

Lecture Notes in Computer Science 3356
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Gautam Das Ved P Gulati (Eds.)

Intelligent
InformationTechnology

7th International Conference on
Information Technology, CIT 2004
Hyderabad, India, December 20-23, 2004
Proceedings

13

Volume Editors

Gautam Das
University of Texas at Arlington
Department of Computer Science and Engineering
Arlington, TX 76019, USA
E-mail: gdas@cse.uta.edu

Ved P. Gulati
Institute for Development and Research in Banking Technology
Castle Hills, Road No. 1, Masab Tank, Hyderabad, 500 057, India
E-mail: vpgulati@idrbt.ac.in

Library of Congress Control Number: 2004116517

CR Subject Classification (1998): F.1-2, C.2, I.2, H.4, D.2, I.4, H.2

ISSN 0302-9743
ISBN 3-540-24126-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11369288 06/3142 5 4 3 2 1 0

Preface

The 7th International Conference on Information Technology (CIT 2004) was held in
Hyderabad, India, during December 20–23, 2004. The CIT 2004 was a forum where
researchers from various areas of information technology and its applications could
stimulate and exchange ideas on technological advancements.

CIT, organized by the Orissa Information Technology Society (OITS), has emerged
as one of the major international conferences in India and is fast becoming the premier
forum for the presentation of the latest research and development in the critical area
of information technology. The last six conferences attracted reputed researchers from
around the world, and CIT 2004 took this trend forward.

This conference focused on the latest research findings on all topics in the area of
information technology. Although the natural focus was on computer science issues,
research results contributed from management, business and other disciplines formed
an integral part.

We received more than 200 papers from over 27 countries in the areas of compu-
tational intelligence, neural networks, mobile and ad hoc networks, security, databases,
software engineering, signal and image processing, and Internet and WWW-based com-
puting. The programme committee, consisting of eminent researchers, academicians
and practitioners, finally selected 43 full papers on the basis of reviewer grades.

This proceedings contains the research papers selected for presentation at the con-
ference and this is the first time that the proceedings have been published in the Lecture
Notes in Computer Science (LNCS) series. The poster papers are being printed as a
separate conference proceedings.

We would like to thank the CIT 2004 General Chairs Arun K. Pujari and Chitta
Baral, and the organizing committee of the 7th International Conference on Information
Technology for their support and co-operation. We also thank the invited speakers.

Thanks are also due to the reviewers who very carefully and timely reviewed the
papers, the authors who submitted their papers and all the participants of CIT 2004.
The process was very systematic and fast, courtesy of Microsoft’s Conference Toolkit;
our gratitude to them. We also express our sincere thanks to Alfred Hofmann and the
staff of Springer for their professional support.

December 2004 Gautam Das and Ved P. Gulati

Organizing Committee

Arun K. Pujari University of Hyderabad, India
Chakravarthy Bhagvathi University of Hyderabad, India
Chitta Baral Arizona State University, USA
Gautam Das University of Texas at Arlington, USA
Ved P. Gulati Institute for Development and Research

in Banking Technology, Hyderabad, India
Kamalakar Karlapalem International Institute of Information Technology,

Hyderabad, India
P. Radha Krishna Institute for Development and Research

in Banking Technology, Hyderabad, India

Program Committee

Ashutosh Saxena Institute for Development and Research
in Banking Technology, Hyderabad, India

Akshai Aggarwal University of Windsor, Ontario, Canada
Ambuj Mohanty Indian Institute of Management, Calcutta, India
Amit Rudra Curtin University of Technology, Perth, Australia
Anup Kumar Louisville University, USA
Ankur Teredesai Rochester Institute Of Technology, Rochester,

New York, USA
Arobindo Gupta Indian Institute of Technology, Kharagpur, India
Atul Negi University of Hyderabad, India
Basabi Chakraborty Iwate Prefectural Uni, Iwate, Japan
B.S. Panda Indian Institute of Technology, Delhi, India
Bhed Bahadur Bista Iwate Prefectural Univ, Iwate, Japan
Bimal Kumar Roy Indian Statistical Institute, Kolkata, India
Binoy K. Das Integrated Test Range, Chandipur, India
Chitta R. Das Penn State University, USA
D. Misra New Jersey Institute of Technology, USA
Debasish Chakraborty Iwate Prefectural Univ, Japan
Dipankar Dasgupta University of Memphis, USA
Ganapati Panda National Institute of Technology, Rourkela, India
Giri Kumar Tayi University at Albany, USA
Goutam Chakraborty Iwate Prefectural University, Japan
Govinda Rajulu International Institute of Information Technology,

Hyderabad, India
Jay N. Bhuyan University of Tuskegee, Alabama, USA
Jayaram Pradhan Berhampur University, India
Joydeep Ghosh University of Texas, Austin, USA
Kamalakar Karlapalem International Institute of Information Technology,

Hyderabad, India
King-Ip Lin University of Memphis, USA

VIII Organization

Krishna Kummamuru IBM, Delhi, India
Laurent Mignet IBM, Delhi, India
P. Radha Krishna Institute for Development and Research

in Banking Technology, Hyderabad, India
P. Tripathy Airvana, USA
Palash Sarkar Indian Statistical Institute, Kolkata, India
Parthasarathi Roop The University of Auckland, New Zealand
Pradeep Kumar Ray University. of New South Wales, Sydney
Prosenjit Gupta International Institute of Information Technology,

Hyderabad, India
P.P. Chakraborty Indian Institute of Technology, Kharagpur, India
Ravishankar Iyer Intel Corporation, USA
S. Chaudhury Indian Institute of Technology, Delhi, India
S. Mohanty Utkal University, India
S. Padhy Utkal University, India
Saad Biaz Auburn University, Al
Sagar Naik University of Waterloo, USA
Sajal Das University of Texas, USA
Sanjay Madria University of Missouri-Rolla, USA
Siddharth Choudhuri Univ. California at Irvine
Sridhar Iyer Indian Institute of Technology, Mumbai, India
Srikanta Patnaik University College of Engineering, Burla, India
Sudeshna Sarkar Indian Institute of Technology, Kharagpur, India
Sunita Sarawagi Indian Institute of Technology, Mumbai, India
Vladik Kreinovich University of Texas at El Paso, USA
V.N. Sastry Institute for Development and Research

in Banking Technology, Hyderabad, India

Table of Contents

Computational Intelligence

An Approach for Conceptual Modeling and Extracting Expressive Semantics
from Dance Videos . 1

K. Rajkumar, B. Ramadoss, and K. Ilango

BioPubMiner: Machine Learning Component-Based Biomedical
Information Analysis Platform . 11

J.-H. Eom and B.-T. Zhang

A Linear Time Algorithm for Constructing Tree 4-Spanner in 2-Trees 21
B.S. Panda and A. Das

Task Scheduling Algorithm for Interconnection Constrained Network
of Heterogeneous Processors . 31

E. Ilavarasan, P. Thambidurai, and N. Punithavathi

Neural Networks

Detecting Topology Preserving Feature Subset with SOM 40
A. Laha

Adaptive Neural Network-Based Clustering
of Yeast Protein–Protein Interactions . 49

J.-H. Eom and B.-T. Zhang

Design of Neuro-fuzzy Controller Based on Dynamic Weights Updating 58
A. Hafez, A. Alrabie, and A. Agarwal

Interval Computing in Neural Networks: One Layer Interval Neural Networks . . . 68
R.E. Patiño-Escarcina, B.R. Callejas Bedregal, and A. Lyra

Communication Networks

Design and Deployment of IP Virtual Private Networks: A Case Study 76
C. Hota and G. Raghurama

QoS Driven Online Multicast Routing Algorithm . 87
R. Manoharan, P. Thambidurai, and S. Pradhiba

Software Radio Implementation of a Smart Antenna System
on Digital Signal Processors for cdma2000 . 97

K. Kucuk, M. Karakoc, and A. Kavak

X Table of Contents

An Efficient Cost Effective Location Management Scheme
Based on Velocity Vector Information of Mobile Unit . 107

S. Nandi and M.K. Raushan

Integrated Computation, Communication and Control:
Towards Next Revolution in Information Technology . 117

F. Xia, Z. Wang, and Y. Sun

Mobile and Adhoc Networks

Designing Mobile Distributed Virtual Memory System . 126
S. Bagchi

Efficient Grid Location Update Scheme for Mobile Ad Hoc Networks 137
K.A.A. Omer and D.K. Lobiyal

Power Optimization in Mobile Networks
Using Genetic Algorithm to Guarantee QoS . 147

A.H. Salem and A. Kumar

Associativity Based Mobility-Adaptive K-Clustering
in Mobile Ad-Hoc Networks . 160

C. Jayakumar and C. Chellappan

Self-organized Security Architecture for MANET . 169
P.P. Gnana Durai and R. Parthasarathy

Clock Synchronization in IEEE 802.11 Ad Hoc Networks 180
S.S. Thakur, S. Nandi, D. Goswami, and R. Bhattarcharjee

Security

Internet Banking – A Layered Approach to Security . 190
D.P. Dube and S. Ramanarayanan

On Reduction of Bootstrapping Information Using Digital Multisignature 198
S. Ulanbek, A. Saxena, and A. Negi

SpamNet – Spam Detection Using PCA and Neural Networks 205
A. Lad

TCP Based Denial-of-Service Attacks to Edge Network:
Analysis and Detection . 214

V.A. Kumar and D. Sisalem

Network Intrusion Detection Using Wavelet Analysis . 224
S. Rawat and C.S. Sastry

Building a Secure and Highly Scalable Data Distribution System 233
S. Mishra

Table of Contents XI

Database

Performance of Distributed Optimistic Concurrency Control
in Real-Time Databases . 243

J. Lindström

An Extension to ER Model for Top-Down Semantic Modeling
of Databases of Applications . 253

S.K. Jain, M.M. Gore, and G. Singh

Overlaying Multiple Maps Efficiently . 263
R. Jampani, R. Thonangi, and P. Gupta

Software Engineering

Relational Schema Evolution for Program Independency . 273
Y.-G. Ra

Reliability Enhancement in Software Testing –
An Agent-Based Approach for Complex Systems . 282

P. Dhavachelvan and G.V. Uma

MurO: A Multi-representation Ontology
as a Foundation of Enterprise Information Systems . 292

R. Rifaieh, A. Arara, and A.N. Benharkat

A Tool to Automatically Detect Defects in C++ Programs 302
S. Sarala and S. Valli

Implementation of Embedded Cores-Based Digital Devices
in JBits Java Simulation Environment . 315

M.H. Assaf, R.S. Abielmona, P. Abolghasem, S.R. Das, E.M. Petriu, V. Groza,
and M. Sahinoglu

Automatic Model Generation in Model Management . 326
A. Boronat, I. Ramos, and J.Á. Carsí

Signal and Image Processing

Contourlet Based Multiresolution Texture Segmentation
Using Contextual Hidden Markov Models . 336

B.S. Raghavendra and P.S. Bhat

FPGA Based Implementation
of an Invisible-Robust Image Watermarking Encoder . 344

S.P. Mohanty, R. Kumara C., and S. Nayak

Multi-agent Based User Access Patterned Optimal Content Allocation Method
for Federated Video Digital Libraries . 354

R. Ponnusamy and T.V. Gopal

XII Table of Contents

Optimizing Surplus Harmonics Distribution in PWM . 366
S. Hu and H. Huang

M-BCJR Based Turbo Equalizer . 376
P. Kumar, R.M. Banakar, and B. Shankaranand

Internet and WWW-Based Computing

YALXP: Yet Another Lightweight XPath Processor . 387
R.V.R.P. Kumar and V. Radha

Early Performance Modeling for Web Based Applications 400
D.E. Geetha, T.V.S. Kumar, and K.R. Kanth

An Examination of Website Quality Dimensions in Australian e-Retailing:
A Confirmatory Factor Analysis Approach . 410

S. Sinnappan and J. Carlson

Aspects of Pervasive Computing for Web Based Learning 419
B. Ramadoss and S.R. Balasundaram

Author Index . 427

{caz0311,brama}@nitt.edu

ilango@nitt.edu

•
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

−

−
−

−

−

−
−

{jheom,btzhang}@bi.snu.ac.kr

= −

= −

= −

=
+

≤ ≤

�

= = ∪
δ

′ δ≥
′

′
≠

′
≠

′ =
≥

′ ′ ′
′

′
′

′=

= ∪ =

A Linear Time Algorithm
for Constructing Tree 4-Spanner in 2-Trees

B.S. Panda and Anita Das

Computer Science and Application Group
Department of Mathematics

Indian Institute of Technology Delhi
Hauz Khas, New Delhi 110 016, India

bspanda@maths.iitd.ernet.in, mar02003@ccsun50.iitd.ernet.in

Abstract. A spanning tree T of a graph G is said to be a tree t-
spanner if the distance between any two vertices in T is at most t
times their distance in G. A graph that has a tree t-spanner is called a
tree t-spanner admissible graph. It has been shown in [3] that the
problem of recognizing whether a graph admits a tree t-spanner is NP-
complete for t ≥ 4. In this paper, we present a linear time algorithm for
constructing a tree 4-spanner in a tree 4-spanner admissible 2-tree.

Keywords: Tree Spanner, Distance in Graphs, Graph Algorithms, 2-
trees.

1 Introduction

A spanning subgraph H of a graph G is called a t-spanner if the distance be-
tween every pair of vertices in H is at most t times their distance in G. For a
t-spanner H of G, the term t is called the stretch factor and |E(H)|, the num-
ber of edges in H , is called the size of the spanner. A t-spanner H of G is called
a tree t-spanner if H is a tree. The notion of t-spanner was introduced by Peleg
and Ullman [21] in connection with the design of synchronizers in distributed
systems. Spanners are useful in many areas such as communication networks,
message routing, data analysis, motion planning, computational geometry, image
processing, network design, and phylogenetic analysis (see [1,2,3,9,11,16,21,25]).
The study of graph spanners has attracted many researchers and is currently an
active area of research (see [5-10,13,18,23,25,26]). The goal behind the notion of
spanners is to find a sparse spanner H of a given graph G such that the distance
between every pair of vertices in H is relatively close to the corresponding dis-
tance in the original graph G. Therefore, one of the fundamental problems in the
study of spanners is to find a minimum t-spanner, i.e., a t-spanner having mini-
mum number of edges, for every fixed integer t ≥ 1. Unfortunately, the problem
of finding a minimum t-spanner is NP-Hard for t = 2 [21,25] and for t ≥ 3 [8,26].
For a minimum t-spanner H of G, |E(H)| ≥ |V (G)| − 1 with equality holding if
and only if H is a tree t-spanner, where |V (G)| is the number of vertices of G.
The problem of determining whether an arbitrary graph admits a tree t-spanner
has been studied in detail, as summarized below.

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 21–30, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

22 B.S. Panda and A. Das

Cai and Corneil [10] have shown that for a given graph G, the problem of
deciding whether G has tree t-spanner is NP-Complete for any fixed t ≥ 4 and
is linearly solvable for t = 1, 2. The status of the case t = 3 is still open for
arbitrary graphs.

Before proceeding further, let us define k-trees. Let G[S], S ⊆ V , be the
induced subgraph of G = (V, E) on S. A subset C ⊆ V is said to be a clique
if G[C] is a maximal complete subgraph of G. A clique C is called a k-clique if
|C| = k. A 3-clique is called a triangle. A graph G is called a k-tree if it can
be obtained by the following recursive rules.
– Start with any k-clique as the basis graph. A k-clique is a k-tree.
– To any k-tree H add a new vertex and make it adjacent to a k-clique of H ,

thus forming a (k + 1)-clique.
An edge e of a 2-tree is called a forced edge if it appears in every tree 4-

spanner of G. It has been shown in [20] that a 2-tree admits a tree 4-spanner if
and only if it does not contain a triangle having all forced edges. Furthermore, it
has been shown in [20] that a tree 4-spanner admissible 2-tree can be recognized
in linear time. A 2-tree G, as seen from the definition, consists of |V (G)| − 2
triangles. Given a tree 4-spanner admissible 2-tree G, we employ a D-search (a
search similar to the classical breadth-first search or BFS but differs from BFS
in that the next element to explore is the element most recently added to the
list of unexplored elements) to search the triangles of G. Using this search, we
explore all the triangles and keep on adding some edges of the triangles using
certain rules to construct a spanning tree of G. We show that this tree is indeed
a tree 4-spanner of G.

The rest of the paper is organized as follows. Section 2 presents some per-
tinent definitions and results. Section 3 presents an algorithm for constructing
a tree 4-spanner of a tree 4-spanner admissible 2-tree. The proof of correctness
of the algorithm is presented in this section. Section 4 presents the complexity
analysis of the proposed algorithm. Finally, Section 5 concludes the paper.

2 Preliminaries

For a graph G = (V, E), let NG(v) = {w ∈ V |vw ∈ E} be the set of neighbors of
v. If G[NG(v)], the induced subgraph of G on NG(v), is a complete subgraph of
G, then v is called a simplicial vertex of G. An ordering α = (v1, v2, . . . , vn) is
called a perfect elimination ordering (PEO) of G if vi is a simplicial vertex
of G[{vi, vi+1, . . . , vn}] for all i, 1 ≤ i ≤ n. Let dG(v) denote the degree of
v in G. Let dG(u, v) denote the distance from u to v in G. Unless otherwise
stated the graph G is assumed to be connected. A triangle {a, b, c} is said to be
simplicial triangle if one of its vertices is simplicial. An edge of a simplicial
triangle is called simplicial if it is incident on a simplicial vertex of the triangle.
A triangle is said to be interior if all of its edges are shared by at least two
triangles. A triangle is said to be double interior if the triangle is interior and
two of its adjacent triangles on different edges are interior. A triangle is said to
be triple interior if the triangle is interior and its adjacent triangles on each of

A Linear Time Algorithm for Constructing Tree 4-Spanner in 2-Trees 23

the three edges are also interior. A graph is said to be chordal if every cycle in
it of length at least four has a chord. It is well known that a graph is chordal iff
it has a PEO (see [13]). Since k-trees are a subclass of chordal graphs, every k-
tree has a PEO. A 2-tree is said to be a minimal triple interior (respectively,
double or single interior) 2-tree if it contains a triple interior (respectively,
double or single interior) triangle but none of its proper subgraph contains a
triple interior (respectively, double interior or single interior) triangle. Figure 1
illustrates a minimal interior, a minimal double interior and a minimal triple
interior 2-tree.

a

b c

G1

a

b c

G2

a

b c

G3

The shaded triangle {a,b,c} is an interior, a double interior, and a triple interior
tringle in G , G and G , respectively. 1 2 3

Fig. 1. Minimal interior, minimal double interior, and minimal triple interior2-tree.

Let Δ be a triangle of a minimal triple interior 2-tree. Δ is called an outer
triangle if it contains a simplicial vertex. It is called an innermost triangle if it
is triple interior.Δ is called inner triangle if it is neither innermost nor outer
triangle. The multiplicity, M(e), of an edge e is defined to be the number of
triangles containing e.

For a triangle, Δ, with three edges e1, e2, and e3 we say that Δ is one-side
developing with respect to e1 if either M(e2) = 1 and M(e3) > 1, or M(e3) = 1
and M(e2) > 1. Suppose M(e2) = 1 and M(e3) > 1. In this case, e3 is said
to be a developing edge of Δ with respect to e1. The triangle Δ is said to be
double-side developing with respect to e1 if M(e2) > 1 and M(e3) > 1. In this
case, e2 and e3 are said to be developing edges of Δ with respect to e1.

Let H be a spanning subgraph of G. Since the distance dH(x, y) ≤ t×dG(x, y)
for every x, y ∈ V (G) if and only if dH(x, y) ≤ t for every edge xy ∈ E(G), we
have the following useful lemma.

Lemma 2.1: A spanning subgraph H of G is a t-spanner if and only if dH(x, y) ≤
t for every edge xy ∈ E(G).

In view of Lemma 2.1, in the rest of the paper we assume that a spanning
subgraph H (or a spanning tree T) of G is a t-spanner (or tree t-spanner) if
dH(x, y) ≤ t (or dT (x, y) ≤ t) for every edge xy ∈ E(G).

Let G be a tree 4-spanner admissible 2-tree. An edge e of G is said to be a
forced edge if it belongs to every tree 4-spanner of G. An edge which is common
to two triple interior triangles is called a strong edge.

Strong edges are shown to be forced in [20]. Due to page constraint, proofs
of the results cited from [20] are omitted.

24 B.S. Panda and A. Das

Lemma 2.2 [20]: Every strong edge of a tree 4-spanner admissible 2-tree is a
forced edge.

A triangle in a 2-tree is called a 1-layer triple interior triangle, if all the
triangles which are developed on its three edges are triple interior.

Since all the edges of a 1-layer triple interior triangle are strong edges, and
hence forced edges by Lemma 2.2, the following corollary follows.

Corollary 2.3: Let G be a 2-tree containing a 1-layer triple interior triangle.
Then G can not have a tree 4-spanner.

A triangle having two strong edges is called a semi-strong triangle. Let {a, b, c}
be a semi-strong triangle having strong edges ab and bc. The triangle {x, a, c}
is called dependent on the triangle {a, b, c}. Suppose {x, a, c} is dependent
on {a, b, c} and ax is an edge of a double interior triangle.Then the edge ax is
called a semi-strong edge . The motivation behind introducing the concept of
semi-strong edge is that semi-strong edges are also forced edges.

It has been shown in [20] that semi-strong edges are forced edges.

Lemma 2.4 [20]: Every semi-strong edge of a tree 4-spanner admissible 2-tree
is a forced edge.

We have seen earlier that if a 2-tree G has a 1-layer triple interior triangle, then
it can not have a tree 4-spanner. A 2-tree may contain triangle consisting of
forced edges that is not a 1-layer triple interior triangle. The following figure
contains a 2-tree which does not have any 1-layer triple interior triangle but it
has a triangle consisting of semi-strong edges. So, the graph does not admit a
tree 4-spanner.

A forced triangle having three semi strong edges.

A 2−tree in which thick edges are strong edges.

Fig. 2. A 2-tree without any 1-layer triple interior triangle that has a triangle contain-
ing forced edges.

A triangle is said to be strong triangle if each of its edge is a strong edge or a
semi strong edge. The following theorem characterizes tree 4-spanner admissible
2-trees.

Theorem 2.5 (Characterization Theorem) [20]: A 2-tree G admits a tree
4-spanner if and only if it does not contain a strong triangle as an induced
subgraph.

A Linear Time Algorithm for Constructing Tree 4-Spanner in 2-Trees 25

3 Algorithm and Proof of Correctness

In this section, we present an algorithm to construct a tree 4-spanner of a tree
4-spanner admissible 2-tree G.

The algorithm maintains a stack of edges, the current edge and a trian-
gle containing the current edge as the current triangle. In every iteration, the
stack is popped and the popped edge is made the current edge, and an un-
marked triangle containing the current edge is made the current triangle. Based
on the current edge and the current triangle, the algorithm pushes one or more
edges to the stack. The algorithm also maintains two arrays, namely CUR and
NUM to maintain the information of the triangles of G. CUR[�] = 1 if the
triangle is made current triangle at some iteration of the algorithm. Otherwise
CUR[�] = 0. NUM [�] represents the number when the triangle � was marked.
The information stored in these arrays will be used for the proof of correctness
of the algorithm. The exact rules for pushing the edges in to the stack are given
in the following algorithm.

Algorithm Tree 4-Spanner Construction
Input: A tree 4-spanner admissible 2-tree G;
Output: A tree T which is a tree 4-spanner of G;
1. Find all the triangles of G;
2. T = φ;

S = φ;
CUR[Δ] = NUM [Δ] = 0 for all triangles of G;
count = 1;
Let ab be a simplicial edges of G;
push(S, ab);

3. while(S �= φ)
{
CE=Pop(S);
T = T ∪ {CE};
while(there is any unmarked triangle say Δ, containing CE)

{
CT = Δ; CUR[Δ] = 1; NUM[Δ]= count++;
Let the edges of Δ be CE,e and f ;
case I: if(CT is one sided developing w.r.t CE)
Let CT be developing on e;
if(there is an unmarked triangle Δ′ = {e, g, h} such that

g and h are forced edges)
{

T = T ∪ {g, h};
push(S, g); push(S, h);
markΔ; CUR[Δ′] = 0; NUM[Δ′]=count++;
COV ER(CT, e);

}
else if(the triangle containing e or f is a triple interior

triangle(let e) and two of the other edges are strong)
{

T = T ∪ {e};

26 B.S. Panda and A. Das

push(S, e);
COV ER(CT, f);

}
else
{
T = T ∪ {e};
push(S, e);

Case II: if(CT is double side developing on e and f w.r.t CE)
if(either e or f is a forced edge)
{
wlg, let e be a forced edge;
T = T ∪ {e};
push(S, e);
COV ER(CT, f);
else
{
T = T ∪ {e};
push(S, e);
COV ER(CT, f);
}

Case III: if CT is zero-sided developing
{
T = T ∪ {e};
push(S, e);
}

}
Procedure COVER (CT, e)

{
for each one side developing triangle Δ �= CT containing e

{
Let the edges of the triangle be e,x and y such that Δ is developed on x;

T = T ∪ {x};
push(S,x); MarkΔ;

CUR[Δ] = 0;NUM[Δ] = count++;

}
for each zero side developing triangle Δ �= CT containing x

{
Let the edges of the triangle be e, x and y;

T = T ∪ {x};
push(S,x); MarkΔ;

CUR[Δ] = 0;NUM[Δ] = count++;

}
}
Next, we prove that algorithm Tree 4-spanner Construction correctly

constructs a tree 4-spanner of a tree 4-spanner admissible 2-tree. We do this by
first showing that T , which is constructed by this algorithm, is a spanning tree
of G, and then we will show that this is a tree 4-spanner of G.

A Linear Time Algorithm for Constructing Tree 4-Spanner in 2-Trees 27

Theorem 3.1: Algorithm tree 4-spanner Construction produces a spanning tree
T of G.

Proof: The proof is by induction on i, where i is the iteration number. The
Algorithm tree 4-spanner construction consists of several iterations. In
each iteration, a triangle is made current triangle, and based on whether it is
one side developing, two side developing or zero side developing, certain edges
are marked. Let Ti be the graph formed by the set of edges selected on or before
ith iteration, and Si be the set of vertices spanned by the triangles which are
marked on or before ith iteration.

Claim: Ti is a spanning tree of G[Si] for each i.

Assume that the set of edges included in T by the end of (i − 1)th iteration is
a spanning tree of the set of vertices spanned by the set of triangles which are
marked on or before (i-1)th iteration.

Let CT = {CE, e, f} be the current triangle and CE be the current edge in
ith iteration. Edges are added to T based on whether CT is one sided or two
sided or zero sided developing.

Case I: CT is zero sided developing.
In this case only e is added to T . So it is easy to see that Ti is a spanning tree
of G[Si].

Case II: CT is developing one side on e.
In this case only one edge e is added, if there is no triangle {e, g, h} containing
two strong edges g and h. In this case clearly our claim is true. Suppose there, is
a triangle {e, g, h} such that, where g and h are strong edges. In such a situation
g and h are both added to T and CT and {e, g, h} are both marked. Moreover,
for all one sided developing triangles {e, x, y} on x, the edge x is added and the
triangle {e, x, y} is marked and for all zero sided developing triangles {e, x1, y1},
x1 is added to T and {e, x1, y1} is marked. So Ti forms a spanning tree of G[Si]

Case III: CT is two sided developing.
Assume one of the edges e or f is a forced edge.Wlg let e is a forced edge. In this
case e is added to T and CT is marked. Also for all one side developing triangles
{f, g, h} on g and for all zero side developing triangles {f, g, h}, the edge g is
added to T , and all such triangles are marked. So by this construction it is easy
to see that Ti is a spanning tree of G[Si].

If CT is two sided developing and any of the edge f or g is an edge of a triple
interior triangle, whose other two edges are not forced, then e is added to T and
CT is marked. Also for all one side developing triangles {f, g, h} on g and for
all zero side developing triangles {f, g, h}, the edge g is added to T , and all such
triangles are marked. In this case also, we get Ti to be a spanning tree of G[Si].

Now, assume that neither e nor f is a forced edge. In this case as well, e
is added to T and for all one side developing triangles {f, g, h} on g, the edge
g is added and {e, f, g} is marked, and for all zero side developing triangles
{f, g1, h1} the edge g1 is added to T , and all such triangles are marked. So Ti is
a spanning tree of G[Si] by induction property in this case.

28 B.S. Panda and A. Das

So, our claim is true. Hence T is a spanning tree of G.
Next, we show that T is a tree 4-spanner of G.

Theorem 3.2: Let G be a tree 4-spanner admissible 2-tree. Then algorithm tree
4-spanner construction successfully constructs a tree 4-spanner of G.

Proof: Let T be the graph produced by the algorithm. So by theorem 3.1, T is a
spanning tree of G. Let e ∈ G and e = xy. If e ∈ T , then dT (x, y) = 1 and there
is nothing to prove. So suppose that e /∈ T . Let Δ be the triangle containing e
such that NUM [Δ] is minimum.

Case I: CUR[Δ] = 1
Let Δ = {CE, e, f}. Since e /∈ T ,e �= CE because CE is the current edge when
the triangle Δ was current. Now if Δ is one sided developing(let on f), then f
is added to T , so dT (x, y) = 2. If Δ is one sided developing (let on f), then f
is added to T , if in the developed triangle {f, g, h}, g and h are not forced. If g
and h are forced edges then g and h will be included in T not f . In first case
dT (x, y) = 2 and in second case dT (x, y) ≤ 4. If one of g or h is forced, then by
the construction f and that forced edge will be taken in T . So in that case also
dT (x, y) ≤ 4. If Δ is both sided developing, then dT (x, y) = 2 as f is added to
T in this case. So dT (x, y) ≤ 4 if CUR[Δ] = 1.

Case II: CUR[Δ] = 0.
Let Δ1 be the current triangle when δ was marked. So Δ1 was either one side
developing or two sided developing. In either case it can be shown using the
arguments employed above that dT (x, y) ≤ 4.

So T is a tree 4-spanner of G.

Theorem 3.3: Algorithm tree 4-spanner construction correctly constructs a tree
4-spanner of a tree 4-spanner admissible 2-tree.

4 Complexity Analysis

Assume that the input graph G which is a 2-tree is given in adjacency list repre-
sentation. First we will do some preprocessing and compute certain information
which will make the implementation of the above algorithm easy.

First we have to find all the triangles of G. Since, cliques in chordal graphs
can be found in O(m+n) time [11], and cliques in 2-tree(which is a chordal
graph) are triangles, all the triangles of the 2-tree can be found in O(m+n)
time. Scan the adjacency list and find a numbering of the edges of G. Modify
the adjacency list of G such that for each v ∈ V , L(v), the adjacency list of v,
contains an adjacent vertex, say, w, edge number of the edge vw as obtained
in the previous step, and a pointer to the next cell. This step takes O(m+n)
time. Next number all the triangles of G and construct an array TN of pointers
such that TN [i] contains the list of the edges of the triangle having number
i. This takes O(m + n) time. Construct an array A of pointers such that A[i]
contains the list of triangles containing the edge having number i. This can done
as follows. From the list of triangles, construct a list of order pair by replacing

A Linear Time Algorithm for Constructing Tree 4-Spanner in 2-Trees 29

a triangle, say Δ, by (e, Δ), (f, Δ), (g, Δ), where e, f , and g are the edges of
Δ. Now, sort this list in non-decreasing order on the first component. All the
triangles containing an edge appear consecutively on this list. Since each edge
has a unique number, bucket sort can be used to sort the above list. So this
takes O(m+n) time. Now from this sorted list, the array A can be constructed
in O(m+n) time. Now, from the lists TN and A, we can construct an array N
such that N[i] = 1 if the triangle having number i is interior,else N[i] =0. This
takes O(m+n) time.

From the array N, we will construct two arrays D and TP. The array D, such
that D[i] = 1 if the triangle having number i is a double interior triangle. This
can be done as follows. First scan the array A. If A[i] =1, find out the edges of
the triangle i. Then find out the triangles other than i which contains the edges
of the ith triangle. If any two triangles having these edges have the value in A
1, then the triangle having number i is an double interior triangle and D[i] = 1 ,
else D[i]=0. If the triangles containing the edges of the triangle having number
i have the A value 1, then the triangle is a triple interior triangle and TP[i] =
1, else TP[i] = 0. Clearly these steps take O(m+n) time.

Now, we show that Algorithm Tree 4-spanner Construction can be
implemented in O(m+n) time. Algorithm Tree 4-spanner Construction starts
by selecting a simplicial edge. This can be done by selecting an edge e with
A[e] = 1. This takes O(m + n) time. Next, the algorithm marks the triangle
containing the edge e. Whether the current triangle develops in one direction
or in two directions can be tested by checking the array A for the edges of the
triangle. The edge number of the edges can be found by scanning the appropriate
list of the modified adjacency list of G obtained above. Again a triangle is two
side developing or one side developing or zero side developing can be tested in
O(m+n) time for all triangles. Also it is easy to see that other operations of
the algorithm tree 4-spanner construction takes O(m+n) time. By the above
discussion and by theorem 3.4, we have the following theorem.

Theorem 4.1: Tree 4-spanner in tree 4-spanner admissible 2-tree can be con-
structed in linear time.

5 Conclusion

In this paper, we have presented a linear time algorithm for constructing a tree
4-spanner in a tree 4-spanner admissible 2-tree.

References

1. I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On Sparse Spanner of
Weighted Graphs, Discrete Comput.Geom. 9 (1993), 81-100.

2. J. P. Barthélemy and A. Guénoche, Trees and Proximity Representations, Wiley,
New Yark, 1991.

3. S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg, Optimal Simulation of Tree
Machines, in Proc. 27th IEEE Foundations of Computer Science, Toronto, 1986,
pp. 274-282.

30 B.S. Panda and A. Das

4. H. L. Bodlaender: A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM J. Comput. 25(6) 1305-1317 (1996)

5. A. Brandstadt, V. Chepoi, and F. Dragan, Distance approximating trees for chordal
and dually chordal graphs, Journal of Algorithms, 30 (1999) 166-184.

6. L. Cai and D.G. Corneil, Tree Spanners: an Overview, Congressus Numerantium
88 (1992), 65-76.

7. L. Cai and J. M. Keil, Degree-Bounded Spanners, Parallel Processing Letters,
3(1993), 457-468.

8. L. Cai and J. M. Keil, Spanners in Graphs of Bounded Degree, Networks,
24(1994),187-194.

9. L. Cai, NP-completeness of Minimum Spanner Problems, Disc. Appl. Math., 48
(1994), 187-194.

10. L. Cai and D.G.Corneil, Tree Spanners, SIAM J. Discrete Math. 8 (1995) 359-387.
11. L. P. Chew, There Are Planar Graphs Almost As Good As the Complete Graph,

J. Comput. Syst. Sci. 39 (1989), 205-219
12. B. Courcelle, Recognizability and Second-Order Definability for Sets of Finite

Graphs, Information and Computation. 85 (1990) 12- 75.
13. S. P. Fekete and J. Kremner, Tree Spanners in Planar Graphs, Discrete Applied

Mathematics, 108 (2001) 85-103.
14. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. (Academic Press,

New York, 1980).
15. A. L. Liestman and T. C. Schermer, Grid Spanners, Networks, 23 (2) (1993) 123-

133.
16. A. L. Liestman and T. C. Shermer, Additive Graph Spanner, Networks, 23 (1993),

343-364.
17. M. S. Madanlal, G. Venkatesan, and C. P. Rangan, Tree 3-spanners on Interval,

Permutation and Regular Bipartite Graphs, Infor. Proc. Lett. 59 (1996) 97-102.
18. G. Narasimhan, B. Chandra, D. Gautam, and J. Soares, New Sparseness Results

on Graph Spanners, in Proc. 8th Annual ACM Symposium on Computational
Geometry (1992) 192-201.

19. B. S. Panda and S. K. Das, A Linear Time Algorithm for Finding Tree 3-Spanner on
2-Trees, Proceedings of 2nd IFIP Interntional Conference on Theoretical Computer
Science (TCS-2002), (Eds. R. Baeza-Yates, U. Montanari and N. Santoro), Kluwer
Academic Pub, pp. 292-309, 2002.

20. B.S. Panda and Anita Das, A linear time algorithm for finding Tree 4-spanner in
2-trees, Manuscript, Dept. of Mathematics, Indian Institute of Technology Delhi,
2004, page1-19.

21. D. Peleg and J. D. Ullman, An Optimal Synchronizer for the Hypercube, Proceed-
ings of the 6th ACM Symposium on principles of Distributed computing, Vancou-
ver (1987) 77-85.

22. D. Peleg and E. Upfal, A Trade Off Between Space and Efficiency for Routing Ta-
bles, Proceedings of the 20th ACM Symposium on Theory of Computing, Chicago
(1988), 43-52.

23. D. Peleg and A. A. Schäffer, Graph spanners. J. Graph Theory 13 (1989) 99-116.
24. P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy, San Francisco, 1973.
25. D. L. Swofford and G. J. Olsen, Phylogeny reconstruction, in (D.M.Hills and C.

Moritz, eds.), Molecular Systematics, pp. 411-501, Sinauer Associates, Sunderland,
MA, 1990.

26. G. Venkatesan, U. Rotics, M. Madanlal, J.A. Makowsky, and C. P. Ran-
gan, Restrictions of Minimum Spanner Problems, Information and computation,
136(2)(1997)143-164.

∈

•
•

•

=

{ }×+=
∈

+=

=

++=
∈

Φ

∈

∈

∈∀∈∀

=×+
=

==

Detecting Topology Preserving Feature Subset
with SOM

Arijit Laha

Institute for Development and Research in Banking Technology
Castle Hills, Hyderabad 500 057, India

alaha@idrbt.ac.in

Abstract. Kohonen’s Self-organizing Map (SOM) is one of the most
popular neural network algorithms. SOM produces topology preserving
map of the input data. In the current study the SOM’s topology preser-
vation property is used to identify the input features whose removal does
not affect significantly the neighborhood relations among the input data
points. The topology preservation property of of an SOM is measured us-
ing a quantitative index. However the same index can be slightly modified
to compute topology preservation in the SOM along individual features.
Thus studying the topology preservation due to each individual feature
we can compare their quality with respect to their importance in affect-
ing the neighborhood relation among input points. Experimental study
is conducted with a synthetic data set, well known Iris data set and a
multi-channel satellite image dataset. The results are cross verified by
comparing with Sammon error of the data computed in the correspond-
ing dimension. k-NN classification performance is also considered for the
data sets.

Keywords: SOM, topology preservation, feature quality, Shammon er-
ror.

1 Introduction

The Self-organizing map (SOM) developed by Kohonen [1] is one of the most
popular neural network models. The SOM implements a nonlinear topology pre-
serving mapping from a higher dimensional feature space to a lower (usually 2)
dimensional grid of neurons. The distribution of the weight vectors of a trained
SOM approximates the distribution of the feature vectors in the training data.
This property is known as density matching. These properties enable many re-
searchers to use SOM successfully in various problem domains such as pattern
recognition, clustering, text and image analysis, speech recognition, vector quan-
tization [2, 3], data visualization, knowledge engineering [4], etc. For a more ex-
haustive listing of the works using SOM visit [5].

Topology preservation refers to the property of a trained SOM that two
points close to each other in the feature space are mapped to the same node
or two neighboring nodes in the lattice plane of the network. Various attempts
are made by researchers to find a quantitative measure for this property. In

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 40–48, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Detecting Topology Preserving Feature Subset with SOM 41

[6] topographic product is used, Villmann et. al [7] developed a topographic
function that takes into account the data manifold also, [8] used Kendal’s rank
correlation coefficient to measure the topology preservation. In a recent work
Su et. al [9] developed a simple and intuitive measure of topology preservation
that can be easily modified to measure the topology violation when a feature
subspace with one or more dimensions removed is considered. In most of the
real life applications though the absolute dimension of the data is quite high,
the intrinsic dimension [10] is much lower. It was observed by the researchers
that the topology preservation is affected severely if the intrinsic dimension of
the data is much higher than the dimension (usually 2 or 3) of the SOM lattice.
This is often called dimensionality mismatch [11] and in such cases the SOM
fold and twist to achieve the mapping. Consequently, the utility of the map in
many applications is markedly diminished.

Large dimensionality of the data poses two kind of problems in designing
systems those use the data for learning, (1) the number of parameters to learn
becomes large and (2) the requisite number of training samples for good learning
becomes large. Both these factors lead to rapid increase of computational load.
This is called “curse of dimensionality”. However, often it is found that some
of the features do not contribute to the information content of the data, i.e.,
the information content of those features are already contained by the rest of
the features. So it is highly desirable to identify the useful (for the problem at
hand) features and use them for developing the system. This is known as fea-
ture selection [12] or dimensionality reduction. In other words, feature selection
corresponds to compression and (possibly) improvement of the feature space by
elimination, through selection or transformation, of redundant or unimportant
(for the problem at hand) features.

