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Preface

During its 30-year existence, the International Workshop on Graph-Theoretic
Concepts in Computer Science has become a distinguished and high-quality
computer science event. The workshop aims at uniting theory and practice by
demonstrating how graph-theoretic concepts can successfully be applied to var-
ious areas of computer science and by exposing new theories emerging from
applications. In this way, WG provides a common ground for the exchange of
information among people dealing with several graph problems and working in
various disciplines. Thereby, the workshop contributes to forming an interdisci-
plinary research community.

The original idea of the Workshop on Graph-Theoretic Concepts in Com-
puter Science was ingenuity in all theoretical aspects and applications of graph
concepts, wherever applied. Within the last ten years, the development has
strengthened in particular the topic of structural graph properties in relation
to computational complexity. This workshop has become pivotal for the com-
munity interested in these areas. An aim specific to the 30th WG was to support
the central role of WG in both of the prementioned areas on the one hand and
on the other hand to promote its originally broader scope.

The 30th WG was held at the Physikzentrum Bad Honnef, which serves as
the main meeting point of the German Physical Society. It offers a secluded
setting for research conferences, seminars, and workshops, and has proved to be
especially stimulating for fruitful discussions. Talks were given in the new lecture
hall with a modern double rear projection, interactive electronic board, and full
video conferencing equipment.

The Call for Papers received a lively response, resulting in 66 submissions.
The program committee selected 31 papers for publication among a large set
of high-quality contributions. In addition, two invited speakers – Derek Corneil
and Roger Wattenhofer – enriched the technical program with surveys of selected
fields of graph theory and applications.

We would like to thank all those who made the 30th anniversary of the
WG workshop series a success: the authors who submitted their work to the
workshop, the speakers, the program committee members, and all referees. We
are also indebted to Dirk Bongartz, Joachim Kupke, and Walter Unger for the
review organization, and to Boris Böhlen, Christian Fuß, and Ulrike Ranger for
the local organization.

Special thanks go to the sponsoring institutions: the Deutsche Forschungsge-
meinschaft, Bonn, proRWTH – Freunde und Förderer der RWTH Aachen e.V.,
the rectorate of RWTH Aachen University, and the Swiss Federal Institute of
Technology, Zürich.

September 2004 Juraj Hromkovič
Manfred Nagl

Bernhard Westfechtel



VI The 30-Year Tradition of WG

The 30-Year Tradition of WG

1975 U. Pape – Berlin

1976 H. Noltemeier – Göttingen
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Edita Máčajová Moritz Maaß Steffen Mecke
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Lexicographic Breadth First Search – A Survey

Derek G. Corneil

Department of Computer Science, University of Toronto,
Toronto M5S3G4, Ontario, Canada

dgc@cs.utoronto.ca

Abstract. Lexicographic Breadth First Search, introduced by Rose,
Tarjan and Lueker for the recognition of chordal graphs is currently the
most popular graph algorithmic search paradigm, with applications in
recognition of restricted graph families, diameter approximation for re-
stricted families and determining a dominating pair in an AT-free graph.
This paper surveys this area and provides new directions for further re-
search in the area of graph searching.

1 Introduction

Graph searching is a fundamental paradigm that pervades graph algorithms. A
search of a graph visits all vertices and edges of the graph and will visit a new
vertex only if it is adjacent to some previously visited vertex. Such a generic
search does not, however, indicate the rules to be followed in choosing the next
vertex to be visited. The two fundamental search strategies are Breadth First
Search (BFS) and Depth First Search (DFS). As the names indicate, BFS visits
all previously unvisited neighbours of the currently visited vertex before visiting
the previously unvisited non-neighbours, whereas DFS follows unvisited edges
(if possible) from the most recently visited vertex. Both searches seem to have
been “discovered” in the 19th century (and probably earlier) as algorithms for
maze traversal. DFS, as popularized by Tarjan [41], has been used for such di-
verse applications as connectivity, planarity, topological ordering and strongly
connected components of digraphs. BFS has been applied to shortest path prob-
lems, network flows and the recognition of various graph classes.

In the mid 1970s, Rose, Tarjan and Lueker [42] introduced a variant of BFS
called Lexicographic Breadth First Search (LBFS). Their application of LBFS
was to the recognition of chordal graphs. This algorithm is one of the classic
graph algorithms and, given the current interest in LBFS, it is somewhat sur-
prising that little work was done on LBFS until the mid 1990s.

In this paper, we survey many of the applications of LBFS (in Section 4).
Before doing so, we provide the graph theoretical background for the paper as
well as a description of LBFS and its two most common variants (Section 2)
and, in Section 3, present some LBFS structural results. Concluding remarks
are made in the final section.

J. Hromkovič, M. Nagl, and B. Westfechtel (Eds.): WG 2004, LNCS 3353, pp. 1–19, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 Derek G. Corneil

2 Background

Before presenting LBFS and its various variants, we give some relevant defi-
nitions. We start with standard graph theoretical definitions and then define
various graph families and indicate some characterizations that will be used in
the relevant LBFS algorithms. Further information regarding the definitions and
families can be found in [6].

2.1 Definitions and Notation

All graphs will be assumed to be undirected and finite. For a graph G(V, E), we
use n to denote |V | and m to denote |E|. Kn, Cn and Pn denote the Clique,
Cycle and Path respectively on n vertices. A House, Hole and Domino are
respectively: a C4 sharing an edge with a K3; an induced Ck, k > 4; a pair
of C4s sharing an edge. A subset of vertices M is a module if for all vertices
x, y ∈ M and z ∈ V \ M, xz ∈ E if and only if yz ∈ E. Module M is trivial if
M = V, M = ∅ or |M | = 1. A maximal clique module is a module that is a clique
and is maximal with respect to both properties. Subset S of V is a separator
if the graph induced on V \ S is disconnected. A moplex is a maximal clique
module whose neighbourhood is a minimal separator.

The distance between two vertices u and v is the length of a shortest path
between u and v and is denoted d(u, v). For vertex v, ecc(v), the eccentricity of
v is the length of a longest shortest path with v as an endpoint. The diameter
(diam(G)) is the maximum eccentricity of all vertices in G. A vertex is simplicial
if its neighbourhood is a clique. An ordering v1, v2, · · · , vn of V is a perfect
elimination ordering (PEO) if for all i, 1 < i ≤ n, vi is simplicial in the graph
induced on v1, · · · , vi. A vertex v is semisimplicial if v is not the midpoint of any
induced P4. An ordering v1, v2, · · · , vn of V is a semiperfect elimination ordering
if for all i, 1 < i ≤ n, vi is semisimplicial in the graph induced on v1, · · · , vi.
A vertex v is 2-simplicial if there is no induced P4 in the graph induced on
{u : d(u, v) ≤ 2}. An ordering v1, v2, · · · , vn of V is a 2-simplicial elimination
ordering if for all i, 1 < i ≤ n, vi is 2-simplicial in the graph induced on v1, · · · , vi.

We say that path P misses vertex v if P ∩ N(v) = ∅ (i.e., no vertex of P
is adjacent to v). A path P is a dominating path if no vertex of G is missed by
P . A pair of vertices x, y is a dominating pair if every path between x and y
is a dominating path. Two vertices x, y are unrelated with respect to vertex v if
there are paths P between x and v and Q between y and v such that P misses y
and Q misses x. An independent triple of vertices x, y, z is an Asteroidal Triple
(AT), if between every pair of vertices, there is a path that misses the third. A
vertex v is admissible if there are no unrelated vertices with respect to v. An
ordering v1, v2, · · · , vn of V is an admissible elimination ordering (AEO) if for
all i, 1 < i ≤ n, vi is admissible in the graph induced on v1, · · · , vi.

For t ≥ 1, an ordering v1, v2, · · · , vn of V is a strong t-cocomparability ordering
(strong t-CCPO) if for all i, j, 1 ≤ i < j < k ≤ n, d(vi, vk) ≤ t implies d(vi, vj) ≤
t or d(vj , vk) = 1. Note that a graph is a cocomparability graph (there is a
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transitive orientation of the edges of the complement) if and only if it has a
strong 1-CCPO [28].

A graph is chordal if there is no induced cycle of length greater than 3.
Fulkerson and Gross [23] showed that a graph is chordal if and only if it has a
perfect elimination ordering. G is weakly chordal if G and G contain no induced
cycle Ck, k ≥ 5. A graph is strongly chordal if it is chordal and every cycle of even
length at least 6 has an odd chord, namely a chord where the distance on the
cycle between the endpoints is odd. An interval graph is the intersection graph of
intervals of a line. If all intervals are of the same length, then G is a unit interval
graph (equivalently known as proper interval graphs, where no interval is allowed
to properly contain another interval). A graph G is a distance hereditary graph
if for every connected subgraph H , x, y ∈ H implies that dH(x, y) = dG(x, y).
Nicolai [35] has shown that a graph is distance hereditary if and only if it has a
2-simplicial elimination ordering. A graph is HHD-free if it contains no House,
Hole or Domino, as defined above. Bipartite graphs with no induced cycles of
size greater than 4 are called chordal bipartite.

Cographs are the graphs formed by the closure of the disjoint union and
complementation operations on individual vertices. There are many equivalent
characterizations of cographs including being the graphs that contain no induced
P4, and having a cotree representation. A cotree is a rooted tree with the leaves
being the vertices of the cograph and the internal vertices alternating between
being “0” and “1” nodes. Two vertices x, y of a cograph are adjacent if and only
if the lowest common ancestor of x and y in the cograph is a “1” node. See
Figure 1 for an example of a cograph and its related cotree. Cographs can be
extended in the following ways: a graph where each vertex belongs to at most
one P4 is called a P4-Reducible graph; a graph where every set of five vertices
induces at most one P4 is called a P4-Sparse graph. Both P4-Reducible and
P4-Sparse graphs (as well as distance hereditary graphs) have a tree structure
representation that is an extension of cotrees. G is AT-free if it contains no
AT. A graph is a permutation graph if it is the intersection graph of lines whose
endpoints are on two parallel lines. Permutation graphs strictly contain cographs
and are cocomparability graphs and thus are also AT-free.

A bipartite graph with bipartition (X, Y ) is an interval bigraph if each vertex
v is assigned an interval Iv and x ∈ X, y ∈ Y are adjacent if and only if Ix∩Iy �= ∅;
an interval bigraph is proper if no interval contains another. These graphs are
also known as bipartite AT-free graphs and bipartite permutation graphs.

2.2 LBFS

As mentioned in the Introduction, BFS is one of the fundamental graph searching
paradigms and can be found in any standard graph theory text. BFS uses a queue
to ensure that whenever a vertex x is visited, its previously unvisited neighbours
must be visited before its previously unvisited non-neighbours. A layer of a BFS
is a set of vertices all of the same distance from the initial vertex of the BFS.
LBFS is a restriction of BFS; in the following, we present the details of the
generic LBFS algorithm and its implementation. We then describe two popular
variants of this generic algorithm.
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Fig. 1. a) A cograph. b) Its cotree.

Generic LBFS: Note that in the following algorithm, we require the sweep to
start at given vertex x; if the algorithm is to start from an arbitrary vertex, then
Step 1 is omitted and Step 2 is replaced by assigning Λ to label(y) for all y ∈ V .
Note that Step 4 allows the choice of any vertex that has the lexicographically
largest label. Later we will present various modifications that explicitly choose
the next vertex. We warn the reader that our LBFS ordering of the vertices of
the graph may seem “backwards” compared to the ordering produced by other
LBFS descriptions.

Procedure LBFS(x)
{Input: Graph G(V, E) and a distinguished vertex x of G;
Output: An ordering σ of the vertices of G.}

1. label(x) ← |V |;
2. for each vertex y in V \ {x} do label(y) ← Λ;
3. for i ← |V | downto 1 do
4. pick an unnumbered vertex y with lexicographically the largest label;
5. σ(y) ← |V | + 1 − i; {assign to y number |V | + 1 − i};
6. for each unnumbered vertex z in N(y) do append i to label(z).

In an LBFS σ with two arbitrary vertices u and v, if vertex u is visited before
v, i.e. u <σ v we say that u occurs before v in σ or that u is visited before v or
that u is to the left of v. As mentioned above, this generic LBFS algorithm allows
arbitrary choice of a vertex in Step 4. We call the set of tied vertices encountered
in Step 4 a slice and denote it by S. Note that all vertices of a slice with respect
to LBFS σ appear consecutively in σ. Given two vertices u and v of an LBFS σ
such that u <σ v, Γ σ

u,v denotes the vertex-minimal slice with respect to σ that
contains both u and v. As an example of these concepts consider the graph in
Figure 2 where the boxes indicate the slices, including V itself, with respect to
the LBFS σ (note that the vertices are numbered as visited by σ). Γ σ

9,10 consists
of {5, 6, 7, 8, 9, 10}.
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Fig. 2. A graph with its LBFS slices

To implement the generic LBFS algorithm, we use the implementation pre-
sented in [24], namely one that follows the paradigm of “partitioning”. In this
scheme, we start with all vertices in the same cell (i.e., slice) and choose an
arbitrary vertex (for reasons that will come clear later, we will choose the first
vertex in the cell). When a vertex is chosen, i.e., is chosen as the pivot, it is
placed in its own cell and invokes a partitioning of all cells that follow it in the
ordering. Under this partitioning of a cell, vertices that are adjacent to the pivot
form a new cell that precedes the cell containing the vertices not adjacent to the
pivot. After this partitioning is complete, a new pivot is chosen from the cell
immediately following the old pivot and the process of refinement continues. We
refer the reader to Figure 3 for an example of a few steps of partitioning on the
graph in Figure 2.

Variants of the Generic LBFS Algorithm: We now describe two variants
of the generic LBFS algorithm. In subsequent sections we will reference other
variants that have appeared in the literature. In the first case, we break ties
in Step 4 by referring to a previous LBFS ordering σ. This variant has been
independently investigated by Simon [44] and Ma [32].

Procedure LBFS+ (σ)
{Input: Graph G(V, E) and an LBFS σ of G;
Output: An ordering σ+ of the vertices of G.}

Do an LBFS of G. When Step 4 is encountered, let S be the set of vertices with
the lexicographically largest label. Now y is chosen to be the vertex in S that
appears last in σ.

As an example, LBFS+ when given the graph in Figure 2 and that LBFS,
would produce the order: 11 6 9 8 4 2 7 5 10 3 1.

As pointed out by Lanlignel [30], one of the advantages of using the parti-
tioning implementation of generic LBFS described above, is that we immediately
have an implementation of LBFS+. Once σ has been determined, we merely re-
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pivot

pivot

pivot

8 4 2 7 5 10 3 111 6 9

11 6 9 8 7 5 4 2 10 3 1

11 6 10 9 8 7 5 4 3 2 1

11 10 9 8 7 6 5 4 3 2 1

Fig. 3. The first few steps of a partitioning.

verse its ordering of V and run the generic algorithm again. Every time a slice
is encountered, the last vertex from σ is automatically the vertex at the front
of the list. The example in Figure 3 represents the first few steps of the LBFS+
for the sweep presented in Figure 2.

The second variant produces an LBFS of G, the complement of graph G.
Note that in doing so, we do not calculate the complement but rather, as we
shall see, slightly modify the generic implementation of LBFS. Furthermore this
sweep also requires a previous LBFS as input so that a specific vertex is chosen
in Step 4. Note that an overbar placed on an LBFS ordering indicates that the
ordering is an LBFS of G.

Procedure LBFS− (σ)
{Input: Graph G(V, E) and an LBFS σ of G;
Output: An ordering σ− of the vertices of G.}

Do an LBFS of G. When Step 4 is encountered, let S be the set of vertices with
the lexicographically largest label. Now y is chosen to be the vertex in S that
appears first in σ.

An example of this algorithm will appear in Section 4, in the example of
the Cograph recognition algorithm. As noted in [33, 24], an LBFS of G can be
done in O(n + m) time by making a slight modification of the implementation
of the generic LBFS algorithm. In particular, during the partitioning, the cell
containing the vertices adjacent to the pivot is placed after the cell containing
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the nonadjacent vertices. To make sure that the correct vertex in S is chosen, we
merely input σ in its natural order. By choosing the first vertex of every slice as
the next pivot, we automatically meet the choice requirement of the algorithm.

3 Structure Results

In this section we present some of the important structure results concerning
LBFS. For most families of graphs where LBFS has been used, there are par-
ticular results that are unique to that family. The first result is the following
characterization of vertex orderings that can be achieved by an LBFS. This char-
acterization is used heavily in the various multi-sweep LBFS algorithms and it
is somewhat surprising to note that, except for Maximum Cardinality Search
(MCS), similar characterizations for other well known graph searches have only
recently been discovered [16].

Theorem 1. [22] An ordering ≺ of the vertices of an arbitrary graph G(V, E)
is an LBFS ordering if and only if for all vertices a, b, c of G such that ac ∈ E
and bc �∈ E, c ≺ b ≺ a implies the existence of a vertex d in G, adjacent to b
but not to a and such that d ≺ c.

The following lemma establishes the existence of special paths in Γ σ
u,v .

Lemma 1. [17] (The Prior Path Lemma) Let σ be an arbitrary LBFS of a graph
G. Let t be the first vertex of the connected component of Γ σ

u,v containing u.
There exists a t, u-path in Γ σ

u,v all of whose vertices, with the possible exception
of u, are missed by v. Moreover, all vertices on this path, other than u, occur
before u in σ. (Such a path is called a prior path).

As an example of this Lemma, consider the graph in Figure 2 and let u = 7, v =
10. Now Γ σ

7,10 = {5, 6, 7, 8, 9, 10} and path 7−6−5 is a prior path for this choice
of u, v.

In the fundamental paper by Rose, Tarjan and Lueker [42], their chordal
graph recognition algorithm was based on the following theorem.

Theorem 2. [42] Let σ be an LBFS of a chordal graph G and let v be an
arbitrary vertex of G. Let W denote the set of vertices w that occur before v in
σ. Then v is simplicial in the subgraph of G induced by W ∪ {v}.
From this theorem, we immediately see that the reverse ordering of an LBFS of
a chordal graph G yields a PEO of G. Berry and Bordat [2] have generalized
this theorem as follows:

Theorem 3. [2] Let σ be an LBFS of a chordal graph G and let v be an arbitrary
vertex of G. Let W denote the set of vertices w that occur before v in σ. Then v
belongs to a moplex in the subgraph of G induced by W ∪ {v}.
Furthermore they showed that the vertices in the moplex containing v are con-
secutive vertices in σ up to and including v.

Interestingly, a very similar result to Theorem 2 holds for an arbitrary LBFS
in an AT-free graph. In particular,
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Theorem 4. [18] Let σ be an LBFS of an AT-free graph G and let v be an
arbitrary vertex of G. Let W denote the set of vertices w that occur before v in
σ. Then v is admissible in the subgraph of G induced by W ∪ {v}.
Again, this theorem yields the result that the reverse ordering of an LBFS of an
AT-free graph G yields an AEO of G. Unfortunately, the existence of an AEO
for a graph G does not imply that G is AT-free. More will be said about this
issue later in this section. Given any subset of vertices X in either a chordal or
an AT-free graph, these two theorems show the importance of x, the last vertex
of X , in any LBFS. In particular, such a vertex is guaranteed to be simplicial
(respectively, admissible) in the subset of vertices that have occurred up to and
including x and thus also in X itself. In many multi-sweep LBFS algorithms, we
want to “break ties” by choosing a vertex with a particular property. LBFS+,
the algorithm that starts a slice S with the last S vertex in the previous sweep,
was developed for precisely this reason and, as we shall see in Subsection 4.1,
is currently the most popular restricted version of LBFS in multi-sweep LBFS
algorithms.

To formalize the notion of “last vertex” mentioned above, we define a vertex
x to be an end-vertex of graph G if there is an LBFS of G that ends at x. Is it
possible that end-vertices of a graph can be characterized? For interval graphs,
the answer is affirmative as shown in the following Lemma.

Lemma 2. [17] A vertex in an interval graph is an end-vertex if and only if it
is simplicial and admissible.

This result can be extended to arbitrary graphs in the following way.

Lemma 3. [15] Let G be an arbitrary graph. If x is a simplicial and admissible
vertex of G, then x is an end-vertex.

Unfortunately, it seems unlikely that there is a nice characterization of end-
vertices for arbitrary graphs, as shown by the following complexity result.

Theorem 5. [15] Given a graph G and vertex x, it is NP-complete to determine
whether x is an end-vertex of G.

Furthermore, the problem remains NP-complete for weakly chordal graphs, is
linearly time solvable for interval graphs (using an LBFS followed by an LBFS+)
and remains unresolved for both chordal and AT-free graphs [15].

As we shall see, most LBFS based algorithms involve a number of LBFS
sweeps and thus require some knowledge of the behaviour of parts of the graph
in previous sweeps. Typically such arguments are based on either the behaviour
of paths (where the Prior Path Lemma is fundamental) or the behaviour of slices,
which we now discuss. In particular, we look at the restriction of an LBFS to
a slice from some other LBFS. The strongest result of this type is for chordal
graphs.

Lemma 4. [17](The LBFS Lemma) Let G be a chordal graph and let S be a
slice of an arbitrary LBFS ordering τ of G. Further let σ be another arbitrary
LBFS ordering of G. Then the restriction of σ to S is an LBFS ordering of the
graph induced by the vertices of S.
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As stated in [17], “to put this lemma in perspective, it is important to note
that the desired property does not hold for arbitrary subsets of chordal (or even
interval) graphs. For example, consider the interval graph shown in Figure 4. The
numbering of the vertices indicates a legitimate LBFS ordering; however when
vertex 1 is removed, the restriction of this ordering to the remaining subset is
not a legitimate LBFS ordering of the subset. Also, as shown in Figure 5, the
lemma does not hold for AT-free graphs. S = {2, 3, 4} is a slice of the LBFS: 1
2 3 4 5. Now consider an arbitrary LBFS starting at 5. Vertex 3 occurs after 2
and 4, which cannot occur in an LBFS of S.”

It is somewhat surprising and disappointing that the LBFS Lemma does not
generalize to AT-free graphs. Nevertheless, there is something that can be said
in this regard for AT-free graphs. First we note the following obvious Corollary
of Theorem 2 and Lemma 4.

Corollary 1. Let G be a chordal graph with S a slice with respect to LBFS σ.
Then for every LBFS τ of G, x, the last vertex of τS, is an end-vertex of S.

As shown in [15], there is a similar result for AT-free graphs.

Lemma 5. [15] Let G be an AT-free graph with S a slice with respect to LBFS
σ. Then for every LBFS τ of G, x, the last vertex of τS , is either an end-vertex
of S or is adjacent to an end-vertex of S.

Finally, to end this section, we mention a pair of graph families that are charac-
terized by properties of every LBFS. The reader is cautioned that a statement
of the form: “G is an X-graph if and only if every LBFS has property P” can
be quite misleading in the sense that “every” can either be interpreted as “an
arbitrary” (for example, chordal and distance hereditary graphs, as discussed in
the next Section) or “all”, (for example, HHD-free and AT-free graphs) as we
now present.

Lemma 6. [27] G is an HHD-free graph if and only if all LBFSs are semiperfect
elimination orderings.

Lemma 7. [15] G is an AT-free graph if and only if all LBFSs are admissible
elimination orderings.

1
2

3

4

5

Fig. 4. The LBFS Lemma does not hold
for arbitrary subsets of interval graphs.

1

2

3

4

5

Fig. 5. The LBFS Lemma does not hold
for AT-free graphs.
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4 Applications of LBFS

In this section, we survey many of the applications of LBFS. The most notable
application, presented in Subsection 4.1, is the recognition of various restricted
graph classes. For many graph classes, the current “best” recognition algorithm
is based on LBFS, usually in the form of a multi-sweep algorithm. In Subsection
4.2, we will show other diverse applications of LBFS including diameter approx-
imation for various graph classes and the determination of a dominating pair in
an AT-free graph.

4.1 Recognition of Various Graph Classes

LBFS was discovered in the development of a simple, linear time chordal graph
recognition algorithm [42]. The algorithm is based on the following fundamental
result:

Theorem 6. [42] A graph is chordal if and only if an arbitrary LBFS yields a
perfect elimination ordering.

Thus the associated chordal graph recognition algorithm is as follows:

The Chordal graph Recognition Algorithm[42]
{Input: Graph G(V, E);
Output: A statement declaring whether or not G is a chordal graph.}

1. Do an arbitrary LBFS σ.
2. If the reverse of σ is a perfect elimination ordering, then conclude that G is
a chordal graph; else, conclude that G is not a chordal graph.

Since determining whether a particular ordering is a perfect elimination or-
dering can be accomplished in linear time, the algorithm has a straightforward
linear time implementation. In a subsequent paper, Tarjan and Yannakakis [43]
extended this algorithm to be certifying by showing how to find, in linear time,
an induced cycle of size greater than three if the reverse of σ is not a perfect
elimination ordering.

Interestingly there is another family of graphs that has the same single LBFS
recognition algorithm. In particular, Dragan and Nicolai [21] proved the following
theorem:

Theorem 7. [21] A graph is distance hereditary if and only if an arbitrary LBFS
yields a 2-simplicial elimination ordering.

As with chordal graph recognition, there is an associated distance hereditary
graph recognition algorithm.

Although this is a very simple algorithm, it does not seem to have a linear
time implementation since it is not clear how one can determine in linear time
whether the reverse of σ is a 2-simplicial elimination ordering. Later in this
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subsection, we will discuss a linear time multi-sweep LBFS distance hereditary
graph recognition algorithm.

We now turn our attention to LBFS recognition algorithms that require at
least two LBFS sweeps. In presenting such multi-sweep recognition algorithms,
we will take two “basic” algorithms for the recognition of unit interval graphs
and cographs, respectively, and show how modifications of these algorithms can
lead to recognition algorithms for related graph families. All of these algorithms
are easily implementable in linear time. Typically, they are not the first linear
time algorithm for the particular recognition problem but they are simpler than
the previous non-LBFS algorithms. References to these other algorithms are
contained in the appropriate reference describing the LBFS algorithm.

Unit Interval Graphs: The LBFS based unit interval graph recognition algo-
rithm [11] is the following:

The Unit Interval graph Recognition Algorithm[11]
{Input: Graph G(V, E);
Output: A statement declaring whether or not G is a unit interval graph.}

1. Do an arbitrary LBFS σ.
2. LBFS+ (σ) yielding sweep σ+.
3. LBFS+ (σ+) yielding sweep σ++.
4. If σ++ satisfies a “particular condition”, then conclude that G is a unit
interval graph; else, conclude that G is not a unit interval graph.

In the case of unit interval graphs, the “particular condition” to be tested is
the “Neighbourhood Condition”, namely that G(V, E) is a unit interval graph
if and only if there is an ordering of V such that for all v ∈ V , N [v] (the closed
neighbourhood of v) is consecutive. For this and other characterizations of unit
interval graphs, see [39], [40] and [31].

This algorithm is not “certifying” in the sense that if the input graph fails
the Neighbourhood Condition and the algorithm concludes that the input graph
is not a unit interval graph, then there is no immediate “proof” that the graph
is in fact not a unit interval graph. Note, that the algorithm does certify the
conclusion that the graph is a unit interval graph since it is easy to build a
unit interval model if the Neighbourhood Condition is satisfied. Recently, two
algorithms have been developed to provide a certificate of nonmembership. The
first, by Meister [34], is similar to the above algorithm in that it uses three LBFS
sweeps with the second and third sweeps using “min-LexBFS” which requires a
special implementation rather than LBFS+ which, as pointed out in Subsection
2.2, has an immediate partitioning implementation. The certificate that Meister’s
algorithm produces is either an induced cycle of size greater than 3 (thereby
showing that the graph is not chordal, and thus not interval) or an AT (showing
that the graph is not AT-free, and thus not interval) or a claw (i.e., K1,3). The
second certifying algorithm, by Hell and Huang [25], augments the algorithm
presented above and uses Wegner’s characterization of unit interval graphs [45],
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namely that a graph is a unit interval graph if and only if it does not contain an
induced cycle of size greater than 3, a claw, or a “3-sun” or its complement, the
“net” which consists of a triangle each of whose vertices is adjacent to a unique
vertex of degree 1. One of the pretty aspects of the Hell and Huang algorithm
is that it incorporates the certificate steps throughout the algorithm, in the
sense that it does some testing after each of the three LBFS steps, and only
proceeds to the next sweep if the test has been satisfied. Furthermore, they also
show that the algorithm presented above can be augmented to provide a linear
time certifying recognition algorithm for proper interval bigraphs. Again the
certification is distributed throughout the algorithm. Chang, Ho and Ko [9] have
presented a linear time 2-sweep LBFS based algorithm for recognizing bipartite
permutation graphs (equivalent to proper interval bigraphs). Their algorithm
modifies the second LBFS sweep to break ties according to the value of a degree
related function.

One of the early uses of LBFS appeared in the Korte - Möhring interval
graph recognition algorithm [29]. By using LBFS, they were able to streamlne
the first linear time interval graph recognition algorithm by Booth and Lueker
[3]. We now present a second extension of the unit interval graph recognition
algorithm that provides an easily implementable, linear time recognition algo-
rithm for interval graphs. This algorithm is as follows:

The Interval graph Recognition Algorithm[17]
{Input: Graph G(V, E);
Output: A statement declaring whether or not G is an interval graph.}
1. Do an arbitrary LBFS π.
2. LBFS+ (π) yielding sweep σ.
3. LBFS+ (σ) yielding sweep σ+.
4. LBFS+ (σ+) yielding sweep σ++.
5. LBFS* (σ+, σ++) yielding sweep σ∗.
6. If σ∗ satisfies the “Interval Graph Ordering Condition” then conclude that
G is an interval graph; else, conclude that G is not an interval graph.

The “interval Graph Ordering Condition” states that a graph G(V, E) is an
interval graph if and only if there is a linear ordering ≺ on V such that for every
choice of vertices u, v, w, with u ≺ v and v ≺ w, uw ∈ E =⇒ uv ∈ E [26, 36,
38, 37]. LBFS* requires two previous sweeps and breaks ties for a slice S by ex-
amining the last vertices of S in each of these two sweeps. Since LBFS* and the
“Interval Graph Ordering Condition” can easily be implemented in linear time,
the entire algorithm is easily implementable in linear time. (See [17] for further
details.) Recently Choi and Farach-Colton [10] have used this algorithm to de-
velop a new interval graph based algorithm for the sequence assembly problem
that is significantly superior to existing algorithms. It is interesting to note that
Simon ([44]) incorrectly claimed that terminating the algorithm after the third
LBFS+ would suffice to recognize interval graphs. Ma [32], however, showed
that Simon’s algorithm is flawed and that for any constant c, there is an interval
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graph, and an initial LBFS ordering such that after c applications of LBFS+,
the linear ordering of vertices is still not apparent! It is known, however, that
using n applications of LBFS+ will work, but of course not in linear time [14].

Cographs: Our second basic algorithm is the one for cographs. The generic
algorithm is as follows:

The Cograph Recognition Algorithm[8]
{Input: Graph G(V, E);
Output: A cotree if G is a cograph, or an induced P4 otherwise.}

1. Do an arbitrary LBFS σ.
2. LBFS−(σ) yielding sweep σ− (of G).
3. LBFS−(σ−) yielding sweep σ− (of G).
4. If σ−, σ− satisfy a “particular condition”, then Construct Cotree; else
Report P4.

In the case of cograph recognition, the “particular condition” is the “Neigh-
bourhood Subset Property”, a property that can easily be checked in linear time,
yielding an easily implementable linear time algorithm. See [7, 8] for further de-
tails. As an example of the algorithm, consider the cograph in Figure 6. The two
LBFS− sweeps satisfy the “Neighbourhood Subset Property” and the algorithm
produces the cotree.

The first extension of this cograph recognition algorithm is to P4-Reducible
graphs, namely those graphs where each vertex belongs to at most one P4. The
algorithm is as follows:

The P4-Reducible graph Recognition Algorithm[7]
{Input: Graph G(V, E);
Output: A P4-R tree, if G is a P4-Reducible graph, or two P4s containing one
vertex otherwise.}

1. Do an arbitrary LBFS σ.
2. LBFS+ (σ) yielding sweep σ+.
3. LBFS−(σ+) yielding sweep σ− (of G).
4. LBFS−(σ−) yielding sweep σ− (of G).
5. If σ−, σ− satisfy a “particular condition”, then Construct P4-R tree;
else Report Multiple P4.

The appropriate “particular condition” for this algorithm is the “P4-Reduc-
ible Neighbourhood Property” described in [7]. This condition is easily tested in
linear time.

P4-Sparse graphs, namely graphs for which no set of five vertices induces more
than one P4, generalize P4-Reducible graphs and have a very similar recognition
algorithm.
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σ : xywzuvadcb

σ− : xadcbzyuvw

σ− : xzywuvadcb

Fig. 6. The execution of the algorithm on the cograph in Figure 1.

The P4-Sparse graph Recognition Algorithm[7]
{Input: Graph G(V, E);
Output: A P4-S tree, if G is a P4-Sparse graph, or a set of five vertices inducing
two P4s otherwise.}

1. Do an arbitrary LBFS σ.
2. LBFS+ (σ) yielding sweep σ+.
3. LBFS−(σ+) yielding sweep σ− (of G).
4. LBFS−(σ−) yielding sweep σ− (of G).
5. If σ−, σ− satisfy a “particular condition”, then Construct P4-S tree;
else Report 5 set.

The appropriate “particular condition” for this algorithm is the “P4-Sparse
Neighbourhood Property” described in [7]. Again an easily implementable linear
time algorithm is obtained.

Finally we turn to a new LBFS based recognition algorithm for distance
hereditary graphs. Given Theorem 7, it is not surprising that cographs play a
critical role in characterizing distance hereditary graphs. In particular, Bandelt
and Mulder [1] showed that every layer of any BFS of a distance hereditary graph
is a cograph and that there are specific neighbourhood intersection conditions
inside and between layers. Bretscher [7] has shown that these conditions can be
expressed by neighbourhood conditions on LBFS slices in BFS layers to produce
an LBFS characterization of distance hereditary graphs. By using this charac-
terization and the new LBFS cograph recognition algorithm, she has produced
a new simpler linear time LBFS based distance hereditary graph recognition
algorithm [7].

4.2 Other Applications

These applications vary from diameter approximation for various families of
graphs to the determination of a dominating pair in an AT-free graph to common
properties of powers of graphs.
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Diameter Approximation: Determining the diameter of a graph is a funda-
mental graph property whose current best algorithm (i.e. O(nm)) is too slow
for very large input graphs. This naive algorithm performs a BFS from each
vertex x, thereby calculating the eccentricity, ecc(x) of x. The diameter is then
determined by finding the maximum eccentricity of any vertex in G. Since any
BFS from a vertex of maximum eccentricity immediately produces the diameter
of the graph, one approach to approximating a graph’s diameter is to search for
a vertex of high eccentricity. The most common way of finding such a vertex
has been to take the end-vertex of a specific search from an arbitrary vertex.
The searches that have been considered are BFS, LBFS, LL and LL+ where LL
chooses an arbitrary vertex in the last BFS layer and LL+ chooses an arbitrary
vertex in the last BFS layer that has minimum degree into the second last BFS
layer. For the restricted graph families considered in [13], none of BFS, LL or
LL+ beat LBFS. In particular, the eccentricity of an LBFS end-vertex is guar-
anteed: to be diam(G) for interval graphs [22] and {AT,claw}– free graphs [4];
to be at least diam(G)− 1 for chordal [22] and AT-free [12] graphs; and to be at
least diam(G)− 2 for graphs that contain no induced cycles of size greater than
4 [13]. Dragan [19] presented similar LBFS results on other restricted families
of graphs. Corneil et al [12] also looked at the end-vertex of a “double-sweep”
LBFS algorithm (see the following Dominating Pair Algorithm) on chordal and
AT-free graphs. They established a forbidden subgraph structure on chordal or
AT-free graphs where diam(G) − 1 is the eccentricity of the end-vertex of the
second sweep. They also showed examples of chordal and AT-free graphs where
for no c, the “c-sweep” LBFS algorithm is guaranteed to find a vertex of max-
imum eccentricity. Furthermore, for any c there is a graph G (albeit with large
induced cycles whose size depends on c) where the eccentricity of the chosen
vertex is at least c away from the diameter of G.

In a related approach, Dragan [20] showed how particular vertex orderings
(including LBFS) can be used to appoximate the All Pairs Shortest Path problem
to within a small additive constant for various restricted families of graphs.

Dominating Pairs in AT-free Graphs: One of the first indications that
LBFS has far-reaching applications beyond families of graphs related to chordal
graphs came in the 2-sweep algorithm for finding a dominating pair in a con-
nected AT-free graph. The algorithm is as follows:

The Dominating Pair Algorithm[18]
{Input: A connected AT-free graph G(V, E);
Output: A pair of vertices x, y that form a dominating pair of G.}

1. Do an arbitrary LBFS σ where x is the end-vertex of σ.
2. Do an LBFS(x) τ where y is the end-vertex of τ .
3. Return x, y.

As noted in [18], this algorithm can be modified to return, in linear time, a
succinct representation of all dominating pairs in any connected AT-free graph of
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diameter greater than 3. In particular, if diam(G) > 3, then there are nonempty,
disjoint sets X and Y of vertices of G, such that x, y is a dominating pair if and
only if x ∈ X and y ∈ Y . The algorithm returns the sets X and Y .

Properties of Powers of Graphs: In families of graphs related to chordal
graphs, considerable attention has been given to the problem of determining the
graph class membership of various powers of a given graph. For example, it is
known that every odd power of a chordal graph is chordal. This result is an
immediate corollary of the following theorem:

Theorem 8. [5] The reversal of every LBFS ordering of a chordal graph G is
a common perfect elimination ordering of all odd powers of G.

A similar result is captured in the following theorem:

Theorem 9. [21] The reversal of every LBFS ordering of a distance hereditary
graph G is a perfect elimination ordering of every even power G2k, k ≥ 1.

Note that the result in Theorem 8 does not imply that the reversal of an LBFS
ordering of G is also a reversal of an LBFS ordering of odd powers of G [16]. In
fact, there are chordal graphs where no LBFS ordering is also an LBFS ordering
of any powers of the graph. On the other hand, every LBFS ordering of a chordal
bipartite graph is also an LBFS ordering of its square, a property that does not
hold for bipartite graphs [16].

In a similar vein, Chang, Ho and Ko [9] with respect to LBFS orderings and
strong 2-CCPOs, considered τ , the ordering produced by the second LBFS in
the Dominating Pair Algorithm and proved:

Theorem 10. [9] Given an AT-free graph G, τ is a strong 2-CCPO of G.

5 Concluding Remarks

One of the surprising observations in the development of LBFS based algorithms
is that LBFS works so well on both chordal and AT-free related families of
graphs, yet these two families have very little structural similarity (other than
the absence of large induced cycles). Is there some generalization of these two
families that explains the success of LBFS?

Although there is now a very impressive list of graph families whose recog-
nition is best achieved using an LBFS approach, there have been a number of
graph families, especially strongly chordal, chordal bipartite and permutation
graphs, that so far have resisted this approach. Currently no linear time recog-
nition algorithm is known for the family of strongly chordal graphs. Chordal
bipartite graphs are a closely related family (see [6]) that has also resisted lin-
ear time recognition. Although there are linear time recognition algorithms for
permutation graphs, it is possible that there is a simpler LBFS based one.

Given the number and power of multi-sweep LBFS algorithms, it is somewhat
surprising that other graph searches have seldom been used in a multi-sweep
fashion. One reason for this may be that, until recently [16], most of them do
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not have a vertex ordering characterization similar to that for LBFS presented
in Theorem 1. This also raises the possibility of multi-sweep hybrid algorithms
where BFS and DFS variants are combined. Finally, given the power of the
“lexicographic” extension of BFS, it is natural to wonder whether DFS would
benefit from a similar extension; a candidate algorithm for Lexicographic Depth
First Search is presented in [16].
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Abstract. Wireless and mobile networks are an excellent playground for
graph theoreticians. Many research challenges turn out to be variants of
classic graph theory problems. In particular the rapidly growing areas
of ad-hoc and sensor networks demand new solutions for timeless graph
theory problems, because i) wireless devices have lower bandwidth and
ii) wireless devices are mobile and therefore the topology of the network
changes rather frequently. As a consequence, algorithms for wireless and
mobile networks should have i) as little communication as possible and
should ii) run as fast as possible. Both goals can only be achieved by de-
veloping algorithms requiring a small number of communication rounds
only (so-called local algorithms). In this work we present a few connec-
tions between graph theory and wireless networking, such as topology
control, clustering, and geo-routing. Each section is supplemented with
an open problem.

1 Introduction

An ad-hoc or sensor network consists of mobile nodes featuring, among other
components, a processor, some memory, a wireless radio, and a power source;
physical constraints often require the power source to be feeble – a weak battery
or a small solar cell.

Ad-hoc and sensor networks are emerging areas of research that have been
studied intensively for a few years only. Roughly, the researchers investigating
ad-hoc and sensor networks can be classified into two categories. On the one
side there are the systems researchers who build real ad-hoc or sensor networks;
the Berkeley Motes project [16] is a popular hardware platform marketed by
Crossbow (www.xbow.com) that is used in many deployments, but alternative
hardware platforms are available as well (e.g. [5], [34]). On the other hand there
are the theoreticians who try to understand the fundamentals of ad-hoc and
sensor networks, by abstracting away a few “technicalities” that arise in real
systems.

Not surprisingly – as in other areas of computer science and engineering –
there is no consensus what the technicalities are. Most theoreticians model the
networks as nodes (points) in a Euclidean plane; two nodes can communicate
if they are within their mutual transmission range, which in an unobstructed
and homogeneous environment translates into whether their Euclidean distance
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is at most the maximum transmission range R. This model is widely known as
unit disk graph and – though not quite practical – respected as a first step by
practitioners.

More surprisingly however, most theoreticians make much stronger assump-
tions. It seems that a majority of papers assumes that the nodes are distributed
uniformly at random. At a high node density, such a postulation renders many
problems trivial. Also it is not clear that a uniform node density distribution
makes sense from a practical point of view. Recently deployed large-scale sen-
sor networks report highly heterogeneous node densities – in “interesting” areas
there are several nodes per square meter, whereas in other (“routing-only”) areas
nodes are hundreds of meters apart. For mobile ad-hoc networks (MANET’s),
it is often assumed that the nodes move Brownian, a behavior that is not often
seen in our macroscopic world.

In this paper we advocate using more realistic graph theoretical models. We
feel that theoretical research should drop average-case assumptions such as uni-
formly at random distributed nodes and/or Brownian motion, and instead study
worst-case distributions and motion models. In this paper we outline a selection
of the algorithms that were developed to work also in the non-uniform worst-
case.

The paper is organized as follows. In Sections 2, 3, and 4, we sketch a number
of algorithmic results in three key areas of ad-hoc and sensor networking. In
Section 2 we discuss topology control, in Section 3 clustering, and in Section 4
geo-routing, a special but well-studied form of routing. In Section 5 we conclude
the paper.

2 Topology Control

Since energy is the limiting factor for lifetime and operability of an ad-hoc net-
work, researchers have developed a variety of mechanisms and algorithms to
conserve energy. These mechanisms and algorithms are often dubbed “topology
control.”

For two communicating ad-hoc nodes u and v, the energy consumption of
their communication grows at least quadratically with their distance. Having
one or more relay nodes between u and v therefore helps to save energy. The
primary target of a topology control algorithm is to abandon long-distance com-
munication links and instead route a message over several small (energy-efficient)
hops. For this purpose each node in the ad-hoc network chooses a “handful” of
“close-by” neighbors “in all points of the compass” (we are going to fill in the
details later). Having only near neighbors not only helps reducing energy but
also interference, since fewer nodes are disturbed by high power transmissions.
Clearly nodes cannot abandon links to “too many” faraway neighbors in order
to prevent the ad-hoc network from being partitioned or the routing paths from
becoming non-competitively long. In general there is a trade-off between network
connectivity and sparseness.
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Let the graph G = (V, E) denote the ad-hoc network before running the
topology control algorithm, with V being the set of ad-hoc nodes, and E repre-
senting the set of communication links. There is a link (u, v) in E if and only if
the two nodes u and v can communicate directly. Running the topology control
algorithm will yield a sparse subgraph Gtc = (V, Etc) of G, where Etc is the set of
remaining links. The resulting topology Gtc should have a variety of properties:

i) Symmetry: The resulting topology Gtc should be symmetric, that is, node u
is a neighbor of node v if and only if node v is a neighbor of node u. Asym-
metric communication graphs are unpractical, because many communication
primitives become unacceptably complicated [32].

ii) Connectivity/Spanner: Two nodes u and v are connected if there is a path
from u to v, potentially through multiple hops. If two nodes are connected
in G, then they should still be connected in Gtc. Although a minimum span-
ning tree is a sparse connected subgraph, it is often not considered a good
topology, since close-by nodes in the original graph G might end up being
far away in Gtc (G being a ring, for instance). Therefore the graph Gtc is
generally not only being asked to be connected, but a spanner: For any two
nodes u and v, if the optimal path between u and v in G has cost c, then
the optimal path between u and v in Gtc has cost O(c).

iii) Sparseness/Low Degree/Low Interference: The remaining graph Gtc should
be sparse, that is, the number of links should be in the order of the number of
nodes. More ambitiously, one might even ask that each node in the remaining
graph Gtc has a low (constant) degree. Since a low degree alone does not
automatically imply low interference (after all nodes might choose few but
very far away neighbors!), some researchers have started studying topology
control algorithms that concentrate on the interference issue.

iv) In addition to the properties i)-iii) one can often find secondary targets. For
instance, it is popular to ask the remaining graph to be planar in order to
run a geometric routing algorithm, such as GOAFR [28].

Since connectivity and sparseness run against each other, topology control
has been a thriving research area.

The currently best algorithms feature an impressive list of properties. Wang
and Li [35] present the currently most promising proposal – a distributed topol-
ogy control algorithm that computes a planar constant-degree distance-spanner.
(As opposed to energy-spanners as considered in earlier work [36, 17].) How-
ever, the distributed algorithm might be quite slow; in an unlikely (but possible)
worst-case instance it will run for a linear number of steps. Also, like many others
this algorithm makes strong assumptions: First, all the nodes need to know their
exact positions, by means of a global positioning system (GPS) for example. And
second, the algorithm assumes that the world is flat and without buildings (a
perfect unit disk graph, so to speak). These assumptions make the algorithm
unpractical.

In an almost “retro” approach [37] recently presented the XTC algorithm that
works i) without GPS and ii) even in a mountainous and obstructed environment.
Surprisingly the XTC algorithm features all the basic properties of topology
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control (symmetry, connectivity, low degree) while being faster than any previous
proposals.

All known topology control algorithms including [35] and XTC [37] do not
explicitely address interference, but argue that the sparseness or low degree
property will take care of it1. In [9] it has recently been shown that the “low
degree ⇒ low interference” assumption is not correct in a worst case.

In [9] interference is formally defined as follows: Given a communication graph
produced by a topology control algorithm, the coverage of an (undirected) edge
e = (u, v) is the cardinality of the set of nodes covered by the disks induced by
u and v, with radius |uv|:

Cov(e) :=
∣∣{w ∈ V |w is covered by D(u, |u, v|)}

∪{w ∈ V |w is covered by D(v, |v, u|)}
∣∣.

Fig. 1. Nodes covered by a communication link.

In other words the coverage Cov(e) represents the number of network nodes
affected by nodes u and v communicating with their transmission powers chosen
such that they exactly reach each other (cf. Figure 1). Then the interference of
a graph G = (V, E) is

I(G) := max
e∈E

Cov(e).

To the best of our knowledge, all currently known topology control algorithms
have in common that every node establishes a connection to at least its nearest
neighbor. In other words all these topologies contain the Nearest Neighbor For-
est constructed on the given network. In the following we show that by including
the Nearest Neighbor Forest as a subgraph, the interference of a resulting topol-
ogy can become incomparably bad with respect to a topology with optimum
interference. In particular, interference of any proposed topology is Ω(n) times

1 Meyer auf der Heide et al. [29] are a notable exception who study interference ex-
plicitely, however not in the context of topology control, but in relation to traffic
models. They show that there are worst-case ad-hoc networks and worst-case traffic,
where only one of the performance parameters congestion, energy, and dilation can
be optimized at a time.
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larger than the interference of the optimum connected topology, where n is the
total number of network nodes.

Figure 2 depicts an example graph. In addition to a horizontal exponential
node chain, each of these nodes hi has a corresponding node vi vertically dis-
placed by a little more than hi’s distance to its left neighbor. Denoting this
vertical distance di, di > 2i−1 holds. These additional nodes form a second (di-
agonal) exponential line. Between two of these diagonal nodes vi−1 and vi, an
additional helper node ti is placed such that |hi, ti| > |hi, vi|.

The Nearest Neighbor Forest for this given network (with the additional as-
sumption that each node’s transmission radius can be chosen sufficiently large)
is shown in Figure 3. Roughly one third of all nodes being part of the hori-
zontally connected exponential chain, interference of any topology containing
the Nearest Neighbor Forest amounts to at least Ω(n). An interference-optimal
topology, however, would connect the nodes as depicted in Figure 4 with constant
interference.

In other words, already by having each node connect to the nearest neighbor,
a topology control algorithm makes an “irrevocable” error. Moreover, it commits
an asymptotically worst possible error, since the interference in any network
cannot become larger than n.

hi

vi

di

ti

vi−1

Fig. 2. Two exponential node chains.

Fig. 3. The Nearest Neighbor Forest
yields interference Ω(n).

Fig. 4. Optimal tree with constant in-
terference.
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Since roughly one third of all nodes are part of the horizontal exponential
node chain in Figure 2, the observation also holds for an average interference
measure, averaging interference over all edges2.

In [9] three algorithm variants are presented that indeed minimize interfer-
ence, and at the same time keep the symmetry and the connectivity/spanner
property. These algorithms have drawbacks too: Currently only one of them is
locally computable, but its running time is too slow, which makes a practical
implementation impossible.

All the previously discussed algorithms work for arbitrary (worst-case) node
distributions. For average-case (random) distributions there is an interesting
alternative: Each node simply chooses its k best neighbors. Blough et al. [11]
show that this simplest of all conceivable algorithms works surprisingly well
when the nodes are distributed uniformly at random. For general distributions,
clearly, [11] does not even guarantee connectivity.

Topology control has been (and still is!) a thriving research area for the-
oreticians. What works well in analysis and simulation has recently also been
implemented on the basis of the 802.11 standard [19]. These early practical expe-
riences proof that topology control is a technique that is paying off, and deserves
more attention.

Open Problem: For the sake of concreteness, let us specify one of the many
open problems. We are given n nodes in the plane. As above we must connect
these nodes with a spanning tree. This time, however, we do not charge each edge
by how many nodes it will disturb. Instead we charge each node by how many
edges it is disturbed. The spanning tree should be chosen such that it minimizes
the maximum (or average) disturbed node. Apart from a simple directed sensor-
network model [13] nothing is known about the problem.

3 Clustering

Akin to topology control, clustering (a.k.a. backbone building) also aims for
computing a subgraph of the original graph. In some sense however, in clustering
this subgraph is not trying to optimize energy by dropping long-range neighbors,
but (quite on the opposite) optimizing the number of hops by dropping short-
range neighbors.

In mobile ad-hoc networks, nodes communicate without stationary server
infrastructure. When sending a message from one node to another, intermedi-
ate network nodes have to serve as routers. Although a number of interesting
suggestions have been made, finding efficient algorithms for the routing process
remains the most important problem for ad-hoc networks. Since the topology of
an ad-hoc network is constantly changing, routing protocols for ad-hoc networks
differ significantly from the standard routing schemes which are used in wired
networks. One effective way to improve the performance of routing algorithms
2 Interestingly, the example in Figure 2 works as well for a number of other definitions

of interference.
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is by grouping nodes into clusters. The routing is then done between clusters. A
most basic method for clustering is calculating a dominating set. Formally, in a
graph G, a dominating set is a subset of nodes such that for every node v either
i) v is in the dominating set or ii) a direct neighbor of v is in the dominating
set. The minimum dominating set problem asks for a dominating set of mini-
mum size. Only the nodes of the dominating set act as routers, all other nodes
communicate via a neighbor in the dominating set.

Between traditional wired networks and mobile ad-hoc networks two main
distinctions can be made: i) typically wireless devices have much lower bandwidth
than their wired counterparts and ii) wireless devices are mobile and therefore the
topology of the network changes rather frequently. As a consequence, distributed
algorithms which run on such devices should have as little communication as
possible and they should run as fast as possible. Both goals can only be achieved
by developing algorithms requiring a small number of communication rounds
only (often called local algorithms).

Most of the algorithms to compute a dominating set use the fact that a
maximal independent set (MIS) is by definition already a dominating set. For
unit disk graphs it can be shown that any MIS is only a constant factor larger
than a minimum dominating set. Often, in a second phase of the algorithm the
nodes in the MIS are then connected through two- and three-hop bridges. All
these nodes (the MIS and the bridging nodes) then form the backbone. One
can route from any backbone node to any other through nodes in the backbone
only [2].

Unfortunately, from a worst-case standpoint, it is conjectured that computing
a MIS is not as efficient as it seems at first sight. In particular in [23] it was shown
that a distributed MIS construction can take as long as Ω(

√
log n/ log log n)

time in a graph with n nodes3. This is too slow in the setting of a mobile ad-hoc
network because by the time the MIS is computed, the topology has already
changed. In a paper by Gao et al. [15] it was shown that in a unit disk graph
one can construct an asymptotically optimal dominating set in time O(log log n)
only. However, to do so, nodes need to know their coordinates, an assumption
that is not always realistic.

Recently, algorithms to quickly compute a dominating set fast even if there
the nodes do not know their coordinates have been proposed. These algorithms
in fact even work if the network is not a unit disk but a general graph. In general
graphs, the problem of finding a minimum dominating set has been proven to
be NP-hard. The best known approximation is already achieved by the greedy
algorithm: As long as there are uncovered nodes, the greedy algorithm picks a
node which covers the biggest number of uncovered nodes and puts it into the
dominating set. It achieves an approximation ratio of lnΔ where Δ is the highest
degree in the graph. Unless the problems of NP can be solved by deterministic
nO(log log n) algorithms, this is the best possible up to lower order terms [12]. In
[18] a logarithmic approximation in polylogarithmic time was proposed.

3 Another lower bound is Ω(log Δ/ log log Δ), where Δ is the maximum degree (num-
ber of neighbors) in the graph.
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Fig. 5. Distributed dominating set approximation.

In [24] the only distributed algorithm which achieves a nontrivial approxima-
tion ratio in a constant number of rounds is given. Precisely, for an arbitrary pa-
rameter k, in O(k) rounds, an expected approximation ratio of O(

√
kΔ2/

√
k log Δ)

is presented.
The algorithm consists of two phases (see Figure 5). First, an approximate

solution to the fractional dominating set problem is obtained. In the fractional
MDS, weights are assigned to all nodes such that the sum of weights each node
sees is greater than or equal to 1. If the MDS problem is formulated as an
integer program, the fractional MDS corresponds to the LP relaxation of MDS.
The solution to the fractional dominating set can be summarized as follows.
Initially all nodes have weight 0. As the algorithm progresses, the nodes gradually
increase their weights. This is done in decreasing order of the degrees of the
nodes. In order to achieve the locality, the degrees are divided into classes and
the assigning of weights is done simultaneously for all nodes of the same class.
We obtain a distributed algorithm for the fractional MDS which computes a
kΔ2/k-approximation in O(k2) rounds.

In the second phase of the algorithm, based on their weights, the nodes locally
decide whether they become a dominater or not. The second phase only needs
two rounds of communication and it merely adds a factor O(logΔ) to the overall
approximation ratio. This is asymptotically optimal since the integrality gap of
the problem is lnΔ unless P almost equals NP. In an optional third phase (which
is omitted in Figure 5) nodes can locally approximate a connected dominating
set by building “bridges” between dominators.

Recently, with a primal-dual approach it was possible to improve the algo-
rithm such that the first phase of the algorithm essentially constructs a local
polynomial time approximation scheme (PTAS), not only for dominating sets
but for more general covering and packing problems [25].

All algorithms so far assume that the scheduling of transmissions is handled
by the MAC layer. In other words, they assume perfect point-to-point connec-
tions between two neighboring nodes. Since a backbone (dominating set) is of-
ten used to compute a reasonable MAC layer, many of these papers experience
a severe “chicken-and-egg” problem. In [21], Kuhn et al. take a more realistic
approach to clustering in ad-hoc networks. They consider a multi-hop radio net-
work without collision detection, where nodes wake up asynchronously, and do
not have access to a global clock. For this rather harsh model, they show that a
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O(1)-approximative dominating set can be computed within polylog(n̂) time, n̂
being an a-priori upper bound on the number of nodes in the system.

Open Problem: Though there is some early understanding about the static
version of the problem of clustering using dominating sets, the question how to
efficiently maintain a clustering when the nodes are mobile, is still wide open.

4 Geo-Routing

Routing is of central importance in ad-hoc networks. With the notable exception
of a link reversal [14] routing algorithm analysis by Busch et al. [10], not many
worst-case results are known.

For a special case of routing known as geo-routing (a.k.a. geographic, geo-
metric, location-, or position-based routing) however, there have been quite a
few worst-case results. In geo-routing each node is informed about its own as well
as its neighbors’ positions. Additionally the source of a message knows the po-
sition of the destination. The first assumption becomes more and more realistic
with the advent of inexpensive and miniaturized positioning systems. It is also
conceivable that approximate position information could be attained by local
computation and message exchange with stationary devices [4, 6] or completely
autonomously [33, 30]. In order to come up to the second assumption, that is to
provide the source of a message with the destination position, a (peer-to-peer)
overlay network could be employed [3, 38, 1]4. For some scenarios it can also be
sufficient to reach any destination currently located in a given area (“geocast-
ing” [31]).

The first correct geo-routing algorithm was Face Routing [20]. Face Routing
routes messages along faces of planar graphs and proceeds along the line con-
necting the source and the destination. Besides guaranteeing to reach the desti-
nation, it does so with O(n) messages, where n is the number of network nodes.
Face routing was later combined with greedy routing to give better average-case
performance [7].

This is unsatisfactory since already a simple flooding algorithm will reach the
destination with O(n) messages. Additionally it would be desirable to see the
algorithm cost depend on the distance between the source and the destination.
The first algorithm competitive with the shortest path between the source and
the destination was AFR [27]. It basically enhances Face Routing by the con-
cept of a bounding region restricting the searchable area. With a lower bound
argument AFR was shown to be asymptotically optimal.

Despite its asymptotic optimality AFR is not practicable due to its pure face
routing concept. For practical purposes there have been attempts to combine
greedy approaches (always send to the message to the neighbor closest to the
destination) and face routing; for example the GOAFR and GOAFR+ algo-
rithms by Kuhn et al. [28, 26], which are variants of AFR and remain worst-case
optimal. (See Figure 6.)
4 Abraham et al. [1] fits well into the context of this paper, since the authors share

our worst-case philosophy.
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Fig. 6. The GOAFR+ algorithm starts from source node s in greedy mode. At node u
it reaches a local minimum, a node without any neighbors closer to destination node t.
GOAFR+ switches to face routing mode and begins to explore the boundary of face F
(in clockwise direction). At node v the algorithm hits the bounding circle C (for details,
please see [28, 26]) and turns back to continue the exploration of F ’s boundary in the
opposite direction. At node w the algorithm decides that it made significant progress
(c.f. [26]), falls back to greedy mode, and continues to finally reach destination node t.

On the other side, GOAFR+ is currently also the best geo-routing algorithm
in the average-case. In this sense GOAFR+ is a success story for worst-case
analysis, where an algorithm derived from a worst-case algorithm is also the
best average-case algorithm.

Open Problem: Recently [33] proposed to use geo-routing algorithms in com-
plete absense of position information. Instead, an algorithm assigns so-called
“virtual coordinates” to the nodes; these virtual coordinates should model the
connectivity of the nodes as well as possible. In particular, each node is assigned
a coordinate in the plane, such that nodes that are neighbors in the connectivity
graph have at most Euclidean distance 1 in the plane, and nodes that are not
neighbors in the connectivity graph have at least distance 1. In other words, we
would like to embed a given unit disk graph in the plane. Unfortunately, it was
shown by Breu and Kirkpatrick [8] that this is impossible in polynomial time.
Recently, there was progress in understanding the problem better by the first
non-trivial lower bound [22], and also the first non-trivial approximation algo-
rithm for the problem [30]. However, the gap between the upper and the lower
bound is still glaring; we believe that this is a most challenging open problem.

5 Conclusions

In this paper we have discussed several “worst-case” algorithms for various classic
problems in ad-hoc and sensor networking. Clearly, the selection of areas in this
paper is highly subjective. Besides topology control, clustering, and geo-routing
there are a dozen more research areas that are currently in the focus of the
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community (e.g. positioning, models, data gathering, multicast, . . . ). Moreover
the selection is dreadfully skewed towards our own recent work.

However, there is not as much algorithmic work as one might think. The vast
majority of ad-hoc and sensor network research follows the heuristics/simulations
approach: A heuristic for solving a problem is proposed, and simulated against
other heuristics. Unfortunately, this approach does rarely produce solid results,
on which one can build, since the quality of the heuristics depends on the pa-
rameters of the simulation. We feel that with the field generally becoming more
mature, “average-case” heuristics will make way for “worst-case” algorithms.
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Abstract. Many algorithms to generate all trees with n vertices without
repetition are already known. The best algorithm runs in time propor-
tional to the number of trees. However, the time needed to generate each
tree may not be bounded by a constant, even though it is “on average”.
In this paper we give a simple algorithm to generate all trees with exactly
n vertices and diameter d, without repetition. Our algorithm generates
each tree in constant time. It also generates all trees so that each tree
can be obtained from the preceding tree by at most three operations.
Each operation consists of a deletion of a vertex and an addition of a
vertex. By using the algorithm for each diameter 2, 3, · · · , n − 1, we can
generate all trees with n vertices.

1 Introduction

It is useful to have the complete list of graphs for a particular class. One can use
such a list to search for a counter-example to some conjecture, to find the best
graph among all candidate graphs, or to experimentally measure the average
performance of an algorithm over all possible input graphs.

Many algorithms to generate a particular class of graphs, without repeti-
tion, are already known [2, 6, 7, 9, 8, 10, 15]. Many excellent textbooks have been
published on the subject [3, 5, 14].

Algorithms to generate all trees with n vertices without repetition are already
known. The best algorithm [15] runs in time proportional to the number of
trees. However, the time needed to generate each tree may not be bounded by a
constant, even though it is “on average”.

In this paper we give a simple algorithm to generate, without repetition, all
trees with exactly n vertices and diameter d. Our algorithm generates each tree
in constant time. It does not output each tree entirely, but outputs the difference
from the preceding tree.

The main idea of our algorithm is to define a simple relation among the trees,
that is “a family tree” of trees (see Fig. 1), and outputs trees by traversing the
family tree. The family tree, denoted by Tn,d, is the tree such that the vertices
of Tn,d correspond to the trees with n vertices and diameter d, and each edge
corresponds to some relation between trees. By traversing the family tree with
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n=10
d=4

Fig. 1. The family tree T10,4.

some ideas we can generate all trees corresponding to the vertices of the family
tree, without repetition.

Furthermore, the algorithm generates all trees so that each tree can be ob-
tained from the preceding tree by at most three operations, where each operation
consists of a deletion of a vertex and an addition of a vertex. Therefore the de-
rived sequence of trees is a kind of combinatorial Gray code [4, 12, 14] for trees
with n vertices and diameter d. A Gray code [11] is a cyclic sequence of all 2k

bitstrings of length k, such that each bitstring differs from the preceding one in
a small number of bit entries.

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 introduces the family tree. Section 4 presents our first algorithm for the
even diameter case. In Section 5 we sketch our algorithm for the odd diameter
case. The algorithm generates each tree in O(1) time on average. In Section 6
we improve the algorithm so that it generates each tree in O(1) time. Finally
Section 7 is a conclusion.

2 Preliminaries

In this section we give some definitions.
Let G be a connected graph with n vertices. An edge connecting vertices

x and y is denoted by (x, y). The degree of a vertex v, denoted by d(v), is
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Fig. 2. The depth sequences.

the number of neighbors of v in G. A path is a sequence of distinct vertices
(v0, v1, · · · , vk) such that (vi−1, vi) is an edge for i = 1, 2, · · · , k. The length of a
path is the number of edges in the path. The distance between a pair of vertices
u and v is the minimum length of a path between u and v. The diameter of G
is the maximum distance between two vertices in G.

A tree is a connected graph without cycles. A rooted tree is a tree with one
vertex r chosen as its root . For each vertex v in a rooted tree, let UP (v) be the
unique path from v to the root r. If UP (v) has exactly k edges then we say that
the depth of v is k, and write dep(v) = k. The parent of v �= r is its neighbor
on UP (v), and the ancestors of v �= r are the vertices on UP (v) except v. The
parent of the root r and the ancestors of r are not defined. We say that if v is
the parent of u then u is a child of v, and if v is an ancestor of u then u is a
descendant of v. A leaf is a vertex that has no child.

An ordered tree is a rooted tree with left-to-right ordering specified for the
children of each vertex. We denote by T (v) the ordered subtree of an ordered tree
T consisting of a vertex v and all descendants of v that preserve the left-to-right
ordering for the children of each vertex.

Let T be an ordered tree with n vertices, and (v1, v2, · · · , vn) be the list of
the vertices of T in preorder [1]. Let dep(vi) be the depth of vi for i = 1, 2, · · · , n.
Then, the sequence L(T ) = (dep(v1), dep(v2), · · · , dep(vn)) is called the depth
sequence of T . Some examples are shown in Fig. 2. Note that those trees in
Fig. 2 are isomorphic as rooted trees, but non-isomorphic as ordered trees.

Let T1 and T2 be two ordered trees, and L(T1) = (a1, a2, · · · , an) and L(T2) =
(b1, b2, · · · , bm) be their depth sequences. If either (1) ai = bi for each i =
1, 2, · · · , j−1 (possibly j = 1) and aj > bj , or (2) ai = bi for each i = 1, 2, · · · , m
and n > m, then we say that L(T1) is heavier than L(T2), and write L(T1) >
L(T2).

3 The Family Tree

In Section 3 and 4 we only consider the case where the diameter is even.
If a tree has n ≥ 3 vertices and diameter 2, then the number of such a tree

is exactly one, which is K1,n−1. In the rest of the section we assume that the
diameter is 2k ≥ 4.

Let T be a tree with the diameter 2k. Let v0, v1, · · · , v2k be a path in T
having length 2k. One can observe that T may have many such paths, but the
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vertex vk, called the center of T , is unique [13, p72]. We assign to T the rooted
tree R derived from T by choosing vk as the root. Then we assign to R a unique
ordered tree as follows.

Given a rooted tree R, since we can choose many left-to-right orderings for
the children of each vertex, we can observe that R corresponds to many non-
isomorphic ordered trees. Let H be the ordered tree corresponding to R that
has the heaviest depth sequence L(H). Then we say that H is the left-heavy
embedding of R. For example, the ordered tree in Fig. 2(a) is the left-heavy
embedding of a rooted tree, however the trees in Fig. 2(b) and (c) are not, since
the one in Fig. 2(a) is heavier. We assign the ordered tree H to R.

Given a tree T , we have assigned to T a unique distinct rooted tree R,
and then we have assigned to R a unique distinct ordered tree H , which is the
left-heavy embedding of R. Note that T, R and H have the same diameter 2k.
One can observe that the assignment is a one-to-one mapping. Let Sn,2k be the
set of all left-heavy embeddings with exactly n vertices and diameter 2k. If we
generate all ordered trees in Sn,2k, then it also means the generation of all trees
with exactly n vertices and diameter 2k. We are going to generate all ordered
trees in Sn,2k.

We have the following lemma.

Lemma 1. An ordered tree H is the left-heavy embedding of a rooted tree if and
only if for every pair of consecutive child vertices v1 and v2, that appear in this
order in the left-to-right ordering, L(T (v1)) ≥ L(T (v2)) holds.

Proof. By contradiction. �

In the rest of the paper the condition “L(T (v1)) ≥ L(T (v2)) for each consec-
utive child vertices v1 and v2”, is called the left-heavy condition.

Let H be a left-heavy embedding in Sn,2k with root rk. Let c1, c2, · · · , cd(rk) be
the children of rk. Assume they appear in this order in the left-to-right ordering.
We say that ci, 3 ≤ i ≤ d(rk) is a waiting vertex if ci, ci+1, · · · , cd(rk) are leaves.
Since H has a path of lenght 2k with the center rk, one can observe that c1 and
c2 have a descendant at depth k, respectively. Thus, neither c1 nor c2 are leaves.
We denote by A(H) the ordered tree derived from H by removing all (possibly
none) waiting vertices. We say that A(H) is the active tree of H . Note that the
diameter of A(H) is also 2k.

Let ca be the rightmost child of the root rk in A(H). Let Pright = (v0 =
rk, v1 = ca, v2, · · · , vx) be the path in A(H) such that vi is the rightmost child
of vi−1 for each i, 1 ≤ i ≤ x, and vx is a leaf in A(H). We call Pright the right
path of H . If v1 = c2 and H(v1) is a path, then we say H is right empty. Note
that H(v1) is the ordered subtree of H induced by v1 and all descendants of v1.
Similarly, let Pleft = (u0 = rk, u1 = c1, u2, · · · , uy) be the path in A(H) such
that u1 is the leftmost child of u0, and ui is the rightmost child of ui−1 for each
i, 2 ≤ i ≤ y, and uy is a leaf in A(H). We call Pleft the left path of H . If H(u1)
is a path, then we say H is left empty. The right and left paths are depicted as
thick lines in Fig. 1.
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If H is not right empty then vx is called the active leaf of H . Otherwise, if
H is not left empty then uy is called the active leaf of H . Otherwise, A(H) is a
path of lenght 2k, and H has no active leaf.

We have the following lemma.

Lemma 2. Let H be an ordered tree in Sn,2k that has an active leaf. Then the
ordered tree derived from H by (i) removing the active leaf of H, then (ii) adding
one leaf as the rightmost child of the root, is also in Sn,2k. Moreover, H is heavier
than the derived ordered tree.

Proof. Removing the active leaf and then adding one leaf as the rightmost child
of the root never destroys the left-heavy condition. And the number of vertices
in the derived tree is still n. Furthermore the diameter of the derived tree is
again 2k. Thus any derived tree is also in Sn,2k.

The proof for the second half of the claim is omitted. �

Assume that H is an ordered tree in Sn,2k that has an active leaf. We denote
by P (H) the ordered tree derived from H by (i) removing the active leaf of H ,
then (ii) adding one leaf as the rightmost child of the root. We say that P (H) is
the parent tree of H and H is a child tree of P (H). By the lemma above, P (H) is
also in Sn,2k. Given an ordered tree H in Sn,2k, we can have the unique sequence
H, P (H), P (P (H)), · · · of ordered trees in Sn,2k, which eventually ends with the
ordered tree that has no active leaf. That is the ordered tree consisting of a
path of length 2k and (n− 2k− 1) waiting vertices. By merging these sequences
we can have the family tree of Sn,2k, denoted by Tn,2k, such that the vertices
of Tn,2k correspond to the trees in Sn,2k, and each edge corresponds to each
relation between some H and P (H). For instance, T10,4 is shown in Fig. 1.

4 Algorithm

In this section we give an algorithm to construct Tn,2k.
If we can generate all child trees of a given ordered tree in Sn,2k, then in a

recursive manner we can construct Tn,2k. This means we can generate all trees
with exactly n vertices and diameter 2k. Now we are going to generate all child
trees of a given ordered tree.

Let H be an ordered tree in Sn,2k. Let Pright = (v0 = rk, v1, · · · , vx) be
the right path of H , and Pleft = (u0 = rk, u1, · · · , uy) be the left path of H .
We construct some ordered trees by slightly modifying H as follows. Set x′ =
min{x, k − 1} and y′ = min{y, k − 1}.

If H has at least one waiting vertex and H is right empty then we define H [i],
1 ≤ i ≤ y′, as the ordered tree derived from H by (i) removing the rightmost
waiting vertex, then (ii) adding a new vertex as the rightmost child of ui. See
Fig. 3 for some examples. Note that the constraint i ≤ y′ ≤ k − 1 ensures that
the diameter of H [i] remains 2k.

If H has at least one waiting vertex, then we define H [i+], 1 ≤ i ≤ x′, as
the ordered tree derived from H by (i) removing the rightmost waiting vertex,
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then (ii) adding a new vertex as the rightmost child of vi. See some examples in
Fig. 3.

If H has at least two waiting vertices, then we define H [+] as the ordered tree
derived from H by (i) removing the rightmost waiting vertex, then (ii) adding a
new vertex as the only child vertex of the leftmost waiting vertex. See Fig. 3.

We can observe that each child tree of H is in {H [1], H [2], · · · , H [y′]} ∪
{H [1+], H [2+], · · · , H [x′+]} ∪{H [+]}. However, not all trees in {H [1], H [2], · · · ,
H [y′]} ∪ {H [1+], H [2+], · · · , H [x′+]} ∪ {H [+]} are child trees of H , so we need
to check whether each possible child tree is actually a child tree of H .

1u

2u 2u

1u

2u

3u

(a)

(b)

H

1v

2v

3v 3v

4v

1u

H[1] H[2+]

2v

H[+] H

1v

2v

H[2] H[2+]

2v

H[+]

Fig. 3. The possible child trees.

We need some notations here. If vertex vi−1 has two or more children in the
active tree A(H), then we denote by v′i the child of vi−1 that precedes vi. Thus
v′i is the 2nd last child of vi−1 in A(H). Similarly, for ui−1, we denote by u′

i the
2nd last child of ui−1. Note that H(v) is the ordered subtree of H induced by v
and all descendants of v.

We now have the following lemma.

Lemma 3. Let H be an ordered tree in Sn,2k with the right path (v0 = rk, v1, · · · ,
· · · , vx) and the left path (u0 = rk, u1, · · · , uy).

(1) H [i], i ≤ min{y, k − 1}, is a child tree of H if and only if H has at least
one waiting vertex and is right empty, and for each j, j = 1, 2, · · · , i, either uj−1

has only one child uj in H, or L(H(u′
j)) ≥ L(H(uj)) holds in H [i].

(2) H [i+], i ≤ min{x, k − 1}, is a child tree of H if and only if H has at
least one waiting vertex, and for each j, j = 1, 2, · · · , i, either vj−1 has only one
child vj in H, or L(H(v′j)) ≥ L(H(vj)) holds in H [i+].

(3) H [+] is a child tree of H if and only if H has at least two waiting vertices.

Proof. (1) Since H ∈ Sn,2k the left heavy condition has held in H . Then, only
for vertex u = u0, u1 · · · , ui, L(H(u)) in H [i] is heavier than L(H(u)) in H .
The claim checks all of these possible changes that may destroy the left-heavy
condition.

(2) (3) Omitted. �
If we generate each tree in {H [1], H [2], · · · , H [y′]} ∪ {H [1+], H [2+], · · · ,

H [x′+]} ∪ {H [+]} and check whether it is actually a child tree or not based on
the lemma above, then we need considerable running time. However, we can save
running time as follows. We need some definitions here.

Let H be an ordered tree in Sn,2k. We define “active at depth” in the following
three cases. First, assume that H is not right empty. We say that H is active at
depth i if (i) the right path contains a vertex vi with depth i, (ii) vi has two or
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more child vertices, and (iii) L(H(vi+1)) is a prefix of L(H(v′i+1)). Intuitively,
if H is active at depth i, then we are copying subtree H(vi+1) from H(v′i+1).
Then, assume that H is right empty but not left empty. We say that H is active
at depth i if (i) the left path contains a vertex ui with depth i, (ii) ui has two or
more child vertices, and (iii) L(H(ui+1)) is a prefix of L(H(u′

i+1)). Then assume
that H is right and left empty. We say that H is active at depth 0. Note that
L(H(v1)) is a prefix of L(H(u1)).

We can show that H is always active at some depth as follows. If H is not
right empty, then let j be the maximum index such that vertex vj has two or
more child vertices. Since H is not right empty, H always has such a vertex.
Now since H is left-heavy and H(vj+1) is a path, L(H(vj+1)) is a prefix of
L(H(v′j+1)). Thus H is active at depth j. Otherwise, H is right empty. Then if
H is not left empty, in a similar manner as above, we can show that H is active
at some depth. Otherwise, H is right and left empty. In this case H is active at
depth 0. Therefore H is always active at some depth.

We say the copy-depth of H is c if H is active at depth c but not active at
any depth in {0, 1, · · · , c − 1}.

Now we are going to generate all child trees of an ordered tree H in Sn,2k.
We have the following four cases.

We assume that H has the copy-depth c, the right path Pright = (v0 =
rk, v1, · · · , vx) and the left path Pleft = (u0 = rk, u1, · · · , uy).

Case 1: H has no waiting vertex.
Then H corresponds to a leaf in Tn,2k. Hence H has no child tree.

Case 2: Otherwise, and if H is not right empty.
In this case, for H [i], i = 1, 2, · · · , min{y, k − 1}, the active leaf of H [i] is on

the right path of H [i]. So H [i] is not a child tree of H .
If H has two waiting vertices, then H [+] is defined and is a child tree of H .

The copy-depth of H [+] is 0. Otherwise, H has exactly one waiting vertex and
H [+] is not defined.

We have two subcases for H [i+]. Note that since Case 1 does not occur, H
has a waiting vertex.

Case 2a: L(H(v′c+1)) = L(H(vc+1)). (Intuitively the copy has completed.)
First we show that H [c+] is a child tree of H . Since H has the copy-depth c,

for j = 1, 2, · · · , c, L(H(v′j)) > L(H(vj)) holds in H and L(H(vj)) is not a prefix
of L(H(v′j)). Since, for j = 1, 2, · · · , c, L(H(vj)) is not a prefix of L(H(v′j)),
L(H(v′j)) > L(H(vj)) still holds in H [c+]. Thus by Lemma 4.1 H [c+] is a child
tree of H . The copy-depth of H [c+] remains at c.

Similarly, H [i+], i = 1, 2, · · · , c − 1, is a child tree of H , and the copy-depth
of H [i+] is i.

However, for each H [i+], where i = c + 1, c + 2, · · · , min{x, k − 1}, the left-
heavy condition is destroyed because of L(H(v′c+1)) < L(H(vc+1)) in H [i+].
Thus, they are not child trees.

Case 2b: Otherwise. (Now L(H(v′c+1)) > L(H(vc+1)) holds. Intuitively the
copy has not completed yet.)
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Let L(H(v′c+1)) = (dep(s1), dep(s2), · · · , dep(sn′)), L(H(vc+1)) = (dep(t1),
dep(t2), · · · , dep(tn′′)), and set z = dep(sn′′+1). (Intuitively we are copying
H(vc+1) from H(v′c+1) and sn′′+1 is the next vertex to be copied.)

First, H [(z − 1)+] is a child tree of H , and the copy-depth of H [(z − 1)+]
remains at c.

Similarly, H [1+], H [2+], · · · , H [(z − 2)+] are child trees of H , and we will
prove in a lemma below that the copy-depth of H [i+] is i for i = 0, 1, · · · , z − 2.

For each of H [i+], where i = z, z + 1, · · · , min{x, k − 1}, L(H(v′c+1)) <
L(H(vc+1)) holds in H [i]. Therefore, they are not left-heavy.

Case 3: Otherwise, and if H is not left empty.
Now H is right empty and H has a waiting vertex. Let z′ be the (k + 1)-th

depth in L(H).
Then H [i+], i = 1, 2, · · · , z′−1, is a child tree of H . The copy-depth of H [i+]

is i for i = 1, 2, · · · , z′ − 2, and 0 for z′ − 1. On the other hand, H [i+], where
i = z, z+1, · · · , min{x, k−1}, is not a child tree of H , since L(T (u1)) < L(T (v1))
and so H [i+] is not left-heavy.

If H has two waiting vertices, then H [+] is a child tree of H and the copy-
depth of H [+] is 0. Otherwise, H [+] is not defined.

We have two subcases for H [i]. Note that H has a waiting vertex.

Case 3a: L(H(u′
c+1)) = L(H(uc+1)).

H [i], i = 1, 2, · · · , c, is a child tree of H , and the copy-depth of H [i] is i.
However, H [i], where i = c + 1, c + 2, · · · , y, is not a child tree of H .

Case 3b: Otherwise.
Let L(H(u′

c+1)) = (dep(s1), dep(s2), · · · , dep(sn′)), L(H(uc+1)) = (dep(t1),
dep(t2), · · · , dep(tn′′)), and set z = dep(sn′′+1).

H [1], H [2], · · · , H [(z − 1)] are child trees of H . The copy-depth of H [i] is i
for i = 0, 1, · · · , z − 2, and c for i = z − 1.

For each of H [i], where i=z, z+1, · · · , min{y, k−1}, L(H(v′c+1))<L(H(vc+1))
holds in H [i], therefore they are not left-heavy.

Case 4: Otherwise. (Now H is right and left empty.)
H [i+], i = 1, 2, · · · , min{x, k − 1}, is not a child tree of H .
If H has two waiting vertices, then H [+] is a child tree of H and the copy-

depth of H [+] is 0. Otherwise, H [+] is not defined.
H [i], i = 1, 2, · · · , k − 1, is a child tree of H , and the copy-depth of H [i+]

is i.

Lemma 4. In Case 2(b) the copy-depth of H [i] is i for i = 1, 2, · · · , z − 2.

Proof. For i = 1, 2, · · · , c the claim is obvious, so we assume otherwise. We can
observe that the copy-depth of H [i], c + 1 ≤ i ≤ z − 2, is never smaller than c,
and H [i] is active at i. So the copy-depth of H [i] is somewhere between i and c.

Assume for contradiction that the copy-depth of H [i] is j < i. Let dep(w) be
the last occurrence of depth j in L(H [i]). By the assumption above, w has two
or more child vertices. Let w1 be the rightmost child of w, and w2 be the child
vertex of w preceding w1. See Fig. 4 for examples. Let w′ be the vertex in H(v′c+1)
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Fig. 4. Illustration for Lemma 4.2.

corresponding to w, and w′
1 and w′

2 be vertices in H(v′c+1) corresponding to w1

and w2. (Note that we are copying H(vc+1) from H(v′c+1).) Now since H ∈ Sn,2k,
L(H(w′

2)) ≥ L(H(w′
1)) holds. By the choice of i, L(H(w′

1)) > L(H(w1)) holds
and L(H(w1)) is not a prefix of L(H(w′

1)). Since the copy-depth of H is c,
L(H(w′

2)) = L(H(w2)). Then L(H(w2)) = L(H(w′
2)) ≥ L(H(w′

1)) > L(H(w1))
holds, and L(H(w1)) is not a prefix of L(H(w′

1)). Thus L(H(w1)) is not a prefix
of L(H(w2)), and the copy-depth of H [i] is not j, a contradiction.

Thus the copy-depth of H [i] is i for i = 1, 2, · · · , z − 2. �

Based on the case analysis above, we have the following algorithm.

Procedure find-all-children(T , c)
{ T is the current tree, and c is the copy-depth of T .}
begin

01 Output H { Output the difference from the preceding tree.}
02 if H has no waiting vertices {Case 1}
03 then return
04 else if H is not right empty
05 then {Case 2}
06 begin
07 if H has two waiting vertices then find-all-children(H [+], 0)
08 if L(H(v′c+1)) = L(H(vc+1)) then {Case 2a}
09 for i = 1 to c
10 find-all-children(H [i+], i)
11 else {Case 2b} { H(T (v′c+1)) > L(H(vc+1)) }
12 { Let z be the depth of the next vertex to be copied.}
13 for i = 1 to z − 2
14 find-all-children(H [i+], i)
15 find-all-children(H [(z − 1)+], c)
16 end
17 else if H is not left empty
18 then {Case 3}
19 begin
20 { Let z′ be the (k + 1)-th depth in L(H).}
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21 for i = 1 to z′ − 2
22 find-all-children(H [i+], i)
23 find-all-children(H [(z′ − 1)+], 0)
24 if H has two waiting vertices then find-all-children(H [+], 0)
25 if L(H(u′

c+1)) = L(H(uc+1)) then {Case 3a}
26 for i = 1 to c
27 find-all-children(H [i], i)
28 else {Case 3b} { H(T (u′

c+1)) > L(H(uc+1)) }
29 { Let z be the depth of the next vertex to be copied.}
30 for i = 1 to z − 2
31 find-all-children(H [i], i)
32 find-all-children(H [z − 1], c)
33 end
34 else {H is right empty and left empty.}
35 begin
36 if H has two waiting vertices then find-all-children(H [+], 0)
37 for i = 1 to k − 1
38 find-all-children(H [i], i)
39 end

end

Algorithm find-all-trees(n)
begin

Output the tree H that consists of the path of length 2k and (n − 2k − 1)
of waiting vertices.

find-all-children(H , 0)
end

Theorem 1. The algorithm uses O(n) space and runs in O(f(n)) time, where
f(n) is the number of nonisomorphic trees with exactly n vertices and diameter
2k.

Proof. Since we traverse the family tree Tn,2k and output each ordered tree at
each corresponding vertex of Tn,2k, we can generate all trees with exactly n
vertex and diameter 2k.

We maintain the last two occurrences of each depth in each subtree T (v1)
and T (u1) in four arrays of length k. We record the update of the four arrays and
restore the arrays if return occur. Thus we can find vi, v

′
i, ui and u′

i in constant
time for each i.

We also maintain the current copy-depth c and the vertex next to be copied.
Therefore with the help of the above arrays we can check the conditions in Lines
08 and 25 in constant time. Also, we can compute the value z and z′ in constant
time.

Other parts of the algorithm need only constant time of computation for each
edge of Tn,2k.

Thus the algorithm runs in O(f(n)) time. Note that the algorithm does not
output each tree entirely, but the difference from the preceding tree.
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n=10
d=5

Fig. 5. The family tree T10,5.

For each recursive call we need a constant amount of space, and the depth
of the recursive call is bounded by n. Thus the algorithm uses O(n) space. �

5 The Odd Diameter Case

In this section we sketch the case where the diameter is odd.
It is known that a tree with odd diameter 2k + 1 may have many paths of

length 2k + 1, but all of them share a unique edge, called the center of T [13,
p72].

Intuitively, by treating the edge as the root in a similar manner to the even
diameter case, we can define the family tree Tn,2k+1. The detail is omitted. We
only show T10,5 in Fig. 5 as an example of the family tree.

6 Modification

The algorithm in Section 4 generates all trees with n vertices and diameter
d in O(f(n)) time, where f(n) is the number of nonisomorphic trees with n
vertices and diameter d. Thus the algorithm generates each tree in O(1) time
“on average”. However, after generating the tree corresponding to the last vertex
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in a large subtree of Tn,d, we have to merely return from the deep recursive call
without outputting any tree. This may take O(n) time. Therefore, we cannot
generate each tree in O(1) time.

However, a simple modification improves the algorithm to generate each tree
in O(1) time. The algorithm is as follows.

Procedure find-all-children2(T , c, depth)
{ T is the current tree, c is the copy-depth of T , and depth is the depth of
the recursive call.}
begin

01 if T has no waiting vertex
02 then Output T { T is a leaf.}
03 else
04 begin
05 if depth is even
06 then Output T { before outputting its child trees.}
07 Generate child trees T1, T2, · · · , Tx by the method in Section 4, and
08 recursively call find-all-children2 for each child tree.
09 if depth is odd
10 then Output T { after outputting its child trees.}
11 end

end
An execution of the algorithm is shown in Fig. 6.
One can observe that the algorithm generates all trees so that each tree can

be obtained from the preceding tree by tracing at most three edges of Tn,k,
each of which corresponds to an operation consisting of a deletion of a vertex
and an addition of a vertex. Note that if T corresponds to a vertex v in Tn,k

with odd depth, then we may need to trace three edges to generate the next
tree. Otherwise we need to trace at most two edges to generate the next tree.
Thus, the derived sequence of the trees is a combinatorial Gray code [4, 12, 14]
for rooted trees.

In Fig. 6 the added vertices are drawn as white circles, and the deleted, then
added again, vertices are drawn as gray circles. (See the sixth tree in Fig. 6.)
Each integer near an arrow mark is the number of edges in Tn,d between the two
vertices corresponding to the two trees. Each tree corresponding to a vertex in
Tn,d at odd depth is surrounded by a rectangle, and these trees are generated
after all its child trees are generated.

Since T10,4 has 21 vertices corresponding to the 21 trees in S10,4, shown in
Fig. 1, T10,4 has 20 edges. In the algorithm we trace each edge twice, once for
down and once for up. Therefore the sum is 40. This matches the sum of the
integers near the arrow marks in Fig. 6.

7 Conclusion

In this paper we gave a simple algorithm to generate all trees with n vertices
and diameter d. The algorithm generates each tree in constant time and clarifies
the family tree of the trees.
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Fig. 6. An execution of the algorithm for T10,4.
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Abstract. An undirected graph is a treelike comparability graph if it
admits a transitive orientation such that its transitive reduction is a
tree. We show that treelike comparability graphs are distance heredi-
tary. Utilizing this property, we give a linear time recognition algorithm.
We then characterize permutation graphs that are treelike. Finally, we
consider the Partitioning into Bounded Cliques problem on special
subgraphs of treelike permutation graphs.

1 Introduction

An undirected graph is a treelike comparability graph if it admits a transitive
orientation such that its transitive reduction is a tree. It is an arborescence, if
its transitive reduction is a directed rooted tree. Arborescences were studied by
Golumbic [9] and Wolk [15] and characterized as trivially perfect graphs or as
graphs that do not contain an induced path of length four nor an induced cycle of
length four, respectively. Treelike posets and their linear extension were studied
by Atkinson [1].

A graph is completely separable [11] (or distance hereditary) if it can be
recursively decomposed into so called splits, such that the remaining components
are cliques and stars. The structure of the decomposition is represented in the
so called split tree.

In this paper, we first characterize treelike comparability graphs and treelike
permutation graphs and give recognition algorithms. We show that a graph is a
treelike comparability graph if and only if it is distance hereditary with a special
treelike orientation on its split tree. We show how to utilize the split decompo-
sition to recognize treelike comparability graphs in linear time and show that a
treelike orientation is unique. Treelike permutation graphs are characterized as
paths of arborescence-like graphs and it is shown that the minimum length of
such a path can be determined in linear time.
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J. Hromkovič, M. Nagl, and B. Westfechtel (Eds.): WG 2004, LNCS 3353, pp. 46–57, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Treelike Comparability Graphs 47

Motivated by train shunting problems [8], we consider the problem Parti-
tioning into Bounded Cliques in a second part of this paper, i.e. the problem
given m ∈ N and a graph G = (V, E), is there a partition of G into cliques of size
m? For general graphs, the Partitioning into Bounded Cliques-problem is
NP-complete for m ≥ 3 [13] and polynomial time solvable for m = 2. It remains
NP-complete for comparability graphs and m ≥ 3 [14], and for permutation
graphs and m ≥ 6 [12]. The complexity of the problem is open for permuta-
tion graphs and m = 3, 4 or 5. It was shown by Lonc [14] that for fixed m the
problem can be solved in linear time on interval graphs. However, it remains
NP-complete even for interval graphs if m is part of the input [2]. Bodlaender
and Jansen [2] showed that the problem can be solved in O(n2(m−1)+1) time on
a graph with n vertices that does not contain an induced path of length four.
The problem was considered for many other graph classes. A nice overview can
be found, e.g., in [12].

In this paper, we show that the Partitioning into Bounded Cliques
problem is solvable in linear time for arborescences, even if m is part of the
input. We then consider a special matching problem on arborescences and apply
its solution to solve the Partitioning into Triangles-problem in polynomial
time on the arborescence-like subgraphs of treelike permutation graphs.

The paper is organized as follows. In Sect. 2, we provide some basic defini-
tions. In Sect. 3, we characterize treelike comparability graphs as special distance
hereditary graphs. We utilize this characterization to construct a treelike orien-
tation in linear time. Sect. 4 characterizes treelike permutation graphs. Finally,
we consider the Partitioning into Bounded Cliques problem on special
subgraphs of treelike permutation graphs in Sect. 5.

2 Preliminaries

Let G = (V, E) be an undirected graph. An orientation of E maps each el-
ement {v, w} of E on exactly one of the ordered pairs (v, w) or (w, v). We
refer to the image E of E under a given orientation also as orientation. v is
the tail and w is the head of an edge (v, w) ∈ E. Let v, w ∈ V . A (v − w)-
path is a sequence v, v1, . . . , v�−1, w with v1, . . . , v�−1 ∈ V distinct vertices
and {v, v1}, {v1, v2}, . . . , {v�−1, w} ∈ E. Given an orientation on E, a directed
(v − w)-path is a path v, v1, . . . , v�−1, w with (v, v1), (v1, v2), . . . , (v�−1, w) ∈ E.
An (undirected) cycle is a sequence v1, . . . , v� of 	 > 2 distinct vertices such that
{v1, v2}, . . . , {v�−1, v�}, {v�, v1} ∈ E. A transitive orientation is an orientation
with the property that there is a directed (v − w)-path between two vertices v
and w if and only if (v, w) ∈ E. The graph G is a comparability graph if there
exists a transitive orientation on its edges. The transitive reduction of a compa-
rability graph G with respect to a fixed transitive orientation E is the spanning
subgraph of G that contains exactly the edges of E between two vertices v and
w for which there is no directed (v − w)-path of length greater than one.

Suppose now that G is a connected comparability graph. A transitive orien-
tation E is called treelike if the transitive reduction with respect to E does not



48 Sabine Cornelsen and Gabriele Di Stefano

a) �������	5

�������	1

���������

�� ������������� �� �������	2

���������

���������������

�������	3 �� �������	4

�������	5

�������	1 ���������	2

���������

�������������

�������	3 ���������	4

b) �������	4

���
��

��
��

�������	1

��

��������� ��

������������� �������	5

�������	2 ��

		����������� �������	3





�������	4

���
��

��
��

�������	1

��

��������� �������	5

�������	2 �� �������	3





Fig. 1. Transitive reductions with respect to two significantly different transitive ori-
entations of a permutation graph. a) With respect to a treelike orientation b) With
respect to an orientation that is not treelike. These two orientations correspond to the
two permutations a) 4, 3, 5, 2, 1 and b) 5, 3, 2, 4, 1.

contain any undirected cycle. A connected comparability graph is called treelike,
if there exists a transitive orientation that is treelike. See Fig. 1 for an example
of a comparability graph with two different orientations.

Let π be a permutation of 1, . . . , n. The permutation graph corresponding
to π is the graph G = (V, E) with V = {1, . . . , n} and E = {{i, j}; i < j ⇒
π(i) > π(j)}. It has a transitive orientation {(i, j); i < j and π(i) > π(j)}. We
use the representation of a permutation as the graph of the function i �→ π(i)
in the plane, i.e., with the points (i, π(i)). By definition, there is an edge in the
corresponding permutation graph if and only if the slope of the segment between
the points (i, π(i)) and (j, π(j)) is negative. A graph is a treelike permutation
graph if it is treelike and a permutation graph.

3 Recognizing Treelike Comparability Graphs

In this section, we show how to construct a treelike orientation of an undirected
graph in linear time – if it exists. The algorithm is based on the split decompo-
sition. A split of a connected graph G = (V, E) is a partition V1, V2 of V into
two subsets that have at least two vertices each such that there exist subsets
W1 ⊆ V1, W2 ⊆ V2 with the property that the set of edges of G between V1

and V2 corresponds to {{w1, w2}; w1 ∈ W1 and w2 ∈ W2}. The split decomposi-
tion of G is defined recursively. Take an arbitrary split W1 ⊆ V1, W2 ⊆ V2. Let
the graphs Gi, i = 1, 2 be defined as follows. First, consider the subgraph of G
induced by Vi. Then add a new vertex wi – called special vertex – with neigh-
borhood Wi. Recursively decompose Gi. The split is memorized in a special edge
{w1, w2}. The remaining graphs of a split decomposition are called split com-
ponents. The split tree associated with a split decomposition is the graph that
consists of all split components and all special edges. Let {w1, w2} be a special
edge of a split tree H and let G1, G2 be the two split components containing w1

and w2. The re-composition of G1 and G2 is the graph that is obtained from H
by deleting w1 and w2 and by adding the edges {v1, v2} for all adjacent vertices
v1 �= w2 of w1 and v2 �= w1 of w2. A minimal split decomposition of G is a split
decomposition of G into three types of components – cliques, stars, and graphs
that do not contain a split – such that the number of components is minimized.
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The minimal split decomposition of a connected graph is unique [5, 6]. G is com-
pletely separable [11] (or distance hereditary) if G can be decomposed such that
all split components are cliques or stars.

Before we show that treelike comparability graphs are completely separable,
we mention some properties of treelike orientations of the split tree of a com-
pletely separable graph. They follow from the facts that a) special edges are not
contained in any cycle and b) that the split components of a connected graph
are connected and contain at least three vertices.

Remark 1. Let G be a connected graph. Let H be the split tree of G with respect
to some split decomposition and assume that H is a treelike comparability graph.
The transitive reduction T with respect to a treelike orientation H has the
following properties.

1. All special edges are in T .
2. A special vertex is either only the head or only the tail of its incident edges.
3. If two special vertices are adjacent in T , but incident to different special

edges, then at least one of them has a degree higher than two in T .

Theorem 1. Let G be a connected graph and let H be the split tree of G with
respect to the minimal split decomposition. Then G is a treelike comparability
graph if and only if G is completely separable and there is a treelike orientation
with transitive reduction T on H that fulfills the following property.

(Z) At most one vertex of each special edge is incident to more than two edges
in T .

Proof. We will show the following properties.

1. Every treelike comparability graph has a split decomposition into compo-
nents of size three such that the split tree with respect to this decomposition
admits a treelike orientation with Property Z.

2. The existence of a treelike orientation on a split tree that fulfills Property Z
is maintained under recomposition of two components.

Now, by Property 1, a treelike comparability graph is completely separable.
The split components of a minimal split decomposition are obtained by recur-
sively re-composing adjacent cliques or adjacent stars, respectively, in the split
tree. Hence, applying recursively Property 2 to the decomposition obtained in
1 yields the only-if direction. Since we obtain the original graph by recursive
re-composition, the if-direction follows immediately from Property 2. It remains
to show the two properties.

1. Let G = (V, E) be a treelike comparability graph. Let T be the transitive
reduction of G with respect to a treelike orientation E. We show Property 1
by induction on the number n of vertices of G. There is nothing to show if
n ≤ 3. So let n > 3.
If there is an edge of T that is not incident to a leaf of T , let e = (v0, v1)
be such an edge. Let v0 ∈ V0, v1 ∈ V1 be the sets of vertices in the two
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connected components of T − e. Let Wi, i = 0, 1 be the set of vertices in Vi

that are adjacent to v1−i in G.
If each edge of T is incident to a leave of T , i.e. if T is a star, let r be the
central vertex of T . Since T has at least 4 vertices, there are two vertices
v, w ∈ V such that either (v, r), (w, r) are both edges of T or (r, v), (r, w)
are both edges of T . Assume (v, r), (w, r). Let V0 = {v, w}, W0 = V0 and
W1 = {x ∈ V ; (r, x) in T }.
In either case {{w0, w1}; w0 ∈ W0 and w1 ∈ W1} corresponds to the set of
edges of G between V0 and V1 and hence V0, V1 is a split. Let Gi, i = 0, 1 be
the subgraphs that result from the decomposition as described above and let
wi, i = 0, 1 be the special vertices. Orienting the new edges (w, w0), w ∈ W0

and (w1, w), w ∈ W1, respectively results in a treelike orientation of Gi with
the following new edges in the transitive reduction: (v0, w0) and (w1, v1) if
(v0, v1) was chosen as an edge of T non-incident to a leaf and (v, w0), (w, w0),
and (w1, r), else. Finally, we orient the special edge (w1, w0). Thus, a treelike
orientation of the split tree with the required property is maintained in every
decomposition step.

2. Let (w1, w2) be a special edge. Suppose that w1 is adjacent to exactly two
vertices in T . Let v �= w2 be the adjacent vertex of w1 in its component.
For each adjacent vertex w �= w1 of w2 orient the new edges (w, v) This
results in a treelike orientation on the re-composition of the two components
containing w1 and w2, respectively. The only vertex whose degree might
increase is v. But v was incident to a special vertex with degree two. So if
v is a special vertex then it already had a degree higher then two. Hence,
Prop. Z is maintained. �

The proof of Theorem 1 showed especially that there is the following correspon-
dence between a treelike orientation of a treelike comparability graph and a
treelike orientation of its split tree.

