is the number of algorithms observed. The additional
classification class, a unique addition to the standard classification problem, is
reserved for subspaces that are not populated by solutions of any of the observed
algorithms. If a given output falls into these spaces, the output is classified as
produced by an unknown or unobserved tool. Our goal is to perform classification
of the data with a model of low Kolmogorov complexity, yet high accuracy [2].
The low Kolmogorov complexity indicates that we did not overtune our model
to the given data. Specifically, we follow the principle that for every parameter
in the model, we have to have at least five points in the property space.

We adopt the CART model as a starting point for classification for a num-
ber of reasons. The model is intuitive, extensively proven to provide accurate
classification in many situations, and provides an easy mechanism to enforce
the principle of low complexity. The essence of the CART model can be conve-
niently summarized in the following way. From the geometric point of view, the
CART model can be interpreted as partitioning of the n-dimensional space using
(n− 1)-dimensional hyperplanes that are orthogonal on the axis of the space.

In order to develop the CART model of the n-dimensional data as required by
the RGFE technique, we first define a standard grid. The resolution of the grid is
determined by a user specified threshold for misclassification. We keep altering
the resolution using binary search until the threshold is not achieved. Next, we
examine each of the hypercubes, which the grid defines, for misclassifications,
i.e. we identify regions which contain data from multiple algorithms.

Once the n-dimensional space has been sufficiently divided into hypercubes,
the adjacent hypercubes are merged to represent regions of classification for
each algorithm. For this task, we use a SA approach. The approach begins with
a random classification of the space, which implies random merging of hyper-
cubes into classification regions. Each merged classification solution is evaluated
according to the following objective function: OF = αNi + βPm, where Ni is
the number of parameters needed to represent the defined classification in the
CART model and Pm is the percentage of misclassification which can occur.
The intuition behind the objective function is that the CART model will have
smaller representation and complexity if fewer parameters are used. However,
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smaller representation implies higher misclassification levels. As a result, we try
to balance both components in the objective function.

The SA algorithm requires specification of two additional key components: a
basic move generation mechanism and a cooling schedule. The move generation
mechanism specifies which changes can be made to the current solution in order
to generate a new, so-called neighborhood, solution. In the case of the hyper-
cubes, we define a change as either the movement of a single hyperplane of the
hypercube by a single grid unit, or as the replacement of a single hypercube side
with a new hypercube side in a different dimension.

The cooling schedule consists of a number of parameters which define the
temperature decrement of the SA algorithm. These parameters are initial tem-
perature, stop criterion, temperature decrement between successive stages, and
the number of transitions for each temperature value. We define the initial tem-
perature as the temperature on which 50% of the moves result in an increased
OF. We stop searching if we visit s (s was 3 in our experimentations) tempera-
tures without any improvement in solution. We decrement the temperature using
a geometric schedule and at each temperature value, we consider 1000 genera-
tions. Validation was conducted using standard learn-and-test and resubstitution
validation techniques.

7 Experimental Results

In this section, we present the results of the experimental evaluation of the RGFE
technique on the boolean satisfiability and the graph coloring problem. The
standard approach to solving the register assignment problem is to reduce the
problem to the graph coloring problem (GC). We present experimental results for
the register assignment problem in the form of graph coloring. For each problem,
we discuss the instance and solution properties used for the developed generalized
CART model, and the optimization algorithms for which were used to build the
model. Furthermore, we provide experimental evidence of the importance of
simultaneously considering both solution and instance properties using the SAT
problem. Finally, the performance of the overall technique for classifying both
observed and unobserved algorithm output for both problems is presented.

The final CART model used by the RGFE technique for the SAT problem
used only five generic properties: two instance properties, and three solution
properties. The properties which were selected are the following: [I1] Weighted
Average of “Short” Clauses, [I3] Ratio of Variables vs. Number of Constraints,
[S1] Percentage of Non-important variables, [S2] Average Variable Flip with 80%
of Constraints still satisfied, and [S3] Average Constraint Satisfaction.

These solution properties were used to analyze the outputs of four SAT algo-
rithms: GRASP, nsat, sato and walksat. The GRASP algorithm [9], is a generic
search algorithm which performs non-chronological backtracking with a conflict
analysis procedure and tree pruning. The nsat algorithm is a simple backtrack
search algorithm. Sato applies the David-Putnam approach and tries to speed up
unit propagation [7]. Walksat is a stochastic search algorithm, which is incom-
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plete, developed by Kautz and Selman. It is an iterative improvement approach
which performs two separate types of moves: a flip of the current variable as-
signment of a variable appearing in an unsatisfied clause, or a greedy move. The
SAT algorithm that we used for testing the classification ability of unobserved
algorithms is the Satz algorithm. This approach is a systematic, complete SAT
solver with randomized restarts.

The representative set of SAT instances used to build the CART model in-
clude instances from the DIMACS standard benchmark set. The first set, jnh*,
are randomly generated instances of the constant density model. The problem
distribution of these instances is Random P-SAT. The aim* instances are ran-
dom 3-SAT instances. The third set of instances are propositional versions of
parity learning problems, par8*. Lastly, the ii* set are instances of inductive in-
terference problems. Additional information on these benchmark sets and others
can be found at [11].

In order to demonstrate the importance of comparing properties of instances
and solutions, we present data and comparisons using the SAT problem. We
used a set of 55 SAT instances. In Figure 5, we present the dependency between
instance property, [I1] weighted average of “short” clauses and solution property
[S1] non-important variables. The solution property is calibrated using rank-
order. A rank of one is given to the algorithm with the highest property value
on a given instance, and a rank of 4 is the lowest rank. If two algorithms have
the same property value on an instance, they are given the same rank number.
The horizontal axis of the figure displays the name of each of the instances. The
vertical axis indicates the value of instance property. The piece-wise linear line
displays the values of property I1 for each instance. Note that there are three
distinguishable subsets of instances which have distinctly different I1 values,
approximately 0.06, 0.12, and 0.23. For each instance, the calibrated rank of
the corresponding solution property values for each algorithm is displayed along
the horizontal axis in bar format. For each of the distinguishable regions of I1

values, a noticeable pattern in the algorithms ranks can be seen. For example,
in the first region of I1 values, 0.06, the GRASP algorithm is always ranked the
lowest, the walksat algorithm is ranked highest in nine of the eleven instances,
and sato is only ranked second and first in all cases. Similar ranking consistency
can be seen in the results for solution property, S2 in Figure 6. According to this
property, for the instances in the highest instance property range, approximately
0.23, walksat is ranked the highest in all but two of the cases, sato is ranked
second in all but three cases, and nsat and GRASP are tied in all cases. In the
other two regions, patterns also exist.

In order to test the generalized CART model, we ran both new instances and
new instances where the order of the inputs (variables) was subject to random
permutation. All the instances were from the same class of selected benchmarks,
and included instances which were not in the representative set. In total, we used
the CART model to classify 1000 different solutions of each algorithm, including
the unobserved algorithm satz. The results of the classification are shown in
Table 7. The rows of the table present the solver used to generate the solution,



Relative Generic Computational Forensic Techniques 161

Fig. 5. SAT: Dependency between instance property (I1) and solution property
(S1).

and the columns represent the algorithm for which the output was classified as
by the CART model. The CART model had confidence interval of 92%.

We now present the properties and algorithms used for application of the
RGFE technique on the graph coloring problem. The final CART model for
classification of algorithms for the GC problem used the following instance and
solution properties:[I2] Variable Appearance vs. Average Variable Appearance,
[I3]Ratio of Variables vs. Number of Constraints on Edge Constraints, [S1] Per-
centage of Non-important variables - nodes which can change coloring without
increasing the number of colors used, [S2] Average Variable Flip with 80% of
Constraints Still Satisfied - average number of coloring possibilities per node,
and [S3] Constraint Satisfaction - percentage of nodes which can only be colored
with a single color.

For the GC problem, we used four algorithms for building the CART model:
dsatur, maxis, itrgrdy, and tabu. Additionally, we use the bkdsat algorithm as
the unobserved algorithm. The dsatur algorithm, developed by Brelaz [12], se-
lects the node to color at each step based on the degree of the node, and the
number of colors which cannot be used to color the node due to conflicts with
previously colored nodes. Nodes with the least number of coloring possibilities
are colored first. Maxis is a recursive, large first algorithm (RLF) which applies
exponential backtracking. The iterative improvement approach, itrgrdy, uses an
iterative local improvement search to improve the current coloring assignment.
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Fig. 6. SAT: Dependency between instance property (I1) and solution property
(S2).

Tabu search is a probabilistic iterative improvement algorithm [13]. The origi-
nal assignment of colors is applied randomly, and conflicts are attempted to be
resolved by reassigning conflicting nodes to different colors. Lastly, the bkdsat
algorithm is a greedy algorithm which attempts to color higher density regions
of the graph.

For instances of the graph coloring problem, we use graphs from the DIMACS
benchmark set, types of which include register allocation, leighton, scheduling,
and quasi-random graphs. We select 100 instances to build our CART model.
The resulting CART model had a confidence interval of 94%. The results for
attempting classification on 50 additional instances and their permutations are

SAT GC
Solver GRASP nsat sato walksat unobs Solver dsatur maxis itrgrdy tabu unobs

GRASP 993 5 0 0 2 dsatur 992 4 0 1 3
nsat 5 994 0 0 1 maxis 2 996 0 0 2
sato 0 1 995 3 1 itrgrdy 0 2 997 0 1

walksat 2 0 4 992 2 tabu 2 0 1 994 3
satz 3 4 2 1 990 bkdsat 1 3 0 0 996

Table 1. Experimental results for SAT and GC.
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shown in Table 7. The table displays the classification of the solution generated
by each of the algorithms on 1000 permutated instances from the DIMACS set.
The model is capable of classifying the output with extreme accuracy.

8 Conclusion

We have introduced the RGFE technique for identifying which tool, if any, pro-
duced a particular solution to a given optimization problem. The new approach
is capable of not only differentiation between outputs of known algorithms, but
is able to determine if an unknown algorithm was used to produce the output.
The new technique enables rapid retargeting to new optimization problems.
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Abstract. Protocol steganography allows users who wish to commu-
nicate secretly to embed information within other messages and net-
work control protocols used by common applications. This form of un-
observable communication can be used as means to enhance privacy
and anonymity as well as for many other purposes, ranging from en-
tertainment to protected business communication or national defense.
In this paper, we describe our approach to application-layer protocol
steganography, describing how we can embed messages into a commonly
used TCP/IP protocol. We also introduce the notions of syntax and se-
mantics preservation, which ensure that messages after embedding still
conform to the host protocol. Based on those concepts, we attempt to
produce reasonably secure and robust stegosystems. To demonstrate the
efficacy of our approach, we have implemented protocol steganography
within the Secure Shell (SSH) protocol. Findings indicate that proto-
col steganographic system is reasonably secure if the statistical profile
of the covermessages and the statistical profile of its traffic match their
counterparts after embedding.

Keywords: steganography, application protocols, syntax, semantics, SSH

1 Introduction

Steganography, from the Greek “covered writing,” refers to the practice of hi-
ding information within other information [1]. Its purpose is to allow two parties
to communicate in such a way that the presence of the message cannot be de-
tected. While cryptography focuses on protecting the content of the message,
steganography conceals the mere existence of the message. Classical steganogra-
phy comprises a broad variety of methods and materials, ranging from tattooing
messengers’ heads to using invisible ink and microdots. Modern steganography
involves digital media and techniques: images, formatted and written text, digital
sounds, and video, as well as some others less orthodox such as storage devices
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and TCP/IP packets [2]. In recent years,the evolution of stegosystems has re-
ceived particular attention, as have the security and robustness of their methods
[3, 4, 5, 6, 7]. In this context, protocol steganography arises as a new means of
hiding information in Internet messages to achieve secret communication.

Protocol steganography is the art of embedding information within mes-
sages and network control protocols used by common applications [8]. Protocol
steganography takes advantage of existing application-layer network traffic to
communicate privately, which could be a useful and important means of com-
munication in many different areas. It can be effective in law enforcement for
undercover investigations and espionage. For example, it could have been con-
venient for “Enron whistleblower” Sheron Watkins to have set up a private
communication channel with the District Attorney’s office that worked without
having to deploy special anonymity frameworks, but utilizing the traffic gene-
rated by one of her regular web-browsing sessions. The business arena can also
benefit from hiding the communication when doing important negotiations.

Early attempts at hiding information within network protocols were based on
the discovery of covert channels—communication channels neither designed nor
intended to transfer information at all [9]—in TCP/IP packets [10, 11, 12, 13]). In
contrast, our approach of protocol steganography specifically targets application-
layer protocols such SMTP (for email service), FTP (for file transfer), SSH (for
secure login), LDAP (for distributed directory services), and HTTP (for web
browsing, which alone accounted for over 53% of all Internet traffic in 2002
[14]). We aim to hide information within the format and structure of the proto-
col, and not in the transmitted content, such as images, sounds, text, or video.
Information hiding within these content types can be achieve using well-known
steganographic techniques before the content is sent across the network.

The most relevant feature of a steganographic system is how secure it is.
At the moment, there is controversy in the field regarding the definition of
a perfectly secure system [15, 16]. The most cited approaches are based on
information theory and the ideas of security taken from cryptography defini-
tions [17, 18, 19, 20]. There are other definitions such as the Ettinger’s game-
theoretical definition [21] and the complexity-theoretical definitions in [22, 23].
However, to the best of our knowledge, there is no record of any implemented
stegosystem proven secure under those definitions. We recognize the enormous
effort put behind producing an exact mathematical definition of security, but for
this paper we limited our approach to produce an empirically and “reasonably
secure” [24] stegosystem.

The remainder of this paper is organized as follows. Section 2 explains the
concepts of security and robustness in terms of protocol steganography. Section
3 describes the model for secret communication considered in our approach and
discusses its potential advantages. Section 4 presents a summary of the research
to date and related work in relevant areas of steganography. Section 5 explores
the concept of protocol steganography through the SSH protocol, describes a
prototype implementation, and discusses consequences and important issues re-



166 Norka B. Lucena et al.

garding security and robustness of the approach as well. Finally, Section 6 lists
some conclusions and remarks of lessons learned.

2 Security and Robustness in Protocol Steganography

Steganographic systems are usually defined in terms of three elements: capacity,
security, and robustness. Capacity is the amount of information that can be
hidden in the cover. Security refers to the difficulty that a knowledgeable adver-
sary (one who understands the stegosystem) has in obtaining evidence or even
grounds for suspicion that a secret communication is taking place. Robustness is
the amount of alteration a stegomessage can support without the hidden mes-
sage being destroyed [1, 25]. For this study, we focus in examining both security
and robustness of our steganographic methods against the threat of passive and
active adversaries more than in increasing their capacity.

The protocol steganography model assumes prior knowledge of the distribu-
tion of the covers, standard practice when defining stegosystems. This allows
to produce appropriate embedding and extraction methods which minimize or
eliminate alterations in the statistical profile of the covermessages. Protocol
steganography however needs to deal not only with the characteristics of the
covermessage itself but also with the statistical profile of its traffic such as the
distribution of the payload length. A reasonably secure protocol stegosystem is
one in which the adversary cannot distinguish between a covermessage and a
stegomessage by analyzing the meaning of the packet payload and the statistical
properties of the protocol traffic. Stegomessages are reasonably robust if, after
alterations from a malicious attacker, they are rendered inadequate regarding
their protocol semantics. Stegomessages that are not semantically valid usually
cause the interruption of the overt communication.

Seeking to produce both secure and robust stegosystems, we define two con-
cepts for stegomessages: syntax preservation and semantics preservation. Syntax
preservation guarantees that the stegomessage is well formed within the rules of
the protocol; the actual meaning of the stegomessage may be different than the
original cover. Semantics preservation means that, as observed at a point along
the message’s path through the network, the stegomessage has the same mean-
ing as the original cover. Semantics preservation is stronger than, and implies,
syntax preservation. Semantics preservation increases robustness—it reduces or
eliminates the possibility for an active attacker to render the hidden message
useless without causing substantial damage to the packet, thereby breaking the
overt communication. The early work in covert channels was, in general, neither
syntax nor semantics preserving, and depended on routers not performing tight
checking against the protocol specification.

3 Framework for Secret Communication

Our model for protocol steganography involves two agents who wish to commu-
nicate secretly through arbitrary Internet traffic in a hostile environment (see
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Figure 1). Alice and Bob [26] are two agents who wish to communicate secretly.
To achieve that, they use a communication path already in place between them-
selves or two arbitrary communicating processes, the sender and receiver. Adver-
saries located between Alice and Bob can be both active or passive. A passive
adversary, Eve, observes the communication to discover stegomessages. Eve’s
eventual goal is to find the embedded information, and prove its existence to a
third party, if necessary. An active adversary, Mallory [27] attempts to remove
the embedded message during the communication process, while preserving the
integrity of the cover.

Fig. 1. Framework for Secret Communication.

Two scenarios are possible depending on whether or not Alice and Bob are
the same as the sender and the receiver, respectively. In the first case, Alice and
Bob are trying to hide secret information in some of their own harmless mes-
sages, as in traditional steganography models. They both run a modified version
of the communicating software that allows them to convey the secret message.
In the second case, Alice and Bob are placed somewhere along an arbitrary
communication path, modifying messages in transit to hide meaningful informa-
tion. In short, both the internal agent and the external confederate might be
either end points of the communication or middlemen, acting to embed and ex-
tract the hidden message as the data passes them in the communication stream.
In fact, the receiving middleman has the option of removing the hidden message,
thus restoring and forwarding the original covermessage. The midpoints where
Alice and Bob can alter the message might be within the protocol stack of the
sending and receiving machines (which is still distinct from the sending pro-
cess), or at routers along the communication path. These arbitrary boundaries
are indicated by the dashed boxes in Figure 1.

Considering all combinations of internal agents and external confederates
and all different points where the message can be altered yields six different
combinations of roles for the agents, as shown in Figure 2. In this discussion,
following the established information hiding terminology [28], Alice executes the
embedding process and Bob the extraction process, represented in the picture
as a circle and a diamond, respectively. As pointed out by Pfitzmann [28], the
embedding and extracting processes may require the use of a stegokey, not shown
in the picture. The cover (i.e. the original harmless message) is m, and the
stegomessage (i.e. the message with steganographic content) is m′.
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Fig. 2. Message Paths.

The six possible sets of agent roles are as follows:

1. Alice acts as sender and Bob as receiver—the message along the entire path
is m′.

2. Alice is a middleman, embedding information to the message on its way, and
Bob acts as receiver—the message from the sender to Alice’s location is m,
while from there to the endpoint is m′.

3. Both agents are middlemen, and Bob restores the message to its original
form—the message from the sender ’s point to where Alice’s location is m,
from Alice’s to Bob’s is m′, and from there to the endpoint is m again,
because extraction of the hidden content and restoration of the original cover
message occurred at Bob’s location.

4. Both agents are middlemen, but Bob does not restore the message—the
message from the sender ’s point to the Alice’s location is m, and from Alice’s
to the receiver ’s point is m′, with the hidden information extracted at Bob’s
location while the message was in transit.

5. Alice is acting as sender, with Bob as a middleman extracting the embedded
information and restoring the original message—the message from the initial
point to Bob’s location is m′, and from Bob’s location to the receiver ’s point
is m.

6. Alice is acting as sender and Bob is a middleman extracting the hidden
information without restoring the message as it travels to the receiver—the
message from end to end is m′, but B gets the hidden content somewhere
before the message reaches its destination.

Even though not every one of these scenarios might be realistic, cases 1 and
3 certainly are. Thus, they were the focus of this study. All the options where
the hidden content is extracted but the message is not restored seem risky. In
particular, case 4 wherein the message seen by the receiver is clearly different
from that seen by the sender, neither of whom are the agents communicating
secretly.
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3.1 Issues with Middlemen

Having the agents acting as middlemen in the communication stream provides
several advantages, because any packet that will flow past the locations where
Alice and Bob are can be modified (as long as an embedding function that
preserves both syntax and semantics is available for the transport or application
protocol in that packet). That intermediate location lowers the susceptibility to
traffic analysis, as there is no longer a single source/sink for the stegomessages,
and there is no specific protocol used. It also allows us to achieve a higher bit
rate as well as privacy, anonymity, and plausible deniability, in some cases. In
the case of undercover operations, for example, an ideal situation would be that
Alice is located on the last router inside the sender’s domain (the egress router
for that domain), and Bob is located on the first router outside the domain
(the ingress router). In such scheme, m′ will be “on the wire” for the minimum
possible time, lowering the probability of detection.

Detection of packet modifications along the communication path might seem
trivial for an observer monitoring the network. We argue that it is not. First of
all, the modified packets at the embedding and the extraction points will be both
syntax and semantics preserving, which evades routing and intrusion detection
defense mechanisms. Secondly, individual packet comparison from both sides of
an embedding/extraction point is resource intensive and not currently done by
IDS systems to avoid the overhead incurred with large amounts of traffic. Lastly,
routine network operations for most IPSs, for example, involve the collection of
aggregate traffic statistics rather than individual packet analysis, because of the
high volume [29].

IP fragmentation is another issue that can affect the reliability of the commu-
nication when the agents are middlemen. When the application-layer protocol
uses TCP as transport protocol, we assume that the packets used as carrier are
delivered reliably. If there still exist packet loses, they are treated as communi-
cation errors. Fragmentation rates in packets of TCP applications are minimal.
In addition, most of them set the “don’t fragment” bit on. In contrast, when the
application-layer protocol uses UDP, additional mechanisms need to be imple-
mented to guarantee that Bob actually receives the message sent by Alice.

4 Related Work

Handel and Sandford [11] reported the existence of covert channels within net-
work communication protocols. They described different methods of creating
and exploiting hidden channels in the OSI network model, based on the char-
acteristics of each layer. In particular, regarding to the application layer, they
suggested covert messaging systems through features of the applications run-
ning in the layer, such as programming macros in a word processor. In contrast,
the protocol steganography approach studies hiding information within mes-
sages and network control protocols used by the applications, not inside images
transmitted as attachments by an email application, for example.
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Examples of implementation of covert channels in the TCP/IP protocol suite
are presented by Rowland [13], Project Loki [12], Ka0ticSH [30], and more deeply
and extensively by Dunigan [10]. These researchers focused their attention in the
network and transport layers of the OSI network model. In spite of that, Dunigan
[10] did point out in his discussion of network steganography that application-
layer protocols, such as Telnet, FTP, SMTP, and HTTP, could possibly carry
hidden information in their own set of headers and control information. How-
ever, he did not develop any technique targeting these protocols. Rowland [13]
implemented three methods of encoding information in the TCP/IP header: ma-
nipulating the IP identification field, with the initial sequence number field, and
with the TCP acknowledge sequence number field “bounce.” Dunigan [10] ana-
lyzed the embedding of information, not only in those fields, but in some other
fields of both the IP and the UDP headers as well as in the ICMP protocol
header. He based his analysis mainly in the statistical distribution of the fields
and the behavior of the protocol itself. Project Loki [12, 30] explored the concept
of ICMP tunneling, exploiting covert channels inside of ICMP ECHO traffic. All
these approaches, without minimizing their importance, can be detected or de-
feated with the latest router and firewall technology.

One such mechanism is reported in Fisk et al. [31]. Their work defines two
classes of information in network protocols: structured and unstructured car-
riers. Structured carriers present well-defined, objective semantics, and can be
checked for fidelity en route (e.g., TCP packets can be checked to ensure they are
semantically correct according to the protocol). On the contrary, unstructured
carriers, such as images, audio, or natural language, lack objectively defined
semantics and are mostly interpreted by humans rather than computers. The
defensive mechanism they developed aims to achieve security without spending
time looking for hidden messages: using active wardens they defeat stegano-
graphy by making strong semantic-preserving alterations to packet headers (e.g.
zeroing the padding bits in a TCP packet). The most important considerations
to their work related to protocol steganography are the identification of the co-
vermessages in used as structured carrier, and the feasibility of similar methods
of steganalysis that target application-layer protocols.

Recently, researches are focusing more of their attention in the use of covert
channels using specifically the HTTP protocol. Bowyer [32] described a theo-
retical example without implementation, wherein a remote access Trojan horse
communicates secretly with its control using an HTTP GET request. Although
this approach takes advantage of the semantics of regular HTTP messages, as
we intent to do, it is different from our approach because it can be blocked by
restricting access to certain websites, or by scanning images for steganographic
content. Bauer [33] proposed the use of cover channels in HTTP to enlarge
anonymity sets and provide unobservability in mix networks. He shares our view
of using traffic generated by other subjects to hide communication.
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5 A Case Study: SSH

The SSH protocol provides secure remote login and other secure network ser-
vices over an insecure network [34]. It does so through mechanisms that supply
server authentication, confidentiality, and integrity with perfect forward secrecy.
There are several implementations of SSH, both commercial and open-source.
The latest and most widely used version of the protocol is SSH2.

Fig. 3. SSH2 Protocol Architecture.

The SSH2 protocol consists of three major components shown in Figure 3:

– Transport Layer Protocol. Provides server cryptographic authentication,
confidentiality through strong encryption, and integrity plus, optionally,
compression. Typically, it runs over a TCP/IP connection listening for con-
nections on port 22.

– User Authentication Protocol. Authenticates the client-side user to the
server. It runs over the transport layer protocol.

– Connection Protocol. Multiplexes the encrypted tunnel into several log-
ical channels. It runs over the user authentication protocol. It provides in-
teractive login sessions, remote execution of commands, forwarded TCP/IP
connections, and forwarded X11 connections.

Fig. 4. SSH2 Binary Packet Protocol.

In particular, the Transport Layer protocol defines the Binary Packet Pro-
tocol, which establishes the format SSH packets follow (see Figure 4). It consists
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of five fields. Packet length is an unsigned 32-bit integer representing the length
of the packet data in octets. Padding length is the number of octets representing
the length of the padding. Packet data is the actual content of the message.
Random padding is an arbitrary-length padding appended to the packet data, so
the payload reaches the block cipher sizes specified by the protocol. MAC cor-
responds to the message authentication code, which is computed if previously
negotiated. The packet length, padding length, packet data, and random padding
fields are encrypted. The packet data and the random padding are compressed
before encryption, if compression was specified during the connection setup.

SSH was selected as our first Protocol Steganography case of study for se-
veral reasons, with the randomness of the content of its packets being the most
important. Encrypted traffic provides an appropriate cover for other messages
with uniform distribution, e.g. additional encrypted data. We can blend hidden
content securely within what is considered “normal” traffic, without altering the
statistical properties of the payload. In addition to that, the fact that the SSH
traffic is encrypted may deter adversaries from trying to analyze its content, as
pointed out by Barrett and Silverman [35]. Lastly, SSH is widely used and use
TCP as transport protocol, which guarantees delivery packets even when they
are fragmented.

5.1 Prototype Implementation

We identified several potential possibilities of information hiding in the SSH
protocol structure, but selected only two of them for implementation: generating
a MAC-like message and adding additional encrypted content to the packet.
Such methods of hiding information match, respectively, cases 1 and 3 of our
framework of secret communication, described in Figure 2. Case 1 assumes that
Alice is the sender and Bob is the receiver. In Case 3, both agents Alice and
Bob are middlemen located along the communication path. Then, Bob needs to
restore the stegomessage to the covermessage after extracting the hidden message
embedded by Alice.

Both implementations were coded in C, tested under Red Hat 8.0, and each
of them runs independently of the other. For implementing the first scenario
of secret communication, generating a MAC-like message, we modified version
3.5 of Open SSH (http://www.openssh.org), a popular open-source SSH pro-
duct. For the second scenario, adding encrypted content, we developed a kernel
module to capture packets in transit and we tested the system using unmodified
OpenSSH 3.5.

Generating a MAC-like Message. In this steganography scenario Alice (the
sender) and Bob (the receiver) are running identically-modified software. At first
sight, it might seem strange to pursue secret communication over an already en-
crypted channel. However, this example of protocol steganography is appropriate
for environments where unobtrusive communications are required in the pres-
ence of traffic analysis, particularly the number and frequency of messages. In
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the military and intelligence agencies, even if the content of the communication
is encrypted, a significant increase in communications between military units
could signal an impending attack [1]. For example, Alice might be working at
the Pentagon and Bob might be a high-level commander in the Middle East. To
avoid eavesdropping by terrorists, they encrypt their messages using OpenSSH.
It is not possible for the adversary to decipher the messages being sent, but the
adversary can perform traffic analysis by studying the length and frequency of
the messages exchanged. A sudden increase in traffic gives a clear indication that
something “big” is going on.

As shown in Figure 4, the SSH2 specification defines a message authentica-
tion code field. The MAC is computed with a previously negotiated MAC algo-
rithm using the key, the sequence number of the packet, and the unencrypted
(but compressed, if compression is required) packet data. The MAC algorithms
defined by the protocol are hmac-sha1, hmac-sha1-96, hmac-md5, and hmac-
md5-96 whose digest lengths vary from 12 to 20 octets. Therefore, generating a
MAC-like message will allows us to transmit up to 20 additional octets of per
packet.

To simulate the randomness of the MAC, the embedded messages are pre-
viously compressed and then encrypted. The modified version of the SSH client
reads the content to be embedded from a file compressed with GZip (http://www.
gzip.org) and encrypted with the GNU Privacy Guard software (http://www.
gnupg.org), using the Blowfish algorithm. It embeds and extracts exactly the
same amount of octets reserved for computing the MAC in the selected algo-
rithm. At the receiving end, the modified version of the SSH server ignores
recomputing the MAC and comparing it with the one received from the client,
because the server is action as Bob. Instead, Bob saves the MAC-like message
into a file.

The drawback of this implementation is the impossibility of verifying whether
the actual payload of the message was correctly transmitted or not, as a conse-
quence of replacing the MAC. Information about the error rates in transmission
of SSH packets will be useful for better understanding the validity of this ap-
proach. However, augmenting a short MAC might be a way of getting around
this issue. Because the different MAC algorithms offered by SSH produce MACs
of different lengths, it would still be possible to select an algorithm with a short
MAC and pad the stegomessage to it. For example, if the hmac-md5-96 algo-
rithm, which computes a 12-octet MAC is used, we can add 8 octets of secret
information to each packet, bringing the pseudo-MAC up to the 20-octet limit.
Of course, for this approach to work, Alice and Bob must agree in advance on
what algorithm to use. That is trivial to set up through the SSH authentication
mechanism. Moreover, when they are not planning to communicate secretly,
Alice and Bob can choose to use the hmac-sha1 algorithm which computes a
MAC of length 20, so the average total lengths of their SSH packets does not
raise suspicion.

Because we are maintaining the randomness of the covermessage when crea-
ting a stegomessage as well as the distribution of the payload length, we consider
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this stegomethod to be reasonably secure. Eve cannot distinguish between two
encrypted payloads (cover and stego) of the same size. Because of particular
properties of the SSH protocol, embedding a MAC-like message is reasonably
robust. SSH takes any change in the MAC at the receiving end as a signal of
existence of an attacker somewhere in the middle of the communication stream.
SSH issues a warning and the session will be interrupted (normal behavior of
the protocol). Mallory cannot then recompute and substitute the MAC (besides
that involves having knowledge of the encrypted packet payload, the keys, and
the algorithms used). Mallory cannot make subtle changes to the packet either,
such as switching some bits. Our implementation takes similar actions to the
ones SSH takes when there when the hidden message is not meaningful to Bob.

Adding Additional Encrypted Content to the Packet. This prototype
implementation works in the secret communication environments described in
cases 2, 3, or 4. However, we will consider only case 3 in this discussion because
it is the most challenging. Both Alice and Bob are middlemen located some-
where along the communication path. Alice intercepts a packet from the sender,
embeds a portion of her secret message on it, and sends it on. Bob extracts the
hidden content and restores the message as it originally was before it reaches
its destination. Alice and Bob can be any two parties who wish to communicate
secretly by taking advantage of available SSH traffic on the Internet.

This implementation intercepts the SSH traffic and inserts an additional
encrypted message at the beginning of the already encrypted payload, as detailed
in Figure 5. A 32-bit “magic” number marks the presence of a hidden message.

Fig. 5. Adding an encrypted portion with a hidden message to a regular SSH
packet at the beginning of the encrypted payload.

To be able to intercept SSH traffic, we implemented a Packet Transmogrifier1

(PT), written in C for Linux 2.4 kernels. The PT is a piece of software that
captures arbitrary packets in transit, embeds secret messages into a stream of
outgoing packets, and correspondingly extracts the hidden message when used
downstream. It was implemented as a kernel module for deployment in Linux-
based routers. In principle, the PT uses a combination of several individual

1 With appropriate apologies and thanks to Bill Watterson, creator of “Calvin and
Hobbes” [36].
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protocol-specific packet transformers as plug-in modules (each of which could
be used by an individual application to embed a message in a data stream).
This approach gives us the flexibility of embedding hidden messages in packets
of multiples types corresponding to different protocols, and with a variety of
sources and destinations. The current implementation of the PT provides a series
of default protocol-dependent embedder and extractor functions that are called
based on the options selected by the user and the payload type of a particular
IP packet. The corresponding functions for handling SSH packets are called
sshEmbedder and sshExtractor.

When establishing an SSH session, the client and the server negotiate the al-
gorithms to be used in the session, the MAC algorithm among them. Next, they
initiate the key exchange. The number of messages exchanged till this point by
the client and server are unencrypted, therefore, sshEmbedder and sshExtractor

are not interested in modifying such packets. The analyze their content and
discharge them if they are any of the plain-text packets. Once the key ex-
change is done, both sides, client and server, turn on encryption, perform au-
thentication, and the secure connection is establish. From that particular stage,
sshEmbedder begins altering the SSH packets, embedding encrypted hidden mes-
sages. Conversely, sshExtractor attempts to extract a secret message from every
encrypted packet and reformats the SSH packet to its original form. The func-
tions sshEmbedder and sshExtractor are semantics preserving. The SSH traffic
reminds encrypted after embedding or extraction, hence both the cover and the
stegomessage have the same semantic meaning to a third party observer.

From monitoring SSH traffic, we learned that the most common packet sizes
in Telnet-like SSH session are 48 and 80 bytes, with each comprising approxi-
mately 23% of the recorded data. For testing the functionality of this implemen-
tation, we elected to embed data in chunks of at least 12 octets with a 32-bit
(4-octet) CRC to verify the integrity of the message when transmitted. That is,
the total length of the SSH payload is incremented by at least 16 octets after the
embedding. Hence, a portion of the SSH packets with payload length 48 bytes
are converted into 64-octet packets. Similarly, a portion of the SSH packets with
payload length between 49 and 64 are transformed into 80-octet packets. Figure
6 shows a sample output of the PT when embedding messages.

If Eve is able to observe both sides of the communication at the location
where the PT is placed, it would be trivial to notice the difference in the pay-
load size. The scenario is nevertheless implausible because of the high volume
traffic on the Internet and the multitude of potential insertion points along
the communication path, which make packet-by-packet comparison impractical.
Still, to avoid detection through automated tools when increasing the payload
length of the packets, we need to simulate the packet length distribution of the
SSH payload at any given time. We are currently adding capability to fit a given
payload length distribution within a one-minute interval using the Chi-square
test for goodness of fit. Therefore, we conclude that this stegomethod is not
reasonably secure when Eve has knowledge of the covermessage payload length
distribution.
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Fig. 6. Sample Output of the Packet Transmogrifier when Embedding Informa-
tion in SSH Traffic where a 48-byte payload is enlarged to a 64-byte payload.

6 Conclusions and Lessons Learned

In this paper, we have described semantics-preserving application-layer protocol
steganography, and have presented methods for embedding secret messages in
an application-layer protocol. We have developed the notions of syntax and se-
mantics preservation in accordance to the goal of achieving a reasonably secure
and robust stegosystem. We raised issues that evidence the need for definition
of new theoretical paradigms of security. They must involve not only fitting the
statistical profile of the cover itself but also fitting the statistical profile of how
the transmission of the covers. Our approach has several advantages over prior
work:

– Because of its applicability to a wide range of protocols, we can theoretically
embed messages in the vast majority of network traffic on the Internet.

– The use of non-source stego (en route embeddings and extractions) increases
the available bandwidth and complicates traffic analysis because of the abi-
lity to choose traffic from a variety of senders and receivers.

– Semantics preservation dramatically increases the practical ability of pro-
ducing secure and robust stegomethods in network protocols.

As a proof-of-concept, we implemented an end-to-end protocol steganography
approach in the SSH2 protocol as well as one with agents as middlemen. The
SSH approach is not general, but represents a step toward finding generalized
methods of embedding which is the ultimate goal of protocol steganography. The
packet transmogrifier is a valuable contribution from the SSH implementations.
It allows us to perform on-the-fly message embedding and extraction while a
packet of arbitrary network traffic is en route. The software may be obtained
from the authors upon request. In the near future, we will expand our family of
embedder/extractor functions to include HTTP as well as other protocols.



Syntax and Semantics-Preserving Application-Layer Protocol Steganography 177

References

[1] Katzenbeisser, S., Petitcolas, F.A.: Information Hiding: Techniques for Steganog-
raphy and Digital Watermarking. Artech House, Norwood, MA (2000)

[2] Johnson, N.F., Jajodia, S.: Steganalysis: The investigation of hidden information.
In: Proceedings of the IEEE Information Technology Conference, Syracuse, New
York, USA (1998) 113–116

[3] Anderson, R., ed.: Information Hiding: Proceedings of the First International
Workshop. In Anderson, R., ed.: Lecture Notes in Computer Science 1174, Cam-
bridge, U.K., Springer (1996)

[4] Aucsmith, D., ed.: Information Hiding: Proceedings of the Second International
Workshop. In Aucsmith, D., ed.: Lecture Notes in Computer Science 1525, Port-
land, Oregon, U.S.A., Springer (1998)

[5] Moskowitz, I.S., ed.: Information Hiding: Proceedings of the Fourth International
Workshop. In Moskowitz, I.S., ed.: Lecture Notes in Computer Science 2137,
Pittsburg, PA, U.S.A., Springer (2001)

[6] Oostveen, J., ed.: Information Hiding: Preproceedings of the Fifth International
Workshop, Noordwijkerhout, The Netherlands (2002)

[7] Pfitzmann, A., ed.: Information Hiding: Proceedings of the Third International
Workshop. In Pfitzmann, A., ed.: Lecture Notes in Computer Science 1768, Dres-
den, Germany, Springer (1999)

[8] Chapin, S.J., Ostermann, S.: Information hiding through semantics-preserving
application-layer protocol steganography. Technical report, Center for Systems
Assurance, Syracuse University (2002)

[9] Kemmerer, R.: A practical approach to identify storage and timing channels:
Twenty years later. In: Proceedings of the 18th Annual Computer Security Ap-
plications Conference (ACSAC 2002), San Diego, California (2002) 109–118

[10] Dunigan, T.: Internet steganography. Technical report, Oak Ridge National
Laboratory (Contract No. DE-AC05-96OR22464), Oak Ridge, Tennessee (1998)
[ORNL/TM-limited distribution].

[11] Handel, T., Sandford, M.: Hiding data in the OSI network model. In Anderson,
R., ed.: Information Hiding: Proceedings of the First International Workshop,
Cambridge, U.K., Springer (1996) 23–38

[12] route@infonexus.com, alhambra@infornexus.com: Article 6. Phrack Maga-
zine, 49 (1996) Retrieved on August 27, 2002 from the World Wide Web:
http://www.phrack.com/phrack/49/P49-06.

[13] Rowland, C.H.: Covert channels in the TCP/IP protocol suite. Psionics Tech-
nologies (1996) Retrieved on August 23, 2002 from the World Wide Web:
http://www.psionic.com/papers/whitep03.html.

[14] CAIDA.org: Characterization of internet traffic loads, segregated by application
- OC48 analysis (2002) Retrieved on October 15, 2003 from the World Wide
Web: http://www.caida.org/analysis/workload/byapplication/oc48/20020305/
apps perc 20020305/index.xml.

[15] Katzenbeisser, S., Petitcolas, F.A.: Defining security in steganographic systems.
In: Electronic Imaging, Photonics West, (SPIE). Volume 4675 of Security and
Watermarking of Multimedia Contents IV. (2002) 50–56

[16] Moskowitz, I.S., Longdon, G.E., LiWuChang: A new paradigm hidden in steganog-
raphy. In: Proceedings of the New Security Paradigm Workshop 2000, Cork,
Ireland (2000) 41–50



178 Norka B. Lucena et al.

[17] Cachin, C.: An information-theoreic model for steganography. Technical Report
Report 2000/028 (2002) http://www.zurich.ibm.com/ cca/papers/stego.pdf.

[18] Anderson, R.J., Petitcolas, F.A.: On the limits of steganography. IEEE Journal
of Selected Areas in Communications 16 (1998) 474–481

[19] Mittelholzer, T.: An information-theoretic approach to steganography and wa-
termarking. In Pfitzmann, A., ed.: Information Hiding: Proceedings of the Third
International Workshop. Volume 1768 of Lecture Notes in Computer Science.,
Dresden, Germany, Springer (1999) 1–16
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Abstract. A method is proposed of the automatic concealment of digital infor-
mation in rather long orthographically and semantically correct texts. The 
method does not change the meaning of the source text; it only replaces some 
words by their synonyms. Groups of absolute synonyms are used in a context 
independent manner, while the groups of relative synonyms are previously 
tested for semantic compatibility with the collocations containing the word to 
be replaced. A specific replacement is determined by the hidden information. 
The collocations are syntactically connected and semantically compatible pairs 
of content words; they are massively gathered beforehand, with a wide diversity 
in their stability and idiomacity. Thus the necessary linguistic resources are a 
specific synonymy dictionary and a very large database of collocations. The 
steganographic algorithm is informally outlined. An example of hiding binary 
information in a Russian text fragment is manually traced, with a rough evalua-
tion of the steganographic bandwidth. 

1   Introduction 

We define linguistic steganography as a set of methods and techniques that permit the 
hiding of any digital information within texts based on some linguistic knowledge [9]. 
To hide the very fact of hiding, the resulting text should not only remain inconspicu-
ous (i.e. appear to be ordinary text, with fonts, orthography, lexicon, morphology, 
syntax, and word order outwardly corresponding to its meaning) but also conserve 
grammatical correctness and semantic cohesion.  

We expect that the linguistic knowledge needed for this purpose should be non-
trivially large, and thus we dissociate ourselves from all studies in special text format-
ting (cf. e.g., [17]). The nature of the information to be hidden is irrelevant for us; it is 
merely a string of binary digits. 

The current situation in linguistic steganography, as it was defined above, does not 
seem well developed.  
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The series of the synonymy-oriented works [9, 10] render resulting texts syntacti-
cally correct, but potentially conspicuous, since semantically they are incoherent, 
leaving alone their original meaning.  

The works [2, 3] proposed an original semantic representation of the carrier texts 
supposedly permitting their deep pseudo-synonymous transformations while IH. 
However, we are to expect some time before this method will be brought to perfection 
in the following aspects: 
 

 

The transformation ‘text  its tree semantic representation’ should be based on 
deep linguistic knowledge, especially that of synonymy between various syntactic 
constructions to minimize the repertoire of labels on the semantic tree branches; 
The efficacious revealing of co-references and anaphoras should be based on huge 
extra-linguistic knowledge, polythematic and relevant, as well as on plausible rea-
soning. Otherwise the attempts to insert next bit sequence for steganographic use 
could graft upon semantically queer phrases like Spy planes fly over Afghanistan, 
which they are attacking, or liberally insert truisms from the fact DB like Afghani-
stan borders Pakistan, which can make the carrier text somewhat conspicuous. 
The work [15] also supposes a special preprocessing of the carrier, but it is not 

clear if the resulting text really conserves the initial content. 
In this paper, we propose a steganographic algorithm that replaces textual words by 

their synonyms, just as in [9]. However, we always conserve inconspicuousness, lin-
guistic correctness, and the very meaning of the source text by verifying the possible 
replacements against the context of the word to be replaced.  

The context of a word is a set of collocations it is in. We consider collocations as 
syntactically connected and semantically compatible pairs of content words. They 
need to be collected beforehand in very large numbers, with a wide diversity in their 
stability and idiomacity. Examples of English collocations are full-length dress, well 
expressed, to briefly expose, to pick up the knife or to listen to the radio, where the 
collocation components (content words) are underlined. The collocations can also 
contain auxiliary words (mainly prepositions) that link the collocation components 
and thus help to reveal the collocations while text processing. 

More specifically, the objectives of our paper are: 
 

 

 

 

To touch upon the notion of synonymy in order to clarify that synonyms can be not 
only separate words but also multiwords, and that we divide all synonyms into ab-
solute and relative ones, which are used in our algorithm in a different manner; 
To outline the most important features of DBs of collocations with components 
that can have synonyms; 
To outline rather informally our algorithm realizing a linguistic steganography 
method based on collocationally-verified synonymy;  
To develop a manually traced example of hiding a small portion of binary informa-
tion within a typical fragment of text from Russian newswire, with evaluation of 
steganographic bandwidth of the method. 
The idea of our method does not depend on language, but its implementation heav-

ily depends on available language-specific resources. So we use English examples to 
illustrate our considerations in all cases we can, whereas a specific steganographic ex-
ample is in Russian. 
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2   Absolute and Relative Synonymy 

Basically we are interested in synonymous paraphrasing (SP). It is a modification of 
natural language text or its fragments that preserves the meaning of the whole text. 
Nearly every plain text allows SP contrasting with lists of names, numerical data, 
poetry, and the like. Computational linguistics has always considered SP an important 
and difficult problem.  

There exists a well developed linguistic theory Meaning–Text Theory by 
I. Mel’ uk [12] that takes SP as one of its basic principles. It considers NL some-
thing like a calculus of SP. A set of meaning-conserving rules for restructuring sen-
tences was developed within the framework of this theory. In the process of SP the 
words making up a text, their morpho-syntactic features and the word order signifi-
cantly change. However, program implementation for SP based on MTT thus far cov-
ers a rather limited fragment of natural language [1]. 

In this paper we only deal with local SP that conserves the structure and word or-
der of a sentence, as well as the number of words (counting stable multiwords like hot 
dog as one unit, see later). 

In their simplest definition, synonyms are words that can replace each other in 
some class of contexts with insignificant change of the whole text meaning. The ref-
erences to ‘some class’ and to ‘insignificant change’ make this definition rather 
vague, nevertheless nearly all modern synonymy dictionaries are based on it.  

A synonymy dictionary is a set of word groups, the words within each of them 
considered synonymous. Any word can be similar to the members of one group in a 
given aspect and of another group in other aspect, i.e. it can belong to several inter-
secting groups or to neither. (Here we exclude WordNet whose synsets are artificially 
constructed without intersections [11].) In many dictionaries, a title (dominant) mem-
ber is selected for each group that expresses the group meaning in the most general 
and neutral way. 

For our purposes, it proved to be insufficient to include only separate words in the 
synonymy groups; sometimes compactly co-occurring multiwords are necessary. An 
example of the English synonymy group is {rollercoaster, big dipper, Russian moun-
tains}, where the unique single word member is the result of agglutination of the pair.  

The only mathematically formal case of synonymy is when the compared units can 
replace each other in any context without any change in meaning. These are absolute 
synonyms, e.g., English {sofa, settee}. Within the group, absolute synonyms are con-
nected by the mathematical relation of equivalence.  

Unfortunately, absolute synonyms are extremely rare in any language. However, 
there exists another kind of equivalence between various abbreviations and aggluti-
nations. E.g., we can consider {United States of America, USA, United States} as an 
equivalence group. Such equivalents can occur in the same text without violation of 
the style. The admission of multiword synonyms provides a large number of new ab-
solute synonyms like {former president, ex-president}. 

In Russian, many noun-headed concepts are used in two equivalent forms: (1) a 
word pair consisting of a modifier with the stem S1 plus its head noun with the stem 
S2, or (2) a single noun containing both stems S1 and S2, or their initial parts, or only 
S1: detskij sad ‘kindergarten’ = detsad; elektri eskij tok ‘electrical current’ = elektro-
tok; fizi eskij fakul’tet ‘physical faculty’ = fizfak; komi eskij akter ‘comical actor’ = 
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komik; seismi eskaja stancija ‘seismic station’ = seismostancija. The number of such 
agglutinations continues to grow, especially in newswire and everyday speech (sev-
eral thousands of commonly used concepts), and now they are considered stylistically 
neutral in any genre of text. In academic dictionaries they are scarce, but this type of 
equivalence seems very important for wider lingware applications. Note that English 
agglutinations like picture element = pixel is a similar phenomenon, but both variants 
scarcely co-occur in the same text. 

A small number of equivalence groups are the so-called morphological variants, 
e.g., Rus. nul’ = nol’ ‘zero’; mu at’ = mu it’ ‘to torture’; tunnel’ = tonnel’ ‘tunnel’. 

Hereafter, we presume the availability of a synonymy dictionary with the following 
specific features:  
 Each synonymy group has a dominant. 
 The equivalents of the dominant (if any) are specially labeled. 
 Any member of the group including the dominant can be multiword. 
 Any member of the group including the dominant can repeat in another group 

and/or be a homograph (homonym) of the member of another group. 
 A group member can represent not a whole lexeme but its grammeme, i.e. a part 

of its morphological paradigms. For example, it can be either the singular or plu-
ral of a noun, or the infinitive of a verb or its participle taken separately. 

Let us explain the last feature. It was quickly recognized that the singular and plu-
ral number variants of the same noun in any language may have their own sets of 
synonyms and their own set of associated components that may combine to form col-
locations. E.g., the synonymy group {client, consumer, customer, user} of singular 
number is opposable to the group {clients, clientele, consumers, customers, users} of 
plural. We use the collocation numerous users but not numerous user, and we can say 
single user but rarely single users (their proportion in Google is 73 to 1). As to the 
grammemes of verbs, in many languages participles may play the syntactic role of ad-
jectives, while Russian and Spanish gerunds play the role of adverbs. Hence, various 
grammemes have different sets of synonyms and collocational supplements. 

3   Collocations 

For a long time collocations were studied in lexicography rather than in computa-
tional linguistics. The mainstream initiated by N. Chomsky usually treats collocations 
simply as a series of two or more words occurring together in a narrow window mov-
ing along a text.  

There exist semantic links of two types in natural languages: paradigmatic and syn-
tagmatic. WordNet [11] describes semantic links of only paradigmatic type; these are 
synonyms, hyponyms/hyperonyms, antonyms, etc. The links between components of 
collocations are syntagmatic. These are, for example, the link between a verb and a 
noun filling its valence (play  the role), or the link between noun and its adjective 
modifier (new  method). A comprehensive collection of English collocations are 
now gathered in the Oxford collocation dictionary [16].  

At this time, the only theory that gives a consistent description of all types of syn-
tactically connected word combinations is the MTT [14]. Syntactical connectedness is 



184           Igor A. Bolshakov 

understood in the MTT as in dependency grammars. The head component syntacti-
cally governs the dependent one, being adjoined to it directly or through an auxiliary 
word (cf. examples above). Sequentially, the components can be at any distance from 
each other in a sentence, but are nearby in the dependency tree.  

To our knowledge, publicly available electronic databases of collocations did not 
exist until 1997, when the Advanced Reader’s Collocation Searcher (ARCS) for Eng-
lish emerged [4], but it is now inferior to [16] in all aspects. 