It is shown in this paper, even though the overall topology preservation for
higher dimensional data is not satisfactory, measuring the topology preservation
along individual dimensions allows us to find a subset of dimensions for which the
topology is better preserved. This in turn allows us to perform feature selection.
This selection of features can be validated in terms of low Sammon’s error [13]
and/or low k-NN classification error for labeled data.

2 SOM and Topology Preservation

2.1 SOM Algorithm

SOM is formed of neurons located on a regular (usually)1D or 2D grid. Thus
each neuron is identified with a index corresponding to its position in the grid
(the viewing plane). Each neuron i is represented by a weight vector wi ∈ �p

where p is the dimensionality of the input space. In t-th training step, a data
point x is presented to the network. The winner node with index r is selected as

r = arg min︸ ︷︷ ︸
i

{‖x− wi,t−1‖}

42 A. Laha

and wr,t−1 and the other weight vectors associated with cells in the spatial
neighborhood Nt(r) are updated using the rule:

wi,t = wi,t−1 + α(t)hri(t)(x − wi,t−1),

where α(t) is the learning rate and hri(t) is the neighborhood kernel (usually
Gaussian). The learning rate and the radius of the neighborhood kernel decreases
with time. During the iterative training the SOM behaves like a flexible net that
folds onto the “cloud” formed by the input data.

2.2 Quantitative Measure of Topology Preservation

The SOM transforms the patterns in feature space into the responses of nodes
in one or two dimensional lattice of neurons. This transformation retains metric-
topological relationship among the feature vectors. A quantitative measure of
topology preservation capture the extent to which the metric-topological rela-
tionship is retained. There can be different choices constraints to be satisfied for
a “perfect” topology preservation. The strongest is that for each pair of points
in feature space, the distance should be equal to the distance of the mapped
points. A weaker one demand that the distances should be of same order. The
topographic product [6], most popular measure, is based on the weaker con-
straint. Su et. al [9] proposed another kind of weaker constraint and a measure
based on that. They observed that if a map is topologically ordered then the
weight vector of each node should be more similar to the weight vectors of its
immediate neighbors (8 neighbors for a 2-D SOM) on the lattice than to the
weight vectors of its non-neighbors. Their measure is designed to detect the vi-
olation of this condition. The measure is especially suitable if the SOM is used
for visualizing cluster structure of the data.

The method for 2-D SOM can be formulated as follows:
Let Λr be the set containing the immediate 8 neighbors of node r and Ωr denote
the set containing the nodes which are not immediate neighbors of node r. Let
the size of the map is m × n. Consider a node i ∈ Ωr and another node ir ∈ Λr

such that
ir = argmin︸ ︷︷ ︸

k∈Λr

‖pi − pk‖,

where, pi = (pi1, pi2) is the position vector of the node i in the lattice plane and
‖pi − pk‖ is the Euclidean distance between the nodes i and k. Since node r is
closer to the neighboring node ir than to i in the lattice plane, the weight vector
of node r should be more similar to the weight vector of the node ir than to
the weight vector of the node i. Therefore, if the map is preserving the topology
then for each node r the following relation should hold:

‖wi − wr‖ ≥ ‖wir − wr‖ for 1 ≤ r ≤ m × n, ir ∈ Λr and i ∈ Ωr. (1)

Now the quantitative measure of topology violation V is defined as:

V =
m×n∑
r=1

∑
i∈Θr

[1 − exp−‖pi−pr‖2
]
‖wir − wr‖ − ‖wi − wr‖

‖wir − wr‖ , (2)

Detecting Topology Preserving Feature Subset with SOM 43

where Θr = {i : ‖wi − wr‖ < ‖wir − wr‖ for i ∈ Ωr and ir ∈ Λr} is the set of
nodes in Ωr those violate eq. 1 with respect to node r. The measure of violation
V has the following properties:
1. V = 0 if Θr = ∅, i.e., the topology is perfectly preserved.
2. The larger the value of V the greater is the violation.
3. If i ∈ Θr and the nodes r and i is far apart in the lattice plane, their contri-
bution to V will be high due to the factor (1 − exp−‖pi−pr‖2

).
Usually, perfect topology preservation (i.e., V = 0) is achieved if the dimen-

sionality matching is perfect as well as the distribution of the training data has
strong similarity with the distribution of the nodes in the lattice plane, such
as shown in Figure 1. Figure 1 depicts in the distribution of the weight vec-
tors of the nodes along with the neighborhood relations on the lattice plane
of a 10 × 10 SOM trained with 2-D data points uniformly distributed over a
square. Otherwise, even though the dimensionality matches, there could be some
topology violation due to existence of cluster structures and variation of density
within the data. However if the dimensionality matching exists, the violations
are typically small and can be attributed to the disturbances produced due to
the non-uniformity of the data in unfolding of the map during training. On the
other hand, for high dimensional data, when the violation is caused by dimension
mismatch, the value of the topology violation for same training data increases
rapidly with the size of SOM. To prevent such rapid increase of the value of V
we modify the eq. 2 as follow:

V =
m×n∑
r=1

1
Kr

∑
i∈Θr

[1 − exp−‖pi−pr‖2
]
‖wir − wr‖ − ‖wi − wr‖

‖wir − wr‖ , (3)

where Kr =
∑

i∈Ωr
[1 − exp−‖pi−pr‖2

] is a scaling factor that prevent quick
increase of the value of V with the size of the map.

The measure of topology violation V can be easily modified to measure the
topology violation for each individual feature. The condition for topology preser-
vation along k-th feature for all node r is given by

Fig. 1. Distribution of weight vectors of a 10 × 10 SOM trained with 2-D data points
uniformly distributed over a square. The SOM preserve topology perfectly with V = 0.

44 A. Laha

| wik − wrk | ≥ | wirk − wrk |
for k = 1, 2, · · · , p, 1 ≤ r ≤ m × n, ir ∈ Λr and i ∈ Ωr. (4)

Thus the measure of topology violation Vk along k-th feature is defined as:

Vk =
m×n∑
r=1

1
Kr

∑
i∈Θrk

[1 − exp−‖pi−pm‖2
]
| wirk − wrk | − | wik − wrk |

| wirk − wrk | , (5)

where Θrk is the set of nodes in Ωr those violate eq. 4 with respect to node r
for the k-th feature.

2.3 Feature Selection

The quantitative measure of topology preservation/violation is primarily used
for adjudging the effectiveness of the SOM in applications whose performance
depend crucially on topology preservation. Here we directly use the quantitative
measure of topology violation for different features to assess their relative impor-
tance. The idea is rooted in the fact that the information carrying features try
to stretch the map along their respective direction in a sustained and system-
atic manner. On the other hand, if there exist some features carrying random
(comparatively) values, they produce random perturbation in the process of for-
mation of the map, which should be reflected in higher topology violation for
them. Thus a ranking of the features based on their topology violations corre-
spond to their ranking of quality. Here the term “quality” is used to express the
capacity of the features to retain the topological ordering of the input signals in
the original feature space. The idea can be expressed as follows:
Let Φi = {xj : ‖xi − xj‖ ≤ ε} be the set of input feature vectors within a
ε-neighborhood of xi and Φik = {xj :| xik − xjk |≤ ε} be the set of input fea-
ture vectors within a ε-neighborhood of xi along the k-th feature. Now for two
features k and l

Vk < Vl ⇔| Φi ∩ Φik |>| Φi ∩ Φil | . (6)

In other words, lower value of Vk signify that for an input vector xi more of
its ε-neighbors in original space will be retained within its ε neighborhood if the
input data is projected along the k-th feature than if the data is projected along
another feature l with higher value of topology violation Vl. This interpretation
has close correspondence to the well known Sammon error [13] for the projection
along k-th feature defined as

Ek(X) =
1∑N

i=1

∑
j>i δij(k)

N∑
i=1

∑
j>i

(dij − δij(k))2

δij(k)
, (7)

such that,
Vk < Vl ⇔ Ek(X) < El(X), (8)

where N is the number of input data points, dij = ‖xi − xj‖ and δij(k) =
| xik − xjk |.

Detecting Topology Preserving Feature Subset with SOM 45

For labeled input data similar correspondence exists between the topology
violation measures and error rates of k-NN classifiers those use the data projected
along individual features.

3 Experimental Results and Discussions

We present the experimental results of our study for three different data sets,
2dishes-4D, Iris and Satim-7. All three sets are labeled. 2dishes-4D is a syn-
thetic data with 4 features and 1500 points. In first two features the data has two
well separated dish-like clusters corresponding to two classes with 500 and 1000
data points respectively. The dishes are nonoverlapping along feature 2 and have
overlap along feature 1. Figure 2 shows the scatterplot of this data set along first
two features. The other two features consist random numbers generated from a
uniform distribution with mean 0 and variance 1. The well-known Iris data set
has 4 dimensions and 150 points, 50 from each of three classes. Satim-7 is pre-
pared by randomly selecting the 1600 feature vectors from a 7-channel satellite
image. The data contains 200 points belonging to each of the 8 land cover classes.
The feature vectors have 7 dimensions, each of them represents the gray value
of the pixel in the image captured by corresponding channel sensor. The results
are summarized in the Tables 1-3.

Fig. 2. Scatterplot of 2dishes-4D data along first two features.

In the results each of the reported values of V (topology violation computed
all features using eq. 5) and Vk (topology violation computed k-th feature us-
ing eq. 7) are averages of five SOMs trained with different initializations and
sequences of choice of input vectors. We also presented the results for each data
sets using SOMs of two different sizes. For studying the k-NN classification per-
formances, each data set is divided into two random partitions of equal sizes
and containing same proportion of class representation. The partitions are al-
ternately used as training and test sets and the reported results are averages of
these two cases.

46 A. Laha

Table 1. Experimental results for 2dishes-4D.

Feature Topology violation Vk Sammon Error k-NN Classification Performance
k Netsize 10 × 10 Netsize 15 × 15 Ek(X) 1-NN 3-NN 5-NN

All 0.05 0.09 0 100% 100% 100%

1 2.8 5.5 0.389 78.13% 78.86% 79.27%

2 3.6 5.9 0.102 100% 100% 100%

3 27.2 60.0 0.870 52.60% 56.80% 59.00%

4 27.1 60.7 0.868 56.00% 61.07% 61.20%

Table 2. Experimental results for Iris.

Feature Topology violation Vk Sammon Error k-NN Classification Performance
k Netsize 6 × 6 Netsize 10 × 10 Ek(X) 1-NN 3-NN 5-NN

All 0.27 0.47 0 96.00% 96.00% 98.00%

1 2.28 5.92 0.423 60.66% 68.00% 71.00%

2 4.27 9.61 0.683 42.00% 45.33% 48.00%

3 1.27 2.65 0.078 91.33% 93.33% 93.33%

4 1.45 5.08 0.448 94.67% 94.67% 95.33%

For all three data sets the overall topology violation V s are quite low while
the Vks are much larger (by order of 1 or 2). For the 2dishes-4D data V is quite
small (0.05 and 0.09 respectively) indicating very good topology preservation
and dimensionality match. This is what we expected since the features 3 and 4
are added random components to original 2-D data. This is farther reflected in
the values of Vks, with V3 and V4 much (almost 10 times) higher than V1 and V2.
This is also corroborated by considerably higher Sammom errors and lower k-NN
classification performances of features 3 and 4. For features 1 and 2 it can be
observed that V1 is slightly less than V2 but the E1(X) is higher than E2(X) and
classification performance of feature 2 is better than feature 1. This discrepancy
can be explained from the fact that the data is non-overlapping in feature 2
(Figure 2), which accounts for lower Sammon error and better classification
performance of feature 2. On the other hand, the overlap of data along feature 1
reduce the topology violation along it. This effect is demonstrated in Figure 3.

For Iris data set V2 is largest while V3 is the smallest value of topology vi-
olation. The Sammon errors and classification performances also support them.
It is also in accord with the well-known fact among pattern recognition commu-
nity that feature 3 of Iris has least discriminatory power while feature 2 has the
highest.

In case of Satim-7 data there are many features having close values of Vk,
however, feature 6 stands out as the highest topology violator (way above the
others) with highest Sammon’s error and worst k-NN classification performance.
While for the other features though it is difficult to exactly corroborate the Vks
with Sammon errors and classification performances, the general fact, that low
topology violation corresponds to low Sammon error and high k-NN classifica-
tion performance, holds out. To explain the discrepancies observed, different data

Detecting Topology Preserving Feature Subset with SOM 47

Table 3. Experimental results for Satim-7.

Feature Topology violation Vk Sammon Error k-NN Classification Performance
k Netsize 10 × 10 Netsize 15 × 15 Ek(X) 1-NN 3-NN 5-NN

All 0.21 0.36 0 82.21% 82.37% 82.06%

1 4.7 8.9 0.426 30.99% 34.62% 38.87%

2 4.6 9.2 0.620 29.06% 31.12% 33.90%

3 4.5 9.3 0.467 34.01% 41.50% 44.43%

4 8.6 17.5 0.456 38.25% 42.87% 44.31%

5 4.4 9.3 0.223 43.63% 51.68% 53.06%

6 11.3 29.5 0.845 27.18% 30.06% 35.06%

7 4.2 9.9 0.488 41.18% 48.62% 53.37%

Fig. 3. 15 × 15 SOFMs for data with 2 dishes (50000 points each) of equal size. (a)
Dishes are non-overlapping in both features, V1 = 4.34 and V2 = 4.45. (b) Dishes
overlap in feature 2, V1 = 6.82 and V2 = 3.90.

specific properties and their effect on topology preservation need to be studied.
For example, as described above, relative degrees of overlap along different fea-
tures among the clusters affect the topology preservation. We have found that
if the clusters overlap more along a certain feature relative to other features,
topology is preserved better along that feature, while Sammon error and k-NN
classification performance are adversely affected.

4 Conclusion

We propose a quantitative measure of topology violation for SOM along individ-
ual features motivated by the topology preservation(violation) measure devel-
oped by Su et. al[9]. We used the proposed measure to find the relative quality
of each feature, where the term “quality” is used in context of the power of in-
dividual features to retain the topological ordering of the data points in original
feature space. A correspondence is established between the topology violations
and the feature-wise Sammon errors and k-NN classification errors. The experi-
mental results in general confirm the correspondences. However, for close values

48 A. Laha

of the topology violations some discrepancies are found. This can be attributed
to nature of SOM algorithm which is somewhat sensitive to the initialization of
the nodes as well as the sequence of training signals presented. The formation
of the map is also susceptible to the peculiarities of the cluster structures in
the data. To remove the discrepancy one needs deeper understanding of various
factors influencing the map formation and possibly taking them into account in
devising a more sophisticated measure for topology preservation. However, the
experimental results strongly suggest that, there is indeed a direct relation be-
tween the topology violation along a feature and its quality. This method showed
remarkable capacity of identifying especially the feature with worst quality for
each of the data sets studied. The scheme can be readily be used to identify
the bad features, which can be enormously useful if the developer of a pattern
recognition system is constrained in the numbers of features those can be used.

References

1. T. Kohonen, “Self-Organizing Maps”, Springer Series in Information Sciences, vol.
30, Springer, Berlin, 1995.

2. T. Kohonen, E. Oja, O. Simula, A. Visa and J. Kangas, “Engineering application
of self-organizing map”, Proc. IEEE, vol. 84, no. 10, pp. 1358-1383,1996.

3. H. Ritter and K. Schulten, “Kohonen’s self-organizing maps: exploring their com-
putational capabilities”, IEEE Int. Conf. on Neural Networks, vol. 1, pp. 109-116,
San Diego, 1988.

4. J. Himberg, J. Ahola, E. Alhoniemi, J. Vesanto and O. Simula, “The self-organizing
map as a tool in knowledge engineering”, Pattern Recognition in Soft Computing
Paradigm, ed. N. R. Pal, pp. 38-65, World Scientific, Singapore, 2001.

5. http://www.cis.hut.fi/nnrc/refs/references.ps
6. H. Bauer and K. R. Pawelzik, “Quantifying the Neighborhood Preservation of

Self-Organizing Feature Maps,” IEEE Trans. on Neural Networks, vol. 3, no. 4,
pp. 570-579, 1992.

7. T. Villmann, R. Der, M. Herrmann and T. M. Martinetz, “Topology preservation
in self-organizing feature maps: exact definition and measurements” IEEE Trans.
on Neural Networks, vol. 8, no. 2, pp. 256-266, 1997.

8. A. Laha and N. R. Pal, “On different variants of self-Organizing feature map and
their properties”, Proceedings of the 1999 IEEE Hong Kong Symp. on Robotics and
Controls, vol. 1 pp. I-344-I-349, 1999.

9. M. C. Su, H. T. Chang and C. H. Chou, “A novel measure for quantifying the
topology preservation of self-organizing feature maps”, Neural Processing Letters,
vol. 15, no. 2, pp. 137-145, 2002.

10. K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press Inc.,
Harcourt Brace Jovanovich, Publishers, 1990.

11. H. Ritter and K. Schulten, “Convergence properties of Kohonen’s topology con-
serving maps: Fluctuations, stability and dimension selection”, Biol. Cybern., vol
60, pp. 59-71, 1988.

12. N. Kwak and C. H. Choi, “Input feature selection for classification problems”,
IEEE Trans. on Neural Networks, vol. 13, no. 1, pp. 143-159, 2002.

13. J. W. Sammon, “A nonlinear mapping for data structure analysis”, IEEE Trans.
Comput., vol 18, pp. 401-409, 1969.

{jheom,btzhang}@bi.snu.ac.kr

= −

= −

= −

=
+

≤ ≤

⊆

= = ∪
δ

′ δ≥
′

′
≠

′
≠

′ =
≥

′ ′ ′
′

′
′

′=

≠ =
=

=

=
+

ρ

== =

=

= ×

=

=

==

= × =

δ

δ =

=

= =

δ ρ> = × =

=

= =
+

hafezsyr@ieee.org

a_kh_rabie@postmaster.co.uk

aruncs@uohyd.ernet.in

−=

∂∂−=Δ η
−Δ+−=

η

η

=

ηηη +−=

() Δ−= η
Δ

…+…=+

…+…+=

Δ

=
=Δ

Δ

Δ+=

Δ+=
Δ+=

>Δ>Δ
<Δ<Δ

ηη =∂∂=Δ
=

η

Δ
ηηη +=

η

∈

− <Δ

− <Δ

− >Δ

− >Δ

η
η

η

Δ

Interval Computing in Neural Networks:
One Layer Interval Neural Networks

Raquel E. Patiño-Escarcina1, Benjamı́n R. Callejas Bedregal1, and Aarão Lyra2

1 Universidade Federal do Rio Grande do Norte
Laboratório de Lógica e Inteligência Computacional LABLIC – DIMAP

59078-970 Natal, RN, Brasil
raquel@ppgsc.ufrn.br, bedregal@dimap.ufrn.br

2 Universidade Potiguar
59056-000 Natal, RN, Brasil

aarao@unp.br

Abstract. Several applications need a guaranty of the precision of their
numerical data. Important tools which allow control of the numerical
errors are dealing these data as intervals. This work presents a new ap-
proach to use with Interval Computing in Neural Networks, studying
the particular case of one layer interval neural networks, which extend
Punctual One Layer Neural Networks, and try to be a solution for the
problems in calculus precision error and treatment of interval data with-
out modify it. Beyond it, seemly, interval connections between neurons
permit the number of the epochs needed to converge to be lower than
the needed in punctual networks without loss efficiency.
The interval computing in a one layer neural network with supervised
training was tested and compared with the traditional one. Experiences
show that the behavior of the interval neural network is better than the
traditional one beyond of include the guarantee about the computational
errors.

1 Introduction

Neural networks are powerful computational tools that can be used for classifica-
tion, pattern recognition, empirical modelling and for many other applications.
In real-life situations, these applications have physical quantities as data set, but
it is not so easy to obtain measures that represent these physical quantities ex-
actly. In many cases, it is extremely important to know how different the actual
value of data can be from the real data. To achieve reliability, both mathematical
and computationally, all quantities are represented by the smallest machine rep-
resentable intervals where the physical quantities belong to the intervals. This
concept was originally introduced by [13], to the field of reliable numerical com-
putations. Later the concept of interval value has been successfully applied in
regression analysis [21]; fuzzy-interval [20], [11], [18] and [10]; principal Compo-
nent Analysis [6]; estimative of Power Flow and voltages of electric networks [4];
etc.

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 68–75, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Interval Computing in Neural Networks: One Layer Interval Neural Networks 69

Artificial neural networks (ANN) are viewed as a parallel computational
model, with varying degrees of complexity, comprised of densely interconnected
adaptive processing units. A very important feature of these networks is their
adaptive nature, where learning by example replaces traditional programming
in solving problems. The computational process envisioned with artificial neural
networks is as follows: an artificial neuron or processing element receives inputs
from a number of other neurons or from an external stimulus. A weighted sum
of these inputs constitutes the argument to an activation function or transfer
function. This activation function is generally nonlinear. The resulting value of
the activation function is the output of the neuron, this output gets distributed
or fanned out along weighted connections to other neurons. The actual manner
in which these connections are made defines the information flow in the network
and is called architecture of the network. The weighted connections in these
architectures play an important role, such that these network are also called
connectionist models of computation. The method used to adjust the weights in
the process of training the network is called the learning rule. In summary, the
three essential ingredients of a computational system based on ANNs are the
transfer function, the architecture, and the learning rule.

2 Interval Mathematic

Uncertainty comes as a result of incompleteness of our observations, measure-
ments and estimations of the world. The uncertainty in the input data can be
enlarged due to both rounding and truncating processes that occur in numerical
computation. As a consequence the actual error presented in the final results can
not be easily evaluated. In order to rigorously control and automatically handle
these numerical errors was proposed to apply techniques of interval Mathematics.

The Interval Mathematic is a theory introduced by R. E. Moore [13] and T.
Sunaga [19] in the latest of 50’s in order to give control of errors in numeric
computations in the solutions of the problems concerning real numbers, it was
thought to replay questions about accuracy and efficiency.

A real interval, or only interval, is a set of all real numbers between two real
numbers, the least of these real numbers is called lower bound and the greatest
is called upper bound. A real interval will be denoted by X = [x, x] , where x
and x are the lower and upper bounds, respectively.

In the following, lower case letters denote elements of the real numbers and
capital letters to denote interval quantities and vectors. The set of all intervals
will be denoted by IR. An interval X where x = x is called Degenerated Interval.

Let A, B ∈ IR. The operations used in this work, are:

– The addition, defined by the equation:

A + B = [a, a] + [b, b] = [a + b, a + b] (1)

– The subtraction, defined by the equation

A − B = A + (−B) = [(a − b); (a − b)] (2)

70 R.E. Patiño-Escarcina, B.R. Callejas Bedregal, and A. Lyra

– The multiplication, defined by the equation:

A · B = [a, a] · [b, b] = [min{ab, ab, ab, ab}, max{ab, ab, ab, ab}] (3)

– The distance of the interval A until the interval B, defined by:

dist(A, B) = dist([a, a], [b, b]) = max{|a − b|; |a − b|} (4)

– The weight of the interval A, defined by:

w(A) = w([a, a]) = (a − a) (5)

– The sign of the interval A, defined by:

sign(A) = sign([a, a]) = (a + a) (6)

An interval A where w(A) = 0 is called Symmetrical Interval. More informa-
tion about interval mathematics and applications can be found in [1], [2], [9],
[14], [15] and [16].

3 Interval Computing in Neural Networks

In [17] was proposed some methods for processing interval data input in neural
networks. These methods are the most basic and intuitive form to work with
intervals but these not guarantee that the resultant data set represents the real
data set of the problem. In [8] each interval in the input data set is a set of
the possible values formed with opinion of the experts about one variable, here
was used the interval mathematics to calculate the output of the network. This
work is a proposal of solution to the problem of interval data but doesn’t show
other advantages with the interval mathematics. In [5] was proposed a neural
network with interval weights but the solution isn’t more simple and the network
is modelled like the problem of the solution equations. These works represent
the carefulness of the researchers around the importance to have algorithms can
work with interval data. This approach is a contribution for solving part of the
problems seen before.

A Neural Network is said to be an Interval Neural Network if one of its input,
output and weight sets have interval values.

Interval Neural Networks (IANN) are formed by processing units called Inter-
val Neurons. They are based on the neuron model proposed by McCulloc-Pitts.
This neuron is prepared for receiving interval or real data. An Interval Neuron
is formed by three functions (figure 1):

– Normalizer Function(T): This function analyze the input nature and nor-
malize it in order to have only interval inputs.

– Sum Function(Σ): This function is the same as the sum function in the
neurons of the traditional neural networks. Join in a linear way inputs with
their respective synaptic weights.

Interval Computing in Neural Networks: One Layer Interval Neural Networks 71

Fig. 1. Interval Neuron structure.

– Activation Function: This function could be any interval derivable linear
function. Restrict the output to interval values between [-1 1] or [0 1].

In Interval Neural Networks, neurons are connected as they are in traditional
Neural Networks. Interval Neural Networks can be classified in the same way that
Punctual Neural Networks are classified.

4 A One Layer Interval Neural Network

The one layer Interval Neural Network is formed by interval neurons where the
activation function is the binary threshold function of the form:

y =

{
+ If sign(X) > 0, Xi = [x, x] ∈ IR,

0 in other case.
(7)

When neural networks are used as classifiers, the output set is a binary one
and therefore their outputs are binaries too. Patterns are represented with 0 or
1. The output is transformed from IR → R by the activation function, thus, the
interval space is divided by the pattern separation and each interval belongs to
the pattern where the majority area of it belong.

Neurons of the one layer interval neural network are full connected with
inputs, each of these connections are represented by an interval that represent
at the same time the force between relationships.

4.1 Learning in the One Layer Interval Neural Network

One of the most important features of a neural network is its ability to adapt to
new environments. Learning implies that a processing unit is capable of changing
its input/output behavior as a result of changes in the environment. Therefore,
learning algorithms are critical to the study of neural networks. Thus, the one
layer interval neural network has to be trained in order to extract knowledge of
a data set.

In process of the training, each neuron compute and send its output, that is
going to said if the neuron is active or not. With the concepts given in section 2

72 R.E. Patiño-Escarcina, B.R. Callejas Bedregal, and A. Lyra

Table 1. Learning algorithm for the one layer interval neural network.

Step 1 Initialize inputs weights and bias weigth
Initialize inputs weights (Wij) and bias weight θi with small
random intervals where size(Wij) and size(θi) are minimum.

Step 2 Present an input pattern [X, d] to the network
Xi is a set of input intervals that represent the pattern and di

represent a binary vector that codifies the class of the pattern
Xi. The vector Xi = ([x0, x0], [x1, x1], ..., [xn−1, xn−1]).

Step 3 Calculate the output of the network for the input Xi

y(t) = fn(

N−1∑
i=0

Wij(t)Xi(t) − θj)

fn is the interval activation function, the calculus is made by
the equation 7

Step 4 Weights modification
Wij(t + 1) = Wij(t) + η[d(t) − y(t)]Xi, where 0 ≤ i ≤ N − 1

d(t) =

{
+1 If the input is of class A,

0 If the input is of class B.

η is a real value less than 1 and d(t) is the desired output for
the actual pattern. If the network classified it correctly, then the
weights are not going to be modified.

Step 5 the total error in the neural network for the pattern i is calcu-

lated by e =

m∑
k

= 1[di−yk(t)], if i = n (number of pattern) and

n∑
i

e ≤ ε where ε represent the minimum error, the algorithm

finishes in other case go to Step 2

the outputs are obtained and the weights are modified in order to correct a
possible error in the output. In the table 1 the algorithm for training the one
layer interval neural network is presented.

5 Experiment Results

In order to analyze the influence of intervals into the neural network, let us
consider a simple example: the classification of two classes. For the experiences
we use five real data sets and five interval data sets. All sets have 60 patterns
with 2 inputs and the testing sets have 30 patterns. Each real data set was
intervalized by creating a same data set where each element will be an interval.
Thus, let Qn = {q1, q2, q3, ..., qn}, where n = 60 is one real data set where
qi = {x1, x2}, xi ∈ R. Let IPn = {P1, P2, ..., Pn} where n = 60 is one interval
data set where Pi = {X1, X2}, Xi ∈ IR, xi ∈ Xi.

The neural network was trained one hundred times, the mean of all solutions
is included in the mean of all solutions obtained with the interval neural network
with same structure. If the set IPn has symmetrical interval, the mean of all

Interval Computing in Neural Networks: One Layer Interval Neural Networks 73

solutions of the punctual network is included in the mean of all solutions of the
interval network. The straight line formed by the middle points of the weights
in the interval network defines the separation of the classes. It is coincident with
the straight line formed for the weights of the punctual network, because of it,
the interval neural network can be considered as a generalization of the punctual
neural network.

The number of epochs necessary for training this interval neural network
is smaller than the number necessary for punctual neural network without loss
efficiency. The interval neural networks was trained with the set Qn and the
results was successfully, of this form, again can be said that the IANN is a
generalization of the punctual neural networks. The table 2 shows the results of
this training experiences, there are showed results of the mean epochs number
to train the interval neural network and the punctual neural network and the
efficiency of the classification. We were tested with different values for the rate
of learning (η) and the minimun error ε = 0

Table 2. IANN vs. Punctual Neural Network with η variable and ε = 0.

η = 0.2 η = 0.4 η = 0.8

Interval
Number of Epochs 15.34 6.96 14.10
Percentage of Efficiency 100% 100% 100%

Punctual
Number of Epochs 14.9 15.06 14.41
Percentage of Efficiency 92% 89% 91%

The rate of learning (η) and the minimum error are the important parameters
in the process of training, for this reason, they are very important for evaluating
the behavior of interval neural network. The minimum error of the IANN can be
very small and the neural network can converge faster than the punctual neural
network with same learning rate, and the efficient of the interval neural network
isn’t lower. The table 3 shows the results of training both networks with different
error rate and with η = 0.2 (learning rate).

New testes was did with interval neural network for four random real syn-
thetic data sets, Q1

n, Q2
m, Q3

k, Q4
l and interval asymmetric data set denoted by

IP 1
n , IP 2

m, IP 3
k , IP 4

l . The networks were trained and tested. The table 4 shows
the results of the training with η = 0.2 and ε = 0.

With these experiences, can be concluded that the inclusion of the interval
mathematics in neural networks has many advantages in addition to the control
of computational errors. The interval neural network was evaluated with sev-

Table 3. IANN vs. Punctual Neural Network with ε variable.

ε = 0 ε = 1 ε = 2

Interval
Number of Epochs 15.34 6.61 6.70
Percentage of efficiency 100% 100% 96%

Punctual
Number of Epochs 14.98 12.14 10.11
Percentage of efficiency 92% 91% 85%

74 R.E. Patiño-Escarcina, B.R. Callejas Bedregal, and A. Lyra

Table 4. IANN vs. Punctual Neural Network with some training sets.

P 1
n e IP 1

n P 2
m e IP 2

m P 3
k e IP 3

k P 4
l e IP 4

l

Interval
Number of Epochs 19.47 45.29 9.64 52.24
% Efficiency 100% 92% 89% 100%

Punctual
Number of Epochs 173.29 46.89 11.12 54.11
% Efficiency 100% 89% 89% 100 %

eral data sets, varying training parameters and the number of epochs is smaller
than the punctual network, the efficiency was good and better. It can be very
important when dealing with real problems. The results of this research are
very encouraging for applying interval mathematic to other models of the neural
networks.

6 Conclusions

Other works was developed in this area [3], [5], [8], [17] but they are solutions
to problems about the interval data like input data for the neural network.
This paper propose the inclusion of interval mathematics in the structure of
the neural network and shows that the performance of the neural network with
interval mathematics is better. It proposes a modification in the neurons but
the structure of the network wasn’t modified with this form, the network is very
simple and the process is natural.

In conclusion, this paper proposes a new model of neural network that gen-
eralize the traditional neural network and has new and better characteristics,
the process of interval data. This approach guarantee an exact and efficient
computation process and find a satisfactory and better solution.

References

1. Alefeld, G., Herzberger, J.:Inroduction to interval computations. Academic Press,
New York, (1983)

2. Alefeld, G., Mayer, G.: Interval analysis – theory and applications. Journal of
Computational and Applied Mathematics 121 (2000) 421-464

3. Baker, M.R., Patil, R.B.: Universal approximation theorem for interval neural net-
works. Reliable Computing 4 (1998) 235-239

4. Barboza, L.V., Dimuro G. P., Reiser R.H.S.: Power Flow with load Uncertainty.
TEMA-Tendências em Matemática Aplicada e Computacional 5 (2004-1) 27-36

5. Beheshti, M., Berrached, A., Korvin, A.D., Hu, C., Sirisaengtaksin, O.: On Interval
Weighted Three-Layer Neural Networks. In The 31st Annual Simulation Sympo-
sium, (1998) 188-195

6. Bock, H. H., Diday, E.: Analysis of Simbolic Data. Exploratory methods for ex-
tracting statistical information from complex data. Springer verlag, (2000).

7. Hayes B.: A lucid Interval. American Science 91 (2003-6) 484-488
8. Ishibuchi., H., Nii, M.: Interval-Arithmetic-Based Neural Networks. In: Bunke, H.,

Kande, A., (Eds.): Hybrid Methods in Pattern Recognition, Series in Machine
Perception and Artificial Intelligence 47 (2001)

Interval Computing in Neural Networks: One Layer Interval Neural Networks 75

9. Kearfott, R.B., Kreinovich V.: Applications of Interval Computations. Kluwer Aca-
demic Publisher (1996)

10. Kohout, L.J., Kim, E.: Characterization of Interval Fuzzy Logic Systems of Con-
nectives by Group Transformation . Reliable Computing 10 (2004) 299-334

11. Kreinovich, V., Scott, F., Ginzburg,L., Schulte, H., Barry, M.R., Nguyen, H.T.:
From Interval Methods of Representing Uncertainty to a General Description of
Uncertainty. In: Hrushikesha Mohanty and Chitta Baral (eds.): Trends in Infor-
mation Technology. Proceedings of the International Conference on Information
Technology CIT’99, Bhubaneswar, India, Tata McGraw-Hill, New Delhi (2000)
161-166

12. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5 (1943) 115-133

13. Moore R.E.: Automatic error analysis. in digital computation, Technical Re-
port LMSD-48421, Lockheed Aircraft Corporation, Missiles and Space Division,
Sunnyvale-CA, january (1959)

14. Moore R.E.: Interval Arithmetic and Automatic Error Analysis in Digital Com-
puting. Ph.D. Thesis, Stanford University, Stanford-CA, (1962)

15. Moore, R.E.: Interval Analysis. Prentice Hall, New Jersey, (1966)
16. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia,

(1979)
17. Rossi, F., Conan-Guez, B.: Multilayer Perceptron on Interval Data. In: Classifi-

cation, Clustering, and Data Analysis (IFCS 2002); abstracts. Cracow, Poland:
Springer, (2002). 427-434, http://apiacoa.org/publications/2002/ifcs02.pdf.

18. Silveira, M.M.M.T., Bedregal, B.R.C.: A Method of Inference and Defuzzifica-
tion Fuzzy Interval. In: The 2001 Artificial Intelligence and Application. Marbella-
Spanish, September (2001)

19. Sunaga, T.: Theory of an Interval Algebra and its Applications to Numerical Anal-
ysis. RAAG Memoirs 2 (1958) 29-46

20. Turksen, I. B.:Interval value fuzzy sets based on normal form. Fuzzy Sets and
Systems 20 (1986) 191–210

21. Voschinin, A. P., Dyvak N. P. ; Simoff S. J. Interval Methods: Theory and Appli-
cation in the Design of Experiments, Data Analysis and Fittin. In: Letzky, E. K.,
(Ed.): Design of Experiments and Data Analysis: New Trends and Results, Antal
Publishing Co., Moscow, (1993)

c_hota@bits-pilani.ac.in

graghu@bits-pilani.ac.in

•
•
•
•
•

•

•
•

•

•

•

•
•
•

•
•

•
•

•

•

•
•

•
•
•
•
•

•

•

•

•

•

•

rmanoharan@yahoo.com

/* R = { set of receivers };S = Source; B = Bandwidth re-
quirement; C = Class of request; M = Minimum number of
receivers that should remain on the tree; P = set of
nodes along the path; L = Number of receivers in set R
i.e. n(R) */

While (R <> {})
{ P = Compute_ShortestPath (S, Ri = 0 to L)
 // P = { S, n1, n2, n3…..Ri }

 n = 0
 while (P(n+1) <> 0)
 {
 Result = Allocate (P(n), P(n+1))
 If (Result == Failure)
 Palt=Search_AltPath(S, Ri, P(n), P(n+1))
 If (Palt = {}) then
 Write “Cannot Allocate”
 Otherwise
 P = Palt
 break
 End if
 End if
 }
}

{kkucuk,mkarakoc}@kou.edu.tr

akavak@kou.edu.tr

α β φ τ

++−=
=

α

−

= =
−= θτα

=

ΣΣ Σ ΣΣ Σ

Loop LDW .D2 *B12++[1],B4
 LDW .D2 *B11++[1],B1
 LDW .D1 *A12++[1],A4
 LDW .D1 *A11++[1],A1
 MPYSP .M2 B4,B5,B6
 MPYSP .M1 A4,A5,A6
 SUBSP .L2X B6,A6,B6
 MPYSP .M2 B6,B3,B8
 ADDSP .L2 B8,B1,B8
 STW .D2 B8,*B11[4]
 MPYSP .M2X B4,A5,B6
 MPYSP .M1X A4,B5,A6
 ADDSP .L1X A6,B6,A6
 MPYSP .M1X A6,B3,A6
 ADDSP .L1 A6,A1,A6
 STW .D1 A6,*A11[4]
 SUB .S2 B0,1,B0
[B0] B .S2 Loop

NOP hasn’t shown in this table

for(i=0;i<5;i++) {
 *(WRP+5)=(*WRP)+((*XRP)*(*ERP)-(*XSP)*(*ESP))*(*mu);
 *(WSP+5)=(*WSP)+((*XRP)*(*ESP)+(*XSP)*(*ERP))*(*mu);
 WRP=WRP+1;WSP=WSP+1;XRP=XRP+1;XSP=XSP+1;
 }

Loop LDW .D1 *A1++[1],A5
 LDW .D2 *B1++[1],B5
 LDW .D1 *A2++[1],A6
 LDW .D2 *B2++[1],B6
 MPYSP .M1X A6,B3,A7
 MPYSP .M2 B6,B3,B7
 MPYSP .M2X B8,A11,A12
 MPYSP .M1 A5,A8,A9
 MPYSP .M2X B5,A10,A13
 SUBSP .L1 A9,A13,A9
 MPYSP .M1 A5,A10,A13
 MPYSP .M2X B5,A8,A14
 ADDSP .L1 A13,A14,A13
 MPYSP .M1 A9,A12,A9
 SUBSP .L1 A7,A9,A7
 STW .D1 A7,*A2[4]
 MPYSP .M1 A13,A12,A9
 SUBSP .L2X B7,A9,B7
 STW .D2 B7,*B2[4];
 SUB .S2 B0,1,B0
[B0] B .S2 Loop

NOP hasn’t shown in this table

−+=Δ

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

beampattern
desired
multipath
interference

for(i=0;i<5;i++) {
 (WRP+5)=0.99(*WRP)-0.01*(*ERP)*((*XRP)*XRRR-
 (*XSP)*XSSS);
 (WSP+5)=0.99(*WSP)-0.01*(*ERP)*((*XRP)*XSSS+
 (*XSP)*XRRR);
 WRP=WRP+1;WSP=WSP+1;XRP=XRP+1;XSP=XSP+1;
 }

0 20 40 60
0

20

40

60

80

100

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

C6701

0 20 40
0

20

40

60

80

100
LMS algorithm ULA configuration C code

convergence time, msec

C6711

0 5 10 15
0

20

40

60

80

100

C6713

0 10 20
0

20

40

60

80

100

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

C6701

0 10 20
0

20

40

60

80

100
LMS algorithm ULA configuration Asembly code

convergence time, msec

C6711

0 5 10 15
0

20

40

60

80

100

C6713

0 20 40 60
0

20

40

60

80

100

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

C6701

0 20 40
0

20

40

60

80

100
LMS algorithm UCA configuration C code

convergence time, msec

C6711

0 5 10 15
0

20

40

60

80

100

C6713

0 10 20
0

20

40

60

80

100

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

C6701

0 10 20
0

20

40

60

80

100
LMS algorithm UCA configuration Asembly code

convergence time, msec

C6711

0 5 10 15
0

20

40

60

80

100

C6713

10 15 20 25
0

20

40

60

80

100

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

C6701

15 20 25
0

20

40

60

80

100
CM algorithm ULA configuration C code

convergence time, msec

C6711

5 10 15
0

20

40

60

80

100

C6713

5 10 15
0

20

40

60

80

100

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

C6701

5 10 15
0

20

40

60

80

100
CM algorithm ULA configuration Asembly code

convergence time, msec

C6711

4 6 8 10
0

20

40

60

80

100

C6713

10 15 20 25
0

20

40

60

80

100

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

C6701

15 20 25
0

20

40

60

80

100
CM algorithm UCA configuration C code

convergence time, msec

C6711

5 10 15
0

20

40

60

80

100

C6713

6 8 10 12
0

20

40

60

80

100

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

C6701

6 8 10 12
0

20

40

60

80

100
CM algorithm UCA configuration Asembly code

convergence time, msec

C6711

4 6 8 10
0

20

40

60

80

100

C6713

6.08 6.1 6.12 6.14 6.16 6.18 6.2 6.22 6.24 6.26
0

20

40

60

80

100

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

SINR, dB

C6701 DSP

0 1 2 3 4 5 6 7
0

20

40

60

80

100

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

SINR, dB

M=5, UCA, CM
M=5, UCA, LMS

M=5, ULA, CM
M=5, ULA, LMS

6.08 6.1 6.12 6.14 6.16 6.18 6.2 6.22 6.24 6.26
0

20

40

60

80

100

SINR, dB

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

C 6713 DSP

0 1 2 3 4 5 6 7
0

20

40

60

80

100

SINR, dB

pe
rc

en
t <

 a
bs

ci
ss

a,
 %

M=5, UCA, CM
M=5, UCA, LMS

M=5, ULA, CM
M=5, ULA, LMS

sn_nitdgp@yahoo.co.in, sn_comp@nitdgp.ac.in,
manish_raushan@indiatimes.com

−
−
−

−
−
−

•
•
•
•

•

•

•
•

•

•

•

•

•

•

•

{fxia,wangzhi,yxsun}@iipc.zju.edu.cn

τ τ τ τ= + +

τ τ τ

τ τ

τ τ τ

τ τ

τ τ
τ τ

=
+

= −

= − + −

= − + − −
+ +

= + +

=
= − ×

susmit@idi.ntnu.no

Efficient Grid Location Update Scheme
for Mobile Ad Hoc Networks

Khaled Ahmed Abood Omer and D.K. Lobiyal

School of Computer and Systems Sciences, Jawaharlal Nehru University,
New Delhi 110067, India

kaa0301@students.jnu.ac.in, dkl@mail.jnu.ac.in

Abstract. Location update schemes are vital for the success of position-
based routing in mobile ad hoc networks. However, efficient location
update schemes have been focus of research for scalability of ad hoc
networks. Therefore, researchers have proposed various location update
schemes. Grid Location Service has been one of the commonly referred
location update scheme in the literature. In this paper, we propose an
efficient grid location update scheme that outperforms the Grid Loca-
tion Service scheme. We use the concept of Rings of squares for location
updates and selective query mechanism for destination query. The sim-
ulation results show that our proposed grid location update scheme has
better percentage of successful queries with smaller location update cost
for updating the location servers. Our proposed location update scheme
also performs location updates faster than the GLS scheme.