Remark 2. Let E be a treelike orientation of a graph G and let H be the split
tree of G with respect to the minimal split decomposition. Then there is a treelike
orientation EH of H such that (v, w) ∈ E if and only if there is an undirected
(v − w)-path v = v0, v1, . . . , v� = w in H with

– (vi, vi+1) ∈ EH if {vi, vi+1} is not a special edge and
– (vi+1, vi) ∈ EH if {vi, vi+1} is a special edge.

Theorem 2. It can be tested in linear time whether a graph is a treelike com-
parability graph. Moreover, let G be a connected treelike comparability graph.

1. The treelike orientation of G is unique up to isomorphism and reversing the
whole orientation.

2. The treelike orientation of G as well as its transitive reduction can be found
in linear time.

Proof. Let G be a connected graph. The following algorithm applied to G outputs
the transitive reduction with respect to a treelike orientation of G if G is treelike.
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1. Let Q be a queue.
2. Compute the split tree with respect to the minimal split decomposition.
3. If G is not completely separable, G is not treelike. Break.
4. Choose some special edge {w1, w2} and orient it arbitrarily.
5. Append w1 and w2 to Q.
6. While Q is not empty

(a) Remove the first element w from Q. Suppose (w, w′) is a special edge.
(b) Let H be the split component containing w.
(c) Orient each edge e of H that is incident to w such that w is the tail of e.
(d) If H is a star.

i. If both w and w′ are the center of a star, G is not treelike. Break.
ii. Orient remaining edges such that the center of H is only the head

or only the tail of all its incident edges.
(e) If H is a clique.

i. If H contains more than two special vertices, G is not treelike. Break.
ii. Choose an arbitrary ordering w = v1, . . . , v� of the vertices of H such

that v2, . . . , v�−1 are not special.
iii. Orient edges (vi, vi+1) and eliminate remaining edges of H .

(f) For all special vertices w1 �= w of H , let e = {w1, w2} be a special edge.
i. If w1 is the tail of an edge in H orient (w1, w2), else (w2, w1).
ii. Append w2 to Q.

7. Recompose G maintaining only non-transitive edges.
If the algorithm breaks then G is not completely separable (Step 3), or there
cannot be a treelike orientation on the split tree that fulfills Property Z in
Theorem 1 (Step 6(d)i) or Property 2 in Remark 1 (Step 6(e)i). In either case,
G is not treelike.

In Steps 4-6, the algorithm constructs a treelike orientation of the split tree
in a breadth first search. By Property 2+3 of Remark 1, there are only two
steps in which there is a free choice for the orientation of an edge (Step 4 and
Step 6(e)ii). The latter corresponds to choosing the orientation among edges
between isomorphic vertices. Hence, a treelike orientation of the split graph of a
completely separable graph is unique up to isomorphism and reversing the whole
orientation. Thus, if the split tree has a treelike orientation that fulfills Prop. Z
of Theorem 1 then the algorithm finds it. This implies the correctness of the
algorithm. Uniqueness of the treelike orientation of G follows by Remark 2. �

4 Treelike Permutation Graphs and Arborescences

In this section, we will characterize treelike permutation graphs as paths of
double-arborescences. On orientation E of a graph G = (V, E) is an arborescence-
orientation if the transitive reduction is a rooted tree, i.e., if E is treelike and
there is a vertex r ∈ V such that

V = {r} ∪ {v ∈ V ; (v, r) ∈ E} or V = {r} ∪ {v ∈ V ; (r, v) ∈ E}.

E is a double-arborescence-orientation if E is treelike and there is a vertex r ∈ V
such that
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V = {r} ∪ {v ∈ V ; (v, r) ∈ E} ∪ {v ∈ V ; (r, v) ∈ E}

The treelike orientation in Fig. 1a is in fact an arborescence-orientation. We refer
to the special vertex r as the root of an arborescence- or a double-arborescence-
orientation, respectively. A connected comparability graph is called an arbores-
cence, or a double-arborescence, if there exists an arborescence-, or a double-
arborescence-orientation, respectively.

A graph G is a path of 	 double-arborescences if it has a treelike transi-
tive orientation E such that there exists a (not necessarily directed) path P of
length 	 − 1 in the transitive reduction T that fulfills the following property.
Let V1, . . . , V� be the vertex sets of the connected components of the graph that
results from T by deleting the edges of P . Let vi ∈ Vi, i = 1, . . . , 	 be the vertex
in P . Let Gi, i = 1, . . . , 	 be the subgraphs of G that are induced by Vi. Then E
induces a double-arborescence-orientation on Gi, i = 1, . . . , 	 with root vi.

To characterize treelike permutation graphs, we apply some results about
AT-free graphs. A graph is AT-free if it doesn’t contain an asteroidal triple, i.e.
three independent vertices with the property that for every pair of them there
is a path connecting the two vertices that does not contain the neighborhood of
the remaining vertex. Two vertices u and v are a dominating pair of a graph if
each vertex of the graph is adjacent to each (u − v)-path.

Theorem 3. Let G be a treelike comparability graph. Then the following are
equivalent:

1. G is a permutation graph.
2. G is AT-free.
3. G has a dominating pair.
4. G is a path of double-arborescences.

Proof. 1 ⇒ 2: The complement of a permutation graph is a comparability graph.
Hence, a permutation graph is AT-free [10].

2 ⇒ 3: Every AT-free graph has a dominating pair [4].
3 ⇒ 4: Let T be the transitive reduction of G with respect to a treelike

transitive orientation E of G. Let v, w be a dominating pair of G. Then the
unique (v − w)-path P in T is a dominating path of G. Hence, for each vertex
u of G there has to be a directed path in T from u to a vertex of P . Hence, E
induces a double-arborescence orientation on the subgraphs of G that are induced
by the connected components of the graph that results from T by deleting the
edges of P .

4 ⇒ 1: Let E be a treelike orientation of G and let T be the transitive
reduction of G. Let P = v1, . . . , v� be a path of T such that E induces a
double-arborescence orientation on the subgraphs of G that are induced by
the connected components of the graph that results from T by deleting the
edges of P . Let AV = {v ∈ V ; (v, v1) ∈ E}, BV = {v ∈ V ; (v1, v)}, and
CV = V \ (AV ∪ BV ∪ {v1}). It can be shown by induction on 	 that G is a
permutation graph of a permutation π and that the graph i �→ π(i) has the
following shape:
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AV CV

v1

BV

�

The previous theorem implies especially that a graph is a treelike permutation
graph if and only if it is a path of double-arborescences. In the next theorem,
we discuss how to find such a path of minimum length. We will use that a
dominating pair of an AT-free graph can be found in linear time [3].

Theorem 4. Let G be a treelike permutation graph. The minimum 	 for which
G is a path of 	 double-arborescences can be determined in linear time.

Proof. Let G be a treelike permutation graph. Let T be the transitive reduction
of the unique treelike orientation of G. Let v, w be a dominating pair of G. Find
the unique (v − w)-path P in T . Recursively remove the first vertex v1 from P
if v1 is the head of the first edge e of P and the tail of all other edges of T that
are incident to v1 or vice versa. Under the same condition, remove recursively
the last vertex of P . Let 	 − 1 be the length of the remaining path. Then 	 is
minimum such that G is a path of 	 double-arborescences. �

5 Partitioning into Bounded Cliques

Let G = (V, E) be a graph. An m-clique is a subset C ⊆ V of m vertices, such
that {v, w} ∈ E for each pair of vertices v, w ∈ C. A sequence C1, . . . , Ck of k
cliques is a partition of V into k cliques if V = C1∪ . . .∪Ck and Ci∩Cj = ∅, 1 ≤
i < j ≤ k. A triangle is a 3-clique. We consider the following problem.

Partitioning into m-Cliques: Given a graph G = (V, E), is there a partition
of G into m-cliques?

We say that a graph G′ = (V ′, E′) results from a graph G = (V, E) by adding
a k-clique if there are distinct vertices v1, . . . , vk /∈ V such that

V ′ = V ∪ {v1, . . . , vk} and
E′ = E ∪ {{v, vi}; v ∈ V, i = 1, . . . , k} ∪ {{vi, vj}; 1 ≤ i < j ≤ k}.

Note that for graph-classes that are closed under adding cliques the Partition-
ing into m-Cliques problem is equivalent to the following problem: Given a
graph G = (V, E) and a number k ∈ N, is there a partition of G into k cliques
of maximum size m? Examples for such graph classes are comparability graphs,
permutation graphs, arborescences, and double-arborescences.

In this section, we will show that the Partitioning into m-Cliques prob-
lem can be solved in linear time on arborescences – even if m is part of the
input. We then show how to compute the maximum number of 2-cliques in an
arborescence after deleting some triangles. Finally, we demonstrate how to use
these numbers to solve the Partitioning into Triangles problem on double-
arborescences.
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5.1 Partitioning Arborescences into Bounded Cliques

Since arborescences are permutation graphs and do not contain an induced cycle
of length four, they are especially interval graphs. Recall that the Partitioning
into m-Cliques-problem for fixed m can be solved in linear time on interval
graphs [14], but that the problem remains NP-complete for interval graphs if
m is part of the input [2]. In this section, we give an algorithm that solves the
problem partitioning arborescences into bounded cliques in linear time – even if
m is part of the input.

Theorem 5. The problem Partitioning into m-Cliques can be solved in
linear time on arborescences even if m is part of the input.

Proof. Let G = (V, E) be an arborescence. Let T be the transitive reduction with
respect to an arborescence-orientation. By Theorem 2, T can be constructed in
linear time. Proceeding from the leaves to the root r of T , we assign a label
miss to each vertex v. Let v be the next vertex of T that is considered. If v is
a leave or the only vertex of G, we set miss(v) = m − 1. Else let v1, . . . , vk be
the children of v. If

∑k
i=1 miss(vi) = 0, set miss(v) = m − 1, else set miss(v) =

−1 +
∑k

i=1 miss(vi).
By induction on the number n of vertices of G it follows that miss(r) = k if

and only if k is the smallest non-negative integer such that adding a k-clique to
G results in a graph that has a partition into m-cliques. Hence, G has a partition
into m-cliques if and only if miss(r) = 0. �

5.2 Important Triangles for Maximum Matchings in Arborescences

Throughout this section let G = (V, E) be an arborescence, let T be the transitive
reduction of G with respect to an arborescence-orientation, let r be the only sink
and let tmax be the maximum number of disjoint triangles of G. A matching of
a graph G = (V, E) is a subset M ⊆ E of the edge set such that each vertex
of G is adjacent to at most one edge in M . Let V be a set of subsets of V . We
denote by G−V the graph that results from G by deleting all vertices in all sets
of V . Let T be a set of triangles of G. With cT we denote the maximum size of
a matching in G−T . Let c(i) = max cT , where T ranges over all disjoint sets of
i triangles of G.

Lemma 1. A set T of tmax disjoint triangles of G with cT = c(tmax) can be
computed in linear time.

Proof. Let G be an arborescence. Let T be the transitive reduction with respect
to an arborescence-orientation. We proceed again from the leaves to the root r
of T . To each node v we assign a list P of 2-cliques and a list S of singletons that
is contained in the subtree rooted at v. If v is a leaf, let P (v) = ∅ and S(v) = v.
Else let v1, . . . , vk be the children of v.

1. If there is a j = 1, . . . , k such that P (vj) contains a 2-clique {x, y}, delete
one 2-clique {x, y} from P (vj) and add the triangle {x, y, v} to T .
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2. If all lists P (vi), i = 1, . . . , k are empty, but there is some j = 1, . . . , k such
that S(vj) contains a vertex w, delete w from S(vj), and add {w, v} to P (v1).

3. If all lists P (vi), S(vi), i = 1, . . . , k are empty, add v to S(v1).

Set P (v) = P (v1), . . . , P (vk) and S(v) = S(v1), . . . , S(vk). Based on the property
that vertices in two subtrees of T rooted at distinct children of r are not adjacent
in G, it can be easily verified by induction on the number n of vertices of G that
|T | = tmax and that cT = c(t). �

Note that by omitting Step 1, the algorithm in the proof of Lemma 1 can be
used to create a maximum matching P (r). In the remainder of this section, let
T be the set of triangles computed in the proof of Lemma 1.

Theorem 6.

1. The curve i �→ c(i) has the stair shape, i.e. there are 1 ≤ tflat ≤ tstair ≤ tmax

such that tstair − tflat is even and
(a) c(i−1) − c(i) = 1, i = 1, . . . , tflat

(b) c(tflat+2i−2) − c(tflat+2i−1) =2, c(tflat+2i−1) − c(tflat+2i) =1, i=1, . . . ,
tstair−tflat

2

(c) c(i−1) − c(i) = 2, i = tstair + 1, . . . , tmax.
2. The triangles t1, . . . , ttmax in T can be ordered such that ci = c{t1,...,ti}, i =

1, . . . , tmax.
3. The sequence c(i), i = 1, . . . , tmax can be computed in O(n4) time.

For space reasons, we only give the algorithm for Theorem 6.3. The proof of
Theorem 6 is basically an induction on the number of steps in the algorithm,
but quiet complex. Let t be a triangle of G. Let v be the sink of t. The subtree of
T rooted at t is the subtree Tv of T rooted at v. The level of t is the maximum
number of disjoint triangles of G that are contained in Tv.

Let i = 0. While i < tmax do one of the following cases.

1. If there is a triangle t ∈ T \ {t1, . . . ti} such that c{t1,...,ti} − c{t1,...,ti,t} = 1,
choose ti+1 among these triangles on a lowest level. Set i = i + 1.

2. Else, if there are two triangles t, t′ ∈ T \ {t1, . . . ti} such that c{t1,...,ti} −
c{t1,...,ti,t,t′} = 3, choose ti+1, ti+2 among these pairs of triangles. Set i = i+2.

3. Else, choose a triangle ti+1 ∈ T \ {t1, . . . ti} on a lowest level. Set i = i + 1.

5.3 Partitioning into Triangles of Double-Arborescences

Note that double-arborescences are P4-free (also called cographs), i.e. they do
not contain an induced path of length four. Recall that the Partitioning into
Triangles problem can be solved in O(n5) on a P4-free graph with n vertices [2].
In this section we show how to apply the results of Section 5.2 to solve the
problem in O(n4) time on double-arborescences.

Theorem 7. It can be tested in O(n4) time whether a double-arborescence with
n vertices has a partition into triangles.
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Proof. Let G = (V, E) be a double-arborescence and let E be a a double-
arborescence orientation of G with root r. Let G1 be the subgraph of G in-
duced by {r} ∪ {w ∈ V ; (r, w) ∈ E} and G2 be the subgraph of G induced by
{w ∈ V ; (w, r) ∈ E}. Then the connected components of G1 and G2 consist of
arborescences. Hence, we can compute the maximum numbers t1 and t2 of tri-
angles and the numbers c

(0)
1 , . . . , c

(t1)
1 and c

(0)
2 , . . . , c

(t2)
2 of remaining maximum

matchings in the two subgraphs, respectively. Further let n1,2 be the number
of vertices in G1,2. Now, note that a triangle in G is either a triangle in G1

or G2 or it consists of an edge in G1 and a single vertex in G2 or vice versa.
Hence, there is a partition into triangles of G if and only if there exists a pair
(i, j), 1 ≤ i ≤ t1, 1 ≤ j ≤ t2 and α1, α2 ∈ N with the property that α1 ≤ c

(i)
1 ,

α2 ≤ c
(j)
2 , and

2α1 + α2 = n1 − 3i and 2α2 + α1 = n2 − 3j (1)

These equations describe the case that there are i triangles in G1, j triangles in
G2, that α1 of the maximum c

(i)
1 remaining 2-cliques of G1 build a triangle with

different singletons in G2, and that the remaining vertices of G1 build triangles
with α2 2-cliques of G2. Resolving the equations for α1 and α2 results in the
condition that n is a multiple of 3 and that

c
(i)
1 ≥ 2

3
n − n2 − 2i + j ≥ 0 and c

(j)
2 ≥ 2

3
n − n1 − 2j + i ≥ 0. (2)

Clearly, for each pair (i, j), the conditions in (2) can be tested in constant time.
Since the number of pairs (i, j) is at most quadratic in the number of vertices of
G, the over all running time of the algorithm, once the values of c are computed,
is quadratic. �

6 Conclusion

We characterized treelike comparability graphs as a subclass of completely sepa-
rable graphs. We showed that the treelike orientation of a treelike comparability
graph is unique and that it can be constructed in linear time. We character-
ized treelike permutation graphs as paths of double-arborescences. We showed
that the minimum 	 such that a given treelike permutation graph is a path of 	
double-arborescences can be determined in linear time. We then considered the
Partitioning into m-Cliques problem. We showed that the problem can be
solved in linear time on arborescences even if m is part of the input. Based on
an algorithm for finding the maximum size of a matching after deleting some
triangles of an arborescence, we gave a polynomial time algorithm for solving
the Partitioning into Triangles problem on double-arborescences.
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Abstract. In our contribution to the study of graph labelings with three
distance constraints we introduce a concept of elegant labelings: labelings
where labels appearing in a neighborhood of a vertex can be completed
into intervals such that these intervals are disjoint for adjacent vertices.
We justify introduction of this notion by showing that use of these la-
belings provides good estimates for the span of the label space, and also
provide a polynomial time algorithm to find an optimal elegant labeling
of a tree for distance constraints (p, 1, 1). In addition several computa-
tional complexity issues are discussed.

1 Introduction

In the past decades graph theoretic models of telecommunication networks be-
came natural and frequent subject both in theory and in practice. One of the
possible applications considers an allocation of frequencies to transmitters, such
that a possible interference is minimized. The notion of distance constrained
labeling reflects the fact that interference decreases with increasing distance
between transmitters, hence close frequencies should be used only on distant
transmitters.

For given integral parameters p1 ≥ · · · ≥ pk called distance constraints, an
L(p1, p2, . . . , pk)-labeling of a graph G assigns integers to vertices of G such that
any pair of vertices that are at distance at most i ≤ k get labels that differ
by at least pi. The span of a labeling is the difference between the lowest and
the highest labels used in the labeling. The graph invariant λ(p1,...,pk)(G) is the
minimum span among all L(p1, p2, . . . , pk)-labelings of G.

Clearly, L(1)-labelings are graph colorings, L(1, . . . , 1)-labelings are colorings
of the k-th distance power of the underlying graph G. A considerable attention
was paid to the first “non-chromatic” collection of distance constraints, namely
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(p1, p2) = (2, 1), suggested by Roberts and formally introduced by Griggs and
Yeh in 1992 [8]. A variety of results appeared, among others we shall mention a
nontrivial dynamic-programming algorithm for computing λ(2,1)(T ) for trees by
Chang and Kuo [3] and a long lasting conjecture stating that for any graph G,
it holds that λ(2,1)(G) ≤ Δ(G)2, where Δ(G) stands for the maximum degree of
a vertex in G.

From the computational complexity point of view it is also interesting that
for an arbitrary constant c, the problem of testing whether λ(2,1)(G) ≤ c is
solvable in linear time when restricted to graphs of bounded treewidth, while
the computational complexity of determining λ(2,1)(G) for the same class of
graphs remains open.

Other collections of distance constraints were also considered by several au-
thors. Labelings of meshes were considered in [14, 11] while L(p1, 1, . . . )-labelings
of trees and interval graphs were studied in [2]. Further hardness results on
L(2, 1, . . . , 1)-labelings of restricted classes of graphs can be found in [7].

The computational complexity of finding λ(p1,p2)(T ) is not fully resolved yet
even for trees. For example, this problem becomes tractable when p2 divides p1,
but the precoloring extension and the list-coloring versions of this problem are
both NP-complete otherwise [6]. On the other hand, as follows from works on
graph properties expressible in Monadic Second Order Logic [4, 1], if the span of
a possible labeling is bounded by constant c the test whether λ(p1,...,pk)(G) ≤ c
can be performed in linear time for a graph of bounded treewidth (an explicite
algorithm is presented in [10]).

Distance constrained labelings can be generalized in several ways – one of the
possible directions is the use of different metrics on the label space. Such labelings
with constraints (2, 1) were considered in [5] as special graph homomorphisms
that are required to be locally injective. In our study we follow this concept and
prove several of our results also for the cyclic metric on the label space.

In this paper we show that with an additional requirement on the labeling
– that label space of the neighborhood of each vertex can be completed into an
interval such that these intervals are disjoint for adjacent vertices – we can obtain
both good estimates on the graph invariants λ(p1,p2,p3)(T ) for trees, but moreover
an optimal so called elegant L(p, 1, 1)-labeling of a tree can be computed in a
polynomial time.

Besides the results on computational complexity we provide also a necessary
and a sufficient conditions for a tree to allow an elegant C(2, 1, 1)-labeling of
the minimal possible span. The main motivation of this study is our belief that
further exploration of properties of elegant and non-elegant labelings of trees
might bring a new insight and new methods to finally resolve the computational
complexity of the problem of determining λ(p1,...,pk) and in particular λ(p1,p2) on
this class of graphs.

Our results on trees are finally accompanied with an NP-hardness proof of the
L(2, 1, 1)-labeling problem on general graphs, which is presented in the appendix.
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2 Preliminaries

All graphs considered in this paper are simple, i.e. without loops and multiple
edges. For a vertex u ∈ VG the set of all neighbors of u in G is denoted by N(u),
the size of N(u) is the degree deg(u) of the vertex u.

A connected graph without a cycle as a subgraph is called a tree, its vertices
of degree one are called leaves, the other are inner vertices. A star is a graph
isomorphic to the complete bipartite graph K1,n, n ≥ 1. The symbol ω(G)
denotes the size of a maximum complete subgraph of G.

The graph distance dist(u, v) is the number of edges in a shortest path con-
necting vertices u and v. The k-th distance power Gk of a graph G is the graph
on the same vertex set VGk = VG where edges of Gk connect distinct vertices
that are at distance at most k in G, i.e. EGk = {(u, v) : 1 ≤ distG(u, v) ≤ k}.

For integers 0 ≤ a ≤ b ≤ t, we define discrete intervals (mod t + 1) in the
following way: [a, b] = {a, a + 1, . . . , b} and [b, a] = {b, b + 1, . . . , t, 0, 1, . . . a}.

The term [t]-labeling of G stands for a mapping VG → [0, t].
For our purposes we use both linear and cyclic metric spaces in the definition

of distance constrained labelings.

Definition 1. Let p1 ≥ p2 ≥ · · · ≥ pk ≥ 1 be a k-tuple of integral distance
constraints. A [t]-labeling f of G is said to be an L(p1, p2, . . . , pk)-labeling of
span t if |f(u) − f(v)| ≥ pi whenever 1 ≤ dist(u, v) ≤ i ≤ k.

A [t]-labeling f is called a C(p1, p2, . . . , pk)-labeling of span t if for any pair of
distinct vertices u, v at distance at most i ≤ k, it holds that pi ≤ |f(u)− f(v)| ≤
t + 1 − pi.

For both kinds of labelings we introduce an additional property of elegance:

Definition 2. A [t]-labeling f is called elegant if for every vertex u, there exists
an interval Iu (mod k + 1), such that f(N(u)) ⊆ Iu and for every edge (u, v) ∈
EG : Iu ∩ Iv = ∅.

3

6

2

7 0 0

54

2

4 8

10

Fig. 1. An example of a tree T with c(2,2,1)(T ) = 7 < 10 = c∗(2,2,1)(T ).

Observe that only triangle-free graphs may admit elegant labelings. On the
other hand, it is not hard to deduce that every tree allows an elegant labeling
for an arbitrary collection of distance constraints. An example of a C(2, 2, 1)-
labeling and of an elegant C(2, 2, 1)-labeling of a tree T is depicted in Fig. 1.

The minimum t for which a graph G allows an L(p1, p2, . . . , pk)-labeling,
and C(p1, p2, . . . , pk)-labeling resp., of span t is denoted by λ(p1,...,pk)(G) and
c(p1,...,pk)(G), resp. The corresponding parameters for elegant labelings are indi-
cated by asterisks (and are left to be +∞ if no elegant labeling exists). Note that
λ(1)(G) = c(1)(G) = χ(G) − 1, where χ(G) denotes the chromatic number of G.
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Observation 1 For any distance constraints (p1, . . . , pk) and any graph G, it
holds that

pk(ω(Gk) − 1) ≤ λ(p1,...,pk)(G) ≤ p1(χ(Gk) − 1),

λ(p1,...,pk)(G) ≤ c(p1,...,pk)(G) ≤ c∗(p1,...,pk)(G),

λ(p1,...,pk)(G) ≤ λ∗
(p1,...,pk)(G) ≤ c∗(p1,...,pk)(G).

Proof. The proof follows from the fact that every labeling with respect to the
cyclic metric is also a valid labeling for linear metric, and that elegant label-
ings are also valid labelings. Moreover vertices of every complete subgraph of
Gk should get labels pairwise at least pk apart and a coloring of Gk can be
transformed to an L(p1,...,pk)-labeling by using labels that form an arithmetic
progression of difference p1 as colors.

3 Tree Labelings with 3 Distance Constraints

The concept of elegant labelings became useful in considering three distance
constraints. The reason is, that in this case it is enough to maintain separation
p3 only between intervals associated to adjacent vertices instead of checking
every pair of vertices at distance three.

Observe first that all [t]-colorings of a star K1,n (including labelings with at
least one constraint) are elegant (mod t + 1), since only two intervals play a role
– the interval for the center Ic = [f(c) + 1, f(c) − 1](mod t + 1) and all other
intervals can be chosen as [f(c), f(c)].

3.1 An Upper Bound for Elegant C(p1, p2, p3)-Labelings

We present an upper bound on distance constrained labelings of a tree with
circular metric. It is well known that powers of trees are chordal graphs (see [9,
12]) and that χ(T k) = ω(T k). Observe that in contrary to the general upper
bound of Observation 1 for the parameter λ(p1,p2,p3)(G), the coefficient by the
main term ω(T 3) becomes p2 instead of p1 and hence it provides an essential
improvement when p2 � p1 and ω(T 3) is sufficiently large.

Theorem 2. For any p1 ≥ p2 ≥ p3 ≥ 1 and any tree T different from a star, it
holds that c∗(p1,p2,p3)

(T ) ≤ p2ω(T 3) + p1 + max{p1 − p2, p3} − 3.

Proof. By induction on the number s of inner vertices of T we construct an
elegant labeling of T such that for each vertex u, f(N(u)) is an arithmetic
progression of length deg(u) and difference p2.

When s = 2, let u and u′ be the two inner vertices of T of degrees d, d′ ≥ 1.
We choose

t = ω(T 3)p2 + p1 + max{p1 − p2, p3} − 2p2 − 1

and define a [t]-labeling f of the tree T explicitly as f(N(u)) = {0, p2, 2p2, . . . ,
(d − 1)p2} where f(u′) = (d − 1)p2 and the other labels are distributed on
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leaves of N(u) arbitrarily. For r = (d − 1)p2 + p1 we similarly lay out labels
{r, r + p2, r + 2p2, . . . r + (d′ − 1)p2} on N(u′) such that f(u) = r.

To show that f is a valid C(p1, p2, p3)-labeling we denote first by v, v′ the
two vertices of the minimum and the maximum label, i.e. f(v) = 0 and f(v′) =
r + (d′ − 1)p2 = ω(T 3)p2 + p1 − 2p2.

Since dist(v, v′) = 3 we need ω(T 3)p2 +p1−2p2 ≤ t+1−p3, which is assured
by the choice of t. For the adjacent vertices v and u we need (d − 1)p2 + p1 ≤
t + 1 − p1, which holds as well, because t ≥ ω(T 3)p2 + p1 − 2p2 − 1 + p1 − p2 ≥
ω(T 3)p2 + p1 − 2p2 − 1 + p1 − (d′ − 1)p2 = (d − 1)p2 + 2p1 − 1. The same
inequality can be analogously derived for the labels of v′ and u. Observe, that
these conditions on u, u′, v and v′ imply, that the distance constraints are valid
also for other pairs of vertices.

Now suppose that T has at least three inner vertices. Since inner vertices
induce a subtree of T called the inner tree of T , it is possible to choose a pair
(u, v) of adjacent inner vertices such that v is a leaf in the inner tree and the
sum deg(u) + deg(v) is minimized. We remove all vertices adjacent to v with
exception of u and denote the resulting tree by T ′. By the choice of (u, v) we
have ω((T ′)3) = ω(T 3) ≥ deg(u) + deg(v).

By the induction hypothesis the tree T ′ allows an elegant labeling f ′ of
span t = ω(T 3)p2 + p1 + max{p1 − p2, p3} − 3. Now assume that the arithmetic
progression on f ′(N(u)) is of form a, a + p2, . . . , a + (deg(u)− 1)p2, (mod t + 1).
Then the vertices of N(v) should avoid interval I1 = [a − p3 + 1, a + (deg(u) −
1)p2 + p3 − 1] due to the constraint on distance three as well as the interval
I2 = [f ′(v) − p1 + 1, f ′(v) + p1 − 1].

Since f ′(v) is at distance at least p3−1 from the boundary of I1, and similarly
at least p1 − 1 points apart from the boundary of I2 we get that |I1 ∩ I2| =
p3 + max{(deg(u) − 1)p2 + p3, p1} − 1 ≥ p3 + max{p2 + p3, p1} − 1.

Then I = [0, t] \ (I1 ∪ I2) is an interval of size

|I| = t + 1 − |I1| − |I2| + |I1 ∩ I2|
≥ deg(u)p2 + deg(v)p2 + p1 + max{p1 − p2, p3} − 3 −

− deg(u)p2 + p2 − p3 − 2p1 + 2 + max{p2 + p3, p1}
= deg(v)p2 + p2 − 1

an hence can accommodate an arithmetic progression A of length deg(v) and
difference p2, which contains f ′(u) as one of its elements.

We extend the labeling f ′ into a labeling f of T by using elements of A\f ′(u)
as the labels of the leaf vertices adjacent to v in T . This concludes the proof.

For a particular choice of (p1, p2, p3) = (2, 1, 1), we have obtained an almost
a tight bound:
Corollary 1. Every tree T satisfies

ω(T 3) − 1 ≤ λ(2,1,1)(T ) ≤ λ∗
(2,1,1)(T ) ≤ ω(T 3),

and for any tree T different from a star it holds

ω(T 3) − 1 ≤ c(2,1,1)(T ) ≤ c∗(2,1,1)(T ) ≤ ω(T 3).
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Proof. If T is a star then it can be easily seen that λ2,1,1(T ) = ω(T 3) and it was
already mentioned that any of its labelings is elegant.

The bound c∗2,1,1(T ) ≤ ω(T 3) when the tree T is different from a star follows
from Theorem 2. All other inequalities and bounds were shown in Observation 1.

3.2 An Algorithm to Compute c∗
(p,1,1)(T )

The proof of Theorem 2 was constructive, hence it can be straightforwardly
converted into a polynomial-time algorithm which finds a C(p1, p2, p3)-labeling
within the claimed upper bound.

For the special choice of distance constraints p2, p3 = 1 the computation of
λ∗

(p,1,1)(T ) and c∗(p,1,1)(T ) can be resolved in a polynomial time. We describe here
an algorithm for deciding whether c∗(p,1,1) ≤ k. The algorithm for linear metric
differs only in minor details. We use a dynamic programming approach, similarly
as it was used in the algorithm for computation of λ(2,1)(T ) (see [3, 6]).

Let T be a tree and k be a positive integer. Our algorithm tests the existence
of an elegant C(p, 1, 1)-labelling of T of span k. We may assume that k ≤ n +
2p − 4, where n is the number of vertices of T , since if k > n + 2p − 4, such a
labeling always exists due to Theorem 2.

We first choose a leaf r as the root of T , which defines the parent-child
relation between every pair of adjacent vertices. For any edge (u, v) such that
u is a child of v, we denote by Tuv the subtree of T rooted in v and containing
u and all descendants of u. For every such edge and for every pair of integers
i, j ∈ [0, k] and an interval I (mod(k + 1)) such that j ∈ I, we introduce a
boolean function φ(u, v, i, j, I), which is evaluated true if and only if Tuv has an
elegant C(p, 1, 1)-labelling f where f(u) = i, f(v) = j and Iu = I. This function
φ can be calculated as follows:

1. Set an initial value φ(u, v, i, j, I) = false for all edges (u, v), integers i, j ∈
{0, 1, . . . , k} and intervals I (j ∈ I).

2. If u is a leaf adjacent to v then we set φ(u, v, i, j, I) = true for all integers
i, j ∈ [0, k] : p ≤ |i − j| ≤ k − p and intervals I such that j ∈ I and i /∈ I.

3. Let us suppose that φ is already calculated for all edges of Tuv except (u, v).
Denote by v1, v2, . . . , vm children of u. For all pairs of integers i, j ∈ [0, k] :
p ≤ |i − j| ≤ k − p and for all intervals I : j ∈ I, i /∈ I we consider the set
system {M1, M2, . . . , Mm}, where

Mt = {s : s ∈ I \ {j}, ∃ interval J : φ(vt, u, s, i, J) = true, i ∈ J, I ∩ J = ∅}

We set φ(u, v, i, j, I) = true if the set system {M1, M2, . . . , Mm} allows a
system of distinct representatives, i.e. if there exists an injective function
r : [1, m] → [0, k] such that r(t) ∈ Mt for all t ∈ [1, m].

The correctness of calculation of the function φ follows by an easy inductive
argument. The only nontrivial point is that in the constructed entry f(v) differs
from f(x) for every child x of vt, because f(v) = j ∈ I, and f(x) ∈ J , where
I ∩ J = ∅.
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Now we evaluate the complexity of computation of this function. It is calcu-
lated for n−1 edges. Since each interval I is defined by the pair of it’s endpoints,
the set of arguments has the cardinality O(nk4). Computation of φ for leafs (see
step 2) demands O(1) operation for each argument. The recursive step (see item
3) takes time O(mk3) for constructing the sets Mt and then O((m + k)2mk) for
the testing of the existence of the system of distinct representatives (we have
m sets of cardinality of no more than k). Since m ≤ n and k ≤ n + 2p − 4,
this step demands O(n3k) operations for a single collection of arguments. So
the total time of computation of φ is equal to O(n4k5) and this function can be
calculated for all sets of arguments polynomially.

To finish the description of the algorithm we have only to note that an elegant
C(p, 1, 1)-labelling of span k exists if and only if there are integers i, j ∈ [0, k]
and a interval I (j ∈ I), for which φ(r, w, i, j, I) = true where w is the only child
of the root r.

It suffices to test at most O(n) values of k, which provides the total O(n10)
time complexity. Observe that for linear metric the algorithm basically remains
the same, with the exception that also pairs i, j such that |i − j| > k − p are
allowed in steps 2) and 3).

Thus we proved following theorem:

Theorem 3. For any tree T , λ∗
(p,1,1)(T ) and c∗(p,1,1)(T ) can be computed in a

polynomial time.

For the computation of λ∗
(2,1,1)(T ) (or c∗(2,1,1)(T )) it is necessary to run this

algorithm only once for k = ω(T 3)− 1. If the algorithm returns positive answer,
then λ∗

(2,1,1)(T ) = ω(T 3) − 1, else λ∗
(2,1,1)(T ) = ω(T 3).

Finally note, that if we wanted to generalize the above algorithm to arbitrary
distance constraints (p1, p2, p3), it would require resolving of a system of distant
representatives in the step 3), which is an NP-hard problem in general [6], and
moreover it is exactly the same bottleneck of a possible polynomial algorithm
for computing λ(p1,p2) on trees for a general pair of distance constraints p1 >
p2 > 1 [6].

3.3 Perfect Labelings

In order to illustrate the above notions, we notice that for any tree we are able
to show that either c(2,1,1)(T ) = ω(T 3) − 1 and find such a labeling, called
perfect, or we find an elegant labeling of span ω(T 3), leaving the possibility that
T may allow a perfect labeling but no such labeling can be elegant (we leave as
an open question whether a tree with this property exists). It would certainly
be interesting to characterize the trees that satisfy c(2,1,1)(T ) = c∗(2,1,1)(T ) =
ω(T 3) − 1.

We present a necessary condition that a tree must satisfy to allow a per-
fect elegant labeling. We first classify edges of the tree with respect to the fact
whether their neighborhood induces a maximum clique in T 3 or not. Hence, an
edge (u, v) ∈ ET will be called saturated if deg(u) + deg(v) = ω(T 3), and it will
be called unsaturated otherwise.
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Theorem 4. If a tree allows a prefect elegant labeling, then every inner vertex
is incident with at least two unsaturated edges.

Proof. Assume for the contrary that an inner vertex v is incident with at most
one unsaturated edge. For any neighbor u incident with v along a saturated edge
it holds that deg(u) + deg(v) = ω(T 3), hence for any perfect elegant labeling
follows Iu = [0, ω(T 3) − 1] \ Iv.

Since Iv = [a, b] is an interval of length deg(v), each element of Iv is used as
a label of some u ∈ N(v). As v is incident with at most one unsaturated edge, at
least one of a or b is used as a label of a neighbor w connected to v via a saturated
edge. But then the label of w is one unit away from Iw, a contradiction.

If we interpret this condition in the construction of Theorem 2, we get:

Corollary 2. A tree allows a perfect elegant labeling if it can be rooted such that
each inner vertex has at least two children connected to it by unsaturated edges.

There exist trees with at least two unsaturated edges incident with each inner
vertex, but which allow no labeling of span ω(T 3) − 1 (neither elegant nor not
elegant). An example of such a tree is depicted in Fig. 2

Fig. 2. A tree with c(2,1,1)(T ) = ω(T 3) (saturated edges indicated in bold).

4 Computational Complexity
of the L(2, 1, 1)-Labeling Problem

To complete the picture we shortly present a full computational complexity
characterization of the decision problem whether λ(2,1,1) ≤ k for general graphs.

Theorem 5. The decision problem whether λ(2,1,1) ≤ k is NP-complete for ev-
ery k ≥ 5 and it is solvable in polynomial time for all k ≤ 4.

Proof. We start with the second part of the theorem and prove that the labeling
problem is tractable for k ≤ 4. Only finitely many connected graphs allow a
λ(2,1,1)-labeling of span at most 3. So, without loss of generality we may consider
only the case k = 4.

It can be easily seen, that if G is a graph for which an L(2, 1, 1)-labelling of
span 4 exists, then it can not contain as a subgraph any of the graphs depicted
in Fig. 3. Clearly, the maximum degree of G is at most 3 and each connected
component of G is formed by a path or by a cycle, where some vertices are
equipped with an additional leaf, or two consecutive vertices may also be joined
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Fig. 3. Some graphs of λ(2,1,1)(G) > 4.

by a path of length 2. It is not difficult to observe that such graphs have treewidth
bounded by 3, and hence the existence of an L(2, 1, 1)-labelling of span 4 can be
tested in linear time by dynamic programming (e.g., [10]).

For k ≥ 5, we reduce the Not-All-Equal p-Satisfiability (NAE p-SAT)
problem. An instance of NAE p-SAT is a formula Φ in conjunctive normal form
with p positive literals in each clause (no negations). It is well known [13] that
for all p ≥ 3, the decision problem whether such Φ allows a satisfying assignment
where each clause contains also a negatively valued literal is NP-complete.

For each variable xi we construct a gadget consisting of a chain of mi copies
of the graph depicted in Fig 4, where mi is the number of occurrences of xi and
p = �k

2 �, r = �p−1
2 �. In the figure the symbol En stands for an independent set

with n vertices, Kn for a complete graph, and Mn for a matching on n edges.
It can be explored by a case analysis that any L(2, 1, 1) labeling of span k of

the constructed variable gadget satisfies:
– All vertices ui are labelled by the same label, either by 0 or by k.
– The vertices vi are given labels either from the set L = {0, 2, 4, . . . , k − 4 +

(k mod 2)}, when ui’s are labeled by k, or otherwise from the set L′ =
{k − l, l ∈ L}.
We finalize the construction of the graph GΦ such that for each clause C of

the formula Φ we insert an extra new vertex wC and for each variable x which
appears in the clause we link wC with one of the vertices v of the vertex gadgets
associated with x. (Each v-type vertex is adjacent to only one wC).

The properties of the variable gadgets assure that GΦ allows an L(2, 1, 1)-
labeling of span k if and only if Φ has a required assignment. These labelings
are related to assignments e.g. by letting x = true whenever the vertices ui of
the gadget for x are all labeled by k, and x = false if ui get 0.

...

...

...

...

Kp

Mp−1

Kp

v1 v2

k odd

... ...

...
u1 u2

Ep−3

k even

... ...

...

Kp+1

v1 v2

u1 u2...

... ...

...

Er
Ep−1−r

Fig. 4. Variable gadgets.
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Clearly, as for any clause vertex wC it holds deg(wC) ≥ |L| = |L′|, these
labelings indicate only valid assignments, i.e., at least one of the adjoining gad-
gets represents positively valued variable and at least one stands for a negatively
valued one.

In the opposite direction, each assignment for Φ can be converted into an
L(2, 1, 1)-labeling of GΦ in a straightforward way.
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Abstract. In this paper we study collective additive tree spanners for
families of graphs that either contain or are contained in AT-free graphs.
We say that a graph G = (V, E) admits a system of μ collective additive
tree r-spanners if there is a system T (G) of at most μ spanning trees of G
such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists
such that dT (x, y) ≤ dG(x, y) + r. Among other results, we show that
AT-free graphs have a system of two collective additive tree 2-spanners
(whereas there are trapezoid graphs that do not admit any additive tree
2-spanner). Furthermore, based on this collection of trees, we derive a
compact and efficient routing scheme for those graphs. Also, any DSP-
graph (there exists a dominating shortest path) admits one additive tree
4-spanner, a system of two collective additive tree 3-spanners and a sys-
tem of five collective additive tree 2-spanners.

1 Introduction

Given a graph G = (V, E), a spanning subgraph H is called a spanner if H
provides a “good” approximation of the distances in G. More formally, for t ≥ 1,
H is called a multiplicative t–spanner of G [1, 14, 13] if dH(u, v) ≤ t · dG(u, v)
for all u, v ∈ V. If r ≥ 0 and dH(u, v) ≤ dG(u, v) + r for all u, v ∈ V, then
H is called an additive r–spanner of G [8]. The parameters t and r are called,
respectively, the multiplicative and the additive stretch factors. Clearly, every
additive r-spanner of G is a multiplicative (r + 1)-spanner of G (but not vice
versa). In this paper, we continue the approach taken in [4] of studying collective
tree spanners. We say that a graph G = (V, E) admits a system of μ collective
additive tree r-spanners if there is a system T (G) of at most μ spanning trees
of G such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists
such that dT (x, y) ≤ dG(x, y) + r (a multiplicative variant of this notion can be
defined analogously). Clearly, if G admits a system of μ collective additive tree
r-spanners, then G admits an additive r-spanner with at most μ× (n− 1) edges
(take the union of all those trees), and if μ = 1 then G admits an additive tree r-
spanner. Note also that any graph on n vertices admits a system of at most n−1
collective additive tree 0-spanners (take n−1 Breadth-First-Search–trees rooted
at different vertices of G). In particular, we examine the problem of finding small
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systems of collective additive tree r-spanners for small values of r on classes of
graphs that are related to the well known asteroidal triple-free (AT-free) graphs,
notably the restricted families: permutation graph and trapezoid graphs and the
generalizations: DSP-graphs and graphs with bounded asteroidal number.

Once one has determined a system of collective additive tree spanners, it is
interesting to see how such a system can be used to design compact and efficient
routing schemes for the given graph. Following [12], one can give the following
formal definition. A family � of graphs is said to have an l(n)-bit routing labeling
scheme if there is a function L labeling the vertices of each n-vertex graph in
� with distinct labels of up to l(n) bits, and there exists an efficient algorithm,
called the routing decision, that given the label of a source vertex v and the label
of the destination vertex (the header of the packet), decides in time polynomial
in the length of the given labels and using only those two labels, whether this
packet has already reached its destination, and if not, to which neighbor of v to
forward the packet. The quality of a routing scheme is measured in terms of its
additive stretch, called deviation, (or multiplicative stretch, called delay), namely,
the maximum surplus (or ratio) between the length of a route, produced by the
scheme for some pair of vertices, and their distance.

1.1 Our Results

After introducing the notation and definitions used throughout the paper, we
examine various families of graphs related to AT-free graphs from the perspective
of determining whether they have a small constant number of collective additive
tree r-spanners for small constant r. In Section 2 we show that AT-free graphs
have a system of two collective additive tree 2-spanners, permutation graphs
have a single additive tree 2-spanner but there are trapezoid graphs that do
not admit any additive tree 2-spanner (thereby disproving a conjecture of [15]).
All of these tree spanners can be easily constructed in linear time. For families
that strictly contain AT-free graphs, we prove that any DSP-graph admits one
additive tree 4-spanner, a system of two collective additive tree 3-spanners and
a system of five collectible additive tree 2-spanners. Furthermore, any graph G
with asteroidal number an(G) admits a system of an(G)(an(G)− 1)/2 collective
additive tree 4-spanners and a system of an(G)(an(G) − 1) collective additive
tree 3-spanners. In Section 3, we show how the system of two collective additive
tree 2-spanners for AT-free graphs can be used to derive a compact and efficient
routing scheme. In particular we will show that any AT-free graph with diameter
D and maximum vertex degree Δ admits a (3 log2 D+6 log2 Δ+O(1))-bit routing
labeling scheme of deviation at most 2. Moreover, the scheme is computable in
linear time, and the routing decision is made in constant time per vertex.

1.2 Basic Notions and Notation

All graphs occurring in this paper are connected, finite, undirected, loopless and
without multiple edges. In a graph G = (V, E) the length of a path from a
vertex v to a vertex u is the number of edges in the path. The distance dG(u, v)
between the vertices u and v is the length of a shortest path connecting u and
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v. The eccentricity ecc(v) of a vertex v of G is maxu∈V dG(u, v). The diameter
diam(G) of G is maxv∈V ecc(v). The ith neighborhood of a vertex v of G is the set
Ni(v) := {u ∈ V : dG(v, u) = i}. For a vertex v of G, the sets N(v) := N1(v) and
N [v] := N(v)∪{v} are called the open neighborhood and the closed neighborhood
of v, respectively. For a set S ⊆ V , by N [S] :=

⋃
v∈S N [v] we denote the closed

neighborhood of S and by N(S) := N [S] \ S the open neighborhood of S. A set
D ⊆ V is called a dominating set of a graph G = (V, E) if N [D] = V .

An independent set of three vertices such that each pair is joined by a path
that avoids the neighborhood of the third is called an asteroidal triple. A graph
G is an AT-free graph if it does not contain any asteroidal triples [2]. In [7],
the notion of asteroidal triple was generalized. An independent set A ⊆ V of a
graph G = (V, E) is called an asteroidal set of G if for each a ∈ A the vertices
of A \ {a} are contained in one connected component of G − N [a], the graph
obtained from G by removing vertices of N [a]. The maximum cardinality of an
asteroidal set of G is denoted by an(G), and called the asteroidal number of G.
The class of graphs of bounded asteroidal number extends naturally the class of
AT-free graphs; AT-free graphs are exactly the graphs with asteroidal number
at most two.

Let P be a shortest path of G. If every vertex z of G belongs to the neigh-
borhood N [P ] of P , then we say that P is a dominating shortest path of G. A
graph G is called a Dominating-Shortest-Path–graph (or DSP–graph, for short),
if it has a dominating shortest path. By the Dominating Pair Theorem given in
[2], any AT-free graph is a DSP-graph.

The class of AT-free graphs contains many intersection families of graphs,
among them the permutation graphs, the trapezoid graphs and the cocompara-
bility graphs. These three families of graphs can be defined as follows. Consider
two parallel lines (upper and lower) in the plane. Assume that each line contains
n points, labeled 1 to n, and each two points with the same label define a segment
with that label. The intersection graph of such a set of segments between two
parallel lines is called a permutation graph. Assume now that each line contains
n intervals, labeled 1 to n, and each two intervals with the same label define a
trapezoid with that label (a trapezoid can degenerate to a triangle or to a seg-
ment). The intersection graph of such a set of trapezoids between two parallel
lines is called a trapezoid graph. Clearly, every permutation graph is a trapezoid
graph, but not vice versa. The class of cocomparability graphs (which contains
all trapezoid graphs as a subclass) can be defined as the intersection graphs of
continuous function diagrams, but for this paper it would be more convenient
to define them via the existence of a special vertex ordering. A graph G is a
cocomparability graph if it admits a vertex ordering σ = [v1, v2, . . . , vn], called
a cocomparability ordering, such that for any i < j < k, if vi is adjacent to vk

then vj must be adjacent to vi or to vk. According to [11], such an ordering of a
cocomparability graph can be constructed in linear time. Note also that, given a
permutation graph G, a permutation model (i.e., a set of segments between two
parallel lines, defining G) can be found in linear time [11]. A trapezoid model for
a trapezoid graph can be found in O(n2) time [9].
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2 Collective Additive Tree Spanners

2.1 AT-free Graphs

It is known [15] that any AT-free graph admits one additive tree 3-spanner. In
this subsection we show that any AT-free graph admits a system of two collective
additive tree 2-spanners.

As a consequence of the Dominating Pair Theorem given in [2], any AT-free
graph has a dominating shortest path which can be found in linear time by
2 × LexBFS [3]. The 2 × LexBFS method first starts a lexicographic breadth-
first search (LexBFS) from an arbitrary vertex x of G and then starts a second
LexBFS from the vertex x0 last visited by the first LexBFS. Let xl be the vertex
of G last visited by the second LexBFS. As shown in [3], every shortest path
(x0, x1, . . . , xl), connecting x0 and xl, is a dominating shortest path of G. Next
we demonstrate how to use such a dominating shortest path in an AT-free graph
to show that every AT-free graph admits a system of two collective additive tree
2-spanners. We will need the following result from [6].

Lemma 1. [6] Let P := (x0, x1, . . . , xl) be a dominating shortest path of an AT-
free graph G = (V, E) constructed by 2×LexBFS. Then, for every i = 1, 2, . . . , l,
every vertex z ∈ Ni(x0) is adjacent to xi or xi−1.

Using this lemma, we construct a first spanning tree T1 = (V, E1) for an
AT-free graph G = (V, E) as follows: put into initially empty E1 all edges of
the path P := (x0, x1, . . . , xl), and then for each vertex z ∈ Ni(x0), put edge
zxi−1 into E1, if z is adjacent to xi−1 in G, and put edge zxi into E1, otherwise.
We call this spanning tree the caterpillar-tree of G (with spine P ). According
to [15], this caterpillar-tree gives already an additive tree 3-spanner for the AT-
free graph G. To get a collective additive stretch factor 2 for G, we construct a
second spanning tree T2 = (V, E2) for G as follows. Set Li := Ni(x0) for each
i = 1, 2, . . . , l.

set E2 := {all edges of the path P := (x0, x1, . . . , xl)};
set dev(xi) := 0 for each vertex xi of the path P ;
for i = 1 to l do

for each vertex z ∈ Li \ {xi} do
among all neighbors of z in Li−1 choose a neighbor w with minimum

deviation dev(w);
add edge zw to E2 and set dev(z) := dev(w) + 1;

enddo
enddo.

We call spanning tree T2 the cactus-tree of G (with stem P ). It is evident, by
construction, that the cactus-tree T2 is a special kind of breadth-first-search–tree
of G. The value dev(z) (called the deviation of z from stem P ) gives the distance
in T2 between vertex z and path P . In Figure 1 we show an AT-free graph G
along with its caterpillar-tree T1 and cactus-tree T2.

Lemma 2. Spanning trees {T1, T2} are collective additive tree 2-spanners of
AT-free graph G.
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Fig. 1. (a) An AT-free graph G with a dominating path P , (b) the caterpillar-tree T1

of G and (c) the cactus-tree T2 of G

Proof. Consider two arbitrary vertices x ∈ Li and y ∈ Lj (y �= x) of G, where
j ≤ i. If i = j, i.e., both x and y lie in the same layer Li = Lj , then the distance
in T1 between x and y is at most 3, since in the worst case one of them is adjacent
to xi in T1 and the second to xi−1. Thus, dT1(x, y) ≤ 3 ≤ dG(x, y) + 2 holds
when i = j, and therefore, we may assume that i > j.

We know that dG(x, y) ≥ i−j. By the construction of the caterpillar-tree T1,
we have dT1(y, xj) ≤ 2 and dT1(x, xi−1) ≤ 2. Hence, dT1(x, y) ≤ dT1(x, xi−1) +
dT1(xi−1, xj) + dT1(y, xj) ≤ 2 + i − 1 − j + 2 ≤ dG(x, y) + 3, and equality
dT1(x, y) = dG(x, y)+3 holds if and only if dG(x, y) = i− j, vertex x is adjacent
to xi in T1 (and thus in G, vertex x is not adjacent to xi−1) and vertex y is
adjacent to xj−1 in T1 but does not coincide with xj . We will show that in this
case in the cactus-tree T2, dT2(x, y) ≤ dG(x, y) + 2.

Consider in G a shortest path (y = y0, y1, . . . , yi−j = x) connecting vertices
y and x. Clearly, yk ∈ Lj+k for each k = 0, 1, . . . , i − j − 1, and since yk is
a neighbor of yk+1 in layer Lj+k, by construction of T2, we have dev(y0) = 1
and dev(yk+1) ≤ dev(yk) + 1 ≤ k + 2. Hence, the deviation of vertex x is at
most i − j + 1. That is, there is a path in T2 between x and a stem vertex xs

(j − 1 ≤ s ≤ i − 2) of length i − s. The latter implies the existence in T2 of
a path of length i − j + 1 between vertices x and xj−1. Therefore, dT2(x, y) ≤
dT2(x, xj−1) + 1 = i − j + 1 + 1 = dG(x, y) + 2. �

From this lemma we immediately conclude.

Theorem 1. Any AT-free graph admits a system of two collective additive tree
2-spanners, constructable in linear time.

In the next subsection, we will show that to get a collective additive stretch
factor 2 for some AT-free graphs, one needs at least two spanning trees. There-
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fore, the result given in Theorem 1 is best possible. Furthermore, to achieve a
collective additive stretch factor 1 or 0 for some AT-free graphs, one needs Ω(n)
spanning trees.

2.2 Permutation Graphs and Trapezoid Graphs

It is known [10] that any permutation graph admits a multiplicative tree 3-
spanner. In this subsection, we show that any permutation graph admits an ad-
ditive tree 2-spanner and any system of collective additive tree 1–spanners must
have Ω(n) spanning trees for some permutation graphs. Here also we disprove
a conjecture given in [15], that any cocomparability graph admits an additive
tree 2-spanner. We show that there exists even a trapezoid graph which does not
admit any additive tree 2-spanner.

Let G = (V, E) be a permutation graph given together with a permutation
model. In what follows, “u.p.” and “l.p.” refer to a vertex’s point on the upper
and lower, respectively, line of the permutation model. Construct BFS-layers
({L0, L1, · · ·}) and the spine {x1, x2, · · ·} of G as follows (the process continues
until Li = ∅).

set x0 := the vertex whose u.p. is as far left as possible;
set L0 := {x0};
set L1 := {vertices whose l.p.s are to the left of the l.p. of x0};
set x1 := the vertex in L1 with the u.p. as far right as possible;
set L2 := {vertices whose u.p.s are between the u.p.s of x0 and x1} \ L1;
set x2 := the vertex in L2 with the l.p. as far right as possible;
for i = 3 to n do

if i is odd then
set Li := {vertices with l.p. between the l.p.s of xi−3 and xi−1} \ Li−1;
set xi := the vertex in Li with the u.p. as far right as possible;

else
set Li := {vertices whose u.p.s are between the u.p.s of xi−3 and xi−1} \ Li−1;
set xi := the vertex in Li with the l.p. as far right as possible;

enddo.

It is straightforward to show that for all i ≥ 0, if y ∈ Li+1 then xiy ∈ E.
Now by forming T to include all edges from xi to Li+1 for appropriate i, we can
conclude: (The details will be in the journal version of the paper.)

Theorem 2. Every permutation graph admits an additive tree 2-spanner, con-
structable in linear time.

In the journal version we show that there exists a trapezoid graph which does
not admit any additive tree 2-spanner, thereby disproving a conjecture from [15]
that any cocomparability graph admits an additive tree 2-spanner. We show also
that there are bipartite permutation graphs on 2n vertices for which any system
of collective additive tree 1–spanners will need to have at least Ω(n) spanning
trees.
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2.3 DSP-graphs

It follows from a result in [15] that any DSP-graph admits one additive tree
4-spanner. In this subsection we show that any DSP-graph admits a system of
two collective additive tree 3-spanners and a system of five collective additive
tree 2-spanners.

Let G = (V, E) be a DSP-graph and P := (v = x0, x1, . . . , xl = u) be a domi-
nating shortest path of G. We will build five spanning trees {T1, T2, T3, T4, T5} for
G, all containing the edges of P , in such a way that for any two vertices x, y ∈ V ,
there will be a tree T ′ ∈ {T1, T2, T3, T4, T5} with dT ′(x, y) ≤ dG(x, y) + 2.

Our first three trees T1, T2, T3 are very similar to the trees constructed for
AT-free graphs. The tree T1 = (V, E1) is constructed as follows. Add to initially
empty set E1 all edges of path P . Then, for each vertex z ∈ V \ P choose an
arbitrary neighbor wz in P and add edge zwz to E1. The tree T1 is an analog
of the caterpillar-tree constructed for an AT-free graph. The second and third
trees are analogs of the cactus-tree considered for an AT-free graph. The tree
T2 = (V, E2) is a special breadth-first-search-tree Tv with vertex v as the root,
the tree T3 = (V, E3) is a special breadth-first-search-tree Tu with vertex u as
the root. For construction of T2 we can use the algorithm given in Subsection
2.1 with one additional line at the end: for each z ∈ Nl+1(v), add edge zu to
E2 and set dev(z) := 1. T3 is constructed similarly; we simply reverse the order
of vertices of P and consider u instead of v and E3 instead of E2. The detailed
algorithm will appear in the journal version.

Our tree T4 = (V, E4) is a generalization of the tree T2 and is constructed as
follows.

set E4 := {all edges of the path P := (v = x0, x1, . . . , xl = u)};
set dev(xi) := 0 for each vertex xi of the path P ;
for i = 1 to l do

for each vertex z ∈ Ni(v) \ {xi} do case
case (z is adjacent to xi−1 in G)

add edge zxi−1 to E4 and set dev(z) := 1;
case (z is adjacent to xi in G)

add edge zxi to E4 and set dev(z) := 1;
case (z is adjacent to a vertex w ∈ Ni(v) which is adjacent to xi−1)

choose such a w and add edge zw to E4 and set dev(z) := 2;
otherwise /* none of above */

among all neighbors of z in Ni−1(v) choose a neighbor w with
minimum deviation dev(w) (break ties arbitrarily);

add edge zw to E4 and set dev(z) := dev(w) + 1;
endcase

enddo
for each z ∈ Nl+1(v), add edge zu to E4 and set dev(z) := 1.

It is an easy exercise to show by induction that for any vertex z ∈ Ni(v),
the vertex of P closest to z in T4 is either xs or xs−1 with s = i − dev(z) + 1.
Moreover, the length of the path of T4 between z and P is dev(z). Our last tree
T5 = (V, E5) is a version of the tree T4, constructed downwards.



Collective Tree Spanners and Routing in AT-free Related Graphs 75

set E5 := {all edges of the path P := (v = x0, x1, . . . , xl = u)};
set dev(xi) := 0 for each vertex xi of the path P and dev(z) := ∞ for any z ∈ V \ P ;
for i = l − 1 down to 1 do

for each vertex z ∈ Ni(v) \ {xi} do case
case (z is adjacent to xi+1 in G)

add edge zxi+1 to E5 and set dev(z) := 1;
case (z is adjacent to xi in G)

add edge zxi to E5 and set dev(z) := 1;
case (z is adjacent to a vertex w ∈ Ni(v) which is adjacent to xi+1)

choose such a w and add edge zw to E5 and set dev(z) := 2;
otherwise

if z has neighbors in Ni+1(v) then
among all neighbors of z in Ni+1(v) choose a neighbor w with

minimum deviation dev(w) (break ties arbitrarily);
if dev(w) < ∞ then add edge zw to E5 and set dev(z) := dev(w) + 1;

endcase
enddo
for each vertex z with dev(z) still ∞ do

let z ∈ Ni(v);
if i = l and z is adjacent to xl then add edge zxl to E5 and set dev(z) := 1;
else add edge zxi−1 to E5;
/* this edge exists in G since P is a dominating path

and z is adjacent in G neither to xi+1 nor xi */
enddo.

Again, it is easy to see that for any vertex z ∈ Ni(v) with finite deviation
dev(z), the vertex of P closest to z in T5 is either xs or xs+1 with s = i+dev(z)−1.
The length of the path of T5 between z and P is dev(z).

We are ready to present the main result of this subsection.

Lemma 3. Let G be a DSP-graph with a dominating shortest path P := (v =
x0, x1, . . . , xl = u) and spanning trees T1, T2, T3, T4, T5 constructed starting from
P as described above. Then, for any two vertices x, y ∈ V :

1. dT1(x, y) ≤ dG(x, y) + 4;
2. there is a tree T ′ ∈ {T1, T2} such that dT ′(x, y) ≤ dG(x, y) + 3;
3. there is a tree T ′′ ∈ {T1, T2, T3, T4, T5} such that dT ′′(x, y) ≤ dG(x, y) + 2.

Proof. The proof of this lemma is quite technical and will appear in the journal
version of the paper. �

Theorem 3. Any DSP-graph admits one additive tree 4-spanner, a system of
two collective additive tree 3-spanners and a system of five collective additive
tree 2-spanners. Moreover, given a dominating shortest path of G, all trees are
constructable in linear time.

Note that there is a DSP-graph for which two trees are necessary to get a
collective additive stretch factor 3. However, it is an open question whether to
achieve a collective additive stretch factor 2, one really needs five spanning trees.
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2.4 Graphs with Bounded Asteroidal Number

It is known [7] that any graph G with asteroidal number an(G) admits an addi-
tive tree (3an(G) − 1)-spanner. In this subsection we show that any graph with
asteroidal number an(G) admits a system of an(G)(an(G) − 1)/2 collective ad-
ditive tree 4-spanners and a system of an(G)(an(G) − 1) collective additive tree
3-spanners.

In what follows we will use the following definitions and results from [7]. An
asteroidal set A of a graph G is repulsive if for every vertex v ∈ V \N [A], not all
vertices of A are contained in one connected component of G−N [v]. According
to [7], any graph has a repulsive asteroidal set. A set D ⊆ V in a graph G is said
to be a dominating target, if D ∪S is a dominating set in G for every set S ⊆ V
for which the subgraph of G induced by D ∪ S is connected. It is shown in [7]
that any graph G has a dominating target D with D ≤ an(G). Furthermore,
every repulsive asteroidal set of G is such a dominating target of G.

In the journal version of the paper, we prove the following stronger version of
the result above. Let D ⊆ V be a repulsive asteroidal set of a graph G = (V, E).

Lemma 4. For every x, y ∈ V , there exist a, b ∈ D such that x, y ∈ N [P ] for
any path P of G between a and b.

Consider two arbitrary vertices a, b of D and a shortest path P (a, b) := (a =
x0, x1, . . . , xl = b) connecting a and b in G. We can build two spanning trees
T1(a, b) and T2(a, b) for G, both containing the edges of P (a, b), in such a way
that for any two vertices x, y ∈ N [P (a, b)], dT1(a,b)(x, y) ≤ dG(x, y) + 4 and
min{dT1(a,b)(x, y), dT2(a,b)(x, y)} ≤ dG(x, y) + 3.

Our trees T1(a, b) and T2(a, b) are very similar to the trees constructed for AT-
free graphs. The tree T1(a, b) = (V, E1) is constructed as follows. Add to initially
empty set E1 all edges of path P (a, b). Then, for each vertex z ∈ N(P (a, b))
choose an arbitrary neighbor w in P (a, b) and add edge zw to E1. The obtained
subtree of G (which covers so far only vertices from N [P (a, b)]) extends to a
spanning tree T1(a, b) arbitrarily. The tree T1(a, b) is an analog of the caterpillar-
tree constructed for an AT-free graph. The second tree is an analog of the cactus-
tree considered for an AT-free graph. The tree T2(a, b) = (V, E2) is a special
breadth-first-search-tree Ta with vertex a as the root. The detailed algorithm
for constructing T2(a, b) and the proof of the following lemma will appear in the
journal version.

Lemma 5. For any two vertices x, y ∈ N [P (a, b)]:

1. dT1(a,b)(x, y) ≤ dG(x, y) + 4;
2. there is a tree T ′ ∈ {T1(a, b), T2(a, b)} such that dT ′(x, y) ≤ dG(x, y) + 3.

If we construct trees T1(a, b) and T2(a, b) for each pair of vertices a, b ∈ D,
from Lemma 4 and Lemma 5, we get (recall that |D| ≤ an(G)):

Theorem 4. Any graph G with asteroidal number an(G) admits a system of
an(G)(an(G) − 1)/2 collective additive tree 4-spanners and a system of
an(G)(an(G) − 1) collective additive tree 3-spanners.
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Corollary 1. Any graph G with asteroidal number bounded by a constant admits
a system of a constant number of collective additive tree 3-spanners. Moreover,
given a repulsive asteroidal set of G, all trees are constructable in total linear
time.

3 Routing Labeling Schemes in AT-free Graphs

In this section, we use the results obtained above to design compact and effi-
cient routing labeling schemes for AT-free graphs. For DSP-graphs and graphs
with bounded asteroidal number, corresponding routing labeling schemes are
described in the journal version of the paper. We will show that any AT-free
graph with diameter D := diam(G) and maximum vertex degree Δ admits a
(3 log2 D + 6 log2 Δ + O(1))-bit routing labeling scheme of deviation at most 2.
Moreover, the scheme is computable in linear time, and the routing decision is
made in constant time per vertex.

It is worth mentioning that any AT-free graph admits a (log2 D + 1)-bit
distance labeling scheme of deviation at most 2 (see [5]). That is, there is a
function L labeling the vertices of each AT-free graph G with (not necessarily
distinct) labels of up to log2 D+1 bits such that given two labels L(v), L(u) of two
vertices v, u of G, it is possible to compute in constant time, by merely inspecting
the labels of u and v, a value d̂(u, v) such that 0 ≤ d̂(u, v) − dG(u, v) ≤ 2. To
the best of our knowledge, the method of [5] cannot be used (at least directly)
to design a routing labeling scheme for AT-free graphs.

Labels. In subsection 2.1, we showed that any AT-free graph G = (V, E) admits
a system of two collective additive tree 2-spanners. During the construction of
the cactus-tree T2 for G, each vertex z ∈ V received a deviation number dev(z)
which is the distance in T2 between z and the stem P := (x0, x1, . . . , xl) of T2.
To simplify the routing decision, it will be useful to construct one more spanning
tree T ′ = (V, E′) for G. Let P := (x0, x1, . . . , xl) be the dominating path of G
described in Lemma 1.

set E′ := {all edges of the path P := (x0, x1, . . . , xl)};
set dev′(xi) := 0 for each xi of the path P and dev′(z) := l + 1 for any z ∈ V \ P ;
for each z ∈ Nl(x0) which is adjacent to xl, set dev′(z) := 1 and add edge zxl to E′;
for i = l − 1 down to 1 do

for each vertex z ∈ Ni(x0) \ {xi} do
if z is adjacent to xi in G then add edge zxi to E′ and set dev′(z) := 1;
else if z has neighbors in Ni+1(x0) then

among all neighbors of z in Ni+1(x0), choose a neighbor w with
minimum deviation dev′(w) (break ties arbitrarily);

if dev′(w) < l + 1 then add edge zw to E′ and set dev′(z) := dev′(w) + 1;
enddo

enddo
for each vertex z with dev′(z) still l + 1 do

let z ∈ Ni(x0);
add edge zxi−1 to E′;

enddo.
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We name tree T ′ the willow-tree of G. As a result of its construction, each
vertex z ∈ V received a second deviation number dev′(z), which is either l + 1
or the distance in T ′ between z and the path P := (x0, x1, . . . , xl) of T ′.

Now we are ready to describe the routing labels of the vertices of G. For each
vertex xi ∈ P (i = 0, 1, . . . , l), we have

Label(xi) := (b(xi), level(xi), portup(xi), portdown(xi)),

where

– b(xi) := 1, a bit indicating that xi belongs to P ;
– level(xi) (= i) is the index of xi in P , i.e., the distance dG(xi, x0);
– portup(xi) is the port number at vertex xi of the edge xixi+1 (if i = l,

portup(xi) := nil);
– portdown(xi) is the port number at vertex xi of the edge xixi−1 (if i = 0,

portdown(xi) := nil).

For each vertex z ∈ V \ P , we have

Label(z) := (b(z), level(z), av(z), portv−in(z), portv−out(z), ah(z), porth−in(z),

porth−out(z), dev(z), portdown(z), dev′(z), portup(z)),

where

– b(z) := 0, a bit indicating that z does not belong to P ;
– level(z) is the distance dG(z, x0);
– av(z) is a bit indicating whether z is adjacent to xlabel(z)−1;
– portv−in(z) is the port number at vertex xlabel(z)−1 of the edge xlabel(z)−1z

(if z and xlabel(z)−1 are not adjacent in G, then portv−in(z) := nil);
– portv−out(z) is the port number at vertex z of the edge zxlabel(z)−1 (if z and

xlabel(z)−1 are not adjacent in G, then portv−out(z) := nil);
– ah(z) is a bit indicating whether z is adjacent to xlabel(z);
– porth−in(z) is the port number at vertex xlabel(z) of the edge xlabel(z)z (if z

and xlabel(z) are not adjacent in G, then porth−in(z) := nil);
– porth−out(z) is the port number at vertex z of the edge zxlabel(z) (if z and

xlabel(z) are not adjacent in G, then porth−out(z) := nil);
– dev(z) is the deviation of z in tree T2;
– portdown(z) is the port number at vertex z of the edge zw, where w is the

father of z in T2;
– dev′(z) is the deviation of z in tree T ′;
– portup(z) is the port number at vertex z of the edge zw, where w is the

father of z in T ′ (if dev′(z) = l + 1, portup(z) := nil).

Clearly, the label size of each vertex of G is at most 3�log2 l�+6�log2 Δ�+3 ≤
3 log2 D + 6 log2 Δ + O(1) bits.

Routing Decision. The routing decision algorithm is obvious. Suppose that
a packet with the header (address of destination) Label(y) arrives at vertex x.
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The vertex x can use the following constant time algorithm to decide where to
submit the packet. Note that each vertex v of G is uniquely identified by its
label Label(v).

function routing decision AT-free(Label(x), Label(y))

if Label(x) = Label(y) then return “packet reached its destination”;
else do case

case (b(x) = 1)
/* x belongs to P and routing is performed on the caterpillar-tree T1 of G */

do case
case (level(x) > level(y))

send packet via portdown(x);
case (level(x) < level(y))

if b(y) = 1 then send packet via portup(x);
else if level(y) = level(x) + 1 and av(y) = 1 then

send packet via portv−in(y);
else send packet via portup(x);

case (level(x) = level(y))
if ah(y) = 1 then send packet via porth−in(y);
else send packet via portdown(x);

endcase;
/* now x does not belong to P */
case (level(x) > level(y))

do case
case (av(x) = 1)

send packet via portv−out(x); /* routing is performed on T1 */
case (b(y) = 1 or b(y) = 0 and ah(y) = 1)

send packet via porth−out(x); /* routing is performed on T1 */
otherwise /* here we have dT1(x, y) = level(x) − level(y) + 3 */

if dev(x) ≤ level(x) − level(y) + 1 then send packet via portdown(x);
/* the cactus-tree T2 of G is used for routing */

else send packet via porth−out(x); /* routing is performed on T1 */
endcase;

case (level(x) < level(y))
do case

case (ah(x) = 1)
send packet via porth−out(x); /* routing is performed on T1 */

case (b(y) = 1 or b(y) = 0 and av(y) = 1)
send packet via portv−out(x); /* routing is performed on T1 */

otherwise /* here we have dT1(x, y) = level(y) − level(x) + 3 */
if dev′(x) ≤ level(y) − level(x) + 1 then send packet via portup(x);

/* the willow-tree T ′ of G is used for routing */
else send packet via portv−out(x); /* routing is performed on T1 */

endcase;
case (level(x) = level(y)) /* routing is performed on T1 */

if ah(x) = 1 then send packet via porth−out(x);
else send packet via portv−out(x);

endcase.

Thus, we have the following result.
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Theorem 5. Every AT-free graph of diameter D := diam(G) and of maximum
vertex degree Δ admits a (3 log2 D+6 log2 Δ+O(1))-bit routing labeling scheme
of deviation at most 2. Moreover, the scheme is computable in linear time, and
the routing decision is made in constant time per vertex.
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Abstract. The Maximum Cardinality Search algorithm visits the ver-
tices of a graph in an order such that at any point, a vertex is visited
that has the largest number of visited neighbours. An MCS-ordering of
a graph is an ordering of the vertices that can be generated by the Maxi-
mum Cardinality Search algorithm. The visited degree of a vertex v in an
MCS-ordering is the number of neighbours of v that are before v in the
ordering. The MCSLB of an MCS-ordering ψ of G is the maximum vis-
ited degree over all vertices v in ψ. Lucena [10] showed that the treewidth
of a graph G is at least the MCSLB of any MCS-ordering of G.
In this paper, we analyse the maximum MCSLB over all possible MCS-
orderings of given graphs G. We give upper and lower bounds for this
number for planar graphs. Given a graph G, it is NP-complete to deter-
mine if G has an MCS-ordering with MCSLB at least k, for any fixed
k ≥ 7. Also, this problem does not have a polynomial time approximation
algorithm with constant ratio, unless P=NP. Variants of the problem are
also shown to be NP-complete.
We also propose and experimentally analysed some heuristics for the
problem. Several tiebreakers for the MCS algorithm are proposed and
evaluated. We also give heuristics that give upper bounds on the max-
imum MCSLB that an MCS-ordering can obtain which appear to give
results close to optimal on several graphs from real life applications.

1 Introduction

Recent research has shown that the notion of treewidth is not only of theoretical
interest, but can also be used to solve problems arising from real life applications
in practice (see e.g., [8, 9].) One important issue when using treewidth in imple-
mentations is the problem to find tree decompositions of given graphs of optimal
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or close to optimal width. Many of the theoretical solutions to this problem seem
not to be applicable in practice, e.g., some have very large constant factors hid-
den in the O-notation (like the algorithm from [1], see [12].) Thus, there is a need
for practical algorithms for determining the treewidth and finding tree decom-
positions. Recent investigations brought us preprocessing methods (e.g., [2, 3,
15]), heuristics that often give close to optimal results (e.g., [5–7]), lower bound
methods [4, 5, 10, 11], and some exact methods. Still, in many cases, exact meth-
ods are too slow, and there are large gaps between the bounds given by upper
bound and lower bound heuristics. This paper concentrates on the study of a
lower bound on the treewidth that is due to Lucena [10]. We analyse this bound
both theoretically and experimentally.

The lower bound on treewidth of Lucena [10] is based on the Maximum
Cardinality Search (or, in short: MCS) algorithm. This algorithm that visits
all vertices of a given graph in order was first proposed in 1984 by Tarjan and
Yannakakis for the recognition of chordal graphs [14]. The order in which the
Maximum Cardinality Search algorithm visits the vertices of a graph must fulfil
the following property: at each step, a vertex must be visited that has the largest
current visited degree, where we define the current visited degree of an unvisited
vertex at a certain step as the number of its visited neighbours. We call any
ordering of the vertices of the graph G = (V, E) that fulfils this property an
MCS-ordering of G. The visited degree of a vertex v (with respect to a given
MCS-ordering) is its current visited degree at the moment it is visited, i.e., the
number of neighbours that are before v in the MCS-ordering. The MCSLB of an
MCS-ordering is the maximum visited degree of the vertices. Lucena [10] showed
that for every graph G and MCS-ordering ψ of G, the MCSLB of ψ is at most
the treewidth of G.

Thus, Maximum Cardinality Search provides us with a lower bound heuristic
for the treewidth of a given graph. A graph with more than one vertex has more
than one MCS-ordering: we can start at any vertex, and often, the MCS has the
choice between more than one unvisited vertex with maximum current visited
degree.

In this paper, we give a theoretical, and an experimental evaluation of this
lower bound for treewidth. Amongst others, we compare MCSLB with other
treewidth lower bounds, look for the complexity of determining what is the best
MCSLB that can be obtained for a given graph amongst all possible MCS-
orderings, give heuristics that provide upper bounds on the MCSLB, and report
on experiments with different tiebreakers for constructing MCS-orderings.

It is interesting to note that Maximum Cardinality Search also has been used
as a heuristic for obtaining upper bounds on the treewidth; an experimental
evaluation has been reported in [7].

1.1 Definitions

Some definitions are given above. Many other notions in this paper follow stan-
dard conventions from graph theory and graph algorithms.
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A tree decomposition of a graph G = (V, E) is a pair ({Xi | i ∈ I}, T = (I, F )),
with {Xi | i ∈ I} a family of subsets of V and T a tree, such that

⋃
i∈I Xi = V ,

for all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi, and for all i0, i1, i2 ∈ I: if
i1 is on the path from i0 to i2 in T , then Xi0 ∩ Xi2 ⊆ Xi1 . The width of tree
decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1. The treewidth of a
graph G is the minimum width among all tree decompositions of G.

Define mcslbmax(G, v) as the maximum over all MCS-orderings ψ of G of the
visited degree of v in ψ. Define mcslb′

max(G, v) as the maximum over all MCS-
orderings ψ of G where v has at least one neighbour that is visited after v of the
visited degree of v in ψ. Denote the degree of v in G by dG(v). Clearly, we have
mcslb′

max(G, v) = min{mcslbmax(G, v), dG(v) − 1}. Define mcslbmax(G, v, w),
with w a neighbour of v in G as the maximum over all MCS-orderings ψ of
G where w is visited after v of the visited degree of v in ψ.

2 MCSLB for General Graphs

The following lemma is of great help for getting upper bounds on the MCSLB
and the maximum visited degree of a vertex amongst all possible MCS-orderings.

Lemma 1. Let ψ be an MCS-ordering of G and suppose v has visited degree k
in ψ. Then v has distinct neighbours w1, . . . , wk, such that the visited degree of
wi is at least i − 1, and each wi is visited before v.

Proof. Let wi be the ith visited neighbour of v. Each wi, i ≤ k is visited before
v. Just before wi is visited, v has current visited degree exactly i − 1. As the
MCS visits wi instead of v at that point, wi has visited degree at least i− 1. ��

A direct consequence of this lemma is that the visited degree of a vertex
cannot be larger than its degree, or than the maximum degree of its neighbours.

The degeneracy of a graph is the maximum over all induced subgraphs of the
minimum degree of a vertex [13]. As the degeneracy of a graph can be computed
very quickly, and the treewidth of a graph is never smaller than its degener-
acy, this notion provides us with a successful lower bound for treewidth. (An
improvement on the lower bound is the contraction degeneracy, proposed and
studied in [4].) While computing an MCS-ordering with corresponding MCSLB
is somewhat slower than computing the degeneracy, the MCSLB gives a lower
bound that is at least as good as the degeneracy.

Lemma 2. Let ψ be an MCS-ordering of G. The MCSLB of ψ is at least the
degeneracy of G.

Proof. Let the degeneracy of G be δ. Let H be a subgraph of G such that every
vertex in H has degree at least δ. Let v be the last vertex in H that is visited
by ψ. v has visited degree at least δ, as each neighbour of v that belongs to H
is visited before v. ��

It is interesting to note that the maximum and minimum MCSLB over all
possible MCS-orderings of a graph are not closed under taking subgraphs, in-
duced subgraphs, or minors. I.e., there is a graph H that is a subgraph (induced
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subgraph, minor) of a graph G, such that H has an MCS-ordering with MCSLB
larger than the maximum MCSLB over all MCS-orderings of G. The example
with minors is easy to give: take a clique with k ≥ 4 vertices (each MCS-ordering
has MCSLB k − 1), and then subdivide each edge (each MCS-ordering now has
MCSLB two). The examples for subgraphs and induced subgraphs are more in-
volved and can e.g., be created by adding additional vertices and edges to the
graph given in the next section with Theorem 1. Thus, it is also interesting to
study the maximum MCSLB over all orderings over all minors (or subgraphs,
induced subgraphs) [4].

3 MCSLB for Planar Graphs

In this section, we show that there are planar graphs with maximum MCSLB
Ω(log n/ log log n) and that the maximum MCSLB is bounded by O(log n) for
planar graphs. As planar graphs can have treewidth Θ(

√
n) (e.g., an r by r

grid has treewidth exactly r), this shows that the MCSLB can be far from the
treewidth on planar graphs. On the other hand, the MCSLB can be much larger
than the degeneracy, as the degeneracy of a planar graph is never larger than 5.
(Every planar graph has a vertex of degree at most five.)

We first show that the starting vertex of an MCS-ordering can have a dra-
matic impact on the resulting MCSLB, and provide an example that shows that
planar graphs can have arbitrary large MCSLB.

Theorem 1. For every k, there is a planar graph Gk, such that

1. The treewidth of Gk is k.
2. There is an MCS-ordering ψ with maximum visited degree k.
3. There is a vertex v in Gk such that every MCS-ordering that starts in v has

maximum visited degree 2.
4. Gk has O((k − 1)!) vertices.

Proof. (Sketch.) An example of the construction is shown in Figure 1. Basically,
we have a tree with k + 1 levels, with all vertices on the same level of the tree
connected by a path. The root node has two children, and vertices at distance
k − i ≥ 1 from the root have i children.

We can visit the vertices with MCS level by level, starting at the bottom
level. Vertices in the ith level from below have i − 1 visited neighbours in the

Fig. 1. The construction for Theorem 1 for k = 5.
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level below, and possibly one visited neighbour in the same level. If we have k+1
levels, the second vertex in the highest-but-one level has visited degree k.

On the other hand, if we start an MCS with the top vertex, then we also
must visit the vertices level by level, but now from top to bottom. It is not hard
to see that in this case, each vertex receives visited degree at most two.

It is not hard to construct a tree decomposition of Gk with treewidth k. ��
We now show an upper bound of 5 log n + 4 on the MCSLB possible on

planar graphs. (A more detailed argument can give a bound of 4 log n + O(1).)
We first introduce the notion of special tree. A special tree is a rooted tree with
each vertex labelled with a nonnegative integer, such that a vertex labelled with
i has at least min{0, i − 4} children, and we can order its children w1, . . . , wk

(k ≥ min{0, i−4}) such that the label of wj is at least j. Let n(i) be the minimum
number of vertices in a special tree whose root is labelled i. The following lemma
can be easily shown with induction.

Lemma 3. For all i, n(i) ≥ 2�i/5�.

Theorem 2. If G is a planar graph with n vertices, and π an MCS-ordering of
G with MCSLB k, then k ≤ 5 log n + 4.

Proof. Let G, n, π, k be as stated above. Let v be the first vertex visited by π
with visited degree k. Suppose G does not contain a proper subgraph that has
an MCS-ordering with MCSLB k. Hence, G is connected.

For i, 1 ≤ i ≤ n, let vi be the ith vertex visited by π. Denote G>i as
the subgraph, induced by the vertices {vi+1, . . . , vn}, and G≤i as the subgraph,
induced by vertices {v1, . . . , vi}.

For each i, we may assume that G>i is connected. If not, take any connected
component of G>i that does not contain v. Let G′ be the graph obtained by
removing that component from G. Restricting π to the vertices in G′ still gives
an MCS-ordering where v has visited degree k, contracting the minimality of G.
G≤i is also connected: if G is connected, then at any point in the MCS, the set
of visited vertices is connected.

Now, for each i, 1 ≤ i ≤ n, vi has at most three neighbours in G≤i that are
adjacent to vertices in G>i. Suppose vi has four such neighbours. These belong
together with vi to one face of G≤i. Number these, with respect to the order in
which they come after vi on this face as w1, w2, w3, and w4. W.l.o.g., suppose
w2 is visited before w3. {vi, w2} and {vi, w3} are separators of the graph G≤i.
After w3 is visited, the component of G≤i − {vi, w3} that contains w4 has only
unvisited vertices, and before vi and the first vertex in this component is visited,
these vertices can only have w3 as visited neighbour, so cannot be visited before
vi, contradiction.

Now, mark an edge {vj , vi}, j < i to be special when vj is not adjacent to a
vertex in G>i. Directing special edges towards the higher numbered vertex gives
a forest. Taking from this forest the subtree with root v and labelling each vertex
with its visited degree gives a special tree: by Lemma 1, a vertex w with visited
degree α has earlier visited neighbours with visited degree at least 0, 1, 2, . . . ,
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α−1, and at most three of these do not have a special edge to w. So, G contains
a subtree with at least n(k) ≥ 2�k/5� vertices. The theorem now follows. ��

4 Complexity of MCSLB

In this section, we give some results on the complexity of the problem of deter-
mining the maximum MCSLB that can be obtained on a given graph. Unfortu-
nately, the proof of the main result is much too long to give here.

Max MCSLB
Instance: Graph G = (V, E), integer k ≤ |V |.
Question: Is there an MCS-ordering for G with MCSLB at least k?

Lemma 4. Let k ≥ 7 be a constant. Let C be a collection of clauses over a
set U of Boolean variables, each clause of size three. There is a graph GC,k with
O(|C|+k!) vertices, such that if C is satisfiable, then GC,k has an MCS-ordering
with MCSLB at least k, and if C is not satisfiable, then every MCS-ordering of
GC,k has MCSLB at most 6.

The complicated construction puts together several parts. Around a modi-
fication of the planar graph of Theorem 1, structures are build that guarantee
that this subgraph can be visited from bottom to top (and not in the other
direction), if and only if the set of clauses is satisfiable. The 18 pages long proof
is omitted here. From the construction, we then can obtain the following result.

Theorem 3. (i) Max MCSLB is NP-complete, even for fixed k ≥ 7.
(ii) If P 
= NP , then every polynomial time approximation algorithm for Max
MCSLB has approximation ratio Ω(log n/ log log n).

With similar techniques, the problem to determine whether there is an MCS-
ordering with MCSLB at most k can be shown to be NP-complete, for fixed
constants k ≥ 7. Variants where the starting vertex is fixed are also NP-complete,
when k ≥ 6; the proofs are slightly easier. A similar bound for the approximation
ratio holds also in these cases. A few cases can be seen to be easy: the case k = 2,
and the case that G is chordal.

Proposition 1. (i) G is a forest, if and only if every MCS-ordering of G has
MCSLB 1, if and only if there exists an MCS-ordering of G with MCSLB 1.
(ii) If G is a chordal graph, then every MCS-ordering of G has MCSLB equal to
the maximum clique size in G minus 1.

5 Upper Bounds on MCSLB

In this section we propose some heuristics for obtaining upper bounds on the
maximum MCSLB over all possible MCS-orderings of a given graph G.

Our heuristics maintain for each vertex upper bounds on mcslbmax(G, v),
mcslb′

max(G, v), and mcslbmax(G, v, w), respectively, and improve these upper
bounds stepwise, until no improvements can be found.
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The first heuristic takes for each vertex v a variable u(v), and maintains as
an invariant that for each v ∈ V : mcslbmax(G, v) ≤ u(v). A local improvement
step for a vertex v has the following form:

procedure ImproveMCSLBMAXv (Graph G, Vertex v)
Compute UN(v) = {u(w) | {v, w} ∈ E}, and sort UN(v).
Suppose UN(v) = {u1, u2, . . . , ud}, with u1 ≤ u2 ≤ · · · ≤ ud.
count = 0;
for j = 1 to u(v)
do

if (ud−u(v)+j ≥ count)
then count ++.

if (count < u(v))
then u(v) = count; return true
else return false

So, we start by sorting the values u(w) for all neighbours of v. Next, we select
as many vertices as possible that satisfy the condition stated in Lemma 1. This
number then defines the new u(v) and we return true on improvement.

We start by setting u(v) to dG(v) for all vertices. Then, we repeatedly run
ImproveMCSLBMAXv on the different vertices v until it gives no improvement
on any of the vertices in the graph. We implemented this by using a set S
which initially contains all vertices. Repeatedly, a vertex v is taken out of S,
ImproveMCSLBMAXv is run on v, and when this causes a decrease of u(v), all
neighbours of v are added (again) to S when they are not already in S. From
Lemma 1, we can conclude:

Lemma 5. The procedure ImproveMCSLBMAXv maintains as invariant that
for all vertices x ∈ V : mcslbmax(G, x) ≤ u(x).

The bound can be somewhat improved by working with upper bounds on
mcslb′

max(G, x) instead. In the second heuristic, each vertex v ∈ V has a variable
u′(v) and as invariant, we maintain that for all v ∈ V : mcslb′

max(G, v) ≤ u′(v).
Initially, we set u′(v) = dG(v) − 1. An improvement step and schedule similar
to ImproveMCSLBMAXv is used, but now we work with values u′(v). Finally,
with a step very similar to ImproveMCSLBMAXv (let the for-loop run from 1
to u′(v) + 1), we can compute an upper bound on mcslbmax(G, v) for each v.

Our experiments show that this improvement sometimes gives better results.
A small example that also shows this is when we consider again the graph,
obtained by subdividing each edge of a K4. Here, we get values u(v) = 2 for
subdivision vertices and u(v) = 3 for clique vertices, giving an upper bound
of 3, while the second heuristic gives u′(v) = 1 for subdivision vertices and
u′(v) = 2 for clique vertices, yielding an upper bound of 2 on the maximum
value of MCSLB.

The third heuristic gives a further refinement by looking at which neighbour
of v is visited after v. We maintain upper bounds u(v, w) on mcslbmax(G, v, w),
and refine these again stepwise, until no improvements are possible, with the
following procedure.
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procedure ImproveMCSLBMAXe (Graph G, Vertex v, Vertex w)
Compute UN(v, w) = {u(x, v) | {v, x} ∈ E, x 
= w}, and sort UN(v, w).
Suppose UN(v, w) = {u1, u2, . . . , ud}, with u1 ≤ u2 ≤ · · · ≤ ud.
count = 0;
for j = 1 to u(v, w)
do

if (ud−u(v,w)+j ≥ count)
then count ++.

if (count < u(v, w))
then u(v, w) = count; return true
else return false

Lemma 6. The procedure ImproveMCSLBMAXe maintains as invariant that
for all pairs of adjacent vertices vertices x, y ∈ V : mcslbmax(G, x, y) ≤ u(x, y).

When ImproveMCSLBMAXe cannot decrease a value u(v, w) for any pair of
adjacent vertices v, w, then as a final step, upper bounds u(v) on mcslbmax(G, v)
are computed for all v ∈ V ; the code of this final step is as in ImproveMCSLB-
MAXv, except that we take as UN(v) the set {u(x, v) | {v, w} ∈ E}, taking for
the old value of u(v) the degree of v. Our experiments show that this third heuris-
tic gives some additional improvements on the upper bounds on the maximum
value of MCSLB.

6 Computational Results

In this section, we perform an experimental evaluation of the MCSLB. For this
purpose, we selected some graphs from frequency assignment [8] and probabilistic
networks [9]. These instances have been preprocessed by the methods described
in [3] and have been used for other experiments as well [2]. All algorithms have
been coded in C++ and the computations have been carried out on a Linux
operated PC with Intel Pentium 4 processor with 3.0 GHz CPU. All reported
CPU times are in seconds.

Our experiments are divided in two parts. First, we examine the value of
MCSLB obtained by different start vertices and tiebreaking rules. Second, we
report on upper bounds on MCSLB (cf. Section 5).

6.1 Start Vertices and Tiebreakers

Each MCS-ordering ψ provides a lower bound for treewidth. The start vertex
of an MCS-ordering influences the final ordering directly. Computational exper-
iments however have shown that the outcome varies only marginally depending
on the start vertex. Typically, an overwhelming majority of the start vertices re-
sults in the same MCSLB, with a few exceptions to lower and/or higher values.

During the ordering process, multiple vertices can have the highest visited
degree, e.g., after the start vertex is fixed all neighbours have the same visited
degree and can be ordered next. To select the next vertex various tiebreakers
can be applied.
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Table 1. MMD and MCSLB for test graphs with different tiebreakers.

MMD default max-degree min-degree MCS-UB
instance |V | |E| LB CPU LB CPU LB CPU LB CPU UB CPU
barley-pp 26 78 5 0.00 6 0.00 5 0.01 6 0.00 7 0.01
diabetes-pp 116 276 4 0.00 4 0.07 4 0.12 4 0.12 5 0.11
link-pp 308 1158 6 0.01 6 0.60 6 1.27 6 1.20 27 9.76
munin1-pp 66 188 4 0.00 5 0.02 5 0.04 5 0.05 17 0.31
munin2-pp 167 455 4 0.00 5 0.15 5 0.30 5 0.29 8 0.47
munin3-pp 96 313 4 0.00 5 0.05 4 0.10 5 0.10 17 1.42
munin4-pp 217 646 5 0.00 5 0.26 5 0.61 5 0.60 12 1.10
munin-kgo-pp 16 41 4 0.00 5 0.00 4 0.00 5 0.00 5 0.00
oesoca+-pp 14 75 9 0.00 10 0.00 9 0.00 10 0.00 11 0.00
oow-trad-pp 23 54 4 0.00 4 0.00 4 0.00 4 0.01 6 0.01
oow-solo-pp 27 63 4 0.00 5 0.00 4 0.01 4 0.00 6 0.01
pathfinder-pp 12 43 5 0.00 6 0.00 5 0.00 6 0.00 6 0.00
pignet2-pp 1024 3774 5 0.01 6 7.59 6 17.42 6 18.02 239 2600.27
pigs-pp 48 137 4 0.00 5 0.01 4 0.02 5 0.02 13 0.23
ship-ship-pp 30 77 4 0.00 4 0.00 4 0.01 4 0.01 8 0.05
water-pp 22 96 6 0.00 8 0.00 7 0.00 8 0.01 10 0.02
celar01-pp 157 804 8 0.00 10 0.16 9 0.39 10 0.39 18 1.21
celar02-pp 19 115 9 0.00 10 0.00 9 0.01 10 0.00 10 0.01
celar03-pp 81 413 9 0.00 10 0.04 10 0.10 10 0.10 16 0.36
celar04-pp 114 524 9 0.00 11 0.08 10 0.18 10 0.17 18 0.98
celar05-pp 80 426 9 0.00 9 0.04 9 0.10 9 0.09 17 0.50
celar06-pp 16 101 11 0.00 11 0.00 11 0.01 11 0.00 11 0.00
celar07-pp 92 521 11 0.00 12 0.11 11 0.15 12 0.14 18 0.57
celar08-pp 189 1016 11 0.01 12 0.25 11 0.67 12 0.61 19 1.74
celar09-pp 133 646 11 0.01 12 0.12 11 0.28 12 0.26 18 1.20
celar10-pp 133 646 11 0.00 12 0.12 11 0.31 12 0.36 18 1.23
celar11-pp 96 470 9 0.00 10 0.06 9 0.13 10 0.14 17 0.65

In Table 1 we compare three different tiebreakers for selecting the next vertex
among all vertices of highest visited degree. For each tiebreaker we report the
maximum MCSLB taken over all possible start vertices. The columns ‘default’
present the results without a tiebreaker. The ‘max-degree’ tiebreaker selects the
vertex with maximum degree among the vertices with highest visited degree,
whereas the ‘min-degree’ tiebreaker selects the vertex with minimum degree.
The idea behind the maximum degree strategy is to push the visited degree for
as much vertices as possible. On the other hand, the minimum degree strategy
tries to keep a vertex of high degree as long as possible unvisited such that more
and more neighbours are visited before it, and thus, its visited degree increases.

The figures in Table 1 show that typically the ‘default’ and ‘min-degree’
tiebreakers perform best with respectively 27 and 25 times the best value (out
of 27 instances). The ‘max-degree’ tiebreaker obtains only 10 times this value.

For comparison, the degeneracy (or MMD lower bound) is also included in the
table as well as the upper bound computed by the MCS heuristic [7]. As proved in
Lemma 2, the MCSLB is always at least as good as the MMD. The experiments
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show that in more than half the cases the best MCSLB is typically one better
than the MMD. In four cases the MCSLB equals the MCS upper bound (bold
values) and thus the reported value is the treewidth of those graphs. In other
cases the gap between lower and upper bound is still large, in particular for
instance pignet2-pp. The computation times are larger than those for MMD,
but still very small.

6.2 Upper Bounds on MCSLB

In Section 5 we have reported on three ways to compute an upper bound on the
maximum MCSLB value. All three methods as well as the maximum degree, the
actual best value achieved (LB; cf. Table 1) and the MCS upper bound (UB) are
reported in Table 2. The maximum degree of each graph is reported since the
algorithm to compute u(v) is initialised with the degree dG(v). Table 2 shows
that in several cases the final maximum of u(v) over all vertices is significantly
smaller than the maximum degree. Only in cases where the maximum degree is

Table 2. Upper bounds on the MCSLB for test graphs.

mcslbmax(v) mcslb′
max(v) mcslbmax(e) best

instance |V | |E| Δ(G) value CPU value CPU value CPU LB UB
barley-pp 26 78 11 10 0.00 9 0.00 8 0.00 6 7
diabetes-pp 116 276 48 7 0.00 6 0.00 6 0.01 4 5
link-pp 308 1158 30 10 0.00 10 0.00 10 0.03 6 27
munin1-pp 66 188 17 10 0.00 9 0.00 8 0.00 5 17
munin2-pp 167 455 25 10 0.00 9 0.01 8 0.01 5 8
munin3-pp 96 313 46 11 0.00 10 0.01 9 0.01 5 17
munin4-pp 217 646 62 12 0.00 11 0.00 10 0.02 5 12
munin-kgo-pp 16 41 7 7 0.00 6 0.00 6 0.00 5 5
oesoca+-pp 14 75 13 13 0.00 13 0.00 13 0.00 10 11
oow-trad-pp 23 54 6 6 0.00 6 0.00 6 0.00 4 6
oow-solo-pp 27 63 6 6 0.00 6 0.00 6 0.00 5 6
pathfinder-pp 12 43 11 9 0.00 8 0.00 8 0.00 6 6
pignet2-pp 1024 3774 172 26 0.01 25 0.02 23 1.82 6 239
pigs-pp 48 137 28 12 0.00 11 0.00 10 0.00 5 13
ship-ship-pp 30 77 10 8 0.00 8 0.00 8 0.00 4 8
water-pp 22 96 13 13 0.00 12 0.00 12 0.00 8 10
celar01-pp 157 804 35 22 0.00 21 0.00 21 0.02 10 18
celar02-pp 19 115 16 16 0.00 16 0.00 15 0.00 10 10
celar03-pp 81 413 31 23 0.00 22 0.00 22 0.01 10 16
celar04-pp 114 524 34 23 0.00 22 0.01 21 0.01 11 18
celar05-pp 80 426 31 22 0.00 21 0.01 21 0.01 9 17
celar06-pp 16 101 15 15 0.00 15 0.00 15 0.00 11 11
celar07-pp 92 521 36 26 0.00 25 0.01 24 0.01 12 18
celar08-pp 189 1016 37 25 0.00 24 0.01 24 0.02 12 19
celar09-pp 133 646 37 25 0.00 24 0.00 24 0.02 12 18
celar10-pp 133 646 37 25 0.00 24 0.00 24 0.02 12 18
celar11-pp 96 470 32 22 0.01 21 0.00 20 0.01 10 17
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close to the treewidth, only minor improvement could be achieved. The successive
improvement steps lower the bounds with at most one per step.

Compared to the actually computed MCSLB, there is either space for in-
creasing the MCSLB or the upper bounds are not tight. For some instances,
the latter is supported by the upper bounds for treewidth computed by MCS.
For six probabilistic networks and all frequency assignment graphs this bound is
better than the specifically for MCSLB computed upper bounds. Computation
of the MCS upper bound however is more time consuming.

Regardless whether or not these upper bounds for MCSLB are tight, the
results show that they have limited explanatory power. For those probabilistic
networks where the gap between lower and upper bound is large, it cannot be
closed by computing the best MCSLB over all MCS-orderings. For the frequency
assignment graphs this could be the case but the values are in fact useless since
they are larger than the treewidth upper bound.