The only project in the recent decade to develop a very large collocation DB avail-
able now for local use was dedicated to Russian and it produced an interactive system 
called CrossLexica [5, 6, 7]. Its core part is a large database of Russian collocations, 
but it contains also something like a Russian WordNet. Particularly, the WordNet-like 
part contains a synonymy dictionary and a hyponymy/hyperonymy hierarchy. 

Ideologically, CrossLexica is based on the MTT, but it does not describe colloca-
tions in terms of lexical functions; syntactic types of collocations in it are not as fine-
grained as in the MTT; it adheres to the grammeme principle of word description in 
its dictionary; and it contains numerous free (non-idiomatic) word combinations, 
while the MTT did not consider them to be collocations. 

The inclusion of free combinations proved to be of special importance for most of 
the applications of CrossLexica [5]. This is also very important for steganography, 
since components of free word combinations are to be mainly used for synonymous 
paraphrasing.  

Hereafter, we can imagine the synonymy dictionary and the collocation DB as cor-
responding parts of CrossLexica-like system.  

Additionally, the hyponym-to-hyperonym hierarchy could be involved to facilitate 
collocation testing. Hyperonyms are used to infer new collocations in the following 
way [7]: if the component C1 has the hyperonym H, and H forms a collocation with 
the component C2, then C1 forms the collocation of the same type with C2. If the hy-
peronym H of C1 has no relevant collocations, a hyperonym of H is tested for the 
same purpose, etc. 

4 Algorithm 

The proposed steganographic algorithm has two inputs: 
 The information to hide, in the shape of a bit sequence. 
 The source text in natural language of the minimal length evaluated as approxi-

mately 250 times greater than of the information to hide. The text format can be 
arbitrary, but the text proper should be orthographically correct, to lessen the 
probability of unintended corrections during transmission. The corrections can 
change the number of synonymous words in the text or the conditions for their 
verification and thus can desynchronize the steganography vs. steganalysis. The 
text should not be semantically specific, i.e. not to be a mere list of names or se-
quence of numbers. In this respect newswire flow or political articles are quite 
acceptable. Any long fragments of inappropriate type increase the total length re-
quired for steganographic use. 
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The steps of the algorithm are as follows: 

Search for dictionary entries The text is scanned, and single- and multiwords are 
extracted that are entries of the systemic dictionary. If a word sequence and its subse-
quence are found both conforming to the mentioned conditions, the longer entity is 
preferred. The operations are applied to text fragments independently whether the lat-
ter have synonyms or not, and they include reducing of separate words and parts of 
multiwords to corresponding dictionary forms. The operations are successful if there 
are no intersections between multiwords, when one or more sequent words enter to 
two or more different longer multiwords.  

Formation of synonymy groups The synonymy groups are analyzed one by one. If 
a content word (multiword) has no synonyms, we consider it as a degenerate synon-
ymy group of only one member. If a given group includes only absolute synonyms, it 
is taken as such for further steps. If the group includes at least one relative synonym, 
all of them are taken for the operation referred in mathematics as transitive closure. 

Transitive closure means that each member of a group is tested to see if it also ap-
pears in another synonymy group. If so, the related group is joined to the former one 
without repetitions. The newly included synonyms are analyzed to determine if they 
are also members of yet another group and so forth, until the process of broadening 
stops. 

Such operations are also made through homographs. The database is searched to 
determine if the textual word or its synonyms have homographs. If so, the homo-
graphs as well as their synonyms (if any) are joined to the set under formation. Each 
newly included member is analyzed against its synonyms and homographs, etc. The 
process is finite, but sometimes gives a rather large combined set. At each step, mem-
bers with specific lexicographic labels (e.g., of idiomaticity or a low style) are omitted 
in the combined set. 

Transitive closure is needed to ensure the same content of the resulting set on both 
steganographic and steganalytic stages. The cases when the resulting set is so broad 
that it contains absolutely unlike members usable in the same context are possible but 
seem extremely rare. 

Collocational verification of synonyms The verification of synonyms is performed 
sentence by sentence and deals only with content words. Then for the sentence with 
content words w1, w2... wN the verification is as follows: 
  for i = 1...N 
  for j = i+1...N 

      if form_collocation(wi,wj,T) 
   search p,q form_collocation(synp(wi),synq(wj),T) 

where synp(w) is pth synonym of w, and the function form_collocation(wi, wj, T) is 
true when wi and wj form collocation of the type T, with any direction of syntactic de-
pendency between the collocation components. To put it in other words, a complete 
sub-bigraph is searched in the bigraph formed by links between synonyms of wi on 
one side and of synonyms of wj on the other side. In Figure 1, the subsets {syn2(wi), 
wi, syn4(wi)} and {wj, syn2(wj)} form the sought-for complete bigraph. 
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 syn4(wi) 
 
                    wi    syn3(wj) 
 

   syn3(wi)   syn2(wj) 
 

   syn2(wi)   wj 
  

   syn1(wi)   syn1(wj) 

   Fig. 1. Extraction of complete sub-bigraph 

If the complete bigraph contains only wi and/or only wj, the corresponding degen-
erated group does not participate immediately in the IH. The members of each non-
degenerate group are ordered in a predetermined manner (e.g., by alphabet) from 0 to 
k–1, where k is the set count. 

Enciphering The sequence of the filtered synonymy groups is scanned from the left 
to the right. On this step, the decomposition of the carrier to sentences is not needed. 
Let the counts of synonyms in p sequential groups be k1, k2... kp, with the total product 
k1k2...kp = K. We round down K to the nearest 2N and take M0 as N-bit syllable of the 
information to be hidden. The numbers n1, n2... np of the replacing synonyms are then 
determined sequentially as 

ni = Mi–1 mod ki;   Mi = Mi–1 div ki;   i = 1, 2... p–1; 
np = Mp–1; 

where div is the integer division; mod is the modulo operation. In cases when all 
counts k1, k2... kp are powers of 2 or when we can be unsparing to round down any ki 
to the nearest power Ni of 2, the numbers ni of the replacing synonyms are equal to the 
sequential Ni-bit syllables of the information to be hidden. 

Reagreement If grammatical features of a newcomer (its number, gender, case, per-
son, etc., depending on specific language and on the part of speech) differ from the 
source synonym, operations of morphological reagreement are to be fulfilled. 

The steganographic process continues until one of the inputs is exhausted. The text 
modified by synonyms is the unique output of the algorithm.  

The reversibility of the algorithm at the stage of steganalysis is rather obvious. The 
addressee should have just the same versions of linguistic resources, as well as the al-
gorithm. At the beta stage of the implementation, the steganographic and steganalytic 
operations should be done together on the sender’s side, to ward off the cases of the 
wrong finding in the dictionary or the wrong filtering of synonyms. If any difference 
between input and output hidden bit sequence is found, some corrections in the lin-
guistic resources or/and the algorithm should be introduced. 
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5 A Manually Traced Russian Example 

For our tests, we have taken the flow of news in the Russian Web site Gazeta.ru. The 
flow consists of separate pieces generated by various Russian or foreign word-wide 
agencies, with the mean length of text ca. 600 Bytes and header of ca. 50 Bytes. It is 
well known that the first sentence of a news piece in many agencies repeats the title 
but with more detail and some extensions. In the case of Gazeta.ru, we have noticed 
many paraphrases in the first sentences, including synonymous modifications of the 
type under consideration.  

We took a typical text fragment from this site: 
(1) Pjat’ podzemnyz tol kov zaregistrirovano za sutki na juge Respubliki Altaj. Sila 

zemletrjasenij sostavljala ot 2,2 do 3,1 balla po škale Rixtera, soobš ili na Ak-
tašskoj sejsmi eskoj stancii segodnja posle poludnja. 

It means: ‘(As many as) five subterranean pulses (are) registered during 24 hours 
in the south of Altai Republic. (The) strength (of the) earthquakes amounts from 2.2 
to 3.1 points on Richter scale, (as they have) informed in (the) Aktash seismic station 
today in the afternoon.’ The words in the parentheses are introduced into the transla-
tion, to conform to English grammar rules.  

The single and multiwords of the Russian text having synonyms are underlined. 
The absolute synonyms are additionally highlighted with bold face.  

Hereafter all synonymous options are ordered by the Russian alphabet and binary 
numbered for the steganographic use. Following are groups of absolute synonyms (in 
their dictionary forms): 

0. za 24 asa  ‘during 24 hours’     1. za sutki  ‘during 24 hours’   
0. sejsmi eskaja stancija ‘seismic station’   1. sejsmostancija ‘seismic station’ 
The relative synonym za den’ ‘during the day’ in the second group is omitted, to 

have in this group only 2 = 21 absolute members. 
While performing the transitive closure for zaregistrirovannyj, the following five 

synonymy groups are found, with the dominants coming first: 
zaregistrirovannyj ‘registered’,  zafiksirovannyj, otme ennyj 
zakreplennyj ‘fastened’,  zafiksirovannyj, prikreplennyj  
pome ennyj ‘marked’,  otme ennyj, vydelennyj 
zame ennyj ‘noticed’,  otme ennyj,  podme ennyj,  prime ennyj, upomjanutyj 
otprazdnovannyj ‘celebrated’, otme ennyj 
Thus the combined set without repetitions is 

(2) zakreplennyj, zame ennyj, zaregistrirovannyj, zafiksirovannyj, otme ennyj, ot-
prazdnovannyj, podme ennyj, pome ennyj, prikreplennyj, prime ennyj, upo-
mjanutyj 

Here are other groups of relative synonyms not affected by transitive enclosure: 
0. zemletrjasenija ‘earthquakes’ 1. podzemnye tol ki ‘subterranean pulses’ 
0. Altaj ‘Altai’   1. Respublika Altaj ‘Republic Altai’ 
0. ravnjat’sja ‘to be equal’ 1. sostavljat’ ‘to amount’ 
0. proinformirovat’ ‘to inform’ 1. soobš it’ ‘to communicate’ 
0. vo vtoruju polovinu dnja ‘in the second half of the day’  1. posle poludnja ‘in 

the afternoon.’ 
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The noun sila has two different senses, sila1 and sila2, with their own groups of 
synonyms: 

00. magnituda  ‘magnitude’  00. dejstvennost’ ‘efficacy’ 
01. moš nost’  ‘power’  01. sila2 ‘potency’ 
10. moš ’  ‘might’    
11. sila1 ‘force’    

Let us now verify relative synonyms against the context.  
The both member of synonymy group {zemletrjasenija, podzemnye tol ki} forms 

collocations only with the subset 
00. zame ennyj  01. zaregistrirovannyj  10. zafiksirovannyj  11. otme ennyj 

of the set (2), so all other members are to be discarded. These four options form col-
locations with the absolute synonym za sutki and are also compatible with the non-
synonymous jug. 

Among the two senses of sila only synonyms of sila1 conform to members of the 
group {zemletrjasenija, podzemnye tol ki}.  

The collocation DB does not contain collocations of the members of {proinformi-
rovat’, soobš it’} and the members of the absolute synonymy group {sejsmi eskaja 
stancija, sejsmostancija}, but the inference through the hyperonym stancija gives the 
following result: (sejsmostancija IS_A stancija) & (soobš it’ na stancii)  (soobš it’ 
na sejsmostancii). 

The last tests are between the groups {soobš it’, proinformirovat’} and {posle po-
ludnja, vo vtoruju polovinu dnja}. All four tests are successful and thus none syno-
nym is discarded.  

Hence the synonymous words of the source text give the following amounts of bits 
for steganographic use: 

podzemnye tol ki 1  zemletrjasenija 1 
zaregistrirovannyj 2  sostavljat’ 1 
sutki 1  soobš it’ 1 
Respublika Altaj 1  sejsmi eskaja stancija 1 
sila 2  posle poludnja 1 

The total is 12 bits, i.e. we can hide in the given fragment, say, the string of two 
Latin letters with codes equal to the right 6-bit syllables of ASCII table. E.g., the hid-
ing of the bigram si (Spanish ‘yes’) gives the following text (The differences from the 
source are highlighted.) 

Pjat’ podzemnyz tol kov zafiksirovano za 24 asa na juge Respubliki Altaj. Sila 
zemletrjasenij sostavljala ot 2,2 do 3.1 balla po škale Rixtera, proinformirovali na 
Aktašskoj sejsmi eskoj stancii segodnja posle poludnja. 

The meaning of the modified fragment remains the same, though the third differ-
ence created a minor stylistic infelicity. The hidden bigram no corresponds to the 
completely irreproachable fragment: 

Pjat’ podzemnyz tol kov zaregistrirovano za sutki na juge Respubliki Altaj. Moš -
nost’ zemletrjasenij sostavljala ot 2,2 do 3.1 balla po škale Rixtera, soobš ili na Ak-
tašskoj sejsmostancii segodnja posle poludnja. 

Note that the steganalysis of the source fragment (1) gives an unintended result in 
the shape of the bigram om. 
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The size of the hidden bigram is 1.5 Bytes, while the source text amounts 205 
Bytes. Hence the ratio that measures the steganographic bandwidth (SB) equals .0073. 
In a few other manually traced examples taken at random from the same newswire, 
synonymous words were rarer with corresponding SB decrease. We could orient to 
the SB mean value about .004. That is why carrier texts should be 250 times longer 
than the hidden information. 

As another measure of steganographic rate, we can take the ratio between the num-
bers of enciphered bits and encountered synonymy groups. The example above gives 
1.2 bits per synonym.  

6   Discussion, Conclusion, and Future Work 

The proposed method of linguistic steganography totally conserves the meaning of the 
carrier text, as well as its inconspicuousness. The method is based on the two large 
linguistic resources: a large synonymy dictionary and a very large collocation data-
base. The groups of absolute synonyms for words in a source text can be used imme-
diately, whereas the groups of relative synonyms are broadened in a specific way and 
then filtered for conformity with the collocations textual words are in.  

The mean value .004 of steganographic bandwidth reached with the local synony-
mous paraphrasing seems rather low. But let us compare the local SP with the global 
SP realized by methods of the Meaning–Text Theory. The French sentence in [12] of 
200 bytes in 35 words (blanks and punctuation marks included) reveals ca. 50 million 
= 225.6 synonymous variants. It means that each paraphrase of the sentence can hide in 
itself 25.6 bits of information, thus giving the bandwidth of about .016. If to suppose 
that the local SP was not included in the global SP, the value reached by our method 
gives 20% of the maximally possible level, whereas if the local SP was already in-
cluded, our method reaches 25% of the utmost level.  

The main problem for implementation of our method is the limited availability of 
the abovementioned linguistic resources. Nowadays, the only language for which 
these resources are near to completion is Russian. Perhaps the potential for applica-
tion in such a critical field as steganography will give an additional impetus toward 
creation of such lexical databases for English the lingua franca of the modern sci-
tech world. 

The reachable value of SB evidently depends on saturation of the linguistic re-
sources. Hence they are to be developed further, without any clear-cut limits of per-
fection.  

As to our algorithm, we can hardly consider it faultless. The following issues seem 
now especially acute:  
 In the contexts of the kind the corporation’s own resources the algorithm can re-

place own by its relative synonym personal, but inspection of one step further 
node in the dependency tree context, i.e. corporation’s, suggests that this would 
be inappropriate. 

 It is necessary to search for a way to cut long synonymy/homography chains like 
Russian osveš enie1 ‘coverage’ osveš enie2 ‘illumination’ svet1 ‘light’  svet2 
‘world’ mir1 ‘world’ mir2 ‘peace’ peremirie ‘armistice.’ Otherwise we 
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could sometime find that the words at the chain extremities admit the same con-
texts and thus are evaluated as interchangeable, in spite of their major semantic 
differences. The simplest way is to totally exclude too long chains from steg-
anographic process. 

 Special precautions are needed while paraphrasing constructions with coordina-
tion. The stable coordination pairs like comments and suggestions are supposedly 
included in the collocation DB [8]. Local paraphrasing usually destroys such 
pairs and thus is prohibited in such cases. E.g., one can say in Russian ran’še i te-
per’ but not ran’še i sej as, though the both options have the same meaning ‘ear-
lier and today.’ In constructions with freely coordinated synonyms or quasi-
synonyms like isolated subterraneous pulses and powerful earthquakes, the para-
phrasing subterraneous pulses  earthquakes can results in repetitions violating 
the conventional literary style.  

In the future, all these problems should be investigated in depth. 
Let us consider now the measures against the possible actions of the adversary.  
If the adversary possesses the same linguistic resources and the same algorithms, 

he can read the hidden information I. The tool to exclude this is a secret bit string K of 
the length comparable with I. The key K is applied to I on the sender’s side (at the 
very beginning) and on the addressee’s side (at the very end), as the bit-by-bit logical 
operation of equivalence. Note that SB keeps the same value after all. 

As a tool to detect the adversary’s tampering of I, it is worthwhile to use the secret 
mask M of mainly empty elements with some interspersed bit constants, 0 or 1. On 
the sending end, the bits of the original I are sent until next constant occurred in M, 
then the encountered constant is sent. These operations are repeated in a cycle. If n 
constants are already sent while the adversary changes each bit with randomly gener-
ated 0 or 1, the tampering is detected with the probability 1–2n. With this method, SB 
diminishes by 1–n/N, where N is the whole length of the string already sent. 

Nevertheless, we do not know thus far how to restore the hidden information muti-
lated by the abovementioned interference, at any expense of steganographic band-
width. 
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Abstract. This paper presents an implementation of the novel water-
marking method proposed by Venkatesan, Vazirani, and Sinha in their
recent paper A Graph Theoretic Approach to Software Watermarking.
An executable program is marked by the addition of code for which the
topology of the control-flow graph encodes a watermark. We discuss is-
sues that were identified during construction of an actual implementation
that operates on Java bytecode. We measure the size and time overhead
of watermarking, and evaluate the algorithm against a variety of attacks.

1 Introduction

This paper builds upon and elaborates a software watermarking scheme proposed
by Venkatesan, Vazirani, and Sinha in A Graph Theoretic Approach to Software
Watermarking [21]. We will refer to that paper as VVS and to its watermarking
scheme as GTW. The present paper contributes:

– The first public implementation of GTW
– An implementation that operates on Java bytecode
– An example of an error-correcting graph encoding
– The generation of executable code from graphs
– Several alternatives for marking basic blocks
– Extraction (not just detection) of a watermark value
– Empirical measurements of an actual GTW implementation
– Experimental analysis of possible attacks

Graph theoretic watermarking encodes a value in the topology of a control-
flow graph, or CFG [1]. Each node of a CFG represents a basic block consisting
of instructions with a single entry and a single exit. A directed edge connects
two basic blocks if control can pass from one to the other during execution. The
CFG itself also has a single entry and a single exit.

A watermark graph W is merged with a target program’s graph P by adding
extra control-flow edges between them. Basic blocks belonging to W are marked
to distinguish them from the nodes of P . These marks are later used to extract
W from P + W during the recognition process. The GTW process is illustrated
in Figure 1.

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 192–207, 2004.
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� �

int gcd ( int x , y ){
while ( x%y!=0){

t=x%y ;
x=y ;
y=t ;}

return y ;
}

� �

+

� �

void watermark ( ){
i f ( true )

return
else

return
}

� �

a©⇒

� �

int gcd ( int x , y ){
while ( x%y !=0){

watermark();

t=x%y ;
x=y ;
y=t ;}

return y ;
}

� �

+ b©⇔
√

√√
P F

P W P + W

Fig. 1. Overview of graph theoretic watermarking. In a© the code for watermark
W is merged with the code for program graph P , by adding fake calls from P to
W . In b© the same process is shown using a control-flow graph notation. Part b©
also shows how the mark is later recovered by separating the marked (

√
) nodes

of W from P with some tolerance for error.

The VVS paper hypothesizes that naively inserted watermark code is weakly
connected to the original program and is therefore easily detected. Weakly con-
nected graph components can be identified using standard graph algorithms and
can then be manually inspected if they are few in number. Such inspection may
reveal the watermark code at much lower cost than manual inspection of the full
program.

The attack model of VVS considers an adversary who attempts to locate a
cut between the watermark subgraph and the original CFG (dashed edges in
Figure 1). The GTW algorithm is designed to produce a strongly connected
watermark so that such a cut cannot be identified. The VVS paper proves that
such a separation is unlikely. More formally, the GTW algorithm adds edges
between the program P and the watermark W in such a way that many other
node divisions within P have the same size cut as the division between P and W .

We have implemented the GTW algorithm in the framework of Sand-
Mark [4], a tool for experimenting with algorithms that protect software from
reverse engineering, piracy, and tampering. SandMark contains a large number
of obfuscation and watermarking algorithms as well as tools for manually and au-
tomatic analysis and reverse engineering. SandMark operates on Java bytecode.
It can be downloaded for experimentation from sandmark.cs.arizona.edu.
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Our implementation of GTW, which we will call GTWSM , is the first publicly
available implementation of the GTW algorithm and this paper is the first empir-
ical evaluation of the algorithm. We have found that GTW can be implemented
with minimal overhead, a high degree of stealthiness, and with relatively high
bit-rate. Error-correcting graph techniques make the algorithm resilient against
edge-flip attacks, in which the basic blocks are reordered, but it remains vul-
nerable to a large number of other semantics-preserving code transformations.
GTW’s crucial weakness is its reliance on the reliable recognition of marked ba-
sic blocks during watermark extraction. We are unaware of any block marking
method that is invulnerable to simple attacks.

The remainder of this paper is organized as follows. Section 2 surveys related
work. Section 3 presents an overview of our implementation, and Sections 4 and 5
describe the embedding and recognition algorithms in detail. Section 6 evaluates
GTW with respect to resilience against attacks, bit-rate, and stealth. Section 7
discusses future work.

2 Related Work

Davidson and Myhrvold [10] published the first software watermarking algo-
rithm. A watermark is embedded by rearranging the order of the basic blocks
in an executable. Like other order-based algorithms, this is easily defeated by a
random reordering.

Qu and Potkonjak [17, 14] encode a watermark in a program’s register allo-
cation. Like all algorithms based on renaming, this is very fragile. Watermarks
typically do not survive a decompilation/recompilation step. This algorithm also
suffers from a low bit-rate.

Stern et al. [20] use a spread-spectrum technique to embed a watermark. The
algorithm changes the frequencies of certain instruction sequences by replacing
them with equivalent sequences. This algorithm can be defeated by obfuscations
that modify data-structures or data-encodings and by many low-level optimiza-
tions.

Arboit’s [2] algorithm embeds a watermark by adding special opaque predi-
cates to a program. Opaque predicates are logical expressions that have a con-
stant value, but not obviously so [8].

Watermarks are categorized as static or dynamic. The algorithms above are
static markers, which embed watermarks directly within the program code or
data. Collberg and Thomborson [5] proposed the first dynamic watermarking
algorithm, in which the program’s run-time behavior determines the watermark.
Their algorithm embeds the watermark in the topology of a dynamically built
graph structure constructed at runtime in a response to a particular key input
sequence. This algorithm appears to be resilient to a large number of obfuscating
and optimizing transformations.

Palsberg et al. [16] describe a dynamic watermarker based on that algorithm.
In this simplified implementation, the watermark is not dependent on a key input
sequence, but is constructed unconditionally. The watermark value is represented
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as a planted planar cubic tree. Palsberg et al. found the CT algorithm to be
practical and robust.

3 An Overview of GTWSM

Our implementation of GTW operates on Java bytecode. Choosing Java lets us
leverage the tools of the SandMark and BCEL [9] libraries, and lets us attack
the results using SandMark’s collection of obfuscators. Like every executable
format, Java bytecode has some unique quirks, but the results should be generally
applicable.

The GTW embedding algorithm takes as input application code P , water-
mark code W , secret keys ω1 and ω2, and integers m and n. GTWSM uses a
smaller and simpler set of parameters. Values of m and n are inferred from P ,
W , and ω1. The clustering step (Section 4.4) is unkeyed, so ω2 is unused. Thus,
our implementation takes as input application code P , a secret key ω, and a
watermark value.

The GTWSM embedding process proceeds through these steps:

1. The watermark value v is split into k values, {v0, . . . , vk−1} (Section 4.1).
2. The split values are encoded as directed graphs {G0, . . . , Gk−1} (Sec-

tion 4.2).
3. The generated graphs are converted into CFGs {W0, . . . , Wk−1} by generat-

ing executable code for each basic block (Section 4.3).
4. The application’s clusters are identified (Section 4.4).
5. The watermark is merged with the application by adding control-flow edges

to the graphs (Section 4.5).
6. Each basic block is marked to indicate whether it is part of the watermark

(Section 4.6).

The recognition process described in VVS has three steps: detection of wa-
termark nodes, sampling of subsets of the watermark nodes, and computation of
robust properties of these subsets. The set of robust property values composes
the watermark. The process is as follows:

1. Marked nodes of the program CFG are identified (Section 5.1).
2. The recognizer selects several subsets of the watermark nodes for decoding

(Section 5.2).
3. Each subset is decoded to compute a value, and the individual values are

combined to yield the watermark (Section 5.3).

4 Embedding

The construction of a watermark graph W is not discussed in VVS. In GTWSM

we accept an integer value for transformation into a watermark CFG. The recog-
nition process performs the inverse transformation from CFG to integer.
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Foot

Head

0 1 2 3 4

Body

Fig. 2. Reducible permutation graph of the integer value 8

The embedding process involves several steps: splitting the watermark value
into small integers; constructing directed graphs that encode these values; gen-
erating code that corresponds to the graphs; and connecting the code to the
program.

4.1 Watermark Value Splitting

GTWSM splits a watermark value v into a multiset S of k integers, k ≥ 2.
Empirically, we have determined that values of k between 5 and 15 produce
watermark methods that are neither overly large nor overly numerous.

A watermark value v is split as follows:

1. Compute the minimum exponent l such that v can be represented using k−1
digits of base 2l.

2. Split the value v into digits v0, v1, . . . , vk−2 such that 0 ≤ vj < 2l and
v =

∑k−2
j=0 2jlvj .

3. Encode the digits in the multiset {s0, s1, ..., sk−1} where s0 = l − 1 and
si = si−1 + vi−1.

For a concrete example, consider splitting a watermark value of 31415926
with k = 10. The minimum radix is 8, so l = 3. This produces a list vi of 6, 6,
1, 7, 5, 6, 7, 6, 1 and finally the multiset {2, 8, 14, 15, 22, 27, 33, 40, 46, 47}.

4.2 Encoding Integers as Graphs

Each integer is converted into a graph for embedding in the application. Several
issues must be considered when choosing a graph encoding:

1. The graph must be a digraph (a directed graph) for use as a CFG.
2. The graph must have the structure of a valid CFG. It should have a header

node with in-degree zero and out-degree one from which every node is reach-
able, and it should have a footer node with out-degree zero that is reachable
from every node.
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3. The graph should have a maximum out-degree of two. Basic block nodes
with out-degrees of one or two are easily generated using standard control-
structures such as if- and while-statements. Nodes with higher out-degree
can only be built using switch-statements. These are relatively unusual in
real code, and hence conspicuous.

4. The graph should be reducible [1], because true Java code produces only
reducible graphs. Intuitively, a CFG is reducible if it is compiled from prop-
erly nested structured control constructs such as if- and while-statements.
More formally, a reducible flow graph with root node r has edges that can be
split into an acyclic component and a component of backedges, where each
backedge (u, v) has the property that every path from r to u passes through
v. In this case, v is said to dominate u.

5. The control structures represented by the graph should not be deeply nested,
because real programs seldom nest deeply.

In GTWSM each part of the split watermark is encoded as a reducible per-
mutation graph, or RPG [3]. These are reducible control-flow graphs with a
maximum out-degree of two, mimicking real code. They are resilient against
edge-flip attacks and can be correctly decoded even if an attacker rearranges the
basic blocks of a method.

An RPG is a reducible flow graph with a Hamiltonian path consisting of four
pieces (see Figure 2):

A header node: The root node of the graph having out-degree one from which
every other node in the graph is reachable. Every control-flow graph has such
a node.

The preamble: Zero or more additional initial nodes from which all later nodes
are reachable. Any node in the body can have an edge to any node in the
preamble while preserving reducibility.

The body: The set of nodes used to encode a value. Edges within the body,
from the body to the preamble, and from the body to the footer node encode
a permutation that is its own inverse.

A footer node: A node with out-degree zero that is reachable from every other
node of the graph. This node represents the method exit.

There is a one-to-one correspondence between self-inverting permutations and
isomorphism classes of RPGs, and this correspondence can be computed in poly-
nomial time. An RPG encoding a permutation on n elements has a bitrate of at
least 1

4 lg n− 0.62 bits per node [3].
For encoding integers we use only those permutations that are their own

inverses, as this greatly reduces the need for a preamble. An integer n is en-
coded as the RPG corresponding to the nth self-inverting permutation, using
the enumeration of Collberg et al. [3].

4.3 Generating Code from a Graph

A graph is embedded in an application by building a set of instructions that have
a corresponding CFG. We want to generate code (in this case Java bytecode)
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that is stealthy, executable, and efficient. In VVS it is expected that watermark
code be connected to the application by means of opaque predicates, and hence
never executed. This leaves the watermarked application open to tracing attacks.
In GTWSM , we generate executable watermark code that has no semantic effect
on the program.

Given a graph, our code generator produces a static method that accepts an
integer argument and returns an integer result. Tiny basic blocks that operate on
an integer are chosen randomly from a set of possibilities to form the nodes in the
graph. The basic blocks are connected as directed by the graph, using conditional
jumps and fall-through paths whenever possible. When used in combination with
a graph encoder that mimics genuine program structures (such as our RPG
encoder), the result is a synthetic function that is not obviously artificial.

If the graph has at least one leaf node (representing a return statement) then
the generated function is guaranteed to reach it, so the function can safely be
called. Furthermore, the generator can be instructed to guarantee a positive,
negative, zero, or nonzero function result, allowing the function call to be used
in an opaque predicate.

4.4 Clustering

GTW includes a clustering step before the edge addition step to increase the
complexity of the graphs to which edges are added. If edges are added directly
to control flow graphs, few original nodes will have more than two out-edges or a
small number of in-edges, and high-degree nodes generated by edge adding will
be conspicuous. The clustering step allows complex graphs to occur stealthily.
VVS specifies a clustering step that proceeds by

Partition[ing] the graph G into n clusters using ω as a random seed, so
that edges straddling across clusters are minimized (approximately).

VVS also states that

The clustering step (2) must have a way to find different clusterings for
different values of ω, so that the adversary does not have any knowledge
about the clustering used.

With Java bytecode, edges can be added only within methods or to entry
points of other (accessible) methods. This constrains the usable clusterings. For-
tunately, the natural clustering of basic blocks into Java methods is suitable for
our needs. The proven difficulty of separating W from P does not rely on keyed
clustering, so we have chosen in GTWSM to simply treat each Java method as a
cluster.

Each node in the cluster graph then represents an application or watermark
method, and an edge between two nodes represents a method call. This cluster-
ing scheme is very likely to approximately minimize the number of edges between
clusters, since two basic blocks in the same method are much more likely to be
connected than two basic blocks in different methods. This scheme also allows
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us to implement edge addition stealthily, efficiently, and easily. We were un-
able to identify any substantially different clustering scheme with both of these
properties.

4.5 Adding Control-Flow Edges

The GTW algorithm adds edges between clusters using a random walk, with
nonuniform probabilities designed to merge the watermark code indistinguish-
ably into the program. This process begins by choosing a random start node
n, then repeatedly choosing another node l, creating an edge between n and l,
and finally setting n = l. This process proceeds until m edges have been added
between P and W .

To ensure that watermark code is not trivially detected as dead code, we then
continue randomly adding edges until no watermark method has degree zero.

VVS does not address the issue of choosing m. Our implementation chooses
m to make the average degree of the watermark nodes approximately the same
as the average degree of the application nodes as follows.

Let p be the number of program clusters and w be the number of watermark
clusters. Set qp = p−1

p+w−1 and qw = w−1
p+w−1 . Let e be the number of edges in the

original cluster graph. Then set

m =
4ew(1− qw)(1− qp)

p(2− qw)(1 − qp)− w(2 − qp)(1 − qw)
. (1)

Within the watermark cluster graph, qw is the probability that the next node
chosen in the random walk will also be a watermark node. The probability that
one edge-ending is added to watermark nodes is 1− qw, qw(1− qw) for two edge-
endings, q2

w(1 − qw) for three, and so on. The expected number of edge-endings
to be added to watermark nodes before leaving to original program nodes is then
Ew =

∑∞
n=1 nqn−1

w (1− qw) = 1
1−qw

.
Similarly, qp is the probability that the next node chosen after a cluster from

the original program is another cluster from the original program. We obtain
the analogous value Ep = 1

1−qp
for the expected number of edge-endings to be

added to program nodes before leaving for watermark nodes.
For every two cross edges added, we expect to add 1 + Ew edge-endings

to watermark nodes and 1 + Ep edge endings to program nodes. Let m = 2k.
Since we want the average degree to be the same in original program nodes and
watermark nodes, we have the formula

k(1 + Ew)
w

=
2e + k(1 + Ep)

p
. (2)

Solving (2) for m gives (1).
Because each method is a cluster, adding an edge from cluster A to cluster

B means inserting code into method A that calls method B. The generated wa-
termark methods are pure functions, so they can be executed without affecting
program semantics. Therefore, the added method calls to watermark methods
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can actually be executed. However, application code may have arbitrary side
effects, so the edge adding process must not change the number or order of
executions of application methods. Therefore, added application method invo-
cations are protected with opaquely false predicates to ensure that they are not
actually executed. Additionally, application methods may be declared to throw
checked exceptions. Preparing for and catching checked exceptions requires the
addition to A of several blocks other than the method call block.

Also as a result of making each method a cluster, not every edge can be
created. For example, private methods from different classes cannot call each
other. In this case, the edge is simply not created and the process continues
normally.

4.6 Marking Basic Blocks

Each basic block that corresponds to a node of the watermark must be individ-
ually marked for later recognition. The VVS paper does not provide an actual
algorithm, but suggests that

one may store one or more bits at a node that flags when a node is
in W by using some padded data after suitable keyed encryption and
encoding.

For marking purposes, the contents of a block can be changed as long as the
modified code is functionally equivalent to the original. Here are some examples
of possible block markers:

1. Add code that accomplishes no function but just serves as a marker, for
example by loading a value that is never used or writing to a value that has
no effect on overall program behavior.

2. Count the number of instructions in a block, and use the parity as a mark.
Add a no-op instruction, or make a more subtle change, to alter the mark.

3. Count accesses of static variables to determine a mark. Add variables and
accesses as necessary to produce the desired results.

4. Compute a checksum of the instructions and use one or more bits of that as
a mark. Alter the code as necessary to produce desired results.

5. Transform the instruction sequence in each block to a canonical form, then
vary it systematically to encode marks.

6. Add marks in the meta-information associated with each block. For example,
alter or create debugging information that associates code locations with
source line numbers.

All of these marking methods are easily defeated if an adversary’s goal is to
disrupt the watermark without necessarily reading it. We are not aware of any
robust block marking technique; this remains an unsolved problem.

For our implementation we have adopted the checksum technique, computing
the MD5 digest [18] of each block. Only instruction bytes and immediate constant
values, such as those in bipush, contribute to the digest value. This makes the
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digest insensitive to some simple changes such as reordering of the Java “constant
pool”.

A block is considered marked if the low-order two bits of the checksum are
zero. We expect, then, to alter 3

4 of the blocks in the watermark set but only 1
4

of the other blocks to get the right results. A real application will have many
more application blocks than watermark blocks, so this is a desirable imbalance.

Marking is keyed by concatenating a secret value to the instruction sequence
before computing the MD5 digest. The set of marks cannot be read, nor can it
be counterfeited, without knowing the key.

5 Recognition

The recognition process in VVS has three steps: detection of watermark nodes,
sampling of subsets of the watermark nodes, and computation of robust proper-
ties of these subsets. The set of robust property values composes the watermark.

5.1 Node Detection

A basic block that is part of the watermark code can be detected by computing
its MD5 digest, as described in Section 4.6. A digest value ending in two zero
bits indicates a mark. Attacks on the watermarked program may change the
digest value of some blocks, but our recognizer uses “majority logic” to recover
from isolated errors. If 60% of the blocks in a method are marked, the recognizer
treats all the blocks in that method as marked. If fewer than 40% of the blocks
are marked, all are considered unmarked. If the number is between 40% and
60%, the recognizer tries both possibilities.

5.2 Subset Sampling

GTW specifies that after the watermark nodes have been detected, several sub-
sets of them should be sampled. GTWSM uses method control flow graphs as
samples, and every watermark node is contained in exactly one sample set, in
particular, the control flow graph it belongs to.

5.3 Graph Decoding

The recognition process attempts to decode each sampled method control flow
graph as a Reducible Permutation Graph [3] that encodes an integer. A valid
RPG can be decoded into a self-inverting permutation. The decoder proceeds
by first computing the dominance hierarchy of the graph and, once the graph
is verified to be reducible, finding the unique Hamiltonian path in the graph.
This Hamiltonian path imposes an order on the vertices, after which decoding
the graph into a self-inverting permutation is relatively straightforward, as laid
out in [3].
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Each graph’s permutation is mapped back to an integer, using the same
enumeration as in Section 4.2. The combined set of integers S is combined to
produce single integer v, the watermark. This calculation is as follows:

1. Let k = |S|. Write S as {s0, s1, . . . , sk−1}, where s0 ≤ s1 ≤ · · · ≤ sk−1.
2. Set l = s0 + 1. For each 0 ≤ j ≤ k − 2, set vj = sj+1 − sj .
3. Then v =

∑k−2
j=0 2jlvj .

5.4 Use in Fingerprinting

Because the recognizer returns a specific watermark value, as opposed to just a
success/failure flag, GTWSM can be used for fingerprinting. This is a technique
where each copy of an application program is distributed with its own unique
watermark value, allowing pirated copies to be traced back to a specific original.

6 Evaluation

Most software watermarking research has focused on the discovery of novel em-
bedding schemes. Little work has been done on their evaluation. A software
watermarking algorithm can be evaluated using several criteria:

Data rate: What is the ratio of size of the watermark that can be embedded
to the size of the program?

Embedding overhead: How much slower or larger is the watermarked appli-
cation compared to the original?

Resistance to detection (stealth): Does the watermarked program have
statistical properties that are different from typical programs? Can an ad-
versary use these differences to locate and attack the watermark?

Resilience against transformations: Will the watermark survive semantics-
preserving transformations such as code optimization and code obfuscation?
If not, what is the overhead of these transformations? How much slower or
larger is the application after enough transformations have been applied that
the watermark no longer can be recognized?

6.1 Data Rate and Embedding Overhead

A watermark of any size can be embedded in even the smallest of programs using
this algorithm. Larger watermarks merely require larger watermark graphs, or
a larger number of them, thus incurring larger overhead in terms of increased
code size.

For non-trivial programs, there is little relationship between watermark size
and code growth, as illustrated in Figure 3. Block marking and edge addition
add code that proportional to the size and complexity of the application, not
the watermark. For watermarks up to 150 bits, size increases varying between
40 and 75 percent were measured.

CaffeineMark [19] benchmark results show the effect of watermarking on
execution time. Some programs were not affected significantly, while others took
20 to 36 percent longer, as shown in Table 1.
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Fig. 3. Increase in code size for the machineSim program

6.2 Stealth

Some common attacks against watermarking systems, such as manual attacks
and subtractive attacks, begin by identifying the code composing the watermark.
To resist such attacks, watermarking could should be stealthy: It should be
indistinguishable from the host code. Two useful measures of stealth are the
similarity of the watermark code to the host code and the similarity of the
watermark code to general application code.

GTWSM introduces several new artificially-generated methods to an appli-
cation. These methods are not stealthy in two respects. First, these methods
include a very high percentage of arithmetic operations. While general Java
bytecode includes approximately 1% arithmetic instructions, the methods in-
serted by GTWSM contain approximately 20% arithmetic instructions. Second,
the control flow graphs of the inserted methods are all reducible permutation
graphs. While RPGs are designed to mimic the structure of real control flow
graphs, only 2 of 3236 methods in the SpecJVM benchmarking suite have con-
trol flow graphs that are RPGs. Therefore, RPGs are not stealthy if an attacker
is looking for them.

GTWSM currently introduces unstealthy code to implement edge addition
between clusters. Edges between application methods are protected using the

Table 1. CaffeineMark scores before and after embedding a watermark

Category Original Watermarked Slowdown

Sieve 8676 6876 20.7%
Loop 25636 16344 36.2%
Logic 20635 13231 35.9%
String 19481 20198 -3.6%
Float 18657 18646 0%

Method 19106 12783 33.1%

Overall 17719 13816 22.0%
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particularly conspicuous opaque predicate if (null != null). Also, GTWSM

passes a constant for each argument to the called function; real code is more
likely to compute at least one of its arguments.

6.3 Semantics-Preserving Attacks

Automated attacks are the most serious threat to any watermark. Debray [13,
12, 11] has developed a family of tools that optimize and compress X86 and
Alpha binaries. BLOAT [15] optimizes collections of Java class files. SandMark
implements a collection of obfuscating code transformations that can be used to
attack software watermarks.

We first tested the robustness of GTWSM on a Java application machineSim
which simulates a Von Neumann machine. Various SandMark obfuscations
were applied to see if a watermark could survive. The watermark was success-
fully recognized after inlining, register re-allocation, local variable merging, array
splitting, class inheritance modification, local variable splitting, and many oth-
ers. It was destroyed by primitive boxing, basic block splitting, method merging,
class encryption, and code duplication. These types of transformations are de-
scribed in [6, 7, 8].

Method merging makes such large changes to control-flow graphs that there
is really no hope of recovering the watermark value. Primitive boxing changes
the instructions in many basic blocks in a method, and thereby changes the
marks on the blocks. Code duplication and basic block splitting add nodes to
the control flow graph of a method. While RPGs can survive some kinds of
attacks on edges, they cannot survive node additions.

The attack model considered in VVS is a small number of random changes
to the watermarked application. We have implemented an obfuscation that ran-
domly modifies a parameterized fraction of blocks in a program. If fewer than
about half of the blocks in a watermarked application are modified, the wa-
termark survives. If more than that are modified, the watermark cannot be
recovered.

6.4 False Positive Rates

For our implementation to detect a spurious watermark in an unmarked appli-
cation, the application would have to have at least two methods with acceptable
control-flow graphs in which the majority of basic blocks would produce MD5
digests with two low-order zero bits. The probability of finding a mark in a single
basic block is only 1

4 . We examined a large group of methods from real programs
and found the probability of a control-flow graph being a valid RPG to be 0.002.
While there is a possibility of finding an RPG with only two or three nodes
where all the nodes are marked in a real program, choosing watermark values
from a sufficiently sparse set should be enough to prevent false positives.
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7 Discussion and Future Work

Our implementation of the GTW watermarking system is fully functional and
reasonably efficient. It is resilient against a small number of random program
modifications, in accordance with the threat model assumed by VVS.

The system is more vulnerable to pervasive changes, including several ob-
fuscations implemented in the SandMark system. Such vulnerabilities stem
from issues left unaddressed by the VVS paper. These and other areas provide
opportunities for future work.

Static marking of basic blocks is the fundamental mutation applied by the
watermarker. Development of a robust marking method, capable of withstanding
simple program transformations, is still an unsolved problem.

Another area of great potential is the encoding of values as graph structures.
In particular, the development of other error-correcting graphs, as postulated by
VVS, would greatly increase the strength of a watermark.

More sophisticated generated code and opaque predicates would improve the
stealthiness of a watermark.

Implementations of GTW for other architectures besides Java would un-
doubtedly prove enlightening, because they would be likely to supply somewhat
different challenges and opportunities.

One key feature of GTW is the algorithm for connecting new code represent-
ing a watermark into an existing application. This algorithm also adds branches
within the pre-existing code and is interesting in its own right as a means of
obfuscation. This also has potential for further research.

8 Summary

We have produced a working implementation of the Graph Theoretic Watermark
described by Venkatesan et al. [21]. The implementation is faithful to the paper
within the constraints of Java bytecode, and includes necessary components
that were left unspecified by the original paper. While the GTW design protects
against detection, its fundamental dependence on static block marking leaves
watermarked programs vulnerable to distortive attacks.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles, Tech-
niques, and Tools. Addison-Wesley, 1986. ISBN 0-201-10088-6.
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Abstract. We introduce a new dynamic technique for embedding robust
software watermarks into a software program using thread contention.
We show the technique to be resilient to many semantic-preserving trans-
formations that most existing proposals are susceptible to. We describe
the technique for encoding the watermark as a bit string and a scheme
for embedding and recognizing the watermark using thread contention.
Experimental results with Java bytecode indicate that thread based wa-
termarks have small impact on the size of applications and only a modest
effect on their speed.

1 Introduction

Software watermarking is a technique for embedding an identifier into a piece of
software in order to encode some identifying information about it. This identi-
fying information can be used to demonstrate ownership; and in cases of piracy,
may make it possible to trace software to the source of its illegal distribution.
Watermarking has received an increasing amount of interest from the research
community which has resulted in increasingly resilient techniques. However, no
single watermarking algorithm has emerged that is effective against all existing
and known attacks. In fact, it is generally agreed that it is not possible to de-
vise a watermark that some sufficiently determined attacker would not be able
to defeat. As a result, the goal of the watermarking community is to develop
techniques that are sufficiently robust that the resources required to defeat the
watermark are too expensive to be worth the attackers while.

In this paper, we propose a new technique for software watermarking, thread-
based watermarking, for embedding and detecting a watermark using thread
contention. Our premise is that multithreaded programs are inherently more
difficult to analyse and the difficulty of analysis increases with the number of
threads that are “live” concurrently [18].

Software watermarks can be used for different purposes and their desirable
properties vary depending on their use [15]. For software piracy the two prop-
erties that interest us are “robustness” and “invisibility”. “Robustness” ensures
that the watermark is difficult for an attacker to remove and thus the watermark
can act as a software intellectual property identifier. “Invisibility” means that
the watermarks are designed to be non-apparent to the end-user and thus do
not interfere with legitimate use of the program.

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 208–223, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Our proposed technique embeds the watermark in the order and choice of
threads which execute different parts of an application. The embedding is a
two step process. Firstly, we increase the number of possible paths through the
program by creating multiple threads of execution. The semantics of the old
program are maintained by introducing locks. Secondly, we add other locks to
ensure that only a small subset of the possible paths are in fact executed by
the watermarked program. The particular paths that are executed encode the
watermark.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the state-of-the-art in watermarking literature and other related work. In Sec-
tion 3, we give an overview of the basic idea behind thread based watermarks.
Section 4 describes how thread based watermarks can be implemented for Java
bytecode. Section 5 gives experimental evaluation of our technique. Finally, Sec-
tion 6 gives future directions and conclusions.

2 Related Work

There are several other published techniques for doing software watermarking,
static watermarks and dynamic watermarks. The earliest software watermarks
were static watermarks where the watermark was embedded in either the code
section (eg. in variable names, order of exectuable statements) or in the static
data sections (eg. in the strings, images, headers) of a program [8]. Moskowitz [14]
describes such a scheme in which the watermark is embedded in an image or
other digital media using any known media watermarking scheme. The image
is in turn embedded in the static data section of the program, and the water-
mark is extracted at runtime. This fragile watermark is necessary for program
correctness.

A more advanced kind of static code watermark was introduced by Davidson
and Myhrvold [7]. The technique involved statically encoding the watermark
in the ordering of basic blocks that constitute program. Another code water-
mark was introduced by Monden [13] which involved injecting dummy unexe-
cuted methods into the program. These dummy methods contain an encoding of
the watermark in the choice of opcodes and numerical operands. A comparable
spread spectrum technique was introduced by Stern et al. [22] for embedding a
watermark by modifying the frequencies of instructions in the program.

Instead of watermarking the code or data sections of a program, Sander and
Tschudin [20] introduce a technique for watermarking a function by embedding
information statically in the I/O interface between the client and the server.

Static watermarks are particularly susceptible to obfuscation attacks. Two
such attacks described by Collberg et al. [4] involve breaking and scattering all
strings and other static data around the program and/or replacing this static
data with code that generates the same data at runtime. Both these attacks are
extremely effective in making watermark detection impractical.

Perhaps the strongest known static watermark was introduced by Venkatesan
et al. [23] which involves modifying a program so that its control flow graph
encodes the watermark represented as a graph.
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Dynamic data structure watermarks were introduced by Collberg and Thom-
borson [2]. These watermarks alter the original program so that a data structure
that represents the watermark gets built whenever the program is run with the
correct input. In order to implement these dynamic data structure watermarks,
a system called SandMark [5] was designed jointly at the University of Auckland
and the University of Arizona. Sandmark provides a framework to watermark
Java programs by modifying the application bytecode to make it build a struc-
ture at runtime that encodes the watermark. This structure is recognized as the
watermark by dumping and analyzing the Java heap.

Historically, watermarking has not been the only technique used for protec-
tion of intellectual property of software. Other techniques include the use of a
registration database [9] [21], hardware cryptography [17], obfuscation [4] and
tamper-proofing [1]. Furthermore, research has been conducted into using “soft-
ware birthmarks”, which are preexisting properties of a piece of software, to
establish the authorship of a program [8] [11].

In Collberg et al. [5] the authors suggest using thread contention, but as a
possible technique for obfuscating the execution of a program, not for water-
marking. This paper gives the first practical method for software watermarking
using thread contention.

3 Thread Based Watermarks

We describe a new watermarking algorithm, thread based watermarking, where
the basic idea is to embed the mark in the threading behavior of the program.
Our proposed technique relies on introducing new threads into single threaded
sections of a program. In an unsynchronized multithreaded program, two or
more threads may try to read or write to the same area of memory or try to use
resources simultaneously. This results in a race condition - a situation in which
two or more threads or processes are reading or writing some shared data, and
the final result depends on the timing of how the threads are scheduled.

One technique that allows threads to share resources in a controlled man-
ner is using a mutual exclusion object often called a mutex. A mutex has two
states, locked and unlocked. Before a thread can use a shared resource, it must
lock the corresponding mutex. Other threads attempting to lock a locked mu-
tex will block and wait until the original thread unlocks it. Once the mutex is
unlocked, the queued threads contend to acquire the lock on the mutex. The
thread that wins this contention is decided by priority, order of execution or by
some other algorithm. However, due to the nature of multithreaded execution
and the number of factors that can affect the timing of thread execution, the
particular thread that acquires the lock is difficult to predict and appears to be
largely random [18].

In order to embed our watermark, we take advantage of the fact that although
thread contention appears to be random, by carefully controlling the locks in a
program, we can force a partial ordering on the order in which some parts of the
program are executed.
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� �
void run () {

blockA ();
blockB ();

}

� �

a.

� �
boolean doneA = false;
boolean doneB = false;
Mutex mutex2 = new Mutex ();
Mutex mutex1 = new Mutex ();
void run () {
Thread t0 = new Thread () {

public void run () {
lock mutex1;
if ( ! doneA ) {

blockA (); doneA=true;
}
unlock mutex1;
lock mutex2;
if ( ! doneB ) {

blockB (); doneB=true;
}
unlock mutex2;

}
};
Thread t1 = new Thread (t0);
t1.start (); t0.start ();
t1.join(); t0.join();
}

� �

b.