Keywords: Location update, Grid Location Service, Rings, Selective
Query, New Grid scheme.

1 Introduction

Mobile Ad Hoc networks (MANET) are a set of autonomous wireless mobile
nodes that do not require a pre-established infrastructure. Each node in the
network acts both as a router and an end system. These nodes cooperate with
each other to forward message without specific user administration or config-
uration. Various routing algorithms have been proposed for MANET to take
care of the challenges posed for message forwarding due to frequent changes in
topology. Many of these routing algorithms use information about the physical
location (position) of the participating nodes [4, 7]. These algorithms are known
as Position based routing algorithms.

Position based routing algorithms assume that each node knows its physical
location using Global Positioning System (GPS) [5]. A node in the network main-
tains database of location information of other nodes. Such a node is referred to
as location database server. Efficient location update schemes [6] are needed for
maintaining up to date information in the location servers. These schemes should
replicate location information to minimize database servers’ failures and network
partitioning [1]. Location update schemes should distribute location information
inside the network in a dynamic, scalable, secure and fair way. Distribution of

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 137–146, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

138 K.A.A. Omer and D.K. Lobiyal

location information should also involve minimum communication overheads in
updating and retrieving of the information.

In this paper, we have proposed a new Grid Location Update scheme. Further,
we have conducted experiments for Grid Location Service and compared its
performance with our proposed scheme for a common network scenario.

Next section describes previous research work done in the area of location up-
date schemes. In section 3, details of proposed new grid location update scheme
are explained. Section 4 discusses, the metrics used for performance evaluation
with their significance. The simulation environment and experimentation details
are given in section 5. Results of the research are discussed and presented in
section 6. The last section concludes the work with its findings.

2 Previous Work

In the literature, Home agent, Quorum based, Grid Location Service, and Dou-
bling Circles [6] are the four most referred location update schemes. In this
section we give overview of Grid location Service update scheme.

Li, Jannotti, De Couto, Karger, and Morris described a new distributed lo-
cation database service called Grid Location Service (GLS) [2]. In this scheme,
they divide the network area into a hierarchy of squares. In this hierarchy, n-
order squares contain exactly four (n-1)-order squares. Each node maintains a
location database of all other nodes within the local first-order square. There-
fore, each node periodically broadcasts its location information within the local
first-order square to update the location database. For other order squares, each
node selects a small set of nodes as its location database servers with ID’s clos-
est and greater than the ID of the node. A node transmits its current location
information using geographic forwarding algorithm to update location servers in
all order squares.

A node sends its new location information to the location servers in different
order squares based on the criteria mentioned above. A node can direct a location
query to a node with the ID nearest to the ID of the destination node in its local
order square. If this query fails, the node continues the search until the highest
order squares are queried.

A node updates its order-i servers after each node movement of a distance
2i−2d. For example, a node updates its order-2 location servers every time it
moves a particular threshold distance d since last update.

3 Proposed Grid Location Update Scheme

In GLS scheme, location updates are performed on location servers distributed
from first- order square to nth order square. Updating and querying location in-
formation to/from Location servers in higher order squares involve more delay.
This delay in high mobile network may adversely affect the network in main-
taining up to date location information and in term of consumption of battery
power. Further, the stringent condition used for selecting a location server (i.e.

Efficient Grid Location Update Scheme for Mobile Ad Hoc Networks 139

the server must have an ID least and greater than the ID of the node) results in
more update failures. This is due to the non-availability of location servers since
at times the condition for selecting a server may not be satisfied for few nodes.
Also in GLS scheme, queries involve high flooding when the search is performed
in higher order squares since there is large zone with more number of nodes to
be examined. When the search is performed in the highest order square, entire
network gets flooded. This can be considered as one of major drawback of GLS.
Therefore, we proposed a new grid scheme to overcome the drawbacks of GLS
scheme.

Our proposed new Grid location update scheme is a distributed location up-
date scheme. In this scheme, we assume that the network area is partitioned into
squares of same size. We introduce the concept of Rings from cellular networks.
As shown in figure 1, rings of squares surround each square. The innermost ring
consists of one square only referred as Center Square or Ring 0. Ring 0 is sur-
rounded immediately by Ring 1, Ring 1 is in turn surrounded immediately by
Ring 2, and so on.

A node with its new location information updates its location servers as
follows. A square that a node visits currently is considered as Ring 0. Therefore,
this node updates all the nodes in Ring 0. In Ring 1, only one location server per
square is updated, i.e. there are 8 locations servers in Ring 1. In Ring 2, only 4
location servers are updated, such as one server in one square in south direction,
another server in a square in north direction, another server in a square in east
direction, and one server in west direction. Similarly, in the Ring 3, and 4 updates
are performed in the same manner as in Ring 2. This is shown in figure 1.

In this scheme, we have used distance based triggering strategy for initiating
an update [1]. In this strategy, a moving node triggers a location update when
a threshold distance is traveled. In our scheme, the distance moved is measured
in terms of number of Rings. Therefore, a moving node triggers an update when
it crosses the boundary of any ring. When a moving node crosses the boundary
of a Ring i, only location servers in rings 0, 1,. . . , i are updated, for example if
Ring 4 is crossed, then location servers in rings 0, 1, 2, 3, and 4 are updated.

We use selective query for a destination node. A query for a destination node
is forwarded from the source to location servers located within the same square
where source node is located or Ring 0 for the source. In case a query fails, the
source forwards the search to location servers in Ring 2. This process continues
until the servers in Ring n (n=4 in our case) have been queried.

4 Performance Metrics

Several update scheme independent metrics are proposed for analyzing the per-
formance of location update schemes. We use the following quantitative metrics
for performance evaluation of network simulated in our experiments. Percentage
of successful updates is defined as the number of successful updates divided by
the total attempts of updates. It shows the ability of an update scheme to pro-
vide up to date location information to be used for efficient routing. An update
scheme with higher percentage of successful updates provides most recent loca-

140 K.A.A. Omer and D.K. Lobiyal

4

3

2

1 1 1

2 1 0 A 1 2 3 4

1 1 1 2

2 1 1 1

3 2 1 0 B 1 2

4 1 1 1

Fig. 1. shows the structure of rings for New Grid scheme. Node A updates its new
location servers’ in rings 0, 1, 2, 3, and 4 (in bold) after crossing the boundaries of
Ring 4 of its old position. Node B queries for node A in the Rings 0, 1,2 or 3 (in italic).

tion information of the nodes. Location update cost is defined as the number
of update messages that participates in originating and forwarding successful
updates per node per clock tick. A scheme having lower location update cost
efficiently uses the scarce resources of the network such as battery power, band-
width, etc. Destination query cost is defined as the number of messages that
participates in originating and forwarding successful queries per node per clock
tick. A scheme having lower destination query cost efficiently uses the scarce re-
sources of the network such as battery power, bandwidth, etc. Average hop count
is defined as the total number of hop count divided by successful updates. It is
approximately the time needed to update the location servers, and signifies the
end-to-end delay involved for a given successful update. A network with lower
average hop count may transmit the location update messages faster. Percentage
of successful queries is defined as the number of successful queries divided by
total attempts of queries. It shows the ability of a scheme to reach a destination
successfully. An update scheme with higher percentage of successful queries is
considered as an efficient update scheme.

5 Simulation and Experiments

We have developed our own programs in C++ programming language to simulate
the proposed work using discrete event simulation technique. Both the location
update schemes are implemented according to the scheme descriptions given in
section 2 and section 3.

5.1 Simulation

In our simulation, a random unit graph is used to represent the network, such
that each node has equal transmission range R. For each graph, n nodes are
randomly distributed in the deployment region (square region), such that all
nodes are allowed to move only within this deployment region. Therefore, n
nodes select their x and y coordinates at random from a given interval [a, b]. The

Efficient Grid Location Update Scheme for Mobile Ad Hoc Networks 141

number of nodes distributed per unit area is constant. Here nodes are uniformly
distributed keeping the density constant. Transmission range of a node is also
considered constant.

Each node moves using a random waypoint mobility model [2]. A node selects
a random destination as its new position. Then this node moves at a constant
speed from its old position to the new position along the line joining these
positions. When the node reaches the destination, it selects a new destination
and starts moving toward it immediately. In the simulations we consider zero
pause time for each node.

The Geographic Distance Routing (GEDIR) is a greedy algorithm [8], has
been used for forwarding update message and destination search messages. Both
the schemes use GEDIR for searching and updating the location servers.

As in [3], no link layer details are modeled here. We assume that links are
collision and contention free and all transmitted messages are correctly received.
Thus each node is assumed to have an infinite-buffer and use store-and-forward
queuing technique.

5.2 Experiments

GLS scheme has considered the length of the first order square side equal to
the transmission range (i.e. 250 meters). The threshold value of distance for
GLS triggering update is set 200 meters for the second order square, 400 meters
for the third order square. Thus for each order we are doubling the distance of
previous threshold value.

In our proposed new grid scheme, we have also considered all squares in the
rings have their side equal to the transmission range (i.e. 250 meters). Where as
the threshold value of distance for triggering update is determined in terms of
rings.

As described in simulation, the mobility model considered for movement of
the nodes is random waypoint model with zero pause time. We have fixed the
speed of nodes to 10 meters per second (simulation clock tick). An experiment
is conducted for 1200 seconds and it is repeated for 20 runs.

We have chosen the implementation parameters same as those used in GLS
scheme [2]. The density of 0.0001 nodes per square kilometer, and the transmis-
sion range of 250 meters are used for experimentation. The number of nodes n
in the network is varying as 100, 200, 300, 400, 500, and 600 nodes.

For the query phase, we examined 500 source-destination pairs selected ran-
domly, where each pair takes one second to perform the query. We start the first
queries after 500 seconds have passed to allow the network to be stable.

6 Results and Discussions

In this section, the results of the experiments measured in terms of the perfor-
mance metrics discussed in section 4 are analyzed. For better understanding of
these results graphs have been plotted and explained.

142 K.A.A. Omer and D.K. Lobiyal

In figure 2, the cost of successful location updates is shown. Here, we can
see that our proposed scheme outperforms GLS scheme by consuming smaller
network resources for updating the location servers compared to that of GLS
scheme. But for 600 nodes GLS scheme has slightly smaller update cost due
to the reduction in successful updates of GLS scheme caused by scattering of
servers. In GLS the location servers are scattered in different squares of the
network (specially for higher order squares), where as in the new grid scheme
the servers are available in the surrounding rings.

100 150 200 250 300 350 400 450 500 550 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of nodes

U
pd

at
e

m
es

sa
ge

s
/n

od
e/

su
cc

es
sf

ul
 u

pd
at

e

GLS
NewGrid

Fig. 2. Update cost.

Figure 3 gives percentage of successful updates. In general, as the number
of nodes in the network increases, the successful updates remain almost same.
It describes that the proposed scheme has better successful updates than GLS.
This is because, in GLS scheme a node has only one location server for each
square of the three squares of order-i square with ID of the server be the least
and greater than that of the node. The probability of finding this server in GLS
scheme is less than that of finding servers for the proposed scheme.

Figure 4 gives the percentage of successful queries. In general, as the number
of nodes in the network increases, the successful queries decrease for GLS whereas
it remains almost the same for our proposed scheme. It shows that GLS has
smaller successful queries than the proposed scheme. This is because, in GLS
scheme a node has one location server for each square of the three squares of
order-i square.

Our proposed grid scheme outperforms GLS scheme, even if a back off in case
of failure is considered for GLS scheme. The result of GLS scheme with using
back off is also shown which almost replicates that of the original GLS scheme [2].

Efficient Grid Location Update Scheme for Mobile Ad Hoc Networks 143

100 150 200 250 300 350 400 450 500 550 600
0

10

20

30

40

50

60

70

80

90

100

Number of nodes

%
 s

uc
ce

ss
fu

l u
pd

at
e

GLS
NewGrid

Fig. 3. Percentage of Successful Updates.

100 150 200 250 300 350 400 450 500 550 600
0

10

20

30

40

50

60

70

80

90

100

Number of nodes

%
 s

uc
ce

ss
fu

l Q
ue

ry

GLS
NewGrid
GLSBackoff

Fig. 4. Percentage of successful queries.

The cost of successful queries in the proposed scheme is slightly more than that
of GLS scheme as shown in figure 5. But we believe that this is acceptable since
we have high percentage of successful queries in our scheme compared to the
GLS scheme.

144 K.A.A. Omer and D.K. Lobiyal

100 150 200 250 300 350 400 450 500 550 600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of nodes

Q
ue

ry
 m

es
sa

ge
s

/n
od

e/
su

cc
es

sf
ul

 u
pd

at
e

GLS
NewGrid

Fig. 5. Query Cost.

Also the proposed scheme is faster in updating its location servers than GLS
scheme. Figure 6 illustrates the average hop count for the two schemes. In gen-
eral, as the number of nodes in the network increases, average hop count in-
creases. However, the hop count for new Grid scheme is minimum and maximum
for GLS scheme. This is because in GLS scheme, location servers are scattered in
different squares of the network, where as in the new grid scheme the servers are
available in the surrounding rings. Also in GLS scheme, the successful updates
are smaller than that in our proposed scheme.

We have investigated the impact of varying speed on the performance of
these schemes. It is clear that a network with high speeds results in high location
updates that consume the scarce resources of the network more. From figure 7
we can notice that location update cost of our proposed scheme is much less than
that of GLS scheme for increasing speed. At the same time, we can see that the
successful queries of our scheme are high compared to that of GLS scheme. This
is achieved at small update cost of our scheme as shown in figure 8 therefore,
our scheme is superior to GLS.

7 Conclusion

In this paper, we have introduced an efficient new Grid location update scheme.
We have also conducted a performance study of GLS location update scheme
with our new Grid location update scheme. Simulations are run for different sce-
narios based on density-based approach. According to the results and discussion
above, we found that the new Grid scheme outperforms GLS scheme in terms
of successful updates, location update cost, and hop counts. Also our scheme

Efficient Grid Location Update Scheme for Mobile Ad Hoc Networks 145

100 150 200 250 300 350 400 450 500 550 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of nodes

A
ve

ra
ge

 h
op

 c
ou

nt

GLS
NewGrid

Fig. 6. Average Hop Count.

10 12 14 16 18 20 22 24 26 28 30
0

0.5

1

1.5

speed

U
pd

at
e

m
es

sa
ge

s
/n

od
e/

su
cc

es
sf

ul
 u

pd
at

e

GLS
NewGrid

Fig. 7. Location Update Cost vs. Speed.

performs better than GLS scheme in terms of location update cost as the speed
of the nodes increases. Finally, for the successful queries, the proposed scheme
also outperforms the GLS scheme. Therefore, we believe that our proposed grid
location update scheme is more scalable compared to GLS scheme for large Ad
Hoc networks.

146 K.A.A. Omer and D.K. Lobiyal

10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

50

60

70

80

90

100

110

speed

%
 s

uc
ce

ss
fu

l Q
ue

ry

GLS
NewGrid

Fig. 8. Percentage of Successful Query vs. Speed.

References

1. G. Karumanchi and S. Muralidharan and R. Prakash: Information dissemination
in partitionable mobile ad hoc networks, in Proc. of IEEE Symp. On Reliable Dis-
tributed Systems, Lausanne, Oct. 1999

2. J. Li and J. Jannotti and D.S.J. De Couto and D.R. Karger and R. Morris: A
scalable location service for geographic ad hoc routing, in Proc. of MOBICOM
2000, pp.120-130

3. K.N. Amouris and S. Papavassiliou and M.Li: A position based multi-zone routing
protocol for wide area mobile ad-hoc networks, in Proc. of 49th IEEE Vehicular
Technology Conference, 1999, pp.1365-1369

4. M. Mauve and J. Widmer and and H. Hartenstein: A survey on Position-Based
Routing in Mobile Ad Hoc Networks, IEEE Network, November/December 2001,
pp.30-39

5. NAVSTAR GPS operation:http://tycho.usno.navy.mil/gpsinfo.htm, 1999
6. Stojmenovic I.: Location updates for efficient routing in ad hoc wireless networks,

In: Stojmenovic I. (Eds.): Handbook of Wireless Networks and Mobile Computing,
Wiley, 2002, pp.451-471

7. Stojmenovic: Position-Based routing in ad hoc networks, IEEE Communication
Magazine, July 2002, pp.128-134

8. X. Lin and Stojmenovic I.: Geographic Distance Routing in ad hoc wireless networks,
Technical report TR-98-10, SITE, University of Ottawa,1998

asalem@faculty.sullivan.edu, AK@louisville.edu

•

•

•

•

χ

γ

→ ∞ =

χ
χ
γ γ

→∞ =

χ χ

→ ∞ =

χ

ψ ψ ψ ψ ψ
∞

≤= Ψ

γ

γ
=

+

ψ ψ

γ γ
γ γ γ

= −

=
+ −− = =

+ + +

γ

ψ)
ψ

ψ ψ
ψ) ψ ψ

ψ

ψ
+

= =
+

ψ ψ ψ

∞

≤ ≥Ψ

ψ ψ ψ ≤ Ψ

=

=

μ= −

ψ ψ ψ ≤= ≡ Ψ

ψ ψ ψ

∞

≤= ≡ ≥Ψ

ψ
ψ

ψ ψ
μ

+
= −

ψ ψ

ψ ψ ψ
ψω

+

+ −∂ = → −
∂

ψ
ψ

ω ψ ω ψ ψ
ψ

= → = −
+

μ

ψ ψ ψ ≤ ≥Ψ

μ
ψ

ψ
ψ ψ

≤ ≤Ψ

ψψ ≤ =Ψ
Ψ

ψ ψ≤ =Ψ
Ψ

μ ψ ψ
ψ ψ ψ
μ

μ
−

=
− + Ψ

μ μψ ψ ψ
ψ ψ

ψ
μ

μ μ
−

= − =
Ψ Ψ

]μψψ μμ
μμ

− = − =Ψ Ψ

μ μ μ− = =Ψ Ψ

μ = ≤Ψ

ψ ψ ψ
ψ ψ ψ
ω

ω
− =

− +

Ψ

Ψ

ψ ψ ψ
ψ ψ

ψ
ω

ω ω
− = − =

Ψ

Ψ Ψ

ψψ
μ μ

− = − =Ψ

Ψ Ψ

μ μ
− = − =

Ψ Ψ
Ψ

μμ
− = − =Ψ Ψ

μ =
−
Ψ

ψ

ψ ψ ψ ψ ψ

ψ ψ

ψ ψ ψ

− ≤ ≤

= ≤ >

− >
−

ψ

ψ

≤
=

− >
−

ηλ −−=

ηλ −−=

ηλ −−=

= −

= −

ψ = −

ψ = −

ηλψ −−−=

Ψ

Ψ

ψ = −
λ η− −= −

Ψ

Ψ

Ψ

λ η
Ψ

λ η Ψ

Ψ Ψ

Ψ
Ψ

jayakumar@cs.annauniv.edu

drcc@annauniv.edu

•
•
•

gpanneerpandi@sify.com, rp@annauniv.edu

Clock Synchronization
in IEEE 802.11 Ad Hoc Networks

S.S. Thakur, S. Nandi, D. Goswami, and R. Bhattarcharjee

Indian Institute of Technology, Guwahati
Guwahati-781039, India

{sst,sukumar,dgoswami,ratnajit}@iitg.ernet.in

Abstract. In an Independent Basic Service set (IBSS), of IEEE 802.11
standards, it is important that all stations are synchronized to a common
clock. When the number of stations in an IBSS is very small, there is a
negligible probability that stations may go out of synchronization. More
the stations, higher is the probability of getting out of synchronization.
Thus, the current IEEE 802.11’s synchronization mechanism does not
scale; it cannot support a large-scale ad hoc network. To alleviate the
synchronization problem, “Adaptive Time Synchronization Procedure”
(ATSP) is proposed [1]. ATSP is scalable up to 300 nodes. As the number
of nodes increases beyond 300 again synchronization become problem. In
this paper, we modify ATSP to further increase the scalability of IEEE
802.11 ad hoc networks. The modified algorithm divides nodes in priority
levels depending on their clock speed. This algorithm allows nodes only
with highest priority to contend for beacon transmission. Reduction in
beacon contention increases scalability of IBSS.

1 Introduction

Due to the widespread availability of inexpensive hardware and its relatively sta-
ble and complete protocol definition, the IEEE 802.11 standards [3] is the default
choice for use in ad hoc networking research. Standard supports two operating
modes; one in infrastructure mode and the other in ad hoc mode. For infras-
tructure operating mode, a station serves as the access point and responsible for
buffering and forwarding traffic to stations in its basic service set (BSS). When
the infrastructure does not exist or does not work, the ad hoc mode is useful. An
ad-hoc mode of IEEE 802.11 is called an Independent Basic Service Set (IBSS),
in which all of the stations are within each other’s transmission range.

Performance analysis of IEEE 802.11 wireless LAN has been reported in [6, 2,
9, 13]. Reference [6] evaluates the performance of the Distributed Coordination
Function (DCF) of IEEE 802.11 standards and proposes an adaptive contention
window protocol to replace the exponential backoff protocol. In [2] and [13], the
saturation throughput of DCF is analyzed using different techniques. The effect
of network size and traffic patterns on the capacity of ad hoc wireless networks
is examined in [9], where the locality of traffic is shown to be a key factor of
scalability of ad hoc networks.

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 180–189, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Clock Synchronization in IEEE 802.11 Ad Hoc Networks 181

Most of the works are focused on the IEEE 802.11 MAC protocol. Scalability
issue is addressed only in [1]. Our paper is extending the work done in [1] on the
scalability issue of IEEE 802.11 ad hoc networks. Envision that in a classroom
or in an auditorium, more than 100 students turn on their laptops to form
an IBSS. Will the ad hoc network work properly? This question is not trivial.
In [1] scalability of IEEE 802.11 ad hoc networks from the viewpoint of clock
synchronization is analyzed. Our paper modifies ATSP proposed in [1] to further
increase the scalability of IEEE 802.11 ad hoc networks.

Clock synchronization in an IBSS is needed for power management and syn-
chronization of frequency hopping. In power management each station uses its
clock to determine the beginning and the end of the ad hoc traffic indication
(ATIM) window. In Frequency Hopping Spread Spectrum (FHSS), each station
determines when to “hop” to a new channel according to its timer. Due to beacon
contention, the stations may fail to successfully transmit beacon frames [1]. As
a result, some stations in the IBSS may become so out of synchronization with
others that power management or FHSS can not work properly. To alleviate the
asynchronism problem and increase the scalability of IEEE 802.11 based ad hoc
networks, we have proposed the simple algorithm and shown its performance.

2 Clock Synchronization

This section reviews the Timing Synchronization Function (TSF) as specified in
the IEEE 802.11 specifications [3], and comments on a few related clock syn-
chronization algorithms.

2.1 The TSF of IEEE 802.11

According to the IEEE 802.11 specifications [3], the TSF in an IBSS shall be
implemented via a distributed algorithm that shall be performed by all of the
members of the IBSS. Each station in an IBSS shall adopt the timing received
from any beacon or probe response that has a TSF value later than its own TSF
timer.

Each station maintain a TSF timer with modulus 264 counting in increments
of microseconds (μs). Stations expect to receive beacons at a nominal rate. Sta-
tions periodically exchanging timing information through beacon frames, which
contains a timestamp among other parameters, achieve clock or timing syn-
chronization. Each station in an IBSS shall adopt the timing received from any
beacon that has a TSF time value (the timestamp) later than its own TSF timer.
All stations in the IBSS adopt a common value, aBeaconPeriod, which defines
the length of beacon intervals or periods. This value, established by the station
that initiates the IBSS, defines a series of Target Beacon Transmission Times
(TBTTs) exactly aBeaconPeriod time units apart. Beacon generation in an IBSS
is distributed; all stations in the IBSS participate in the process. At each TBTT,
each station.

182 S.S. Thakur et al.

Table 1. Beacon generation window and slot time.

FHSS DSSS Infrared

aCWmin 15 31 63
aSlotTime 50μs 20μs 8μs

1. Calculates a random delay uniformly distributed in the range between zero
and 2.aCWmin.aSlotT ime. (The ‘aCWmin′ and ‘aSlotT ime′ parameters
are specified in Table 1)

2. If a beacon arrives before the random delay timer has expired, the station
cancels the pending beacon transmission and the remaining random delay.

3. The station waits for the period of the random delay.
4. When the random delay timer expires, the station transmits a beacon with

a timestamp equal to the value of the station’s TSF timer.
5. Upon receiving a beacon, a station sets its TSF timer to the timestamp of the

beacon if the value of the timestamp is later than the station’s TSF timer.
(It is important to note that clocks only move forward and never backward.)

Thus, as illustrated in Figure 1, at the beginning of each beacon interval,
there is a beacon generation window consisting of W + 1 slots each of length
aSlotT ime, where W = 2.aCWmin. Each station is scheduled to transmit a
beacon at the beginning of one of the slots. For FHSS, the beacon size is at least
550 bits. Therefore, for the data rate of 1Mbps the beacon length is 11 slots.
The beacon length is 7 slots if the data rate is 2Mbps.

Beacon Interval

Beacon Generation Window
 (W+1 slots)

Fig. 1. Beacon generation window.

2.2 Asynchronism

Clock synchronization is important for power management in both DSSS and
FHSS as well as for the synchronization of hopping sequence in FHSS. If the
clocks of two stations are so badly out of synchronization that either power
management or FHSS cannot work properly, the two stations are said to be
out of synchronization. If there are pairs of stations out of synchronization in an
IBSS, the network is said to be in hazardous asynchronism. In this subsection, we
will discuss the types of asynchronism. Let Δ be the maximum clock difference
tolerable by power management and FHSS.

Two clocks are out of synchronization if their times are different by more
than Δ. Two stations are out of synchronization if their clocks are out of syn-
chronization. Assume that the clocks in an IBSS are all different in speed (or

Clock Synchronization in IEEE 802.11 Ad Hoc Networks 183

accuracy). Thus, there is a unique fastest station, whose clock is fastest in the
system. We are particularly interested in two conditions of asynchronism.
Fastest-Station Asynchronism: This refers to a situation where the clock
of the fastest station is ahead of the clocks of all other stations by more than
Δ units of time. Fastest-station asynchronism may occur in an IBSS because
under the IEEE 802.11 timing synchronization function, stations can only set
their timers forward and never backward. Slower clocks synchronize with faster
clocks, but faster clocks do not synchronize themselves with slower clocks. Thus,
if the fastest station fails to transmit beacons for too many beacon intervals, its
clock will be ahead of all other clocks by more than Δ.
Global Asynchronism: Given a value k between one and one hundred, k
percent global asynchronism (or simply k percent asynchronism) refers to the
situation that at least k percent of the n(n−1)

2 pairs of stations are out of syn-
chronization

2.3 Related Work

Different synchronization method called reference broadcast synchronization
(RBS) is presented in [11] for broadcast networks, especially for wireless ad hoc
networks. A reference broadcast or beacon does not contain an explicit times-
tamp; instead, receivers use its arrival time as a point of reference for comparing
their clocks. RBS uses nontrivial statistics methods such as regression to estimate
the phase offset and clock skew of any two nodes.

Mills [10] proposes a Network Time Protocol (NTP) to synchronize clocks
and coordinate time distribution in the Internet system. NTP cannot be used
for sparse ad hoc networks, which can be partitioned. To deal with partitioning
in sparse ad hoc networks, a time synchronism algorithm is proposed in [12].

Work on scalability issue of IEEE 802.11 ad hoc networks is done in [1]. It
pointed out the clock asynchronism problem faced by a large-scale IBSS and
have proposed a simple scheme to fix it. Analysis of asynchronism and analysis
of beacon contention is also done in [1]. In [1] adaptive timing synchronization
procedure (ATSP) is proposed to solve the scalability issue of IEEE 802.11 ad
hoc networks. ATSP does not solve the scalability issue completely; there are
some problems with ATSP that are mentioned below.

1. In ATSP the fastest station is, to some extent, in charge of timing synchro-
nization. If the fastest station leaves the IBSS because of mobility or other
reasons, the second fastest node become the fastest. I(i) is assigned to each
station i that range between 1 and Imax (maximum value of I(i)). Before
failure of the fastest node all the stations have their I(i) set to Imax. Ac-
cording to ATSP the I(i) is decreased by one in every Imax beacon interval,
it takes at most I2

max beacon interval for second fastest node to take control.
It may lead to asychronization.

2. ATSP is scalable up to 300 nodes. As the number of nodes increases be-
yond 300 global asynchronism and fastest node asynchronism again become
a problem. As the fastest node fails, all the nodes that are satisfying the

184 S.S. Thakur et al.

condition will contend for beacon transmission. As the number of nodes is
more so good number nodes will satisfy the condition and contend for bea-
con transmission, this will lead to collision. The main problem is contention
after failure of the fastest node. We need priority for beacon transmission
among the nodes based on clock speed to solve the problem of contention.

3 Modified Adaptive Time Synchronization
Procedure(MATSP)

In this paper, we have modified ATSP to alleviates the problems of ATSP men-
tioned in earlier section. The proposed algorithm in this paper, consider how
to reduce beacon contention by dividing nodes in several priority levels based
on their clock speed. Faster nodes should have higher priority for beacon trans-
mission than slower nodes. Nodes should change the priority level dynamically
depending upon the received timestamp. Following variables are used in the
algorithm, their definitions are noted below.

I(i) – We assign to each station i an integer I(i) that determines how often
each station shall participate in beacon contention. That is station i contend
for beacon transmission once in every I(i) beacon periods. Therefore, smaller
the value of I(i), higher the station’s chance of beacon transmission. Let the
maximum possible value of I(i) be Imax.

P (i) – We calculate the priority value P (i) for each station i. Priority value
is calculated in each beacon interval using time stamp received and timer value
of node. Detail procedure of priority calculation will be described later.

C(i) – Let C(i) be a counter at station i that counts number of beacon
intervals since last synchronization.

Algorithm MATSP

1. As a station joins the IBSS, it will receive beacon frame and set its timer. For
each station i, let I(i) be random number between 1 and Imax. Let C(i) := 1
and P (i) := 0.

2. In each beacon interval every station participates in beacon contention if
P (i) = 0 and C(i) mod I(i) = 0.

3. Whenever station i receives a beacon with a timing value later than its own,
the station sets its timer to this value, increases I(i) by 1 if I(i) < Imax,
calculates the value of P (i) and sets C(i) := 0.

4. If station i does not receive any beacon frame with timing value later than its
own for Imax consecutive beacon interval it decrements I(i) by 1 if I(i)>1,
it also decrements P (i) by 1 if P (i) > 0 and sets C(i) := 0.

5. At the end of a beacon interval, each station increases its C(i) by 1.

3.1 Silent Feature of MATSP

This subsection explains the working of algorithm.

Clock Synchronization in IEEE 802.11 Ad Hoc Networks 185

Transmission of Beacon by Fastest Station: Second step in algorithm al-
lows only those nodes to contend for beacon transmission, who lies in highest
priority level and satisfy the condition C(i) mod I(i) = 0. Here division in
priority levels reduces the contention for beacon transmission.

New Station Successfully Transmit Beacon: Nodes change their priority
value dynamically depending on received timestamp. Every time a new node
successfully transmit beacon new priority value is assigned to other nodes.
Procedure for the priority P (i) calculation is given below.
Procedure for P (i) Calculation
In IEEE 802.11, specification requires clock accuracy to be within ±0.01%.
Assume that the values of clock accuracy of the n stations are uniformly
distributed over the range [−0.01%, 0.01%]. In the worst case, two clocks
satisfying the 802.11 requirement may differ by 0.02%. For the length of a
beacon interval, T=0.1s, two clocks with a difference of d in accuracy will
drift away from each other by d ∗ T , and in worst case, two clocks satisfying
the 802.11 requirement may differ by 0.02% ∗ 0.1s=20μs.
We can divide the nodes in m priority level, by calculating difference between
time stamp received and their timer value. If the clock is synchronized then
the worst case difference will be 20μs. Let us divide all the nodes in 0 to
9 priority levels. Nodes having difference between 0 to 2μs with timestamp
received have 0 priority value and those having difference between 18 to
20μs difference have 9 priority value. Detailed P (i) calculation procedure is
described below.
Let T (i) be the timer value of each station i and Tr is received timestamp
value. We calculate the difference between Tr and T (i)
1. Calculate D(i) = Tr − T (i).
2. Set priority value of each node P (i) := [D(i)/C(i)]/[20/m].

The maximum clock drift in one beacon interval being 20μs. If the clocks
are synchronized in every beacon interval then D(i) will range from 0 to
20μs. If the clocks are not synchronized in every beacon interval then D(i)
is accumulated clock drift and C(i) keeps a count of the number of intervals
from last successful reception of beacon. We have used C(i) in expression
since the priority levels are to be decided on the basis of clock drift in one
beacon interval. The division by 20/m in the above expression enables us to
divide nodes into a maximum of m priority levels. That is, the nodes differing
by more than 20/mμs will be lying in different priority levels. In this way
all the nodes are divided in m priority levels that range in [0, m − 1].

Newly Joined Fastest Station Competing for Synchronization: If new-
ly joined station don’t receives timestamp later than its own, it assume that
it is the fastest station at that moment. So it should contend for beacon
transmission and take over the control of clock synchronization. This case has
been taken care in step four of the algorithm by reducing P (i) and I(i) values.
In turn the fastest node will take over control of clock synchronization.

Once the clocks have been synchronized, the fastest station will not receive
a timing value greater than its own; its I(i) − value will gradually decrease to

186 S.S. Thakur et al.

1 and stay there. The other stations will gradually increase their I(i) − value
until they reach Imax. Define a stable state to be one in which the fastest station
I(i) − value has reached 1 and the other stations have reached Imax. Once the
IBSS reaches a stable state, the fastest station has a very high probability of
successfully sending a beacon and thereby synchronizing all the other stations.

4 Simulation Setup

To verify performance and demonstrate the scalability of our proposed algorithm,
we have developed a simulation program in C. The simulator follows the protocol
details of beacon generation and contention. The parameters are specified in
Table 2.

The value of aBeaconPeriod is set to 0.1s as recommended by the IEEE 802.11
specification. According to the IEEE 802.11 specification the time allocated for
the physical layer (PHY) to hop from one frequency to another frequency in
FHSS is 224μs. This value gives an upper bound on Δ, the maximum tolerable
clock drift; for if the clocks of two stations are 224μs apart, the faster station
may have hopped to the new frequency and started transmitting while the slower
station is still listening to the old frequency and therefore, missing the frame.
The station that starts IBSS sets the values of Imax and number of priority
levels.

Global Asynchronism

Given a value k between one and one hundred, k percent global asynchronism
refers to the situation that at least k percent of the n(n− 1)/2 pairs of stations
are out of synchronization. The IEEE 802.11 specification requires clock accu-
racy to be within ±0.01%. In the worst case, two clock satisfying the 802.11
requirement may differ by 0.02%. Assume that the values of clock accuracy of
the n stations are uniformly distributed over the range [−0.01%, 0.01%]. Out
of the n(n − 1) pairs of stations, at least n2/8 pairs, or more than 25 percent,
are different by at least d=0.01% in their clock accuracy. Thus, a condition of
d-global asynchronism with d=0.01% will result in a condition of 25% global
asynchronism in which 25 percent of links may experience frame losses due to
asyschronism.

Table 2. Simulation Setup.

Parameter Value
Beacon generation window (W) 30 slots

Beacon length 7 slots
Propagation delay 1μs

aBeaconPeriod 0.1s
Clock accuracy ±0.01%

Δ 224μs
Imax 10

Priority Levels 20

Clock Synchronization in IEEE 802.11 Ad Hoc Networks 187

For the length of a beacon interval, T = 0.1s, two clocks with difference of
d in accuracy will drift away from each other by d · T = 0.01% · 0.1s = 10μs.
Thus, with Δ = 224μs, d = 0.01% and T = 0.1s, we have τ =

⌈
δ

d·T
⌉

= 23. If
no beacon is successfully sent in 23 consecutive beacon intervals then it result
in condition of 25% global asynchronism.

In our simulation, the inter-asynchronism time is measured in two ways. First,
we count the number of consecutive beacon intervals during which no beacons
are successfully sent. When this number exceeds τ = 23, we record an event of
asynchronism. Second, way we count the number of pairs of stations which are
out of synchronization. Whenever there are more than 25 percent of pairs out
of synchronization, we record an incident of global asynchronism.

Fastest-Node Asynchronism

Assume that the clock of the fastest station is faster in speed(or accuracy) than
the clocks of the second fastest station by d, where d = 0.003%. In the simulation,
we let the fastest clock and the second fastest clock differ in accuracy by d, while
the other clocks are uniformly distributed in the range of [−0.01%, ρ2] where ρ2

is the accuracy of the second fastest clock. We compare the timing value of the
fastest station with that of other stations. Whenever the fastest node is out of
sysnchronization will all other stations, we record an incident of asysnchronism.

Next, we examine fastest-node asynchronism by simulation assuring that all
the clocks are uniformly distributed in accuracy between −0.01% and +0.01%.
Again we follow the same procedure. We compare the timing value of the fastest
station with that of other stations. Whenever the fastest node is out of syschro-
nization will all other stations, we record an incident of asynchronism. We tested
the performance of our algorithm in static IBSS and dynamic IBSS.

4.1 Static IBSS

For global asynchronism, we adopted d = 0.01% and τ = 23 (maximum number
of consecutive interval in which no beacon is sent) and chose 10 for Imax and 20
priority levels. For diffrent values of n ≤ 1500, we ran simulation for 20 times. Not
a single incident of global asynchronism was observed. We also ran simulation for
fastest-station asynchronism, with d = 0.003% and with completely randomized
clocks, and once again observed not a single case of asynchronism.

4.2 Dynamic IBSS

We evaluated the performance of our algorithm for dynamic IBSS. In our algo-
rithm the fastest station is, to some extent, in charge of timing synchronization.
Should the fastest station leave the IBSS because of mobility or other reasons,
the second fastest node will become the fastest. Now the restabilization is done
and finally the second fastest station will take control. Restabilization does not
mean asynchronism. In order to understand the probability of asynchronism in

188 S.S. Thakur et al.

the process of restabilization, we let the fastest station leave and return to the
IBSS once every six minutes. That is, it alternately leaves the IBSS for three
minutes and returns for next three minutes. We ran the simulation for different
values of n ≤ 1000.