7 Conclusions

In this paper, we analysed the lower bound on the treewidth, introduced by
Lucena in [10], based on Maximum Cardinality Search. While computing the
MCS-ordering with a maximum MCSLB is NP-hard, we see that in practice,
an arbitrary MCS-ordering gives reasonable results. A method to obtain upper
bounds on the maximum MCSLB shows that in several cases, an arbitrary MCS-
ordering gives an MCSLB that is not far from that of the best MCS-ordering.

Comparing the MCSLB lower bound with other lower bounds for treewidth,
we see that it gives bounds that are at least as good as the degeneracy (termed
MMD in some papers), while it still can be computed very fast. Combining the
method with contracting edges can give a further improvement to the bounds
[4]. Still, on many graphs, there are large differences between the lower bounds
that can be obtained in this way and the actual treewidth: for instance, on
planar graphs, the treewidth can be Ω(

√
n) while an MCS-ordering has MC-

SLB bounded by O(log n). So, the search for further lower bound heuristics for
treewidth remains important and interesting.

Several interesting theoretical questions are left open in this paper. We men-
tion a few. What is the complexity of Max MCSLB when k is 3, 4, 5, or 6? (We
conjecture NP-completeness when k = 4, k = 5, and k = 6, and polynomial time
solvability when k = 3.) Can we find an approximation algorithm for Max MC-
SLB with performance ratio O(log n)? Can we solve the Max MCSLB problem
exactly on interesting graph classes, like planar graphs or permutation graphs?
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Abstract. This paper presents an optimal fully-dynamic recognition al-
gorithm for directed cographs. Given the modular decomposition tree of
a directed cograph G, the algorithm supports arc and vertex modifica-
tion (insertion or deletion) in O(d) time where d is the number of arcs
involved in the operation. Moreover, if the modified graph remains a di-
rected cograph, the modular tree decomposition is updated; otherwise,
a certificate is returned within the same complexity.

1 Introduction

Directed cographs is the family of digraphs recursively defined from the single
vertex under the closure of the operations of disjoint union, series and order.
Let G1, . . . , Gk be a set of k disjoint digraphs. The disjoint union (or parallel
composition) of the Gi’s is the digraph whose connected components are precisely
the Gi’s. The series composition of the Gi’s is the union of these k graphs plus
all possible arcs between vertices of different Gi’s. The order composition of the
Gi’s is the union of these k graphs plus all possible arcs from Gi towards Gj ,
with 1 � i < j � k. These operations define a unique tree representation of
the directed cograph referred which corresponds to its modular decomposition
tree [12]. The leaves are mapped to the vertices of the graph and the inner nodes
are labeled by the different composition operations (see Figure 1). Notice that by
definition of the composition operations, the complement of a directed cograph is
a directed cograph. Indeed, the term cograph [3] stands for complement reducible
graph. Moreover the directed cograph family is hereditary: any induced subgraph
of a directed cograph is also a directed cograph. It should also be noticed that
directed cographs can be characterized by forbidden subgraphs (see Theorem 2
and Figure 2).

Restricted to posets, directed cographs are the series-parallel orders [11] for
which the recognition problem has been solved in linear time [14]. In the case of
undirected graphs, the series composition and the order composition are equiv-
alent. The family of undirected graphs defined from the single vertex graph by
the closure of the series and the disjoint composition is the cographs. The mod-
ular decomposition tree of a cograph is called a cotree. A number of linear time
cograph recognition algorithms is now known: the first one was presented in [4]
and the most recent one in [1].
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Fig. 1. A directed cograph and its modular decomposition tree. Since set {a, b} is in
series composition with the rest of the vertices, for any x �∈ {a, b} and y ∈ {a, b}, both
arcs xy and yx exist.

The dynamic recognition and representation problem for a family F of graphs
aims to maintain a characteristic representation of dynamically changing graphs
as long as the modified graph belongs to F . The input of the problem is a graph
G ∈ F with its representation and a series of modifications. Any modification is
of the following: adding a vertex (along with the arcs incident to it), deleting a
vertex (and its incident arcs), adding or deleting an arc or two symmetric arcs
(notice that the insertion/deletion of only one of these arcs may not result in a
graph of F , while the insertion/deletion of both would). Moreover, as pointed
out by [10], if the property of belonging to F is no longer satisfied, providing
a certificate would be highly desirable in practice (eg. for debugging features).
This paper considers that problem for the family of directed cographs. The
representation we maintain is the modular decomposition tree.

Related Works. Several authors have considered the dynamic recognition and
representation problem for various graphs families. [9] devised a fully dynamic
recognition algorithm for chordal graphs which handles edge operations in O(n)
time. For proper interval graphs [8], each update can be supported in O(d +
log n) where d is the number of edges involved in the operation. Concerning
cographs, a constant time algorithm for edge modification (insertion or deletion)
has been designed in [13]. The undirected cograph recognition algorithm of [4]
is incremental: given a cograph G, its cotree T and a vertex x, it modifies T iff
G + x is a cograph. Merging the results of [4] and [13] provides a fully dynamic
recognition algorithm for cographs with O(d) worst case time complexity per
operation. Pushing further Algorithm of [4], if G + x is not a cograph, it is
possible, within the same complexity, to extract a certificate (namely a P4, an
induced path of 4 vertices).

The work of [4] has recently been extended for bipartite graphs. A new de-
composition dedicated to bipartite graphs has been proposed in [6] and the family
of bipartite graphs totally decomposable, as are the cographs for the modular
decomposition, are defined: the weak-bisplit graphs. In [7], a linear time recog-
nition algorithm of weak-bisplit graphs is given. It turns out that the incidence
bipartite graph of a directed cograph is a weak-bisplit graph. As for cographs,
the decomposition tree is built by adding the vertices one by one. But unfortu-
nately, to get linear time complexity, the vertices have to be ordered with respect
to their degree. It follows that the incremental aspect cannot be guaranteed.
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Our Results. We present an optimal algorithm for the dynamic recognition
and representation problem for the family of directed cographs. If needed, our
algorithm is also able to find a certificate. Therefore, it extends the algorithms
of [4, 13]. Moreover, unlike the algorithm of [7] restricted to directed cographs,
our algorithm supports arc modification and the dynamical aspect is guaranteed
(that is the updates can be handled in arbitrary order).

Theorem 1. The dynamic recognition and representation problem for directed
cographs is solvable in O(d) worst case time per update, where d is the number of
edges involved in the updating operation. Moreover, if needed, a certificate that
the modified graph is not a directed cograph, is provided within the same time
complexity.

Note that the results of [4] and [13] for undirected cographs cannot solve
the directed case since there is no way, to our knowledge, to determine if an
orientation of an undirected cograph is a directed cograph or not.

2 Preliminaries

Any graph G = (V, E) considered here will be finite, loopless and directed, with
n = |V | and m = |E|. The complement of a graph G is denoted by G. If X is
a subset of vertices, then G[X ] is the subgraph of G induced by X . Since the
graphs are directed, the arc xy differs from yx. Let x be a vertex, then N+(x) =
{z ∈ V, xz ∈ E}, N−(x) = {y ∈ V, yx ∈ E} and N(x) = N−(x) ∪ N+(x)
stand respectively for the out-neighborhood of x, its in-neighborhood and its
neighborhood. The non-neighborhood of x will be designed by N(x). The degree
d(x) of a vertex x is the sum of its in-degree, d−(x) = |N−(x)|, and its out-
degree, d+(x) = |N+(x)|. Let G = (V, E) be a digraph, x �∈ V be a vertex and
N−(x) ⊆ V , N+(x) ⊆ V be its in and out-neighorhoods. Then G + x denotes
the digraph G′ = (V ∪ {x}, E ∪ {xz, z ∈ N+(x)} ∪ {yx, y ∈ N−(x)}). If xy ∈ E,
G− xy will be the digraph G′ = (V, E \ {xy}). G− x and G + xy are similarly
defined.

As for the cographs family, directed cographs can be characterized by for-
bidden subgraphs. Unfortunately, such a characterization does not help for an
efficient recognition algorithm (even for a non-dynamical one). Nevertheless,
these subgraphs will be useful to provide a certificate if the referred graph is not
a directed cograph. This characterization can be retrieved from a result of [5].

Theorem 2. A digraph is a directed cograph iff it does not contain any graph
of Figure 2 as induced subgraph.

A module M is a set of vertices such that for any x �∈ M and y ∈ M ,
xy ∈ E iff ∀z ∈ M , xz ∈ E and yx ∈ E iff ∀z ∈ M , zx ∈ E. The modules
of a graph are a potentially exponential-sized family. However, the sub-family
of strong modules, the modules that overlap1 no other module, has size O(n).
The inclusion order of this family defines the modular decomposition tree, which

1 A overlaps B if A ∩ B �= ∅, A \ B �= ∅ and B \ A �= ∅.
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Fig. 2. The set of forbidden subgraphs for the directed cographs family. Notice that
this set is closed under complementation.

is enough to store the module family of a graph [12]. The root of this tree is
the trivial module V and its n leaves are the trivial modules {x}, x ∈ V . In
the case of directed cographs, the internal nodes are labeled by one of the three
composition operations: parallel (disjoint union), series or order (see Figure 1).
Let us call the modular decomposition tree of a directed cograph, the di-cotree.

Any node p of the di-cotree corresponds to a set of vertices M(p). To shorten
the notations, the set M(p) will be denoted by P . A set S ⊆ V of vertices is
uniform wrt. x �∈ S in G if S is a module of the graph G[S ∪ {x}]. If S is not
uniform, then it is mixed. We say that p is uniform (resp. mixed) wrt. x if P
is. Finally, a set S of vertices (resp. a node p of the di-cotree) is linked to a
vertex x �∈ S in G, if there exists y ∈ S (resp. y ∈ P ) st. xy ∈ E or yx ∈ E. In
the following, if no confusion is possible, we will omit to mention the graph in
which the above notions are applied. The subtree of the di-cotree T rooted at a
node q will be denoted by Tq. The path between any node p and the root r of T
will be denoted by P r

q . Finally, Mxy stands for the minimum (wrt. the inclusion
order) module that contains vertices x and y. Since Mxy is not necessarily strong,
it is a subset of M(pxy) where pxy is the least common ancestor of the leaves
corresponding to x and y. A factorizing permutation [2] τ is a permutation of the
vertices such that any strong module M is a factor of τ (the vertices of M occur
consecutively). A DFS of the modular decomposition tree orders the leaves as a
factorizing permutation. Maintaining factorizing permutation is helpful to find
a certificate.

3 Dynamic Vertex Operations

This section deals with Theorem 1 in the case of vertex modification (insertion
or deletion). Vertex deletion is first considered. Then a theorem characterizes
the cases where the insertion of a vertex is possible. This theorem is the basis
of an insertion algorithm that either updates the di-cotree or finds a certificate
that G is not a directed cograph. For sake of simplicity, the certificate consists
in a set of 4 vertices that induces a subgraph containing a forbidden subgraph.
Pushing further the algorithm, an exact forbidden subgraph can be found.

3.1 Deleting a Vertex

As already noticed, the family of directed cographs is hereditary. It follows that
deleting a vertex of a directed cograph G only requires to update its di-cotree T .
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It can be done in O(d(x)) as follows (see [13] for a similar algorithm). The case
where x is the only vertex is trivial. Otherwise, let q be the parent node of x in T .

1. If x has at least 2 siblings, then x is removed from T .
2. Otherwise, let p be the sibling of x.

(a) If q is the root of T or the label of parent(q) = q̃ is different from the
one of p, x is removed from T and q replaced by p.

(b) If label(q̃) = label(p), nodes x, q and p are removed from T and q is
replaced by the children of p, respecting their relative order if p is an
order node.

For complexity issues, the case where p, q̃ have the same label, has to be handled
carefully: only nodes containing neighbors of x can be touched. If q is a parallel
node, its siblings are disconnected from q̃ and reconnected as new children of
p (at their right place if q̃ is an order node). Finally p replaces q̃. If q is not a
parallel node, the children of p can be moved similarly.

3.2 Adding a Vertex

The main difficulty consists in maintaining a di-cotree under vertex insertion.
Theorem 3 characterizes the cases where given a directed cograph G, a vertex x
and its neighborhoods, the augmented graph G + x remains a directed cograph.
As in [4], the algorithm first proceeds a marking step of the di-cotree T of G.
Then it tests whether the marks satisfy Theorem 3. In the positive, the di-cotree
is updated; otherwise a certificate that G + x is not a directed cograph is given.

Theorem 3. Let G = (V, E) be a directed cograph and T be its di-cotree. Let
x /∈ V be a vertex and N−(x), N+(x) be its in and out-neighborhoods. G′ = G+x
is a directed cograph iff for any node p of T one of the following conditions holds:

1. P is uniform wrt. x;
2. P is mixed and has a unique mixed child f such that F ∪ {x} is a module of

G′[P ∪ {x}];
3. P is mixed, has no mixed child and either

(a) there exists a unique non-empty set S ⊂ C(p) of children of p such that
S =

⋃
k∈S

K is uniform wrt. x and S ∪ {x} is a module of G′[P ∪ {x}],

(b) or there exists a non-empty set S ⊂ C(p) of children of p such that
S ∪ {x}, (P \ S) ∪ {x} are both modules of G′[P ∪ {x}].

Corollary 1 shows that the mixed nodes cannot be spread anywhere in T .

Corollary 1. Assume G + x is a directed cograph. The set of mixed nodes in-
duces a path between the root and a certain node p of the di-cotree. Node p is the
only mixed node without mixed child.

Before describing the marking process, let us rephrase Theorem 3. Hereafter
the only mixed node without mixed child will be called the terminal mixed node
of T . A single mixed node will be a node satisfying condition 2 of Theorem 3. As
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illustrated by Figure 3, it is worth to notice that case 3.a and 3.b of Theorem 3
are exclusive. Indeed, in case 3.a, x is not a maximal (wrt. inclusion order)
strong module of G[P ∪ {x}]: therefore x will be inserted as a grand-child of
the terminal mixed node p. While in case 3.b, x is a maximal strong module of
G[P ∪{x}] and should be inserted as a child of p. Moreover in the last case, p is
an order node.

x

p

S

p

S P\S
p

x

S P\S

Case 3.a Case 3.b

p

q

S

Fig. 3. Modifications of the modular decomposition tree according to cases 3 of The-
orem 3. In case 3.b, the node p is an order node. In case 3.a, depending on the
cardinality of S , the label of the nodes of S and their adjacency with x, intermediate
nodes may be inserted between q and S (see Subsection Inserting a vertex).

The Marking Process. The first step of our algorithm colors nodes of the
modular decomposition tree T according to the neighborhood of the vertex to
be inserted. This preliminary step can be seen as an extension of the marking
process of [4].

Initially each leaf l = {y}, such that y ∈ N(x), is colored red. Depending
on the adjacency relationship between y and x, these leaves are given a type:
type(l) = InOut if xy ∈ E and yx ∈ E; type(l) = In if yx ∈ E; or type(l) = Out
if xy ∈ E. The process is a bottom-up search: each red node p forwards its type
to its parent node q and depending on the different types received by q, a color
is given to q. The first time a node receives a forwarded type from one of its
children, it is colored black. A node q becomes red if all its children are of the
same type (ie. the corresponding set of vertices Q is uniformly linked to x). A

Type(G, T , R a set of typed red leaves)
1. While some red node p exists Do
2. color(p) ← grey
3. If p is not the root of T Then
4. Let q be the parent node of p
5. Add p to the list greyChild(q)
6. Increase #type(q, type(p)) by one
7. If #type(q, type(p)) = #child(q) Then
8. color(q) ← red and type(q) ← type(p)
9. Else color(q) ← black
10. End of while

Fig. 4. Marking process.
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red node receives the type of its children. Once a red node has been processed
it becomes grey. In order to prepare the possible insertion of x, a list of the grey
children is maintained for each node.

For sake of simplicity, let us say that the default color is white. Also notice
that the absence of type can be considered as a non-adjacency type, we will
use the notation type(p) = None. However, the marking algorithm will never
manage neither the white nodes nor the None type.

Each node stores the list of its grey children and a few counters: eg. #child(q)
indicates the number of children of q, #type(q, In) the number of children of q
whose type is In. It is straightforward to see that the running time of Routine
Type is O(d(x)). Let T c be the resulting colored di-cotree. The number of grey
nodes and of black nodes are both bounded by O(d(x)).

Lemma 1. If there exists a black node q such that:

1. any black node belongs to P r
q ,

2. any black node of P r
parent(q) is series or order and

3. any white node of P r
parent(q) is parallel,

then the white nodes of P r
q are single mixed nodes.

The set of black nodes will be denoted B. By definition, a black node is a
mixed node. A white node p can be mixed if Tp contains a black node, otherwise
it is uniform. Lemma 1 implies that the set of white mixed nodes is exactly the
set W of white nodes of the path P r

q mentioned in Lemma 1. Therefore W ∪ B
is the set of mixed nodes of T c.

Testing the Insertion. Assume the following conditions are satisfied: there
exists a terminal mixed node q ∈ B such that any node of B belongs to P r

q and
any nodes of P r

parent(q) is a single mixed node. Then by Lemma 1, any node
of T satisfies the hypothesis of Theorem 3. It implies that x can be inserted.
Therefore Routine Check (see Figure 5) only has to test these conditions. If one
of them is not satisfied, then a call to Routine Find-Certificate enables us to
find a set Z of 3 vertices such that G′[Z ∪ {x}], with G′ = G + x, contains one
of the forbidden subgraphs of Figure 2. The insertion of vertex x, if possible, is
handled by Routine Insert.

Let p be the current node in Routine Check. If p has already been visited
(test Line 6), then by Corollary 1 G′ is not a directed cograph. The tests of
Line 7 and 8 check whether p is a single mixed node. As shown by Lemma 2,
depending on their color, the label of single mixed nodes are constrained.

Lemma 2. Let p be a single mixed node of T c. If p is black, then p is either a
series or an order node. Otherwise it is a white parallel node.

Let p be a black (series or order) node. For p to be a single mixed node, all
but one of its children have to be colored grey. If p is a series node, the children
distinct from the only non-grey child q should be typed InOut. If p is an order
node, the children that occur before (resp. after) q have to be typed In (resp.
Out).
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Check(G, T c, B, x)
1. bottom ← r, where r is the root of T
2. While some node q in B exists Do
3. p ← q and remove q from B
4. While p �= bottom Do
5. p ← parent(p)
6. If p has been visited Then Find-Certificate(p)
7. If p is a white non-parallel node Then Find-Certificate(p)
8. If p ∈ B is not a single mixed node Then Find-Certificate(p)
9. If p ∈ B Then Remove p from B
10. Mark p as visited
11. End of while
12. bottom ← q
13. End of while
14. If q is a terminal mixed node Then Insert(x, q, T )
15. Else Find-Certificate(q)

Fig. 5. Testing the insertion.

Finally let q be the last node considered by routine Check (bottom). There
is no constraint on the label of q. By Theorem 3, it has to be terminal mixed,
which can be tested as follows:

– if q is a parallel node: check that #type(In) = #grey or #type(Out) =
#grey or #type(InOut) = #grey (since in that case, any node of S is a
grey node);

– if q is a series node: check that #type(In) + #type(InOut) = |C(q)| or
#type(Out) + #type(InOut) = |C(q)| or #type(In) = #type(Out) = 0;

– if q is an order node: first, test if either #type(InOut) + #type(In) +
#type(Out) = |C(q)| or #type(InOut) = 0. Then check whether the first
(wrt. the relative order of q) #type(In) children of q are typed In and the
last #type(Out) are typed Out.

If each node p of the di-cotree stores its number of children |C|, these tests
can be done by a simple search in the grey children. Since the number of grey
nodes and black nodes is O(d(x)), Routine Check runs in O(d(x)) time.

Inserting a Vertex. As illustrated by Figure 3, the modification occurs in
the di-cotree Tq where q is the only terminal mixed node (the bottom node in
Routine Check). We know that any child of q is uniform and since q is mixed, it
has at least two children of different types (remind that the absence of type can
be considered as a non-adjacency type).

Assume q is a series node (the case where q is parallel is similar). As already
noticed, since q is not an order node, x has to be inserted as a grand-child of q.
By theorem 3, a set S of children such that S =

⋃
k∈S

K is uniform wrt. x and
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S ∪ {x} is a module of G′[Q∪ {x}], where G′ = G + x, exists. Since q is a series
node, a child p belongs to S iff type(p) �= InOut. Remark that the uniformity
of S implies that the nodes belonging to S all have the same type. To update
the di-cotree, three cases should be considered. First, if S = {p} and the label of
node p coincides with its type, type(p), then x is added as a leaf of p. Otherwise,
a new node p′, labeled by the composition operation corresponding to the type
of nodes of S, is inserted as a child of q instead of nodes of S. If S = {p}, then
p is made a child of this new node p′. If |S| ≥ 2, a node q′, whose children are
the nodes of S, is made a child of p. q′ get the same label than q (ie. series). In
both cases, x is added as a leaf of p′.

Assume q is an order node. The difference with the previous cases, is that
three subsets of C(q) can be identified: SIn (resp. SOut) the children with type
In (resp. Out) and S the other children. The nodes of SIn appears before those
of S that appears before those of SOut in the order defined by q. Notice that one
of these three sets could be empty. If S = ∅, x is inserted as a child of q between
SIn and SOut. Otherwise, a new child p of q has to be inserted between q and
S, and x is made a child of p.

As done for the vertex deletion, to update the di-cotree, we have to carefully
handle the moving of non-neighborhood of x. Any insertion costs O(d(x)) time.

Finding a Certificate. Routine Find-Certificate(p) looks for one of the
forbidden induced subgraphs of Figure 2. Assume this routine is also given the
parameters P r

bottom and P p
q where bottom and q are the nodes respectively defined

at Line 12 and 2 of Routine Check. Thanks to the lists of grey children for each
node of T c and the factorizing permutation, the search is processed in O(d(x))
time. The call to Find-Certificate at Line 6 occurs if the current node p has
already been visited before. At Lines 7 and 8, node p should have been a single
mixed node but is not. At Line 15, the last visited node q is not terminal mixed.
In each case, a subgraph of Figure 2 can be found in O(d(x)) time. Though
Routine Find-Certificate returns the exact subgraph, for sake of simplicity,
we just give some hints of the following:

Lemma 3. If G′ = G + x is not a directed cograph, a set Z of 3 vertices can
be found in O(d(x)) time such that G′[Z ∪ {x}] contains one of the graphs of
Figure 2.

Let us detail the former call of Line 6. Notice that p has to be a parallel
node (otherwise, Check would have found out that p is not a single mixed node).
Indeed, p has at least 2 black mixed children: namely h, the child of p on the path
P r

bottom, and h′, the child of p on the path P p
q . Since h and h′ are black, they both

received a type from a grey child, say k and k′ respectively. Let a be a vertex of
K = M(k) and b be a vertex of K ′ = M(k′). Finally, since h′ is mixed and k′

is uniform, a vertex c ∈ H ′ \K ′ (with H ′ = M(h′)) such that type(c) �= type(b)
exists. A simple case by case analysis of the different possible types for nodes
k, k′ and vertices a, b, c proves that G′[{a, b, c, x}], with G′ = G + x, contains
a certificate (one of the graphs of Figure 2). Figure 6 illustrates two different
cases.
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parallel

a b c a b c

x x

k k’ k k’

h h’ series h h’ series

parallelpp

Fig. 6. Since p is a parallel node, h′ is either a series or an order node. Assume that
h′ is a series nodes, therefore bc and cb exist. In the first example, the certificate is
induced by {b, c, x}, in the second by {a, b, c, x}.

4 Dynamic Arc Operations

This section deals with Theorem 1 in the case of arc modification. For lack of
space, we only present how to handle arc deletion. Since the family of directed
cographs is closed under complementation, the graph G+xy is a directed cograph
iff the graph G − xy is. Similarly, a certificate that G − xy is not a directed
cograph, is a certificate for G + xy. As remarked by [13], since the di-cotree
of the complement of a directed cograph G can easily be deduced from the di-
cotree of G a recognition algorithm that supports edge deletion can be extended
to support edge insertion within the same complexity. Finally, we shall assume
that if an arc deletion query is asked for, then the arc involved exists.

Deleting an Arc. Two types of arc based modifications should be distin-
guished. The first one concerns the simultaneous removal of two symmetric arcs,
say xy and yx. This modification can be compared to the deletion of an edge in
an undirected cograph, see [13]. The proof of [13] can be generalized to the case
of directed cographs. Let qx (resp. qy) be the child of pxy containing x (resp. y)2.

Theorem 4. [13] The graph G′ = G−{xy, yx} is a directed cograph iff |Qx| = 1
and Qy \ {y} ⊆ N(y) or |Qy| = 1 and Qx \ {x} ⊆ N(x).

Theorem 5 extends Theorem 4 so that any valid arc modification of a directed
cograph can be characterized.

Theorem 5. The graph G′ = G− xy is a directed cograph iff

1. pxy is an order node, Mxy = Qx ∪Qy and:3

(a) either |Qx| = 1 and Qy \ {y} ⊆ N(y),
(b) or |Qy| = 1 and Qx \ {x} ⊆ N(x).

2. pxy is a series node and:
(a) either |Qx| = 1 and Qy \ {y} ⊆ N+(y) \N−(y),
(b) or |Qy| = 1 and Qx \ {x} ⊆ N−(x) \N+(x).

It is straightforward from Theorem 4 and 5 that the deletion test can be
done in O(1). Indeed, x and y has to be the child and the grand-child of pxy.

2 pxy is the lca of x and y in T .
3 Mxy is defined as the minimum module containing x and y. Therefore Mxy ⊆ Pxy.
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Wlog. assume x is the child. Then, it suffices to check the label of pxy and of its
child q which is the parent of y. If the deletion is possible, the modifications of
the di-cotree are carried out in constant time. The different cases are depicted
in Figure 7.

Order

y

Q  \{y}y

Q  \{y}y Q  \{y}y

Q  \{y}y Q  \{y}y

Series

parallel

y

x

Case a.

Series

parallel

y Series

x parallel

Order

x parallel

y

Case b.

Order

parallel

y

x Order

y

Series

Case c.

Series

x

Series

Order

yOrder

x parallel

Q  \{y}

Fig. 7. Case a. illustrates the modification implied by the simultaneous removal of
two symmetric arcs (see Theorem 4); cases b. and c. illustrate the removal of the arc
xy described in Theorem 5. Depending on the number of siblings of y, the resulting
di-cotrees may contain less node than above.

Finding a Certificate. Assume the test of the xy deletion fails. As done for
the vertex certificate, our algorithm returns a small subgraph containing one of
the graphs of Figure 2. Thanks to the factorizing permutation, the vertices of
this subgraph can be found in constant time. If an exact certificate is wished, it
can be found in O(min(d(x), d(y))).

Lemma 4. If G′ = G − xy is not a directed cograph, a set Z of at most 4
vertices can be found in O(1) such that G′[Z ∪{x, y}] contains one of the graphs
of Fig. 2.

Let us describe how the set Z is defined. Let px (resp. py) be the parent of
x (resp. y) in T . If px �= r (resp. py �= r), let qx (resp. qy) be the parent of px

(resp. py) in T . If qx �= r (resp. qy �= r), let kx (resp. ky) be the parent of qx

(resp. qy) in T . Let us define 6 vertices, namely ax, bx, cx and ay, by, cy. Vertex
ax belongs to Px \ {x} and if px is an order node and Px ∩ N+(x) �= ∅, then
choose for ax an out-neighbor of x. Vertices bx and cx belongs respectively to
Qx \Px and Kx \Qx if these sets exist. The last 3 vertices ay, by, cy are similarly
defined wrt. y. If possible, ay should be picked in N−(y). Note that, even if they
exist, these vertices may not be all distinct. Finally a case by case analysis of
the labels of parents and grand-parents of x and y enables us to select at most
4 vertices among ax, ay, bx, by, cx, cy.
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Abstract. In this paper, we consider the recognition problem on two
classes of perfectly orderable graphs, namely, the HHD-free and the
Welsh-Powell opposition graphs (or WPO-graphs). In particular, we
prove properties of the chordal completion of a graph and show that
a modified version of the classic linear-time algorithm for testing for
a perfect elimination ordering can be efficiently used to determine in
O(min{nmα(n), nm + n2 log n}) time whether a given graph G on
n vertices and m edges contains a house or a hole; this leads to an
O(min{nmα(n), nm+n2 log n})-time and O(n+m)-space algorithm for
recognizing HHD-free graphs. We also show that determining whether
the complement G of the graph G contains a house or a hole can be effi-
ciently resolved in O(nm) time using O(n2) space; this in turn leads
to an O(nm)-time and O(n2)-space algorithm for recognizing WPO-
graphs. The previously best algorithms for recognizing HHD-free and
WPO-graphs required O(n3) time and O(n2) space.

1 Introduction

A linear order ≺ on the vertices of a graph G is perfect if the ordered graph
(G,≺) contains no induced P4 abcd with a ≺ b and d ≺ c (such a P4 is called
an obstruction). In the early 1980s, Chvátal [2] defined the class of graphs that
admit a perfect order and called them perfectly orderable graphs.

The perfectly orderable graphs are perfect; thus, many interesting problems
in graph theory, which are NP-complete in general graphs, have polynomial-
time solutions in graphs that admit a perfect order [1, 5]; unfortunately, it is
NP-complete to decide whether a graph admits a perfect order [12]. Since the
recognition of perfectly orderable graphs is NP-complete, we are interested in
characterizing graphs which form polynomially recognizable subclasses of per-
fectly orderable graphs. Many such classes of graphs, with very interesting struc-
tural and algorithmic properties, have been defined so far and shown to admit
polynomial-time recognitions (see [1, 5]); note however that not all subclasses of
perfectly orderable graphs admit polynomial-time recognition [7].
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Fig. 1. Some simple graphs.

In this paper, we consider two classes of perfectly orderable graphs, namely,
the HHD-free and the Welsh-Powell opposition graphs. A graph is HHD-free if it
contains no hole (i.e., a chordless cycle on ≥ 5 vertices), no house, and no domino
(D) as induced subgraphs (see Figure 1). In [8], Hoáng and Khouzam proved that
the HHD-free graphs admit a perfect order, and thus are perfectly orderable. It
is important to note that the HHD-free graphs properly generalize the class of
triangulated (or chordal) graphs, i.e., graphs with no induced chordless cycles of
length greater than or equal to four [5]. A subclass of HHD-free graphs, which
also properly generalizes the class of triangulated graphs, is the class of HH-
free graphs; a graph is HH-free if it contains no hole and no house as induced
subgraphs (see Figure 1). Chvátal conjectured and later Hayward [6] proved that
the complement G of an HH-free graph G is also perfectly orderable.

A graph is called an Opposition graph if it admits a linear order ≺ on its
vertices such that there is no P4 abcd with a ≺ b and c ≺ d. Opposition graphs
belong to the class of bip∗ graphs (see [1]), and hence are perfect graphs [14].
The complexity of recognizing opposition graphs is unknown. It is also open
whether there is an opposition graph that is not perfectly orderable [1]. The
class of opposition graphs contains several known classes of perfectly orderable
graphs. For example, bipolarizable graphs are, by definition, opposition graphs;
a graph is bipolarizable if it admits a linear order ≺ on its vertices such that
every P4 abcd has b ≺ a and c ≺ d [15]. Another subclass of opposition graphs,
which we study in this paper, are the Welsh-Powell opposition graphs. A graph
is defined to be a Welsh-Powell Opposition graph (or WPO-graph for short), if it
is an opposition graph for every Welsh-Powell ordering; a Welsh-Powell ordering
for a graph is an ordering of its vertices in nondecreasing degree [18].

Hoàng and Khouzam [8], while studying the class of brittle graphs (a well-
known class of perfectly orderable graphs which contains the HHD-free graphs),
showed that HHD-free graphs can be recognized in O(n4) time, where n denotes
the number of vertices of the input graph. An improved result was obtained by
Hoàng and Sritharan [9] who presented an O(n3)-time algorithm for recognizing
HH-free graphs and showed that HHD-free graphs can be recognized in O(n3)
time as well; one of the key ingredients in their algorithms is the reduction
to the recognition of triangulated graphs. Recently, Eschen et al. [4] described
recognition algorithms for several classes of perfectly orderable graphs, among
which a recognition algorithm for HHP-free graphs; a graph is HHP-free if it
contains no hole, no house, and no “P” as induced subgraphs (see Figure 1).
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Their algorithm is based on the property that every HHP-free graph is HHDA-
free graph (a graph with no induced hole, house, domino D, or “A”), and thus
a graph G is HHP-free graph if and only if G is a HHDA-free and contains no
“P” as an induced subgraph. The characterization of HHDA-free graphs due
to Olariu (a graph G is HHDA-free if and only if every induced subgraph of
G either is triangulated or contains a non-trivial module [15]) and the use of
modular decomposition [11] allowed Eschen et al. to present an O(nm)-time
recognition algorithm for HHP-free graphs.

For the class of WPO-graphs, Olariu and Randall [16] gave the following
characterization: a graph G is WPO-graph if and only if G contains no induced
C5 (i.e., a hole on 5 vertices), house, P5, or “P” (see Figure 1). It follows that
G is a WPO-graph if and only if G is HHP-free and G is HH-free. Eschen et
al. [4] combined their O(nm)-time recognition algorithm for HHP-free graphs
with the O(n3)-time recognition algorithm for HH-free graphs proposed in [9],
and showed that WPO-graphs can be recognized in O(n3) time.

In this paper, we present efficient algorithms for recognizing HHD-free graphs
and WPO-graphs. We show that a variant of the classic linear-time algorithm
for testing whether an ordering of the vertices of a graph is a perfect elimination
ordering can be used to determine whether a vertex of a graph G belongs to a
hole or is the top of a house or a building in G. We take advantage of properties
characterizing the chordal completion of a graph and show how to efficiently
compute for each vertex v the leftmost among v’s neighbors in the chordal com-
pletion which are to the right of v without explicitly computing the chordal
completion. As a result, we obtain an O(min{nmα(n), nm+n2 log n})-time and
O(n + m)-space algorithm for determining whether a graph on n vertices and
m edges is HH-free. This result along with results by Jamison and Olariu [10],
and by Hoáng and Khouzam [8] enable us to describe an algorithm for recogniz-
ing HHD-free graphs which runs in O(min{nmα(n), nm + n2 log n}) time and
requires O(n + m) space.

Additionally, for a graph G on n vertices and m edges, we show that we can
detect whether the complement G of G contains a hole or a house in O(nm)
time using O(n2) space. In light of the characterization of WPO-graphs due to
Olariu and Randall [16] which implies that a graph G is a WPO-graph if and
only if G is HHP-free and its complement G is HH-free, and the O(nm)-time
recognition algorithm for HHP-free graphs of Eschen et al. [4], our result yields
an O(nm)-time and O(n2)-space algorithm for recognizing WPO-graphs.

2 Preliminaries

We consider finite undirected graphs with no loops or multiple edges. Let G
be such a graph; then, V (G) and E(G) denote the set of vertices and of edges
of G respectively. The subgraph of a graph G induced by a subset S of G’s
vertices is denoted by G[S]. A subset B ⊆ V (G) of vertices is a module if
2 ≤ |B| < |V (G)| and each vertex x ∈ V (G)−B is adjacent to either all vertices
or no vertex in B. The neighborhood N(x) of a vertex x ∈ V (G) is the set of
all the vertices of G which are adjacent to x. The closed neighborhood of x is



108 Stavros D. Nikolopoulos and Leonidas Palios

Fig. 2. The perfect elimination ordering testing algorithm.

defined as N [x] := N(x) ∪ {x}. We use M(x) to denote the set V (G) − N [x]
of non-neighbors of x. Furthermore, for a vertex v ∈ M(x), we use n(v, x) to
denote the number of vertices in the set N(v) ∩ N(x), i.e., the set of common
neighbors of v and x. The degree of a vertex x in a graph G, denoted deg(x), is
the number of edges incident on x; thus, deg(x) = |N(x)|.

Let G be a graph and let x, y be a pair of vertices. If G contains a path
from vertex x to vertex y, we say that x is connected to y. The graph G is
connected if x is connected to y for every pair of vertices x, y ∈ V (G). The
connected components (or components) of G are the equivalence classes of the
“is connected to” relation on the vertex set V (G). The co-connected components
(or co-components) of G are the connected components of the complement G of
the graph G.

A graph G has a perfect elimination ordering if its vertices can be linearly
ordered (v1, v2, . . . , vn) such that each vertex vi is simplicial in the graph Gi

induced by the vertex set {vi, . . . , vn}, 1 ≤ i ≤ n; a vertex of a graph is simplicial
if its neighborhood induces a complete subgraph. It is well-known that a graph
is triangulated if and only if it has a perfect elimination ordering [1, 5, 17]. The
notion of a simplicial vertex was generalized by Jamison and Olariu [10] who
defined the notion of a semi-simplicial vertex: a vertex of a graph G is semi-
simplicial if it is not a midpoint of any P4 of G. A graph G has a semi-perfect
elimination ordering if its vertices can be linearly ordered (v1, v2, . . . , vn) such
that each vertex vi is semi-simplicial in the graph Gi = G[{vi, . . . , vn}], 1 ≤
i ≤ n. A graph is a semi-simplicial graph if and only if it has a semi-perfect
elimination ordering (see [4]).

Let σ = (v1, v2, . . . , vn) be an ordering of the vertices of a graph G; σ(i)
is the i-th vertex in σ, i.e., σ(i) = vi, while σ−1(vi) denotes the position of
vertex vi in σ, i.e., σ−1(vi) = i, 1 ≤ i ≤ n. In Figure 2, we include the classic
algorithm PEO(G, σ) for testing whether the ordering σ is a perfect elimination
ordering; if the graph G has n vertices and m edges, the algorithm runs in
O(n + m) time and requires O(n + m) space [5, 17]. Note that, in Step 4 of the
Algorithm PEO(G, σ), the set X is assigned the neighbors of the vertex u which
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have larger σ−1( )-values; that is, X = N(u) ∩ {σ(i + 1), . . . , σ(n)}. Thus, in
Step 6, the vertex w is the neighbor of u in G which is first met among the
vertices to the right of u along the ordering σ. Since neither the graph G nor the
ordering σ changes during the execution of the Algorithm PEO, we can without
error replace Step 6 by

6. w ← Next NeighborG,σ[u];

where Next NeighborG,σ[ ] is an array whose values have been precomputed in
accordance with the assignment in Step 6 of the Algorithm PEO.
Note: Due to lack of space we have omitted the proofs of several Lemmata and
Theorems of this paper; all the proofs can be found in [13].

3 Recognizing HH-free Graphs

The most important ingredient (and the bottleneck too) of the HHD-free graph
recognition algorithm of Hoàng and Sritharan [9] is an algorithm to determine
whether a simplicial vertex v of a graph G is high, i.e., it is the top of a house
or a building1 (or belongs to a hole) in G, which involves the following steps:


 They compute an ordering of the set M(v) of non-neighbors of v in G where,
for two vertices y, y′ ∈M(v), y precedes y′ whenever n(y, v) ≤ n(y′, v); recall
that, n(y, v) is the number of common neighbors of y and v, or, equivalently,
the degree of the vertex y ∈M(v) in the graph induced by the set N(v)∪{y}.
As we will be using this ordering in the description of our approach, we call
it a DegMN-ordering of M(v).


 They perform chordal completion on G[M(v)] with respect to a DegMN-
ordering of M(v).


 The vertex v is high if and only if the graph G′
v resulting from G after the

chordal completion on G[M(v)] is triangulated.

As we mentioned in the introduction, the algorithm of Hoàng and Sritharan runs
in O(n3) time, where n is the number of vertices of the input graph. In order
to be able to beat this, we need to avoid the chordal completion step. Indeed,
we show how we can take advantage of the Algorithm PEO and of properties of
the chordal completion in order to compute all necessary information without
actually performing the chordal completion. In particular, we prove that the
following results hold:
Lemma 3.1. Let G be a graph, v a vertex of G, and (y1, y2, . . . , yk) a DegMN-
ordering of the non-neighbors M(v) of v in G. Moreover, let G′

v be the graph
resulting from G after the chordal completion on G[M(v)] with respect to the
DegMN-ordering (y1, y2, . . . , yk) and let σ = (y1, y2, . . . , yk, x1, x2, . . . , xdeg(v), v)
where x1, x2, . . . , xdeg(v) is an arbitrary ordering of the neighbors of v in G. If
Algorithm PEO(G′

v, σ) returns “false” while processing vertex yi ∈ M(v), then
A(yi)−N(yi) ⊆ N(v).
1 A building is a graph on vertices v1, v2, . . . , vp, where p ≥ 6, and edges v1vp, v2vp,

and vivi+1 for i = 1, 2, . . . , p − 1; the vertex v1 is called the top of the building.
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Fig. 3. Algorithm for determining whether a vertex v belongs to a hole or is the top
of a house or a building.

Proof: Since the Algorithm PEO returns “false” while processing vertex yi ∈
M(v), then A(yi) − N(yi) �= ∅. Suppose that there exists a vertex yj ∈ M(v)
belonging to A(yi) − N(yi). The vertex yj was added to A(yi) at Step 7 of a
prior iteration of the for-loop, say, while processing vertex y�. It follows that
σ−1(y�) < σ−1(yi) < σ−1(yj), and yi, yj ∈ N(y�). Since yj /∈ N(yi), we have
that y� is not simplicial in G′

v[{y�, y�+1, . . . , yk}]; a contradiction.

Lemma 3.2. Let G′
v and σ be as in the statement of Lemma 3.1. The vertex v

belongs to a C5 or is the top of a house in the graph G′
v if and only if Algorithm

PEO(G′
v, σ) returns “false” while processing vertex z, where z ∈M(v).

Lemma 3.1 implies that, while running Algorithm PEO(G′
v, σ), it suffices to

collect in the set X (Step 4) only the common neighbors of u and v; in turn,
Lemma 3.2 implies that it suffices to execute the for-loop of Steps 2-8 only for the
non-neighbors of v. The above can be used to yield the Algorithm Not-in-HHB,
presented in Figure 3, which takes as input a graph G and a vertex v of G, and
returns “true” if and only if the vertex v does not belong to a hole, and it is not
the top of a house or a building in G. That is, we can show the following result.

Theorem 3.1. Algorithm Not-in-HHB(G, v) returns “false” if and only if the
vertex v belongs to a hole or is the top of a house or a building in G.

3.1 Computation of the Values of Next NeighborG′
v,σ[ ]

In order to avoid computing the graph G′
v, we take advantage of the following

property of the chordal completion of a graph:

Lemma 3.3. Let G be a graph, let (v1, v2, . . . , vk) be an ordering of its vertices,
and let G′ be the graph resulting from G after the addition of edges so that, for
all i = 1, 2, . . . , k, vertex vi is simplicial in the subgraph induced by the vertices
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Fig. 4. Algorithm for computing the contents of the array Next NeighborG′
v ,σ[ ].

vi, vi+1, . . . , vk. Then, the graph G′ contains the edge vrvj, where r < j, if and
only if there exists an edge vivj in G such that i ≤ r and the vertices vi, vr belong
to the same connected component of the subgraph of G induced by the vertices
v1, v2, . . . , vi, . . . , vr.

We note that the above lemma implies Lemma 2 of [9] as a corollary. Lemma 3.3
implies that for the computation of the value Next NeighborG′

v,σ[yr], where
σ = (y1, y2, . . . , yk), it suffices to find the leftmost (w.r.t. σ) vertex among
yr+1, yr+2, . . . , yk which is adjacent in G to a vertex in the connected com-
ponent of G[{y1, y2, . . . , yr}] to which yr belongs. This can be efficiently done by
processing the vertices in the order they appear in σ. In detail, the algorithm to
compute the contents of the array Next NeighborG′

v,σ[ ] is presented in Figure 4.
It is important to observe that, at the completion of the processing of ver-

tex yj, the sets of vertices maintained by the algorithm are in a bijection with
the connected components of G[{y1, y2, . . . , yj}]; while processing yj, we consider
the edges yiyj where i < j, and we union the set containing yj (which has ver-
tex yj as its rightmost vertex with respect to σ) to another set iff yj is adjacent
to a vertex in that set. The correctness of the algorithm is established in the
following lemma.

Lemma 3.4. The Algorithm Compute-Next Neighbor correctly computes the val-
ues of Next NeighborG′

v,σ[yi] for all the vertices yi ∈M(v) (i.e., all the vertices
that are not adjacent to v in G).

3.2 Time and Space Complexity

Let us assume that the graph G has n vertices and m edges and that ver-
tex v of G has k non-neighbors in G. The execution of the Algorithm Not-in-
HHB(G, σ, v) for vertex v takes O(n+m) time and space plus the time and space
needed for the computation of the entries of the array Next NeighborG′

v,σ[ ]. So,
let us now turn to the time and space complexity of the Algorithm Compute-
Next Neighbor(G, σ, v). If we ignore the operations to process sets (i.e., make a
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set, union sets, or find the rightmost (w.r.t. σ) vertex in a set), then the rest of
the execution of the Algorithm Compute-Next Neighbor takes O(n + m) time.
The sets are maintained by our algorithm in a fashion amenable for Union-Find
operations, where additionally the representative of each set also contains a field
storing the rightmost (w.r.t. σ) vertex in the set. Then,
• making a set which contains a single vertex yi requires building the set and

setting the rightmost (w.r.t. σ) vertex in the set to yi;
• finding the rightmost (w.r.t. σ) vertex in the set to which a vertex yj belongs

requires performing a Find operation to locate the representative of the
set from which the rightmost vertex is obtained in constant time per Find
operation;

• unioning two sets requires constructing a single set out of the elements of
the two sets, and updating the rightmost (w.r.t. σ) vertex information; since
we always union a set with the set containing yj , where yj is the rightmost
vertex in any of the sets, then the rightmost vertex of the resulting set is yj ,
and this assignment can be done in constant time per union.

As the Algorithm Compute-Next Neighbor creates one set for each one of the
vertices y1, y2, . . . , yk, it executes k make-set operations; this also implies that
the number of union operations is less than k. The number of times to find the
rightmost (w.r.t. σ) vertex in a set is O(m) since the algorithm executes one
such operation for each edge connecting two non-neighbors of v. Hence, if we use
disjoint-set forests to maintain the sets, the time to execute the above operations
is O(mα(k)) [3], where α( ) is a very slowly growing function; if instead we use
the linked-list representation, then the time is O(m + k log k) [3]. In either case,
the space required (in addition to the space needed to store the graph G) is O(k).
Thus, the computation of the values of the array Next NeighborG′

v,σ[ ] for the
k non-neighbors of the vertex v takes a total of O(n + min{mα(k), m + k log k})
time and O(k) space. Therefore, we have:

Theorem 3.2. Let G be a graph on n vertices and m edges. Determining whether
a vertex v of G belongs to a hole or is the top of a house or a building can be
done in O(n + min{mα(k), m + k log k}) time and O(n + m) space, where k is
the number of non-neighbors of v in G.

Applying the Algorithm Non-in-HHB on every vertex of a graph and observing
that a building contains a hole, we obtain the following corollary:

Corollary 3.1. Determining whether a graph G on n vertices and m edges con-
tains a hole or a house (i.e., is not HH-free) can be done in O(min{nmα(n), nm+
n2 log n}) time and O(n + m) space.

4 Recognition of HHD-free Graphs

Our HHD-free graph recognition algorithm is motivated by the corresponding
algorithm of Hoàng and Sritharan [9], which in turn is motivated by the work of
Hoàng and Khouzam [8] and relies on the following characterization of HHD-free
graphs proved by Jamison and Olariu:
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Theorem 4.1. (Jamison and Olariu [10]) The following two statements are
equivalent:

(i) The graph G is HHD-free;
(ii) For every induced subgraph H of the graph G, every ordering of vertices of

H produced by LexBFS is a semi-perfect elimination.

In fact, we could use the Algorithm Not-in-HHB(G, v) in Hoàng and Sritha-
ran’s HHD-free graph recognition algorithm in order to determine if vertex v
is high, and we would achieve the improved time and space complexities stated
in this paper. However, we can get the much simpler algorithm which we give
below.

Algorithm Rec-HHD-free

Input: an undirected graph G on n vertices and m edges.

Output: “true,” if G is an HHD-free graph; otherwise, “false.”

1. if the graph G is not HH-free
then return(“false”);

2. Run LexBFS on G starting at an arbitrary vertex w, and let (v1, v2, . . . , vn)
be the resulting ordering, where vn = w.

3. for i = 1, 2, . . . , n− 5 do
if vi is not semi-simplicial in G[{vi, vi+1, . . . , vn}]
then return(“false”);

4. return(“true”).

Note that, after Step 1, we need only check whether the input graph G contains a
domino; this is why, we only process the n−5 vertices v1, v2, . . . , vn−5 in Step 3.
Additionally, it is important to observe that, for all i = 1, 2, . . . , n, the ordering
(vi, vi+1, . . . , vn) is an ordering which can be produced by running LexBFS on
the subgraph G[{vi, vi+1, . . . , vn}] starting at vertex vn. The correctness of the
algorithm follows from Theorem 4.1 and the fact that if the currently processed
vertex vi in Step 3 is semi-simplicial then clearly it cannot participate in a
domino (note that none of the vertices of a domino is semi-simplicial in any
graph containing the domino as induced subgraph).

4.1 Time and Space Complexity

According to Corollary 3.1, Step 1 takes O(min{nmα(n), nm + n2 log n}) time
and O(n+m) space. Step 2 takes O(n+m) time and space [5, 17]. The construc-
tion of the subgraphs G[{vi, vi+1, . . . , vn}] in Step 3 can be done in a systematic
fashion by observing that G[{v1, . . . , vn}] = G and that G[{vi+1, . . . , vn}] can be
obtained from G[{vi, . . . , vn}] by removing vertex vi and all its incident edges; if
the graph G is stored using a (doubly-connected) adjacency-list representation
with pointers for every edge ab connecting the record storing b in the adja-
cency list of a to the record storing a in the adjacency list of b and back, then
obtaining G[{vi+1, . . . , vn}] from G[{vi, . . . , vn}] takes time proportional to the
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degree of vi in G[{vi, . . . , vn}] and hence O(deg(vi)) time, where deg(vi) denotes
the degree of vertex vi in G. Additionally, in order to check whether a vertex is
semi-simplicial, we take advantage of the following result of Hoàng and Khouzam
(which was also used in [9]):
Theorem 4.2. (Hoàng and Khouzam [8]) Let G be a graph and x be a semi-
simplicial vertex of G. If x is not simplicial, then each big co-component of the
subgraph G[N(x)] is a module of G.
(A connected component or co-component of a graph is called big if it has at
least two vertices; we also note that if a vertex x is simplicial then none of
the co-components of the subgraph G[N(x)] is big.) Since computing the sub-
graph induced by the neighbors of vertex vi in G[{vi, . . . , vn}], computing its
co-components, and testing whether a vertex set is a module in G[{vi, . . . , vn}]
can all be done in time and space linear in the size of G[{vi, . . . , vn}], Step 3
takes a total of O

(∑
i

(
n + m + deg(vi)

))
= O(nm) time and O(n + m) space.

Finally, Step 4 takes constant time. Therefore, we obtain the following theorem.
Theorem 4.3. Let G be an undirected graph on n vertices and m edges. Then,
it can be determined whether G is an HHD-free graph in O(min{nmα(n), nm +
n2 log n}) time and O(n + m) space.

5 Recognition of WPO-graphs

Our algorithm for recognizing WPO-graphs relies on the fact that a graph G is
a WPO-graph if and only if G is HHP-free and its complement G is HH-free,
which follows from the following characterization due to Olariu and Randall [16].
Theorem 5.1. (Olariu and Randall [16]) A graph G is a WPO-graph if and only
if G contains no induced C5, P5, house, or “P”.
Eschen et al. [4] described an O(nm)-time algorithm for recognizing whether a
graph G on n vertices and m edges is HHP-free by using the modular decom-
position tree of G and Theorem 4.2 due to Hoàng and Khouzam [8]. We next
show that we can detect whether the complement G of G contains a hole or a
house in O(nm) time. Combining these two algorithms, we get an O(nm)-time
algorithm for recognizing WPO-graphs.
Let G be a graph and let v be an arbitrary vertex of G. We construct the
graph Ĝv from G as follows:

◦ V (Ĝv) = V (G)
◦ E(Ĝv) = { vy | y ∈M(v) }

∪ { xy | x ∈ N(v), y ∈M(v), and xy /∈ E(G) }
∪ { xx′ | x, x′ ∈ N(v) and xx′ /∈ E(G) }

Note that in G the neighbors of v are the vertices in M(v), i.e., the non-neighbors
of v in G, and the non-neighbors are the vertices in N(v). Thus, the graph Ĝv

is precisely G with any edges between vertices in M(v) removed. Then, it is not
difficult to see that the following result holds.
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Lemma 5.1. The vertex v belongs to a hole or is the top of a house or a building
in G if and only if v belongs to a hole in Ĝv.

Because in Ĝv there are no edges between vertices adjacent to v, the vertex v
cannot be the top of a house or a building. Thus, we can run the Algorithm
Not-in-HHB(Ĝv, v) and the vertex v belongs to a hole in Ĝv if and only if the
algorithm returns “false.” Assuming that the graph G has n vertices and m
edges, the graph Ĝv has n vertices and O(n deg(v) + deg2(v)) = O(n deg(v))
edges, where deg(v) is the degree of the vertex v in G; then, the construction
of Ĝv takes O(m + n deg(v)) time and O(n deg(v)) space, and the execution of
Not-in-HHB(Ĝv, v) runs in O(n + n deg(v) + deg(v) log deg(v)) = O(n deg(v))
time (Theorem 3.2; note that k = deg(v)). Thus, we can determine whether the
vertex v belongs to a hole in Ĝv in O(m+n deg(v)) time and O(n deg(v)) space.

Therefore, in light of Lemma 5.1, we have the following result.

Theorem 5.2. Let G be an undirected graph on n vertices and m edges. Then,
it can be determined whether the complement G is an HH-free graph in O(nm)
time and O(n2) space.

From Theorem 5.2 and the result of Eschen et al. [4] (i.e., HHP-free graphs can
be recognized in O(nm) time and O(n + m) space), we obtain the following
theorem.

Theorem 5.3. Let G be an undirected graph on n vertices and m edges. Then, it
can be determined whether G is a WPO-graph in O(nm) time and O(n2) space.

6 Concluding Remarks

We have presented recognition algorithms for the classes of HHD-free graphs
and WPO-graphs running in O(min{nmα(n), nm + n2 log n}) and O(nm) time,
respectively, where n is the number of vertices and m is the number of edges of
the input graph. Our proposed algorithms are simple, use simple data structures,
and require O(n + m) and O(n2) space, respectively. Moreover, our HH-free
and HHD-free graph recognition algorithms can be easily augmented to yield a
certificate (a hole, a house, or a domino) whenever they decide that the input
graph is not HH-free or HHD-free [13].

We leave as an open problem the designing of O(nm)-time algorithms for
recognizing HHD-free graphs. In light of the O(nm)-time recognition of P4-
comparability, P4-simplicial, bipolarizable, and WPO-graphs, it would be worth
investigating whether the recognition of brittle and semi-simplicial graphs is
inherently more difficult.
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Abstract. This paper gives a decomposition theory for bipartite graphs.
It uses bimodules, a special case of 2-modules (also known as homoge-
neous pairs, an extension of both modules and splits). It is shown how
a unique decomposition tree represents the bimodular decomposition of
a bipartite graph, with strong analogs with modular decomposition of
graphs. An O(mn3) algorithm for this decomposition is provided. At
least a classification of the 2-modules of a bipartite graph is given.

1 Introduction

There are many ways to decompose a graph. Among the most popular is the
modular decomposition, less known is the split decomposition. Both produce a
decomposition tree of a given graph, providing a better understanding of its
structure, and a way to solve a wide class of optimization problems using a
divide-and-conquer method, when the graph is decomposable. An indecompo-
sable graph is said to be prime. Unfortunately, “most” graphs are prime with
respect to the modular or split decomposition. This leads to search for more
powerful decomposition tools.

The modular decomposition of bipartite graphs is poor, giving only connected
components and twins (vertices with the same neighborhood and the same color).
A decomposition theory was already given by Fouquet, Giakoumakis and Van-
herpe in [1], namely canonical decomposition for bipartite graphs. This theory
uses three decomposition operation while modular decomposition knows four of
them, the three first very similar to canonical decomposition. But the fourth
case was missing. In order to extend this decomposition we consider a particu-
lar family of 2-modules in the class of bipartite graphs, namely the bimodules.
We present a way to represent all the bimodules of a bipartite graph. For this
we use a bimodular decomposition which is a generalization of the canonical
decomposition.

Some Set Theory Background. Let us now give a summary of a known and
powerful decomposition frame [2–4] that has applications in graph decomposi-
tion. Two sets A and B overlap whenever A∩B �= ∅, A \B �= ∅, and B \A �= ∅.
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Definition 1. A point-partitive hypergraph [3] is a couple (V,F), where V is
a finite set and F is a family of subsets of V such that
1. ∅ ∈ F , V ∈ F , and {v} ∈ F for each v ∈ V
2. If A, B ∈ F are overlapping then A∪B ∈ F and A∩B ∈ F and A\B ∈ F .

If A ∈ F does not overlap with any other member of F , A is said strong.
Let T be the inclusion tree of the strong subsets. Its root is V and its leaves are
{v}, v ∈ V . Obviously it has O(|V |) nodes.

Theorem 1 ([3]). The nodes of T can be marked complete, linear or prime
in such a way that
1) The union of an arbitrary choice of sons of a complete node belongs to F .
2) There is a unique (up to reversal) ordering on the sons of a linear node such
that every union of sons of a linear node that are consecutive in this ordering is
a member of F .
3) A prime node is a member of F .
4) There is no other member in F than those defined above.
Modular Decomposition of Graphs. One of the most known point-partitive
hypergraph is the family of modules of a graph. Here a graph G = (V, E) is finite,
loopless, and directed. Let A ⊂ V be a set of vertices. x /∈ A distinguishes A if
A overlaps the in-neighborhood of x, or if it overlaps x out-neighborhood.
Definition 2. A module in a graph is a subset of vertices that no vertex distin-
guishes.

The sets ∅, V and the singletons {v}, v ∈ V are trivial modules. The number
of modules may be exponential (2n in a complete graph), but the family of
modules can be stored in the O(n)-sized tree of Theorem 1. In this case the
tree T is called the modular decomposition tree. In the case of the undirected
graphs there is no linear nodes ; the complete nodes correspond to the series and
parallel composition, and the prime nodes to a prime quotient graph. In the case
of directed graphs, the linear nodes correspond to the total order composition.
The modular decomposition tree can be computed in O(n + m) time [5–8].

Motivation of Our Article. The modular decomposition of bipartite graphs
is poor, giving only connected components and twins. A decomposition the-
ory was already given by Fouquet, Giakoumakis and Vanherpe in [1], namely
canonical decomposition for bipartite graphs. But internal nodes in the associ-
ated decomposition tree were only of two types : complete or linear and the
analog of the prime case was missing. The class of totally decomposable bipar-
tite graphs, called weak-bisplit graphs, is thus an analog of cographs [9] with
respect to modular decomposition of graph. In this paper, we extend the canoni-
cal decomposition with a fourth decomposition case. We show that this extended
canonical decomposition can be changed into a bimodular decomposition, that
describes all bimodules of a graph.

2 Canonical Decomposition of Bipartite Graphs
In the remaining of the paper, we focus on bipartite (without odd cycles) graphs.
Let us (re)define some graph concepts to this special case. A bipartite graph is
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written as the triple (B,W , E) where B ∪ W = V . The sets B (black) and W
(white) are the color classes of G. A subset of vertices which is either contained
in B or in W is monochromatic (bichromatic otherwise). G[A] denotes the graph
induced by A. The bipartite complement of G = (B,W , E) is defined by G

bip =
(B,W , (B × W) \ E). Let A ⊂ V be a set of vertices. x is isolated if it has no
neighbor and universal if its neighborhood is B or W .

2.1 The Canonical Decomposition [1]

In [1], Fouquet, Giakoumakis and Vanherpe introduced the notion of K+S-
decomposition. An ordered partition (V1, V2, . . . , Vk) of the vertex set in a bi-
partite graph is a K+S-partition whenever the following is verified: if i and j
are such that 1 ≤ i < j ≤ k, the black vertices of Vi are all adjacent to the
white vertices of Vj while there is no edge connecting a white vertex of Vi to
a black vertex of Vj . It is shown in [1] that the K+S-partition that maximizes
k is unique, and called the K+S decomposition of G. Set Vi will be said a
K+S-component of the K+S-decomposition.

For a bipartite graph G, canonical decomposition also defined in [1] recursively
applies K+S-decomposition or parallel decomposition (following the connected
components of G) or series decomposition (following the connected components
of G

bip).
A graph is c-decomposable (c for “components”) if it admits a nontrivial

(into several components) parallel, series or K+S decomposition. As Proposi-
tion 3 below shows (in a more general cases) the decompositions are mutually
exclusives under the conditions of Algorithm 1.

2.2 Bimodules

When dealing with bipartite graphs, a black (resp. white) vertex x /∈ A is said
to distinguish A if x has a white (resp. black) neighbor and a white (resp. black)
non-neighbor in A. This notion of distinction is more convenient for bipartite
graphs and allows to define:

Definition 3. M is a bimodule if no vertex distinguishes M .

Unfortunately the bimodules are not a point-partitive hypergraph: if M1 and
M2 are overlapping bimodules, M1 ∪M2 or M1 \M2 can fail to be a bimodule
(see Figure 2 for an example). Theorem 1 does not apply. The canonical de-
composition can be extended, using a fourth decomposition operation. The goal
of this article is to show that the extended decomposition tree represents the
structure of all bimodules of a graph.

Fig. 1. K+S components of a graph. The circled vertices form a bimodule that falls in
last case of Lemma 4 (see below)
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Algorithm 1: Canonical decomposition process of a bipartite graph.
Data: A bipartite graph G
if G has at least two K+S components then

decompose G following its K+S-components
else if G has at least 5 vertices and is not connected then

/* G has a Parallel decomposition */
decompose G following its connected components

else if G
bip has at least 5 vertices and is not connected then

/* G has a Series decomposition */
decompose G following the connected components of G

bip

else /* G is c-indecomposable */
stop.

v

Fig. 2. Left: example of bimodule. Right: the two bimodules overlap but their union
is distinguished by vertex v: it is a conflict case.

2.3 Relationships Between Bimodules and Canonical Decomposition

One can check that every component (following any decomposition) of a graph is
a bimodule. Furthermore every union of connected components of G or of G

bip is
a bimodule, and any union of consecutive K+S components Vi∪Vi+1∪. . . Vj−1∪Vj

also is a bimodule, while a union of non-consecutive K+S components is not a
bimodule. The canonical decomposition tree can thus be seen as the tree of a
point-partitive hypergraph, that has only complete and linear nodes. But not
all bimodules are found in that way.

In the following we will consider only twin-free bipartite graphs, where twins
are vertices with the same color and the same neighborhood. This is not a strong
constraint because twin classes can easily be factorized. Trivially, in a twin-free
graph a bimodule induces a subgraph which is also a twin-free graph. Recursivity
can be used to identify bimodules, because one can check that:

Lemma 1. Let M be a bimodule and M ′ ⊂ M . M ′ is a bimodule of G iff M ′

is a bimodule of G[M ].

Proposition 1. Every bimodule of a c-decomposable graph either is a union of
components, or is included in one component, or is included in two or three K+S
components that follow consecutively. In the last case only one component may
have more than one vertex.

This proposition allows to reduce the problem of finding the bimodules of
a c-decomposable graph to the problem of finding the bimodules in the graphs
induced by every connected component, if the graph has no K+S decomposition.
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For K+S decomposable graphs, the recursive search misses the bimodules that
fall into the last case. Section 3 focuses on such bimodules.

The proof of the proposition is the straightforward consequence of the fol-
lowing three lemmas:

Lemma 2. Let G be a twin-free bipartite graph with no isolated vertex, and
C1 . . . Ck its connected components. A bimodule of G is

– either a union of components
– or included (or equal) in a component Ci

– or trivial (one black vertex, one white vertex)

Proof. If G fulfills the conditions of the lemma, then every connected components
is bichromatic. Let M be a bimodule. If M is neither trivial nor included in a
component, then M contains two vertices with the same color (say white) w ∈ Ci

and w′ ∈ Cj , i �= j. If there exists a black vertex in Ci that does not belong to
M , as Ci is connected there is a vertex b ∈ Ci \M adjacent to a white vertex
w′′ of Ci ∩M and not to w′: b distinguishes M , impossible. M thus contains all
black vertices of Ci, and we can show it also contains black and white vertices
of Ci and Cj , thus is a union of connected components.

Lemma 3. M is a bimodule of a bipartite graph G iff it is a bimodule of its
bipartite complement G

bip

This is an immediate consequence of definitions. If G
bip is not connected, then

Lemma 2 applies to G
bip , and reduces to the parallel case.

Lemma 4. Let G be a twin-free bipartite graph, C1 . . . Ck its ordered K+S com-
ponents and M a bimodule of G.

- Either M is a union of consecutive components,
- or M is included (or equal) in a K+S component Ci,
- or M is trivial (one black vertex, one white vertex),
- or all the vertices of M belong to a component Ci, excepted a vertex c ∈M

such Ci−1 = {c} and/or a vertex c′ ∈M such Ci+1 = {c′}.

Proof. Let C be a K+S component and M a bimodule that overlaps C. First,
notice that, as the K+S components are not K+S decomposable, G[C] either is
a singleton, or has at least four vertices and has no universal nor isolated vertex.
As M is a bimodule, C \M contains at least two vertices, and is bichromatic
because G is twin-free.

Let us suppose C ∩M = {x} and, w.l.o.g., that x is black. If M contains
another black vertex in a component that follows C, no white vertex of C can
be adjacent to M so x is isolated in G[C], a contradiction. And universal if there
exists a black vertex that precedes C. If M has only one white vertex, it has at
least two white ones: swap colors. So M ∩ C is bichromatic.

Let us suppose that M contains a black vertex b in a component C′ that
follows C. The white vertices of C are not neighbor of b, so are not adjacent to
C ∩M . If M also contains a white vertex in a component that follows C, then C
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has a K+S partition into C ∩M and C \M , a contradiction. According to what
has been said, C′ can not overlap M (the intersection would be bichromatic) so
C′ ⊂ M and, as C′ has no white vertices and no twins, C′ = {b}. If there is a
component between C and C′, it must contains a white vertex that distinguishes
M : C′ immediately follows C. Same proof can be done for the other color or the
other side of C.

2.4 The Prime Decomposition

Let us now try to decompose c-indecomposable graphs. A bimodule M is max-
imal if M �= V and the only bimodule that contains M is V . M is nontrivial
if it has at least three vertices. Two maximal bimodule may overlap. A vertex is
shared if it belong to more than one nontrivial maximal bimodule.

Proposition 2. Let G be a twin-free c-indecomposable bipartite graph.

1. The intersection of two maximal bimodules of G contains at most one vertex
2. If |M | ≥ 4, a shared vertex of M is universal or isolated in G[M ]
3. Each maximal bimodule of G contains at most two shared vertices

Before the proof, let us define the family of strong components of a c-indecom-
posable graph G. A vertex x is single if it belong to no nontrivial maximal
bimodule. Two vertices are G-equivalent if they belong to exactly the same non-
trivial maximal bimodules of G. But say that a single vertex is G-equivalent to
itself only (and not to other singles).

Definition 4. The strong components of a c-indecomposable graph G are the
equivalence classes of the G-equivalence.

A strong component C, according to Proposition 2, is either {x} where x is
single, or {x} where x is shared, or a non-trivial bimodule M without its shared
vertices. If |M | ≥ 4 then, according to Point 2, C is a bimodule. If |M | = 3
then C is a trivial bimodule. |M \ C| ≤ 2, therefore the strong components are
“almost” the maximal nontrivial bimodules. Not let us prove three lemmas, then
Proposition 2.

Lemma 5. Let M1 �= V and M2 �= V be two overlapping bimodules such that
M1 ∪M2 = V . G is c-decomposable.

Proof. Since M2 is a bimodule, the vertices of (M1 \M2)∩B do not distinguish
those of M2 ∩W and the vertices of (M1 \M2) ∩W do not distinguish those of
M2∩B. According to the cases, M1\M2 is either a union of connected components
of G, a union of connected components of G

bip or a union of K+S-components
of G.

Lemma 6. Let M and M ′ be two overlapping bimodules. If M ∩M ′ is bichro-
matic, then M ∪M ′ is a bimodule.

Proof. Immediate: if a white vertex not in M ∪M ′ is adjacent to a black vertex
of M , it is adjacent to all vertices of M , thus to a black vertex of M ∩M ′, thus
to all vertices of M ′. Same for black vertices.
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Lemma 7. A twin-free bipartite graph contains at most two universal or isolated
vertices.

Proof. It has no twins, so at most four such vertices; furthermore cases black
universal and white isolated are mutually exclusive, and so are the two others
cases.

Now we can demonstrate Proposition 2. Point 1. If a maximal bimodule has
less than three vertices, it intersects other ones on at most one vertex. So let us
consider two overlapping bimodules M and M ′ with at least three vertices each.
First, Lemma 5 shows that M ∪M ′ �= V . M ∪M ′ is therefore not a bimodule.
According to Lemma 6, M ∩M ′ is monochromatic. Black vertices from V \M
and from V \ M ′ can not distinguish M ∩M ′, therefore M ∩M ′ vertices are
twins. As M is twin-free, M ∩M ′ = {m}.

Point 2. Let us prove that m is universal or isolated in G[M ] and in G[M ′].
Let us suppose w.l.o.g. that m is white. If M ′ contain another white vertex w′,
let b1 and b2 be two (possibly equal) black vertices of M . If b1 is neighbor of m,
then it is neighbor of w′ (bimodularity of M ′), w′ is neighbor of b2 (bimodularity
of M) and then b2 is neighbor of m: m is universal in G[M ]. And if M ′ has no
other white vertex than w, M ′ is a triple {w, b, b′} with w neighbor of b and
non-neighbor of b′, thus if M has another white vertex w′′ it must distinguish
M ′, contradiction. So M also is a triple {w, b′′, b′′′}

Point 3. Lemma 7 ends the proof.

2.5 The Extended Canonical Decomposition

We can now extend the canonical decomposition: in Algorithm 1 just replace the
last line “stop” by “decompose G into its strong components”.

The decomposition sets (K+S, parallel, series or strong components accord-
ing to the case) are bimodules of the graph, so according to Lemma 1, this
algorithm defines a family of non-overlapping bimodules, the strong canonical
bimodules of the graph. Their inclusion tree is called the bimodular decom-
position tree and is denoted T (G) in the following. Internal nodes are labeled
either Parallel or Series or K+S or Prime according to the type of decomposition
applied. The canonical bimodules are the strong ones plus any union of sons
of a parallel or series node, plus any union of consecutive sons of a K+S node.
Clearly we construct a point-partitive hypergraph:
Theorem 2. Let G be a twins-free bipartite graph, let F be the family of canon-
ical bimodules of G. The couple (V,F) is a point-partitive hypergraph.

T (G) is precisely the tree associated with the hypergraph. According to The-
orem 1, Parallel and Series nodes can be marked complete, K+S-nodes can be
marked linear, the remaining internal nodes being marked prime. Furthermore:

Proposition 3. The four decomposition cases are mutually exclusive

Proof. First, notice that the only twins-free bipartite graph that is not con-
nected, with a not connected bipartite complement, and no isolated nor universal
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vertex is 2K2 (four vertices, two unconnected edges), that is thus the smallest
c-indecomposable graph. And if a graph has a K+S decomposition, the K+S
structure connects all vertices excepted the white of first components and the
black of last components. If they are not connected to their component, they are
isolated and the graph has no parallel decomposition. And no series decomposi-
tion, because the bipartite complement of a K+S graph is a K+S graph.

3 Bimodular Decomposition of Bipartite Graphs

Let n be the number of vertices of a graph. Any singleton and bichromatic pair
of vertices is a bimodule: there are O(n2) of them. In a twin-free bipartite graph,
a bimodule with three vertices is a triple {u, u′, v} where u and u′ have the same
color and their neighborhoods differ only on v. Let us consider the bipartite
graph with b black vertices, identified to bits from 0 to b − 1, and 2b numbered
white vertices, where a white vertex is adjacent to the bits set in its number
(binary written). It is twin-free and has b2b−1 = Θ(n log n) bimodule with size
3 (all bimodules {w, w′, i} where w and w′ numbers differ on bit i, i ∈ B). All
the canonical bimodules of this graph are trivial. This worst case shows that an
Ω(n log n) coding of bimodules is needed; [10] shows that the bottleneck indeed is
the three-vertices bimodules that can be stored in O(n log n) size. In this section
we give an O(n) representation of all the bimodules with at least four vertices
of a twin-free graph, using the decomposition tree.

The canonical bimodules are already represented by the canonical decompo-
sition tree. It has O(n) leaves and no degree-1 node, so its size is O(n). Let M be
a bimodule that is not canonical and S be the smallest strong canonical bimod-
ule that contains M . M also is a bimodule of G[S]. Now we use Propositions 1
and 2: G[S] has

– either a K+S decomposition and M is almost contained in one of its K+S
components C, in the sense that |M \C| ≤ 2. The vertices of M \C are the
singleton components that immediately precedes or follows C

– or G[S] is c-indecomposable and M is almost contained in one of its strong
components C, |M \ C| ≤ 2. The vertices of M \ C are shared.

In both case the vertices that are not in the components are isolated or universal
in G[M ]. As the graph has no twin, given a canonical bimodule, there are only
three way to extend it to a non-canonical 2-module: adding one of these vertices,
the other one, or both. Conversely all canonical bimodules can be generated like
this.

Definition 5. Let C be a canonical bimodule and v /∈ C. v is augmenting C
if {v} ∪ C is a non-canonical bimodule. v is minimally augmenting C if no
canonical bimodule containing C is augmented by v.

Is is easy to see that for each bimodule included in M , v is augmenting. The
canonical bimodules that admit minimally augmenting vertices are the strong
ones; Lemma 7 then apply: a canonical bimodule has at most two vertices that
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Fig. 3. Example of extended canonical decomposition tree of a graph. Vertices a..d and
7..11 are neighbors. The non-canonical bimodules are {a, 2, 4} {a, b, 2, 4} {a, b, 2, 3, 4}
{c, 1, 4} {h, 8, 9} {i, 10, 11} {j, 9, 10} and bichromatic couples.

minimally augment him. At most two pointers, for each node of T (G), store
the augmenting vertices and thus all the bimodule, canonical or not, are stored
in O(n) size by this pointers-labeled canonical decomposition tree, then called
bimodular decomposition tree (this means that the full list of bimodules with a
least four vertices can be output from the tree, in time linear in the list size). In
fact for K+S decomposition nodes, such pointers may be omitted, the order of
the components is enough to identify augmenting vertices.

4 Decomposition Algorithm

The bimodular decomposition tree can be computed in polynomial time, recur-
sively. The connected components of G and G

bip are easily computed. Finding
the K+S components can be achieved in O(n) time only when degrees sequences
are known [1]. The strong components can be found as follow.

Given two same-colored vertices u and v, the unique smallest (with respect
to inclusion) bimodule containing u and v, sb(u, v), can be found greedily, by
adding distinguishers until convergence, in O(m) time (where n is the number
of edges and n the number of vertices).

Lemma 8. Let N be the least common ancestor of u and v in T (G), and Ci

(resp. Cj) the son of N in T (G) containing u (resp. v) If N is

1. series or parallel then sb(u, v) = Ci ∪ Cj

2. K+S then sb(u, v) = Ci ∪Ci+1 ∪ . . . ∪ Cj−1 ∪ Cj

3. prime then sb(u, v) = N

Consider a c-indecomposable graph G, and compute sb(u, v) for all possi-
ble monochromatic pairs. Discard the cases sb(u, v) = V and perform a union
algorithm on the remaining sets (union of sets that overlap): according to the
previous lemma you find the maximal bimodules. It is then easy to remove
shared vertices to get the strong components. And then to find the minimally
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augmenting vertices, in O(n) per bimodule. All this is done in O(mn2), thus,
recursively:

Theorem 3. The bimodular decomposition tree can be computed in O(mn3)
time.

5 Classification of the 2-Modules of a Bipartite Graph

The 2-modules, also called homogeneous pair, introduced in [11], are a general-
ization of both modules and splits in undirected graphs. In fact, in a given graph
there are more 2-modules than modules and splits, but this makes the structure
of the 2-modules very difficult to understand. The theory of modular decom-
position and of split decomposition have been extensively studied and are well
understood. Their algorithmic aspect is also very nice, because both have fast
decomposition algorithms. The “2-modular” decomposition seems harder, and –
as far as we know – the only work about it is a paper from Everett, Klein and
Reed [12] that finds one 2-module in a graph, if it exists, in O(mn3) time.

Definition 6. A homogeneous pair [11], also know as 2-module of an undirected
graph G is a pair M = {Ma, Mb} of disjoint subsets of V such that all vertices
that distinguish Ma are in Mb and all vertices that distinguish Mb are in Ma.

A bimodule M is a 2-module {M ∩W, M ∩ B}. A module M is a 2-module
{M, ∅}.

Definition 7. A split [13] is a partition (V1, V2) of V such that there exists four
disjoint subsets of V , namely A, B, C and D, verifying V1 = A∪B, V2 = C∪D,
B and C are totally adjacent while there is no edge connecting A to C, A to D
and B to D.

In the following a split will be denoted (A, B, C, D). {A, B} and {C, D} are
then two 2-modules.

Theorem 4. Let G = (B,W , E) be a bipartite graph and M = {Ma, Mb} be a
2-module of G then

– either M is monochromatic and all the vertices of M are twins,
– or (Mb, Ma, N(Ma) \Mb, N(Ma) \Mb) is a split,
– or (Ma, Mb, N(Mb) \Ma, N(Mb) \Ma) is a split,
– or Ma ∪Mb is disconnected from the rest of the graph,
– or M is a bimodule.

Proof. Let A be (N(Ma) ∩ N(Mb)) \ M , B be (N(Ma) ∩ N(Mb)) \ M , C be
(N(Ma)∩N(Mb)) \M and D be (N(Ma)∩N(Mb)) \M . Two vertices having a
common neighbor have the same color.

If B �= ∅ all the vertices of Ma ∪Mb have a common neighbor, thus Ma ∪Mb

is monochromatic and there is no edge between Ma and Mb. Therefore, all the
vertices of Ma ∪Mb are twins.
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Suppose B = ∅. If A �= ∅ and C �= ∅ all the vertices of Ma have the same
color, and all the vertices of Mb have the same color. If this color is the same
then M is a monochromatic set of twin vertices else {Ma, Mb} is a bimodule.

If A �= ∅ and C = ∅ then (Mb, Ma, A, D) is a split. If A = ∅ and C �= ∅
then(Ma, Mb, C, D) is a split. And when A = B = C = ∅ the set Ma ∪Mb is
disconnected from the rest D of the graph.

Monochromatic 2-modules are given by modular decomposition (see [5–7] for
linear time decomposition algorithms). Moreover, 2-modules which are splits are
given by the split decomposition of the bipartite graph. In [13], Cunningham
explains how this family can be uniquely represented, using an unrooted tree
whose leaves are the vertices of the graph and whose edges are the strong splits.
In [14], Dahlhaus gives an O(n + m) time algorithm for the split decomposition.
In this article we have shown that the last family of 2-modules, the bimodules,
also is organized into a tree computable in polynomial time. The 2-modular
decomposition of a bipartite graph is therefore divided into two “orthogonal”
families, splits and bimodules, with two decomposition trees having no clear
relationships. Both generalize modules, in different ways.

6 Conclusion and Perspectives
Many more things could be said about bimodular decomposition. For instance,
the decomposition is invariant under bipartite complement (that swaps series
and parallel, and reverse the K+S orders). Or the substitution operation: one
can substitute a bipartite graph H to two vertices b and w of a bipartite graph
G, building a larger graph. There is information loss, because the result is the
same whenever b and w are neighbor or not. On the other hand, one can quotient
a graph from a bimodule: all black vertices of the bimodule are replaced by a
new one, and so for white vertices. We cannot decide if new vertices are to be
adjacent or not: they must be linked by a special edge. The graph quotiented by
M plus the graph induced by M is a smaller representation of the initial graph.

Our decomposition promises wide uses. For instance [15] uses a variant of it
and proves that the maximum induced matching problem, NP-complete for ar-
bitrary bipartite graphs, can be solved in linear time for the class of Star123-free
graphs, using a top-down computation on the decomposition tree. Or the clique-
width may be computed from the decomposition tree, knowing the cliquewidth
of all quotients. It is challenging to find new classes of bipartite graphs, defined
both by their decomposition tree and another property (like [1] that show that
weak-bisplit graphs, that have no prime node, are characterized by two forbidden
induced subgraphs) and to use this for new efficient algorithms design...
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Abstract. We show how to use split decomposition to compute the
weighted clique number and the chromatic number of a graph and we
apply these results to some classes of graphs. In particular we present an
O(n2m) algorithm to compute the chromatic number for all those graphs
having a split decomposition in which every prime graph is an induced
subgraph of either a Ck or a Ck for some k ≥ 3.

1 Introduction

Decompositions play an important role in graph theory. The central role of de-
compositions in the recent proof of one of the major open conjectures in Graph
Theory, the Strong Perfect Graph Conjecture of C. Berge, is an exciting exam-
ple [7]. Furthermore various decompositions of graphs such as decomposition by
clique separators, tree decomposition and clique decomposition are often used to
design efficient graph algorithms. There are even beautiful general results stating
that a variety of NP-complete graph problems can be solved in linear time for
graphs of bounded treewidth and bounded clique-width, respectively [1, 9].

The typical approach to design efficient algorithms using graph decompo-
sitions works as follows. The algorithm recursively decomposes the graph into
smaller graphs, until the obtained graphs cannot be decomposed further. Such
graphs are called prime. Then the algorithm solves the problem on the prime
graphs, and combines the solutions recursively to find eventually the solution for
the original graph. In order to obtain an efficient algorithm by this approach,
the input graphs have to be restricted to a graph class nicely decomposable with
respect to the decomposition.

Several decompositions have been studied in this direction. Tarjan has given
some NP-complete problems which can be solved using decomposition by clique
separators [24]. Modular decomposition for discrete structures is known and
studied for a long time. A nice survey on this topic has been written by Möhring
and Radermacher [21]. Recently, a lot of work has been done studying modular
decomposition on graphs. This includes linear time modular decomposition algo-
rithms [10, 20], the study of modular decomposition for certain graphs classes [6],
and efficient algorithms for some NP-complete graph problems using modular de-
composition [4, 3, 5]. Many NP-complete problems can be solved by polynomial
time (or even linear time) algorithms using tree decomposition or clique decom-
position, if the treewidth or the clique-width of the graph is bounded (and the
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graph is given with a clique decomposition in the case of the clique-width) [1, 9,
13, 18].

In this paper, we consider the split decomposition (also called join decompo-
sition) which can be seen as an extension of the modular decomposition. There
are only few papers presenting algorithms for NP-complete problems using split
decomposition. Cunningham has given an algorithm for the independent set
problem [11]. Cicerone and Di Stefano showed how to apply this algorithm to
parity graphs, which are exactly those graphs for which all prime graphs with
respect to the split decomposition are bipartite or complete [8]. They also pre-
sented an algorithm unfortunately uncorrect for the clique problem, and appli-
cations to parity graphs [8]. Split decomposition is also used for circle graph
recognition [14, 23], and parity graph recognition [8, 12].

This paper is organized as follows: Section 2 gives several preliminaries and
Section 3 introduces the split decomposition. In Section 4 we discuss known and
new results in the approach for obtaining efficients algorithms for NP-complete
problems using the split decomposition. In Section 5 we present an algorithm for
the coloring problem using split decomposition. Finally, in Section 6 we present
some polynomial time coloring algorithms for nicely decomposable graph classes
based on the algorithm of Section 5.

2 Preliminaries

Let G = (V, E) be an undirected, simple and finite graph. We denote by NG(v)
={u ∈ V : {u, v} ∈ E} the neighborhood of v in G and by NG[v] = NG(v)∪ {v}
its closed neighborhood. We shall write N(v) and N [v] if there is no ambiguity.
Let V ′ ⊆ V . We denote by G[V ′] = (V ′, {{u, v} ∈ E : u, v ∈ V ′}) the subgraph
of G induced by V ′. We denote by G − V ′ = G[V \ V ′] the subgraph induced
by V \ V ′ and, if v ∈ V , we write G − v instead of G − {v}. A module is a set
M ⊆ V such that for all v ∈ V \M either N(v) ∩M = ∅ or M ⊆ N(v).

Let w : V → N be a weight function. The weight of a subset V ′ ⊆ V is
w(V ′) =

∑
v∈V ′ w(v). A stable set of G is a subset S of V such that for all

u, v ∈ S, {u, v} �∈ E. The weighted stability number, denoted by αw(G), of a
weighted graph (G, w) is the maximum weight of a stable set of G. A clique of
G is a subset C of V such that for all u, v ∈ C, {u, v} ∈ E. The weighted clique
number, denoted by ωw(G), of a weighted graph (G, w) is the maximum weight
of a clique of G.

The chromatic number of a graph G = (V, E), denoted by χ(G), is the
smallest integer k such that there is a function f : V → {1, 2, . . . , k} with for all
u, v ∈ V , {u, v} ∈ E implies f(u) �= f(v). Clearly a coloring C of G can be seen
as a partition of V into stable sets.

A multiset may contain multiple instances of the same element. We denote
it by 〈e1, . . . ek〉. A weighted coloring of the weighted graph (G, w) (or a w-
weighted coloring of G) is a multiset C of stable sets of G such that for all
v ∈ V , |〈S ∈ C : v ∈ S〉| ≥ w(v). The weighted chromatic number of a weighted
graph (G, w), denoted by χw(G) is the minimum cardinality of a w-weighted
coloring of G. It is well known that χw(G) ≥ ωw(G).
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Throughout the paper we use the following notation in order to simplify the
presentation. Let w : V → N be a function and let a ∈ N. We denote w|v→a the
function of domain V ∪ {v} such that w|v→a(v) = a and w|v→a(u) = w(u) for
all u ∈ V \ {v}.

3 Reviewing Split Decomposition

A split of a graph G = (V, E) is a partition of V into two sets V1 and V2

such that |V1| ≥ 2, |V2| ≥ 2, and every vertex in V1 with a neighbor in V2 has
the same neighborhood in V2. Following this definition, we can define the simple
decomposition of G = (V, E) by the split V1,V2. G is decomposed into G1 and G2,
where, for i ∈ {1, 2}, Gi is the subgraph of G induced by Vi with an additional
vertex v, called a marker, such that the neighborhood of v in Gi is the set of
those vertices in Vi which are adjacent in G to a vertex outside of Vi. A graph
is prime if it does not have a split, and we say that G is decomposable into G1

and G2 if there is a split V1,V2 such that G is decomposable into G1 and G2

with the split V1,V2.

V1 V2 G21G
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Fig. 1. A graph with a split V1, V2, and the two graphs G1 and G2 obtained by the
simple decomposition.

Additionally, we define a related composition. Let G1 = (V1, E1) and G2 =
(V2, E2) be two graphs, such that V1 ∩ V2 = {v}. Then G1 ∗ G2 is the graph
with vertex set (V1 ∪ V2) \ {v}, and edge set {{x, y} ∈ E1 : x �= v and y �=
v} ∪ {{x, y} ∈ E2 : x �= v and y �= v} ∪ {{x, y} : x ∈ NG1(v) and y ∈ NG2(v)}.
Obviously, if G is decomposable into G1 and G2, then G = G1 ∗ G2. We write
G1 ∗ . . . ∗Gk instead of ((G1 ∗G2) · · · ) ∗Gk.

The split decomposition of a graph is the recursive decomposition of the
graph using simple decomposition until none of the obtained graphs can be
decomposed further. The split decomposition tree of the graph G is the tree T
in which each node h corresponds to a prime graph denoted by G∗

h obtained by
the split decomposition. Furthermore two nodes h and h′ of T are adjacent iff
the corresponding graphs G∗

h and G∗
h′ have a common marker (see figure 2).

Remark 1. The split decomposition of a graph is not necessarily unique. Cun-
ningham [11] showed that every graph has a unique decomposition by splits
into prime graphs, stars and complete graphs, with a minimum number of non
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Fig. 2. A graph and its split decomposition tree. The markers are v, w, x, y and z.

decomposed graphs. This decomposition, which we call a Cunningham decompo-
sition, is not necessarily a split decomposition, since stars and complete graphs
can be decomposable. Notice that it is easy to obtain a split decomposition from
a Cunningham decomposition. Furthermore a split in a graph is either a split in
the Cunningham decomposition or a split in a star or a complete graph in the
Cunningham decomposition [11]. Thus each split decomposition can be obtained
from the Cunningham decomposition, and the set of all prime graphs is the same
for every split decomposition, up to isomorphism.

A simple induction shows that a split decomposition tree of a graph G with
n vertices and m edges has at most n − 2 nodes. The sum of the number of
vertices of all prime graphs is at most 3n− 4 since each vertex in a prime graph
is either a vertex of G, or a marker. The sum of the number of edges of all prime
graphs is at most m + n− 3, since each simple decomposition adds at most one
edge to the overall number of edges.

All known algorithms to compute a split decomposition or a split decomposi-
tion tree compute in fact a Cunningham decomposition. The first algorithm was
given by Cunningham and has running time O(n3) [11]. This has been improved
to O(nm) in [14], and to O(n2) in [19]. Finally Dahlhaus has given a linear time
algorithm in [12].

4 Split Decomposition, Graph Classes
and the Clique Problem

Some graphs classes are nicely decomposable by split decompositions. Distance
hereditary graphs are completely decomposable by split decomposition (i.e. all
primes graphs have at most 3 vertices) [16]. A graph is a circle graph if and only
if every prime graph in its split decomposition is a circle graph [14]. A graph
is a parity graph if and only if every prime graph in its split decomposition
is bipartite or complete [8]. The best known recognition algorithms for circle
graphs [23] and parity graphs [8, 12] are based on split decomposition and these
forementioned properties.
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We already know that a graph is perfect iff every prime graph in the split
decomposition is perfect [2]. A simple decomposition cannot destroy a Ck (in-
duced cycle on k vertices) or its complement Ck for some k ≥ 5. Thus if every
prime graph in a split decomposition of G is weakly chordal then G is weakly
chordal. (Notice that C4 and C4 are decomposable by a simple decomposition.)

Cunningham has given an algorithm to compute the weighted stability num-
ber using split decomposition [11]. In [8] the authors apply this algorithm to
parity graphs in the split decomposition of G. This algorithm has running time
O(n2.5). They also present algorithms to compute the clique number and the
weighted clique number of a parity graph using split decomposition. Unfortu-
nately theses algorithms are flawed. Figure 3 gives a counter-example for the
clique number algorithm (and also a counter-example for the weighted clique
number when taking all vertex weights to be 1).

G

d

e
w vw

a
b

c
v

a b c

ed

Fig. 3. A parity graph for which the algorithm for the clique number in [8] fails, and its
unique split decomposition, which is also its Cunningham decomposition. The markers
are v and w. ω(G) = 4 and the output of the algorithm is 3.

Lemma 1 recalls Cunningham’s algorithm. Lemma 2 provides a correct algo-
rithm to compute the weighted clique number using split decomposition.

Let G = (V, E) be a graph such that G = G1 ∗ G2, G1 = (V1, E1), G2 =
(V2, E2) and V1 ∩ V2 = {v}. Let w : V → N be a weight function.

Lemma 1 ([11]). Let a = αw(G2 −NG2 [v]) and a′ = αw(G2 − v). Then

αw(G) = αw|v→a′−a
(G1) + a.

Lemma 2. Let a = ωw(G2[NG2(v)]). Then

ωw(G) = max(ωw(G2 − v), ωw|v→a
(G1)).

Proof. Obviously, ωw(G) ≥ ωw(G2 − v). Furthermore ωw(G) ≥ ωw(G[(V1 \
{v}) ∪ NG2(v)]). Now ωw(G[(V1 \ {v}) ∪ NG2(v)]) = ωw|v→a

(G1), since NG2(v)
is a module in G[(V1 \ {v}) ∪ NG2(v)]. Consequently ωw(G) ≥ max(ωw(G2 −
v), ωw|v→a

(G1)).
Furthermore ωw(G) = max(ωw(G2 − v), ωw|v→a

(G1)) since if C is a clique of
G then either C ⊆ V2 \ {v} and w(C) ≤ ωw(G2 − v) or C ⊆ (V1 \ {v})∪NG2(v)
and w(C) ≤ ωw|v→a

(G1). ��

Lemma 1 and Lemma 2 respectively can be used to calculate αw(G) and
ωw(G) respectively of a graph G using a split decomposition tree T of G (see [8]).
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We know that we can use the split decomposition to compute a optimal coloring
of a perfect graph [2]. But in the general case, the problem seems to be more
complex than the problems in this section, since if G = G1 ∗ G2, χ(G) cannot
easily be obtained from solutions of subproblems for G1 and G2.

5 Coloring a Graph Using a Split Decomposition Tree

In this section we present an algorithm to compute the chromatic number of
a graph G = (V, E) using a split decomposition tree of G. Typically our algo-
rithm has to compute the weighted chromatic number for a variety of induced
subgraphs of G corresponding to nodes of the split decomposition tree.

Let T be a split decomposition tree of the graph G computed using the linear
time algorithm of Dahlhaus [12]. Our coloring algorithm runs recursively on the
split decomposition tree T for which we choose any vertex to be its root r.

We recall that for a node h of T , G∗
h is the prime graph of the split decom-

position corresponding to the node h. For each node h �= r of T and its parent
h′ in T , let vh be the unique marker belonging to G∗

h and G∗
h′ . We define for

every leaf h of T , Gh = G∗
h. We define recursively for each internal node h of T

with children h1, h2, . . . , hk, Gh = G∗
h ∗ Gh1 ∗ . . . ∗ Ghk

. We call Gh the graph
corresponding to the subtree of T rooted at h. Notice that Gr = G.

We present our algorithm in Figure 4. Its correctness proof is based on
Lemma 3 and 4. The following notation is used throughout the proofs of these
Lemmas. Let C be a w-weighted coloring of G = (V, E) and V ′ ⊆ V . We denote
by CV ′ the collection of all stables sets of the coloring C that contain at least
one vertex of V ′, i.e. CV ′ = 〈S ∈ C : S ∩ V ′ �= ∅〉. We denote by D(G, w, V ′)
the set of all pairs (a, b) ∈ N × N such that there is a w-weighted coloring C
of G with a + b colors and |CV ′ | = a. Obviously, if (a, b) ∈ D(G, w, V ′), then
(a′, b) ∈ D(G, w, V ′) for all a′ > a and (a, b′) ∈ D(G, w, V ′) for all b′ > b.
We call a pair (a, b) ∈ D(G, w, V ′) minimal if (a − 1, b) �∈ D(G, w, V ′) and
(a, b− 1) �∈ D(G, w, V ′). Note that for every minimal pair (a, b) of D(G, w, V ′),
both a ≤ χw(G) and b ≤ χw(G).

From now on, for every node h �= r, we call D(h) = D(Gh − vh, w, NGh
(vh))

the D-set of h, where for all v ∈ Vh \ {vh}, w(v) = 1. Our algorithm uses a
dynamic programming and computes in a bottom-up fashion for all nodes h �= r
of T , the D-set of h from the D-sets of all its children. Finally it computes χ(G)
from the D-sets of the children of the root r of T .

The following lemma provides the operation to be executed for each node of
the split decomposition tree when computing its D-set and its chromatic number
using the D-sets of its children. Let h be a node of T . Let G∗

h = (V ∗
h , E∗

h)
be the prime graph corresponding to h, and let Gh = (Vh, Eh) be the graph
corresponding to the subtree of T rooted at h. Let h1, h2, . . . , hk be the children
of h in T . Then Ghi is the graph corresponding to the subtree in T rooted at
hi and vhi is the unique marker belonging to G∗

h and Ghi . For simplifying the
notations in Lemma 3 and its proof, we note Gi = Ghi = (Vi, Ei), vi = vhi

and G∗ = G∗
h = (V ∗, E∗). As discussed above, Gh = G∗ ∗ G1 ∗ . . . ∗ Gk. Let

w : Vh → N be a weight function.
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Fig. 4. Algorithm to compute the chromatic number.

Lemma 3. For all i ∈ {1, . . . k}, let (ai, bi) ∈ D(Gi − vi, w, NGi(vi)). Let C
be the set of all w-weighted colorings C of Gh with |CVi\{vi}| = ai + bi and
|CNGi

(vi)| = ai. Then

min
C∈C

|C| = max(χw∗(G∗), max
i∈{1,2,...,k}

(ai + bi))

where w∗ : V ∗ → N such that for all i ∈ {1, 2, . . . , k}, w∗(vi) = ai, and for all
v ∈ V ∗ \ {v1, v2, . . . , vk}, w∗(v) = w(v).

Proof. Recall that if C is a weighted coloring of G and V ′ ⊆ V then CV ′ is
defined to be the multiset of all stable sets belonging to C having a non-empty
intersection with V ′ ⊆ V . For all i ∈ {1, 2, . . . , k}, let Ai = NGi(vi) and let
Bi = Vi \NGi [vi].
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Firstly, we prove that every coloring C ∈ C contains at least max(χw∗(G∗),
maxi∈{1,2,...,k}(ai+bi)) stable sets. For all i ∈ {1, . . . k}, ai+bi = |CVi\{vi}| ≤ |C|.
It remains to show that χw∗(G∗) ≤ |C|. To do so we construct a w∗-weighted
coloring C∗ of G∗ from CVh\

⋃
k
i=1 Bi

. For each S ∈ CVh\
⋃

k
i=1 Bi

, let S∗ ⊆ V ∗

be the set satisfying S∗ ∩ (V ∗ \ {v1, . . . vk}) = S ∩ (V ∗ \ {v1, . . . vk}), and for
all i ∈ {1, 2, . . . , k}, vi ∈ S∗ iff S ∩ Ai �= ∅. Notice that S∗ is a stable set of
G∗. Let C∗ be the multiset of all sets S∗ Clearly |C∗| ≤ |C|. Furthermore C∗

is a w∗-weighted coloring of G∗ since for all i, |C∗
{vi}| = |CAi | = ai. Hence

minC∈C |C| ≥ max(χw∗(G∗), maxi∈{1,2,...,k}(ai + bi)).
It remains to prove equality. To do so we construct a w-weighted coloring C

of Gh such that C ∈ C and |C| = max(χw∗(G∗), maxi∈{1,2,...,k}(ai + bi)). Let C∗

be a minimum w∗-weighted coloring of G∗, and for all i, let Ci be a coloring of
Gi − vi such that |Ci| = ai + bi and |Ci

Ai
| = ai.

We construct C as follows. In the first stage, we pick a stable set S∗ ∈ C∗

and for all i ∈ {1, 2, . . . , k}, if vi ∈ S∗ we pick a stable set Si in Ci
Ai

, otherwise
we pick Si in Ci \ Ci

Ai
. If there is no remaining stable set, we take Si = ∅. We

add to C the set S = S∗ \ {v1, . . . vk} ∪
⋃k

i=1 Si. Notice that S is a stable set.
We repeat this operation until C∗ is empty. Since w∗(vi) = ai = |Ci

Ai
|, there is

no remaining set in Si ∈ Ci such that Si ∩Ai �= ∅ at the end of the first stage.
In the second stage, as long as there is an i ∈ {1, 2, . . . , k} such that Ci �= ∅,

we pick for all i ∈ {1, 2, . . . , k} a stable set Si ∈ Ci if Ci �= ∅, otherwise we take
Si = ∅. We add to C the set S =

⋃k
i=1 Si. Notice that S is a stable set. It is not

hard to see that C is a w-weighted coloring of Gh, and C ∈ C.
At the end of the first stage, C has χw∗(G∗) stable sets, and for each i ∈

{1, 2, . . . , k}, Ci has max(0, |Ci \Ci
Ai
| − |C∗ \C∗

vi
|) = max(0, bi −χw∗(G∗) + ai)

remaining stable sets. Then we add in the second stage max(0,−χw∗(G∗) +
maxi∈{1,2,...,k}(ai + bi)) stable sets to C. Thus, at the end
|C| = max(χw∗(G∗), maxi∈{1,2,...,k}(ai + bi)). ��

Then χw(Gh) is the minimum of max(χw∗(G∗
h), maxi∈{1,2,...,k}(ai + bi)) over

all possible choice of the k-tuple ((a1, b1), (a2, b2), . . . , (ak, bk)) into D(h1) ×
D(h2) × . . . × D(hk). For all c ∈ N, let tc be the k-tuple such that each for all
i ∈ {1, 2, . . . k}, (ai, bi) is a pair of {(a, b) ∈ D(hi) : a+b ≤ c} with the smallest a.
Obviously, if t is a k-tuple ((a1, b1), (a2, b2), . . . , (ak, bk)) and c = maxi(ai + bi),
then the choice tc at least as good as t. The algorithm computes χw(Gh) by
taking the minimum over all k-tuple tc, c ∈ {0, 1, . . . , 2n}.