� �
boolean doneA = false;
boolean doneB = false;
Mutex mutex2 = new Mutex ();
Mutex mutex1 = new Mutex ();
void run () {
Thread t0 = new Thread () {

public void run () {
lock mutex1
if ( ! doneA ) {

blockA (); doneA=true;
}
lock mutex2;
unlock mutex1;
if ( ! doneB ) {

blockB (); doneB=true;
}
unlock mutex2;

}
};
Thread t1 = new Thread(t0);
t1.start (); t0.start();
t1.join(); t0.join();
}

� �

c.

Fig. 1. In a. we have the original program. b. shows a multithreaded but uncon-
strained version of the original program. There are four different correct paths
through this program, all of which may be executed. c. shows a multithreaded
and constrained version of the original program. In this version, although both
threads contend to execute blockA which ever thread executes the first block
also executes the second one because of the order of locks.

For example consider Figure 1a which shows a simple snippet of a program
with a run() method that calls other methods blockA() and blockB(). We
could introduce new threads into the program to execute each of the statements
as show in Figure 1b. This version of the program remains correct and seman-
tically equivalent to the original, however, there a several paths of execution
with either t0 or t1 executing blockA() followed by either t0 or t1 executing
blockB(). In order to embed information into a program, we manipulate the
locks so that only a given subset of paths through the code is taken. In Fig-
ure 1c, we show one example of such manipulation. In this example, although
the two new threads race to acquire a lock on mutex1 like before, in this case
whichever thread locks this mutex is also guaranteed to lock mutex2 and thus
executes both blockA() and blockB(). We can detect this scenario as distinct
from the case where different threads execute blockA() and blockB() and thus
we can use it to embed a bit of information.

The advantage of allowing some thread contention to remain is that although
it allows a bit to be embedded, the actual path of execution still changes every
time the program is executed. This makes the attackers task of determining
which exact sequence embeds the mark more difficult. We discuss this resilience
to attack more in the Section 5.
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4 Watermarking Java Bytecode

public class A {

 public void run () {
  piece1();
  piece2();
  piece3();
 }
}

public class A {

 public void run () {
  Object mutex_orig = new Object();

  WMThread t2 = new WMThread ();
  WMThread t3 = new WMThread ();

  WMThread t1 = new WMThread ();

public class A {

 public void run () {
  Object mutex_original = new Object();
  WMThread t1 = new WMThread ();
  WMThread t2 = new WMThread ();
  WMThread t3 = new WMThread ();

Decodings

E1 = 10011011

E0 = 10011011

E2 = 10011011

T

.

.

.

.

.

.

.

.

.
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Fig. 2. Overview of thread based watermarking

We have implemented thread based watermarking for Java bytecode. This
implementation consists of three stages. In the tracing phase, the dynamic be-
haviour of the program is captured by tracing its execution on a secret input,
I. In the embedding phase, the watermark number W is selected by the user
and embedded in the input code by modifying the behavior of the program on
the secret input I. Finally, in the recognition phase, the program is traced again
with input I, and the watermark is extracted from the trace.

Figure 2 illustrates the watermarking process. In A© the original program is
annotated for tracing and executed with the secret input I that the user selects.
In B© the user selects a watermark string and encodes it using some encoding
scheme. In C© watermark code is inserted into the original program. When the
watermarked program is executed with the special input sequence in D©, the
resulting trace will contain the watermark.

4.1 Tracing

We begin the tracing phase by performing control flow analysis on the input
program to build up a control-flow graph. This graph represents the possible
paths through a program. The nodes of the graph represent basic blocks while
the directed edges represent jumps from one node to another. A basic block is a
piece of straight line code without any jumps or jump targets. We instrument the
input program to write a program trace to a file and execute the program with
the secret input I. The trace is a series of tuples (Bi, Ti) where Bi is the block
id of every basic block executed and Ti is the id of the thread that executed
Bi. The watermark is embedded in the execution behavior of input program
and as such we select input I such that for a given thread Tn, the sequence
T =< B0, B1, ..., Bn > is reproducible on different runs.
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The program trace serves two purposes. Primarily it is used to find the basic
blocks that are executed by the input program when given the chosen input.
These basic blocks are potential blocks to embed bits of the watermark. Secon-
darily, the program trace counts how often each basic block gets executed and
thus helps identify tight loops, recursion and other program hotspots. There is a
computational and thread switching runtime cost associated with inserting new
threads into the program and to avoid excessive slow down, we avoid inserting
watermarks in to these hotspots.

The secret input I acts as the key and the watermark will be expressed when
this secret input is entered. Other inputs may express other watermarks. Keeping
this input a secret impedes an attacker who gains access to the recognizer from
mounting the so called Oracle attack [6] which can be used to create a non-
watermarked program when a watermark recognizer is available.

4.2 Embedding

The embedding phase modifies the input code so that the watermark W can
be extracted from a trace of basic blocks executed on the input sequence I, as
described in Section 4.1.

In our prototype design, we encode a 24-bit watermark string W into a 48-
bit string E, using a randomly chosen code. The extreme sparseness of this code
gives us a strong error-detection property which we will use in our recognition
step: if a 48-bit string is chosen uniformly at random from the set {0, 1}48, the
probability of this string being a legal codeword is only 2−24.

We split our 48-bit string into six 8-bit bytes E =< E0, E1, ..., E5 >. Each
byte is embedded separately. For each byte, we select a thread Ti at random
and a subsequence of T < (B0, Ti), ..., (Bn, Ti) > - that is a set of n basic blocks
executed by Ti in the order of execution. To simplify embedding we ensure that
we select n distinct basic blocks - that is we select Bi such that ∀i, j : i = j →
Bi = Bj .

As mentioned earlier thread switching code is expensive in time. Basic blocks
that are executed repeatedly are poor candidates for embedding as slowing them
down will significantly deteriorate the overall performance of the program. Fur-
thermore we select some of the basic blocks that are input dependent to make
the value of the expressed watermark vary with I.

In order to embed our watermark we require our chosen thread to be able
to execute an arbitrary piece of code that it is passed. Thus we first extend the
java Thread class so that threads can be passed a closure to execute. A closure
is a data structure that contains an expression and an environment of variable
bindings in which the expression is to be evaluated. There is no direct support
for closures in Java. However, several techniques for implementing closures in
Java exist in literature. In particular, Pizza [16] describes two schemes for im-
plementing closures in Java. In our implementation a closure is translated into
a class that implements the Runnable interface. This interface contains a single
run() method. The body of the closure is inserted into the run() method of
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the new class while the call location is replaced with an instantiation of the new
class and an invocation of the run() method.

A closure allows the introduced threads to access and possibly alter the local
variables used by the basic block. Unfortunately, formal parameters in Java are
passed by value and we need some mechanism by which to pass updates out of
the function body. In our implementation we construct a Locals class for every
closure in which all variables used by the closure are captured. When the closure
is instantiated we pass this environment to it.

We insert into each basic block Bi code that causes the threads to switch in
such a way as to encode Ei. A simple implementation is shown in Figures 3 and
4.2.

In our implementation, a bit 0 is encoded as a sequence of three basic blocks
executed by three different threads. A bit 1 is encoded as a sequence of three basic
blocks, where the first and third basic blocks are executed by the same thread
and the second basic block is executed by a different thread. The advantage of
such an encoding scheme over one that explicitly uses named blocks and threads
is that it is more resilient to renaming attacks.

We use Java monitors to control the ordering of locks. The only mechanism
in the Java language for manipulating monitors is the synchronized statement
which acquires a lock on an object before executing a block and then releas-
ing it. The synchronized statement requires all lock and unlock calls to be fully
nested and is not sufficiently expressive for our purposes. Thus to we use the
macros monitor enter() and monitor exit() in the source code of our exam-
ples. These expand to monitor enter and monitor exit calls in Java bytecode,
and have the advantage that they cannot be decompiled to synchronized state-
ments in Java source. This provides some defense against decompilation attacks.

� �
WMThread t1;
WMThread t2;
WMThread t3;
int[] wm = { 1,0,1,1,1,0,1,0 };
...
for ( int i=0; i < wm.length ; i++ ) {

embedBit_macro ( t1 , t2 , t3 ,
Bit0_Closure );

} else {
embedBit_macro ( t1 , t2 , t3 ,

Bit1_Closure );
}

� �

a.

� �
embedBit_macro ( t1 , t2 , t3 , body ) {

Object mutex_orig = new Object ();
t1.setBody ( body );
t2.setBody ( body );
t3.setBody ( body );
monitor_enter ( mutex_orig );

t1.start (); t2.start (); t3.start ();
while ( t1.isAlive () &&

t2.isAlive () &&
t3.isAlive () )

{ Thread.yield () }
monitor_exit ( mutex_orig );
t1.join(); t2.join(); t3.join();

}
� �

b.

Fig. 3. Part a shows the code inserted to embed the bits 10111010. The
embed bit macro call is the macro that expands as shown in Part b. The setBody
method takes a closure as its argument.

The problem with the simple implementation of Figures 3 and 4.2 is that
the inserted threads do not in fact perform any computation and as such are
conspicuous as well as easily removed. In order to tamperproof the watermark
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� �
boolean doneA , doneB , doneC , doneD;
doneA=doneB=doneC=doneD=false;
Object mutex0 = new Object ();
Object mutex1 = new Object ();
monitor_enter ( mutex0 );
if ( ! doneA ) {

doneA = ! doneA;
monitor_enter ( mutex1 );
monitor_exit ( mutex0 );
monitor_enter ( mutex_orig );
monitor_exit ( mutex_orig );

}
if ( ! doneB ) {

doneB = ! doneB;
monitor_exit ( mutex0 );
monitor_enter ( mutex1 );
monitor_enter ( mutex_orig );
monitor_exit ( mutex_orig );

}
if ((!doneC && opaque true) ||

(( doneC && opaque false) ||
(doneD && opaque false )) ) {

doneC = ! doneC;
if ( doneD )

monitor_exit ( mutex1 );
else {

monitor exit ( mutex1 );
doneD = ! doneD;

}
} else {

doneC = ! doneC;
monitor exit ( mutex0 );

}
� �

� �
boolean doneA , doneB , doneC , doneD;
doneA=doneB=doneC=doneD=false;
Object mutex0 = new Object ();
Object mutex1 = new Object ();
monitor_enter ( mutex0 );
if ( ! doneA ) {

doneA = ! doneA;
monitor_enter ( mutex1 );
monitor_exit ( mutex0 );
monitor_enter ( mutex_orig );
monitor_exit ( mutex_orig );

}
if ( ! doneB ) {

doneB = ! doneB;
monitor_exit ( mutex0 );
monitor_enter ( mutex1 );
monitor_enter ( mutex_orig );
monitor_exit ( mutex_orig );

}
if ((!doneC && opaque false) ||

((doneC && opaque true) ||
(doneD && opaque true) ) {

doneC = ! doneC;
if ( doneD )

monitor_exit ( mutex1 );
else {

monitor exit ( mutex0 );
doneD = ! doneD;

}
} else {

doneC = ! doneC;
monitor exit ( mutex1 );

}
� �

Fig. 4. Implementation of Bit0 Closure(left) and Bit1 Closure(right). The
only differences between the implementations have been highlighted.

we use the new threads to perform the computation that was originally occur-
ring in the basic block. Firstly we divide the selected basic block into three
pieces, piece1(), piece2() and piece3() with each piece containing zero or
more instructions and construct a closure around them. We then pass these new
closures along with those that implement the watermarks to the new threads for
execution as shown in our final implementation at Figure 5 and Figure 6.

In Figure 5 we embed a bit 0. The original thread Torig locks mutexorig then
forks of three new threads T0, T1 and T2 which are executing identical closures.
It then waits for these threads to terminate. The three new threads contend for
mutex0 and the winner proceeds to execute LA1 as shown in Figure 5. This
causes piece1() to be executed by the winner while the other threads wait. The
body of the threads are identical and because the cases are symmetric, let us
assume T0 wins the lock. T0 proceeds to execute LA1 and lock mutex1, unlock
mutex0 then blocks waiting for mutexorig which is owned by Torig. Threads T1

and T2 now contend for the freed mutex0 and one of them wins the lock.
Once again the cases are symmetric and we assume T1 locks mutex0. T1

now executes LB1 and thus T1 executes piece2(), unlocks mutex0 and blocks
waiting for mutex1 owned by T0. At this point T0 is still waiting on mutexorig.
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LA0 LA1

LB1LB0

if ( doneD )

mutex1
unlock

doneD=!doneD

piece3()
doneC=!doneC

piece1()
doneA=!doneA
lock mutex1
unlock mutex0
lock mutexorig
unlock mutexorig

piece2()
doneB=!doneB
unlock mutex0
lock mutex1

if ( doneB )

T0.join(); T1.join(); T2.join()
unlock mutexorig

while ( isAlive(T0,T1,T2) ) { Thread.yield() }

lock mutexorig
start(T0,T1,T2);

Torig
T0

doneC=!doneC

lock mutex0
if ( doneA )

unlock mutex0

if ( doneC || doneD )

unlock mutex1

Fig. 5. Embedding a bit 0: A control
flow diagram of Torig and the three
threads T0, T1 and T2 executing an
identical body. The threads T1 and T2

are identical to T0 and are not shown.
One possible path of execution of these
threads is that T0 executes LA1 and
LB0; T1 executes LA0 and LB1; and T2

executes LA0 and LB0. Continuing this
path T2 will execute piece3().

T0.join(); T1.join(); T2.join()

while ( isAlive(T0,T1,T2) ) { Thread.yield() }
unlock mutexorig

Torig
lock mutexorig

start(T0,T1,T2);

unlock mutex0

if ( doneD )

mutex1
unlock

doneD=!doneD

piece3()
doneC=!doneC

piece2()
doneB=!doneB
unlock mutex0
lock mutex1
lock mutexorig
unlock mutexorig

if ( doneB )

piece1()
doneA=!doneA
lock mutex1
unlock mutex0
lock mutexorig
unlock mutexorig

T0

LA0’

LB1’LB0’

LA1’

doneC=!doneC

if ( doneA )
lock mutex0

unlock mutex1

if ( !doneC )

Fig. 6. Embedding a bit 1: A con-
trol flow diagram of Torig and the three
new threads T0, T1 and T2. To execute
LA1’ and LB0’, T1 executes LA0’ and
T2 executes LA0’ and LB0’ Continu-
ing this path T0 will execute piece3().
This figure is identical to Figure 5 ex-
cept where shown in reverseface .

Finally, T2 locks mutex0, executes piece3() unlocks mutex0 and exits. At this
point, Torig is able to wake and unlock mutexorig allowing either T1 or T2 to wake
up, release their locks and exit. Finally, Torig waits until all three threads T0,
T1 and T2 have exited before continuing execution. As a result of this execution,
three distinct threads have executed the three pieces thus embedding a bit 0.

In Figure 6 we embed a bit 1. The behavior of the threads is identical to em-
bedding bit 0 until T2 evaluates the third conditional marked �!doneC�. In this
case, T2 skips evaluating piece3() and instead unlocks mutex0 and exits. As a
result, Torig unlocks mutexorig and T0 acquires it. T0 then executes piece3()
and exits allowing T1 to also release its locks and exit. As a result of this exe-
cution, the same thread executes piece1() and piece3() while a different one
executes piece2() thus embedding a bit 1.

The introduced code is carefully constructed so that the only differences
between the embedding of bit 0 and bit 1 are the arguments to unlock and the
third conditional as shown in Figure 6.
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The first of these differences, the arguments to unlock is obscure to an at-
tacker because in Java monitor enter and monitor exit are stack operations.
Thus it is not possible to statically pattern match on the code to determine if
a 0 or a 1 bit is being embedded. Furthermore, it is difficult given the stack
operations to determine purely statically which object mutex0 or mutex1 will
be on top of the stack when unlock is called.

The second of these differences may allow an attacker to pattern match on
the conditional statements (�!doneC� versus �(doneC || doneD)� to distinguish
between an embedding of 0 and an embedding of 1. To prevent this, we use
opaque predicates to fold the two different expressions into one. An opaque pred-
icate [3,4] is an expression whose value is known to the watermarker at time of
watermarking but which is difficult for the attacker to deduce.

An opaque false predicate is an opaque predicate which is always false whilst
an opaque true predicate is one which is always true. We are able to construct a
single expression of the form: �(!doneC && Xopaque ) || ((doneC && Yopaque)
|| (doneD && Zopaque))�

To embed bit 0 as shown in Figure 4a, we set X to be opaquely true and Y and
Z to be opaquely false, thus reducing the expression to �(!doneC)�. Alternately,
to embed bit 1 as shown in Figure 4b, we set X to be opaquely false and Y
and Z to be opaquely true thus reducing the expression to (doneC || doneD) as
required.

The opaque predicates can be selected from a large library of opaque predi-
cates such as described by Collberg et. al. [4] which makes pattern matching or
static analysis of this expression useless in distinguishing between an embedding
of bit 0 or bit 1.

4.3 Recognition

Watermark recognition involves identifying our original watermark in a possibly
tampered piece of code. As discussed in Section 3, in our scheme using dynamic
watermarking, recognition involves replaying the watermarked program with key
input and decoding the watermark from the threading behaviour of the applica-
tion.

Watermark recognizers can be broadly classified as “detectors” - those that
merely report the presence of a watermark and “extractors” - those that return
the encoded value of the watermark. We can build a detector for our watermark
by the following method.

First, we extract information about the threading behaviour of the water-
marked program. We begin by collecting a trace of its execution on secret input
I, using a technique similar the one described in Section 4.1. During detection,
we are only interested in the transition from one thread to the next. Therefore
given two consecutive tuples in the trace, (Bi, Ti), (Bi+1, Tj), we only record a
thread ID, Ti if i = j. This results in T =< T0, T1, ..., Tm > which is a list of
thread IDs in basic block execution order.

We select every combination of three distinct thread IDs that occur in T
and form a subsequence with just these threads. Note that if there are 4 thread
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IDs, then we form
(
4
3

)
= 4 subsequences. In general, we form

(
m
3

)
= O(k3)

subsequences from a trace T containing m thread IDs. From these subsequences,
we then reconstruct all possible 8-bit watermark bytes by extracting all thread-
transition sequences of length 24; recall that we embed each bit of an 8-bit
watermark code byte as a sequence of three thread-transitions. Our final step is
to construct all possible 6-byte sequences, testing whether each of these is a legal
codeword. We can quickly test whether each codeword is valid by hash-lookup of
a 48-bit possibly-valid code in a table with approximately 16 million (224) valid
48-bit codes E. The appropriate 24-bit watermark signal W is stored with each
valid code.

Two of our three benchmarks are single-threaded, so our extraction process
is quite straightforward. During the extraction process on these benchmarks,
almost all thread-transitions are due to our watermark, so our error-detection
code is not heavily used. Our JFig benchmark is multi-threaded, however, with
7 threads and 47 thread-transitions when it is run on our secret input before
watermarking. After watermarking, JFig has a total of 25 threads, because we
add three threads for each byte in our 6-byte encoded watermark E. There are(
25
3

)
= 2300 different ways to select three threads from twenty-five threads; only

six of these thread-choices will reveal a valid byte from our encoded watermark.
All other choices will give spurious signals, and most of these signals cannot be
properly sequenced with five other bytes Ei to form a 48-bit possibly-correct
codeword E. In our preliminary experimentation (although we are not confident
of the correctness of our implementation) our reconstruction process generates
less than 100 possible 48-bit codewords E for our watermarked JFig. This is
well within the error-detection capacity of our encoding process: we’d estimate a
false-extraction error rate of less than 100/224 under the reasonable assumption,
which has yet to be experimentally verified, that the spurious codewords are
uncorrelated with our randomly-chosen encoding scheme.

4.4 Experimental Results

Experiments were performed on three pieces of software: TTT, a trivial tic-tac-
toe program; JFig, a figure editor; and SciMark, a Java benchmark. This latter
benchmark is a composite benchmark consisting of five computational kernels
used for measuring the performance of numerical codes occurring in scientific
and engineering applications. The programs were selected for experimentation
because they categorize different types of Java programs that may be water-
marked. TTT is a small GUI program (64 lines) with one major loop and all but
4 of the lines in the program are executed on our sample input. JFig is a much
larger GUI program (≈ 23000 lines) with most lines of code never being exe-
cuted. The SciMark benchmark (≈ 1300 lines) is a non-GUI application that
consists of many tight loops optimized for numerical computations. A significant
number of lines (5%) are run more than 50, 000 times.

The two GUI programs have no bounds on running time and for our ex-
periments were run for a fixed input. For TTT this consisted of two games of
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Execution Frequency Average Running Time
TTT 4 lines never run 30s
(64 lines) 34 lines run 1 time

0 lines run > 100 times
0 lines run > 50, 000 times

JFig 18678 lines never run 600s
(22,779 lines) 0 lines run 1 time

0 lines run > 100 time
0 lines run > 50, 000 times

SciMark 224 lines never run 26s
(1,279 lines) 105 lines run 1 time

146 lines run > 100 times
61 lines run > 50, 000 times

Table 1. Characteristics of benchmark programs measured on a Pentium(R) 4
- M CPU 2.40GHz running GNU/Linux Java HotSpot(TM) Client VM (build
1.4.2-beta-b19, mixed mode)

tic-tac-toe while for JFig it was the time taken to draw a simple figure. Table 1
summarizes the characteristics of these programs.

We measured the impact of embedding bits of a watermark on the running
time of an application. SciMark performs no IO operations after it was started,
hence it required no special timing harness.

For the two GUI applications, we used xnee, an X event recorder to record the
X events sent to an application. After watermarking the application we replayed
the X events and timed the entire procedure.

The original applications were timed 10 times and averaged to calculate initial
speed. Following this they were watermarked and run ten times again to record
how much they slowed down. The left-hand plot of Figure 7 shows the average
slow down that results from embedding a watermark. In each of our ten timed
tests the location at which the watermarks are embedded is selected randomly
from the basic block trace which is produced during the trace step. It should be
noted that although inserting a 48-bit watermark in SciMark results in a very
significant slow down with a factor of ≈ 8, real world applications like TTT and
JFig which have a GUI and wait for user interaction were observed to have very
few time critical loops. For these applications, the resulting slow down was much
less noticeable.

We also measured the size overhead of embedding our thread based water-
mark. The most significant contribution to the increased size of the application
was the creation of closures. The right-hand plot of Figure 7 shows that thread
based watermarks have a significant impact on the size of the small input appli-
cation. Each embedding of a watermark bit caused the code size to increase by
about 1.2 kilobytes.

5 Attacks

A software pirate attempting to steal a watermarked program may carry out
several different attacks to prevent a watermark from remaining recognizable. To
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Fig. 7. Slow down of program execution, and Increase in the code size (in
kilobytes), as a function of number of watermark bits embedded.

evaluate the resilience of our watermarking scheme we must know how resilient
it is to these attacks.

5.1 Obfuscation Attacks

The simplest static attack that may remove a watermark is obfuscations that
rename all variables and methods in a program, reorder blocks of code, or re-
structure data [2]. A more advanced obfuscation technique which attempts to
obscure the identity of variables or methods is “inlining” or “outlining”. Inlining
is a common compiler optimization technique that involves replacing a method
call with an instance of the method’s body. Similarly, outlining is where a set of
instructions is replaced with a call to a method containing those instructions.

Our proposed technique is completely resilient to all of these attacks. This is
because the recognition relies on the executed behavior of the program and not
on its static structure - and this executed behaviour is preserved by these static
attacks.

5.2 Decompilation/Recompilation Attack

An advanced attack is one where the watermarked program is decompiled then
recompiled. Decompilation of programs that contain our watermark is difficult
because although the watermarked code is legal Java bytecode, the improperly
nested monitor calls mean that it cannot be directly expressed in the Java lan-
guage. In particular, it was found that of the three decompilers tried Jad [10],
Homebrew [19] and Dava [12], only Dava successfully handled unnested monitor
calls correctly. It uses a library that emulated Java monitors in pure Java. Unfor-
tunately, other errors prevented it from correctly decompiling our watermarked
program. Even if an attacker is given a decompiler able to handle unnested
monitors, we believe the proposed technique will survive a decompilation attack
because the watermark is embedded in the order of execution of threads. This
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will be maintained by any semantic preserving decompile-recompile transforma-
tion. The decompilation attack can be made even more difficult by obfuscating
the watermarked program using additional thread switches that are not used for
watermark encoding, but which are necessary for program correctness. This can
be easily done by introducing straight-line code where one of the two threads
executes a subtly different and buggy version of each statement in the original
code.

5.3 Additive Attacks

The most potent attack against the proposed technique is one where the attacker
succeeds in inserting random thread switches within a watermark piece. Note it
is not enough for the attacker to simply insert new threads, or for him to insert
new basic blocks such that an existing thread executes it. These types of errors
are successfully corrected during our decoding process.

For an attacker to successfully destroy the watermark, they will need to
cause at least two of the three threads involved in embedding a bit in a piece to
switch. Such an attack need not be stealthy and thus can be achieved simply by
inserting a Thread.yield() inside a basic block. However, the attacker cannot
modify a large number of basic blocks in this way, because this may result in
a large slowdown of the program. Alternately, unless an attacker can identify
which thread switches are encoding watermarks, they will not know where to
insert thread switches.

6 Conclusion

This paper has shown a novel technique for embedding watermarks using mul-
tiple threads, locks and thread contention. In particular, we showed how to
encode the watermark in preparation for embedding, how to embed a single-bit
and multi-bit watermark, and how to recognize the watermark.

Experimental results using an implementation to watermark Java bytecode
indicate that the cost of watermarking is relatively small for real world applica-
tions. In addition, we looked at several classes of attacks against thread based
watermarks, and we have proposed techniques for minimizing the effectiveness
of these attacks.

References

[1] Ross J. Anderson, editor. Tamper Resistant Software: An Implementation, Cam-
bridge, U.K., May 1996. Springer-Verlag. Lecture Notes in Computer Science,
Vol. 1174.

[2] Christian Collberg and Clark Thomborson. Software watermarking: Models and
dynamic embeddings. In Symposium on Principles of Programming Languages,
pages 311–324, 1999.



222 Jasvir Nagra and Clark Thomborson

[3] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfus-
cating transformations. Technical Report 148, Department of Computer Science,
University of Auckland, July 1997.

[4] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap,
resilient, and stealthy opaque constructs. In Proc. 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages 1998, POPL’98, pages 184–
196, San Diego, CA (USA), January 1998.

[5] Christian Collberg and Gregg Townsend. Sandmark: Software watermarking for
java, 2001. http://www.cs.arizona.edu/sandmark/.

[6] Ingemar Cox and Jean-Paul Linnartz. Some general methods for tampering with
watermarks. IEEE Journal on Selected Areas in Communications, 16(4):587–593,
May 1998.

[7] Robert L. Davidson and Nathan Myhrvold. Method and system for generating
and auditing a signature for a computer program. US Patent number 5,559,884,
September 24 1996.

[8] Derrick Grover. The Protection of Computer Software: Its Technology and Ap-
plications, chapter Program Identification. The British Computer Society Mono-
graphs in Informatics. Cambridge University Press, second edition, 1992.

[9] Keith Holmes. Computer software protection. US Patent number 5,287,407 ,
Assignee: International Business Machine, February 1994.

[10] Pavel Kouznetsov. Jad - the fast java decompiler, version 1158e for Linux on Intel
platform. Avaliable http://kpdus.tripod.com/jad.html, 5 august, 2001.

[11] Ivan Krsul. Authorship analysis: Identifying the author of a program. Technical
Report CSD-TR-94-030, Computer Science Deparment, Purdue University, 1994.

[12] Jerome Miecznikowski. Dava decompiler, part of SOOT, a Java optimization
framework, version 7.1.09. Avaliable http://www.sable.mcgill.ca/software/soot/
17 December, 2003.

[13] Akito Monden, Hajimu Iida, et al. A watermarking method for computer pro-
grams (in japanese). In Proceedings of the 1998 Symposium on Cryptography and
Information Security, SCIS’98. Institute of Electronics, Information and Commu-
nication Engineers, January 1998.

[14] Scott A. Moskowitz and Marc Cooperman. Method for stega-cipher protection of
computer code. US Patent number 5,745,569, April 28 1998.

[15] Jasvir Nagra, Clark Thomborson, and Christian Collberg. Software watermarking:
Protective terminology. In Proceedings of the ACSC 2002, 2002.

[16] M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In
Proceedings of the 24th ACM Symposium on Principles of Programming Languages
(POPL’97), Paris, France, pages 146–159. ACM Press, New York (NY), USA,
1997.

[17] Rafail Ostrovsky and Oded Goldreich. Comprehensive software system protection.
US Patent number 5,123,045, June 16 1992.

[18] John K. Ousterhout. Why threads are a bad idea (for most purposes). In-
vited Talk at 1996 Usenix Technical Conference, 1996. Slides avaliable at
http://www.sunlabs.com/˜ouster/.

[19] Peter Ryland. Homebrew decompiler, version 0.2.4. Avaliable
http://www.pdr.cx/projects/hbd/, 15 february, 2003.

[20] Tomas Sander and Chrisitan F. Tschudin. Protecting mobile agents against ma-
licious hosts. In Mobile Agents and Security, pages 44–60, 1998. Springer-Verlag,
Lecture Notes in Computer Science 1419.



Threading Software Watermarks 223
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Abstract. Intellectual property (IP) reuse based design is one of the
most promising techniques to close the so-called design productivity gap.
To facilitate better IP reuse, it is desirable to have IPs exchanged in the
soft form such as hardware description language (HDL) source codes.
However, soft IPs have higher protection requirements than hard IPs
and most existing IP protection techniques are not applicable to soft
IPs. In this paper, we describe the basic requirements, make the neces-
sary assumptions, and propose several practical schemes for HDL code
protection.

We protect the HDL codes by hiding author’s signature also called as
watermarking, similar to the idea for hard IP and multimedia data pro-
tection. But the new challenge is how to embed watermark into HDL
source codes, which must be properly documented and synthesizable for
reuse. We leverage the unique feature of Verilog HDL design to develop
several watermarking techniques. These techniques can protect both new
and existing Verilog designs. We watermark SCU-RTL & ISCAS bench-
mark Verilog circuits, as well as a MP3 decoder. Both original and water-
marked designs are implemented on ASICs & FPGAs. The results show
that the proposed techniques survive the commercial synthesis tools and
cause little design overhead in terms of area/resources, delay and power.

1 Introduction

Design reuse and reuse-based design have become increasingly important and
are widely considered as the most efficient way to close the design productivity
gap between silicon capacity and designer’s ability to integrate circuits onto
silicon [27]. For reuse to be successful, the reusable building blocks, also known
as macros, cores, intellectual properties (IPs), or virtual components, must be
easily accessible and integrable. Several industry organizations such as the San
Jose-based ”Virtual Socket Interface Alliance”, the ”design and reuse” in Europe,
and ”IP highway” in Japan have already started building libraries and tools
that can be shared by designers all over the world. More importantly, they are
working on the specification of various IP design standards for IP integration.
But how to guarantee IP provider’s IP rights and royalties remains one of the
major obstacles for design reuse.

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 224–238, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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IP exchange and reuse normally takes the forms of hard, firm, or soft. Hard
IPs, delivered as GDSII files, are optimized for power, size, or performance. Soft
IPs are delivered in the form of synthesizable HDL codes. Firm IPs, such as place-
ment of RTL blocks or fully placed netlist, are a compromise between hard and
soft IPs [24]. From security point of view, hard IPs are the safest because they are
hard to be reverse engineered or modified. But this one-fits-all solution does not
give IP users any flexibility other than the built-in configuration options. Soft
IPs, on the other hand, are preferred by IP users due to their flexibility of being
integrated with other IPs without much physical constraints. On some occasions,
IP provider may also prefer releasing soft IPs to leave customer-dependent opti-
mization process to the users. Not surprisingly, it has been recognized that the
IP market will be dominated by soft IPs [10]. However, the flexibility makes soft
IPs hard to trace and therefore difficult to prevent IP infringements from hap-
pening. IP providers are taking a high risk in releasing their IPs in the soft form
without protecting their HDL codes with techniques that are effective, robust,
low-complexity, and low-cost. Unfortunately, such techniques or tools are not
available and their development is challenging.

Most existing VLSI design IP protection mechanisms, such as physical tag-
ging, digital watermarking and fingerprinting, target the protection of hard/firm
IPs. Traditional software obfuscating and watermarking methods are not appli-
cable to HDL code either. In this paper, we 1) analyze the challenges in HDL code
protection; 2) describe the basic requirements and necessary assumptions; 3) de-
velop the first set of Verilog source code protection methods. Our approaches can
be easily integrated with the design process to protect a new design. They can
also be applied to protect existing designs, which give IP providers the option
of releasing the (protected) source code for their hard/firm IPs that are already
in the IP market to make them more competitive.

We propose three watermarking techniques to protect Verilog source code.
The first method takes advantage of the don’t-care conditions inherently exist-
ing in the modules by enforcing them to have specific values corresponding to
designer’s signature. A separate test module can be easily constructed to re-
trieve such information. The second one utilizes the fact that many logic units
can be implemented in different ways. Instead of using one fixed structure, we
build multiple functionally identical modules with different implementations in
the same Verilog code. We then selectively instantiate these duplicated modules
for information hiding. The third technique splits the implementation of one
module into two phases in such a way that designer’s signature will be mixed
with the module’s input and output information. We implement and test the
proposed protection schemes on SCU-RTL and ISCAS benchmark circuits using
Synopsys’ design analyzer and Xilinx FPGA CAD tool. The results show that
our watermark survives the synthesis and optimization tools. We measure the
area/resources, delay, and power of the designs before and after watermarking,
and find that our methods introduce little overhead in these three key aspects.
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2 Previous Work

HDL codes describe VLSI design IPs in the style and structure similar to general
C/C++ programs. Hence, it is natural to investigate whether the existing design
IP protection techniques and software watermarking and obfuscating methods
can be extended for HDL code protection.

2.1 VLSI Design IP Protections

According to the IP protection white paper released by VSIA, there are three
approaches to secure an IP: deterrent approach like patents, copyrights, and
trade secrets; protection via licensing agreements or encryption; detection
mechanism such as physical tagging, digital watermarking and fingerprinting
[23]. Legal enforcement (copyright, licensing agreement, etc.) can be used to pro-
tect HDL codes. But it is always hard to enforce such protection, particularly
for the flexible soft IPs. Encryption can be used for soft IP protection [21,22].
But it makes IP reuse inconvenient and there are security holes from which
the un-encrypted IP information may leak. Recently, Kahng et al. [8] estab-
lished principles for constraint-based watermarking techniques in the protection
of VLSI design IPs [16,17].

The protection is achieved by tracing unauthorized reuse and making un-
traceable unauthorized reuse as difficult as re-designing the IP from scratch.
The essence of their approach is to introduce watermark-related additional con-
straints into the input of a black-box design tool such that the design will be
rather unique and the embedded watermark can be revealed as proof of author-
ship. This approach is generic and has been applied to various stages of the VLSI
design process, from behavioral and logic synthesis to standard cell place and
route algorithms, to FPGA designs [7,8,9,10,11,14].

It is possible, but never easy, to extend the idea of constraint-based water-
marking directly into the context of HDL code protection. RT-level HDL source
codes normally describe a design in a program-like manner. The constraints
are the abstract description of the system’s functionality. One can introduce
new constraints as watermark. However, any additional constraint at the top
abstract level description usually can be easily identified and thus removed or
modified. Another concern is the design overhead incurred by adding constraints
at this level. If we add constraints at such early stage, it may have large impact
to the design quality.

2.2 Software Watermarking and Obfuscating

Watermarking, tamper proofing, and obfuscating are the typical source code
protection methods to prevent software piracy [3,2,6,15,19,20]. Watermarking
is a technique that embeds a secret message into the program to discourage
IP theft by enabling the establishment of IP ownership [5,12]. Tamper-proofing
technique protects software from being tampered by making the software with
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any unauthorized modification into a nonfunctional code. Obfuscating method
makes the program ”unintelligible” while preserving its correct functionality.

Obfuscating and tamper-proofing techniques are not suitable for HDL code
protection. First, they make programs less readable and harder (if not impossi-
ble) to modify, which are all against the incentive to release soft IPs for better
design reuse. Secondly, the continuous push for HDL design standards reduces
the power of such protections.

Software watermarking methods embed a structure or a function into the
program such that it can be reliably located and extracted even after the program
has been translated, optimized, and obfuscated. Existing software watermarking
schemes are either static or dynamic [4]. Static schemes embed watermark only
in the executable and are vulnerable to many attacks. HDL program does not
have any executables, so this approach cannot be applied. Dynamic watermark
is constructed at run time and stored in dynamic state of the program. The
quality of a watermarking scheme depends on how well it stands up to different
types of attacks and how successfully the watermark can be retrieved.

To sum up, HDL source codes are soft IPs in the form of program. They have
more reuse value than hard/firm IPs because of their flexibility and easy acces-
sibility. However, existing hard/firm IP protection techniques cannot be directly
used to prevent designers from losing control of their IPs once HDL source codes
are released. On the other hand, HDL code is different from other program-
ming languages like C/C++ and Java [1,13,18]. Current software protection is
not applicable for HDL code protection due to the following two reasons: 1)
design reuse methodology requires HDL code to be developed and documented
following industrial standards; 2) there are no executables associated with HDL
programs.

3 HDL Code Watermarking Techniques

3.1 Goals and Assumptions

The sole objective of HDL code watermarking is to hide designer’s digital in-
formation into the HDL source code for ownership protection. However, a good
HDL watermarking technique (at RT-level) must also meet the following goals:
(1) Strong proof of authorship. (2) Low design overhead. (3) Survivability from
re-synthesis. (4) Resilience. (5) Preserve IP’s I/O interface.

To achieve the above goals, we make two necessary assumptions:
Documentation Assumption: designer must document the HDL modules

properly and give sufficiently detailed information on each reusable module’s
input, output, and functionality. However, other details on how each module is
implemented are not required.

This assumption has been widely accepted in the HDL design community. It is
critical for HDL code watermarking. Without this assumption, designers will be
forced to document everything including their watermark implementation. This
makes watermark visible and further increases the difficulty of watermarking.
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Verification Assumption: all HDL design should follow the hierarchical
modular fashion and complicated gate-level HDL code should not be mixed with
RT-level description.

We focus on the protection of soft IP at HDL source code level and conse-
quently we restrict the watermark verification problem to be within the context
of HDL code as well. The verification assumption prohibits the following attack:
obtain the gate-level HDL codes for certain modules from the netlist and use
them to replace their equivalent modules. We mention that our proposed tech-
niques are robust against the attack of replacing a single RT-level module by
its equivalent gate-level code. However, if the attacker constructs a new module
by flattening and combining several modules in gate-level code, then the prob-
lem of identifying a watermark is equivalent to sub-circuit isomorphism which is
NP-hard. The verification assumption requires hierarchical modular design and
discourages designs with only a single module. This is not vital to our approach,
but rather a common practice in large real life designs. Attackers can verify the
functionality of each module, but they cannot afford to extract all the modules
from the HDL source code and re-synthesize them and their combinations. In
fact, such attempt is more expensive than redesign from the top-level description
given in the documentation.

Next, we will use Verilog as the framework to illustrate three HDL code
watermarking approaches. We mention that since Verilog share many common
features as hierarchical modular design fashion, code documentation and reused-
based design with other HDL languages, VHDL for example, we can easily extend
the proposed watermarking techniques for the protection of general HDL code.

3.2 Verilog Watermarking Approaches

Module Watermarking: In this method, we extend the concept of constraint-
based watermarking to the Verilog design of a module. A module takes certain
input signals and produces output based on the logical functionality to be im-
plemented. The input-output relationship, known as truth table, constrains the
module’s implementation. To embed additional constraints, we take advantage
of the don’t care conditions inherently existing in the module. Consider the de-
sign of an encoder that converts radix-4 numbers into binary. The useful inputs
for this module are 0001, 0010, 0100 and 1000, which produce outputs 00, 01, 10
and 11 respectively. The other twelve combinations of the 4-bit input are don’t
care conditions as they will not occur in the circuit. Now we show how to embed
into the design of this encoder a 15-bit stream b14b13. . . b1b0=100010010000010
(’DA’ in binary with the last bit as the parity bit). First we order the 12 don’t
cares in ascending order and make a cyclic list: 0000,0011,0101,,1111. Then we
repetitively pick don’t cares one- by-one and assign them specific output values
to embed the above bit-stream following the algorithm in Figure 1.

More specifically, we take 3, the value of �log212� , bits b2b1b0 = 010 from
the given bit-stream (line 4 and 5). This gives us the binary 2 and we thus
select the third (0-offset) don’t care 0101 from the list of don’t cares. Next we
assign a specific value, 00=b4b3, to this input (line 7) and delete it from the list
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of don’t cares (line 10). Now there are 11 don’t cares left and we restart from
the top don’t care 0110 which is the one after 0101. We repeat this process and
assign don’t care 1011 output 00=b9b8 and 1101 output 10=b14b13, where the two
don’t cares are selected based on b7b6b5 and b12b11b10. As a result, we implement
this encoder based on the watermarked truth table (Figure 2(b)) instead of the
original truth table (Figure 2(a)).

Input: cyclic list of n don’t cares L, number of output bits m, and bit-stream bi

to be embedded.
Output: list of selected don’t cares and their assigned output W.

Algorithm:

1. i = 0; // start with the last bit b0 of the bit-stream
2. j = 0; //start with the top don’t care in list L
3. do
4. s = �log2n	 ; //bits to pick don’t care
5. (d)10 = (bs+i−1 . . . bi+1bi)2;
6. i = s + i; // update the position in the bit-stream
7. add {the (d+j) (mod n) don’t care, its assigned output bm+i−1 . . . bi+1bi}

to the output list W;
8. i = m + i;
9. j = (d+j+1) mod n;//update the top don’t care in list L

10. delete the (d+j) (mod n) don’t care from L;
11. n = n - 1; // delete the selected don’t care from L
12. while (bit-stream embedding not done)

Fig. 1. Pseudo-code for module watermarking with don’t cares.

(a)

INPUT OUT

1000 00

0100 01

0010 10

0001 11

(b)

INPUT OUT

1000 00

0100 01

0010 10

0001 11

0110 00

1011 00

0000 10

Fig. 2. (a) Original truth table. (b) Watermarked truth table.

To retrieve the bit-stream, we can conveniently write test module forcing
these selected don’t cares to be the inputs of the watermarked module. We then
use Verilog simulation tools to re-establish the bit-stream from the mapping
between the don’t cares and their corresponding outputs.
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Now we briefly analyze this technique. First, watermark’s strength, Pc, can
be defined as the probability that a random truth table implementation for the
original assigns same values to our selected don’t cares. Small Pc indicates strong
watermark. Let n be the total number of don’t cares in the module, k be the
number of don’t cares that we choose to embed our watermark and m be the
number of output bits. Pc can be roughly estimated as:

Pc =
k!.(n− k)!

n
.(

1
2
)m.k (1)

k = |b|/(�log2n�+ m) (2)

However, to embed b bits information, we must choose at least don’t care con-
ditions and give them specific values accordingly. This may introduce design
overhead. For example, the original encoder in Figure 2(a) can be implemented
by two OR gates and four literals, but the watermarked one needs one NOR
gate, one OR gate, one AND gate, and a total of five literals. To reduce this
overhead, we break long watermark into multiple short ones and embed them
into different modules.

Finally, we mention that this method is robust and it is unique for circuit
design protection. To remove or alter the watermark, one need to change the
values that we have assigned to the selective don’t cares. But, in the final circuit
implementation of the design, every input pattern will produce a deterministic
output. One cannot distinguish whether this output is the original requirement,
or comes from the watermark, or simply a value assigned to a don’t care condition
during the logic synthesis and minimization.

Module Duplication: Despite the possible overhead, the module watermark-
ing method can be easily implemented before the start of Verilog coding. How-
ever, it cannot be applied to protect an existing module in Verilog unless we
know all original don’t cares and redesign the module. The second approach
avoids this problem by duplicating some modules and selectively instantiating
either the original module or one of its ’duplicates’ to hide information.

In Verilog code, there usually exist basic functional modules that are in-
stantiated multiple times by the top-level module or other modules in a higher
hierarchy. The functionality of these modules normally can be implemented in
different ways. We thus build duplicates for these modules with a ’different look’.
That is, they all perform the same function as the original one but synthesis tools
will not identify them as identical copies and therefore they will stay in the final
design. The simplest way is by assigning different values to don’t cares in the
original module every time we duplicate it. In this way, the synthesis tool will
not delete the duplicates to optimize the design. In the absence of don’t cares,
normally we can find alternative implementation for the module. Consider an
’1101’ pattern detector example which receives one bit input data during each
clock cycle. It sets output to be ’1’ whenever it detects a consecutive inputs pat-
tern ’1101’; otherwise, the output is always ’0’. This module is implemented in
Verilog in two different ways. Module detector 0 in Figure 3(a) uses finite state
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machine while module detector 1 in Figure 3(b) uses a shift register. However,
these two modules are functionally equivalent.

Suppose the detector module has been instantiated multiple times in another
module P. Now, with the presence of duplicates, we will have option of which
module to instantiate. Instead of instantiating one randomly, we can embed
information behind the selection. For example, one scheme is to pick the original
Verilog module detector 0 for bit ’0’ and instantiate module detector 1 for a bit
’1’. This is shown in Figure 4 below:

Verifying the signature involves a simple equivalence checking of the module
and its duplicates, as well as the evidence of their instantiations. This method
provides a strong protection for the Verilog IP as it is highly unusual for an
optimized design to have two or more modules that are functionality equivalent.
The implementation challenge of this method, however, is how to disguise the
duplicates to survive from synthesis. In practice, we have discovered a set of tricks
to successfully fool the synthesis tools. One of them, for example, is to assign
different values to the same don’t care for the original module and its duplicate.
The method is robust against attackers who attempt to remove the duplicates or
change the module instantiations. Attackers face the (sub-) circuit verification
problem and they need to detect the duplicates that have already survived the
synthesis optimization tools! Frequent module instantiations in large hierarchical
Verilog designs not only provide us a large space for signature embedding, but
also make the watermark resilient as we can duplicate modules throughout the
design. Another advantage is that it is applicable to existing Verilog codes.

Module Splitting: This approach is usually applied to fairly large modules. It
basically splits a large module into several smaller modules. As shown in Figure
5, we use two modules: A(X1, Y1, Z1) and B(X2, Y2, Z2), to implement a single-
module M(X, Y, Z), where X is the set of inputs, Y is the set of outputs and Z
are optional test outputs. Module splitting is performed as follows:

– First, the watermarking module A takes input X1 ⊂ X and produces 1) part
of the functional outputs in Y1 ⊂ Y , 2) part of the optional test outputs in
Z1 ⊂ Z, and 3) the intermediate watermarking outputs W . W is defined
according to our signature on specific input pattern of X1.

– Next, the correction module B takes inputs X2 ⊂ W ∪ X and produces
the rest of the required outputs in Y2 and Z2. That is, Y2 = Y − Y1 and
Z2 = Z − Z1.

The above module splitting method is functionally correct because the two
modules A and B combined to generate signals Y and Z, same as the signals
generated byM. To verify the signature, one only needs to feed module A the in-
put pattern that we define our watermarking signal W , which will be observable
fromA’s output. To make the watermark robust against both synthesis tools and
attackers, we use watermarking signal W from A and as few as possible inputs
from X as input for module B. In such way, the watermarking signal W becomes
part of the design. Otherwise, they will most likely be removed immediately by
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module detector 0 (clk, reset, dataIn, out);
input clk, reset, dataIn;
output out;
reg out;
reg [1:0] currentState, nextState;
always @(dataIn or currentState) begin

case (currentState)
2’b00: begin

nextState = (dataIn == 1) ? 2’b01 : 2’b00;
out = 0;end

2’b01: begin
nextState = (dataIn == 1) ? 2’b10 : 2’b00;
out = 0;end

2’b10: begin
nextState = (dataIn == 0) ? 2’b11 : 2’b10;
out = 0;end

2’b11: begin
nextState = 2’b00;
out = (dataIn == 1);end

endcase
end
always@(posedge clk) begin

if(∼reset) begin
currentState <= 2’b00;
out <= 0;

end
else currentState <= nextState;

end
endmodule

(a) FSM implementation

module detector 1 (clk,reset,dataIn,out);
input dataIn,clk,reset;
output out;
reg out;
reg [3:0] pattern;
always@(posedge clk) begin

if( reset) begin
pattern = 0;
out = 0;end

else begin
pattern[0]=pattern[1];
pattern[1]=pattern[2];
pattern[2]=pattern[3];
pattern[3]=dataIn;
if(pattern==4’b1101) out=1;
else out=0;

end
end

endmodule

(b) Shift register implementation

Fig. 3. ’1101’ Patern Detector
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module P;
reg clk, reset;
reg data1,data2,data3;
wire out1, out2, out3;
detector 0 d1(clk, reset, data1, out1);// signature bit 0
detector 1 d2(clk, reset, data2, out2);// signature bit 1
detector 0 d3(clk, reset, data3, out3);// signature bit 0
. . . . . . . . .

endmodule

Fig. 4. Instantiation of module detector

optimization tools. The strength of the watermark relies on the rarity of imple-
menting module M by constraining the intermediate signal W . Although it is
secure as watermark is integrated into the design, we mention that this method
may considerably increase design complexity particularly for the second module
and will be vulnerable to attacks if the verification assumption is not made.

Fig. 5. The idea of module splitting

4 Experimental Results

We apply the proposed techniques to benchmark Verilog circuits and demon-
strate that they meet the watermarking objectives. Verilog designs include cir-
cuits such as controllers, adders, multipliers, comparators, DSP cores, ALUs
(from SCU-RTL and ISCAS benchmarks [26,27], and a MP3 decoder [25]. The
MP3 design and SCU-RTL benchmarks [28] are original designs while the RT-
level ISCAS Verilog codes are obtained from netlists by reverse engineering [25].
The SCU-RTL and the MP3 benchmarks are perfect examples for the module
duplication technique because of the multiple single module instantiations or
function calls. The first module watermarking method can also be applied to
these designs if the original detailed functional description of each module is
available. However, they are not good for the module splitting method because
the modules are small. For the ISCAS benchmarks, because they are reversed
engineered, we cannot identify the original don’t cares and they have only a few
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modules, almost all of which are instantiated only once. Consequently, both mod-
ule watermarking and duplication are not applicable for these benchmarks. But
we can use module splitting technique to protect these moderate sized modules
with known functionality. We are currently developing a set of Verilog designs
to test the first module watermarking method, which we are unable to test over
these two existing benchmarks due to the unavailability of their original detailed
design specifications. We optimize each original design by Synopsys’ design an-
alyzer and then map them to the CLASS library. After that, we collect the
following design metrics: area, power, and delay through the design analyzer
report. Next, we apply the proposed Verilog watermarking techniques to these
designs and repeat the above design process for the watermarked design. As we
have described, SCU-RTL benchmark is watermarked by module duplication,
and ISCAS circuits by module splitting.