As expected, no asynchronism was caused by a fastest node joining the IBSS.
Not a single instance of asynchronism was observed for different values of n ≤ 900
for 100 rounds of restabilization. The algorithm is behaving nicely up to 900
nodes. When simulation is run with 1000 and 1100 nodes sometime its running
without any single instance of asynchronism. But sometime during restabiliza-
tion global asynchronism occurs and that asynchronism continues till the end of
simulation. We can say that the algorithm is behaving nicely up to 900 nodes in
dynamic IBSS with 20 priority levels.

5 Comparison with ATSP

In this section comparison of our proposed algorithm with ATSP is reported.

1. If the fastest node fails – In ATSP, if the fastest node fails all nodes contend
for beacon transmission. As there is no priority among the nodes in ATSP,
so there will be high contention for beacon transmission. Proposed algorithm
divides the nodes in m priority levels. This will reduce the contention by m
times. we can say this algorithm converge m time faster than ATSP. If the
fastest node fails, only nodes having highest priority (lowest priority value)
will contend for beacon transmission. The second fastest node have higher
priority than other nodes, it will take the control of beacon transmission in
at most 2 ∗ Imax beacon interval. So we can say that proposed algorithm
converges very fast as compared to ATSP.

2. Scalability – ATSP is not scalable for more than 300 nodes because of higher
contention. Proposed algorithm divide the nodes in m priority level and
this division of nodes in m priority level will reduce the contention to 1/m.
Since contention is reduced so it will increase the scalability of IBSS. This
algorithm can easily support 1000 nodes in an IBSS. If we take more priority
level scalability of IBSS will be more. We can set number of priority level
depending upon the number of nodes in IBSS. Due to limited bandwidth
of IEEE 802.11 ad hoc networks and the limit of MAC protocol, this much
scalability is more then sufficient to IBSS.

6 Conclusion

In [1] clock synchronization in IBSS is addressed and they have proposed ATSP
that is able to synchronize 300 nodes. We have identified problems exist in ATSP
and modified ATSP to solve the problems. We have increased the scalability of
IBSS by introducing dynamic priority among the nodes for beacon contention.
As the number of nodes in IBSS increases, contention for beacon transmission
also increases. In the proposed algorithm we divide the nodes in priority lev-
els depending on their clock speed. Now nodes with highest priority will only

Clock Synchronization in IEEE 802.11 Ad Hoc Networks 189

contend for beacon transmission. Reduction in beacon contention will increase
scalability of IBSS. So the algorithm proposed in this paper solves asynchronism
problems faced by large-scale IBSS more effectively.

References

1. Huang, L., Lai, T. H.: On the Scalability of IEEE 802.11 Ad Hoc Networks. In
MOBIHOC (2002) 173-182.

2. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination
function. In IEEE Journal on Selected Areas in Communications. Vol. 18. 3(2000)
535-547.

3. – Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) spec-
ification. In IEEE Standard 802.11 (1999).

4. Stemm, M., Gauthier, P., Harada, D., Katz, R. H.: Reducing power consumption of
network interfaces in hand-held devices. In 3rd International Workshop on Mobile
Multimedia Communications (1996).

5. Lamport, L.: Time, clocks and the ordering of events in distributed systems. Com-
munications of the ACM. Vol. 21. 7(1978) 558-565.

6. Bianchi, G., Fratta, L., Oliveri, M.: Performance evaluation and enhancement of
the CSNA/CA MAC protocol for 802.11 wireless LANs. In PIMRC (1996) 392-396.

7. –: Higher-Speed Physical Layer Extension in the 2.4 GHz Band. In IEEE Std
802.11bi (1999).

8. Ebert, J. P., Burns, B., Wolisz, A.: A trace-based approach for determining the
energy consumption of a WLAN network interface. In European Wireless (2002)
230-236.

9. Li, J., Blake, C., Couto, D. S. J. D., Lee, H. I., Morris, R.: Capacity of ad hoc
wireless networks. In 7th ACM International Conference on Mobile Computing
and Networking (2001).

10. Mills, D. L.: Internet time synchronization: the network time protocol. In Global
States and Time in Distributed Systems. IEEE Computer Society Press (1994).

11. Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using
reference broadcasts. In the Fifth Symposium on Operating Systems Design and
Implementation (2002).

12. Romer, K., Zurich, E.: Time synchronization in ad hoc networks. In Proceedings
of MobiHoc (2001).

13. Tay, Y. C., Chua, K. C.: A capacity analysis for the IEEE 802.11 MAC protocol.
ACM/Baltzer Wireless Networks. Vol. 7. 2(2001) 159-171.

{dpdube,srnarayanan}@idrbt.ac.in

On Reduction of Bootstrapping Information
Using Digital Multisignature

Sadybakasov Ulanbek1,�, Ashutosh Saxena2, and Atul Negi3

1 Sebat Educational Institution,
Prospect Chui 219/6, Bishkek, 720001, Kyrgyzstan

ulanbek@sebat.edu.kg
2 Institute for Development and Research in Banking Technology, IDRBT,

Castle Hills, Masab Tank, Hyderabad, (A.P.) 500 057, India
asaxena@idrbt.ac.in

3 Department of CIS, University of Hyderabad,
Gachibowli, Hyderabad (A.P.) 500 046, India

atulcs@uohyd.ernet.in

Abstract. The bootstrapping of security mechanisms for large-scale in-
formation systems is an important and critical exercise. Several Trusted
Third Parties (TTPs) are being setup world wide for establishing authen-
ticity. They primarily use Hardware Security Module (HSM), tamper
proof device, for signing the user’s certificates. In order to have Disaster
Recovery Process (DRP) in place, cloning of these bootstrapping tam-
per proof HSMs is desirable. For this, one needs to have a set of effective
protocols such that any certificate issued by the original or by the cloned
HSM can be distinguished and any misuse be avoided.
In this work, we present a set of protocols, which are enhancements to the
existing scheme proposed in [1], by incorporating digital multisignature
so that the bootstrapping information size and the cost of certificate
verification is reduced.

Keywords: public key infrastructure (PKI), HSM, multisignature

1 Introduction

The fast development of worldwide distributed information systems and commu-
nication networks (e.g. the World Wide Web on the Internet) and their use for
electronic commerce leads to security problems whose solution becomes increas-
ingly important as the use of these systems grows [2]. While for some small-scale
systems security can perhaps be viewed simply as a desirable feature, integral
security is a mandatory requirement for any large-scale information system to
be merely operational, and for security-critical systems to be acceptable to its
users.

The article by Maurer et al [3] illustrates in a simple manner several in-
teresting aspects of distributed system security: the minimal requirements and
� This work was carried out when the author was pursuing M. Tech. degree in Com-

puter Science at University of Hyderbad, Hyderabad (A.P.), India.

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 198–204, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Reduction of Bootstrapping Information Using Digital Multisignature 199

trust relations necessary for achieving a secure channel between two entities
in a distributed system, the timing constraints on the involved communication
channels, the duality between authenticity and confidentiality, and the distin-
guishing features between secret-key and public-key cryptography. They also
propose a black-box view of cryptographic primitives, showing that a digital sig-
nature scheme can be interpreted as the dual of a symmetric cryptosystem and
a public-key cryptosystem can be interpreted as the dual of a message authen-
tication code.

Cryptographic primitives and trust relations are both interpreted as trans-
formations for channel security properties, and a cryptographic protocol can be
viewed as a sequence of such transformations of both types. A protocol thus
makes it possible to transform a set of secure channels established during an
initial setup phase, together with a set of insecure channels available during op-
eration of the system, into the set of secure channels specified by the security
requirements. They emphasize the trust, which is another fundamental ingredi-
ent for distributed systems security.

Rueppel’s approach [4] illustrates the importance of confidentiality and au-
thenticity as basic security goals but does not address trust as a fundamental
ingredient of security bootstrapping in distributed system. In contrast, Rangan
[5] addresses trust relations between users and authentication servers in a model
that is based on logic of belief.

The paper is organized as follows. In section 2, we introduce certain notations
and motivate the scheme. Section 3 describes our scheme. In section 4 we describe
how certificates are generated and verified using our approach.

2 Preliminaries

2.1 Background

Cryptosystems are information systems that use cryptography and suitable key-
management infrastructures (KMI). KMIs are primarily concerned with storing
trees or forests (collections of trees) of keys. KMIs must necessarily assume the
confidentiality and integrity properties of some keys, called critical keys, in the
trees or forests before the confidentiality and integrity properties of other keys
can be deduced using suitable cryptographic mechanisms. The confidentiality
and integrity properties of the critical keys must be maintained using out-of-band
security techniques, which are usually some form of physical security. Cryptog-
raphy is not, and cannot be, concerned with the protection of these properties
of the critical keys.

PKIs (Public Key Infrastructure) are a specialised form of KMI [6]. PKIs are
interested in the provision of integrity services for a collection of public values,
which includes a public key. The critical keys in PKIs are called root keys or root
public keys. The integrity properties of the root public keys are an assumption,
which cannot be cryptographically verified. Similarly, the confidentiality prop-
erties of the root private keys are also an assumption. Depending on the type of
the PKI, there may be one or more root public keys. For the sake of clarity and

200 S. Ulanbek, A. Saxena, and A. Negi

without loss of generality, in this work we will assume a PKI with the following
structure.

Root Public Key (Level 0): there exists a single root public key, which is used
for authorising the public keys of certificate issuers;

Certificate Issuer Public Keys (Level 1): there exists a set of certificate-issuer
public keys which are used for authorising the public keys of users; and,

User Public Keys (Level 2): there exists a set of user public keys, which are used
for confidentiality and integrity mechanisms.

The verification actions in the traditional PKI are as follows.

Verification Action 1: The first integrity verification is signature verification
whether a certificate was issued by a certificate issuer or not.

Verification Action 2: The second integrity verification is that of a certificate
path validation, which is a sequence of signature verification operations, to verify
if the certificate issuer is authorised to issue certificates.

Note that the root certificate issuer authorises itself to authorise other cer-
tificate issuers. That is, the certificate for the root public key is a self-signed
certificate, which can be verified using the same key.

The proposed model extends the functionality of traditional PKI by including
an additional integrity verification mechanism as follows.

Verification Action 3: An integrity verification mechanism verifies if the instance
of a black-box, which was involved in certificate generation, was authorised.

We can call the 1stand the 2nd verifications as a vertical verification. The 3rd

one can be treated as a horizontal verification.

2.2 Motivation

Following the notation of section 2.4 of [1] we suggest that Br is a set of signature
tuples and not a single value. This does not constrain the possibility of using
multisignature systems to reduce the size of the information contained in Br.
This is because the specification does not constrain the possible relationships
between various instances of signature generation functions that could be used
to implement Sigxi(). The Sigxi() is a signing process on message M using x as
a private key. Such a design for the signature algorithm is an open problem.

This open problem motivated us to present a set of protocols to enhance the
proposed scheme(s) of [1], by incorporating digital multisignature so that the
bootstrapping information size and the cost of certificate verification is reduced.

Referring to [7], the digital signature is now well known as a means of re-
placing written signatures in electronic communications. In many applications
a document may need to be signed by more than one party. When a signature
depends on more than one person we call it a multisignature.

Bootstrap Operation of [1] is depicted in Fig. 1 using graph notation where we
assume the root level (level 0) has three HSMs (black-boxes). By arrow we mean
certificate generation process.

On Reduction of Bootstrapping Information Using Digital Multisignature 201

Fig. 1. The bootstrap operation of [1] by
using graph notation.

Fig. 2. The result after applying digital
multisignature.

By applying digital multisignature we can get the following graph.
In general, we can express the bootstrap operation of [1] as Bo = H(H − 1).

Where Bo is the number of bootstrap operations, and H is the number of HSMs.
In our work the number of bootstrap operations is the number of involved HSMs.
As it is clear we reduced the exchanges due to adopting multisignature.

2.3 The RSA Signature Scheme

Throughout the paper we use the RSA [8] signature scheme so we briefly revise
it. This section may be skipped by those readers who know it.

The RSA [8], the most popular scheme, works in the following manner. One,
e.g., a key distribution centre, computes n as the product of two primes p and q

n = p ∗ q . (1)

These primes are very large, “random” primes. Although n is made public, the
factors p and q must be secret. Note that if n = p ∗ q then

φ(n) = (p − 1) ∗ (q − 1) . (2)

The key distributor picks up the integer d to be a large, random integer, which
is relatively prime to φ(n). That is, checks that d satisfies

gcd(d, φ(n)) = 1 (3)
(“gcd” means “greatest common divisor”)

and computes public key e such that

e ∗ d ≡ 1 mod φ(n) (4)

using the extended Euclidean algorithm. The distributor transmits the private
(secret) key d to the sender and publishes the public key (e, n). To sign a message
M, the sender computes

S = Md mod n . (5)

To verify the signature, the receiver computes

Se ≡ Me∗d ≡ M mod n . (6)

202 S. Ulanbek, A. Saxena, and A. Negi

3 Scheme Description

In our work we adapt the RSA signature scheme [8] to enable multisignatures
to be easily implemented by groups of users such that signature verification will
require only a single RSA transformation.

Our scheme must possess the property (2) of [8]. If a message M is first deci-
phered by decryption procedure D and then enciphered by encryption procedure
E, M is the result. Formally,

E(D(M))= M . (7)

We use the scheme proposed in section 5 of [7]. The scheme is as follows.

(d1 + d2 + ... + dt) ∗ e ≡ 1 mod φ(n) (8)

where d1 + d2 + ... + dt are the private keys of all black-boxes (which are either
production black-boxes or back-up black-boxes) and the e is the public key.

Each black-box i takes the message M and signs it by

Si = Mdi mod n . (9)

The signed copies are then multiplied by central authority to form

S = S1 ∗ S2 ∗ ... ∗ St mod n . (10)

The message M can be recovered as following

Se mod n = (S1 ∗ S2 ∗ ... ∗ St)e mod n (11)

= M[(d1+d2+...+dt)∗e] mod n

= M .

4 Certificate Generation and Verification

In this section, we describe how certificate generation and verification proceeds
using our scheme.

1. Certificate Generation for Root Public Key. Suppose that there are three
black-boxes in level 0. To certify each other we need collaboration of two to
certify one. To do that, firstly we should create

(d2 + d3) ∗ e1 ≡ 1 mod φ(n)
(d1 + d3) ∗ e2 ≡ 1 mod φ(n)
(d1 + d2) ∗ e3 ≡ 1 mod φ(n) .

The certificate generation for the first black-box is as follows

S2 = Md2 mod n

S3 = Md3 mod n .

On Reduction of Bootstrapping Information Using Digital Multisignature 203

The central authority combines S2 and S3 as per (10) to form

Sr1 = S2 ∗ S3 mod n .

The certificates for the second and the third black-boxes can be generated con-
sequently.

Note that the black-boxes are either production black-boxes or back-up black-
boxes.

2. Certificate Generation for the Certificate Issuer Public Key. Suppose we have
five black-boxes in level 1. The three black-boxes, which are in level 0, create

(d1 + d2 + d3) ∗ e ≡ 1 mod φ(n) .

For the first black-box in level 1, the certificate generation is as follows

S1 = Md1 mod n

S2 = Md2 mod n

S3 = Md3 mod n .

Similarly, we have Sc1 = S1 ∗S2 ∗S3 mod n as per (10). The certificates for other
black-boxes in level 1 can be generated consequently.

3. Verification of Certificate for the Root Public Key (Horizontal Verification).
In this stage, we verify whether the instance of a black-box, which was involved
in certificate generation, was authorised or not. To verify Sr1 we should possess
e1. The verification process is as follows

Se1
r1

mod n = (S2 ∗ S3)e1 mod n

= M[(d2+d3)∗e1] mod n
= M .

To verify Sr2 we need e2 and so on. As mentioned in section 2.1, this verifica-
tion process is called as a horizontal verification. By horizontal we mean that a
verification process takes place in root level where black-boxes verify each other.

4. Verification of Certificate Issuer Public Key (Vertical Verification). To verify
at this stage, we need only e. The verification process of Sc1 is as follows

Se
c1

mod n = (S1 ∗ S2 ∗ S3)e mod n

= M[(d1+d2+d3)∗e] mod n
= M .

The verification of others can be done as above, only by using e.
Without loss of generality, we considered three black-boxes at level 0 and five

at level 1. In the obvious way, the system above can be extended to enable any
number of black-boxes to take part in.

204 S. Ulanbek, A. Saxena, and A. Negi

5 Conclusion

In this work, we have investigated the important problem of bootstrapping in
PKI. We proposed a scheme, which involves digital multisignature that reduces
the bootstrapping information size and the cost of certificate verification. In our
work, the root level is transparent for both certificate issuers and for users. The
scheme also avoids any misuse of HSMs (black-boxes).

In our scheme the set of black-boxes who co-sign is fixed. This can lead to a
problem when some of black-boxes are out of order. The model can further be
enhanced by incorporating threshold signature schemes to overcome the problem.

References

1. Kapali Viswanathan and Ashutosh Saxena. “Towards Logically and Physically Se-
cure Public-Key Infrastructures”, 3rd International Conference on Cryptography in
India, INDOCRYPT2002, December 2002, Springer-Verlag Lecture Notes in Com-
puter Science.

2. R. Ganesan and R. Sandhu, Securing Cyberspace, Communications of the ACM,
Vol. 37, No. 11, 1994, pp. 29-31.

3. Ueli M. Maurer and Pierre E. Schmid. A calculus for security bootstrapping in
distributed systems. Journal of Computer Security, 4(l):55-80, 1996.

4. R.A. Rueppel, A formal approach to security architectures, Advances in Cryptology
- EURO-CRYPT ’91, Lecture Notes in Computer Science, Vol. 547, pp. 387-398,
Berlin: Springer-Verlag, 1991.

5. P.V. Rangan, An axiomatic theory of trust in secure communication protocols,
Computers & Security, Vol. 11, 1992, pp. 163-172.

6. Ashutosh Saxena, PKI: Concepts, Design and Deployment, Tata McGraw Hill Ltd,
ISBN 0-07-053463-2, 2004.

7. Colin Boyd. Digital multisignatures. In Henry J. Beker and F. C. Piper, editors,
Cryptography and Coding – 1986, Oxford Science Publications, pages 241-246.
Clarendon Press, Oxford, 1989.

8. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

abhimanyulad@iiita.ac.in

anil@cmmacs.ernet.in

sisalem@fokus.fhg.de

1Mbps
10ms

100Mbps
0.01ms

10Mbps
2ms

S3

S1

S2 R1 R2
1Mbps
10ms

100Mbps
0.01ms

10Mbps
2ms

D1

D2

D310
0M

bps

0.
01

m
s

0.
01

m
s

100M
bps

0.01ms

100M
bps

0.01ms
10M

bps

2m
s10M
bps

2m
s

10M
bps

2ms

10M
bps

2ms

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

Flow1 without attack
Flow2 without attack
Flow3 without attack
Attack flow
Flow1 with attack
Flow2 with attack

Time in second

P
ac

ke
t s

eq
ue

nc
e

no
.

2 3 4 5 6
0

20000

40000

60000

80000

2 3 4 5 6
0

20000

40000

60000

80000

2 3 4 5 6
0

500

1000

1500

2000

B
yt

es
 s

en
t

in
 2

0
m

s
in

 2
0

m
s

Q
ue

ue
 o

cc
up

an
cy

B
yt

es
 s

en
t

in
 b

yt
es

Time in second

(b)

(a)

(c)

1 2 3 4 5 6
0

20000

40000

60000

80000

1 2 3 4 5 6
0

20000

40000

60000

80000

1 2 3 4 5 6
0

1000

2000

3000

(a)

(c)

Time in second

(b)

B
yt

es
 s

en
t

in
 2

0
m

s

B
yt

es
 s

en
t

in
 2

0
m

s
Q

ue
ue

 o
cc

up
an

cy
in

 b
yt

es

A1,A2,A3

A4,A5

A6,A7

.

.

P1

P2,P3

Sender Receiver

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

RTT−observed
RTT−threshold

0 20 40 60
0

0.05

0.1

0.15

0.2

RTT−observed
RTT−threshold

Packets

Packets

R
T

T
 in

 s
ec

on
d

R
T

T
 in

 s
ec

on
d

(a)

(b)

0 10 20 30
0

0.2

0.4

0.6

0.8

RTT−threshold
RTT−observed

Time in second

R
T

T
 in

 s
ec

on
d

Network Intrusion Detection
Using Wavelet Analysis

Sanjay Rawat1,2 and Challa S. Sastry1

1 AI Lab, Dept. of Computer and Information Sciences
University of Hyderabad, Hyderabad-500046, India

challa sastry@lycos.com
2 IDRBT

Castle Hills, Road No. 1
Masab Tank, Hyderabad-500057, India

sanjayr@idrbt.ac.in

Abstract. The inherent presence of self-similarity in network (LAN,
Internet) traffic motivates the applicability of wavelets in the study of
‘burstiness’ features of them. Inspired by the methods that use the self-
similarity property of a data network traffic as normal behaviour and
any deviation from it as the anomalous behaviour, we propose a method
for anomaly based network intrusion detection. Making use of the rela-
tions present among the wavelet coefficients of a self-similar function in
a different way, our method determines the possible presence of not only
an anomaly, but also its location in the data. We provide the empirical
results on KDD data set to justify our approach.

Keywords: Network traffic, Intrusion detection, Burstiness, Wavelets,
Hurst parameter, Energy plot, Self-similarity.

1 Introduction

As more and more data are being stored on computers and sensitive information
is flowing through the public networks, the computer security has become the
prime focus of industry and academics. Various techniques such as cryptography,
bio-authentication, firewalls and intrusion detection systems are being employed
to ensure the security of information. Intrusion detection systems (IDS) has been
the active area of research for more than one decade due to the increasing rate
of attacks. There are two techniques to build an IDS: Misuse-based IDS which
works on the signatures of the known attacks and thus can not capture new
attacks. The other one is anomaly-based IDS that learns the normal behavior
of the system (users or computer networks or programs) and any deviation in
this behavior is considered as a probable attack. Intrusion detection systems
based on later technique are able to detect new attacks. Based on the data being
analyzed by the IDS to detect intrusion, there are host-based IDS (HIDS) and
network-based IDS (NIDS). HIDS collects data from the system, it is protecting,
while NIDS collects data from the network in the form of packets. Due to the

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 224–232, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Network Intrusion Detection Using Wavelet Analysis 225

nature of the problems of the IDS, in the research area of IDS, data mining and
machine learning techniques have found wide spread use [14].

It has been observed that the network traffic is self-similar in nature. It is
pointed out in [7] that the self-similarity of network traffic distributions can often
be accounted for by a mixture of the actions of a number of individual users and
hardware and software behaviors at their originating hosts, multiplexed into an
interconnection network. It can be seen that traffic related to attacks, especially
DoS attacks, is bursty in nature. Traffic that is burst on many or all time scales
can be described statistically using the notion of self-similarity. Self-similarity is
the property that is associated with fractal-objects whose structure is unchanged
on different scales.

In view of its multiscale framework and localization aspects, the wavelet tech-
nique is capable of being used for the analysis of scaling and local “burstiness”
features of a function. In the recent literature on wavelet based IDS, the wavelet
analysis has been used to both describe and analyze the data network traffics.
Besides, it has been used to characterize network related problems like conges-
tion, device failure etc [4]. The basic philosophy in wavelet based IDS is that
the self-similarity is prevalent in the network traffic under normal condition and
therefore can be considered as signature for normal behavior. The loss of self-
similarity, signifying a possible attack, can be taken as the deviation from the
normal behavior.

Although the method presented herein is inspired by the method promoted
in [10], yet it uses the relations present among the wavelet coefficients of self-
similar functions in a different way to detect not only the deviation in the data
from self-similarity, but also the locations at which the anomalies occur.

The rest of the paper is organized as follows. In section 2, we discuss the
basic concepts of self-similarity and wavelet analysis. In the subsequent section,
we consider proposing a method for the detection of anomaly using wavelets. In
section 4, we discuss some of the existing results dealing with similar applications.
While in section 5, we present our experimental setup and results.

2 Self-similarity and Wavelet Analysis

In this section, we present the definition of self-similarity and the basic concepts
of wavelets. Formally we can define self-similarity as follows [10]:

Definition: A process or function {f(t) : t ∈ (−∞,∞)} is said to be self-similar
with self-similarity parameter H , if and only if c−Hf(ct) = f(t), ∀ c > 0 and
t ∈ (−∞,∞).

It has been studied that, for a self-similar function f , the Hurst parameter H
lies in (0.5, 1) and any deviation from this signifies the presence of anomaly
in the data. As in [1, 10], we make use of Hurst parameter (H) to establish the
presence of self-similarity in the traffic. From now on, we consider f to be a finite
variance self-similar process with the self-similarity parameter H ∈ (0.5, 1). In
mathematical terms, we, however, treat the function f as being a compactly
supported self-similar L2 function.

226 S. Rawat and C.S. Sastry

A wavelet is a “little wave” that is both localized and oscillatory. The repre-
sentation of a function in terms of wavelet basis functions, generated by dyadic
scaling and integer translates of the wavelet, involves low frequency block con-
taining the “identity” of the function and several high frequency blocks contain-
ing the visually important features or “flavours” (such as edges or lines).

There is a class of discrete wavelet transforms (DWT), called multiresolution
approximations of L2, that can be implemented using an extremely efficient
algorithms [9].

A framework through which compactly supported, orthogonal (biorthogonal)
sufficiently regular and real wavelets are constructed is called multiresolution
analysis (MRA) [9]. An MRA consists of a ladder of closed spaces {Vj}j∈Z in
L2[(−∞,∞)] satisfying the following properties

1). Vj ⊂ Vj+1 for all j ∈ Z.
2). f(.) ∈ Vj ⇐⇒ f(2.) ∈ Vj+1.
3). ∪j∈ZVj is dense in L2.
4). ∩j∈ZVj is empty set.
5). There exists a function φ ∈ V0 such that {φ(.−n)}n∈Z forms an orthonormal

basis for V0.

The Vj spaces can be considered as different approximation spaces and the
function φ that generates the MRA is called scaling function. An example
for φ is χ[0,1), called Haar scaling function. The detail-spaces Wj defined by
Wj = Vj+1 � Vj constitute a disjoint partition for L2, i.e,

L2 = VJ

⊕[⊕
j≥J

Wj

]
=
⊕
j∈Z

Wj , (1)

for any integer J. The function ψ, called the wavelet function, generates [9] the
detail-spaces Wj . Finally, a function f ∈ L2 has the following wavelet represen-
tation

f =
∑
k∈Z

cJ,kφJ,k +
∑

j≥J;k

dj,kψj,k =
∑

j,k∈Z

dj,kψj,k. (2)

In (2), ψj,k(t) = 2
j
2 ψ(2jt − k), cJ,k = 〈f, φJ,k〉 and dj,k = 〈f, ψj,k〉 with 〈., .〉

being the standard L2 - innerproduct operation. Ingrid Daubechies [9] has given
a procedure for the construction of compactly supported, sufficiently regular and
orthonormal wavelets.

3 Application of Wavelets to IDS

In this section, using the properties of wavelet bases and self-similar functions,
we present our methodology for the detection of anomaly in the data.

The coefficients in the wavelet representation of a self-similar function satisfy
the following simple relation: for any integers j, m, n such that j = m + n, we
have

Network Intrusion Detection Using Wavelet Analysis 227

dj,k = 2
j
2

∫ ∞

−∞
f(t)ψ(2jt − k)dt

= 2
j
2

∫ ∞

−∞
f(2−nt)ψ(2mt − k)2−ndt

= 2
j
2 2−nH−n

∫ ∞

−∞
f(t)ψ(2mt − k)dt

= 2
−n(2H+1)

2 dm,k.

(3)

Taking m = 0 and computing the energy Ej , at jth scale, of wavelet coefficients,
we get

Ej := 1
Nj

∑
k

|dj,k|2

= 2−j(2H+1)

Nj

∑
k

|d0,k|2 = 2−j(2H+1)E0

(4)

In the above equation, Nj represents the number of wavelet coefficients at scale
j. From (3), it may be noted that Nj is same at all levels. Consequently, the
Hurst parameter H can be computed using

H =
1
2

[
log2

(
E0

Ej

)
−1
]

(5)

In [10], the plots of logarithm of energies at various levels have been considered.
The scales for over which the plots are straight lines are determined to identify
the scale interval over which the self-similarity holds. The presence of intrusion
into the data is found by analyzing the deviation from the line behavior of energy
plots at the determined scales.

As the energy computed is global in nature in the sense that the location and
the ‘strength’ of anomaly are hidden by the averaging taken in (4), we present in
this work another way of using (3) for the determination of possible presence of
anomaly in the data. Instead of taking energy, using (3), we compute H directly
from

H =
1
2

[
2
n

log2

(
dm,k

dm+n,k

)
−1
]
. (6)

The Hurst parameter H computed for different m, n and k, reveal not only the
scale interval over which H falls in the desired range, but also the time instances
where H goes out of range at the scales of self-similarity of f in the event of
presence of anomaly in the data. We believe that this observation helps us detect
not only the presence of anomaly in the data, but also the location of it.

Though the precise mathematical relation shown in (3) ensures one-to-one
relation between the coefficients at all pairs of levels of self-similarity, more often
than not, it does not match with what we see in practice. The reason for this is:
in actual computations, when dealing with compactly supported wavelet basis
functions, we use finite number of coefficients at every (finite) level and as we in-
crease the level, number of coefficients involved becomes doubled. Consequently
different levels have different number of coefficients. In view of it, taking ratios
of coefficients of two levels as shown in (6) is seemingly unjustified. To get rid

228 S. Rawat and C.S. Sastry

of this problem, in our simulation work, we use f � ψj(2−jk) to compute dj,k

(with ψj(x) being 2jψ(−2jx)). At every level j, we collect appropriate coeffi-
cients from f � ψj and then take the ratios as shown in (6). Leaving it aside,
after computing f � ψj at different j and treating them as coefficients, we take
ratios of them at different j. Although it has no justification, we observe that
both the approaches give similar results.

4 Related Work

Various data mining and machine learning techniques have been applied to
anomaly-based intrusion detection systems. Lee et al [14][15] have shown the
applicability of various data mining methods for IDS. A team at University of
Minnesota has applied clustering based method to NIDS [13]. Their approach is
based on the rare class classification and local outlier factor.

The recent work of William and Marlin [2] shows that DARPA’98 data set
shows self-similarity, but within a certain interval of time i.e. from 8 am to 6 pm.
The periodogram method is used to estimate the Hurst parameter H. If the value
of H falls within the interval (0.5 and 1.0), the process (traffic) is self-similar. The
methodology involves the plotting of periodogram for each two-hour period of
each attack-free day in the DARPA data. The hurst parameter is estimated from
each plot by performing a least square fit to the lowest 10% of the frequencies
to determine the behavior of the spectral energy as it approaches the origin.
The main importance of this study is the observation that other methods which
use temporal distribution for their model, should concentrate only on the data
between 8 am to 6pm of each day.

In another work by Nash and Ragsdale [17], the self-similarity of the network
traffic is used to propose the generation of network traffic for IDS evaluation.
They observe that it is difficult to produce the traffic that includes large num-
ber of intrusions and more than this, it is also difficult to analyze such a huge
traffic for sign of intrusions. Self-similarity is used to reproduce traffic, which
is closer to real traffic. Also the wavelet coefficients are used to decompress the
data for analysis. Hurst parameter is used to demonstrate the self-similarity.
Mandelbrot’s method is used to estimate Hurst parameter.

The study by Gilbert [10] discusses the theoretical and implementation issues
of wavelet-based scaling analysis for network traffic. As a network traffic, packet
per second and user-requested-page per session are considered for demonstration
of self-similarity. Energy-plots and partition function are calculated using the
wavelet coefficients. A straight line indicates the presence of self-similarity.

On the similar lines, Huang et al [11] propose the use of energy plot to an-
alyze the network in terms of RTT (round trip time)and RTO (retransmission
timeout). A tool named as WIND has been built to analyze the packets collected
from tcpdump tool. TCP/IP packets can be analyzed across different time pe-
riods and across part of traffic destined to different subnets by exploiting the
built-in scale-localization ability of wavelets.

Network Intrusion Detection Using Wavelet Analysis 229

In [4], the use of wavelet coefficients is proposed to analyse various network
related anomalies. These anomalies are grouped into three categories: Network
Operation Anomalies which include network device outages and change in traffic
due to configurational changes; Flash Crowd Anomalies which include traffic
due to some software release or external interest in some specific web site and
Network Abuse Anomalies which include DoS or scans.

5 KDDcup’99 Data Set and Experimental Setup

In 1998, DARPA, together with Lincoln Laboratory at MIT, released the
DARPA 1998 data set [8] for the evaluation of IDS. The data set consists of
seven weeks of training and two weeks of testing data. There are a total of 38
attacks in training and testing data. The processed version of DARPA data,
containing only the network data (Tcpdump data), is termed as KDD data set
[12]. There are approximately 5 million records in training set and 0.3 million
records in the testing set. Each of these records is described with 41 attributes,
wherein 34 are numeric and 7 are symbolic. This set of attributes includes gen-
eral TCP features like bytes/sec, flags, duration etc and derived features like
the-same-host features and the-same-service features. A detailed description of
these features can be found in [14]. It has been observed [2] that the DARPA
data exhibit self-similarity within certain interval of time. As KDD data set is
derived from DARPA data set, out of curiosity, we choose KDD data set for our
experimentation. Recently, it is shown by Sabhnani and Serpen [18] that KDD
data set is not suitable for misuse-based IDS as the distribution of attacks in
training and testing data is not same. The portion of new attacks, in the R2L
and U2R categories, in testing data is more than the known attacks. Therefore
any misuse-based IDS will show poor detection rate. Ours is an anomaly-based
approach, consequently the choice of this data set is not affected by the short-
comings of KDD set as pointed out in [18]. We test our approach on the 10%
of the KDD set, which is provided with the full set. This set consists of almost
all the attacks present in DARPA data set with a total of 4,94,020 records. Out
of these records, there are 97,277 normal records in the data set which we have
considered in the beginning part of the data by sorting out the data suitably.

We have carried out our simulation work using nearly symmetric orthonormal
wavelet (‘sym6’) of MATLAB package. Using (6), we have computed the Hurst
parameter H at different levels. The H values computed, remaining close to 0.8
and hence falling in the interval (0.5, 1), reveal that self-similarity of the data is
present between the levels 1 and 4. In Fig. 1, we have displayed the gradient of
H values at the levels 3, 4 to demonstrate how H changes within a given level.
Our motive behind taking gradient of H values is to notice the abrupt changes
in H as it may signify the presence of anomaly in the data. To show this concept
empirically, we choose the Neptune attack from the KDD data set, which is a
DoS attack sending large number of SYN packets to target host to exhaust its
buffer. As this attack never establishes the session, many bytes become almost
zero in each connection attempt. Column 2 of KDD set indicates this feature.

230 S. Rawat and C.S. Sastry

Fig. 1. The changes in H values of the normal data.

Under normal condition, the behavior of column 2 in terms of H is shown in
Fig. 1. It can be seen that the changes in H are of very small order.

To test the detection ability of our approach, we introduce many sessions of
Neptune attack in the end of the data. The H-gradient plot of this data is shown
in Fig. 2.

It is clearly visible, in Fig. 2, that the variation in H corresponding to the
anomalous data, (i.e., in the right half of the Fig. 2), is almost zero. However,
the actual values of H go out of the desired range. This is happening because,
as explained above, for a long period of time, the attacker is just sending SYN
packets without establishing the connection, resulting in similar values for H at

Fig. 2. The changes in H values in the presence of Neptune attack.

Network Intrusion Detection Using Wavelet Analysis 231

all levels of significance (hence the changes in H values are almost zero). We
also carry out the similar experiments with smurf attack, present in the KDD
data set. Under this attack, the victim receives a large number of ICMP reply
(echo) within a short period of time. This hampers the performance of victim
to respond it properly to other requests from genuine senders. This activity is
captured in the KDD set in the column “count”, which counts the number of
connections to the same host as the current connection in the past two seconds.
Due to the pausity of space, we are not showing the results in figure.

On the basis of above experiment, it can be inferred that the proposed ap-
proach is capable of detecting the attacks wherein the burstiness is present in
the traffic.

6 Conclusion

The present work proposes a wavelet based algorithm for the detection of anom-
aly in the network data. The main feature of the work is to analyse the anomaly
present in the data along with its location. Although our method is working well
in the cases that we have considered, yet more extensive experimental work is
further required to establish the wide applicability of our method.

Acknowledgement

The authors are thankful to Prof. Arun K. Pujari, University of Hyderabad
and Prof. V. P. Gulati, Director, IDRBT for their support and encouragement.
The second author is thankful to the National Board for Higher Mathematics
(NBHM), India, for its financial support (Grant No.FNO: 40/7/2002-R & D
II/1124).

References

1. Abry P., Veitch D.: Wavelet Analysis of Long-Range Dependent Traffic. IEEE
trans. Inform. Theory. 44(1998) 2-15

2. Allen W. H., Marin G. A.: On the Self-Similarity of Synthetic Traffic for the Eval-
uation of intrusion Detection Systems. In: Proc. of the IEEE/IPSJ International
Symposium on Applications and the Internet (SAINT), Orlando, FL. (2003) 242-
248

3. Bace R., Mell P.: NIST Special Publication on Intrusion Detection System. SP800-
31, NIST, Gaithersburg, MD (2001)

4. Barford P., Plonka D.: Characteristics of Network Traffic Flow Anomalies. In: Proc
of ACM SIGCOMM Internet Measurement Workshop IMW (2001)

5. Beran J.: Statistics for Long-Memory Processes. Chapman and Hall, New York
(1994)

6. Cabrera J., Ravichandran B., Mehra R.: Statistical Traffic Modeling for Network
Intrusion Detection. In: Proc of the 8th IEEE Symposium on Modeling, Analysis
and simulation of Computers and Telecommunications, San Francisco, California.
(2000) 466-475

232 S. Rawat and C.S. Sastry

7. Crovella M., Bestavros A.: Self-Similarity in World Wide Web Traffic: Evidence
and Possible Causes. IEEE-ACM Transactions on Networking. Vol 5(6) (1997)

8. DARPA 1998 data set,
http://www.ll.mit.edu/IST/ideval/data/1998/1998 data index.html

9. Daubechies I.: Ten lectures on wavelets. CBMS-NSF Series in Appl. Math, No.61.
SIAM Philadelphia (1992)

10. Gilbert A. C.: Multiscale Analysis and Data Networks. Applied and Computational
Harmonic Analysis. 10 (2001) 185-202

11. Huang P., Feldmann A., Willinger W.: A Non-intrusive, wavelet-basesd Approach
to Detect Network Performance Problems. In: Proc of the First ACM SIGCOMM
Workshop on Internet Measurement IMW’01, San Francisco, California, USA.
(2001) 213-227

12. KDD 1999 data set, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
13. Lazarevic A., Ertoz L., Kumar V., Ozgur A., Srivastava J.: A Comparative Study

of Anomaly Detection Schemes in Network Intrusion Detection. In: Proc of Third
SIAM Conference on Data Mining, San Francisco (2003)

14. Lee W., Stolfo Salvatore J.: Data Mining Approaches for Intrusion Detection. In:
Proceedings of the 7th USENIX Security Symposium (SECURITY-98), Usenix
Association, January 26-29. (1998) 79-94

15. Lee W., Stolfo S., Mok K.: Mining in a Data-flow Environment: Experience in
Network Intrusion Detection. In: Proc of the 5th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’99), San Diego, CA.
(1999) 114-124

16. Leland W., Taqqu M. S., Willinger W., Wilson D. V.: On the Self-similar Nature
of Ethernet Traffic (extended version). IEEE/ACM Transactions on Networking.
Vol. 2 (1994) 1-15

17. Nash D., Ragsdale D.: Simulation of Self-Similarity in Network utilization Pat-
terns as as Precursor to Automated Testing of Intrusion Detection Systems. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and human, vol.
31(4) (2001) 327-331

18. Sabhnani M., Serpen G.: On Failure of Machine Learning Algorithm for Detecting
Misuse in KDD Intrusion Detection Dataset. To appear in Journal of Intelligent
Data Analysis (2004)

Building a Secure
and Highly Scalable Data Distribution System

Shivakant Mishra

Department of Computer Science
University of Colorado, Campus Box 0430

Boulder, CO 80309-0430, USA
mishras@cs.colorado.edu

Abstract. This paper describes the design, implementation, and per-
formance evaluation of MykilDDS, a secure and highly scalable data
distribution system over the Internet. MykilDDS facilitates a secure dis-
tribution of data over the Internet to a significantly large number of
clients. It integrates IP multicast with Mykil group key management
system. Important advantages of MykilDDS include security, high scal-
ability, differentiated quality of service for data distribution, high avail-
ability, and support for user mobility and smaller, hand-held devices.
A prototype of MykilDDS has been implemented. The paper describes
this implementation and reports on the performance measured from this
implementation.