The previous lemma has shown how to compute the weighted chromatic
number of Gh from the D-set of its children. If h is a node different from r, then
we have to compute the D-set of h. The following lemma shows how this can be
done.

Lemma 4. Let G = (V, E) be a graph, v ∈ V and w : V \ {v} → N a weight
function. Let b ∈ N and w′ : V → N such that w′(v) = w(v) for all v ∈ V \ {v},
and w′(v) = b. Then (χw′(G)−b, b) ∈ D(G−v, w, N(v)), and (χw′(G)−b−1, b) �∈
D(G− v, w, N(v)).
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Proof. Let C be a minimum w′-weighted coloring of G. Then C′ = 〈S \ {v} :
S ∈ C〉 is a w-weighted coloring of G, and has at least b stable sets not having
a vertex in common with N(v). Thus (χw′(G)− b, b) ∈ D(G − v, w, N(v)).

If there would be a a w-weighted coloring Ĉ of G− v such that |Ĉ| < χw′(G)
having at least b stable sets having no vertex in common with N(v), then the
multiset C obtained by adding v to all stable sets having no vertex in common
with N(v), would be a w′-weighted coloring of G, contradiction. ��

Now the minimals pairs of the D-set of h can be computed using χw|vh→b
(Gh),

b = 0, 1, . . . , n. Now we are ready to summarize the correctness proof.

Theorem 1. The algorithm ChromaticNumber takes as input a graph G and
it split decomposition tree T and computes the chromatic number of G.

Proof. The function ChromSplit(h, b, . . .) returns χw(Gh), with w(v) = 1 for
all v in Vh \ {vh} and, if h �= r, w(vh) = b, using Lemma 3 and the remark
following the proof of Lemma 3. For all h �= r the main loop computes Dh which
contains all the minimal pairs of the D-set of h, using the Lemma 4. Finally, the
algorithm computes the chromatic number of Gr = G. ��

Remark 2. Our algorithm computes the chromatic number of the input graph.
We mention that it is not hard to modify the algorithm such that it computes
a minimum coloring if we use as sub-function an algorithm which computes a
minimal weighted coloring of a prime graph.

Theorem 2. If the algorithm for weighted chromatic number for the prime
graphs in the input split decomposition tree has running time f(n, m) then the
total running time of the algorithm ChromaticNumber is O(n3 · f(n, m)).

Proof. This algorithm executes O(n2) times the algorithm for the weighted chro-
matic number for each prime graph in the split decomposition, and the split
decomposition tree has O(n) nodes. The remainder can be done in time O(n3)
by pre-calculating min{a′ : ∃b′ such that (a′, b′) ∈ Dh and a′ + b′ ≤ c} for all
node h of T and for all c ∈ {0, 1, . . . , 2n}. Consequently the overall running time
is O(n3 · f(n, m)). ��

Remark 3. This running time can be improved to O(n2 · f(n, m)) for functions
f such that the running time to execute the algorithm for weighted chromatic
number on each prime graph is O(f(n, m)).

6 Polynomial Time Algorithms

6.1 Some Classes of Perfect Graphs

In order to compute the chromatic number (respectively a minimum coloring)
using the split decomposition, we have to compute the weighted chromatic num-
ber (respectively a minimum weighted coloring) of the prime graphs. Hoàng has
given an O(nm) algorithm for minimum weighted coloring for perfectly orderable
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graphs if a perfect order is given with the graph, and O(n2) algorithms for com-
parability graphs and for chordal graphs [17]. Grötschel, Lovász and Schrijver
have given a weakly polynomial algorithm for this problem for perfect graphs
(i.e. the algorithm is polynomial on the sum of the vertex weights) [15], which
is applicable in our algorithm since the sum of the weights is bounded by n.

Using Hoàng’s O(n2) algorithm for the minimum weighted coloring for the
comparability graphs and the algorithm in Section 5, we obtain an O(n4) algo-
rithm for the weighted coloring on the class of graphs for which every prime
graph in the split decomposition is a comparability graph. Raschle and Si-
mon have given O(m2) algorithms for orienting P4-comparability graphs and
P4-indifference graphs, which are subclasses of perfectly orderable graphs [22].
So using these algorithms, Hoàng’s O(nm) algorithm for the minimum weighted
coloring for perfectly orderable graphs, and the algorithm in Section 5, we obtain
an O(n2m2) algorithm for the weighted coloring on the class of graphs for which
every prime graph in the split decomposition is a P4-comparability graph or a
P4-indifference graph.

6.2 Every Prime Graph Has Bounded Size

Let Gk, k ≥ 3 be the class of graph for which every prime graph in a split
decomposition has at most k vertices. Notice that the G3 is the class of all
distance hereditary graphs. For graphs of bounded size the weighted stability
number and the weighted clique number can be computed in constant time.
The weighted chromatic number of graphs of bounded size can be computed in
constant time [3].

Corollary 1. For any fixed k ≥ 3, there is an O(n) algorithm to compute the
weighted stability number and the weighted clique number, respectively, and an
O(n3) algorithm to compute the chromatic number of graph in the class Gk, if a
split decomposition tree is given with the graph.

6.3 Every Prime Graph Is an Induced Subgraph of Ck or Ck

for Some k ≥ 3

Let Gc be the class of all graphs for which every prime graph in the split de-
composition is an induced subgraph of Ck or Ck, k ≥ 3. For all these graphs,
computing the weighted stability number and the weighted clique number is easy
and can be done in linear time. Thus using results of Section 4, we obtain
Corollary 2. There are O(n + m) algorithms to compute the weighted stability
number and the weighted clique number, respectively, on the graph class Gc.

A more challenging problem is to compute the chromatic number for Gc. The
following lemma generalizes a theorem of Vanherpe for the graph C5 [25].
Lemma 5. Let G = (V, E) with V = {v1, v2, . . . , vn} be a cycle of length n ≥ 3,
and let w : V → N be a weight function of G. Then

χw(G) = max

(
ωw(G),

⌈∑n
i=1 w(vi)⌊

n
2

⌋
⌉)

.
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Proof. We already mentioned that χw(G) ≥ ωw(G). Furthermore each color

class has at most
⌊

n
2

⌋
vertices, thus χw(G) ≥

⌈∑n
i=1 w(vi)

�n
2 �

⌉
. If n is even or n = 3,

then G is perfect. Thus χw(G) = ωw(G) [15].
Now we assume that n is odd and n �= 3. We show the claimed equality by

induction on the sum of the weights of G. If there is a v ∈ V such that w(v) = 0,
then χw(G) = χw(G− v) = ωw(G), since G− v is perfect. Otherwise, let E′ be
the set of all edges of G for which the sum of the weights of its two endpoints is
ωw(G).

Case 1: E′ = E. Then all weights are equal (since n is odd), so
⌈∑n

i=1 w(vi)

�n
2 �

⌉
>

ωw(G). Let S be a stable set of
⌊

n
2

⌋
vertices, and w′ be the weight function

defined by w′(v) = w(v) − 1 for all v ∈ S and w′(v) = w(v) for all v ∈ V \ S.
Then

χw(G) ≤ 1 + χw′(G) = 1 + max

(
ωw′(G),

⌈∑n
i=1 w′(vi)⌊

n
2

⌋
⌉)

≤
⌈∑n

i=1 w(vi)⌊
n
2

⌋
⌉

since
⌈∑n

i=1 w(vi)

�n
2 �

⌉
> ωw(G) = ωw′(G) and

⌈∑n
i=1 w′(vi)

�n
2 �

⌉
=
⌈∑n

i=1 w(vi)

�n
2 �

⌉
− 1.

Case 2: E′ �= E. Then there is a stable set S of
⌊

n
2

⌋
vertices containing an

endpoint for each edge of E′. Let w′ be the weight function defined by w′(v) =
w(v) − 1 for all v ∈ S and w′(v) = w(v) for all v ∈ V \ S. Then

χw(G) ≤ 1 + χw′(G) = 1 + max

(
ωw′(G),

⌈∑n
i=1 w′(vi)⌊

n
2

⌋
⌉)

≤ max

(
ωw(G),

⌈∑n
i=1 w(vi)⌊

n
2

⌋
⌉)

since
⌈∑n

i=1 w′(vi)

�n
2 �

⌉
=
⌈∑n

i=1 w(vi)

�n
2 �

⌉
− 1 and ωw′(G) = ωw(G)− 1. ��

The weighted clique partition number of a weighted graph (G, w) is κw(G) =
χw(G). The following lemma gives the weighted clique partition number of a
graph Cn for all n ≥ 3. Thus it gives the weighted chromatic number of a graph
Cn for all n ≥ 3. The proof is similar to the proof of Lemma 5 and omitted.

Lemma 6. Let G = (V, E) with V = {v1, v2, . . . , vn} be a cycle of length n ≥ 3,
and let w : V → N be a weight function of G. Then

κw(G) = max
(

αw(G),
⌈∑n

i=1 w(vi)
2

⌉)
.
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By Lemma 5 and 6 the weighted chromatic number of a graph Cn or Cn,
n ≥ 3 can be computed in linear time. Using Theorem 2 and it’s the remark we
obtain

Corollary 3. There is an O(n2m) algorithm to compute the chromatic number
for all graphs in the class Gc.
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Abstract. The clique problem consists in determining whether an undi-
rected graph G of order n contains a clique of order �. In this paper we
are concerned with the decremental version of clique problem, where
the property of containing an �-clique is dynamically checked during
deletions of nodes. We provide an improved dynamic algorithm for this
problem for every fixed value of � ≥ 3. Our algorithm naturally applies
to filtering for the constraint satisfaction problem. In particular, we show
how to speed up the filtering based on an important local consistency
property: the inverse consistency.

1 Introduction

There is a wealth of research on dynamic graph problems, which consist in check-
ing a given property on graphs subject to dynamic changes, such as deletions or
insertions of nodes or edges [4–6, 9, 10, 13, 14, 18, 19]. If only deletions or inser-
tions are allowed, the dynamic problem is also called decremental or incremental
respectively.

A clique is an undirected graph such that its nodes are pairwise adjacent.
The decremental clique problem consists in dynamically determining whether a
graph G of n nodes contains an �-clique (a clique of � nodes), during deletions
of nodes.

To the best of our knowledge, no non-trivial algorithm is known for this
problem, while several non-trivial results are available for its static version. Itai
and Rodeh [12] showed how to detect a triangle (clique of three nodes) in G in
O(nω) steps, where the complexity of multiplying two n× n matrices is O(nω),
ω < 2.376 [1]. Nešetřil and Poljak [17] generalized the algorithm of Itai and
Rodeh to the detection of cliques of arbitrary cardinality �. Their algorithm has
a O(nα(�)) time complexity, where α(�) = ω��/3�+ � (mod 3).

Recently, Eisenbrand and Grandoni [7] developed a faster algorithm for the
same task. Their algorithm has a O(nβ(�)) time complexity, where β(�)=ω(��/3�,
� This work has been partially supported by the IST Programme of the EU under

contract n. IST-1999-14.186 (ALCOM-FT), by the Italian Ministry of University
and Research (Project “ALINWEB: Algorithmics for Internet and the Web”).
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�(�− 1)/3�, ��/3�), and the time complexity of multiplying a nr × ns matrix by
a ns × nt matrix is denoted by O(nω(r,s,t)).

All the algorithms above can be easily adapted so as to count the number of
�-cliques in which each node is contained.

In this paper we present a dynamic algorithm for the decremental clique prob-
lem. In particular, we show how to efficiently update the number of �-cliques in
which each node of a graph is contained, during deletions of nodes. Our algo-
rithm, which builds up on the algorithm of Eisenbrand and Grandoni, performs
updates in O(nβ(�)−0.8) time for every fixed �, that is, roughly, n0.8 times faster
than recomputing everything from scratch.

1.1 An Application to the Constraint Satisfaction Problem

The constraint satisfaction problem consists in determining whether a set of k
variables, defined on domains of size at most d, admits an instantiation which
satisfies a given set of constraints. Any such instantiation is a solution for the con-
straint network. Without loss of generality [16], we can assume that all the con-
straints are binary (a constraint is binary if it involves only a pair of variables).

An assignment (i, a) of a value a to a variable i is consistent if there is a so-
lution which assigns a to i, and inconsistent otherwise. Inconsistent assignments
can be removed from the constraint network without loosing any solution (by
removing an assignment (i, a), we mean removing a from the domain of i).

Detecting inconsistent assignments is a NP -hard problem [16]. For this rea-
son, many heuristic filtering techniques have been developed, which allow to
efficiently detect (and remove) part of the inconsistent assignments. Most of
them are based on some kind of local consistency property P , which all the con-
sistent assignments need to satisfy. The assignments which do not satisfy P are
iteratively filtered out.

Note that an assignment which initially satisfies P , may not satisfy P any
more after some deletions. Thus the same assignment may be checked for consis-
tency many times along the filtering process. This suggests the idea of performing
such repeated checks dynamically, instead of doing it each time from scratch. In
fact, this approach is used by most of the fastest filtering algorithms.

Maybe the simplest and most studied local consistency property is arc con-
sistency [15]. An assignment (i, a) is arc consistent if, for every other variable j,
there is at least one assignment (j, b) compatible with (i, a). Clearly, if a node is
not arc consistent, it cannot be consistent (unless i is the unique variable in the
network).

Arc consistency can be easily generalized. An assignment (i, a) is path-inverse
consistent [8] if, for every other two variables j and h, there are assignments
(j, b) and (h, c) which are mutually compatible and compatible with (i, a). The
�-inverse consistency [8] is the natural generalization of arc-consistency (� = 2)
and path-inverse consistency (� = 3) to arbitrary (fixed) values of � ≤ k.

The currently fastest filtering algorithm based on �-inverse consistency is the
O(k�d�) algorithm of Debruyne [3]. This algorithm is based on a very simple
dynamic strategy to check whether an assignment is �-inverse consistent.
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We show how to reduce the problem of dynamically checking �-inverse consis-
tency to the decremental clique problem on graphs of O(d) nodes. By applying
this reduction and our O(dβ(�)−0.8) decremental algorithm, we reduce the com-
plexity of �-inverse consistency based filtering to O(k�dβ(�)+0.2). This implies an
improvement for every � ≥ 3.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce some preliminaries. In Section 3 we describe the algorithm of Eisenbrand
and Grandoni, upon which our decremental algorithm builds up. In Section 4 we
present our decremental algorithm to maintain the number of �-cliques. Even-
tually, in Section 5 we show how to speed up the filtering based on inverse
consistency.

2 Preliminaries

We use standard graph notation as contained for instance in [2]. An undirected
graph G is a pair (V, E), where V is a finite set of nodes and the edge set E
consists of unordered pairs of nodes. Without loss of generality, we can assume
V = {1, 2 . . . |V |}, where |V | is the cardinality of G. Two nodes v and w are
adjacent if {v, w} ∈ E. A graph is complete if each pair of distinct nodes is
adjacent. An �-clique is a complete graph of � nodes. The 3-cliques are also called
triangles. The graph G[V ′] induced on G by a subset V ′ of nodes is the graph
obtained from G by removing all the nodes not in V ′ and the edges incident on
them.

The adjacency matrix A of G is a 0-1 matrix such that, for each pair of
nodes v and w, A[v, w] = 1 if and only if v and w are adjacent (in particular A
is symmetric and the main diagonal is set to zero).

A k-partite graph G = ({V1, V2 . . . Vk}, E) is a graph where the set of nodes
is V =

⋃
i Vi, the set of edges is E, the subsets Vi (partitions) are disjoint, and

the nodes in the same partition are not adjacent.
A binary constraint network of k variables can be naturally represented via

a k-partite graph G = ({V1, V2 . . . Vk}, E), the consistency graph, which has a
node for each possible assignment (i, a) and an edge between all the pairs of
assignments which are compatible according to the constraints. In particular,
partition Vi is formed by all the assignments corresponding to variable i (two
values cannot be assigned to the same variable). An example of consistency graph
is given in Figure 1.

It is not hard to show that a k-clique in G corresponds to each solution of
the binary constraint network. In other words, the binary constraint satisfaction
problem is equivalent to the problem of determining whether the consistency
graph contains a k-clique.

The definitions concerning the assignments can be naturally extended to the
nodes of the consistency graph. In particular, a node (i, a) is consistent if it
belongs to at least one k-clique, and inconsistent otherwise. Node (i, a) is �-
inverse consistent, � ≤ k, if, taken � partitions Vj1 , Vj2 . . . Vj�

including Vi, node
(i, a) is contained in at least one �-clique of the graph G[∪kVjk

] induced on G
by such partitions. Clearly, if a node is not �-inverse consistent, it cannot be
consistent.
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Fig. 1. Example of consistency graph. The partitions corresponding to each variable
are included into dashed ellipses. A solution is given by the assignments (1, 2), (2, 2),
(3, 1) and (4, 2). The assignment (1, 1) is arc consistent, while it is not path-inverse
consistent.

3 Static Algorithm

In this section we describe a static algorithm to count the number of �-cliques in
which each node of an undirected graph G = (V, E), with n nodes, is contained.

We adapt the algorithm of Eisenbrand and Grandoni for the clique problem
to this purpose. We first recall their algorithm. They compute the following 3-
partite auxiliary graph G̃� = ({W1, W2, W3}, F ) = G̃. Let �1, �2 and �3 be equal
to ��/3�, �(�−1)/3� and ��/3� respectively (notice that � = �1+�2+�3). Partition
Wi, i ∈ {1, 2, 3}, is formed by the �i-cliques of G. A node wi ∈ Wi is adjacent
to a node wj ∈ Wj , if i �= j and the nodes of wi and wj induce a clique of order
(�i + �j) in G. Then the algorithm return yes if and only if G̃ contains a triangle.
In Figure 2 an example of graph with the corresponding auxiliary graph in the
case � = 4 is depicted.

Lemma 1. For every fixed � ≥ 3, the algorithm above determines whether an
undirected graph G of n nodes contains a clique of � nodes in time O(nβ(�)) =
O(nω(��/3�,	(�−1)/3
),	�/3
)) time.

Proof. Let G̃ be the auxiliary graph defined above. We show that G contains a
�-clique if and only if G̃ contains a triangle. Assume that G contains a �-clique
{v1, v2 . . . v�}. Thus the partitions W1, W2 and W3 of G̃ contain the nodes w1 =
{v1, v2 . . . v�1}, w2 = {v�1+1, v�1+2 . . . v�1+�2} and w3 = {v�1+�2+1, v�1+�2+2 . . . v�}
respectively. Moreover w1, w2 and w3 are pairwise adjacent. Thus G̃ contains a
triangle.

Assume now that G̃ contains a triangle {w1, w2, w3}. Let T =
⋃

i wi. Since
the graph is 3-partite, the nodes wi must belong to distinct partitions. Moreover
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Fig. 2. An example of graph G (on the left) with the corresponding auxiliary graph G̃

in the case � = 4. The nodes of G̃ are labelled with the corresponding subset of nodes
of G. One of the

(
4

1,1,2

)
= 12 triangles of G̃ corresponding to the clique {2, 3, 4, 5} of G

is pointed out via dashed lines.

two nodes of G̃ which contain the same node v of G cannot be adjacent. Thus
|T | = �1 + �2 + �3 = �. Every two distinct nodes of T are adjacent in G. Thus T
is a subset of � pairwise adjacent nodes of G, that is a �-clique of G.

Consider now the time complexity of the algorithm. Partition Wi contains
O(n�i) nodes, i ∈ {1, 2, 3}. A triangle of G̃ can be detected in the following
way. For each pair of nodes {w1, w3}, w1 ∈W1 and w3 ∈W3, one computes the
number P1,2,3(w1, w3) of 2-length paths of the kind (w1, w2, w3), where w2 ∈W2.
The value of P1,2,3 is obtained by multiplying the n�1 × n�2 adjacency matrix
of the nodes in W1 with the nodes in W2 by the n�2 × n�3 adjacency matrix of
the nodes in W2 with the nodes in W3. Graph G̃ contains a triangle if and only
if there is a pair of adjacent nodes {w1, w3}, w1 ∈ W1 and w3 ∈ W3, such that
P1,2,3(w1, w3) > 0. Computing P1,2,3 costs = O(nω(�1,�2,�3)) = O(nβ(�)). This is
also an upper bound on the complexity of the algorithm.

A rectangular matrix multiplication can be executed through a straightfor-
ward decomposition into square blocks and fast square matrix multiplication. In
other words:

ω(r, s, t) ≤ r + s + t + (ω − 3)min{r, s, t}.
More sophisticated fast rectangular matrix multiplication algorithms are

available. In particular, for every 0 ≤ r ≤ 1, the following bound holds [1, 11]:

ω(1, 1, r) ≤
{

2 + o(1) if 0 ≤ r ≤ α = 0.294;
ω − (1− r)ω−2

1−α if α < r ≤ 1.
(1)

With this bound at hand, one obtains:
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β(�) ≤

⎧⎪⎨
⎪⎩
� �

3�ω if � (mod 3) = 0;
� �

3�ω + 1 if � (mod 3) = 1;
� �

3�ω + 2− α(ω−2)
1−α if � (mod 3) = 2.

Better bounds are available for ω(r, s, t) [11]. These bounds lead to a tighter
bound on β(�) in the case � (mod 3) �= 0. For simplicity we will not consider
these tighter bounds, since they are not expressed via a closed formula.

3.1 Counting Cliques

Consider now the problem of counting the number K�(v) of �-cliques in which
each node v of G is contained. The algorithm of Eisenbrand and Grandoni can
be easily adapted to count, in O(nβ(�)) time, the number K̃3(w) of triangles
in which each node w of G̃ is contained. Note that many triangles in G̃ may
correspond to the same �-clique of G.

More precisely, the number of distinct triangles of G̃ which correspond to the
same �-clique of G is equal to the number of ways in which one can partition a
set of cardinality � in three subsets of cardinality �1, �2 and �3 respectively, that
is
(

�
�1,�2,�3

)
.

Let Wi(v), for each i ∈ {1, 2, 3}, be the set of nodes of Wi which contain node
v. It is not hard to show that the sum of K̃3(w) over W1(v) is equal to K�(v),
multiplied by the number of ways in which one can partition a set of cardinality
(�− 1) in three subsets of cardinality (�1 − 1), �2 and �3 respectively:

∑
w∈W1(v)

K̃3(w) =
(

�− 1
�1 − 1, �2, �3

)
K�(v). (2)

Then we can compute K�(v), for each v ∈ V , in O(nβ(�)) steps.

Corollary 1. The algorithm above counts the number of cliques of � nodes in
which each node of an undirected graph G of n nodes is contained, in time
O(nβ(�)).

4 Decremental Algorithm

In this section we consider the problem of decrementally updating the number
K�(v) of cliques of cardinality � in which each node v of the undirected graph G
is contained, during deletions of nodes.

The idea is to update the value of K̃3(w), for each w in W1, and then update
K�(v), for each v in w, following Equation (2). Consider the deletion of a node
u. The deletion of u corresponds to the deletion of the subsets of nodes W1(u),
W2(u) and W3(u) in W1, W2 and W3 respectively.

As two nodes of G̃ which contain the same node u of G cannot belong to the
same triangle, one can safely consider the effects of the deletion of each node in
Wi(u), i ∈ {1, 2, 3}, separately. First of all, for each w ∈W1(u), one sets K̃3(w)
to zero (in linear time).
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Consider now the deletion of the nodes in W2(u) (the deletion of the nodes
in W3(u) is completely analogous). For each w1 ∈W1 and for each deleted node
w2 ∈W2(u), the value of K̃3(w1) has to be decreased by the number of triangles
in which both nodes w1 and w2 are contained (at the same time). This quantity is
zero if w1 and w2 are not adjacent, and it is equal to the number P1,3,2(w1, w2)
of 2-length paths from w1 to w2 through a node in W3 otherwise. Then one
needs to compute P1,3,2(w1, w2), for each w1 ∈ W1 and for each w2 ∈ W2(u). A
simple-minded approach is to compute the number of such paths from scratch.

A better time bound can be obtained as follows. One maintains a lazy value
P ′

1,3,2(w1, w2) of P1,3,2(w1, w2), for each w1 ∈ W1 and w2 ∈ W2. Whenever a
node w3 is removed from W3, instead of updating P ′

1,3,2, one stores w3 in a set
D3. When the cardinality of D3 reaches a given threshold, one updates P ′

1,3,2

and empties D3. Clearly the current value of P1,3,2(w1, w2) depends on both
P ′

1,3,2(w1, w2) and D3.
In more details, one initially sets D3 = ∅ and P ′

1,3,2 = P1,3,2. Let μ3 ∈ [0, 1]
be a parameter to be fixed later. When one removes a node w3 from W3, w3 is
added to D3 and, if |D3| > n�3−1+μ3 , one executes the following steps:

– P ′
1,3,2 is updated by subtracting from P ′

1,3,2(w1, w2) the number
ΔP1,3,2(w1, w2) of 2-length paths from w1 to w2 through a node in D3.

– Set D3 is emptied.

The current value of P1,3,2(w1, w2), for every w1 ∈ W1 and w2 ∈ W2, is given
by:

P1,3,2(w1, w2) = P ′
1,3,2(w1, w2)−ΔP1,3,2(w1, w2). (3)

Let

β̃(�) = min
μ2,μ3∈[0,1]

max{ω(�1, �3 − 1 + μ3, �2)− μ3, ω(�1, �3 − 1 + μ3, �2 − 1), (4)

ω(�1, �2 − 1 + μ2, �3)− μ2, ω(�1, �2 − 1 + μ2, �3 − 1)}.

Theorem 1. The algorithm above maintains the number of cliques of fixed car-
dinality � in which each node of a graph of n nodes is contained, during deletion
of nodes. The preprocessing time of the algorithm is O(nβ(�)) and its amortized
update time per deletion is O(nβ̃(�)).

Proof. The correctness of the algorithm is a consequence of Equations (2)
and (3).

Consider now the time complexity of the algorithm. Set Wi(u), i ∈ {1, 2, 3},
contains O(n�i−1) nodes. The number ΔP1,3,2(w1, w2) of 2-length paths from w1

to w2 through a node in D3 can be obtained by multiplying the n�1 × n�3−1+μ3

adjacency matrix of the nodes in W1 with the nodes in D3 by the n�3−1+μ3 ×
n�2 adjacency matrix of the nodes in D3 with the nodes in W2. This costs
O(nω(�1,�3−1+μ3,�2)). The value of P ′

1,3,2 can be updated within the same time
bound. Note that the deletion of O(n�3−1) nodes in W3 corresponds to each dele-
tion of one node in G. This means that one updates P ′

1,3,2 every Ω(nμ3) deletions
in G. Then the amortized update cost per deletion is O(nω(�1,�3−1+μ3,�2)−μ3).
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Table 1. Optimal values of μ2 and μ3 for varying �.

� μ2 and μ3

3 μ2 = μ3 = 1+α−αω
4−2α−ω

4 μ2 = 1−α(3−ω)
ω−1−α

; μ3 = ω − 2
3k + 2 ≥ 5 μ2 = μ3 = 1−α

1+α(ω−3)

3k ≥ 6 μ2 = μ3 = 1+α−αω
4−αω−ω

3k + 1 ≥ 7 μ2 = 1; μ3 = αω−2
1−α

Table 2. Values of β̃(�) for varying �.

� β̃(�)
3 5−α−ω(α+1)

4−2α−ω

3k + 1 ≥ 4 kω
3k + 2 ≥ 5 kω + 1−α

1+α(ω−3)

3k ≥ 6 kω − ω + 1 + ( 1+α−αω
4−αω−ω

)(1 − αω−2
1−α

)

Following Equation (3), the current value of P1,3,2(w1, w2), for every w1 ∈W1

and w2 ∈ W2(u), can be computed in O(nω(�1,�3−1+μ3,�2−1)) time. This is the
time required to multiply the n�1 × n�3−1+μ3 adjacency matrix of the nodes in
W1 with the nodes in D3 by the n�3−1+μ3 ×n�2−1 adjacency matrix of the nodes
in D3 with the nodes in W2(u).

Then the cost of updating K̃3(w), for each w ∈ W1, after the deletion
of the nodes in W2(u), is O(nω(�1,�3−1+μ3,�2)−μ3 + nω(�1,�3−1+μ3,�2−1)). Analo-
gously, the cost of updating K̃3(w) after the deletion of the nodes in W3(u) is
O(nω(�1,�2−1+μ2,�3)−μ2 +nω(�1,�2−1+μ2,�3−1)), where μ2 ∈ [0, 1]. The claim follows
by fixing μ2 and μ3 as suggested by Equation (4).

In next section we will show how to choose μ2 and μ3 so as to minimize the
complexity of the algorithm.

4.1 Bounds on the Complexity

In this subsection we want to estimate the complexity of the decremental al-
gorithm described above according to the current best bounds on rectangular
matrix multiplication. For this purpose, we will use the bounds on ω(r, s, t) given
by Equation (1) and by the following equation [11]. For any 0 ≤ t ≤ 1 ≤ r:

ω(t, 1, r) ≤
{

r + 1 + o(1) 0 ≤ t ≤ α;
r + 1 + (t− α)ω−2

1−α + o(1) α < t ≤ 1.
(5)

With simple calculations involving Equations (1) and (5) one obtains the results
of Table 1 and 2.

Summarizing these results, the update cost is O(nβ̃(�)) = O(nβ(�)−δ(�)),
where:
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δ(�) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.800 if � = 3;
0.832 if � (mod 3) = 0, � ≥ 6;
1.000 if � (mod 3) = 1;
0.978 if � (mod 3) = 2.

Thus our algorithm performs updates roughly n0.8 times faster than recomputing
everything from scratch.

In Table 3, the complexity of the decremental algorithm is compared with
the complexity of the static algorithm for 3 ≤ � ≤ 8.

Table 3. Running time comparison of the static and dynamic algorithms for counting
the cliques of cardinality �.

� Static [7] Dynamic
3 O(n2.376) O(n1.575)
4 O(n3.376) O(n2.376)
5 O(n4.220) O(n3.241)
6 O(n4.751) O(n3.919)
7 O(n5.751) O(n4.751)
8 O(n6.595) O(n5.616)

5 Fast Inverse Consistency

Let G be a consistency graph with k partitions of size at most d. Consider the
problem of computing the largest (for number of nodes) induced subgraph G�-IC

of G such that all its partitions are non-empty and all its nodes are �-inverse
consistent, or determine that such graph does not exist. This problem is well
defined:

Lemma 2. Let G�-IC be the set of all the induced subgraphs of G such that all
their partitions are non-empty and all their nodes are �-inverse consistent. If
G�-IC is not empty, it contains a unique graph G�-IC of maximum cardinality.

Proof. Suppose that there exist two distinct graphs G1 = G[V1] and G2 = G[V2]
in G�-IC of maximum cardinality. Then G′ = G[V1 ∪ V2] is an induced subgraph
of G, of cardinality strictly greater than G1 and G2, whose nodes are �-inverse
consistent. This is a contradiction.

The fastest algorithm known to solve this problem [3] has a O(k�d�) time
complexity. In this section we present a faster algorithm for the same problem,
which is based on the decremental algorithm of Section 4. Its time complexity
is O(k�dβ̃(�)+1) = O(k�dβ(�)+0.2). This improves on the O(k�d�) bound for any
� ≥ 3.

Our algorithm works as follows. Nodes which are not �-inverse consistent are
removed from G one by one. The procedure ends when all the nodes in G are
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�-inverse consistent or a partition becomes empty. In the first case, at the end
of the procedure G is equal to G�-IC. In the second case, G�-IC is empty.

We have to show how nodes which are not �-inverse consistent are detected
along the way. First of all, one checks all the nodes and removes the nodes which
are not �-inverse consistent. Then one has to propagate efficiently the effects of
deletions. In fact, the deletion of one node can induce as a side effect the deletion
of other nodes (which were previously recognized as �-inverse consistent).

Consider the deletion of a node v ∈ Vi. Let G�(i) be the set of graphs induced
on G by the nodes of � distinct partitions, including partition Vi. For each graph
G′ in G�(i) and for each node w of G′, one has to check whether w belongs to at
least one �-clique of G′.

In more details, a set DelSet of integers is used to keep trace of the partitions
into which a deletion occurred: whenever a node v in a partition Vi is removed,
i is stored in DelSet. We can distinguish two main steps in the algorithm: an
initialization step and a propagation step. In the initialization step, for each node
v in each partition Vi, one checks for each G′ in G�(i) whether v is contained in at
least one �-clique of G′. If this is not true, v is removed from G. In the propagation
step, until DelSet is not empty, one extracts an integer j from DelSet and
executes the following steps. For each G′ in G�(j) and for each node v in G′, one
checks whether v is contained in at least one �-clique of G′. If not, v is removed
from G.

We have to show how to check whether a node of a graph G′ is contained in at
least one �-clique. The idea is to use the algorithm of previous section. For each
graph G′ induced by � distinct partitions, we maintain the number of �-cliques
in which each one of its nodes is contained. Whenever a node v in a partition
Vi is removed, one updates consequently these quantities for each graph G′ in
G�(i).

Theorem 2. The algorithm above computes G�-IC or determines that it does
not exist in time O(k�dβ̃(�)+1).

Proof. The number of iterations of the propagation step is bounded by the num-
ber of nodes. Then the algorithm halts.

An �-inverse consistent node is clearly never removed. Consider the non-
trivial case that the algorithm halts when no partition is empty. To show cor-
rectness, we prove that all the remaining nodes in G are �-inverse consistent.
Assume by contradiction that, when the algorithm halts, G contains a node
v ∈ Vi which is not �-inverse consistent.

Since all the nodes which are not �-inverse consistent in the original graph are
removed during the initialization step, v must be not �-inverse consistent because
of the deletions which occurred during the initialization and/or the propagation
step.

Consider the sequence v(1), v(2) . . . v(p) in which nodes are removed from the
graph. Let q, q ∈ {1, 2 . . . p}, be the smallest index such that v is not �-inverse
consistent in the graph G[V (q)], where V (q) = V \{v(1), v(2) . . . v(q)}. Let Vj be
the partition of v(q). Notice that v(q) must belong to a graph G′ which contains
partition Vi, and thus node v.
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Table 4. Time complexity comparison of our algorithm to enforce �-inverse consistency
and the previous best.

� Previous best [3] This paper
3 O(k3d3) O(k3d2.575)
4 O(k4d4) O(k4d3.376)
5 O(k5d5) O(k5d4.241)
6 O(k6d6) O(k6d4.919)
7 O(k7d7) O(k7d5.751)
8 O(k8d8) O(k8d6.616)

After the deletion of node v(q), j is inserted in DelSet. In one of the following
steps, j is extracted from DelSet and all the nodes in any graph G′ of G�(j) are
checked. In particular, node v is checked. Since in that iteration the set of nodes
still in G is a subset of V (q), the node v is recognized as a node which is not
�-inverse consistent and it is thus removed, which is a contradiction.

The time complexity of the algorithm is bounded by the cost of maintaining
the number of �-cliques in which each node of each graph G′ is contained. The
number of such graphs is O(k�) (that is the number of ways one can select � from
k partitions), and each graph contains O(d) nodes. Then the total initialization
cost is O(k�dβ(�)). Since each graph G′ is interested by at most O(d) deletions,
the total update cost is O(k�dβ̃(�)+1). Thus the time complexity of the algorithm
is O(k�(dβ(�) + dβ̃(�)+1)) = O(k�dβ̃(�)+1)

The performance of our algorithm and of the previous best are compared in
Table 4 for 3 ≤ � ≤ 8. In particular, our algorithm reduces the time complexity
to enforce path-inverse consistency from O(k3d3) to O(k3d2.575).
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Abstract. Graphs can be represented symbolically by the Ordered Bi-
nary Decision Diagram (OBDD) of their characteristic function. To solve
problems in such implicitly given graphs, specialized symbolic algorithms
are needed which are restricted to the use of functional operations of-
fered by the OBDD data structure. In this paper, a symbolic algo-
rithm for the all-pairs shortest-paths (APSP) problem in loopless di-
rected graphs with strictly positive integral edge weights is presented. It
requires Θ

(
log2(NB)

)
OBDD-operations to obtain the lengths and edges

of all shortest paths in graphs with N nodes and maximum edge weight
B. It is proved that runtime and space usage are polylogarithmic w. r. t.
N and B on graph sequences with characteristic bounded-width func-
tions. This convenient property is closed under certain graph composition
operations. Moreover, an alternative symbolic approach for general inte-
gral edge weights is sketched which does not behave efficiently on general
graph sequences with bounded-width functions. Finally, two variants of
the APSP problem are briefly discussed.

1 Introduction

Algorithms on graphs G with node set V and edge set E ⊆ V 2 typically work
on adjacency lists of size Θ(|V |+ |E|) or on adjacency matrices of size Θ(|V |2).
These representations are called explicit. However, there are application areas in
which problems on graphs of such large size have to be solved that an explicit
representation on today’s computers is not possible. In the area of logic syn-
thesis and verification, state-transition graphs with for example 1027 nodes and
1036 edges occur. Other applications produce graphs which are representable in
explicit form, but for which even runtimes of efficient polynomial algorithms are
not practicable anymore. Modeling of the WWW, street, or social networks are
examples of this problem scenario.

Yet, we expect the large graphs occurring in application areas to contain
regularities. If we consider graphs as Boolean functions, we can represent them
by Ordered Binary Decision Diagrams (OBDDs) [3, 4, 24]. This data structure
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is well established in verification and synthesis of sequential circuits [11, 12, 14,
15, 24] due to its good compression of regular structures. In order to represent a
graph G = (V, E) by an OBDD, its edge set E is considered as a characteristic
Boolean function χE , which maps binary encodings of E’s elements to 1 and
all others to 0. This representation is called implicit or symbolic, and is not
essentially larger than explicit ones. Nevertheless, we hope that advantageous
properties of G lead to small, that is sublinear OBDD-sizes [23, 25].

Having such an OBDD-representation of a graph, we are interested in solving
problems on it without extracting too much explicit information from it. Algo-
rithms that are mainly restricted to the use of functional operations are called
implicit or symbolic algorithms [9, 10, 13, 19, 20, 24, 26, 27]. They are considered
as heuristics to save time and/or space when large structured input graphs do not
fit into the internal memory anymore. Then, we hope that each OBDD-operation
processes many edges in parallel. The runtime of such methods depends on the
number of executed operations as well as on the efficiency of each single one.
The latter in turn depends on the size of the operand OBDDs.

Bahar et al. [1] presented a symbolic shortest-path algorithm for graphs rep-
resented by Algebraic Decision Diagrams (ADDs), which are difficult to analyze
and useful only for a small number of different weight values. In [19], the algo-
rithms of Dijkstra and Bellman-Ford are transformed into symbolic methods and
evaluated in experiments. Although they perform efficiently on a variety of in-
stances, their runtime is always at least linear in the depth of the shortest-paths
tree. In this paper, we present a symbolic OBDD-algorithm for the all-pairs
shortest-paths problem (called APSP-algorithm) that enables polylogarithmic
runtime independent of the input graph’s diameter. Given a symbolically repre-
sented loopless directed graph G = (V, E, c) with strictly positive integral edge
weights, it computes the length of shortest paths from node u to node v (called
u–v-path in the following) for every connected pair (u, v) ∈ V 2, as well as the
edges of such paths. The algorithm performs Θ

(
log2(NB)

)
OBDD-operations

on graphs with N nodes and maximum edge weight B.
The paper is organized as follows: Sections 2 and 3 introduce the principles of

symbolic graph representation and preliminaries before presenting the symbolic
APSP-algorithm in Sect. 4. Section 5 investigates its runtime and space usage
on bounded-width functions as well as graph composition operations preserving
the bounded-width property. In Sect. 6, we consider an alternative symbolic
approach for general integral edge weights and point to a major disadvantage.
Adaptations to two variants of the APSP problem are briefly presented in Sect. 7.
Finally, Sect. 8 gives conclusions on the work.

2 Symbolic Graph Representation

We denote the class of Boolean functions f : {0, 1}n → {0, 1} by Bn. The ith
character of a binary number x ∈ {0, 1}n is denoted by xi and |x| :=

∑n−1
i=0 xi2i

identifies its value.
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Consider a directed graph G = (V, E) with node set V = {v0, . . . , vN−1} and
edge set E ⊆ V 2. G can be represented by a characteristic Boolean function χE ∈
B2n which maps pairs (x, y) ∈ {0, 1}2n of binary node numbers of length n :=
�log N� to 1 iff (v|x|, v|y|) ∈ E. We can capture more complex graph properties
by adding further arguments to characteristic functions. An additional weight
function c : E → {0, . . . , 2m− 1} is modeled by χC ∈ B2n+m which maps triples
(x, y, d) to 1 iff (v|x|, v|y|) ∈ E and c(v|x|, v|y|) = |d|.

A Boolean function f ∈ Bn defined on variables x0, . . . , xn−1 can be repre-
sented by an Ordered Binary Decision Diagram (OBDD) [3, 4, 24]. An OBDD G
is a directed acyclic graph consisting of internal nodes and sink nodes. Each in-
ternal node is labeled with a Boolean variable xi, while each sink node is labeled
with a Boolean constant. Each internal node is left by two edges one labeled by
0 and the other by 1. A function pointer p marks a special node that represents
f . Moreover, a permutation π ∈ Σn called variable order must be respected by
the internal nodes’ labels on every path from p to a sink. For a given variable
assignment a ∈ {0, 1}n, we compute the function value f(a) by traversing G from
p to a sink labeled with f(a) while leaving a node xi via its ai-edge.

An OBDD G with variable order π is called π-OBDD. Its size size(G) is
measured by the number of its nodes. The minimal-size π-OBDD for a function
f ∈ Bn is known to be canonical and will be denoted by πG[f ] in this paper. We
adopt the usual assumption that all OBDDs occurring in symbolic algorithms
have minimal size, since all essential OBDD-operations produce minimized dia-
grams. Figure 1(a) shows the minimal OBDD for an example function. There is
an upper bound of

(
2 + o(1)

)
2n/n for the OBDD-size of every f ∈ Bn; hence,

an edge set E ⊆ V 2 has worst-case OBDD-size O(V 2/ log |V |).
The satisfiability of f can be decided in time O(1). The negation f as well

as the replacement of a function variable xi by a constant ai (i. e., f|xi=ai
) is ob-

tained in time O
(
size(πG[f ])

)
without enlarging the OBDD. Whether two func-

tions f and g are equivalent (i. e., f = g) can be decided in time O
(
size(πG[f ])+

size(πG[g])
)
. These operations are called cheap. Further essential operations are

the binary synthesis f ⊗ g for f, g ∈ Bn, ⊗ ∈ B2 (e. g., “∧” and “∨”), and the
quantification (Qxi)f for a quantifier Q ∈ {∃, ∀}. In general, the result πG[f⊗g]
has size O

(
size(πG[f ]) · size(πG[g])

)
, which is also the general runtime of this op-

eration. The computation of πG
[
(Qxi)f

]
can be realized by two cheap operations

and one binary synthesis in time and space O
(
size2(πG[f ])

)
.

3 Preliminaries

The characteristic functions used for symbolic representation are typically de-
fined on a number of k subsets of Boolean variables, each representing a different
argument (e. g., C(x, y, d) is defined on nodes x, y and weight d). We assume
w. l. o. g. that all arguments consist of the same number of n Boolean variables.
If there is no confusion, both a function χS ∈ Bkn defined on x(1), . . . , x(k) ∈
{0, 1}n as well as its OBDD-representation πG[χS ] will be denoted by
S(x(1), . . . , x(k)) in this paper. Quantifications (Qx

(i)
0 , . . . , x

(i)
n−1) over all n vari-

ables of argument i will be denoted by (Qx(i)).
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(a) Minimal.
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Fig. 1. Minimal (left) and minimal complete (right) π-OBDD for f(x1, . . . , x4) :=
x̄1x̄2 + x̄2x̄3x̄4 + x1x2x3 + x1x2x4 with π := (4, 3, 2, 1)

Interleaved Variable Orders. Assume that each of the k function arguments
x(1), . . . , x(k) ∈ {0, 1}n has its own variable order τi ∈ Σn. The global order π is
called k-interleaved if it respects each τi while reading variables x

(i)
j with same

bit index j en bloc, that is, π := (x(1)
τ1(0), x

(2)
τ2(0), . . . , x

(k)
τk(0), x

(1)
τ1(1)

, . . . , x
(k)
τk(n−1)).

Definition 1. Let ρ ∈ Σk and f ∈ Bkn be defined on variables x(1), . . . , x(k) ∈
{0, 1}n. The argument reordering Rρ : Bkn → Bkn is defined by Rρ

(
f(x(1), . . . ,

. . . , x(k))
)

:= f(x(ρ(1)), . . . , x(ρ(k))).

When using a k-interleaved variable order π, the resulting OBDD πG[Rρ(f)]
has worst-case size k33k · size(πG[f ]) and can be computed in time and space
O
(
k23k · size(πG[f ])

)
(see [23]). Because k is independent of f , this is considered

as linear in size(πG[f ]). For example, argument reordering is used in (2) to replace
the original arguments of C(x, y, d) by temporary ones x(1), x(2), and d(2).

Multivariate Threshold Functions. The APSP-algorithm contains compar-
isons like F (x, y, z) := (|x| + |y| = |z|), which can be realized by multivariate
threshold functions.

Definition 2 (Woelfel [26]). Let f ∈ Bkn be defined on variables x(1), . . . ,x(k)∈
{0, 1}n. Moreover, let W , T ∈ ZZ, and w1, . . . , wk ∈ {−W, . . . , W}. f is called
k-variate threshold function iff

f(x(1), . . . , x(k)) =

(
k∑

i=1

wi · |x(i)| ≥ T

)
.

W is called the maximum absolute weight of f . The class of k-variate threshold
functions f ∈ Bkn with maximum absolute weight W is denoted by TW

k,n.
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Obviously, F can be expressed as (|x| + |y| − |z| ≥ 0) ∧ (|z| − |x| − |y| ≥ 0).
Analogue, the relations >, ≤, and < can be composed of multivariate threshold
functions, too. For constant W and k, such comparisons have π-OBDDs of size
O(n) using a k-interleaved variable order π with increasing bit significance (i. e.,
τi = id) [26].

4 The Symbolic APSP-Algorithm

We now describe the APSP-algorithm for symbolically represented loopless di-
rected graphs G = (V, E, c) with node set V = {v0, . . . , vN−1}, edge set E ⊆ V 2,
edge weight function c : E → IN>0, and B := max{c(e) | e ∈ E}. The maximum
path length in G is B(N − 1) =: L. Let n := �log(L + 1)� = Θ(log N + log B)
the number of bits encoding one node number or distance value. The algorithm
receives the input graph G as an OBDD for the characteristic function C(x, y, d)
with

C(x, y, d) = 1 :⇔
[
(v|x|, v|y|) ∈ E

]
∧
[
c(v|x|, v|y|) = |d|

]
.

4.1 Computing the Shortest Paths’ Lengths

At first, we are interested in the distance function dist : V 2 → IN0 ∪ {∞} which
maps node pairs (u, v) ∈ V 2 to the length ‖p̄‖ of a shortest path p̄ = (u, . . . , v)
with ‖p̄‖ :=

∑
e∈p̄ c(e). The algorithm computes dist’s OBDD S (x, y, d) with

S (x, y, d) = 1 :⇔ dist(v|x|, v|y|) = |d| .

We use functions Si(x, y, d) to represent shortest paths of maximal length 2i−1,
i. e., Si(x, y, d) = S (x, y, d) ∧ (|d| < 2i). These are computed iteratively for
i ∈ {1, . . . , n} until the output of S (x, y, d) = Sn(x, y, d).

We consider S1(x, y, d). Due to c(e) ∈ IN>0, paths of length 21 − 1 = 1
correspond to edges contained in C(x, y, d), whereas |d| = 0 implies x = y.
Hence, S1(x, y, d) is defined by

S1(x, y, d) :=
[
(|d| = 1) ∧ C(x, y, d)

]
∨
[
(|d| = 0) ∧ (x = y)

]
. (1)

In general, we compute Si+1(x, y, d) from C(x, y, d) and Si(x, y, d) using the
following lemma.

Lemma 1. For every path p̄ = (p1, . . . , pK) in G with K ≥ 1, ‖p̄‖ < 2i+1,
i ∈ IN0, there is an edge e := (pj , pj+1) ∈ p̄ such that p̄1 := (p1, . . . , pj) and
p̄2 := (pj+1, . . . , pK) have length ‖p̄1‖, ‖p̄2‖ < 2i.

Proof. We choose edge e = (pj , pj+1) with the smallest index j such that
‖p̄2‖ < 2i. If j = 1 then ‖p̄1‖ = ‖(p1, p1)‖ = 0. If j > 1 we conclude ‖p̄1‖ =
‖(p1, . . . , pj)‖ < 2i from ‖(pj, . . . , pK)‖ ≥ 2i and ‖p̄‖ < 2i+1. ��
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In order to obtain a superset of all paths p̄ with 2i ≤ ‖p̄‖ < 2i+1, we compute
the OBDD Hi+1(x, y, d) of all connected pairs (v|x|, v|y|) ∈ V 2 having v|x|–v|y|-
paths of length |d| that can be partitioned into parts p̄1 and p̄2 by means of
Lemma 1.

Hi+1(x, y, d) := (∃x(1), x(2), d(1), d(2), d(3))
[
(|d(1)|+ |d(2)|+ |d(3)| = |d|)

∧ Si(x, x(1), d(1)) ∧C(x(1), x(2), d(2)) ∧ Si(x(2), y, d(3))
]

(2)

Then, we restrict Hi+1(x, y, d) to those triples (x, y, d) with |d| < 2i+1 (3) and
dist(v|x|, v|y|) = |d| (4); i. e., there is no shorter |d(1)| fulfilling Hi+1(x, y, d(1)).

H ′
i+1(x, y, d) := Hi+1(x, y, d) ∧ (|d| < 2i+1) (3)

∧ (∃d(1))
[
(|d(1)| < |d|) ∧Hi+1(x, y, d(1))

]
(4)

Finally, we cover paths shorter than 2i by adding the previously computed
Si(x, y, d) and obtain Si+1(x, y, d).

Si+1(x, y, d) := Si(x, y, d) ∨H ′
i+1(x, y, d) (5)

The output Sn(x, y, d) = S (x, y, d) represents the OBDD for the all-pairs short-
est-paths function dist.

4.2 Computing the Shortest Paths’ Edges

Having computed S (x, y, d), we are interested in the edges being part of shortest
paths. We represent these by the OBDD P (w, x, y, z) with

P (w, x, y, z) = 1 :⇔ (v|w|, v|x|) ∈ E is part of a shortest v|y|–v|z|-path .

Edge (v|w|, v|x|) lies on a shortest v|y|–v|z|-path iff dist(v|y|, v|w|) + c(v|w|, v|x|) +
dist(v|x|, v|z|) = dist(v|y|, v|z|). This is expressed as

P (w, x, y, z) := (∃d, d(1), d(2), d(3))
[
(|d(1)|+ |d(2)|+ |d(3)| = |d|)

∧ S (y, w, d(1)) ∧ C(w, x, d(2)) ∧ S (x, z, d(3)) ∧ S (y, z, d)
]

. (6)

We now consider the number of OBDD-operations the APSP-algorithm requires.

Theorem 1. The symbolic APSP-algorithm computes the functions S (x, y, d)
and P (w, x, y, z) by Θ(n2) = Θ

(
log2(NB)

)
OBDD-operations.

Proof. The computation of each OBDD Si(x, y, d), i ∈ {1, . . . , n}, as well as
P (w, x, y, z) consists of a constant number of cheap operations, argument re-
orderings, binary syntheses, and quantifications over node numbers or distance
values. Each such quantification involves Θ(n) cheap operations and binary syn-
theses. Due to n = Θ

(
log(NB)

)
, a number of Θ(n2) = Θ

(
log2(NB)

)
OBDD-

operations is executed. ��
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Remark 1. Heuristic methods may behave much worse than the best known gen-
eral methods in the worst case. Most papers on symbolic methods do not contain
any worst-case bounds, because these are not considered as representative. Tak-
ing into account that the OBDD-size of any function f ∈ Bn is bounded by(
2 + o(1)

)
2n/n, the pseudopolynomial bounds of O

(
N16B8 log2(NB)

)
on run-

time and O(N16B8) on space are obtained for the symbolic APSP-algorithm.

4.3 Computing Concrete Shortest Paths

In order to obtain the edges of a concrete shortest v|y∗|–v|z∗|-path for fixed y∗

and z∗, different methods can be used. A straight-forward method to construct
the path nodes v|y∗| = p1, . . . , pK = v|z∗| in time O

(
K · size(P )

)
is to replace the

y- and z-variables in P (w, x, y, z) by the corresponding Boolean constants y∗ and
z∗. Then, we maintain a current node number w∗ (starting with w∗ := y∗) which
replaces the argument w. The resulting OBDD P (x) depends only on the target
node of an edge (v|w∗|, ·) being part of a shortest path (p1, . . . , v|w∗|, . . . , pK).
In time O

(
size(P )

)
we obtain an arbitrary satisfying assignment of x, which

becomes the new actual w∗. This is repeated until w∗ = z∗.
Alternatively, the shortest v|y∗|–v|z∗|-path can be computed by the sym-

bolic blocking-flow construction method presented in [20]. This performs only
O(log2 N) OBDD-operations independent from K = O(N), while it may cause
an exponential blow-up of the OBDD-sizes.

5 Bounded-Width Functions

Symbolic algorithms are well established in logic synthesis because they often
behave better than explicit methods on interesting instances [11–15, 24]. To be
efficient w. r. t. the size of an input graph (i. e., the number of nodes and edges),
this graph must have a compact OBDD-representation. The latter in turn is a
property of the input and does not depend on the algorithm itself. Therefore, it
is reasonable to investigate the behavior of symbolic methods w. r. t. the input’s
and output’s OBDD-size.

Unfortunately, a number of Θ(n) quantification operations applied on a char-
acteristic function f ∈ Bn may suffice to cause an exponential blow-up of its
OBDD-size, which makes it difficult to analyze symbolic algorithms. Moreover,
Feigenbaum et al. [8] proved that even the basic problem of reachability analysis
on OBDD-represented graphs is PSPACE-complete. So in in most papers the
usability of symbolic algorithms is just proved by experiments on benchmark
inputs from special application areas [13–15,17, 27]. In other works considering
more general graph problems, mostly the number of OBDD-operations (often
referred to as “symbolic steps”) is bounded as a hint on the actual runtime [2,
9, 10,18].

Therefore, we propose to consider a class of characteristic functions that
enables statements on the over-all runtime and space usage of the symbolic
APSP-algorithm, and which has also been successfully used in the analysis of
symbolic topological sorting [26] and maximum flow algorithms [20–22].
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Definition 3. A π-OBDD for a function f ∈ Bn is called complete if every
path from its function pointer to a sink has length n.

That is, complete OBDDs are not allowed to skip variable tests. The minimal-
size complete π-OBDD for f ∈ Bn is also known to be canonical [24] and will
be denoted by πGc[f ] in the following. Figure 1(b) shows the minimal complete
OBDD for an example function.

Definition 4. Let F := (fn)n∈IN be a sequence of functions fn∈BN (n), N : IN→
IN, defined on variables x0, . . . , xN (n)−1. Moreover, let Π := (πn)n∈IN be a se-
quence of variable orders πn ∈ ΣN (n). F has bounded width b w. r. t. Π (F is
b-bounded by Π) iff for all n ∈ IN the OBDD πnGc[fn] contains no more than b
nodes labeled with the same variable xi for i ∈ {0, . . . ,N (n)− 1}.

Note that πnG[fn] ≤ πnGc[fn] = O
(
N (n)b

)
.

Theorem 2 (Sawitzki [23]). Let F (1) :=
(
f

(1)
n

)
n∈IN

and F (2) :=
(
f

(2)
n

)
n∈IN

be sequences of functions f
(1)
n , f

(2)
n ∈ BkN (n), k ∈ IN, N : IN → IN, defined on

variables x(1), . . . , x(k) ∈ {0, 1}N (n). Assume that F (1) and F (2) have bounded
width b1 resp. b2 w. r. t. variable orders Π := (πn)n∈IN, πn ∈ ΣkN (n).

1. (Binary Synthesis)
For all n ∈ IN, the OBDD πnG[f (1)

n ⊗ f
(2)
n ], ⊗ ∈ B2, can be computed in

time and space O
(
kN (n)b1b2

)
. The resulting sequence

(
f

(1)
n ⊗ f

(2)
n

)
n∈IN

is

b1b2-bounded by Π.
2. (Quantification)

Let X :=(Xn)n∈IN be a sequence of variable sets Xn⊆{x(j)
i |i∈{0, . . . ,N (n)−1},

j ∈ {1, . . . , k}}. For all n ∈ IN, the OBDD πnG
[
(QXn)f (1)

n

]
, Q ∈ {∃, ∀}, can

be computed in time and space O
(
|Xn|kN (n)22b1

)
. The resulting sequence(

(QXn)f (1)
n

)
n∈IN

is 2b1-bounded by Π.
3. (Argument Reordering)

Let ρ ∈ Σk and assume that Π is k-interleaved. For all n ∈ N, the OBDD
πnG

[
Rρ(f

(1)
n )

]
can be computed in time and space O

(
N (n)b1k

32k
)
. The re-

sulting sequence
(
Rρ(f

(1)
n )

)
n∈N

is b12k-bounded by Π.

The resulting width bounds are worst cases. However, because b1, b2, and
k are independent of n, each operation takes linear time and space w. r. t. the
number N (n) of variables. We conclude that bounded-width functions are closed
under all operations used by the symbolic APSP-algorithm.

Theorem 3 (Woelfel [26]). Let F := (fn)n∈IN be a sequence of functions fn ∈
BkN (n), k ∈ IN, N : IN → IN, and Π := (πn)n∈IN k-interleaved variable orders
πn ∈ ΣkN (n) with increasing bit significance. If for all n ∈ IN it is fn ∈ TW

k,N (n)

then F is O(k2W )-bounded by Π.

Theorem 3 implies that the comparison functions introduced in Sect. 3 are
bounded-width functions.
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5.1 Analysis on Graphs
with Characteristic Bounded-Width Functions

Consider a sequence G = (Gn)n∈IN of valid input graphs Gn = (Vn, En, cn)
for the symbolic APSP-algorithm. Assume that Gn has Nn := |Vn| nodes and
maximum edge weight Bn ∈ IN>0. Let C =

(
C(x, y, d)n

)
n∈IN

be the sequence
of G’s characteristic functions and S =

(
S (x, y, d)n

)
n∈IN

be the characteristic
functions of G’s shortest path distances (distn)n∈IN. Let N (n) = Θ

(
log(NnBn)

)
be the number of bits encoding one node number |x| or distance value |d| ≤
Bn(Nn − 1) of Gn. Moreover, assume a sequence Π := (πn)n∈IN of interleaved
variable orders which read bits of distance values with increasing significance.

Theorem 4. If both C and S are b-bounded by Π, the symbolic APSP-algorithm
computes S (x, y, d)n from C(x, y, d)n in time O

(
log3(NnBn) · α(b)

)
and space

O(log(NnBN ) · α(b)) for all n ∈ IN and

α(b) := 22
O(b3)

.

Proof. All characteristic functions are defined on a constant number of binary
node and distance numbers. Hence, the over-all number of Boolean variables is
Θ
(
log(NnBn)

)
and reordering causes only a linear width growth to bounded-

with functions. We show that all occurring functions are α(b)-bounded by Π . (A
similar analysis technique has been used in [16].)

Using Π enables to realize the comparison (|d| < 2i) by multivariate thresh-
old functions of TO(1)

1,N (n) with width boundO(1) (see Theorem 3). From Si(x,y,d)n

= S (x, y, d)n∧ (|d| < 2i), i ∈ {1, . . . ,N (n)}, and the width bound b of S we con-
clude that Si is O(b)-bounded (see Theorem 2).

It remains to show that each intermediate result is α(b)-bounded. In (1),
S1(x, y, d)n is initialized by three syntheses involving comparisons and the input
OBDD C(x, y, d)n. Analogue to Si, each occurring OBDD has bounded width
O(b).

In (2), three binary syntheses are performed before the existential quantifica-
tions. Being a composition of multivariate threshold functions, the comparison
(|d(1)| + |d(2)| + |d(3)| = |d|) is O(1)-bounded. Due to Theorem 2, each inter-
mediate conjunction result is O(b3)-bounded, whereas each quantification result
(including Hi+1) is 2O(b3)-bounded.

At next, H ′
i+1(x, y, d)n is obtained by restricting Hi+1(x, y, d)n in (3). The

conjunctions with (|d| < 2i+1) resp. (|d(1)| < |d|) do not change the asymptot-
ical width bound 2O(b3). Finally, the quantification (∃d(1)) causes one further

exponentiation and the new width bound is 2ab3 ·22ab3

= α(b) for an appropriate
constant a. This still holds after disjunction with Si(x, y, d)n due to Si being
O(b)-bounded.

Hence, all occurring characteristic functions are α(b)-bounded and have πn-
OBDD-size O

(
log(NnBn) ·α(b)

)
. Due to Theorem 2, each of the Θ

(
log2(NnBn)

)
executed OBDD-operations takes time and spaceO

(
log(NnBn)·α(b)

)
, which im-

plies an over-all runtime bound of O
(
log3(NnBn)·α(b)

)
. Because only a constant
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number of OBDDs has to be stored at any time, the over-all space usage is of
the same magnitude as each single OBDD-size. ��

Analogue to this proof, a width bound of 2O(b4) can be obtained for P (w,x,y,z).
Moreover, a less elegant formulation of (4) improves α(b) to 2O(b3).

Corollary 1. If both C and S are b-bounded by Π, the symbolic APSP-algorithm
computes P (w, x, y, z)n from S (x, y, d)n in time O

(
log2(NnBn) · 2O(b4)

)
and

space O
(
log(NnBn) · 2O(b4)

)
.

How to classify this result? It is desirable that symbolic algorithms behave
efficiently on “small” input OBDDs, which could be defined most general by
being polynomial in the number N (n) = Θ

(
log(NnBn)

)
of Boolean variables.

Theorem 4 can be considered as showing this convenient property for the more
restricted case of bounded-width functions, whose πn-OBDD-size is even linear
in N (n); here, “efficiently” means polylogarithmic w. r. t. Nn and Bn.

Hence, the symbolic APSP-algorithm can be considered as being fixed-para-
meter tractable [7] for the parameter b of characteristic b-bounded functions.

5.2 Composition of Graphs
with Characteristic Bounded-Width Functions

Having the results on bounded-with functions, we ask what kinds of graphs can
be represented by them. Obviously, sequences G = (Gn)n∈IN consisting of a single
graph G1 = · · · = Gn, n ∈ IN, have characteristic bounded-width functions. We
already know multivariate threshold functions to have bounded width. These in
turn can be used to build many simple sequences like empty, complete, complete
bipartite, and grid graphs [23]. From the closedness under OBDD-operations we
now conclude the closedness under four graph composition operations.

Let G(i) :=
(
G

(i)
n = (V (i)

n , E
(i)
n , c

(i)
n )

)
n∈IN

, i ∈ {1, 2, 3}, be sequences of valid
input graphs for the symbolic APSP-algorithm with same notation as G in
Sect. 5.1. Assume V

(1)
n ∩ V

(2)
n = ∅ for all n ∈ IN.

Definition 5. Graph Composition Operations.

1. G(3) is called the cojoin of G(1) and G(2) iff for all n ∈ IN it is V
(3)
n =

V
(1)
n ∪ V

(2)
n , E

(3)
n = E

(1)
n ∪ E

(2)
n , and c

(3)
n (e) = c

(i)
n (e) for e ∈ E

(i)
n .

2. G(3) is called the A-join of G(1) and G(2), A : IN→ IN>0, iff for all n ∈ IN it
is V

(3)
n = V

(1)
n ∪V

(2)
n , E

(3)
n = E

(1)
n ∪E

(2)
n ∪(V (1)

n ×V
(2)
n ), and c

(3)
n (e) = c

(i)
n (e)

for e ∈ E
(i)
n resp. c

(3)
n (e) = A(n) for e ∈ V

(1)
n × V

(2)
n .

3. G(3) is called the node substitution of G(1) in G(2) iff for all n ∈ IN it is
V

(3)
n = V

(1)
n × V

(2)
n ,

E(3)
n =

{(
(t, u), (v, w)

)
|
(
(t, v) ∈ E(1)

n ∧ (u = w)
)
∨ (u, w) ∈ E(2)

n

}
,

and c
(3)
n weights edge

(
(t, u), (v, w)

)
with c

(1)
n (t, v) if u = w resp. c

(2)
n (u, w)

if (u, w) ∈ E
(2)
n .
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4. G(3) is called the product of G(1) and G(2) iff for all n ∈ IN it is V
(3)
n =

V
(1)
n × V

(2)
n ,

E(3)
n =

{(
(t, u), (v, w)

)
|
(
(t, v) ∈ E(1)

n ∧ (u = w)
)

∨
(
(t = v) ∧ (u, w) ∈ E(2)

n

)}
,

and c
(3)
n weights edge

(
(t, u), (v, w)

)
with c

(1)
n (t, v) if u = w resp. c

(2)
n (u, w)

if t = v.

Theorem 5. Let G(3) be the product of G(1) and G(2). If C(i) and S (i) are
b-bounded by Π for i ∈ {1, 2}, then C(3) is O(b2)-bounded by Π and S (3) is
2O(b2)-bounded by Π.

Proof. Let (x(1), x(2)) denote the binary node number of (v|x(1)|, v|x(2)|) ∈ V
(3)
n

corresponding to argument x of a characteristic function. A shortest path in the
product G

(3)
n is composed of shortest paths in G

(1)
n and G

(2)
n . We express C(3)

and S (3) in terms of C(1), C(2), S (1), and S (2):

C(3)(x(1), x(2), y(1), y(2), d)n =
[
C(1)(x(1), y(1), d)n ∧ (x(2) = y(2))

]

∨
[
(x(1) = y(1)) ∧ C(2)(x(2), y(2), d)n

]
,

S (3)(x(1), x(2), y(1), y(2), d)n = (∃d(1), d(2))
[
(|d(1)|+ |d(2)| = |d|)

∧ S (1)(x(1), y(1), d(1))n ∧ S (2)(x(2), y(2), d(2))n

]
.

Analogue to Si in Theorem 4, we conclude C(3) to be O(b2)-bounded. For S (3),
the quantifiers are applied to an intermediate result of width O(b2) and cause
an exponentiation leading to the final bound of 2O(b2). ��

The same width bounds can be obtained for the case of node substitution,
whereas both C(3) and S (3) are O(b2)-bounded if a cojoin or A-join has been
applied. That is, the efficiency results of Theorem 4 also hold for complex graphs
builded from basic ones having characteristic bounded-width functions.

For the complete proofs, further composition operations, and a more com-
prehensive discussion of graphs with characteristic bounded-width functions, the
reader is referred to [23].

6 A Reason for Restricting to Positive Edge Weights

The proof of Theorem 4 makes use of the fact that the intermediate results
Si(x, y, d) can be expressed in terms of the final result S (x, y, d) and the O(1)-
bounded comparison (|d| < 2i) by Si(x, y, d) = S (x, y, d) ∧ (|d| < 2i). For the
correctness of the APSP-algorithm it is essential that only empty paths have
length 0 due to the strictly positive edge weights.
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Instead of computing S (x, y, d) by iterating over the number i ∈ {1, . . . , n}
of considered distance bits, we could iteratively double the number of edges of
considered paths. A corresponding recursion would be

Hi+1(x, y, d) := (∃x(1), d(1), d(2))
[
(|d(1)|+ |d(2)| = |d|)

∧ Si(x, x(1), d(1)) ∧ Si(x(1), y, d(2))
]

,

Si+1(x, y, d) := Hi+1(x, y, d) ∧ (∃d(1))
[
(|d(1)| < |d|) ∧Hi+1(x, y, d(1))

]
,

where Si(u, v, d) now represents all shortest paths consisting of no more than 2i

edges. The resulting algorithm is able to handle graphs with general integral
edge weights that contain no negative cycles. Nevertheless, it does not pro-
vide a counterpart to Theorem 4: There are graphs G∗ := (G∗

n)n∈IN fulfilling
the bounded-width conditions, but whose intermediate functions Si have not
bounded width in general.

The construction of G∗ makes use of the fact that shortest paths may consist
of many edges. If the shortest paths have more then 2i edges, the functions Si

have to represent longer ones, which can be chosen such that the bounded width
of Si would also imply bounded width for the multiplication function MULn.
This contradicts exponential lower bounds on the π-OBDD-size of MULn for
every variable order π. For a detailed discussion, the reader is referred to [23].

There is no symbolic algorithm known to the author which is able to handle
general integral edge weights and that has properties comparable to Theorem 4.

7 Related Problems

The symbolic APSP-algorithm can be easily adapted to compute the edges of al-
most shortest-paths of small stretch [5, 6]. This is done by replacing P (w, x, y, z)
(see (6)) by a function P a,b(w, x, y, z) representing edges (v|w|, v|x|) on v|y|–v|z|-
paths p̄ of length ‖p̄‖ ≤ a · dist(v|y|, v|z|) + b.

P a,b(w, x, y, z) := (∃d, d(1), d(2), d(3))
[
(|d(1)|+ |d(2)|+ |d(3)| ≤ a · |d|+ b)

∧ S (y, w, d(1)) ∧ C(w, x, d(2)) ∧ S (x, z, d(3)) ∧ S (y, z, d)
]

.

Due to the results on the bounded width of multivariate threshold functions,
Corollary 1 holds for P a,b, too.

Finally, we consider a dynamic scenario: After the computation of S (x, y, d),
the weights of an edge set E′ ⊆ E are decreased resulting in the new symbolic
graph C′(x, y, d). If every graph path contains at most one updated edge, the new
distances S ′(x, y, d) can be computed by Θ

(
log(NB)

)
OBDD-operations. v|x|–

v|y|-paths of length |d| containing a decreased edge (vx(1) , vx(2)) are expressed
as

F (x, y, d) := (∃x(1), x(2), d(1), d(2), d(3))
[
(|d(1)|+ |d(2)|+ |d(3)| = |d|)

∧ S (x, x(1), d(1)) ∧ C′(x(1), x(2), d(2)) ∧ S (x(2), y, d(3)) .
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To obtain S ′(x, y, d), we just have to select the smallest |d| with S (x, y, d) ∨
F (x, y, d) = 1 similar to (4). Again, bounded width of C′ and S imply time and
space bounds as in Theorem 4.

8 Conclusions

We presented a symbolic algorithm for the all-pairs shortest-paths problem.
The algorithm works on OBDD-representations of loopless directed graphs G =
(V, E, c) with strictly positive integral edge weights. It computes the lengths
and edges of shortest paths by performing a polylogarithmic number of OBDD-
operations w. r. t. N := |V | and B := max{c(e) | e ∈ E}.

In order to investigate runtime and space usage, bounded-width functions
have been introduced, which have small OBDDs and allow efficient OBDD-
operations. The algorithm is proved to have polylogarithmic runtime and space
usage w. r. t. N and B on graphs whose characteristic functions have bounded
width. This property is closed under important graph composition operations. In
contrast, the bounded-width of input and output does not guarantee efficiency
for symbolic algorithms which iterate over the number of edges of paths instead
of their length.

Finally, adaptations of the symbolic APSP-algorithm to dynamic edge
weights and almost shortest paths of small stretch have been briefly discussed.
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Champs-sur-Marne, 77454 Marne-la-Vallée cedex 2, France

Abstract. Let be the following strategy to construct a walk in a labeled
digraph: at each vertex, we follow the unvisited arc of minimum label. In
this work we study for which languages, applying the previous strategy
over the corresponding de Bruijn graph, we finish with an Eulerian cycle,
in order to obtain the minimal de Bruijn sequence of the language.

1 Introduction

Given a language, a de Bruijn sequence of span n is a periodic sequence such that
every n-tuple in the language (and no other n-tuple) occurs exactly once. Its first
known description appears as a Sanskrit word yamátárájabhánasalagám which
was a memory aid for Indian drummers, where the accented/unaccented syllables
represent long/shorts beats, so all possible triplets of short and long beats are
included in the word. De Bruijn sequences are also known as “shift register
sequences” and was originally studied by N. G. De Bruijn for the binary alphabet
[1]. These sequences have many different applications, such as memory wheels
in computers and other technological device, network models, DNA algorithms,
pseudo-random number generation, modern public-key cryptographic schemes,
to mention a few (see [2],[3],[4]). Historically, de Bruijn sequence was studied
in an arbitrary alphabet considering the language of all the n-tuples. There
is a large number of de Bruijn sequence in this case, but only a few can be
generated efficiently, see [5] for a survey about this subject. In 1978, Fredricksen
and Maiorana [6] give an algorithm to generate a de Bruijn sequence of span n
based in the Lyndon words of the language, which resulted to be the minimal
one in the lexicographic order, and this algorithm was proved to be efficient [7].
Recently, the study of these concepts was extended to languages with forbidden
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substrings: in [8] it was given efficient algorithms to generate all the words in a
language with one forbidden substring, in [9] the concept of de Bruijn sequences
was generalized to restricted languages with a finite set of forbidden substrings
and it was proved the existence of these sequences and presented an algorithm
to generate one of them, however, to find the minimal sequence is a non-trivial
problem in this more general case. This problem is closely related to the “shortest
common super-string problem” which is a important problem in the areas of
DNA sequencing and data compression.

In this work we study the de Bruijn sequence of minimal lexicographical
label. In section 2 we present some definitions and previous results on de Bruijn
sequences and the BEST Theorem, necessary to understand the main problem,
and we prove a result related with the BEST Theorem which will be useful in the
following sections. In section 3 we study the main problem, giving some results
on the structure of the de Bruijn graph. Finally, in section 4 we present some
remarks and extensions of this work.

2 De Bruijn Sequence of Restricted Languages

2.1 Definitions

Let A be a finite set with a linear order <. A word on the alphabet A is a finite
sequence of elements of A, whose length is denoted by |w|.

A word p is said to be a factor of a word w if there exist words u, v ∈ A∗

such that w = upv. If u is the empty word ε then p is called a prefix of w, and if
v is empty then is called a suffix of w. If p �= w then p is a proper factor, proper
prefix or proper suffix, respectively.

The set A∗ of all the words on the alphabet A is linearly ordered by the
alphabetic order induced by the order < on A. By definition, x < y either if x
is a prefix of y or if x = uav, y = ubw with u, v, w ∈ A∗, a, b ∈ A and a < b. A
basic property of the alphabetic order is the following: if x < y and if x is not a
prefix of y, then for any pair of words u, v, xu < yv.

Given an alphabet A, a full shift AZZ is the collection of all bi-infinite se-
quences of symbols from A. Let F be a set of words over A∗. A subshift of finite
type (SFT) is the subset of sequences in AZZ which does not contain any factor
in F . We will refer to F as the set of forbidden blocks or forbidden factors.

Given a set F of forbidden blocks, in this work we will say that a word w is
in the language if the periodical word w∞, composed by infinite repetitions of
w, is in the language of the SFT defined by F . The set of all the words of length
n in the language defined by F will be denoted by WF(n).

A SFT is irreducible if for every ordered pair of blocks u, v in the language
there is a block w in the language so that uwv is a block of the language.

A de Bruijn sequence of span n in a restricted language is a circular string
BF ,n of length

∣∣WF (n)
∣∣ such that all the words in the language of length n are

factors of BF ,n. In other words,

{(BF ,n)i . . . (BF ,n)i+n−1 mod n|i = 0 . . . n− 1} =WF (n)
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These concepts are studied in [9], extending the known results on subshifts
of finite type to this context. In particular two results are relevant in this work,
the first one is a bound in the number of words of length n in the language:

∣∣WF (n)
∣∣ = Θ (λn)

where log(λ) is the entropy of the system (see [10]). The second result proves
the existence of a de Bruijn sequence:

Theorem 1. For any set of forbidden substrings F defining an irreducible sub-
shift of finite type, there exists a de Bruijn sequence of span n.

This last theorem is a direct consequence of the fact that the de Bruijn
graph of span n is an Eulerian graph. The de Bruijn graph of span n, denoted
by GF ,n, is the largest strongly connected component of the directed graph with
|A|n vertices, labeled by the words in An, and the set of arcs

E =
{
(as, sb)|a, b ∈ A, s ∈ An−1, asb ∈ WF(n + 1)

}

where the label of the arc e = (as, sb) is l(e) = b. Note that if the SFT is
irreducible, this graph has only one strongly connected component of size greater
than 1, so there is no ambiguity in the definition.

There are not two vertices with the same label, hence from now we identify
a vertex by its label. If W = e1 . . . ek is a walk over GF ,n, we denote the label of
W by l(W ) = l(e1) . . . l(ek), and by l(W )j the concatenation of of j times l(W ).

There exists a bijection between the arcs of GF ,n and the words inWF (n+1),
because to each arc with label a ∈ A with tail at w′ ∈ An we can associate the
word w′a which is, by definition, a word in WF(n + 1). Equally if w′a is a word
of WF (n + 1), with a ∈ A, then there exists a vertex w′ and an arc with tail at
this vertex with label a.

Furthermore, if a word w is a label of a walk from u to v then v is a suffix
of length n of uw. In the same way, if w ∈ WF(n + 1) then there is a cycle C in
GF ,n with label l(C) such that l(C)

n+1
|C| = w.

With all these properties it is easy to see that a de Bruijn sequence of span
n + 1 is exactly the label of an Eulerian cycle over GF ,n.

2.2 The BEST Theorem

BEST is an acronym of N. G. de Bruijn, T. van Aardenne-Ehrenfest, C. A. B.
Smith and W. T. Tutte, the BEST Theorem (see [11]) gives a correspondence
between Eulerian cycles in a digraph and its rooted trees converging to the root
vertex.

Let r be a vertex of an Eulerian digraph G = (V, E), a spanning tree con-
verging to the root r is a spanning tree such that there exists a directed path
from each vertex to the root.

Given an Eulerian cycle starting at the root of an Eulerian digraph, if for
every vertex of G we take the last arc with tail at this vertex in the cycle then
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Fig. 1. De Bruijn digraph of span 5 for the Golden Mean (F = {11}).

we obtain a spanning tree converging to the root. Conversely, given a spanning
tree converging to the root, a walk over G starting at the root and using the
arc in the tree only if all the arcs with tail at this vertex has been used, is an
Eulerian cycle. A walk over the graph of this kind will be called a walk “avoiding
the tree”.

The BEST Theorem proves that for every different spanning tree we have a
different Eulerian cycle. Therefore it also allows us to calculate the exact number
of Eulerian cycles on a digraph, which is given by

CF = MT ·
|V |∏
i=1

(d+(vi)− 1)!

where MT is the number of rooted spanning trees converging to a given vertex.
We bound the second term by ((d̄+−1)!)|V | where d̄+ is the mean of the outgoing
degrees over all the vertices, so we have a lower bound to the number of de Bruijn
sequences

CF = Ω
(
�λ− 1�!λn−1

)

in particular, for a system with λ ≥ 3 the number of the Bruijn sequences of
span n is exponential in the number of words in the language of length n − 1.
In the systems with 3 > λ > 1 this bound is generally also true, because the
underestimated term MT is generally exponential, for example, in the system
without restrictions of alphabet {0, 1}, this term is equal to 22n−1

.
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Now, we define formally a walk “avoiding a subgraph”. Let r be any vertex.
For each vertex v �= r in GF ,n let ev be any arc starting at v. Let H be the
spanning subgraph of GF ,n with arc set {ev : v ∈ V (GF ,n) \ {r}}.

Is easy to see that H is composed by cycles, subtrees converging to a cycle,
and one subtree converging to r. For a vertex not in a cycle of H , we define Hv

as the directed subtree converging to v in H .
We define recursively a walk in GF ,n which avoid H . It starts at the root

vertex r. Let v0e0 · · · vi be the current walk. If there is an unvisited arc ei =
(vi, vi+1) not in H we extend the walk by eivi+1. Otherwise we use the arc evi

in H .
We say that a walk over the graph exhausts a vertex if the walk use all the

arc having the vertex as head or tail.
The next lemma studies in which order the vertices are exhausted in a walk

avoiding H

Lemma 1. Let W be a walk starting at vertex r avoiding H, let v be a vertex
and let Wv the subpath of W starting at vertex r and finishing when it exhausts
the vertex v. Then for each vertex u in Hv, u is exhausted in Wv.

Proof. By induction in the depth of the subtree with root v. If v is a leaf of
H then Hv = {v}. If v is not a leaf and Wv exhaust v, then Wv visit all arc
(v, w) ∈ E, and therefore all the arcs (u, v) ∈ E, applying induction hypothesis
to all vertices u such that (u, v) ∈ E we prove the result. ��

3 Minimal de Bruijn Sequence

Let m = m1, . . . mn be the vertex of GF ,n of maximum label in the lexicographic
order. We are interested in to obtain the Eulerian cycle of minimum label starting
at m. In order to obtain this cycle, we define the following walk: Starting at m, at
each vertex we continue by the arc with the lowest label between the unvisited
arcs with tail at this vertex. A walk constructed by this way will be called a
minimal walk. By definition, there is no walk with a lexicographically lower
label, except its subwalks. In this section we characterize when a minimal walk
starting at m is an Eulerian cycle, obtaining the minimal de Bruijn sequence.

For each vertex v let e(v) be the arc with tail at the vertex v and with
maximum label. Let T be the spanning subgraph of GF ,n composed by the set
of arcs e(v), for v ∈ V (GF ,n), v �= m. The label of e(v) will be denoted by γ(v).

Is easy to see that a minimal walk is a walk avoiding T , hence we can study
a minimal walk analyzing the structure of T .

Theorem 2. A minimal walk is an Eulerian cycle if and only if T is a tree.

Proof. A minimal walk W exhaust m, if T is a tree then by Lemma 1 all vertices
of T are exhausted by W , hence W is an Eulerian cycle. Conversely, if W is an
Eulerian cycle, by the BEST Theorem the subgraph composed by the last arc
visited at each vertex is a tree, but this subgraph is T , concluding that T is a
tree. ��
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In the unrestricted case (when WF(n) = An), the subgraph T is a regular
tree of depth n where each non-leaf vertex has |A| sons, therefore the minimal
walk is an Eulerian cycle.

In the restricted case, we do not obtain necessarily an Eulerian cycle, because
T is not necessarily a spanning tree converging to the root due to the existence
of cycles.

We will study the structure of the graph GF ,n and the subgraph T , specially
the cycles in T . The main theorem of this section characterizes the label of cycles
in T , allowing us to characterize the languages where the minimal walk is an
Eulerian cycle.

First of all, we will prove some properties of the de Bruijn graph to under-
stand the structure of the arcs and cycles in T .

Lemma 2. Let k ≥ n + 2. Let W = v0e0v1e1 · · · ek−1vk be a walk in T . Then
l(e0) ≤ l(en+1).

Proof. Since vn = l(e0) · · · l(en−1) we have that l(e1) · · · l(en−1)l(en)l(e0) ∈
WF (n + 1). Hence there exists an arc (vn+1, u) with label l(e0), where vn+1 =
l(e1) · · · l(en−1)l(en). By the definition of T , l(e0) ≤ γ(vn+1) = l(en+1). ��

Corollary 1. Let C be a cycle in T . Then |C| divides n+1. Moreover for every
vertex u in C, uγ(u) = l(C)

n+1
|C| .

Proof. Let consider the walk W = v0e0 · · · e|C|−1v|C| = v0e0 · · · e(n+1)|C|−1v0e0v1

as n + 1 repetitions of the cycle C. From Lemma 2 we have l(e0) ≤ l(en+1) ≤
l(e2(n+1)) ≤ l(e(n+1)|C|) = l(e0). Since we can start the cycle in any vertex we
conclude that l(ei) = l(e(n+1)+i) for every i = 0, . . . , |C| − 1. Hence |C| divides
n + 1. The second conclusion comes from the fact that the label of any walk of
length at most n ending in a vertex u is a suffix of u. ��

Let u �= m be a vertex. Among all the words which are prefix of m and suffix
of u, let g(u) be the longest one (notice that g(u) could be the empty word ε
and |g(u)| < n). Let α(u) = m|g(u)|+1 be the letter following the end of g(u) in
m.

Notice that in the unrestricted case, |g(u)| is the distance over the graph
from the vertex u to m. This function will be essential in the study of T . The
next lemma give us a bound over the label of the arcs in terms of the function
g(·).

Lemma 3. For all pairs of adjacent vertices u and v, l(uv) ≤ α(u). Moreover,
if l(uv) < α(u) then g(v) = ε and if l(uv) = α(u) then g(v) = g(u)l(uv).

Proof. g(u) is a suffix of u, and ul(uv) ∈ WF(n + 1), so g(u)l(uv) is a prefix of
a word in WF (n + 1). Since m is the maximal word and g(u) is a prefix of m we
get l(uv) ≤ α(u).

If l(uv) = α(u) then g(u)l(uv) is a prefix of m and a suffix of v. Hence
g(u)l(uv) is a suffix of g(v). Since by removing the last letter of a suffix of v we
obtain a suffix of u we conclude g(v) = g(u)l(uv).
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We show that if g(v) �= ε then α(u) ≥ l(uv). Let g(v) = g′(v)l(uv), then
g′(v) is a suffix of u and a prefix of m. Hence g′(v) is a suffix of g(u). Therefore
g′(v)α(u) is a factor of m. By the definition of g(v) and the maximality of m
g(v) is greater or equal (lexicographically) than g′(v)α(u). We conclude that
α(u) ≥ l(uv). ��

In the unrestricted case, where T is a tree of depth n, all the arcs not in T
go to a leaf. In the general case we can define an analog to the leaves.

We say that a vertex u is a floor vertex if g(u) = ε. Notice that in the
unrestricted case the leaves of T are the floor vertices. We say that a vertex u is
a restricted vertex if γ(u) < α(u).

Corollary 2. If a cycle in T contains l restricted vertices, then it has exactly l
floor vertices.

Proof. From Lemma 3 we know that if a vertex u is restricted then for every arc
(u, v) the vertex v is a floor vertex. To conclude it is enough to see that in T an
arc (u, v) with u unrestricted has label α(u). Then v is not a floor vertex. ��

Corollary 3. Let P be a path in T starting in a floor vertex, ending in a vertex
v and with unrestricted inner vertices. Then l(P ) = g(v).

Proof. We apply induction on the length of P . The case where the length of P
is zero is direct since v is a floor vertex. Let us consider the case where P has
length at least 1. Since v is not a restricted vertex, from Lemma 3 we know that
g(v) = g(u)l(uv), where u is its neighbor in P . By the induction assumption
g(u) = l(P ′) where P ′ is the path obtained from P removing the arc (u, v).
Hence g(v) = l(P ′)l(uv) = l(P ). ��

We will use these results to characterize the label of cycles in T , specially we
will characterize the restricted vertices of a cycle.

Theorem 3. Let C be a cycle in T , let u0, . . . , uk−1 be the restricted vertices in
C ordered according to the order of C. Then ui = g(ui+1)γ(ui+1) · · ·γ(ui−1)g(ui)
for i = 0, . . . , k − 1, where i + 1, . . . , i− 1 are computed mod k.

Proof. From Corollary 3 the label of C is g(u0)γ(u0) · · · g(uk−1) γ(uk−1), and
by definition of GF ,n, ui is the label of any walk over GF ,n of length n finishing
in ui, so by Corollary 1 we can take the walk Ck composed by k = (n + 1)/|C|
repetitions of C finishing in ui, concluding that ui = g(ui+1)γ(ui+1) · · · γ(ul)
l(Ck−1)g(u1) · · · γ(ui−1) g(ui). ��

Now we are able to give a characterization of the languages where a minimal
walk produces an Eulerian cycle.

Let H be the subset of WF(n + 1) where w ∈ H if and only if w can be
decomposed by w = h0β1 . . . hk−1βk−1 where each hi ∈ A∗ and βi ∈ A satisfy
the following conditions:
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Fig. 2. Example of the subgraph T for n = 4 and F = {01111} in a binary alphabet.

1. hi = m1 . . . m|hi| (a prefix of m)
2. βi < m|hi|+1

3. ∀β′ > βi, hi+1βi+1 . . . βi−1h
iβ′ /∈ WF(n + 1)

Now, we are able to characterize the languages where a minimal walk is an
Eulerian cycle.

Theorem 4. A minimal walk is an Eulerian cycle if and only if H = ∅.

Proof. From Theorem 2, we have to prove that T is a tree if and only if H = ∅.
If T is not a tree then T has a cycle C. Let u0 . . . uk−1 be the restricted

vertices of the cycle. By Theorem 3 l(C) = g(u0)γ(u0) . . . g(uk−1)γ(uk−1) and
by Corollary 1 |C| divides n + 1. Therefore there exists a word w in WF(n + 1)
composed by (n + 1)/|C| repetitions of C. By definition of H we conclude that
w ∈ H.

Conversely, let us assume that T has no cycles and H �= ∅. Let w be a word
in H. By definition of GF ,n, there is a cycle C in GF ,n of length dividing n + 1
such that C (or repetitions of C) has label w. We shall prove that C is also a
cycle in T .

Let v be a vertex of C, with v = . . . βi−1(hi)1 . . . (hi)j where j = 0 . . . |hi|.
If 0 < j < |hi|, then m1 . . .mj is a suffix of v, so α(v) = mj+1 = (hi)j+1 hence
the arc of C with tail at v is in T . If j = 0 then γ(v) = m1 therefore the arc
in C is in T . Finally, let consider the case j = |hi|.If (v, v′) is the arc in C then
l(vv′) = βi. Since w ∈ H, no arc in GF ,n with tail at v has a label greater
than βi. Then (v, v′) ∈ T . We conclude that C is a cycle in T which leads to a
contradiction. ��
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4 Some Remarks

The previous analysis considers only the minimal walk starting at the root ver-
tex. This case does not necessarily produce the minimal label over all Eulerian
cycles, because there can be Eulerian cycles starting at a non root vertex with
a lexicographically lower label.

It is also possible to construct an algorithm which modifies T in order to de-
stroy cycles in T , and obtain the minimal de Bruijn sequence for any irreducible
subshift of finite type. However further research in this subject allow us to con-
struct an algorithm to obtain the minimal Eulerian cycle for any edge-labeled
digraph (see [12]), but this result escapes to the scope of this work.
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Abstract. In two previous papers we have investigates the problem of
computing the least common subsumer (lcs) and the most specific con-
cept (msc) for the description logic EL in the presence of terminological
cycles that are interpreted with descriptive semantics, which is the usual
first-order semantics for description logics. In this setting, neither the lcs
nor the msc needs to exist. We were able to characterize the cases in
which the lcs/msc exists, but it was not clear whether this characteriza-
tion yields decidability of the existence problem.
In the present paper, we develop a common graph-theoretic generaliza-
tion of these characterizations, and show that the resulting property is
indeed decidable, thus yielding decidability of the existence of the lcs
and the msc. This is achieved by expressing the property in monadic
second-order logic on infinite trees. We also show that, if it exists, then
the lcs/msc can be computed in polynomial time.

1 Introduction

Description Logics (DLs) [6] are a class of knowledge representation formalisms
in the tradition of semantic networks and frames, which can be used to rep-
resent the terminological knowledge of an application domain in a structured
and formally well-understood way. DL systems provide their users with stan-
dard inference services (like subsumption and instance checking) that deduce
implicit knowledge from the explicitly represented knowledge. More recently,
non-standard inferences [8] were introduced to support building and maintain-
ing large DL knowledge bases. For example, computing the most specific concept
(msc) of an individual and the least common subsumer (lcs) of concepts can be
used in the bottom-up construction of description logic knowledge bases. In-
stead of defining the relevant concepts of an application domain from scratch,
this methodology allows the user to give typical examples of individuals belong-
ing to the concept to be defined. These individuals are then generalized to a
concept by first computing the most specific concept of each individual (i.e.,
the least concept description in the available description language that has this
individual as an instance), and then computing the least common subsumer of
� Partially supported by DFG (BA 1122/4-3) and by National ICT Australia Limited.

J. Hromkovič, M. Nagl, and B. Westfechtel (Eds.): WG 2004, LNCS 3353, pp. 177–188, 2004.
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these concepts (i.e., the least concept description in the available description
language that subsumes all these concepts). The knowledge engineer can then
use the computed concept as a starting point for the concept definition.

The motivation for the graph-theoretic problem solved in the present paper
comes from non-standard inferences in the DL EL, which is rather inexpres-
sive, but nevertheless has significant applications. For example, SNOMED, the
Systematized Nomenclature of Medicine [11, 10] employs EL. Unfortunately, the
most specific concept of a given individual need not exist in EL. For other DLs,
this problem had been overcome by allowing for cyclic concept definitions [7]. In
order to adapt this approach also to EL, the impact on both standard and non-
standard inferences of cyclic definitions in this DL had to be investigated first.
This investigation was carried out in a series of papers [4, 3, 1, 2] that gives an
almost complete picture of the computational properties of the above mentioned
standard and non-standard inferences in EL with cyclic concept definitions1. Re-
garding standard inferences, the subsumption and the instance problem turned
out to be polynomial for both types of semantics. Regarding non-standard infer-
ences, w.r.t. gfp-semantics the lcs and the msc always exist and can be computed
in polynomial time. Descriptive semantics is less well-behaved. In [1] it was shown
that, in general, the lcs need not exist. The paper gave a characterization for the
existence of the lcs, but the question of how to decide this condition remained
open. In [2], analogous results were shown for the msc.

The present paper introduces a common graph-theoretic generalization of
these open problems: the problem whether a so-called two-level graph is of
bounded cycle depth. Then it shows that this problem is decidable by reduc-
ing it to monadic second-order logic on infinite trees [9]. Finally, it shows that, if
a two-level graph is of bounded cycle depth, then its cycle depth is polynomially
bounded by the size of the graph. This implies that the lcs/msc can be computed
in polynomial time, provided that it exists.

Because of the space constraints, we concentrate on the graph-theoretic prob-
lems. The reader is referred to [6] for more information on DLs in general, to
[4, 3, 1, 2] for previous results on EL with cyclic definitions, and to [5] for a long
version of this paper containing full proofs and the connection to the lcs/msc.

2 The Cycle Depth of Two-Level Graphs

In this section, we define the relevant graph-theoretic notions, and relate them
to the problem of computing the lcs and the msc in EL.

For the purpose of this paper, a graph is of the form (V, E, L), where V is a
finite set of nodes, E ⊆ V ×Ne × V is a set of edges labeled by elements of the
finite set Ne, and L is a labelling function that assigns to every node v ∈ V a
subset L(v) of the finite set Nn.

Simulations are binary relations on the nodes of a graph that respect node
labels and edges in the sense defined below.
1 Cyclic definitions in EL can either be interpreted with greatest fixpoint (gfp) or with

descriptive semantics, which is the usual first-order semantics for DLs.
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p1 : u = u0
r1→ u1

r2→ u2
r3→ u3

r4→ · · ·
Z↓ Z↓ Z↓ Z↓

p2 : v = v0
r1→ v1

r2→ v2
r3→ v3

r4→ · · ·

Fig. 1. An infinite (u, v)-simulation chain.

u = u0
r1→ u1

r2→ · · ·
rn−1→ un−1

rn→ un

Z↓ Z↓ Z↓
v = v0

r1→ v1
r2→ · · ·

rn−1→ vn−1

Fig. 2. A partial (u, v)-simulation chain.

Definition 1. Let G = (V, E, L) be a graph. The binary relation Z ⊆ V × V is
a simulation on G iff

(S1) (v1, v2) ∈ Z implies L(v1) ⊆ L(v2); and
(S2) if (v1, v2) ∈ Z and (v1, r, v

′
1) ∈ E, then there exists a node v′2 ∈ V such

that (v′1, v
′
2) ∈ Z and (v2, r, v

′
2) ∈ E.

Here, we are not interested in arbitrary simulations containing a given pair of
nodes, but in ones that are synchronized in the sense defined below. If (u, v) ∈ Z,
then any infinite path p1 starting with u can be simulated by an infinite path p2

starting with v. We call the pair p1, p2 a (u, v)-simulation chain (see Figure 1).
Given an infinite path p1 starting with u, we construct a simulating path p2 step
by step. The main point is, however, that the decision which node vn to take in
step n should depend only on the partial simulation chain already constructed,
and not on the parts of the path p1 not yet considered.

Definition 2. Let G be a graph, Z a simulation on G, and (u, v) ∈ Z.

(1) A partial (u, v)-simulation chain is of the form depicted in Figure 2. A se-
lection function S for u, v and Z assigns to each partial (u, v)-simulation chain
of this form a node vn such that (vn−1, rn, vn) is an edge in G and (un, vn) ∈ Z.

(2) Given an infinite path u = u0
r1→ u1

r2→ u2
r3→ u3

r4→ · · ·, one can use the
selection function S to construct a simulating path. In this case we say that the
resulting infinite (u, v)-simulation chain is S-selected.

(3) The simulation Z is called (u, v)-synchronized iff there exists a selection
function S for Z such that the following holds: for every infinite S-selected (u, v)-
simulation chain of the form depicted in Figure 1 there exists an i ≥ 0 such that
ui = vi.

As shown in [4, 2], the subsumption and the instance problem in EL can be re-
duced to the problem of deciding whether there exists a synchronized simulation
on a given graph (which is a problem decidable in polynomial time [4]).
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To define the main graph-theoretic problem addressed in this paper, we must
first introduce two-level graphs.

Definition 3. The graph G = (V, E, L) is called two-level graph iff V can be
partitioned into disjoint sets V = V1 ∪ V2 such that (v, r, v′) ∈ E implies v ∈ V1

or v′ ∈ V2. To make this partition explicit, we write two-level graphs as G =
(V1 ∪ V2, E, L).

Intuitively, a two-level graph G = (V1∪V2, E, L) consists of a subgraph G1 on V1,
a subgraph G2 on V2, and possibly additional edges from nodes of G1 to nodes
of G2. Next, we consider graphs obtained from G by unraveling cycles in G1 up
to a certain length.

Definition 4. Let G = (V1 ∪ V2, E, L) be a two-level graph and u ∈ V1. The
k-unraveling of G w.r.t. u is the two-level graph G(k)

u := (V (k)
1 ∪ V2, E

(k), L(k)),
where

V
(k)
1 := {u(k)

0 } ∪ {v(k)
i | v ∈ V1 and 1 ≤ i ≤ k};

E(k) := {(v, r, w) | (v, r, w) ∈ E and v, w ∈ V2} ∪
{(v(k)

i , r, w
(k)
i+1) | (v, r, w) ∈ E and v

(k)
i , w

(k)
i+1 ∈ V

(k)
1 } ∪

{(v(k)
i , r, w) | (v, r, w) ∈ E and v

(k)
i ∈ V

(k)
1 , w ∈ V2};

L(k)(v) := L(v) if v ∈ V2,

L(k)(v(k)
i ) := L(v) if v

(k)
i ∈ V

(k)
1 .

Given two different such unravelings G(k)
u = (V (k)

1 ∪V2, E
(k), L(k)) and G(�)

u =
(V (�)

1 ∪ V2, E
(�), L(�)) of G = (V1 ∪ V2, E, L), their union G(k)

u ∪ G(�)
u is defined in

the obvious way by building the union of the node sets, the edge sets, and the
labeling functions2.

Definition 5. Let G = (V1 ∪ V2, E, L) be a two-level graph, u ∈ V1, and k �=
�. We say that G(�)

u subsumes G(k)
u (G(k)

u  G(�)
u ) iff there is a (u(�)

0 , u
(k)
0 )-

synchronized simulation Z on G(k)
u ∪ G(�)

u such that (u(�)
0 , u

(k)
0 ) ∈ Z.