After optimization, we can clearly identify from the schematic view in the
Synopsys design analyzer window, both the duplicated modules in the module
duplication method and the watermark module in the module splitting method.
This insures that our watermarks survive the synthesis tools. Figure 6 gives the
gate-level views of ISCAS 74181 circuit (a 4-bit ALU) before and after water-
marking, where a 9-letter message (corresponding to author’s affiliation, hidden
for anonymous review) in ASCII is embedded by splitting the CLA module,
which has 3 inputs and 4 outputs, into two modules. We document these two
modules in the same way as other original modules. To test the watermark’s
resilience at both the Verilog code level and the gate level, we showed the water-
marked Verilog codes with documentation to a group of our colleagues together
with Figure6. None of them could tell which one was the original.

Benchmark Circuits Original Watermarked Overhead

FIR Area ( λ2) 4083 4557 11.6 %
(2264 gates, 16 bits Power ( μ W) 34.49 35.33 2.4 %

embedded) Delay (ns) 48.7 48.7 0 %

IIR Area ( λ2) 16419 16431 0.07 %
(15790 gates, 15 bits Power ( μ W) 35.33 35.06 -0.76 %

embedded) Delay (ns) 49.15 49.15 0 %

IDCT Area ( λ2) 20755 21271 2.5 %
(17341 gates, 16 bits Power ( μ W) 23.31 23.5 0.8 %

embedded) Delay (ns) 49.2 49.2 0 %

MP3 Area ( λ2) 16955 17297 4.9 %
(>20000 gates, 20 bits Power ( μ W) 67.49 70.82 2.0 %

embedded) Delay (ns) 49.15 49.15 0 %

Table 1. Watermarking SCU-RTL & MP3 Verilog benchmark circuit.

Table 1 reports the design overhead on SCU-RTL benchmarks by module
duplication. As expected, there is little area overhead due to the duplicated
modules. However, the average area overhead is about 4.76% (and this percent-
age is mainly caused by the small FIR Design). The watermarked design does
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not introduce any additional delay and consumes only 1% more energy on an
average than the original design.

Benchmark Circuits Original Watermarked Overhead

74181 Area ( λ2) 86 94 9.3 %
(61 gates, 56 bits Power ( μ W) 102.41 111.84 9.2 %

embedded) Delay (ns) 9.26 10.38 12.1 %

C432 Area ( λ2) 176 192 9.1 %
(160 gates, 56 bits Power ( μ W) 230.87 249.89 8.2 %

embedded) Delay (ns) 20.44 19.63 -4.0%

C499 Area ( λ2) 400 410 2.5 %
(202 gates, 56 bits Power ( μ W) 14.75 11.71 2.5 %

embedded) Delay (ns) 14.75 11.71 -20.6 %

c1908 Area ( λ2) 574 598 4.1 %
(880 gates, 56 bits Power ( μ W) 581.43 612.47 5.3 %

embedded) Delay (ns) 21.82 22.54 3.3 %

C7552 Area ( λ2) 4489 4525 0.8 %
(61 gates, 56 bits Power ( μ W) 5778.1 5808.5 0.5 %

embedded) Delay (ns) 65.57 65.57 0 %

Table 2. Watermarking on ISCAS benchmark circuits.

Table 2 reports the results of watermarking ISCAS benchmarks by module
splitting. In this technique, we enforce the watermark into design’s functionality.
In general, this should cause design overhead. For example, we see that both
average area and power overhead are slightly over 5 %. Interestingly, the circuit
delay may decrease after watermarking. This might be possible, for example,
if we split a module that has a signal on the critical path, this signal may be
generated by the simpler watermarking module and thus reduce the delay. From
tables 1 and 2, we can see that large design overhead often occurs for small
designs (FIR, 74181, and C432). Although it is premature to claim, given the
limited set of experiments, we anticipate that all design overhead will decrease
for large designs and eventually become negligible for real life designs.

FPGA designs occupy a significant part of the integrated circuit market these
days, and our watermarking techniques are easily applicable to them as well. We
implement the original and watermarked Verilog benchmarks on certain Xilinx
Virtex-II devices. Most of the Verilog code written for ASIC implementation can
be synthesized by FPGA synthesis tools with little or no modifications. Some
Verilog code had some technology dependent features, such as instantiating some
gates from a particular library that could not be mapped to the FPGA devices
using our FPGA synthesis tool. Therefore a subset of all the designs was chosen
and synthesized using the Xilinx ISE5.1. (This is the reason why in Table 3,
the gate counts for the same benchmark increase.) The synthesizable Verilog
benchmarks include: the IIR circuit from the SCU-RTL benchmark suite and
74181, C432 and C499 circuits from the ISCAS benchmark suite. These designs
are mapped to Xilinx Virtex-II devices and the implementation results show
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(a) Original (b) Watermarked

Fig. 6. Gate-level view of circuit 74181

that the embedded watermarks survive synthesis and optimization performed
by the design tool. Figure 7 displays the fully placed and routed original and
watermarked IIR design on the Xilinx Virtex II FPGA. We have embedded a
15-bit signature in the watermarked Verilog source code. However, it is not easy
to locate the watermark by reverse engineering at the chip-level as there is no
information available at that level, specific to the watermark.

In FPGAs, the two main design criteria are speed and resource utilization in
terms of the number of slices and LUTs used. Table 3 reports the Maximum com-
binational path delay and resource utilization in both original and watermarked
designs generated by the Xilinx tool.

(a) Original (b) Watermarked

Fig. 7. Floor plan view of IIR targeted to Xilinx Virtex-II.
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Benchmark Circuits Original Watermarked Overhead

IIR (27572 gates, � Slices 286 329 18.71 %
15 bits embedded Max. Path Delay (ns) 11.1 11.1 0 %

C432 (420 gates, �Slices 40 44 10.1 %
56 bits embedded Max. Path Delay (ns) 29.791 29.137 -2.2 %

C499 (696 gates, �Slices 67 74 10.45 %
56 bits embedded Max. Path Delay (ns) 16.326 17.908 9.69 %

74181 (132 gates, �Slices 13 13 0 %
56 bits embedded Max. Path Delay (ns) 13.71 13.71 0 %

Table 3. Benchmarks targeted to Xilinx Virtex-II FPGA.

5 Conclusions

We propose the first set of non-traditional protection mechanisms for soft IPs
(HDL codes). These codes describe circuits at the software level and there-
fore their protection has different requirements and challenges, from those for
hard/firm VLSI IP or software protection. We use Verilog as the framework and
leverage Verilog’s unique role between hardware and software to embed the wa-
termark message into the source code for protection. We evaluate the strength,
resilience, and design overhead of these watermarking techniques both analyti-
cally and by simulation over benchmark Verilog circuits available in the public
domain. We demonstrate the applicability of these techniques for FPGA and
ASIC designs and evaluate the overhead. The proposed techniques can be used
to protect both new and existing Verilog designs as well as VHDL designs. We
are currently collecting and building more Verilog and VHDL circuits to test our
approach. We are also planning to develop CAD tools for HDL protection.
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Abstract. Existing navigation services, such as GPS, offer no signal-
integrity (anti-spoof) protection for the general public, especially not
with systems for remote attestation of location, where an attacker has
easy access to the receiver antenna. With predictable broadcast signals,
the antenna can be replaced with a signal generator that simulates a sig-
nal as it would be received elsewhere. With a symmetrically encrypted
broadcast signal, anyone who can build or reverse engineer a receiver
will know the secret key needed to spoof other receivers. Such encryp-
tion is only of use in closed user communities (e.g., military) or with
highly tamper-resistant modules protecting the common key. In open
user communities without common secret keys, integrity protection is
needed instead, with properties similar to digital signatures. The ability
to verify a navigation signal must be separate from the ability to gener-
ate a new one or to apply selective-delay attacks; but simply signing the
broadcast signals will not protect their exact relative arrival times. This
paper introduces a practical solution based on short-term information
hiding.

1 Introduction

Alice runs a transport company for high-valued goods. Her armoured lorries are
equipped with satellite navigation receivers. These are queried via radio every
few minutes by her computer. If one of her lorries deviates from the planned route
or loses contact without plausible explanation, she can take action immediately
to prevent it being stolen.

Bob runs a prison service. Some of his “clients” live and work outside the
prison, but have to remain within a specified area. Others are offenders on pro-
bation who must stay outside certain areas or just have their location monitored
continuously. Bob attaches a navigation receiver to their ankles and his prison
computer queries that via radio (e.g., GSM) several times per hour.

Several such systems for remote attestation of location via the Global Posi-
tioning System (GPS) have been fielded, in particular for vehicle tracking [1]. The
use of trusted GPS receivers has also been proposed for location-based network
authentication [2]. Radio tagging of offenders to control a curfew is now practised
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in several countries [3].1 Other potential applications include road-charging and
tachograph systems.

These are examples of security systems that use a navigation-signal receiver
as a trusted component. Such a receiver may end up in the hands of an attacker
with a strong incentive to manipulate the system such that it reports a pretended
position r′ instead of its actual position r.

Section 2 below very briefly reviews the operating principles of modern po-
sitioning systems, Sect. 3 describes different classes of attacks on trusted posi-
tioning receivers, and Sect. 4 reviews briefly the symmetric security mechanisms
available to military users of GPS and a technique proposed by Denning and
MacDoran [2]. Section 5 then presents a new information-hiding based defense
against the selective-delay attack from Sect. 3. Unlike previously proposed tech-
niques, it adds to navigation signals an asymmetric security property known
from digital signatures, namely that those able to verify the integrity of an an-
tenna signal are not able to synthesize one that could pass the same verification
process. Sect. 6 discusses a variant of the selective-delay attack involving direc-
tional antennas and how to defend against it, and Sect. 7 finally illustrates how
some of the parameters involved might be chosen in a practical implementation.

2 Conventional Pseudorange Positioning Systems

Modern positioning systems use a number of transmitters Xi located at known
coordinates xi ∈ R

3. Each transmitter is equipped with a synchronized clock
and knows the exact system time t. A receiver R is located at the coordinates
r ∈ R

3 (to be determined). If each transmitter Xi broadcasts a navigation signal
si(t) that propagates through space in all directions with speed c, then we will
receive at position r the signal

g(r, t) =
∑

i

Ai · si

(
t− |xi − r|

c

)
+ n(r, t) (1)

where Ai is the attenuation the signal suffers on its way from Xi to R, and
n(r, t) is background noise (see Fig. 1). With carefully chosen functions si(t) (low
auto- and cross-correlation, include timestamps and information on transmitter
position), the receiver can separate the individual terms of this sum, identify the
time delay |xi − r|/c for each and infer from it the “range”

di = |xi − r| . (2)

With three known ranges di to known transmitter positions xi, three equations
(2) can be solved unambiguously for r (unless all three xi are located on a line).
1 Due to the difficulties of receiving satellite signals indoors, most offender tagging sys-

tems still rely on a base station installed in the monitored person’s home. However,
future global positioning systems with increased transmitter power, lower carrier
frequencies and improved receiver technology (e.g., long integration times) may well
work reliably enough indoors to be used in such applications.
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Fig. 1. A pseudorange navigation receiver R works by observing at its position
r the delayed broadcast signals si(t − di/c) from at least four transmitters Xi.
Their relative delays can be used to solve four equations that determine the
3-dimensional position r and the time t.

Highly stable clocks (e.g., caesium oscillators) are costly and pure receivers
cannot participate in two-way clock synchronization. Therefore, in practice, R
will only have access to an imprecise estimate tR = t + uR of the exact system
time t. It therefore receives the signal

g(r, tR) =
∑

i

Ai · si

(
t− |xi − r|

c
+ uR

)
+ n(r, tR) (3)

and can infer from the delays |xi − r|/c− uR only the “pseudoranges”

d̃i = |xi − r| − c · uR . (4)

The clock error uR adds a fourth unknown scalar. With pseudorange measure-
ments to at least four transmitters Xi, the resulting system of equations (4) can
be solved for both r and uR, providing both the exact position and time, without
requiring a precise local clock.

3 Attacks on Navigation Receivers

We now consider an attacker of a system for remote attestation of location who
has access to its navigation receiver (for example, because it was tied to her
ankle following a court order). There are two points to manipulate.

The first is the output of the receiver or the channel over which it reports
the position of its antenna. The receiver could be substituted with a device
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that continuously outputs pretended positions r′. This can be prevented with
well-understood cryptographic authentication protocols that protect the link to
the querying computer. If the receiver is only moderately tamper-resistant, an
attacker who successfully extracts the key used in one will not have gained
anything useful for spoofing the location reports from other receivers, making
this attack difficult to scale. We are not concerned with such attacks in this
paper.

The second point of attack is the navigation antenna, or more generally
speaking, the connection of the receiver with the electromagnetic environment
specific to its location. An attacker can separate the antenna from the receiver, or
equivalently place it into a shielded enclosure along with a transmitting antenna,
either way gaining full control over the input of the receiver. This enables several
types of attack on a tamper-resistant receiver whose output is cryptographically
protected.

In a relaying attack (also known as worm-hole attack), the receiver is con-
nected to a remote antenna located at the pretended position r′.2 Such an attack
may be logistically complex (arrangements may have to be made to move the
remote antenna around in a plausible way) and the remote antenna can easily be
located. One possible countermeasure might involve the use of a high-bandwidth
signal, to maximize the cost of forwarding it. Another might use a highly stable
clock in the receiver, to detect the signal delay introduced by a relaying attack.
We are not concerned with relaying attacks in the rest of this paper.

In a signal-synthesis attack, the receiver is connected to a device that gen-
erates the navigation broadcast signal g(r′, t) as it can be expected to be found
at the pretended location. With fully-standardized plaintext broadcast signals,
where all aspects of the message format and modulation are publicly known, a
modest amount of hardware can simulate the signal to be expected at any point
in time and space.

The obvious countermeasure against the signal-synthesis attack is to encrypt
the individual broadcast signals si(t), such that the attacker cannot predict the
waveform g(r′, t) that the receiver needs to see before it can report its position
as r′.

Carefully implemented encryption can guarantee the integrity and confiden-
tiality of transmitted data, but this alone is not sufficient in the case of a navi-
gation signal. Here the security-critical aspect of the signals si(t) lies not only in
the data they carry, but also in their exact relative arrival times at the receiver.

This is exploited in the selective-delay attack, in which the attacker uses the
signal g(r, t) received at the actual position r, converts it into a prediction of the
signal g(r′, t−Δt) that would have been received at the pretended position r′ a
short time Δt earlier, and feeds that into the receiver. To accomplish this, the
attacker needs to be able to separate the signal g(r, t) into the individual terms
of equation (1), that is

2 for example via a real-time radio link that transmits the entire radio band used by
the positioning system, shifted into another band
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g(r, t) =
∑

i

Ai · gi(r, t) + n(r, t) (5)

with

gi(r, t) = si

(
t− |xi − r|

c

)
. (6)

This can then be reassembled into

g(r′, t−Δt) =
∑

i

Ai · gi

(
r, t +

|xi − r| − |xi − r′|
c

−Δt

)
+ n′(t) (7)

after choosing
Δt ≥ max

i
{|xi − r| − |xi − r′|}/c (8)

to preserve causality.3

4 Symmetric Security

The 24 orbiting satellites of the GPS constellation emit two separate broad-
cast signals si(t), known as the C/A and Y signals. They both carry the same
50 bit/s data stream. It includes information on the current time and the exact
orbital parameters of each satellite, which receivers need to calculate the time-
dependent transmitter positions xi(t). This data is transmitted using direct-
sequence spread-spectrum (DSSS) modulation. The civilian C/A signal is mod-
ulated using a relatively short published spreading function. It can therefore not
only be demodulated by the general public, but is also vulnerable to a signal-
synthesis attack.

The military Y signal is produced by multiplying the 50 bit/s data signal
with a secret and very long 10.23 MHz pseudo-random spreading sequence. This
not only encrypts the signal like a stream cipher; it also spreads the 100 Hz
mainlobe bandwidth of the data signal by a factor of 2 × 105 to 20 MHz. As
a consequence, its peak power-spectral density is reduced by the same factor
(53 dB) and ends up (according to [4]) roughly 28 dB below the thermal noise
density seen by a typical receiver.

The original reason for this design were international regulations that pro-
tect microwave telephone links in the same frequency band from interference [4,
p. 59]. Various tactical low-probability-of-intercept communication systems use
DSSS modulation in a similar way to keep the power-spectral density of the
transmission signal below the noise densities at expected eavesdropper sites.

3 If the receiver forwards some unpredictable information received from each of the
transmitters (for example their message-authentication codes) in real-time and the
querying side has a means to verify these, then this creates another requirement for
a selective-delay attack to succeed. At least four of the transmitters visible at the
pretended position also have to be visible at the actual position. For GPS satellites
(altitude: 20 200 km), this is usually the case within a few thousand kilometers.
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In both the time and frequency domain, the Y signal disappears in the noise.
Someone trying to manipulate the GPS Y code will therefore find it difficult to
split g(r, t) up as in equation (5). As the shape of the waveforms is not known,
correlation techniques cannot be applied to extract the phase of the Y signal
from the noise.

It would therefore be very difficult to apply even a selective-delay attack on a
GPS Y signal received with an omnidirectional antenna. The only option left to
an attacker is to separate individual transmitters by using high-gain antennas.
The use of at least four tracking dish antennas or a phased array may be feasible
in some particularly well-funded attacks, but in most situations we would expect
an attacker to be mobile and only be able to operate an omnidirectional antenna
to capture g(r, t).

The problem with the GPS Y signal is of course that, since it is based on a
single secret key, anyone in its possession can not only decode the Y signal to
determine their position, but is also able to perform a signal-synthesis attack on
any other Y-signal receiver. As a result, encrypted spread-spectrum navigation
signals are so far used only in closed, mutually trusting user communities, in the
case of the GPS Y signal the US military.

Another protection against signal-synthesis attacks has been proposed by
Denning and MacDoran [2]. Their “location signature sensor” not only decodes
the GPS C/A navigation signal in order to report its position to a remote authen-
tication peer. It also detects and records a number of unpredictable attributes
of the GPS signal, for example the clock noise added by the selective availability
(SA) function of GPS to reduce the quality of service to the general public, as
well as short-term fluctuations in the relative orbital positions that are not re-
ported in the broadcast data. As long as the location signature sensors at both
ends of the authenticated communication can see the same satellites, they can
convince each other of being within a few thousand kilometers.

Again, this system only provides symmetric authentication and anyone able
to verify the output of a location signature sensor in a geographical region will
also be able to fake the output of such a sensor from anywhere within the same
region.

5 Asymmetric Security

We now describe a new navigation-signal scheme that offers protection against
signal-synthesis and selective-delay attacks comparable to that of an encrypted
broadcast signal, that is one where the spreading sequence is a shared secret.
However, the new scheme described in this section achieves this protection with-
out the need to distribute and share any long-term secret keys among receivers.
There is no information available to any receiver that would enable it to attack
others. This approach is therefore particularly suited for open, international,
civilian applications, where receivers are available in many forms to the gen-
eral public and where some deployed receivers can be expected to be reverse
engineered successfully by potential attackers.
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Fig. 2. In the proposed navigation-signal structure, first each transmitter Xi

emits simultaneously from time tm to tm + δ its hidden marker si(t). These
pseudo-random waveforms overlap in the time and frequency domain. Their
power is reduced significantly below the receiver noise level. The waveforms si(t)
are kept secret until time tm + ρ (typically a few seconds later). Then, signed
information packets Mi,m that describe the hidden markers are broadcast at
normal power. Only after receiving these can receivers separate the markers from
the recorded radio signal and determine their exact arrival times by detecting
peaks in the cross-correlation function.

5.1 Hidden Markers

At regular preannounced times t1, t2, . . ., for example every few seconds (or frac-
tions thereof), all transmitters in the navigation system broadcast what we will
call a hidden marker. We will discuss here only the transmission of hidden marker
number m in this series, starting at system time tm, understanding that this en-
tire process will be repeated soon afterwards, starting at another time tm+1, and
so on.

The hidden marker is a rectangular pulse of duration δ, broadcast with
DSSS modulation using a previously unpublished spreading sequence. Its power-
spectral density is chosen such that it is at least 20 dB below the thermal noise
when it arrives at the receiver. At the time at which this marker is transmitted,
all the receivers and attackers can do is to digitize and buffer the entire antenna
signal (filtered to the transmission band). This preserves in each receiver the
information about the exact arrival time of the hidden marker, but it cannot
be accessed yet. To determine this arrival time, the recorded noise has to be
cross-correlated with the spreading sequence, in order to despread the marker
and recover it from the noise.

However, the necessary information about the spreading sequence is not yet
available at that time to any receiver. It is broadcast only after a delay ρ. Once
this has been received, both regular receivers and attackers can identify and
separate the markers in the recorded antenna signal. But any signal-synthesis
or selective-delay attack can now be performed only with a delay Δt > ρ. By
choosing ρ large enough, we can ensure that this delay can easily be detected by
any receiver, even using an only loosely synchronized low-cost crystal clock. See
also Fig. 2.
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5.2 Transmitted Signal

In more detail, the steps taken at each broadcasting station Xi to generate the
hidden-marker signal number m are:

1. Some time before tm, Xi generates an unpredictable number Ni,m, for ex-
ample using a cryptographically secure random-number generator.

2. This Ni,m is used to seed a cryptographically secure pseudorandom bit-
sequence generator P (Ni,m, j) ∈ {−1, +1} that outputs a sequence of bits
with indices j = {0, 1, 2, . . .}.

3. From time tm to tm +δ, Xi transmits the hidden marker, a sinusoidal carrier
wave that is multiplied with the output of the seeded pseudorandom-bit
generator, in order to spread its frequency spectrum4:

si(t) = A ·sin[2πfc ·(t− tm)] ·P (Ni,m, �fs · (t− tm)�), tm ≤ t < tm +δ (9)

Here fc is the chosen center frequency of the resulting signal and fs is the
bit rate of the spreading sequence, which is equivalent to half the mainlobe
bandwidth of the resulting spectral power-density distribution

|S(f)|2 = (A/fs)2 ·
sin2[π(f − fc)/fs]
[π(f − fc)/fs]2

(10)

The parameters tm, fc and fs are identical for all transmitters (in other
words, this is CDMA, not FDMA or TDMA), and the amplitude A is chosen
low enough to bring the received signal well below the noise level.

4. At time tm + ρ (where ρ� δ), Xi broadcasts a data packet of the form

Mi,m = SignK−1 [tm, Xi,xi(tm), Ni,m] , (11)

which is a message that is cryptographically signed with the private key
K−1 of the navigation system and that reveals a full description of the
previously transmitted hidden marker, including its transmission time tm,
the identifier Xi and exact location xi(tm) of the transmitter, and finally the
unpredictable number Ni,m used by that transmitter to spread the spectrum
of this particular marker signal. Parts of this message may be transmitted
earlier, as long as no information about Ni,m is revealed until the nonce-
release time tm + ρ has been reached.

5.3 Verification at the Receiver

By going through the following steps, each receiver R can use the hidden marker
scheme to determine its position in a way that is robust against signal-synthesis
and selective-delay attacks:
4 We use here binary phase-shift keying (BPSK) to modulate the hidden marker signal,

but many other modulation schemes could be used equally, including the binary offset
carrier (BOC) modulation techniques used in some more recent navigation systems.
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1. The implementation of the receiver’s local clock tR(t) must not be influenced
in any way by information received through navigation signals. We assume
that it has a known maximum relative frequency error εf , such that∣∣∣∣ tR(t + τ)− tR(t)

τ

∣∣∣∣ ≤ εf .

We also assume that tR was last adjusted by an authenticated two-way clock
synchronization from a trusted source at system time t̂ such that |tR(t̂)− t̂| ≤
εs. The error uR(t) of the local clock tR(t) is then bounded by

|uR(t)| ≤ εf · (t− t̂) + εs, for t ≥ t̂ . (12)

Simple crystal oscillators offer εf < 10−5 and authenticated two-way clock
synchronization over wireless computer networks usually offers εs < 100 ms.

2. During a time interval slightly larger than [tm, tm + δ], the receiver digitizes
the entire frequency band [fc − fs, fc + fs] with a sampling rate of at least
4fs and stores it in a RAM buffer B(tR).

3. It then waits for the arrival of the broadcast messages Mi,m and discards
those whose signature cannot be verified using the navigation system’s well-
known public key K or whose marker time tm does not match the marker
time for which the receiver initiated the wide-band recording in the previous
step.

4. For each Ni,m extracted from a message Mi,m that passed these checks,
the receiver now generates the spreading sequence si(tR) from equation (9).
These are then cross-correlated with the RAM buffer B5:

Ci,m(τ) =
∫

t

B(t) · si(t + τ) dt (13)

5. For each cross-correlation result Ci,m, the position τ̂i,m of the largest peak in
it is recorded, together with the relative amplitude wi,m of any second-largest
peak.

6. Of the recorded tuples (i, τ̂i,m, wi,m) the receiver now discards all where
the second-largest peak is not attenuated by at least a configurable security
factor W relative to the largest peak. (The reason for this step will become
clear in Sect. 6.)

7. The remaining peak-positions τ̂i,m are then used as pseudoranges

d̃i = c · τ̂i,m = |xi − r| − c · uR (14)

and the resulting set of equations, which use the received digitally signed
transmitter positions xi, is solved for r and uR.

8. The result is accepted, if the uR value remains within the clock uncertainty
allowed by inequality (12) and is smaller than the time delay ρ for the pub-
lication of the spreading-sequence seed values.

5 In a practical implementation, recording and cross-correlating the hidden marker
may be done after conversion from fc down to a lower intermediate frequency.
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This scheme utilizes the fact that there are now low-cost analog-to-digital
converters available, with sampling rates of more than 100 MHz. This, together
with falling RAM prices, has made it feasible to record in battery-operated low-
cost devices at an intermediate frequency of up to 50 MHz for several seconds
entire RF bands that are 20 MHz or more wide, as they are occupied by the
GPS Y signal.

5.4 Optimized Broadcast Data

Existing navigation systems operate with comparatively low bit rates for the
transmission of data (e.g., 50 bit/s for GPS). Therefore, a concern may be the
length of the cryptographically authenticated message Mi,m, which releases the
number Ni,m and binds it securely to the transmission parameters of the corre-
sponding hidden marker. A digital signature alone consists of several hundred
bits, so the length of Mi,m might become a limiting factor for the rate at which
hidden markers can be transmitted. Fortunately, there are several optimizations
of the scheme possible, which reduce the required bit rate.

The individual messages Mi,m can be consolidated into a single system-wide
message Mm. In particular, Mm could contain only a single unpredictable num-
ber Nm, from which then the individual seed numbers Ni,m = g(Nm, i) can be
derived in a predictable way. The function g could be something as simple as
addition. Individual transmitters can also vary the order in which they transmit
the elements of Mm, such that receivers can compile the complete Mm faster
from the parallel reception of several transmitters than from listening to merely
a single one.

Instead of including Nm in Mm as a separate data field, it could also be
derived from Mm’s digital signature, which is already unpredictable. The trans-
mitters would then have to commit to the content of Mm before time tm is
reached, and would lose their ability to update position and time using the lat-
est measurements, in return for eliminating the need to transmit Nm. Where the
values of tm and x(tm) can be predicted well in advance, only the marker serial
number m itself needs to be signed in each Mm. The parameters for predicting
tm and x(tm) from m can then be broadcast as a separate message much less
frequently.

Alternatively, it is also possible to avoid the addition of a digital signature to
each Mm entirely by using a symmetric stream-authentication method, such as
the one proposed in [5]. Such schemes operate on a principle very similar to the
hidden-marker system presented here. They replace the digital signature with
a symmetric message-authentication code, and release the – for the receiver
unpredictable – authentication key only after a delay (equivalent to ρ above)
that is longer than the clock uncertainty of the receiver. Only the first message
in such a stream needs to be digitally signed. The message-authentication keys
used in all further packets are derived from their respective successor, using a
secure one-way function. They can therefore be verified from their respective
predecessor, as soon as they are released.
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If we used a standard stream-authentication method, such as [5], directly to
protect the messages Mm, the authenticity of the hidden marker could only be
verified after two delay periods ρ, one to protect Nm and the other to protect
the message-authentication key. This problem can be avoided by eliminating
the message-authentication code, and instead making all the values Nm directly
parts of a one-way chain.

In more detail, here is how we can combine the hidden markers number
m0, m0 +1, . . . , m0 +n into a single marker stream that requires only one single
digital signature:

1. The transmitters pick at random an unpredictable final number Nm0+n for
the stream, and then generate a number Nm for each of the n previous
markers, via the recursion Nm = h(Nm+1) (for m0 ≤ m < m0 + n). This
way, the first number will be Nm0 = hn(Nm0+n). Here, h is a secure one-way
function, that is a function for which, given a value y, it is computationally
infeasible to find a preimage x with h(x) = y.

2. The transmitters then broadcast some time before tm0 the message

Mm0 = SignK−1 [m0, h(Nm0), D] , (15)

where D is a parameter set that describes how the values tm and xi(tm) can
be calculated from a given station number i and marker number m.

3. Finally, the transmitters broadcast from time tm to tm + δ their respective
hidden markers, generated from Ni,m = g(Nm, i), and they broadcast at
time tm + ρ the message Nm, and this for each m ∈ {m0, . . . , m0 + n}, as
described in Sect. 5.2.

The receivers follow the same steps as described in Sect. 5.3, except that a
digital signature is now verified only for the first message Mm0 in each stream.
The subsequently released value Nm0 is verified against the signed value h(Nm0)
in Mm0 . All the subsequently released values Nm (for m0 < m ≤ m0 + n)
are then verified with the test h(Nm) = Nm−1. The parameters tm and xi(tm)
are calculated from the signed parameter set D (which in a satellite navigation
system, for example, would include the orbital parameters).

This way, apart from the signed message Mm0 that precedes a stream of n+1
consecutive markers, only a single number Nm needs to be broadcast per marker.
It will not have to be longer than 60–80 bits in practice, just enough bits to make
a brute-force inversion of h infeasible within the time interval tm+1 − tm.

The length n + 1 of these marker streams is limited by the requirement that
newly activated receivers, and those that missed one of the values Nm, should
not have to wait long until they can restart the authentication chain with the
start of a new stream.

6 Selective-Delay Using High-Gain Antennas

There is an alternative way of separating the right side of equation (5) into
the terms contributed by the individual transmitters, which does not depend on
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knowing the spreading functions. If the approximate positions of transmitters
are predictable, at least four of them can be targeted with directional antennas.

If the gain of these antennas is high enough to lift the broadcast signals out
of the background noise, demodulation and threshold operations can be applied
in order to free the signal of one station completely from any interference by
the others, enabling a selective-delay attack that cannot be detected. The only
protection against this attack appears to be to keep the signal strength enough
below the noise limit to require antennas so large that their use during a practical
attack becomes infeasible.

If the signal-to-noise ratio achievable with directional antennas is not suffi-
cient for separating and decoding the signals directly, then the attacker can still
delay the raw antenna signals and mix them together for the receiver. In prac-
tice, no directional antenna will be able to suppress the signals from all other
transmitters completely. This will cause weaker shadow peaks to show up in the
cross-correlation results for each transmitter station, picked up and contributed
by an antenna pointing to another station, at the relative delay applied there.
The security parameter W in the receiver algorithm from the previous section
defines, how sensitively the receiver should react to such shadow peaks. This sen-
sitivity could be made dependent on the distance in time from the main peak,
such that a selective-delay attack with directional antennas is not confused with
secondary peaks caused by plausible multi-path propagation.

7 Example Parameters

The technique presented in Sect. 5 is particularly suited for navigation systems
that transmit from medium-earth-orbit (MEO) satellites, such as GPS, Glonass
or Galileo. In this setting, there are clear lower and upper bounds for the ranges
between receivers and visible transmitters (e.g., 20 000–26000 km for GPS),
which helps to ensure a uniform received signal strength, at least outdoors. The
transmitters also move fast enough to complicate the use of directional antennas.
For other types of pseudo-range navigation systems, such as land-based long-
wave transmitters (e.g., LORAN-C) or short-range ultrasonic or ultra-wideband-
radio positioning systems, more complex schemes may be needed that involve
hidden markers broadcast at a wide range of power levels.

The security of the scheme is based on the assumption that at any receiver
position, the time intervals during which hidden markers arrive from the various
transmitters will overlap substantially. With MEO transmitters, ranges can vary
by up to 6000 km. This corresponds to 20 light milliseconds, and the duration
of the hidden marker will have to be at least one or two orders of magnitude
longer than that. A typical value may be δ = 1 s.

We need to chose the signal strength, such that a clear peak appears after
the cross-correlation with the correct spreading sequence in a receiver, while
keeping on the other hand the power spectral density of the broadcast signal
well below thermal noise. Integrating during a cross-correlation for an entire
second is roughly equivalent to filtering the noise bandwidth of a signal down to
1 Hz.
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As a very simple example, if we quantify (pessimistically) the thermal back-
ground noise to be expected by a receiver with an equivalent antenna tem-
perature of 290 K (including atmospheric noise, cosmic background radiation,
antenna temperature noise, transmission line losses, amplifier noise [4,6]), this
corresponds (after multiplication with the cross-correlation bandwidth of 1 Hz
and Boltzmann’s constant) to a noise power level of about −204 dBW. If the
transmission power of each hidden marker is selected such that about −170 dBW
reach the receiver, then the 34 dB signal-to-noise ratio obtained this way ensures
that spurious peaks in the cross-correlation output caused by noise will remain
much smaller than the peak caused by the hidden marker.

If we use, as the GPS Y-code does, a spreading frequency of fs = 10 MHz,
then an attacker who does not know yet the spreading sequence will have to work
with the full 20 MHz mainlobe bandwidth of the broadcast signal. Even with a
much better omnidirectional antenna, with an equivalent noise temperature of
only 100 K, this still leaves−136 dBW received noise power, which is 34 dB above
the signal energy and therefore will render the broadcast signal unrecognizable.

A 20 MHz wide intermediate frequency signal can be recorded comfortably
with a sampling frequency of 200 MHz. With a signal-to-noise ratio of −34 dB,
there is little point in storing more than one or two bits per sample after analog-
to-digital conversion, as the quantization noise would still be small compared to
the thermal noise. Therefore, the entire hidden marker can be practically stored
in not more than 25 MB of RAM.

The choice for the delay time ρ after which the information about the spread-
ing sequence is released depends on how frequently a receiver is assumed to get
in contact with a trusted source of the system time t, and how stable its local
clock is. If we take as an example a maximum time between resynchronizations
of t− t̂ < 1 week, a local clock frequency error of εf < 10−5, and a synchroniza-
tion error of εs < 1 s, then from equation (12), ρ = 10 s > uR would appear
to be a suitable choice. Where no single value for ρ can be found that suits all
applications, it is possible to broadcast hidden markers with a range of different
time delays.

8 Conclusions

This paper considered an aspect of the security of pseudoranging positioning
systems, such as GPS, namely how a receiver can be misled about the position
of its antenna if an attacker is allowed to insert a signal-manipulation device
between the receiver and the antenna. We have shown that positioning systems
currently offer no defense against signal-synthesis or selective-delay attacks with-
out the receiver obtaining all the information necessary to mount these attacks
on others.

We outlined a new signal structure and the corresponding verification algo-
rithm for receivers that solves this problem. A weak spread-spectrum broadcast
signal is temporarily hidden in background noise while receivers buffer the entire
radio band in RAM. The despreading key is only published after a time that is
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larger than the uncertainty of the local clock in the receiver, at which time both
a signal-synthesis and a selective-delay attack can easily be detected. Such keys
can be authenticated efficiently by making them part of a one-way chain.

The system is still based on the pseudoranging principle and uses only a
low-cost local clock in the receiver. It can therefore still be defeated by relaying
attacks. Against these, we see no solution other than using a more expensive
highly-stable oscillator in the receiver, or using authenticated two-way ranging,
both of which would be able to detect the added delay.

The system is also vulnerable to selective-delay attacks involving at least four
high-gain directional antennas. A security parameter that limits the height of
shadow peaks in the cross-correlation result can be used to control the minimum
antenna gain needed for this attack to succeed, thereby limiting its practicality.
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Abstract. Digital fingerprinting schemes deter people from illegal copying of 
digital contents by enabling the seller to identify the original buyer of a copy 
that was redistributed illegally. What is important in designing fingerprinting 
scheme is to make it more practical and efficient. However, the complexity of 
existing schemes is too high to be implementable. Recently, oblivious transfer 
protocol-based schemes to consider practicality were proposed. These are sig-
nificant in the sense that there are completely specified from a computation 
point of view and are thus readily implementable. But these schemes have the 
serious problem that they cannot offer the security of sellers and buyers. In this 
paper, we first show how to break the existing oblivious transfer-based finger-
printing schemes and then suggest how to make secure fingerprinting schemes 
against the dishonesty of a sellers and buyers. We use oblivious transfer proto-
col with two–lock cryptosystem to make it practical and secure. All computa-
tions are performed efficiently and the security degree is strengthened in our 
proposal. 

1   Introduction 

Digital fingerprinting schemes are cryptographic methods deterring buyers from ille-
gally redistributing digital contents. It enables sellers to identify the traitor / copyright 
violator by providing each buyer with a slightly different version.  
Classical Fingerprinting protocol [GCG86][Ne83] is symmetrical in the sense that the 
seller knows the fingerprint with the buyer. Thus, if another copy with this fingerprint 
turns up, one cannot really assign responsibility about redistribution to one of them. 
This problem is overcome by asymmetric protocol [PS96]. Here, because only the 
buyer can obtain the exact fingerprinted copy, if an unauthorized copy is found, the 
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seller can obtain a means to prove to a third party that the buyer redistributed it and 
he can identify a traitor. However the drawback of this solution is that it did not pro-
vide a buyer’s anonymity. To protect buyer’s privacy [PW97] has been suggested. 
The idea is that the seller can know neither the fingerprinted contents nor the buyer’s 
real identity. Nevertheless the seller can identify the traitor later. This possibility of 
identification will only exist for a traitor, whereas honest buyers will remain anony-
mous. 
 
Requirements of anonymous fingerprinting schemes can be listed as follows [PW97]:  

 
1. Anonymity: A buyer should be able to purchase digital contents anonymously. 
2. Unlinkability: Given two digital contents, nobody can decide whether or not 

these two contents were purchased by the same buyer. 
3. Traceability: The buyer who has distributed digital contents illegally can be 

traced. 
4. No Framing (Buyer’s security): An honest buyer should not be falsely accused 

by a malicious seller or other buyers. 
5. No Repudiation (Seller’s security): The buyer accused of redistributing an un-

authorized copy should not be able to claim that the copy was created by the 
seller. 

6. Collusion Tolerance: Attacker should not be able to find, generate, or delete the 
fingerprint by comparing the copies, even if they have access to a certain num-
ber of copies. 

7. Practicality1: All computations should be performed efficiently so that it can be 
readily implementable.  

 
The most important point of designing anonymous fingerprinting scheme is to make it 
more practical and efficient. [Do99] scheme based on committed oblivious transfer 
from fingerprinting (fingerprinting step) point of view and [PS00] scheme based on 
digital coin from registration and identification point of view were highly valued 
among existing schemes.  
The first proposal to pay attention to practical fingerprinting scheme was 
[Do98]2[Do99] scheme. The previous scheme [PW97] is inefficient and impractical 
because it is based on secure two-party computations [CDG87] (It uses general theo-
rems like “every NP-language has a zero-knowledge proof system” without present-
ing explicit protocols) with high complexity. On the contrary, [Do99] scheme is 
based on the committed oblivious transfer (COT) that is completely specified from a 
computational point of view and is thus readily implementable. But it is pointed out 
that it allows the seller to cheat honest buyers [Sa01]. Later, [Sa01] made several 
constructive proposals to repair some flaws of [Do99] scheme and [PS00] suggested 
an efficient method without secure two party computations, which is based on the 

                                                           
1  Note that we add practicality to the requirement of anonymous fingerprinting scheme from 

[PW97] 
2  In [Do98], an anonymous fingerprinting algorithm is proposed which avoids secure multi-

party computation and is based on 1-out-of –2 oblivious transfer. However, this approach 
also relies on a unspecified general zero-knowledge proof. 
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principles of digital coins. But [Sa01] scheme also has security problems that buyers 
and sellers can cheat each other. We prove it clearly in the section 2.  
[PS00] scheme is also impractical because it uses [BS95] code as a building block for 
collusion resistance. In [BS95] scheme, their code needed for embedding is so long 
that the overall system cannot be practical. High complexity fingerprinting step also 
remains unsettled in [PS00].  

1.1   Our Contribution 

In this paper, we propose a practical and secure anonymous fingerprinting scheme 
based on the oblivious transfer (OT) with two-lock cryptosystem. We first show the 
shortcomings of the previous schemes [Do99][Sa01] based on the COT. Then we 
show how to solve their security problems and improve their computational complex-
ity. As a result, our proposal brings anonymous fingerprinting far nearer to practical-
ity. We compare the features of our proposal with the previous schemes in Table 1.  

Table 1. Comparison of our proposal with the previous schemes 

Features [Do99] [PS00] [Sa01] Our Proposal 

Anonymity Offer Offer Offer Offer 

No Framing No Offer Offer No Offer Offer 

No Repudiation No Offer Offer No Offer Offer 
Collusion     
Tolerance No Offer Offer No Offer Offer 

Participators of 
the Identification 

All buyers, 
Seller, Regis-
tration Center 

Seller, Regis-
tration Center 

All buyers, 
Seller, Regis-
tration Center 

Seller, Regis-
tration Center 

Methodology COT* Digital Coin COT OT* 
* COT/OT: Committed Oblivious Transfer/ Oblivious Transfer with Two-lock Cryptosystem 
 

The most undesirable issue of [Do99][Sa01] schemes is that they do not offer the 
security of buyer and seller (No Framing and No Repudiation) because the seller can 
know the buyer’s fingerprint if he abuses flows of COT in the [Do99] scheme, or 
buyers can know both versions of contents’ each bit in the [Sa01] scheme. On the 
contrary, our proposal offers the security of buyer and seller even if it is based on OT 
protocol.  
[Do99] scheme does not offer collusion-tolerance that is an important property a 
fingerprinting scheme should possess and [Sa01] also does not solve this problem. In 
fact, [Do99] introduced the approach to use tamper-proof device such as smart card to 
provide collusion-tolerance. But [Do99] just sketched it and leaves some problems 
such that the buyer and the seller have complete trust in the smart card and this is 
difficult to justify because the tamper-resistance of smart cards provide only limited 
security [Sa01]. [Sa01] just pointed out problems of [Do99] and did not suggest any 
solutions. So we describe that collusion-tolerance in the two schemes was not offered. 
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A further critical problem in [Do99] is that during the identification step the seller 
must contact all buyers (This problem has reported in the [Sa01] scheme, but [Sa01] 
has not suggested its solution). 
[PS00] scheme and our scheme offer collusion-tolerance but [PS00] scheme has the 
problem that the length of code used is too long (the code needed for embedding is so 
long that the overall system cannot be called practical). On the other hand, our 
scheme uses Cox’s scheme [CK97] for collusion-tolerance that is estimated to be 
highly resistant to collusion attacks [KT98]. The most meaningful feature of our 
scheme is practicality. Since we remove interaction between the buyer and the seller 
in the fingerprinting step and exclude the buyer’s participation from identification 
step. 

1.2   Our Approach 

The main idea of our scheme is to use an oblivious transfer with two-lock cryptosys-
tem in order to prevent the seller’s illegal transaction such as input of same values 
and remove interaction between buyers and sellers in the fingerprinting step. 
In our scheme, the seller sends the fingerprinted contents to the buyer but he cannot 
know which contents the buyer chose. The buyer can also verify that the seller does 
not embed the same fingerprint, but she cannot know all fingerprinted contents that 
the seller sent. Thus we solve the security problem of the [Do99] scheme that the 
seller can cheat the buyer by inputting the same version of each bit and that of the 
[Sa01] scheme that the buyer can know all versions of contents’ each bit.   
The second idea is that we use Cox algorithms [CK97] which has high resistant at 
collusion attack instead of [BS95] code as a building block for collusion tolerance in 
order for efficient identification process. Thus sellers can identify the traitor by esti-
mating fingerprint’s correlations between the redistributed copy and assigned finger-
print without the help of buyers in our scheme. 

 
The rest of this paper is organized as follows. First, the previous COT-based schemes 
[Do99][Sa01] are described briefly and its shortcomings are discussed in Section 2. 
Next, OT with two-lock system as our methodology is described in Section 3. Then 
the proposed anonymous fingerprinting scheme is described in detail in Section 4 and 
various features of the proposed scheme are analyzed in Section 5. Finally, we con-
clude in Section 6. 

2   Overview of the Attacked Schemes 

In this section we briefly review the construction proposed in [Do99][Sa01]. For 
simplicity we use the same notations. 
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2.1   Domingo’s Scheme [Do99] 

System Setup: The digital contents item  is assumed to be n  bit long. There are two 
possible versions of each contents, a marked version and an unmarked version. For 
each bit item the seller creates two versions  of bit . 
For i  to n , the seller commits, using BCXs (bit commitment with XOR), to  
and to item  to get . The seller sends to the registration center a signed and 
time-stamped message containing a short description of item  as well as a list of the 

 bit positions in item  containing a mark. 
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Buyer Registration: Registration center chooses a random nonce pr Zx  and sends 
 to buyer. Then buyer chooses secret random s  and  in  such that 

and sends S and  to registration center. In here, 
 is the secret key of the buyer and y  is the public key 

corresponding with it. The buyer convinces the registration center in zero-knowledge 
of possession of  and . The buyer computes an ElGamal public key  and 
sends it to the registration center. Next, the registration center checks S and 

. The registration center returns to the buyer a certificate Cert . The 
certificate states the correctness of .  
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Fingerprinting: The following steps are executed for ni ,...,1 .  
1. The seller permutes the pairs (  and stores the result  

in his purchase record. 
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2. The seller and the buyer run a Committed Oblivious Transfer Protocol (COT) 
from [CGT95]. At the beginning of this protocol the seller inputs commitments 

 of his two secret bits item  and the buyer in-
puts the commitment  to a bit b  which indicates the secret she wants to 
learn. The protocol should not reveal any information on the other secret to the 
buyer. It also should not leak any information on b  to the seller. The output of 
the protocol to the buyer is the fingerprinted sub-item item  and its 
commitment . 
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3. The buyer signs com  using the secret  and sends it together with the certifi-
cate  to the seller who verifies them. 
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Identification: After finding a redistributed copy , reditem
1. The seller retrieves all signed commitments corresponding to the contents sold 

that is similar enough to item . red

2. The seller sends a signed copy of item  to registration center and to all pseu-
donymous buyers who have bought a copy of this contents. 

red
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3. All suspected pseudonymous buyers execute the following until he finds a trai-
tor: 
(1) Using a coin-flipping protocol the seller and the pseudonymous buyer agree 

on  bit positions. If the resulting positions contain less than l  
marks, then seller requests the buyer to start again the coin flipping protocol 
to agree on a new set of positions. The procedure is repeated until the 
resulting positions contain l  marks with l

nil1 12 l

3 13 l2 l . 
(2) The pseudonymous buyer opens her commitments corresponding to l  bit 

positions agreed upon. If all l  opened commitments match with the corre-
sponding bit values in item , the seller takes this as proof of redistribution. 
Otherwise the buyer is declared innocent and gets new fingerprinted contents. 

1

3
red

4. The seller presents the opened signed commitments to the registration center re-
questing for identification. The proof of redistribution consists of opened com-
mitments, the signed item  sent to the registration center in step 2 and the 
mark positions sent to the registration center in system setup.  

2.2   Sadeghi’s Scheme [Sa01] 

red

Sadeghi’s scheme made several constructive proposals to repair some flaws of 
[Do99] scheme. This scheme is very similar to Domingo’s one except for the buyer 
registration and fingerprinting (dispute) steps. So we describe only both the buyer 
registration and fingerprinting steps below.  

Buyer Registration: In general, if sellers can collude with a registration center, he 
can easily know the real identity of honest buyers. Since the pseudonym of buyers is 
provided by a registration center in anonymous fingerprinting schemes.  [Sa01] 
suggested a k  out of  trust model in order to reduce the chance of a dishonest 
seller to identify the buyer (real identity of the buyer). It means that k  out of  
registration centers perform the registration of the buyer. So the seller must collude 
with  out of  registration centers in order to succeed in revealing the honest 
buyer’s real identity. The case k  is trivial and similar to the case with a single 
registration center, since one can simply establish a certificate chain among the 
registration center. 

m
m

k m
m

Fingerprinting: Fingerprinting step of [Sa01] is the same that of [Do99] except 
adding the following process. 
During the fingerprinting (or a dispute) step the buyer requests the seller to open 
some pairs of commitments input to COT in a cut and choose manner and verifies 
whether the seller has behaved properly or not. However not all pairs can be opened 
and the identification-relevant parameters such as l  must be adapted accordingly. 3
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2.3   Observations on Security 

[Do99] scheme is significant in the sense that it presented the first construction for 
anonymous fingerprinting which is completely specified from a computational point 
of view and is thus readily implementable. [Sa01] scheme is also significant since it 
raised the efficiency and security of [Do99] scheme. But the most undesirable issue of 
both schemes is that they did not offer the security of buyers and sellers, because the 
seller knows the buyer’s fingerprinted contents if he abuses flows of COT in the 
[Do99] scheme and buyers can know both versions of contents’ each bits in the 
[Sa01] scheme.  

 
 Attack I against [Do99] 

We refer [Sa01] scheme that pointed out the security problem of [Do99]. The finger-
printing step of [Do99] scheme is insecure because the seller can always cheat the 
buyer by inputting the same version of the item  to the COT-protocol for 
each . Thus the seller will always know the output of COT, i.e., he knows which 
fingerprinted contents is assigned to which buyer. This allows a dishonest seller to 
wrongly accuse an honest buyer of treachery. Hence [Do99] does not satisfy with the 
requirements 4, 5 mentioned in section 1, because an honest buyer is falsely accused 
by a malicious seller and the buyer accused of reselling an unauthorized copy can 
also claim that the copy was created by the seller. 

).,.( 0
ii itemge

i

 
 Attack II against [Sa01] 

[Sa01] insisted that his scheme solved security problem of [Do99] to open some pairs 
of commitments inputs to COT in the fingerprinting step or a dispute one.  
Let’s consider the following case. There are two buyers, Alice and Bob. They intend 
to collude in order to recreate another contents. So Alice will request to open special 
bits (for example even bits) and Bob will also request to open special bits (for exam-
ple odd bits). The seller cannot know they will collude. Of course Alice and Bob may 
be the same person. In this case the seller also cannot know it, because buyers use the 
different anonymous identity using one-time registration in the anonymous schemes. 
Then Alice knows all versions of even bits, and Bob knows those of odd bits. Thus 
the buyers can obtain two versions of all bits and can create another contents that are 
not assigned to her/him. Of course the collusion of over two buyers makes it possible. 
 
After all, both schemes based on the COT are weak against our attack and did not 
offer the security of buyer and seller.  