1 Introduction

Internet is increasingly being used for a multitude of critical as well as non-
critical applications. One class of these applications is data dissemination from
one or a small number of servers to a significantly large number of clients. Exam-
ples include pay-per-view programs, video-on-demand services, frequent stock
quote updates, software patches and updates, and advertising. Some common
requirements of these applications include security, high scalability, high avail-
ability, fault tolerance, and support for smaller, hand-held devices. For example,
a video-on-demand service requires that only pre-registered clients are able to
watch a video program being broadcast. A popular pay-per-view program can
have a very large number of subscribers, sometimes in excess of 100,000. Clients
who have paid for a particular pay-per-view service must be able to watch the
program being broadcast in near real time, despite temporary problems in com-
munication network or intermediate routers. Finally, subscribers to a stock quote
service must be able to receive the latest quotes on their smaller, hand-held de-
vices.

The current Internet technology, namely IP multicast, is insufficient to satisfy
all the requirements of these applications. IP multicast provides only a best-effort
multicasting support without any security guarantees. Any process connected to
the Internet can send a message to an IP multicast group or receive messages
multicast with in an IP multicast group without any restrictions. There is no

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 233–242, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

234 S. Mishra

support for controlling the membership of a multicast group, or maintaining
the authenticity, integrity or confidentiality of multicast information. In fact, a
majority of current Internet routers do not support IP multicast because of this
lack of security support.

In this paper, we propose a data distribution system called MykilDDS. This
system provides a secure distribution of data over the Internet to a large number
of clients. MykilDDS integrates IP multicast with Mykil group key management
system [2, 3] to build a data distribution system that has six important fea-
tures. First, it is designed for a network such as the Internet, where IP multicast
is enabled only in smaller subnets that are under a single administrative con-
trol. Second, it provides support for a secure distribution of data, and ensures
that only pre-authorized clients are able to decrypt this data. The system pro-
vides an elaborate framework for new clients to register in an efficient manner,
and a key management system to manage the cryptographic keys used for data
distribution. Third, MykilDDS is scalable in terms of the number of clients it
can support. It provides an acceptable performance for a group of more than
100,000 clients with frequent membership changes. Fourth, MykilDDS provides
a differentiated quality of service for data distribution. In particular, it allows
clients with different computing and bandwidth capabilities to receive the mul-
ticast data. Fifth, MykilDDS provides support for high availability and fault
tolerance. Pre-registered clients can receive the data being distributed, despite
communication failures, router malfunctions, or server failures. Finally, Myk-
ilDDS allows clients to access a data distribution system using small devices
such as PDAs or cell phones that have limited resources, such as memory, CPU
cycles or communication bandwidth.

The rest of this paper is organized as follows. The next section, Section 2
describes the design of MykilDDS. Section 3 describes the implementation and
performance evaluation of MykilDDS. Finally, Section 4 discusses future work
and concludes the paper.

2 MykilDDS: Design

Because of lack security support in IP multicast, there are only a few routers
in the Internet that allow multicast traffic to flow through them. Instead, IP
multicast is mainly used in smaller subnets that are under a single administrative
control, e.g. a network with in a university, a government organization, or an
industry. Based on this current Internet organization, MykilDDS divides the
entire network interconnecting the clients into smaller units called areas. This
is shown in Figure 1. Each area corresponds to a single autonomous unit, with
in which IP multicast may be enabled. Each area is represented by a special
node called area controller. An area controller maintains the membership of
an area, manages the cryptographic keys used in the area, and facilitates data
propagation. All areas are logically connected to one another to form a tree-like
hierarchy, with the root containing the data distribution source. In Figure 1,
area 0 is the root, areas 1, 2, and 3 are its children, and area 4 is a child of area
1, while area 5 is a child of area 2.

Building a Secure and Highly Scalable Data Distribution System 235

Area 1

Area 0

Area 5 Distribution Source

Client

Area Controller

Unicast

IP Multicast

Area 2 Area 3

Area 4

Fig. 1. Architectural Overview of MykilDDS.

2.1 Data Dissemination

To accommodate security, each area controller maintains an area key for its area.
This key is shared among all clients with in the area, and is used for encryp-
tion/decryption using an appropriate symmetric-key cryptographic algorithm
such as AES [1]. In addition, an area key of an area is also known to the area
controller of all children areas. So, in Figure 1, area key of area 0 is known to the
area controller of area 0, all clients in area 0, and area controllers of areas 1, 2,
and 3. Similarly, area key of area 1 is known to the area controller of area 1, all
clients in area 1, and area controller of area 4. Management of area keys is done
using Mykil key management system that is described in the next subsection.

While there is no common cryptographic key shared by all clients, data dis-
tribution in MykilDDS avoids encrypting the data being distributed multiple
times. We explain data dissemination in MykilDDS using the organization shown
in Figure 1. When the source needs to distribute some data D, it first gener-
ates a random key Kr, encrypts D using Kr (EKr(D)), and encrypts Kr using
Ka0 (EKa0(Kr)), where Ka0 is the area key of area 0. It disseminates {EKr(D);
EKa0(Kr)} to its clients in area 0 using IP multicast, and to the area controllers
of its children areas (i.e. areas 1, 2 and 3) using an appropriate unicast protocol,
e.g. TCP.

When a client in area 0 receives this message, it first retrieves Kr by de-
crypting EKa0(Kr) (recall that all clients in an area share the area key of their
area), and then decrypts EKr(D). When an area controller of an area (e.g. area
1) receives this message, it first retrieves Kr by decrypting EKa0(Kr) (recall that
area controllers of all children areas share the area key of their parent area). It
then re-encrypts Kr using Ka1 (EKa1(Kr)), where Ka1 is the area key of area
1. The area controller then disseminates {EKr(D); EKa1(Kr)} to its clients in
area 1 using IP multicast, and to the area controllers of its children areas (i.e.

236 S. Mishra

area 4) using an appropriate unicast protocol, e.g. TCP. This process continues
until the data has been disseminated to all clients.

There are four important points to note here. First, the data dissemina-
tion process makes use of IP multicast, whenever available. Considering that
IP multicast results in saving network bandwidth, this is a desirable feature.
Second, security of multicast data is achieved without requiring a common cryp-
tographic key among all clients. This is very important from scalability point of
view. Whenever a new client joins in or an existing client leaves, only the area
key of a single area has to be changed. Not requiring a common key among all
clients is useful from security point of view as well. A key compromise requires
a change in the area key of a single area affecting the clients of a single area,
as opposed to all clients. Third, as the data moves from one area to another,
only the random key Kr needs to be decrypted and re-encrypted. Considering
that an area key is typically small (128 or 256 bits), this is quite efficient when
compared to the alternative of decryption and re-encryption of the entire data
as it moves from one area to another. Finally, an advantage of using a random
key to encrypt the data being disseminated is that long-term keys such as area
keys are not exposed much. The random key chosen to disseminate the data is
different every time a new data is disseminated.

2.2 Group and Key Management

The secure data dissemination is made possible by organizing the clients into
areas, maintaining a different area key for each area, and ensuring that the data
is not decrypted/re-encrypted as it moves from one area to the next. The next
requirement in the design of MykilDDS is how are various keys managed and
how is the membership of the group (registered clients) maintained. Again, IP
multicast does not provide any support for doing this. We have incorporated
Mykil key management system [2, 3] in MykilDDS to address these issues.

Mykil is built on top of IP multicast to implement a secure multicast group.
A secure multicast group is a multicast group in which members register and
authenticate themselves with a designated registration authority, receive a set
of cryptographic key(s), and use these keys to encrypt the multicast data that
they send and decrypt the multicast data that they receive. More specifically,
support for secure multicast consists of three components: a registration server,
a key management server, and a key distribution protocol. Figure 2 illustrates
the relationship among these components, and the steps followed when a new
member joins a multicast group. A registration server authenticates and registers
a user that intends to join a secure multicast group based on the appropriate
credentials, e.g. valid credit card information, age, etc. A successful registration
results in the user receiving a set of secret keys (and perhaps some other infor-
mation). A registered user contacts a key management server using the key(s)
and other materials obtained from the registration server. A key management
server manages a set of cryptographic keys used for various purposes in a secure
multicast group, e.g. one or more group key(s) that is (are) used to encrypt and
decrypt multicast data. It stores these keys, updates them when certain events

Building a Secure and Highly Scalable Data Distribution System 237

...

1 2
3 4

Registration
Server

Key Management
Server

Key Distribution
Protocol

new user m0 m1 m 2 m k

5

Fig. 2. Secure Multicast Components.

occur, and distributes them to the group members using a key distribution pro-
tocol. The process of updating the cryptographic keys, and distributing them to
the group members is called a rekeying operation. Rekeying is required in secure
multicast to ensure that only the current group members can send encrypted
multicast data, and decrypt the received multicast data.

Mykil combines two hierarchy schemes – key-based hierarchy and group-
based hierarchy in such a way that the good features of the two schemes are
preserved and the limitations of the two schemes are eliminated. In particular,
Mykil is based on Iolus[4] and LKH[5]. It uses the idea of group-based hierarchy
of Iolus to divide a multicast group into several smaller subgroups called areas
with a designated area controller (AC) for each area. There is a separate area
key for each area. Different areas are linked with one another to form a tree
structure, with ACs providing the links – an AC of an area A is also a member
of another area B (area B is A’s parent in the tree-structure organization).
A group member belongs to exactly one area. Like LKH, Mykil builds a tree-
structured hierarchy of cryptographic keys called auxiliary-key tree with in each
area to facilitate key distribution to the area members. The area controller of
an area maintains the auxiliary-key tree of that area, and each member of this
area is associated with a different leaf of this auxiliary-key tree. An example of
the organization of group members in Mykil is shown in Figure 3.

ms

Area 0

Area 1 Area 2

Area 5Area 3 Area 4

AC 0

AC 2AC 1

AC 3 AC 4 AC 5

Fig. 3. Organization of group members in Mykil.

238 S. Mishra

2.3 Combining Data Dissemination with Mykil

As can be seen, the organization of clients in MykilDDS is very similar to the
organization of group members in Mykil. We did this on purpose, so that we can
easily integrate Mykil in MykilDDS. The Mykil key management system has
been combined with data dissemination mechanism to build a complete secure
data distribution system. There is a one-to-one relationship between the source
of data distribution and the area controller of the root area. Also, there is a
one-to-one relationship between the area controllers of the mykil key manage-
ment system and the data dissemination system. We combine these entities that
have a one-to-one relationship to form MykilDDS. This combination provides
bandwidth saving as well as possible communication failure between the two
entities. In Mykil, bandwidth and computation requirements for rekeying at an
area controller are low. So a single server can easily accommodate both the key
management and data dissemination functionalities.

A drawback of such a combination is that it introduces a single point of
failure. However, since MykilDDS is a distributed system based on Mykil, clients
can recover from failure by joining other areas (See [3] for details). Furthermore,
if the two entities are placed on different servers, failure of either server will
result in interruption in data distribution. So, merging the two entities actually
simplifies the design and maintains the same level of robustness.

An important advantage of combing the two entities is the short interval for
rekeying action. In the absence of a short rekeying interval, the following scenario
can arise. A Mykil area controller sends a rekeying message changing the area
key from K1 to K2. A little later the data dissemination area controller of the
same area sends some data encrypted using K2. It is indeed possible that some
clients may receive the data before receiving the rekeying message. In such a case,
those clients will realize that they have not received a new rekeying message and
send a request to the Mykil area controller. This can actually overload the area
controller. One way to prevent such a scenario is to have short rekeying interval.
Combining of two centers avoids synchronization between them and can thus
achieve key update event in shortest time.

Another important advantage of merging the key management and data dis-
semination functionalities is that data dissemination can be efficiently done at
multiple levels with different quality of services. In multimedia dissemination
systems, it’s normal to have a heterogeneous communication network involved.
For example, in Stanley Cup finals, some users might watch from home with T1
connection enjoying high quality picture, while others might watch from their
PDA with 128 K wireless connection. The data distribution system must take
into account these different requirements of the users. The grouping of clients
into smaller areas facilitates providing such a differentiated quality of service.
We can group all users with low-bandwidth network connection in the same area
under the same area controller, and provide them a lower quality picture. Fur-
thermore, we can use lighter encryption (shorter encryption keys) for such areas
to account for poor computing capabilities of the the users. MykilDDS provides
this differentiated form of quality of service.

Building a Secure and Highly Scalable Data Distribution System 239

Area 1

Area 0

Distribution Source

Client

Area Controller

Unicast

IP Multicast

Area 2 Area 3

Area 4 Area 5

28.8 Kbps 28.8 Kbps

10 Mbps Ethernet10 Mbps Ethernet

T1 Connections

10 Mbps Ethernet

256 bit Area Key

128 bit Area Key

128 bit Area Key
128 bit Area Key

64 bit Area Key 64 bit Area Key

Fig. 4. Differentiated Quality of Service in MykilDDS.

In MykilDDS (See Figure 4), data is always encrypted by a single random key
irrespective of the fact that clients with different capabilities belong to different
areas. The length of this random key can vary depending on the criticality of the
data being disseminated. If the content is something that people like to watch
live, like Stanley Cup, the key size can be very short, because the contents lose
their value after the game. The random key is then encrypted by the area key
shared between area controller and the area members. As we can see, key for
28.4 K group is shortest, while it is longest for T1 group.

When data travels from one area to another with the same network band-
width capabilities, there is no need for decrypting/re-encrypting data at the
area controllers. Only the random key is decrypted/re-encrypted, which is sig-
nificantly cheaper then decrypting/re-encrypt the entire data. However, when
the data travels from one area of higher bandwidth capability to another area
of lower bandwidth capability, there is a need to decrypt the data at the area
controller. The area controller needs to decrypt the data, change it to lower data
rate (poor quality), encrypt it, and then send it to the area controller of the area
with lower bandwidth capability.

An important advantage of MykilDDS is that the distribution source needs
to disseminate the data only at the highest quality of service. It is the area
controllers in the network that adjust the quality of service depending on the
type area being serviced. Providing this type of differentiated quality of service
in MykilDDS requires that the areas be connected to one another in a specific
order. In particular, it is required that the child area CA of an area A must
have either the same or lower quality of service requirements that the quality of
service requirements of area A. For example, an area with bandwidth capability
of 256 K can be a child of another area with bandwidth capability of 256 K or
higher. However, it cannot be a child of an area with bandwidth capability lower
than 256 K.

240 S. Mishra

3 Implementation and Performance

To evaluate MykilDDS, we have implemented it on a network of Linux worksta-
tions, and simulated it in NS2 network simulator. OpenSSL libraries for cryptog-
raphy has been used. We have used RSA public encrypt and RSA private decrypt
for encryption and decryption, and RSA sign and RSA verify for digital signa-
tures and signature verification. We used 2048 bit RSA keys in the join protocol
of Mykil, and 128 and 256 bit symmetric keys for area keys. We measured two
parameters: scalability and dissemination time.

3.1 Scalability

To evaluate the scalability of MykilDDS, we simulated it in NS2 network simula-
tor. We already had the code for simulating Mykil in NS2. To test the scalability
of MykilDDS, we measured the time it takes for a new client to join the dissem-
ination service and an existing client to leave the dissemination service. Recall
that when a new client joins a service or an existing client leaves the service,
the keys of all the clients of an area have to be updated. In addition, the aux-
iliary key tree of that area is updated. Table 1 shows the time it takes for a
new client to join a MykilDDS data dissemination service that is comprised of
100,000 clients. To show the importance of organizing the clients into smaller
areas, the join time and leave time are shown for four different organizations of
these 100,000 clients: (1) one area comprised of 100,000 clients; (2) 10 areas, with
each area comprised of 10,000 clients; (3) 50 areas, with each area comprised of
2,000 clients; and (4) 100 areas, with each area comprised of 1,000 clients.

We make two important observations from this table. First, there is a clear
advantage in organizing clients into multiple areas. In general, the join time
decreases with increase in the number of areas. The reason for this is that the
number clients whose keys have to be changed decreases with increase in the
number of areas. The second observation is that the join time is quite reasonable
when the number of clients in an area is less than 2,000 (50 and 100 areas in
Table 1). This shows that MykilDDS does provide scalable solution for secure
data dissemination.

3.2 Dissemination Time

To determine the data dissemination time in MykilDDS, we implemented it on
a network (LAN) of Linux workstations. Again, we already had the code of

Table 1. Join Time and Leave Time in MykilDDS (Total 100,000 clients).

Number of Areas Join Time Leave Time

1 2.76 minutes 2.83 minutes
10 36.2 seconds 38.5 seconds
50 8.4 seconds 8.7 seconds
100 4.7 seconds 4.75 seconds

Building a Secure and Highly Scalable Data Distribution System 241

Mykil key management system that runs on a network of Linux workstations.
We experimented with a group of 100 clients that were organized into 10 different
areas; each area contained 10 clients. The hierarchy comprised of three levels: a
single root area at the top level with three child areas in the next level. Each of
these child areas had two child areas in the lowest level.

In our experiments, we varied two parameters: size of data being distributed
and the bandwidth capabilities of the areas. We experimented with distribution
of file sizes of 2 MB, 10 MB, and 100 MB. For the bandwidth capabilities, we
experimented with two cases. In case 1, all areas had the same capability, while
in case 2, the top level area had the highest bandwidth capability, the three area
in the middle level had medium bandwidth capability, and six areas in the lowest
level had the lowest bandwidth capability. The size of a file was reduced by half
(poorer quality) as it was transferred from top level to the middle level, or from
middle level to the lowest level.

Table 2. Time required to distribute data (Total 100 clients).

File Size Case 1 Case 2

2 MB 2.7 seconds 1.31 seconds
10 MB 11.5 seconds 7.92 seconds
100 MB 118.2 seconds 85.93 seconds

Table 2 shows the time it takes to distribute the data to all 100 clients. We
make three important observations from this figure. First, the time to distribute
data naturally increases with increase in file size. Second, this time is shorter
when there are areas of multiple capabilities. The reason for this is that the actual
file size being transmitted in the areas in lower levels is smaller (cut down by
half at each level). Also, the size of area key in the top level is 256 bits, while it is
128 bits in the lower levels. While all the computers used in our experiments had
the same capability, this result shows that MykilDDS allows data distribution
requiring lower computing/bandwidth capabilities in some clients. Finally, we
see that time to distribute data is again quite reasonable.

4 Conclusions

This paper describes the design, implementation, and performance evaluation of
MykilDDS, which is a secure and highly scalable data distribution system over
the Internet. MykilDDS facilitates a secure distribution of data over the Internet
to a significantly large number of clients. It organizes clients into smaller areas
and ensures that a differentiated quality of service can be provided to clients
in different areas. It integrates IP multicast with Mykil group key management
system. A prototype implementation of MykilDDS shows that it provides a scal-
able solution for data distribution and can support as many as 100,000 clients. In
addition, the implementation shows that MykilDDS can be used for providing
differentiated quality of service supporting clients with varied computing and
bandwidth capabilities.

242 S. Mishra

There are two areas in which we are focusing out future research in
MykilDDS. First, we plan to experiment with a real-world application comprised
of audio-video distribution using Realtime Networks and RealPlayer (See
http://www.real.com/). Second, we plan to experiment with deploying MykilDDS
in a wide-area network setting. The current testing of data distribution time was
done in a LAN setting, while the scalability testing was done in a simulator.

References

1. AES: advanced encryption standard. URL: http://csrc.nist.gov/encryption/aes/.
2. J.-H. Huang and S. Mishra. Mykil: A Highly Scalable and Efficient Key Distribu-

tion Protocol for Large Group Multicast. In IEEE 2003 Global Communications
Conference (GlobeCom 2003), San Francisco, CA, December 2003.

3. J.-H. Huang and S. Mishra. Support for Mobility and Fault Tolerance in Mykil. In
The International Conference on Dependable Systems and Networks (DSN 2004),
Florence, Italy, June 2004.

4. S. Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings of the
ACM SIGCOMM’97, September 1997.

5. C. Wong, M. Gouda, and S. Lam. Secure group communication using key graphs.
In Proceedings of the ACM SIGCOMM’98, October 1998.

Performance of Distributed Optimistic
Concurrency Control in Real-Time Databases

Jan Lindström

University of Helsinki, Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki, Finland

jan.lindstrom@cs.Helsinki.FI

Abstract. Concurrency control is one of the main issues in the studies
of real-time database systems. In this paper different distributed con-
currency control methods are studied and evaluated in real-time system
environment. Because optimistic concurrency control is promising candi-
date for real-time database systems, distributed optimistic concurrency
control methods are discussed more detailed way. We propose a new
distributed optimistic concurrency control method, demonstrate that
proposed method produces a correct results and proposed method is
evaluated and tested in prototype implementation of real-time database
system for telecommunications. . . .

1 Introduction

Numerous real-word applications contain time-constrained access to data as
well as access to data that has temporal validity. For example consider tele-
phone switching system, network management, navigation systems, stock trad-
ing, and command and control systems. Moreover consider the following tasks
within these environments: looking up the “800 directory”, obstacle detection
and avoidance, radar tracking and recognition of objects. All of these contains
gathering data from the environment, processing of information in the context
of information obtained in the past, and contributing timely response. Another
characteristic of these examples is that they contain processing both temporal
data, which loses its validity after a certain time intervals, as well as historical
data.

Traditional databases, hereafter referred as databases, deal with persistent
data. Transactions access this data while maintaining its consistency. The goal
of transaction and query processing in databases is to get a good throughput or
response time. In contrast, real-time systems, can also deal with temporal data,
i.e., data that becomes outdated after a certain time. Due to the temporal char-
acter of the data and the response-time requirements forced by the environment,
task in real-time systems have time constraints, e.g., periods or deadlines. The
important difference is that the goal of real-time systems is to meet the time
constraints of the tasks.

Concurrency control is one of the main issues in the studies of real-time data-
base systems. With a strict consistency requirement defined by serializability [4],

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 243–252, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

244 J. Lindström

most real-time concurrency control schemes considered in the literature are based
on two-phase locking (2PL) [6]. 2PL has been studied extensively in traditional
database systems and is being widely used in commercial databases. In recent
years, various real-time concurrency control protocols have been proposed for
single-site RTDBS by modifying 2PL (e.g. [10, 1, 14]).

However, 2PL has some inherent problems such as the possibility of deadlocks
as well as long and unpredictable blocking times. These problems appear to be
serious in real-time transaction processing since real-time transactions need to
meet their timing constraints, in addition to consistency requirements [17].

Optimistic concurrency control protocols [11, 7] have the nice properties of
being non-blocking and deadlock-free. These properties make them especially
attractive for real-time database systems. Because conflict resolution between the
transactions is delayed until a transaction is near to its completion, there will be
more information available in making the conflict resolution. Although optimistic
approaches have been shown to be better than locking protocols for RTDBSs [9,
8] , they have the problem of unnecessary restarts and heavy restart overhead.
This is due to the late conflict detection, that increases the restart overhead since
some near-to-complete transactions have to be restarted. Therefore in recent
years numerous optimistic concurrency control algorithms have been proposed
for real-time databases (e.g. [5, 12, 13]).

Telecommunication is an example of an application area, which has database
requirements that require a real-time database or at least time-cognizant data-
base. A telecommunication database, especially one designed for IN services [2],
must support access times less than 50 milliseconds. Most database requests are
simple reads, which access few items and return some value based on the content
in the database.

This paper is organized as follows. Different distributed concurrency control
techniques proposed in literature are presented in Section 2. We will propose
a new distributed optimistic concurrency control method which is presented in
Section 3. Evaluation of the proposed method is presented in Section 4. Finally,
Section 5 concludes this study.

2 Distributed Concurrency Control Techniques

In this section we present basic concurrency control techniques and some results
of their complexity. Thus we present different distributed schedulers. There are
three basic schedulers which allow transactions to execute safely concurrently [3]:

1. Locking methods
2. Timestamp methods
3. Optimistic methods.

These methods have been mainly developed for centralized DBMS and then
extended for the distributed case.

Distributed Optimistic Concurrency Control in Real-Time Databases 245

2.1 Distributed Optimistic Method

Optimistic Concurrency Control (OCC) [7, 11] is based on the assumption that
a conflict is rare, and that it is more efficient to allow transactions to proceed
without delays to ensure serializability. When a transaction wishes to commit, a
check is performed to determine whether conflict has occurred. There are three
phases to an optimistic concurrency control protocol:

– Read phase: The transaction reads the values of all data items it needs from
the database and stores them in local variables. Updates are applied to a
local copy of the data and announced to database system by operation named
pre-write.

– Validation phase: The validation phase ensures that all the committed trans-
actions have executed in a serializable fashion. For read-only transaction, this
consists of checking that the data values read are still the current values for
the corresponding data items. For a transaction that contains updates, val-
idation consists of determining whether the current transaction leaves the
database in a consistent state, with serializability maintained.

– Write phase: This follows the successful validation phase for update trans-
actions. During the write phase, all changes made by the transaction are
permanently stored into the database.

There are several ways to extend optimistic method to distributed case. One
of the easiest is to use tickets. Others are based on optimistic locking, hybrid
methods and backward validation.

Concurrency control method requires certain information in order to find and
resolve conflicts. This information must be gathered from the data and from the
transactions. This information is read and manipulated when some transaction
arrives into system, validates or commits.

Every data item in the real-time database consists the current state of object
(i.e. current value stored in that data item), and two timestamps. These times-
tamps represent when this data item was last committed transaction accessed.
These timestamp are used in concurrency control method to ensure that trans-
action reads only from committed transactions and write after latest committed
write.

There are certain problems that arise when using optimistic concurrency
methods in distributed systems [18]. It is essential that the validation and the
write phases are in one critical section. These operations do not need to be
executed in one phase. It is sufficient to guarantee, that no other validating
transaction uses same data items before earlier validated transaction has wrote
them.

– Problem 1: Preserving the atomicity of validating and write phases [18].
One has to find a mechanism to guarantee that the validate-write critical
section is atomic also for global transactions.

– Problem 2: The validation of subtransactions is made purely on local ba-
sis [18]. In the global validation phase, we are interested only in the order

246 J. Lindström

between global transactions. However, the order between distributed trans-
actions may result from indirect conflicts, which are not visible to the global
serializability mechanism. Used method must be able to detect also these
indirect conflicts. These indirect conflicts are caused by local transactions
which access same data items as global transactions.

– Problem 3: Conflicts that are not detectable at the validation phase. Trans-
action may be non-existent in the system, active or validated. A conflict is
always detected between two active transactions. Combining the phases of
two transactions we can find three different combinations of states which
describe different conflict detection situations.
1. Both transactions are active during the first validation.
2. Both transaction were active at the same time, but the conflict occurred

after the first validation. This case means that remaining active trans-
action made read or prewrite operation to data item after validation of
the other transaction.

3. Transactions execute serially. Because serial execution is correct, this
case is not a problem.

Because optimistic concurrency control is main research area of this paper
we will present more detailed discussion in the next section.

3 Proposed Distributed Optimistic
Concurrency Control Method

In this section we propose a new distributed optimistic concurrency control
method DOCC-DATI (Distributed Optimistic Concurrency Control with Dy-
namic Adjustment of the Serialization order using Timestamp Intervals). This
method is based OCC-DATI protocol [16]. We have added new features to OCC-
DATI to achieve distributed serializability and to solve problems of the dis-
tributed optimistic concurrency control methods presented in section 2. Commit
protocol is based on 2PC, but 3PC could be also used.

Every site contains directory where all objects are located. Additionally, ev-
ery site contains data structures for keeping transaction and object information.
Transaction data structure contains information of transactions identification,
execution phase, read and write sets, and other administration information.
These data structures are used to maintain information on operations of the
transaction and to find out what operations transaction has executed, which
transactions have performed operation on this data item and so on.

In the read phase if a transaction reads an object which is in the local node
then only necessary bookkeeping to the data structures is done and the object
is returned to the transaction. Firstly, transaction requesting the read operation
must be active and not aborted. Secondly, requested data item must not be
marked as an validating object. Thirdly, if object is not located in the local node,
distributed read operation is requested in the objects home node. This node is
found from the object directory. A subtransaction whith the same identification

Distributed Optimistic Concurrency Control in Real-Time Databases 247

is created in the remote site. An identical bookkeeping is done in the remote site
as in local site. Requested object is returned to requesting site and the object is
returned to the transaction.

In the read phase if a transaction writes an object which is in the local node
then a prewrite operation is executed and only necessary bookkeeping is done to
the data structures. Firstly, transaction requesting the prewrite operation must
be active and not aborted. Secondly, requested data item must not be marked
as an validating or preparing object. Thirdly, if object is not located in the local
node, a distributed prewrite operation is requested in the objects home node.
This node is found from the object directory. A subtransaction is created in
remote site which has same identity as a requesting transaction. The identical
bookkeeping is done in remote site as in transactions local site. Requested object
is returned to requesting site and to the requested transaction.

In the validation phase if the transaction is local transaction, then only lo-
cal validation is executed. On the other hand, if the validating transaction is
global transaction, then global validation have to be done. First, a coordinator
is selected to coordinate commit protocol (2PL used here).

Coordinator will be the node where first operation of a distributed transac-
tion arrived. Coordinator sends a PREPARE message to all nodes where the
validating transaction have operations. Every participating site executes local
validation and returns the result of the validation to coordinator. In same time,
coordinator also executes local validation. If validation is successful, then partic-
ipant sends YES message to coordinator. Otherwise participant sends ABORT
message. If all participants (coordinator included) voted YES, then the coordi-
nator sends COMMIT message to all participants. Otherwise the coordinator
sends ABORT message. If no vote arrives from participant in predefined time,
then vote is ABORT (presumed abort). This predefined time can be the same
as transactions deadline.

Local validation consists iterating all objects accessed by the transaction,
finding conflicting operation, and resolving conflicts. The adjustment of times-
tamp intervals iterates through the read set (RS) and write set (WS) of the
validating transaction. First is checked that the validating transaction has read
from committed transactions. This is done by checking the object’s read and
write timestamp. These values are fetched when the read and/or write to the
current object was made. Then the set of active conflicting transactions is it-
erated. When access has been made to the same objects both in the validating
transaction and in the active transaction, the temporal time interval of the active
transaction is adjusted. Thus deferred dynamic adjustment of the serialization
order is used (for more information see [16]).

In local validation a new check is needed for distributed objects. This is be-
cause state of the distributed object can be changed between last operation of the
validation transaction and the validation phase by some other concurrently exe-
cuting transaction. If it is, validating transaction must be restarted. This restart
could be unnecessary, but it is required to ensure distributed serializability. This
new check must be done to all read-write transactions, even if transaction is not

248 J. Lindström

writing to the distributed object. This is because, transaction is creating a new
value based on old value read from database.

Time intervals of all conflicting active transactions are adjusted after the
validating transaction is guaranteed to commit. If the validating transaction is
aborted no adjustments are done. Non-serializable execution is detected when
the timestamp interval of an active transaction becomes empty. If the timestamp
interval is empty the transaction is restarted.

If the validating transaction has read a data item, then the validating transac-
tion read must be after latest committed write to this data item. If the validating
transaction has announced intention to write (prewrite) a data item, then the
validating transaction read must be after latest committed write an read to this
data item. If there is active transaction which is announced intention to write
(prewrite) to same data item which the validating transaction has read, then
the active transactions write must be after the validating transaction. There-
fore, the active transaction is forward adjusted in case of read-write conflict. If
there is active transaction which has read the same data item which the validat-
ing transaction will write, then the active transactions read must be before the
validating transaction. Therefore, the active transaction is backward adjusted
in case of write-read conflict. If there is active transaction which is announced
intention to write (prewrite) to same data item which the validating transaction
will write, then the active transactions write must be after the validating transac-
tion. Therefore, the active transaction is forward adjusted in case of write-write
conflict.

If local transaction validation is successful or global transaction commit is
successful in all participant sites, then final commit operation is executed. For all
objects in the validating transactions write set a validate bookmark is requested.
Then current read and write timestamps of accessed objects are updated and
changes to the database are committed.

Finally, we present solution to all problems of distributed optimistic concur-
rency control method that were presented in section 2.

– Problem 1: Preserving the atomicity of validating and write phases [18].
Solution: In the beginning of the validation phase PREPARE bookmark
is set to all data items updated by the validating transaction in the data
structures of the concurrency controller. Other transactions are allowed to
read data items marked by PREPARE bookmarks but not update them. If
another transaction enters in the validation phase and requests PREPARE
bookmark for data item already marked with PREPARE bookmark, then
this validating transaction is restarted. When the prepare section is finished,
the node sends it’s answer to the coordinator. Then the coordinator sends
COMMIT-message (or ABORT-message in which case all bookmarks are
released), which can be considered as global validate. VALIDATE book-
marks are set to data items updated by the validating transaction in the
data structures of the concurrency controller. Reads to these data items are
not allowed. The VALIDATE bookmarks are released after the transaction
is written the data item to the database.

Distributed Optimistic Concurrency Control in Real-Time Databases 249

– Problem 2: The validation of subtransactions is made purely on local basis
[18].
Solution: In global validation first local validation is done by checking all
active transactions. Therefore, also indirect conflicts are detected.

– Problem 3: Conflicts that are not detectable at the validation phase.

Example 1 Consider transactions T1 and T2 and history H1. Transaction
T1 is started in the node S1 and transaction T2 is started in the node S2.

T1 : r1[X] w1[Y]
T2 : r2[Y] w2[X]
H1 : r1[X] r2[Y] w1[Y] w2[X] c1 c2

When executing c1 operation on both nodes proposed algorithm will see se-
rializable history. But order of the distributed transactions is not same in
all nodes. In the node S1 order is T1 → T2 and in the node S2 order is
T2 → T1. Therefore, distributed serialization graph has cycle. This case can-
not be found using OCC-DATI with 2PC, because 2PC is only an agreement
algorithm. But this case can be find, if current state of the data items are
used. OCC-DATI uses state of data item which was stored in the data item
when read or write operation was executed. In the proposed method an extra
check is done if the transactions is distributed and updated some data item.
All data items are rechecked using current state of the data item. There-
fore, in example the transaction T1 is committed and the transaction T2 is
aborted. The transaction T2 is aborted because state of the data item Y has
been changed. Therefore, proposed method provides solution to problem 3. �

Solution: In distributed update transactions use current state of the data
items.

4 Evaluation

The prototype system used in evaluations is based on the Real-Time Object-
Oriented Database Architecture for Intelligent Networks (RODAIN) [15] specifi-
cation. RODAIN Database Nodes that form one RODAIN Database Cluster are
real-time, highly-available, main-memory database servers. They support con-
currently running real-time transactions using an optimistic concurrency control
protocol with deferred write policy. They can also execute non-real-time trans-
actions at the same time on the database. Real-time transactions are scheduled
based on their type, priority, mission criticality, or time criticality. All data in the
database is stored in the main-memory database. Data modification operations
are logged to the disk for persistence.

In order to increase the availability of the database each Rodain Database
Node consists of two identical co-operative units. One of the units acts as the
Database Primary Unit and the other one, Database Mirror Unit, is mirroring

250 J. Lindström

the Primary Unit. Whenever necessary, that is when a failure occurs, the Primary
and the Mirror Units can switch their roles.

The database server was running on an Intel Pentium 450 MHz processor
with 256 MB of main memory. A similar computer was used for the client. The
computers were connected using a dedicated network, the speed of which was
controlled by changing the hub connecting the computers. To avoid unneces-
sary collisions, there was no other network traffic while the measurements were
performed.

Used database is based on a GSM model and transactions are simple trasac-
tions accessing Home Location Register (HLR) and Visitor Location Register
(VLR). Database size is 30000 items. The used transactions and they ratios are
presented in table 1.

Table 1. Transactions used in the evaluation.

Transaction type ratio

GetSubscriber (HLR) local read 70 %
GetSubscriber (VLR) remote read 20 %
UpdateSubscriber remote write 10 %

All time measurements were performed on the client computer using the
gettimeofday function, which provides the time in microseconds. The client sends
the requests following a given plan, which describes the request type and the time
when the request is to be sent. When the request is about to be sent the current
time is collected and when the reply arrives the time difference is calculated.

Linux provides static priorities for time-critical applications. These are always
scheduled before the normal time-sharing applications. The scheduling policy
chosen was Round-robin (SCHED RR) using the scheduler function sched set
scheduler. The database was also avoiding swapping by locking all the processes
pages in the memory using mlockall function. The swap causes long unpredictable
delays, because occasionally some pages are sent and retrieved from the disk.
Because in our experiment environment our database system was the only ap-
plication running no swapping occurred during the tests.

With low arrival rate the system can serve all requests within the deadlines.
The single highest response time with 600 transactions per second is nearly 35
milliseconds (see Figure 1(a). A moderate arrival rate, 1000 tps (see figure 1(b)),
which was usable in many precious tests here creates occasional situations, when
the response time temporarily is higher than the 50 milliseconds. The transaction
are treated similar in the measurements, because the service sequence does threat
the differently. In the overload situation (arrival rate 1600 tps, see Figure 1(c)),
the system is capable of serving most requests still within the 50 milliseconds.
Unfortunately, there is no trend to predict which requests are served fast enough.
Only a bit less than 20% (3400 requests out of the studies 20000) of all requests
have response times over the 50 milliseconds. All kinds of requests belong to this
’over the deadline’ group. The ratios of the served requests in this group are
similar to the ratios of the original requests in the whole set.

Distributed Optimistic Concurrency Control in Real-Time Databases 251

Fig. 1. Two database nodes. Local using Primary, Mirror and SSS units. Remote using
only Transient unit.

5 Conclusion

In this paper we have reviewed different distributed concurrency control tech-
niques. Study have focused on distributed optimistic concurrency control meth-
ods, because optimistic concurrency control has been shown to be applicable to
real-time database systems.

Our study has shown that there is no distributed optimistic concurrency con-
trol method, which is clearly suitable for real-time database system whitout mod-
ification. Therefore, a new distributed optimistic concurrency control method is
proposed. Proposed method should be evaluated with some well known and
widely used method. Therefore, we have selected 2PL-HP as reference method.
With 2PL-HP we will use the 2PC method. We will in near future implement a
simulation model for testing proposed method against 2PL-HP with 2PC.

References

1. D. Agrawal, A. E. Abbadi, and R. Jeffers. Using delayed commitment in locking
protocols for real-time databases. In Proceedings of the 1992 ACM SIGMOD In-
ternational Conference on Management of Data, pages 104–113. ACM Press, 1992.

252 J. Lindström

2. I. Ahn. Database issues in telecommunications network management. ACM SIG-
MOD Record, 23(2):37–43, June 1994.

3. D. Bell and J. Grimson. Distributed Database System. Addison-Wesley, 1992.
4. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-

covery in Database Systems. Addison-Wesley, 1987.
5. A. Datta, I. R. Viguier, S. H Son, and V. Kumar. A study of priority cognizance in

conflict resolution for firm real time database systems. In Proceedings of the Second
International Workshop on Real-Time Databases: Issues and Applications, pages
167–180. Kluwer Academic Publishers, 1997.

6. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of con-
sistency and predicate locks in a database system. Communications of the ACM,
19(11):624–633, November 1976.

7. T. Härder. Observations on optimistic concurrency control schemes. Information
Systems, 9(2):111–120, 1984.

8. J. R. Haritsa, M. J. Carey, and M. Livny. Dynamic real-time optimistic concurrency
control. In Proceedings of the 11th IEEE Real-Time Systems Symposium, pages 94–
103. IEEE Computer Society Press, 1990.

9. J. R. Haritsa, M. J. Carey, and M. Livny. On being optimistic about real-time
constraints. In Proceedings of the 9th ACM Symposium on Principles of Database
Systems, pages 331–343. ACM Press, 1990.

10. S.-L. Hung and K.-Y. Lam. Locking protocols for concurrency control in real-time
database systems. ACM SIGMOD Record, 21(4):22–27, December 1992.

11. H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems, 6(2):213–226, June 1981.

12. K.-W. Lam, K.-Y. Lam, and S. Hung. An efficient real-time optimistic concurrency
control protocol. In Proceedings of the First International Workshop on Active and
Real-Time Database Systems, pages 209–225. Springer, 1995.

13. K.-W. Lam, K.-Y. Lam, and S. Hung. Real-time optimistic concurrency control
protocol with dynamic adjustment of serialization order. In Proceedings of the
IEEE Real-Time Technology and Application Symposium, pages 174–179. IEEE
Computer Society Press, 1995.

14. K.-Y. Lam, S.-L. Hung, and S. H. Son. On using real-time static locking protocols
for distributed real-time databases. The Journal of Real-Time Systems, 13(2):141–
166, September 1997.

15. J. Lindström, T. Niklander, P. Porkka, and K. Raatikainen. A distributed real-time
main-memory database for telecommunication. In Databases in Telecommunica-
tions, Lecture Notes in Computer Science, vol 1819, pages 158–173, 1999.

16. J. Lindström and K. Raatikainen. Dynamic adjustment of serialization order using
timestamp intervals in real-time databases. In Proceedings of the 6th International
Conference on Real-Time Computing Systems and Applications, pages 13–20. IEEE
Computer Society Press, 1999.