It is easy to see that � > k implies G(�)
u  G(k)

u (see also Lemma 3 in [2]).
Given a node u ∈ V1 of a two-level graph G = (V1 ∪ V2, E, L), we are interested
in finding an index k such that the subsumption relationship also holds in the
other direction.

Definition 6. Let G = (V1 ∪ V2, E, L) be a two-level graph and u ∈ V1. We say
that G is of bounded cycle depth w.r.t. u iff there is a k ≥ 0 such that G(k)

u  G(�)
u

holds for all � > k. In this case, the minimal such k is called the cycle depth of
G w.r.t. u.

The main decision problem considered in this paper is the following:

2 Note that the two labeling functions agree on V2, shared by G(k)
u and G(�)

u .
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Given: A two-level graph G = (V1 ∪ V2, E, L) and a node u ∈ V1.
Question: Is G of bounded cycle depth w.r.t. u?

Before stating the connection of this problem to the problem of deciding the
existence of the lcs and the msc in EL w.r.t. descriptive semantics, let us consider
three examples.

First, consider the two-level graph G1 on the left-hand side of Figure 3 (where
V1 := {u} and V2 := {v}). This graph is of bounded cycle depth w.r.t. u. In fact,
already k = 0 satisfies Definition 6 since any infinite path starting with u

(�)
0 will

eventually lead to v, and thus can be simulated by the path u
(0)
0

r→ v
r→ v

r→ · · ·.
Second, consider the two-level graph G2 on the right-hand side of Figure 3

(where V1 := {u} and V2 := {v1, v2}). Though this graph looks quite similar to
G1, it is not of bounded cycle depth. In fact, G(k)

2,u � G
(k+1)
2,u for all k ≥ 0. To see

this, consider the path p1 : u
(k+1)
0

r→ · · · r→ u
(k+1)
k

r→ u
(k+1)
k+1 of length k + 1 in

G(k+1)
2,u . If this path is simulated by a path p2 of length k + 1 in G(k)

2,u, then the
last node of p2 is either v1 or v2. Assume without loss of generality that it is v1.
If we continue the path p1 by an infinite loop through v2, then this infinite path
p′1 can only be simulated in G(k)

2,u by continuing to go through the node v1. Thus,
no synchronization occurs.

Third, the two-level graph G3 depicted in Figure 4 (where V1 = {u1, u2}
and V2 = {v}) is not of bounded cycle depth w.r.t. u1, but shows a somewhat
surprising phenomenon. Here we have G(k)

3,u1
 G(k+1)

3,u1
for all odd numbers k,

but G(k)
3,u1

� G(k+1)
3,u1

if k is even. First, assume that k is odd. Then there are no

infinite paths in G(k+1)
3,u1

that use the node u
(k+1)
1,k+1 since this node does not have

a successor node. As an easy consequence, every infinite path in G(k+1)
3,u1

can be

simulated by “the same” path in G(k)
3,u1

. In addition, the finite path to u
(k+1)
1,k+1 can

r
r r

u r
∅∅
v

G1 : u r
∅G2 :

r

v1

∅

v2

∅
r

r

Fig. 3. Two two-level graphs, one of bounded and one of unbounded cycle depth.

r1u1

∅∅
u2

G3 :

r2

r2
v

∅
r2

Fig. 4. Another two-level graph of unbounded cycle depth.
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be simulated by a path in G(k)
3,u1

that ends with v. Consequently, G(k)
3,u1

 G(k+1)
3,u1

for odd k. In contrast, if k is even, then u
(k+1)
1,k has a successor node in G(k+1)

3,u1

(namely u
(k+1)
2,k+1) reached by an edge with label r1. Any node reachable from u

(k)
1,0

in G(k)
3,u1

by a path of length k (i.e., u
(k)
1,k or v) does not have a successor w.r.t.

r1. Thus, there is a path in G(k+1)
3,u1

that cannot be simulated by a path in G(k)
3,u1

,

which shows that G(k)
3,u1

� G(k+1)
3,u1

for even k.
The last example shows that, in order to find the number k required by

Definition 6, one cannot simply test subsumption between G(i+1)
u and G(i)

u for
i = 0, 1, 2, . . . until G(i)

u  G(i+1)
u , and then stop with output k = i.

The characterization of the lcs and the msc given in [1] and [2], respectively,
can easily be reformulated in terms of the notions introduced above. As an easy
consequence, the existence problem can be reduced to the main decision problem
introduced in this paper (see [5] for detail).
Proposition 1. The problems of deciding the existence of the lcs (msc) in EL
with descriptive semantics can be reduced in polynomial time to the problem of
deciding whether a two-level graph G is of bounded cycle depth. In addition, if
the cycle depth of G is polynomial in the size of G, then the lcs (msc) can be
computed in polynomial time.

3 Deciding if a Graph Is of Bounded Cycle Depth

Let G = (V1∪V2, E, L) be a two-level graph, and u ∈ V1. We reduce the problem
of deciding whether G is of bounded cycle depth w.r.t. u to the problem of
deciding whether a certain formula φu

G of monadic second-order logic (MSO) on
infinite trees is satisfiable. As shown by Rabin [9], the satisfiability problem for
MSO is decidable. In the following, we assume that the reader is familiar with
MSO on infinite trees (see, e.g., [12] for an introduction). Before we define the
formula φu

G , we describe the intuition underlying this reduction.

Encoding Synchronized Simulations by Infinite Trees. The main idea underlying
our reduction is that all simulation chains starting with a given pair of nodes
of a graph G = (V, E, L) and selected by some selection function (see Defini-
tion 2) can be represented by an infinite tree t. Basically, the nodes of this tree
are labeled with pairs of nodes of G. Assume that the node n of t has label
(u, v). If (u, r1, u1), . . . , (u, rp, up) are all the edges in G starting with u, then
the node n has p successor nodes n1, . . . , np that are respectively labeled with
(u1, v1), . . . , (up, vp), where vi is the result of applying the selection function to
the partial simulation chain determined by the path in t leading to the node n
and the edge (u, ri, ui). Since in MSO one considers trees with a fixed branch-
ing factor, the node n may have some additional dummy successor nodes labeled
with the dummy label �. Note that the simulation relation Z itself is also encoded
in the tree t: it consists of all tuples (u, v) such that (u, v) ∈ V ×V is the label of
a node n of t. Because of the definition of the successor nodes of the nodes in t,
property (S2) in the definition of a simulation relation (Definition 1) is satisfied.
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To ensure that Z also satisfies (S1), it is enough to require L(u) ⊆ L(v) for all
labels (u, v) ∈ V ×V of nodes in t. Given two nodes u, v of G, how can we ensure
that the simulation relation Z encoded by such a tree t contains (u, v) and is
(u, v)-synchronized? To ensure that (u, v) ∈ Z, we require that (u, v) is the label
of the root of t. To ensure synchronization, we must require that on all infinite
paths in the tree t, we encounter a label of the form (v′, v′) or �. This can easily
be expressed in MSO.

What we have said until now can be used to show that the following problem
is decidable: given a graph G and nodes u, v in G, is there a (u, v)-synchronized
simulation Z such that (u, v) ∈ Z. However, decidability of this problem (in poly-
nomial time) was already shown directly in [4] without the need for a reduction
to the (complex) logic MSO.

What we actually want to decide here is whether a given two-level graph
G = (V1 ∪ V2, E, L) is of bounded cycle depth w.r.t. a node u ∈ V1. For this, we
must consider not G itself but rather unravelings G(k)

u and G(�)
u of G. In addition,

we need to express the quantification on the numbers k and � (“there exists a k
such that for all �”) by (second-order) quantifiers in MSO.

Encoding Unravelings G(k)
u and G(�)

u and the Quantification on k and �. Assume
that we have an infinite tree t encoding a (u, u)-synchronized simulation Z on
the two-level graph G, as described above. If (v1, v2) is the label of a node n on
some level i of t, then there are paths of length i in G from u to v1 and from u

to v2, respectively. The first (second) path corresponds to a path in G(�)
u (G(k)

u )
iff i ≤ � or v1 ∈ V2 (i ≤ k or v2 ∈ V2). Thus, the idea could be to introduce two
second-order variables X and Y (with the appropriate quantifier prefix ∃Y.∀X.),
and then ensure that X contains exactly the nodes of t up to some level �, and
Y contains exactly the nodes of t up to some level k. In order to ensure that the
paths in G encoded in the tree t really belong to G(�)

u (when considering the first
component of the node labels) and G(k)

u (when considering the second component
of the node labels), we must require that, for a node n labeled with (v1, v2), we
have X(n) or v1 ∈ V2, and Y (n) or v2 ∈ V2. Unfortunately, sets containing
exactly the nodes of an infinite tree up to some depth bound are not expressible
in MSO3. However, for our purposes it turns out to be sufficient to ensure that
X and Y are finite prefix-closed sets (i.e., if a node n that is not the root node
belongs to one of them, then its predecessor also does). Both “prefix-closed” and
“finite” can easily be expressed in MSO.

The Formal Definition. Let G = (V1 ∪ V2, E, L) be a two-level graph, u ∈ V1,
and assume that b is the maximal number of successors of the nodes in G. To
define the formula φu

G , we consider the infinite tree with branching factor b (i.e.,
we have b successor functions s1, . . . , sb in the signature of MSO). As usual,
we will denote second-order variables (standing for sets of nodes) by upper-case
letters, and first-order variables (standing for nodes) by lower-case letters. The
second-order variables used in the following are
3 Since then one could also express that two nodes are on the same level, which is

know to be inexpressible in MSO [12].
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– the variables X and Y whose function was already explained above;
– variables Q(u1,u2) for (u1, u2) ∈ (V1 ∪ V2) × (V1 ∪ V2) and Q�. The values

of these variables encode the selection function S by encoding all S-selected
simulation chains. Intuitively, a node n of the tree belongs to Q(u1,u2) (Q�)
iff it is labeled with (u1, u2) (�);

– the variable P standing for an infinite path in the tree, which is used to
express the synchronization property.

The formula φu
G is defined as

∃Y.(PrefixClosed(Y ) ∧ Finite(Y ) ∧ ∀X.(PrefixClosed(X) ∧ Finite(X)⇒ ψu
G)),

where PrefixClosed(.) and Finite(.) are the well-known MSO-formulae expressing
that a set of nodes is prefix-closed and finite, respectively4, and ψu

G consists of
an existential quantifier prefix on the variables Q(u1,u2) for (u1, u2) ∈ (V1∪V2)×
(V1 ∪ V2) and Q�, followed by the conjunction ϑu

G of the following formulae:

– A formula expressing that any node has exactly one label.

∀x.
∨

l1∈(V1∪V2)×(V1∪V2)∪{�}

⎛
⎜⎜⎜⎜⎝

Ql1(x) ∧
∧

l2∈(V1∪V2)×(V1∪V2)∪{�}
l2 =l1

¬Ql2(x)

⎞
⎟⎟⎟⎟⎠

– A formula expressing that the root has label (u, u).

Q(u,u)(root)

– Formulae expressing the function of the sets X and Y . For all (u′, u′′) ∈
V1 × (V1 ∪ V2) the formula

∀x.Q(u′,u′′)(x) ⇒ X(x)

and for all (u′, u′′) ∈ (V1 ∪ V2)× V1 the formula

∀x.Q(u′,u′′)(x) ⇒ Y (x)

– Formulae encoding the requirements on the selection function. Let (u′, u′′) ∈
(V1 ∪ V2) × (V1 ∪ V2), and let (u′, r1, v

′
1), . . . , (u

′, rp, v
′
p) be all the edges in

E with source u′. First, for each i, 1 ≤ i ≤ p, we have one formula in the
conjunction. If v′i ∈ V2, then we take the formula

∀x.Q(u′,u′′)(x) ⇒

⎛
⎝ ∨

(u′′,ri,v′′)∈E∧L(v′
i
)⊆L(v′′)

Q(v′
i
,v′′)(si(x))

⎞
⎠

4 Defining PrefixClosed(.) is a simple exercise. A definition of Finite(.) can be found
in [12].
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Otherwise (i.e., if v′i ∈ V1), then we take the formula

∀x.
(
Q(u′,u′′)(x) ∧X(si(x))

)
⇒

⎛
⎝ ∨

(u′′,ri,v′′)∈E∧L(v′
i
)⊆L(v′′)

Q(v′
i
,v′′)(si(x))

⎞
⎠

Second, we need formulae that fill in the appropriate dummy nodes:

∀x.Q(u′,u′′)(x) ⇒

⎛
⎝

j=b∧
j=p+1

Q�(sj(x))

⎞
⎠

and for all i, 1 ≤ i ≤ p, such that v′i ∈ V1

∀x.
(
Q(u′,u′′)(x) ∧ ¬X(si(x))

)
⇒ Q�(si(x))

– A formula expressing that dummy nodes have only dummy successors.

∀x.Q�(x) ⇒

⎛
⎝

j=b∧
j=1

Q�(sj(x))

⎞
⎠

– A formula expressing the synchronization property.

∀P.Path(P ) ⇒ ∃x.P (x) ∧
(

Q�(x) ∨
∨

v∈V2

Q(v,v)(x)

)

where Path(.) is the well-known MSO-formula expressing that a set of nodes
consists of the nodes on an infinite path starting with the root (see [12]).

Lemma 1. Let G = (V1 ∪ V2, E, L) be a two-level graph, and u ∈ V1. Then G is
of bounded cycle depth w.r.t. u iff the MSO-formula φu

G is satisfiable.

Since satisfiability in MSO on infinite trees is decidable, the lemma (whose
proof can be found in [5]) implies decidability of bounded cycle depth.

Theorem 1. The problem of deciding whether a two-level graph is of bounded
cycle depth w.r.t. one of its nodes is decidable.

Unfortunately, the reduction does not give us a polynomial (or even a singly
exponential) complexity bound for this decision problem. This is due to the fact
that the formula φu

G contains several quantifier changes5.
Together with Propositions 1, this theorem implies:

Corollary 1. The existence of the lcs and the msc is decidable in EL with de-
scriptive semantics.
5 In Rabin’s decidability proof based on automata, every negation requires a worst-

case exponential complementation operation, and expressing a universal quantifier
by an existential one (as required by Rabin’s decision procedure) introduces two
negation signs.
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4 A Polynomial Bound on the Cycle Depth

A given two-level graph need not be of bounded cycle depth, but if it is then we
can show that its cycle depth is actually polynomial in the size of the graph.

Theorem 2. Let G = (V1 ∪ V2, E, L) be a two-level graph, u ∈ V1, and let m be
the cardinality of V1 ∪V2. Then G is of bounded cycle depth iff G has cycle depth
d w.r.t. u for some d ≤ m2.

The “if” direction of this theorem is trivial. To prove the “only-if” direction,
assume that k > m2 is such that G(k)

u  G(�)
u for all � > k. To show that the cycle

depth of G w.r.t. u is at most m2, it is sufficient to show that G(m2)
u  G(�)

u holds
for all � > m2. To show this, it is in turn enough to show that G(m2)

u  G(k)
u . The

fact that is enough is a consequence of the following two facts:

1. G(k)
u  G(�)

u is trivially true for all � < k and it holds for all � > k by our
assumption on k.

2. The subsumption relation  is transitive (see [5]).

Thus, the above theorem is proved once we have shown the following lemma.

Lemma 2. Let G = (V1 ∪ V2, E, L) be a two-level graph containing the node
u ∈ V1, let m be the cardinality of V1∪V2, and let k > m2 be such that G(k)

u  G(�)
u

for all � > k. Then we have G(m2)
u  G(k)

u .

Proof. By our assumption on k we know that G(k)
u  G(2k)

u , i.e., there is a
(u(2k)

0 , u
(k)
0 )-synchronized simulation Z such that (u(2k)

0 , u
(k)
0 ) ∈ Z. Let S be

the corresponding selection function. As sketched in the previous section, the
S-selected (u(2k)

0 , u
(k)
0 )-simulation chains can be encoded into an infinite tree.

To be more precise, let b be the maximal number of successors of a node in
G, and let L2k (Lk) be the set of all nodes up to level 2k (level k) of the infinite
tree with branching factor b. Now, G(k)

u  G(2k)
u implies that the formula ψu

G is
satisfiable with X replaced by L2k and Y replaced by Lk. We can use the sets
assigned to the variables Ql for l ∈ (V1∪V2)×(V1∪V2)∪{�} to label the nodes of
the infinite tree with branching factor b by elements of (V1∪V2)×(V1∪V2)∪{�}.
Let t denote the labeled tree obtained this way. Our goal is to transform t into
a new tree t′ that encodes a (u(k)

0 , u
(m2)
0 )-synchronized simulation containing

(u(k)
0 , u

(m2)
0 ). The main properties that this new tree must satisfy are:

1. If the node n of t′ is labeled with an element of (V1 ∪ V2)× V1, then n is of
depth at most m2.

2. If the node n of t′ is labeled with (u′, v′) ∈ V1 × (V1 ∪ V2) and is of depth
smaller than k, then its successor nodes must cover all the successors in G
of u′, i.e., not only the ones in V2, but also the ones in V1.

3. The synchronization property is satisfied, i.e., any infinite path in t′ contains
a node whose label is � or of the form (v′, v′) for some node v′ ∈ V2.
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In order to satisfy the first property, we modify the tree t as follows. Assume
that n is a node of t with label (u′, v′) ∈ (V1 ∪ V2)× V1 that is on a level above
m2. By the definition of t, v′ ∈ V1 implies that n is at most at level k (since all
such nodes must belong to Lk). Now, consider the path in t from the root to
n. Since this path is longer than m2, there are two distinct nodes n1, n2 on this
path such that their labels agree. Assume that n1 comes before n2 on this path.
Then we replace the subtree at node n1 by the subtree at node n2.

We continue this replacement process until all nodes with a label in (V1 ∪
V2) × V1 are on depth at most m2. This process terminates since there were
only finitely many such nodes in t (all of them have depth at most k), and the
replacements do not increase the depth of a node, but strictly decrease the depth
of at least one node with a label in (V1 ∪ V2) × V1. In addition, since all nodes
with a label in (V1 ∪ V2) × V1 are of depth at most k in t, the depth of a given
node can decrease by at most k over the whole replacement process.

Let t′ denote the labeled tree obtained this way. Then we can show that t′

satisfies the properties 1, 2, 3 mentioned above, and thus encodes a (u(k)
0 , u

(m2)
0 )-

synchronized simulation that contains (u(k)
0 , u

(m2)
0 ) (see [5] for details).

One might think that this polynomial bound on the cycle depth of a two-level
graph can be used to show that the problem of deciding whether a graph is of
bounded cycle depth or not can also be decided in polynomial time. However,
this does not appear to be the case. In fact, assume that G = (V1 ∪V2, E, L) is a
two-level graph with m nodes, and let u ∈ V1. Then we know that G is of bounded
cycle depth iff G(m2)

u  G(�)
u for all � > m2. However, testing this directly is still

not possible since we would need to check infinitely many subsumption relation-
ships. We could, of course, also try to use Theorem 2 to modify the reduction
given in Section 3. However, all we would gain by this is that we could avoid the
existential quantification over Y ; the (expensive) universal quantification over
X would still remain.

Together with Propositions 1, Theorem 2 implies:

Corollary 2. The lcs (msc) in EL with descriptive semantics can be computed
in polynomial time, provided that it exists.

5 Conclusion

We have introduced the notion “bounded cycle depth” of so-called two-level
graphs, and have shown that the corresponding decision problem (i.e.: Given
a two-level graph, is it of bounded cycle depth?) is decidable. In addition, we
have shown that the cycle depth of a two-level graph of bounded cycle depth is
polynomial in the size of the graph. These results solve the two main problems
that were left open in the previous papers [1, 2] on the lcs and the msc in EL
with descriptive semantics: the existence of the lcs (msc) is decidable, and if it
exists, then it can be computed in polynomial time.

What remains open is the exact complexity of the decision problems. Though
this may seem unsatisfactory from a theoretical point of view, it is probably not
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very relevant in practice. In fact, independent of whether the lcs of the concepts
A, B defined in a terminology T exists or not, the results in [1] show how to
compute common subsumers Pi (i ≥ 0) of A, B in T . The results of Section 4
imply that we can compute a number k that is polynomial in the size of T such
that A, B in T have an lcs w.r.t. descriptive semantics iff Pk is the lcs. Thus, we
may just dispense with deciding whether the lcs exists, and return Pk. If the lcs
exits, then Pk is the lcs. Otherwise, Pk is a common subsumer, and we can take
it as an approximation of the lcs. The same is true for the msc.

Another interesting question is whether two-level graphs and the problem of
deciding whether they are of bounded cycle depth also has applications in other
areas. Is the cycle depth of a two-level graph an artifact of the characterization
of the lcs and the msc in EL with descriptive semantics given in [1, 2], or is it a
natural notion that is of interest in its own right?
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Abstract. In portable multimedia systems a number of communicat-
ing tasks has to be performed on a set of heterogeneous processors in
an energy-efficient way. We model this problem as a graph optimization
problem, which we call the minimum weight processor assignment prob-
lem. We show that our setting generalizes several problems known in lit-
erature, including minimum multiway cut, graph k-colorability, and min-
imum (generalized) vertex covering. We show that the minimum weight
processor assignment problem is NP-hard, even when restricted to in-
stances where the (process) graph is a bipartite graph with maximum
degree at most 3, or with only two processors, or with arbitrarily small
weight differences, or with only two different edge weights. For graphs
with maximum degree at most 2 (or in fact the larger class of degree-
2-contractible graphs) we give a polynomial time algorithm. Finally we
generalize this algorithm into an exact (but not efficient) algorithm for
general graphs.

1 Introduction

In portable multimedia systems a number of communicating tasks has to be
performed on a set of heterogeneous processors. The key issue in the design
of portable multimedia systems is to find a good balance between flexibility
and high-processing power on one side, and area and energy-efficiency of the
implementation on the other side (cf. [7]).

In this paper we will model a particular problem from this area as a graph
optimization problem, in which the vertices of the graph represent the tasks,
and its edges represent the communication between two tasks. Each task must
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be performed on exactly one processor. Each possible choice of processors in-
volves a certain amount of costs reflecting the energy consumption involved in
running a particular task on a particular processor, whereas the assignment of
two communicating tasks to two processors involves a certain amount of costs,
too, reflecting the energy involved in transferring data between the processors.
The problem boils down to finding a “mapping” of the set of tasks to the set
of processors that minimizes the total costs. We call this problem the Minimum
Weight Processor Assignment problem (MWPA).

The paper is organized as follows.The next section gives a sketch of the
background of the problem, and the motivation from current research in the area
of Embedded Systems. The next section is followed by a section that provides the
necessary definitions and gives a formal description of our model. In the fourth
section we give a survey of NP-hard problems that all can be reduced to MWPA.
We show that MWPA is already NP-hard if the set of processors is restricted to
two, or if the (process) graphs are taken from the class of connected bipartite
graphs with maximum degree at most 3. For the class of degree-2-contractible
graphs we give a polynomial time algorithm. In the fifth section we generalize
this algorithm into an exact (but not efficient) algorithm for any (process) graph.

2 Background and Motivation

2.1 General Background

Current research in the area of Embedded Systems is for a great deal driven
by the explosive growth in the use of handheld mobile devices, such as cellular
phones, personal digital assistants, digital cameras, global positioning systems,
and so forth. Personal mobile computing (often referred to as ubiquitous comput-
ing) is likely to play a significant role in driving technology in the next decade.
In this paradigm, the basic personal computing and communication device will
be an integrated, battery-operated device, small enough to carry along all the
time.

The technological developments needed to establish this paradigm of personal
mobile computing lead to many challenging problems. In particular, these devices
have limited battery resources, must handle diverse data types, and must operate
in environments that are insecure, unplanned, and show different characteristics
over time.

Traditionally, (embedded) systems that have demanding applications - e.g.,
driven by portability, performance, or cost - lead to the development of one or
more custom processors or application-specific integrated circuits (ASICs) to
meet the design objectives. However, the development of ASICs is expensive in
time, manpower and money.

Another way to solve the problems has been to use general-purpose proces-
sors, i.e., trying to solve all kinds of applications running on a very high speed
processor. A major drawback of using these general-purpose devices is that they
are extremely inefficient in terms of utilising their resources.

In current developments the key issue to overcome the drawbacks of the
aforementioned approaches is to use reconfigurable heterogeneous processors.
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2.2 Current Research

To match the required computation with the architecture, in current research
like the CHAMELEON project which is taking place at the University of Twente,
an alternative approach is made in order to meet the requirements of future low-
power hand-held systems. In the CHAMELEON project we apply reconfigura-
tion at multiple levels of granularity. This means that the architecture contains
different processing entities: e.g. a general-purpose processor (e.g. ARM core), a
bit-level reconfigurable part (embedded FPGA) and several word-level reconfig-
urable parts (e.g. Montium tiles). The main philosophy used is that operations
on data should be done at the place where it is most energy-efficient and where
it minimizes the required communication. Partitioning is an important archi-
tectural decision, which dictates where applications can run, where data can be
stored, and also the complexity of the mobile and the cost of communication
services. Our approach is based on a dynamic (i.e. at run-time) matching of the
architecture and the application.

2.3 Software Design Flow

The key issue in the design of portable multimedia systems is to find a good
balance between flexibility and high-processing power on one side, and area and
energy-efficiency of the implementation on the other side. The design of the
above-mentioned architecture is useless without a proper tool chain supported
by a solid design methodology. At various levels of abstraction, modern comput-
ing systems are defined in terms of processes and communication (or, at least,
synchronisation) between processes. Many applications can be structured as a
set of processes or threads that communicate via channels. These threads can be
executed on various platforms (e.g. general purpose CPU, FPFA, FPGA, etc).

2.4 Process Graphs

We use a so-called Kahn based process graph model, which abstracts system
functionality into a set of processes/tasks represented as vertices in a graph, and
represents functional dependencies among processes (channels) with graph edges.
The functionality of a process graph will be referred to as a set of (sub)tasks. This
model emphasizes communication and concurrency between system processes.
Edge labels are used to represent communication bandwidth requirements, while
vertex labels may store a measure of process computational requirements. The
costs associated with a process graph in the context of reconfiguration can be
divided into communication costs between the processes, computational costs
of the processes and initialization costs of the (sub)tasks. The costs can be
expressed in terms of energy consumption, resource usage, and aspects of time
(latency, jitter, etc). The mapping of applications (a set of communicating tasks)
is done in two phases. In the first phase (macro-mapping) for each set of tasks the
optimal (or near to optimal) processing entity is determined. This phase defines
what is processed where and when. In the second phase (micro-mapping) for
each task a detailed mapping is derived to the platform of choice. The problem
of this paper is related to the first phase.
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2.5 Macro-mapping
In a reconfigurable system, application instantiation consists first of all of finding
a suitable partition of the system specification into parts that can be mapped
onto the most appropriate resources of the system (processors, FPGAs, coarse-
grain reconfigurable entities). Because of the dynamics of the mobile environ-
ment we would like to perform the macro-mapping at run-time. The search
for the ‘best’ mapping is typically a very hard problem, due to the size of the
search space. We will refrain from giving more technical details, but stick to the
(sub)problem of mapping the tasks to the heterogeneous processors in such a
way that the costs of running the tasks on the processors and transferring data
between communicating tasks is minimized.

3 Preliminaries

For the modeling of the optimization problem described in the previous section
we consider simple graphs, denoted by G = (VG, EG), where VG is a finite
nonempty set of vertices and EG is a set of unordered pairs of vertices, called
edges.

For a vertex u ∈ VG we denote its neighborhood, i.e. the set of adjacent
vertices, by N(u) = {v | (u, v) ∈ EG}. The degree deg(u) of a vertex u is the
number of edges incident with it. The symbol ΔG denotes the maximum degree
among all vertices of G. If all vertices in G have the same degree k ∈ N, then G
is called k-regular.

A graph G is called connected if for every pair of distinct vertices u and v,
there exists a path connecting u and v, i.e., a sequence of distinct vertices starting
with u and ending with v where each pair of consecutive vertices forms an edge
of G.

A graph is called bipartite if it is simple and its vertices can be partitioned
into two sets A and B such that each edge has one of its end vertices in the set
A and the other in B.

If e = (u, v) ∈ EG, the contraction G/e of G is the simple graph obtained
from G by replacing u and v and the edges incident with u and v by one new
vertex uv and edges joining uv with the vertices adjacent to u or v in G. For
another graph H , G is said to be contractible to H if H can be obtained from G
by successive contractions of edges. A graph G is called degree-2-contractible if G
is contractible to the graph consisting of one vertex by successively contracting
edges incident with vertices of degree 1 or 2. Note that the class of degree-2-
contractible graphs is equal to the class of graphs that have tree-width at most
two (cf. [2]).

Now let G = (VG, EG) be a simple graph with vertex set VG and edge set
EG. The vertices of G represent the tasks that have to be performed on a set
P of processors. An edge e = (u, v) exists if and only if there is communication
between the processes of task u and task v.

Let the vertex weight wu
p ≥ 0 represent the costs of the process of task u, if

u is performed on processor p ∈ P . This way we define a weight vector wu of
size |P | for u ∈ VG.
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If in practice u cannot be performed on processor p, this can be expressed
by setting wu

p = ∞ (or a bounded, sufficiently large number M).
For e = (u, v) ∈ EG let the edge weight we

pq ≥ 0 represent the communication
costs between the processes of task u and v, if u is performed on processor p ∈ P
and v is performed on processor q ∈ P . This way we define a matrix W e of size
|P | × |P | for e ∈ EG.

If in practice two tasks u and v cannot be performed on the same processor
p simultaneously, we can model this by adding an edge e = (u, v) and setting
w

(u,v)
pp = M , where M is a sufficiently large number.

The graph G together with the weight vectors wu, and weight matrices W e

is called a weighted process graph, and denoted by Gw.
We call a mapping f : VG → P a processor assignment of G. Let FG denote

the set of all processor assignments of G. We define the weight of a processor
assignment f ∈ FG for a weighted process graph Gw as

w(f) =
∑

v∈VG

wv
f(v) +

∑
(u,v)∈EG

w
(u,v)
f(u)f(v).

A minimum weight processor assignment f∗ is a processor assignment that has
minimum weight, i.e., with w(f∗) = min{w(f) | f ∈ FG}.

The Minimum Weight Processor Assignment problem (MWPA) is the
problem of finding a minimum weight processor assignment for a given weighted
process graph Gw and a set P of processors.

If any minimum weight processor assignment f will map task u on processor
q, we say that u is fixed on q. If wu

p = 0 for all processors p ∈ P , we will say that
u is free.

4 Complexity Results

It is easy to prove that MWPA is an NP-hard problem. In fact several known
NP-hard problems, such as the Minimum Multiway Cut problem ([3]), can be
used to show this. We give the reduction from the Minimum Multiway Cut
problem as an example. In later sections we show relations with other NP-hard
problems which can be applied to show NP-hardness of MWPA for restricted
graph classes, a limited number of processors, or arbitrarily close edge weights.

An instance of the Minimum Multiway Cut problem is formed by an undi-
rected graph G, a subset S ⊆ VG of terminals, and weights c(e) for all e ∈ EG. A
multiway cut is a subset F ⊆ EG such that in the graph G′ = (VG, EG\F ) there
is no path between any pair of terminals from S. The Minimum Multiway Cut
problem is the problem of finding a multiway cut F that minimizes the costs
c(F ) =

∑
e∈F c(e) for a given weighted graph and a given set of terminals.

Observation 1 The Minimum Multiway Cut problem can be reduced to the
Minimum Weight Processor Assignment problem.

Proof. Given a graph G with a set S = {u1, . . . , us} of terminals and weights
c(e) for e ∈ EG define a set of processors P = {p1, . . . , ps}.
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For u /∈ S let wu
p = 0 for all p ∈ P . For ui ∈ S let wu

p = 0 if p = pi and for
p �= pi let wu

p = M, where M is a sufficiently large number. Then each minimum
weight processor assignment fixes each terminal ui ∈ S to its ‘own’ processor pi.
For each e ∈ EG and p, q ∈ P we define we

pq = c(e) if p �= q and we
pq = 0 if p = q.

This way we have constructed an instance (Gw, P ). Our claim is that finding
a multiway cut with minimum costs comes down to solving MWPA on the
instance (Gw , P ).

Let f be a minimum weight processor assignment for (Gw , P ). Then F = {e ∈
EG | e = (u, v) with f(u) �= f(v)} is a multiway cut with costs c(F ) = w(f).
Suppose a multiway cut F ′ exists with c(F ′) < c(F ). We may assume that each
vertex of (VG, EG\F ′) is connected to some ui; otherwise there is a multiway
cut F ′′ ⊂ F ′ with c(F ′′) ≤ c(F ′). Now we define a processor assignment f ′ of
(Gw, P ) by f ′(u) = pi, if there exists a path from u to ui ∈ S in the graph
G′ = (VG, EG\F ′). Obviously, w(f ′) = c(F ′) < w(f), a contradiction.

Hence solving MWPA is at least as hard as solving Minimum Multiway
Cut. ��

In [3] it is shown that the Minimum Multiway Cut problem is already NP-
hard for the class of graphs with three terminals. For two terminals it is poly-
nomially solvable by standard network flow techniques. In the sequel we prove
NP-hardness of MWPA for instances with two processors, and for instances with
only free vertices instead of |VG| − 3 free vertices and 3 fixed vertices.

4.1 Processor Graphs with Only Free Vertices

We show that MWPA is still NP-hard if the instances (Gw, P ) are restricted
to the class of weighted process graphs with only free vertices. For this purpose
we make a reduction from the well-known problem Graph k-Colorability,
which is known to be NP-complete for each integer k ≥ 3 (cf [5]).

Graph k-Colorability (GkC)
Instance: A graph G and a set of colors C = {a1 . . . ak}.
Question: Is G k-colorable, i.e., does there exist a mapping g : VG → C such
that g(u) �= g(v) for all u, v ∈ VG with (u, v) ∈ EG?

Proposition 1. Let G be a class of graphs for which GkC is NP-complete. Then
MWPA is already an NP-hard problem for instances (Gw , P ) in which G is a
graph from G with |VG| free vertices, and sets P of |P | = k ≥ 3 processors.

Proof. Given a graph G with color set {a1, . . . , ak} we define a set of processors
P = {p1, . . . , pk}. For each edge e ∈ EG we define weights we

pipi
= 1 for all

pi ∈ P and we
pipj

= 0 if i �= j. All weights wu
p are set to 0. Obviously, G is

k-colorable if and only if (Gw, P ) has a minimum weight processor assignment
f with w(f) = 0. ��

GkC (with k ≥ 3) is amongst others NP-complete for planar graphs and
cographs (i.e., graphs which do not contain an induced path on 4 vertices).
Hence, MWPA is NP-hard if instances (Gw, P ) are restricted to one of these
two classes (with |P | ≥ 3).
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Note that the above proof also shows that MWPA remains NP-hard when
restricted to instances with only two different values for the edge weights (and
no vertices with positive weights).

4.2 Sets of Exactly Two Processors

In Proposition 1 we have shown that MWPA is NP-hard for instances (Gw, P ),
where |P | = k ≥ 3. Of course, the problem is trivially solvable in polynomial
time if the set of processors only contains one processor. In this section we show
that MWPA is NP-hard if the set of instances is restricted to instances with two
processors. It turns out that the recently studied NP-hard problem Minimum
Generalized Vertex Cover ([6]) is a special case in our model.

Instances of Minimum Generalized Vertex Cover are undirected graphs
G with numbers d0(e) ≥ d1(e) ≥ d2(e) ≥ 0 for every edge e ∈ EG, and costs
c(u) for every vertex u ∈ V . For S ⊆ VG and e = (u, v) ∈ EG define c(e) to
be the cost of e depending on the number of its end vertices that are included
in S, i.e., c(e) = d0(e) if u, v ∈ VG\S, c(e) = d1(e) if u ∈ S, v ∈ VG\S or
v ∈ S, u ∈ VG\S, and c(e) = d2(e) if u, v ∈ S. A generalized vertex cover is
a subset S ⊆ VG. The Minimum Generalized Vertex Cover problem is
the problem of finding a generalized vertex cover S that minimizes the costs
c(S) =

∑
v∈S c(u) +

∑
e∈EG

c(e) for a given graph G and cost function c.
By choosing d0(e) = 1 and d1(e) = d2(e) = 0 for all e ∈ EG, and c(v) = 1

n for
all v ∈ VG, it is clear that the Minimum Generalized Vertex Cover problem
is a generalization of the well-known Minimum Vertex Cover problem. In the
proof of the proposition below we show that our setting includes both problems.

Proposition 2. MWPA is NP-hard, even if the class of instances (Gw, P ) is
restricted to instances with two processors.

Proof. Assume we are given a graph G with costs c(v) for v ∈ VG, and numbers
di(e) for e ∈ EG and 0 ≤ i ≤ 2. Define a set of processors P = {p, q}. Let
wu

p := c(u) and wu
q := 0 for all u ∈ VG. Let we

pp := d2(e), we
pq = we

qp := d1(e),
and we

qq := d0(e) for all e ∈ EG.
This way we have obtained an instance (Gw , P ) of MWPA. Each processor

assignment f corresponds to a specific generalized vertex cover S with costs
c(S) = w(f), namely S = {u ∈ VG | f(u) = p}. Vice versa, each generalized
vertex cover S corresponds to a unique processor assignment f with costs w(f) =
c(S): Choose f given by f(u) = p if u ∈ S, and f(u) = q if u /∈ S.

Hence the Minimum Generalized Vertex Cover problem is a special
case of the Minimum Weight Processor Assignment problem. ��

4.3 Process Graphs with Arbitrarily Close Edge Weights

It is straightforward to see that MWPA is polynomially solvable for instances
(Gw, P ) with process graphs Gw with constant edge weights, or with edge weights
we

pq = wu
p +wv

q if e = (u, v) and p, q ∈ P . In both cases a processor assignment f
that maps each vertex u on a processor p for which wu

p is minimal, is a minimum
weight processor assignment.
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However, from the proof of Proposition 1 it turns out that MWPA stays NP-
hard if the class of instances is restricted to instances (Gw, P ) with arbitrarily
close weights: Choose in the proof of Proposition 1 weights we

pipi
= ε, where

ε > 0 is an arbitrarily small value, and we
pipj

= 0 if i �= j. As remarked before,
this also implies NP-hardness of MWPA when restricted to instances with only
two possible values for the edge weights.

4.4 Process Graphs That Are Degree-2-Contractible

In the theorem below we show that MWPA can be solved in polynomial time
for instances (Gw, P ) where G is a degree-2-contractible graph. So MWPA can
be solved efficiently if for instance Gw is a tree or a unicyclic graph. However,
already for the class of 3-regular bipartite graphs the problem turns out to be
NP-hard.

For the NP-hardness construction we make a reduction from a particular
variant of Hypergraph 2-Colorability. This is a well-known NP-complete
problem (cf. [5]).

Hypergraph 2-Colorability (H2C)
Instance: A set Q = {q1, . . . , qm} and a set S = {S1, . . . , Sn} with Sj ⊆ Q and
|Sj | = 3 for 1 ≤ j ≤ n.
Question: Is there a 2-coloring of (Q,S), i.e., a partition of Q into Q1 ∪Q2 such
that Q1 ∩ Sj �= ∅ and Q2 ∩ Sj �= ∅ for 1 ≤ j ≤ n?

With such a hypergraph we associate its incidence graph I, which is a bipar-
tite graph on Q∪S, where (q, S) forms an edge if and only if q ∈ S (cf. Figure 1).

S1 Sn

q1 qm

I

Fig. 1. The incidence graph of an instance of H2C.

Note that we may assume without loss of generality that I is connected.

Theorem 1. MWPA can be solved in polynomial time for instances (Gw, P ) in
which Gw is a degree-2-contractible graph. MWPA is already NP-hard if the class
of instances only contains instances (Gw, P ), where Gw is a connected 3-regular
bipartite graph.

Proof. Let (Gw, P ) form an instance of MWPA, where G is a degree-2-contract-
ible graph. Suppose v ∈ VG and deg(v) = 1. Let u ∈ VG be the only neighbor of
v. Let G′ = G/(u, v) = (VG\v, EG\(u, v)) be the graph G without the vertex v.
For all p ∈ P define

w̃u
p = wu

p + min
q∈P

{wv
q + w(u,v)

pq },
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and do not change any other vertex or edge weights, i.e., w̃x
p = wx

p for x ∈
VG′\u, p ∈ P and w̃e

pq = we
pq for e ∈ EG′ and p, q ∈ P . This way we have

obtained an equivalent instance (G′
w̃ , P ) of MWPA with one vertex less.

We continue with this procedure as long as we have a process graph with
minimum degree equal to one. As long as we still have edges in our graph we
proceed as follows.

Suppose y ∈ VG and deg(y) = 2. Let x, z ∈ VG be the only two neighbors of
v. We remove vertex y and edges (x, y) and (y, z), and add an edge (x, z) if it
is not already in G. This way we have obtained a graph G∗. Assume w

(x,z)
pq = 0

for all p, q ∈ P if (x, z) is not an edge in G. Then we define for all p, q ∈ P

w̃(x,z)
pq = w(x,z)

pq + min
r∈P

{wy
r + w(x,y)

pr + w(y,z)
rq },

and do not change any other vertex or edge weights, i.e., w̃u
p = wu

p for u ∈
VG∗\y, p ∈ P and w̃e

pq = we
pq for e ∈ EG∗\(x, z) and p, q ∈ P . This way we have

obtained an equivalent instance (G∗
w̃ , P ) of MWPA with one vertex less.

As long as G∗ has edges, we repeat the steps above.
Combining these two steps gives us a polynomial time algorithm for degree-

2-contractible graphs. Note that this approach fails, if during the procedure we
obtain a graph Ḡ that does not have a vertex of degree one or two. (See the next
section for a more general algorithm.)

We now prove NP-hardness for the class of instances (Gw, P ) where G is a
connected 3-regular bipartite graph.

Let (Q,S) be an instance of H2C. First, we construct its incidence graph I.
Since we assume that each set Sj has exactly 3 elements, we obtain that I is
3-regular. We introduce a set of processors

P = {pqr | (q, r) ∈ Q×Q, q �= r}
⋃
{pq | q ∈ Q}

⋃
{p′q | q ∈ Q}.

Let M be a sufficiently large number. For each S ∈ S we define wS
p = 0 if p = pqr

and q, r are elements of S, and wS
p = M otherwise. For each q ∈ Q we define

wq
p = 0 if p = pq or p = p′q, and wq

p = M otherwise.
For each edge e = (q, S) ∈ EI we define the following edge weights. We make

we
p1p2

= 1 if

• p1 = pq and p2 = prq for some r ∈ S, or
• p1 = p′q and p2 = pqr for some r ∈ S.

We define we
p1p2

= 0 if

• p1 = pq and p2 = pqr for some r ∈ S, or
• p1 = pq and p2 = prt for r, t ∈ S\q, or
• p1 = p′q and p2 = prq for some r ∈ S, or
• p1 = p′q and p2 = prt for r, t ∈ S\q.

Finally we define we
pq = M for all other possibilities.
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This way we have obtained a weighted process graph Iw. Our claim is that
(Q,S) is 2-colorable if and only if (Iw, P ) has a minimum weight processor
assignment f with w(f) = 0.

Suppose Q1 ∪Q2 is a 2-coloring of (Q,S). If q is in Q1 we define f(q) = pq.
Otherwise we let f(q) = p′q. Since Q1 ∪Q2 is a 2-coloring, each S ∈ S contains
a vertex q in Q1 and a vertex r in Q2. We define f(S) = pqr. This way we have
constructed a processor assignment f with w(f) = 0. Since all vertex and edge
weights are positive, f is a minimum weight processor assignment.

To prove the reverse statement suppose a minimum weight processor assign-
ment f exists with w(f) = 0. For all q ∈ Q we do the following. If f(q) = pq, we
place q in Q1. If f(q) = p′q, then we place q in Q2.

Now suppose Q1 ∪Q2 would not be a 2-coloring. Then a set S = {q, r, t} in
S exists that is fully contained in either Q1 or Q2. Suppose S is a subset of Q1.
By definition of Q1, we obtain f(q) = pq, f(r) = pr, and f(t) = pt implying
w(f) > 0. ��

5 An Exact Algorithm

Although MWPA is NP-hard for many graph classes, here we present a relatively
simple algorithm that determines the weight of a minimum processor assignment
for any weighted process graph Gw and set of processors P . We call this algorithm
MINWEIGHT. Its running time is exponential. However, in practice it could
compute solutions quite fast, as long as the input graphs have a small number of
vertices with a high degree (greater than two) or a high number of fixed vertices.

Steps (3) and (4) in the algorithm have already been explained in the proof
of Theorem 1. Step (5) handles vertices with degree greater than two. Each time
this step is executed the number of computations increases exponentially.

Note that, in practice rules such as “delete forbidden processor/vertex com-
binations” can be added to increase the running time of MINWEIGHT in case
there are many of such combinations. It is also easy to implement the algorithm
in such a way that it gives as output a minimum weight processor assignment
f with w(f) = w∗. Moreover, instead of using the same (Cartesian products of)
processor sets for all vertices, in an implementation of the algorithm we could use
different sets for different vertices in order to save on memory and computational
steps.

6 Conclusion

In the previous sections we have introduced the Minimum Weight Processor
Assignment problem (MWPA), motivated from current research in the area
of Embedded Systems. We have analysed the complexity of MWPA, its relation
to various other graph problems, and showed that it is NP-hard, even when re-
stricted to very specific classes of instances. For a number of classes of instances
we have shown that MWPA is polynomial. We presented a simple exact (ex-
ponential) algorithm, based on edge contractions, for solving MWPA for general
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Algorithm MINWEIGHT
(1) FOR (u, v) /∈ EG and p, q ∈ P DO w

(u,v)
pq := 0.

(2) Choose a vertex v ∈ VG.
(3) IF deg(v) = 1,

THEN let VG := VG\v, and EG := EG\(u, v) for u ∈ N(v).
FOR u ∈ N(v) and p ∈ P DO

wu
p := wu

p + min
q∈P

{wv
q + w(u,v)

pq }.

(4) IF deg(v) = 2,
THEN let VG := VG\v and EG := (EG ∪ {(x, z)})\{(x, v), (v, z)} for x, z ∈
N(v).
FOR x, z ∈ N(v) and p, q ∈ P DO

w(x,z)
pq := w(x,z)

pq + min
r∈P

{wv
r + w(x,v)

pr + w(v,z)
rq }.

(5) IF deg(v) ≥ 3,
THEN choose a vertex u ∈ N(v). Let G := G/(u, v).
Set P := P × P .
FOR (p, q) ∈ P DO wuv

(p,q) := wu
p + w

(u,v)
pq + wv

q .
FOR x ∈ VG and (p, q) ∈ P DO wx

(p,q) := wx
p .

FOR e = (uv, x) with x ∈ N(uv) and (p, q), (r, s) ∈ P DO w
(uv,x)

(p,q)(r,s) :=

w
(u,x)
pr + w

(v,x)
qr .

FOR e ∈ EG not incident with uv and (p, q), (r, s) ∈ P DO we
(p,q)(r,s) := we

pr.
(6) IF |VG| ≥ 2, THEN GOTO (2).
(7) Output w∗ := min{wu

p | p ∈ P, u ∈ VG}. STOP.

instances. We are currently investigating the running-time of the algorithm for
real-life examples. After an extensive search initiated by a remark of Hans Bod-
laender we became aware of a number of related papers. In some of them, the
static assignment problem has been studied under different names, whereas this
paper is motivated by the dynamic problem of allocating tasks in run-time. Part
of the results of the present paper are covered. We refer the interested reader to
[4] and the survey paper [1].
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Abstract. In this paper we study a stochastic location problem with
applications to tele-diagnostic, locating the boundaries between poly-
nomiality and NP-completeness, and providing efficient approximation
algorithms.

1 Introduction

Many location problems have been widely studied in the literature (see e.g., [3,
4, 11–13]). In general, location problems are given in the following form: Given a
graph G with edge set E, and a weight function w : E → R+, where w(e) is the
cost of traversing edge e ∈ E, place a number of facilities in the nodes of G and
assign nodes of G to those facilities so as to minimize the sum of distances from
each node to the associated facility. As a natural extension, many stochastic
location problems have been proposed in the literature (see e.g., [5, 8–10]): they
model situations where a facility is not able to satisfy all requests, but can provide
a given service only with a certain probability. This seems to be important in
many scenarios, and other types of stochastic location problems seem to arise
from many new applications as well such as Web Caching (see, e.g., [1]).

In this paper, we consider another variety of stochastic location problem,
motivated by applications arising from tele-diagnostics. We are given an undi-
rected graph G, with vertex set V (G) = V ∪ {σ} (|V (G)| = n + 1) and edge set
E(G) = E (|E(G)| = m). Each node v ∈ V in the network represents a site,
and each site contains some physical devices. Such devices can be monitored and
possibly repaired from a remote site in case they become faulty. We assume that
there can be two kinds of faults in the system: soft faults , which can be repaired
remotely from another site, and severe faults which cannot be repaired remotely
and require further (possibly human) interventions. We assume that soft faults,
i.e., faults that can be repaired remotely, happen with some fixed probability

J. Hromkovič, M. Nagl, and B. Westfechtel (Eds.): WG 2004, LNCS 3353, pp. 201–213, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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λ, 0 < λ ≤ 1. Note that in the special case λ = 1 the problem is a standard
P -median Problem (see, e.g., [6]).

An edge e ∈ E of the form (x, y) represents a connection of cost w(x, y) ≥ 0
from site x to site y in G. The graph has a special node σ ∈ V (G), referred to as
supervisor , whose main task is to supervise all the operations in the network. We
would like to locate at most P monitors in the network, and assign nodes in the
network to monitors so that each monitor will be responsible for the assigned
nodes. In more details, if node v is assigned to monitor μ, then μ is able to
monitor all devices in v via remote sensors. Whenever a device in v is faulty,
then μ detects the fault immediately through those sensors. If the fault in v is
soft, then μ can start a remote repair process on v. The cost of this process will
be proportional to the weighted distance between v and μ, say cv,μ. Otherwise,
if the fault is severe, then μ must transmit a detailed report about the fault to
the supervisor σ: in this case, the cost of the process will be proportional to
the distance between μ and σ, say cμ,σ. Note that in this model only monitors
are allowed to communicate with the supervisor. Then the expected cost of the
whole process is:

λ · cv,μ + (1− λ) · cμ,σ.

We observe that this puts already in perspective the main differences be-
tween the problem considered in this paper and other (classical) location prob-
lems. First of all, there is a probability λ which plays an important role in the
cost function. Second, in addition to the cost of assigning a node to a facility
(monitor), there is an extra cost of (1 − λ) · cμ,σ (due to severe faults), which
depends on the location of the facility, i.e., on the distance from the monitor μ
to the supervisor σ.

We investigate the problem of locating monitors in the network so as to
minimize the total communication costs. Throughout for shortness this problem
will be referred to as TDP (Tele-Diagnostic Problem). We formalize TDP as
a stochastic location problem, and study structural properties which allow us
to locate the boundaries between polynomiality and NP-completeness for this
problem. In particular, we show that if (G, σ, c, λ, P ) is a generic instance of our
problem then,

(i) if degG(σ) > P , TDP is NP-Complete, for all λ ∈ (0, 1];
(ii) if degG(σ) ≤ P then,

ii.1 if λ ≤ 1/2 TDP is solvable in polynomial time;
ii.2 if λ − 1/2 = O(n−h), for some fixed positive integer h TDP is NP-

Complete.
(iii) TDP is 4-approximable that is there exists a deterministic polynomial-time

algorithm that given (G, σ, c, λ, P ) returns a solution whose value is at most
four times the value of the optimal solution of (G, σ, c, λ, P ).

The rest of the paper is organized as follows. In Section 2 we give notations
and the problem formulation. Section 3 investigates structural properties of the
problem, that lead to the complexity and approximability results in Section 4.
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2 Definitions and Notations

We start with some preliminary notation and assumptions. Let G = (V ∪{σ}, E)
be a simple connected undirected graph with n + 1 vertices and m edges, where
σ is a special node, called supervisor. Recall that a graph is simple if there are
no parallel edges (different edges with the same endpoints) and it is connected
if for every two distinct vertices there exists a path joining them. A path joining
u and v in a graph H = (V ′, E′) is a sequence v0e0v1e1v2e2 . . . vk−1ek−1vk, of
distinct vertices of V ′ and distinct edges of E′ such that v0 = u, vk = v and
ei = (vi, vi+1), for i = 0, . . . , k. If a path P joins u and v we say that u and v are
the endpoints of P and that P is an uv path. For v ∈ V ∪ {σ} let N(v) denote
the set of nodes of G that are adjacent to v (the set of neighbors of v). A weight
function w : E → R+ is defined, where w(e) is the cost of traversing edge e ∈ E.
For a path P in G the length of P is defined as the sum of the weights of the
edges of P . For (i, j) ∈ (V ∪ {σ})× (V ∪{σ}) let ci,j be the minimum cost of an
ij path. An ij path achieving this minimum cost will be referred to as a shortest
ij path. Given two sets A and B, we denote by BA the sets of all functions from
A to B. Recalling that λ is the probability of repairing a fault, for (i, j) ∈ V ×V
we let bi,j(λ) = λ · ci,j + (1− λ) · cj,σ. We write Bλ for the corresponding square
matrix of order n. Bλ will be referred to as the expected cost matrix. Note that
matrix Bλ is not in general symmetric but it easy to see that it still satisfies the
triangular inequality as c does.

3 Structural Properties

Let Q be a possible candidate set of monitors. We now study some combinatorial
properties of the solutions for TDP. For Q ⊆ V let Ω(Q) be the set of all
surjective mappings τ from V to Q fixing all points of Q, i.e.,

Ω(Q) = {τ ∈ QV : τ(V ) = Q, τ(i) = i,∀i ∈ Q}.

Since each τ ∈ Ω(Q) is onto Q, τ defines a partition Dτ := {Di, i ∈ Q} of V ,
where Di = {j ∈ V : τ(j) = i}. Clearly, for each i ∈ Q, i ∈ Di. If we define

z(Q, τ ; λ) =
∑
i∈V

bi,τ(i)(λ)

TDP can be formulated as

min
Q⊆V

{z(Q, τ ; λ) : |Q| ≤ P, τ ∈ Ω(Q)}. (1)

Let Q ⊆ V and for i ∈ V \ Q let π(i) be the node j ∈ Q which minimizes
the distance bi,j(λ) for a given i, i.e., π(i) is such that bi,π(i)(λ) ≤ bi,j(λ) with
j ∈ Q. Take π(i) = i, for i ∈ Q. By construction, π ∈ Ω(Q). Moreover, as
bi,τ(i)(λ) ≥ bi,π(i)(λ) for all τ ∈ Ω(Q), one has

z(Q, π; λ) = min
τ∈Ω(Q)

z(Q, τ ; λ). (2)
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We call such a π a good assignment for Q and we write z(Q; λ) for z(Q, π; λ).
After (2) we can write (1) as

min
Q⊆V,|Q|≤P

z(Q; λ). (3)

It is convenient to write z(Q, τ ; λ) as

z(Q, τ ; λ) = b(Q, τ ; λ) + s(Q; λ) (4)

where
b(Q, τ ; λ) =

∑
i∈V \Q

bi,τ(i)(λ)

and
s(Q; λ) = s(Q, τ ; λ) =

∑
i∈Q

bi,i(λ).

Note that for λ = 1 s(Q; λ) = 0. Clearly,

z(Q; λ) = b(Q; λ) + s(Q; λ) =
∑

i∈V \Q

bi,π(i)(λ) +
∑
i∈Q

bi,i(λ) (5)

where we have set b(Q; λ) := b(Q, π; λ) = minτ∈Ω(Q) b(Q, τ ; λ).

Remark 1. Representation (5) (or more in general (4)) closely resembles the
combinatorial formulation of a P -median Problem where the set of potential
facilities and the set of customers both coincide with V (see for instance [6]).
Indeed if the bi,i(λ)’s were equal to zero for all i ∈ V , (5) would coincide with
the objective function of some instance of the standard P -median Problem. As
the bi,i(λ)’s are in general nonzero, (4) and (5) represent z(., .; λ) as the sum
of two terms b(Q; λ) and s(Q; λ). It is worth observing that while b(Q; λ) does
not increase with |Q|, s(Q; λ) always increases with |Q|. When b(Q; λ) decreases
with |Q| we may have a trade-off between b(Q; λ) and s(Q; λ). Furthermore, we
observe that z(., .; λ) can be written as

z(Q; λ) = λ
∑

i∈V \Q

ci,π(i) + (1− λ)
∑
i∈Q

|Di|ci,σ (6)

which shows that z(., .; λ) is not necessarily monotone in the cardinality of Q.

In the remainder of this section we will show that if λ ≤ 1/2 then the can-
didate set Q of medians lies entirely in the neighborhood of σ, i.e., N(σ). For
Q ⊆ V let π be one of its good assignment that is, (Q, π; λ) = z(Q; λ). For i ∈ Q
let μ(i) be the node immediately preceding σ on a shortest path from i to σ.
This correspondence defines a function μ : Q → N(σ). Let Q be the image of Q
under μ, i.e., Q = {μ(i) : i ∈ Q}. Define π̄ ∈ Ω(Q) as follows

π̄ =
{

i if i ∈ Q
μ(π(i)) otherwise
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For a subset Q of V call the corresponding Q the projection of Q into N(σ).
Let Q be the set of those Q which are not subsets of N(σ). We are interested in
the following numbers. Let λ(G, w) the largest number such that

z(Q; λ)− z(Q; λ) ≥ 0, ∀Q ∈ Q, ∀λ ∈ [0, λ(G, w)]; (7)

and let ξ(G, w) be the largest number such that

∃S ⊆ N(σ) : z(Q; λ)− z(S; λ) ≥ 0, ∀Q ∈ Q, λ ∈ [0, ξ(G, w)]. (8)

Clearly,
λ(G, w) ≤ ξ(G, w), ∀w ∈ R

E(G)
+ .

Moreover, if we define λ(G) and ξ(G) respectively as the largest numbers for
which (7) and (8) hold for all w ∈ R

E(G)
+ , we have

inf
w∈R

E(G)
+

λ(G, w) = λ(G) ≤ ξ(G) = inf
w∈R

E(G)
+

ξ(G, w).

Actually, it is worth observing that both λ and ξ depend on c through w and G.
The following lemma is crucial to the main result of this section.

Lemma 1. Let Q be a subset of V and let π, Q and π̄ as above. Then,

z(Q, π̄; λ)− z(Q; λ) = (λ− 1)
∑
i∈V

cπ̄(i),π(i) + λ
∑
i∈V

(ci,π̄(i) − ci,π(i)).

Proof. By definition

z(Q, π̄; λ)− z(Q, π; λ) =
∑
i∈V

(bi,π̄(i)(λ)− bi,π(i))(λ).

Since cπ(i),σ − cπ̄(i),σ = cπ̄(i),π(i), as by construction π̄(i) lies on a shortest π(i)σ
path, one has

bi,π̄(i)(λ)− bi,π(i)(λ) = (λ− 1) · cπ̄(i),π(i) + λ · (ci,π̄(i) − ci,π(i)),

hence, the thesis.

Theorem 1. Let G = (V ∪ {σ}, E) be a graph with the special node σ distin-
guished. Then λ(G) ≥ 1/2.

Proof. By Lemma 1, for any given Q, if π ∈ Ω(Q), Q and π̄ ∈ Ω(Q) are deter-
mined by Q as in Lemma 1, the number

λ(Q, w) :=
∑

i∈V cπ̄(i),π(i)∑
i∈V cπ̄(i),π(i) +

∑
i∈V (ci,π̄(i) − ci,π(i))

(9)

is such that, if λ ≤ λ(Q, w) then, (Q; λ) ≥ z(Q, π̄; λ). Since by (2) z(Q, π̄; λ) ≥
z(Q; λ), if we let

ϕ(G) := inf
w∈R

E(G)
+

min
Q∈Q

λ(Q, w)
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it follows that, ϕ(G) is the largest number such that for λ ≤ ϕ(G) replacing
(Q, π) by (Q̄, π̄) we get a not worse solution. Thus, ϕ(G) ≤ λ(G) and for all
Q ⊆ V

λ ≤ ϕ(G) ≤ λ(G) ⇒ z(Q; λ) ≥ z(Q; λ).

Recall that ci,j equals the length of a ij shortest path. Hence, c satisfies the
triangular inequality, namely ch,j ≤ ch,i + ci,j holds for any three nodes h, i, j ∈
V (G). Therefore, by splitting off

∑
i∈V (ci,π̄(i) − ci,π(i)) we have

∑
i∈V

(ci,π̄(i) − ci,π(i)) =
∑
i∈Q

(−cπ̄(i),π(i)) +
∑

i∈V \Q

(ci,π̄(i) − ci,π(i))

as, for i ∈ Q̄, ci,π̄(i) − ci,π(i) = −cπ̄(i),π(i), since cπ̄(i),π̄(i) vanishes over Q̄. More-
over, by triangular inequality

∑
i∈V \Q

(ci,π̄(i) − ci,π(i)) ≤
∑

i∈V \Q

cπ̄(i),π(i). (10)

Hence, ∑
i∈V

(ci,π̄(i) − ci,π(i)) ≤
∑
i∈Q

(−cπ̄(i),π(i)) +
∑

i∈V \Q

(cπ̄(i),π(i)). (11)

By (9) and (11) it follows that

λ(Q, w) ≥
∑

i∈V cπ̄(i),π(i)

2
∑

i∈V \Q cπ̄(i),π(i)
=

1
2

+

∑
i∈Q cπ̄(i),π(i)

2
∑

i∈V \Q cπ̄(i),π(i)

and thus,

λ(G) ≥ ϕ(G) ≥ 1
2

+ inf
w

min
Q

∑
i∈Q cπ̄(i),π(i)

2
∑

i∈V \Q cπ̄(i),π(i)
. (12)

As an immediate consequence we have the following result.

Corollary 1. Let G = (V ∪ {σ}, E) be a graph with the special node σ distin-
guished. Then for λ ≤ 1/2 optimal solutions to any instance of TDP are entirely
contained in NG(σ), for any given number P of available monitors.

Remark 2. Referring to the proof of Theorem 1, we note that the weaker is
the triangular inequality (10) the closer is λ(G) to its lower bound ϕ(G). For
instance, take as G(V ∪ {σ}, E) a path on n + 1 nodes. Let σ be one of its end-
nodes and let a be its unique neighbor. Let b be any other node of V \ {σ, a}.
If we let Q = {b}, we have Q = {a}. Moreover, for i ∈ V \ {σ} if π(i) = b
then, π̄(i) = a. Furthermore, if b is the other neighbor of a, (11) is satisfied with
equality. It follows that, for all w ∈ R

E(G)
+ , and for Q = {b}, where b is the other

neighbor of a

λ(Q, w) ≤ 1
2

+
ca,b

2(n− 1)ca,b
hence, ϕ(G) ≤ 1

2
+

1
2(n− 1)

.
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On the other hand, by (12), for all i ∈ V \ {σ, a}

ϕ ≥ 1
2

+
ci,a

2(n− 1)ci,a
=

1
2

+
1

2(n− 1)
therefore, λ(G) =

1
2

+
1

2(n− 1)
,

since there exists exactly one π̄ ∈ Ω(Q) for each Q ∈ Q.

4 Complexity Issues

Let {ci,j}i∈V (G),j∈V (G) be the symmetric cost function matrix obtained by means
of w, and, as before, throughout we let bi,j(λ) = λci,j +(1−λ)cj,σ . We need the
following two lemmas.

Lemma 2. Let G and Bλ be defined as above and let u and v be nodes of N(σ).
Then, for all λ ∈ (0, 1)

bu,v(λ) < bu,u(λ) ⇒ bi,v(λ) < bi,u(λ) for all i ∈ V

Proof. Suppose not. Hence, there exists an i ∈ V such that bi,u(λ) ≤ bi,v(λ). It
follows that λ · ci,u + (1− λ) · cu,σ ≤ λ · ci,v + (1− λ) · cv,σ which in turn implies

(1− λ) · (cu,σ − cv,σ) ≤ λ · (ci,v − ci,u) ≤ λ · cu,v (13)

where the rightmost inequality holds due to ci,u +cu,v ≤ ci,v. On the other hand,
since bu,v(λ) < bu,u(λ), we have λ · cu,v +(1−λ) · cv,σ < (1−λ) · cu,σ and, hence,

λ · cu,v < (1− λ) · (cu,σ − cv,σ)

which contradicts (13).

Lemma 3. Let G be a connected graph of order n and let w ∈ R
E(G)
+ be a weight

function. Then for any δ > 0 there exists a graph Gδ with order qδ depending on
δ along with a weight function w̄ with the following properties

(a) Gδ has a special node σ such that G is a subgraph induced by a subset of
nodes in V (Gδ) \ (N(σ) ∪ {σ});

(b) w̄ extends w over E(Gδ);
(c) ξ(Gδ, w̄) ≤ 1/2 + δ.

Proof. We may suppose, possibly after scaling, that 1 > diam(G) := maxij cij .
Let δ > 0 be an arbitrarily small number. Throughout we write q for qδ. Let
n1 = � n

2δ �. Remark that if δ = O(n−h), for some positive integer h then, n1 =
O(nh−1). Construct Gδ as follows: take a set V1 disjoint from V (G) with n1

points. Let σ and σ1 be any two points not in V (G) ∪ V1; join each node of V1

to each node of V (G), join σ1 to each node of V (G) and join σ to σ1. Moreover,
join two points of V (G) if and only if they are joined in G. Now Gδ fulfils (a)
with q = n + n1 + 2. Let α > 1 be a real number and denote by w̄(e) the
length of an edge e. For e ∈ E(G), let w̄(e) = w(e). For e ∈ E(Gδ) \ E(G),
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let w̄(e) = 1/2 if e is of the form e = (σ1, v), with v ∈ V (G). Take w̄(e) = α,
otherwise. Then, clearly w̄ extends w over E(Gδ). To show (c), we have to
exhibit a solution Q ⊆ V (Gδ) not containing σ1 such that if λ ≥ 1/2 + δ then,
z(Q; λ)− z(σ1; λ) < 0. Indeed, since ξ(Gδ, w̄) is by definition the largest number
such that there exists an optimal solution to (Gδ, P, w̄, λ, σ) contained in N(σ),
if λ ≥ 1/2 + δ implies z(Q; λ) − z(σ1; λ) < 0 then, ξ(Gδ, w̄) ≤ 1/2 + δ. First
of all observe that for each λ ∈ [0, 1] no optimal solution can contain any node
v ∈ V1, otherwise replacing such a node v by any of its neighbors would lead to
a strictly better solution. Now let us compare a solution Q ⊆ V (G) with σ1. It
is not hard to see that

z(σ1; λ) = (1− λ) · α · (q − 1) + n1 · λ · (α +
1
2
) + n · λ

2
and, since in V (G) nodes outside Q are at distance at most diam(G) < 1, one
has

z(Q; λ) ≤ (1 − λ) · (α +
1
2
) · (q − 1) + n1 · λ · α +

λ

2
+ λ · (n− |Q|) ≤

(1− λ) · (α +
1
2
) · (q − 1) + n1 · λ · α +

λ

2
+ λ · (n− 1).

It follows that

z(Q; λ)− z(σ1; λ) ≤ (1− λ) · 1
2
· (q − 1)− n1 · λ ·

1
2

+ (n− 1) · λ · 1
2
.

Therefore,

λ >
q − 1

q + n1 − n
=

q − 1
2(q − n) + 2

⇒ z(Q; λ)− z(σ1; λ) < 0.

As for n1 = � n
2δ � one has

q − 1
2(q − n) + 2

≤ q − 1
2(q − n)

≤ q

2(q − n)
≤ 1

2
+ δ

and (c) follows.

Recall that an instance of the P -median Problem is a quintuplet (G, I, J, c, P )
where:

– G is a connected graph;
– I, J are subsets of V (G): I is the set of potential facilities while J is the set of
clients;
– P is the maximum number of available facilities;
– c is a function from V (G)× V (G) into the set of nonnegative reals: ci,j repre-
sents the cost of connecting j ∈ J to i ∈ I.

Given an instance of the P -median Problem one seeks a pair (Q, ψ) where
Q ⊆ I is a set of at most P facilities and ψ : J → Q is the assignment function
such that

∑
j∈J cj,ψ(j) is minimized. It is well known that the P -median Problem

is NP-Complete even when I = J = V [7]. In this case we write (G, c, P ) for the
generic instance of such a P -median Problem.
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Theorem 2. Let (G, σ, c, λ, P ) be the generic instance of TDP then,

i) if degG(σ) > P , TDP is NP-Complete, for all λ ∈ (0, 1];
ii) if degG(σ) ≤ P then,

ii.1) if λ ≤ 1/2 TDP is solvable in polynomial time;
ii.2) if λ ≥ 1/2 + O(n−h), for some fixed positive integer h TDP is NP-

Complete.

Proof. i). If λ = 0 TDP is clearly polynomial solvable. To see this observe that
(6), reduces to

∑
i∈Q |Di|ci,σ, which is minimized by the point i ∈ V closest to

σ. So we may assume λ > 0. Let (G, c, P ) an instance of the P -median Problem.
Add to V (G) an extra node σ and join it with all the other nodes by edges
having length diam(G) + 1. By (6) z can be written as

z(Q; λ) = λ
∑

i∈V \Q

ci,π(i) + (1− λ)
∑
i∈Q

|Di|ci,σ (14)

for any λ ∈ (0, 1]. Since ci,σ is constant over V (G), z(., .; λ) attains its minimum
when f(Q; λ) = λ

∑
i∈V \Q ci,π(i) attains its minimum. Recall the definition of

π ∈ Ω(Q). Moreover, since each path traversing σ has a too large length, no
such a path is used to reach any facility. Hence, for all λ ∈ (0, 1], f(.; λ) is
precisely the objective function of a standard P -median Problem on (G, λc, P )
and P < n = order of G.
ii) Suppose degG(σ) ≤ P .
ii.1) The problem reduces to minimum cost bipartite assignment problem.
ii.2) Let (G, c, P ) an instance of the P -median Problem. Let δ = O(n−h) and
take Gδ as in Lemma 3. Since δ = O(n−h), Gδ has size and order bounded by a
polynomial in the size and the order of G. So it can be constructed in polynomial
time from G. By Lemma 3 optimal solutions to TDP on (Gδ, σ, c, λ, P ) are
attained over V (G). As in the proof of i), z(., .; λ) attains the minimum if f(.; λ)
attains the minimum over V (G). Again the minimization of z(., .; λ) is equivalent
to the minimization of f(.; λ) on (G, λc, P ).

Now we are going to investigate the approximability of this problem. To this
end let us look more closely at the behaviour of the objective function z(., .; λ).
We know that z(., .; λ) is not in general monotone. However, Lemma 2 allows
us to write down some domination rules that help either in solving TDP or in
approximating its solution.

Corollary 2. To Lemma 2. Let G = (V ∪{σ}, E), c be as in previous sections.
For λ ∈ [0, 1] let Bλ be the associated expected cost function. If bi,i(λ) > bi,j(λ),
for some i and j in V , then any optimal solution to TDP never contains i.

Proof. Let Q be any solution to TDP and Dπ = {Dh, h ∈ Q} be the associated
partition where π ∈ Ω(Q) is a good assignment for Q. By Lemma 2 bh,i(λ) >
bh,j(λ) holds for all h ∈ V \ {i}, i.e., elements in column i are component-wise
larger than those of column j. Suppose that i ∈ Q and let k be such that
bi,k(λ) ≤ bi,h(λ) for all h ∈ V \ {i}. By hypothesis k �= i and bi,k(λ) < bi,i(λ).
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Let Q′ := Q ∪ {k} \ {i} and define τ as follows: if π(h) �= i then, τ(h) = π(h).
If π(h) = i let τ(h) = k. Now, since if h �∈ Di we have that π(h) = τ(h), and if
h ∈ Di we have that π(h) = i and τ(h) = k, one has

z(Q; λ)− z(Q′; λ) ≥ z(Q; λ)− z(Q′, τ ; λ) =
∑

h∈Di

(bh,i(λ) − bh,k(λ)) > 0

Hence, Q cannot be optimal.

The above corollary allows us to slightly strengthen ii.1) of Theorem 2 via
the next proposition. For λ ∈ [0, 1], call a node i ∈ V dominated if there exists
a node j ∈ V \ {i} such that bi,i(λ) > bi,j(λ). In other words, i is dominated if
the minimum in i-th row of Bλ is attained by an off-diagonal element. Let Uλ

be the set of non-dominated elements.

Remark 3. Let α, α:V → Q, be the closest point mapping, namely for all i ∈ V ,
α(i) is the node of Q such that bi,α(i)(λ) ≤ bi,j(λ) ∀j ∈ Q. In general, for
Q ⊆ V , α �∈ Ω(Q). Indeed if Q contains some dominated point i, α(i) �= i.
However, Corollary 2 states that if Q ⊆ Uλ, α ∈ Ω(Q). Moreover, α is a good
assignment π for all Q ⊆ Uλ. It follows that

z(Q; λ) =
∑
i∈V

min
j∈Q

bi,j(λ), ∀Q ⊆ Uλ. (15)

Proposition 1. For all λ ∈ [0, 1], Uλ is non-empty. In particular, if λ ≥ 1/2,
Uλ = V . Hence for all λ ∈ [0, 1], optimal solutions to TDP are contained in Uλ.

Proof. Observe first that bi,h(λ) ≥ bi,i(λ) for all h ∈ V , i.e., the minimum on
the i-th column is attained over a diagonal element. Indeed,

bh,i(λ) = λ · ch,i + (1− λ) · ci,σ ≥ (1− λ) · ci,σ = bi,i(λ).

Moreover, for i �= j and λ ≥ 1
2 ,

bi,j(λ) = λ · ci,j + (1 − λ) · cj,σ = (1− λ) · (ci,j + cj,σ) + (2λ− 1) · ci,j

by triangular inequality ≥ (1− λ) · ci,σ + (2λ− 1) · ci,j

since λ ≥ 1
2 ≥ (1− λ) · ci,σ

= bi,i(λ).

Hence, for λ ≥ 1
2 , the minimum of each row of Bλ is attained over a diagonal

element. So Uλ = V . It follows that Uλ is non-empty, for all λ ∈ [0, 1]. By
Corollary 2 optimal solutions to TDP must be contained in Uλ.

In view of Proposition 1 we can write (3) as

min{z(Q; λ)|Q ⊆ Uλ, |Q| ≤ P} (16)

hence, we have,
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Corollary 3. To ii.1 of Theorem 2. Let (G, σ, c, λ, P ) be the generic instance
of TDP. Let k = |NG(σ) ∩ Uλ|. Then if P ≥ k the problem is polynomial-time
solvable.

Proof. The proof follows by replacing degG(σ) with k in ii.1 of Theorem 2.

Let us consider the restriction v of z defined by (5) (or (2)) on the set Uλ.
Denote this restriction by v. By definition v: 2Uλ → R+, and v(Q) = z(Q; λ) for
all Q ⊆ Uλ, so

min{z(Q; λ)|Q ⊆ Uλ, |Q| ≤ P} = min{v(Q)|Q ⊆ Uλ, |Q| ≤ P}, (17)

and, again by Proposition 1 we have

Corollary 4. For λ ∈ [0, 1], let Uλ and v be as above. Then v is a monotone
non increasing set function on the set of all subsets of Uλ.

Proof. Over 2Uλ , z(., .; λ) and v coincide. Hence v can be represented by (15),
and this function is clearly non increasing.

Corollary 4, states via (16) and (17), that solving TDP is essentially the same
as solving a deterministic P -median Problem (with set I of potential facilities
identical to Uλ and set J of customers identical to V ), up (a) and (b) below:

(a) Bλ is not in general symmetric;
(b) diagonal elements of Bλ are in general non-zero.

Given a minimization problem P with optimum value OPT (I) and a non-
negative real number α ≥ 1, an α-approximation algorithm for P is an algo-
rithm that given any instance I of P returns a solution whose value is at most
αOPT (I). The number α − 1 is said to be the relative error of the approxi-
mation. In view of the above (a) and (b), we can not expect, in general, that
an α-approximations algorithm for the P -median Problem directly translates
into an α-approximation for TDP. Nevertheless the following result shows that
a reduction preserving approximation can be given. An instance (G, I, J, c, P )
of the P -median Problem is said to be metric if the connection costs satisfy the
Triangular Inequality. Since there exists a 4-approximation algorithm (see [2,
6]) for the class of metric instances of the P -median Problem, from Theorem 3
below, it follows that an 4-approximation algorithm for TDP exists as well. As
we have seen given an instance (G, I, J, c, P ) of the P -median Problem one seeks
a pair (Q, ψ) where Q ⊆ I is a set of at most P facilities and ψ : J → Q is the
assignment function such that

∑
i∈J ci,ψ(i) is minimized. Clearly, as for every

Q ⊂ I one has ψ(i) ∈ Q for all i ∈ J and
∑
i∈J

min
h∈Q

cih
≤
∑
i∈J

ci,ψ(i),

an optimal set of facilities is a solution to the following problem

min
Q⊆I,|Q|≤k

∑
i∈J

min
h∈Q

ci,h. (18)
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Given an instance (G, σ, P, w, λ) of TDP one seeks a pair (Q, τ) where Q is a
subset of at most P vertices in V and τ : V → Q is the assignment function such
that ∑

i∈V (G)\{σ}
λci,τ(i) + (1 − λ)cτ(i),σ

is minimized. We have already shown (see Lemma 1) that for every λ there exists
a set Uλ ⊆ V such that optimal solutions to TDP are entirely contained in Uλ.
Moreover, by (15) and Corollary 4, TDP can be re-stated as:

min
Q⊆Uλ,|Q|≤k

∑
i∈V (G)\{σ}

min
i∈Q

bi,j(λ),

where we have set bi,j(λ) = λcj,i + (1 − λ)ci,σ.

Theorem 3. The TDP Problem can be reduced to a Metric P -median and the
reduction preserves approximations.

Proof. Recall that an n-wheel is a graph on n + 1 nodes obtained from a simple
cycle on n vertices by joining each vertex along the cycle to an extra vertex called
the center. Let (G, σ, P, w, λ) be an instance of TDP and c be the associated cost
function. Let V (G) = V ∪{σ} where V = {1, 2 . . . , n}, and let Uλ be as above and
t = |Uλ|. For i ∈ Uλ let Wi be an n-wheel with center σi. Let the other vertices
be labelled as ai,j , j = 1, 2, . . . , n (see Figure 1). For i = 1, . . . , t, Wi is weighted
on the edges as follows: edges of the form (σi, ai,j) have weight (1 − λ)ci,σ, all
the other edges have weight zero. Now for j ∈ V , join j to ai,j , i = 1, . . . , t, by
an edge of weight λci,j . Let G̃ be the weighted graph arising in this way. Clearly
for i ∈ Uλ, bi,j(λ) equals the length of a shortest path in G̃ between j and σi.
Set I = {σ1, . . . , σt}, J = V and define c̃ : V (G̃) × V (G̃) → R+ as the shortest

σi

ai,1

ai,2

ai,j

ai,n

2

j

n

1

λci,j

(1−λ)ci,j

Fig. 1. The i-th wheel along with connections to the vertices in V .
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path function in G̃ w.r.t to the weight given on the edges of G̃. Clearly c̃ satisfies
the Triangular Inequality. Moreover,

min
Q⊆Uλ,|Q|≤P

∑
i∈V

min
i∈Q

bi,j(λ) = min
Q⊆I,|Q|≤P

∑
j∈V

min
h∈Q

c̃h,j.

It follows that optimal solutions to the P -median instance (G̃, I, J, P, c̃) defined
above are optimal to TDP as well and conversely.

It follows by Theorem 3 and by the 4-approximation algorithm in [2] for the
metric P -median Problem, that there exists a 4-approximation algorithm for
TDP as well.
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Abstract. A unit disk graph is the intersection graph of unit disks in the
euclidean plane. We present a polynomial-time approximation scheme
for the maximum weight independent set problem in unit disk graphs.
In contrast to previously known approximation schemes, our approach
does not require a geometric representation (specifying the coordinates
of the disk centers).
The approximation algorithm presented is robust in the sense that it
accepts any graph as input and either returns a (1 + ε)-approximate
independent set or a certificate showing that the input graph is no unit
disk graph. The algorithm can easily be extended to other families of
intersection graphs of geometric objects.

1 Introduction

A unit disk graph (UDG) is the intersection graph of unit disks in the plane. In
other words, G = (V, E) is a UDG if there exists a map f : V → R

2 (a geometric
representation) satisfying

(u, v) ∈ E ⇐⇒ ‖f(u)− f(v)‖ ≤ 2, (1)

where ‖.‖ denotes the euclidean norm.
A subset of vertices in G is called independent if the vertices in this subset

are pairwise not connected by an edge. The maximum independent set problem
now consists of finding a such an independent subset of the vertices of maximum
cardinality. For the maximum weight independent set problem, each vertex v ∈ V
is also assigned a weight wv > 0, and the goal is to find an independent set of
maximal total weight, i.e. of maximum sum of all weights of the vertices in the
independent set.

In this document, we give a polynomial-time approximation scheme (PTAS)
for the maximum (weight) independent set problem in unit disk graphs for the
case that a geometric representation is not given, i.e. we seek for an algorithm
which, given as input a UDG G = (V, E) and a parameter ε > 0, computes an
� This work is partially supported by the European research project EYES (IST-2001-

34734).
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independent set I ⊂ V of size (weight) at least (1 + ε)−1 times the maximum
size (weight) of an independent set in G. The running time of the algorithm is
allowed to depend on ε, but should be polynomial in n = |V | for fixed ε > 0.

Most of the work concerning approximation schemes in unit disk graphs
has been done assuming a given geometric representation. The representation
makes it possible to perform separation of the graph alongside a grid. This so
called shifting strategy is presented in [1] and [7]. Combined with a dynamic
programming approach, the shifting strategy is used by Erlebach et. al. [5] to
give a PTAS for the maximum weight independent set in disk graphs of arbitrary
diameter. Using quadtrees as separation, the runtime has been improved by Chan
[3] to nO(1/εd−1), where d gives the dimension of the euclidean space. The shifting
strategy can also be applied to related problems like minimum vertex cover,
and minimum dominating set [8]. Also, the minimum connected dominating set
problem can be approximated by a PTAS with the help of separation using a
grid structure [4].

The case where no geometric representation f for the UDG G = (V, E)
is available is significantly different: Computing a corresponding representation
function f for a given UDG G = (V, E) is NP-hard. Indeed, any polynomial time
algorithm computing geometric representation functions for unit disk graphs
could be used in a straightforward way to solve the UDG recognition problem
(determine whether a given graph is a UDG), which is known to be NP-hard [2].

Without given geometric representation, a PTAS for the maximum (weight)
independent set problem was not known previously. However, constant factor
approximation algorithms have been given in the literature. A simple greedy
strategy gives a 5-approximation for the maximum weight independent set, and
a more sophisticated choice of a node to be greedily added to the partial set of in-
dependent nodes gives an approximation within a factor of 3 for the unweighted
case [10]. Both algorithms work without given representation, however, the run-
ning time can be improved a lot when the representation is given.

Unit disk graphs form a subclass of the more general class of all undirected
graphs. This raises the question of robustness (see [12]) for algorithms designed
for the restricted domain of UDGs. Generally speaking, a robust algorithm A
on a restricted class U ⊂ G solves a problem for all instances in U , but also
accepts any instance in G. For instances in G \ U , the algorithm A either solves
this problem or provides a certificate showing that the input is not in U . For the
PTAS presented in this paper, the algorithm accepts any graph as input, e.g.
given by an adjacency list or matrix, and either returns a (1 + ε)-approximate
(weighted) independent set or a certificate to show that the graph does not
belong to the class of unit disk graphs. In case the input graph is a unit disk
graph, the algorithm always returns an independent set of desired quality.

The problem of finding a maximum (weight) independent set arises for ex-
ample in the context of clustering in wireless ad-hoc networks [11]. The battery-
operated nodes, each equipped with a radio transceiver of fixed transmission
range, form a UDG representing the communication network. Nodes of a max-
imum independent set can be used as controlling instances, or clusterheads, of
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the other nodes within range of their radio. A maximum independent set also
forms a dominating set. In the ad-hoc scenario, it is hard or costly to determine
the exact position of each node and therefore for the resulting network only a
representation by the nodes and communication links between them is known.
The weights of those nodes may correspond to the residual energy in order to
make nodes with more battery power clusterheads to prolong the operational
lifetime of the network.

The remainder of this paper is organized as follows. The next section intro-
duces the algorithm that gives the PTAS for the unweighted case of finding an
independent set of maximum cardinality in UDGs without using a geometric
representation. Section 3 then gives the modifications of the algorithm to effi-
ciently approximate the maximum weight independent set. The algorithms are
presented with the assumption (or “promise”) that the input is a UDG. In Sec-
tion 4, we show how to obtain a robust algorithm from the PTAS. In Section 5,
we identify some other classes of geometric intersection graphs for which our ap-
proach also is efficient. The paper ends with a short conclusion and an outlook
on future work.

2 The Approximation Algorithm

In this section, we introduce the approximation algorithm that forms the core of
the robust PTAS for the maximum independent set problem on UDGs. The same
algorithm is then adapted to the weighted version of the problem in Section 3.

The algorithm does not rely on a geometric representation, it thus accepts
any graph as an input-instance. However, the statements concerning the running
time depend on the assumption that the graph has a geometric representation.

Let ε > 0 and let ρ := 1 + ε denote the desired approximation guarantee.
Thus, given a unit disk graph G = (V, E), we seek to construct an independent
set I ⊂ V of cardinality at least ρ−1 times α(G), the maximum size of an
independent set in G.

The basic idea is simple. We start with an arbitrary node v ∈ V and consider
for r = 0, 1, 2, . . ., the rth neighborhood

N r = N r(v) := {w ∈ V |w has distance at most r from v}.

Starting with N0, we compute a maximum independent set Ir ⊂ N r for each
r = 0, 1, 2, . . . as long as

|Ir+1| > ρ|Ir| (2)

holds.
Let r̄ denote the smallest r ≥ 0 for which (2) is violated. Such an r̄ ≥ 0

indeed exists and it is bounded by a constant (depending on ρ):

Lemma 1. There exists a constant c = c(ρ) such that r̄ ≤ c.

Proof. From (1), we conclude that any w ∈ N r satisfies

‖f(v)− f(w)‖ ≤ 2r.
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So, the unit disks corresponding to nodes in Ir are pairwise disjoint and are all
contained in a disk of radius R = 2r + 1 around f(v). This implies

|Ir| ≤ πR2/π = O(r2). (3)

On the other hand, by definition of r̄, we have for r < r̄

|Ir| > ρ|Ir−1| > . . . > ρr|I0| = ρr. (4)

Comparing (3) and (4), the claim follows. �

To achieve an independent set for the graph G, the above algorithm is it-
eratively applied to the graph G′ := G \ N r̄+1, and the resulting independent
set for G′ is combined with Ir̄ for an independent set in G. Note that, due
to (3), we may compute Ir by complete enumeration in time O(nC2

), where
C = O(r) = O(1/ε2 log 1/ε) for r ≤ r̄ (see Appendix). The algorithm evolving
from the above description thus runs in polynomial time, as all other compu-
tations are dominated by this complexity. The correctness and approximation
guarantee of the algorithm follows from the following theorem.

Theorem 1. Suppose inductively that we can compute a ρ-approximate indepen-
dent set I ′ ⊂ V \N r̄+1 for G′. Then I := Ir̄ ∪ I ′ is a ρ-approximate independent
set for G.

Proof. Since each v ∈ I ′ ⊂ V \ N r̄+1 has no neighbor in N r̄, and thus not in
Ir̄ ⊂ N r̄, I is an independent set.
Furthermore, by definition of r̄, we have

|Ir̄+1| ≤ ρ|Ir̄ |.

In other words, the subgraph G[N r̄+1] induced by N r̄+1 has a maximum inde-
pendent set size bounded by

α(G[N r̄+1]) ≤ ρ|Ir̄|.

Further, by assumption, I ′ is ρ-approximately optimal for G′ = G[V \ N r̄+1].
Thus,

α(G[V \N r̄+1]) ≤ ρ|I ′|.
Adding the two inequalities, we obtain

α(G) ≤ α(G[N r̄+1]) + α(V \G[N r̄+1]) ≤ ρ|I|,

as claimed. �

3 The Algorithm for the Weighted Problem

The approximation algorithm presented in the previous section for the maximum
independent set problem on UDGs can easily be adapted for the case that each
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node v ∈ V is also given a nonnegative weight wv. In that case, we are seeking
an independent set of maximum total weight in the unit disk graph G. In the
following, we present the modified algorithm that returns an independent set of
total weight at least (1 + ε)−1 the maximum total weight of an independent set
in the UDG given as input.

For a subset I ⊂ V of vertices, let W (I) denote the total weight of I,
i.e.W (I) =

∑
i∈I wi. Furthermore, let IOPT be an optimal solution to the max-

imum weight independent set problem for the graph G = (V, E).
The approximation algorithm again follows the idea of the algorithm in the

previous section. This time, however, we start with a vertex of maximal weight
wmax = max{wi|i ∈ V }, and then compute the independent set Ir ⊂ N r of
maximum weight as long as W (Ir+1) > ρW (Ir) holds. Let r̄ denote the smallest
r ≥ 0 for which this criterion is violated.

Lemma 2. There exists a constant c = c(ρ) such that r̄ ≤ c.

Proof. Suppose r < r̄. Adapting the proof of Lemma 1, we get

W (Ir) =
∑
i∈Ir

wi ≤
∑
i∈Ir

wmax = |Ir |wmax, (5)

and
W (Ir) > ρW (Ir−1) > . . . > ρrW (I0) = ρrwmax (6)

respectively. Since |Ir| = O(r2), comparing (5) and (6) again yields the claim. �

The running time of this algorithm remains polynomial in the weighted case.
Also, the approximation ratio can be guaranteed as follows.

Theorem 2. The adapted algorithm yields an independent set of weight at least
ρ−1 = (1 + ε)−1 the weight of a maximum weight independent set.

Proof. Let V ′ := V \N r̄+1, and inductively assume I ′ ⊂ V ′ to be a ρ-approximate
independent weighted set in G[V ′]. Clearly, Ir̄ ∪ I ′ is an independent set in G.
For the weighted independent set in the neighborhood N r̄+1, we have

W (IOPT ∩N r̄+1) ≤ W (Ir̄+1) ≤ ρW (Ir̄).

For the weight of the set returned by the algorithm, W (Ir̄ ∪ I ′), it is

W (IOPT) = W ((IOPT ∩N r̄+1) ∪ (IOPT ∩ V ′))
= W (IOPT ∩N r̄+1) + W (IOPT ∩ V ′)
≤ ρW (Ir̄) + ρW (I ′)
= ρW (Ir̄ ∪ I ′). �

4 Robustness

In this section, we show that the approximation algorithms of the previous two
sections actually lead to a robust algorithm.



A Robust PTAS for Maximum Weight Independent Sets in UDGs 219

Definition 1. Let A be an algorithm defined on G, f be a function on G, and
U ⊂ G. Then A computes f robustly (on U), if
1. for all instances i ∈ U , the algorithm A returns f(i), and
2. for all instances i ∈ G\U , the algorithm A returns either f(i), or a certificate

showing that i �∈ U .
Of course, the notion of a robust algorithm is especially interesting when A has
polynomial running time with respect to the size of the input instance, and the
decision whether an instance belongs to the subclass U ⊂ G is not as easy to
decide. In our situation, G is the set of all undirected graphs, f gives a (1 + ε)-
approximation of the weight or cardinality of an independent set of maximum
weight or size respectively, and U is the subclass of unit disk graphs.

In the previous sections, we have shown that the introduced approximation
algorithms yield a PTAS for the case that the input instances represent a unit
disk graph. We thus continue our discussion only for the case that the input
instance is a graph for which there exists no geometric representation satisfying
the characterization of a UDG.

Observe that in Theorems 1 and 2, we did not use any properties of a UDG.
The algorithms thus always return a (1+ ε)-approximate independent set. How-
ever, the polynomial running time of the algorithms is a direct result from the
fact that any independent set in the rth neighborhood is polynomially bounded
in r, i.e. |Ir| ≤ (2r + 1)2. For a general graph, the running time may thus not
be polynomial. So, during the execution of the algorithm, if an independent set
of size |Ir| > (2r + 1)2 can be found, this set is returned as certificate of non-
membership in the class of unit disk graphs. This procedure, i.e. trying to find an
independent set of size (2r +1)2 +1, is also a task requiring polynomial running
time.

5 Extensions

It is straightforward to verify that our arguments apply equally well to intersec-
tion graphs of some other geometrical objects related to unit disks. For example,
the unit disks may be replaced by disks with fixed lower and upper bound on the
radius (bounded disk graphs). Similarly, an extension to (fixed) dimension d ≥ 2
is possible. Indeed, all that is needed in the proof is a polynomial bound on the
maximum geometric diameter divided by the minimum volume of the objects
under consideration. Quasi (Unit) Disk Graphs, as a more realistic model of a
wireless communication graph [9] satisfy this characterization.

The algorithm can also be applied to λ-precision disk graphs though they
have no bound on the radius of the disks and thus no bound on the minimum
volume of the disks. A λ-precision disk graph is an intersection disk graph where
two vertices are at least λ apart in a geometric representation that has been
scaled so that the disks have a maximum radius of 1 [8]. In this case, the size
of the rth neighborhood, |N r|, is already polynomially bounded in r. Note that
this is a different condition as the one given above: for example, in a UDG,
two vertices may be arbitrarily close as the graph can contain arbitrarily large
cliques.
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The independent set created by the PTAS may not be maximal, i.e. there may
exist vertices that can be added to the solution set returned by the PTAS without
violating the independent set property. However, a simple greedy strategy on
the nodes in N r1+1 \N r1 that are not connected by an edge to a node from the
independent set can resolve this problem. The obtained independent set then
also forms a dominating set in the graph.

6 Conclusion

In this paper, we present a new PTAS for the maximum independent set problem
in UDGs that does not depend on a geometric representation of the vertices. The
algorithm is extended to solve also the weighted version of the problem. Both
algorithms accept any graph as input and either return a (1 + ε)-approximate
independent set or a certificate showing that the input presented to the algorithm
is not a UDG. This certificate is given by an independent set which is too large
to be contained in a bounded area given by the neighborhood N r. The running
time of the algorithm is given by the time to compute a maximum independent
set in the largest neighborhood to be considered during the execution, which can
be done in nO(1/ε2 log 1/ε).

Some extensions to different, related families of geometric intersection graphs
are presented as well, including bounded and quasi disk graphs.
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Appendix

Lemma 3. For 0 < ε < 1
10 , the value c = 1

ε2 ln 1
ε satisfies

(2c + 1)2 < (3c)2 < (1 + ε)c.

Proof. The first inequality is obviously true for the given choice of ε and c. The
second inequality is equivalent to

2 ln 3c < c ln(1 + ε),

(taking the log). This, again, is equivalent with

2
c
(ln 3 + ln c) + ε2 < ln(1 + ε) + ε2.

In [6], it is shown that
ε ≤ ln(1 + ε) + ε2

holds for all 0 ≤ ε < 1
2 . Thus, it remains to show that 2

c (ln 3 + ln c) + ε2 < ε.
Note that, for ε < 1

10 , it is ln 1
ε > 1, and lnx < x for x > 1. Substituting

c = 1
ε2 ln 1

ε , we get

2
c
(ln 3 + ln c) + ε2 =

2ε2

ln 1
ε

(ln 3 + ln(
1
ε2

ln
1
ε
)) + ε2

= 2ε2(
ln 3
ln 1

ε

+ 2
ln 1

ε

ln 1
ε

+
ln ln 1

ε

ln 1
ε

+
1
2
)

< 2ε2(ln 3 + 2 +
ln 1

ε

ln 1
ε

+
1
2
)

< 2ε2(ln 3 + 3.5).

Since ε < 1
10 , the inequality

2ε2(ln 3 + 3.5) < 10ε2 < ε

holds and the claim follows. �
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Abstract. In this paper we use arc tolerances, instead of arc costs, to
improve Branch-and-Bound type algorithms for the Asymmetric Trav-
eling Salesman Problem (ATSP). We derive new tighter lower bounds
based on exact and approximate bottleneck upper tolerance values of
the Assignment Problem (AP). It is shown that branching by tolerances
provides a more rational branching process than branching by costs.
Among others, we show that branching on an arc with the bottleneck
upper tolerance value is the best choice, while such an arc appears quite
often in a shortest cycle of the current AP relaxation. This fact shows
why branching on shortest cycles was always found as a best choice.
Computational experiments confirm our theoretical results.

1 Introduction

The Traveling Salesman Problem (TSP) is the problem of finding a shortest
tour through a given number of cities such that every city is visited exactly
once. The travel costs c(i, j) are symmetric if traveling from city i to city j costs
just as much as traveling from city j to city i, and asymmetric if there is an
arc (i, j) such that c(i, j) �= c(j, i). The TSP is a typical NP-hard optimization
problem and solving instances with a large number of cities is very difficult if
not impossible. Recent developments in polyhedral theory and heuristics have
significantly increased the size of instances which can be solved to optimality. The
best known exact algorithms are based on the either branch-and-bound method
for the Asymmetric TSP (ATSP) (see Fischetti et al. [3]) or branch-and-cut
method for the Symmetric TSP (STSP) using the double index formulation of
the problem (see Naddef [11]). The state-of-the-art of heuristics for the STSP
and the ATSP is presented in Johnson and McGeoch [5] and Johnson et al. [4],
respectively. Current algorithms, except Helsgaun’s version of the Lin-Kernighan
heuristic (see Helsgaun [8]), do not use criteria based on the tolerance values of
the corresponding TSP relaxations to find a common arc (edge) of the optimal
solutions to the relaxed TSP and the TSP itself.

In this paper we generalize Helsgaun’s idea of using the tolerances to solve
combinatorial optimization problems (COPs) with monotone objective functions
and non-embedded sets of feasible solutions, i.e. sets of feasible solutions such
that for any feasible solution S all its proper subsets A ⊂ S are not feasible. Many
problems have as underlying model this COP, among them being the traveling
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salesman, quadratic assignment, linear ordering, assignment, 1-tree, max-flow,
shortest path, and matching problems.

The paper is organized as follows. Section 2 shows that the tolerance values of
an optimal solution to COP indicate the multiplicity (uniqueness) of the whole
set of optimal solutions. Section 3 presents the relationships between extremal
values of upper and lower tolerances. Section 4 empirically justifies the usefulness
of upper tolerance values for constructing exact and heuristic algorithms for the
ATSP. Section 5 derives new tighter lower bounds and branching rules for the
ATSP which allow us to reduce the solution tree size for the ATSP substantially.
Conclusions and future research directions appear in Section 7.

2 Tolerances for Combinatorial Optimization Problems

In this section we introduce the notion of upper and lower tolerances and indicate
some useful properties of their extremal values. All necessary proofs can be found
in Goldengorin and Sierksma [6].

A Combinatorial Optimization Problem COP (E , C,D, fC) is the problem of
finding

S∗ ∈ arg opt{fC(S) | S ∈ D},
where C : E → # is the given instance of the problem with a ground set E
satisfying |E| = m (m ≥ 1), D ⊆ 2E is the set of feasible solutions, and fC :
2E → # is the objective function of the problem. ByD∗ = arg opt{fC(S) | S ∈ D}
the set of optimal solutions is denoted. It is assumed that D∗ �= ∅, and that
∪D �= ∅. In the remaining part of this paper we take opt = min.

Let g ∈ E , and α ≥ 0. By Cα,g : E → # we denote the instance defined as
Cα,g(e) = C(e) for each e ∈ E \ {g}, and Cα,g(g) = C(g)+α. Take any S∗ ∈ D∗.
The upper tolerance, uS∗(e), of e with respect to S∗ is defined as

uS∗(e) = max{α ≥ 0 : S∗ ∈ argmin{fCα,e(S) : S ∈ D}},

and the lower tolerance, lS∗(e), with respect to S∗ as

lS∗(e) = max{α ≥ 0 : S∗ ∈ argmin{fC−α,e(S) : S ∈ D}}.

I.e. uS∗(e) is the maximal increase of C(e) under which S∗ stays optimal, and
lS∗(e) is the maximal decrease of C(e) under which S∗ stays optimal.