2.4   Observations on Efficiency 

One of the requirements for anonymous fingerprinting is to reduce the computational 
complexity. However both schemes have complexity of O plain oblivious trans-
fers and O plain bit commitments (digital contents consists of  bits and  is a 
security parameter) in the fingerprinting step [CGT95] (See [Do99]). [Sa01] scheme 

)(nm
)( 2nm n m
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has to use cut and choose manner additional for opening bits (Cut and choose proto-
col needs much computation and many pass numbers). These schemes are unrealistic, 
because round complexity of them is linear in the square number of bit-length of 
contents.  
[Do99] scheme also has 5 exponent, 1 zero-knowledge proof, and 4-pass number in 
the registration protocol. A further critical issue in [Do99] is that the seller must con-
tact all pseudonymous buyers during the identification step. This is again an unrealis-
tic approach that all other proposals on anonymous fingerprinting try to avoid. Of 
course [Sa01] did not solve it. 

3   Preliminaries 

3.1   Oblivious Transfer Using Two-Lock Cryptosystem 

We introduce discrete logarithm problem-based oblivious transfer using two-lock 
cryptosystem in order to prevent the dishonesty of buyers or sellers. The discrete 
logarithm based noutt  oblivious transfer of Qian-Hong Wu et al. is applied to the 
fingerprinting step of our scheme. To our best knowledge, a more efficient protocol 
for OT was presented as “Oblivious Transfer Using Two-Lock Cryptosystem” in 
[WZ03].  We assume that this protocol is secure, and the security proof is given in the 
same paper [WZ03]. 
Let Alice possess n (string) secret m  and be willing to reveal t  secret of 
them to Bob. Suppose Bob is interested in secrets m . Assume that Alice 
chooses her random secret key k  and Bob chooses secret keys s . It is con-
venient to implement 

nmm ,...,, 21

itii mm ,...,, 21

tss ,...,, 21

noutt  OT using two-lock cryptosystem as follows. 

1.  Alice sends Bob: Y )(),...,( 11 nknk mAYmA . 
2.  Bob sends Alice: )(),...,( 111 titti YBsZYBsZ . 

3.  Alice sends Bob: . )(),...,( 1
1

1
1 tktk ZACZAC

4.  Bob decrypts: m . )(),...,( 111
11 tsisi CBmCB

tt

Here,  are the different encryption algorithm and  denotes the 
decryption of . Bob can decrypt the cipher text C  and reveal the message 

. In case that 

(.)(.), sk BA

kA

)(1 Ck
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sk BA
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iZ ,...,, 11

)tZ

, it is also known as commutative encryption [BD00].  
To achieve sending privacy, Alice’s encryption algorithm should meet the security 
requirements: given C , it is infeasible to find k  satisfying 

. On the other hand, if Bob’s encryption is semantically 
secure, then receiving ambiguity is guaranteed. In our protocol, we use this protocol 
based on discrete logarithm, which is secure unless an adversary could compute dis-
crete logarithm. 
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4   Proposed Anonymous Fingerprinting Scheme 

In this section, we describe practical and secure anonymous fingerprinting scheme 
using OT with two-lock cryptosystem, which is an improved scheme of [Do99][Sa01]. 

[Outline] 
The proposed scheme consists of the following steps: Buyer registration step for 
buyer’s pseudonym, fingerprinting step for making a fingerprinted contents and iden-
tification step for identification of the traitor. 

[Preprocessing]  
Let  be a large prime such that )( bitsnp 2/)1( pq  is also a prime. Let G  be a 
group of order p and let ,1 g  be a generator of G  such that computing discrete 
logarithms to the base g  is difficult. 

[Notations] 
We assume that the content being sold is a still image, though in general the protocol 
is also applicable to audio and video contents for ease of exposition. We establish 
some notation as follows.  
 

  Original image. :item
 :  Fingerprint (watermark) as a vector of “fingerprint elements”, 

. 
},...,{ 1,0 tFFFF
},...,{ 1 kiii ffF

 Secret key / Public key corresponding with  of a buyer. :/ BB yx Bx
  Fingerprinted image embedded . :*iitem iF

  Encryption/Decryption algorithm with secret key . :(.)(.),/(.)(.), 11
baba BABA ba,

STEP 1. Buyer Registration 
The buyer (Bob) chooses secret random  in  such that 21, xx pZ pB Zxxx 21

*
B

y

. Bob 

sends  and encrypted by using the Registration Cen-
ter’s (Ron) public key . Bob convinces Ron of zero-knowledge of possession of 

. The proof given in [Ch87] for showing possession of discrete logarithms may be 
used here. Ron decrypts and checks that . If it is verified, Ron 
returns to Bob a certificate Cert . The certificate states the correctness of . 

*, BB yy )( 1* x
B gy

y
2x

(xRon

(
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E y
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STEP 2. Fingerprinting  
Bob sends Cert to a seller (Alice). If it is verified, Alice generates valid n  fin-
gerprint randomly. She must generate different n  fingerprints to all 
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buyers. Each fingerprint F  of our protocol and W of Cox scheme3 has the same 
property. Then she makes n  copies to embed each fingerprint . All copies differ 
embedding information (fingerprint). Alice stores records Cert  
at her table Table . Next, Alice and Bob execute OT with two-lock cryptosystem as 
follows. 

i
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0item

iF
*( By
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)( 2YBs
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1. Alice encrypts n  copies (fingerprinted contents) with her own secret key  and 

sends Bob: . )(),...,( *
11 nknk itemAYA

Remark 1: Here, Alice generates n  fingerprints, where Bob would choose 
one out of n  fingerprinted contents. The choice of n  implies a trade off be-
tween correctness and efficiency. In such case, probability of Alice knowing 
which fingerprinted contents Bob chose would be equal to 1 . 

)2(

Remark 2: We use a specific construction which introduced a spread-spectrum 
watermarking techniques proposed by Cox et al [CK97] for collusion-tolerance. 

2. Bob chooses one among them. Suppose Bob chose Y . Then he re-
encrypts it with his secret key s  and sends it back to Alice: Z . Now 
Bob cannot know the hidden fingerprint because they are encrypted with Alice’s 
key but he can verify that Alice did not encrypt the same contents (i.e., Bob can 
verify that Alice did not embed the same fingerprint into the contents).  

3. Alice stores records Z  at her table Table  and sends Bob: . Alice 
also cannot know which fingerprinted contents Bob chose because it is en-
crypted with Bob’s secret key. 

A

4. Bob decrypts and uses: item . )(1*
2 CBs

STEP 3. Traitor Identification 

After finding a redistributed copy item , Alice extracts the unique fingerprint G  in 
. For robust fingerprint embedding algorithm, by computing correlations of 

extracted fingerprint G  and every fingerprint stored in Table , Alice finds F  with 
the highest correlation and obtains the transaction information involving  from the 
table. The information consists of Cert . Alice sends them and the redistrib-
uted copy to an arbiter. The arbiter verifies the presence of F  in the , if it is 
checked, he asks the real identity of the traitor to Ron. Thus the seller can identify the 
traitor.  

red

yB( *

reditem

ZyB ,), *

If the accused buyer cannot agree with the arbiter’s decision, he sends his own con-
tents to arbiter (or the arbiter asks the buyer Z and the buyer must open Z ). If the 

                               
3 Cox et al., embed a set of independent real numbers W { 1w  drawn from a zero 

mean, variance 1, Gaussian distribution into the  largest DCTAC coefficients of an image. 
Results reported using the largest 1000 AC coefficients show the technique to be remarkably 
robust against various image processing operations and after printing and rescanning and 
multiple-document (collusion) attack. 

m
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same  indeed present in the accused buyer’s contents or iF Z , he is found guilty oth-
erwise he is innocent. 

s

5   Features and Security Analysis 

We discuss and analyze features and security of the proposed scheme according to the 
list of requirements (Section 1). We assume that all of the underlying primitives are 
secure. Security of our scheme relies on that of the underlying watermarking algo-
rithm and cryptosystem.  
1. Anonymity: We assume that the registration center does not reveal the buyer’s 

real ID if the buyer is honest. In fingerprinting step, the seller knows . Finding 
 would require knowledge of x . However, if the encryption algorithm is se-

cure, attacker (seller) cannot know . Thus buyer anonymity is guaranteed. 

*
By

By 2

2x
2. Unlinkability: Because our scheme executes one-time registration generation 

protocol whenever the buyer buys a contents (By going through the registration 
step several times, the buyer can obtain several different certified keys ).  This 
implies that the buyer’s purchases are unlinkable. 

*
By

3. Traceability: Due to the properties of the underlying encryption, we can assume 
that a malicious buyer cannot change or substitute a fingerprint generated by the 
seller. Further a detecting function in the fingerprint detection must guarantees that 
the seller can extract the unique fingerprint  that belong to a traitor. Besides, the 
buyer cannot remove the fingerprint F  because he does not know F . Thus the 
buyer who has distributed digital contents illegally can be traced in our scheme. 

iF

i i

4. No Framing: Since, to forge Y  with the special fingerprint F , the seller must 
know the buyer’s private key 

i

s . In our proposal, only the buyer knows his secret 
key  if computing discrete logarithm is hard and encryption algorithm (underly-
ing primitives) is secure. Since we use secure oblivious transfer with two-lock 
cryptosystem in the fingerprinting step, the seller cannot know which fingerprinted 
contents buyers selected. And the seller cannot input the same values in the execu-
tion of OT because all inputs are received to the buyer and the buyer checks them. 
Thus an honest buyer should not be wrongly identified as a traitor, because the 
others cannot recreate the buyer’s copy with specific fingerprint. 

5. No Repudiation: The buyer accused of reselling an unauthorized copy cannot 
claim that the copy was created by the seller or a security breach of the seller’s sys-
tem. Since only the buyer know his secret key s  and his unique fingerprinted con-
tents , the others cannot recreate the buyer’s copy. 

6. Collusion Tolerance: Our scheme has used [CK97] as a building block. We as-
sumed that this algorithm is secure. And this algorithm is estimated to be highly 
resistant to collusion attacks [KT98]. Our protocol is secure only as much as the 
underlying watermarking techniques are secure and robust. 

*iitem

7. Practicality: While computation complexity of both schemes [Do99][Sa01] of 
fingerprinting step is O plain oblivious transfers and O plain bit com-
mitments, that of our protocol is just 

)(nm )( 2nm
1t encryption and 2 decryption, where t  is 
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the number of contents to be copied/fingerprinted for a contents. It is not liner in 
the length of contents. Doing this in sequence is unrealistic in the [Do99][Sa01], 
because the round complexity of the algorithm is linear in the bit-length n  of the 
contents (one should think of the size of an image). And [Do99] has 5 exponentia-
tions, a zero knowledge proof and 4-pass number in the registration step, but our 
protocol has just 4 exponentiations, a zero knowledge proof and 2-pass. Besides all 
buyers must take part in the identification step in [Do99][Sa01]. On the contrary, 
the seller can identify the traitor without the help of buyer in our protocol. In the 
event, our scheme4 first reduces the round complexity and computational complex-
ity from both schemes. Furthermore we improve the identification step to remove 
the participation of the buyers (all buyers). We design anonymous fingerprinting 
scheme that removes interaction property between buyers and sellers in the finger-
printing step (embedding procedure). 

6   Concluding Remarks 

To perform fingerprinting protocol efficiently, some schemes [Do99][Sa01][PS00] 
were proposed. But [Do99][Sa01] schemes have the serious problem that sellers can 
recreate the buyer’s copy when he abuses the general oblivious transfer. Besides the 
seller must contact all buyers in the identification step in the [Do99][Sa01] schemes. 
[PS00] scheme has the problem that used collusion-secure code is too long and fin-
gerprinting step has high complexity.  
In this paper, we proposed practical and secure anonymous fingerprinting protocol 
with lower computational complexity. For it, we applied oblivious transfer with two-
lock cryptosystem to the fingerprinting step. Accordingly, our protocol is secure 
against the seller’s illegal transaction though we use oblivious transfer. But drawback 
of our scheme is that our transmission overhead is linear in the number of generated 
fingerprinted contents though we improved the computational complexity. A further 
direction of this study will be to reduce the transmission overhead. 
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Abstract. A variety of remote sensing attacks allow adversaries to break flow
confidentiality and gather mission-critical information in distributed systems.
Such attacks are easily supplemented by active probing attacks, where addi-
tional workload (e.g., ping packets) is injected into the victim system. This paper
presents statistical pattern recognition as a fundamental technology to evaluate
the effectiveness of active probing attacks. Our theoretical analysis and empirical
results show that even if sophisticated approaches of link padding are used, sam-
ple entropy of probing packets’ round trip time is an effective and robust feature
statistic to discover the user payload traffic rate, which is important for maintain-
ing anonymous communication. Extensive experiments on local network, cam-
pus network, and the Internet were carried out to validate the system security
predicted by the theoretical analysis. We give some guidelines to reduce the ef-
fectiveness of such active probing attacks.

1 Introduction

This paper analyzes a class of active attacks on traffic flow confidentiality. In particular,
we are interested in attacks that disclose the traffic rate on a network link. Traffic rate is
critical information in many scenarios. For example, if Alice communicates with Bob
through an anonymous communication network3, an attacker may infer this communi-
cation relationship (sender and receiver) if he determines that the rate of output traffic
from Alice roughly equals the rate of input traffic to Bob. In [2], Serjantov and Sewell
give more examples about the importance of hiding traffic rates in Mix networks, and
the authors of NetCamo [3] show examples in other mission-critical applications.

To hide traffic rate, dummy traffic is typically used to pad the original traffic, i.e.,
user payload traffic. As a result, the padded traffic has a different rate from the original
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the sponsors listed above.

3 Anonymous communication networks use Mix techniques pioneered by Chaum [1] and are
often denoted as Mix networks.
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traffic, so that we achieve traffic rate hiding. Traffic padding4 can be end-to-end padding
(in which sender and receivers control the padding) and link padding (in which the
intermediate hops control the padding). In either case, the original traffic is often padded
to have a constant rate using a periodic timer; this technique is denoted as CIT (constant
interval time) padding. The original traffic can also be padded to have a variant rate
using a non-periodic timer, and this technique is denoted as VIT (variable interval time)
padding. However, traffic padding is not a cure-all. Traffic analysis attacks have been
developed to obtain the information about the traffic rate even if traffic padding is used.

In terms of techniques, traffic analysis attacks can be passive and active. (a) In a
passive traffic analysis attack, an adversary passively collects traffic data and performs
analysis on it. The authors of [4] describe statistical traffic analysis attacks to estimate
the user payload traffic rate if CIT padding is used and how the effectiveness of this
type of attack can be significantly reduced with the use of appropriate VIT padding. (b)
In an active traffic analysis attack, the adversary interferes with the normal activity of a
victim network in a seemingly innocuous way and tries to acquire critical information
by analyzing the victim network’s response to the interference.

One specific kind of active traffic analysis attack is an active probing attack, in
which an adversary injects probing traffic (e.g., FTP/TELNET/Ping/etc.) into the victim
network and analyze the network’s response on the probing traffic. Wei Dai [5] briefly
describes cases of active probing attacks aimed at getting traffic rate between pairs of
users to break Freedom anonymity systems [6] by insiders, such as malicious users.

This paper analyzes active probing attacks by outsiders and develops countermea-
sures against these forms of attacks for systems that use VIT traffic padding. As an
illustrative example, we use a simple ping-based probing attack, where the adversary
pings various locations in the network in order to gain information, such as the pay-
load traffic rate. We define detection rate as the probability that the adversary correctly
recognizes the payload traffic rate and use it to evaluate the information assurance of
a security system. We systematically evaluate the detection rate of various statistical
methods which the adversary can then use to analyze the probing traffic. Specifically,
using statistical pattern analysis as the framework, we find that sample mean, sample
variance, and sample entropy of the round trip time (RTT) of probing packets can help
the adversary track the payload traffic rate’s changing pattern and obtain the payload
traffic rate. Of those statistics, sample entropy is robust (i.e., not sensitive to outliers)
and effective in terms of detection rate.

We also report results from extensive experiments in various situations, including
local area network in a laboratory, campus networks, and wide area networks. Our data
consistently demonstrates the usefulness of our analytic model and correctness of de-
tection rates predicted by the closed-form formulae.

As with countermeasures, active probing attacks can generally be made ineffective
through simple means, for example, by randomly delaying all non-payload traffic. We
will empirically and analytically evaluate the effectiveness of such countermeasures by

4 We distinguish traffic padding from packet padding. Packet padding hides the length of indi-
vidual packets by adding padding data to packets. Traffic padding hides the temporal charac-
teristics, for example rate, of a flow of packets. Traffic padding relies on packet padding and
encryption to render dummy packets indistinguishable from real packets.
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measuring to what extent they reduce the effectiveness of probing attacks. We note that
the methodology of delaying outgoing traffic from security gateways may be desired
for security contexts in addition to the context described here.

The rest of this paper is organized as follows. Section 2 reviews traffic padding as
the countermeasure to traffic analysis attacks and recent practical traffic analysis attacks
in different scenarios. We present the network model, padding mechanism, and an ad-
versary’s analysis strategies in Section 3. In Section 4, we develop a theoretical model
and derive closed-form formulae for detection rates for different statistics. Section 5
validates our theory through experiments. Based on empirical and analytic techniques,
Section 6 gives countermeasures to active ping probing attacks. Section 7 summarizes
this paper and discusses possible extensions.

2 Related Work

Shannon [7] describes his perfect secrecy theory, which is the foundation for the ideal
countermeasure system against statistical analysis attacks. Traffic padding is a major
class of countermeasures that researchers have proposed to counter traffic analysis at-
tacks. Baran [8] proposes the use of heavy unclassified traffic to interfere with the ad-
versary’s tampering of the links of a security network system used for communicating
classified information. He also suggests adding dummy, i.e. fraudulent, traffic between
fictitious users of the system to conceal the true amount of traffic.

A survey of countermeasures for traffic analysis is given in [9]. To mask the fre-
quency, length and origin-destination patterns of an end-to-end communication, dummy
messages are used to pad the traffic to a predefined pattern. It is evident that such a pre-
defined pattern is sufficient but not necessary based on the perfect secrecy theory [7].

The authors in [10, 11, 12] give a mathematical framework to optimize the band-
width usage while preventing traffic analysis of the end-to-end traffic rates. Timmerman
[13] proposes an adaptive traffic hiding model to reduce the overhead caused by traffic
padding, in which the link padding rate is reduced with the decrease of real traffic rate.
This renders large-scale variations in traffic rates still observable. The authors of Net-
Camo [3] provide the end-to-end prevention of traffic analysis while guaranteeing QoS
(the worst case delay of message flows) in time constraint communication networks.

To protect the anonymity of email transmissions, Chaum [1] proposes the use of a
Mix - a computer proxy. One technique used by a Mix is to collect a predefined number
of fixed-size message packets from different users and to shuffle the order of these pack-
ets before sending them out. Many researchers suggest using constant rate padding (i.e.,
make the traffic rate appear as constant) between the user and the first proxy (e.g., [14]).
Raymond in [15] gives an informal survey of several ad hoc traffic analysis attacks on
systems providing anonymous services. For example, by correlating traffic rate or vol-
ume, attackers may discover the end points of a communication. One of his conclusions
is that traffic padding is essential to achieve communication anonymity. The authors of
[16] list many possible attacks in Freedom [6] anonymous communication system. The
authors of [17] give a list of attacks to anonymity systems. Most of those attacks are
only briefly discussed and lack systematic analysis. Tarzan [18] provides anonymity in
a peer-to-peer environment by using link padding to counter possible attacks.
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Recently researchers have disclosed some advanced statistical traffic analysis attack
techniques. Song et al. [19] describe how SSH 1 and SSH 2 can leak user passwords
under a passive traffic analysis attack. The authors illustrate how the inter-packet times
in a SSH session accurately reflect the typing behavior of the user by exposing the inter-
keystroke timing information. This in turn can be used to infer plaintext as typed on the
keyboard. To prevent this, the authors propose padding traffic on the SSH connections
to make it appear to be a constant rate. When there are not enough packets to maintain
the constant rate, fake (dummy) packets are created and sent.

Felten and Schneider [20] develop an active timing attack based on browsing a ma-
licious web page. This malicious web page is able to determine if a user has recently
browsed a different target web page. The malicious web page contains embedded at-
tack codes, which try to download a web file from the target webpage. If the user has
recently browsed the target webpage, it is highly possible that the target webpage is
cached locally, in which case, the access time will be very small, otherwise it will be
much larger. The malicious code reports the access timing to the attacker, and then the
attacker can decide if the user has recently browsed the target webpage by this access
timing. The malicious codes can be Javascript codes, or with a little more effort, time
measurement HTML codes. Clearly this attack is very difficult to prevent, and the only
perfect countermeasure is to turn off the cache.

SafeWeb [21] is a web service, that uses anonymizing servers, which in turn behave
like mixes and act as proxies between users and the web servers. The proxy downloads
the requested webpage on behalf of the user and forwards it to the user in an encrypted
form. Hintz [21] shows how observers can take advantage of the HTML weakness of
using a separate TCP connection for each HTML object (such as HTML texts, image
files, audio annotations, etc.) to deploy passive traffic analysis attacks. The number of
TCP connections and the corresponding amount of data transferred over each connec-
tion form a fingerprint, which allows an observer to identify the accessed webpage by
correlating fingerprint data with traffic observed between the user and the anonymizing
server. To invalidate these fingerprints, we have to merge all the connections into a sin-
gle connection or add noise (fake messages, etc.) to the web traffic flows. Sun et al. [22]
use many experiments to show the possibility and efficiency of the above exploit.

3 System Models

This section first presents the network model and then discusses link padding mecha-
nisms used as countermeasures for passive traffic analysis attacks. Finally, we define
the model of adversary who uses statistical pattern recognition strategies for active ping
probing attacks on these security systems, which employ link padding mechanisms.

3.1 Network Model

In this work, we assume that the network consists of protected subnets interconnected
by unprotected networks and assume that traffic within protected subnets is shielded
from observers. Unprotected networks can be public ones (e.g., the Internet) or net-
works deployed over an easily accessible broadcast medium. These networks are ac-
cessible to observation by third-parties, and limited services such as ping are available.
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Fig. 1. Network Model

Thus, these networks are open to traffic analysis and other limited probing attacks. This
model captures a variety of situations, ranging from battleship convoys (where the large-
scale shipboard subnets are protected and the inter-ship communication is wireless) to
communicating PDAs (where the protected subnets consist of single nodes).

Figure 1 illustrates the network setup. Two security gateways GWA and GWB are
placed at the two boundaries of the unprotected network and provide the link padding
necessary to prevent traffic analysis of the payload traffic exchanged between the pro-
tected subnets A and B.

Note that gateways can be realized either as stand-alone boxes, modules on routers,
switches, software additions to network stacks, or device drivers at end hosts. In this
paper, we assume that they are stand-alone boxes. ( Please note: In an anonymous
communication network such as Onion Routing [14], the link padding function can
be implemented as device drivers at the end hosts (Alice’s and Bob’s machines), who
connect to onion routers. Our result and analysis in this paper are valid in this case since
the mechanism causing the problem of information leaking is similar.) To simplify the
discussion, the communication is one-way from Subnet A to Subnet B. Consequently,
GWA and GWB are also called sender gateway and receiver gateway respectively.

3.2 Link Padding Mechanism

The motivation of link padding is to ensure traffic flow confidentiality, i.e., to prevent
the adversary from performing traffic analysis and inferring critical characteristics of the
payload traffic exchanged over unprotected networks. We limit the adversary’s interest
to payload traffic rate, that is, the rate at which payload traffic is exchanged between
protected subnets. Specifically, we assume that there is a set of discrete payload traffic
rates {ω1, · · ·, ωm}. At a given time, the rate of payload traffic from the sender will
be one of those m rates. Consequently, the objective of the adversary is to identify at
which of the m rates the payload is being sent. But, we will also demonstrate how the
adversary may use the approaches in this paper to track the continuous changing pattern
of the payload traffic.

One way to counter the traffic analysis attacks is to “pad” the payload traffic, that
is, to properly insert “dummy” packets in the payload traffic stream so that the real pay-
load status is camouflaged. There are many possible implementations of link padding
algorithms on the two gateways in Figure 1. The most common method uses a timer to
control packet sending and works as follows: (a) On GWA, incoming payload packets
from the sender Alice are placed in a queue. (b) An interrupt-driven timer is set up on
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GWA. When the timer times out, the interrupt processing routine checks if there is a
payload packet in the queue: (1) If there are payload packets, one is removed from the
queue and transmitted to GWB ; (2) Otherwise, a dummy packet is transmitted to GWB .
This timer can be a constant interval timer (CIT), which is a periodic one with a constant
interval between two consecutive timeouts. This is the most commonly used method for
traffic padding, i.e., the constant rate traffic padding. The timer can also be a variable
interval timer (VIT) with a variable amount of time between two consecutive timeouts,
where the interval is picked from a probability distribution. We denote padding using
these two different timers as CIT padding and VIT padding, respectively.

3.3 Adversary Strategies

Recall that we assume that the objective of the adversary is to identify at which of the
m possible rates the payload is being sent. We need to discuss the adversary’s power
before we proceed further.

We assume an external adversary, who is not a participant of either Subnet A or
B and does not compromise sender and receiver gateways. The adversary can only get
access to the two subnets in seemingly legal ways such as pinging the two gateways.

Traffic flow confidentiality is ensured in the system in Figure 1 by VIT padding un-
der passive traffic analysis attack. Packet contents are perfectly encrypted, all packets
have a constant size (padded or manipulated), and dummy packets cannot be distin-
guished from payload packets. The authors of [4] proposed using VIT padding as an
alternative to the commonly used CIT padding and show how CIT padding is extremely
difficult to implement in practice and how minute disturbances make CIT padding sub-
ject to a sophisticated passive traffic analysis attack that measures the packet interarrival
time of packets on the unprotected link.

We also assume that the adversary has complete knowledge about the gateway ma-
chines and the countermeasure algorithms used for preventing traffic analysis. Thus, the
adversary can simulate the whole system, including the gateway machines, to obtain a
priori knowledge about traffic behavior. In many studies on information security, it is
a convention that we make worst-case assumptions like this. But, we will also show in
this paper, even without the capability of simulating the system, the adversary can also
track the traffic rate changing pattern by the method introduced in this paper.

Based on these assumptions, the adversary may deploy a sophisticated ping probing
attack aimed at determining the payload traffic rate from {ω1, · · ·, ωm}. In the attack,
the adversary pings the sender gateway GWA, analyzes the statistics of round trip time
of these ping packets and tries to figure out Subnet A’s payload traffic rate even if GWA

uses VIT padding (If the padding is implemented as a device driver on Alice’s host,
the ping probing is aimed at getting Alice’s real payload traffic rate). We use this ping
attack as a model to analyze a much larger class of active probing attacks.

The adversary can analyze his sample of ping RTT data based on Bayes decision
theory [23]. The entire attack strategy consists of two parts: Off-line training and run-
time classification. We now describe them below.
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Off-line training
The off-line training component can be decomposed into the following steps:

(1) The adversary selects a statistic of the RTT sample of size n. This statistic is called
a feature and will be used for traffic rate classification. Possible features we study in
this paper are sample mean, sample variance, and sample entropy.
(2) The adversary emulates the entire link padding system and collects RTT informa-
tion at different payload traffic rates. From this information, the adversary derives the
Probability Density Functions (PDF) of the selected statistical feature. As histograms
are usually too coarse for the distribution estimation, we assume that the adversary uses
the Gaussian kernel estimator of PDF [24], which is effective in our problem domain.
(3) Based on the PDFs of statistical features for different payload traffic rates, Bayes
decision rules are derived. Recall that there are m possible payload traffic rates ω1, · · ·,
ωm. The Bayes decision rule can be stated as follows:
The sample represented by feature s corresponds to payload rate ωi if

∀j ∈ [1, m], p(ωi|s) ≥ p(ωj |s) (1)

That is,

p(s|ωi)Pr(ωi) ≥ p(s|ωj)Pr(ωj) (2)

Here Pr(ωi) is the a priori probability that the payload traffic is sent at rate ωi, and
p(ωi|s) is the a postireori probability that the payload traffic is sent at rate ωi when the
collected sample has the measured feature s.
Run-time Classification

Once the adversary completes his training phase, he can start the classification at
run-time. We assume the adversary has some means to ping the gateways GWA and
GWB . In particular, when he wants to determine the current payload rate, the adversary
collects a sample of ping RTTs. He calculates the value of the statistical feature from
the collected sample and then uses the Bayes decision rules derived in the training phase
to match the collected sample to one of the previously defined payload traffic rates.

4 Derivation of Detection Rate

Given models described in the previous section, we’d like to evaluate the security of the
system in Figure 1 in terms of detection rate. Detection rate is defined as the probabil-
ity that the adversary can correctly classify the payload traffic rate protected by security
gateways. In this section, we derive the closed-form formulae for detection rates when
the adversary uses sample mean, sample variance, or sample entropy, as the statistical
feature, respectively. Our formulae will be approximate ones due to the complexity of
the problem. Nevertheless, these formulae do correctly reflect the impact of various sys-
tem parameters, including the type of padded traffic, sample size, and statistical feature
used. These relationships are very useful in understanding the nature of the attack and
designing effective countermeasures. In the next section, we will see that experimental
data well matches the detection rate predicted by our approximation formulae.
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Let {X1, X2, · · ·, Xn} be a sample of ping RTT with sample size n. The sample
mean X̄ , sample variance Y , and sample entropy H̃ are defined below:

Sample Mean: X̄ =
n∑

i=1

Xi/n (3)

Sample Variance: Y =
n∑

i=1

(Xi − X̄)2/(n− 1) (4)

Sample Entropy: H̃ ≈ −
∑

i

ki/n log (ki/n) + log Δx (5)

where in (5) we use the histogram-based entropy estimation developed in [25]. ki is the
number of sample points in the ith bin, and Δx is the histogram’s bin size. In Appendix
A, we provide a way to calculate the optimal bin size for the estimation of entropy.

Using sample mean, sample variance, and sample entropy as defined above, our
experiments show that an adversary can continuously track the changing pattern of the
user payload traffic rate (Figure 4 (d)). Below we give close-form formulae for simple
cases in which the user payload traffic has two statuses: low rate ωl and high rate ωh.

4.1 Detection Rate for Recognizing Two Payload Traffic Rates

Because of the page limit, we just list the major theorems about sample mean, sample
variance, and sample entropy. Interested readers can refer to [26] for details. Before in-
troducing these theorems, let’s first investigate the reason of the failure of VIT padding
against the ping probing attack, which is demonstrate below. The reason for this failure
lies in the subtle interaction between the traffic padding system and the probing traffic.
While GWA’s network subsystem processes payload packets from Subnet A in Figure
1, the processing of ping packets is delayed. A higher rate of payload traffic causes
more possible delay on ping packets. This means that sample mean, sample variance,
and sample entropy of the RTT of the probing packets at a given sample size n are
changed, and there is some kind of correlation between the user payload traffic rate and
sample mean, sample variance, and sample entropy of the RTT of the probing packets.
The adversary can explore this correlation to discover the user payload traffic rate.

The ping RTT can be represented as a random variable RTT . As analyzed above,
under different user payload traffic rates, i.e., low rate and high rate in our illustrative
case, we will have random variables RTTlow and RTThigh, whose means are denoted
as μl and μh respectively, and whose variances are denoted as σ2

l and σ2
h respectively.

Also we define r as the ratio between σ2
h and σ2

l .

r = σ2
h/σ2

l (6)

The following theorem provides closed-form formulae for estimation of detection rate
when sample mean, sample variance, and sample entropy are used as feature statistics.

Theorem 1. The detection rate by sample mean, vX̄ can be estimated as follows:

vX̄ ≈ 1− (e−(μh−μl)
2/(4σ2

h+4σ2
l ))n/

√
2(1/
√

r +
√

r) (7)
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The detection rate by sample variance, vY , can be estimated as follows:

vY ≈ max(1− CY /(n− 1), 0.5) (8)

where CY is calculated by

CY = 1/(2(1− 1/(r − 1) log r)2) + 1/(2(r/(r − 1) log r − 1)2) (9)

The detection rate by sample entropy, vH , can be estimated as follows:

vH̃ ≈ max(1− CH/n, 0.5) (10)

where CH̃ is calculated by

CH̃ = 1/(2(log (
r

r − 1
log r))2) + 1/(2(log (

r − 1
log r

))2) (11)

We have a few observations from the above Theorem:
(1) For sample mean, the detection rate is exponentially increasing with sample size
n. This implies that a small difference between μh and μl may cause detection rate to
dramatically increase with the increase of sample size. Furthermore, the detection rate
decreases with an increase in variance σ2

h and σ2
l .

(2) For sample variance, the detection rate is an increasing function in terms of sample
size n. When n → ∞, the detection rate is 100%. This means that if the payload
traffic lasts for sufficient time at one rate, and the adversary can get a sample of a
sufficiently large size, he may detect the payload traffic rate by sample variance of ping
RTT. Furthermore, the detection rate is an increasing function of r in (6), where r ≥ 1.
That is, the smaller r, the closer the two variances under different payload traffic rates,
and intuitively the lower the corresponding detection rate. When r = 1, the detection
rate is 50%. That is, the probing attack using sample variance will fail.
(3) For sample entropy, the detection rate is also an increasing function in terms of
sample size n. Also, the detection rate is also an increasing function of r in (6), where
r ≥ 1. When r = 1, the detection rate reaches 50%.

4.2 Detection Rate for Payload Traffic with Periodically Changing Rate

In practice, the rate of payload traffic from Subnet A in Figure 1 changes with time.
Here, we consider the case in which the payload rate changes periodically and deduce
the detection rate in Theorem 2 and its corollary. For a rigorous proof of these formulae,
please refer to [26]. Here we briefly introduce the principle. To deploy probing attacks,
an adversary pings the sender gateway and collects a sample of n RTTs of probing
packets. This sample may be partitioned into a few segments, e.g., the first l RTTs are
collected when the user payload traffic rate is low and the other n− l RTTs are collected
when the user payload traffic rate is high. Assuming that we have L possible partitions:
{Partitioni : 1 ≤ i ≤ L}. For Partitioni, we can derive its occurrence probability
P (Partitioni) and the average recognition error rate conditioned on this partition case,
Pr(error|Partitioni). We also assume that the correct recognition is the one matching
the user payload traffic rate when the first packet of the sample is collected. Then we
have the general form of detection rate formula in Theorem 2.
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Theorem 2. The detection rate vd for payload traffic with periodically changing rate
is

vd = 1−
∑

Pr(error|Partitioni)P (Partitioni) (12)

For the case of two payload traffic rates, assuming traffic of each rate lasts for half
of a single period, M is the number of ping RTT sample point in half of a period (ping
packets are sent out at a constant rate) and n is the sample size, we have the following
corollary from Theorem 2.

Corollary 1. In case of n < M , a closed form of detection rate is given in (13),

vd = 1− ε(M − n + 1)/M − (n− 1)/(2M) (13)

where ε is the classification error: ε = 1− v, where v can be calculated in (7), (9) and
(10) for different features.

Please refer to Appendix B for the proof. From Corollary 1, we can see that when
the ping packet rate is fixed, the larger the payload rate changing period, the larger M
and thus the bigger v. This is intuitive. v has a complicated relation with n because of
ε’s relation with n. Given M , v has maximum value at some n.

5 Evaluations

In this section, we evaluate how the theoretical analysis of detection rate from the previ-
ous section compares to results from experiments designed to reflect real-life situations.

In the experiments, we assume that the adversary uses a high-performance network
analyzer, such as Agilent’s J6841A, to dump ping packets. A series of experiments were
carried out. In terms of experimental environments, we consider the following cases: lab
(LAN), campus network (MAN), and wide area network (WAN).
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Fig. 2. Experiment setup in laboratory

GWA and GWB in Figure 1 run TimeSys Linux/Real-Time. To counter traffic anal-
ysis attacks, VIT padding is used. The timer interval satisfies a normal distribution
N(10ms, 3ms2), which is a very powerful setting for resisting passive traffic analysis
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attacks [4]. Thus, the average rate of padded traffic between the two security gateways
is 100 packets per second (pps). The payload has two average rate states: 10 pps and
40pps. We assume both rates occur in equal probability. Note that for such a system with
two possible payload traffic rates, the detection rate for the adversary is lower-bounded
at 50% corresponding to random guessing. For all the experiments, the adversary uses
an appropriate rate of ping packets whose size is 512 bytes.

5.1 Experiments in a Laboratory Environment

Our experiment setup is shown in Figure 2. The advantage of experimenting in a lab
environment is that we can control the cross traffic over the network. The disadvantage
is that the generated cross traffic may not reflect the characteristics of a real network.

The two gateways are connected by a Marconi ESR-5000 enterprise switching
router. Subnet C is connected to the router as the cross traffic (noise) generator while
the cross traffic receiver is located in Subnet D. The cross traffic shares the outgoing
link of the router, creating a case where the cross traffic makes an impact on the padded
traffic. The adversary pings sender gateway GWA behind the Marconi router.
Results of Probing Attacks on Stable Payload Traffic

By stable payload traffic, we mean that the traffic from user subnets lasts for a
relatively long time at a roughly constant rate. Figure 3 (a) and (b) shows the detection
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Fig. 3. Detection Rate for Stable Payload Traffic

rate by different features for cases of without cross traffic and with cross traffic (users
in Subnet C communicate with users in Subnet D). We have the following observations:
(1) As the sample size increases, as shown in Figure 3 (a), detection rates for sample
mean, sample variance, and sample entropy increase and approach 100%. This shows
that when payload traffic lasts for enough time at some rate, these three features can
determine the payload traffic rate with 100% accuracy, even if the powerful VIT padding
is used. Security systems using padding fail under probing attacks. Furthermore,
the trend of theoretical detection rate curves coincides well with the trend of empirical
curves for the three features.
(2) From Figure 3 (a) and (b), sample entropy is a fairly robust feature in detecting
the user payload traffic rate. This is because sample entropy defined in (5) is not sensi-
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tive to outliers, which influence the performance of sample mean and sample variance,
especially when there is cross traffic.
(3) In Figure 3 (b), overall, as the link utilization increases, the detection rates of the
three features decrease. Intuitively, this is because the cross traffic between Subnet C
and Subnet D interferes with ping traffic. In theory, compared to the ping RTT variances
σ2

l and σ2
h in the no cross traffic case, both these variances in case of with cross traffic

are increased by a quantity caused by cross traffic. This will cause a decrease in r. As
Theorem 1 predicts, the detection rate by all three features drops.
Results of Probing Attacks on Payload Traffic with Periodically Changing Rate

Figure 4 (a), (b) and (c) give detection rates for payload traffic with periodically
changing rate. Payload traffic of 10pps lasts for 1 minute and traffic of 40pps lasts for
the next 1 minute. Figure 4 (d) illustrates how the adversary can track continuously
changing payload traffic rate by probing attacks. We have the following observations.
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Fig. 4. Detection Rate for Payload Traffic with Periodically Changing Rate

(1) The theoretical curves well match the empirical curves. This validates Theorem 2
and its Corollary 1.
(2) As Corollary 1 predicts, there exists a maximum detection rate at some sample size.
So, in practice, when the ping probing attack is deployed, the adversary has to choose
an appropriate sample size to get an optimal detection rate. A large sample size for
payload traffic with small rate changing period may cause a bad detection rate because
a sample includes mixed rates of payload packets.
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(3) In Figure 4 (d), sample entropy (sample size = 2000) is used to track the chang-
ing pattern of the user payload traffic rate while the user payload traffic rate has three
statuses: 0 pps, 10 pps, and 40 pps. The rate changes for 5 minutes on average. It is
clear that the adversary can use sample entropy to reconstruct the payload traffic rate’s
changing pattern very well. This further validates probing attacks’ validity in the gen-
eral problem of tracking user payload traffic pattern.

5.2 Experiments over Campus and Wide Area Networks

In this subsection, we examine the detection rate when the adversary’s ping traffic tra-
verses a campus network and the internet respectively.
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Fig. 5. Experiment setup over campus and wide area networks (WAN)

Figure 5 shows the setup for the experiments discussed in this subsection. In both
cases, the observation point of the adversary is located right in front of the receiver
gateway and thus maximally far from the sender. Figure 5 (a) is a setup for experi-
ments over our local campus network5. That is, the ping traffic goes through our local
campus network before it reaches the sender’s gateway. Figure 5 (b) is a setup for ex-
periments over the Internet between a remote campus network and our local campus
network. Here, the sender workstation and the sender gateway are located at the remote
campus network. The ping traffic goes through the Internet and arrives at the remote
campus network. We note that in this case, the path from the sender’s workstation to the
receiver’s workstation spans 15 or more routers.

In each case, we collect data continuously for 24 hours. The data for the case of our
local campus network was collected on July 16, 2003 while the data for the wide area
network case was collected on July 14, 2003.

Figures 6 (a) and (b) display the detection rate throughout the observation period.
We have the following observations:
(1) When ping traffic traverses just our local campus network, the detection rates of
sample entropy and sample mean can approach about 75%. This means that over a
medium-sized enterprise network like our local campus network, the cross traffic does
have an influence on the ping traffic, but systems using VIT padding scheme alone still
cannot resist ping probing attacks effectively.

5 Because the requirement of anonymous submission, related institute information is dropped.
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Fig. 6. Empirical detection rates for experiments over campus and WAN (sample
size=2000)

(2) When the padded traffic traverses more network elements, such as the Internet
between the remote campus network and our local campus network, the detection rates
are much lower. This is because ping traffic has a low scheduling priority at a large
number of routers and switches, and the RTT of ping packets is seriously distorted.

6 Countermeasures

To counter the active traffic analysis attacks, there are several possible approaches. The
first approach is to disable the ping service on security gateways, but the disadvantage
of this is that ping often is a useful service for debugging a network, e.g., to check if
GWA is alive. Sometimes we cannot sacrifice functionality for the sake of security.
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Fig. 7. Detection Rate by RTT of Delayed Ping Packets with Zero Cross Traffic

The second approach is inspired by our theories and experiments. We know that the
smaller r and the bigger σ2

l and σ2
h in (6), the smaller the detection rate. To reduce r and

increase σ2
l and σ2

h, we intentionally introduce a random delay to ping packets. This is
similar to adding noise to the RTT of ping packets and has the same effect as cross traf-
fic does in Figure 3 (b). This delay satisfies a normal distribution N(μT , σ2

T ). It can be
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perceived that an appropriate selection of μT and σT will dramatically reduce the de-
tection rate. To validate this approach, we again use the configuration in Figure 1 as the
experiment network setup. There is no cross traffic. Figure 7 gives the detection rate by
different statistics when ping packets are delayed by a random interval, which satisfies
a normal distribution N(10ms, 3ms2). We can see that even though the attacker has the
best-case (no cross traffic) the detection rate by different feature statistics approaches
50% (the minimum detection rate for two classes recognition) at a large sample size.

A third guideline for countering active ping probing attacks is that we should avoid
the case in which user traffic possibly lasts for a long time at a roughly constant rate.
For example, in a peer-to-peer anonymous file sharing system, the file should be split
into small pieces before uploading and downloading.

7 Conclusions and Final Remarks

In this paper, we evaluate the security of sophisticated traffic padding schemes under
active probing attacks. To demonstrate the threat from such attacks, we use ping prob-
ing attacks aimed at deriving user payload traffic rates. We found that by measuring
statistics of the round trip time of ping packets injected into security gateways, the ad-
versary can break the padding system, track the user payload traffic changing pattern,
and discover exactly the payload traffic rate that security gateways try to protect even if
a strong link padding scheme such as VIT padding is used by these gateways.

Of the possible statistics, sample entropy is an effective and robust feature statistic
to explore the correlation between user payload traffic rate and the round trip time of
probing ping packets. The reason for the success of the exploit is that users’ payload
traffic causes small disturbances to the RTT of ping packets. Moreover, the higher the
user traffic rate, the larger this disturbance, therefore the bigger the entropy.

Under the framework of statistical pattern recognition, we formally model differ-
ent statistics’ detection rates. Our empirical results match our theoretical analysis. This
framework can be easily extended to analyze other statistical analysis attacks because
of statistical pattern recognition’s maturity and abundance of analytical techniques. We
also conducted extensive experiments in various situations including LAN in a labo-
ratory, MAN such as campus networks, and wide area networks and found that for a
MAN, the ping probing attack can still obtain a good detection rate. These extensive
empirical data consistently demonstrates the usefulness of our formal model and cor-
rectness of detection rate predicted by the closed-form formulae.

Following our theory, after a careful analysis we propose randomly delaying the
ping packets to counter the active probing attack. Our experiments and theories validate
the effectiveness of this scheme. Other guidelines are also provided.
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Abstract. An improved construction of a binary fingerprinting code
is evaluated. The c-secure CRT code, a variant of the c-secure code,
has shorter code length than the original construction by Boneh and
Shaw. Recently, two improvements to this code have been proposed.
We provide conditions determining the code length of the construction
combined with these two improvements and provide the optimal setting
of parameters. We compare the code length of the improved construction
with that of the original construction. For any size of collusion, the code
length is improved. In particular, for the collusion size c ≥ 32, the code
length of the improved code becomes about a tenth of the original c-
secure CRT code.

1 Introduction

The purpose of this study is to analyze constructions of a c-secure code providing
short code length. The c-secure code is a binary fingerprinting code proposed by
Boneh and Show[1], which is robust against collusion attacks if the size of the
collusion is not greater than c. In order to make this code more practical, several
modified constructions of the code have been proposed[1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17].

A c-secure CRT code[9], which is a variant of the c-secure code, provides
a considerably shorter code length, based on the Chinese Remainder Theo-
rem(CRT). Several improvements to this code have been proposed[13, 14, 15,
10, 11, 12, 16, 17]. In this paper, we analyze how short the code length of the
c-secure CRT code can be made by some combinations of these improvements.

The original c-secure CRT code is constructed based on the CRT which holds
for the ring of rational integers Z. Kim et al. extended the construction to the
CRT which holds for the polynomial ring Fq[x] and demonstrated that this con-
struction can provide shorter code lengths than the original[13, 14, 15]. Watanabe
and Kitagawa[17] proposed an improvement on the security of Yoshioka and Mat-
sumoto’s random-error-resilient version of the c-secure CRT code[10, 11, 12]. We
apply Watanabe and Kitagawa’s approach, but for a different purpose, namely,
reduction of the code length of the original c-secure CRT code. In this paper,
we evaluate the effect on code length reduction of a combination of these im-
provements. First, we provide the conditions determining the code length in the
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combined construction, compare the code length of the improved construction
with that of the original construction, and evaluate the effect of this improvement
on the code length.

2 Approach

2.1 c-Secure Code

The c-seucre code with ε-error was proposed by Boneh and Shaw[1]. Let U =
Z/nZ be a set of all user IDs. A fingerprinting code is defined by (C,G, E , T ).
C is a set of codewords. In this paper, we assume C is a binary code whose
code length is L, that is C ⊂ {0, 1}L. G is an algorithm generating a random
string s used in encoding and tracing, E is an encoding algorithm taking an
input (u ∈ U, s) and making an output w ∈ C, and T is a tracing algorithm
taking an input (X ∈ {0, 1}L, s) and making an output of an element in 2U . Let
E(C, s) = {E(u, s) | u ∈ C} for any C ⊆ U .

A collusion attack is modeled as an algorithm A which takes a subset W of
E(U, s) as an input and produces an output X ∈ F(W), where F(W) is a feasible
set of W . In general, A is a probabilistic algorithm generating any codeword in
a feasible set of W . The feasible set of W , F(W), is defined by

F(W) =
{
X ∈ C | ∀i∈{0, · · ·, L− 1}

[[
∀W∈W W[i]=b

]
→ X[i]=b

]}
,

where the suffix [i] means the i-th bit position of those codewords. The distri-
bution of X depends on a marking assumption which A is based on.

Definition 1. The c-secure code with ε-error[1] is defined as (C,G, E , T ) satis-
fying

Pr [ s←G;W←E(C, s); X←A(W); C′←T (X, s) : C′ ⊆ C ∧ C′ = ∅ ] > 1− ε,

for any A satisfyng a marking assumption and for any C ⊆ U satisfying |C| ≤ c,
where the probability in the left-hand side of the inequality is taken over random
coin tosses of G, E, A and T .

2.2 c-Secure CRT Code

We briefly review the c-secure CRT code[9].

Modulus Let N , k and l be positive integers satisfying �2N/c� = (k + l). Let
p0, . . . , pN−1 be positive integers which are pairwise relatively prime and satisfy

p0 < · · · < pN−1, (1)
p0 × · · · × pk−1 ≥ n. (2)

We call these integers moduli.
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Residue Let u ∈ Z/nZ be an ID. We call an integer ri ∈ Zpi such that ri ≡
u mod pi as a residue of u modulo pi, where i ∈ Z/NZ.

Inner Code Corresponding to each i ∈ Z/NZ, we use a code Γ0(pi, t) as an
inner code, which is the same as that defined in [1]. The codeword of Γ0(pi, t) is
given as follows.

w
(j)
i = 00 · · · · · · 0︸ ︷︷ ︸

t×j

11 · · · · · · 1︸ ︷︷ ︸
t×(pi−j−1)

for j ∈ Z/piZ.

Each t-bit portion is called a block.

Outer Code We define a c-secure CRT code as a concatenated code of the
above inner codes and denote it by Γ (p0, . . . , pN−1; n, t). A codeword W (u) cor-
responding to an ID, u, is given as follows.

W (u) = w
(r0)
0 ‖w(r1)

1 ‖ · · · ‖w(rN−1)
N−1 for u ∈ Z/nZ,

where ri ≡ u mod pi for i ∈ Z/NZ. Its code length is L = t
∑N−1

i=0 (pi − 1).

Tracing Algorithm A tracing algorithm of the c-secure CRT code is a se-
quence of two algorithms: a tracing algorithm of the inner codes and a searching
algorithm. The tracing algorithm of the inner code, Γ0(pi, t), is that of O(n)
n-secure code[6]:

Algorithm 1 (Tracing T )
1: input X ;
2: decompose X into x0‖x1‖ · · · ‖xN−1 ;
3: for ( i = 0 ; i < N ; i++ ) {
4: for ( r

(−)
i = 0 ; r

(−)
i < pi − 1 ; r

(−)
i ++ )

5: if ( H
r
(−)
i

(x) > 0 ) break ;

6: for ( r
(+)
i = pi − 1 ; r

(+)
i > r

(−)
i ; r

(+)
i −− )

7: if ( H
r
(+)
i −1

(x) < t ) break ; }
8: C = ∅ ;
9: for ( u = 0 ; u < n− 1 ; u++ ) {
10: count D(u) ;
11: if ( D(u) ≥ Dth ) C = C ∪ {u} ; }
12: output C ;

Here, x ∈ {0, 1}(pi−1)t is a portion corresponding to the i-th inner code in a
detected codeword X , and Hj(·) is a Hamming weight of the j-th block, where
j ∈ Z/(pi − 1)Z. The pair 〈r(−)

i , r
(+)
i 〉 is called a residue pair. And

D(u) =
∣∣∣{i ∈ Z/NZ

∣∣∣(u ≡ r
(−)
i mod pi) ∨ (u ≡ r

(+)
i mod pi)

}∣∣∣,
Dth = k + l,
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and l is determined by Eq.(6) in Theorem 1. In Algorithm 1, the steps from
1 through 7 are corresponding to the tracing algorithm of the inner codes and
the steps from 8 through 12 are corresponding to the searching algorithm of the
outer code.