17. K. Ramamritham. Real-time databases. Distributed and Parallel Databases, 1:199–
226, April 1993.

18. G. Schlageter. Problems of optimistic concurrency control in distributed database
systems. ACM SIGMOD Record, 13(3):62–66, April 1982.

skj@recham.ernet.in

mmgore@ieee.org, gulab_s15@hotmail.com

Overlaying Multiple Maps Efficiently

Ravindranath Jampani, Risivardhan Thonangi, and Prosenjit Gupta

International Institute of Information Technology,
Gachibowli, Hyderabad 500019, India

{ravi,rishi}@students.iiit.net, pgupta@iiit.net
http://www.iiit.net

Abstract. Spatial data is often represented as layers of thematic maps.
User queries often necessiate overlay operations involving these maps.
Map overlay is an extensively used operation in GIS. Typical two-map
overlay involves operations on a large number of polygons of each map.
Many applications require overlay of more than two maps. This opera-
tion, called multiple map overlay is executed as a sequence of binary map
overlay operations. The complexity of the multiple map overlay is depen-
dent on the order in which the individual binary overlay operations are
performed. In this paper, we consider the problem of determining good
order in which to overlay a set of maps and propose efficient algorithms
for the same.

1 Introduction

In geographical information systems (GIS), thematic maps emphasize one or
more selected topics e.g. land utilization, population density etc. Thematic maps
are generally represented by chloropleth maps, which separate areas of different
properties by boundaries e.g. forests, lakes, roads, agriculturally used areas. In
this paper we assume that such maps are modeled by a vector representation.

The map overlay operation is a building block for various analysis operations
in GIS. A typical two-map overlay involves unions and intersections of large
number of polygons of each map. Its running time depends not only on the size
of the input i.e. the total number of edges of the polygons in the two maps but
also on the number of pairwise intersections of such edges. In many applications,
there is a need for overlaying more than two maps. This operation, called multiple
map overlay is executed as a sequence of binary map overlay operations. The
complexity of the multiple map overlay is dependent on the number of maps,
their sizes, and the order in which the individual binary overlay operations are
performed. For a given problem instance consisting of a sequence of maps to be
overlaid, the cost of the overlay operation is different for different orders in which
the overlay operations are performed. In this paper we address the problem of
finding a good order in which to perform a series of overlay operations.

This problem was studied by Yost and Skelton [35] for raster GIS. Doren-
beck and Egenhofer [12] addressed the formalization of operations on regular
tesselations and investigated two approaches for the problem: (i) elimination of
equivalent subexpressions by using the properties of the overlay operation; (ii)

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 263–272, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

264 R. Jampani, R. Thonangi, and P. Gupta

integration of several overlay operations into a single one. In this paper we as-
sume that the maps are modeled by a vector representation and to the best of
our knowledge this is the first such work. Vector based approaches being less
memory intensive, are better suited for dealing with large data sizes.

As discussed in [12], an overlay operation over multiple layers results in a new
layer which, in turn, may be used as an argument in another overlay operation.
Frequently, many overlay operations are combined this way to perform a more
complex operation. The sophisticated algorithms and data structures for the
efficient implementation of a single overlay operation provide little or no support
for improving the processing of a series of overlays [12].

In Section 2, we review the related problem of spatial join in spatial databases
and earlier work done in the area of join selectivity estimation. In Section 3, we
discuss the algorithms for segment intersection reporting and counting from the
computational geometry literature. In Section 4, we present an algorithm for
determining a good order for performing a series of overlays. We provide some
alternative strategies in Section 5. We conclude in Section 6 with directions for
future research.

2 Spatial Joins

The map overlay operation is a special case of the more general spatial join
operation in spatial databases. It is one of the most important type of query
processing in spatial databases and geographic information systems. The spatial
join operation selects, from two relations, all object pairs that satisfy a given set
of spatial predicates. Since it is an expensive operation, a lot of effort has gone
into making it efficient. A commonly used predicate is the intersection join. For
an interesction join, two objects constitute a result pair if they intersect each
other. Intersection joins are commonly used in map overlays. Given a sequence of
such intersection joins to be formed, it becomes imperative to draw an efficient
query execution plan. The cost of such a query execution plan depends directly
on the sizes of the intermediate results generated. Thus one of the main goals in
generating such a plan is to select an order such that the sizes of the intermediate
results generated renders the overall query processing optimal. The crux of the
problem in generating an optimal query plan for such a multiway join is the fact
that we cannot actually perform the joins to know the costs.

2.1 Join Selectivity Estimation
We need to have a way of estimating the sizes of the intermediate results to
enable us to choose an optimal order for the execution of the 2-way joins. This
problem is known as the join selectivity estimation. The problem of determining
the optimal order of overlaying multiple maps requires a solution to the problem
of estimating the complexity of a single overlay operation which is a special
case of a more general problem of join selectivity estimation. In this section, we
review various techniques for join selectivity estimation.

Selectivity estimation techniques can be broadly classified into three cate-
gories: parametric, sampling and histograms [1]. Parametric techniques make

Overlaying Multiple Maps Efficiently 265

some assumptions about the dataset and present convenient closed form formu-
lae which can be used for estimation at little cost. Aref and Samet [2] assume the
data to be uniformly distributed in the two datasets to be joined. Belussi and
Faloutsos [5] assume the data items to exhibit fractal behavior. In [13] Faloutsos
et al. assume that the datasets obey a power law. Since real data sets may not
follow the desired properties, parametric techniques have very little applicability.
Furthermore some approaches work with point datasets only.

Sampling based techniques try to infer information from the given dataset to
predict query selectivity. This is achieved by actually performing the query on a
small selection of the dataset called the sample and then using the results to ex-
trapolate the selectivity for the entire dataset. Though sampling techniques have
been used in selectivity estimation in conventional databases, their usability in
spatial databases is less explored. In [27] Olken and Rotem explored techniques
for obtaining random sample points of the query results. Vassilakopoulos and
Manolopoulos [34] study the problem of obtaining approximate answers to ag-
gregate queries using random sampling algorithms. An et al. [1] studied three
well-known sampling techniques to estimate the selectivity of spatial joins.

Histogram-based techniques keep certain information for different regions in
auxiliary data structures called histograms which can be queried to find out the
selectivity whenever a join query is given. For intersection joins, significant tech-
niques include the histogram based approaches of An et al. [1] and Mamoulis
and Papadias [24]. The technique proposed by An et al. [1] is based on the obser-
vation that the intersection of two rectangles always results in four intersection
points. Hence selectivity can be estimated by counting the intersection points
and dividing by four. The technique of Mamoulis and Papadias divides the space
into grid cells and stores three parameters for polygons which overlap a grid cell.
The selectivity is then estimated by computing a simple function of these three
parameters.

3 The Segment Intersection Problem

One of the most time-consuming steps in the map overlay processing is line-
breaking, which we can abstract as the segment intersection problem: Given a set
of n line segments in the plane, determine which k pairs intersect. A brute force
algorithm that checks each pair of segments for intersection, can be implemented
in O(n) space and O(n2) time. Bentley and Ottman [6] gave a practical output-
sensitive algorithm that runs in O(n) space and O((n + k) log n) time. Chazelle
and Edelsbrunner [8] improved the running time to O(n log n + k). But their
algorithm takes O(n + k) space. Mulmuley [25] gave a randomized algorithm
which takes O(n + k) space and expected O(n log n + k) running time. Clarkson
and Shor [11] gave another randomized algorithm with the same running time
as that of Mulmuley but whose space requirement is O(n). Balaban [3] gave
an optimal deterministic algorithm that runs in O(n) space and O(n log n + k)
time. The algorithms for Mulmuley, Clarkson and Shor and Balaban all work
for curves. Simpler algorithms are possible for the red-blue segment intersection
problem, which is of relevance in map overlay. Here we are given two sets of

266 R. Jampani, R. Thonangi, and P. Gupta

segments red and blue such that no two segments from the same set intersect
each other. This problem was solved in O(n log n + k) time and O(n) storage
by Mairson and Stolfi [23] before the general problem was solved optimally.
Other optimal red-blue intersection algorithms were given by Chazelle et al.
[9] and Palazzi and Snoeyink [28]. If the two sets of segments form connected
subdivisions, then the overlay can be done in O(n + k) time as has been shown
by Finke and Hinrichs [14]. Mairson and Stolfi [23] gave a solution to the red-
blue counting problem in O(n log n +

√
(nk)) time and O(n) space. Palazzi and

Snoeyink’s solution to the counting problem takes O(n) space and O(n log n)
time. Since the cost of a single map overlay operation involving two maps is
significantly dependent on the cost of finding the red-blue segment intersection,
the solution to the red-blue counting problem solves the selectivity estimation
problem in this case with 100% accuracy.

4 The Maxcut Heuristic

As mentioned in Section 3, one of the most time-consuming steps in the map
overlay processing is line-breaking, which we can abstract as the segment inter-
section problem. In this section, we will design a heuristic for the problem of
determining an optimal order of overlaying a given set of maps. For the purpose
of the heuristic, we define the cost of overlaying two maps M1 and M2 consisting
of n1 and n2 segments respectively as:

COST (M1, M2) = n log n + k

where n = n1 + n2 and k is the number of intersections involving a segment
from M1 with a segment from M2. As an example consider three maps A, B
and C. We can overlay any two of the maps say X and Y and overlay the result
with the remaining map Z where X , Y , Z take values from {A, B, C}. Since the
overlay operation is commutative, there are three possibilities to consider, based
on the choice of the third map. If we perform a red-blue segment intersection
operation with a set of n1 red segments and a set of n2 blue segments, and there
are k red-blue intersections, we have a total of n1 + n2 + k segments after the
intersection. Thus if the first two maps have a large number of intersections, the
resultant map has a large number of segments. This in turn will increase the cost
of the second overlay operation. Thus it is better to perform overlays involving
maps with fewer intersections early on and those involving larger number of
intersections later. This is the intuition behind the maxcut heuristic we propose
below.

4.1 The Maxcut Problem

Given an undirected graph G = (V, E) and |V | = n and |E| = e, a cut is a set
of all edges of E with one end in a nonempty proper subset X of V , and the
other end in X = V − X . Given arbitrary weights associated with edges, the
weight of a cut C ⊂ E is the sum of the weights of the edges in C. The maximum

Overlaying Multiple Maps Efficiently 267

cut problem is to find a cut of maximum cardinality (or weight in general). The
Maxcut problem even in its simplest form (with all edge weights set to 1) is NP-
complete [16] on general graphs. Hence the effort in research has concentrated
on development of approximate algorithms with good performance ratios. Sahni
and Gonzalez [30] proposed an O(n + e) algorithm with a performance ratio of
1/2. Haglin and Venkatesan [18] proposed an approximation algorithm which
runs in time O(e log e) and has a performance ratio of 1/2 + 1/(2n). A simpler
algorithm with the same performance ration but a running time of O(n+ e) was
proposed by Cho et al. [10]. Goemans and Wiiliamson [17] gave a randomized
approximation algorithm with an approximation ratio of 0.87856.

4.2 The Algorithm

We consider the following problem, which we denote as the Map Overlay Order-
ing Problem (MOO):

Problem 1. Given a set M = M1, M2, . . . , Mm of m planar maps find an optimal
order for overlaying the maps.

Given a set of maps M, we create a graph G = (V, E) where |V | = |M | = m
and each node vi in V represents a map Mi. G is a complete graph with edges
between every pair of vertices. The weight of edge (vi, vj) = COST (Mi, Mj).
The cost can be computed by running the algorithm of Palazzi and Snoeyink
[28] to count the number of red-blue intersections between segments of map Mi

with those of map Mj. We compute the Maxcut on G and partition V into sets
X and V − X based on the cut. We recursively invoke the algorithm on X and
V − X . The recursion terminates if the vertex set under consideration has one
or two nodes.

Algorithm A {
1. Construct a complete graph G = (V, E).

Each vertex v ∈ V represents a map M(v).
2. For each edge e = (u, v) ∈ E,

compute edge weights of G by running the algorithm
of Palazzi and Snoeyink on the two maps M(u) and M(v).

3. Invoke MaxCutOverlay(V, E)
}

4.3 Complexity Analysis

The space complexity of the above algorithm is O(m2 + n), for m maps with
a total of n segments, assuming the binary overlay operation takes O(n) space.
In the above algorithm, the maxcut algorithm takes O(V + E) = O(m2) time
for m maps. The algorithm is invoked O(m) times leading to a total of O(m3)
overhead due to the maxcut. Add to this the construction of the complete graph
with O(m2) edges and the computation of their edge weights. This process takes

268 R. Jampani, R. Thonangi, and P. Gupta

Algorithm MaxCutOverlay (V, E) {
1. If |V | = 1, let V = {vi}.

Return Mi.
2. Else If |V | = 2, let V = {vi, vj}.

Compute the overlay of
maps Mi and Mj and return the resultant map.

3. Else run the Maxcut algorithm of Cho et al. to partition
V into sets X and V − X .

4. M1 = MaxCutOverlay(X, E);
5. M2 = MaxCutOverlay(V − X, E);
6. Compute the overlay of M1 and M2 and return the

resultant map.
}

O(m2n log n) time in the worst case. Hence the total overhead is O(m2n log n).
If we assume m to be a constant, this is O(n log n).

Let us compare this with the total time where we simply do the overlays
one after another in the order M1, M2 . . . , Mi. Let the number of segments in
map Mi be ni. Let ki denote the total number of segment intersections resulting
from overlaying map Mi+1 with the map resulting from the overlay operation
on {M1, M2, . . . , Mi}. Noting that j intersections create j new segments, the
total number of segments in the map resulting from the overlay operation on
{M1, M2, . . . , Mi} is

O(
r=i∑
r=1

nr +
r=i−1∑
r=1

kr)

Hence the complexity of the ith overlay operation is

O((
i+1∑
r=1

nr +
i−1∑
r=1

kr) ∗ log(
i+1∑
r=1

nr +
i−1∑
r=1

kr) + ki

The worst case complexity of the whole multiple overlay step would then be
O(m(n+k)log(n+k)). If we assume m to be a constant, this is O((n+k)log(n+k)).
Since m the number of maps is typically small and k the number of intersections
can be fairly large (O(n2) in the worst-case), the above analysis shows why it
may not hurt to invest the time overhead for finding out a good order in which
to do the overlay, rather than perform the overlays in some arbitrary order.

5 Alternative Approaches

The O(m2n log n) overhead in Algorithm A in Section 4 above may be too much
to spare in situations where n is large. The bottleneck is the selectivity estimation
step which uses the O(n log n) segment intersection counting algorithm. In this
section, we consider alternative approaches to circumvent this problem.

Overlaying Multiple Maps Efficiently 269

5.1 Histogram-Based Methods

The O(n log n) segment intersection counting algorithm has the advantage that it
‘estimates’ selectivity with 100% accuracy; we get an exact count of the number
of segment intersections. If we are willing to sacrifice on this accuracy, we can
reduce the time overhead for finding a good overlay order. We can replace the
selectivity estimation step in the algorithm A in Section 4.2 with any of the
popular histogram-based methods suggested in [1], [24] or [32]. When building a
histogram for region objects, an object may be counted multiple times if it spans
across several buckets. Conventional histograms suffer from this drawback. Sun
et al. [32] showed how to use Euler Histograms to circumvent this problem. We
propose a method to circumvent this problem while using any of the histogram-
based methods.

The idea is to use a Quad-CIF tree [22], to improve histogram based selectiv-
ity estimation. Quad-CIF tree is a quad tree in which each polygon is stored at
the lowest level of the tree at which it is fully enclosed by the cell at that level.
This causes larger polygons to be stored in a single cell at a higher level. In a
Quad-CIF tree each cell stores pointers to the polygons which are enclosed by
that cell. For a histogram based on Quad-CIF tree, in each cell, instead of the
pointers, we store the summary information of polygons which are completely
enclosed by that cell and are not completely enclosed by a cell at lower level. This
alleviates the multiple counts problem for large polygons which span multiple
cells. It should be noted that some smaller polygons needs to be stored at higher
level if they fall on the boundary between two large cells. Sevcik et al. [31] showed
that for uniformly distributed minimum bounding rectanges (of the polygons)
the number of small rectangles which fall over such boundaries is small.

In normal grid based histograms, calculation of number of intersections re-
quires matching grids located at same position. For calculating number of inter-
sections using two quad CIF-tree Histograms, a cell at a level i in first histogram
should be matched with cell at level i and all its parent cells in the second his-
togram. During the estimation, if we do a depth first traversal over both the
quad CIF tree Histograms, and maintain cells in the current path in the main
memory, each cell needs to be accessed only once from secondary memory.

5.2 A Greedy Approach to Schedule Overlays

We can use a histogram-based selectivity estimation along with a greedy algo-
rithm for choosing the order of overlays. We start with a set of m maps. We
build a weighted graph G as in Section 4.2 whose vertices represent the maps
and edges represent cost of intersections of segments of the two maps represented
by the vertices concerned. We pick the edge (u, v) with the minimum cost and
perform an overlay operation between the corresponding maps. Next we merge
the vertices u and v. For any vertex w the cost of the new edge between w and
the new vertex is the sum of the costs of the edges (u, w) and (v, w). Hence each
update can be done in O(m) time. The rationale behind this algorithm is the
same as for that in Section 4.2: we defer more expensive overlays so as not to
increase the problem sizes of the intermediate overlays early on in the overlay
schedule.

270 R. Jampani, R. Thonangi, and P. Gupta

6 Conclusions

In this paper, we have considered the problem of selecting a good order in which
to perform a sequence of map overlay operations and have proposed some solu-
tions. Compared to prior work on the problem which assumed raster or regular
tesselations as underlying models, in this paper we assume that the input maps
are modeled by the more space efficient vector representation.

Future research can be conducted in several different areas. Firstly, we intend
to conduct experimental studies on these approaches in the context of performing
overlays on large datasets. Becker et al. [4] show how well known main-memory
algorithms from computational geometry can help to perform map overlay and
spatial overlap join in a GIS. They showed how the algorithms of Nievergelt
and Preparata [26] and a modified version of the algorithm of Chan [7] can be
extended to cope with massive real-world data sets. We would like to conduct
similar studies for the multiple map overlay problem.

Secondly, on the theoretical front, note that the problem of determining a
good order for performing overlays can be decomposed into two stages: (i) finding
a suitable linear ordering of the maps and (ii) finding an optimal sequence of
binary overlays subject to the given order. If we model the maps as vertices of
a graph with edge weights as in Section 4, the first problem is a variant of the
optimal linear arrangement problem [15], a well-studied NP-complete problem
for which heuristics are known. The second is similar to the matrix chain product
problem [19, 20] which is amenable to an efficient dynamic programming solution.
Using these results to design an efficient algorithm for the map overlay ordering
problem is also something that needs to be investigated.

Thirdly, we need to look at optimizing the overlay order based on other cost
functions than what is considered in Section 4, to better reflect the complexity
of the overlays.

Finally, we believe our method is fairly general to be useful in applications
other than GIS. For instance the typical description of a VLSI layout is the
geometrical description of masks. Layout analysis and verification [33] involves
the testing of a layout to see if it satisfies design and layout rules. The layout is
represented as a collection of polygons for each mask layer. One of the crucial
steps in layout verification is the computation of boolean masks which involve
the unions and intersections of large number of polygons of each layer. When
multiple layers are intersected, finding a good order in which to perform the
intersections will be useful.

References

1. An, N., Yang, Z.-Y., Sivasubramaniam, A.: Selectivity estimation for spatial joins.
Proceedings, International Conference on Data Engineering (2001) 368–375.

2. Aref, W., Samet, H.: A cost model for query optimization using R-Trees. Proceed-
ings, ACM GIS, (1994) 60–67.

3. Balaban, I.J. An optimal algorithm for finding segment intersections. Proceedings,
11th Annual ACM Symposium on Computational Geometry, (1995) 211–219.

Overlaying Multiple Maps Efficiently 271

4. Becker, L., Giesen, A., Hinrichs, K.H., Vahrenhold, J.: Algorithms for performing
polygonal map overlay and spatial join on massive data sets. Proceedings, Inter-
national Symposium on Spatial Databases (1999) 270–285.

5. Belussi, A., Faloutsos, C.: Self-spatial join selectivity estimation using fractal con-
cepts. ACM Transactions on Information Systems, 16(2) (1998) 161–201.

6. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric
intersections. IEEE Transactions on Computers, C-28 (1979) 643–647.

7. Chan, T.: A simple trapezoid sweep algorithm for reporting red/blue segment
intersections. Proceedings, 6th Canadian Conference on Computational Geometry
(1994) 263–268.

8. Chazelle, B., and Edelsbrunner, H.: An optimal algorithm for intersecting line
segments in the plane. Proceedings, 29th Annual IEEE Symposium on Foundations
of Computer Science, (1988) 590–600.

9. Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: Algorithms for bichromatic
line segment problems and polyhedral terrains. Report UIUC DCS-R-90-1578, De-
partment of Computer Science, University of Illinois, Urbana, IL (1989).

10. Cho, J.D., Raje, S., Sarrafzadeh, M.: Fast Approximation Algorithms on Maxcut,
k-Coloring, and k-Color Ordering for VLSI Applications. IEEE Transactions on
Computers 47(11) (1998) 1253–1256.

11. Clarkson, K.L., Shor, P.: Applications of random sampling in computational ge-
ometry II. Discrete Computational Geometry, 4 (1989) 387–421.

12. Dorenbeck, C., Egenhofer, M.J.: Algebraic optimization of combined operations.
Proceedings, 10th Auto-Carto (1991) 296–312.

13. Faloutsos, C., Seeger, B., Traina, A., Traina, C.: Spatial join selectivity using power
laws. Proceedings, ACM SIGMOD (2000) 177-188.

14. Finke, U., Hinrichs, K.: Overlaying simply connected planar subdivisions in linear
time. Proceedings, 11th Annual ACM Symposium on Computational Geometry,
(1995) 119–126.

15. Garey, M.R., Johnson, D.S.: Computers and Intractibility: A guide to the theory
of NP-Completeness. W.H. Freeman (1979).

16. Garey, M.R., Johnson, D.S., Stickmeyer, L.: Some simplified NP-complete graph
problems. Theoretical Computer Science 1 (1976) 237–267.

17. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. Proceedings,
ACM STOC (1994) 422-431.

18. Haglin, D.J., Venkatesan, S.M.: Approximation and intractability results for the
maximum cut problem and its variants. IEEE Transactions on Computers 40(1)
(1991) 110–113.

19. Hu, T.C., Shing, M.T.: Computation of matrix chain products, Part I. SIAM Jour-
nal on Computing 11(2) (1982) 362–373.

20. Hu, T.C., Shing, M.T.: Computation of matrix chain products, Part II. SIAM
Journal on Computing 13(2) (1984) 228–251.

21. Kriegel, H.-P., Brinkhoff, T., Schneider, R.: An efficient map overlay algorithm
based on spatial access methods and computational geometry. Geographic Database
Management Systems, G. Gambosi, M. Scholl, H.-W. Six (eds.), Springer Verlag,
(1992) 194–211.

22. Kedem, G.: The quad-CIF tree: A data structure for hierarchical on-line algo-
rithms. Proceedings, ACM IEEE Design Automation Conference (1982) 352–357.

23. Mairson, H.G., Stolfi, J.: Reporting and counting intesrections between two sets
of line segments. Theoretical Foundations of Computer Graphics and CAD, R.A.
Earnshaw ed., Springer-Verlag (1987) 307–325.

272 R. Jampani, R. Thonangi, and P. Gupta

24. Mamoulis, N., Papadias, D.: Selectivity estimation for complex spatial queries. Pro-
ceedings 7th International Symposium on Spatial and Temporal Databases (2001)
155–174.

25. Mulmuley, M.: A fast planar partition algorithm I. Proceedings, 29th Annual IEEE
Symposium on Foundations of Computer Science, (1988) 580–589.

26. Nievergelt, J., Preparata, F.P.: Plane-sweep algorithms for intersecting geometric
figures. Communications of the ACM, 25(10) (1982) 739–747.

27. Olken, F., Rotem, D.: Sampling from spatial databases. Proceedings, International
Conference on Data Engineering (1993) 199–208.

28. Palazzi, L., Snoeyink, J.: Counting and reporting red/blue segment intersections.
3rd Workshop on Algorithms and Data Structures, Springer-Verlag Lecture Notes
on Computer Science, Volume 709 (1993).

29. Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and optimization of mul-
tiway spatial joins using R-treesProceedings, ACM Symposium on Principles of
Database Systems, (1999) 44–55.

30. Sahni, S., Gonzalez, T.F.: P-Complete Approximation. Journal of the ACM 23
(1976) 555–565.

31. Sevcik, K.C., Koudas, N.: “Filter trees for Managing Spatial Data Over a Range
of Size Granularities”, Proceedings, 22nd VLDB Conference 1996.

32. Sun, C., Agrawal, D., El Abbadi, A.: Selectivity estimation for spatial joins with
geometric selections. Proceedings, International Conference on Extending Database
Technology, (2002) 609–626.

33. Szymanski, T.G., van Wyk, C.J.: Layout Analysis and Verification, in Physi-
cal Design Automation of VLSI Systems, B. Preas and M. Lorenzetti eds., Ben-
jamin/Cummins (1988), 347–407.

34. Vassilakopoulos, M., Manolopoulos, Y.: On sampling region data. DKE 22(3)
(1997) 309–318.

35. Yost, M., Skelton, B.: Programming Language Technology for Raster GIS Model-
ing. Proceedings, GIS/LIS 1 (1990) 319-327.

Relational Schema Evolution
for Program Independency�

Young-Gook Ra

Department of Electrical and Computer Engineering, University of Seoul, Korea
ygra@uos.ac.kr

Abstract. The database schema is assumed to be stable enough to re-
main valid even as the modeled environment changes. However, in prac-
tice, data models are not nearly as stable as commonly assumed by the
database designers. Even though a rich set of schema change operations is
provided in current database systems, the users suffer from the problem
that schema change usually impacts existing application programs that
have been written against the schema. In this paper, we are exploring
the possible solutions to overcome this problem of impacts on the appli-
cation programs. We believe that for continued support of the existing
programs on the old schema, the old schema should continue to allow
updates and queries, as before. Furthermore, its associated data has to
be kept up-to-date. We call this the program independency property of
schema change tools. For this property, we devise so-called program in-
dependency schema evolution (PISE) methodology. For each of the set of
schema change operations in the relational schemas, the overview of the
additional code blocks due to the PISE compliance is presented in order
to prove the comprehensiveness and soundness of our PISE methodology.

Keywords: schema evolution, program independency, database view,
relational database, data model, schema version, database schema,
capacity-augmenting schema change, type mismatch, shared database

1 Introduction

Database designers construct a schema with the goal of accurately reflecting
the environment modeled by the database system. The resulting schema is as-
sumed to be stable enough to remain valid even as the modeled environment
changes. However, in practice, data models are not nearly as stable as commonly
assumed by the database designers. Schema changes may include the simple ad-
dition/deletion of relation or of an attribute, or the decomposition of a complex
relation into several simpler relations, to just name a few. It would relieve much
of a database administrator’ work if these changes were automatically handled
by a dedicated software tool, especially if this tool’s functionality would include
the verification of integrity constraints and the translation of the stored database
structured accordingly to the old schema into the structure of the new schema.
Indeed many such tools and methodologies have been proposed [1, 2].
� This work was supported by the University of Seoul, in 2003.

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 273–281, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

274 Y.-G. Ra

Even though a rich set of schema change operations is provided in current
database systems, there still remains the more serious problem that schema
change usually impacts existing application programs that have been written
against the schema. Hence, in current DBMSs, schema updates are more re-
stricted by their impact on existing programs rather than by the power of the
supported schema change language. This problem could be partially solved using
some schema version systems [3], because they maintain old schema versions and
thus allow existing programs to still run against the old versions while new pro-
grams can be developed on the desired new schema version. However, in schema
version systems, old schema versions are only accessible in consultation mode.
This means that old programs would access obsolete data through their schema.

We believe that for continued support of the existing programs on the old
schema, the old schema should continue to allow updates and queries, as before.
Furthermore, its associated data has to be kept up-to-date. We call this the
program independency property of schema change tools. Precisely speaking, an
update on tuple values of a schema version (VS2) is visible to another schema
version (VS1) if the update values are key values of VS1. If the values are non-
key values of VS1, then the update is visible to VS1 as long as the update
causes different non-key values of which key values are the same within a version
or among versions. If the non-key value update is not propagated to VS1, the
values are set to null in VS1.

There are research works that recognized the importance of the program in-
dependency property in schema updates in order to continually support existing
application programs and they provide solutions [4–6]. Put simply, they basically
use procedures to resolve the type mismatch of different versions: they require
that such procedures are provided by the users for each occurrence of a schema
change. The view approach also has been advocated by several researchers [7, 8]
as an alternative solution approach for the resolution of the type match problem.
The idea is that database views are to provide multiple perspectives of instances,
each of which corresponds to a specific schema version. The view approach has
advantages over the procedural one that the views are to provide the differ-
ence perspectives, update on derived perspectives are well investigated, and the
performance of generating derived perspectives can easily be optimized.

However, Tresch and Sholl [8] have observed that the view based solutions
can’t support the full range of schema changes. literature [1]. In particular,
view mechanisms, being defined to correspond to a stored named query [9], can-
not simulate capacity-augmenting schema changes. Bertino [7] and our earlier
work [10] have proposed to extend views that can add more schema components
in order to assure that the capacity-augmenting changes can be simulated us-
ing views. However, our experiments have shown that this is a hard to achieve
in a truly efficient manner. We are proposing a more practical solution in this
paper. Our approach is neither confined to non-capacity-augmenting changes
nor requires a capacity-augmenting view mechanism. This alternative solution,
which is called the program independency Schema Evolution (PISE) methodol-
ogy, is based on the following simple idea. For a non-capacity-augmenting schema

Relational Schema Evolution for Program Independency 275

change operation we simply derive a view schema intended by the operation and
for a capacity-augmenting schema change operation we propose that (1) schema
is directly modified for the additional capacity required by the operation, (2) the
original schema is reconstructed as a view based on the modified schema, and
(3) the target schema is generated as a view also based on the modified schema.

The next section explains overall of our approach. In the next section, we
discuss related works. In the next PISE section, we present schema evolution
operators with the illustration of algorithms that achieves the program indepen-
dency of the operators. In the final section, our work is concluded with a future
work.

2 Overview of Our Approach

The PISE methodology assumes that all schemas, through which either inter-
active human users or application programs interact, are actually views derived
from one underlying base schema B as shown in Figure 1 (a). Suppose the exist-
ing program Prog1 runs against the VS1 schema and the program Prog2 is being
developed and requires new database services. For the new database services,
the database administrator initiates the schema transformation T on VS1 with
the expectation that VS1 would be transformed into the target schema VS2.
Instead, the desired target schema would be created as a view VS2 with a newer
version number as shown in Figure 1 (a). The PISE methodology that generates
this desired schema as a view for both capacity-augmenting and non-capacity-
augmenting cases consists of three steps. Each of these steps is detailed in the
following.

We first augment the underlying base schema B by the amount of capac-
ity necessary to generate the desired target schema. In case T is non-capacity-
augmenting, this step is skipped. This is called the base-schema-change step. In
Figure 1 (b), the base schema B is in-place changed into B’ by this step, i.e.,
B disappears. Then we generate the desired target schema (VS2) using a view
derivation over the enhanced base schema B’ as shown in Figure 1 (c). This
step is referred to as the target-view-derivation step. Note that the user schema
VS1 may become invalid because its source schema B no longer exists, i.e., it
has been modified by the previous step. Lastly, we reconstruct the original base
schema B as a view defined over the modified base schema B’ as shown in Fig-
ure 1 (d). This preserves the source schema of the old user schema VS1, namely,
the original base schema B. Hence, VS1 now becomes valid again. This is called
the original-base-schema-restoration step. This step is again skipped in case T
is non-capacity-augmenting, because the base schema has not been changed to
begin with for this case. In Figure 1 (d), we can see that the new program Prog2
can now be developed on its desired new schema version VS2, while the old
program Prog1 still continues to run against the same schema VS1 despite the
schema transformation T.

276 Y.-G. Ra

’’

’

Fig. 1. Overview of our approach.

3 Related Work

The schema change approaches are classified into four categories. The first cat-
egory corresponds to in-place schema change systems that support the conven-
tional notion of schema change, i.e., in-place changing the shared base schema
and propagating the schema change to the instance level. The second category
corresponds to schema version systems that support the conventional notion
of versioning, i.e., the old schema is stored with its snapshot of the database
only for consultation purpose. The third category is named procedural program
independent schema change systems that support the notion of program inde-
pendency, i.e., the application programs on the old schema are continuously sup-
ported despite the schema changes, but resolve any type of mismatch between
the instances and a schema version by procedures written by a programming
language. The fourth category is named view-based schema change systems that
also support the program independency notion, but the distinction is that the
type mismatch is resolved by implementing each schema version as a view of
the underlying base schema while the mismatch is resolved by user/pre-defined
procedures in the third category systems. Because our interest is on the program
independency of the schema change, we focus on the third and fourth categories
of the systems.

The procedural program independent systems include the encore system [4],
CLOSQL [6], and Clamen [12]. The encore system allows instances of different
type version to be accessed by providing exception handlers for the properties
that the types of the instances do not contain. The CLOSQL proposes that

Relational Schema Evolution for Program Independency 277

update/backdate functions are provided (either by the user or predefined for
some operations) for each attribute which convert the instances from the format
in which the instance is stored to the format that an application program expects.
In Clamen’s scheme, an instance is physically represented as a disjoint union of all
versions, while in Zdonik’s, an instance is physically represented as an interface
type, which is a minimal cover of all versions.

View-based program independent schema change systems include Tresch and
Scholl [8], Bertino [7], and Thomas and Shneiderman [13]. Tresch and Scholl
advocate views as a suitable mechanism for simulating schema evolution and
also state that schema evolution can be simulated using views if the evolution
is not capacity-augmenting. Bertino presents a view mechanism and indicates
that it can be utilized to simulate schema evolution. Thomas and Shneiderman
propose that an old schema is implemented as a network sub-schema. However,
the old schema can no longer be changed because this system only supports
in-place schema change operators and the old schema is not a base schema but
a derived one.

4 Schema Change Operators Using PISE

Our PISE approach covers a comprehensive set of schema change operations that
have been proposed in [1]. The set we have investigated includes change-name,
add-attribute, delete-attribute, promote-key, demote-key, decompose, compose,
partition, merge, export, import, extract, and import-dependency. Out of the
operators, the add-attribute, promote-key, decompose, export, and extract op-
erators are capacity-augmenting and the rest are non-capacity-augmenting. As
for an representative example, the extract operation is explained. The syntax and
semantics of the extract operator are presented and the algorithm that changes
the source base schema, derive the target view, and reconstruct the original
base schema is illustrated. Besides, for the extract operator, we show that the
generated schema has the same behavior as that of a base schema for update
operations and the PISE implementation of the extract operation satisfies the
program independency principle.

The syntax of the extract operation is “extract(rel, R(a1, a2, . . . , am, b1,
b2, . . . , bn)”. The semantics is to extract non-key attributes a1, a2, . . . , am, b1,
b2, . . . , bn from the relation rel and forms a new relation R. The relation rel is
decreased by the attributes b1, b2, . . . , bn.
Theorem 1. The extract operation is capacity-augmenting.
Proof: This operation divide the relation rel into the two relations newRel and
R and there could be instances that belong to either of the two relations but
not to the relation rel. Those could be instances of the relation R that do not
share the a1, a2, . . . , am attribute values with the instances of the newRel or the
instances of the relation newRel that do not share the a1, a2, . . . , am attribute
values with the instances of the R.
PISE Implementation. By the PISE methodology, all the relations are defined
from the source relations as views. For example, as seen in Figure 2, the operand

278 Y.-G. Ra

rel

Rel’

newRel

R

newRel’

R’

k a c

a b

a b

Create view rel
as select k, a, b

from rel’
Create

view R as
select a, b
from R’

k a b

k a b c

k a

Create view
newRel as
select k, a

from
newRel’

Fig. 2. The PISE implementation of the extract operation.

relation rel is initially defined as a view that just projects the k, a, b attributes
from the relation rel’. In the first step, the source relation is physically changed
to acquire the augmented schema element. For example, the source relation rel’
as divided into the two relations newRel and R’ as seen in the lower part of
Figure 2. In the second step, target relations are derived from source relations.
For example, the target relations newRel and R are defined as “select k, a from
newRel’” and “select a, b from R’” as shown in the right part of Figure 2. In
the third step, the source relations before the first step is recovered using view
derivations. In the lower part of Figure 2, the dotted block arrow represents the
view derivation that accomplishes the third step in this extract operation. In
this example, the reconstruction is achieved by joining the rel’ and R’ relations
based on the attribute a.
Theorem 2. The PISE implementation defined above in Figure 2 generates
the target relations as expected by the operation semantics. In addition, the
expected change also arises in the instance level.
Proof: The new relation R(a, b) is extracted from the relation rel(k, a, b) and
the relation rel is changed into the relation newRel which is decremented by
the attribute b. By this, the expected target relations have been generated in
the schema level. An instance inst of the operand relation rel has values vk,
va, vb for the attributes k, a, b, respectively. The inst instance is derived from
the instance inst’ of the source relation rel’ by projecting the k, a, b attributes.
The real instance inst’ has values of vk, va, vb, vc for the attributes k, a, b, c,
respectively, and is divided into the two tuples (vk, va, vc) and (va, vb) by the
above PISE 1 step and these are transformed into (vk, va) and (va, vb) by the
target schema derivation. As a result, the operand instance inst = (vk, va, vb)
is divided into the tuples (vk, va) and (va, vb) and this is the expected instance
level change by this operation.
Theorem 3. The target relations generated by the above PISE implementation
(Figure 2) shows the same behavior as the base relations for the insert, update,
delete operations.
Proof: The insert operation into the relation newRel is transformed to the insert
operation into the relation newRel’. Reversely, this appears as the instance has
been inserted into the relation newRel because the relation newRel is the project

Relational Schema Evolution for Program Independency 279

of the relation newRel’. The same phenomena holds for the relations R and R’.
The update and delete operations on the target relations are also propagated to
the source relations and this reversely shows the same effect as if the operations
are directly performed on the target relations.
Theorem 4. The above PISE implementation of the extract operation (Figure 2)
recovers their original relation rel both in the schema level and in the instance
level. In addition, the recovered schema exhibits the same behavior as the base
schema for the insert, update, delete operations.
Proof: The proof omitted because it is similar to those of theorem 3 and 4.
Theorem 5. The above PISE implementation of the extract operation (Figure 2)
assures the program independency property.
Proof: In Figure 2, let the schema before the change VS1 and that after the
change VS2. First we examine the scope of VS2 tuples that are accessed from
VS1. All tuples of the relation newRel of VS2 become those of the relation rel
of VS1. The tuples of the relation R are not instances of the relation rel and
thus, all the tuples do not have to be accessed from the relation rel of VS1. Only
the tuples that share the a values with the tuples of the newRel relation are
accessed from the relation rel. The b values of such tuples of the relation R are
determined by the k values and thus there could be no inconsistencies of b values
against k values. Thus, these b values are accessed from the rel relation of VS1.
In reverse, we examine the scope of VS1 tuples that accessed from VS2. The
tuples of the rel relation of VS1 all become the instances of the newRel relation
of VS2. Thus, the key attribute k values of the rel tuples are all accessed from the
newRel relation of VS2. The a attribute values of the rel relation are all accessed
as the values of a attribute of the R relation of VS2. This is true because the
values of the a attribute of the relation rel are all the shared values between the
a attribute of newRel and the a attribute of R. The b values of the rel relation
of VS1 can be non-unique against the key-attribute a values of the relation R of
VS2 and they are set to null. Thus, we have showed that the data values of VS1
(VS2) are accessed from VS2 (VS1) under the program independency principle.

The k value creation, deletion or the modification in the relation rel of VS1
is transformed into the same operation in the source relation newRel’ and in
turn the k values for the newRel relation of VS2 is created, deleted or modified.
The k value creation, deletion or modification of the newRel relation of VS2 is
similarly propagated to VS1. When the a value in the rel relation of VS1 is
created, deleted or modified, it is transformed into the creation, deletion or the
modification of the a values of both source relations newRel’ and R’ and results
that both a values of the newRel and the R relations of VS2 are create, deleted
or modified in VS2. Thus, the key k value deletion or modification in VS2 is
observed from VS1 and in reverse, the key k and a value deletion or modification
in VS1 is observed from VS2.

The a value creation, deletion or update in the relation R of VS2 is trans-
formed into the same operation in both source relations R’. This may cause that
the created, deleted or the modified R’ tuple do not share the a values with
tuples of newRel’ any longer and it may result that the a value change is hidden

280 Y.-G. Ra

from the a attribute of the rel relation of VS1. The creation, deletion or mod-
ification of the b value in the rel relation of VS1 is transformed into the same
operation of the b value in the source relationR’. Then, the b change is seen from
the b attribute of the relation R of VS2. The b value change of the R relation
of VS2 is similarly propagated to the corresponding b value of the relation rel of
VS1. In summary, the nonkey value change of VS1 (VS2)is propagated to VS2
(VS1) as long as the integrity constraint is not violated. Thus, we have showed
that the updates on VS1 (VS2) are visible to VS2 (VS1) under the program
independency principle.