We also assume that fC is monotone, meaning that for each S ∈ 2E and each
α > 0, it holds that

fCα,e(S) > fC0,e(S) and fC−α,e(S) < fC0,e(S).

Sum functions with fC(S) =
∑

e∈S C(e), bottleneck functions with fC(S) =
maxe∈S C(e), and product functions with fC(S) =

∏
e∈S C(e) and C(e) ≥ 1 for

each e ∈ E are all monotone functions.
We call a set D of feasible solutions non-embedded if for each S1, S2 ∈ D with

S1 �= S2, it holds that neither S1 ⊂ S2 nor S2 ⊂ S1.
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The following theorem can be seen as a generalization of Libura’s theorem on
tolerances (see, Libura [10]) derived for the TSP. We will use the following extra
notations. Let e ∈ E . Then D+(e) = {S ∈ D : e ∈ S}, and D−(e) = {S ∈ D :
e /∈ S}. Clearly, D = D−(e)∪D+(e) and D−(e)∩D+(e) = ∅ for all e ∈ E . D∗

+(e)
and D∗

−(e) are the sets of optimal solutions containing e and not containing e,
respectively.

Theorem 1. Consider a COP (E , C,D, fC) with monotone fC . For each S∗ ∈
D∗ �= ∅ the following holds:

1. e ∈ ∩D∗ iff uS∗(e) = fC(S)− fC(S∗) > 0 for each S ∈ D∗
−(e),

lS∗(e) = ∞;
2. e ∈ E \ ∪D∗ iff uS∗(e) =∞, lS∗(e) = fC(S)− fC(S∗) > 0

for each S ∈ D∗
+(e);

3. e ∈ S∗ \ ∩D∗ iff uS∗(e) = 0, lS∗(e) =∞;
4. e ∈ ∪D∗ \ S∗ iff uS∗(e) =∞, lS∗(e) = 0;

Proof. Case 1. Sufficiency. For sake of simplicity we prove only the case when fC

is a sum function. In general the values of uS∗(e) should be adjusted according to
a specific presentation of fC . Consider an element g ∈ ∩D∗ and the partition of
D = D−(g)∪D+(g) such thatD−(g)∩D+(g) = ∅. If the value of Cα,g(g) = C(g)+
α increases by increasing the value of α > 0 and the values of Cα,g(e) = C(e)
for each e ∈ E \ {g} remain unchanged, then the values of all feasible solutions
belonging to D+(g) are also increased in the same way since fC is monotone.
But the values of fC(S) for each S ∈ D−(g) are still the same. Hence S∗ remains
optimal as long as the increase of Cα,g(g) is not greater than the difference
fC(S)− fC(S∗) > 0 for each S ∈ D∗

−(e).

Necessity. By contradiction. Assume that uS∗(g) > 0 but g ∈= E \ ∩D∗. If g ∈
S∗ \ ∩D∗ and the value of Cα,g(g) increases then the value of fC(S∗) increasing
also and S∗ became non-optimal under assumption that ∪D∗ \ S∗ �= ∅. Hence,
uS∗(g) = 0. If g ∈ ∪D∗ \S∗ then by increasing the value of Cα,g(g) we loose the
optimality of an optimal solution S∗

1 �= S∗. Again, uS∗(g) = 0. If g ∈ E \ ∪D∗

then we have the case 3 of this theorem.

It is obvious that any decrement of C−α,g(g) by increasing the value of α > 0
does not change the optimality of S∗. Hence, lS∗(g) = ∞ for each g ∈ S∗, see
case 3. Proofs of cases 2, 3 and 4 can be obtained in a similar manner.

If |D∗| = 1, then this theorem boils down to Libura’s theorem on tolerances.
If D−(e) = ∅ for some e ∈ E , then uS∗(e) = min{fC(T ) : T ∈ D−(e)}−fC(S∗) =
min{∅} = ∞ (by definition). Similarly, for D+(e) = ∅ we take lS∗(e) = ∞.

Note that the finite values of the upper and the lower tolerances are nonneg-
ative and independent on the chosen S∗ ∈ D∗. Hence, we may write u(e) and
l(e) instead of uS∗(e) and lS∗(e), respectively, when they are finite and positive.

One of the major problems, when solving an NP-hard COP by means of
Branch-and-Bound (BnB) approach, is the choice of the branching element which
keeps the search tree as small as possible. Using tolerances we are able to ease
this choice. Namely, if there is an element from the optimal solution of the
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current relaxation with a finite positive upper tolerance, then this element is in
all optimal solutions of the current relaxed problem (see Theorem 1(1)). Hence,
branching on this element means that we enter a common part in all search trees
emanating from this current stage. Therefore, branching on an element with a
positive upper tolerance is not only necessary for finding a feasible solution to the
original NP-hard instance but also is the best choice. Of course, if this situation
is not at hand we still have the above mentioned major problem.

In the following sections we study extremal values of tolerances. The purpose
is to reduce the search tree sizes of BnB type algorithms for the ATSP. For an
extensive account on properties of upper and lower tolerances in the context of
sensitivity analysis, see Greenberg [7] and references therein.

3 Extremal Values of Upper and Lower Tolerances

In this section it will be shown that under very natural conditions, it holds that
min{uS∗(e) : e ∈ S∗} = min{lS∗(e) : e ∈ E \ S∗}.

Theorem 2. Consider a COP(E , C,D, fC) with monotone fC and non-embed-
ded D. Then

umin = min{uS∗(e) : e ∈ S∗} = lmin = min{lS∗(e) : e ∈ E \ S∗},

for each S∗ ∈ D∗.

Proof. If Em = {e ∈ S∗ : uS∗(e) = umin} and Gm = {e ∈ E \ S∗ :
lS∗(e) = lmin}, then by Theorem 1(1,2) umin = fC [S∗

−(em)] − fC(S∗) and
lmin = fC [S∗

+(gm)] − fC(S∗). Hence, the equality umin = lmin is equivalent to
the equality fu

min = fC [S∗
−(em)] = f l

min = fC [S∗
+(gm)]. In other terms, fu

min =
min{fC [S∗

−(e)] : e ∈ S∗} and f l
min = min{fC [S∗

+(e)] : e ∈ E \ S∗} as well as
Em = {e ∈ S∗ : fC [S∗

−(e)] = fu
min} and Gm = {e ∈ E \ S∗ : fC [S∗

+(e)] = f l
min}.

Denote by em ∈ Em and by gm ∈ Gm. The proof of this theorem is based on
the following two inequalities f l

min ≤ fu
min and f l

min ≥ fu
min. Combining both

inequalities we obtain a proof.
Let us prove only the first inequality because the proof of the second in-

equality can be done in a similar way. Note that S∗
−(em) differs from S∗ at least

by one element, say t∗ ∈ S∗
−(em) such that t∗ /∈ S∗, since S∗

−(em) and S∗ are
non-embedded. Hence, S∗

−(em) ∈ D+(t∗). Note that fC [S∗
+(t∗)] = min{fC [S] :

S ∈ D+(t∗)} ≤ fC [S∗
−(em)] implies that f l

min = fC [S∗
+(gm)] ≤ fC [S∗

+(t∗)] ≤
fC [S∗

−(em)] = fu
min.

Theorem 2 allows us to compute the minimal upper and lower tolerances by
solving at most min{O(|S∗|), O(|E \ S∗|)} (sub)COPs. Note that the minimum
is not always attained on |S∗|. For example consider a sparse TSP instance of
100 cities with 120 arcs. Then |S∗| = 100, and |E \ S∗| = 20. This can be a
considerable improvement in comparison to the situation where only Theorem 1
(including Libura’s theorem) is available. In the latter case, O(|E|) (sub)COPs
needed to be solved. Also in terms of (sub)COPs the complexity of computing the
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minimal values of upper and lower tolerances is O(|E|). Note that the conditions
from Theorem 2 hold for “regular” COPs, such that for any feasible solution S
all its proper subsets A ⊂ S are not feasible. The sets of feasible solutions of
many COPs with a monotone objective function have that property. The irreg-
ular situation of Theorem 2 occurs in problems with embedded sets of feasible
solutions (for example location problems; see Goldengorin and Sierksma [6]).

Define the finite values of umax = max{uS∗(e) : e ∈ S∗} and lmax =
max{lS∗(e) : e ∈ E \ S∗} for S∗ ∈ D∗. If an optimal AP solution a∗ is used
to obtain a shortest ATSP tour h∗, which type of tolerances should be used,
upper or lower? The arcs which should be considered for inclusion are the arcs
in e ∈ E \ a∗ that are also in an shortest tour h∗. Lower tolerances are com-
puted for all arcs e ∈ E \ a∗, but if upper tolerances are computed, only a subset
Au ⊆ E \a∗ is considered for inclusion. Here, Au = {e ∈ E \a∗ : la∗(e) ≤ umax}.
Table 1 shows that in general, the arcs entering h∗ are contained in Au. Since in
general, the complexity of computing all lower tolerances is higher, we use only
the upper tolerances in case of the ATSP.

Table 1. Fraction of arcs e in ATSP solution such that la∗(e) > umax.

Instance type Fraction of arcs
ATSPLIB 2.335%
Degree of symmetry 0.33 6.006%
Degree of symmetry 0.66 6.878%
Full symmetry 19.149%
Usual random 0.000%
Degree of sparsity 50% 5.576%

4 Statistical Analysis of Arc Tolerances and Costs

In this section, we explore whether tolerance based Branch and Bound (BnB)
algorithms are more effective for the ATSP than cost based BnB algorithms. We
present a statistical analysis of optimal AP and ATSP to explore which arcs in an
optimal AP solution a∗ that also appear in an optimal solution h∗ of the ATSP
instance with the same cost matrix. Table 2 shows that the average percentage
of common arcs in AP and ATSP solutions varies between 40 and 80%. Similar
research shows that the Minimum 1-Trees and optimal STSP tours have between
70% and 80% of the edges in common [8].

BnB methods make a sequence of steps in which parts of the AP solution at
hand are included and excluded, until an optimal solution of the ATSP is found.
If a BnB algorithm predicts correctly which element to delete or to insert, then
its search tree will be small. Most algorithms base the prediction whether an
AP arc is in an optimal ATSP solution on its cost value. The question is: do
predictions improve if they are based on the upper tolerance values of the AP?

We explore whether there are relationships between the cost values and the
upper tolerance values of arcs and their appearance in a fixed shortest complete
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Table 2. Fraction of common arcs in optimal AP and ATSP solutions.

Instance type Fraction AP and ATSP

ATSPLIB 53.52%
Degree of symmetry 0.33 69.29%
Degree of symmetry 0.66 51.10%
Full symmetry 43.44%
Asymmetric random 80.49%
Degree of sparsity 50% 86.27%
Degree of sparsity 75% 84.23%
Degree of sparsity 90% 83.46%

tour h∗. These relationships are measured with correlations, which require two
continuous variables, and with the adjusted Rand index, which measures the
relationship between two partitions [9]. The costs and the upper tolerances are
continuous variables, and they are compared with a partition of a∗.

In order to calculate the correlations, we define the following measure for
all arcs e ∈ a∗: IN(e) = 1 if e ∈ h∗ and IN(e) = 0 if e /∈ h∗. We compare
the absolute correlations between costs and the measure, and between upper
tolerances and the measure. If the absolute correlation is high, say for costs,
then we may expect that high cost arcs in an AP solution are in none of the
optimal ATSP solutions, and therefore, if an algorithm excludes high cost arcs
from an AP solution, it will arrive at an optimal ATSP solution quickly. Table 3
shows that the correlations of tolerances are larger in absolute terms than the
correlations of costs. Hence, one may expect that including or excluding an arc
from the AP solution into the ATSP solution is done more accurately when
tolerances are used instead of costs.

In the adjusted Rand index analysis, we create partitions based on upper
tolerances and costs. Firstly, the arcs in a fixed optimal AP solution a∗ are
partitioned into two subsets: the subset of arcs IN1 which are also in a fixed
shortest Hamiltonian tour h∗, and the subset of arcs IN0 which are not in h∗.
Call this partition IN = {IN0, IN1}. We try to replicate IN with partitions C
and U based on the cost and tolerance values of the arcs, respectively. Define

Table 3. Absolute correlations and adjusted Rand indices.

Correlations Adjusted Rand indices
Instance type Tolerance Cost Tolerance Cost
ATSPLIB 0.358 0.078 0.113 -0.003
Degree of symmetry 0.33 0.368 0.057 0.152 0.007
Degree of symmetry 0.66 0.340 0.034 0.188 0.028
Full symmetry 0.086 0.068 0.158 0.013
Asymmetric random 0.345 0.101 0.287 0.039
Sparsity 50% 0.274 0.091 0.361 0.017
Sparsity 75% 0.274 0.091 0.252 0.033
Sparsity 90% 0.274 0.091 0.219 0.032
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C := {C0, C1}, where C0 = {e ∈ a∗ s.t. c(e) ≥ c∗}, C1 := {e ∈ a∗ s.t. c(e) < c∗},
and choose c∗ in such a way that |C0| = |IN0|. Arcs are partitioned into a set of
low cost arcs C1 and a class of high cost arcs C0. If it is true that all high cost
arcs are not in the shortest tour, then the sets IN0 and C0 and the sets IN1

and C1 coincide and cost values lead to a perfect prediction. Similarly, define
U = {U0, U1}, where U0 := {e ∈ a∗ s.t. ua∗(e) < u∗}, U1 := {e ∈ a∗ s.t. ua∗(e) ≥
u∗}, and choose u∗ in such a way that |U0| = |IN0|. The adjusted Rand index [9]
measures how similar the partitions U and C are to the partition IN .

The more similar two partitions are, the higher the adjusted Rand index
between both partitions is. An adjusted Rand index of 1 indicates that for each
nonempty class Ai of partition A, there exists a class Bj of partition B such
that Ai = Bj . The expected adjusted Rand index is 0, if both partitions assign
objects to classes randomly having the original number of objects in each class.

The adjusted Rand indices between IN and C and between IN and U are
shown in Table 3. The adjusted Rand indices are larger for the tolerance based
partitions U than for the cost based partitions C, which confirms that predictions
are better if they are based on upper tolerance values.

5 New Lower Bound for the ATSP

In Theorem 3 we derive a new tighter lower bound for the ATSP based on the
tolerance values for the corresponding AP.

Theorem 3. Let a∗ and h∗ be optimal solutions to the AP and ATSP with opti-
mal values fC(a∗) and fC(h∗), respectively, whereas both problems have the same
the cost matrix C. Assume that a∗ consists of k > 1 cycles, a∗ = {C1, . . . , Ck}
and Ci = {ei

1, . . . , e
i
t(i)} is the set of arcs in i-th cycle Ci with upper tolerance val-

ues u(ei
1), . . . , u(ei

t(i)) (i = 1, . . . , k). Define u(i) = min{u(ei
p) : p = 1, . . . , t(i)}

for i = 1, . . . , k, and by ue = max{u(i) : i = 1, . . . , k}. The following inequalities
hold:

fC(a∗) ≤ lbe = fC(a∗) + ue ≤ fC(h∗).

Proof. Since ue ≥ 0 we have that fC(a∗) ≤ fC(a∗) + ue. Note that to find
an optimal solution h∗ to the ATSP we have to exclude at least one arc from
each cycle Ci. If we delete an arc ei such that u(ei) = u(i) then by Theorem 1(1)
we have that u(ei) = fC [a∗

−(ei)] − fC(a∗), and fC [a∗
−(ei)] is the smallest value

defined on the set A−(ei) = {a ∈ A : ei /∈ a}, with A the collection of all
assignments. Hence fC [a∗

−(ei)] = fC(a∗) + u(ei) ≤ fC(h∗) for each i = 1, . . . , k.
Therefore, max{fC [a∗

−(ei)] : i = 1, . . . , k} ≤ fC(h∗) implies that fC(a∗) ≤
fC(a∗) + ue ≤ fC(h∗). Note that in case of multiple solutions to the AP, i.e.
|A∗| > 1, the conditions of ue > 0 and a∗ = {C1, . . . , Ck} with k(> 1) cycles,
imply that h∗ /∈ A∗.

It is well known (see e.g., Balas and Toth [1], pages 370-371) that for finding
an optimal solution a∗

−(ei) based on the given AP solution a∗, it is enough to
use only one labelling procedure in the Hungarian method, which can be done in
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time O(n2). Hence, the time complexity of our new lower bound lbe is 2O(n3),
where O(n3) is the time complexity of Hungarian method for solving the AP.

Further we refer to lbe and ue as to the Exact Bottleneck Bound (EB) and
Exact Bottleneck Tolerance (ET), respectively. We also use the Approximate
Bottleneck Bound (AB), and denote it by lba = fC(a∗)+ua. The corresponding
Approximate Bottleneck Tolerance (AT) is denoted by ua = u(i0) with i0 ∈
arg min{|Ci| : i = 1, . . . , k}. It is clear that ua ≤ ue. For different types of
ATSP instances the relative reductions re = ue

fC(h∗)−fC(a∗) × 100% and ra =
ua

fC(h∗)−fC(a∗)×100% of the gap fC(h∗)−fC(a∗) are shown in Table 4. The results
show that on average around 50% of the gap is bridged for random instances. As
a consequence, the exclusion of an ET arc from a randomly generated instance
brings the algorithm in large steps, on average 50% of the gap, towards an
optimal ATSP solution h∗. Also, the reductions achieved by the AT are almost
as large as the AT reductions, and therefore, the AT is a good approximation.

For Example 2 from Balas and Toth [1] (see page 381) we obtain that
fC(a∗) = 17, lba = 21, lbe = 25, and fC(h∗) = 26. Here, re = 8

26−17 × 100% =
88.8%, re = 4

26−17 × 100% = 44.4%, and lbe = 25 is the best value among all
bounds discussed in Balas and Toth [1].

Similar new bounds can be obtained for the STSP by taking into account the
upper tolerance values for edges incident with vertices of degree at least three
and the lower tolerance values for edges incident with vertices of degree one in
the corresponding 1-tree solution.

Table 4. Relative reductions of the “AP - ATSP” gap.

Instance re ra

ATSPLIB 19.97% 6.39%
Degree of symmetry 0.33 34.62% 17.07%
Degree of symmetry 0.66 26.66% 12.27%
Full symmetry 21.64% 14.61%
Asymmetric random 50.47% 43.31%
Degree of sparsity 50% 56.50% 48.99%
Degree of sparsity 75% 45.78% 40.45%
Degree of sparsity 90% 49.86% 35.45%

6 Computational Experiments with ATSP Instances

The tested set of BnB algorithms for solving various types of TSP instances is
shown in Table 5. Here “Normal” branching rule means branching by a shortest
cycle from the AP solution in a non-increasing order of arc costs. All other
branching rules mean branching by a cycle on which either ET or AT is attained
but in a non-increasing order of arc upper tolerances.

We have selected instances from the ATSPLIB (see Reinelt [12]) that are
solvable within reasonable time limits. The random instances have degree of
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Table 5. Variants of BnB algorithms.

Algorithm Lower bound Branching rule Comments
0 fC(a∗) Normal basic algorithm
1 fC(a∗) ET efficiency of exact branching
2 fC(a∗) AT efficiency of appr. branching
3 lbe Normal efficiency of exact bound
4 lbe ET efficiency of exact BnB
5 lbe AT not considered
6 lba Normal efficiency of appr. bound
7 lba ET not considered
8 lba AT efficiency of appr. BnB

symmetry 0, 0.33, 0.66, and 1, where the degree of symmetry is defined as the
fraction of off-diagonal entries of the cost matrix {cij} that satisfy cij = cji. The
sparse random instances have degrees of sparsity of 50%, 75%, and 90%, where
the degree of sparsity is the percentage of arcs that is missing in an instance.
The sizes of the randomly generated instances are reported in Table 6. For
each problem set and for all instance sizes, 10 instances have been generated.
The experiments are conducted on a Pentium 4 computer with 256 MB RAM
memory and 2 GHz speed. In all tables s(i) and t(i) with i = 0, 1, . . . , 8 are the
sizes of the search trees, and solution times, respectively.

Table 6. Size n of the instances used in the experiments.

Tables Sparse Usual random Degree of symmetry Full symmetry
0.33 and 0.66

1,2,3,4 n = 60, 70, 80 n = 60, 70, 80 n = 60, 70, 80 n = 60, 70
8 n = 60,. . . ,200
10 n = 60,. . . ,1000
11 n = 100, 200, 400 n = 60, 70, 80 n = 60, 70, 80

There are two effects that reduce the size of the search tree of tolerance based
BnB algorithms. The first effect arises from the improved choice of the branching
variable shown in Section 4. The second effect is caused by the improvement in
the lower bounds obtained using AB and EB; see Section 5. Tables 7 and 8 show
that the increase in lower bounds are the main cause of the large search tree
reductions. Since the EB lower bound is tighter, the reductions of the ET based
branching rules are larger than the reductions of AT based branching rules. The
joint use of tolerance based lower bounds and branching rules often creates larger
reductions compared to the cases where only the bound or the branching rule
is used. Therefore, we concentrate on Algorithms 0, 4, and 8 in the experiments
below.

The question is whether the search tree reductions of Algorithms 4 and 8
are sufficient to compensate for the time invested in the tolerance calculations.
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Table 7. Search tree sizes for ATSPLIB instances.

ET AT

Instance n s(0) s(1) s(3) s(4) s(0)
s(4)

s(2) s(6) s(8) s(0)
s(8)

ft53 53 20111 ∗ 7039 ∗ ∗ 89511 17703 20955 0.96
ft70 70 25831 3058035 5619 5178853 0.14 22843 6717 5097 5.07
ftv33 34 7065 8926 1983 1696 4.17 6007 3137 1843 3.83
ftv35 36 6945 16432 2553 2824 2.46 12047 3219 2477 2.80
ftv38 39 6195 10175 2235 1494 4.14 14663 2821 2723 2.28
ftv44 45 619 610 187 130 4.76 937 249 247 2.51
ftv47 48 29025 42581 8017 5206 5.58 48345 9703 9595 3.03
ftv55 56 92447 88698 12413 8554 10.81 114641 26483 31717 2.91
ftv64 65 43441 100265 9449 8364 5.19 162639 11007 22863 1.90
ftv70 71 253873 532743 25939 56271 4.51 136296 52289 23275 10.91

∗Memory exhausted

Table 8. Search tree sizes for random instances.

ET AT

n s(0) s(1) s(3) s(4) s(0)
s(4)

s(2) s(6) s(8) s(0)
s(8)

60 3808 2695 978 323 11.79 1032 2832 221 17.23
70 4528 3511 1138 312 14.51 1286 1781 247 18.33
80 9014 3784 2414 217 41.53 2494 2746 256 35.21
100 9002 2298 1978 174 51.74 2188 5306 135 66.68
200 36390 20002 7114 858 42.41 17612 7612 796 45.72

Tables 9, 10, and 11 show that Algorithm 8 obtains the fastest solution times for
asymmetric instances, sparse instances, and instances with degree of symmetry
0.33 and 0.66, but the solution times of Algorithm 0 are better for ATSPLIB
(except the instances ftv33, ftv44, and ftv70) and fully symmetric instances. Al-
gorithm 4, which uses the EB lower bound and the ET branching rule, generally
requires too much tolerance calculation time to be competitive, in spite of its
small search trees.

7 Summary and Future Research Directions

In this paper we present the relationships between the extremal values of upper
and lower tolerances which constitute a background for improvements of exact
and heuristic algorithms for solving the ATSP. In case of the ATSP Theorem 2
shows that for efficient implementation of the upper and lower tolerance values in
the BnB type algorithms it is enough to use only the upper tolerance values. For
example, in Helsgaun’s implementation of the Lin-Kernighan heuristic for the
STSP the main improvement is based on the first five smallest lower tolerance
values (see Helsgaun [8]). Theorem 2 shows that it is enough to compute for
Helsgaun’s implementation only O(n) upper tolerance values instead of O(n2)
lower tolerance values.
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Table 9. AT and ET versus cost based branching for ATSPLIB instances.

Instance n s(0) t(0) s(4) t(4) s(8) t(8)
ft53 53 20111 2.31 ∗ ∗ 20955 6.65
ft70 70 25831 3.85 5178853 775.05 5097 2.03
ftv33 34 7065 0.22 1696 0.99 1843 0.16
ftv35 36 6945 0.22 2824 1.81 2477 0.33
ftv38 39 6195 0.22 1494 1.26 2723 0.49
ftv44 45 205 0.06 130 0.16 247 0.06
ftv47 48 29025 1.32 5206 7.64 9595 2.03
ftv55 56 92447 4.51 8554 18.35 31717 13.63
ftv64 65 43441 3.13 8364 27.47 22863 15.99
ftv70 71 253873 23.08 56271 250.27 23275 13.30

∗ Memory exhausted

Table 10. AT and ET versus cost based branching for asymmetric random instances.

n s(0) t(0) s(4) t(4) s(8) t(8)
60 3808 0.33 323 1.21 221 0.27
70 4528 0.38 312 1.76 247 0.27
80 9014 1.26 217 2.36 256 0.38
100 9002 1.92 174 2.64 135 0.22
200 36390 33. 858 73. 796 11.
300 178498 481. 936 287. 1506 66.
400 284994 1410. 742 541. 1216 120.
500 434576 3687. 1878 2684. 2253 439.
1000 922890 39516. 1421 15569. 3739 5360.

Table 11. AT and ET versus cost based branching for symmetric and sparse instances.

Instance s(0) t(0) s(4) t(4) s(8) t(8)
Degree of sparsity 50% 368736 1341. 2687 1173. 1785 70.
Degree of sparsity 75% 386468 1467. 3259 1247. 2432 117.
Degree of sparsity 90% 423284 1669. 3466 1909. 2521 141.
Degree of symmetry 0.33 58878 8.08 2919 20.00 4173 2.91
Degree of symmetry 0.66 202894 32.42 7990 54.51 32914 18.57
Full symmetry 13390054 1759. 454961 3036. 11382356 3631.

We also present an experimental analysis of the tolerance based BnB type
algorithms for the ATSP. These algorithms reduce the search tree sizes substan-
tially, and the computation times are reduced for random instances including
instances with symmetry 0.33, 0.66 and sparse instances. Our experiments show
that the only improved values of lower bounds (see Theorem 3) based on the
value of the Assignment Problem (AP) and bottleneck upper tolerance values
crucially reduce the search tree sizes for all tested instances. The exact bottle-
neck upper tolerance (ET) value provides the largest possible increase of the
current AP value. A good approximation of the ET is attained on a shortest
cycle in the AP solution. Not only is branching on the shortest subcycle efficient
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in the sense that a small number of subproblems are generated at each branching
step, there is also an arc with the ET value or a good approximation of it in
the shortest subcycle. Section 6 shows that branching on the ET arc decreases
the sizes of the search trees. Even the normal cost based algorithm benefits from
this effect.

An interesting direction of research is to develop book-keeping techniques
that accelerate tolerances computations, and lead to reducing the solution times
of the ATSP instances. Other directions of research are to incorporate a concept
of bottleneck tolerances based on both upper and lower tolerance values as well
as to different types of heuristics. We plan to experiment with these algorithms
in a followup of this work.
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Abstract. We consider the NP-complete problem of deciding whether
an input graph on n vertices has k vertex-disjoint copies of a fixed graph
H . For H = K3 (the triangle) we give an O(22k log k+1.869kn2) algorithm,
and for general H an O(2k|H| log k+2k|H| log |H|n|H|) algorithm. We intro-
duce a preprocessing (kernelization) technique based on crown decompo-
sitions of an auxiliary graph. For H = K3 this leads to a preprocessing
algorithm that reduces an arbitrary input graph of the problem to a
graph on O(k3) vertices in polynomial time.

1 Introduction

For a fixed graph H and an input graph G, the H-packing problem asks for the
maximum number of vertex-disjoint copies of H in G. The K2-packing (edge
packing) problem, which is equivalent to maximum matching, played a central
role in the history of classical computational complexity. The first step towards
the dichotomy of “good” (polynomial-time) versus “presumably-not-good” (NP-
hard) was made in a paper on maximum matching from 1965 [10], which gave a
polynomial time algorithm for that problem. On the other hand, the K3-packing
(triangle packing) problem, which is our main concern in this paper, is NP-hard
[12].

Recently, there has been a growing interest in the area of exact exponential-
time algorithms for NP-hard problems. When measuring time in the classical
way, simply by the size of the input instance, the area of exact algorithms for
NP-hard problems lacks the classical dichotomy of good (P ) versus presumably-
not-good (NP-hard) [16]. However, if in the area of exact algorithms for NP-
hard problems we instead measure time in the parameterized way, then we re-
tain the classical dichotomy of good (FPT - Fixed Parameter Tractable) versus
presumably-not-good (W [1]-hard) [8]. It therefore seems that the parameterized
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viewpoint gives a richer complexity framework. In fact, a formal argument for
this follows from the realization that the non-parameterized viewpoint, measur-
ing time by input size, is simply a special case of the parameterized viewpoint
with the parameter chosen to be the input size. Parameterized thusly, any prob-
lem is trivially FPT and the race for the best FPT algorithm is precisely the
same as the race for the best non-parameterized exact algorithm. Note that for
any optimization or decision problem, there are many interesting possibilities
for choice of parameter, that can be guided by both practical and theoretical
considerations, see for example [11] for a discussion of five different parameteri-
zations of a single problem. In our opinion, the relevant discussion for the field
of exact algorithms for NP-hard problems is therefore not “parameterized or
non-parameterized?” but rather “which parameter?”.

In this paper our focus is on parameterized algorithms for deciding whether
a graph G has k disjoint copies of K3, with the integer k being our parameter.
On input (G, k), where G is a graph on n vertices, an FPT algorithm for this
problem is one with runtime O(nαf(k)), for a constant α and an unrestricted
function f(k). We want, of course, both α and the growth rate of f(k) to be as
small as possible.

A practical spinoff from the field of parameterized algorithms for NP-hard
problems has been a theoretical focus on the algorithmic technique of preprocess-
ing, well-known from the heuristic algorithms community. In fact, the parameter-
ized problems having FPT algorithms are precisely the parameterized problems
where preprocessing can in polynomial time reduce a problem instance (G, k) to
a kernel, i.e., a decision-equivalent problem instance (G′, k′) where the size of G′

is bounded by a function of k (only), and where also k′ ≤ k [9]. One direction of
this fact is trivial, since any subsequent brute-force algorithm on (G′, k′) would
give an overall FPT algorithm. In the other direction, assume we have an FPT
algorithm with runtime O(nαf(k)) and consider an input (G, k) on n vertices. If
n ≥ f(k) then the runtime of the FPT algorithm on this instance is in fact poly-
nomial and can be seen as a reduction to the trivial case. On the other hand, if
n ≤ f(k) then the instance (G, k) already satisfies the kernel requirements. Note
that in this case the kernel size f(k) is exponential in k, and a smaller kernel is
usually achievable. For this reason, in the field of parameterized algorithms for
NP-hard problems, it can be argued that there are two distinct races [11]:

– Find the fastest FPT algorithm for the problem.
– Find the smallest polynomial-time computable kernelization for the problem.

In this paper, we enter the parameterized K3-packing problem into both these
races, giving on the one hand an O(22k log k+1.869kn2) FPT algorithm, and on
the other hand an O(k3) kernelization. Our FPT algorithm is derived by an
application of a fairly new technique known as greedy localization [14], and our
kernelization algorithm by a non-standard application of the very recently intro-
duced notion of Crown Reduction Rules [4, 5, 11]. We end the paper by asking
how well these two results on K3-packing generalize to H-packing. It turns out
that the FPT algorithm generalizes quite easily, giving FPT algorithms for decid-
ing whether an input graph G has k disjoint copies of an arbitrary connected H .
However, we presently do not see how to generalize the kernelization algorithm.
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Just in time for the final version of this paper we realized that Theorem 6.3
in [2] can be used to give a 2O(k) algorithm for graph packing using color coding.
However, we still believe our result to be of practical interest as the constants
in color coding can be impractical.

The next section gives some basic graph terminology. We then proceed in
Sections 3, 4 and 5 with the kernelization results, before continuing with the
FPT algorithm in Section 6 for K3 and in Section 7 for general H .

2 Preliminaries

We assume simple, undirected, connected graphs G = (V, E), where |V | = n.
The neighbors of a vertex v are denoted by N(v). For a set of vertices A ⊆ V ,
N(A) = {v �∈ A | uv ∈ E and u ∈ A}, and the subgraph of G induced by A
is denoted by G(A). For ease of notation, we will use informal expressions like
G \ u to denote G(V \ {u}, E), G \U to denote G(V \U, E), and G \ e to denote
(V, E \ {e}), where u is a vertex, U is a vertex set, and e is an edge in G. A
subset S of V is a separator if G \ S is disconnected.

An H-packing W of G is a collection of disjoint copies of graph H in G.
We will use V (W ) to denote the vertices of G that appear in W , and E(W ) to
denote the edges. A matching is a K2-packing.

We will in the following two sections describe a set of reduction rules. If
any of these rules can be applied to G, we say that G is reducible, otherwise
irreducible.

3 Reduction Rules for K3-Packing

Let us start with a formal definition of the problem that we are solving:

k-K3-packing (Triangle Packing)
Instance: Graph G = (V, E)
Parameter: k
Question: Does G have k disjoint copies of K3?

We say that a graph G has a k-K3-packing if the answer to the above question
is “yes.” In this section, we identify vertices and edges of the input graph that
can be removed without affecting the solution of the k-K3-packing problem.

Definition 1. If vertices a, b, and c induce a K3, we say that vertex a sponsors
edge bc. Likewise, edge bc sponsors vertex a.

We start with two simple observations that also give preprocessing rules
useful to delete vertices and edges that cannot participate in any triangle.

Reduction Rule 1. If e ∈ E has no sponsor then G has a k-K3-packing ⇔
G \ e has a k-K3-packing.

Reduction Rule 2. If u ∈ V has no sponsor then G has a k-K3-packing ⇔
G \ u has a k-K3-packing.
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Both observations are trivially true, and let us remove vertices and edges
from the graph so that we are left with a graph containing only vertices and
edges that could potentially form a K3.

Reduction Rule 3. If u ∈ V sponsors at least 3k−2 disjoint edges then G has
a k-K3-packing ⇔ G \ u has a (k − 1)-K3-packing.

Proof. (⇒:) This direction is clear as removing one vertex can decrease the
number of K3s by at most one.
(⇐:) If G \ u has a (k − 1)-K3-packing S, then S can use vertices from at most
3(k − 1) = 3k − 3 of the disjoint edges sponsored by u. This leaves at least one
edge that can form a K3 with u, thus raising the number of K3s to k. �

4 Reducing Independent Sets – Crown Reduction

In this section we will first give a trivial reduction rule that removes a specific
type of independent sets. This reduction rule is then generalized and replaced
by a more powerful rule that allows us to reduce any ’large’ independent set in
the graph.

Reduction Rule 4. If ∃u, v ∈ V such that N(u) = N(v) = {a, b} and ab ∈ E
then G has a k-K3-packing ⇔ G \ u has a k-K3-packing.

Proof. This is trivial as it is impossible to use both u and v in any K3-packing.
�

This reduction rule identifies a redundant vertex and removes it. The vertex
is redundant because it has a stand-in that can form a K3 in its place and there
is no use for both vertices. Generalizing, we try to find a set of vertices such that
there is always a distinct stand-in for each vertex in the set.

Definition 2. A crown decomposition (H, C, R) in a graph G = (V, E) is a
partitioning of the vertices of the graph into three sets H, C, and R that have
the following properties:

1. H (the head) is a separator in G such that there are no edges in G between
vertices belonging to C and vertices belonging to R.

2. C = Cu ∪ Cm (the crown) is an independent set in G.
3. |Cm| = |H |, and there is a perfect matching between Cm and H.

Crown-decomposition is a recently introduced idea that supports nontrivial
and powerful preprocessing (reduction) rules for a wide variety of problems, and
that performs very well in practical implementations [4, 11, 3]. It has recently
been shown that if a graph admits a crown decomposition, then a crown decom-
position can be computed in polynomial time [1]. The following theorem can be
deduced from [4, page 7], and [11, page 8].

Theorem 1. Any graph G with an independent set I, where |I| ≥ n
2 , has a

crown decomposition (H, C, R), where H ⊆ N(I), that can be found in linear
time, given I.
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For most problems, including k-K3-packing, it is not clear how a crown
decomposition can directly provide useful information. We introduce here the
idea of creating an auxiliary graph model where a crown decomposition in the
auxiliary graph is used to identify preprocessing reductions for the original graph.

For k-K3-packing we will show that an auxiliary graph model can be created
to reduce large independent sets in the problem instance. Consider an indepen-
dent set I in a graph G. Let EI be the set of edges that are sponsored by the
vertices of I.

The auxiliary model that we consider is a bipartite graph GI where we have
one vertex ui for every vertex vi in I and one vertex fj for every edge ej in EI .
For simplicity, we let both sets {ej | ej ∈ EI} and {fj | ej ∈ EI} be denoted by
EI . The edges of GI are defined as follows: let uifj be an edge in GI if and only
if ui sponsors fj .

We now prove the following generalization of Reduction Rule 4. This rule
now replaces rule 4.

Reduction Rule 5. If GI has a crown decomposition (H, Cm ∪ Cu, R) where
H ⊆ EI then G has a k-K3-packing ⇔ G \ Cu has a k-K3-packing.

Proof. Assume on the contrary that GI has a crown decomposition (H, Cm ∪
Cu, R), where H ⊆ EI and G has a k-K3-packing W ∗ but G \ Cu has no k-K3-
packing. This implies that some of the vertices of Cu were used in the k-K3-
packing W ∗ of G.

Let H∗ be the set of vertices in H whose corresponding edges in G use
vertices from C = Cm∪Cu to form K3s in the k-K3-packing W ∗ of G. Note that
vertices in Cu can only form K3s with edges of G that correspond to vertices
in H . Observe that each edge corresponding to a vertex in H∗ uses exactly one
vertex from C. Further, |H∗| ≤ |H |. By these two observations it is clear that
every edge whose corresponding vertex is in H∗ can be assigned a vertex from
Cm to form a K3. Thus Cu is superfluous, contradicting the assumption. �

Observation 1. If a bipartite graph G = (V ∪V ′, E) has two crown decomposi-
tions (H, C, R) and (H ′, C′, R′) where H ⊆ V and H ′ ⊆ V , then G has a crown
decomposition (H ′′ = H ∪H ′, C′′ = C ∪ C′, R′′ = R ∩R′).

It is easy to check that all properties of a crown decomposition hold for
(H ′′, C′′, R′′).

Lemma 1. If G has an independent set I such that |I| > 2|EI | then we can
in polynomial time find a crown decomposition (H, Cm ∪Cu, R) where H ⊆ EI ,
and Cu �= ∅.

Proof. Assume on the contrary that G has an independent set I such that |I| >
2|EI | but G has no crown decomposition with the properties stated in the lemma.

By Theorem 1 the bipartite model GI as described above has a crown de-
composition (H, C = Cm ∪ Cu, R) where H ⊆ N(I) and consequently C ⊆ I.
If |I \ C| > |EI | then GI \ C has a crown decomposition (H ′, C′, R′), where
H ′ ⊂ N(I). By Observation 1 (H, C, R) and (H ′, C′, R′) could be combined to
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form a bigger crown. Let (H ′′, C′′ = C′′
m ∪ C′′

u , R′′) be the largest crown decom-
position that can be obtained by repeatedly finding a new crown in I \ C and
combining it with the existing crown decomposition to form a new head and
crown.

By our assumption C′′
u = ∅. Since |C′′

m| = |H ′′| ≤ EI and it follows from
Theorem 1 that |I \ C′′

m| ≤ |EI | (otherwise a new crown could be formed), we
have that |I| = |C′′

m|+|I\C′′
m| ≤ |EI |+|EI | ≤ 2|EI | contradicting the assumption

that |I| > 2|EI |. �

5 Computing a Cubic Kernel

We now introduce a polynomial time algorithm that either produces a k-K3-
packing or finds a valid reduction of any input graph G = (V, E) of at least
a certain size. We show that this algorithm gives an O(k3) kernel for k-K3-
packing.

The algorithm has the following steps:

1. Reduce by Rule 1 and 2 until neither apply.
2. Greedily, find a maximal K3-packing W in G. If |V (W )| ≥ 3k then Accept.
3. Find a maximal matching Q in G \ V (W ). If a vertex v ∈ V (W ) sponsors

more than 3k− 3 matched edges, then v can be reduced by Reduction Rule
3.

4. If possible, reduce the independent set I = V \(V (W )∪V (Q)) with Reduction
Rule 5.

We now give the following lemma to prove our result:

Lemma 2. If |V | > 108k3 − 72k2 − 18k then the preprocessing algorithm will
either find a k-K3-packing or it will reduce G = (V, E).

Proof. Assume on the contrary to the stated lemma that |V | > 108k3 − 72k2 −
18k, but that the algorithm produced neither a k-K3-packing nor a reduction of
G.

By the assumption the maximal packing W is of size |V (W )| < 3k.
Let Q be the maximal matching obtained by step 2 of the algorithm.

Claim. |V (Q)| ≤ 18k2 − 18k

Proof. Assume on the contrary that |V (Q)| > 18k2−18k. Observe that no
edge in G\V (W ) can sponsor a vertex in G\V (W ) as this would contra-
dict that W is maximal, therefore all edges in the the maximal matching
Q are sponsored by at least one vertex in V (W ). If |V (Q)| > 18k2−18k,
Q contains more than 9k2−9k edges. Thus at least one vertex v ∈ V (W )
sponsors more than 9k2−9k

3k = 3k − 3 edges. Consequently v should have
been removed by Reduction Rule 3, contradicting the assumption that
no reduction of G took place. We have reached a contradiction, thus the
assumption that |V (Q)| > 18k2 − 18k must be wrong. �
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Let I = V \ (V (W ) ∪ V (Q)). Note that I is an independent set.

Claim. |I| ≤ 108k3 − 90k2

Proof. Assume on the contrary that |I| > 108k3 − 90k2. Observe that
each edge that is sponsored by a vertex of I is either in the subgraph of
G induced by V (W ), or is an edge between V (W ) and V (Q). The are
at most |EI | = |V (Q)| · |V (W )|+ |V (W )|2 ≤ (18k2− 18k) · 3k + (3k)2 ≤
54k3 − 45k2 such edges.
By Lemma 1 there are no more than 2|EI | = 108k3− 90k2 vertices in I,
which contradicts the assumption that |I| > 108k3 − 90k2. �

Thus the total size |V | = |V (W )|+ |V (Q)|+ |I| ≤ 3k +18k2− 18k +108k3−
90k2 = 108k3− 72k2− 18k. This contradicts the assumption that |V | > 108k3−
72k2 − 18k. �

Corollary 1. Any instance (G, k) of k-K3-packing can be reduced to a problem
kernel of size O(k3).

Proof. This follows from Lemma 2, as we can repeatedly run the algorithm until
it fails to reduce the graph further. By Lemma 2 the resulting graph is then of
size O(k3). �

Note that a O(k3) kernel gives us a trivial FPT-algorithm by testing all
O(

(
k3

3k

)
) subsets in a brute force manner. This leads to an O(29k log k +poly(n, k))

algorithm. However, we will show in the next section that another FPT technique
yields a faster algorithm.

6 Winning the FPT Runtime Race

In this section we give a faster FPT-algorithm using the technique of “greedy
localization” and a bounded search tree.

We begin with the following crucial observation.

Observation 2. Let W be a maximal K3-packing, and let W ∗ be a k-K3-
packing. Then for each K3 T of W ∗ we have that V (T ) ∩ V (W ) �= ∅.

Proof. Assume on the contrary that there exists a K3 T in W ∗ such that V (T )∩
V (W ) = ∅. This implies that V (T ) ∪ V (W ) is a K3-packing contradicting that
W is a maximal packing. �

Theorem 2. It is possible to determine whether a graph G = (V, E) has a k-
K3-packing in time O(22k log k+1.869kn2).

Proof. Let W be a maximal K3-packing. If |V (W )| ≥ 3k we have a K3-packing.
Otherwise, create a search tree T . At each node we will maintain a collection
Si = Si

1, S
i
2, . . . , S

i
k of vertex subsets. These subsets represent the k triangles of

the solution, and at the root node all subsets are empty.
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From the root node, create a child i for every possible subset Wi of V (W ) of
size k. Let the collection at each node i contain k singleton sets, each containing
a vertex of Wi.

We say that a collection Si = Si
1, S

i
2, . . . , S

i
k is a partial solution of a k-K3-

packing W ∗ with k disjoint triangles W ∗
1 , W ∗

2 , . . . , W ∗
k if and only if Si

j ⊆ V (W ∗
j )

for 1 ≤ j ≤ k.
For a child i, consider its collection Si = Si

1, S
i
2, . . . , S

i
k. Add vertices to Si

1

such that Si
1 induces a K3 in G, continue in a greedy fashion to add vertices

to Si
2, S

i
3 and so on. If we can complete all k subsets we have a k-K3 packing.

Otherwise, let Si
j be the set first set which is not possible to complete, and let

V ′ be the vertices we have added to Si so far. We can now make the following
claim.

Claim. If Si = Si
1, S

i
2, . . . , S

i
k is a partial solution then there exists a vertex

v ∈ V ′ such that Si = Si
1, . . . , (S

i
j ∪ {v}), . . . , Si

k is a partial solution.

Proof. Assume on the contrary that Si = Si
1, S

i
2, . . . , S

i
k is a partial

solution but that there exists no vertex v ∈ V ′ such that Si = Si
1, (S

i
j ∪

{v}), . . . , Si
k is a partial solution. This implies that V (W ∗

j )∩V ′ = ∅, but
then we could add V (W ∗

j )\Si
j to Si

j to form a new K3, thus contradicting
that it was not possible to complete Si

j . �

We now create one child u of node i for every vertex in u ∈ V ′. The collection
at child u is Si = Si

1, (S
i
j ∪ {u}), . . . , Si

k. This is repeated at each node l, until
we are unable to complete any set in node l’s collection, i.e. V ′ = ∅.

By Observation 2 we know that if there is k-K3-packing then one of the
branchings from the root node will have a partial solution. Claim 1 guarantees
that this solution is propagated down the tree until finally completed at level
2k.

At each level the collections S at the nodes grow in size, thus we can have
at most 2k levels in the search tree. Observe that at height h in the search
tree |V ′| < 2k − h, thus fan-out at height h is limited to 2k − h. The total
size of the tree is then at most

(
3k
k

)
2k · (2k − 1) · . . . =

(
3k
k

)
· 2k! = (3k)!

k! .
Using Stirling’s approximation and suppressing some constant factors we have
(3k)!

k! ≈ 3.654k · k2k = 22k log k+1.869k. At each node we need O(n2) time to
maximize the sets. Hence, the total running time is O(22k log k+1.869kn2) �

Note that it is, of course, possible to run the search tree algorithm from this
section on the kernel obtained in the previous section. The total running time
is then O(22k log k+1.869kk6 + p(n, k)). This could be useful if n is much larger
than k as the additive exponential (rather than multiplicative) factor becomes
significant.

7 Packing Arbitrary Graphs

In their paper from 1978 Hell and Kirkpatrick [12] prove that k-H-packing for
any connected graph H of 3 or more vertices is NP-complete. We will in this
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section show that our search tree technique for k-K3-packing easily generalizes
to arbitrary graphs H , thus proving that packing any subgraph is in FPT .

k-H-packing
Instance: Graph G = (V, E)
Parameter: k
Question: Does G have at least k disjoint copies of H?

Theorem 3. It is possible to determine whether a graph G = (V, E) has a k-
H-packing in time O(2k|H| log k+2k|H| log |H|n|H|).

Proof. The proof is analogous to the proof of Theorem 2. However, as we no
longer can depend upon perfect symmetry in H (since H is not necessarily
complete), we must maintain a collection of ordered sequences at each tree-node.
Each sequence represents a partial H-subgraph.

The possible size of V ′ increases to k|H | − k. Then when we want to de-
termine which v of V ′ to add to the sequence, we must try every v in every
position in H . Thus the fan-out at each node increases to k|H |2 − k|H |. The
height of the tree likewise increases to at most k|H | − k. Thus the new tree
size is

(
k|H|

k

)
(k|H |2−k|H |)k|H|−k, which is strictly smaller than kk|H||H |2k|H| or

2k|H| log k+2k|H| log |H|. �

8 Summary and Open Problems

Our main results in the two FPT races are:
(1) We have shown an O(k3) problem kernel for the problem of packing k

triangles.
(2) We have shown that for any fixed graph H , the problem of packing k Hs

is in FPT with a parameter function of the form O(2O(k log k)) and more practical
constants than [2].

In addition to “upper bound” improvements to these initial results, which
would be the natural course for further research – now that the races are on –
it would also be interesting to investigate lower bounds, if possible.

It would be interesting to investigate the “optimality” of the form of our
FPT results in the sense of [6, 7]. Can it be shown that there is no O(2o(k)) FPT
algorithm for k-H-Packing unless FPT= M [1]?

Many parameterized problems admit linear problem kernels. In fact, it ap-
pears that most naturally parameterized problems in APX are in FPT and have
linear problem kernels. However, it seems unlikely that all FPT problems ad-
mit linear kernels. We feel that k-Kt-Packing is a natural candidate for an
FPT problem where it may not be possible to improve on O(kt) kernelization.
Techniques for the investigation of lower bounds on kernelization are currently
lacking, but packing problems may be a good place to start looking for them.
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Abstract. We design fast exact algorithms for the problem of comput-
ing a minimum dominating set in undirected graphs. Since this problem
is NP-hard, it comes with no big surprise that all our time complex-
ities are exponential in the number n of vertices. The contribution of
this paper are ‘nice’ exponential time complexities that are bounded by
functions of the form cn with reasonably small constants c < 2: For ar-
bitrary graphs we get a time complexity of 1.93782n . And for the special
cases of split graphs, bipartite graphs, and graphs of maximum degree
three, we reach time complexities of 1.41422n , 1.73206n , and 1.51433n ,
respectively.

1 Introduction

Nowadays, it is common believe that NP-hard problems can not be solved in
polynomial time. For a number of NP-hard problems, we even have strong ev-
idence that they cannot be solved in sub-exponential time. For these problems
the only remaining hope is to design exact algorithms with good exponential
running times. How good can these exponential running times be? Can we reach
2n2

for instances of size n? Can we reach 10n? Or even 2n? Or can we reach cn

for some constant c that is very close to 1? The last years have seen an emerg-
ing interest in attacking these questions for concrete combinatorial problems:
There is an O∗(1.2108n) time algorithm for independent set (Robson [13]); an
O∗(2.4150n) time algorithm for graph coloring (Eppstein [4]); an O∗(1.4802n)
time algorithm for 3-Satisfiability (Dantsin & al. [2]). We refer to the survey
paper [14] by Woeginger for an up-to-date overview of this field. In this paper,
we study the dominating set problem from this exact (exponential) algorithms
point of view.
Basic Definitions. Let G = (V, E) be an undirected, simple graph without
loops. We denote by n the number of vertices of G. The open neighborhood
of a vertex v is denoted by N(v) = {u ∈ V : {u, v} ∈ E}, and the closed
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neighborhood of v is denoted by N [v] = N(V ) ∪ {v}. The degree of a vertex v
is |N(v)|. For a vertex set S ⊆ V , we define N [S] =

⋃
v∈S N [v] and N(S) =

N [S] − S. The subgraph of G induced by S is denoted by G[S]. We will write
G − S short for G[V − S]. A set S ⊆ V of vertices is a clique, if any two of its
elements are adjacent; S is independent, if no two of its elements are adjacent;
S is a vertex cover, if V − S is an independent set.

Throughout this paper we use the so-called big-Oh-star notation, a mod-
ification of the big-Oh notation that suppresses polynomially bounded terms:
We will write f = O∗(g) for two functions f and g, if f(n) = O(g(n)poly(n))
holds with some polynomial poly(n). We say that a problem is solvable in sub-
exponential time in n, if there is an effectively computable monotone increasing
function g(n) with limn→∞ g(n) = ∞ such that the problem is solvable in time
O(2n/g(n)).
The Dominating Set Problem. Let G = (V, E) be a graph. A set D ⊆ V
with N [D] = V is called a dominating set for G; in other words, every vertex
in G must either be contained in D or adjacent to some vertex in D. A set
A ⊆ V dominates a set B ⊆ V if B ⊆ N [A]. The domination number γ(G) of
a graph G is the cardinality of a smallest dominating set of G. The dominating
set problem asks to determine γ(G) and to find a dominating set of minimum
cardinality. The dominating set problem is one of the fundamental and well-
studied classical NP-hard graph problems (Garey & Johnson [6]). For a large
and comprehensive survey on domination theory, we refer the reader to the
books [8, 9] by Haynes, Hedetniemi & Slater. The dominating set problem is
also one of the basic problems in parameterized complexity (Downey & Fellows
[3]); it is contained in the parameterized complexity class W[2]. Further recent
investigations of the dominating set problem can be found in Albers & al. [1]
and in Fomin & Thilikos [5].
Results and Organization of This Paper. What are the best time complex-
ities for dominating set in n-vertex graphs that we can possibly hope for? Well,
of course there is the trivial O∗(2n) algorithm that simply searches through all
the 2n subsets of V . But can we hope for a sub-exponential time algorithm,
maybe with a time complexity of O∗(2

√
n)? Section 2 provides the answer to

this question: No, probably not, unless some very unexpected things happen in
computational complexity theory . . . Hence, we should only hope for time com-
plexities of the form O∗(cn), with some small value c < 2. And indeed, Section 3
presents such an algorithm with a time complexity of O∗(1.93782n). This algo-
rithm combines a recursive approach with a deep result from extremal graph
theory. The deep result is due to Reed [12], and it provides an upper bound on
the domination number of graphs of minimum degree three.

Furthermore, we study exact exponential algorithms for the dominating set
problem on some special graph classes: In Section 4, we design an O∗(1.41422n)
time algorithm for split graphs, and an O∗(1.73206n) time algorithm for bipartite
graphs. In Section 5, we derive an O∗(1.51433n) time algorithm for graphs of
maximum degree three. Note that for these three graph classes, the dominating
set problem remains NP-hard (Garey & Johnson [6], Haynes, Hedetniemi &
Slater [9]).
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2 A Negative Observation

We will show that the existence of a sub-exponential time algorithm for the
dominating set problem would be highly unlikely. Our (straightforward) argu-
ment exploits the structural similarities between the dominating set problem
and the vertex cover problem: “Given a graph, find a vertex cover of minimum
cardinality”.

Proposition 1. Let G = (V, E) be a graph. Let G+ be the graph that results
from G by adding for every edge e = {u, v} ∈ E a new vertex x(e) together with
the two new edges {x(e), u} and {x(e), v}.

Then the graph G has a vertex cover of size at most k, if and only if the
graph G+ has a dominating set of size at most k.

Proposition 2. (Johnson & Szegedy [11])
If the vertex cover problem on graphs of maximum degree three can be solved in
sub-exponential time, then also the vertex cover problem on arbitrary graphs can
be solved in sub-exponential time.

Proposition 3. (Impagliazzo, Paturi & Zane [10])
If the vertex cover problem (on arbitrary graphs) can be solved in sub-exponential
time, then the complexity classes SNP and SUBEXP satisfy SNP ⊆ SUBEXP
(and this is considered a highly unlikely event in computational complexity the-
ory).

Now suppose that the dominating set problem is solvable in sub-exponential
time. Take an instance G = (V, E) of the vertex cover problem with maximum
degree at most three, and construct the corresponding graph G+. Note that G+

has at most |V |+ |E| ≤ 5|V |/2 vertices; hence, its size is linear in the size of G.
Solve the dominating set problem for G+ in sub-exponential time. Proposition 1
yields a sub-exponential time algorithm for vertex cover in graphs with maximum
degree at most three. Propositions 2 and 3 yield that SNP ⊆ SUBEXP.

3 An Exact Algorithm for Arbitrary Graphs

In this section we present the main result of our paper. It is the first exact
algorithm for the dominating set problem breaking the natural Ω(2n) barrier
for the running time: We present an O∗(1.93782n) time algorithm to compute
a minimum dominating set on any graph. Our algorithm heavily relies on the
following result of Reed to restrict the search space.

Proposition 4. (Reed [12])
Every graph on n vertices with minimum degree at least three has a dominating
set of size at most 3n/8.

In fact, we will tackle the following generalization of the dominating set
problem: An input for this generalization consists of a graph G = (V, E) and a
subset X ⊆ V . We say that a set D ⊆ V dominates X , if X ⊆ N [D]. The goal
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is to find a dominating set D for X of minimum cardinality. (Obviously, setting
X := V yields the classical dominating set problem). We will derive an exact
O∗(1.93782n) time algorithm for this generalization.

The algorithm is based on the so-called pruning the search tree technique.
The idea is to branch into subcases and to remove all vertices of degree one
and two, until we terminate with a graph with all vertices of degree zero or at
least three. Denote by V ′ the set of all vertices of degree at least three in this
final graph. Let t = |V ′| and let G′ = G[V ′]. Then Proposition 4 yields that
there exists some vertex set in G′ with at most 3t/8 vertices that dominates
all vertices of G′; consequently, there exists also a dominating set for X ′ =
X ∩ V ′ of size at most 3t/8 in G′. We simply test all possible subsets with up
to 3t/8 vertices to find a minimum dominating set D′ for X ′ in G′. By using
Stirling’s approximation x! ≈ xxe−x

√
2πx for factorials, and by suppressing

some polynomial factors, we see that the number of tested subsets is at most
(

t

3t/8

)
=

(t)!
(3t/8)! (5t/8)!

= O∗(8t · 3−3t/8 · 5−5t/8) = O∗(1.93782t),

where 8/(33/8 · 55/8) is approximately 1.9378192. This test can be done in time
O∗(

∑3t/8
i=1

(
t
i

)
) = O∗(1.93782t). Finally, we add all degree zero vertices of X to

the set D′ to obtain a minimum dominating set of G.
Now let us discuss the branching into subcases. While there is a vertex of degree
one or two, we pick such a vertex, say v, and we recurse distinguishing four cases
depending on the degree of v and whether v ∈ X or not.
Case A: The Vertex v Is of Degree One and v ∈ V − X. In this case
there is no need to dominate the vertex v and there always exists a minimum
dominating set for X that does not contain v. Then a minimum dominating set
for X − {v} in G− {v} is also a minimum dominating set for X in G, and thus
we recurse on G− {v} and X − {v}.
Case B: The Vertex v Is of Degree One and v ∈ X. Let w be the unique
neighbor of v. Then there always exists a minimum dominating set for X that
contains w, but does not contain v. If D′ is a minimum dominating set for
X − N [w] in G − {v, w} then D′ ∪ {w} is a minimum dominating set for X in
G, and thus we recurse on G− {v, w} and X −N [w].
We need the following auxiliary result.

Lemma 1. Let v be a vertex of degree 2 in G, and let u1 and u2 be its two
neighbors. Then for any subset X ⊆ V there is a minimum dominating set D
for X such that one of the following holds.

(i) u1 ∈ D and v �∈ D;
(ii) v ∈ D and u1, u2 �∈ D;
(iii) u1 /∈ D and v �∈ D.

Proof. If there exists a minimum dominating set D for X that contains u1 then
there exists a minimum dominating set D′ for X that contains u1 but not v.
In fact, if v ∈ D, then D′ = (D − {v}) ∪ {u2} is a dominating set for X and
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|D′| ≤ |D|. Similarly, if there exists a minimum dominating set for X that
contains u2 then there exists a minimum dominating set for X that contains u2

but not v.
Thus we are left with five possibilities how v, u1, u2 might show up in a

minimum dominating set D for X : (a) u1, u2, v �∈ D; (b) v ∈ D and u1, u2 �∈ D;
(c) u1 ∈ D and v, u2 �∈ D; (d) u2 ∈ D and v, u1 �∈ D; (e) u1, u2 ∈ D and v �∈ D.
Now (i) is equivalent to (c) or (e), (ii) is equivalent to (b), and (iii) is equivalent
to (a) or (d). This concludes the proof. ��

Now consider a vertex v of degree two. Depending on whether v ∈ X or
not we branch in different ways. Additionally, the search is restricted to those
minimum dominating sets D satisfying the conditions of Lemma 1.
Case C: The Vertex v of Degree 2 and v ∈ V − X. Let u1 and u2 be the
two neighbors of v in G. By Lemma 1, we can branch into three subcases for a
minimum dominating set D:
(C.1): u1 ∈ D and v �∈ D. In this case if D′ is a minimum dominating set for
X −N [u1] in G−{u1, v} then D′ ∪ {u1} is a minimum dominating set for X in
G, and thus we recurse on G− {u1, v} and X −N [u1].
(C.2): v ∈ D and u1, u2 �∈ D. In this case if D′ is a minimum dominating
set for X − {u1, u2} in G− {u1, v, u2} then D′ ∪ {v} is a minimum dominating
set for X in G, and thus we recurse on G− {u1, v, u2} and X − {u1, u2}.
(C.3): u1 �∈ D and v �∈ D. In this case a minimum dominating set for X in
G − {v} is also a minimum dominating set for X in G, and thus we recurse on
G− {v} and X .
Case D: The Vertex v Is of Degree 2 and v ∈ X. Let u1 and u2 denote
the two neighbors of v in G. Again according to Lemma 1, we branch into three
subcases for a minimum dominating set D:
(D.1): u1 ∈ D and v �∈ D. In this case if D′ is a minimum dominating set
for X − N [u1] in G − {u1, v} then D′ ∪ {u1} is a minimum dominating set for
X in G. Thus we recurse on G− {u1, v} and X −N [u1].
(D.2): v ∈ D and u1, u2 �∈ D. In this case if D′ is a minimum dominating
set for X−{u1, v, u2} in G−{u1, v, u2} then D′∪{v} is a minimum dominating
set for X in G. Thus we recurse on G− {u1, v, u2} and X − {u1, v, u2}.
(D.3): u1 �∈ D and v �∈ D. Then v ∈ X implies u2 ∈ D. Now we use that if
D′ is a minimum dominating set for X − N [u2] in G − {v, u2} then D′ ∪ {u2}
is a minimum dominating set for X in G. Thus we recurse on G − {v, u2} and
X −N [u2].
To analyse the running time of our algorithm we denote by T (n) the worst case
number of recursive calls performed by the algorithm for a graph on n vertices.
Each recursive call can easily be implemented in time polynomial in the size of
the graph passed to the recursive call. In cases A and B we have T (n) ≤ T (n−1),
in case C we have T (n) ≤ T (n − 1) + T (n − 2) + T (n − 3) and in case D we
have T (n) ≤ 2 · T (n− 2) + T (n− 3). Standard calculations yield that the worst
behavior of T (n) is within a constant factor of αn, where α is the largest root
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of α3 = α2 + α + 1, which is approximately 1.8393. Thus T (n) = O∗(1.8393n).
Therefore, the most time consuming part of the algorithm is the procedure of
checking all subsets of size at most 3t/8 where t ≤ n. As already discussed, this
can be performed in O∗(1.93782n) steps by a brute force algorithm.
Summarizing, we have proved the following theorem.

Theorem 1. A minimum dominating set of a graph on n vertices can be com-
puted in time O∗(1.93782n) time. (The base of the exponential function in the
running time is 8/(33/8 · 55/8) ≈ 1.9378192.)

4 Split Graphs and Bipartite Graphs

In this section we present an exponential algorithm for the minimum set cover
problem obtained by dynamic programming. This algorithm will then be used
as a subroutine in exponential algorithms for the NP-hard minimum dominating
set problems on split graphs and on bipartite graphs.
Let X be a ground set of cardinality m, and let T = {T1, T2, . . . , Tk} be a
collection of subsets of X . We say that a subset T ′ ⊆ T covers a subset S ⊆ X ,
if every element in S belongs to at least one member of T ′. A minimum set cover
of (X, T ) is a subset T ′ of T that covers the whole set X . The minimum set
cover problem asks to find a minimum set cover for given (X, T ). Note that a
minimum set cover of X can trivially be found in time O∗(2k) by checking all
possible subsets of T .

Lemma 2. There is an O(mk 2m) time algorithm to compute a minimum set
cover for an instance (X, T ) with |X | = m and |T | = k.

Proof. Let (X, T ) with T = {T1, T2, . . . , Tk} be an instance of the minimum set
cover problem over a ground set X with |X | = m. We present an exponential
algorithm solving the problem by dynamic programming.

For every nonempty subset S ⊆ X , and for every j = 1, 2, . . . , k we define
F [S; j] as the minimum cardinality of a subset of {T1, . . . , Tj} that covers S. If
{T1, . . . , Tj} does not cover S then we set F [S; j] := ∞.

Now all values F [S; j] can be computed as follows. In the first step, for every
subset S ⊆ X , we set F [S; 1] = 1 if S ⊆ T1, and F [S; 1] = ∞ otherwise. Then
in step j + 1, j = 1, 2, . . . , k − 1, F [S; j + 1] is computed for all S ⊆ X in O(m)
time as follows:

F [S; j + 1] = min{F [S; j], F [S − Tj+1; j] + 1}.

This yields an algorithm to compute F [S; j] for all S ⊆ X and all j = 1, 2, . . . , k
of overall running time O(mk 2m). In the end, F [X ; k] is the cardinality of a
minimum set cover for (X, T ). ��

Now we shall use Lemma 2 to establish an exact exponential algorithm to solve
the NP-hard minimum dominating set problem for split graphs. Let us recall
that a graph G = (V, E) is a split graph if its vertex set can be partitioned into
a clique C and an independent set I.
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Theorem 2. There is an O(n2 2n/2) = O∗(1.41422n) time algorithm to compute
a minimum dominating set for split graphs.

Proof. If G is a complete graph or an empty graph, then the dominating set
problem on G is trivial. If G = (V, E) is not connected, then all of its components
are isolated vertices except possibly one, say G′ = (V ′, E). If D′ is a minimum
dominating set of the connected split graph G′ then D′∪ (V −V ′) is a minimum
dominating set of G.

Thus we may assume that the input graph G = (V, E) is a connected split
graph with a partition of its vertex set into a clique C and an independent set
I where |I| ≥ 1 and |C| ≥ 1. Such a partition can be found in linear time
(Golumbic [7]). A connected split graph has a minimum dominating set D such
that D ⊆ C: consider a minimum dominating set D′ of G with |D′ ∩ I| as small
as possible; then a vertex x ∈ D′ ∩ I can be replaced by a neighbor y ∈ C.
N [x] ⊆ N [y] implies that D′′ := (D′−{x})∪{y} is a dominating set, and either
|D′′| < |D′| (if y ∈ D′), or |D′′| = |D′| and |D′′∩I| < |D′∩I|–both contradicting
the choice of D′.

Let C = {v1, v2, . . . , vk}. For every j ∈ {1, 2, . . . , k} we define Tj = N(vj)∩I.
Clearly, D ⊆ C is a dominating set in G if and only if {Ti : vi ∈ D} covers
I. Hence the minimum dominating set problem for G can be reduced to the
minimum set cover problem for (I, T ) with |I| = n− k and |T | = k. For k ≤ n/2
this problem can be solved by trying all possible subsets in time O(n 2k) =
O(n 2n/2). For k > n/2, by Lemma 2, the problem can be solved in time O((n−
k)k 2n−k) = O(n2 2n/2).

Thus a minimum dominating set of G can be computed in time O(n2 2n/2).
��

A modification of the technique used to prove Theorem 2, can be used to obtain
faster algorithms for graphs with large independent set.

Theorem 3. There is an O(nz · 3n−z) time algorithm to compute a minimum
dominating set for graphs with an independent set of size z. In particular, there
is an O(n2 · 3n/2) = O∗(1.73206n) time algorithm to compute a minimum dom-
inating set for bipartite graphs.

Proof. Let G = (V, E) be a graph with an independent set of size z. Note that
such an independent set can be identified in O∗(1.2108n) time by the algorithm
of Robson [13].

Let R = V − I denote the set of vertices outside the independent set. In
an initial phase, we fix for every subset X ⊆ R some corresponding vertex set
IX ⊆ I via the following three steps.

1. Determine Y = I −N [X ].
2. Compute a vertex set Z ⊆ N [X ] ∩ I of minimum cardinality subject to

R−N [X ]−N [Y ] ⊆ N(Z).
3. Set IX = Y ∪ Z.

First, we observe that Y ⊆ I and Z ⊆ I yield IX ⊆ I. Secondly, I ⊆ Y ∪N [X ]
implies that I is dominated by X∪IX , and R−N [X ]−N [Y ] ⊆ N(Z) implies that
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R is dominated by X ∪IX . Consequently, the set X ∪IX forms a dominating set
for the graph G. Thirdly, we claim that among all dominating sets D for G with
D ∩ R = X , the dominating set X ∪ IX has the smallest possible cardinality:
Indeed, D ∩ R = X means that the vertices in Y = I − N [X ] can only be
dominated, if they are contained in D; hence Y ⊆ D. Furthermore, the vertices
in R−N [X ]−N [Y ] must all be dominated through some vertices in N [X ]∩ I;
in the second step, we determine the smallest possible subset Z ⊆ N [X ]∩I with
this property. Summarizing, for finding a minimum dominating set for G, it is
sufficient to look through all the 2n−z sets X ∪ IX .

What is the time complexity of this approach? The only (exponentially)
expensive step for determining the sets IX is the computation of the sets Z. And
this expensive step boils down to solving a set covering problem that consists of
a ground set R − N [X ] −N [Y ] with at most |R −X | ≤ n − z − |X | elements,
and that consists of a collection of |N [X ]∩ I| ≤ z subsets. By Lemma 2, such a
set covering problem can be solved in O(nz · 2n−z−|X|) time. The overall time
for solving all set covering problems for all subsets X ⊆ R is proportional to∑n−z

k=1

(
n−z

k

)
nz · 2n−z−k. This yields an overall time complexity of O(nz · 3n−z).

��

Note that for graphs with an independent set of size z ≥ 0.39782 · n, the
running time of the algorithm in Theorem 3 is better than the running time of
the algorithm for general graphs from Section 3.

5 Graphs of Maximum Degree Three

Computer experiments suggest that exact exponential algorithms like the trivial
O∗(2n) time algorithm, or like our O∗(1.93782n) algorithm from Section 3 have
the slowest running times for fixed values of n, if the input graphs have large
domination numbers. One possible explanation is that the algorithm has to spend
a lot of time on checking that no vertex subset of size γ(G) − 1 is dominating
(even in case a true minimum dominating set is detected at an early stage). Since
graphs of maximum degree three have high domination numbers, the algorithms
for general graphs do not behave well on these graphs.

In this section, we design a better exact algorithm for graphs of maximum
degree three, by using the pruning a search tree technique and a structural prop-
erty of minimum dominating sets in graphs of maximum degree three provided
in the following lemma.

Lemma 3. Let G = (V, E) be a graph of maximum degree three. Then there is
a minimum dominating set D of G with the following two properties:

(i) every connected component of G[D] is either an isolated vertex, or an iso-
lated edge, and

(ii) if two vertices x, y ∈ D form an isolated edge in G[D], then x and y have
degree three in G, and N(x) ∩N(y) = ∅.

Proof. Let D be a minimum dominating set of G with the maximum number of
isolated vertices in G[D]. If G[D] has a vertex x of degree three, then D − {x}
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is a smaller dominating set of G, which is a contradiction. Thus the maximum
degree of G[D] is two.

Assume G[D] has a vertex y of degree two. If the degree of y in G is two, then
D−{y} is a smaller dominating set of G, a contradiction. Otherwise let z be the
unique neighbor of y in G that is not in D. If z ∈ N [D−{y}] then D−{y} is a
smaller dominating set of G, another contradiction. Finally, if z /∈ N [D − {y}]
then D1 := (D ∪ {z}) − {y} is another minimum dominating set in G with a
larger number of isolated vertices in G[D1] than in G[D]. This contradiction
concludes the proof of property (i).

To prove property (ii), let us first show that any two adjacent vertices x, y ∈ D
have degree three in G. For the sake of contradiction, assume that y has degree
less than three in G. Clearly y cannot have degree one, otherwise D − {y} is a
dominating set, a contradiction. Suppose y has degree two, and let z �= x be the
second neighbor of y. If z ∈ N [D−{y}] then D−{y} is a dominating set of smaller
size than D, a contradiction. If z /∈ N [D − {y}], then D2 := (D − {y}) ∪ {z}
is a minimum dominating set in G with a larger number of isolated vertices in
G[D2] than in G[D], another contradiction.

Finally, we prove that N(x) ∩N(y) = ∅ in G. For the sake of contradiction,
assume that N(x) ∩ N(y) �= ∅. If N [x] ⊆ N [y] then D − {x} is a dominating
set, and if N [y] ⊆ N [x] then D − {y} is a dominating set. In both cases this
contradicts our choice of D. Hence N(x) = {y, w, u} with N(x) − N(y) = {w}
and N(x) ∩N(y) = {u}. If w ∈ N [D − {x}] then D − {x} is a dominating set,
another contradiction. If w /∈ N [D − {x}] then D3 := (D − {x}) ∪ {w} is a
minimum dominating set in G with a larger number of isolated vertices in G[D3]
than in G[D], the final contradiction. ��

Now we construct a search tree algorithm using the restriction of the search
space guaranteed by Lemma 3, i.e. for a graph G = (V, E) of maximum degree
three only vertex sets D ⊆ V satisfying the properties of of Lemma 3 have to be
inspected. W.l.o.g. we assume that the input graph is connected.

Theorem 4. There is a O∗(1.51433n) time algorithm to compute a minimum
dominating set on graphs of maximum degree three. (The base of the exponential
function in the running time is the largest real root α ≈ 1.51433 of α6 = α3 +
2 α2 + 4.)

Proof. The algorithm is based on the pruning a search tree technique. The idea
is to branch into subcases until we obtain a graph of maximum degree two, and
for such a graph a minimum dominating set can be computed in linear time
since each of its connected components is either an induced path Pk (k ≥ 1) or
an induced cycle Ck (k ≥ 3). In this way we obtain all minimum dominating
sets of G satisfying the properties of Lemma 3

More precisely, the input graph G = (V, E) and D = ∅ correspond to the
root of the search tree. To each node of the search tree corresponds an induced
subgraph G[V ′] of G and a partial dominating set D ⊆ V −V ′ of G already chosen
to be part of the dominating set obtained in any branching from this node. To
each leaf of the tree corresponds a subgraph G[V ′] of maximum degree two. For
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each node of the search tree to which a subgraph G[V ′] of maximum degree three
corresponds the algorithm proceeds as follows: It chooses a neighbour (called x
below) of a vertex of degree three such that x has smallest possible degree; then
it inspects x and branches in various subcases. Suppose (G[V ′], D) corresponds
to a node of the search tree and that G[V ′] has maximum degree two. Then a
linear time algorithm will be invoked to find a minimum dominating set D′ of
G[V ′], and thus D ∪D′ is a dominating set of G. Finally the algorithm chooses
a smallest set among all dominating sets of G obtained in this way and outputs
it as a minimum dominating set of G.

To show that this algorithm has running time O∗(1.51433n) we have to study its
branching into subcases. We denote by T (n) the worst case number of recursive
calls performed by the algorithm for a graph on n vertices.

The algorithm will pick a vertex x of degree three at most once, and this can
only happen at the very beginning and only if all vertices of the input graph
have degree three. Thus this branching is of no interest for the analysis of the
overall running time of our algorithm.

We shall distinguish two cases: x has degree one or x has degree two. For
each case the algorithm chooses one or two vertices to be added to the partial
dominating set D and recurses on some smaller induced subgraphs. Based on
Lemma 3 each connected component of G[D] can be supposed to be a K1 or a
K2. (Note that our analysis deals with the subgraph G[V ′] that corresponds to
the current node of the search tree.)

Case 1: x Is a Vertex of Degree One in G[V ′]. Let y be a degree three
neighbour of x. Let z1 and z2 be the other neighbours of y. Clearly there is a
minimum dominating set of G[V ′] not containing x, and thus we may choose
x /∈ D and y ∈ D. This leaves two possible subcases for the choice of the vertices
to be added to D.

Subcase 1.A: y ∈ D Isolated Vertex in G[D]. We add y to the dominating
set D and recurse on G−N [y]. Since y has degree three the number of recursive
calls on this subcase is T (n− 4).

Subcase 1.B: y, zi ∈ D, i ∈ {1, 2}, isolated edge in G[D]. Then we
may obtain 2 subcases as follows: Add y, zi, i ∈ {1, 2}, to D and recurse on
G− (N [y]∪N [zi]). By property (ii) of Lemma 3, this requires that zi has degree
three, hence we remove 6 vertices and the number of recursive calls on this
subcase is at most 2 T (n− 6).

In total, in Case 1 we obtain the recurrence T (n) ≤ T (n − 4) + 2 · T (n − 6).
Standard calculations yield that the worst behavior of T (n) is within a constant
factor of αn. This α is the largest real root of α5 = α+2, which is approximately
1.26717. Thus T (n) = O∗(1.26717n).

Case 2: x Is a Vertex of Degree Two in G[V ′]. Let y1 and y2 be the
neighbours of x. W.l.o.g. let y1 be a degree three vertex.

Case 2.1: y1 and y2 Are Adjacent in G[V ′]. Then there is a minimum
dominating set of G[V ′] not containing x, and thus either y1 or y2 must be
added to D.
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Case 2.1.1: y2 Has Degree Two. Hence w.l.o.g. y1 ∈ D and y2 /∈ D. Thus
either y1 is an isolated vertex in G[D], or y, z ∈ D where z is the third neighbour
of y1. Thus we obtain the recurrence T (n) ≤ T (n− 4)+ ·T (n− 6). Thus T (n) =
O∗(1.15097n), where α ≈ 1.15097 is the largest real root of α5 = α + 2.

Case 2.1.2: y2 Has Degree Three. For i = 1, 2, let zi be the third neighbour
of yi. Then either y1 ∈ D or y2 ∈ D is an isolated verted in G[V ′], or yi, zi ∈ D is
an isolated edge in G[V ′]. Then we recurse on G−N [yi] and remove 4 vertices, or
we recurse on G− (N [yi]∪N [zi]) and remove 6 vertices. Consequently we obtain
the recurrence T (n) ≤ 2 · T (n − 4) + 2 · T (n − 6). Thus T (n) = O∗(1.33015n),
where α ≈ 1.33015 is the largest real root of α6 = 2 α2 + 2.

Case 2.2: y1 and y2 Are Not Adjacent in G[V ′]. Since x has degree two
either x ∈ D is an isolated vertex in G[D] or x /∈ D.

Case 2.2.1: y2 Has Degree Two. Let z11 and z12 the other neighbours of y1,
and let z2 be the other neighbour of y2.

Subcase 2.2.1.A: x ∈ D Isolated Vertex in G[D]. We add x to the dom-
inating set D and recurse on G − N [x]. Since x has degree two the number of
recursive calls on this subcase is T (n− 3).

Subcase 2.2.1.B: yi ∈ D Isolated Vertex in G[D]. For i = 1, 2, we add
yi to the dominating set D and recurse on G−N [yi]. Since y1 has degree three
and y2 has degree two, the number of recursive calls on this subcase is at most
T (n− 3) + T (n− 4).

Subcase 2.2.1.C: y1, z1j ∈ D, j ∈ {1, 2}, Isolated Edge in G[D]. Then
we may obtain 2 subcases as follows: Add y1, z1j, j ∈ {1, 2}, to D and recurse
on G− (N [y1]∪N [z1j ]). By property (ii) of Lemma 3, this requires that z1j has
degree three, hence we remove 6 vertices and the number of recursive calls on
this subcase is at most 2 T (n− 6).

In total, in Case 2.2.1 we obtain the recurrence T (n) ≤ 2 · T (n − 3) + T (n −
4) + 2 · T (n− 6). As we have seen before, the worst behavior of T (n) is within
a constant factor of αn. This α is the largest real root of α6 = 2 α3 + α2 + 2,
which is approximately 1.48613. Thus T (n) = O∗(1.48613n).

Case 2.2.2: y2 Has Degree Three. Let z11 and z12 be the other neighbours
of y1, and let z21 and z22 be the other neighbours of y2.

Subcase 2.2.2.A: x ∈ D Isolated Vertex in G[D]. We add x to the dom-
inating set D and recurse on G − N [x]. Since x has degree two the number of
recursive calls on this subcase is T (n− 3).

Subcase 2.2.2.B: yi ∈ D Isolated Vertex in G[D]. For i = 1, 2, we add yi

to the dominating set D and recurse on G−N [yi]. y1 and y2 have degree three,
thus the number of recursive calls on this subcase is at most 2 T (n− 4).

Subcase 2.2.2.C: yi, zij ∈ D, i, j ∈ {1, 2}, Isolated Edge in G[D]. Then
we may obtain 4 subcases as follows: Add yi, zij , i, j ∈ {1, 2}, to D and recurse
on G−(N [yij ]∪N [zij ]). This requires that zij has degree three, hence we remove
6 vertices and the number of recursive calls on this subcase is at most 4 T (n−6).
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In total, in Case 2.2.2 we obtain the recurrence T (n) ≤ T (n−3)+2 ·T (n− 4)+
4 ·T (n− 6). The worst behavior of T (n) is within a constant factor of αn, where
α is the largest real root of α6 = α3+2 α2+4, which is approximately 1.5143218.
Thus T (n) = O∗(1.51433n). ��
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Abstract. This paper examines a parameterized problem that we refer
to as n− k Graph Coloring, i.e., the problem of determining whether
a graph G with n vertices can be colored using n−k colors. As the main
result of this paper, we show that there exists a O(kn2 +k2 +23.8161k) =
O(n2) algorithm for n − k Graph Coloring for each fixed k. The core
technique behind this new parameterized algorithm is kernalization via
maximum (and certain maximal) matchings.
The core technical content of this paper is a near linear-time kernelization
algorithm for n−k Clique Covering. The near linear-time kernelization
algorithm that we present for n−k Clique Covering produces a linear
size (3k − 3) kernel in O(k(n + m)) steps on graphs with n vertices and
m edges. The algorithm takes an instance 〈G, k〉 of Clique Covering
that asks whether a graph G can be covered using |V | − k cliques and
reduces it to the problem of determining whether a graph G′ = (V ′, E′)
of size ≤ 3k − 3 can be covered using |V ′| − k′ cliques. We also present a
similar near linear-time algorithm that produces a 3k kernel for Vertex
Cover. This second kernelization algorithm is the crown reduction rule.

1 Introduction

Graph coloring is one of the hardest NP-complete problems under a variety of
measures. It is well-known [1] that determining whether a graph can be colored
using k = 3 colors is NP-complete, and the best-known polynomial-time algo-
rithm for graph coloring, due to Halldórsson [2], produces a coloring that is only
guaranteed to be within O(|V |(log log |V |)2/ log3 |V |) of optimal. It is known
that approximating χ(G), the chromatic number of a graph G, to the ratio |V |δ
is NP-hard [3, 4]. Furthermore, it is known from the work of Feige and Kilian [5]
that no polynomial-time algorithm can approximate χ(G) to within |V |1−ε for
any ε > 0 unless NP ⊆ ZPP. Hence, it does not appear likely that we will be
able to find a much better approximation algorithm for graph coloring.

This extended abstract explores graph coloring from another, more tractable,
perspective. Since it is easy to see that any graph G = (V, E) can be colored
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via a trivial coloring that uses n colors and colors each vertex using a separate
color, the alternative perspective is to ask whether G can be colored using n− k
colors. We refer to this problem as n − k Graph Coloring. The parameter
k corresponds to the how many colors can be “saved” when coloring a graph
G = (V, E) over the trivial coloring of G. It is easy to see that this problem is
NP-complete. However, in contrast to the usual optimization measure for graph
coloring, this version is much easier to approximate. A sequence of papers by De-
mange, Grisoni and Paschos [6], Hassin and Lahav [7], and Halldórsson [8, 9], and
Duh and Fürer [10] examined approximation algorithms for graph coloring un-
der this non-standard measure. The best-known polynomial-time approximation
algorithm, due to Duh and Fürer [10], approximates n − k Graph Coloring
to the ratio 360

280 ≈ 1.246.
This paper explores exact algorithms for n−k Graph Coloring. In partic-

ular, we show that it is possible to determine whether a graph G can be colored
using n − k colors in O(n2) steps for any fixed k. Hence, n − k Graph Col-
oring is fixed parameter tractable [11]. Our algorithm exploits the following,
well-known result concerning the relationship between graph coloring and clique
covering, χ(G) = χ̄(Ḡ), i.e., that the minimum number of colors needed to color
G is equal to the minimum number of cliques needed to cover the complement of
G. The main technical contribution of this work is a linear-time algorithm that
kernelizes instances of n−k Clique Covering, i.e., the problem of determining
whether a graph G with n vertices can be covered by n− k cliques. The general
kernelization approach proceeds as follows.

1. Compute a maximal matching M with no M augmenting path of length 3
or shorter on the input graph G.

2. Identify an independent set I of vertices in the reduced input graph by
examining the maximal matching M .

3. Compute a maximum matching M ′ in the bipartite graph formed by I its
edges to the rest of the graph.

4. Eliminate all vertices not covered by either the first or second matching.

This general kernelization approach can be used to achieve a kernel of size ≤
3k− 3 for n− k Clique Covering. We use a similar approach to give a crown
reduction rule for Vertex Cover that achieves a ≤ 3k kernel.

Once a graph G is kernelized, determining whether G has a clique covering
of size n − k can be solved in f(k) = O(k2 + 23.8161k) steps by first converting
the kernelized instance 〈G′, k〉 into its complement 〈Ḡ′, k〉 and then applying
the best-known exact algorithm for graph coloring due to Eppstein [12]. This
approach leads to parameterized algorithms running in time O(k(n + m) + k2 +
23.8161k) for n−k Clique Covering and time O(k ·n2 +k2 +23.8161k) for n−k
Graph Coloring. The algorithm for n − k Graph Coloring is depicted in
Figure 1.

We note that the use of maximum matchings in fixed parameter tractable
algorithms is not new. For instance, Papadimitriou and Yannakakis [13] used
a maximum matching based approach to show that Vertex Cover can be
solved in polynomial-time for all k ≤ log n. Their work implicitly gives a O(3kn)
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parameterized algorithm for Vertex Cover. Similarly, the best-known param-
eterized algorithm for Vertex Cover [14] constructs a 2k kernel for Vertex
Cover using a maximum matching based technique of Nemhauser and Trotter
[15]. However, our kernelization technique appears to be more general since it is
easily applied to both Vertex Cover and n−k Clique Covering. Moreover,
this approach achieves linear kernels in near linear-time.

Fig. 1. A O(kn2 + k2 + 23.8161k) algorithm for n − k Graph Coloring that uses the
identity χ(G) = χ̄(Ḡ) twice.

The extended abstract is organized as follows. In section 2, we review neces-
sary notation and prior work on maximum and maximal matchings. In section
3, we examine the combinatorial properties of maximal matchings without short
augmenting paths. In section 4, we give the kernelization algorithm for n − k
Clique Covering and prove that the algorithm converts an instance of 〈G, k〉
to an equivalent instance 〈G′, k〉 of size ≤ 3k − 3. In section 5, we use the same
technique to give a crown reduction rule for Vertex Cover that produces a
≤ 3k kernel. In section 6, we use the kernelization algorithm and the best-known
exact algorithm for graph coloring by Eppstein [12] to give fast parameterized
algorithms for n− k Clique Covering and n− k Graph Coloring that run
in the times mentioned above. Finally, in section 7, we provide some concluding
remarks.

2 Preliminaries

In this section, we review the notation and the relevant prior work on maximum
matchings that we use in this paper. Interested readers are directed to the survey
paper by Galil [16] or the comprehensive book by Lovász and Plummer [17] for
further details.

Given a graph G = (V, E), a matching is a set of edges M ⊆ E such that no
two edges in M share an endpoint. A vertex v ∈ V is said to be covered if it is
an endpoint of an edge in M . If v is not covered, then we say that v is exposed.

Most algorithms that find maximum matchings do so by explicitly construct-
ing augmenting paths [16]. Given a matching M , an M -alternating path is a sim-
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ple path P = 〈v1, v2, . . . , vn〉 in G such that P consists of edges that alternate
between edges in M and edges outside of M . An M -augmenting path is an M -
alternating path that begins and ends with an exposed vertex. It is well-known
that the existence of an M -augmenting path P implies that M is not a maxi-
mum matching since it is possible to create a larger matching by swapping the
unmatched edges in P for the matched edges in P to create a larger matching.
This observation leads to the following theorem, due to Berge [18].

Theorem 1. M is a maximum matching in G if and only if there is no M -
augmenting path in G.

Fast algorithms to compute maximum matchings were first discovered for
bipartite graphs. The best-known algorithm for maximum matching in bipartite
graphs is due to Hopcroft and Karp [19] and takes time O(m

√
n) on graphs with

m edges and n vertices. The best-known algorithm for maximum matching in
general graphs comes from the work of Micali and Vazirani [20] and also takes
time O(m

√
n).

To achieve linear-time kernelization here, we will employ Hopcroft and Karp’s
algorithm on bipartite graphs and a somewhat straightforward algorithm for
finding maximal matchings without short augmenting paths in general graphs.
To see that Hopcroft and Karp’s algorithm runs in linear-time in our case,
we need to briefly describe the operation of this algorithm. The algorithm by
Hopcroft and Karp employs an O(m) algorithm to find a maximal set of vertex
disjoint augmenting paths of minimum length. The algorithm proceeds in mul-
tiple passes where at each pass the algorithm augments the matching M via the
maximal set of vertex disjoint M -augmenting paths of minimum length. This
process continues until no M -augmenting path is found, and hence by Theorem
1 M is a maximum matching in G. The algorithm executes at most O(

√
n) passes

because, as Hopcroft and Karp [19] prove in Theorem 2 and Corollaries 3 and 4,
once a maximal set of vertex disjoint M augmenting paths of length l is found
and M is augmented to M ′, the shortest M ′-augmenting path in the graph has
length l + 1 or longer.

In the bipartite graphs that we use here, one of the two partitions will be of
size 2k or smaller. Since no M augmenting path in such a graph can be of length
longer than 4k edges, the algorithm of Hopcroft and Karp performs at most 4k
augmenting passes. Therefore, Hopcroft and Karp’s algorithm will complete in
O(km) steps.

The ideas behind Hopcroft and Karp’s algorithm can be used to find maximal
matchings in general graphs with no augmenting path of length 3 in O(n + m)
steps. To see this, consider the following approach. First, compute a maximal
matching M in G using the standard O(n+m) greedy algorithm. Next, compute
a maximal set S of vertex disjoint M -augmenting paths of length 3 in G by
examining each edge e ∈ M . For each edge e = (u, v) ∈ M , compute cu, the
number of exposed vertices connected to u and cv the number of exposed vertices
connected to v. If either cu or cv equals zero, no augmenting path of length 3 that
uses e exists. If cu = cv = 1, then a path exists if and only if these vertices are
different. Finally, if cu ≥ 2 and cv ≥ 1 (or vice-versa), then an augmenting path
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through e must exist and can be found easily. Mark the endpoints of any such
found augmenting path as “covered.” It is easy to see that this approach finds a
maximal set of vertex disjoint augmenting paths of length 3 in time O(n + m)
since each edge in G is visited at most O(1) times. Finally, the results of Hopcroft
and Karp tell us that augmenting the matching M with S produces a matching
M ′ with no augmenting path of length 3. Such matchings have properties that
we exploit in the next section.

3 Maximal Matchings Without Short Augmenting Paths
and Their Combinatorial Properties

Given a maximal matching M in a graph G = (V, E), it is natural to partition V
into the covered vertices and the exposed vertices. In this fashion, we partition
V into IM = {v ∈ V |{u, v} ∈ M} and OM = V − IM . The set OM forms an
independent set because if there were an edge between any pair of vertices in
OM , then M would not be a maximal matching.

Given a matching M with no augmenting path of length 3, we partition
the matched edges into classes to exploit certain combinatorial properties. In
this respect, we partition M into three classes C1, C2, and C3 based on how
the endpoints of the edges in M connect to the exposed vertices. Figures 2–4
illustrate the three classes of matched edges.

Fig. 2. The class 1 “boring” edges. Fig. 3. The class 2 edges.

We refer to the first class of matched edges C1 as the “boring edges” since
they are not connected to any exposed vertex. In the second class of matched
edges C2, both endpoints are connected to vertices in OM . As shown in Figure
3, both endpoints must be connected to the same vertex a ∈ OM , or there will
exist an M -augmenting path in G of length 3. Finally, the third class of edges
in M , C3, contains edges where only one of the two endpoints are connected to
exposed vertices. This case is shown in Figure 4.

The main combinatorial property of maximal matchings M with no aug-
menting paths of length 3 that we use in this paper is the following lemma that
relates the size of M to the size of the maximum matching M ′ in the bipartite
graph formed by letting V1 = OM , V2 = N(OM ), and only including edges from
OM to N(OM ) in G. We call this graph G[OM , N(OM )].

Lemma 1. Let M be a maximal matching in G with no length 3 M -augmenting
path. Let M ′ be a maximum matching in G[OM , N(OM )]. Then |M ′| ≤ |M |.
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Free Ends

Fig. 4. The class 3 edges.

Proof. The bipartite graph G′ = G[OM , N(OM )] contains edges from exposed
vertices to the end points of matched edges in M . It is clear by inspection that
no more than one endpoint of matched edges in M can appear as an endpoint of
a matched edge in G′ since (i) for each edge in C3 only one endpoint is connected
to any vertex in OM , and (ii) for each edge in C2, both endpoints are connected
to a single vertex a in OM and hence at most one of these endpoints can be
matched to a. It follows that |M ′| ≤ |M |.

4 A Kernelization Algorithm for Clique Covering

In this section, we develop a kernelization algorithm for Clique Covering
that exploits the combinatorial properties of maximal matchings developed in
the previous section. The correctness of our approach depends on the following
generic results concerning independent sets, maximum matchings, and clique
coverings.

In the following lemma, we call a clique “trivial” if it contains only a single
vertex.

Lemma 2. Let G = (V, E) be a graph, and let I be an independent set of vertices
in G. If M ′ is a maximum matching in G[I, V − I], then in any clique covering
C of G at most |M ′| vertices in I appear in non-trivial cliques in C.

Proof. Assume that there are k vertices in I that appear in non-trivial cliques
in C. Since I is an independent set, no two of these vertices can appear in the
same clique. So, let C1, . . . , Ck be the k cliques that contain these vertices. For
the vertex vi ∈ I that appears in Ci, pick another vertex ui ∈ (V − I) ∩ Ci.
Such a vertex must exist because Ci is non-trivial and I is an independent
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set. Furthermore, the edges {u1, v1}, {u2, v2}, . . . , {uk, vk} form a matching in
G[I, V − I] because the Ci’s are disjoint. Since M ′ is a maximum matching, it
follows that k ≤ |M ′|.

Lemma 3. Let G = (V, E) be a graph, let I be an independent set in G, and
let M ′ be a maximum matching in G[I, V − I]. For every clique covering C of
G, there exists a clique covering C′ of G such that |C′| ≤ |C| and each vertex in
M ′[I] (those vertices in I that are covered by M ′) appears in a non-trivial clique
in C′.

Proof. Let C = {C1, . . . , Cm} be a clique covering of G. Examine each vertex
vi ∈ M ′[I]. Let ui be the other endpoint of the matched edge containing vi. If
vi is contained in a trivial clique, delete ui from its clique (it is still a clique,
or we have deleted a clique), and add it to vi’s clique. This does not increase
the total number of cliques. Continue this process until all of the vertices vi ∈
M ′[I] are contained in non-trivial cliques. Notice that this process may create
trivial cliques of vertices in M ′[I]. However, this process must eventually halt,
since we increase the total number of vertices in M ′[I] that appear in non-
trivial cliques with their paired vertex during each iteration. Moreover, these
new cliques cannot be “destroyed.” This approach is given in Algorithm 1. To
prove the correctness of this algorithm, it suffices to show that c = |{vi ∈
M ′[I] | {ui, vi} ∈ M ′ and ui, vi ∈ Cj for some Cj ∈ C}| is a loop invariant for
the algorithm. The algorithm will halt since c increases by one during each
iteration of the loop. When the loop halts, the value of c must be |M ′[I]|, and
hence every vertex in M ′[I] appears in a non-trivial clique in C′. The algorithm
creates no new cliques (though it may destroy some trivial cliques), hence the
total number of cliques in C′ is less than or equal to |C|.

Combining Lemma 2 and 3, we observe that if I is an independent set and
M ′ is a maximum matching in the bipartite graph G[I, V − I], then there is an
optimal clique covering where all of the vertices in I that are not covered by M ′

appear in trivial cliques. Hence, these vertices can be deleted without affecting
the relative size of the optimal clique covering. So, if we let G′ be the graph

Algorithm 1 Creating Non-trivial Cliques
Input: A Clique Covering C of G
Output: A Clique Covering C′ of G such that |C′| ≤ |C| and each vertex in M ′[I ]
is in a non-trivial clique.
set c = |{vi ∈ M ′[I ] | |{ui, vi} ∈ M ′ and ui, vi ∈ Cj for some Cj ∈ C}|;
while (there exists a vi ∈ M ′[I ] in a trivial clique Cl) do

Find {ui, vi} ∈ M ′.
Find the Ck such that ui ∈ Ck;
Remove ui from Ck;
add ui to Cl;
c = c + 1;

end while
return C;
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formed by removing all of the vertices in I that are not covered by M ′, then
G has a clique covering of size n − k if and only if G′ has a clique covering of
size n′ − k. This approach forms the basis for the main technical contribution
of this paper, the kernelization algorithm for n− k Clique Covering given in
the following theorem.
Theorem 2. There exists an algorithm running in O(k(m+n)) steps that, when
given an instance 〈G, k〉 of n − k Clique Covering with n vertices and m
edges either determines that G can be covered using n−k cliques or produces an
equivalent instance 〈G′, k〉, where G′ has ≤ 3k − 3 vertices.
Proof. We present Algorithm 2 below. To see that the algorithm runs in O(k(m+
n)) steps, consider the running time of each step. Step 1 completes in O(m + n)
steps, as described at the end of section 2. Steps 2–6 can also be computed in
O(m + n) steps or faster. As explained at the end of section 2, step 7 takes
O(k(m + n)) steps because N(OM ) has at most 2k vertices, and hence the
maximum bipartite matching algorithm of Hopcroft and Karp performs at most
4k passes. The final two steps can also be implemented in O(m + n) steps.

Algorithm 2 Kernelization for n− k Clique Covering.

Input: An instant 〈G, k〉 of n − k Clique Covering
Output: Either “yes” if G has an |V | − k clique covering or an equivalent instance

〈G′, k〉 of n − k Clique Covering
1: Compute a maximal matching M in G with no M augmenting path of length 3 as

described in section 2.
2: if |M | ≥ k then
3: return “yes” since G has a n − k clique covering consisting of k cliques of size 2

and n − 2k trivial cliques.
4: end if
5: Partition V into into covered (IM) and exposed (OM ) vertices.
6: Compute the bipartite graph G∗ = G[OM , N(OM )].
7: Apply the algorithm of Hopcroft and Karp [19] to compute a maximum matching

M ′ of G∗.
8: Delete from G all vertices in OM that are not covered by M ′. Call this graph G′.
9: Return 〈G′, k〉.

To see that this algorithm produces the correct result, consider the following
brief argument. Since OM is an independent set and Algorithm 2 deletes from
G all vertices in OM that are not covered by M ′, it is clear from Lemma 2 and
3 that G′ has a clique covering of size n′ − k if and only if the original instance
G has a clique covering of size n − k. To see that G′ has the correct size, we
employ results from the previous section.

Since |OM | = n − 2|M |, we delete exactly n − 2|M | − |M ′| vertices from G
to form G′ in step 8 of the algorithm. Since |M ′| ≤ |M | by Lemma 1, it follows
that we delete at least n−3|M | vertices from G. Since G has n vertices to begin
with, this leaves at most 3|M | vertices in G′. Since |M | < k, it follows that G′

has a most 3k − 3 vertices. This completes the proof.
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5 The Crown Reduction Rule for Vertex Cover

To show the generality of the kernelization approach taken in the previous sec-
tion, we show how to apply this technique to give a linear-time kernelization
algorithm for instances of Vertex Cover. The key to our kernelization for
Vertex Cover is the following observation. Let I be an independent set in
G, and assume that there is a matching of size |N(I)| in the bipartite graph
G[I, N(I)] formed by I, the neighborhood of I, and the edges between them in
G. Under this assumption, at least |N(I)| vertices from I ∪N(I) must appear in
any vertex cover of G. Hence, it suffices to include all of N(I) in the vertex cover
and delete all of I ∪ N(I) from G. This is the crown reduction rule. Here, we
show how to efficiently find such an I via a maximum and a maximal matching.