Marking Assumption The marking assumption of the c-secure CRT code is
as follows:

1. The collusion algorithm A cannot generate any codeword which does not
belong to the feasible set[1].

2. The collusion algorithm A generates any codeword in its feasible set ran-
domly with equal probability.

3. We suppose that a coalition is organized randomly. By this assumption, we
mean that the residues can be treated as random variables, which take a
value α ∈ Z/piZ with the following probabilities.

Pr
[
r
(−)
i = α

]
=
(
1− α

pi

)c

−
(
1− α + 1

pi

)c

, (3)

Pr
[
r
(+)
i = α

]
=
(α + 1

pi

)c

−
( α

pi

)c

. (4)

The third assumption, originally given in [9], conflicts with Definition 1 be-
cause Definition 1 requires that, for any collusion, tracing succeeds with high
probability. In this paper, we consider that, depending on the random choices s
taken by G, the algorithm E permutes U randomly, and the algorithm T permutes
U inversely. This random permutation of the user IDs for a fixed collusion has
the same effect as the generation of a random collusion. Then, no contradiction
remains with Definition 1.

Condition for c-Secureness The code length of the c-secure CRT code is
determined by the following theorem[9].

Theorem 1. Let N = %c(k + l)/2&. The code Γ (p0, . . . , pN−1; n, t) is a c-secure
code with ε-error, if the following inequalities are satisfied.

t ≥ − log2

[
1−

(
1− ε1

) 1
2N

]
, (5)[

1−
k+l−1∏

i=k

{
1−

(
1− 1

pi

)c
}]N Ck+l×2k+l

≥ 1− ε2, (6)

where ε1 and ε2 satisfy 0 < ε1 < 1, 0 < ε2 < 1 and (1− ε1)(1− ε2) > 1− ε.

The code length of this construction is L = t
∑N−1

i=0 (pi−1). Here, L implicitly
depends on c, because it is a function of variables t and N which depend on c.
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2.3 Construction on Polynomial Ring

Let Fq be a finite field of cardinality q. Let Fq[x] be a polynomial ring. It is
known that the Chinese Remainder Theorem holds for Fq[x] because it is a
unitary commutative ring. A construction of the c-secure CRT code on Fq[x]
was proposed by Kim et al.[13, 14, 15]. The moduli in such construction are
polynomials, pi(x) = ai,dx

di+ai,d−1x
di−1+· · ·+ai,0, which are pairwise relatively

prime. Let |pi(x)| denote the number of all possible remainders. That is, |pi(x)| =
qdi . The equations (1) and (2) are modified as follows:

d0 ≤ · · · ≤ dN−1, (7)
qd0+···+dk−1 ≥ n. (8)

Let a user ID u ∈ Z/nZ be expressed as u =
∑d−1

i=0 uiq
i, where d =

∑N−1
i=0 di.

Then, a polynomial u(x) corresponding to u is defined as u(x) = ud−1x
d−1 +

ud−2x
d−2 · · · + u0. Let ri(x) denote a remainder of u(x) divided by pi(x). Let

ri be an integer corresponding to ri(x), where if ri(x) =
∑di−1

j=0 ri,jx
j , then

ri =
∑di−1

j=0 ri,jq
j .

2.4 Randomization

Next the residues are transformed by random permutations. This randomization
is introduced by Watanabe and Kitagawa[17] to enhance the security of a modi-
fied version of the c-secure CRT code proposed by Yoshioka and Matsumoto[11].

For each modulus, a random permutation Pi : Z/|pi(x)|Z → Z/|pi(x)|Z is
chosen. Each ri is mapped to qi = Pi(ri). We assume that for any i, for any
α ∈ Z/|pi(x)|Z, and for any β ∈ Z/|pi(x)|Z, Pr[P (α) = β] = 1/|pi(x)|. The qi’s
are encoded by the inner codes. Therefore, pairs 〈q(−)

i , q
(+)
i 〉’s are traced from the

inner codes, and instead of 〈r(−)
i , r

(+)
i 〉’s, 〈q(−)

i , q
(+)
i 〉’s follow Eq. (5) and Eq. (6).

Because of this randomization, 〈r(−)
i , r

(+)
i 〉’s satisfy the following equations:

Pr
[
r
(−)
i = α

]
=
∑

β

Pr[Pi(α) = β]
{(

1− β

|pi(x)|
)c

−
(
1− β + 1
|pi(x)|

)c}
,

=
1

|pi(x)| , (9)

Pr
[
r
(+)
i = α

]
=
∑

β

Pr[Pi(α) = β]
{( β + 1
|pi(x)|

)c

−
( β

|pi(x)|
)c}

,

=
1

|pi(x)| . (10)



Optimization and Evaluation of Randomized c-Secure CRT Code 287

Theorem 2. Let N = %c(k + l)/2&. The code Γ (|p0(x)|, . . . , |pN−1(x)|; n, t) is a
c-secure code with ε-error, if the following inequalities are satisfied.

t ≥ − log2

[
1−

(
1− ε1

) 1
2N

]
, (11)[

1−
k+l−1∏

i=k

{ 1
|pi(x)|

}]N Ck+l×2k+l

≥ 1− ε2, (12)

where ε1 and ε2 satisfy 0 < ε1 < 1, 0 < ε2 < 1 and (1− ε1)(1− ε2) > 1− ε.

The code length of this construction is L = t
∑N−1

i=0 (|pi(x)| − 1).

2.5 Optimal Construction

In this construction, d0 = d1 = · · · = dN−1 is optimal.

Proposition 1. In the construction of Theorem 2, the minimum of the code
length L approximately resides on d0 = d1 = · · · = dN−1. Here, the approxima-
tion means that the parameters in the code design are considered to be continuous
variables.

Proof. We derive the optimal condition providing the minimum code length
under the conditions of Theorem 2. Let |pi(x)| = qdi for i = 0, · · · , N − 1. The
(in)equalities that di’s satisfy can be rewritten as

d0 ≤ d1 ≤ · · · ≤ dN−1, (13)

q
∑k−1

i=0 di ≥ n, (14)[
1− q−

∑k+l−1
i=k di

]
N Ck+l×2k+l

≥ 1− ε2, (15)

t ≥ − log2[1− (1− ε1)
1

2N ], (16)

L = t
N−1∑
i=0

(qdi − 1), (17)

where N = c(k+l)
2 . In the following derivation of the optimal solution, the vari-

ables in the above equations are regarded as continuous.
The variables d0, d1, · · · , dk−1 appear only in Eq. (13), (14) and (17). In order

to minimize L, it is required that d0 = d1 = · · · = dk−1 = (logq n)/k. Similarly,
the variables dk+l, dk+l+1, · · · , dN−1 appear only in Eq. (13) and (17). In order
to minimize L, it is required that dk+l = dk+l+1 = · · · = dN−1 = dk+l−1.

The variables dk, dk+1, · · · , dk+l−1 appear in Eq. (13), (15), and (17). If dk +
dk+1 + · · · + dk+l−1 is constant, Eq. (15) does not change the value of l on
varying dk, dk+1, · · · , dk+l−1. Under this condition, dk = dk+1 = · · · = dk+l−1

minimizes L.
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Thus, let QA = qd0 = · · · = qdk−1 = n1/k and QB = qdk = · · · = qdN−1. By
Eq. (13), QA ≤ QB. Assume equalties hold in Eq. (15) and (16) to minimize L.
Differentiating Eq. (17) by QB,

∂L

∂QB
=

∂t

∂QB
(k(QA − 1) + (N − k)(QB − 1)) + t

∂N

∂QB
(QB − 1) + t(N − k),

=
c

2

{
−(k(QA − 1) + (N − k)(QB − 1))

log2(1 − ε2)
2N2

· (1 − ε2)1/2N

1− (1− ε2)1/2N

+t(QB − 1)
} ∂l

∂QB
+ t(N − k), (18)

By differentiating the equality of Eq. (15),

∂l

∂QB
ln(1−Q−l

B )
{∂ ln(NCk+l)

∂l
+ ln 2

}
= − lQ−l−1

B

1−Q−l
B

. (19)

By using a formula of the digamma function ψ(z) ≡ lnΓ (z)/dz:

ψ(z) = −C +
∞∑

n=0

( 1
n + 1

− 1
z + n

)
, (20)

where C is Euler’s constant, the positivity of the differential of logarithm of
combination is obtained:

∂ ln(NCk+l)
∂l

=
∞∑

n=0

N2 + 2(N −K)(n + 1)
(N −K + 1 + n)(N + 1 + n)(K + 1 + n)

> 0, (21)

where K = k + l. By Eq. (19) and the above inequality, we obtain ∂l
∂QB

> 0. By
Eq. (18) and ∂l

∂QB
> 0, we get ∂L

∂QB
> 0. Thus, L is minimized when QA = QB.

��

In this case, the code length is provided by parameters satisfying the following
theorem, because |pi(x)| = qdi = qd0 :

Theorem 3. Let N = %c(k+l)/2&. The code Γ (qd0 , . . . , qdN−1; n, t) is a c-secure
code with ε-error, if the following inequalities are satisfied.

t ≥ − log2

[
1−

(
1− ε1

) 1
2N

]
, (22)[

1− q−d0l
]

N Ck+l×2k+l

≥ 1− ε2, (23)

where ε1 and ε2 satisfy 0 < ε1 < 1, 0 < ε2 < 1 and (1− ε1)(1− ε2) > 1− ε.

The code length of this construction is L = tN(qd0 − 1).

Proof. We can prove the theorem by proving the following statements:

1. At least one colluder is traced with probability 1.
2. No innocent user is traced with probability larger than 1− ε.
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The first statement is proved as follows: The number of the residues traced by
the inner-code tracing is at least 2% c(k+l)

2 &. Therefore, at least one colluder has
at least (k+ l) residues in the set of the traced residues. The searching algorithm
of the outer code certainly traces the person.

The second statement is proved as follows: There are two possibilities that
an innocent user is traced:

1. Accidentally, a false residue is traced in the inner-code tracing.
2. Accidentally, an innocent user has enough residues to be traced in the outer-

code searching.

The probability of the first possibility is limited to at most ε1 by Eq. (11) and
the marking assumptions 1 and 2. The probability of the second possibility is
limited to at most ε2 as follows: The number of combinations of (k + l) residues
in the traced tuple of residue pairs is NCk+l × 2k+l. For each combination,
the probability that an ID exists which is congruent to every residue in the
combination is q−d0l because of the CRT and Eq. (9) and (10). Therefore, the
probability that no such combination exists is limited to at most ε2 by Eq. (3).

��

We have to note that another constraint exists on the optimal construction
of the randomized c-secure CRT code on a polynomial ring. The conditions in
Theorem 3 require N polynomials which have the same degree and are relatively
prime to each other. The number of monic irreducible polynomials of degree d is
given by Nq(d) = 1

d

∑
m|d μ(m)qd/m if q is prime, where μ(·) is Möbius function.

For example, Nq(1) = q, Nq(2) = 1
2q(q − 1), Nq(3) = 1

3q(q2 − 1), and · · · . Let
N̂q(d) denote the maximum number of all monic polynomials which are relatively
prime and whose degree is d. Then N̂q(1) = Nq(1) = q, N̂q(2) = Nq(2)+Nq(1) =
1
2q(q +1), N̂q(3) = Nq(3)+min{Nq(1), Nq(2)} = 1

3q(q2 +2), · · · . In general, the

number N̂q(d)
qd decreases as d increases. If |pi(x)| = qd and N > N̂q(d), we cannot

construct the code. In such case, smaller d and larger q should be chosen, because
N , therefore L also, does not change while qd remains constant. If N > N̂q(d)
even when d = 1, we cannot construct such code and have to choose larger q. In
general, the optimal choice is d = 1 and q ≥ N .

3 Results

Fig. 1 shows a code length comparison between the original c-secure CRT code
and the improvement. The vertical axis is the collusion size and the horizon-
tal axis is the code length. The symbols, ©, ' and � represent examples of
constructions of the original c-secure CRT code, the c-secure CRT code on the
polynomial ring Fq[x], and the randomized c-secure CRT code on the polynomial
ring Fq[x], respectively. In every construction, we assumed that the number of
users n is at least 109 and the tracing error ε is less than 10−6. In the latter two
codes, we assumed that pi(x) are all monic irreducible polynomials of degree 1.
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Fig. 1. Code Lengths Comparison: The symbols©,' and � shows the construc-
tion examples of the original c-secure CRT code, the variant on a polynomial
ring, and the randomized variant on a polynomial ring, respectively.

In the calculations of L, given n, c and ε, the other parameters are determined
so that they satisfy the inequalities in the respective theorems and minimize the
value of L.

We see from Fig. 1 that the c-secure CRT code on the polynomial ring also has
shorter code length than the original for any collusion size. It alse demonstrates
that, by combining the randomization, the improved code has much shorter code
length for any collusion size c. In particular, for c ≥ 32, the code length is a tenth
of the original.

4 Discussion

We derived analytic conditions which the improved code has to satisfy, provided
concrete code lengths for several parameter settings, and compared them with
those of the original construction of the c-secure CRT code. We demonstrated
that the improved code has shorter code than the original c-secure CRT code for
any collusion size c. This code reduction has the following practical implication.
Suppose an ID is embedded in a two-hour movie which has thirty frames per
second and 10 bits are embedded per frame. Then, the total number of embedded
bits is 2.16× 106 bits. In the case of n = 109, this can accommodate a codeword
of the original c-secure CRT code for up to c = 8. On the other hand, as for the
improved code, it can accommodate a codeword for c = 32.

Finally, we have to analyze a relation of our result to the results in [18, 19]. In
[19], a lower bound for a binary c-secure code is provided, which states that there
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exists a binary c-secure code whose code length is O(c2 log n), and a construction
satisfying such bound is provided. Compared to the construction, we confirmed
that our construction still has shorter code length. However, the construction
in [19] is based on a more general assumption concerning the attack algorithm
A than is ours, which requires only the marking assumption 1. To clarify the
relation between the marking assumption and the lower bound of the code length
is an interesting remaining problem.

References

[1] Boneh, D., Shaw, J.: Collusion-Secure Fingerprinting for Digital Data. In:
CRYPTO’95. Volume 963 of LNCS., Springer-Verlag (1995) 452–465

[2] Lindkvist, T.: Fingerprinting digital document. PhD thesis, Linköping University
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Abstract. In this paper we look at the information an attacker can
extract using a statistical disclosure attack. We provide analytical re-
sults about the anonymity of users when they repeatedly send messages
through a threshold mix following the model of Kesdogan, Agrawal and
Penz [7] and through a pool mix. We then present a statistical disclosure
attack that can be used to attack models of anonymous communication
networks based on pool mixes. Careful approximations make the attack
computationally efficient. Such models are potentially better suited to
derive results that could apply to the security of real anonymous com-
munication networks.

1 Introduction

Intersection attacks take advantage of repeated communications between two
parties to compromise the anonymity offered to them by anonymous communica-
tion systems. While it is possible to manage their impact within the anonymous
communication infrastructure, they can be devastating when the anonymous
communication system is abstracted as a single mix and attacked. In this case
the adversary observes a victim sending messages and notes all their potential
receivers. By aggregating and processing such information, Berthold, Pfitzmann
and Standtke [2] observe, that an attacker is able to deduce some information
about who is communicating with whom.

In this paper we are extending previous work done on a simple model of an
anonymity system — users sending messages at random through a threshold
mix. The idea of using such model for evaluating the anonymity of repeated
communication is due to Kesdogan, Agrawal and Penz [7, 1]. They propose
an expensive attack which aims to identify senders when they can be proved
(within the assumptions of the model) to have sent a particular message. Later,
Danezis showed that an efficient probabilistic attack is also possible [5] which
is approximate, but still provides good results. In the first part of this paper
we will revisit the original model and present new analytical results about the
information that can be inferred by observing the mix.

Anonymous communication systems cannot in many cases be modelled as
abstract threshold mixes, since a set of messages is likely to remain in the net-
work across any chosen division in rounds. We therefore propose a statistical

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 293–308, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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attack that applies to an anonymous communication channel modelled as a pool
mix [12]. Such a mix retains a number of messages every round that are mixed
with the messages injected in the network in the following round. This model can
be used more effectively to study the limit of how much anonymity anonymous
communication networks can provide. The attack presented is very efficient, and
allows the adversary to judge the confidence of the results. The set of careful
approximations that make this attack very efficient are explained as part of this
work.

2 Previous Work

Anonymous communications over information networks were introduced in his
seminal paper by David Chaum [3]. The basic building block that such systems
use to provide the required anonymity properties is the mix, a node that takes
a batch of input messages and outputs them all in such a way that their corre-
spondence is hidden. Cryptographic techniques are used to hide the correlation
between the input and output message bit patterns, and reordering of the mes-
sages is used to disrupt the timing patterns within each batch of messages. This
mixing strategy is called a threshold mix. Other mix strategies have also been
suggested that may make the mix node more resilient to active attacks [8, 12],
and a body of work has concentrated on measuring the anonymity they pro-
vide [11, 6, 13].

Although the mix was originally conceived as a real network node, Kesdogan,
Agrawal and Penz model [7] observe that any anonymity system that provides
unlinkability (rather than unobservability) to its participants could be modelled
as an abstract threshold mix. They then examine the anonymity offered by such
a network to a sender that uses the mix across many rounds to communicate
with a set of recipients. He describes the disclosure attack that can be used to
deduce the set of recipients of a target sender. An analysis of the performance
of the attack is further investigated by Agrawal, Kesdogan and Penz [1].

Such attacks were previously described as intersection attacks [2] or parti-
tioning attacks, both when applied to single mixes and when performed against
the whole anonymous network. When applied to single mixes, the attack can
be eliminated by requiring each message travelling through the network to fol-
low a different path, as originally proposed by Chaum [3], or by restricting the
routes that messages can take out of each node [4]. On the other hand, given
that senders will be communicating with a persistent set of parties, such attacks
will always yield information when applied to the whole network. The Onion
Routing project was the first to draw attention to such attacks performed at the
edges of the network, and named them traffic confirmation attacks [10].

The main disadvantage of the disclosure attack is that its exact nature makes
it computationally very expensive. Danezis [5] proposed a statistical attack based
on a set of carefully selected approximations that allows an attacker observing
the same model of a network to estimate a victim’s set of receivers. As we will
see, one of the main advantages of the statistical disclosure attack is that it can
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be generalised and applied against other anonymous communication network
models. In particular [7] assumes that an anonymous network can be abstracted
as a large threshold mix where batches of messages are anonymized together and
sent out to their respective recipients.

A related idea is presented by Moskowitz et al in [9] where they assess how
much information is leaked to an adversary by a malicious user using an anony-
mous channel. It is likely that analysing systems from that perspective will also
provide results about the information leakage.

We will illustrate how the statistical disclosure attack can be generalised to
anonymous communication mechanisms that can be modelled as pool mixes, or
in other words where some messages are fed forward to the next mixing rounds
of the model.

3 Formal Account of the Attack on the Threshold Mix

We follow the model considered by Danezis in [5]. The anonymity system is
considered as a threshold mix with threshold B + 1. Thus, at each round B + 1
messages are processed. The victim of the attack, Alice, is known to the adversary
to send one message at every round to a receiver chosen uniformly at random
from a set M . Naturally, if Alice does not send a message during a round,
we simply ignore it altogether. The other B senders whom we collectively call
Steves send one message each to a receiver chosen independently and uniformly
at random from a set N , M ⊆ N . The attacker knows |M | (and |N |), and wishes
to determine M .

We now define some notation. Let pr be the probability that one of the other
senders, a Steve, sends a message to a particular receiver r. Naturally, if they
pick their recipients uniformly, ∀r ∈ N . pr = 1

|N | . Let qr = 1 − pr be the
probability Steve does not send a message to r.

Let us now start with some very simple cases and build up a technique for
analysing how much information the attacker gains from observing Alice send
messages via the anonymity system modelled as a threshold mix.

3.1 One Round, Alice Sends to One Receiver

Suppose M = {r}. Now consider the attacker observing one round of communi-
cation. The probability that we see r receiving exactly one message is qB

r — Alice
definitely sends her message to r, the other senders must send their messages to
other receivers. The probability of any other receiver r′(r′ ∈ N \ {r}) receiving
exactly one message is Bpr′qB−1

r′ .
Now define event X as “A particular user k receives one message” and an

event Y as “M = {k}”, i.e. k is the user Alice sends messages to. The event
Y |X is then “k is Alice’s receiver given that k receives one message”. Now note
that what we calculated above is the probability of k receiving one message if he
was Alice’s receiver and the probability of k receiving one message if he was not.
Thus, Pr[X |Y ] = qB

r . Let us now look at the probability of Y being true. For
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this we need to consider what the adversary knows about the set M . We stated
above that the attacker knows how many elements there are in M . If he knows
nothing else, it is reasonable that he regards all possible sets of |M | elements as
equally likely. Thus, in our example here Pr[Y ] = 1

|N | .
Now,

Pr[X ] = Pr[X |Y ] Pr[Y ] + Pr[X |¬Y ] Pr[¬Y ] = qB
k

1
|N | + BpkqB−1

k

|N | − 1
|N |

We can now use Bayes’ theorem to work out Pr[Y |X ].

Pr[Y |X ] =
Pr[X |Y ] Pr[Y ]

Pr[X ]
=

qB
k

1
|N |

qB
k

1
|N | + BpkqB−1

k
|N |−1
|N |

=

=
qk

qk + Bpk(|N | − 1)
=

1− 1
|N |

1− 1
|N | + B −B 1

|N |
=

1
1 + B

This is, of course, exactly what one would expect — after all, the attacker
knew that M contains one receiver out of N with equal probability, and then
observed that during one round of the mix (in which he knows Alice has partici-
pated) some particular receiver r has received one message. Without taking any
further information into account (notably without knowing where all the other
messages went), he can say that the probability that r is Alice’s receiver is 1

B+1 .
A similar derivation shows that if all the messages during a round went to

different receivers, the probability of any of them being Alice’s receiver is still,
as expected, 1

B+1 .
Now let us consider how much information the attacker gets if he observes

someone receiving c messages, denote this event Xc.
The probability that r receives exactly c messages is(

B
c− 1

)
pc−1

r qB−c+1
r

Note that c can be as high as B + 1 requiring all the messages to go to the
receiver r.

The probability of any other receiver r′(r′ ∈ N \ {r}) receiving exactly c
messages is: (

B
c

)
pc

r′qB−c
r′

Note that this becomes zero in the case of c = B + 1 – the receiver who is
not r cannot possibly receive all the messages from the mix as Alice sends her
message to r. We calculate the probability that k who receives c messages is
Alice’s receiver r. From above:
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Pr[Xc|Y ] =
(

B
c− 1

)
pc−1

r qB−c+1
r

Pr[Xc] =
(

B
c− 1

)
prq

B−c+1
r

1
|N | +

(
B
c

)
pc

rq
B−c
r

|N | − 1
|N |

Pr[Y |Xc] =
Pr[Xc|Y ] Pr[Y ]

Pr[Xc]
=

(
B

c− 1

)
(

B
c− 1

)
+
(

B
c

) =
c

B + 1

For example, if we have a system with ten potential receivers and B=10,
i.e. the mix processes 11 messages during a round, then if the attacker sees two
messages being sent to Bob during a round can deduce that Alice sent a message
to Bob with probability 10

55 = 2
11 = 0.1818.

3.2 Several Rounds, Alice Sends to One Receiver

We now generalise this to any number of rounds l.
From before, we know that Pr[X |Y ] = qB

r . Now, for many independent
rounds (let Xl be “k receives exactly one message during each of the l rounds”),
Pr[Xl|Y ] = qBl

r and Pr[Xl|¬Y ] = Blpl
rq

(B−1)l
r . A derivation very similar to above

yields:

Pr[Y |Xl] =
ql
r

ql
r + Blpl(|N | − 1)

=
(|N | − 1)l−1

(|N | − 1)l−1 + Bl

This, of course, subsumes (and is consistent with) the above case for l = 1.
An example is in order. If everyone chooses uniformly from 10 different re-

ceivers (and Alice always sends to the same person), then just from the fact that
Alice participated in two rounds of a threshold mix with threshold of five and
Bob receives exactly one message during each of the two rounds, the attacker
can deduce that Alice is talking to Bob with probability 0.36.

Of course, we have merely given the probability of Y given a very specific
event Xl, but it is clear that the probability of Y given any event Zl can be com-
puted by merely multiplying the probabilities of Y given the event corresponding
to each round. This is justified as the rounds are independent.

3.3 Several Rounds, Alice Sends to Many Receivers

If Alice may send messages to more than one receiver, the situation changes
slightly. We define the event X to be “there is a set K such that exactly one
member of K receives one message during every round” and the event Y to be
“Alice’s set of receivers is the same as K or M = K”. If the attacker knows the

size of the set M then the number of possible sets K is
(
|N |
|M |

)
.
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Now a simple derivation shows:

Pr[Y |X ] =
ql
r

ql
r + Blpl

((
|N |
|M |

)
− 1

) =
(|N | − |M |)l

(|N | − |M |)l + Bl(|M |)l

((
|N |
|M |

)
− 1

)
Note that because M contains more than one element, Pr[Y ] is 1⎛⎝ |N |

|M |

⎞⎠ .

The set of Alice’s receivers is equally likely to be any of the sets of that size. Of
course, if the attacker knew nothing about the size of M , the situation would
have been rather different. The reader is invited to consider it1.

We have shown how to calculate the probability of any set K of being Alice’s
receiver set, or, in other words, a probability distribution over all possible K.
This can be used to compute the anonymity of M as a whole – following [11],
one just computes the entropy of this probability distribution.

Modifying the example from the previous section shows us what effect in-
creasing the size of M has. If Alice sends to one of two people at each round,
then the probability of Alice’s receiver set being {r, r′} where r got a message
during the first round and r′ got a message during the second round is merely
0.009!

3.4 Some Generalisations and Remarks

The reader may have observed that confining Alice to choosing her receivers
from a uniform distribution over M and the other senders – from a uniform
distribution over N is rather restrictive. Indeed, as long as all the other senders
(Steves) choose their receivers using the same probability distributions, we may
substitute different values for pr and qr in the equations above.

If the Steves send messages to receivers picked from different probability
distributions (which are known to the attacker) the situation becomes more
complicated. We consider it for the case of the pool mix in Section 4.

The attacker may well know more or fewer things about Alice’s receiver
set M . As we mentioned above, he may not know |M |, but assume that every
possible M is equally likely. Alternatively, he may know a set N ′ such that M ⊆
N ′ ⊆ N . This knowledge too can be incorporated into the above calculations
(but is a tedious exercise).

We have now given an account of the statistical disclosure attack on a
anonymity system modelled by the threshold mix formally, giving a rigorous
analysis underlying the attacks presented by Danezis [5] and Kesdogan et al
[7, 1]. We go on to show how similar techniques can be used to derive similar
results for a pool mix.
1 Naturally, the probability of any particular set K being Alice’s set of receivers de-

creases and one might like to consider the probability that a receiver r is a member
of Alice’s set of receivers. We leave this for future work.
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4 Formal Account of the Attack on the Threshold Pool
Mix

We now turn our attention to the pool mix. During each round a number b of
messages are input into the mix from the previous round. We call these messages
the pool. A number B of messages are input from the senders. Out of the B + b
messages in the mix a random subset of size B is sent to their respective receivers.
The remaining b messages stay in the pool for the next round. The operation of
the mix is shown in Figure 1.

...N N
...

n

Fig. 1. A Pool Mix

Unlike in the case of a threshold mix, the rounds of a pool mix are not
independent. Therefore we must consider a complete run of the pool mix as one
observation and try to extract information from it. A complete run starts when
the mix comes online and its pool is empty and finishes when the mix is about to
be shut down and has sent out all the messages in its pool out to the receivers.

We follow our running example of Alice choosing her receivers uniformly at
random from M (call this probability distribution2 v) and all the other senders
choosing uniformly from N , call this u, M ⊆ N .

We make several assumptions:

– The messages which are in the pool at the beginning of the operation of
the mix are distributed according to u. We may think of the mix operator
inserting these messages.

– The attacker is able to observe an entire run of the pool mix, from the very
first round, 0, to the very last, k (when no messages remain in the pool).
This may seem unrealistic; indeed any real attack of this form will rely
on a smaller run and will necessarily yield an approximation to the results
presented below. We take the “pure” case merely as an illustration.

2 Bold will consistently be used to indicate that the quantity is a vector describing a
probability distribution.



300 George Danezis and Andrei Serjantov

First of all, let us define an observation of a pool mix over l rounds. Call Oi

(for outputs) the multisets of receivers of round i and Si the set of senders of
round i3. One of the senders is Alice. Define S0 to include all the initial messages
in the pool and Ol to include all the messages which ended up in the pool in the
last round and got set out to receivers. Observe that |S0| = |Ol| = B + b and
i = 0 ⇒ |Si| = B and j = l ⇒ |Oj | = B. Now construct O = ∪l

i=0(Oi × i) and
S = ∪l

i=0(Si × i). Given an observation Obs = (S, O), there are many possible
scenarios of what happened inside the anonymity system which would have been
observed as Obs by the attacker. Indeed, a possible scenario λ is a relation on
S×O such that each member of the S and O occurs in the relation exactly once
and (si, rj) ∈ λ⇒ i ≤ j. The relation λ represents a possible way senders could
have sent messages to receivers which is consistent with Obs.

We illustrate this with a simple example. Suppose we have a pool mix with
a threshold of two messages and a pool of one message which functioned for two
rounds. The message which was in the pool initially came from the sender m,
the mix itself, the other two messages came from A (Alice) and q. Thus, S0 =
{m, A, q}. O0 = {r, r′}. At the next round which happens to be the last, messages
from Alice and s arrived and messages for r, r′′ and r′′′ were sent, leaving the
mix empty. Hence, S1 = {A, s}, O1 = {r, r′′, r′′′}, S = {m0, A0, q0, A1, s1} and
O = {r0, r

′
0, r1, r

′′
1 , r′′′1 }. A possible scenario λ consistent with the observation

(S, O) is: λ = {(m0, r
′′′
1 ), (A0, r0), (q0, r

′
0), (A1, r1), (s1, r

′′
1 )}.

We can now compute the set of all possible scenarios which are compatible
with the observation Obs. Call this set Λ. Take a λ ∈ Λ and a set K such that
|K| = |M |. Define event Y as “M = K”. If the possible scenario λ happened,
then the attacker observes Obs — λ was observed by the attacker as Obs by
definition — hence Pr[Obs|λ, K] = 1. What is the probability of the possible
scenario λ occurring if K was Alice’s set of receivers? The possible scenario
occurs if two things hold: if all the senders involved in this scenario picked their
receivers in the same way as specified in λ and the mixing happened is such a
way that the messages are sent to the receivers in accordance to λ. Hence

Pr[λ|Y ] =

(∏
s∈S

ps

)
1(

B + b
b

)l

where ps is the probability of sender s sending a message to the receiver r
such that (s, r) ∈ λ. Naturally, in the case we are considering above, ps = 1

|N |
if s = Alice or ps = 1

|M| if s = Alice ∧ r ∈ M ∧ (s, r) ∈ λ or ps = 0 if
s = Alice ∧ r ∈ M ∧ (s, r) ∈ λ. However, this approach is also applicable if the
senders have different probability distributions ps over N which are known to
the attacker.

Having obtained Pr[λ|M ], we can calculate Pr[Obs|M ] and then, using Bayes’
theorem as above, Pr[M |Obs]. First,

3 Until now we have not distinguished individual senders as all but Alice sent messages
to receivers chosen according to the same probability distribution.
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Pr[Obs|Y ] =
∑
λ∈Λ

Pr[Obs|λ, M ]× Pr[λ|M ] =
∑
λ∈Λ

Pr[λ|M ]

Pr[Obs] =
∑

Ks.t.|K|=|M|

∑
λ∈Λ

Pr[Obs|λ, Y ] Pr[Y ]

Now,

Pr[Y |Obs] =
Pr[Obs|Y ] Pr[Y ]

Pr[Obs]
=

∑
λ∈Λ Pr[λ|M ]

(
|N |
|M |

)
∑

Ks.t.|K|=|M|
∑

λ∈Λ Pr[λ|Y ]
(
|N |
|M |

)
This enables us to compute the probability of a set K being Alice’s receiver

set. Unfortunately, this calculation requires generating all the possible scenarios,
Λ. The number of these is clearly at least exponential in Bk. Hence a calculation
which is based on all possible scenarios which could have happened inside the
mix is not feasible for any practical run of a pool mix. In the next section we
make some simplifying assumptions and show that it is possible to extract some
information out of this scenario efficiently.

5 Efficient Statistical Attack on the Pool Mix

This attack is a modification of the attack presented in [5] to apply in the case of
the pool mix. It is worth noting that the threshold mix is a special example of a
pool mix, with no messages feeding forward to the next mixing round. Figure 2
illustrates the model used for the attack.

As before, one of the senders, Alice, is singled out to be the victim of the
attack. Each time she has to send a message, she selects a recipient randomly
out of a probability distribution described by the vector v over all possible N
receivers in the system. Alice does not send in each round (as was the case in
the model described in [5]) but only sends at rounds described by the function
s(k). Depending on whether it is a round when Alice sends or not, B − 1 or
B other senders respectively, send a message. They each choose the recipient
of their messages independently, according to a probability distribution u over
all possible recipients N . The initial b messages present in the pool at round
1 are also destined to recipients chosen independently according to the same
probability distribution u.

6 Approximating the Model

We are going to define a series of approximations. These approximations distance
the generalised statistical disclosure attack from other exact attacks, but allow
the adversary to make very quick calculations and to decrease the anonymity of
Alice’s set of recipients.
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B
o1 = Bi1+bπ0

B+b

π0 = u

πk =
Bki+bπk−1

B+b

ok+1 =
Bik+1+bπk

B+b

b

B

b

πk+1

Round k + 1ik+1 = v+(B−1)u
B

Round 1i1 = v+(B−1)u
B

Fig. 2. The pool mix model and the probability distributions defined

We will first model the input distribution ik of recipient of messages of each
round k as being a combination of the distributions u and v. Depending on
whether Alice sends a message or not the component v will be present.

ik =

{
v+(B−1)u

B if s(k) = 1
u if s(k) = 0

(1)

ik is a vector modelling the distribution of messages expected after a very
large number of rounds with the input characteristic of input round k. Depending
on whether Alice is sending at round k, (s(k) being equal to one), the appropriate
distribution is used to model this input.

At the same time we model the output of each round k, and name it ok.
This output is the function of the input distribution at the particular round k
and the distribution of recipients that is forwarded to the present round via the
pool. We call the distribution of recipients that are in the pool πk−1. The output
distribution of each round can then be modelled as

ok =
Bik + bπk−1

B + b
(2)

By definition π0 = u and for all other rounds the distribution that represents
the pool has no reason to be different from the distribution that represents the
output of the round. Therefore πk = ok.

The attacker is able to observe the vector s describing the rounds at which
Alice is sending messages to the anonymous communication channel. The ad-
versary is also able to observe for each round the list Ok of receivers, to whom
messages were addressed.

The generalised statistical disclosure attack relies on some approximations:

– The set of receivers at round Ok can be modelled as if they were each inde-
pendently drawn samples from the distribution ok as modelled above.
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– The outputs of the rounds are independent from each other, and can be
modelled as samples from the distribution ok.

Note that these approximations are discarding information available in ob-
servations, and are likely to lead to a less powerful attack. Despite this we use
them since they lead to very computationally efficient attacks.

Using the samples Ok we will try to infer the the distributions ok and in turn
infer the distribution v of Alice’s recipients.

One can solve Equation 2 for a given function s(k) and calculate ok for all
rounds k. Each distribution ok is a mixture of u, the other senders’ recipients,
and v Alice’s recipients. The coefficient xk can be used to express their relative
weights.

ok = xkv + (1− xk)u (3)

By combining Equations 1 and 2 one can calculate xk as:

xk =
∑

i≤k,s(i)=1

(
b

B + b

)(i−1)
B

B + b

1
B

(4)

This xk expresses the relative contribution of the vector v, or in other words
Alice’s communication, to each output in Ok observed during round k. When
seen as a decision tree, each output contained in Ok has a probability (1−xk) of
being unrelated to Alice’s set of recipients, but instead be drawn from another
participant’s distribution u.

6.1 Estimating v

The aim of the attack is to estimate the vector v that Alice uses to choose the
recipients of her messages. Without loss of generality we will select a partic-
ular recipient Bob, and estimate the probability vBob Alice selects him as the
recipient.

We can calculate the probability of Bob being the recipient of Alice for each
sample we observe in Ok. We denote the event of Bob receiving message i in the
observation Ok as Oki → Bob. Given our approximations we consider that the
particular message Oki was the outcome of sampling ok and therefore by using
equation 3 we can calculate the probabilities.

Pr[Oki → Bob|vBob, uBob, xk] = (xkvBob + (1− xk)uBob) (5)
Pr[¬Oki → Bob|vBob, uBob, xk] = 1− (xkvBob + (1− xk)uBob) (6)

As expected, Bob being the recipient of the message is dependent on the
probability Alice sends a message vBob (that is Bob’s share of v), the probability
others have sent a message uBob (which is Bob’s share of u) and the relative
contributions of Alice and the other’s to the round k, whose output we examine.
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Now applying Bayes’ theorem to Equations 5 and 6 we estimate p.

Pr[vBob|Oki → Bob, uBob, xk] =
Pr[Oki → Bob|vBob, uBob, xk] Pr[vBob|uBob, xk]∫ 1

0
Pr[Oki → Bob|vBob, uBob, xk] Pr[vBob|uBob, xk]dvBob

∼ (xkvBob + (1− xk)uBob) Pr[Prior vBob]

Pr[vBob|¬Oki → Bob, uBob, xk] =
Pr[¬Oki → Bob|vBob, uBob, xk] Pr[vBob|uBob, xk]∫ 1

0 Pr[¬Oki → Bob|vBob, uBob, xk] Pr[vBob|uBob, xk]dvBob

∼ (1− (xkvBob + (1− xk)uBob)) Pr[Prior vBob]

Note that we choose to ignore the normalising factor for the moment since
we are simply interested in the relative probabilities of the different values of
vBob. The Pr[Prior vBob] encapsulates our knowledge about vBob before the ob-
servation, and we can use it to update our knowledge of vBob. We will therefore
consider whether each message observed has been received or not by Bob and
estimate vBob considering in each step the estimate of vBob given the previous
data as the a priori distribution4. This technique allows us to estimate the prob-
ability distribution describing vBob given we observed Rk messages sent to Bob
in each round k respectively.

Pr[vBob|(x1, R1) . . . (xl, Rl), uBob]

∼
∏
k

(xkvBob + (1 − xk)uBob)Rk(1− (xkvBob + (1− xk)uBob)))(B−Rk)

The calculation above can be performed for each receiver in the system to
estimate the likelihood it is one of Alice’s receivers. The resulting probability
distributions can be used as an indication of who Alice is communicating with,
and their standard deviations can be used to express the certainty that this
calculation provides.

7 Evaluation of the Attack

Figure 3 shows the set of probability distributions for 60 receivers. In this case we
take the the probability distribution u to be uniform over all receivers and Alice
to be choosing randomly between the first two receivers and sending messages
for a thousand consecutive rounds (the mix characteristics in this case were
B = 10, b = 0, namely it was a threshold mix). Figure 4 shows the same data for
a pool mix with characteristics B = 30, b = 15. Note that the receivers 1 and 2
are Alice’s and their respective v1 and v2 have different characteristics from the
other receivers.



Statistical Disclosure or Intersection Attacks on Anonymity Systems 305

0

10

20

30

40

50

0
20

40
60

80
100

120

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Estimation of v
receivers

Receivers 1...50

P
r

Fig. 3. Comparing the distributions of vreceiver for B = 10, b = 0

0

10

20

30

40

50

0
20

40
60

80
100

120

0

0.05

0.1

0.15

0.2

0.25

Estimation of v
receiverReceivers 1...50

P
r

Fig. 4. Comparing the distributions of vreceiverfor B = 30, b = 15



306 George Danezis and Andrei Serjantov

The same information can be more easily visualised if we take the average
of all the distributions of receivers that do not belong to Alice, and compare
them with the receivers of Alice. Figures 5(a) and 5(b) show the distributions
of Alice’s receivers and the averaged distributions of other receivers. The curves
can be used to calculate the false positive rates, namely the probability a receiver
has been attributed to Alice but is actually not in Alice’s set, and false negative,
namely a receiver wrongly being excluded from Alice’s set of receivers.
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Fig. 5.

It is unfortunate that we do not yet have analytic representations for the
means and variances of the distribution describing vreceiver. Such representations
would allow us to calculate the number of rounds for which Alice can send
messages, given a particular set of mix characteristics, without being detected
with any significant degree of certainty. The attack presented allows an attacker
to understand where they stand, and how much certainty the attack has lead to,
by numerically calculating them. On the other hand the network designer must
simulate the behaviour of the network for particular characteristics to get some
confidence that it does not leak information.

8 Conclusions

In this paper we presented a thorough account of attacks which consider repeated
communication and the attacker’s knowledge of it. First we gave some analytical

4 Since we are calculating relative probabilities we can discard the a priori since it is
the uniform distribution over [0, 1]
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results which enable the attacker to compute the probability of a set being
Alice’s set of receivers, and therefore the anonymity of that set of receivers.
Then we presented a similar result for the pool mix. However, computing the
probabilities in this case is expensive, and we resorted to using approximations to
yield an efficient attack against a pool mix. The approximations were validated
by simulations; the results show that the attack is powerful as well as efficient.
This is an important and unfortunate result for the designers of anonymity
systems.
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Abstract. In this paper we study the anonymity provided by general-
ized mixes that insert dummy traffic. Mixes are an essential component
to offer anonymous email services. We indicate how to compute the re-
cipient and sender anonymity and we point out some problems that may
arise from the intuitive extension of the metric to take into account dum-
mies. Two possible ways of inserting dummy traffic are discussed and
compared. An active attack scenario is considered, and the anonymity
provided by mixes under the attack is analyzed.

1 Introduction

The Internet was initially perceived as a rather anonymous environment. Nowa-
days, we know that it is a powerful surveillance tool: anyone willing to listen
to the communication links can spy on you, and search engines and data min-
ing techniques are becoming increasingly powerful. Privacy does not only mean
confidentiality of the information; it also means not revealing information about
who is communicating with whom. Anonymous remailers (also called mixes) al-
low us to send emails without disclosing the identity of the recipient to a third
party. They also allow the sender of a message to stay anonymous towards the
recipient.

In this paper, we extend previous results [DS03b, SD02, DSCP02] in order
to obtain equations to compute sender and recipient anonymity, expressed using
the model of generalised mixes. Then, we reason about the anonymity provided
by these mixes when dummy traffic is inserted in the network. We point out that
the intuitive way of computing the anonymity when dummy traffic is inserted
by the mix presents some problems. We also analyze the anonymity offered by
the mixes when an active attacker is capable of deploying an n − 1 attack.
Some side aspects are discussed, in order to provide a good understanding of the
anonymity metric. The paper also intends to be an intermediate step towards
the quantification of the anonymity provided by the whole mix network.

The structure of the paper is as follows: in Sect. 2 we give an overview on
mixes. In Sect. 3 the concept of dummy traffic is introduced. Anonymity metrics
are discussed in Sect. 4. Sections 5 and 8 provide results for recipient anonymity,

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 309–325, 2004.
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first without dummy traffic and then with dummy traffic. Sender anonymity is
analyzed in Sect. 6 and Sect. 7. Sect. 9 analyzes recipient anonymity under an
active attack. Finally, Sect. 10 presents the conclusions and proposes topics of
future work.

2 Mixes

Mixes are the essential building block to provide anonymous email services. A
mix is a router that hides the correspondence between incoming and outgoing
messages. A taxonomy of mixes can be found in [DP04]. The mix changes the
appearance and the flow of the messages. In order to change the appearance of
the messages, the mix uses some techniques, such as padding and encryption,
thus providing bitwise unlinkability between inputs and outputs. Techniques
like reordering and delaying messages, and generating dummy traffic are used
to modify the flow of messages. This modification of the traffic flow is needed
to prevent timing attacks that could disclose the relationship between an input
and an output messages by looking at the time the message arrived to and left
from the mix.

The idea of mixes was introduced by Chaum [Cha81]. This first design was
a threshold mix, a mix that collects a certain number of messages and then
flushes them. Since then, variants on this first design have been proposed in
the literature [DS03b, MC00, Cot, Jer00]. One of the design strategies used
to increase the anonymity of the messages and prevent some simple attacks is
sending only part of the messages, while keeping others for later rounds. These
are called pool mixes or batching mixes. Chaum’s original design is a particular
case of a pool mix, that keeps 0 messages in the pool when it flushes.

Another type of mixes, synchronous or Stop-and-Go mixes, were proposed
by Kesdogan et al. in [KEB98]. These mixes modify the traffic flow just by
delaying messages. They cannot be expressed as generalized mixes [DS03b], and
their analysis is outside the scope of this paper. Some practical measurements
on continuous mixes have been presented by Dı́az et al. in [DSD04].

2.1 Generalized Mixes

The concept of generalized mixes was introduced by Dı́az and Serjantov in
[DS03b]. Here, we summarize the basic concepts of the generalized mixes model.
Pool mixes are expressed in this model by a function, instead of a detailed al-
gorithm. The mix is represented at the time of flushing, making abstraction of
the event that triggers the flushing: it may be the expiration of a timeout (timed
mixes) or the arrival of a message (threshold mixes). However, in Sect. 4.1 we
point out some properties of threshold mixes which are worth discussing.

A round represents a cycle of the mix; during a round, the mix collects input
messages that are placed in the pool, the last event of the round is the flushing
of messages. The function P (n) represents the probability of the messages being
sent in the current round, given that the mix contains n messages in the pool.
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An example of a timed pool mix that keeps 20 messages in the pool and flushes
the rest is shown in Fig. 1. In this case: P (n) = 0 for n ≤ 20 and P (n) = 1−20/n
for n > 20.
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Fig. 1. Representation of a generalized mix

Note that all messages contained in the pool have the same chance of being
selected for sending. This uniformity maximizes the randomness of the selection.
Reducing this randomness leads to leaking more information about the outputs.

2.2 Deterministic Vs. Binomial Mixes

P (n) denotes the probability of sending every message. There are two ways of
dealing with this probability. We distinguish between deterministic and binomial
mixes. Note that the value of the function P (n) is independent of the mix being
deterministic or binomial.

Deterministic Mixes. If a mix is deterministic then the number of messages
sent is determined by the number of messages contained in the pool; the mix
sends s = nP (n) messages. The only randomness present in the flushing algo-
rithm is the one used to select which messages will be sent, but not how many.
Classical pool mixes fall into this category. Note that, for these mixes, once the
number of messages in the pool (n) is known, the number of messages sent (s)
is determined, and vice versa.

Binomial Mixes. Binomial mixes were introduced in [DS03b]. In these mixes,
an independent decision is taken for every message in the pool. A biased coin
(being the bias the value of P (n)) is thrown for each message, so it is sent with
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probability P (n). The number of selected messages follows a binomial distri-
bution with respect to the number of messages in the pool. The probability of
sending s messages, given that the pool contains n messages is (note that p is
the result of the P (n) function for the current round):

Pr(s|n) =
n!

s!(n− s)!
· ps · (1− p)n−s .

The probability of having n messages in a pool of maximum size Nmax, given
that the mix sends s messages is [DS03b]:

Pr(n|s) =
p(s|n)∑Nmax

i=s p(i|n)
.

This probabilistic relationship has the following effects: as it was shown in
[DS03b], just by observing the number of outputs of a round, an observer cannot
know exactly the number of messages contained in the mix; by knowing the
number of messages in the pool we cannot determine the number of messages that
will be flushed. However, large deviations from the mean values occur with very
low probability. This property influences the anonymity metric under certain
circumstances, as it is remarked in Sect. 4.2.

3 Dummy Traffic

Inserting dummy traffic (see [Jer00] for a discussion on the topic and [DP04] for
a taxonomy of dummy traffic) in a mix network is a technique that hides the
traffic patterns inside the mix network, making traffic analysis more difficult. As
shown in Sect. 8, the generation of dummy traffic increases the anonymity of
the messages sent through the mix network. Dummies also reduce the latency of
the network by keeping a minimum traffic load (a low traffic load increases the
latency of the mix network).

A dummy message is a “fake” message created by a mix, instead of a user.
The final destination is also a mix, instead of a recipient; the dummy is discarded
by the last mix, that may be the one that created it. Observers of the network
and intermediate mixes cannot distinguish the dummy from a real message. In
this paper, we make abstraction of the specific purpose of the dummy (link
padding, ping traffic, etc.) and its path-length; we focus on the impact of these
dummies in the anonymity provided by the mix that creates the dummies (note
that dummies are treated as real messages by the other mixes, except for the
last in the path, that discards them).

Creating and transmitting dummies has a cost. We need to find a tradeoff
between the anonymity we want to offer and the cost of adding dummy traffic. In
this paper we present formulas to compute the anonymity, taking into account
the number of dummies produced by mixes. One possibility is that the dummies
created by a mix are sent to itself through a path in the network. Therefore,
every mix will discard its own dummies, and no mix is able to distinguish real
messages from the dummies created by another mix. This strategy was already
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proposed by Danezis and Sassaman in [DS03a] in order to detect and prevent
active attacks against a mix.

We assume that the mix generates dummies following a probability distri-
bution. The creation of a fixed number d of dummies per round is a particular
case, in which Pr(dk = d) = 1. The probability distribution that determines the
number of dummies created should be independent of the traffic of real messages.
Otherwise, an active attacker could develop an attack strategy which minimizes
the number of dummies sent during his attack.

We consider two possible scenarios. First, we assume that the mix inserts
the dummy messages into the output link at the time of flushing. If the mix
flushes after a timeout (timed mix), the mix could add dummies even in the
case in which no real messages are sent. In this case, the pool contains only
real messages (note that dummies created by other mixes are considered real
messages at the intermediate mixes).

In the second scenario, a number of dummies is added to the pool of the
mix. In this case, the number of dummies present at the output depends on the
random selection of messages from the pool. The function P (n), that defines the
probability with which messages are going to be sent, is computed taking into
account the dummies present in the pool. Otherwise, in the case of low traffic,
the mix would accumulate dummies that are flushed at a very low rate. Besides,
the goal of keeping traffic above a minimum would not be achieved.

We also assume that the number of inserted dummies is independent of the
number of dummies already present in the pool, in order to keep the mix design
stateless, that is, that the decisions of one round are not constrained by the
events of previous rounds. A setting in which the mix keeps, for instance, a
constant number of dummies in the pool would need a different analysis.

4 Anonymity Metrics

In this section we introduce the anonymity metrics for mixes. We remark the
particularities of some mix designs (binomial mixes and threshold mixes). Also,
we present the attack model considered.

Anonymity was defined by Pfitzmann and Köhntopp [PK00] as “the state of
being not identifiable within a set of subjects, the anonymity set”.