5 Conclusion and Future Work

In this paper, we present a solution to the problem of schema evolution affecting
existing programs. We believe that other schemas should not be affected by a
change on a given schema, even though they share a common base schema and
data repository. In addition, old schemas should be preserved and kept to up
to date to continue to support for existing programs. We call schema change
operations that satisfy the above conditions program independent.

To demonstrate the usefulness and practicality of our PISE approach, we have
chosen a comprehensive set of schema change operations, This set covers most
of the schema change operations that we found in the literature [1]. Concerning
the performance of the PISE system, it is closely tied to the performance of
the supporting view system, because the user’s schema in the PISE system is
actually a view schema. Thus, further investigation is necessary to see how the
conventional query optimization techniques can be used to cope with the problem
of the performance degradation due to the long derivation chains that could
result when the PISE system runs over time.

References

1. Ben Shneiderman and Glenn Thomas, “An architecture for automatic relational
database system conversion,” ACM transactions on Database Systems, Vol. 7, No.
2, pp. 235–257, 1982.

2. Peter McBreien and Alexandra Poulovassilis, “Schema evolution in heterogeneous
database architecture, a schema transformation approach,” Conference on Ad-
vanced Information Systems Engineering, pp. 484–499, 2002.

3. Edelweiss and Clesio Saraiva dos Santos, “Dynamic schema evolution managemen-
tusing version in temporal object-oriented databases,” International Workshop on
Database and Expert Systems Application, pp. 524–533, 2002.

4. A. H. Skarra and S. B. Zdonik, “The management of changingtypes in object-
oriented databases”, Proc. 1st Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pp. 483–494, 1986.

5. A. Mehta, D. L. Spooner and M. Hardwick, “Resolution of type mismatches in
an engineering persistent object system,” Tech. Report, Computer Science Dept.,
Rensselaer Polytechnic Institute, 1993.

6. S. Monk and I. Sommerville, “Schema evolution in oodbs using class versioning,”
SIGMOD RECORD, Vol. 22, No. 3, 1993.

Relational Schema Evolution for Program Independency 281

7. E. Bertino, “A view mechanism for object-oriented databases,” 3rd International
Conference on Extending Database Technology, pp. 136–151, 1992.

8. M. Tresch and M. H. Scholl, “Schema transformation without database reorgani-
zation,” SIGMOD RECORD, pp. 21–27, 1992.

9. J. Ullman, “Principle of database systems and knowledge-based systems,” Com-
puter Science Press, Vol. 1, 1988.

10. Y. G. Ra and E. A. Rundensteiner, “A transparent schema evolution system based
on object-oriented view technology,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 9, No. 4, 1997.

11. W. Kim and H. Chou, “Versions of schema for OODB,” Proc. 14th Very large
Databases Conference, pp.149–159, 1988.

12. S. M. Clamen, “Type evolution and instance adaptation,” Technical Report CMU-
CS-92-133R, Carnegie Mellon University, School of Computer Science, 1992.

13. G. Thomas and B. Shneiderman, “Automatic database system conversion: a trans-
formation language approach to sub-schema implementation,” IEEE Computer
Software and Applications Conference, pp. 80–88, 1980.

pd_chelvoume@yahoo.co.in, gvuma@annauniv.edu

=

•
•
•
•
•

•
•

{rami.rifaieh,ahmed.arara,nabila.benharkat}@insa-lyon.fr

•

⊆
•

• ⊆
⊆

•

•

�

∇ ∇

� � ∈ � ∀ ∇ ∈
∈ ∃ ∇ ∈

∇ ∇
∈

∈

∈
Δ⊆Δ ∇

⊆ ≥
≤ ≤

∈ ∇

∇
∇

≡ �

∇ ≡

saralas@cs.annauniv.edu, valli@annauniv.edu

<<

<

{aboronat,iramos,pcarsi}@dsic.upv.es

−

−

−

−

−
−
−

−

−

−

raghavendra_bobbi@yahoo.co.in, p_subbannabhat@yahoo.com

−=
= μ

σ μ σ

−−=
σ
μ

πσ
σμ

{ }−== σμπ

−

=

==

σμ==

σμ==

σμ== σσ >

σμσμ +=

=+

→ →

−ε ==

−= =
→

=
→→

→→

→→ −= →→ −=
→ →

→ →

→ → → →

{ }== − σμεθ

α+ α−

−=
−=

−=

=

{ }
==

×=∈

{ }×=

===

θ

{ }θθθθ ×=

θ=

FPGA Based Implementation
of an Invisible-Robust Image Watermarking Encoder

Saraju P. Mohanty1, Renuka Kumara C.2, and Sridhara Nayak2

1 Dept. of Computer Science and Engineering, Univ. of North Texas,
Denton, TX 76203, USA

smohanty@cs.unt.edu
2 Manipal Centre For Information Science, Manipal Academy of Higher Education,

Manipal – 576104, India
shridhar.n@mcis.manipal.edu

Abstract. Both encryption and digital watermarking techniques need to be in-
corporated in a digital rights management framework to address different aspects
of content management. While encryption transforms original multimedia ob-
ject into another form, digital watermarking leaves the original object intact and
recognizable. The objective is to develop low power, real time, reliable and se-
cure watermarking systems, which can be achieved through hardware implemen-
tations. In this paper, we present an FPGA based implementation of an invisi-
ble spatial domain watermarking encoder. The watermarking encoder consists of
a watermark generator, watermark insertion module, and a controller. Most of
the invisible watermarking algorithms available in the literature and also the al-
gorithm implemented in this paper insert pseudorandom numbers to host data.
Therefore, we focus on the structural design aspects of watermarking generator
using linear feedback shift register. We synthesized the prototype watermarking
encoder chip using Xilinx FPGA.

1 Introduction

Owing to the usage of Internet, concerns about protection and enforcement of intellec-
tual property (IP) rights of the digital content involved in the transaction, are mounting.
In addition, unauthorized replication and manipulation of digital content is relatively
trivial and can be achieved using inexpensive tools. Issues related to ownership rights
of digital content are addressed by digital rights management (DRM) systems [1, 2].
Various aspects of content management namely, content identification, storage, repre-
sentation, and distribution and intellectual property rights management are highlighted
in DRM. Besides, unauthorized access of digital content is being prevented by im-
plementing encryption technologies. However, it does not prevent an authorized user
from illegally replicating the decrypted content. Hence, encryption alone does not ad-
dress all the IP issues related to DRM. Digital watermarking is one of the key tech-
nologies that can be used for establishing ownership rights, tracking usage, ensuring
authorized access, preventing illegal replication and facilitating content authentication.
Therefore, a two layer protection mechanism utilizing both watermarking and encryp-
tion is needed [3].

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 344–353, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

FPGA Based Implementation of an Invisible-Robust Image Watermarking Encoder 345

Table 1. Watermarking Chips Proposed in Current Literature.

Research Design Type Watermarking Multimedia Domain Chip Features
Hsiao [6] Custom IC Invisible-Robust Image Wavelet NA
Maes [7] FPGA board/IC Invisible-Robust Video Spatial 17/14 kG Logic
Tsai [8] Custom IC-0.35μ Invisible-Robust Image DCT 3.3V ,50MHz

Petitjean [9] FPGA board Invisible-Robust Image Fractal 50MHz

Garimella [10] Custom IC-0.13μ Invisible-Fragile Image Spatial 1.2V

Mathai [11] Custom IC-0.18μ Invisible Video Wavelet 1.8V

Tsai [12] Custom IC Invisible-Robust Video Spatial NA
Mohanty [13] Custom IC-0.35μ Robust-Fragile Image Spatial 3.3V , 545MHz

Seo [14] FPGA board Invisible-Robust Image Wavelet 82MHz

Mohanty [15] Custom IC-0.35μ Visible Image Spatial 3.3V , 292MHz

Digital watermarking is the process of embedding data called a watermark into a
multimedia object such that watermark can be detected whenever necessary for DRM.
The digital watermarking system essentially consists of a watermark embedder and a
watermark detector [4, 5]. The embedder inserts a watermark onto the host object and
the detector detects the presence of the watermark. An entity called watermark key is
also used during the process of embedding and detecting the watermark. This water-
mark key is unique and exhibits a one-to-one correspondence with every watermark.
The key is private and known to only authorized parties, eliminating the possibility of
illegal usage of digital content.

The goal is to develop low power, real time, reliable and, secure watermarking sys-
tems [16, 17]. Over the past decade, numerous watermarking algorithms have been in-
vented and their software are available, however recently, hardware implementations
are being presented in literature. We have listed most of the watermarking hardwares
available in current literature in Table 1, which proves that the VLSI implementation
of the watermarking algorithms is not yet significantly explored. A hardware based wa-
termarking system can be designed on a field programmable gate array (FPGA) board,
Trimedia processor board [7], or custom IC. The choice between the FPGA and cell
based IC is a trade-off between cost, power, and performance [15, 18].

In this paper, we present an FPGA based implementation of an invisible-robust
spatial domain watermarking encoder [19]. This algorithm is chosen as it is simple yet
robust against geometric attack and is tested using Stirmark benchmark [20]. The water-
marking encoder chip consists of a watermark generator, watermark insertion module,
and a controller. The invisible watermarking algorithms implemented in this paper in-
sert pseudorandom numbers to host data. Therefore, we focus on the structural design
aspects of watermarking generator using linear feedback shift register (LFSR). We syn-
thesized the prototype watermarking encoder chip in a Xilinx FPGA using VIRTEX
technology which can be operated at 50MHz frequency.

2 Watermarking Algorithm

In this section, we describe the invisible-robust algorithm [19] chosen for VLSI im-
plementation. Let us assume the following notations: I – original gray scale image,

346 S.P. Mohanty, R. Kumara C., and S. Nayak

W – binary or ternary watermark image, I∗ – watermarked image, (i, j) – pixel loca-
tion, E1, E2 – watermark embedding functions, D – watermark detection function, r –
neighborhood radius, IN – neighborhood image, K - digital watermark key, and α1, α2

– scaling constants.
The watermark insertion process consists of the following: First, the watermark W

which is a ternary image having pixel values {0,1 or 2} is generated using the digital
key K . Then, watermark insertion is performed by altering the pixels of original image
using watermark embedding functions.

I∗(i, j) =

⎧⎨
⎩

I(i, j) if W (i, j) = 0
E1

(
I(i, j), IN (i, j)

)
if W (i, j) = 1

E2

(
I(i, j), IN (i, j)

)
if W (i, j) = 2

(1)

The encoding functions E1 and E2 are defined as follows.

E1(I, IN) = (1 − α1)IN (i, j) + α1I(i, j)
E2(I, IN) = (1 − α1)IN (i, j) + α2I(i, j) (2)

The signs of α1 and α2 are used for the detection function and their actual values de-
termine the watermark strength. The neighborhood image pixel gray value IN is cal-
culated as the average gray value of the neighboring pixels of the original image for a
neighborhood radius r. For example, for neighborhood radius r = 1, it is [13]:

IN (i, j) =
I(i+1,j)+I(i+1,j+1)

2 + I(i, j + 1)
2

(3)

The scaling (1 − α1) is used to scale IN to ensure that watermarked image gray value
I∗ never exceeds the maximum gray value for 8-bit image representation correspond-
ing to pure white pixel. The neighborhood radius determines the upper bound of the
watermarked pixels in an image.

The first step of detection process is the generation of watermark W using the wa-
termark key K . Next, the watermark is extracted from the test (watermarked) image
using the detection function given below, for α1 > 0 and α2 < 0.

W ∗(i, j) =
{

1 if I∗(i, j) − IN (i, j) > 0
2 if I∗(i, j) − IN (i, j) < 0 (4)

By comparing the original ternary watermark image W and the extracted binary wa-
termark image W ∗, the ownership can be established when the detection ratio is larger
than a predefined threshold. The value of the threshold determines the minimum ac-
ceptable level of watermark detection.

3 Architectural Design of the Proposed Chip

In this section, the architecture of the invisible-robust watermarking encoder algorithm
described in the previous section, is elaborated. We first provide high level description
of the encoder, followed by their architectural details.

FPGA Based Implementation of an Invisible-Robust Image Watermarking Encoder 347

Fig. 1. Datapath and Controller for the Proposed Chip.

3.1 Datapath and Controller

The high-level view of the proposed chip is shown in Fig. 1. The encoder includes
the units, such as watermark generation, watermark insertion, control, row and column
address decoder, and registers. The generation unit is used to produce the watermark,
and insertion unit is used to insert the watermark into the host image as per the described
algorithm. The control unit controls the operation of the above two modules and the data
flow in encoder. The address decoders are used to decode the memory address where
the image and watermark are stored. The registers are used for buffering purpose. We
assume that there are two external RAMs, one to store the original image and other to
serve as a storage space for watermark data available. The watermarked image is written
back to the RAM storing the original image.

3.2 Watermark Generation Unit

The ternary watermark is generated by pseudorandom sequence generator. The water-
mark generation unit consists of linear feedback shift register (LFSR). LFSR has a mul-
titude of uses in digital system design and is a very crucial unit in watermark security
and detection. It is a sequential shift register with combinational feedback logic around
it that causes it to cycle pseudo randomly through a sequence of binary values. There-
fore, we have studied the difficulties of a LFSR and have taken appropriate measures to
ensure quality design [21–23]. The LFSR consists of flip-flops (FFs) as sequential ele-
ments with feedback loops. The feedback around a LFSR comes from a selected set of
points called taps in the FF chain and these taps are fed back to FFs after either XORing
or XNORing.

348 S.P. Mohanty, R. Kumara C., and S. Nayak

Fig. 2. Watermark Generation Unit: Linear Feedback Shift Register (LFSR).

The design aspects considered when modeling LFSRs are as follows [21–23].

– XOR or XNOR Feed Back Gates: The feedback path may consist of either all XOR
gates or all XNOR gates; LFSR will produce same number of values with different
sequence for a particular tap setting.

– One-to-Many or Many-to-One Feedback Structure: Both one-to-many or many-to-
one feedback structures can be implemented using same number of gates. However,
a one-to-many feedback structure will have a shorter worst case delay.

– Prohibited or Lockup State: Special care should be placed on the design aspect
such that LFSR avoids the prohibited or lockup state. In the case of XOR gates, the
LFSR will not sequence through the binary value when all bits are at logic zero.
Similarly, for XNOR gates the LFSR will not sequence through the binary values if
all bits are at logic one. Thus, the LFSR should bypass these initializations during
power up.

– Ensuring a Sequence of All 2n Values: If taps provided for a maximal length se-
quence are used, the LFSR configurations described so far will sequence through
(2n − 1) binary values. The feedback path can be modified with extra circuitry to
ensure that all 2n binary values are included in the sequence.

Fig. 2 shows the LFSR we designed adopting the above discussed facts. The 8-bit
LFSR is modeled so as to use one-to-many feedback structure and has been modified
for a 2n looping sequence. It calculates and holds the next value of the LFSR which is
then assigned to the output signal WM DATA after each clock edge. The NOR of all
LFSR bits minus the most significant bit that is LFSR REG (6:0) generates the extra
circuitry needed for all 2n sequence values.

3.3 Watermarking Insertion Unit

Fig. 3(a) shows the architecture of the watermark insertion unit designed to perform
the watermarking insertion. The invisible-robust watermarking involves adding or sub-
tracting a constant times the pixel value to be watermarked to or from a constant times
the neighborhood function as described in the watermark encoder function in the pre-
vious section. The four data lines provide the pixels I(i, j), I(i + 1, j), I(i, j + 1),

FPGA Based Implementation of an Invisible-Robust Image Watermarking Encoder 349

(a) Insertion Unit [13] (b) Control Unit

Fig. 3. Watermark Insertion Unit and Control Unit Structural Design.

and I(i + 1, j + 1) for the row-column address pair (i, j). First, the I(i, j + 1) and
I(i + 1, j + 1) are given to the adder1 as input. Then, the resulting sum and carry out
from adder1 are fed to the adder2 alongwith I(i+1, j). The resulting sum of the adder2
is the neighborhood function value. The division by two is performed by shifting the
results bit to the right by one bit, consequently discarding the rightmost bit (LSB). The
scaling of the neighborhood function is achieved by multiplying it with (1 − α1) using
the multiplier2. At the same time, the scaling of the image pixel gray values is per-
formed in multiplier1 by multiplying I(i, j) with α1 or α2. The eight high order bits of
the multipliers are fed to the adder/subtract unit to perform watermark insertion. Since,
we are concerned only with the integer values of the pixels, the lower eight bits of
the multiplier results are discarded, which represent the values after the decimal point.
The output of the adder/subtract unit(watermarked image pixels) and the original image
pixel values are multiplexed based on the watermark values and are driven on to signal
WM IM Data if the watermark value is “1” or “2” as per watermark encoding function
in the previous section.

3.4 The Control Unit as a Finite State Machine (FSM)

Fig. 3(b) shows the control unit implemented as FSM. Following are the control signals:
Start – active high signal used to activate all the modules, Alpha1 – 8-bit input scaling
constants for watermark insertion algorithm, Alpha2 – 8-bit input scaling constants for
watermark insertion algorithm, Key – 8-bit Digital watermark key. Following are the

350 S.P. Mohanty, R. Kumara C., and S. Nayak

output control signals: Ready – signal to indicate the insertion process is completed.
Busy – signal to indicate the watermarking process is in progress.

The FSM has seven states as defined below. At each state certain events take place
and the FSM moves to the next state on the next positive edge of the clock.

– S0: When the signal start is reset the control jumps to the state S0. In this state the
I(i, j) is read from the image RAM. The column and row addresses are registered
in row var and col var.

– S1: The second data I(i, j + 1) is read from the image RAM. In this state the
column address is incremented to (Col IM addr = col var + 1).

– S2: The data I(i+1, j) is read from the image RAM. The row address is increased
to (row IM addr = row var +1).

– S3: In this state fourth data I(i + 1, j + 1) is read from the image RAM. The
row address is incremented to (row IM addr = row var +1). The column address is
incremented to (Col IM addr = col var + 1).

– S4: The signal Read done is set, indicating that all the four pixels are read from
image RAM for an address pair (i, j). The control will be in this state until done
signal from the watermark insert module is set. The watermarked image pixel value
and watermark pixel value are stored in respective RAM at address (i, j).

– S5: the column address is incremented (col var = col var + 1). In this state the con-
trol checks for the possibility of column overflow, i.e. the column address reached
its right most pixel address or not. If col var is equal to the right most address then
the control moves to state S6 else to state S0.

– S6: the row address is incremented by (Row var = Row var + 1)and Col var =0. In
this state the control checks for row overflow, i.e. the row address reached its lower
most pixel address or not. If Row var is equal to the lower most address then the
control moves to state S7, else to state S0.

– S7: In state S7, the busy signal is reset and ready signal is set indicating that the
input image is watermarked.

4 Implementation, Simulation and Conclusions

The chip was modeled using VHDL and functional simulation was performed. The
three modules created are watermark insertion, watermark generator, and watermark
encoder. The watermark encoder is the main module which instantiates the other two
components.The synthesis of the chip is carried out using Synplify ProTM tool tar-
geting Xilinx VIRTEX-II technology with XCV50-BG256-6 target device.The simula-
tions are done using the ModelSim. Fig. 4 shows the RTL schematic of the synthesized
encoder. The timing simulation is presented in Fig. 5. From the synthesis results we
provide the macro statistics and timing report of the units in Table 2. Minimum period
is an indicator of the timing path from a clock to any other clock in the design. The
minimum period is reported for both generation unit and encoder, whereas the critical
path delay is reported for the insertion unit which is fully combinational. The cell usage
indicates all the logical cells that are basic elements of the technology.

This paper presented an architecture and FPGA implementation of a watermarking
encoder. Its low power high performance implementation is currently under progress.

FPGA Based Implementation of an Invisible-Robust Image Watermarking Encoder 351

Fig. 4. Synthesis of the Encoder.

Fig. 5. Simulation Waveforms of the Encoder.

352 S.P. Mohanty, R. Kumara C., and S. Nayak

Table 2. Summary of Synthesis Report.

Units Period/Delay (ns) Cells Usage(BELS)
Watermark Generation 4.916 43
Watermark Insertion 15.526 122
Overall Encoder 19.842 838

The disadvantage of the watermarking algorithms implemented is that the processing
needs to be done pixel-by-pixel. In future, we are aiming to investigate block-by-block
processing. Since DRM systems need both encryption and watermarking, we think that
combining both the hardware alongwith data compression hardware would be benefi-
cial. Moreover, the on-chip encryptor can be used in storing the watermarking generator
key in encrypted form, thus enhancing the watermark security.

References

1. Emmanuel, S., Kankanhalli, M.S.: A Digital Rights Management Scheme for Broadcast
Video. ACM-Springer Verlag Multimedia Systems Journal 8 (2003) 444–458

2. Kundur, D., Karthik, K.: Digital Fingerprinting and Encryption Principles for Digital Rights
Management. Proceedings of the IEEE 52 (2004)

3. Eskicioglu, A.M., Delp, E.J.: An Overview of Multimedia Content Protection in Consumer
Electronics Devices. Elsevier Signal Processing: Image Comm. 16 (2001) 681–699

4. Memon, N., Wong, P.W.: Protecting Digital Media Content. Communications of the ACM
41 (1998) 35–43

5. Mohanty, S.P.: Digital Watamerking of Images. Master’s thesis, Department of Electrical
Engineering, Indian Institute of Science, Bangalore, India (1999)

6. Hsiao, S.F., Tai, Y.C., Chang, K.H.: VLSI Design of an Efficient Embedded Zerotree Wavelet
Coder with Function of Digital Watermarking. IEEE Transactions on Consumer Electronics
46 (2000) 628–636

7. Maes, M., Kalker, T., Linnartz, J.P.M.G., Talstra, J., Depovere, G.F.G., Haitsma, J.: Digital
Watamarking for DVD Video Copyright Protection. IEEE Signal Processing Magazine 17
(2000) 47–57

8. Tsai, T.H., Lu, C.Y.: A Systems Level Design for Embedded Watermark Technique using
DSC Systems. In: Proceedings of the IEEE International Workshop on Intelligent Signal
Processing and Communication Systems. (2001)

9. Petitjean, G., Dugelay, J.L., Gabriele, S., Rey, C., Nicolai, J.: Towards Real-time Video Wa-
termarking for Systems-On-Chip. In: Proceedings of the IEEE International Conference on
Multimedia and Expo (Vol. 1). (2002) 597–600

10. Garimella, A., Satyanarayan, M.V.V., Kumar, R.S., Murugesh, P.S., Niranjan, U.C.: VLSI
Impementation of Online Digital Watermarking Techniques with Difference Encoding for
the 8-bit Gray Scale Images. In: Proc. of the Intl. Conf. on VLSI Design. (2003) 283–288

11. Mathai, N.J., Sheikholeslami, A., Kundur, D.: VLSI Implementation of a Real-Time Video
Watermark Embedder and Detector. In: Proceedings of the IEEE International Symposisum
on Circuits and Systems (Vol. 2). (2003) 772–775

12. Tsai, T.H., Wu, C.Y.: An Implementation of Configurable Digital Watermarking Systems in
MPEG Video Encoder. In: Proc. of Intl. Conf. on Consumer Electronics. (2003) 216–217

13. Mohanty, S.P., Ranganathan, N., Namballa, R.K.: VLSI Implementation of Invisible Dig-
ital Watermarking Algorithms Towards the Developement of a Secure JPEG Encoder. In:
Proceedings of the IEEE Workshop on Signal Processing Systems. (2003) 183–188

FPGA Based Implementation of an Invisible-Robust Image Watermarking Encoder 353

14. Seo, Y.H., Kim, D.W.: Real-Time Blind Watermarking Algorithm and its Hardware Imple-
mentation for Motion JPEG2000 Image Codec. In: Proceedings of the 1st Workshop on
Embedded Systems for Real-Time Multimedia. (2003) 88–93

15. Mohanty, S.P., Rangnathan, N., Namballa, R.K.: VLSI Implementation of Visible Water-
marking for a Secure Digital Still Camera Design. In: Proceedings of the 17th International
Conference on VLSI Design. (2004) 1063–1068

16. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information Hiding - A Survey. Proceedings
of the IEEE 87 (1999) 1062–1078

17. Voloshynovskiy, S., Pereira, S., Pun, T., Eggers, J., Su, J.: Attacks on Digital Watermarks:
Classification, Estimation-based Attacks and Benchmarks. IEEE Communications Magazine
39 (2001) 118–126

18. Mathai, N.J., Kundur, D., Sheikholeslami, A.: Hardware Implementation Perspectives of
Digital Video Watermarking Algortithms. IEEE Transanctions on Signal Processing 51
(2003) 925–938

19. Tefas, A., Pitas, I.: Robust Spatial Image Watermarking Using Progressive Detection. In: Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(Vol. 3). (2001) 1973–1976

20. Petitcolas, F.A.P.: Watermarking Schemes Evaluation. IEEE Signal Processing 17 (2000)
58–64

21. Nelson, V.P., Nagle, H.T., Irwin, J.D., Caroll, B.D.: Digial Logic Analysis and Design. Pren-
tice Hall, Upper Saddle River, New Jersey, USA (1995)

22. Smith, D.J.: HDL Chip Design: A Practical Guide for Designing, Synthesizing and Simulat-
ing ASICs and FPGAs Using VHDL or Verilog. Doone Publications, USA (1998)

23. Smith, M.J.S.: Application-Specific Integrated Circuits. Addison-Wesley Publishing Com-
pany, MA 01867, USA (1997)

r_ponnusamy@hotmail.com, gopal@annauniv.edu.

Optimizing Surplus Harmonics Distribution
in PWM

Shiyan Hu1 and Han Huang2

1 Department of Computer and Information Science
Polytechnic University

Brooklyn, NY 11201, USA
shu@cis.poly.edu

2 Department of Electrical and Computer Engineering
Polytechnic University

Brooklyn, NY 11201, USA
hhan@photon.poly.edu

Abstract. The goal of optimal pulse-width modulation (PWM) is to
select the switching instances in such a way that a waveform with a
particular characteristic is obtained and a certain criterion is minimized.
The conventional method to solve the optimal PWM problem would usu-
ally lead to large content of surplus harmonics immediately following the
eliminated frequency band, which may increase the filter loss and reduce
the efficiency and performance of the whole controller. Meanwhile, it may
increase the probability of resonance between line impedance and filter
components. To overcome the shortcomings of conventional PWM meth-
ods, in this paper, we propose an algorithm for pushing the first crest of
the surplus harmonics backward, ameliorating the amplitude frequency
spectrum distribution of the output waveform, and thus reducing the
impact of surplus harmonics.
The problem is first formulated as a constrained optimization problem
and then a Quantum-inspired Evolutionary Algorithm (QEA) algorithm
is applied to solve it. Other than Newton-like methods, the enhanced
QEA does not need good initial values for solving the optimal PWM
problem and is not stuck in local optimum. The simulation results indi-
cate that the algorithm is robust and scalable for a variety of application
requirements.

Keywords: Surplus harmonics, Constrained nonlinear optimization,
Quantum-inspired Evolutionary Algorithm.

1 Introduction

The pulse-width modulation (or PWM in short) technique can effectively reduce
the harmonics content of inverter output waveform and possesses evident merits
in improving frequency, efficiency, and dynamic response speed [12]. Therefore,
PWM has extensive applications and many related techniques such as [2, 3] have
been proposed. The Selected Harmonics Elimination PWM (or SHE-PWM in

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 366–375, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Optimizing Surplus Harmonics Distribution in PWM 367

short) [13] is one of the optimal PWM techniques. It can generate the output
waveform of higher quality through eliminating specific lower order harmonics.
The basic idea is to set up the notches at the specially designated sites of PWM
waveform and then the inverter alters directions many times per half-cycle to
control the inverter’s output waveform appropriately. Refer to Figure 1 for a
three-level PWM waveform. Suppose we use two switching instances (angles) to
denote every notch. Then the switching instances can be determined through
solving a set of transcendental equations. There are a lot of algorithms in the
literature so far (e.g., [7, 1]), however, conventional methods do not give con-
sideration for the impact by the surplus harmonics. From Figure 2 where the
spectrum of an output waveform produced by the conventional PWM technique
is shown, we clearly see that the first crest of the surplus harmonic (i.e., the
13th harmonic in the figure) is too high, which is unfavorable to eliminate the
harmonics for the output filter and will increase the probability of resonance
between line impedance and filter components and reduce the efficiency and
performance of the whole controller.

In this paper, we focus on pushing the first crest of the surplus harmonics
backward, at the same time ameliorating the amplitude frequency spectrum dis-
tribution of the output waveform. Since the proposed algorithm is not Newton-
like, we do not need good initial values which are sometimes hard to find for the
commonly-used alternatives. The algorithm can be divided into two steps: trans-
form the original transcendental equations to a constrained optimization prob-

Fig. 1. A symmetric three-level PWM waveform.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

Harmonic Order

H
ar

m
on

ic
 A

m
pl

itu
de

 p
.u

.

Fig. 2. The spectrum of the output waveform produced by the conventional PWM
method when n = 12.

368 S. Hu and H. Huang

lem, then use an enhanced Quantum-inspired Evolutionary Algorithm (QEA)
to solve it. The QEA [4] is a relatively new evolutionary computing algorithm,
which is characterized by the principles of quantum computing including con-
cepts of qubits and superposition of states. QEA can treat the balance between
exploration and exploitation more easily comparing to the conventional GAs
[4]. Other than the standard QEA, our QEA favors localized search which is
more suitable in our case. The simulation results indicate the soundness of our
method.

The rest of the paper is organized as follows: Section 2 describes the numerical
transformation of PWM problem to an optimization problem. Section 3 describes
the QEA for solving the optimization problem. Section 4 shows the simulation
results. A summary of work is given in Section 5.

2 Numerical Transformation of the PWM Problem

As in [7], we first reduce the optimal PWM problem to a polynomial problem,
which is significantly easier to handle and computationally more efficient than
the original nonlinear system.

A periodical PWM waveform with n notches per half-cycle can be represented
using Fourier series expansion as

f(t) =
∞∑

n=1

[an sin(nωt) + bn cos(nωt)] (1)

where ω = 2π/T . Owing to the property of odd quarter-wave symmetry, the
coefficients of Fourier series are bn = 0 for all n and

an =
{

4
nπ

∑n
k=1(−1)k−1 cos(nαk) : n is odd

0 : n is even
(2)

where 0 < α1 < α2 < . . . αn < π/2. Note that an is the amplitude of an n-th
harmonic component of the waveform f . To set selected harmonics of a full-
bridge PWM inverter output voltage to desired values, we need to solve the
following set of nonlinear equations:

n∑
i=1

(−1)i−1 cos(kαi) = hk (3)

where hk = kπak/4E, k = 1, 3, 5, . . . , 2n − 1 and E is the inverter DC bus
voltage. Let xi = cos(αi) for odd i and xi = cos(π − αi) for even i. Applying
Chebyshev polynomial approximation [1], we get

k∑
m=1

ck,m · S2m−1 = h2k−1, 1 ≤ k ≤ n (4)

Optimizing Surplus Harmonics Distribution in PWM 369

where Sm =
∑n

i=1 xm
i . From the recursion equations of Chebyshev approxima-

tion, we can get coefficients ck,m one by one. Hence, by setting harmonic ampli-
tudes h in (4) to desired values, we can obtain the values of S2m−1, 1 ≤ m ≤ n.
So far, equation (3) has been transformed to⎛

⎜⎜⎜⎜⎝
x1 + x2 + · · · + xn = S1

x3
1 + x3

2 + · · · + x3
n = S3

· · ·
· · ·

x2n−1
1 + x2n−1

2 + · · · + x2n−1
n = S2n−1

⎞
⎟⎟⎟⎟⎠ (5)

Since

p(x) =
n∏

i=1

(x − xi) (6)

where xi (1 ≤ i ≤ n) is the root of a degree-n polynomial p(x). Using Taylor
series expansion, we have

p′(x)
p(x)

=
n∑

i=0

∞∑
m=0

xm
i

xm+1
=

∞∑
m=0

Sm

xm+1
. (7)

Integration of (7) gives

p(x) = xne(−
∑∞

m=1
Sm

mxm) (8)

Note that

p(−x) = (−1)nxne(−
∑∞

m=1
(−1)mSm

mxm) (9)

Then we get

p(x) = (−1)np(−x)G(1/x) (10)

Using the algorithm in [11], we have G(x) = eV (x) =
∑∞

i=1 gix
i and V (x) =∑∞

i=0 vix
i. When first n odd Si are known, the vi can be determined for 0 ≤ i ≤

2n: v2i = 0 for 1 ≤ i ≤ n; v2i−1 = −2S2i−1/(2i − 1) for 1 ≤ i ≤ n. Thus p(x)
can be written as a Toeplitz system through Coefficients Matching Method.⎡

⎢⎢⎣
gn, · · · , g1

· · ·
· · ·

g2n−1, · · · , gn

⎤
⎥⎥⎦
⎡
⎢⎢⎣

(−1)p1

· · ·
· · ·

(−1)npn

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

gn+1

· · ·
· · ·
g2n

⎤
⎥⎥⎦ (11)

where pi is the i-th order coefficient in polynomial p(x). From (11), we can
obtain pi using Toeplitz Matrix algorithm. So far, we have transformed the
original transcendental nonlinear problem to a monic real-coefficient algebraic
polynomial problem p(x) = pnxn + pn−1x

n−1 + · · · + p0 = 0 of which all the

370 S. Hu and H. Huang

roots are real. Recall that we need to push down the amplitude for (n + 1)th
harmonic, which is mathematically equivalent to

min |∑n
i=1(−1)i−1 cos((2n + 1) arccosxi)|

s.t.|∑n
j=0 pjx

j
i | < δ, i = 1, . . . , n

(12)

where xi is the i-th root of the monic p(x) and 0 < x1 < x2 < x3 < . . . < xn < 1,
and δ denotes the maximum tolerable error of the system.

3 Solving PWM
by Quantum-Inspired Evolutionary Algorithm

The conventional numerical techniques are not effective for solving the prob-
lem (12) due to many unknown system variables and multiple local optimum.
Even when applicable, they usually need good initial values. The evolutionary
algorithm has been shown to have potential to overcome these limitations.

The Quantum-inspired Evolutionary Algorithm (QEA) [4] is a relatively
new evolutionary computing algorithm, which is characterized by principles of
quantum computing including concepts of qubits and superposition of states.
QEA can imitate parallel computation in classical computers. Several recent
results on QEA include [5, 6, 9, 8, 10]. It is worth noting that QEA simulates
Quantum mechanism on classical computers and is an evolutionary algorithm
but not a quantum algorithm.

As the smallest unit of information, a qubit is a quantum system whose states
lie in a two dimensional Hilbert space. Note that a qubit can be in “1” state,
“0” state or simultaneously in both (superposition). The state of a qubit can
be represented as |Ψ〉 = α|0〉 + β|1〉 where α and β specify the probability of
the corresponding states, and |α|2 + |β|2 = 1. In our implementation, a uniform
deviate is compared to |α|2 to “observe” the state of a qubit as in [4]. The
state of a qubit can be changed by unitary transformation. A quantum gate is
a unitary transformation that acts on a fixed number of qubits. Inspired by the
quantum computing, QEA uses the Q-bit representation for the probabilistic
representation. An m Q-bits representation is defined as q = [κ1|κ2| . . . |κm]
where κi = (αi, βi)T and |αi|2 + |βi|2 = 1, i = 1, 2, . . . , m.

In this paper, we use the QEA for solving the optimization problem (12).
Other than the standard QEA, our QEA favors localized search, which is very
important since the problem (3) and (12) are highly ill-conditioned (refer to
Section 4), i.e., even slight perturbation of solutions may lead to significant
perturbation to the fitness value (of the target function) and thus hurt the con-
vergence of QEA. In the new structure, we keep in the population Q(t)

⋃
S(t)

at generation t both the Q-bit individuals, Q(t) = {qt
1, q

t
2, . . . , q

t
n} and the corre-

sponding solutions, S(t) = {st
1, s

t
2, . . . , s

t
n}, where n is the size of the population,

and qt
i is a Q-bit individual of length m:

qt
j = [κt

j1|κt
j2| . . . |κt

jm]. (13)

Optimizing Surplus Harmonics Distribution in PWM 371

Each Q-bit individual qt
j , j =1,2, . . . ,n corresponds to a solution st

j , j =1,2, . . . ,n
in the population, and is used for deciding whether to add or subtract a small
(random) amount to st

j to form the new solution s′tj . By comparing st
j and s′tj as

well as their fitness values, we then appropriately update qt
j (see below). After all

solutions generate descendants, the best n out of the 2n solutions ({st
j}
⋃{s′tj })

are selected to form the set of solutions S(t+1) = {st+1
j } of the new population.

Note that we also need to select those qt
j , which correspond to st+1

j , to form
Q(t + 1) = {qt+1

j }. If both st
j and s′tj are selected, then two qt

j ’s will exist in the
new population. If none of st

j and s′tj gets selected, nor does qt
j . The details are

elaborated as follows.

(1) In the initialization step, all α0
i and β0

i , i = 1, 2, . . . , m, of all q0
j , j =

1, 2, . . . , n, are initialized to 1/
√

2, such that each q0
j , j = 1, 2, . . . , n can rep-

resent the linear superposition of all 2m states, namely

|Ψq0
j
〉 =

1√
2m

(|00 . . . 0〉 + |00 . . . 1〉 + |11 . . .1〉). (14)

By the above discussion, we initialize each solution as the set of values uniformly
distributed between [0, 1] and then increasingly sort them. Note that we use
numerical encoding for the solution.

(2) Generate new solutions s′tj from st
j as described above. Note that we restrict

that α, β to be positive, for avoiding the ambiguity.

(3) Update qt
j . We apply a quantum gate, i.e., a unitary transformation U(Δθ)

to obtain new qt
j , namely κt

ji = U(Δθ)κt
ji for each κt

ji in qt
j . The U(Δθ) given

in [4] is

U(Δθ) =
[
cos(Δθ) − sin(Δθ)
sin(Δθ) cos(Δθ)

]
(15)

where Δθ is defined in the Table 1. The sign of Δθ is not hard to decide, e.g.,
if s′tj is fitter than st

j and s′tji < st
ji, we should try to increase the possibility for

decreasing st
ji. Recall that we use |αt

ji|2 (precisely, the predicate: random[0, 1) >

|αt
ji|2) to decide whether to add a small amount to st

ji, therefore, we should
increase αt

ji and Δθ is negative.

(4) The best n out of 2n solutions and their corresponding Q-bit individuals are
selected to form the next generation.

(5) Repeat (2)–(4) until certain condition is met.

Table 1. The lookup table for Δθ, where f(·) is the fitness.

st
ji ≤ s′tji f(st

j) ≤ f(s′tj) Δθ

true true 0.02π
false true −0.02π
true false −0.02π
false false 0.02π

372 S. Hu and H. Huang

Since the solutions are only perturbed by very small values for obtaining the new
solutions each time, our QEA exhibits good localized search ability. Each Q-bit
individual starts from the the same value, and is successively updated to favor the
specific direction for improving solution vectors. Eventually when QEA converges
to the optimum, Q-bit individuals will return to the same values, namely 1/

√
2.

Since the polynomial and thus (12) are highly ill-conditioned (see below), the
amount for addition and subtraction in step (2) is set to be progressively smaller
every 200 iterations.

4 Simulation Results

We have performed simulations over systems of various sizes. We choose the
following two systems to present our results in this paper. The first simulation is
illustrative where the number of switching angles is n = 12, and h1 is set to 0.8
and all other h (i.e., h3, h5, . . . , h23) are set to 0. We first compute the switching
angles from (3) by the conventional PWM method. The resulting angles and
spectrum are shown in Table 2 and Figure 3, respectively. We then investigate
the ill-conditioned property of the nonlinear system as well as the resulting
polynomials.

We perturb the above resulting angles with very small random values in
[−0.02, 0.02], which however leads to the significant error to the system (refer
to Figure 4): evaluation of the 12th equation in (3) gives 1.04 rather than the
desired 0, which greatly harms the system’s reliability! The original nonlinear
system is clearly ill-conditioned. We now compute the condition number of p(x).
The coefficients for x1, x2, . . . , x12 in the polynomial are shown in the Table 2
(the coefficient for x0 is 0.0001). Recall that for a simple root x of the monic p
of degree n, the condition number of p at x is given by

χ(p, x) =
||p||max(1, |x|n−1)

|p′(x)| . (16)

If p has only simple roots, then χ(p), the condition number of p, is the maximum
of χ(p, x), x varying over the roots of p. Evaluating χ(P, x) at x = 0.9809 (corre-
sponding to the angle 0.1955 by the conventional PWM method) already gives
us the condition number larger than 107! The polynomial is also ill-conditioned.

We now apply the enhanced QEA method to solve the constrained optimiza-
tion problem (12) where δ is set to 0.04. The resulting angles (i.e., cos−1 x) are
shown in Table 2. Then we can see from Figure 3 where the amplitude of the
13th harmonic (corresponding to h25) by the enhanced QEA algorithm is 0.33
compared to 3.27 by the conventional algorithm. Therefore, the output current
of 13th harmonic is largely reduced and at the same time, the energy from the
reduced harmonic is optimally re-distributed to the following surplus harmonics.
So the difficulty of output passive filter design is reduced and the controller’s
performance is enhanced.