Let I be an independent set of vertices from a graph G = (V, E). Then, the
bipartite subgraph of G formed by the sets I and V −I, denoted by G[I, V −I], is
the graph G′ = (V, E′), where E′ = {{u, v} | u ∈ I, v ∈ V − I, and {u, v} ∈ E}.
Let M be a maximum matching in G[I, V − I]. Then, we write M [I] for the
set of vertices in I that are covered by edges in M and M [V − I] for the set of
vertices in V − I that are covered by edges in M . If S is a set of endpoints of
edges in M , then we write M−[S] for the set of vertices matching the vertices in
S, i.e.,

M−[S] = {u|{u, v} ∈M and v ∈ S}.
As in section 4, we show that it is possible to eliminate vertices in I that do

not appear in M [I]. As mentioned above, we can eliminate all of the vertices in
I when M is an upper perfect matching, i.e., when |M | = |N(I)|, or, in other
words, all of the vertices on one side of the bipartite graph are matched. While
a maximum matching in G[I, V − I] for an arbitrary independent set I may not
be an upper perfect matching, we show below that there must exist an upper
perfect matching for a set I ′, where I − M [I] ⊆ I ′ ⊆ I. This requires some
explanation.

Let I be an independent set in G, and let M be a maximum matching in the
bipartite subgraph G[I, V −I]. Then, it is possible to select a subset of M [V −I]
that has an upper perfect matching with a subset of the vertices in I. To begin,
we note the following easy result.

Lemma 4. N(I −M [I]) ⊆ M [V − I], i.e., vertices in I that are not covered by
the matching must connect to only endpoints in the matching.

Proof. Assume that a vertex v∈I−M [I] connects to a vertex u∈N(I)−M [V −I].
Then, we can add the edge {u, v} to the matching. Hence, the matching is not
maximal (and hence not a maximum matching). This is a contradiction.

We next define a collection of subsets of M [V − I].

C0(M) = N(I −M [I])
Ci(M) = N(M−[Ci−1(M)])

C(M) =
∞⋃

i=0

Ci(M).
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The following results hold.
Lemma 5. 1. For each i, Ci(M) ⊆ M [V − I].
2. For each i > 0, Ci−1(M) ⊆ Ci(M).
3. For each i and for each vertex v ∈ Ci(M), there exists an M -alternating

path from a vertex u ∈ I −M [I] to v.

Proof. (By induction on i) When i = 0, Lemma 4 tells us that C0(M) ⊆M [V −
I]. Furthermore, each vertex v ∈ C0(M) is attached to a vertex u ∈ I −M [I].
This single edge is an M -alternating path from u to v.

Now, assume that conditions 1–3 are true for some i ≥ 0. To see that condi-
tion (2) is true for Ci+1(M), note that every vertex in Ci(M) is an endpoint in
the matching. Hence, Ci(M) ⊆ N(M−[Ci(M)]) = Ci+1(M). To see that condi-
tion (3) is true, assume that v ∈ Ci+1(M)−Ci(M). Hence, there exists a vertex
u ∈ Ci(M) such that {u, v1} ∈M , and v ∈ N(v1). Since v ∈ Ci+1(M)−Ci(M),
it is clear that {v, v1} �∈ M . Moreover, since there exists an M alternating path
from a vertex v2 ∈ I−M [I] to u (by the inductive hypothesis), adding the edges
{u, v1}, {v1, v} forms an M alternating path from v2 to v. Finally, to see that
condition (1) is true, notice that if v �∈ M [V − I], then the M alternating path
from v2 to v is an M augmenting path. Hence, the original matching M is not
a maximum matching.

As we show above, the Ci(M)’s are ordered by the subset relation. As we
show next, there must be a fixed point in these sets.
Lemma 6. If Ci(M) = Ci+1(M), then Ci(M) = Ci+k(M) for all k ≥ 1.

Proof. (By induction on k.) When k = 1, the lemma holds trivially. Now, assume
that the lemma holds when k ≥ 1. Then,

Ci+k+1(M) = N(M−[Ci+k(M)]) = N(M−[Ci(M)]) = Ci+1(M) = Ci(M).

Lemma 5 and 6 imply a straightforward method for computing C(M); com-
pute Ci(M) until Ci+1(M) = Ci(M). The end result of this computation is
C(M). This computation must complete after |M | passes, since |C(M)| ≤ |M |.
Moreover, notice that computing Ci+1(M) from Ci(M) can be done in O(n+m)
steps since it simply involves computing neighborhoods. Hence, the entire com-
putation of C(M) takes O(|M |(n + m)) steps, where n = |V | and m = |E|.

Now, we can give a subset of G[I, V − I] that has an upper perfect matching.
Define

I ′ = M−[C(M)] ∪ (I −M [I]).
Lemma 7. N(I ′) = C(M).

Proof. N(I ′) = N(I −M [I]) ∪N(M−[C(M)]) = C0(M) ∪C(M) = C(M).

Lemma 8. The bipartite graph G[I ′, V − I ′] has an upper perfect matching.

Proof. Lemma 7 tells us that N(I ′) = C(M). Since I ′ contains all of the ver-
tices in M−[C(M)], the edges from C(M) to M−[C(M)] form an upper perfect
matching of G[I ′, V − I ′].

We now show that we can eliminate all of the vertices in I from G (and
perhaps some others). The single reduction rule that we use is the following.
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Crown Reduction Rule: Given an independent set I in G, if the bipartite graph
G[I, V − I] has an upper perfect matching (i.e., a matching of size |N(I)|), then
delete I and N(I) from G to form G′ and set k′ = k − |N(I)|.

The crown reduction rule is a generalization of the reduction rule that can
be used to eliminate degree 1 vertices for Vertex Cover.

Lemma 9. G′ has a vertex cover of size k′ iff G has a vertex cover of size k.

Proof. Assume that G′ has a vertex cover V ∗ of size k′. Then, V ∗ ∪ N(I) is a
vertex cover of G of size k′ + |N(I)| = k, To see this, notice that the vertices in
N(I) covers the edges in the bipartite subgraph formed by I and N(I). Moreover,
the vertices in N(I) also cover all edges from N(I) to the rest of G.

Similarly, assume that G has a vertex cover V ∗ of size k and define V̂ ∗ =
V ∗− (N(I)∪ I). This is a vertex cover of G′. Each matched edge connecting the
vertices in N(I) to the vertices in I must be covered by either a unique vertex
in N(I) or a unique vertex in I. Since I is an independent set, these sets are
disjoint. Therefore, |V̂ ∗| ≤ |V ∗| − |N(I)| = k − |N(I)| = k′.

The crown reduction rule leads to the following kernelization algorithm for
Vertex Cover.

Theorem 3. There exists an algorithm running in time O(k(n+m)) steps that
takes an instance 〈G, k〉 of Vertex Cover with n vertices and m edges and
either returns “no” (G has no vertex cover of size k) or produces an equivalent
instance 〈G′, k′〉, where k′′ ≤ k and |V ′| ≤ 3k.

Proof. The algorithm proceeds as follows.

Algorithm 3 Linear-Time Kernelization Algorithm for Vertex Cover.
1: Compute a maximal matching M in G with no M -augmenting path of length 3

using the algorithm described in section 2.
2: if |M | > k then
3: return “no,” because G needs at least k + 1 vertices in any vertex cover.
4: end if
5: Otherwise, partition V into IM and OM .
6: Compute the bipartite graph G∗ = G[OM , N(OM )].
7: Compute a maximum matching M ′ in the bipartite graph G∗.
8: Compute the crown C(M ′), and let I ′ = M ′

−[C(M ′)] ∪ (OM − M ′[OM ]).
9: Apply the crown reduction rule. This rule deletes C(M ′) and I ′ from G.

10: return 〈G′, k′〉.

Notice that the correctness of this algorithm follows almost immediately from
Lemma 9. To see that G′ has ≤ 3k vertices, notice that (i) after step 3, we know
that |M | ≤ k, (ii) Lemma 1 tells us that |M ′| ≤ |M |, and (iii) the crown
reduction rule removes at least |OM |− |M ′| ≥ |OM |− |M | vertices from G. Since
n = |OM |+ 2|M | and |M | ≤ k, |V ′| ≤ n− |OM | − |M | = 3|M | ≤ 3k.

To see that Algorithm 3 runs in time O(k(m + n)), notice that (i) step 1
takes O(m + n) steps, (ii) steps 2–6 can be performed in O(n + m) steps, (iii)
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step 7 takes O(k(n + m)) steps since |N(OM )| ≤ 2k because |M | ≤ k, (iv) step
8 takes O(k(n + m)) steps by the argument prior to Lemma 7, and (v) steps 9
and 10 can be performed in O(n + m) steps. This completes the proof.

6 Parameterized Algorithms for Graph Coloring
and Clique Covering

In this section, we combine the results of sections 2, 3, and 4 to prove our main
result.

Theorem 4. n−k Clique Covering can be solved in time O(k(n+m)+k2 +
23.8161k) steps on instances 〈G, k〉, where G has m edges and n vertices.

Proof. Given an instance 〈G, k〉 of n−k Clique Covering, apply Algorithm 2
from section 4. The algorithm either determines that there is a clique covering of
size n−k of G, or it kernelizes 〈G, k〉 to an equivalent instance 〈G′, k〉 such that G′

has a clique covering of size n′−k if and only if G has a clique covering of size n−k.
Moreover, we have that n′ ≤ 3k− 3. This takes O(k(m + n)) steps. Next, apply
the relationship between graph coloring and clique covering, and convert 〈G′, k〉
into an equivalent instance 〈Ḡ′, k〉 of n−k Graph Coloring. This takes O(k2)
steps. Finally, apply the best-known exact algorithm from graph coloring, due to
Eppstein [12]. This algorithm runs in O(2.4150n) = O(2.41503k−3) = O(23.8161k)
steps. This completes the algorithm and the proof.

Theorem 5. n − k Graph Coloring can be solved in time O(kn2 + k2 +
23.8161k) on instances 〈G, k〉, where G has m edges and n vertices.

Proof. It suffices to employ the identity χ(G) = χ̄(Ḡ). Hence, G can be colored
using n− k colors if and only if Ḡ can be covered using n− k cliques. Therefore,
it suffices to first compute Ḡ and to then employ the algorithm given in Theorem
4. The result follows.

7 Concluding Remarks

This paper provides an alternate approach to exact algorithms for graph coloring.
The approach provided here can be used to design faster exact algorithms for
graphs with high chromatic numbers (χ(G) ≥ 2/3n) because the parameterized
algorithm given here runs faster than the O(2.4150n) exact algorithm when k ≤
1/3n. Perhaps this new parameterized algorithm can be used in some inventive
way to improve the running-time of the exact algorithm for graph coloring for
all graphs.
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9. Halldórsson, M.M.: Approximating k-set cover and complementary graph coloring.
In: Proceedings of the 5th IPCO Conference on Integer Programming and Combi-
natorial Optimization. Volume 1084 of LNCS., Springer-Verlag (1996) 118–131
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Abstract. The family of well-orderly maps is a family of planar maps
with the property that every connected planar graph has at least one
plane embedding which is a well-orderly map. We show that the number
of well-orderly maps with n nodes is at most 2αn+O(log n), where α ≈ 4.91.
A direct consequence of this is a new upper bound on the number p(n)
of unlabeled planar graphs with n nodes, log2 p(n) � 4.91n.
The result is then used to show that asymptotically almost all (labeled or
unlabeled), (connected or not) planar graphs with n nodes have between
1.85n and 2.44n edges.
Finally we obtain as an outcome of our combinatorial analysis an explicit
linear time encoding algorithm for unlabeled planar graphs using, in the
worst-case, a rate of 4.91 bits per node and of 2.82 bits per edge.

1 Introduction

Counting the number of (non-isomorphic) planar graphs with n nodes is a well-
known long-standing unsolved graph-enumeration problem (cf. [1]). There is no
known closed formula, neither asymptotic for unlabeled planar graphs.

There are only upper and lower bounds on the growth rate of the sequence
of numbers p(n) of unlabeled planar graphs. This growth rate, defined as μ =
limn→∞ p(n)1/n, currently ranges between 27.2268 and 32.1556 (a superadditiv-
ity argument shows that such a limit exists [2, 3]).

The lower bound on μ comes from an asymptotic on the number of labeled
planar graphs. This asymptotic is on the form n!λn+o(n) [2, 3], and in [4], a
precise estimation of λ is given: 27.2268 < λ < 27.2269. The upper bound on μ,
due to [5], comes from succinct encoding of plane planar graphs. More precisely,
after a suitable embedding and triangulation of the planar graph, it is shown
that such embeddings can be represented by a binary string of length at most
5.007n bits. Such representation implies that p(n) � 25.007n ≈ (32.1556)n.
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Technically, enumerating unlabeled graphs is more difficult than counting the
labeled version. And, as pointed out in [6], almost all labeled 2- and 1-connected
planar graphs have exponentially large automorphism groups. In other words,
Wright’s Theorem [7] does not hold for random planar graphs, the asymptotic
number of labeled and unlabeled planar graphs differ in more than the n! term,
i.e., λ < μ. So, an asymptotic on the number of labeled planar graphs would not
give a sharp lower bound on the growth rate of p(n). The situation from the upper
bound side is not better. There are many ways to embed a planar graph, and
to recover the graph from a suitable triangulation requires deep understanding
of plane triangulations, in particular their enumeration given several parameters
depending on the input graph.

Besides the pure combinatorial aspect, the “encoding” approach is also rele-
vant in Computer Science where a lot of attention is given to efficiently represent
discrete objects. At least two field of applications of high interests are concerned
with succinct planar graph representation: Computer Graphics [8–10] and Net-
working [11–14].

1.1 Related Works

Obviously, without sharp asymptotic formula, properties and behavior of large
random objects cannot be described precisely. For lack of an adequate model,
very little is known on random planar graphs. However, random generation of
planar graphs has been investigated in the last decade.

Using a simple Markov chain, Denis et al. [2] showed, that, experimentally,
random labeled planar graphs have 2n edges. In fact, Bodirsky et al. [15] have
designed the first polynomial time (uniform) random generator of labeled planar
graphs. Although limited in their experiments (mainly by the time complexity
of this algorithm), they showed that actually the number of edges in a random
labeled planar graph is more than 2n. The best proved bounds on the number
of edges in a random labeled planar graph are 1.85n [16] and 2.54n [5], for the
unlabeled case 1.70n and 2.54n, by [5].

Succinct representation of n-node m-edge planar graphs has a long history.
Turán [17] pioneered a 4m bit encoding, that has been improved later by Keeler
and Westbrook [18] to 3.58m. Munro and Raman [19] then proposed a 2m + 8n
bit encoding based on the 4-page embedding of planar graphs (see [20]). In a
series of articles, Lu et al. [21, 22] refined the coding to 4m/3 + 5n thanks to
orderly spanning trees, a generalization of Schnyder’s trees [23].

1.2 Our Results

Any planar embedding of a n-node planar graph with n nodes can be seen as a
subgraph of a n-node triangulation of the plane. Once given a triangulation and
a set of edges to keep (or to remove), a planar map and the corresponding graph
can be constructed. The converse is false in general. There is no known method
to uniquely associate a triangulation to a planar graph.
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However, in [5], a linear time algorithm is given to construct a triangula-
tion of the plane in a canonical way for any planar graph, once given a planar
embedding. The reader should keep in mind that there is a-priori no unique em-
bedding for a planar graph. Some of planar embeddings have interesting graph
properties based on the Schnyder’s partition [23] of triangulations into trees. A
new class of planar embeddings are proposed in [5]: the well-orderly maps, a
more restrictive version of the orderly maps of Chuang et al. [21]. The two main
properties of well-orderly maps that can be exploited for graph coding are: 1)
every planar graph admits such an embedding, and 2) given a well-orderly map,
we can uniquely associate a triangulation.

The main result of this paper is to give a good approximation of the number
of well-orderly maps. As a byproduct, it gives a new upper bound on the number
of planar graphs. More interestingly, the combinatorial analysis allow to us to
give an explicit coding of such maps (and thus of planar graphs), as a function of
n and m, the number of edges: 4.91 bits per node, and 2.82 bit per edge (clearly,
2.82m bits is always smaller than 4m/3 + 5n bits). It follows also a new bound
on the number of edges of a random planar graph (labeled or not).

The paper is organized as follows. We describe in Section 2 the relationships
between well-orderly maps, super-triangulations and realizers. The new coding is
presented in Section 3, and in Section 4 are given the applications to the number
of unlabeled planar graphs and to the number of edges in random planar graphs.
Another application of our results is an upper bound on the minimal grid area of
random triangulation of the plane. We show that in average, plane triangulations
can be drawn on grids of area at most 7

8n× 7
8n and 11

16n× 5
6n.

2 Encoding Planar Graphs with Minimal Realizers

In this section we collect some results from [5] about planar graphs, well-orderly
maps, super-triangulations and realizers. In the last paragraph, these results are
used to prove a new representation theorem.

2.1 Planar Graphs and Well-Orderly Maps

A planar map (or plane graph) is an embedding of a connected planar graph on
the plane so that edges meet only at their endpoints. When cutting the plane
along the edges, the remaining components are called the faces. Apart from the
unbounded component, all these faces are homeomorphic to discs. A planar map
is rooted if one of its edges is distinguished and oriented. This determines a root
edge, a root node (its origin) and a root face (to its left), also called external face
or outerface. A triangulation of the plane (or a maximal plane graph) is a planar
map without loops or multiple edges such that all faces are triangles.

A plane tree is, as usual, a rooted tree such that the siblings of a node are
linearly ordered. Equivalently it is a planar map with one face. Among the nodes
of a tree, we distinguish the root, the inner nodes and the leaves. A spanning
tree of a planar map is a subset of edges that forms a tree connecting all nodes.
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Let T be a rooted spanning tree of a planar map H , and let v1, . . . , vn be the
clockwise preordering of the nodes in T . Two nodes are unrelated if neither of
them is an ancestor of the other in T . An edge of H is unrelated if its endpoints
are unrelated.

A node vi is orderly in H with respect to T if the edges incident to vi in H
form the following four (possibly empty) blocks in clockwise order around vi (see
Fig. 2(b)):

– BP (vi): the edge incident to the parent of vi in T ;
– B<(vi): edges that are unrelated in T and incident to nodes vj with j < i;
– BC(vi): edges that are incident to the children of vi in T ; and
– B>(vi): edges that are unrelated in T and incident to nodes vj with j > i.

A node vi is well-orderly if it is orderly and if the clockwise first edge (vi, vj) ∈
B>(vi), if it exists, verifies that the parent of vj is an ancestor of vi.

A rooted spanning tree T of H is a well-orderly tree of H if all the nodes
of T are well-orderly in H with respect to T . A planar map H is a well-orderly
map of root v if it contains a well-orderly tree of root v.

Theorem 1 ([5]). Let G be a connected planar graph, and let v be any node
of G. Then G has a well-orderly map of root v, which can be computed in linear
time. Moreover, a well-orderly map of root v has a unique well-orderly tree of
root v, which can also be computed in linear time.

In Fig. 1 two orderly trees T 0 span the same triangulation but only one is
the well-orderly tree.

Fig. 1. Two realizers for a triangulation. The tree T 0 rooted in r0 (the tree with bold
edges augmented with the edges (r0, r1) and (r0, r2)) is well-orderly in (b), but only
orderly in (a) since node v is not well-orderly.

Observe that by definition of well-orderly nodes, an edge of H which is related
with respect to a well-orderly tree T (i.e. one endpoint is a descendant of the
other one in T ) must belong to the tree T : indeed all edges are either unrelated
or connect a node to its father. In particular all the edges incident in H to the
root of T are in T .
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2.2 Minimal Realizers and Super-triangulations

A realizer of a triangulation is a partition of its interior edges (the edges that
do not lie on the external face) into three sets T0, T1, T2 of directed edges such
that the following conditions hold for each interior node v (see Fig. 2(a)):
– the clockwise order of the edges incident with v is: leaving in T0, entering in

T1, leaving in T2, entering in T0, leaving in T1 and entering in T2;
– there is exactly one leaving edge incident with v in each of the sets T0, T1,

and T2.

Hereafter, when R = (T0, T1, T2) is a realizer, R also denotes the underlying
triangulation.

Fig. 2. Relationship between realizer and orderly tree: (a) edge-orientation rule around
a node for a realizer, and (b) blocks ordering around an orderly node.

Observe that if (T0, T1, T2) is a realizer, then (T1, T2, T0) and (T2, T0, T1) are
also realizers. This cyclic permutation of the three sets of edges does not in
general provide all the distinct realizers of a given triangulation. Fig. 1 depicts
two realizers for a same triangulation.

Schnyder showed in [23] that if (T1, T2, T3) is a realizer then each set Ti

induces a tree rooted in one node of the external face and spanning all interior
nodes. Moreover, for each Ti, we denote by T i the tree composed of Ti augmented
with the two edges of the external face incident to the root of Ti. For every non-
root node u ∈ Ti, we denote by pi(u) the parent of u in Ti.

A realizer S = (T0, T1, T2) is a super-triangulation of a graph G if:

1. V (S) = V (G) and E(G) ⊆ E(S);
2. E(T0) ⊆ E(G);
3. T 0 is a well-orderly tree of S; and
4. for every inner node v of T2, (v, p1(v)) ∈ E(G).

Lemma 1 ([5]). Let H be a well-orderly map, and T its unique well-orderly tree
of root r0. Assume that T has at least two leaves. Let r2 and r1 be the clockwise
first and last leaves of T respectively. Then, there is a unique super-triangulation
(T0, T1, T2) of the underlying graph of H, preserving the embedding H, and such
that each Ti has root ri. Moreover, T0 = T \ {r1, r2} and the super-triangulation
is computable in linear time.

There is an alternative characterization of super-triangulation in terms of
minimal realizers. A cw-triangle (or clockwise triangle), is a triple of nodes
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Fig. 3. (a) A planar graph G with an embedding which is not well-orderly.
An easy way to see that it is not a well-orderly, is to remark that the edges
(v1, v2), (v1, v3), (v1, v4), (v2, v6) must be in any spanning tree of G rooted at v1 such
that G has only parent edges and unrelated edges. In such trees, v2 is clearly not an
orderly node. (b) A well-orderly map of G. (c) A super-triangulation of G (dotted edges
are not in G).

(u, v, w) (not necessarily corresponding to a face) of a realizer such that p2(u) =
v, p1(v) = w, and p0(w) = u. A minimal realizer is a realizer that does not con-
tain any clockwise triangle. In the realizer depicted in Fig. 1(a), (u, v, w) forms
a cw-triangle, whereas the realizer of Fig. 1(b) has no cw-triangle.

Lemma 2 ([5]). Let S = (T0, T1, T2) be any realizer. The following statements
are equivalent:

1. S is a super-triangulation for some graph G.
2. S is a minimal realizer.
3. The tree T i is well-orderly in S, for every i ∈ {0, 1, 2}.

2.3 Results of the Paper

Theorem 2 (Coding version). The following encoding sequence hold:

– Any connected planar graph can be embedded as a well-orderly map.
– Any well-orderly map can be represented as a minimal realizer (T1, T2, T3)

with a subset of marked edges included in the sets of edges of T2 and of edges
(u, v) of T1 such that u is a leaf of T1.

Our first new result in this paper is that in fact the second encoding is almost
tight.

Theorem 3 (Counting version). Let Hn (resp. Hn,m) denote the set of well-
orderly maps with n nodes (resp. with n nodes and m edges), and Rn,� denote
the set of minimal realizers (T0, T1, T2) with n nodes and l leaves in T2. Then

1
8

n−3∑
�=1

|Rn,�|2n+� � |Hn| �
n−3∑
�=1

|Rn,�|2n+�.
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1
8

n−3∑
�=max{1,2n−m−6}

|Rn,�|
(

n + �

m− 2n + 6 + �

)
� |Hn,m|.

|Hn,m| �
n−3∑

�=max{1,2n−m−6}
|Rn,�|

(
n + �

m− 2n + 6 + �

)
.

3 Counting and Coding Trees

In this section we briefly recall a result from [24] about minimal realizers and
plane trees. An encoding of well-orderly maps follows.

3.1 Minimal Realizers and Plane Trees

A tree is planted if it is rooted on a leaf. Let Bn be the set of planted plane trees
with n nodes and 2n leaves such that each node is adjacent to 2 leaves. Given
a planted tree T of Bn, its canonical orientation shall be toward the root for all
inner edges, and toward the leaf for all dangling edges.

Fig. 4. On the left, a planted tree of Bn (the root is indicated by a square). Then from
left to right, the partial closure of the tree.

A triple (e1, e2, e3) of edges of a map M is an admissible triple if e1 = (v0, v1),
e2 = (v1, v2) and e3 = (v2, v3) appear consecutively in the clockwise direction
around the infinite face and if v3 is a leaf. The local closure of M at the admissible
triple (e1, e2, e3) is obtained by fusing the leaf v3 on node v0 so as to create
triangular face. Observe that by construction the orientation of the dangling
edge prevents the formation of cw-triangles.

The local closure of a tree T of Bn is the map obtained by performing iter-
atively the local closure of any available admissible triple in a greedy way. As
shown in [24], the local closure is well defined independently of the order of local
closures. Moreover all bounded faces of the resulting map are triangular and the
outer face has the structure shown on Fig. 5 (left hand side). In particular there
are exactly two canonical dangling edges in the infinite face that are immedi-
ately followed by dangling edges in the clockwise direction around the infinite
face. A tree T is balanced if its root is one of the two canonical leaves. Finally,
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Fig. 5. The structure after a partial closure, and the complete closure.

the complete closure of a balanced tree T is the map obtained from the partial
closure of T by fusing each remaining non canonical leaf with following canonical
leaf in clockwise direction and adding a root edge, as illustrated by Fig. 5 (right
hand side).

Theorem 4 ([24]). Complete closure is one-to-one correspondence between bal-
anced trees with n−2 and triangulations with n nodes. Moreover, the orientation
of inner edges of the triangulation that is induced by the tree corresponds, via
the coloration rule of Fig. 2(a) to a minimal realizer of the triangulation.

Observe that the color of edges can be deduced from their orientation directly
on the balanced tree from the application of the rule of Fig. 2(a).

The following new lemma will serve to predict entering edges created by
complete closure at a node.

Lemma 3. Let v be an inner node of a balanced tree B. Let e1 = (v, u) and
e2 = (v, w) be two consecutive edges around v in the clockwise order. During the
closure algorithm, no edges will be inserted between e1 and e2 if and only if:

(a) w is a leaf of B, or
(b) w is an inner node of B and the node t such that the edge e3 = (w, t) is the

next edge around w after e2 in the clockwise order is a leaf of B.

Proof. Let v an inner node of a balanced tree B. Let us consider two consecutive
edges (v, u), (v, w) around v in the clockwise order. If w is a leaf, then during
the closure it will merge with a node w′ and close a triangular face enclosing
the corner between (v, u), (v, w). No other edge can thus arrive at this corner.
Assume now that w is an inner node of B. Let (w, t) be the next edge around
w in the clockwise order. If t is a leaf of B then it will merge with u to form a
triangular face and again no edge can arrive in the corner between (v, u), (v, w).
In the other cases, (v, w) is an inner edge followed by another inner edge (w, t).
Since an edge that forming a triangular face that encloses the corner between
(v, u), (v, w) must from w, the corner is not enclosed. But at the end of the
partial closure, there are no more pairs of consecutive inner edges: some edge
must be arrived in the corner. ��
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Lemma 4. Let R = (T0, T1, T2) be the minimal realizer encoded by a balanced
tree B. A node v of B is a leaf of T2 if and only if v has no incoming edge colored
2 in B and,

1. the parent edge of v in B is colored 2, or
2. the parent edge of v in B is colored 1, or
3. the parent edge of v in B is colored 0 and v is the last child with an edge

colored 0 in clockwise order around PB(v) and
(a) the parent edge of PB(v) is colored 0, or
(b) the parent edge of PB(v) is colored 2.

The number of vertices of B satisfying these conditions is denoted �(B).

From Lemma 4 and Theorem 2, we obtain:

Theorem 5. Any well-orderly map with n nodes can be coded by a pair (B, W )
where B is balanced tree of Bn−2 and W a bit string of length n+�(B). Encoding
and decoding takes linear time.

3.2 A Context-Free Grammar for Colored Trees

We shall now give a recursive decomposition of trees in which the parameter �
of Lemma 4 can be followed.

To do this we consider the three sets Fi, for i = 0, 1, 2 of trees with a root edge
of color i.To a tree T of Fi, i = 1, 2, we associate the parameter k(T ) = �(T ).
To a tree T of F0 we associate the parameter k(T ) defined as �(T ) except for
the root node which contributes to k(T ) as soon as it has no incoming edge of
color 2, and a second parameter k′(T ) defined as �(T ) except for the root node
which never contributes.

The decomposition is obtained, classically, at the root node: a tree with root
edge of color 0 is made of a root node that carries, in clockwise order, a sequence
of subtrees of root color 1, an outgoing edge of color 2, a sequence of subtrees
of root color 0, an outgoing edge of color 1, and a sequence of subtrees of root
color 2. The parameter � is almost additive on subtrees . However, due to Rule 3
in Lemma 4, the root of a subtree with root edge of color 0 may or may not be
susceptible to contribute depending how it is attached. In other terms, depending
of how it is attached, a subtree T ′ with root color 0 contributes k(T ′) or k′(T ′).

On Fig. 6 the decomposition is pictured schematically: an incoming edge rep-
resents a tree, a triangle represents a possibly empty sequences of subtrees, and
color correspond to root colors. For color 0, plain and dashed lines respectively
indicate positions where the contribution is given by parameters k or k′. Finally
root nodes that contribute to the parameters are pictured in a box.

3.3 Generating Functions of Trees
and the Asymptotic Number of Well-Orderly Maps

The reader can refer to [25] for a general presentation of enumeration of decom-
posable structures using grammars and generating series.
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Fig. 6. A decomposition of colored trees allowing to track the contributions to �.

Let us consider the generating function Fi(z, u) of trees with root color i, i =
0, 1, 2 with respect to the number of edges and the parameter k, and F ′

0(z, u) of
trees with root color 0 with respect to the number of edges and the parameter k′:

Fi ≡ Fi(z, u) =
∑

T∈Fi

z|T |uk(T ) and F ′
0 ≡ F ′

0(z, u) =
∑

T∈F0

z|T |uk′(T ).

Recall that with respect to additive parameters, the generating function of a
possibly empty sequence of elements of a set S is the quasi-inverse 1/(1− f) of
the generating function f of S. Therefore the previous decomposition translates
into the following system of equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 =
z
(
1 + F ′

0
1−F0

)

(1− F1)(1 − F2)
,

F ′
0 =

z
(
u + F2

1−F2

)(
1 + F ′

0
1−F0

)

1− F1

F1 =
z
(
u + F2

1−F2

)

(1− F1)(1 − F0)
,

F2 =
z
(
u + F2

1−F2

)(
1 + F ′

0
1−F0

)

1− F1
,

or

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 =
z
(
1 + F2

1−F0

)

(1− F1)(1− F2)
,

F1 =
z
(
u + F2

1−F2

)

(1− F1)(1− F0)
,

F2 =
z
(
u + F2

1−F2

)(
1 + F2

1−F0

)

1− F1
,

where the observation that F ′
0(z, u) = F2(z, u) in the left hand side system

yields the right hand side one. This system of equations completely defines the
generating series F0(z, u). By elimination an algebraic equation for F0(z, u) is
immediately obtained, which is of degree 4.
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We are particularly interested in the case u = 2, since the coefficient fn of
zn in

F (z) = F0(z, 2) =
∑

T∈F0

z|T |2�(T ),

counts n-node trees weighted by 2�(u), and thus overcount n-nodes balanced
trees with the same weight. According to Theorem 3, upon multiplying by 2n,
this yields an upper bound on the number of well-orderly maps with n nodes.

From elementary complex analysis, we have that log fn ∼ log(ρ−n) where ρ
is the radius of convergence of the series F (z) =

∑
n fnzn. Applying the implicit

function theorem to the system defining F (z), we can compute its radius of
convergence and obtain:

ρ = (
√

189 + 114
√

3− 6
√

3− 9)/4.

From Theorem 5 we obtain:

Theorem 6. The number of well-orderly maps with n nodes satisfies

1
n

log2 |Hn| � 1 + log2 1/ρ + o(1) ≈ 4.9098 + o(1).

3.4 A Code for Colored Trees

Let S be a binary string. We denote by #S the number of binary strings having
the same length and the same number of ones than S. More precisely, if S is of
length x and has y ones, then we set #S :=

(
x
y

)
.

Lemma 5. [5] Any binary string S of length n can be coded into a binary string
of length log2(#S) + o(n). Moreover, knowing n, coding and decoding S can be
done in linear time, assuming a RAM model of computation on Ω(log n) bit
words.

Lemma 6. Let B be a balanced tree such that the corresponding realizer R =
(T0, T1, T2) has i2 inner nodes in the tree T2. The balanced tree B can be encoded
with 5 binary strings S1, S2, S3, S4 and S5 and 4 integers a0, a

′
0, a1, i2 � n such

that:
#S1 =

(
n−a0
i2−a0

)
, #S2 =

(
n−a1

a′
0

)
, #S3 =

(
n+a1

a1

)
, #S4 =

(
a1+a0+a′

0
a0

)
and #S5 =( n−a1−a′

0
n−a1−a′

0−i2

)
.

Lemma 7. Let H be an m-edge well-orderly map. H can be encoded with 6 bi-
nary strings (5 for the minimal realizer and a last one to store the missing edges)
and 4 integers a0, a1, a

′
0, i2 ∈ [0, n] such that: #S1 =

(
n−a0
i2−a0

)
, #S2 =

(
n−a1

a′
0

)
,

#S3 =
(
n+a1

a1

)
, #S4 =

(
a1+a0+a′

0
a0

)
, #S5 =

( n−a1−a′
0

n−a1−a′
0−i2

)
, #S6 =

(
2n−i2

m−n−i2

)
.

Proof. With S1 − S5 a minimal realizer is encoded (Lemma 6). The last string
indicates the edges to delete in order to rebuild the well-orderly map: for each v,
one is used to indicate if the edge (v, p2(v)) has to be removed and for each leaf
v of T2, one bit is used to indicate if the edge (v, p1(v)) has to be removed. ��
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4 Applications

In view of Theorems 2 and 6, the number of connected planar graphs is at most
24.9098n. As shown in [5], the numbers of connected and general planar graphs
differ by at most a polynomial term in n.

Theorem 7. The number p(n) of unlabeled planar graphs on n nodes satisfies,
for every n large enough:

log2 p(n) � αn + O(log n) with α ≈ 4.9098.

This result is completed by the (known) lower bound log2 p(n) � βn + O(log n),
with β ≈ 4.767.

The length of the coding of well-orderly map depends of the number of the
edges of the well-orderly map.

The following two results are obtained from the analysis of the length of the
code of Lemma 7. The length of this code depends on the number of edges of
the well-orderly map (see Fig. 7).

Theorem 8. Almost all unlabeled and almost all labeled planar graphs on n
nodes have at least 1.85n edges and at most 2.44n edges. Moreover, the result
holds also for unlabeled connected and labeled connected planar graphs.

Theorem 9. Every connected m-edge planar graph can be encoded in linear time
with at most 2.82m + o(m) bits.

5 The Average Size of Planar Drawings

Theorem 10. The average number of leaves in a tree of a minimal realizer is
5n/8 + o(n) and the average number of 3-colored faces in a minimal realizer is
n/8 + o(n).

Proof. Using classical techniques on generating function, we obtain that the
average number of leaves of the tree T0 of a minimal realizer is 5n/8 + o(n). By
symmetry, this result is clearly true for the two other trees of the realizer. Since
for any realizer, �0 + �1 + �2 + Δ = 2n− 5, where �i is the number of leaves in
Ti and Δ is the number of 3-colored faces of the realizer [26], the second result
comes directely. ��

In [27] a straight-line drawing algorithm base on minimal realizers is pre-
sented. This algorithm first computes the minimal realizer of a triangulation of
the graph. Then the graph is drawn on a grid (n−1−Δ)× (n−1−Δ), where Δ
is the number of 3-colored faces of the so obtained minimal realizer. Our analysis
gives an average complexity of such drawings:

Corollary 1. The average grid size required (i.e., the average width and the
average height) to draw a triangulation is at most (7n

8 + o(n)) × (7n
8 + o(n)).
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Fig. 7. (a) Number of bits necessary to encode a well-orderly map with m = αn edges,
where 1 � α � 3. (b) Coding analyses: Number of bits per edges of a well-orderly map
with m = αn edges, where 1 � α � 3.

In [28] a polyline drawing algorithm also based on minimal realizers is pro-
posed. The graph is then drawn on a grid (n−

⌊
�
2

⌋
−1)×�, where � is the number

of leaves of the tree T0 of the obtained minimal realizer R = (T0, T1, T2). Our
analysis gives an average complexity of such drawings:

Corollary 2. The average grid size required to draw a triangulation is at most
(11n

16 + o(n))× (5n
8 + o(n)).
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Abstract. We consider the problem of estimating the Shannon capacity
of a circulant graph Cn,J of degree four with n vertices and chord length
J , 2 ≤ J ≤ n, by computing its Lovász theta function θ(Cn,J ). We
present an algorithm that takes O(J) operations if J is an odd number,
and O(n/J) operations if J is even. On the considered class of graphs our
algorithm strongly outperforms the known algorithms for theta function
computation.

1 Introduction

In the present paper we consider the problem of estimating the Shannon capacity
of a circulant graph of degree four by computing its Lovász theta function. In a
famous paper of 1956 [1] Shannon first studied the amount that an information
channel can communicate without error. He introduced the notion of zero-error
capacity of a graph, known thereafter as the Shannon capacity. It was under-
stood quite early that the exact determination of the Shannon capacity is a very
difficult problem, even for small and simple graphs (see [2, 3]). In 1979 Lovász
[4] introduced a function θ(G) with the aim of estimating the Shannon capacity.
Despite a lot of work in the field, very little is known about classes of graphs for
whose theta function either a formula or a very efficient (e.g., linear) algorithm
is available. An example for such a result is Lovász’s formula θ(Cn) = n cos π

n

1+cos π
n

for an odd cycle Cn with n nodes [4]. Recently Brimkov et al. [5] generalized
this last result by obtaining formulas for θ(G) for the special cases of circulant
graphs of degree four with chord length two and three.

Various applications of circulant graphs are known in counting and combina-
torics [6], as well as in telecommunication networks, VLSI design, and distributed
computing [7–10]. Low-degree circulants provided a basis for some classical paral-
lel and distributed systems [11, 12], as well as for certain data alignment networks
for complex memory systems [13]. Specifically, circulant graphs of degree four
have been used in the design of local networks and interconnection subsystems
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[14, 7]. Recent work [15] presents a class of such graphs with minimal topological
distances. These graphs (called Midimew networks) have been used as a basis
for constructing an optimal interconnection network for parallel computers with
a very high degree of fault-tolerance [15], as well as for designing networks for
massively parallel computers [16] or optimal VLSI [17].

Our interest in Shannon capacity and Lovász theta function of circulant
graphs is also driven by possible applications to error-free communication of data
describing the structure of a digital line, the latter being the most fundamental
primitive in computer graphics and image analysis. Computer representation
of digital lines has been an active research topic for nearly half a century (see
the recent survey [18] and the bibliography therein). In [19] Dorst and Duin
have developed the theory of spirographs in order to establish links between
digital straight lines and number theory. Spirographs are diagrams that model
the distribution of the integer points constituting a digital line and, as a matter
of fact, appear to be circulant graphs of degree two or four (see [20]).

In the present paper we use a geometric approach to construct a very efficient
algorithm for computing the theta function of arbitrary circulant graphs of degree
four. For a circulant graph Cn,J with n vertices and chord length J , 2 ≤ J ≤ n,
the algorithm performs O(J) operations when J is odd and O(n/J) operations
when J is even, and appears to be strongly superior to the known algorithm from
[21] for computing the theta function for general graphs, whose time complexity
is of the order O(n4). If n is even and J odd, then Cn,J appears to be perfect
and Θ(Cn,J ) = n/2. We also obtain as a corollary that for the above-mentioned
class of optimal chordal rings (Midimew networks), the algorithm computes the
theta-function with O(

√
n) operations.

The paper is organized as follows. In the next section we recall some graph-
theoretic notions and results to be used in the sequel. In Section 3 we introduce
some geometrical constructions used in designing our algorithm. The basic re-
sults are presented in Section 4. We conclude with some remarks in the final
Section 5.

2 Some Graph-Theoretic Notions and Facts

Here we recall some well-known definitions from graph theory. (See [22] for de-
tails.) Let G(V, E) be a simple graph. The complement graph of G is the graph
Ḡ(V, Ē), where Ē is the complement of E to the set of edges of the complete
graph on V . An automorphism of the graph G is a permutation p of its vertices
such that two vertices u, v ∈ V are adjacent iff p(u) and p(v) are adjacent. G is
vertex symmetric if its automorphism group is vertex transitive, i.e., for given
u, v ∈ V there is an automorphism p such that p(u) = v. By ω(G) and χ(G) we
denote the clique and the chromatic numbers of G, respectively. For any graph
G we have ω(G) ≤ χ(G). We also have the following classical result.

Theorem 1. [22] A connected simple graph G with maximal degree d is d-
colorable, unless d �= 2 and G is a (d + 1)-clique, or d = 2 and G is an odd
cycle.
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An independent set of G is a set of vertices no two of which are adjacent. The
cardinality of a maximal independent set is called the independence number of
G and denoted α(G). A graph G′(V ′, E′) is an induced subgraph of G(V, E), if
E′ contains all edges from E that join vertices from V ′ ⊆ V . G is perfect if
ω(GA) = χ(GA), ∀A ⊆ V , where GA is the induced subgraph of G on A.

An n× n matrix A = (ai,j)n−1
i,j=0 is called circulant if its entries satisfy ai,j =

a0,j−i, where the subscripts belong to the set {0, 1, . . . , n−1} and are calculated
modulo n. In other words, any row of a circulant matrix can be obtained from
the first one by a number of consecutive cyclic shifts, and thus the matrix is
fully determined by its first row. A circulant graph is a graph with a circulant
adjacency matrix. By Cn,J we will denote a circulant graph of degree four, with
vertex set {0, 1, . . . , n− 1} and edge set {(k, k + 1 mod n), (k, k + J mod n), k =
0, 1, . . . , n − 1}, where 1 < J ≤ n−1

2 is the chord length. See for illustration
Fig. 2a presenting the circulant graph C13,2. The Midimew networks mentioned
in the Introduction are special circulant graphs of the form CN,2h+1, where
N = h2 + (h + 1)2 and h is the graph diameter.

Now consider a graph G whose vertices are letters from a given alphabet
and where adjacency indicates that two letters can be confused. In this setting,
the maximal number of one-letter messages that can be communicated without
danger of confusion equals the independence number α(G). Then the maximal
number of k-letter messages that can be safely communicated is α(Gk), where
Gk is the k-th power of G. It follows that α(Gk) ≥ α(G)k , as equality does
not hold, in general [4]. The Shannon capacity of G is then defined as the limit
Θ(G) = limk→∞

k
√

α(Gk). It satisfies Θ(G) ≥ α(G), where equality does not
need to occur. Shannon proved that if G is perfect, then Θ(G) = α(G). As
already mentioned, in order to estimate Θ(G), Lovász devised a function θ(G),
known thereafter also as the Lovász number. Several equivalent definitions of
the Lovász number are available [23]. We present here the one which requires
only little technical machinery.

Definition 1. Given a graph G, let A be the family of symmetric matrices A
such that aij = 0 if vi and vj are adjacent in G. Let λ1(A) ≥ λ2(A) ≥ . . . ≥
λn(A) be the eigenvalues of A. Then θ(A) = maxA∈A{1− λ1(A)

λn(A)}.
Combining the fact that Θ(G) ≤ θ(G) with the easy lower bound Θ(C5) ≥√

5, Lovász was able to determine the capacity of the pentagon C5, which turns
out to be

√
5. We know very little about the Shannon capacity of other non-

perfect graphs. For instance, Θ(C7) is still unknown. θ(G), however, is com-
putable in polynomial time with arbitrary precision, although being “sand-
wiched” between the clique number ω(G) and the chromatic number χ(G),
whose computation is NP-hard for general graphs. More precisely, we have
ω(G) ≤ θ(Ḡ) ≤ χ(G). Because of this remarkable property and due to the rela-
tions to communication issues, the Lovász number is a subject of active study.
For various results and applications see the surveys by Knuth [23] and Alizadeh
[24] and the bibliography therein. See also [25–29] for a sample of the diversity
of results and applications of Θ(G) and θ(G). Here we list a simple proposition
for future reference.
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Proposition 1 (see [23]). For every graph G with n vertices, θ(G) · θ(Ḡ) ≥ n.
If G is vertex symmetric, then θ(G) · θ(Ḡ) = n.

The algorithm for theta function computation described in the following sections
applies to circulant graphs of degree four. We notice that all circulants of order
≤ 5 except the pentagon are perfect and their Shannon capacity is trivially de-
termined. We also have Θ(C5,1) = θ(C5,1) =

√
5. Thus we can consider circulant

graphs of order larger than 5. It is easy to see that for circulants Cn,J with
n ≥ 6 it holds ω(Cn,J ) ≥ 2 and χ(G) ≤ 4, hence 2 ≤ θ(C̄n,J ) ≤ 4. Since the
circulant graphs are vertex symmetric, by Proposition 1 we obtain the bounds
n/2 ≥ θ(Cn,J ) ≥ n/4. In the subsequent sections we design an efficient algorithm
for the exact computation of θ(Cn,J ).

3 LP Formulation of θ(Cn,j)
and Certain Subsidiary Geometrical Constructions

Taking advantage of the particular properties of circulant matrices whose eigen-
values can be expressed in closed form, one can easily generalize the approach
of [4]. Then the validity of the following minmax formulation of the θ-function
of circulant graphs of degree 4 can be derived.

Lemma 1 (see [5]). Let f0(x, y) = n + 2x + 2y and for some fixed value of J

fk(x, y) = 2x cos
2πk

n
+ 2y cos

2πkJ

n
, k = 1, 2, . . . , n− 1.

Then
θ(Cn,J ) = min

x,y
max

k

{
fk(x, y), k = 0, 1, . . . , �n

2
�
}

. (1)

This is in turn equivalent to the following Linear Programming (LP) problem:

θ(Cn,J ) = min{z : fk(x, y)− z ≤ 0, k = 0, 1, . . . , �n
2 �, z ≥ 0}. (2)

We now observe that the equalities

f1(x, y)− z = 0, f2(x, y) − z = 0, . . . , fn−1(x, y)− z = 0

define planes through the origin. Having in mind the specific coefficients of these
planes in the different ortants, as well as the relations between the coefficients
of two consecutive planes, one can see that the set

max
k
{fk(x, y), k = 1, 2, . . . , n− 1}

is a polyhedral surface, namely a polyhedral cone C with its apex at the origin.
The cone belongs to the positive halfspace z ≥ 0 and the Oz axis is contained
inside the cone. The faces of the cone are portions of planes with equations

z = fk(x, y), k = 1, 2, . . . , n− 1.
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C(13,2)

Fig. 1. a) The graph C13,2. b) The polyhedral cone related to C13,2, cut at z = 2.

Thus the rays of C are intersections of planes obtained for pairs of indices i, j,
1 ≤ i, j ≤ n−1. Other intersections are not of interest, since they all fall “below”
the conic surface maxk{fk} and thus are not part of it.

A more careful analysis can show that only one of the planes forming the
cone has two positive coefficients, and only one of them has a positive coefficient
for y and a negative coefficient for x. In the other cases we may have arbitrary
many planes. For example, this is the case in the ortant x ≤ 0, y ≤ 0, z ≥ 0 (i.e.,
if the two coefficients are negative).

We now consider the plane f0(x, y) = n + 2x + 2y. Its intersection with the
cone C produces a new polyhedral surface. Roughly speaking, this is the upper
part of the cone C, i.e., the one above the plane f0 (see Fig. 1b). As it will turn
out later, a part of the cone C will be “cut out” and thus some of the planes
(forming the faces of C) will be eliminated.

Clearly, the intersection points of the plane f0 with C are the possible can-
didates for solution of the problem. The theta function is the intersection point
with minimal z. Consider the intersection of C and f0. This intersection is the
boundary of some 2D convex polyhedron P (possibly unbounded). As mentioned
above, the solution is at some of the vertices of this intersection. Let this be the
point A = (x0, y0, z0) (and thus ϑ = z0). Let us now assume that we have in-
tersected C by the plane z = z0 (parallel to the xy-plane). The intersection is a
(bounded) convex polygon Qz0 . By construction, it follows that the polyhedron
P and the polygon Qz0 intersect at a single point, i.e., the point A = (x0, y0, z0).
We will determine A using the sides of Qz0 , rather than the sides of P . Since the
coefficients of x and y of the plane z = n + 2x + 2y are equal (indeed they are
both equal to 2), it is not difficult to see that A will be the vertex of Qz0 , ob-
tained as the intersection of the two sides of Qz0 which “sandwich” the straight
line in z = z0 passing through A and with a slope of 45 degrees. These lines
have equations 2x cosα + 2y cos(αJ) = z0 and 2x cosβ + 2y cos(βJ) = z0, where
α = 2πk1

n and β = 2πk2
n , for some indices k1 and k2. Once k1 and k2 are known,

z0 can be computed by solving the linear system⎧⎨
⎩

z = 2x cosα + 2y cos(2α)
z = 2x cosβ + 2y cos(2β)
z = n + 2x + 2y.

Note that one can use any horizontal intersection of the cone, since all such
intersections are homothetic to each other.
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Through a more detailed analysis of the structure of the admissible region
defined by the linear constraints, in the next section we propose an efficient
computation of θ(Cn,J ). The general idea is to reduce significantly the set of
constraints in the LP problem (2) and then apply existing efficient algorithms
for LP in 3D (e.g., the Megiddo’s algorithm [30] which performs in time linear
with respect to the number of constraints of the problem). We measure the
complexity of a computation by counting the number of arithmetic operations
in the set S = {+,−, ∗, /, �.�, cos(·)} as a function of the number of constraints
in the three-dimensional LP problem (2).

4 Computation of θ(G)

Relying on (2), we will focus on the geometric unintuitive regularities of the
polygon defined by the lines lk of equation

x cos(αk) + y cos(Jαk) = 1, (3)

with αk = 2π
n k. We will refer to angle αk as to the angle of line lk. We distinguish

two cases: J even and J odd.

4.1 Odd Chord Lengths

As a first result let us prove the following lemma for arbitrary circulant graphs.
It provides an immediate solution to the case of Cn,J with n even and J odd.

Denote by C(n; J1, J2, . . . , Jm) a circulant graph with vertex set {0, 1, . . . , n−
1} and edge set {(k, k + 1 mod n), (k, k + Jj mod n), k = 0, 1, . . . , n − 1, j =
1, 2, . . . , m}, where J1, J2, . . . , Jm are the chord lengths satisfying 2 < J1 < . . . <
Jm and 1 < Jj ≤ n−1

2 for j = 1, 2, . . . , m.

Lemma 2. Consider a circulant graph C(n; J1, J2, . . . , Jm). Assume that n is
even and all chord lengths Jj, j = 1, 2, . . . , m, are odd. Then C(n; J1, J2, . . . , Jm)
is perfect and θ(C(n; J1, J2, . . . , Jm)) = n/2.

Proof. Since every circulant graph is vertex symmetric, we have

θ(C(n; J1, . . . , Jm)) · θ(C̄(n; J1, . . . , Jm)) = n.

Thus it is enough to show that θ(C̄(n; J1, . . . , Jm)) = 2. Bearing in mind the
inequality ω(G) ≤ θ(Ḡ) ≤ χ(G) which applies to any graph G, we obtain that
it is enough to show that

ω(C(n; J1, . . . , Jm)) = χ(C(n; J1, . . . , Jm)) = 2.

In fact, the clique number is 2 since for n ≥ 6 and Jj ≥ 3, the minimal cycle in
C(n; J1, . . . , Jm) has length at least 4 (which bound is reached for Jj = 3). It
is also not hard to see that the vertices of C(n; J1, . . . , Jm) can be alternatively
colored with two colors only, if n is even and the Jj ’s are odd, which completes
the proof. ��
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Fig. 2. a) Pictorial description of the S-intervals for j = 7. b) Position of line l(n−1)/2

with respect to any lk with αlk ∈ S1.

Now we obtain the following main result.

Theorem 2. Let n, J be two odd numbers with J ≤ n−1
2 . Then θ(Cn,J ) can

be computed with O(J) operations by solving a 3D LP problem having O(J)
constraints.

Proof. We prove that we can identify in constant time a set of at most �J
2 �+ 1

lines that define the polygon Qz0 .
Let S = {S1, S2, . . . , SJ+1} be a set of adjacent intervals covering [0, π],

defined as
S1 = [π − π

2J , π],
SJ+1 = [0, π

2J ],
Sk+1 = [π − (2k + 1) π

2J , π − (2k − 1) π
2J ], for k = 1, 2, . . . , J − 1.

So, S1, SJ+1 are intervals of width π
2J , whereas S2, S3, . . . , SJ are intervals of

width π
J (see Fig 2a). A quick analysis of the function cos(Jα) reveals that

a) it is periodic of period 2π/J ;
b) it nullifies on Sk ∩ Sk+1, for k = 1, 2, . . . , J , and
c) it is negative on the odd numbered intervals attaining −1 on their middle

points.

Let us define

a(k) = 1/ cos(αk), b(k) = 1/ cos(Jαk),

where αk = 2π
n k, be the x and y axes cuts, respectively, with a line lk defined

by (3).
Consider line l�n

2 � in the interval S1. This verifies
⎧⎨
⎩

a(�n
2 �) = 1

cos(π−π/n) = max{a(k) | a(k) < 0 ∧ k ≥ 0} < −1

b(�n
2 �) = 1

cos(J(π−π
n )) = 1

cos(π−J π
n )



292 Valentin E. Brimkov et al.

This line defines a face of Qz0 because it is the one that intersects the Ox axis
in the closest point to (−1, 0) (see Fig. 2b). Furthermore, its inclination with
respect to the Oy axis is less than 45 degrees and all other lines in S1 have a
lower x-cut and y-cut therefore falling outside Qz0.

Consider the even numbered intervals. Lines whose angle τ falls in these
intervals all have positive y coordinate because cos(Jτ) > 0. Their x-coordinate
can be either positive, and in that case they would not even cross the third
quadrant, or negative, in which case it must be

1
cos(τ)

<
1

cos(α(n−1)/2)
= a(�n

2
�).

So, we can conclude that those lines can not affect the solution.
Consider the odd numbered intervals S2k−1, for k = 1, 2, . . . , (J + 1)/2 and

let β(k) = π − (2k − 2)π/J . Angle β(1) is π, whereas, for k > 1, angles β(k)

correspond to the centers of intervals S2k−1 and all verify cos(Jβ(k)) = −1. We
can observe that the only lines lk that intersect l�n

2 � in the third quadrant are
those for which

b(�n
2
�) < b(k) < −1. (4)

Now, focus for a moment on the function f(x) = 1/ cos(kx). It is periodic and
assumes the same values within the odd numbered intervals

S2k−1 = [β(k) − π/2J, β(k) + π/2J ].

Furthermore it is increasing over [β(k)−π/2J, β(k)], decreasing over [β(k), β(k) +
π/2J ] and verifies:

f(β(k)) = −1, lim
x→(β(k)−π/2J)+

= lim
x→(β(k)+π/2J)−

= −∞.

Observe that b(k) = f(2kπ/n), i.e., condition (4) can be rephrased as

f
(
π − π

n

)
< f

(
2π

n
· k
)

< −1 .

The behavior of f(x) on the interval [π − π/2J, π + π/2J ] is the same as for all
the other odd numbered intervals [β(k)−π/2J, β(k)+π/2J ]. Hence, the condition

f
(
π − π

n

)
< f(x) < −1

will be verified only for
| x− β(k) |< π

n
, (5)

where {β(k) | k = 1, 2, . . . , (J + 1)/2} is the set of the solutions to equation
f(x) = 1/ cos(Jx) = −1 on [0, π].

Given that the angle does not vary with continuity but assumes only a dis-
crete set of values αk = 2πk/n for 0 ≤ k ≤ (n − 1)/2, we can see that, if for
some u, αu satisfies condition (5), then αu+1 = αu + 2π/n does not.
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Thus we can deduce that for each odd numbered interval S2k−1 there can
be at most one line verifying condition (4). Since we have �J

2 � odd numbered
intervals to consider, there will be at most as many lines to select.

Now the obtained linear program can be solved in O(J) time by the Megiddo
linear programming algorithm which has linear complexity when the number of
variables is fixed. ��
Corollary 1. The theta-function of a Midimew network CN,J can be computed
with O(

√
N) operations.

Proof. Follows from the fact that Midimew networks are circulant graphs of the
form CN,J with J = 2h+1 and N = h2 +(h+1)2. This implies J <

√
2N . Then

θ(CN,J) can be computed in O(J) = O(
√

N) time. ��

4.2 Even Chord Lengths
Consider now the case when the chord length J is an even number. We have the
following theorem.
Theorem 3. Let n be a positive integer and J an even number with J ≤ n−1

2 .
Then θ(Cn,J ) can be computed with O(n/J) operations by solving a 3D LP prob-
lem having O(n/J) constraints.
Proof. Consider once more the family of intervals S = {S1, S2, . . . , SJ+1}. Now
the J/2 even numbered ones, S2k, for k = 1, 2, . . . , J/2, are those in which
cos(Jα) is negative. Let β(k) denote the angle corresponding to the center of
S2k. Thus cos(Jβ(k)) = −1 for all k. First, notice that each interval contains no
more than �n

J � lines.
Let us focus on S1 ∪ S2 and define an enumeration of consecutive (with

respect to the corresponding increasing angle) lines l1, l2, . . . , ls, where l1 is the
line whose angle α(1) is the closest from below to the center of S2, and ls is the
line whose angle is the largest within S1, i.e, l�n/2�. It is not hard to see that
those lines define a set C1 of segments that, together with the x and y negative
axes, bound a convex polygon Q.

We needed to consider also the lines in S1, because those have x-coordinate
that happen to be very close to point (−1, 0) and, as proven above, they con-
tribute to shaping polygon Q. Furthermore, all the other lines in S2 whose angle
is smaller than l1’s angle, must have lower x-cut and y-cut and therefore do not
intersect this polygon.

We can apply the same idea to the other even numbered intervals S2k, k =
2, 3, . . . , J/2, and define the corresponding finite sequences of lines l

(k)
1 , l

(k)
2 , . . . ,

. . . , l
(k)
sk , now ending with lines whose angle is within S2k. (Note the asymmetry

in the definition of the lines {l(k)
i }; in that l

(k)
sk has the largest angle in S2k,

whereas the sequence li is not limited to S2 but goes on until the exhaustion of
the interval S1 adjacent to S2.)

Now, as in the case for J odd, it turns out that for all k only l
(k)
1 might

intersect Q. Furthermore, this would occur only when the angle α(k) of l
(k)
1

satisfies

| α(k) − β(k) |<| α(1) − β(1) |≤ π/n . (6)
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As a consequence, the search for the solution can be restricted to the vertices of
the polygon formed by the two axes, the lines in S1∪S2, plus, possibly, the lines
whose angle verifies property (6). Thus the total number of lines to be considered
is O(n/J). Then the obtained LP problem can be solved in O(n/J) time by the
Megiddo linear programming algorithm. ��

5 Concluding Remarks

We have presented efficient ways to compute the theta function of circulant
graphs of degree four. In particular, the problem can be reduced to a 3-variable
LP problem having at most O(J) constraints when J is odd, whereas for J even
the bound on the number of significant constraints was shown to be O(n/J). Con-
sequently, an application of the Megiddo algorithm allows to compute θ(Cn,J )
with O(J) or O(n/J) operations depending on the evenness of J . Megiddo al-
gorithm solves any LP problem in linear time with respect to the number of
constraints, provided that the number of variables is fixed. It is indeed known
that its complexity would include an implicit factor of the order of O(2s2

), where
s is the number of variables, which however is a small number for the consid-
ered dimension. Work in progress aims at providing efficient computation of the
theta-function of circulant graphs of higher degree or of other interesting classes
of graphs.
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Unhooking Circulant Graphs:
A Combinatorial Method for Counting

Spanning Trees and Other Parameters�
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Abstract. It has long been known that the number of spanning trees
in circulant graphs with fixed jumps and n nodes satisfies a recurrence
relation in n. The proof of this fact was algebraic (relating the products
of eigenvalues of the graphs’ adjacency matrices) and not combinatorial.
In this paper we derive a straightforward combinatorial proof of this fact.
Instead of trying to decompose a large circulant graph into smaller ones,
our technique is to instead decompose a large circulant graph into dif-
ferent step graph cases and then construct a recurrence relation on the
step graphs. We then generalize this technique to show that the num-
bers of Hamiltonian Cycles, Eulerian Cycles and Eulerian Orientations
in circulant graphs also satisfy recurrence relations.

1 Introduction

The purpose of this paper is to develop a combinatorial derivation of the recur-
rence relations on the number of spanning trees on circulant graphs. We then
extend the technique developed in order to derive recurrence relations on other
parameters of circulant graphs.

We start with some definitions and background. The n node undirected cir-
culant graph with jumps s1, s2, . . . sk, is denoted by Cs1,s2,··· ,sk

n . This is the 2k
regular graph1 with n vertices labeled {0, 1, 2, · · · , n−1}, such that each vertex
i (0 ≤ i ≤ n − 1) is adjacent to 2k vertices i ± s1, i ± s2, · · · , i ± sk mod n.
The simplest circulant graph is the n vertex cycle C1

n. The next simplest is the
square of the cycle C1,2

n in which every vertex is connected to its two neighbors
and neighbor’s neighbors. Figure 1 illustrates three circulant graphs.

For connected graph G, T (G) denotes the number of spanning trees in G.
Counting T (G) is a well studied problem, both for its own sake and because it

� Partially supported by HK CERG grants HKUST6162/00E, HKUST6082/01E and
HKUST6206/02E. A full version of this paper is available at [6].

1 If gcd(n, s1, s2, · · · , sk) > 1 then the graph is disconnected and contains no span-
ning trees. Therefore, for the purposes of this extended abstract, we assume that
gcd(s1, s2, · · · , sk) = 1, forcing the graph to be connected. Also note that if n ≤ 2sk

it is possible that the graph is a multigraph with some repeated edges.

J. Hromkovič, M. Nagl, and B. Westfechtel (Eds.): WG 2004, LNCS 3353, pp. 296–307, 2004.
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Fig. 1. Three examples of circulant graphs: C1
5 , C1,2

5 , C1,3
8 .

has practical implications for network reliability, e.g., [5]. For any fixed graph
G, Kirchhoff’s Matrix-Tree Theorem [8] efficiently permits calculating T (G) by
evaluating a co-factor of the Kirchhoff matrix of G (this essentially calculates
the determinant of matrix related to the adjacency matrix of G.)

The interesting problem is in calculating the number of spanning trees in
graphs chosen from defined classes as a function of a parameter. When G is a
circulant graph the behavior of T (G) as a function of n has been well studied.
The canonical result is that T (C1,2

n ) = nF 2
n , Fn the Fibonacci numbers, i.e.,

Fn = Fn−1 + Fn−2 with F1 = F2 = 1. This was originally conjectured by
Bedrosian [2] and subsequently proven by Kleitman and Golden [9]. The same
formula was also conjectured by Boesch and Wang [3] (without the knowledge
of [9]). Different proofs can been found in [1, 4, 11]. Formulas for T (C1,3

n ) and
T (C1,4

n ) are provided in [10]. These were later generalized in [12] to prove the
following general theorem: For any fixed 1 ≤ s1 < s2 < · · · < sk,

T (Cs1,s2,··· ,sk
n ) = na2

n,

where an satisfies a recurrence relation of order 2sk−1 with constant coefficients.
Knowing the existence and order of the recurrence relation permits explicitly
constructing it by using Kirchhoff’s theorem to evaluate T (Cs1,s2,··· ,sk

n ) for n =
1, 2, . . . , 2sk−1 and solving for the coefficients of the recurrence relation.

With the exception of that in [9] all of the proofs above work as follows

– Let s1, s2, . . . sk be fixed.
– Find the eigenvalues of the adjacency matrix of Cs1,s2,...sk

n . This can be
done because the adjacency matrix is a circulant matrix and eigenvalues of
circulant matrices are well understood.

– Express T (Cs1,s2,··· ,sk
n ) as a product function of these eigenvalues.

– Simplify this product to show that
√

T
(
Cs1,s2,··· ,sk

n

)
/n, as a function of n,

satisfies a recurrence relation of the given order.

The major difficulty with this technique is that, even though it proves the
existence of the proper order recurrence relation, it does not provide any combi-
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natorial interpretation, e.g., some type of inclusion-exclusion counting argument,
as to why this relation is correct.

As mentioned above, Kleitman and Golden’s derivation of T (C1,2
n ) = nF 2

n , in
[9] is an exception to this general technique; their proof is a very clever, fully com-
binatorial one. Unfortunately, it is also very specific to the special case C1,2

n and
can not be extended to cover any other circulant graphs. The major impediment
to deriving a general combinatorial proof is that, at first glance, it is difficult to
see how to decompose T (Cs1,s2,··· ,sk

n ) in terms of T (Cs1,s2,··· ,sk
m ) where m < n;

larger circulant graphs just do not seem to be able to be decomposed into smaller
ones.

The main motivation of this paper was to develop a combinatorial derivation
of the fact that T (Cs1,s2,··· ,sk

n ), as a function of n, satisfies a recurrence relation.
Our general technique is unhooking, i.e., removing all edges

{(i, j) : n− sk ≤ i < n and 0 ≤ j < sk}

from the graph, creating a new step graph Ls1,s2,··· ,sk
n . We then define a fixed

number of classes of forests of Ls1,s2,··· ,sk
n and combinatorially derive a system

of recurrences counting the number of forests in each class. We then relate this
to the original problem by writing T (Cs1,s2,··· ,sk

n ) as a linear combination of
the number of forests in each class. Technically, we define a (m× 1)-vector (m,
the number of forest classes, will be defined later) T (Ls1,s2,··· ,sk

n ) denoting the
number of forests in each class; a m × m matrix A denoting the system of
recurrence relations; and a (1×m) row vector β such that

T (Cs1,s2,··· ,sk
n ) = β ·T (Ls1,s2,··· ,sk

n ), and T (Ls1,s2,··· ,sk
n ) = A ·T

(
Ls1,s2,··· ,sk

n−1

)
.

Given these matrix equations, standard techniques, e.g., solving for the gener-
ating functions, permit us to derive an order m constant coefficient recurrence
relation for T (Cs1,s2,··· ,sk

n ) .
This technique of unhooking circulant graphs, i.e., developing a system of

recurrences on the resultant step graphs and then writing the final result as a
function of the step-graph values, is actually quite general and can be used to
enumerate many other parameters of circulant graphs. In this extended abstract,
we further describe how it can be used to derive recurrence relations for the
number of Hamiltonian cycles. In the full version of this paper we also describe
how to derive recurrence relations for Eulerian cycles and Eulerian Orientations
as well. To the best of our knowledge, this is the first time that techniques for
deriving recurrence relations for these other functions of circulant graphs have
been developed.

The remainder of the paper is structured as follows. In the first part of section
2 we use our unhooking technique to re-derive the formula T (C1,2

n ) = nF 2
n . This

introduces all of the basic ideas and techniques which are then generalized into a
technique for deriving recurrence relations for all T (Cs1,s2,··· ,sk

n ) as a function of
n. In section 3 we discuss Hamiltonian cycles. Finally, in Section 4, we conclude
some comments and open questions.
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2 Counting Spanning Trees

2.1 Analyzing T (C1,2
n )

Let Cs1,s2,...,sk
n = (V, EC) be a circulant graph; V = {0, 1, . . . , n− 1} and EC =

{(i, j) : i− j mod n ∈ {s1, s2, . . . , sk}}.
The associated Step Graph Ls1,s2,...,sk

n is defined by Ls1,s2,...,sk
n = (V, EL)

where EL = {(i, j) : i−j ∈ {s1, s2, . . . , sk}}. For example, the difference between
C1,2

5 and L1,2
5 is EC − EL = {{0, 4}, {0, 3}, {1, 4}} (See Figure 2).

0

1

2

3

4 0 1 2 3 4

Fig. 2. C1,2
5 and L1,2

5 .

The step graph can be thought of as being obtained from the circulant graph
by unhooking the edges that cross over the interval (n − 1, 0) in the circulant
graph.

For the rest of this subsection we restrict ourselves to the graphs C1,2
n and

L1,2
n . In the next subsection we will sketch how to generalize the approach to

any circulant graph.
The difference between C1,2

n and L1,2
n is the set of edges EC −EL = {{0, n−

1}, {0, n − 2}, {1, n − 1}} Any spanning tree T of C1,2
n is a collection of n − 1

edges of EC ; it may or may not contain some edges from EC − EL.
The main idea behind the counting method is to remove all edges in EC−EL

from T. Depending upon which edges were in the spanning tree, T can either
remain the same or become a disconnected forest of C1,2

n . In any case, since we
have removed all edges in EC−EL what remains is a forest of L1,2

n (See Figure 3).
Note that the spanning trees of C1,2

n can be partitioned into eight separate
classes, depending upon which, if any of the 3 edges in EC − EL = {{0, n −
1}, {0, n− 2}, {1, n− 1}} the tree contains. For example, one set of the partition
contains all the spanning trees which contain the edge {0, n−1} but not {0, n−2}
and {1, n − 1}. Thus, the number of spanning trees of C1,2

n will be the sum of
the numbers of the spanning trees in these eight partitions.

More formally, for S ⊆ EC − EL let

CS(n) =
{
T : T a spanning tree of C1,2

n s.t. T ∩ (EC − EL) = S
}

be the set of spanning trees containing only S. Then T
(
C1,2

n

)
=
∑

S |CS(n)|.
We now examine each set in the partition separately. We take the set pre-

viously mentioned again as an example, i.e. C{{0,n−1}}, in which all trees in the
set contain only {0, n− 1} but not {0, n− 2} and {1, n− 1}.

After removing {0, n− 1} each tree in this set becomes a forest in L1,2
n con-

taining exactly two components, one component containing node 0 and the other
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Fig. 3. Removing edges in EC−EL from the spanning tree of C1,2
6 leaves a disconnected

forest of L1,2
6 . Solid edges are the ones in the tree; dashed ones are existing edges not

in the tree. The spanning tree illustrated on the left is in the set C{{0,n−1}}. The forest
on the right is a member of F{0,1}{n−1,n−2}(n).

containing node n−1. These can be further divided into the following four classes
of forests with two components in L1,2

n :

1. one component contains node 0, the other contains 1, n− 2, n− 1
2. one component contains node 0, 1 the other contains n− 2, n− 1
3. one component contains node 0, n− 2, the other contains 1, n− 1
4. one component contains node 0, 1, n− 2, the other contains n− 1

This partition is reversible; that is, by adding edge {0, n − 1} to any of these
forests we create the corresponding spanning tree of C1,2

n . Thus, summing up
the number of forests in the four classes gives us exactly the number of spanning
trees of C1,2

n that contain {0, n− 1} but not {0, n− 2} and {1, n− 1}.
Extending the above example note that removing all edges in EC − EL =

{{0, n−1}, {0, n−2}, {1, n−1}} from a spanning tree of C1,2
n will result in a forest

of L1,2
n that contains 1, 2, 3 or 4 components such that each component (tree) in

the forest contains at least one of the four vertices n−2, n−1, 0, 1. For later use
we will call such forests legal and classify the legal forests of L1,2

n by considering
how the four vertices are partitioned among the connected components of the
forest (we do not consider non-legal forests of L1,2

n ).
More formally, let P be the set of partitions of {n−2, n−1, 0, 1}. For X ∈ P

define |X | to be the number of sets in X.
Now let FX(n) be the set containing all forests in L1,2

n with |X | components
such that u, v ∈ {n − 2, n − 1, 0, 1} are in the same component of the forest if
and only if they are in the same set of X.

For example, F{0}{1,n−1}{n−2}(n) is the set of spanning forests of L1,2
n with

three components s.t. one component contains node 0, another component con-
tains nodes 1 and n− 1, and the last component contains node n− 2.

Finally, set TX(n) = |FX(n)| to be the number of such forests. Using this
notation we can rewrite the discussion above as

|C{0,n−1}| = T{0},{1,n−2,n−1}(n) + T{0,1},{n−2,n−1}(n)
+T{0,n−2},{1,n−1}(n) + T{0,1,n−2},{n−1}(n).

The important observation here is that if we fix X ∈ P and S ⊆ EC−EL then
adding the set of edges S into a forest in class FX(n) results in exactly one of
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the following three consequences and we can determine which of the consequence
occurs simply by checking X and S (independent of n)

1. The resulting forest is disconnected.
2. The resulting set of edges contains at least one cycle.
3. The forest becomes a spanning tree of C1,2

n in set CS.

For example suppose S = {{0, n− 1}, {0, n− 2}} and

X1 = {{0}, {1}, {n − 1}, {n − 2}}, X2 = {{0, 1}, {n − 1, n − 2}},

X3 = {{0}, {1, n − 2}, {n − 1}}.
Adding S to a forest in FX1(n) will leave the forest disconnected; adding S to a
forest in FX2(n) will create a cycle; adding S to a forest in FX3(n) will create a
spanning tree.

We can therefore define

αS,X =
{

1 if adding S to forest in FX(n) yields a spanning tree
0 otherwise (1)

and find that |CS(n)| =
∑

X∈P αS,XTX(n) so

T
(
C1,2

n

)
=
∑
S

|CS(n)| =
∑
X∈P

(∑
S

αS,X

)
TX(n). (2)

Now define T
(
L1,2

n

)
to be the column vector of all of the TX(n) ordered as

follows:

T
(
L1,2

n

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T{0,1,n−2,n−1}(n)
T{0}{1,n−2,n−1}(n)
T{1}{0,n−2,n−1}(n)
T{n−2}{0,1,n−1}(n)
T{n−1}{0,1,n−2}(n)
T{0,1}{n−2,n−1}(n)
T{0,n−2}{1,n−1}(n)
T{0,n−1}{1,n−2}(n)
T{0}{1}{n−2,n−1}(n)
T{0}{n−2}{1,n−1}(n)
T{0}{n−1}{1,n−2}(n)
T{1}{n−1}{0,n−2}(n)
T{1}{n−2}{0,n−1}(n)
T{n−2}{n−1}{0,1}(n)
T{0}{1}{n−2}{n−1}(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Each entry of T
(
L1,2

n

)
is the number of forests of L1,2

n in the corresponding class.
Now, for X ∈ P set βX =

∑
S αS,X and β = (βX)X∈P . In this notation, (2)

simply states that T (C1,2
n ) = β · T

(
L1,2

n

)
. Mechanically working out the values

of the βX from (1) gives

T (C1,2
n ) =

(
1 2 1 1 2 3 1 2 2 1 3 1 1 2 1

)
· T

(
L1,2

n

)
. (3)
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Until now we have only seen that T (C1,2
n ) can be written in terms of vector

T
(
L1,2

n

)
but this still doesn’t say anything about a formula for T (C1,2

n ). The
important observation at this point is that, unlike for circulant graphs, it is
quite easy to write a matrix recurrence relation for T

(
L1,2

n

)
. In fact, we will be

able to write a one-step recurrence of the form T
(
L1,2

n

)
= AT

(
L1,2

n−1

)
where A

is some fixed integer matrix.
To see this, suppose that we remove node n along with its incident edges from

a legal forest in L1,2
n+1. What remains is a legal forest in L1,2

n . We can therefore
build all the legal forests of L1,2

n+1 by knowing the legal forests of L1,2
n .

Constructing from the other direction note that the only edges connecting
to n in L1,2

n are {n, n − 1} and {n, n − 2}. Suppose that we add node n and
a set of edges U ⊆ {{n, n − 1}, {n, n − 2}} to a forest of L1,2

n in class FX(n).
The resulting graph will either have a cycle or be a forest in a particular class
FX′(n + 1) where X ′ is only determined by X and U (See Figure 4).

Let us now define

aX′,X = |{U ⊆ {{n, n− 1}, {n, n− 2}} : adding U to FX(n) yields FX′(n + 1)}| (4)

to be the number of different sets U that can be added to a forest in FX(n) to
yield a forest in FX′(n + 1). These aX,X′ (which are independent of n) can be
mechanically calculated by checking all cases.

Then TX′(n + 1) =
∑

X aX′,XTX(n). So, letting A = (aX′,X)X′,X∈P , we

find that, for n ≥ 4, T
(
L1,2

n+1

)
= AT

(
L1,2

n

)
and we have derived a system of

recurrence relations on the TX(n).
For our particular case we have worked through the calculations to find A.2

Combining A with (3) yields a recurrence relation for T (C1,2
n ). This is a very

standard technique so we only sketch the idea here. For all X ∈ P create the
generating functions TX(z) =

∑
n TX(n)zn. T (L1,2

n ) = AT (L1,2
n−1) then cor-

responds to a system of simultaneous equations on the generating functions,
and we can use a procedure akin to Gaussian elimination to solve for closed
forms of all of the generating functions. Because of the way in which they are
derived, all of the generating functions will be rational functions in z, i.e., in
the form PX(z)/QX(z) where PX(z) and QX(z) are polynomials in z. Now set
T (z) =

∑
n T (C1,2

n )zn =
∑

X βXTX(z). As the (weighted) sum of rational func-
tions, T (z) will also be a rational function in z. The fact that T (z) is rational
then permits us to recover a recurrence relation on T (C1,2

n ). Performing the
above steps yield

T (C1,2
n ) = 4T (C1,2

n−1)− 10T (C1,2
n−3) + 4T (C1,2

n−5)− T (C1,2
n−6)

with initial values 36, 125, 384, 1183, 3528, 10404 for n = 4, 5, 6, 7, 8, 9 respec-
tively for which it can be verified that the solution is T (C1,2

n ) = nF 2
n . We have

therefore just given another combinatorial proof of the result due to Kleitman
and Golden [9].

2 The full matrix A is given in [6].
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0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4
Original class: {0}{1,n-1,n-2}

New class: {0}{1,n-2}{n-1} New class: {0}{1,n-1,n-2}

New class: {0}{1,n-1,n-2} Cycle induced

Fig. 4. Different ways to add node 5 to a forest of L1,2
5 to generate different classes of

forests of L1,2
6 . Bold edges are the ones added with node 5.

2.2 The General Case

In the previous subsection we developed machinery for counting the number of
spanning trees in C1,2

n . It is not difficult to see how to generalize this to count the
number of spanning trees in Cs1,s2,...,sk

n . Since this is very similar to the previous
section we only sketch the steps.

We start by defining, for all S ⊆ EC − EL,

CS(n) = {T : T a spanning tree of Cs1,s2,...,sk
n s.t. T ∩ (EC − EL) = S}

as the set of spanning trees containing only S. Then T (Cs1,s2,...,sk
n )=

∑
S |CS(n)|.

Let Wsk
= {0, 1, . . . , sk − 1} ∪ {n− sk, n− sk + 1, . . . , n− 1}. Define Psk

to
be the set of all partitions of Wsk

. A legal forest of Ls1,s2,...,sk
n is one in which

every component in the forest contains at least one element in Wsk
. For X ∈ Psk

define FX(n) to be the set of all legal forests in Ls1,s2,...,sk
n with |X | components

such that u, v ∈Wsk
are in the same component of the forest if and only if they

are in the same set of X. Set TX(n) = |FX(n)|.
We generalize (1) to

αS,X =
{

1 if adding S to forest in FX(n) yields a spanning tree of Cs1,s2,...,sk
n

0 otherwise
(5)

and find that, as before, |CS(n)| =
∑

X∈Psk
αS,XTX(n) so

T (Cs1,s2,...,sk
n ) =

∑
S

|CS(n)| =
∑

X∈Psk

(∑
S

αS,X

)
TX(n). (6)
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Let T (Ls1,s2,...,sk
n ) be the column vector (TX(n))X∈Psk

, set βX =
∑

S αS,X

and define β = (βX)X∈Psk
. Then

T (Cs1,s2,...,sk
n ) = β · T (Ls1,s2,...,sk

n ). (7)

Exactly as before we can set

aX′,X = |{U ⊆ ∪k
i=1{{n, n−si}} : adding U to FX(n) yields FX′(n + 1)}| (8)

and mechanically calculate the aX′,X values. Then, letting A=(aX′,X)X′,X∈Psk
,

we have for n ≥ 2sk,

T
(
Ls1,s2,...,sk

n+1

)
= AT (Ls1,s2,...,sk

n ) . (9)

Combining (7) and (9) proves what we want; that T (Cs1,s2,...,sk
n ) can be expressed

in terms of a recurrence relation.

3 Hamiltonian Cycles of C1,2
n

The unhooking technique developed in the previous section is quite general and
can be used to count various other parameters of circulant graphs. In this section
we sketch how use it to derive a recurrence relation on the number of Hamiltonian
cycles H(C1,2

n ), in C1,2
n . The generalization to deriving a recurrence relation

on the number of Hamiltonian cycles H(Cs1,s2,...,sk
n ) in any Cs1,s2,...,sk

n will be
straightforward.

First note that, as in the spanning tree case, we can partition the Hamiltonian
cycles of C1,2

n into eight different classes, depending upon which, if any of the 3
edges in EC − EL = {{0, n− 1}, {0, n− 2}, {1, n− 1}} the cycle contains.

For S ⊆ EC − EL let

HS(n) =
{
H : H is a Hamiltonian cycle of C1,2

n s.t. H ∩ (EC − EL) = S
}

.

Then H
(
C1,2

n

)
=
∑

S |HS(n)|.
Now suppose that we are given some Hamiltonian cycle H ∈ HS(n). After

removing the edges in S from H we observe that one of the following three cases
must occur:

1. H − S is still a Hamiltonian cycle (of L1,2
n ).

2. H − S is a Hamiltonian path of L1,2
n with endpoints in {0, 1, n− 2, n− 1}

3. H−S is the union of disjoint simple paths in L1,2
n with endpoints in {0, 1, n−

2, n− 1}. (See Figure 5).

In the third case, we are considering that if a node is left isolated without any
incident edges in H − S then it is in its own path (note that this can only
happen to nodes 0 and n − 1). Also, note that in the second and third case,
just by knowing the edges in S it is possible to know what the endpoints of the
disjoint paths are (and what, if any, isolated vertices exist).
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0
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2 3

4

5 0

1

2 3

4

5

Fig. 5. Decomposition of Hamiltonian cycle C1,2
6 to disjoint simple paths in L1,2

6 .

This observation leads us to define a legal path decomposition in L1,2
n to be

a disjoint set of paths containing all vertices in V such that all endpoints of the
paths are in {0, 1, n− 2, n− 1} and only 0 and n− 1 are allowed to be isolated
vertices. We can classify the legal path decompositions by their endpoints. De-
fine H{u1,v1},{u2,v2},...,{uw ,vw}(n) to be the number of subgraphs of L1,2

n with w
connected components such that all w components are simple paths with end-
points {u1, v1}, {u2, v2}, . . . , {uw, vw} respectively, e.g., H{1,n−1}{0,0}(n) is the
number of all subgraphs of L1,2

n with two components; one component being a
path with end-points 1 and n − 1 and the second component being the single
vertex 0. Define one more special case, H∅(n), to be the number of Hamiltonian
cycle of L1,2

n . We then define H(L1,2
n ) to be the column vector:

H(L1,2
n ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H{0,1}(n)
H{0,n−2}(n)
H{0,n−1}(n)
H{1,n−2}(n)
H{1,n−1}(n)

H{n−2,n−1}(n)
H{0,1}{n−1,n−1}(n)

H{0,n−2}{n−1,n−1}(n)
H{1,n−2}{0,0}(n)

H{1,n−2}{n−1,n−1}(n)
H{1,n−2}{0,0}{n−1,n−1}(n)

H{1,n−1}{0,0}(n)
H{n−2,n−1}{0,0}(n)
H{0,1}{n−2,n−1}(n)
H{0,n−2}{1,n−1}(n)
H{0,n−1}{1,n−2}(n)

H∅(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let P be the indices of these items. For X = {u1, v1}, {u2, v2}, . . . , {uw, vw} ∈
P we say that a legal path decomposition is of type X if it is decomposed
into simple paths with end-points {u1, v1}, {u2, v2}, . . . , {uw, vw}. For any S ⊆
EC − EL and X ∈ P define

αS,X =
{

1 if adding S to path decomposition of type X yields a HC
0 otherwise (10)

so

H
(
C1,2

n

)
=
∑
S

|HS(n)| =
∑
X∈P

(∑
S

αS,X

)
HX(n). (11)
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Now, for X ∈ P set βX =
∑

S αS,X and define β = (βX)X∈P . From (11)
H(C1,2

n ) = β ·H
(
L1,2

n

)
. Evaluating β yields

H(C1,2
n ) =

(
0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1

)
· H(L1,2

n ) (12)

Note that adding node n and edge set U ⊆ {{n, n−1}, {n, n−2}} to a legal path
decomposition of type X on L1,2

n either does not yield a legal path decomposition
or yields a decomposition of type X ′ on L1,2

n+1 where X ′ is fully determined by
X and U . Following the ideas in the previous section we therefore define

aX′,X = |{U ⊆ {{n, n− 1}, {n, n− 2}} : adding U to decomposition
of type X yields X ′}| (13)

where aX,X′ can be mechanically calculated by checking all cases. Then HX′(n+
1) =

∑
X aX′,XHX(n). So, letting A = (aX′,X)X′,X∈P , we find that for n ≥ 4,

H
(
L1,2

n+1

)
= AH

(
L1,2

n

)
. Calculating this A (it appears in [6]), combining with

(12) and simplifying as before yields the recurrence

H(C1,2
n ) = 2H(C1,2

n−1)−H(C1,2
n−3)−H(C1,2

n−5) + H(C1,2
n−6)

with initial values 9, 12, 16, 23, 29, 41 for n = 4, 5, 6, 7, 8, 9 respectively.
Although we only derived a recurrence for H(C1,2

n ) the technique developed
can easily be generalized to derive a recurrence on H(Cs1,s2,...,sk

n ) in much the
same way that the technique for calculating T (C1,2

n ) in Section 2.1 was general-
ized to calculate T (Cs1,s2,...,sk

n ) in section 2.2. The important changes are (i) to
extend the definition of a legal path decomposition to Ls1,s2,...,sk

n to be a disjoint
set of paths containing all vertices in V such that all endpoints of the paths are
in {0, 1, . . . , sk} ∪ {n− sk, . . . , n− 2, n− 1} and (ii) to set

aX′,X = |{U ⊆ ∪k
i=1{{n, n− si}} : adding U to decomposition

of type X yields X ′}|. (14)

Everything else is the same as in the derivation for H(C1,2
n ) and will yield

H(Cs1,s2,...,sk
n ) = β ·H (Ls1,s2,...,sk

n ) and H
(
Ls1,s2,...,sk

n+1

)
= AH (Ls1,s2,...,sk

n ) .

4 Conclusion

In this paper we developed the first general combinatorial technique for showing
that the number of spanning trees in circulant graphs satisfies a recurrence re-
lation. This contrasts to the only previously known general method which used
algebraic (spectral) methods.

Our basic approach, unhooking, permits decomposing a problem on circulant
graphs into many problems on step graphs. We then used the fact that step
graphs are much more amenable to recursive decomposition to yield our results.

A nice consequence of our technique is that it can be easily modified to work
for many other parameters of circulant graphs, e.g., to show that the number
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of Hamiltonian cycles, Eulerian tours and Eulerian orientations in these graphs
also obey a recurrence relation. To the best of our knowledge this is the first
time these parameters have been analyzed. We also point out that, even though
our technique was described only for undirected circulant graphs, it is quite easy
to extend it to directed circulant graphs as well.

We conclude with an open question. Our analysis implicitly assumed that
s1, s2, . . . , sk, the jumps in the circulant graph, are fixed. Recent work [7] has
shown that in many cases when the si are functions of n, then the number
of spanning trees also satisfies a recurrence relation. For example, T (C1,n

2n ) =
n
2 [(
√

2 + 1)n + (
√

2 − 1)n]2. The proofs of such results are, again, algebraic,
involving evaluating products of the eigenvalues of the graph’s adjacency matrix.
Unfortunately, due to the structure of these graphs, the unhooking technique is
not applicable. It is still open as to whether there is any combinatorial derivation
of the number of spanning trees of such non-fixed-jump circulant graphs.
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Abstract. The Phylogenetic kth Root Problem (PRk) is the
problem of finding a (phylogenetic) tree T from a given graph G = (V, E)
such that (1) T has no degree-2 internal nodes, (2) the external nodes
(i.e. leaves) of T are exactly the elements of V , and (3) (u, v) ∈ E if
and only if the distance between u and v in tree T is at most k, where
k is some fixed threshold k. Such a tree T , if exists, is called a phylo-
genetic kth root of graph G. The computational complexity of PRk is
open, except for k ≤ 4. Recently, Chen et al. investigated PRk under
a natural restriction that the maximum degree of the phylogenetic root
is bounded from above by a constant. They presented a linear-time al-
gorithm that determines if a given connected G has such a phylogenetic
kth root, and if so, demonstrates one. In this paper, we supplement their
work by presenting a linear-time algorithm for disconnected graphs.

1 Introduction

The reconstruction of evolutionary history for a set of species from quantitative
biological data has long been a popular problem in computational biology. This
evolutionary history is typically modeled by an evolutionary tree or phylogeny. A
phylogeny is a tree where the leaves are labeled by species and each internal node
represents a speciation event whereby a hypothetical ancestral species gives rise
to two or more child species. Proximity within a phylogeny in general corresponds
to similarity in evolutionary characteristics. Both rooted and unrooted trees have
been used to describe phylogenies in the literature, although they are practically
equivalent. In this paper, we will consider only unrooted phylogenies for the
convenience of presentation. Note that each internal node in a phylogeny has at
least 3 neighbors.

Many approaches to phylogenetic reconstruction have been proposed in the
literature [8]. In particular, Lin et al. [4] recently suggested a graph-theoretic
approach for reconstructing phylogenies from similarity data. Specifically, inter-
species similarity is represented by a graph G where the vertices are the species
� The full version can be found at http://rnc.r.dendai.ac.jp/∼chen/papers/dpr.pdf.

�� Supported in part by the Grant-in-Aid for Scientific Research of the Ministry of
Education of Japan, under Grant No. 14580390.
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and the adjacency relation represents evidence of evolutionary similarity. A phy-
logeny is then reconstructed from G such that the leaves of the phylogeny are
labeled by vertices of G (i.e. species) and for any two vertices of G, they are
adjacent in G if and only if their corresponding leaves in the phylogeny are at
most distance k apart, where k is a predetermined proximity threshold. This
approach gives rise to the following algorithmic problem [4]:

Phylogenetic kth Root Problem (PRk):
Given a graph G = (V, E), find a phylogeny T with leaves labeled by the
elements of V such that for each pair of vertices u, v ∈ V , (u, v) ∈ E if
and only if dT (u, v) ≤ k, where dT (u, v) is the number of edges on the
path between u and v in T .

Such a phylogeny T (if exists) is called a phylogenetic kth root, or a kth root
phylogeny, of graph G. Graph G is called the kth phylogenetic power of T . For
convenience, we denote the kth phylogenetic power of any phylogeny T as T k.
That is, T k = {(u, v) | u and v are leaves of T and dT (u, v) ≤ k}. Thus, PRk
asks for a phylogeny T such that G = T k.

1.1 Previous Results on PRk

PRk was first studied in [4] where linear-time algorithms for PRk with k ≤ 4
were proposed. At present, the complexity of PRk with k ≥ 5 is still unknown.

The hardness of PRk for large k seems to come from the unbounded degree
of an internal node in the output phylogeny. On the other hand, in the practice
of phylogeny reconstruction, most phylogenies considered are trees of degree
3 [8] because speciation events are usually bifurcating events in the evolutionary
process. These motivated Chen et al. [2] to consider a restricted version of PRk
where the output phylogeny is assumed to have degree at most Δ, for some fixed
constant Δ ≥ 3. We call this restricted version the Degree-Δ PRk and denote
it for short as ΔPRk.

Chen et al. [2] presented a linear-time algorithm that determines, for any
input connected graph G and constant Δ ≥ 3, if G has a kth root phylogeny with
degree at most Δ, and if so, demonstrates one such phylogeny. Unfortunately,
their algorithm fails when the input graph G is disconnected. One of their open
questions asks for a polynomial-time algorithm for disconnected graphs, because
the disconnected case is real in biology.

1.2 Other Problems Related to PRk

A graph G is the kth power of a graph H (or equivalently, H is a kth root of G),
if vertices u and v are adjacent in G if and only if they are at most distance k
apart in H . An important special case of graph power/root problems is the
Tree kth Root Problem (TRk): Given a graph G = (V, E), we wish to find
a tree T = (V, ET ) such that (u, v) ∈ E if and only if dT (u, v) ≤ k. If T exists,
then it is called a tree kth root, or a kth root tree, of graph G. There is rich
literature on graph roots and powers (see [1, Section 10.6] for an overview), but
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few results on phylogenetic/tree roots/powers. It is NP-complete to recognize a
graph power [6]; nonetheless, we can determine if a graph has a kth root tree,
for any fixed k, in cubic time [3]. In particular, determining if a graph has a
tree square root can be done in linear time [5]. Moreover, Nishimura et al. [7]
presented a cubic time algorithm for a variant of PRk with k ≤ 4, where internal
nodes of the output phylogeny are allowed to have degree 2.

1.3 Our Contribution

Our result is a linear-time algorithm that determines, for any input disconnected
graph G and constant Δ ≥ 3, if G has a kth root phylogeny with degree at most
Δ, and if so, demonstrates one such phylogeny. This answers an open question
in [2]. Combining this algorithm with the algorithm in [2] for connected graphs,
we obtain the first linear-time algorithm for ΔPRk for any constants Δ ≥ 3
and k ≥ 2. Our algorithm is complicated and it is based on hidden structures of
phylogenetic kth roots of disconnected graphs. Moreover, the algorithm needs a
linear-time subroutine for solving a certain optimization problem on each con-
nected component of the input disconnected graph. The subroutine is obtained
by nontrivially refining the algorithm in [2].

2 Preliminaries

We employ standard terminologies in graph theory. In particular, the subgraph
of a graph G induced by a vertex set U of G is denoted by G[U ], the degree of
a vertex v in G is denoted by degG(v), and the distance between two vertices u
and v in G is denoted by dG(u, v). Moreover, for a set W of vertices in a graph
G = (V, E), we write G−W for G[V −W ]. Furthermore, in a rooted tree, each
vertex is both an ancestor and a descendant of itself.

For clarity, if G = (V, E) is a graph and T = (VT , ET ) is a kth root phylogeny
of G for some k, then we call the elements of V vertices and call those of VT

nodes.
In the remainder of this section, fix a graph G = (V, E) and two integers

k ≥ 4 and Δ ≥ 3. A degree-Δ kth root phylogeny ((Δ, k)-phylogeny for short) of
G is a kth root phylogeny T of G such that the maximum degree of a node in T
is at most Δ.

A degree-Δ kth root quasi-phylogeny ((Δ, k)-QP for short) of G is a tree Q
satisfying the following conditions:

– Each vertex of G is a leaf of Q and appears in Q exactly once. For conve-
nience, we call the leaves of Q that are also vertices of G true leaves of Q,
and call the other leaves of Q false leaves of Q.

– The degree of each node in Q is at most Δ.
– For every two vertices u and v in G, u and v are adjacent in G if and only

if dQ(u, v) ≤ k.
– For each node x of Q that is a degree-2 node or a false leaf in Q, it holds

that minv∈V dQ(x, v) ≥ �k
2 �.
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– If Q has no false leaf, then it has at least one node x such that 2 ≤ degQ(x) ≤
Δ− 1 and minv∈V dQ(x, v) ≥ �k

2�.

The cost of Q is max{1, a + 2b}, where a is the number of degree-2 nodes in Q
and b is the number of false leaves in Q. Q is an optimal (Δ, k)-QP of G if its
cost is minimized over all (Δ, k)-QPs of G.

Lemma 1. Suppose that G = (V, E) is a connected graph. Let Q be an optimal
(Δ, k)-QP of G. Then, the following hold:

1. Q has no node x with minv∈V dQ(x, v) > �k
2 �.

2. For each node x with degQ(x) = 2 or degQ(x) > 3, each connected component
of Q− {x} contains at least one true leaf of Q.

Proof. We prove the two statements separately as follows.

Statement 1. If x were a false leaf of Q with minv∈V dQ(x, v) > �k
2�, then the

removal of x from Q would result in a new (Δ, k)-QP of G whose cost is smaller
than that of Q, a contradiction. So, for every false leaf x of Q, minv∈V dQ(x, v) ≤
�k

2 �. In turn, for every internal node x of Q such that one connected component
of Q− {x} contains all true leaves of Q, it holds that minv∈V dQ(x, v) ≤ �k

2�.
Now, it remains to consider those internal nodes x of Q such that no con-

nected component of Q−{x} contains all true leaves of Q. If among these nodes,
there were one x with minv∈V dQ(x, v) > �k

2�, then G would have no edge (u, v)
such that u and v belong to different connected components of Q−{x}, contra-
dicting the connectivity of G.

Statement 2. Let x be a node of Q with degQ(x) = 2 or degQ(x) > 3. For a
contradiction, assume that some connected component C of Q − {x} contains
no true leaf of Q. If degQ(x) > 3, then the removal of C from Q results in a
new (Δ, k)-QP of G whose cost is smaller than that of Q, a contradiction. If
degQ(x) = 2, then by Statement 1, minv∈V dQ(x, v) < �k

2 �, a contradiction. �

We classify (Δ, k)-QPs Q into four types as follows.

– Q is helpful if it has at most one degree-2 node and has no false leaf.
– Q is moderate if it has no degree-2 node but has exactly one false leaf.
– Q is troublesome if it has at least two degree-2 nodes but has no false leaf.
– Q is dangerous if it has at least one false leaf and the total number of false

leaves and degree-2 nodes in Q is at least 2.

A (Δ, k)-QP Q is unhelpful if it is not helpful.
For a (Δ, k)-QP Q, we define its port nodes as follows. If Q is not helpful, then

its port nodes are its false leaves and degree-2 nodes. If Q is helpful and has no
degree-2 node, then its port nodes are those nodes x with minv∈V dQ(x, v) ≥ �k

2 �.
If Q is helpful and has a degree-2 node, then it has only one port node, namely,
its unique degree-2 node.

A nonport node of a (Δ, k)-QP Q is a node of Q that is not a port node.
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3 Algorithm for Bounded-Degree PRk

Throughout this section, fix two integers k ≥ 4 and Δ ≥ 3. This section presents
a linear-time algorithm for solving ΔPRk.

Let G = (V, E) be the input graph. We assume that G is disconnected;
otherwise, the linear-time algorithm in [2] solves the problem. Let G1, . . . , G� be
the connected components of G. For each integer with 1 ≤ i ≤ �, let Vi be the
vertex set of Gi.

The following lemma can be proved by a complicated dynamic programming:

Lemma 2. For every i ∈ {1, . . . , �}, we can decide whether Gi has a (Δ, k)-
QP, in O(|Vi|) time. Moreover, if Gi has a (Δ, k)-QP, then we can compute an
optimal (Δ, k)-QP of Gi in O(|Vi|) time.

Lemma 3. If for some i ∈ {1, . . . , �}, Gi has no (Δ, k)-QP, then G has no
(Δ, k)-phylogeny.

Proof. Suppose that G has a (Δ, k)-phylogeny T . Fix an i ∈ {1, . . . , �}. Let Yi

be the set of all internal nodes y of T such that there is a vertex u ∈ Vi with
dT (u, y) ≤ �k

2 �. Obviously, T [Vi ∪ Yi] is a (Δ, k)-QP of Gi. �

By Lemmas 2 and 3, we may assume that for each i ∈ {1, . . . , �}, Gi has
a (Δ, k)-QP. For each i ∈ {1, . . . , �}, let Qi be the optimal (Δ, k)-QP of Gi

computed in Lemma 2.