The use of the information theoretical concept of entropy as a metric for
anonymity was simultaneously proposed by Serjantov and Danezis in [SD02]
and by Dı́az et al. in [DSCP02]. The difference between the two models for
measuring anonymity is that in [DSCP02] the entropy is normalized with respect
to the number of users. In this paper we will use the non-normalized flavour of
the metric.

The anonymity provided by a mix can be computed for the incoming or for
the outgoing messages. We call this sender anonymity and recipient anonymity.

Sender anonymity. In order to compute the sender anonymity, we want to know
the effective size of the anonymity set of senders for a message output by the mix.



314 Claudia Dı́az and Bart Preneel

Therefore, we compute the entropy of the probability distribution that relates an
outgoing message of the mix (the one for which we want to know the anonymity
set size) with all the possible inputs.

Recipient anonymity. If we want to compute the effective recipient anonymity
set size of an incoming message that goes through the mix, we have to compute
the entropy of the probability distribution that relates the chosen input with all
possible outputs.

Note that in the two cases, the metric computes the anonymity of a particular
input or output message; it does not give a general value for a mix design and it
is dependent on the traffic pattern. The advantage of this property is that mixes
may offer information about the current anonymity they are providing. The
disadvantage is that it becomes very difficult to compare theoretically different
mix designs. Nevertheless, it is possible to measure on real systems (or simulate)
the anonymity obtained for a large number of messages and provide comparative
statistics. This has been done by Dı́az et al. in [DSD04], where we can see that
the anonymity offered by a mix can be analyzed through simulations.

4.1 Remarks on Threshold Mixes

If an active attack is deployed (see Sect. 9), the attacker is able to empty the mix
of previous messages much faster, because he is able to trigger the flushings by
sending many messages. Also, the attacker may have another advantage: when a
dummy arrives to the last mix of the path it is discarded and it does not trigger
the flushing if only one message more is required to reach the threshold. This
way, the attacker may be able to know whether a message is a dummy or not.
For these reasons, timed mixes should be preferred to threshold mixes.

4.2 Remarks on Binomial Mixes

There are two ways of computing the anonymity metric for binomial mixes.
If the number nk of messages in the mix (at round k) and the number sk of
messages sent from the pool are observable, this information can be used in
the computation of the entropy. We would use sk/nk instead of P (nk). The
anonymity obtained is the one that corresponds to a particular realisation of
the mix. Note that the same pattern of incoming traffic fed several times into a
binomial mix may result in different values of the metric.

If this is not observable (dummy traffic can hide this number), or if we want
to compute the average1 anonymity offered by a mix, then we have to use the
1 This average may be different of the one obtained by considering e possible scenarios

(binomial output combinations), each of them providing an entropy Hi, (i = 0 . . . e),
happening with probability pi, (i = 0 . . . e). We have checked on a simple numerical
example that the average entropy that we obtain by summing the entropies Hi

ponderated by their probabilities pi is different from this average, that corresponds
to the a priori most probable case.



Reasoning About the Anonymity Provided by Pool Mixes 315

a priori probability, P (n). In this case, we obtain a fixed result for a given
incoming traffic.

4.3 Attack Model and Dimensions of Uncertainty

The anonymity metric computes the uncertainty about the sender or the recip-
ient of a message, given that some information is available. We compute the
metric from the point of view of an attacker, whose powers must be clearly
specified.

The attacker considered in the paper is a permanent global passive observer.
The attacker knows the number of messages that arrive to the mix in every round
(ak) and the number of messages sent by the mix in every round (sk). We assume
that the function of the mix P (n) is publicly known. Moreover, the attacker “has
always been there” and “will always be there”, that is, the attacker knows the
whole history of the mix. This way we give a lower bound for anonymity, given
that an attacker with less power will only obtain less information, and the users
will be more anonymous towards him. In Sect. 9 we consider an active attacker,
capable of deploying an n− 1 attack.

When the mix does not generate dummy traffic, the attacker has all the in-
formation needed to compute the anonymity (ak, sk and P (nk)), because he
can determine the number of messages in the pool, nk. When the mix gener-
ates dummies, we can find some differences between deterministic and binomial
mixes. If the mix is deterministic, then the attacker can find out nk, regardless
of the dummy policy. If the mix is binomial, then for a deterministic dummy
policy he will also be able to determine nk (note that the attacker is perma-
nent and knows all the history). But for a random dummy policy the value nk

cannot be determined, and therefore P (nk) remains unknown. This means that
the attacker cannot compute with certainty the anonymity of the messages. He
may be able to estimate it; the estimation is more accurate when the number of
dummies or the randomness of the dummy distribution decreases.

It is important to note that this uncertainty is, in most cases, independent of
the anonymity provided by the mix. The cases in which this uncertainty increases
the anonymity are indicated in the appropriate sections.

Another sort of uncertainty arises if the attacker starts observing the system
when it has been running for some time (non permanent attacker), or if the mix
starts with an unknown number of messages in the pool. This type of attacker
has been considered in the literature (see, for example, [SN03]). In this case,
the uncertainty about the number of unknown messages contained in the pool
(arrived before the attacker started observing) decreases with every round, as
the probability of any of them still being there does.

4.4 Anonymity Provided by a Mix Network

In this paper, we compute the anonymity of a single mix. Nevertheless, we assume
that the mix is a node of a mix network (otherwise, it would not make sense to
create dummy traffic). The goal of the analysis of the impact of dummy traffic
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on the anonymity provided by a mix is to go a step further towards a metric
that computes the anonymity provided by a mix network, when dummy traffic
is inserted by the nodes.

Without the results provided in this paper, it would not be clear the way of
computing the anonymity of a mix network whose nodes insert dummy traffic. As
we show in Sect. 7 and Sect. 8, we must be careful when applying the information
theoretical anonymity metrics to mixes that generate or discard dummies.

Danezis [Dan03] has proposed a method to measure the anonymity provided
by a mix network (in the absence of dummy traffic). The method can be applied
to compute the recipient anonymity as follows: one measures the anonymity of
a mix network as the entropy of the distribution of probabilities that relates a
message m entering the network with all the possible outputs of the network, oij

(being i the mix that outputs the message and j the message number). These
probabilities are expressed as the product of two terms: first, the probability of
the target input m being output oij conditioned to the fact that the m left at
the same mix Mi as output oij ; second, the probability of the target having been
left from mix Mi.

The first term, Pr(m = oij |m left at Mi) corresponds to the anonymity pro-
vided by mix Mi (i.e., the formulas presented in this paper are suited to compute
this value). The second quantifies how effectively the traffic from different nodes
is mixing together; it is dependent of the topology of the network and on the
path selection of the messages and dummies. In order to effectively enhance the
anonymity provided by the mix network, the dummy traffic should maximize the
number and the probabilistic uniformity of the possible destinations for every
outgoing message.

Although the computation of the second term when mixes create dummy
traffic may not be obvious, the results provided in Sect. 8 and Sect. 7 may be
useful to measure the impact of dummy traffic on anonymity at network scale.

5 Recipient Anonymity Without Dummy Traffic

In this section, we compute the effective recipient anonymity set size of an in-
coming message that goes through the mix. We need to compute the entropy
of the probability distribution that relates the chosen input with all possible
outputs.

We summarize the notation needed for this section:

– ak: number of messages arrived to the mix in round k.
– nk: number of messages in the mix in round k (before flushing).
– sk: number of messages sent by the mix in round k.
– P (n): characteristic function of a generalized mix [DS03b]. It represents the

probability of a message that is in the pool of being flushed as a function of
the number of messages contained in the mix.

– p(Oi): probability of linking the chosen input with an output O that left the
mix in round i.

– Hr: effective recipient anonymity set size. Also recipient anonymity.
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Computing the recipient anonymity has a shortcoming: instead of needing
the past history of the mix, we need to know the future history. In theory, we
should wait infinite time before we can compute the entropy of an input. In
practice, we can give an approximation of this value once the probability of
the message still staying in the mix is very low (we can choose the probability
to be arbitrarily small, and get as close to the real entropy as we want). Note
that the approximation is still giving a lower bound for anonymity, because the
approximated entropy is lower than the real one.

From [DS03b], we know that if a message arrived to the mix in round r, the
probability of this message going out in round i is:

p(roundi) = P (ni), r = i.

p(roundi) = P (ni)
i−1∏
j=r

(1 − P (nj)), r < i.

The probability of matching our target input message of round r to an output
of round i, Oi, is (note that it is uniformly distributed over all outputs of round
i, si):

p(Oi) =
P (ni)

si
, r = i.

p(Oi) =
P (ni)

∏i−1
j=r(1− P (nj))

si
, r < i.

This result only makes sense if si > 0. Otherwise, p(Oi) = 0, and this term
should not count in the computation of the entropy. The recipient anonymity of
the input, assuming that the probability of it still being in the mix is negligible
after round R, is:

Hr = −
R∑

i=r

si · p(Oi) log(p(Oi)) . (1)

6 Sender Anonymity Without Dummy Traffic

In order to compute the sender anonymity, we want to obtain the effective size
of the anonymity set of senders for a message output by the mix. Therefore,
we compute the entropy of the probability distribution that relates an outgoing
message of the mix (the one for which we want to know the anonymity set size)
with all the possible inputs.

The notation we need for this section, in addition to the one presented pre-
viously, is:

– p(Ii): probability of linking the chosen output with an input I that arrived
to the mix in round i.

– Hs: effective sender anonymity set size. Also sender anonymity.
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Given that the mix treats all messages in the same way, the probability for
an input to correspond to the chosen output depends on the round in which the
input arrived to the mix. If a message arrived in the current round r, it is certain
that it is in the pool. Therefore, the probability is uniformly distributed among
all the messages contained in the mix:

p(Ir) =
1
nr

.

For the messages that have arrived in previous rounds, we need to take into
account that they might have already been sent by the mix. Therefore, we need
to multiply the previous result by the probability of that input still being inside
the mix. If the message arrived in round i, the probability of staying each round
is 1 − P (nj). Taking into account that the decisions of different rounds are
independent, the probability of the chosen output corresponding to an input of
round i is:

p(Ii) =
1
nr

r−1∏
j=i

(1− P (nj)), i < r .

Note that the result only makes sense if the number of inputs of the round we are
considering is greater that zero, otherwise p(Ii) = 0, and this term should not
be taken into account when computing the entropy. The measure of the sender
effective anonymity set size, given by the entropy, is:

Hs = −
r∑

i=1

ai · p(Ii) log(p(Ii)) . (2)

Note that we start at round 1 because we assume that the attacker has been
permanently observing the system. From a practical point of view, if a program
to measure the anonymity is embedded in the mix to evaluate the anonymity
performance, this program will be started at the same time as the mix, and will
also “know” the whole history of it.

7 Sender Anonymity with Dummy Traffic

In this section we discuss the sender anonymity metric when dummy traffic is
generated by the mix. We consider two scenarios: dummies inserted at the output
and in the pool. We reason that the intuitive way of computing this anonymity
results in a metric that does not reflect the actual increase in the anonymity of
the users.

7.1 Dummies Inserted at the Output

We encounter the first limitation of the metric when trying to measure the sender
anonymity in a setting in which the mix is producing dummies.
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In order to compute the sender anonymity provided by the mix when dummy
traffic is being inserted at the output link, we would first choose an output, and
then compute the probability of this message being one of the inputs or one of
the dummies. There is a conceptual difference between these two cases: if the
output is a real message, we want to know which one; if it is a dummy, we do
not really care whether it is “dummy number 1” or “dummy number 7”: the fact
of the message being a dummy contains only one bit of information (dummy/no
dummy). We show that treating the two cases analogously would lead to a metric
that is not meaningful in terms of anonymity.

Let us consider a distribution of probabilities pi that relates the chosen output
with every possible input Ii when no dummies are generated by the mix. The
entropy of this distribution is Hs. If the mix adds dk messages to every output
round, then the new probability distribution is:

– Probability of being a dummy: pd = dk/sk.
– Probability of being input Ii: (1− pd) · pi

The entropy of the new distribution is:

H = −pd log2(pd)−
∑

i

(1− pd) · pi log2((1− pd) · pi) .

H = −pd log2(pd)− (1− pd) log2(1− pd) + (1− pd) ·Hs .

From the formula, we observe that for high values of Hs and pd, the value of
the new entropy H (with dummies) may be lower than Hs (entropy with no
dummies).

The decrease in the entropy is consistent with the concept associated with
it: the uncertainty. If pd >> 1− pd, the attacker has little uncertainty about the
output, he may guess that it is a dummy and he will be right with probability
pd. Nevertheless, the attacker is not gaining much with this guess because the
uncertainty about the inputs that corresponds to real outputs stays the same.

We should conclude that it is not straighforward to use the metric H to
compute the sender anonymity of a mix with dummy traffic. In order to get
meaningful results, we should assume that the attacker chooses a real message,
and never a dummy. As complementary information about the chances of the
attacker of choosing a real message at the output of a mix, we suggest to provide,
together with the metric Hs, the probability of success choosing a real message,
1− pd.

On the other hand, we should note that the incoming dummies that are
discarded by the mix do contribute to the sender anonymity.

7.2 Dummies Inserted in the Pool

The same problem pointed out in the previous section about the relevance of
the metric applies to this scenario, hence the same solution is suggested. We
propose as metric the entropy conditioned to the event that a real message is
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chosen, together with the probability of choosing a real message, 1 − pd - as in
the previous case.

The main difference witht he previous case is that for binomial mixes the
number of dummies flushed by the mix follows a binomial distribution with
respect to the number of dummies contained in the pool. The average number
of dummies contained in the pool at round r is:

Dr = dr +
r−1∑
i=1

di

r−1∏
j=i

(1− P (nj)) .

The proportion of dummies at the output is, on average, the same as in the pool
(the dummies are selected to be sent with the same probability as real messages).
The probability of selecting a real message at the output is: 1− pd = 1−Dr/nr.

Note that the entropy in this scenario must be computed taking into account
the actual value of P (n) (where n includes the dummies). The value is higher
than in the case in which dummies are inserted at the output. Therefore, the mix
may provide less anonymity and less delay. Note that the value of the function
P (n) depends not only on the number of real messages contained in the pool,
but also on the number of dummies. This implies that nk will be bigger that in
the other analyzed cases. P (n) is a function that grows with n (a function that
decreases with n would not make sense: the mix would send less messages as
the traffic increases). From the expression of the entropy, we can conclude that
for the same traffic load, the anonymity and the delay decrease when this policy
is used instead of inserting the dummies at the output (note that higher values
of P (n) provide less anonymity and less delay). Eventually, we could reach a
situation in which a real message is only mixed with dummies. Note that if the
function P (n) does not increase its value (P (n) may reach a maximum value),
the anonymity would not be affected.

8 Recipient Anonymity with Dummy Traffic

A similar problem arises for the case of recipient anonymity as for sender an-
onymity. In this case, we must assume that the attacker choses to trace a real
input. This is a reasonable assumption when the message comes from the user.
But in certain circumstances, the attacker may want to trace a message that
comes from another mix (trying to find the path of the target message in the
network). In this case, the attacker may choose a message that is actually a
dummy that will be discarded by the mix. It does not seem easy to model the
dummy traffic that arrives to a mix for being discarded, given that it depends
on the whole network and the path of the dummy.

In order to effectively apply the anonymity metric, we must assume that
the attacker computes the recipient anonymity for a message that will not be
discarded by the mix (that is, a message that matches an output). Analogously
to the case of sender anonymity, we may provide as complementary information
to the recipient anonymity, the probability of choosing an input message that is
not discarded by the mix.
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In this section we discuss the impact of the dummy traffic created by the
mix on the recipient anonymity. We show that a simple extension of the metric
allows us to take into account dummy traffic generated by this mix (the input
dummy traffic getting to the mix cannot be considered). We compare the two
possible ways of inserting dummies: at the output and in the pool. The number
of dummies inserted at round k is dk. The number of dummies inserted follows
a distribution Pr(dk = d). We make abstraction of this distribution.

8.1 Dummies Inserted at the Output

The mix inserts dk messages at the output link in round k. The recipient
anonymity when dummy traffic is being inserted at the output of the mix is
computed using (1). The only difference in this case is that sk has a component
of real messages, mk, and another one of dummy messages, dk (sk = mk + dk).
Therefore, the impact of the dummy traffic is equivalent to an increase in the
traffic load.

This simple result is consistent with the fact that real messages which are
not the one we want to trace act as cover traffic for the target message, just as
dummy messages do. Whenever there is at least one real message in the output of
a round, the probabilities of matching our target input message are distributed
over the messages output by the mix in that round.

Nevertheless, it is important to note that if mk and dk are known by the
attacker (deterministic mix or deterministic dummy policy), the rounds in which
mk = 0 (only dummy messages sent) can be discarded by the attacker. These
dummy messages do not increase the recipient anonymity provided by the mix.
This is not the case when the attacker has uncertainty about dk and mk (binomial
mix with random dummy policy); therefore he has to take into account dummies
sent in rounds in which no real message is flushed.

We can conclude that binomial mixes with random dummy policy offer more
anonymity when the traffic is low (in particular, when mk = 0), because the
uncertainty of the attacker about the existence of real messages in the output
increases the recipient anonymity: messages of rounds that would be discarded
by the attacker in a deterministic mix cannot be discarded in a binomial mix.

8.2 Dummies Inserted in the Pool

The mix inserts in the pool dk dummies in round k. The recipient anonymity
provided by a mix implementing this dummy policy is computed using (1). The
difference in this case is that the value of the function P (n) depends not only
on the number of real messages contained in the pool, but also on the number
of dummies, with the same consequences on the anonymity as mentioned in
Sect. 7.2.
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9 Recipient Anonymity Under n − 1 Attack

The n− 1 or blending attack (analyzed in detail by Serjantov et al. in [SDS02])
is a method to trace a message going through a mix. The goal of this attack is to
identify the recipient of a message (the attack only affects recipient anonymity,
not sender anonymity). In order to deploy an n − 1 attack, the attacker fills
the mix with his own messages and the target message (he must be able to
delay the other incoming messages). Assuming that the attacker can recognize
his messages at the output, then he is able to trace the target message. In this
attack model, the adversary is able to delay messages and to generate large
numbers of messages from distributed sources (so that the flooding of the mix
cannot be distinguished from a high traffic load).

If no dummy traffic is being generated by the mix, then the attacker can
successfully trace the target (with probability 1 for a deterministic mix and with
arbitrarily high probability for a binomial mix).

9.1 Deterministic Mix with Dummy Traffic Inserted at the Output

In this case, the attacker knows dk and mk. Therefore, he knows when the target
message is being sent by the mix (it is the round in which the number of unknown
messages sent is dk + 1). The anonymity will be that provided by the dummies
in the round in which the target is flushed (round i):

Hr = −
di+1∑
j=1

1
di + 1

log2(
1

di + 1
) = log2(di + 1) .

Note that although the attacker can detect the round in which the target mes-
sage is flushed, he still cannot distinguish between the target message and the
dummies.

9.2 Binomial Mix with Random Dummy Traffic Inserted at the
Output

In this case, the attacker cannot observe in which round the message is flushed,
because he does not know dk and mk, and he cannot distinguish between the
dummies and the target message. We assume that after round R the probability
of the target message being inside the mix is negligible.

The mix flushes sk messages per round. The attacker can recognize mk mes-
sages. He does not know whether the sk − mk remaining messages are just
dummies or if the target is among them.

The attacker fills the mix with his own messages and lets the target in at
round r. From that round on, the probability of every unknown output of round
i of being the target is:
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p(Oi) =
P (ni)

si −mi
, r = i.

p(Oi) =
P (ni)

si −mi

i−1∏
j=r

(1 − P (nj)), r < i.

The entropy is given by:

H = −
R∑

i=r

(si −mi) · p(Oi) log(p(Oi)) .

This means that all the dummies sent in the rounds in which there is a probability
of sending the target (this includes the rounds before and/or after the actual
sending of the target) contribute to the anonymity, in contrast with the previous
case, in which the round that includes the target is observable and only the
dummies sent in that particular round contribute to the recipient anonymity of
the message.

9.3 Dummies Inserted in the Pool

If the dummies are inserted in the pool, then the attacker has uncertainty about
the round in which the target message is flushed. This is independent of the type
of mix (deterministic or binomial) and the dummy distribution (deterministic
or random dummy policy): the attacker can neither distinguish at the output
between unknown real messages and dummy messages, nor know which of the
messages of the pool will be selected.

The anonymity provided in this case is computed as in the case of binomial
mixes with random dummy policy. The only difference is that the pool will
contain more messages (n grows due to the dummies). This increases P (n),
unless P (n) reaches at a certain point a maximum (as it is the case in some
practical designs, as Mixmaster) and the attacker sends enough messages to
make it reach this maximum. An increase in the result of the function P (n)
would help the attacker to force the target to leave the mix in fewer rounds with
a high probability.

10 Conclusions and Future Work

We have computed the sender and recipient anonymity provided by generalized
mixes. The formulas provided are compact and easy to evaluate and implement.
We have indicated how to measure the sender and recipient anonymity when the
mix inserts dummy traffic in the pool or at the output. Given that the intuitive
extension of the metric for this scenario provides confusing results, we have
clearly explained how it should be applied. We have analyzed the anonymity
provided by a mix that sends dummy traffic, when it is subject to an n − 1
attack, and provided the equations that express this anonymity.
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We summarize the main conclusions of the paper:

– The dummies generated by the mix contribute to recipient anonymity, but
not to sender anonymity. The dummies discarded by the mix contribute to
sender anonymity but not to recipient anonymity. Much attention must be
paid when implementing this metric to nodes that generate dummy traffic.

– Binomial mixes in combination with a random dummy policy provide more
anonymity than deterministic mixes (regardless the dummy policy) or bino-
mial mixes with deterministic dummy policy.

– Inserting the dummies in the pool provides less anonymity and less latency
that inserting them at the output.

– When dummies are inserted at the output, binomial mixes with a random
dummy policy offer more protection against the n−1 attack than determin-
istic mixes.

– Inserting dummies in the pool protects deterministic mixes better than in-
serting them at the output, when an n− 1 attack is deployed.

Some of the topics that are subject of future work are:

– Find a metric that expresses the sender and recipient anonymity provided
by a mix network with dummy traffic.

– Compare the anonymity achieved with different distributions of dummy traf-
fic. Obtain quantitative results.

– Compare the anonymity provided by pool mixes to the anonymity provided
by Stop-and-Go mixes, with dummy traffic.
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Abstract. A passive attacker can compromise a generic anonymity pro-
tocol by applying the so called disclosure attack, i.e. a special traffic anal-
ysis attack. In this work we present a more efficient way to accomplish
this goal, i.e. we need less observations by looking for unique minimal
hitting sets. We call this the hitting set attack or just HS-attack.

In general, solving the minimal hitting set problem is NP-hard. There-
fore, we use frequency analysis to enhance the applicability of our attack.
It is possible to apply highly efficient backtracking search algorithms. We
call this approach the statistical hitting set attack or SHS-attack.

However, the statistical hitting set attack is prone to wrong solutions
with a given small probability. We use here duality checking algorithms
to resolve this problem. We call this final exact attack the HS*-attack.

1 Introduction

Although anonymity and privacy is only a small part of what today is called
computer or network security, it plays a vital role in data protection. There
are a couple of issues where data encryption in public networks is not enough.
Amongst those are important fields like free speech, elections, health care and
social guidance systems. The simple fact of exchanging data packets with some
of those entities might already be interesting to third parties, i.e. people would
like to use these systems anonymously.

On the contrary most network protocols, and especially TCP/IP, are not
designed for anonymous data transfer. Anyone along the route of the packet
through a network can observe the origin and the destination of this packet even
if the payload is encrypted. Therefore, Chaum et al. have proposed anonymity
protocols that grant protection against this sort of eavesdropping in closed
environments1[Cha81, Cha88, CGKS95, CB95].

This paper focuses on an analysis of the strength of those protocols in an open
system2 like the Internet[GRS96, GT96, RR98, KEB98, KBS02]. In particular

1 i. e. the number of the users is some known and not too large number n (e. g.
n ≤ 1000).

2 i. e. the number of potential users is more than one million and usually not known
exactly.

J. Fridrich (Ed.): IH 2004, LNCS 3200, pp. 326–339, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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we investigate how long they can hide the user’s communications from a passive
attacker.

The first contribution of this paper is a new attack which also makes use of
network traffic observations without interfering with the traffic of the network
in any kind. By looking for hitting sets in the observations the new algorithm
does the work faster, i.e. it needs less observations than any other attack known
to us. We call the new attack the hitting set attack or HS-attack. However, it
requires the solution of a NP-hard problem, i.e. the minimal hitting set problem.

We relax the strict approach of the minimal hitting set by using the most fre-
quent candidates. We call this attack as the statistical minimal hitting set attack
or SHS-attack. This attack does not rely upon solving NP-hard problems. It
is also very easy scalable and can be applied in situations that were far beyond
feasibility of the HS-attack.

But this advantage comes with a drawback: the risk of errors. The solutions
found by the SHS-attack are approximations and thus object to possible errors.
We present some error probability statistics of these and suggest strategies that
can be applied to reduce the error to any arbitrarily measure.

Our third contribution is a method of refinement. We show how the approx-
imation can be used to either show the correctness of itself or give a hint of
how to look for more information in upcoming observations. Especially the work
of Fredman and Khachiyan can be used to great advantage. We call this at-
tack HS*-attack, since it is exact as the HS-attack and can use the statistical
properties of the SHS-Attack, but requires more observations.

This paper is structured as follows: in the section 2 we discuss general infor-
mation concerning anonymity techniques and related works. Thereafter we have
laid down enough knowledge to start our work. After related works we derive
and explain in section 4 the hitting-set attack in detail. Then, we present the
statistical hitting set algorithm. There are details about it’s implementation,
optimizations and behavior. In section 6 we present the HS*-attack. Finally we
conclude the paper in section 7.

2 Anonymity Techniques

As already mentioned in the introduction there are a number of anonymity
techniques to prevent eavesdroppers from gaining information about a user’s
traffic. Since the content can be encrypted, our focus is on the traffic layer.
Anyone that can read a packet can see the origin and the destination. Anonymity
techniques strive to prevent this.

As an example: Alice wants to post her political opinion to a web forum
where oppositional members exchange information. Unfortunately she lives in a
country where the government is suspected to track down oppositional members.
If she would just send the encrypted message, e.g. using HTTPS, her Internet
Service Provider (ISP) could notice this action and save this to a record. This
could lead to a point where Alice herself could get suspected because she has
exchanged data with some entity.
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To avoid this, Alice could use some service like JAP [BFK01]. For this she
installs a proxy on her computer that encrypts all of her traffic and sends it to a
JAP proxy (i.e. Mixes [Cha81]). Along with her there are several other, maybe
several thousand, users doing likewise. The server decrypts those packets and
forwards them on behalf of the users. Any returned data will be send to the
users on the same way.

Thus, any primary evidence has now gone. What remains is that Alice sends
out data to an anonymity server (e.g. Mixes) which itself does not provide any
other service than untraceable packet forwarding. Because of this functionality a
potential attacker is not able to link an incoming packet to an outgoing packet.
Using this service, Alice is beyond any suspicion to have send any packets to the
oppositional forum because any of the other users could have been done it, i.e.
Alice and the other persons builds the so called anonymity set.
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Fig. 1. Formal model of an anonymity set. In any anonymous communication
(e.g. Mixes), a subset A′ of all senders A sends a message to a subset B′ of all
recipients B.

2.1 The MIX Concept

MIXes collect a number of packets from distinct users (anonymity set) and pro-
cess them so that no participant, except the MIX itself and the sender of the
packet, can link an input packet to an output packet [Cha81]. Therefore, the
appearance (i.e. the bit pattern) and the order of the incoming packets have
to be changed within the MIX. The change of appearance is a cryptographic
operation, which is combined with a management procedure and a universal
agreement to achieve anonymity:

User Protocol: All generated data packets including address information are
padded to equal length (agreement), combined with a secret random number
RN , and encrypted with the public key of the MIX node (see also [PP90]).
A sequence of MIXes is used to increase the reliability of the system.

MIX Protocol: A MIX collects a packets (called batch) from distinct users
(identity verification), decrypts the packets with its private key, strips off the
RNs, and outputs the packets in a different order (lexicographically sorted
or randomly delayed). Furthermore, any incoming packet has to be compared
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with formerly received packets (management: store in a local database) in
order to reject any duplicates. Every MIX (except the first) must include
a functionality ensuring that each received packet is from a distinct user,
because only the first MIX can decide whether or not the packets are from
distinct senders.

Applying this protocol in closed environments where all subjects participate
in all anonymity sets, the MIX method provides full security. The relation be-
tween the sender and the recipient is hidden from an omnipresent attacker as
long as:

a) One honest MIX is in the line of the MIXes which the packet passes.
b) The (a− 1) other senders do not all cooperate with the attacker.

[Pfi90] states that the MIX method provides information-theoretic determin-
istic anonymity based on complexity-theoretic secure cryptography.

2.2 Abstract Model

In this work we abstract from a specific type of anonymity service or implemen-
tation. Instead, we assume that a subset A′ of all senders A sends a message to
a subset B′ of all recipients B, like shown in figure 1. Furthermore, in our model
the adversary can easily determine anonymity sets, e.g. mixes assume that all
network links are observable (see [Cha81]). However, this can be assumed also
in a real world scenario if the attacker is able to observe messages to and from
an anonymity service. We only assume the following properties of an anonymity
system:

– In each anonymous communication, a subset A′ of all senders A sends a
message to a subset B′ of all recipients B. That is, A′ ⊆ A and B′ ⊆ B, as
Figure 1 illustrates. In a particular system, the set of all senders A can be
the same as the set of all recipients B.

– The size of the sender anonymity set3 is |A′| = a, where 1 ≤ a ( |A|. Note
that a sender can even send multiple packets per batch.

– The size of the recipient anonymity set is |B′| = b, where 1 ≤ b ( |B| and
b ≤ a. That is, several senders can communicate with the same recipient.

– The anonymity system provides provides perfect untraceability between in-
coming and outgoing packets.

The typical values for |A′|, |B′|, |A|, and |B| vary from implementation to
implementation and with the environment in which they operate. In [BFK01]
present an implementation in which |A| is around 20, 000. They don’t give typical
values for |A′|, but we generally expect |A′| < 100.

To investigate the hitting set attack, we use the same formal model as sug-
gested in [KAP02]. For the sake of simplicity we make certain assumptions. These
assumptions are:
3 Note that the above model can be easily adopted to other anonymity systems (e.g.

pool-mixes) by determining the respective anonymity sets.
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– In all observations OBS = {B′
1, B

′
2, . . .} Alice is a sender using the system to

hide her m communication partners BAlice, i.e. ∀B′
i ∈ OBS : BAlice∩B′

i = ∅.
This can be accomplished by restricting the attacker to observe only the
anonymous communication of Alice. We will refer to the communication
partners later on also as Alice’s peers.

– Alice chooses a communication partner in each communication uniformly
among her m partners BAlice, while the other senders choose their commu-
nication partners uniformly among all recipients B.

3 Related Works – Disclosure Attack

Disclosure attack is a traffic-analysis attack to identify all communication part-
ners of a targeted user (Alice) [KAP02]. Since we follow here the same anonymity
model disclosure attack has the same model properties, i.e. Alice uses the system
to hide her communication partners BAlice with |BAlice| = m and the attacker
knows the number of the peers, i.e. m.

A disclosure attack has a learning phase and an excluding phase.

Learning phase In this phase, the attacker’s task is to find m mutually disjoint
recipient sets – that is, each set has only one peer partner of Alice – by
observing Alice’s incoming and outgoing messages. We refer to these found
sets as the basis sets.

Excluding phase The attacker’s task in this phase is to observe new recipient
sets until all Alice’s nonpeer partners are excluded from the basis sets. Three
possible outcomes exist:
– No intersection. Contrary to our assumption, since none of the peer

communication partners in the basis sets appear in the recipient set.
– Intersection only with one basis set. The attacker knows that Alice’s peer

partner must be in the intersection (excluding act).
– Intersection with more than one basis set. The attacker cannot tell which

intersection contains Alice’s peer partner.

The disclosure attack is an NP-complete problem. The proof, detailed else-
where [KAP03], is technical and involves showing that the learning phase of the
disclosure attack is equivalent to the well-known NP-complete Clique problem.

An enhancement of the disclosure attack is suggested in [Dan03], the statis-
tical disclosure attack. The attack follows the general structure of the disclosure
attack as suggested in [KAP02], but makes use of statistical properties in the
observations and identify the victim’s peer partners without solving the NP-
complete problem. However, this is not for free. The solution is only correct
with a given probability.

4 The Hitting-Set Attack

To investigate the hitting set attack we restrict ourselves again to observe Alice
and to identify all her hidden peer partners BAlice. As before we continue ob-
serving only the anonymity sets where Alice is involved as a sender. We do not
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use any other properties of the anonymity system, thus the complete system can
be described formally as follows:

∀B′
i ∈ OBS and B′

i ⊂ B ∃b ∈ BAlice ⊂ B : b ∈ B′
i

Obviously, having only the above abstract system definition we can not iden-
tify (or exclude) any recipient b ∈ B as the peer partner (or as not the peer
partner) of Alice. All recipients are a priori equally likely.

Suppose β = {b1, b2, . . . bm} ⊂ B is the result of a successful attack, then
informally the solution β has to be consistent with the system description, i.e.
the following holds β ∩ Bi = ∅ for all elements of OBS. Suppose, two possible
solutions β = BAlice and β′ = BAlice are consistent with the anonymity system,
i.e. ∀B′

i : β∩B′
i = ∅ and β′ ∩B′

i = ∅. There is no way for the attacker within the
given system to pick the right solution. Clearly, it is not decidable wether β or
β′ is the true solution within the given model. Hence, to decide within the given
system the following has to be met ∃B′

j : β′ ∩B′
j = ∅. From this observations we

suggest the following algorithm:

1. Since the attacker knows m, he can build all sets of cardinality m from the
elements of B, we will call the collection of these sets of possible solutions
as Sm. Obviously, BAlice ∈ Sm because Sm contains all sets of size m. Note
that |Sm| =

(
n
m

)
.

2. The attacker excludes all sets in Sm that are not consistent with the obser-
vation, i.e. all sets in Sm that are disjunct with the observation.

3. If |Sm| becomes one, the remaining element has to be equivalent to BAlice

because all other sets of cardinality m proofed to be wrong.

Of course it is impossible for an attacker with space limitation to maintain
a list of size

(
n
m

)
. For realistic numbers this would be about

(
20,000

20

)
≈ 1068

elements. Although this number would decrease fast in the progress of the algo-
rithm.

However, from the above problem description we can derive that the solution
has to be a unique minimum hitting set of all observations in OBS. First of all,
the solution is not disjunct with any B′

i ∈ OBS. So it is a hitting set. It is
also unique, otherwise the algorithm would not have been stopped. And it is
also minimal: if there would be some hitting set of a size smaller than m, all
superior sets with cardinality m would be hitting sets, thus violating uniqueness.
Consequently we define:

Definition 1 (Hitting Set) Suppose OBS is a collection of sets. A hitting set
for OBS is a set H ⊆ ∪B′

i∈OBSB′
i such that H ∩B′

i = Ø for each B′
i ∈ OBS. A

hitting set is minimal iff no proper subset is a hitting set.

Garey and Johnson report that the hitting set problem is NP-complete. No-
tice, that the hitting set problem can be transformed to the vertex cover problem
[GJ79].
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5 Statistical Hitting Set Attack

Finding a unique minimal hitting set is NP-complete, but there is a helpful
property that can be used, frequency analysis. Using frequencies we can apply
some efficient though easy restrictions to the searching space. In fact Alice’s
peers appear more frequently in the recipient sets than the other hosts [Pim03].
Furthermore if an element is more frequent than others, it is more likely to be
included in a hitting set. This fact can be exploited by a simple backtracking
algorithm.

We restrict the search to those sets that are most likely to be a hitting
set. This is done by counting the frequency of all elements in the observations.
Those statistics are provided to backtracking algorithm. This algorithm will
build a fixed number of hitting sets of size m. These sets are combinations of
the elements with the highest frequency.

After checking some number of sets, the algorithm comes to decide whether
the attacker has enough information. If only one out of those sets is valid, it is
likely that it is the only one and thus equal to BAlice. If more than one sets have
been found, the algorithm needs more observations and returns to the waiting
status again (the same if no hitting set is found).

Applying the above strategy the search can be restricted to an arbitrarily
small part of the complete searching space. However, this strategy is then of
course not exact and may return a wrong result. In section 5.3 an analysis of
failure probability depending on the number of tested sets is given.

5.1 Simulation of the Attack

In order to determine the properties of the attack we have written a simulation.
Each simulation run was performed by generating observations until the stop
criterion – only one valid combination is found – was given. The result was then
validated for the number of observations needed and whether it was correct.

In fact, the code of the simulation could even be used to apply the attack, if
real data is used as input data4.

Inside the simulation the observations were generated using pseudo random
numbers. The hosts in B are depicted by the numbers from 1 to n, and without
loss of generality let BAlice = {1, 2, . . .m}. Such any saved observation B′

i ∈ OBS
consists of a − 1 numbers from the set B and one element from BAlice. The
numbers are chosen from the given intervals uniformly with the help of a random
number generator.

After a new recipient set has been build, the main algorithm is started that
looks for the minimum hitting sets by backtracking. The searching space is re-
stricted to some number of sets that can be chosen in accordance to available
resources and desired error probability.

Since we are looking for hitting sets that are build out of the most frequent
elements we need to compile a list of all hosts contained in the observations,

4 We also wrote an implementation of the attack that can be deployed on real traffic.
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sorted by frequency. We name this list F = {F1, F2, . . . }, with Fi having at least
as many occurrences in the observations as Fj for i < j and |Fi| = m.

The backtracking looks like this:

FUNCTION Backtracking(Chosen, Observations, m, F, counter)

# terminate after a given number of tests

if counter=0 then RETURN ∅
solutions = ∅
# backtracking recursion, if not chosen m elements

if |Chosen| < m then

for each Fi ∈ F do

# add next element to chosen set

solutions = solutions ∪
Backtracking(Chosen∪Host, Observations, m, F−Host, counter)

else

# generated set of size m, check validity

solutions = solutions ∪ Check Validity(Chosen,Observations)

counter = counter - 1

RETURN solutions

The function is called with

Backtracking(∅,Observations,m, F, counter)

and returns a set of valid hitting sets of size m. To determine whether or not
a set is a hitting set (”valid”), a very simple routine is used. In case the set is
not a hitting set an empty set is returned, otherwise the set is returned.

Additionally the amount of checked sets can be limited with the variable
counter.

FUNCTION Check Validity(Combination,Observations)

for each recipient set ∈ Observations do

if recipient set ∩ Combination = ∅ then

RETURN ∅
RETURN Combination

With this functionality the algorithm would already be ready for validation.
Indeed there are still some possibilities to ”adjust” the algorithm. Either the
running time of the algorithm can be decreased or the probability of a wrong
result. We discuss this in the next section.

5.2 Optimizations

There are a lot of parameters that can be used to improve the algorithm. The
following list shows the most significant ones.

Interlace Since the backtracking in the basic form does not rely on any prior
results, it may be considered unnecessary to start the backtracking algo-
rithm on every new observation. Therefore, an attacker can collect a number
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of observations and then start the algorithm. Hence, the attack would be
applied after a fixed number of observations, that can be specified by a step
width.
This leads to a nearly linear improvement in speed. However, in average the
number of observations would increase by the half of the step width.

Termination criterion To raise the probability of a correct result, the termi-
nation criterion can be changed. Instead of stopping at once if a unique set
is found, the solution can be retained and further observations can be made.
If no contradiction is found until then, the algorithm stops and returns the
set.

Carry-over If there are more than one solution, it is quite likely that most of
them will also be found at the next run of the backtracking. In this case
following strategy can be applied: all found solutions are saved. The next
time a backtracking should be started, all saved sets are checked for validity
with the new observations. This can be done very fast. If at least two of
those sets are still valid, the backtracking part is not needed to be started.
Our experience has shown that the gain is nearly independent of the number
of saved sets. Therefore, it can be sufficient to save two sets.

Uniqueness The aim is to find a unique set. As soon as there is a second set
(or even more) found during the course of the backtracking, it is clear that
more observations will be needed and the backtracking can be stopped at
once.
Since we have seen above that it is unnecessary to collect more than two
solutions, we have another reason not to waste computing time by looking
for more solutions per run.

As the success of the simulation depends heavily on the generated random
numbers it had to be repeated several times until the mean values were accept-
able.

Note that we run the simulation on a single personal computer with no special
equipment. The speed of the computer is about 1 GHz and an average simulation
run can be done in less than 10 seconds.

5.3 Validation

In our simulations we were interested in in the effect of n, m and a on the number
of observations an attacker needs to succeed. To see the effect of changing, n,
m, and a, we first chose typical values for these parameters, viz, n = 20000,
a = 50 and m = 20. Then we ran simulations with different values for one of the
parameters while keeping the other two parameters unchanged.

The average number of observations needed to compromise the system is
shown in the next figures. To compare our result with the disclosure and the
statistical disclosure attack we have added the respective results of the both
attacks. The chosen error rate for both statistical attacks were 0.5%.

Figure 2 shows graphs of the number of required observations for all three
algorithms, i.e. disclosure attack, statistical disclosure attack, and statistical
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Fig. 2. Effect of n, a, and m on the number of observations

hitting set attack. Statistical disclosure attack and the statistical hitting set
attack have nearly the same characteristic, i.e. for all values of n, b, and m
the attack is still applicable (compare this with the exponential increase of the
disclosure attack). The main difference between the statistical disclosure attack
and the statistical hitting set attack is that the statistical hitting set attack
needs less observations (see the figures).

Figures 3 shows two graphs of the number of tested sets per backtracking, i.e.
the number of tested possible solutions. The possible solutions are built using
all combinations of the most frequent items. Intuitively, one expects a better
error probability and a definite reduction of required number of observations if
the number of possible solutions increases from one thousand to one million.
However, as shown in figure 3 for all values after 10, 000 of possible solutions
it turned out to be not so critical even negligible for systems with practical
dimensions, e.g. with n = 20000, a = 50, and m = 20.

Changing the termination criterion can additionally reduce the error proba-
bility. In some series additionally 10% of observations reduces the rate of error
of 80%, while 15% more observations could drop the rate down for 95%. That
would be as large as 0.025% on a normal error rate of 0.5%.

We conclude that the statistical hitting set attack can break an anonymity
protocol with a smaller amount of observation than it was possible before. Ad-
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Fig. 3. Effect of tested sets on the correctness of the solution

ditionally the result is correct with a higher probability. The rate of error can
also be reduced by adjusting certain parameters in the algorithm.

6 Refinement of the Hitting-Set Attack: The HS*-attack

All of the known attacks, including the introduced hitting set attack, have certain
drawbacks:

The disclosure attack relies on solving a NP-complete problem. Furthermore
it needs in average more observations than the HS and SHS-attack. But it
is a deterministic attack, i.e. the result is always correct.

The statistical disclosure attack needs less observations than the disclosure
attack but relies on a unified probability distribution of the elements in the
recipient sets. The result of it can possibly be wrong.

The hitting set attack is a deterministic attack but is NP-complete. It needs
less observations than the prior known attacks.

The statistical hitting set attack is not an exact attack, but it needs less
number of observations than the statistical disclosure attack. In exchange it
needs more computational power and memory.

Next we are interested in an algorithm with the efficiency of the SHS-attack,
but whose result is not subject to some possible errors. A suggestion for this
follows: running the SHS-attack on some observations an attacker gains a good
approximation to the result. Is there a possibility to check whether the result is
correct? The answer is yes. By using the algorithm of Fredman and Khachiyan
we are able to solve the problem in O(nO(log n)), i.e. superpolynomial complexity.
This algorithm solves a dual algorithm to the minimum hitting set problem, the
problem of boolean duality.

We do not describe the algorithm of Fredman and Khachiyan here due to
space limitations. The authors themselves give a detailed view in [FK96].
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6.1 The Algorithm

Given the input of two boolean formulas the algorithm of Fredman and Khachiyan
decides if the formulas are dual or not. If not then the algorithm returns a
counterexample. The counterexample is equivalent to a second valid set of peer
partners.

The counterexample is especially convenient and useful in this application:
it is equivalent to a second set of hosts which is a valid guess for Alice’s peer
partners. In that case one has to go back to the stage of the algorithm that uses
the hitting set attack in order to find a unique minimum hitting set. But the
counterexample can be very useful right now: if saved in the carry-over memory,
there is no more need to modify the first part of the algorithm since it runs until
again there is only one valid solution left.

There is one difference to the original algorithm of Fredman and Khachiyan
that has to be made: we are not interested in any sort of counterexample with less
than m or more than m elements in it. But, this results in not a big change of the
basic algorithm. In fact, there are just some parts of the searching tree left out,
i.e. those that would create counterexamples with more than m elements. Other
parts are just stepped over, as there are those that would return counterexamples
with less than m elements.

FUNCTION Hitting Set Star Attack(m,counter)

observations = ∅
solutions = ∅
repeat

# start main loop of hitting set attack

repeat

observations = observations ∪ New Observation()

# more than one solution as a carry-over? check those first

if | solutions | > 1 then

solutions = { L ∈ solutions | Check Validity(L) }
# less than 2 solutions in carry-over: start backtracking

if | solutions | ≤ 1 then

solutions = Backtracking(∅,observations,m,counter)
# carry on, until only one solution remains

until | solutions | = 1

# check result with algorithm of Fredman and Khachiyan

solutions = Fredman Khachiyan(observations,solutions,m)

# solution is correct if there was no counter example

until | solutions | = 1

return solution

Most of the above code should be self-explanatory. The set solutions is not
only used to return the result of the backtracking, but is also the carry-over
memory.

The function Fredman Khachiyan is called with both boolean formulas, the
observations and the solutions, and the number of Alice’s peer partners m.
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It will return either just the unchanged set solutions in case it was verified, or
it will add the counterexample into the set.

6.2 Validation

The new hitting set algorithm (i.e. HS*-attack) is always correct, like in the
deterministic HS and disclosure attack. Hence, it avoids the most severe problem
of the statistical attacks.

On the other hand the new attack is now not efficient any more in the means
of a polynomial time algorithm. Testing series have shown that the running
time of the algorithm is within reasonable bounds for m ≤ 20 and a ≤ 50, if
n = 20, 000. Note that this is enough for todays systems, i.e. those that are
called to be of practical size (see section 2.2).

Interesting enough that in the intervals of the parameter in which this al-
gorithm is feasible to compute, the average number of observations needed to
detect Alice’s peers is not much higher than those needed by the hitting set
attack. A conservative guess is that it needs in systems of practical size about
5% to 10% more observations.

7 Conclusions

In this work we have suggested new attacks on anonymity systems using the
hitting set algorithm. The pure HS-attack needs less observations than any other
attack known to us. However, it requires the solution of a NP-complete problem,
i.e. exponential run time in the worst case.

The SHS-attack finds the most frequent recipients of the observation and
checks them if they fulfill the minimal hitting set property (instead of checking
all possible sets). This attack solves the problem in polynomial time complexity.
However, it is not exact, even if we can reduce the error to any arbitrarily
measure.

Our third contribution is the combination of the SHS and the HS attack, the
HS*-attack. We first search for a good candidate of the solution of the minimal
hitting set problem and check this by using the work of Fredman and Khachiyan.
HS*-attack has superpolynomial run time in the worst case.
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Abstract. In this paper, we consider how to hide information into finite
state machine (FSM), one of the popular computation models. The key
advantage of hiding information in FSM is that the hidden information
becomes inexpensive to retrieve, yet still hard to remove or delete. This
is due to the fact that verifying certain FSM properties is easy, but
changing them requires efforts equivalent to redoing all the design and
implementation stages after FSM synthesis.
We first observe that not all the FSM specifications (or transitions) are
needed during the state minimization phase. We then develop a Boolean
Satisfiability (SAT) based algorithm to discover, for a given minimized
FSM, a maximal set of redundant specifications. Manipulating such re-
dundancy enables us to hide information into the FSM without changing
the given minimized FSM. Moreover, when the original FSM does not
possess sufficient redundancy to accommodate the information to be em-
bedded, we propose a state duplication technique to introduce additional
redundancy. We analyze these methods in terms of correctness, capacity
of hiding data, overhead, and robustness against possible attacks. We
take sequential circuit design benchmarks, which adopt the FSM model,
as the simulation testbed to demonstrate the strength of the proposed
information hiding techniques.

1 Introduction

Finite state machine (FSM) is a powerful computation model. It consists of a
finite set of states, a start state, an input alphabet, and a transition function that
defines the next state based on the current state and input symbols. FSM may
also have outputs associated with the transition. The outputs are functions of
the current state and/or input symbols. Figure 1 is the standard state transition
graph representation for an FSM with eight states. Each transition is represented
by a weighted directed edge. For example, the edge from state 4 to state 1 labeled
0/1 corresponds to the fact that on input 0, there is a transition from state 4 to
state 1 that produces an output 1.

FSM is the core of modern computability theory (for example, the Turing
machine), formal languages and automata theory. It has also found numerous
applications such as hardware verification and natural language processing. In
this paper, we study the problem of how to hide information into an FSM.
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Because FSM design and specification is normally the starting point for most of
these applications, the information embedded in this early stage will be inherited
throughout the implementation and hence will be robust.

Comparing to the existing information hiding or watermarking practice, FSM
information hiding is different from traditional multimedia watermarking and
shares a lot of similarity with the VLSI design intellectual property (IP) pro-
tection in the sense that the stego-FSM needs to be functionally equivalent to
the original FSM. The constraint-based watermarking approach, state-of-the-art
IP protection technique [7,14,15], embeds IP owner’s digital signature into the
design as additional design constraints such that the design will become rather
unique. These embedded constraints can be revealed later for the proof of au-
thorship. The correct functionality of the watermarked IP is guaranteed as none
of the original design constraints will be altered.

The constraint-based watermarking technique is applicable to FSM infor-
mation hiding, where the constraints are the transitions among the states. It
is possible to add new edges in the state transition graph to hide information,
but this will never be as easy as adding edges to a graph for the graph col-
oring problem [14] due to the following reasons. First, it is non-trivial to alter
or add transitions while still maintain the FSM’s functionality. Second, the wa-
termarked FSM needs to be synthesized and the synthesis process (the FSM
state minimization in particular) could remove the watermark. Finally, water-
marking’s impact to later development and implementation is hard to control
and may be unacceptably high. For instance, the design overhead (in terms of
performance degradation, increased area, power, and design cost) in VLSI IP
watermarking is inevitable and the pseudo-randomness of the signature-based
constraints makes these overhead unpredictable. Lach et al. [7,8,9] watermark
FPGA by hiding information in unused LUTs. They experiment resource over-
head from 0.005% to 33.86% and timing overhead from -25.93% to 11.95% for
various techniques. Oliveira [11] proposes a technique to watermark sequential
circuit designs by changing topology of FSMs. Their area and delay overhead
can be negligible for large designs (due to the small size of the signature), but
are as high as 2747% and 273%, respectively, for small designs.