As indicated in [1], a number of existing techniques do not perform well
when n is larger than 20, due to ill condition of the systems. We therefore

Optimizing Surplus Harmonics Distribution in PWM 373

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

Harmonic Order

H
ar

m
on

ic
 A

m
pl

itu
de

 p
.u

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

Harmonic Order

H
ar

m
on

ic
 A

m
pl

itu
de

 p
.u

.

Fig. 3. The spectrum of the output waveform by the conventional PWM algorithm
(left) and by the enhanced QEA algorithm when n = 12 (right).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

Harmonic Order

H
ar

m
on

ic
 A

m
pl

itu
de

 p
.u

.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10

Harmonic Order

H
ar

m
on

ic
 A

m
pl

itu
de

 p
.u

.

Fig. 4. The spectrum of the output waveform for randomly perturbed angles when
n = 12 (left) and by the enhanced QEA algorithm when n = 35 (right).

Table 2. Resulting angles (truncated at 10−4) for three cases and coefficients of the
polynomial p(x). “C.PWM” stands for “Conventional PWM method”, “E.QEA” for
“Enhanced QEA”, “Rnd. Perturb.” for “Randomly perturbed angles”. Note that the
differences due to truncation will be propagated to the final results.

Angles 1 2 3 4 5 6

C.PWM (3) 0.1955 0.2453 0.3926 0.4902 0.5926 0.7341
E.QEA (12) 0.1804 0.2314 0.3693 0.4652 0.5609 0.6998
Rnd. Pert. 0.1773 0.2270 0.3743 0.4720 0.5743 0.7158

Coeff. -0.0116 0.2071 -1.6423 7.6863 -23.6075 50.0117

Angles 7 8 9 10 11 12

C.PWM (3) 0.7969 0.9762 1.0076 1.2168 1.2271 1.5705
E.QEA (12) 0.7615 0.9328 0.9716 1.1613 1.1803 1.5706
Rnd. Pert. 0.7786 0.9580 0.9893 1.1985 1.2088 1.5526

Coeff. -74.6389 78.5427 -57.1569 27.4149 -7.8054 1.0000

consider the case where the number of switching angles is n = 35, and lower
order harmonics are set to h1 = 0.9, h3 = 0.7, h5 = 0.5 and all other h (i.e.,
h7, h9, . . . , h69) are set to 0. The spectrum of output waveform generated by our
enhanced QEA algorithm is shown in Figure 4, where the amplitude of the 36th

374 S. Hu and H. Huang

harmonic (corresponding to h71) is 0.38, while it is 11.09 by the conventional
PWM method (plot omitted). The algorithm successfully handles the highly
ill-conditioned polynomials and pushes the first crest of the surplus harmonics
backward.

5 Conclusions

A new robust algorithm is proposed to solve the optimal PWM problem while
simultaneously ameliorating the frequency spectrum distribution of the output
waveform, and thus enhance the controller’s performance and reduce the diffi-
culty of output passive filter design. The algorithm first transforms the nonlinear
system to a constrained optimization problem, then applies the enhanced QEA
method, which is more efficient than the simple QEA, to solve it. The main
features of the new method are three-fold. First, the proposed method consid-
ers ameliorating the frequency spectrum distribution of the output waveform of
PWM, which is important but has not been addressed in the literature so far.
Second, due to the power of QEA, we do not need good initial values which
are sometimes hard to find for our commonly-used Newton-like alternatives.
Third, the new method is robust for solving the large ill-conditioned system.
Our simulation results indicate the effectiveness of the proposed method. The
new technique can be applied to variable-frequency velocity modulation, static
VAR compensation and other related fields.

References

1. D. Czarkowski, D.V. Chudnovsky, G.V. Chudnovsky, and I.W. Selesnick. Solving
the optimal PWM problem for single-phase inverters. IEEE Trans. Circuits and
Systems, 49(4):465–475, 2002.

2. P. Enjeti and J.F. Lindsay. Solving nonlinear equation of harmonic elimination
PWM in power control. IEE Electronic Lett., 23(12):656–657, 1987.

3. P. Enjeti, P.D. Ziogas, and J.F. Lindsay. Programmed PWM technique to eliminate
harmonics: a critical evaluation. IEEE Trans. Ind. Appl., 26(2):302–316, 1990.

4. K.-H Han and J.-H. Kim. Quantum-inspired evolutionary algorithm for a class
of combinatorial optimization. IEEE Trans. Evolutionary Computation, 6(6):580–
593, 2002.

5. K.-H Han and J.-H. Kim. On setting the parameters of qea for practical applica-
tions: Some guidelines based on empirical evidence. GECCO 2003, pages 427–428,
2003.

6. K.-H. Han and J.-H. Kim. Quantum-inspired evolutionary algorithms with a new
termination criterion, hε gate, and two phase scheme. IEEE Transactions on Evo-
lutionary Computation, 8(2):156–169, 2004.

7. H. Huang, S. Hu, and D. Czarkowski. A novel simplex homotopic fixed-point al-
gorithm for computation of optimal PWM patterns. Proceedings of the 35th IEEE
Power Electronics Specialists Conference (PESC), 2004.

8. J.-S Jang, K.-H Han, and J.-H. Kim. Quantum-inspired evolutionary algorithm-
based face verification. GECCO 2003, pages 2147–2156, 2003.

Optimizing Surplus Harmonics Distribution in PWM 375

9. J.-S. Jang, K.-H. Han, and J.-H. Kim. Face detection using quantum-inspired evolu-
tionary algorithm. Proceedings of the 2004 Congress on Evolutionary Computation,
IEEE Press, pages 2100–2106, 2004.

10. K.-H Kim, J.-Y Hwang, K.-H Han, J.-H. Kim, and K.-H Park. A quantum-inspired
evolutionary computing algorithm for disk allocation method. IEICE Transactions
on Information and Systems, E86-D(3):645–649, 2003.

11. D.E. Knuth. The art of computer programming, vol2: Seminumerical algorithm.
Addison-Wesley, 1981.

12. H.S. Patel and R.G. Hoft. Generalized technique of harmonic elimination and volt-
age control in thyristor inverters: Part I harmonic eliminiation. IEEE Trans. Ind.
Appl., 9(3):310–317, 1973.

13. J. Sun and H. Grotstollen. Solving nonlinear equations for selective harmonic elim-
inated PWM using predicted initial values. Proc. Int. Conf. Ind. Electr. Control
and Instr., 1992.

priyatam@bvb.edu

∈ Χ

() ()
()()

()
()−=

+=
−

−=
+=

=

∈ Χ

∀
Π

∈

() () () ()()
() () () ()

()
()−=

+=
−

−=
+=

=

Π

)(
() () (){ }==

∈

λ λ
λ

λ

()
=

≅

λ λ
()λ ()λ

() () () (){ }βαλ βλα ++−=
∈

() () () (){ }βαλ βλα ++−=
∈

()λ
()λ α β

() () (){ }

() () (){ }
−=

++

++
=

−
=

−
=

λλα

λλα
α

α

α

β

β

()
() () (){ }

() () (){ }
−=

++

++
=

++

+++
=

λλα

λλβ
β

α

β

β

() () ∀= αβ

() () ()δ+=

δ

λ

() () ()[] () ()[] ()λλλλλλ −+−+=
==

()
=

= λλ

α α
∞

= −=

=
−

=

√ √ √ √ √

√ √ √ √ √

YALXP:
Yet Another Lightweight XPath Processor

R.V.R.P. Kumar and V. Radha

IDRBT, Castle Hills, Masab Tank, Hyderabad, India
rangavajhala@mtech.idrbt.ac.in, vradha@idrbt.ac.in

Abstract. Many algorithms have been proposed for processing multi-
ple XPath Expressions such as Xfilter[5], Yfilter[6], turboXPath[13] and
Xtrie[9]. But they do not deal with backward axes. XAOS[2] deals with
XPath expressions with forward and backward axes (such as parent and
ancestor). But XAOS deals with only one query at a time. As a result a
document is parsed q times for a set of q queries, which is a significant
cost in terms of time. More over, in a large-scale system, there is bound
to be substantial commonality among different queries. In this paper, we
present a method called YALXP, which attempts to evaluate multiple
queries, with both forward and backward axes, in less number of passes
exploiting commonality among the queries. Our method is built upon
XAOS algorithm. Our experiments show that YALXP performs better
in CPU time and memory than traditional XPath engine Xalan (ODP)
– for multiple queries with single DOM construction.

1 Introduction

XPath is an underlying component of many partnering technologies of XML
such as XSLT, XPointer and XForms etc. XPath, short for XML Path language,
is a querying language used to select specific parts of very large XML documents
in IR applications.

Little work has been done in the area of XPath processing involving backward
axes. XAOS [2] deals with XPath expressions with forward and backward axes.
But XAOS handles only one query at a time. As a result a document is parsed
q times for a set of q queries. In case of large documents, this parsing time goes
out of bounds. More over, research suggests that there is bound to be significant
commonality among different queries in a large-scale system. By exploiting this
commonality we can reduce a lot of processing. Lot of work has also been done
in the area of multiple XPath processing such as Xfilter, Yfilter, IndexFilter [8],
Xtrie and CQMC[7]. But they do not handle backward axes. In this paper we
present a method called YALXP (Yet Another Lightweight XPath Processor), to
evaluate multiple queries, with both forward and backward axes, in less number
of passes of the document exploiting commonality among the queries. YALXP
is built upon XAOS[2] algorithm. We make the following contributions in this
paper.

G. Das and V.P. Gulati (Eds.): CIT 2004, LNCS 3356, pp. 387–399, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

388 R.V.R.P. Kumar and V. Radha

1. A concise representation of a set of XPath expressions, with out loss of
information, called combined x-dag, where all backward constraints in all
the queries are converted into forward constraints.

2. Data structure called combined matching structure that represents all the
matchings of different XPath expressions in the document.

3. Procedure to create combined x-dag.
4. Method to evaluate XPath queries using the above structures.

Section 2 gives a brief introduction to the data structures used in XAOS. Section
3 describes construction of combined x-dag, structure of combined matching
structure and the query evaluation algorithm based on these structures. Section
4 presents our experimental results and we conclude with section 5.

2 Background

2.1 XAOS

XAOS, pronounced as Chaos, is an approach to evaluate XPath expressions
having both forward and backward axes. Though it was originally designed for
only two backward axes namely parent and ancestor, it is extensible to other
backward axes. XAOS caters to only location paths of the XPath specification.
This particular subset of XPath was termed as Rxp (Restricted XPath) in XAOS.
XAOS works on two views of the input query namely x-tree and x-dag. X-tree
is a rooted tree that has nodes, called x-nodes, corresponding to each node test
in the query. Each x-node (but for the Root) has a unique incoming edge that
is labeled with the relationship (such as descendant/parent etc.) it shares with
the source x-node. We say that there is a matching at an element for an x-node
if the name of x-node matches with that of element. There exists one output x-
node in this x-tree (XAOS is extensible for multiple output nodes). The elements
matching with this x-node are the output of the query.

The backward axes such as ancestor and parent in the x-tree are converted to
forward axes and the resulting view is called x-dag (x-directed, acyclic, graph).
At the end of every event, looking-for-set is constructed, based on x-dag, having
elements likely to match with query in the next event. Matching structures
are defined to store the information about the matched xml elements and the
relations between different matching elements.

3 YALXP

We continue to call each XPath Expression as an Rxp (Restricted XPath), since
we cater to essentially that fragment of XPath which XAOS addresses. YALXP
operates on a combined view of all the input XPath expressions called com-
bined x-dag or c-dag. Combined matching structure that represents the match-
ing elements for c-nodes in the c-dag is built as the execution of the algorithm
progresses.

YALXP can be viewed as an application built on top of an event-based xml
parser such as SAX. It consumes the events sent by SAX parser and deals with

YALXP: Yet Another Lightweight XPath Processor 389

them appropriately. At the end of every event we maintain a looking-for-set that
has the set of elements expected in the next event, along with qids they are
likely to match. For an element to be relevant it has to match with at least one
of these items. This way, we can filter out irrelevant events. Relevant elements
along with the links among them are stored in combined matching structure.
YALXP uses combined x-dag to build combined matching structure. At the end
of the algorithm, we emit the output matchings for different queries with the help
of individual x-tree for each query. We stick to the lazy emission of output (at
end document event), a concept followed by XAOS. This section describes the
construction of combined x-dag, the structure of combined matching structure
and complete process of query evaluation.

Q1: /descendant::Z[descendant::Y/parent::X] Q2::/descendant::X[child::Y/ancestor::Z]

Y(3)

X(1) Z(2)

Root(0) Root(0)

Z(1) X(2)

Y(3)

Fig. 1. Commonality in two queries looking different.

3.1 Combined X-dag

YALXP operates on a combined representation of the input Rxp set that is called
combined x-dag or c-dag. Combined x-dag is a directed and acyclic graph that is
obtained by combining individual x-dag’s constructed for each Rxp in the input
Rxp set. Combined x-dag is built on the premise that there exists a significant
commonality among different Rxps in large-scale systems. Commonality not only
exists in the string form of the XPath queries. As we explain below commonality
may exist in two Rxp’s, which need not have any common sub-string. In figure
1, the two Rxp’s do not have any commonality in the string form of the Rxp’s.
But after the x-dags are drawn, they look like mirror images of each other. This
is the kind of commonality we are going to exploit by building combined x-dag
for multiple Rxp’s.

Each node in c-dag is called c-node. Each c-node represents a set of x-nodes
of different queries. We define info, an ordered pair (qid, x-nodeid), which stores
the information about each x-node that a c-node represents. E.g, if a c-node has
the info (qid, x-nodeid) with it, it means that this c-node corresponds to an x-
node with id ‘x-nodeid ’ In the x-dag with id ‘qid ’. Each edge in c-dag represents
edges of different x-dags. At each edge in c-dag, we store the qids of x-dags in
which the edge participates. Each edge also has a label associated with it, which
is either Descendant or Child. The c-dag is constructed in such a manner that
it is possible to reconstruct individual x-dags from the c-dag.

390 R.V.R.P. Kumar and V. Radha

The construction of c-dag starts with the construction of individual x-dag
for each Rxp. This involves construction of individual x-tree for each Rxp as ex-
plained in XAOS. X-dags for all Rxp’s are built from these x-trees by translating
all the backward constraints (‘ancestor ’ and ‘parent ’) to forward constraints (‘de-
scendant ’ – represented by dotted edge and – ‘child ’ – represented by thick edge
in fig 1) according to the rules specified by XAOS. Nodes in bold in fig 1 are the
output nodes.

After this step, the c-dag is initialized to the first x-dag (corresponding to
the first Rxp). Now the c-dag has a set of c-nodes and edges that correspond
to x-nodes and edges of the first x-dag. At each c-node thus created, info (1,x-
nodeid), where x-nodeid is x-node that the c-node represents, is registered. qid
‘1’ is registered at each edge in the c-dag. To the Root of c-dag, info (qid,0)
about Root x-node of each x-dag(qid) is added, since Root of c-dag matches
with Root’s of all the x-dags.

After this initialization process, the rest of the x-dags are added to the c-dag
by traversing each x-dag in depth-first fashion. The x-node xj whose outgoing
edges and outgoing x-nodes (the x-node to which an outgoing edge leads) are
going to be added to the c-dag. There are six scenarios listed as cases below
in bold in which an outgoing edge and outgoing x-node can be added to c-dag.
The steps with small letters under each case in the list are the operations to be
performed in that case. We followed the following conventions in the list. xk is
the outgoing x-node being added. c(qid,j) is the c-node corresponding to x-node
with id j in x-dag for qid. We say that a c-node exists for xk if this c-node has
info matching with qid and k (id of xk).

1. If a c-node exists for xk that is an outgoing c-node of c(qid,j) and an edge
with label axis(xj ,xk) exists between c(qid,j) and c(qid,k)
(a) Register qid at edge between c(qid,j) & c(qid,k);

2. If a c-node exists for xk that is an outgoing c-node of c(qid,j) and no edge
with label axis(xj ,xk) exists between c(qid,j) and c(qid,k)
(a) Let prevnode = c(qid,k);
(b) Remove info (qid,k) from prevnode;
(c) Create a new c-node for xk;
(d) Add info to this c-node, which is c(qid,k) from now on;
(e) Add edge with label axis(xj ,xk) between c(qid,j) and c(qid,k) and reg-

ister qid at this edge;
(f) Add incoming edges of prevnode w.r.t. x-dag(qid), to c(qid,k) and register

qid at the same;
(g) Remove qid from incoming edges of prevnode;
(h) Add outgoing edges of prevnode w.r.t. qid, to c(qid,k) and register qid

at the same;
(i) Remove qid from outgoing edges of prevnode;

3. If a c-node exists for xk that is not an outgoing c-node of c(qid,j)
(a) Add an edge with label axis(xj,xk) between c(qid,j) & c(qid,k);
(b) Register qid at this edge;

YALXP: Yet Another Lightweight XPath Processor 391

4. If no c-node exists for xk, an outgoing c-node of c(qid,j) has name equal to
name of xk and the edge between c(qid,j) and this outgoing c-node has label
axis(xj ,xk)
(a) Add info to this c-node;
(b) Register qid to edge between c(qid,j) and c(qid,k);

5. If no c-node exists for xk, an outgoing c-node of c(qid,j) has name equal to
name of xk and the edge between c(qid,j) and this outgoing c-node has label
not equal to axis(xj ,xk)
(a) Add info to this c-node;
(b) Add an edge with label axis(xj,xk) between c(qid,j) & c(qid,k);
(c) Register qid to edge between c(qid,j) and c(qid,k);

6. If no c-node exists for xk and no outgoing c-node of c(qid,j) has name equal
to name of xk

(a) Create new c-node with name equal to name of xk;
(b) Add info to newly created c-node;
(c) Add an edge with label axis(xj,xk) between c(qid,j) and c(qid,k);
(d) Register qid to edge between c(qid,j) and c(qid,k);

In cases 1,2 and 3 (where xk was not visited in a previous traversal of x-dag),
edges and x-nodes out of xk are added in similar manner as that of xj . In cases
4,5 and 6, there is no need to add these edges and x-nodes as they would have
been added to c-dag when xk was visited previously. It is understood that while
unregistering qid from edges, if the edge is not left with any qid after removal,
the edge itself is removed.

Similarly the remaining x-dags are also added to the c-dag. The resulting
c-dag after this step has all the commonalities among different Rxps exploited
to the optimal extent (to the extent that there is no loss of information).

3.2 Combined Matching Structure

We extend the concept of matching structure of XAOS to combined matching
structure in case of multiple Rxp’s. A combined matching structure represents
the matchings for all the input Rxps (i.e. for different c-nodes) at the Root of
the c-dag.

We store the information of an element that matches a particular c-node C
in a matching structure1 represented as Mx,i(qid′s) where ‘x ’ is name and ‘i ’
is id of the element. qid ’s are the ids of the input Rxps for which x matches.
This matching structure has pointers to matching structures of elements that
match with outgoing c-nodes of C. MRoot,0(qid′s) represents the Root matching
structure, where qid ’s are the ids of the input Rxps for which there is a matching
at the Root of the c-dag. A matching structure Mx,i(qid′s) is said to be a parent-
matching of a matching structure Mx′,i′(qid′s) if x corresponds to a c-node that

1 We use the term combined matching structure to denote the whole structure and
matching structure to denote individual matching structure within combined match-
ing structure.

392 R.V.R.P. Kumar and V. Radha

Fig. 2. Combined Matching structure.

is a parent of the c-node for which x’ has matching. Mx′,i′(qid′s) is said to be
the child-matching or sub-matching of Mx,i(qid′s).

Diagrammatically, there are 3 rows in a matching structure. First row has
the element name along with its id and level. Second row has the qids for which
the matching takes place. Third row has slots, which contain pointers to sub-
matchings for the children of respective c-node in the c-dag. There is no need
to store the edge information (qids at these pointers) in combined matching
structure (since these pointers match for the same set of queries, id’s of which
are present at the destination sub-matching). As the query evaluation progresses,
combined matching structure is built based on c-dag.

3.3 Query Evaluation Algorithm

The query evaluation process occurs at four events namely Start document,
start element, end element and end document. This process can be split into
two components. One is the matching process, which occurs at all events, that
filters out irrelevant events simultaneously storing relevant elements in combined
matching structure. The next component is emission of the output, which occurs
at end document event, using individual x-tree of each Rxp.

3.3.1 Matching Algorithm. The query evaluation at four events is de-
scribed in this section. Conventions followed to explain the process are defined
before algorithm CONLFSET.

Start Document Event
This event matches with the Root c-node. So the Root matching structure is
created with all the qids. Looking-for-set is constructed with the help of outgoing
c-nodes and outgoing edges of Root c-node.

Start Element Event
At this event, all the lfitems for which this event matches are considered for
creating matching structures. A new matching structure is created, for each
matched lfitem. This matching structure will have the information – element id,
level and set of qids for which the matching occurred. Pointers are added from the

YALXP: Yet Another Lightweight XPath Processor 393

corresponding parent matching structures to this matching structure. Looking-
for-set is constructed with the help of outgoing c-nodes and outgoing edges of
curcnode. Except for a few operations, the looking-for-set at start document and
start element event is built in similar manner. This process is given in algorithm
CONLFSET, which is self-explanatory. In CONLFSET, comments are given for
the steps that are not necessary for start document event.

Notations Followed in CONLFSET
curel → current element; level → level of current element; label(Co(qid)) → label
of cnode; curcnode → The c-node for which current event matched; Co(qid) →
Current outgoing c-node of curcnode w.r.t. qid ; Ci(qid) → Current Incoming
c-node of Co (Other than curcnode) w.r.t. qid ; Eo→ Edge (curcnode, Co(qid));
Ei → Edge (Ci(qid), Co(qid)); Lfset → Looking-for-set; lfitem → An item in
Looking-for-set; levelabove → level above which an lfitem can be found; lfid →
id of current lfitem; lfname → name of current lfitem; lqids → qids at lfitem;
qids(Eo)→ qids registered at Eo.

Algorithm: CONLFSET
Input: curcnode
Output: Looking-for-set gets constructed

Remove lfitems with levelabove less than level from lfset ;
// No need of this step for start document

for each lfitem(i) that matched with curel
// This loop is not needed for start document

for each Eo
if(one of lqids of lfitem(i) matches with qids(Eo)) /* Condition

not needed for start document event */
let tmpqids be a temporary array;
for each qid at Eo

if(there is an open and relevant element for each Ci(qid) of Co(qid))
if (no lfitem exists in lfset for Co(qid))

add qid to tmpqids;
if (tmpqids is not empty)

create lfitem(lfid) with lfname = label(Co(qid));
lfitem(lfid).lqids = tmpqids;
if (label(Eo) == descendant)

lfitem(lfid).level = ”*”;
lfitem(lfid).levelabove = level ;

else
lfitem(lfid).level = level+1;
lfitem(lfid).levelabove = level ;

End Element Event There is no need to construct looking-for-set at the end
element event of curel. It is equal to the looking-for-set at the start element event
of the parent of curel. At this event, propagation takes place at all the match-
ing structures corresponding to curel w.r.t. the qids present at each matching
structure.

394 R.V.R.P. Kumar and V. Radha

Notations Followed in PROPAGATE
mat str(i) → Matching structure with id i corresponding to curel
chmat str(j, mat str(i), qid) → child matching structure with id j of mat str(i)

Algorithm: PROPAGATE

for each mat str(i)
for each qid at mat str(i)

if (mat str(i) corresponds to a c-node that is a leaf w.r.t qid)
mat str(i).totmat(qid) = true;

else
if (there is tot mat w.r.t qid for all chmat str(j mat str(i),qid))

mat str(i).totmat(qid) = true;
else

mat str(i).totmat(qid) = false;

End Document Event
There is no need to construct looking-for-set at the end document event since
parsing finishes with this event. Propagation should take place at the Root
matching structure w.r.t. all qids in the same manner as at other end element
events. After this step emission of Output takes place.

3.3.2 Emission of Output. At the end of document event, a check is done to
see if total matching exists at Root matching w.r.t. all Rxp’s. If total matchings
exist at Root for a set of qid’s, all the corresponding sub-matchings (that have
total matching) should be emitted as output with the help of the individual
x-tree of each qid and the combined matching structure. Consider the following
scenario in emission of output. M(x1,qid) is a matching structure corresponding
to x-node x1 of x-tree(qid) where x1 has an outgoing edge labeled ancestor or
parent to an x-node x2. In this case, a matching structure for x2 is found as a
parent matching structure of M(x1,qid).

3.3.3 Optimizations. On large documents the emission of output can take
place more eagerly, after processing 500 tags or so, at the nearest end element
event after which the document level becomes 1. This can be done by firing
dummy events corresponding to end element of first element and end document.
After this the memory held by combined matching structure (but for the Root
matching structure & the matching structure corresponding to first element)
can be released. The c-dag built at the start of document can be used to build
combined matching structure from thereon.

The query rewriting method can be optimized to reduce the graph behavior
of queries. Consider the query descendant::X[/ancestor::Y/child::U and /par-
ent::W]. One can easily infer that W has to be a descendant of Y since X can
have only one parent, i.e. W and hence Y has to be an ancestor to X as well as
to W. This results in a tree versus a more complicated x-dag.

YALXP: Yet Another Lightweight XPath Processor 395

4 Experimental Results

We performed our experiments on Pentium IV 2.4 GHz Processor with 256MB
of Main Memory running on Windows XP Professional. We implemented XAOS
and YALXP in Java 1.4.1 and we use Xalan-Java 2.5 version. We used
xml4j 2 0 9, developed by IBM as SAX parser.

We define commonality factor (CF) as a measure to indicate the degree of
commonality among multiple queries with forward and backward axes. This
factor gives some hint about the amount of reduction in the number of matching
structures created and the number of traversals (both through dag and matching
structures) by creating c-dag.

CF (N) = 1 − Tcn + Tce

Txn + Txe

where N is number of queries, Tcn is Total no of c-nodes in c-dag, Tce is Total
no of edges in c-dag, Txn is Total No of x-nodes in N x-dags and Txe is Total
no of edges in N x-dags.

We tested the performances of various algorithms on three sets of queries and
documents generated based on three different DTDs. The three DTDs are coun-
try.dtd [15], DCMDItem.dtd [15] and auction.dtd [17]. Queries generated based on
these DTDs had Average commonality factors for 50 queries as 0.836 for Coun-
try.dtd, 0.62 for DCMDItem.dtd and 0.33 for auction.dtd. We used the xml
Database generators by Xbench[15] to generate xml documents for country and
DCMDItem and Xmark[17] to generate documents for auction. We generated
1,00,000 input queries for each of the DTDs using the DTD-based XPath gen-
erator developed by Yfilter[16]. This tool generates queries with only forward
axes. We rewrote these queries into the equivalent ones containing one backward
axis/query. The queries are pretty lightweight, which have conjunctive predicates
(joined by “and”) and nested predicates but no attributes and text().

In our experiments, we found that translation of backward axes to forward
axes with the knowledge of DTD results in higher and consistent commonality
factors among the queries. So we consulted DTD to rewrite queries. However, in
the absence of DTD, rewriting proposed by XAOS can be resorted to. Also, we
observed the overall time and runtime memory consumption – when N queries
were executed in a single run of YALXP and when N were executed 50 at a
time in multiple runs of YALXP on country.xml. Both factors are very high in
single run. Due to this reason we executed 50 queries at a time in YALXP in
all our experiments. We are working on optimizations to reduce the memory
occupied by c-dag. This enables our algorithms to work more efficiently on small
streaming xml documents for large number of queries.

For each DTD, we compare performances of YALXP, XALAN (ODP – One
DOM Parsing – construct the DOM only once and query the same for each query
individually), XAOS (OSPCN – One SAX Parsing Commonalities Not exploited)
and XAOS (MSP – Multiple SAX Parsing-XAOS run in a loop for N queries) for
100 to 1,00,000 queries on small documents. On medium and large documents
we present the overall times taken by YALXP and XALAN (ODP) from 100 to

396 R.V.R.P. Kumar and V. Radha

500 queries only on country.dtd due to space limitation. XAOS (OSPCN) and
XAOS (MSP) cannot be applied on large documents, as the main memory usage
grows prohibitively large in the former and SAX parsing cost goes high in the
latter. Please refer to figure 4 for graphs showing the results.

On small documents, as the commonality factor increases from 0.33 to 0.836,
YALXP performs from 2 times (for 0.33 CF) to 6 times (for 0.836 CF) better than
XALAN (ODP) and XAOS (MSP) in processing time. We observed that Xalan
(ODP) takes longer time due to querying the DOM for each query individually
coupled with the inefficiency in the searching process [2]. We also observed that as
the number of queries grows, due to the parsing cost involved for each query and
the traversal through all the matching structures for each query, XAOS (MSP)
takes more time. By adapting the approach of XAOS for matching multiple
queries, YALXP takes lesser time. The ranges of main memory used by YALXP,
XAOS (MSP), XALAN (ODP) and XAOS (OSPCN) on small documents are
9-10, 27-31.5, 9-36 and 21-181M respectively for 100 to 1000 Q. We observed
that, for queries with very low commonality factor of 0.33, XAOS (OSPCN)
performs almost same as YALXP up to 1000 Q as shown in Fig 4.7. However,
the memory consumption of XAOS (OSPCN) is far higher than that of YALXP.
XAOS (OSPCN) fails to complete from 2500 queries on any document due to
OS thrashing.

On medium to large documents also YALXP performs better than Xalan
(ODP) as shown in figures 4.10 & 4.11. Memory used by YALXP on medium
documents ranges from 19 to 21M and that by Xalan(ODP) ranges from 68
to 73M. On large documents YALXP uses from 19.5 to 21M of memory and
Xalan(ODP) uses from 168 to 214M. YALXP takes constantly less memory on
large documents by virtue of the optimization done, by releasing memory when
the document level is 1. By this we can say that the memory taken by YALXP
is proportional to only the number of elements before the second occurrence of
document level being 1 and not to the total size of document. Also the emission
of output is eager in case of large documents due to this optimization. In case of
documents of size 25M, Xalan (ODP) fails to perform due to OS thrashing. This
is due to the size of DOM representation of the whole document in memory.

5 Conclusion

We adapted the approach of XAOS for multiple queries that have forward and
backward axes with the following advantages.
1. Ability to handle backward axes.
2. Evaluation of multiple queries in less number of document-order traversals.
3. Exploiting commonality among different queries with forward and backward

axes thereby sharing processing and memory among different queries.
Our experiments show that YALXP performs better than Xalan(ODP) –

for multiple queries with single Dom construction – in processing time. Our
algorithms apply to streaming data (that are large and allow only one-pass)
as well, but to limited number of queries. We are working on extending the
algorithms to address more of XPath.

YALXP: Yet Another Lightweight XPath Processor 397

Acknowledgments

We would like to thank Dr. Mukund Raghavachari and Deepak Goyal for helping
us understand the underpinnings of XAOS. We also thank the authors of many
of the algorithms mentioned in the references for cooperating us by sharing their
work.

Appendix

x−tree to x−dag
Intermediate step to convert from X−Dag

ROOT

descendant

D

descendant child

parent

C

E F

X−Tree

ROOT

descendant

E

descendantchild child

D C

F

ROOT

descendant descendant

F

descendantchild
child

E

CD

Fig. 3. Construction of x-tree & x-dag for query
“/descendant::C[child::F]/descendant::E[parent::D]”

Fig. 4. Experimental Results – Comparison between CPU performances of YALXP,
XAOS(OSPCN), XAOS(MSP) and Xalan(ODP)

398 R.V.R.P. Kumar and V. Radha

Fig. 4. (Continued)

YALXP: Yet Another Lightweight XPath Processor 399

References

1. XML path language (XPath) version 1.0. Technical report, W3C Recommendation:
http://www.w3.org/TR/xpath (1999)

2. C Barton, P Charles, D Goyal, M Raghavachari, M Fontoura, V Josifovski: Stream-
ing XPath Processing with Forward and Backward Axes. In: Proc. of ICDE. (2003)

3. Extensible Markup Language (XML) 1.0.: www.w3.org/TR/2004/RECxml-
20040204/ (2004)

4. Xalan-Java 2.5: http://xml.apache.org.
5. M. Altinel and M. Franklin: Xfilter: Efficient Filtering of XML Documents for

Selective Dissemination of Information. In: Proceedings of the 26th VLDB Con-
ference, Egypt (2000). 53–64.

6. Y Diao, M. Altinel, M. J. Franklin, Hao Zhang, P.Fischer: Yfilter: Path Shar-
ing and Predicate Evaluation for High-Performance XMPs1L Filtering. In: ACM
Transactions on Database Systems (TODS) Volume 28 , Issue 4, (December 2003)
467–516.

7. B. Ozen, O. Kilic, M. Altinel and A. Dogac: CQMC: Highly Personalized Infor-
mation Delivery to Mobile Clients. In: Proceedings of the 2nd ACM International
workshop on Data engineering for wireless and mobile access, (2001) 35–42.

8. N. Bruno, L. Gravano and N. Koudas, D. Srivastava: IndexFilter: Navigation-
vs. Index-Based XML Multi-Query Processing. In: Proc. Of 19th International
Conference on Data Engineering (2003) 139–150.

9. C.Y. Chan, P. Felber, M. Garofalakis, R Rastogi: Xtrie: Efficient filtering of XML
documents with XPath expressions. In: Proc. of 18th International Conference on
Data Engineering, (2002) 235–244.

10. W. Rao, Y. Chen, X. Zhang, Fanyuan ma: MTrie: A Scalable Filtering of Well-
Structured XML Message Stream. In: Proceedings of Advanced Web Technologies
and Applications, APWeb (2004) 246–251.

11. A. Tozawa, M. Murata: Tableau Construction of Tree Automata from Queries on
Structured Documents.

12. J. Chen, D. DeWitt, F. Tian, Y.Wang: NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. In: Proceedings of the ACM SIGMOD international
conference on Management of data, (2000) 379–390.

13. V Josifovski, M Fontoura, Attila Barta: TurboXPath: Querying XML Streams. In:
The DB2, (2002).

14. Ray Whitmer: Document Object Model (DOM) Level 3 XPath Specification:
http://www.w3.org/TR/DOM-Level-3-XPath.

15. XBench: A Family of Benchmarks for XML DBMSs:
http://db.uwaterloo.ca/˜ddbms/projects/xbench/.

16. Filtering and Transformation for High-Volume XML Message Brokering:
http://www.cs.berkeley.edu/˜diaoyl/yfilter/code release.htm (2003)

17. XMark: An XML Benchmark Project: http://monetdb.cwi.nl/xml/index.html

degeetha@yahoo.com, manupranu@yahoo.co.in, rajanikanth@msrit.edu

•
•

•

•

•
•
•

suku@it.uts.edu.au

jamie.carlson@newcastle.edu.au

{brama,blsundar}@nitt.edu

•

•

•

•

•

•
•
•
•

•
•
•

•
•
•
•

•
•
•
•

•

Author Index

Abielmona, R.S. 315
Abolghasem, P. 315
Agarwal, A. 58
Alrabie, A. 58
Arara, A. 292
Assaf, M.H. 315

Bagchi, S. 126
Balasundaram, S.R. 419
Banakar, R.M. 376
Benharkat, A.N. 292
Bhat, P.S. 336
Bhattarcharjee, R. 180
Boronat, A. 326

Callejas Bedregal, B.R. 68
Carlson, J. 410
Carsí, J.Á. 326
Chellappan, C. 160

Das, A. 21
Das, S.R. 315
Dhavachelvan, P. 282
Dube, D.P. 190

Eom, J.-H. 11, 49

Geetha, D.E. 400
Gnana Durai, P.P. 169
Gopal, T.V. 354
Gore, M.M. 253
Goswami, D. 180
Groza, V. 315
Gupta, P. 263

Hafez, A. 58
Hota, C. 76
Hu, S. 366
Huang, H. 366

Ilango, K. 1
Ilavarasan, E. 31

Jain, S.K. 253
Jampani, R. 263
Jayakumar, C. 160

Kanth, K.R. 400
Karakoc, M. 97

Kavak, A. 97
Kucuk, K. 97
Kumar, A. 147
Kumar, P. 376
Kumar, R.V.R.P. 387
Kumar, T.V.S. 400
Kumar, V.A. 214
Kumara C., R. 344

Lad, A. 205
Laha, A. 40
Lindström, J. 243
Lobiyal, D.K. 137
Lyra, A. 68

Manoharan, R. 87
Mishra, S. 233
Mohanty, S.P. 344

Nandi, S. 107, 180
Nayak, S. 344
Negi, A. 198

Omer, K.A.A. 137

Panda, B.S. 21
Parthasarathy, R. 169
Patiño-Escarcina, R.E. 68
Petriu, E.M. 315
Ponnusamy, R. 354
Pradhiba, S. 87
Punithavathi, N. 31

Ra, Y.-G. 273
Radha, V. 387
Raghavendra, B.S. 336
Raghurama, G. 76
Rajkumar, K. 1
Ramadoss, B. 1, 419
Ramanarayanan, S. 190
Ramos, I. 326
Raushan, M.K. 107
Rawat, S. 224
Rifaieh, R. 292

Sahinoglu, M. 315
Salem, A.H. 147
Sarala, S. 302

428 Author Index

Sastry, C.S. 224
Saxena, A. 198
Shankaranand, B. 376
Singh, G. 253
Sinnappan, S. 410
Sisalem, D. 214
Sun, Y. 117

Thakur, S.S. 180
Thambidurai, P. 31, 87

Thonangi, R. 263

Ulanbek, S. 198
Uma, G.V. 282

Valli, S. 302

Wang, Z. 117

Xia, F. 117

Zhang, B.-T. 11, 49

	Frontmatter
	Computational Intelligence
	An Approach for Conceptual Modeling and Extracting Expressive Semantics from Dance Videos
	BioPubMiner: Machine Learning Component-Based Biomedical Information Analysis Platform
	A Linear Time Algorithm for Constructing Tree 4-Spanner in 2-Trees
	Task Scheduling Algorithm for Interconnection Constrained Network of Heterogeneous Processors

	Neural Networks
	Detecting Topology Preserving Feature Subset with SOM
	Adaptive Neural Network-Based Clustering of {\itshape Yeast} Protein--Protein Interactions
	Design of Neuro-fuzzy Controller Based on Dynamic Weights Updating
	Interval Computing in Neural Networks: One Layer Interval Neural Networks

	Communication Networks
	Design and Deployment of IP Virtual Private Networks: A Case Study
	QoS Driven Online Multicast Routing Algorithm
	Software Radio Implementation of a Smart Antenna System on Digital Signal Processors for cdma2000
	An Efficient Cost Effective Location Management Scheme Based on Velocity Vector Information of Mobile Unit
	Integrated Computation, Communication and Control: Towards Next Revolution in Information Technology

	Mobile and Adhoc Networks
	Designing Mobile Distributed Virtual Memory System
	Efficient Grid Location Update Scheme for Mobile Ad Hoc Networks
	Power Optimization in Mobile Networks Using Genetic Algorithm to Guarantee QoS
	Associativity Based Mobility-Adaptive K-Clustering in Mobile Ad-Hoc Networks
	Self-organized Security Architecture for MANET
	Clock Synchronization in IEEE 802.11 Ad Hoc Networks

	Security
	Internet Banking -- A Layered Approach to Security
	On Reduction of Bootstrapping Information Using Digital Multisignature
	SpamNet -- Spam Detection Using PCA and Neural Networks
	TCP Based Denial-of-Service Attacks to Edge Network: Analysis and Detection
	Network Intrusion Detection Using Wavelet Analysis
	Building a Secure and Highly Scalable Data Distribution System

	Database
	Performance of Distributed Optimistic Concurrency Control in Real-Time Databases
	An Extension to ER Model for Top-Down Semantic Modeling of Databases of Applications
	Overlaying Multiple Maps Efficiently

	Software Engineering
	Relational Schema Evolution for Program Independency
	Reliability Enhancement in Software Testing -- An Agent-Based Approach for Complex Systems
	MurO: A Multi-representation Ontology as a Foundation of Enterprise Information Systems
	A Tool to Automatically Detect Defects in C++ Programs
	Implementation of Embedded Cores-Based Digital Devices in JBits Java Simulation Environment
	Automatic Model Generation in Model Management

	Signal and Image Processing
	Contourlet Based Multiresolution Texture Segmentation Using Contextual Hidden Markov Models
	FPGA Based Implementation of an Invisible-Robust Image Watermarking Encoder
	Multi-agent Based User Access Patterned Optimal Content Allocation Method for Federated Video Digital Libraries
	Optimizing Surplus Harmonics Distribution in PWM
	M-BCJR Based Turbo Equalizer

	Internet and WWW-Based Computing
	YALXP: Yet Another Lightweight XPath Processor
	Early Performance Modeling for Web Based Applications
	An Examination of Website Quality Dimensions in Australian e-Retailing: A Confirmatory Factor Analysis Approach
	Aspects of Pervasive Computing for Web Based Learning

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