In this paper, we challenge the fundamental assumption in constraint-based
watermarking – “original design constraints cannot be touched in order to keep
the correct functionality” – by manipulating ‘redundant’ original constraints to
hide information. In the first approach, we introduce the concept of ‘redundant’
original constraints in FSM and propose a SAT based approach to identify the
maximal set of redundant constraints in Section 2. In Section 3, we present our
second approach, a state duplication technique, to create redundancy in the min-
imized FSM for information hiding. In Section 4, we empirically demonstrate the
rich redundancy in the original FSM specification and show the state duplica-
tion technique’s impact to the design quality on sequential circuit benchmarks.
Section 5 concludes the paper.
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2 Finding Redundant Specifications in FSM State
Minimization

In constraint-based watermarking techniques, information is hidden in the addi-
tional constraints enforced by the designer. The original specifications of design
is untouched in order to keep the correct functionality. However, we observe
that not all the original specifications or constraints are necessary for achieving
the design solution. We can manipulate some of the ‘redundant’ constraints to
embed secret information. In this section, we will first show by a motivational
example in FSM minimization the existence of redundant constraints. And then,
in the framework of FSM state minimization, we formally define the problem of
finding redundant constraints for information hiding. At last, we show that it
can be converted to the problem of finding a truth assignment to a SAT formula
with maximal number of 1s.

2.1 Motivational Example

Consider an incompletely specified finite state machine (FSM) with eight states
in Figure 1. Each node in the graph represents one state. Each (directed) edge
indicates a state transition and the attributes carried by the edge specify the
input/output associated with the transition. For example, the edge from node
4 to node 6 with “1/0” means that on input “1”, the system moves from state
4 to state 6 and outputs “0”. An edge without ending state represent the case
when the next state of that transition is a don’t care.
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Fig. 1. State transition graph for
the FSM.
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Fig. 2. State transition graph for
the minimized FSM. A = {1,4},
B = {2,5}, C = {3,6}, and D =
{7,8}.

The state minimization problem seeks to find another FSM which (1) always
gives the same output as the original FSM whenever it is specified, and (2) the
number of states is minimized. The FSM in Figure 1 can be minimized to one
with only four states, and there are two solutions: {{1, 4}, {2, 5}, {3, 6}, {7, 8}},
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and {{1, 4, 7}, {2, 5}, {3, 6}, {8}}. The state transition graph for the first solution
is shown in Figure 2. For example, if we start with state 5 in Figure 1, on input
string “011”, the output will be “0-1”. In the minimized FSM in Figure 2, state
5 corresponds to state B, and if we start with this state, on the same input
string “011”, we have output “001” that differs from “0-1” only on the second
bit which is not specified in the original FSM.

Surprisingly, if we keep all the output values and only five transitions (the
edges with a dot) in Figure 1, the solution remains the same. In another word,
this implies that these conditions are sufficient to obtain the above solution(s).
The other transitions specified in the original FSM are ‘redundant’ constraints
in the sense that their absence (i.e., changing the next states of these transitions
from specific states to don’t care states) will have no impact on the final state
minimization solutions.

We can leverage such redundant constraints to hide information in the FSM.
Since the existence of any redundant constraint will not change the solution, we
can embed one bit information on each redundant constraint by either specifying
its next state as in the original FSM or replacing its next state by a don’t care.
Apparently, the length of the hidden information depends on the number of
redundant constraints and the problem remains is whether we can find all the
redundant constraints systematically.

2.2 Definitions and Problem Formulations

A finite state machine(FSM) is defined as a 6-tuple 〈I, S, δ, S0, O, λ〉 where:

– I is the input alphabet;
– S is the set of states;
– δ : S × I → S is the next-state function;
– S0 ⊆ S is the set of initial states;
– O is the output alphabet;
– λ : S × I → O is the output function;

Finding an equivalent FSM with minimal number of states is generally re-
ferred as state minimization or state reduction(SR) problem. State minimization
is an effective approach in logic synthesis to optimize sequential circuit design in
terms of area and power. Our purpose is to identify and hide information in the
redundant constraints of FSM such that the state minimization solution remains
the same.

Given an FSM and a solution to the state minimization problem, we define
a transition in the original FSM redundant if the given solution can still be
obtained after we replace the nest state of this transition by a don’t care (we
call this the removal of this transition). A maximal redundant set (MRS) is a set
of redundant transitions that can be removed without affecting the given state
minimization solution, but removing one more transition will not preserve this
solution.

Finding the MRS in FSM is non-trivial. First of all, the state minimization
in incompletely specified FSM is NP-complete. The solution space grows expo-
nentially large in the size of the FSM; removing a transition can make other
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transitions indispensable to achieve the same minimized FSM. Second, we can
convert the problem of finding MRS to a MaxONEs SAT problem which is de-
fined as: finding a SAT solution with the maximum number of variables assigned
one. MaxONEs SAT is also NP-complete [2]. We will show this formulation in
the following text.

2.3 Finding Maximal Redundant Set

Our approach takes the original and minimized FSM as input. By comparing
them, it identifies all the possible redundant constraints in the original FSM.
To extract the maximal set of them, it assigns a boolean variable to each of
these constraints and generate a Boolean SAT formula. The variables assigned
to be 1 in the formula will be redundant; the maximal number of “1” variables
correspond to the MRS.

Figure 3 depicts the state transition table, another representation of FSM,
for the same FSM given in Figure 1. Each table entry specifies the next state
and the output given the current state (which row this entry is in) and the input
(which column this entry is in). For each entry with a specific next state (i.e.,
not don’t care), we introduce a Boolean variable xi and stipulate that xi = 1
means the entry is redundant. The clauses in the SAT formula are created as
follows.

In=0 In=1 In=0 In=1
1 1 (x1) - 1 0
2 6 (x2) 8 (x3) - 1
3 - 5 (x4) 0 -
4 1 (x5) 6 (x6) 1 0
5 3 (x7) 8 (x8) 0 1
6 - 5 (x9) 0 0
7 - 6 (x10) 1 -
8 8 (x11) 6 (x12) 1 1

Next State Output

Fig. 3. State Transition Table for the FSM.

First, we compute all the compatible sets of the given FSM. Recall that i)
two states are compatible if they have the same output values whenever they are
both specified and their next states are also compatible whenever they are both
specified; and ii) a compatible set is a set of states that are compatible pairwise.
The essence of the state minimization problem is to include all the states using
the minimal number of compatible sets.

Next, we examine each pair of states that are not compatible according to
the given state minimization solution to make sure that we include sufficient
constraints in the FSM specification to distinguish them. If there exists some
input value on which the two states output different values (e.g., states s1 and



Information Hiding in Finite State Machine 345

s2 on input i = 1), then they are not compatible and no information on their next
states is required. If, however, when the two states, for every input value, either
have the same output value or at least one has a don’t care as its output, then
we need the information on their next states to distinguish them. Take states s2
and s3 for instance, the only way to distinguish them is to make both transitions
x3 and x4 non-redundant, which can be done by including the expression x′

3x
′
4

into the SAT formula.
A more complicated example is the pair of states s2 and s8. Their respective

next states s6 and s8 are not compatible and we need the presence of both tran-
sitions x2 and x11 or x3 and x12 to distinguish them. This can be conveniently
enforced by the following Boolean expression (in CNF format)

x′
2x

′
11 + x′

3x
′
12

(DeMorgan) = ((x2 + x11)(x3 + x12))′

(Distributive) = (x2x3 + x2x12 + x11x3 + x11x12)′

(DeMorgan) = (x′
2 + x′

3)(x
′
2 + x′

12)(x
′
11 + x′

3)(x
′
11 + x′

12)

As a result, for the FSM in Figure 1 and its state minimization solution in
Figure 2, we have the following SAT instance:

F = x′
3x

′
4x

′
10(x

′
2 + x′

3)(x
′
3 + x′

11)(x
′
2 + x′

12)(x
′
11 + x′

12)x
′
8

For variables that do not appear in this formula (such as x1), we can safely
assume that their corresponding transitions are redundant. Clearly, finding the
MRS becomes equivalent to finding a solution to the corresponding SAT formula
such that the number of variables assigned to be ‘1’ is maximized. An exact
algorithm is to formulate it as an integer linear programming(ILP) problem
which has been discussed in [2]. Practically, one can also simply solve the SAT
formula multiple times, each solution represents one MRS, and pick the one with
the maximal 1s.

2.4 Analysis

Unlike the previous constraint based watermarking approaches, our information
hiding technique conceals information in the original redundant constraints. We
will now analyze this method in terms of correctness, information hiding capacity,
overhead and robustness.

Correctness In our algorithm, we identify the redundant constraints by com-
paring two states that are uncompatible in the minimized FSM; we keep all the
necessary constraints to distinguish them. Therefore, in any state minimization
solution, these two states must be in different compatible sets. On the other
hand, if two states are reduced to one state in minimized FSM, they are also
compatible in the original FSM, because no other constraints have been modi-
fied to distinct them. As a result, the same minimized FSM can still be achieved
even with the removal of redundant constraints.
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Information hiding capacity For a pair of uncompatible states in minimized
FSM, there is at most one pair of transition constraints under one input symbol
needed in original FSM to separate them; the rest of transitions under other
input symbols (if not don’t cares) can be used to hide information. In a FSM
with l input bits (i.e., 2l symbols) at each state, a pair of uncompatible states
can have up to 2l of redundant constraints. Suppose there are k reduced states
in minimized FSM corresponding to a compatible set of n1 . . . nk states in the
original FSM, we can embed up to

2l ·
∑

1≤i<j≤k

ninj

bits of information in such FSM.

Overhead Since no additional constraints are attached to original specification,
the optimal solution will not be affected. As we have seen in the FSM mini-
mization example, we can always achieve the same minimized solution even if
we embed information by removing some of the redundant constraints.

Robustness Information is embedded in the original redundant constraints, so
there is no such way of “removing” them. On the other hand, the rest of con-
straints are necessary; removal of them will definitely affect the design solution.
Similarly, in order to change or fake the watermark, the attacker has to know
the original FSM transition graph. However, it is private to designers.

3 Creating Redundancy in Minimized FSM

The previous technique discovers a maximal set of redundant transitions with
respect to a minimized FSM. Information can be hidden then by the way how
we manipulate these redundant transitions. Therefore, its information hiding
capacity is limited by the size of the maximal set of redundant transitions. In
this section, we overcome this limitation by a state duplication technique which
creates redundancy in the minimized FSM to facilitate information hiding.

3.1 An Illustrative Example

We first illustrate the idea of state duplication by the following example Figure
4(a) shows the state transition graph of a 2-input 2-output FSM with five states
{S1,S2,S3,S4,S5}. The FSM has already been minimized. We reconstruct this
FSM by introducing a new state S6 as shown in Figure 4(b). One can easily
verify that these two STGs are functionally equivalent. In fact, state S6 is an
equivalent state of S1. The 3-bit number next to each state is the code assigned
to that state by a state encoding tool.

Considering the continued development from the two STGs in Figure 4 (a)
and (b), we observe the following:
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Fig. 4. A 5-state FSM and a functionally equivalent 6-state FSM.

– they result in functionally equivalent designs.
– the quality of the two designs in general has little difference.
– information can be hidden by the way we introduce state S6, namely, which

state we want to duplicate, how we will duplicate it, and how we assign codes
to the newly duplicated state.

The first observation guarantees the correctness and the second one reveals
that design overhead due to watermarking or information hiding is limited. Fi-
nally, the last one implies the flexibility of this technique in hiding information.
In the rest of this section, we formally discuss these issues.

3.2 State Duplication

We consider a minimized (and encoded) FSM with n states and an m-bit mes-
sage. Our goal is to embed the message into the FSM. The proposed state dupli-
cation method consists of three steps 1) select a state for duplication. 2) duplicate
the selected state. 3) encode the duplicated state. Information can be hidden in
each of these three steps and they will be repeated until the entire message is
embedded.
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Recall that two states S and S′ are equivalent if and only if on every pos-
sible input symbol, they produce the same output and move to the same state
or equivalent states. Equivalent states can be collapsed to one single state to
simplify the FSM without changing its functionality. This is the basis for FSM
state minimization, which is important for later FSM implementation because
fewer states normally lead to state encoding with smaller code size. An FSM is
minimized if it does not contain any equivalent states. In the state duplication
approach, we reverse the state minimization process by introducing equivalent
states into the minimized FSM. This is guided by the message to be embedded
and creates redundancy in the FSM.

Figure 5 illustrates the basic idea of state duplication. We see that a new
state, S′, is added as a duplicate of state S as follows: S′ goes to the same next
state under the same transition condition as state S; the transitions from other
states to state S in the original STG will be split such that some of them still
go to state S while the rests go to the new state S′.

m m
Sp

S’i+1
Sp

Sp

Sp
i+1

S

S

k
Sn

Sn
1

i
Sp

1
Sp

k
Sn

Sn
1

i
Sp

1
Sp

Fig. 5. A simple way to duplicate a state in an FSM.

Selection state for duplication Technically, every state can be duplicated. If we
restrict to deterministic FSMs, only states that are reachable from the starting
state through different sequences of transitions can be considered as candidates
for duplication. To see this, we assume that the FSM in Figure 4 (a) has state
S1 as its starting state. Clearly state S3 is duplicable because there are two
paths S1 − S2 − S3 and S1 − S5− S3 to reach S3 from S1. State S2 can also
be duplicated despite of the fact that it is only reachable from S1 directly. This
is because the direct edge from S1 to S2 actually represents three transitions:
moving to state S2 from S1 when the inputs are 00, 01, or 10. However, if this
edge only carries the label “10/11”, then state S2 cannot be duplicated.

This suggests us that we can simply sort all the candidate states by, for ex-
ample, their codes and then select the one based on the message to be hidden. To
limit the impact of state duplication to the performance of later development, we
propose to consider only the states with the following properties if the candidate
pool is rich: (1) states with more than one previous states, to simplify the dupli-
cation process; (2) states with large average Hamming distance (the Hamming
distance between two states is the number of different bits they have in their
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codes) from all their previous states; (3) states with fewer next states. The last
two properties in general will help us to find a better code for the duplicated
state and/or the state being duplicated.

Duplicating the selected state As we have described in Figure 5, the duplicated
state S′ needs to have the same next states as the original state S to maintain the
functional correctness. However, the previous states of state S can go to either S
or S′. This flexibility gives us the opportunity to hide information. For example,
a simple watermark encoding scheme can be defined as: for each transition from
a previous state Sp of S to S, define its next state to be S to embed a bit 0 and
choose its next state to be S′ to embed a bit 1.

Encoding the duplicated state When the original FSM is encoded, we need to
give the duplicated state a code too. Suppose that the FSM has n states and
each state has a k-bit code, where k ≥ %log2 n&. The newly introduced state can
take any one from the 2k − n unused codes as its code and this code selection
can again embed information.

Finally, we mention that multiple states can be duplicated by repeating this
process if the size of the message is large.

3.3 Analysis

We now analyze the proposed state duplication information hiding technique.

Correctness Clearly, the stego-FSM has the same functionality as the original
FSM because we only introduce states that are equivalent to existing states. Fur-
ther development from the stego-FSM rather than the original FSM guarantees
the functional correctness.

Information hiding capacity Suppose that the original FSM has n states and is
encoded with k bits, where k ≥ %log2 n&. To select a state for duplication, we can
hide �log2 n� bits of information; to duplicate a selected state with p previous
states, we can hide p bits of information; to assign the duplicated state a new
k-bit code, we can hide �log2(2

k − n)� bits of information. Let l be the number
of input bits, then there are 2l transitions from each state. The average number
of previous states (count duplicates if there are multiple transition from the
same previous state) a state has is 2l. Furthermore, when minimal code length
encoding is assumed, we have k = %log2 n&. The average number of bits being
embedded in the final encoding step can be estimated as follows:

2k−1∑
n=2k−1+1

1
2k−1

�log2(2
k − n)� =

1
2k−1

2k−1−1∑
n=1

�log2 n�

≈ 1
2k−1

log2(2
k−1 − 1)!

≈ 1
2k−1

log2(
√

2π(2k−1)2
k−1− 1

2 · e−2k−1
)

≈ k − 2
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In sum, duplicating one state can hide approximately (2k + 2l − 2) bits of in-
formation, where k = %log2 n& is the length of the (minimal length) encoding
scheme and l is the number of input bits. This number will be multipled when
we duplicate more than one state.

Overhead The general goal of state minimization is to reduce the number of
states such that the encoding length (or hardware implementation of the FSM)
is minimized. From this point of view, assuming the minimal length encoding
scheme is applied, we conclude that the state duplication technique will not
introduce any overhead as long as we keep the number of duplicated states
less than 2�log2 n� − n. The impact of duplicated states to other design and
implementation objectives are hard to analyze before we have the final design.
In next section, we consider a large set of sequential circuit design benchmark
to demonstrate this impact in terms of area and power consumption.

Robustness The robustness of state duplication watermarking approach relies
on the fact that FSM design and synthesis occurs at the early stage of the under-
lying application. Given a synthesized FSM (after state minimization and state
encoding), the possible attacks include: 1) Removing the hidden information by
identifying and deleting duplicated states in the STG. 2) Tampering the water-
mark by duplicating additional states. In the first case, removing or changing
duplicated states (and thus delete or alter the hidden information) will affect
the synthesis solution and the following design implementation stages, which
eventually result in re-sign. In the second case, the attacker can only infringe
a small part of watermark, if possible (e.g., changing the previous states of du-
plicated states); most of the hidden information will remain intact. To tamper
more hidden information, the attacker has to duplicate a large number of states,
which is not always feasible and will cause serious design quality degradation.

Detectability The easy identification of duplicated states provides an inexpen-
sive mechanism for revealing the hidden information, which is in general referred
as copy detection problem and considered as a problem harder than watermark
embedding [13,15].

4 Experimental Results

In this section, we will first show how many redundant constraints for state
minimization are there in each FSM benchmark. Next, for a minimized FSM, we
demonstrate how much redundancy we can create to hide information via state
duplication. With the knowledge of these redundant information, we evaluate
the possible impact on FSM design by hiding additional information in these
constraints. In experiment, we use the standard KISS format as representation
of FSMs from MCNC benchmark suite [17]. The FSM minimization tool we
use is stamina from the logic synthesis design package SIS [18]. And we use a
power-driven state encoding algorithm pow3 [3] to encode the FSM.
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Table 1 reports the number of next-state transitions in the original FSMs
that are ‘redundant’ for state minimization. We first extract the redundant state
transitions and generate a SAT formula in the way as we explained in section 2.
Solving the MaxONEs SAT via a ILP solver CPLEX [16], we find the maximal
number of redundant transitions. The fourth column in the table lists the number
of constraints in original FSM. The maximized redundant constraints and the
redundancy ratio are given in the fifth and sixth columns. One can observe that 5
to 176 state transitions are redundant for state minimization in the FSMs, which
accounts for 20% to 100% of the original constraints in the FSMs. Interestingly, in
5 of these 16 benchmarks, all of the original next-state transitions are redundant
for state minimization. This is because either the original FSM is reduced to a
single-state machine or every pair of incompatible states in the original FSM can
be distinguished purely by the different output bits. This redundancy provides
us with a large space to hide information in the transitions; on the other hand, it
ensures us that there will be no design overhead caused by embedding additional
information. In the last two columns in the table, we use a SAT solver zchaff [10]
to solve the SAT formula multiple times and choose among random solutions the
one with maximal number of ones. Reported data show, for some benchmarks,
the redundancy ratio obtained are very close to the maximum one. This tells us
that in the case where the SAT formulas are too large for ILP solvers, we can use
a SAT solver to find a random solution and still extract a considerable amount
of redundancy.

Table 1. Number of redundant next-state constraints for FSM state minimiza-
tion.

input orig. max. redundant rand. redundant
benchmark states

bits constr. constr. ratio constr. ratio

donfile 24 2 96 96 100% 96 100%

ex2 19 2 72 27 38% 15 21%

ex3 10 2 36 19 53% 10 28%

ex5 9 2 32 19 59% 9 28%

ex7 10 2 36 20 56% 14 39%

example 6 2 24 24 100% 24 100%

example2 7 2 28 28 100% 28 100%

lion9 9 2 25 12 48% 12 48%

modulo12 12 1 12 12 100% 12 100%

s27 6 4 96 88 92% 85 89%

s8 5 4 80 80 100% 80 100%

train11 11 2 25 5 20% 3 12%

opus 10 5 176 176 100% 176 100%

beecount 7 3 51 36 71% 34 67%

bbara 10 4 160 36 23% 33 21%

mark1 15 5 240 129 54% 128 53%
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Table 2. Adding maximum number of redundant states and resulted design
overhead

Circuit regs. states add. states orig. area incr orig. power incr

lin2 3 5 3 43616 12% 280.4 10%

mex3 3 5 3 46400 12% 314 -2%

ex5 4 9 7 70528 29% 405.2 44%

lion9 4 9 7 38976 62% 178.3 93%

ex7 4 10 6 78416 1% 405.8 -4%

train11 4 11 5 47792 17% 212.3 -3%

mmark1 4 12 4 94656 8% 280.7 3%

dk512 4 15 1 79344 2% 430.1 -5%

s1 5 20 12 321088 -1% 1388.7 -8%

ex1 5 20 12 234784 25% 744.9 21%

dk16 5 27 5 282112 -2% 1547.3 3%

styr 5 30 2 407856 0% 1347.6 1%

s510 6 47 17 302064 19% 923.1 44%

planet 6 48 16 504832 2% 2042.1 11%

Avg. incr. 13% Avg. incr. 15%

Next, we demonstrate that we can create redundancy by adding redundant
states in the state encoding stage when there are not enough redundant con-
straints to hide information. We also show that this come at the costs of design
overhead. We run experiments on 14 MCNC benchmarks, some of which are
state minimized. To measure the design quality change, we map these FSMs af-
ter state encoding to sequential circuits using the SIS library. We then compare
the design quality before and after embedding information in terms of area and
power. In Table 2 we first create maximum number of redundant states in each
benchmark. For simplicity, we constrain the number of total states to be less
than 2k such that the encoding bits remain minimal. Column 4 lists the number
states we added. After adding these states, the FSM can still be encoded using
the same number of state bits and there are no space to add more states. In this
case, the design overhead is considerable ranging from -2% to 62% in area and
-8% to 93% in power. Note that, once a redundant state is added, we can hide
information in encoding of the duplicate state, and the partition of its previ-
ous states transitions as well. In a STG, where each state has multiple previous
state, this means a huge space for information hiding. Thus we consider reduc-
ing the number of redundant states added. This can greatly reduce the design
overhead as shown in Table 3. In this Table, for each benchmark, we change the
number of redundant states added and the way to partition its previous states.
We selectively duplicate states in the way mentioned in section 3 and report
the results with the least design overhead. The average area increase drops from
13% in Table 2 to 1.3% and interestingly, the average power increase reduces
from 15% in Table 2 to -9.4%. This means instead of increasing, the circuits now
consume less power with the redundant states in FSM. The main reason of this
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is because by adding redundant states, we change the topology the FSM while
maintaining its functionality such that the state encoding on these FSMs could
give a smaller total switching activity and this eventually leads to the dynamic
power reduction in sequential circuits.

Table 3. Adding less redundant state and the reduced design overhead

Circuit regs. states added states area incr power incr

example 3 5 3 2.1% 2.6%

ex3 3 5 3 8% -10%

ex5 4 9 2 13.8% -32.9%

lion9 4 9 2 16.7% -7.1%

ex7 4 10 1 -10.7% -29.1%

train11 4 11 1 2.9% -19%

mark1 4 12 1 5.4% 12.9%

dk512 4 15 1 2.3% -5.1%

s1 5 20 1 -2.3% -12.9%

ex1 5 20 2 -8.9% -13.6%

dk16 5 27 2 -9.7% -13.3%

styr 5 30 2 3.3% 0.4%

s510 6 47 1 -6.3% -6.9%

planet 6 48 1 1.8% 1.9%

Average increase 1.3% -9.4%

5 Conclusions

We study the information hiding problem in the context of finite state machine. It
is an important problem because of the numerous applications of FSM. Hiding
information in FSM provides a unique feature that combines robustness and
detectability. We analyze the redundancy naturally in the FSM specification and
develop a state duplication based method to introduce additional redundancy
for a minimized FSM. We then discuss how to leverage such redundancy to hide
information. Simulation on benchmark sequential circuit design demonstrates
the correctness and low-cost of the proposed methods.
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Abstract. Collusion between partners in Contract Bridge is an oft-used
example in cryptography papers and an interesting topic for the develop-
ment of covert channels. In this paper, a different type of collusion is dis-
cussed, where the parties colluding are not part of one team, but instead
are multiple independent players, acting together in order to achieve a
result that none of them are capable of achieving by themselves. Poten-
tial advantages and defences against collusion are discussed. Techniques
designed for low-probability-of-intercept spread spectrum radio and mul-
tilevel secure systems are also applied in developing covert channels suit-
able for use in games. An example is given where these techniques were
successfully applied in practice, in order to win an online programming
competition. Finally, suggestions for further work are explored, including
exploiting similarities between competition design and the optimisation
of voting systems.

1 Introduction

In many games, a player who is able to collude with other participants can gain
a significant advantage. In this paper we explore how, in a tournament, a player
may surreptitiously authenticate players who may be colluded with, what actions
can be taken and what advantage this may gain him.

One of the games for which much research in collusion has been performed
is Bridge. Here, systems for transmitting information between partners during
the bidding stage are legal and can provide a great advantage to the team more
adept in their usage. These schemes typically provide a means by which one
player can encode information about his hand in the cards that he plays. His
partner (who he is not allowed to communicate with through any other means)
can then make a more precise contract.

One complication in Bridge is that while covert channels are permitted by
the rules, if the partner of a player making a bid is asked what the meaning of
a bid is, then he must answer truthfully [1, 2], so the information sent through
the channel cannot be secret. However, the two members of a team do share a
secret, e.g. if one player holds all the aces then he knows that his partner holds
none, but the opposing team does not know this [3]. If this secret is used as a
key, then it is legal for the recipient of the information to only tell what the bid
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means in isolation. He does not need to tell his opponent what the bid means
when combined with the knowledge of the player’s own hand.

In Bridge, the collusion is between two members of a team, where commu-
nication, other than through bidding, is not permitted, however, in Section 2
we discuss the different situation, where the colluding parties are considered to
be independent players. Here, communication is simply unexpected, since in a
competition it is normal for each player to try to optimise his own performance,
so there would be no need for communication with other opponents. In this pa-
per, we examine the situation where several independent players cannot win the
competition acting by themselves, but one of them can win if they collude. If the
value of the prize can somehow be divided up between the winner and colluders,
this option is attractive for all parties.

In order for collusion to work, there must be some means of communicating. If
collusion is not expected, then it may be the case that communication is easy, but
the case where it is banned is both plausible and more interesting. In Section 3,
we discuss how communication can be established, and in particular we show
how covert channels can be used for authentication. A number of possibilities
are presented and compared, including a scheme which draws on techniques used
in low-probability-of-intercept spread spectrum radio to increase the confidence
that authentication has been performed correctly.

In Section 4, an example of where these techniques were successfully applied
is given. This was a online programming competition where contestants were re-
quired to write a program to play Connect-4 against the other programs entered.
We found that it was in fact impossible to guarantee a win in any individual
game, however by developing a collusion based system it was possible to win the
contest subject to reasonable assumptions about other contestants.

Finally, in Section 5, defences against such types of collusion are discussed.
These include prevention, detection, and modifying the competition so that the
benefits of collusion are reduced. One option considered is to use the similarities
between elections and competitions so as to design better tournament structures.

2 Competition Structures

The type of competition dictates how effective collusion can be and also how
it can best be used. In this section, we introduce two simple but popular tour-
nament arrangements (league and knockout) and show how collusion can be
exploited. In Section 4, these two arrangements are combined to form the hy-
brid structure that the techniques described in this paper were designed to win.

2.1 League Tournaments

In a typical league, each of the n players competes against every other player,
resulting in n(n− 1)/2 matches. The structure of a game is not important, only
that there are two participants and it may lead to three outcomes: win, lose, or
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Table 1. Summary of winners in matches between Fox, Chicken and Optimal players
(“—” denotes a draw)

Fox Chicken Optimal

Fox — Fox —
Chicken Fox — —
Optimal — — —

draw. It is almost universal for a win to gain a player more points than a draw
and a draw to gain the player more points than a loss.

Without loss of generality, we can assume that the game is fair, that is, nei-
ther of the players has an advantage. This is because any game can be made
fair by playing it twice with the roles of the players exchanged the second time.
Fairness implies that a perfect player must draw against itself, therefore, no win-
ning strategy exists for the player. Since the opponent has no winning strategy
either, the player must have a strategy that guarantees at least a draw.

In order to calculate a lower bound for the benefit of collusion, we assume the
worst case scenario — that non-colluding, independent opponents are optimal,
i.e. they will win a match where possible and draw otherwise. Similarly, we make
conservative assumptions for colluding players, namely that they will never lose,
but also will never win against independent players. If every player was optimal,
then each will gain the same number of points. However, this assumes that every
player plays as well as possible all of the time. Where some colluding players
(Chickens) aim to draw against all players except that they lose to colluding
players (Foxes), then Foxes will get more points than would otherwise be possible.

In a competition, let us assume there are x Optimal players and c Chickens
colluding with f Foxes whom the Chickens want to win. A match between an
Optimal player and a Chicken, or between two Chickens, will result in a draw
since the Chicken will play to draw. However, a match between a Fox and a
Chicken will result in a win for the Fox, since the Chicken will recognise that it
is playing a Fox. A win will gain the winner pw points, a draw pd points, and a
loss pl points (as noted above, pw > pd > pl). We assume each player will also
compete against himself and draw. This is summarised in Table 1.

In this competition, each of the x Optimal players will get pdx + pdc + pdf
points, each Chicken will get pdx + pdc + plf points, and each Fox will get
pdx + pwc + pdf . It can then be seen that under these assumptions a colluding
player will score higher in the competition than the Optimal player since c ≥ 1.

2.2 Knockout Tournaments

For knockout tournaments, the impact of collusion is much less than for league
tournaments. The result of a match must be a win for one player so as to decide
who will continue to the next round. Typically this will require some kind of
tie-breaking system, such as the penalty shootout in soccer.



358 Steven J. Murdoch and Piotr Zieliński
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Fig. 1. Knockout tournament collusion example

The only way for a player to win in all arrangements of initial matches is if he
can beat all other participants. Likewise if a player can beat all other players then
he will win the competition regardless of the initial arrangement. However, it
may be advantageous for a player to influence the arrangement of initial matches
if there are cycles in the directed graph of game results, for example Figure 1(a).
Here Alice and Bob are equivalent players, who both can beat Carol but will be
beaten by Dave. Also Carol can beat Dave. In the scenario shown in Figure 1(b),
if Alice plays as well as possible, then while Alice will win the first round she will
be eliminated by Dave in the next round. Then Dave will eliminate Bob and go
on to win the tournament. However, if Alice and Bob collude then the result can
be as shown in Figure 1(c), allowing Bob to win. Alice can deliberately lose the
first match and so Carol will go through. In the next round, Carol will eliminate
Dave but in the final round Bob can beat Carol. This example shows that there
are cases where, if a player is colluding with others in a knockout tournament,
it may be in the best interest of the collusion group for one member to play less
well than is possible.

Unlike the league tournament, it is clear that the result of a match between
co-colluders does not contribute to the final result, if we assume that all players
colluding with each other have equal abilities. However, in situations like those
described above, it is useful for a colluder to lose against an opponent who
possesses an ability that the colluders do not. We do not explore this further,
and in the rest of this paper we concentrate on league-like tournaments.

3 Authentication Mechanisms

To manipulate a knockout tournament it is necessary for the abilities of the
opponents to be known in advance, however, in a league all that is necessary
is for colluding players perform normally against independent opponents, but
selectively play poorly against other colluding players.
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In order to identify a colluding player when the order of games is not known,
there must be some form of authentication that happens before or during each
game. This should be reliable and must identify the case where one player must
lose before the result of the game is decided.

It may be the case that communication is easy, for example in a face-to-
face game the players may recognise each other or be allowed to speak to each
other. If the players are computer programs (the case which the rest of this
paper will concentrate on), a standard program-to-program authentication can
be accomplished.

However, there may be times when an overt channel is either not possible
because of the constraints of the competition or not permitted by the competition
rules. In these situations, a covert channel can be used. There are a variety of
techniques developed for such communication channels, however, the majority
of them are described in the literature for the analysis of multi-level secure
computer systems (many of which are summarised in the “Light pink book” [4]),
so while not directly relevant, they can be modified for use within games.

3.1 Timing

In the literature on multi-level secure systems, one frequent way to create a covert
channel is for a program to signal to another by varying some kind of system-wide
property. For example, this could be modifying the CPU load [5], hence changing
scheduling patterns, or it could be modifying timing of acknowledgements of
messages which may flow in only one way [6]. These techniques could be used
directly, but there are also timing based covert channels that are specific to
games.

One such channel would be to use the timing of moves to carry information
by causing the sender to delay making a move and the recipient to measure this
delay. Such schemes are easy to create and can have a relatively high bandwidth.
However, if the transport mechanism is affected by latency and/or jitter, then
this covert channel may be unreliable or even eliminated completely.

Where the latency is fixed, this can be easily cancelled out, but jitter is more
problematic. If the jitter is sufficiently small, then it can be removed, at the cost
of reducing bandwidth. However, the rules are likely to place an upper bound
on the maximum time to make a move, and so fix the maximum possible delay.
If the jitter is of similar magnitude to this limit, then the bandwidth of the
channel will be very small. If the CPU time to make a move is limited by the
competition rules rather than wall clock time (the amount of time to have passed
in the real world), then the maximum delay can be fairly large, since in most
operating systems the time that a program is paused is not counted towards the
CPU time.

One form of jitter specific to a competition is if the time for a move to be
sent is fixed to a value greater than the maximum allowable time for the delay.
This may occur if the competition is to be shown live and the organisers wish
to slow the competition to a speed that humans can watch. If this is done, then
the move timing covert channel would be eliminated.
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3.2 Choice of Equivalent Moves

The timing based mechanisms mentioned above are possibly unreliable in the
presence of jitter. An alternative to this is to encode the authentication data in
the moves themselves. In person-to-person games, this could be, for example,
the way the pieces of a board game are held, or the place in which a card is put
down in a card game (this is why there are complex physical arrangements in
Bridge tournaments to prevent such communication). In contrast, for the case
of an online competition the move will likely be expressed in an unambiguous
form hence will allow no extra information to be carried in a side channel.

At a stage in the game, if there is more than one move which can be shown
to not change the outcome of the game when compared to the best move, then
this fact can be used to transmit information. One possible way for this to
be achieved is by ordering the n equivalent moves. The order chosen can be
arbitrary, but often there is an obvious solution, for example in the Connect-4
situation described in Section 4, ordering moves by column number would be
sensible. In order to send r ∈ {1, . . . , n} then the rth move is chosen. After
receiving a move from its opponent, a player can identify which move, out of the
opponents possible moves, was chosen and hence identify r.

3.3 Analysis of Authentication Mechanisms

In order for a collusion strategy to succeed, a reliable covert channel must be
established to allow a Chicken to identify when it is playing a Fox and thus
should deliberately lose.

For the simple case where a Chicken needs to identify whether its opponent
is a Fox or not (Section 2.1), the goal of the channel can be viewed as being able
to transmit a single bit while the result of the game is still undetermined. While
the required capacity of the channel is low, the reliability requirements are high,
since a false positive will result in a Chicken losing to an independent opponent
and so reduce the chance of the Fox winning.

Much research on bandwidth estimation of covert channels, for example [7],
has concentrated on finding upper bounds for the data rate of the channels.
These techniques can be used to design a coding system which approaches these
upper bounds.

In the case where the timing information is used for authentication, it is
possible that the communications channel will modify the meaning of the infor-
mation being sent. However, where the move itself carries the information it is
reasonable to expect that the signal will be received intact. For this reason a
message sent using this covert channel will always be received correctly. This is
in contrast to the timing channels, where interference from other processes on
the machine could corrupt the signals.

However, this does not mean that the channel is noiseless, since the receiver
cannot differentiate between the case where information is being sent, and the
case where the moves carry no meaning (this is also the case for timing channels).
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The moves of independent players are analogous to noise in communications
theory. The situation is similar to low-probability-of-intercept spread-spectrum
radio in that the “amplitude” of the signal cannot be any more than the noise
(a particular move is either made or not, there is no concept of “magnitude”).

In order to reliably transmit a single bit of information, a technique based
on frequency-hopping can be used. For each move, the number sent is chosen
according to a keyed generator. The receiver shares the key and so knows what
move to expect from a colluding player. If, after a number of moves, the receiver
has found that the opponent has made every move as expected, then it can
assume that the opponent is colluding with it and act accordingly. The confidence
level of the decision being correct can be increased by increasing the number of
possibilities at each move or by increasing number of moves before a decision is
made. While waiting longer before making a decision is preferable, if the player
waits too long, then by the time a decision is made, it is no longer possible to
change the game result.

3.4 Authentication Key

The goal of the generator is to distinguish itself from the “background noise”
of other players. Where little or nothing is known about the game strategies
of independent players, it is difficult to make any assertions about the charac-
teristics of the noise. For this reason, it may be safe to assume that at each
turn every move is equally likely — analogous to white noise. This assumption
is particularly useful since it greatly simplifies the design of the generator, and
allows a fast implementation so as to reduce CPU usage (which may be a factor
in deciding a winner).

For spread-spectrum radio, typically a cryptographically secure pseudoran-
dom number generator, such as a stream cipher, is used. In the case of spread-
spectrum radio the transmission is effectively public but in a game the moves
are typically only seen by the opponent. One threat in spread-spectrum radio is
an adaptive adversary, whereas in a game the opponents may not be changed
during the competition. When coupled with the fact that other opponents are
probably not aware of the collusion strategy, it is reasonable to assume that
cryptanalytic attacks are unlikely. Again, this assumption simplifies the design
of the generator and so reduces processor time requirements.

The only goal of the generator is to appear different from a white noise source
so a repeating constant could be used, such as always picking the first move.
However, it is feasible that an opponent could accidentally pick the same strategy.
A small change can be made where the move chosen depends on the stage in
the game. For example r could simply be the result of a pseudorandom number
generator (PRNG) seeded by a shared secret. This simple authentication system
could also be used with the timing based covert channels. A linear congruential
PRNG is very fast and simple, and with well chosen parameters [8, Section 3.2.1]
meets all the requirements (assuming no cryptanalytic attacks).
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4 Real World Example

The above techniques were developed for and used with the Cambridge Univer-
sity Computing Society (CUCS) Winter Competition [9]. This was a program-
ming competition where entrants submitted one or more programs which played
a variant of Connect-4. These programs then played against each other and a
winner was decided.

4.1 Rules of the Game

As with normal Connect-4, the game is played on a 7 × 6 board. Each player
takes turn to choose a column and places his token at the lowest free square. The
first player to have four tokens in a row, either horizontally, vertically or at a
45 diagonal, wins the game. In the standard game, a player must place exactly
one token at each turn, but in the variant used in the competition, the player
also has the option to pass. This change was made so that standard Connect-4
strategies would not work and thus force entrants to come up with their own
techniques. However, an unforeseen result of the modification to the rules was
that the possibility of a guaranteed winning strategy was eliminated, regardless
of whether the player makes the first move, since a move cannot be forced.

The competition was split into two stages, a league followed by a knockout
tournament. The league proceeds by every entered program being played against
every other entered program. Each match consisted of six games, with each player
alternately starting first. The winner of the match was the player with the most
number of wins and was awarded two points. If both players had an equal number
of wins in the match, then each player is awarded one point.

The five programs with the highest scores in the league were selected for the
knockout tournament. Firstly, the fourth and fifth programs were played in a
match of six games as in the league. However, if this match was a draw, then
the winning program would be the one with the least CPU usage, and if that
was equal, then memory usage and finally code size were considered. Then, the
remaining four programs were played in a standard knockout tournament, with
each match following the rules for the fourth/fifth playoff, i.e. fourth/fifth vs.
first, second vs. third, and finally the winners of the previous two matches.

4.2 Collusion Strategy Chosen

In this competition, overt communication was not permitted in order to prevent
programs communicating with more able humans or more powerful computers.
Also, the only information that a program received from its opponent was the
move number, in ASCII, so there was no redundancy in the encoding. However,
the rules did not explicitly prohibit collusion between opponents. For these rea-
sons a covert channel was required for communication, but it would not break
the rules. There were plans for the final stages of the competition to be run live
so there was a possibility of jittering timing information, even unintentionally.
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Table 2. Summary of winners in matches between Fox, Chicken, Rooster, Rabbit and
Optimal players (“—” denotes a draw)

Fox Rooster Chicken Rabbit Optimal

Fox — Fox Fox — —
Rooster Fox — Rooster — —
Chicken Fox Rooster — — —
Rabbit — — — — Optimal
Optimal — — — Optimal —

Because of the advantages in reliability and simplicity of the Choice of Move
covert channel described in Section 3.2, this was used for communication.

One refinement to the authentication method described in Section 3.4 was
rather than having only two types of colluding player (the Fox and the Chicken,
where a Fox always wins against a Chicken), three were used. The additional
category, Rooster would beat a Chicken but would be beaten by a Fox (see
Table 2). This was because collusion is ineffective in the knockout stage, so
the only way to win was for all five participants to be our colluding players.
This could be achieved by having five Foxes and the rest Chickens, but there
remained the risk that another independent player would get into this stage
(due to Rabbits, the category which will be introduced in Section 4.6). Since, by
applying the strategy described in Section 4.3, our players will never lose, CPU
usage would be the decider and so this should be optimised. Hand optimising a
program is time consuming so it is preferable to minimise the number of programs
that this needs to be done on. If only one of the five Foxes was optimised, then
there is the risk that another will knock it out of the tournament before it has
a chance to play the independent player. To mitigate this risk, two optimised
Foxes were entered, along with four Roosters, so the optimised Foxes would be
guaranteed to play any remaining independent players. Two Foxes were entered
to reduce the impact of any programming errors. This reduced the number of
points given to the Roosters and Fox slightly, but it was decided to be worthwhile.

4.3 Game Strategy

In order for collusion to be feasible, it was necessary to have a strategy which
guaranteed a draw in every game. It was also desirable to design the strategy
such that the all outcomes of the game remain possible for as long as feasible,
so that the decision as to whether to lose or not can be delayed. Finally, so as
to optimise the bandwidth of the covert channel, the number of possible moves
at each turn should be maximised.

We developed a very efficient strategy which allowed a draw to be forced,
regardless of who made the first move. This was in contrast to the non-pass
version of Connect-4 where a strategy [10] exists which guarantees a win if used
by the player who starts and almost never loses when if he plays second.
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(a) Simple pattern (b) First player (c) Second player

Fig. 2. Possible board patterns used for the game strategy

Our strategy relies on finding a subset of the squares on the board, such that
every winning line must pass through at least one of these, and preventing the
opponent from occupying any of them. We achieve this by designing a pattern
of non-overlapping rectangles on the board as shown in Figure 2(a).

If the opponent plays on the bottom square, then our player
plays on the top square. Our player never plays on the bot-
tom square. Therefore, the opponent can never occupy the
top square.

If the opponent plays on one of the squares, then our player
plays on the other. Therefore, the opponent can never oc-
cupy both squares.

If our player moves first, then it plays on this square, thereby
preventing the opponent from occupying it.

Three possible patterns are shown in Figure 2. The different shades of grey
have no semantic meaning; they are used only to differentiate the rectangles from
each other. Since the rectangles do not overlap, the strategy forces our player to
play on at most one square per move, thereby guaranteeing at least a draw.

4.4 Implementation

The competition allowed ten entries per person and three people entered from
our research group. While the rules explicitly stated that it was permitted to
implement an algorithm developed by someone else, using someone else’s code
was not allowed. For this reason each member of the group entered a program
written independently in a different language.

As intended, no players lost other than times when it was designed to lose
against another colluding player. While there was some risk that this (false
positive) could have happened by accident, the design of the covert channel
reduced this to an acceptable level. As shown in Figure 3, after ten moves (the
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point at which a decision was made) the number of possible move sequences
ranged between 960 and 5760. Therefore, even if an opponent happened to choose
an identical game strategy, the probability of a false positive was at least 1 in 960
(subject to previous assumptions). In contrast, the risk of a false negative (that
one colluding player who should lose to its colluding opponent, fails to identify
in time) can be reduced to the risk of programming error. This is because the
covert channel used can be assumed to introduce no noise. Furthermore, for
deterministic players, all possible games between colluding opponents can be
exhaustively tested in a reasonable time, before entry to the competition.

4.5 Optimisation

The final stage of the competition would take CPU usage into account so there
was a potential advantage to optimise the Foxes. Aside from standard code
efficiency improvements, one domain specific optimisation was to remove all de-
tection code from the Foxes. The simplification was feasible since it was not
necessary for a Fox to identify that it is playing a colluding player, as the re-
sponsibility for the match result can be given to the losing player. To achieve
this a player who has identified that it must lose continually passes until the
game has ended. Additionally no evidence of collusion can then be found by
inspecting the source code of the Foxes.

To ensure the game will result in a win for the Fox when the Chicken passes
the game strategy must be changed slightly. Firstly, the Chicken must start
losing sufficiently early in the game such that it is still possible to lose. Secondly,
a different pattern must be used for the player starting first and the player
starting second. This is because both players having the same pattern would
result in them drawing the game by default after playing four passes before the
authentication could be completed. Thirdly, more flexible patterns (Figure 2(b)
and Figure 2(c)) give the players more equivalent moves, thereby increasing the
reliability of the authentication procedure.

4.6 Rabbits

In the simple example of Optimal players and colluding players, it was seen that
only one Chicken was necessary for the Fox to win, however, the situation is not
so simple when not all independent players are Optimal. That additional worst-
case category of players (so as to find a lower bound) encountered in practice
is a Rabbit, which will play poorly, so lose to Optimal players, but draw with
everyone else. From Table 2 it can be seen that an Optimal player will act as
if it is colluding with any Rabbits in the tournament. Therefore the only way
to win the tournament is to have greater number of Chickens than there are
Rabbits, no matter how many Optimal players exist. While it was likely that
several approximately Optimal players would be entered, it was hoped that there
would be a small number of people who would enter a player that would play so
badly that the chances of winning would be low.
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Fig. 3. Number of possible move sequences after a given number of moves. Three
classes of colluding players were used so for each move number, the lower limit, mean
and upper limit of the nine possible matches is plotted

4.7 Results

A summary of the final league table is shown in Table 3.
Since the algorithm used by the Fox, Rooster, and Chicken would only win

in exceptional circumstances, the actual results for colluding players in the com-
petition were very similar to the worst case scenario estimates. Some players ap-
peared to play randomly, so when played against programs using a tree-searching
algorithm the tree-searching algorithm won. This behaviour approximates the
expected results from ideal Rabbits and Optimal players, so the random players
are classed as Semi-Rabbits and the tree-searching players are classed as Semi-
Optimal. However, as expected only six Semi-Rabbits were entered by other
participants and 28 Chicken/Roosters were entered by our group, so we won the
competition with a safe margin of 30 points.

5 Further Work

The above example dealt with the case where neither non-colluding participants
nor the competition management expected collusion to be used. In the case
where collusion is expected and not desired, there are interesting possibilities for
preventing collusion from being effective.
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Table 3. Summary of results at end of league stage. Players are ordered in descending
order of points

No Category Won Drew Lost Points

1 Fox 58 26 0 142
2 Fox 58 26 0 142
3 Rooster 51 29 4 131
4 Rooster 49 31 4 129
5 Rooster 49 31 4 129

·········································· cut-off point ··········································

6 Rooster 48 32 4 128
7 Semi-Optimal 16 67 0 99
...

...
...

...
...

...
13 Semi-Optimal 12 64 8 88
14 Chicken 3 69 12 75

...
...

...
...

...
...

37 Chicken 0 72 12 72
38 Semi-Rabbit 4 63 17 71

...
...

...
...

...
...

43 Semi-Rabbit 1 52 31 54

5.1 Collusion Resistant Competitions

In order to prevent collusion, the competition could be designed such that col-
lusion provides no advantage. During discussion of the problem one observation
made was that the problem of deciding a winner in the competition is similar to
the problem of electing a candidate in an election. While there are some differ-
ences, for instance, that the number of candidates is identical to the number of
voters, there are also many similarities.

One possibility investigated was of a game tournament similar to the Single
Transferable Vote (STV) system. Here, every player plays every other player,
in a similar fashion to a league tournament. However, the winner evaluation is
more complex. At each stage, the normal league rules are applied and an ordering
established, but then the players with the lowest score are eliminated, along with
their contribution to all other players’ scores. The process is repeated until no
more players can be eliminated.

This system has the advantage that Chickens will be eliminated before Foxes,
so the Chickens’ scores can have no effect on the final result, however, they
can control the order in which players are eliminated so it is not clear that
this system is free from manipulation. Additionally, the number of “voters” is
identical to the number of “candidates” so the final stage will likely result in
more than one winner. This was confirmed by running the results of the above
example competition through this algorithm. As expected, all the Chickens were
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eliminated but the final result included the Foxes and all the Semi-Optimal
players. Since all these players will draw against each other, deciding a winner
is difficult.

Not only should competitions be resistant to collusion but they should be
fair and this is a very difficult quantity to measure. There are a variety of proofs
which state, given certain assumptions, that it is not possible to design an ideal
election. These include Arrow’s theorem [11], Gibbard-Satterthwaite [12, 13] and
Gärdenfors’ extension [14]. These primarily deal with manipulation by voters,
but there has been some work on manipulation by candidates, such as a general
result in [15] and an analysis of the particular case where the election is made
out of a series of pair-wise comparisons in [16]. These state that, given certain
assumptions, non-dictatorial elections are manipulable by candidates deciding
whether or not to participate in the election. This result is not directly applicable
since it assumes that each candidate who votes will vote himself the highest, and
the stronger version of the result also assumes that no candidates vote. However
it may still be partially applicable. Whether these theories imply that an ideal
competition is impossible depends on a formal definition of fairness and collusion
resistance, which is outside the scope of this paper.

5.2 Detecting Collusion

In some games, it may not be desirable or possible to re-arrange the competi-
tion to make collusion infeasible. In these cases, the only alternative may be to
detect collusion and eliminate players if caught. For example, an expert could
examine the match results [17], and in a similar way that a Bridge expert would
look for players being exceptionally lucky in a tournament, an expert suspecting
collusion would look for players being exceptionally unlucky. The expert could
also monitor the games in progress looking for an suspicious changes in appar-
ent skill. If a player is aware of such monitoring, then countermeasures to both
techniques could be taken.

6 Conclusion

In this paper, we show that collusion can offer significant advantages in tourna-
ments which are based around leagues. We present a simple algorithm for acting
on the basis of authentication information which will guarantee winning a com-
petition, assuming only one team is using a collusion strategy and the standard
of players is good. We also introduce a covert channel built using only redun-
dancy in the moves of a game and show how this can be used to authenticate
colluding players. We demonstrate these techniques being successfully applied
in order to win a real world competition. Finally, options for resisting and de-
tecting collusion are explored, including drawing parallels between the design of
competitions and the design of elections.
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