Lemma 4. Suppose G has a (Δ, k)-phylogeny. Then, G has a (Δ, k)-phylogeny
T such that Q1, . . . , Q� all are subtrees of T .

Proof. Let T be a (Δ, k)-phylogeny of G. For each i ∈ {1, . . . , �}, let Yi be as in
the proof of Lemma 3. Recall that T [Vi ∪Yi] is a (Δ, k)-QP of Gi. Moreover, for
every pair (i, j) with 1 ≤ i �= j ≤ �, Yi ∩ Yj = ∅.

Consider the integer i ∈ {1, . . . , �} such that Q1, . . . , Qi−1 are subtrees of
T but Qi is not. If no such i exists, then T is as required. So, assume that i
exists. Let F1, . . . , Fh be the connected components of T − (Vi ∪ Yi). For each
j ∈ {1, . . . , h}, Fj has exactly one node zj with degFj (zj) < degT (zj), and each
leaf of Fj is a vertex in V −Vi. Moreover, the minimum distance from zj to a leaf
in Fj is at least �k

2�, because minv∈Vi dT (zj, v) = �k
2 �+ 1. Let Z = {z1, . . . , zh}.

Define a function f : Z → Yi as follows. For each j ∈ {1, . . . , h}, let f(zj) be
the neighbor of zj in T that is not in Fj . Let X = {f(zj) | 1 ≤ j ≤ h}.

We claim that the cost of the (Δ, k)-QP T [Vi ∪ Yi] of Gi is at most h. To see
this claim, first note that X contains all false leaves and all degree-2 nodes of
T [Vi ∪ Yi]. Moreover, for each degree-2 node x of T [Vi ∪ Yi], there is at least one
zj ∈ Z with f(zj) = x. Furthermore, for each false leaf x of T [Vi ∪ Yi], there are
at least two zj ∈ Z with f(zj) = x. Hence, the claim holds. By the claim, the
cost of the optimal (Δ, k)-QP Qi of Gi is at most h.

Now, we use Qi and F1, . . . , Fh to obtain a new (Δ, k)-phylogeny Ti of G, by
performing the following steps:
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1. Let x1, . . . , xa be the degree-2 nodes in Qi, and let xa+1, . . . , xa+b be the
false nodes in Qi.

2. If a > 0 or b > 0, then set c = a + 2b; otherwise, set c = 1 and let x1 be
an (arbitrarily chosen) port node of Qi. (Comment: c is the cost of Qi and
h ≥ c.)

3. For all j with 1 ≤ j ≤ c− 2b, add edge (xj , zj).
4. For all j (1≤j≤b), add edges (xc−2b+j , zc−2b+2j−1) and (xc−2b+j , zc−2b+2j).
5. If h > c, then perform the following steps:

(a) Delete the edge between xc−b and zc.
(b) Introduce h − c new nodes y1, . . . , yh−c, and connect them into a path

from y1 to yh−c.
(c) For all i with 1 ≤ i ≤ h− c, add edge (yi, zc+i−1).
(d) Add edges (y1, xc−b) and (yh−c, zh).

Obviously, Ti is a (Δ, k)-phylogeny of G and Qi is a subtree of Ti. Moreover,
for every j with 1 ≤ j ≤ i − 1, Qj remains to be a subtree of Ti, because
Yi ∩ Yj = ∅ and Qj is a subtree of T [Vj ∪ Yj ] by Statement 1 in Lemma 1. Thus,
Ti is a (Δ, k)-phylogeny of G such that for all j ∈ {1, . . . , i}, Qj is a subtree of
Ti. Therefore, by our choice of i, we can repeat the above argument to finally
obtain a (Δ, k)-phylogeny T� of G such that Q1, . . . , Q� are subtrees of T�. �

In the remainder of this section, a (Δ, k)-phylogeny of G always means one
in which Q1, . . . , Q� are subtrees. By Lemma 4, we lose no generality. For con-
venience, we call Q1, . . . , Q� the unitary (Δ, k)-QPs.

Let T be a (Δ, k)-phylogeny T of G. A junction node of T is a node x of T
such that no unitary (Δ, k)-QP contains x. A node x of T is over-connected, if
it satisfies one of the following conditions:

(1) degT (x) > 3 and x is a junction node of T .
(2) degT (x) > 3 and x is a port node of some unhelpful Qi (1 ≤ i ≤ �).
(3) x is a nonport node of some unhelpful Qi (1 ≤ i ≤ �) and degT (x) >

degQi(x).

A helpful Qi (1 ≤ i ≤ �) is mis-connected in T , if (i) at least one nonport
node of Qi is adjacent to a node outside Qi in T , or (ii) there are two or more
nodes x outside Qi such that x is adjacent to a node of Qi in T .

A (Δ, k)-phylogeny T of G is canonical, if it has no over-connected node and
no helpful Qi (1 ≤ i ≤ �) is mis-connected in T .

Lemma 5. If G has a (Δ, k)-phylogeny, then it has a canonical one.

In the remainder of this section, a (Δ, k)-phylogeny of G always means a
canonical one. By Lemma 5, we lose no generality.

3.1 The Case Where k Is Odd

Throughout this subsection, we assume that k is odd. A double (Δ, k)-QP is a
tree Ti,j obtained by combining two helpful unitary (Δ, k)-QPs Qi and Qj as
follows:
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1. Select a port node xi of Qi, and select a port node xj of Qj .
2. Introduce a junction node y, and connect it to both xi and xj .

Note that Ti,j has exactly one degree-2 node (namely, the junction node y)
but has no false leaf. So, Ti,j is a helpful (Δ, k)-QP of G[Vi ∪ Vj ]. Moreover, the
minimum distance from y to a true leaf in Ti,j is exactly �k

2�+1 (cf. Statement 1
in Lemma 1).

Lemma 6. Suppose that each Qi (1 ≤ i ≤ �) is helpful or moderate. Then,
G has a (Δ, k)-phylogeny if and only if � ≥ 2b + 3, where b is the number of
moderate (Δ, k)-QPs among Q1, . . . , Q�.

Proof. We prove the two directions separately as follows.

(=⇒) Suppose that G has a (Δ, k)-phylogeny T . For each moderate Qi, let Q′
i

be the tree obtained from Qi by deleting its unique false leaf. Let T be the tree
obtained by modifying T as follows:

1. For each helpful Qi (1 ≤ i ≤ �), merge Qi into a super-node si.
2. For each moderate Qi (1 ≤ i ≤ �), merge Q′

i into a super-node s′i.

Obviously, the leaves of T are exactly the super-nodes. So, T has exactly � leaves.
Let c be the number of internal nodes of T . Let mT be the number of edges in
T . Note that the false leaf xi of each moderate Qi remains to be an internal
node in T , no neighbor of xi in T is the false leaf xj of another moderate Qj in
T , and no neighbor of xi in T is a super-node sj corresponding to a helpful Qj

(cf. Statement 1 in Lemma 1). This implies that mT ≥ 3b + (� − b). Trivially,
mT = � + c− 1, and mT = 3c+�

2 because the degree of each internal node in T
is exactly 3 (by the canonicity of T ). Therefore, � ≥ 2b + 3.

(⇐=) Suppose that � ≥ 2b + 3. By renumbering if necessary, we may assume
that Q1, . . . , Qb are moderate. For each i ∈ {1, . . . , b}, let yi be the false leaf of
Qi. For each i ∈ {b + 1, . . . , �}, let zi be an (arbitrarily chosen) port node of Qi.
We can connect Q1, . . . , Q� into a (Δ, k)-phylogeny of G as follows.

1. Introduce �− b − 2 junction nodes x1, . . . , x�−b−2.
2. For each i with 1 ≤ i ≤ b, add edges (yi, xi) and (yi, xi+1).
3. Add edges (x1, zb+1), (x1, zb+2), (x�−b−2, z�−1), and (x�−b−2, z�). (Comment:

If �− b = 3, then only three edges are added here.)
4. For each i with b + 1 ≤ i ≤ �− b− 3, add edge (xi, xi+1).
5. For each i with 2 ≤ i ≤ �− b− 3, add edge (xi, zb+i+1). �

In the sequel, we assume that at least one Qi (1 ≤ i ≤ �) is troublesome or
dangerous (since otherwise Lemma 6 solves the problem).

Let T be a (Δ, k)-phylogeny of G. For each dangerous Qi (1 ≤ i ≤ �), we say
that a false leaf x of Qi is active in T , if no connected component of T −{x} is a
double (Δ, k)-QP. A dangerous Qi (1 ≤ i ≤ �) is active in T if at least one false
leaf of Qi is active in T .

Lemma 7. Suppose G has a (Δ, k)-phylogeny. Then, G has a (Δ, k)-phylogeny
T such that no dangerous Qi (1 ≤ i ≤ �) is active in T .
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Let I be the set of all i ∈ {1, . . . , �} such that Qi is dangerous. For each i ∈ I,
let ti be the number of false leaves in Qi. Let t =

∑
i∈I ti. By Lemma 7, if G has

a (Δ, k)-phylogeny, then there are at least 2t helpful unitary (Δ, k)-QPs. So, if
there are less than 2t helpful unitary (Δ, k)-QPs, then G has no (Δ, k)-phylogeny.
In the sequel, we assume that there are at least 2t helpful unitary (Δ, k)-QPs.
Without loss of generality, we may assume that Q1, . . . , Q2t are helpful.

We connect Q1, . . . , Q2t to the dangerous unitary (Δ, k)-QPs as follows.

1. Introduce t junction nodes x1, . . . , xt, and construct a one-to-one correspon-
dence between them and the t false leaves of the dangerous unitary (Δ, k)-
QPs.

2. For each i ∈ {1, . . . , t}, add an edge from xi to its corresponding false leaf,
add an edge from xi to an (arbitrarily chosen) port node of Q2i−1, and add
an edge from xi to an (arbitrarily chosen) port node of Q2i.

The above modification extends each dangerous unitary (Δ, k)-QP Qi to a
troublesome (Δ, k)-QP Ri. For convenience, let Ri = Qi for each i ∈ {2t +
1, . . . , �} such that Qi is not dangerous.

Now, we are left with R2t+1, . . . , R�; none of them is dangerous. Let τ be
the number of troublesome (Δ, k)-QPs among R2t+1, . . . , R�. Note that τ =
|i ∈ {1, . . . , �} | Qi is troublesome or dangerous}. So, τ ≥ 1. Without loss of
generality, we may assume that R2t+1, . . . , R2t+τ are troublesome.

By Lemma 7, if G has a (Δ, k)-phylogeny, then it has one in which R2t+1, . . . ,
. . . , R� are subtrees. So, in the remainder of this section, a (Δ, k)-phylogeny of
G always means one in which R2t+1, . . . , R� are subtrees.

A bridging node in a (Δ, k)-phylogeny T of G is a node x of T such that no
Ri with 2t+1 ≤ i ≤ � contains x. For each (Δ, k)-phylogeny T of G and for each
Ri with 2t + 1 ≤ i ≤ �, each degree-2 node x of Ri is adjacent to exactly one
bridging node y in T (by the canonicity of T ); we call y the bridging neighbor of
x in T .

For each (Δ, k)-phylogeny T of G, let M(T ) denote the tree obtained by
modifying T by merging each Ri with 2t + 1 ≤ i ≤ � into a super-node. For
convenience, we abuse the notation to let each Ri also denote the super-node of
M(T ) corresponding to Ri. Note that each bridging node of T remains to be
an internal node in M(T ) and the leaves of M(T ) one-to-one correspond to the
helpful unitary (Δ, k)-QPs among R2t+1, . . . , R�. Moreover, by the canonicity of
T and Statement 1 in Lemma 1, no two super-nodes can be adjacent in M(T ).

Lemma 8. If G has a (Δ, k)-phylogeny, then it has one T such that there is a
path q in M(T ) on which R2t+1, . . . , R2t+τ appear.

Lemma 9. If G has a (Δ, k)-phylogeny, then it has one T such that some path
q in M(T ) satisfies the following three conditions:

1. R2t+1, . . . , R2t+τ and exactly τ − 1 bridging nodes appear on q.
2. No two bridging nodes on q are adjacent in T .
3. For each bridging node x on q, there is a helpful unitary (Δ, k)-QP Ri such

that x is adjacent to a port node of Ri in T .
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In the remainder of this section, a (Δ, k)-phylogeny of G always means one
T such that some path q in M(T ) satisfies the three conditions in Lemma 9. We
call q the spine of M(T ). The following corollary shows that it does not matter
in which order R2t+1, . . . , R2t+τ appear on the spine.

Corollary 1. Let T be a (Δ, k)-phylogeny of G. Then, for every pair (Ri, Rj) of
troublesome (Δ, k)-QPs, there is another (Δ, k)-phylogeny T ′ of G such that the
spine of M(T ′) can be obtained from that of M(T ) by exchanging the positions
of Ri and Rj.

The following corollary is obvious and shows that it does not matter via
which degree-2 nodes each troublesome Ri is connected to the spine.

Corollary 2. Let T be a (Δ, k)-phylogeny of G. Then, for every troublesome
Ri and for every pair (x1, x2) of degree-2 nodes of Ri, we can obtain another
(Δ, k)-phylogeny T ′ of G by deleting edges (x1, y1) and (x2, y2) and adding edges
(x1, y2) and (x2, y1), where y1 (respectively, y2) is the bridging neighbor of x1

(respectively, x2) in T . Moreover, the spines of M(T ) and M′(T ) are the same.

By Lemma 9, if G has a (Δ, k)-phylogeny, then there are at least τ − 1
helpful unitary (Δ, k)-QPs among R2t+τ+1, . . . , R�. So, if there are less than
τ − 1 helpful unitary (Δ, k)-QPs among R2t+τ+1, . . . , R�, then G has no (Δ, k)-
phylogeny. In the sequel, we assume that there are at least τ − 1 helpful unitary
(Δ, k)-QPs among R2t+τ+1, . . . , R�. Without loss of generality, we may assume
that R2t+τ+1, . . . , R2t+2τ−1 are helpful unitary (Δ, k)-QPs.

If τ ≥ 2, then we connect R2t+1, . . . , R2t+2τ−1 into a single (Δ, k)-QP R as
follows.

1. Introduce τ − 1 bridging nodes x1, . . . , xτ−1.
2. Select a degree-2 node y2t+1 of R2t+1, and select a degree-2 node z2t+τ of

R2t+τ .
3. For each i with 2t + 2 ≤ i ≤ 2t + τ − 1, select two degree-2 nodes zi and yi

of Ri.
4. For each i with 1 ≤ i ≤ τ − 1, add edges (xi, y2t+i) and (xi, z2t+i+1), and

add an edge from xi to an (arbitrarily chosen) port node of R2t+τ+i.

If τ = 1, we let R = R2t+1.
Note thatR is a troublesome (Δ, k)-QP. By Lemma 9 and Corollaries 1 and 2,

if G has a (Δ, k)-phylogeny, then G has one T such that R, R2t+2τ , . . . , R� are
subtrees of T . In the remainder of this section, a (Δ, k)-phylogeny of G always
means such a tree T . Let h be the number of degree-2 nodes in R. Let x1, . . . , xh

be the degree-2 nodes of R.

Lemma 10. If G has a (Δ, k)-phylogeny, then it has one T such that for all but
one xi ∈ {x1, . . . , xh}, the connected component of T − {xi} containing no node
of R is a double (Δ, k)-QP.

By Lemma 10, if G has a (Δ, k)-phylogeny, then there are at least 2h − 2
helpful unitary (Δ, k)-QPs among R2t+2τ , . . . , R�. So, if there are less than
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2h− 2 helpful unitary (Δ, k)-QPs among R2t+2τ , . . . , R�, then G has no (Δ, k)-
phylogeny. In the sequel, we assume that there are at least 2h − 2 helpful uni-
tary (Δ, k)-QPs among R2t+2τ , . . . , R�. We may further assume that R2t+2τ , . . .,
R2t+2τ+2h−3 are helpful unitary (Δ, k)-QPs. For each i ∈ {2t+ 2τ, . . . , 2t+ 2τ +
2h− 3}, let zi be an (arbitrarily chosen) port node of Ri.

We connect R, R2t+2τ , . . . , R2t+2τ+2h−3 into a single (helpful) (Δ, k)-QP R′

by performing the following steps:

1. Introduce h− 1 bridging nodes s1, . . . , sh−1.
2. For each i ∈ {1, . . . , h−1}, add edges (si, z2t+2τ+2i−2), (si, z2t+2τ+2i−1), and

(si, xi).

Now, we are left with R′, R2t+2τ+2h−2, . . . , R� each of which is helpful or
moderate. Moreover, by Lemma 10, if G has a (Δ, k)-phylogeny, then it has one
in which R′, R2t+2τ+2h−2, . . . , R� are subtrees. So, we can modify the proof of
Lemma 6 to show that G has a (Δ, k)-phylogeny if and only if a′ ≥ b′ +3, where
a′ (respectively, b′) is the number of helpful (respectively, moderate) (Δ, k)-QPs
among R′, R2t+2τ+2h−2, . . . , R�.

In summary, we have the following:

Theorem 1. Suppose that k is odd. Then, we can decide if G has a (Δ, k)-
phylogeny, and construct one if so, in linear time.

3.2 The Case Where k Is Even

Throughout this subsection, we assume that k is even. The contents in this sub-
section are very similar to those in the last subsection. In particular, the lemmas
in this subsection one-to-one correspond to the lemmas in the last subsection.
Moreover, the proof of each lemma in this subsection is very similar to (indeed
a bit simpler than) its corresponding lemma in the last subsection. So, we will
omit the proofs of the lemmas.

Lemma 11. Suppose that each Qi (1 ≤ i ≤ �) is helpful or moderate. Then,
G has a (Δ, k)-phylogeny if and only if a ≥ 2, where a is the number of helpful
(Δ, k)-QPs among Q1, . . . , Q�.

In the sequel, we assume that at least one Qi (1 ≤ i ≤ �) is troublesome or
dangerous (since otherwise Lemma 11 solves the problem).

Let T be a (Δ, k)-phylogeny of G. For each dangerous Qi (1 ≤ i ≤ �), we say
that a false leaf x of Qi is active in T , if no connected components of T −{x} is
a helpful unitary (Δ, k)-QP. A dangerous Qi (1 ≤ i ≤ �) is active in T if at least
one false leaf of Qi is active in T .

Lemma 12. Suppose that G has a (Δ, k)-phylogeny. Then, G has a (Δ, k)-
phylogeny T such that no dangerous unitary (Δ, k)-QP is active in T .

Let I be the set of all i ∈ {1, . . . , �} such that Qi is dangerous. For each i ∈ I,
let ti be the number of false leaves in Qi. Let t =

∑
i∈I ti. By Lemma 12, if G has

a (Δ, k)-phylogeny, then there are at least t helpful unitary (Δ, k)-QPs. So, if
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there are less than t helpful unitary (Δ, k)-QPs, then G has no (Δ, k)-phylogeny.
In the sequel, we assume that there are at least t helpful unitary (Δ, k)-QPs.
Without loss of generality, we may assume that Q1, . . . , Qt are helpful.

We connect Q1, . . . , Qt to the dangerous unitary (Δ, k)-QPs as follows.

1. Construct a one-to-one correspondence between Q1, . . . , Qt and the t false
leaves of the dangerous unitary (Δ, k)-QPs.

2. For each i ∈ {1, . . . , t}, add an edge from an (arbitrarily chosen) port node
of Qi to the false leaf corresponding to Qi.

The above modification extends each dangerous unitary (Δ, k)-QP Qi to a
troublesome (Δ, k)-QP Ri. For convenience, let Ri = Qi for each i ∈ {t+1, . . . , �}
such that Qi is not dangerous.

Now, we are left with Rt+1, . . . , R�; none of them is dangerous. Let τ be
the number of troublesome (Δ, k)-QPs among Rt+1, . . . , R�. Note that τ = |i ∈
{1, . . . , �} | Qi is troublesome or dangerous}. So, τ ≥ 1. Without loss of gener-
ality, we may assume that Rt+1, . . . , Rt+τ are troublesome.

By Lemma 12, if G has a (Δ, k)-phylogeny, then it has one in which Rt+1, . . . ,
. . . , R� are subtrees. So, in the remainder of this section, a (Δ, k)-phylogeny of
G always means one in which Rt+1, . . . , R� are subtrees.

For each (Δ, k)-phylogeny T of G, let M(T ) denote the tree obtained by
modifying T by merging each Ri with t + 1 ≤ i ≤ � into a super-node. For
convenience, we abuse the notation to let each Ri also denote the super-node
corresponding to Ri in M(T ).

Lemma 13. If G has a (Δ, k)-phylogeny, then it has one T such that there is
a path in M(T ) on which Rt+1, . . . , Rt+τ appear.

Lemma 14. If G has a (Δ, k)-phylogeny, then it has one T such that there is
a path in M(T ) whose nodes are exactly Rt+1, . . . , Rt+τ .

In the remainder of this section, a (Δ, k)-phylogeny of G always means one
T such that there is a path q in M(T ) whose nodes are exactly Rt+1, . . . , Rt+τ .
We call q the spine of M(T ). Obviously, Corollaries 1 and 2 still hold even if k
is even.

If τ ≥ 2, then we connect Rt+1, . . . , Rt+τ into a single (Δ, k)-QPR as follows.

1. Select a degree-2 node yt+1 of Rt+1, and select a degree-2 node zt+τ of Rt+τ .
2. For each i with t + 2 ≤ i ≤ t + τ − 1, select two degree-2 nodes zi and yi of

Ri.
3. For each i with t + 1 ≤ i ≤ t + τ − 1, add edge (yi, zi+1).

If τ = 1, we let R = Rt+1.
Note that R is a troublesome (Δ, k)-QP. By Lemma 14 and Corollaries 1

and 2, if G has a (Δ, k)-phylogeny, then G has one T such thatR, Rt+τ+1, . . . , R�

are subtrees of T . In the remainder of this section, a (Δ, k)-phylogeny of G always
means such a tree T . Let h be the number of degree-2 nodes in R. Let x1, . . . , xh

be the degree-2 nodes of R.
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Lemma 15. If G has a (Δ, k)-phylogeny, then it has one T such that for all but
one xi ∈ {x1, . . . , xh}, the connected component of T − {xi} containing no node
of R is a helpful unitary (Δ, k)-QP.

By Lemma 15, if G has a (Δ, k)-phylogeny, then there are at least h−1 helpful
unitary (Δ, k)-QPs among Rt+τ+1, . . . , R�. So, if there are less than h−1 helpful
unitary (Δ, k)-QPs among Rt+τ+1, . . . , R�, then G has no (Δ, k)-phylogeny. In
the sequel, we assume that there are at least h − 1 helpful unitary (Δ, k)-QPs
among Rt+τ+1, . . . , R�. We may further assume that Rt+τ+1, . . . , Rt+τ+h−1 are
helpful unitary (Δ, k)-QPs. For each i ∈ {t + τ + 1, . . . , t + τ + h− 1}, let zi be
an (arbitrarily chosen) port node of Ri.

We connect R, Rt+τ+1, . . . , Rt+τ+h−1 into a single (helpful) (Δ, k)-QP R′ by
adding edges (x1, zt+τ+1), . . . , (xh−1, zt+τ+h−1).

Now, we are left withR′, Rt+τ+h, . . . , R� each of which is helpful or moderate.
Moreover, by Lemma 15, if G has a (Δ, k)-phylogeny, then it has one in which
R′, Rt+τ+h, . . . , R� are subtrees. So, we can modify the proof of Lemma 11 to
show that G has a (Δ, k)-phylogeny if and only if a′ ≥ 2, where a′ is the number
of helpful (Δ, k)-QPs among R′, Rt+τ+h, . . . , R�.

In summary, we have the following:

Theorem 2. Suppose that k is even. Then, we can decide if G has a (Δ, k)-
phylogeny, and construct one if so, in linear time.
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Abstract. An orthogonal drawing of a plane graph is called an octago-
nal drawing if each inner face is drawn as a rectilinear polygon of at most
eight corners and the contour of the outer face is drawn as a rectangle.
A slicing graph is obtained from a rectangle by repeatedly slicing it ver-
tically and horizontally. A slicing graph is called a good slicing graph if
either the upper subrectangle or the lower one obtained by any horizon-
tal slice will never be vertically sliced. In this paper we show that any
good slicing graph has an octagonal drawing with prescribed face areas,
in which the area of each inner face is equal to a prescribed value. Such
a drawing has practical applications in VLSI floorplanning. We also give
a linear-time algorithm to find such a drawing. We furthermore present
a sufficient condition for a plane graph to be a good slicing graph, and
give a linear-time algorithm to find a tree-structure of slicing paths for
a graph satisfying the condition.

1 Introduction

An orthogonal drawing of a plane graph G is a drawing of G with a given em-
bedding such that each vertex is mapped to a point, each edge is drawn as a
sequence of alternate horizontal and vertical line segments, and any two edges do
not cross except at their common end as illustrated in Fig. 1(e). In an orthogonal
drawing each face is drawn as a rectilinear polygon. Orthogonal drawings have
attracted much attention due to their numerous practical applications in circuit
schematics, data flow diagrams, entity relationship diagrams, etc. [3, 7].

In this paper we consider an orthogonal drawing of a plane graph G where the
contour of the outer face of G is drawn as a rectangle, called the outer rectangle,
and each inner face has a prescribed area. We call such an orthogonal drawing a
prescribed-area orthogonal drawing. Figure 1(a) depicts a plane graph G where
a number written in each inner face indicates a prescribed area of the face, and
Fig. 1(e) depicts a prescribed-area orthogonal drawing of G. Throughout the
paper the four corners a, b, c and d of an outer rectangle are drawn by white
circles.

J. Hromkovič, M. Nagl, and B. Westfechtel (Eds.): WG 2004, LNCS 3353, pp. 320–331, 2004.
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Fig. 1. Illustration of the algorithm.

A prescribed-area orthogonal drawing of a plane graph G has practical ap-
plications in VLSI floorplanning. Floorplanning is an initial step in VLSI chip
design where one decides the relative locations of functional entities in a chip.
A VLSI floorplan is often considered as a subdivision of a rectangle into a fi-
nite number of non-overlapping smaller rectangles, each of which corresponds to
a funtional entity called a module [2, 6]. A “slicing floorplan” is often used by
VLSI design [S96, YS93, YS95]. Divide a rectangle into two smaller rectangles
by slicing it vertically or horizontally, divide any subrectangle into two smaller
subrectangles by slicing it vertically or horizontally, and so on, as illustrated
in Figs. 2(a)–(e). The resulting floorplan like one in Fig. 2(e) is called a slicing
floorplan. An underlying plane graph of a slicing floorplan such as one illustrated
in Fig. 2(f) is called a slicing graph G, where the four vertices a, b, c and d of
degree two on the outer face of G represent the corners of the outer rectangle.
Thus a slicing graph G is a 2-3 plane graph in which each vertex has degree
two or three, and a slicing floorplan is a rectangular drawing of G, where each
edge is drawn as a single horizontal or vertical line segment and each face is
drawn as a rectangle. Since each module needs some physical area, each face
of G in the drawing should satisfy some area requirements. However, when the
area of each face is prescribed, there may not exist a rectangular drawing of
G. We thus consider an orthogonal drawing of a slicing graph where a face is
not always a rectangle as illustrated in Figs. 1(e). In VLSI floorplanning it is
desirable that each inner face is drawn as a rectilinear polygon of simple shape
such as a rectangle, an L-shape polygon, a T-shape polygon, etc. [1, 2, 6, 5, 9].
We thus attempt to find a prescribed-area orthogonal drawing of G keeping the
shape of each inner face as simple as possible.

In this paper we consider a fairly large subclass of slicing graphs called good
slicing graphs. A slicing graph is good if either the upper subrectangle or the
lower one obtained by any horizontal slice will never be vertically sliced. The
graphs in Figs. 1(a) and 2(f) are good slicing graphs. We show that any good
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Fig. 2. Illustration of a slicing floorplan.

slicing graph has a prescribed-area orthogonal drawing in which each inner facial
polygon has at most eight corners, as illustrated in Fig. 1(e). We call such a
drawing an octagonal drawing. We also give a linear-time algorithm to find such
an octagonal drawing. We furthermore present a sufficient condition for a plane
graph to be a good slicing graph, and give a linear-time algorithm to find a
tree-structure of slicing paths for graphs satisfying the condition. To the best of
our knowledge, this is the first work on a prescribed-area octagonal drawing.

Our drawing algorithm is outlined as follows. We first draw the outer cycle
of G as a rectangle with four vertices a, b, c and d as corners so that the area
of the rectangle is equal to the sum of the prescribed areas of all inner faces,
as illustrated in Fig. 1(b). We now embed a “slicing path” P connecting two
opposite sides of the rectangle as a straight line segment so that it divides the
outer rectangle into two subrectangles each of whose areas is equal to the sum of
the prescribed areas of all faces inside it. In Fig. 1(b) a slicing path P is drawn by
a thick line and the two subrectangles are shadded differently. We recursively find
a prescribed-area orthogonal drawing of the subgraph inside each rectangle, and
we obtain a drawing of G such as one illustrated in Fig. 1(f), where each inner
face is drawn as a rectangle with prescribed area but the drawing is not always
a drawing of G. For example, vertex x is adjacent to y in G in Fig. 1(a), but x is
not adjacent to y in the drawing in Fig. 1(f). We thus need to modify the drawing
in each recursive step, as illustrated in Figs. 1(c) and (d), by introducing bends
on some edges, and hence some faces are drawn as rectilinear polygons instead
of rectangles like the shaded face in Fig. 1(d). We finally get a prescribed-area
octagonal drawing of G as illustrated in Fig. 1(e).

The rest of the paper is organized as follows. Section 2 introduces some def-
initions. Section 3 deals with octagonal drawings of good slicing graphs. Finally
Section 5 concludes with discussions.

2 Preliminaries

In this section we give some definitions.
Let G be a plane 2-connected simple graph. We denote the set of vertices of

G by V (G) and the set of edges of G by E(G). The degree of a vertex v is the
number of neighbors of v in G. Since G is a plane graph, G is embedded in the
plane so that no two edges intersect except at a vertex to which they are both
incident. G divides the plane into connected regions called faces. We regard the
contour of a face as a clockwise cycle formed by the edges on the contour. We
call the contour of the outer face of G the outer cycle of G, and denote by Co(G)
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or simply Co. A vertex on Co is called an outer vertex, while a vertex not on Co

is called an inner vertex. An edge on Co is called an outer edge, while an edge
not on Co is called an inner edge.

An orthogonal drawing of G is a drawing of G with a given embedding in
which each vertex is mapped to a point, each edge is drawn as a sequence of
alternate horizontal and vertical line segments, and any two edges do not cross
except at their common end. A bend is a point where an edge changes its direction
in a drawing. Each face of G is drawn as a rectilinear polygon in any orthogonal
drawing of G. Every plane graph of the maximum degree at most four has an
orthogonal drawing. We call an orthogonal drawing D an octagonal drawing if
D satisfies the following two conditions (i) and (ii): (i) the outer cycle Co is
drawn in D as a rectangle; and (ii) each inner face is drawn in D as a rectilinear
polygon which has at most eight corners and whose area is exactly equal to the
prescribed value.

A graph G is a 2-3 plane graph if G is a 2-connected plane graph, every vertex
has degree two or three, and there are four or more outer vertices of degree two,
and exactly four of them, a, b, c and d, are designated as corners. The four corners
a, b, c and d divide Co into four paths, the north path PN , the east path PE , the
south path PS , and the west path PW , as illustrated in Fig. 3(a). A path P in G
is called an NS-path if P starts at a vertex on PN , ends at a vertex on PS , and
does not pass through any other outer vertex and any outer edge. An NS-path
P naturally divides G into two 2-3 plane graphs GP

W and GP
E ; GP

W is the west
subgraph of G including P , and GP

E is the east subgraph of G including P . We
call GP

W and GP
E the two subgraphs corresponding to P . Similarly, we define a

WE-path P , the north subgraph GP
N , and the south subgraph GP

S .
We now present a formal recursive definition of a slicing graph. We call a 2-3

plane graph G a slicing graph if either it has exactly one inner face or it has an
NS- or WE-path P such that each of the two subgraphs corresponding to P is
a slicing graph. An NS- or WE-path P in a slicing graph G is called a slicing
path of G if each of the two subgraphs corresponding to P is a slicing graph. The
graphs in Figs. 1(a) and 2(f) are slicing graphs.

If G is a slicing graph, then all slicing paths appearing in the recursive defi-
nition can be represented by a binary tree T , called a slicing tree, as illustrated
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Fig. 3. (a) A slicing plane graph G, and (b) a good slicing tree T of G.
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in Fig. 3 for the graph in Fig. 2(f). Each internal node u of T represents a slicing
path, which is denoted by Pu. Each leaf u of T represents an inner face Fu of
G. Each node u of T corresponds to a subgraph Gu of G induced by all inner
faces that are leaves and are descendants of u in T . Thus G = Gr for the root
r of T . We classify the internal nodes of T into two types: (i) V-node and (ii)
H-node. A V-node u represents an NS-slicing path Pu of Gu, while an H-node u
represents a WE-slicing path Pu of Gu.

We then give a formal definition of a good slicing graph. A face path of a 2-3
plane graph G is a WE- or NS-path on the contour of a single inner face of G.
Any face path P of a slicing graph G is a slicing path. If P is a face WE-path,
then either the north subgraph GP

N or the south subgraph GP
S corresponding to

P will never be vertically sliced. We call a slicing tree T a good slicing tree if Pu is
a face WE-path of Gu for every H-node u in T . The tree in Figure 3(b) is a good
slicing tree of the graph G in Fig. 3(a). We call a 2-3 graph a good slicing graph
if it has a good slicing tree for an appropriate labeling of designated corners as
a, b, c and d. All the graphs in Figs. 1(a), 2(f) and 3(a) are good slicing graphs.
However, not every slicing graph is a good slicing graph. The definitions above
imply that every vertical slice of a good slicing graph is an arbitrary “guillotine
cut” but every horizontal slice must be a “guillotine cut” along a face WE-path.
As we will show later in Section 3, our algorithm draws every vertical slice as a
single vertical line segment, and draws every horizontal slice as either a single
horizontal line segment or a sequence of three line segments, horizontal, vertical
and horizontal ones, as illustrated in Fig. 1(e).

3 Octagonal Drawing

In this section we prove the following theorem as the main result of the paper.
Note that a slicing graph together with its slicing tree is often given as an input
in many practical applications.

Theorem 1. A good slicing graph G has an octagonal drawing D, and the draw-
ing D can be found in linear time if a good slicing tree T is given.

In the rest of this section we give a constructive proof of Theorem 1. Let G be
a good slicing graph. One may assume without loss of generality that all vertices
of G have degree three except for the four outer vertices a, b, c and d of degree
two. We will show that every inner face of G is drawn as a rectilinear polygon
of at most eight corners whose shape is one of the nine’s in Fig. 4. We call a
rectilinear polygon of shape like in Fig. 4 an octagon throughout the paper. Thus
a rectangle is an octagon in our terminology, because the polygon in Fig. 4(i) is
a rectangle. We denote by A(R) the area of an octagon R, and by A(G) the sum
of the prescribed areas of all inner faces of a plane graph G.

The rest of this section is organized as follows. We give our Algorithm
Octagonal-Draw in Section 3.1. In Sections 3.2 we give the details for em-
bedding a slicing path. In Section 3.3 we complete a proof of Theorem 1 by
verifying correctness and time complexity of the algorithm.
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3.1 Algorithm Octagonal-Draw

In this section we give an algorithm for finding an octagonal drawing of a good
slicing graph G.

An outline of the algorithm is as follows. Let T be a good slicing tree of
G. Let u be an internal node of T , let v be the right child of u, and let w be
the left child of u. One may assume that if u is a V-node then its right subtree
rooted at v represents the east subgraph GPu

E of G and its left subtree rooted at
w represents the west subgraph GPu

W and hence Gv = GPu

E and Gw = GPu

W , and
that if u is an H-node then Gv = GPu

N and Gw = GPu

S , as illustrated in Fig. 3.
We now traverse T by reverse preorder traversal, that is, we first traverse the
root r of T , then traverse the right subtree and finally traverse the left subtree.
We thus draw the inner faces F1, F2, · · · , F11 of G in Fig. 3(a) in this order,
from east to west and north to south.

Before starting the traversal from root r, we choose an arbitrary rectangle
Rr of area A(G). Thus A(G) = H ×W if H and W are the height and width
of Rr, respectively. The outer cycle Co(G) is drawn as Rr. In general, when we
traverse a node u of T , we have an octagon Ru of area A(Gu); Co(Gu) is drawn
as Ru. If u is an internal node, then we embed the slicing path Pu inside Ru so
that Pu divides Ru into two octagons Rv and Rw so that A(Rv) = A(Gv) and
A(Rw) = A(Gw), where v is the right child and w is the left child of u. (See
Fig. 5.)

We start to traverse T from root r with the following initialization. We fix
the positions of four designated vertices a, b, c and d of G as the corners of the
initial rectangle Rr. We then arbitrarily fix the positions of all vertices on the
east path P r

E of Gr = G with preserving their relative positions. The positions
of all other vertices on Co(G) are not fixed at this moment.

When we traverse an internal node u of T , we have an octagon Ru such
that A(Ru) = A(Gu). Four vertices of degree two on Co(Gu) have been desig-
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nated as the four corner vertices a, b, c and d of Gu as illustrated in Fig. 4. Let
a, xN1, xN2, b, c, xS1, xS2, d be the corners of octagon Ru, some of which may not
exist. Note that a, b, c and d are vertices of Gu and xN1, xN2, xS1, xS2 are bends.
We denote by Pu

N both the north side of Ru and the north path of Co(Gu) which
connects a and b. Similarly we use the notation Pu

E , Pu
S and Pu

W . The positions
of vertices a, b, c and d together with all the vertices on Pu

E have been fixed, but
the positions of all vertices on Pu

W and Pu
S except a, d and c have not been fixed.

We now describe the operations performed at each internal node u of T . Let
v be the right child of u in T , and let w be the left child. We first consider the
case where u is a V-node. One may assume that the NS-slicing path Pu connects
a vertex yN on Pu

N and a vertex yS on Pu
S , as illustrated in Fig. 5. As we will

show later, the positions of corners a, b, c and d of Ru together with all vertices
on Pu

E have been fixed, but the position of all other vertices of Gu have not been
fixed. The goodness and the traversal order of T are crucial in the argument.
We now fix the positions of yN and yS and divide Ru into two octagons Rv and
Rw by embedding Pu as a vertical line segment so that A(Rv) = A(Gv) and
A(Rw) = A(Gw). Indeed Rw is always a rectangle, as illustrated in Fig. 5. We
will give the detail of this step later in Section 3.2. We now designate yN , b, c
and yS as the four corner vertices of Gv, and designate a, yN , yS , and d as the
four corner vertices of Gw.

We then consider the case where u is an H-node. Assume that the face WE-
path Pu connects a vertex yW on Pu

W and a vertex yE on Pu
E , as illustrated

in Fig. 6. The positions of all vertices on Pu
E including yE have been fixed. We

appropriately fix the position of yW on Pu
W and divide Ru into two octagons Rv

and Rw so that A(Rv) = A(Gv) and A(Rw) = A(Gw) by embedding Pu as either
a single horizontal line segment or a sequence of three line segments, horizontal,
vertical and horizontal ones, as illustrated in Fig. 6. We will give the detail of
this step later in Section 3.2. We now designate a, b, yE and yW as the corner
vertices of Gv, and designate yW , yE , c, and d as the corner vertices of Gw.
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Fig. 5. Embedding of Pu in Ru for a V-node u.
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We finally consider the case where we traverse a leaf node u of T . In this case
u corresponds to an inner face Fu, and the embedding of Fu has been already
fixed as an octagon Ru. The positions of a, b, c and d and all vertices on Pu

E and
Pu

N have been fixed. We arbitrarily fix the positions of all vertices on Pu
W other

than a and d, preserving their relative positions on Pu
W . If there are vertices on

Pu
S other than c and d, then their positions will be fixed in some later steps.

We call the algorithm described above Algorithm Octagonal-Draw.

3.2 Embedding a Slicing Path

In this section we give the details of embedding a slicing path Pu inside an
octagon Ru.

A polygonal vertex of Ru is called a corner of Ru. A corner of Ru has an
interior angle 90◦ or 270◦. A corner of an interior angle 90◦ is called a convex
corner of Ru, while a corner of an interior angle 270◦ is called a concave corner.
Let p and q be two consecutive polygonal vertices of Ru. We denote by pq the
polygonal edge of Ru connecting p and q. We also denote by pq the straight line
segment connecting two points p and q.

Let Amin be the area of an inner face whose prescribed area is the smallest
among all inner faces of G. Let H be the height of the whole drawing, that is,
the height of the initial rectangle Rr. Let f be the number of inner faces in G,
and let

λ =
Amin

fH
. (1)

Since A(G) = WH , we have λ = WAmin
fA(G) .

Let u be a node in T . Let ltu be the length of line segment xN2b of an octagon
Ru, and let lbu be the length of line segment cxS1, as illustrated in Fig. 4. If xN2

does not exist then let ltu = 0, and if xS1 does not exist then let lbu = 0. Let
lu = max{ltu, lbu}. Thus lu = 0 if and only if Ru is a rectangle. Let fu

E be the
number of inner faces in Gu each of which has an edge on the east path Pu

E of
Gu. We call an octagon Ru a feasible octagon if the following eight conditions
(i)–(viii) hold:

(i) A(Ru) = A(Gu);
(ii) lu < fλ;
(iii) if xN2 is a concave corner as in Figs. 4(a), (c) and (f), then ltu < (f−fu

E)λ;
(iv) if xS1 is a concave corner as in Figs. 4(b), (c) and (g), then lbu < (f−fu

E)λ;
(v) if xN2 is a convex corner as in Figs. 4(b), (d) and (h), then ltu ≥ fu

Eλ;
(vi) if xS1 is a convex corner as in Figs. 4(a), (d) and (e), then lbu ≥ fu

Eλ;
(vii) if both xN2 and xS2 are concave corners as in Fig. 4(a), then lbu−ltu ≥ fu

Eλ;
and

(viii) if both xN1 and xS1 are concave corners as in Fig. 4(b), then ltu−lbu ≥ fu
Eλ.

The initial octagon Rr for the root r of T is a rectangle of area A(Gr), where
Gr = G. Since Rr is a rectangle, xN1, xN2, xS1, xS2 do not exist and hence
lu = ltu = lbu = 0. Therefore the rectangle Rr is a feasible octagon.

We now have the following lemma on the embedding of Pu for a V-node u.
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Lemma 1. Let u be a V-node of T , let v be the right child of u, and let w be
the left child. If Ru is a feasible octagon, then the NS-slicing path Pu can be
embedded inside Ru as a single vertical line segment so that Ru is divided into
two feasible octagons Rv and Rw.

Proof. We first show that Pu can be embedded as a vertical line segment inside
Ru so that A(Rv) = A(Gv) and A(Rw) = A(Gw), and hence Rv and Rw satisfies
Condition (i). One may assume that the NS-slicing path Pu connects a vertex
yN on Pu

N and a vertex yS on Pu
S . Since T is a good slicing tree, the north path

Pu
N of Gu is either on the north path P r

N of Gr = G or on a face WE-path of
Gz for some H-node z which is an ancestor of u in T . Thus the part of G either
above Pu

N or below Pu
N is a face of G. Therefore the positions of all vertices on

Pu
N other than a and b have not been fixed although the face above Pu

N has been
drawn. Since the part of G below Pu

S has not been drawn, the position of all
vertices on Pu

S other than c and d have not been fixed. We can therefore embed
Pu as a vertical line by sliding yN along Pu

N together with yS along Pu
S from

west to east until the equations A(Rv) = A(Gv) and A(Rw) = A(Gw) hold, as
illustrated in Fig. 5.

We can also show that both Rv and Rw satisfy Condition (ii)–(viii) a of
feasible octagon. The detail is omitted in this extended abstract. Q.E .D.

We now have the following lemma on an embedding of Pu for an H-node u.

Lemma 2. Let u be an H-node of T , let v be the right child of u, and let w
be the left child. If Ru is a feasible octagon, then the WE-slicing path Pu can
be embedded inside Ru as either a single horizontal line segment or a sequence
of three line segments, horizontal, vertical and horizontal ones, so that Ru is
divided into two feasible octagons Rv and Rw.

Proof. One may assume that the face WE-path Pu connects a vertex yW on
Pu

W and a vertex yE on Pu
E , as illustrated in Fig. 6. We assume that the shape

of Ru is as in Fig. 4(a). (The proof for the other shapes is similar.) In this
case both xN2 and xS2 of Ru are concave corners, and hence by Condition (vii)
lbu − ltu ≥ fu

Eλ > 0. Since xN2 is concave, by Condition (iii) ltu ≤ (f − fu
E)λ.

Also lu < fλ by Condition (ii). The position of vertex yE has been fixed on Pu
E

when the part of G to the right of bc was drawn. The horizontal line L passing
through yE intersects either ad or xS2xS1, and hence there are the following two
cases.

Case 1: L intersects ad.
Let L intersect ad at a point y′, as illustrated in Figs. 6(a), (b) and (c),

and let Q be the polygon a, xN1, xN2, b, yE, y′, then we have the following three
subcases.

Subcase 1(a): A(Gv) = A(Q).
In this case we fix the position of vertex yW at point y′ and embed the path

Pu as a single horizontal line segment y′yE , as illustrated in Fig. 6(a). Rv is the
octagon a, xN1, xN2, b, yE , yW , and Rw is the octagon yW , yE , c, xS1, xS2, d. Rv

has the shape of a type as in Fig. 4(f), and Rw has the shape of type in Fig. 4(e).
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Fig. 6. Division of Ru to Rv and Rw by horizontal slice Pu.

We first show that Rv is feasible. Since A(Rv) = A(Gv), Condition (i) holds
for Rv. Furthermore, lbv = 0, ltv = ltu, and hence lv = ltv < lu = lbu < fλ. Thus
Condition (ii) also holds for Rv. Since fv

E < fu
E , we have ltv = ltu ≤ (f − fu

E)λ <
(f − fv

E)λ and hence Condition (iii) also holds for Rv. Since xS1 and xS2 of Rv

do not exist and xN2 of Rv is concave, Conditions (iv)-(viii) also hold. Thus Rv

is feasible.
Similarly one can show that Rw is feasible. The detail is omitted in this

extended abstract.

Subcase 1(b): A(Gv) < A(Q).
Clearly fv

E < fu
E . We first fix a corner y′

S1 of Rv on L so that the horizontal
line segment yEx′

S1 has length ltu +fv
Eλ and hence lbv = ltu +fv

Eλ, as illustrated
in Fig. 6(b). We then fix the positions of x′

S2 and yW so that A(Rv) = A(Gv).
We now claim that yW x′

S2 is below axN1. By Condition (vii) lbu ≥ fu
Eλ+ltu, and

hence lu = lbu ≥ fu
Eλ+ ltu > fv

Eλ+ ltu = lbv. Since lu < fλ by Condition (ii), we
have lbvH < luH < fλH = Amin by Eq. (1) and hence the shaded rectangular
area of width lbv and height < H in Fig. 6(b) is smaller than Amin. Since Gv

has at least one inner face, we have Amin ≤ A(Gv). Therefore yW x′
S2 is below

axN1, and hence Rv is a (simple) octagon a, xN1, xN2, b, yE, x′
S1, x

′
S2, yW , and

Rw is an octagon yW , x′
S2, x

′
S1, yE , c, xS1, xS2, d. Both Rv and Rw have a shape

in Fig. 4(a).
We now show that Rv is feasible. Since A(Rv) = A(Gv), Condition (i) holds

for Rv. Clearly, ltv = ltu, lbv < lbu, and hence lv = lbv < lu < fλ. Thus Condition
(ii) also holds for Rv. Since ltv = ltu ≤ (f − fu

E)λ < (f − fv
E)λ, Condition (iii)
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also holds for Rv. Since lbv = ltu + fu
Eλ ≥ fv

Eλ, Condition (vi) holds for Rv.
Since lbv − ltv = lbv − ltu = fv

Eλ, Condition (vii) also holds. Since xN1 and x′
S1

of Rv are convex corners, the other conditions also hold. Thus Rv is feasible.
Similarly one can show that Rw is a feasible octagon.

Subcase 1(c): A(Q) < A(Gv).
Similar to Subcase 1(b) above. See Fig. 6(c).

Case 2: L intersects xS2xS1.
Similar to the proof of Subcase 1(b). See Fig. 6(d). Q.E .D.

3.3 Correctness and Time Complexity

In this section we verify the correctness and time complexity of Algorithm
Octagonal-Draw, and mention some remarks on the algorithm.

We first prove the following lemma on the correctness of Algorithm Octa-
gonal-Draw.

Lemma 3. Algorithm Octagonal-Draw finds an octagonal drawing of a good
slicing graph G.

Proof. The initial rectangle Rr at the root r of T is a feasible octagon. Assume
inductively that u is an internal node of T and Ru is a feasible octagon. Let v
and w be the right child and left child of u, respectively. By Lemmas 1 and 2
one can embed Pu inside Ru so that Rv and Rw are feasible octagons. Thus,
after the execution of the algorithm, each inner face of G corresponding to a
leaf of T is a feasible octagon. Of course, the contour of the outer face of G is
the rectangle Rr. Thus Algorithm Octagonal-Draw finds an octagonal drawing
of G. Q.E .D.

We now have the following lemma on the time complexity of Algorithm
Octagonal-Draw whose proof is omitted in this extended abstract.

Lemma 4. Algorithm Octagonal-Draw runs in linear time.

Lemmas 3 and 4 complete the proof of Theorem 1.

4 Conclusions

In this paper we showed that any good slicing graph has an octagonal draw-
ing with prescribed face areas, and gave a linear-time algorithm to find such a
drawing. We also gave a sufficient condition for a plane graph G to be a good
slicing graph and gave a linear-time algorithm to construct a good slicing tree
if G satisfies the condition. However, they are omitted in this extended abstract
due to the page limitation. Yeap and Sarrafzadeh [10] gave a sufficient condition
for a plane graph G to be a slicing graph. Although their condition is repre-
sented in terms of a dual graph of G, theirs and ours are effectively same. We,
however, showed that the condition is a sufficient condition for a plane graph to
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be not only a slicing graph but also a good slicing graph. In a VLSI floorplan
produced by our algorithm, the width of the narrowest part of a module is at
least λ = Amin

fH . However, one can appropriately choose a larger value as λ in
many practical floorplans.

A connected graph is cyclically k-edge connected if the removal of any set of
less than k edges leaves a graph such that exactly one of the connected compo-
nents has a cycle. Let G be a 2-3 plane graph obtained from a cyclically 5-edge
connected plane cubic graph by inserting four vertices a, b, c and d of degree 2
on the outer face. Thomassen [T92] showed that G has a drawing in which each
edge is drawn as a single straight line segment which is not always horizontal or
vertical, each inner face attains its prescribed area, and the contour of the outer
face is a rectangle having the four vertices as corners. Thus, in his drawing, each
inner face is drawn with a polygon which is not always rectilinear. The class of
good slicing graphs is larger than the class of graphs obtained from cyclically
5-edge connected cubic plane graphs by inserting four vertices of degree 2 on the
outer face.

It is remained as a future work to obtain an algorithm for finding a prescribed
area orthogonal drawing for a larger class of plane graphs.
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Abstract. We propose a two-phase heuristic for crossing reduction in
circular layouts. While the first algorithm uses a greedy policy to build
a good initial layout, an adaptation of the sifting heuristic for crossing
reduction in layered layouts is used for local optimization in the second
phase. Both phases are conceptually simpler than previous heuristics,
and our extensive experimental results indicate that they also yield fewer
crossings. An interesting feature is their straightforward generalization
to the weighted case.

1 Introduction

In circular graph layout, the vertices of a graph are constrained to distinct posi-
tions along the perimeter of a circle, and an important objective is to minimize
the number of edge crossings in such layouts. Since circular crossing minimization
is NP-hard [8], several heuristics have been devised [7, 3, 14]. Moreover there is
a factor O(log2 |V |) approximation algorithm [13].

We propose a two-phase approach for obtaining circular layouts with few
crossings. In the first phase, vertices are iteratively added to either end of a linear
layout. This leaves three degrees of freedom: the start vertex, the insertion order,
and the end at which to append the next vertex. For the different strategies tried,
empirical evidence suggests that a particular one outperforms both the others
and previous heuristics.

For the second phase, we adapt a local optimization procedure for layered
layouts, sifting [9], to the circular case. Note that, similar to 2-layer layouts, the
number of crossing is completely determined by the (cyclic) ordering of vertices.
The thus related one-sided crossing minimization problem in 2-layer drawings of
bipartite graphs is NP-hard as well [5], but significantly better understood. It
turns out that circular sifting reduces the number of crossings both with respect
to our first phase and previous heuristics.

After defining some terminology in Section 2, we describe our greedy append
and circular sifting algorithms for the phases in Sections 3 and 4. Both are
evaluated experimentally in Section 5.
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2 Preliminaries

Throughout this paper, let G = (V, E) be a simple undirected graph with n = |V |
vertices and m = |E| edges. Furthermore, let N(v) = {u ∈ V : {u, v} ∈ E}
denote the neighborhood of a vertex v ∈ V . A circular layout of G is a bijection
π : V → {0, . . . , n− 1}, interpreted as a clockwise sequence of distinct positions
on the circumference of a circle. By selecting a reference vertex s ∈ V we obtain
linear orders ≺π

s from π by defining

u ≺π
s v ⇐⇒ (π(u) − π(s) mod n) < (π(v) − π(s) mod n)

for all u, v ∈ V , i.e. u is encountered before v in a cyclic traversal starting from
s. We say that u, v ∈ V are consecutive, denoted by u �π v, if π(v) − π(u) ≡ 1
mod n. A subset W ⊂ V is consecutive, if there is an ordering of the vertices of
W so that w0 �π w1 �π . . . �π w|W |−1, wi ∈W .

Let

χπ({u1, v1}, {u2, v2}) =

{
1 if u1 ≺π

u1
u2 ≺π

u1
v1 ≺π

u1
v2

0 otherwise .
(1)

for all {u1, v1}, {u2, v2} ∈ E and w.l.o.g. π(ui) < π(vi). We say that e1, e2 ∈
E cross in π, iff χπ(e1, e2) = 1, i.e. the endvertices of e1, e2 are encountered
alternately in a cyclic traversal. The crossing number of a circular layout π is
χ(π) =

∑
e1,e2∈E χπ(e1, e2) and χ(G) = minπ χ(π) is called the circular crossing

number of G. We will omit π from our notation whenever the layout is clear
from context.

Theorem 1 ([8]). Circular crossing minimization is NP-hard.

On the other hand, a graph has a circular layout with no crossings, if and
only if it is outerplanar. A linear time recognition algorithm for outerplanar
graphs [11] is easily extended to yield a crossing-free circular layout [14].

Since, in particular, trees have circular layouts with no crossings, it is possible
to consider the biconnected components of a graph separately, and insert their
circular layouts into a crossing-free layout of the block-cutpoint-tree without
producing additional crossings (see Fig. 1). Hence, only biconnected graphs are
used in the experimental evaluation summarized in Section 5.

Fig. 1. The circular crossing number of a graph is the sum of those of its biconnected
components (cutpoints shown in lighter color).
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3 Initial Layout

Our approach for an initial layout is inspired by a heuristic algorithm for the
minimum total edge length problem in circular layouts [7]. This problem is some-
what related to crossing minimization, since shorter edges tend to cross few other
edges.

The basic idea is simple: start with a layout consisting of a single vertex and
place the other vertices, one at a time, at either end of the current (linear) layout
(see Algorithm 1). After all vertices are inserted, the final layout is considered
to be circular. This method leaves us with three parameters to choose:

– the start vertex s,
– the processing sequence, and
– the end to append the next vertex at.

Note that the processing sequence need not to be fixed in the beginning, but
may be determined while the algorithm proceeds. Since, in our experiments,
the rules for choosing a start vertex had little influence on the final result, it is
chosen at random. In the following we describe instantiations for the other two
parameters.

During the algorithm some vertices are already placed while others are not.
An edge is called open, if it connects a placed vertex with an unplaced one, and
closed, if both its vertices have been inserted.

Four rules for determining an insertion order are investigated. The rationale
behind these heuristics is to keep the number of open edges low, because they
tend to result in crossings later on.

1. Degree. Vertices are inserted in non-increasing order of their degree.
2. Inward Connectivity. At each step, a vertex with the largest number of al-

ready placed neighbors is selected, i.e. a vertex which closes the most open
edges.

3. Outward Connectivity. At each step, a vertex with the least number of un-
placed neighbors is selected, i.e. a vertex which opens the fewest new edges.

4. Connectivity. At each step, a vertex with the least number of unplaced neigh-
bors is selected, where ties are broken in favor of vertices with fewer unplaced
neighbors.

The other degree of freedom left is the selection of an end of the current layout
at which to append the next vertex. Again, four rules of choice are investigated.

Algorithm 1: Greedy-Append Heuristic.

place start vertex s ∈ V arbitrarily;
V ← V \ {s};
while V �= ∅ do

greedily choose v ∈ V ;
append v at either end of the current layout;
V ← V \ {v};
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1. Random. Select the end at which to append randomly each time.
2. Fixed. Always append to the same end.
3. Length. Append each vertex to the end that yields the smaller increase in

total edge length.
4. Crossings. Append each vertex to the end that yields fewer crossing of edges

being closed with open edges. In Fig. 2, there are eight such crossings for the
left end and only six for the right end. Note that crossings with closed edges
not incident to the currently inserted vertex need not be considered because
they are the same for both sides. It should also be noted that crossings with
open edges are independent of the positions at which the unplaced vertex
will eventually be placed.

v v

Fig. 2. Incident edges of v cross open edges.

The experiments outlined in Section 5 show that the combination of the
Connectivity insertion order with Crossings outperforms all other combinations,
and it can be implemented efficiently.

Theorem 2. The Greedy-Append heuristic with Connectivity insertion order
and end-to-append selection based on Crossings can be implemented to run in
O((n + m) log n) time.

Proof. The insertion sequence can be realized by storing all unplaced vertices
in a two-dimensional priority queue, in which the first key gives the number of
already placed neighbors and the second the number of unplaced neighbors. With
an efficient implementation, update and extract operations requireO(log n) time.
Since each vertex is extracted once, and each edge triggers exactly one update,
the total running time for determining the insertion order is O((n + m) log n).

The number of crossings with open edges can be determined from prefix
and suffix sums over vertices already in the layout. These can be maintained
efficiently using a balanced binary tree storing in its leaves the number of open
edges incident to a placed vertex, and in its inner nodes the sum of the values of
its two children. The prefix sum at a vertex is the sum of all values in left children
of nodes on the path from the corresponding leaf to the root. The suffix sum is
determined symmetrically. Insertion of a vertex thus requires O(log n) time to
determine the crossing numbers from prefix and suffix sums and O(d(v) log n)
for updating the tree. The total is again O((n + m) log n). ��

Note that the heuristic is easily generalized to weighted graphs. In the next
section we show how to further reduce the number of crossings, given an initial
layout.
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4 Improvement by Circular Sifting

Sifting was originally introduced as a heuristic for vertex minimization in or-
dered binary decision diagrams [12] and later adapted for the one-sided crossing
minimization problem [9]. The idea is to keep track of the objective function
while moving a vertex along a fixed ordering of all other vertices. The vertex is
then placed in its (locally) optimal position. The method is thus an extension of
the greedy-switch heuristic [4].

For crossing reduction the objective function is the number of crossings be-
tween the edges incident to the vertex under consideration and all other edges.
The efficient computation of crossing numbers in sifting for layered layouts is
based on the crossing matrix. Its entries correspond to the number of crossings
caused by pairs of vertices in a particular linear ordering and are computed eas-
ily in advance. Whenever a vertex is placed in a new position only a smallish
number of updates is necessary.

It is not possible to adapt the crossing matrix to the circular case, since two
vertices cannot be said to be in a (linear) order generally. Thus we define the
crossing number

cuv(π) =
∑

x∈N(u)

∑
y∈N(v)

χπ({u, x}, {v, y}) (2)

only for pairs of consecutive vertices u � v ∈ V and use the following exchange
property, which is the basis for sifting and holds nevertheless.

Lemma 1. Let u � v ∈ V be consecutive vertices in a circular layout π, and
let π′ be the layout with their positions swapped, then

χ(π′) = χ(π) − cuv(π) + cvu(π′)

= χ(π) −
∑

x∈N(u)

|{y ∈ N(v) : y ≺π
x u}|+

∑
y∈N(v)

∣∣∣{x ∈ N(u) : x ≺π′
y v}

∣∣∣

Proof. Since u and v are consecutive, edges incident to neither u nor v do not
change their crossing status. The first equality follows immediately. For the sec-
ond equality, observe that the sums are obtained from (2) by inserting (1). See
Fig. 3 for an illustration. ��

Based on the above lemma, the locally optimal position of a single vertex can
be found by iteratively swapping the vertex with its neighbor and recording the
change in crossing count, which is computed by considering only edges incident
to one of these two vertices. After the vertex has been moved past every other
vertex, it is placed where the intermediary crossing counts reached their mini-
mum. Repositioning each vertex once in this way is called a round of circular
sifting.

If adjacency lists are ordered according to the current layout, the sums in
Lemma 1 are over suffix lengths in these lists. Updating the crossing count
therefore corresponds to merging the adjacency lists, where the length of the
remaining suffix is added or subtracted.
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u1v2
v1u2

u1v2
v1u2

Fig. 3. After swapping consecutive vertices u � v, exactly those pairs of edges cross
that did not before.

Theorem 3. One round of circular sifting takes O(nm) time.

Proof. Sorting the adjacency lists according to the vertex order is easily done in
O(m) time (traverse the vertices in order, and add each to the adjacency lists of
its neighbors). If adjacency lists are stored cyclically, a head pointer yields ≺v

for arbitrary v, i.e. the adjacency lists need not be reordered before a swap. The
final relocation of u takes time O(1).

When swapping u with neighbor vk the adjacency lists are traversed in time
O(dG(u) + dG(vk)). Since

∑
u∈V

∑
v∈V

(
dG(u) + dG(v)

)
=

∑
u∈V

∑
v∈V

dG(u) +
∑
u∈V

∑
v∈V

dG(v) = 2 · n · 2m

the total running time is in O(nm). ��

At the end of the outer loop each vertex is placed at its locally optimal
position, so that circular sifting can only decrease the number of crossings. Our
experiments outlined in the next section suggest that a few rounds of sifting
suffice to reach a local minimum.

Note that in edge-weighted graphs we can define the weighted crossing number
by counting each crossing with the product of the two edge weights involved. If
suffix cardinalities are replaced by suffix sums of weights, Lemma 1 generalizes
to the weighted case. Modifying the algorithm accordingly is straightforward.

5 Experimental Evaluation

We performed extensive experiments to determine the relative behavior of the
different variants of our heuristics. As a base reference we use CIRCULAR [14],
the currently most effective heuristic for circular crossing minimization. CIR-
CULAR consists of two phases as well: an initial placement (CIRCULAR 1)
derived from a recognition algorithm for outerplanar graphs [11], and a sub-
sequent improvement phase (CIRCULAR 2) that probes alternative positions
for each vertex and relocates if the number of crossings is reduced. While the
second phase appears to be similar to circular sifting, it differs in that a vertex
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Algorithm 2: Circular sifting.

for (u ∈ V ) do
let v0 = u ≺u v1 ≺u . . . ≺u vn−1 denote the current layout;
for (v ∈ V ) do

sort adjacency list of v according to the current layout;
χ ← 0; χ∗ ← 0; v∗ ← vn−1;
for (k ← 1, . . . , n − 1) do

let x0 ≺vk . . . ≺vk xr−1 denote the adjacency list of u without vk;
let y0 ≺vk . . . ≺vk ys−1 denote the adjacency list of vk without u;
c ← 0; i ← 0; j ← 0;
while (i < r and j < s) do

if (xi ≺vk yj) then
c ← c − (s − j); i ← i + 1;

else if (yj ≺vk xi) then
c ← c + (r − i); j ← j + 1;

else
c ← c − (s − j) + (r − i); i ← i + 1; j ← j + 1;

χ ← χ + c;
if (χ < χ∗) then χ∗ ← χ; v∗ ← vk;

move u so that v∗
� u;

is moved to fewer candidate positions and may thus miss good positions. Note
also that CIRCULAR 2 actually counts crossings (rather than just changes) so
that its running time depends on the number of crossings. When restricting re-
placements to a subset of positions, circular sifting simulates CIRCULAR 2 with
an improved worst-case performance, but in our experiments we rather imple-
mented an improved method for counting crossings, since realistic graphs have
relatively few crossings anyway.

All algorithms have been implemented by the same person in C++ using
LEDA [10]. Our experiments were carried out on a standard desktop computer
with 1.5 GHz and 512 MB running Linux. Each data point is the average of
10 runs with different internal initializations (in particular, permuted adjacency
lists).

The experiments were run on three families of undirected, biconnected graphs
(recall from Section 2 that crossings between edges in different biconnected com-
ponents can be avoided altogether):

– Rome graphs. A set of 10 541 biconnected components with 10 to 80 vertices
used in [2]. These are sparse real-world graphs with m ≈ 1.3n.

– Fixed average degree. Three sets of random graphs with 10 to 200 vertices
and variable edge probability of 3

n−1 , 5
n−1 , and 10

n−1 , resulting in graphs with
expected average degree of 3, 5, and 10.

– Fixed density. Three sets of random graphs with 10 to 200 vertices and fixed
edge probability of 0.02, 0.05, and 0.1, resulting in graphs with expected
density of 2, 5, and 10 percent.
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A selection of results is given in the appendix. For a comprehensive list of figures
see [1]. We here summarize our conclusions.
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5.1 Initialization Using Greedy Append

The performance of various combinations of insertion orders for greedy append
is shown in Fig. 4 relative to CIRCULAR 1. While for some rules of choice the
results depend on number of edges in the graph, the Connectivity variant con-
sistently outperforms all others, including CIRCULAR 1. The results in Fig. 5
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Fig. 8. Results on random graphs relative to CIRCULAR.

indicate that appropriate placement is indeed important, but has a much smaller
effect than the insertion order. On random graphs, the combination of Connec-
tivity insertion with Length or Crossings perform almost equally well, with a
slight advantage for Crossings.

The two best combinations, Connectivity with Length or Crossings, compare
favorably with CIRCULAR 1 in terms of the resulting number of crossings (see
Figs. 7). Note that the running time of the initialization methods is negligible,
especially when compared to the improvement strategies.

5.2 Subsequent Improvement Using Circular Sifting

Circular sifting reaches a local minimum in few rounds. As can be expected,
the improvement is larger in early rounds, and the number of rounds required
depends on the initial configuration (see Fig. 6). It can be concluded that the
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improvement algorithms (circular sifting and CIRCULAR 2) should not be used
by themselves, but only in combination with a good initialization method.

With any of the good initialization strategies identified in the previous sub-
section, circular sifting is able to further reduce the number of crossings produced
by CIRCULAR 2 as can be seen in Figs. 7 and 8 and is also confirmed by an
independent study of He and Sýkora [6]. This suggests that the additional posi-
tions considered for relocation indeed pay off. However, there is a slight runtime
penalty if sifting is run until there is no further improvement.

6 Conclusion

We have presented an approach for circular graph layout with few crossings. It
consists of two phases: in the first phase, we greedily append vertices to either
end of a partial (linear) layout according to some criteria, and in the second we
further reduce the number of crossings by repeatedly sifting each vertex to a
locally optimal position.

Our experimental evaluation clearly shows that the method of choice is to
initialize circular sifting with a greedy-append approach using the Connectivity
insertion order with the Crossings placement rule and that this combination
consistently outperforms previous heuristics. They also show that both phases
are necessary. While circular sifting yields a substantial improvement over the
initial layouts, a good initialization significantly reduces the number of rounds
required and thus the overall running time at essentially no extra cost.
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Abstract. Let p ≥ 1 and q ≥ 0 be integers. A family of sets F is (p, q)-
intersecting when every subfamily F ′ ⊆ F formed by p or less members
has total intersection of cardinality at least q. A family of sets F is
(p, q)-Helly when every (p, q)-intersecting subfamily F ′ ⊆ F has total
intersection of cardinality at least q. A graph G is a (p, q)-clique-Helly
graph when its family of (maximal) cliques is (p, q)-Helly. According to
this terminology, the usual Helly property and the clique-Helly graphs
correspond to the case p = 2, q = 1. In this work we present a character-
ization for (p, q)-clique-Helly graphs. For fixed p, q, this characterization
leads to a polynomial-time recognition algorithm. When p or q is not
fixed, it is shown that the recognition of (p, q)-clique-Helly graphs is
NP-hard.

1 Introduction

A well known result by Helly published in 1923 [6, 13] states that if there are
given n convex subsets of a d-dimensional euclidean space with n > d and if
each family formed by d + 1 of these subsets has a point in common, then the n
subsets contain a common point.

This result inspired the definition of the Helly property for families of sets
in general, a concept that has been extensively studied in many contexts (see
e.g. [9]). We say that a family F of sets has the Helly property (or is Helly)
when every subfamily F ′ ⊆ F of pairwise intersecting sets has non-empty total
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When the family of (maximal) cliques of a graph G satisfies the Helly prop-
erty, we say that G is a clique-Helly graph. Clique-Helly graphs were character-
ized via the notion of extended triangle [11, 17], defined as an induced subgraph
consisting of a triangle T together with the vertices which form a triangle with at
least one edge of T . This characterization leads to a straightforward recognition
algorithm for clique-Helly graphs with time complexity O((n + t)m), where t is
the number of triangles of the input graph.

The more general p-Helly property holds when every F ′ ⊆ F of p-wise
intersecting sets has non-empty total intersection. Thus, the original result of
Helly may be restated by simply saying that any family of convex subsets of a
d-dimensional euclidean space is (d + 1)-Helly.

In this work we focus on a generalization of the p-Helly property, by con-
sidering the intersection sizes. Following [18, 19], we require that the subfamilies
F ′ ⊆ F ought to satisfy the following property: “if every collection of p or less
members of F ′ have q elements in common, then F ′ has total intersection of
cardinality at least q.” This leads to the concept of the (p, q)-Helly property for
general families of sets. Such families have been studied in [10]. In this work, we
investigate the (p, q)-Helly property applied to the family of cliques of a graph,
naturally conducting to the (p, q)-clique-Helly graphs. We describe a character-
ization for this class and a recognition algorithm based on it. The algorithm
terminates within polyniomial time, for fixed p, q. Note that such an algorithm
does not follow directly from the definition of the class. Further, we prove that
recognizing (p, q)-clique-Helly graphs is NP-hard, whenever p or q is not fixed.

2 Preliminaries

Let G be a graph. A vertex w ∈ V (G) is universal when w is adjacent to
every other vertex of G. If S ⊆ V (G), then we denote by G[S] the subgraph
of G induced by S. A subgraph H of G is a spanning subgraph of G when
V (H) = V (G). A complete set is a subset of pairwise adjacent vertices. A clique
is a maximal complete set.

Let F be a subfamily of cliques of G. The clique subgraph induced by F in
G, denoted by Gc[F ], is the subgraph of G formed exactly by the vertices and
edges belonging to the cliques of F .

The core of a family of sets F is defined as core(F ) = ∩S∈FS. We also
define V (F ) = ∪S∈FS.

We say that a set S is a q-set when |S| = q, a q−-set when |S| ≤ q, and a q+-
set when |S| ≥ q. This notation will also be applied to families, cores, complete
sets, cliques, etc.

The next definition is a first step towards the definition of the (p, q)-Helly
property:

Definition 1. Let p ≥ 1 and q ≥ 0. We say that a family of sets F is (p, q)-
intersecting when every p−-subfamily F ′ ⊆ F has a q+-core.

By the above definition, if F is (p, q)-intersecting (for p > 1 and q > 0) then
it is also (p− 1, q)-intersecting and (p, q − 1)-intersecting.
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Now, let us state the (p, q)-Helly property for families of sets in general, as
in [18, 19]. This definiton is a generalization of the usual Helly property, which
corresponds to the case p = 2, q = 1.

Definition 2. Let p ≥ 1 and q ≥ 0. We say that a family of sets F satisfies
the (p, q)-Helly property when every (p, q)-intersecting subfamily F ′ ⊆ F has a
q+-core. In this case, we also say that F is (p, q)-Helly.

It is easy to see that if a family of sets F is (p, q)-Helly then F is also
(p + 1, q)-Helly.

The following theorem gives a characterization of (p, q)-Helly families of sets:

Theorem 1. [10] Let p > 1 and q > 0. A family of sets F is (p, q)-Helly
if and only if for every (p + 1)-family Q of q-subsets of V (F ), the subfamily
{S ∈ F | S contains at least p members of Q} has a q+-core.

Now let us apply Definition 2 to the family of cliques of a graph:

Definition 3. Let p ≥ 1 and q ≥ 0. We say that a graph G is (p, q)-clique-Helly
when its family of cliques is (p, q)-Helly.

In the remainder of this work, we will assume that p > 1 and q > 0, unless
otherwise stated.

According to the definition above, (2, 1)-clique-Helly graphs are exactly the
clique-Helly graphs. A characterization of (2, 2)-clique-Helly graphs by means of
clique-Helly graphs was described in [7].

A first characterization of (p, q)-clique-Helly graphs is a direct consequence
of Theorem 1:

Observation 1. Let p > 1 and q > 0. A graph G is (p, q)-clique-Helly if and
only if for every (p + 1)-family Q of q-complete sets contained in a common
clique C of G, the subfamily of cliques of G that contain at least p members of
Q has a q+-core. �

However, we will present in Section 3 a more useful characterization than
the above one, in the sense that it will lead to a polynomial-time recognition
algorithm for fixed p, q.

Let us analyze some containment relations involving classes of (p, q)-clique-
Helly graphs by means of the following example:
Example 1. Define the graph Gp,q as follows: V (Gp,q) is formed by a (q − 1)-
complete set Q, a p-complete set Z = {z1, . . . , zp}, and a p-independent set
W = {w1, . . . , wp}. Furthermore, there exist the edges (zi, wj), for i �= j, and
the edges (q, x), for q ∈ Q and x ∈ Z ∪ W .

The graph Gp,q contains exactly p + 1 cliques of size p + q − 1 each: Q ∪
{z1, . . . , zp} and Q ∪ (Z\{zi}) ∪ {wi}, for 1 ≤ i ≤ p.

Observe that Gp,q is (p, q)-clique-Helly, but it is not (p − 1, q)-clique-Helly.
Therefore, Gp,q is (t, q)-clique-Helly for t ≥ p, and not (t, q)-clique-Helly for
t < p.

Moreover, Gp+1,q is not (p, q)-clique-Helly, but it is (p, t)-clique-Helly for any
t �= q. Consequently, for distinct q and t, (p, q)-clique-Helly graphs and (p, t)-
clique-Helly graphs are incomparable classes. �
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To conclude this section, we relate Kr-free graphs and (p, q)-clique-Helly graphs.
(A graph G is Kr-free when the size of a maximum clique of G is at most r−1.)
An interesting fact derived from Definition 3 is that every Kr-free graph is (p, q)-
clique-Helly for p + q ≥ r.

First, we need the following lemma:

Lemma 1. Let Q be a (p+1)-family of q-complete sets of a graph G. If all sets
of Q are contained in a common (p+ q− 1)−-complete set of G, then the cliques
of G that contain at least p members of Q have a q+-core.

Proof. Let Q be a (p +1)-family of q-complete sets contained in a (p + q− 1)−-
complete set C, and let F be the subfamily of cliques of G that contain at least
p members of Q. Observe that if a vertex x of C belongs to two members of Q,
then x belongs to all the cliques of F . We will show that there exist at least
q vertices in C belonging simultaneously to at least two members of Q, which
proves the lemma.

Suppose the contrary. Thus at most q−1 vertices of C belong simultaneously
to more than one member of Q. Assume initially that |C| = p + q − 1. Then
at least p + q − 1 − (q − 1) = p vertices of C have the property of belonging
to exactly one member of Q. Let X be the set formed by such vertices, where
|X | = p+r, 0 ≤ r ≤ q−1. Observe that every member of Q must contain at least
r+1 vertices belonging to X . This implies |X | ≥ (p+1)(r+1) = p+r+pr+1 >
p + r, a contradiction.

If C contains less than p + q− 1 vertices, the same argument above could be
used. �

Theorem 2. Let p, q, r such that p > 1, q > 0, r > 1 and p + q ≥ r. If G is a
Kr-free graph then G is (p, q)-clique-Helly.

Proof. Let Q be a (p + 1)-family of q-complete sets contained in a clique C of
G. By Observation 1, we have to show that the subfamily F of cliques of G
that contain at least p members of Q has a q+-core. Since G is K(p+q) -free, all
members of Q are contained in a common (p + q − 1)−-complete set of G. By
Lemma 1, F has a q+-core. �

3 The Characterization

The following definitions and lemmas will be useful.

Definition 4. Let G be a graph and C a p-complete set of G. The p-expansion
relative to C is the subgraph of G induced by the vertices w such that w is
adjacent to at least p− 1 vertices of C.

We remark that the p-expansion for p = 3 has been used for characterizing
clique-Helly graphs [11, 17]. It is clear that constructing a p-expansion relative
to a given p-complete set can be done in polynomial time.

Lemma 2. Let G be a graph, C a p-complete set of it, H the p-expansion of
G relative to C, and C the subfamily of cliques of G that contain at least p− 1
vertices of C. Then Gc[C ] is a spanning subgraph of H.
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Proof. We have to show that V (Gc[C ]) = V (H). Let v ∈ V (H). Then v is
adjacent to at least p − 1 vertices of C. Hence, v together with those p − 1
vertices form a p-complete set, which is contained in a clique that contains at
least p− 1 vertices of C. Therefore, v ∈ V (Gc[C ]). Now, consider v ∈ V (Gc[C ]).
Then v belongs to some clique containing p − 1 vertices of C. That is, v is
adjacent to at least p − 1 vertices of C, and hence v ∈ V (H). Consequently,
V (Gc[C ]) = V (H). Furthermore, both H and Gc[C ] are subgraphs of G, but H
is induced. Thus E(Gc[C ]) ⊆ E(H). �

Definition 5. Let G be a graph. The graph Φq(G) is defined in the following
way: the vertices of Φq(G) correspond to the q-complete sets of G, two vertices
being adjacent in Φq(G) if the corresponding q-complete sets in G are contained
in a common clique.

Notice that Φq(G) can be constructed in polynomial time, for fixed q. We
remark that Φq is precisely the operator Φq,2q described in [15], p.136, and the
graph Φ2(G) is the edge clique graph of G, introduced in [1].

An interesting property of Φq is that it preserves the subfamily of q+-cliques
of G:

Lemma 3. (Clique Preservation Property) Let G be a graph. Then there exists
a bijection ϕq between the subfamily of q+-cliques of G and the family of cliques
of Φq(G).

Proof. Let C be a q+-clique of G, and let c = |C|. Consider all the q-complete
sets of G contained in C. These sets clearly correspond to a (c

q)-complete set
C′ of Φq(G). Assume that C′ is not maximal. Then there exists x ∈ V (Φq(G)),
x �∈ C′, such that x is adjacent to all the vertices of C′. But x corresponds to a
q-complete set Q of G such that for every q-complete set Q1 ⊆ C, both Q and
Q1 are contained in a common q+-clique of G. This implies that every vertex v
of Q is adjacent to every vertex w �= v of C. Since x �∈ C′, Q must necessarily
contain at least one vertex not belonging to C. In other words, C is not maximal,
a contradiction. Hence, C′ is a clique of Φq(G) and C′ = ϕq(C).

Conversely, let C′ be a clique of Φq(G) and F be the family of q-complete
sets of G corresponding to the vertices of C′. Since any two vertices of C′ are
adjacent, any two complete sets of F are contained in a common q+-clique of
G. Hence, the union of the q-complete sets of F is a q+-complete set C of G.

Suppose by contradiction that C is not maximal. Thus, there exists a vertex
u /∈ C which is adjacent to all the vertices of C. Consider v1, v2, ..., vq−1 ∈ C. It
is clear that Q = {u, v1, v2, ..., vq−1} is a q-complete set of G, and for every Q1

in F , both Q and Q1 are contained in a common q+-clique of G. Since u /∈ C,
Q /∈ F , and this means that Q corresponds to a vertex x ∈ V (Φq(G)) such that
x /∈ C′ and x is adjacent to all the vertices of C′. This implies that C′ is not
maximal, a contradiction. �

It is worth remarking that the above lemma was already shown for the case
q = 2 in [1, 7].

The following definition is possible due to the Clique Preservation Property:
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Definition 6. Let G be a graph. If F is a subfamily of q+-cliques of G, define
ϕq(F ) = {ϕq(C) | C ∈ F}. If C is a subfamily of cliques of Φq(G), define
ϕ−1

q (C ) = {ϕ−1
q (C) | C ∈ C }.

Lemma 4. Let G be a graph, F a subfamily of q+-cliques of it, C = ϕq(F ),
and H = Φq(G). Then Hc[C ] contains a universal vertex if and only if Gc[F ]
contains q universal vertices.

Proof. If Hc[C ] contains a universal vertex x, then every clique of F contains
the q-complete set of G that corresponds to x, that is, Gc[F ] contains q universal
vertices. Conversely, if Gc[F ] contains q universal vertices forming a q-complete
set Q of G, then every clique of C contains the vertex of H that corresponds to
Q, that is, Hc[C ] contains a universal vertex. �

Lemma 5. Let C be a (p + 1)-complete set of a graph G, and let C be a p−-
subfamily of cliques of G such that every clique of C contains at least p vertices
of C. Then core(C ) �= Ø.

Proof. Trivial. �

We now are able to present a characterization for (p, q)-clique-Helly graphs.
The cases p = 1 and p > 1 will be dealt with separately.

Theorem 3. Let G be a graph, and let W be the union of the q+-cliques of G.
Then G is a (1, q)-clique-Helly graph if and only if G[W ] contains q universal
vertices.

Proof. Assume that G is a (1, q)-clique-Helly graph. Consider the subfamily F
formed by the q+-cliques of G.

If w ∈ W , then w clearly belongs to a q+-clique of G. This implies that
w ∈ V (Gc[F ]). On the other hand, if w′ ∈ V (Gc[F ]), then w′ belongs to a
q+-clique of G, and therefore w′ ∈ W . This shows that Gc[F ] is a spanning
subgraph of G[W ].

Since F is (1, q)-intersecting by hypothesis, it has a q+-core. This means that
Gc[F ] contains (at least) q universal vertices. Hence, G[W ] contains q universal
vertices.

Conversely, assume that G[W ] contains q universal vertices forming a q-
complete set Q. Let F = {C1, . . . , Ck} be a (1, q)-intersecting subfamily of
cliques of G. Then |Ci| ≥ q, that is, every w ∈ Ci is contained in a q-complete
set of G, for i = 1, . . . , k. This implies that every Ci is an induced subgraph of
G[W ]. Therefore, every u ∈ Q is adjacent to all the vertices of Ci\{u}. By the
maximality of Ci, it contains all the vertices u ∈ Q, for i = 1, . . . , k. Hence, F
has a q+-core, as required. �

Theorem 4. Let p > 1 be an integer. Then a graph G is (p, q)-clique-Helly if
and only if every (p + 1)-expansion of Φq(G) contains a universal vertex.

Proof. Suppose that G is a (p, q)-clique-Helly graph and there exists a (p + 1)-
expansion T , relative to a (p+1)-complete set C of Φq(G), such that T contains
no universal vertex.



350 Mitre Costa Dourado, Fábio Protti, and Jayme Luiz Szwarcfiter

Let C be the subfamily of cliques of H = Φq(G) that contain at least p
vertices of C. Let F = ϕ−1

q (C ). Consider a p−-subfamily F ′ ⊆ F . Let C ′ =
ϕq(F ′). By Lemma 5, core(C ′) �= Ø. That is, Hc[C ′] contains a universal vertex.
This implies, by Lemma 4, that Gc[F ′] contains q universal vertices. Thus, F ′

has a q+-core, that is, F is (p, q)-intersecting. Since G is (p, q)-clique-Helly, we
conclude that F has a q+-core and Gc[F ] contains q universal vertices. By using
Lemma 4 again, Hc[C ] contains a universal vertex. Moreover, by Lemma 2, Hc[C ]
is a spanning subgraph of T . However, T contains no universal vertex. This is
a contradiction. Therefore, every (p + 1)-expansion of H = Φq(G) contains a
universal vertex.

Conversely, assume by contradiction that G is not (p, q)-clique-Helly. Let
F = {C1, . . . , Ck} be a minimal (p, q)-intersecting subfamily of cliques of G
which does not have a q+-core. Clearly, k > p.

The minimality of F implies that there exists a q-subset Qi ⊆ core(F\{Ci}),
for i = 1, . . . , k. It is clear that Qi �⊆ Ci. Moreover, every two distinct Qi, Qj

are contained in a common clique, since k ≥ 3. Hence the sets Q1, Q2, . . . , Qp+1

correspond to a (p + 1)-complete set C in Φq(G).
Let C be the subfamily of cliques of H = Φq(G) that contain at least p

vertices of C. Let C ′ = ϕq(F ). Since every Ci ∈ F contains at least p sets
from Q1, Q2, . . . , Qp+1, it is clear that the clique ϕq(Ci) ∈ C ′ contains at least
p vertices of C. Therefore, ϕq(Ci) ∈ C , for i = 1, . . . , k.

Let T be the (p + 1)-expansion of H relative to C. By Lemma 2, Hc[C ] is a
spanning subgraph of T . Therefore, Q ⊆ V (T ), for every Q ∈ C . In particular,
V (ϕq(Ci)) ⊆ V (T ), for i = 1, . . . , k. By hypothesis, T contains a universal vertex
x. Then x is adjacent to all the vertices of ϕq(Ci)\{x}, for i = 1, . . . , k. This
implies that ϕq(Ci) contains x, otherwise ϕq(Ci) would not be maximal. Thus,
core(C ′) �= Ø and Hc[C ′] contains a universal vertex. By Lemma 4, Gc[F ]
contains q universal vertices, that is, F has a q+-core. This contradicts the
assumption for F . Hence, G is a (p, q)-clique-Helly graph. �

4 Complexity Aspects

Let p and q be fixed positive integers. If p = 1, testing whether the subgraph
induced by the union of the q+-cliques of G contains q universal vertices (The-
orem 3) can be easily done in polynomial time, by considering the subgraph of
G induced by the union of all the q-complete subsets of G.

If p > 1, testing the existence of a universal vertex in every (p+1)-expansion
of Φq(G) (Theorem 4) can also be done in polynomial time, since the number of
such (p + 1)-expansions is O(|V (G)|q(p+1)). Thus:

Corollary 1. For fixed positive integers p, q, there exists a polynomial time al-
gorithm for recognizing (p, q)-clique-Helly graphs. �

Now we will show that when p or q is not fixed, the problem of deciding
whether a given graph is (p, q)-clique-Helly is NP-hard. We first recall the fol-
lowing NP-complete problems [8]:



Characterization and Recognition of Generalized Clique-Helly Graphs 351

SATISFIABILITY: Given a boolean expression E in the conjunctive normal
form, is there a truth assignment for E ?
CLIQUE: Given a graph G and a positive integer k, is there a k+-clique in G?
The NP-hardness of CLIQUE can be proved by a transformation from SATIS-
FIABILITY [8]: given a boolean expression E with m clauses in the conjunctive
normal form, first construct the graph G (E ) by defining a vertex for each occur-
rence of a literal in E , and by creating an edge between two vertices if and only
if the corresponding literals lie in distinct clauses and one is not the negation of
the other. In addition, set k = m. Then the following applies:
Fact 1. [8] The boolean expression E with m clauses in the conjunctive normal
form is satisfiable if and only if the graph G (E ) contains an m-clique.

Consider now the recognition of (p, q)-clique-Helly graphs, for p or q variable.
Let us first show the NP-hardness proof when p is fixed and q is variable:
Theorem 5. Let p be a fixed positive integer. Given a graph G and a positive
integer q, the problem of deciding whether G is (p, q)-clique-Helly is NP-hard.

Proof. Transformation from CLIQUE. Given a graph G and a positive integer k,
construct the graph G′ by adding 2p+2 new vertices forming a (p+1)-complete
set Z = {z1, z2, . . . , zp+1} and a (p+1)-independent set W = {w1, w2, . . . , wp+1}.
Add the edges (zi, wj), for i �= j, and the edges (v, u), for v ∈ V (G) and u ∈
Z ∪W . The construction of G′ is completed. Figure 1 shows the construction,
where non-edges between Z and W are represented by dashed lines linking zi to
wi.

Define q = k + 1. We will show that G contains a (q − 1)-clique if and only
if G′ is not (p, q)-clique-Helly. Assume first that G contains a (q − 1)-clique C.
Consider the following p + 1 cliques of G′:

C ∪ {wj} ∪ (Z\{zj}), for 1 ≤ j ≤ p + 1.

These cliques are (p, q)-intersecting, but do not have a q+-core. Therefore,
G′ is not (p, q)-clique-Helly.

Conversely, assume that the cliques of G have size at most q − 2. Since
G′[Z ∪W ] is K(p+2)-free, cliques of G′ have size at most (q−2)+(p+1) = q+p−1,
that is, G′ is K(p+q)-free. By Theorem 2, G′ is (p, q)-clique-Helly, as desired. �

Now we prove the NP-hardness in the case where q is fixed and p is variable:
Theorem 6. Let q be a fixed positive integer. Given a graph G and a positive
integer p, the problem of deciding whether G is (p, q)-clique-Helly is NP-hard.

Proof. Transformation from SATISFIABILITY. Given a boolean expression
E = (E1, . . . ,Em) in the conjunctive normal form, let us construct a graph G′,
as follows.

First, construct the graph G (E ) above described. Define Vi as the subset
of vertices of V (G (E )) corresponding to the ocurrences of literals in clause Ei,
1 ≤ i ≤ m.

Next, add m new vertices, one for each Ei, forming an m-independent set W =
{w1, w2, ..., wm}. For i = 1, . . . , m, add the edges (wi, v) where v ∈ V (G (E )) and
v �∈ Vi.
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Fig. 1. The graph G′ for Theorem 5

Finally, add q − 1 new vertices forming a (q − 1)-complete subset Z =
{z1, ..., zq−1}, and add the edges (z, v), for z ∈ Z and v ∈ W ∪ G (E ). The
construction of G′ is finished. Clearly, every vertex of Z is universal in G′, and
every clique of G′ contains these q − 1 vertices. Figure 2 shows a scheme of the
construction, where the dashed lines mean that wi is not adjacent to the vertices
of Vi, for 1 ≤ i ≤ m.

Set p = m − 1. We will show that E is satisfiable if and only if G′ is not
(p, q)-clique-Helly. Assume first that E is satisfiable. By Fact 1, G (E ) contains
a (p +1)-clique K = {v1, v2, ..., vp+1}, where vj ∈ Vj. By the construction of G′,
it contains the (p + q)-cliques

Kj = (K\{vj}) ∪ {wj} ∪ Z, for 1 ≤ j ≤ p + 1.

These p + 1 cliques are (p, q)-intersecting, but do not have a q+-core. Thus,
G′ is not (p, q)-clique-Helly.

Conversely, assume that E is not satisfiable. In this case, by Fact 1, G (E ) is
K(p+1)-free. Thus, every clique of G′ contains exactly a vertex of W , since for
any p−-subset S ⊆ V (G (E )), there exists at least one vertex of W adjacent to
all the vertices of S.

Let Q be a (p+1)-family of q-complete sets contained in a common clique of
G′, and let F be the subfamily of cliques of G′ that contain at least p members
of Q. By Observation 1, we need to prove that F has a q+-core. (Recall that F
contains Z, that is, |core(F )| ≥ q − 1.)

If V (Q) is contained in a (p+q−1)−-complete set of G′, Lemma 1 guarantees
that F has a q+-core, and nothing remains to prove. Hence, let us assume that
V (Q) is a (p + q)+-complete set of G′.
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Fig. 2. The graph G′ for Theorem 6

Since G (E ) is K(p+1)-free, a maximum clique C′ of G′ is of size at most
(q − 1) + 1 + p = p + q. Therefore, V (Q) is in fact a (p + q)-clique of G′.

Write C′ = V (Q). Then C′ is of the form C′ = Z ∪ {wk} ∪ P , where
k ∈ {1, . . . , p + 1} and P is a p-complete set contained in V (G (E )). It is clear
that the ocurrences of literals corresponding to the vertices of P lie in distinct
clauses of E . This means that there is exactly one vertex v ∈ P ∩ Vj, for every
j ∈ {1, . . . , p + 1}\{k}. Thus, write P = {v1, . . . , vk−1, vk+1, . . . , vp+1}, where
vj ∈ Vj for j ∈ {1, . . . , p + 1}\{k}.

Let v ∈ {wk} ∪ P . If v belongs simultaneously to two members of Q, then
v belongs to all the members of F . In other words, Z ∪ {v} is a q-core of F ,
as desired. Therefore, it only remains to analyze the case in which

Q = { Z ∪ {vj} | 1 ≤ j ≤ p + 1, j �= k } ∪ { Z ∪ {wk} }.
In this case, let us show that wk belongs to every member of F . Suppose that

some C′′ ∈ F does not contain wk. Recall that C′′ contains a vertex wj , j �= k.
Moreover, vj ∈ P is not adjacent to wj . This implies that C′′ cannot contain the
member of Q which vj belongs to. Since C′′ does not contain wk, C′′ can neither
contain the member of Q which wk belongs to. A contradiction arises, since C′′

should contain p members of Q. Thus, wk indeed belongs to every member of
F , and Z ∪ {wk} is a q-core of F , as desired. �

From Theorems 5 and 6, we conclude:

Corollary 2. The recognition of (p, q)-clique-Helly graphs, for p or q variable,
is NP-hard. �
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5 Conclusions

The study of graph classes and their characterizations is an important subject
in graph theory in general, and in particular in graph algorithms. See [5]. In
this paper, we have described and characterized (p, q)-clique-Helly graphs, a
class arising from a generalization of the Helly property and which generalizes
clique-Helly graphs. The characterization leads to a recognition algorithm for
(p, q)-clique-Helly graphs whose complexity is polynomial, whenever p and q are
fixed. In contrast, we have shown that the recognition problem is NP-hard for
arbitrary p or q.
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Via Vetoio, 67010 L’Aquila, Italy

proietti@di.univaq.it

Abstract. We study the following NP-hard graph augmentation prob-
lem: Given a weighted graph G and a connected spanning subgraph H
of G, find a minimum weight set of edges of G to be added to H so that
H becomes 2-edge-connected. We provide a formulation of the problem
as a set covering problem, and we analyze the conditions for which the
linear programming relaxation of our formulation always gives an inte-
ger solution. This yields instances of the problem that can be solved in
polynomial time. As we will show in the paper, these particular instances
have not only theoretical but also practical interest, since they model a
wide range of survivability problems in communication networks.

1 Introduction

Several network design problems have been formulated as integer programming
problems, and in many cases mathematical programming techniques revealed
very effective to understand and to solve these problems. These techniques had
a leading role in designing efficient approximation algorithms for network prob-
lems, but they were also crucial in enlightening the structural properties of these
problems. In particular, they help to understand where the hardness of a problem
lies by characterizing those instances which are polynomial-time solvable.

Here, we consider the problem of strengthening the edge-connectivity of
an existing network to fulfill increasing communication reliability requirements.
Such a strengthening is realized through the addition of a set of new links, in
such a way that the original degree of (either edge or node)-connectivity of the
network is increased. Generally, these additional links must be selected from a
set of potential links, where each potential link has a certain cost, based on some
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connectivity degree, one wants also to minimize some objective function of these
link costs.

From a theoretical point of view (and for the edge-connectivity case, which is
of interest for this paper), this gives rise to a family of augmentation problems on
graphs [1]. Among them, one of the most basic problems can be formulated as fol-
lows: Given an undirected, 2-edge-connected and real weighted graph G = (V, F ),
and given a connected spanning subgraph H = (V, E) of G, find a minimum-
weight subset of F \ E, say Aug2(G, H), such that H ′ = (V, E ∪Aug2(G, H))
is 2-edge-connected.

This problem is NP-hard [4], and thus most of the research in the past
focused on the design of approximation algorithms for solving it. To this re-
spect, efficient approximation algorithms are known, with performance ratio 2
[4, 10]. For the unweighted case, improving the approximation ratio below 2 has
been a long standing open problem. Just recently, Nagamochi [12] developed
a (1.875 + ε)-approximation algorithm, for any constant ε > 0, afterwards im-
proved to 3/2 by Even et al. [2]. Analogous versions of augmentation problems
for node-connectivity and for directed graphs have been widely studied, and we
refer the interested reader to the following comprehensive papers [3, 11].

The problem of characterizing polynomially solvable cases of the 2-edge-
connectivity augmentation problem has been deeply investigated as well. The
polynomiality of the problem can be achieved by giving additional constraints
on the structure of the pair (G, H). First, Eswaran and Tarjan [1] proved that
Aug2(G, H) can be found in polynomial time if G is complete and all edges in
G have weight 1, i.e., all potential links between sites may be activated at the
same cost. Afterwards, Watanabe and Nakamura extended this result to any
desired edge-connectivity value [15], and faster algorithms in this case have been
proposed in [5]. From another perspective, the structure of H can be equally
relevant in order to have polynomial time algorithms. For example, Aug2(G, H)
can be found in polynomial time if G is any weighted graph and H is a spanning
tree of G which can be rooted in a node r ∈ V in such a way that for every edge
uv ∈ F \ E, either u is an ancestor of v, or v is an ancestor of u in the rooted
tree [6].

In this paper we move one significant step towards the characterization of the
intrinsic complexity of the 2-edge-connectivity augmentation problem. In par-
ticular, we formulate the problem as a set covering problem on special matrices
defined by the pair (G, H), and we provide sufficient conditions on (G, H) so
that the linear programming relaxation of our formulation always gives an inte-
ger solution. This yields instances of the problem that can be solved efficiently.
As we will show in the paper, these particular instances have not only theoreti-
cal but also practical interest, since they model several survivability problems in
communication networks. Specifically, we shall provide an application in many-
to-one networks (i.e., networks where data flow from multiple sources towards a
single sink).

The paper is organized as follows: in Section 2, we recall some basic results
and definitions from integer programming and graph theory. In Section 3, we
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formulate the 2-edge-connectivity augmentation problem as a set covering prob-
lem. In Section 4, we provide sufficient conditions that guarantee the polynomial
solvability of the problem. Then, in Section 5, we explain in detail how to trans-
form the 2-edge-connectivity augmentation problem into a min-cost circulation
problem in a directed graph and, as a consequence, we provide an effective poly-
nomial time algorithm to solve the 2-edge-connectivity augmentation problem
in a large class of graphs. Finally, in Section 6 we show the practical impact of
our results, by providing a realistic scenario in which they find an application.

2 Preliminaries

Let A be a (0, 1)-matrix with n rows and m columns and let w ∈ R
m and b ∈ R

n.
An integer programming (IP) problem is formulated as follows:

min wT x
s.t. Ax ≥ b

x integer.
(1)

Being P = {x ∈ R
m : Ax ≥ b, x ≥ 0} a polyhedron, an IP problem consists

in finding an integral vector x∗ ∈ P that minimizes the linear function wT x
over the integral vectors of P . This problem is NP-hard, in general, but some
instances can be solved as linear programming (LP) problems, for all objective
functions. For example, when the polyhedron P is integral, i.e., all of its extreme
points have integer coordinates, the integrality constraint in (1) can be replaced
by x ≥ 0, and the optimum of (1) can be found by any polynomial time algorithm
developed for linear programming.

A (0,±1)-matrix A is totally unimodular (TU, for short) if det(A′) = 0,±1
for every square submatrix A′ of A. A classical result of Hoffman a Kruskal [9]
shows that {x ∈ R

m : Ax ≥ b, x ≥ 0} is an integral polyhedron for every integral
vector b if and only if A is a TU matrix.

The case when the elements of A, b and x in (1) are restricted to be 0 or 1, is
usually known as the set covering problem and it is one of the most studied IP
problems since many combinatorial optimization problems can be formulated in
this form. The integrality of the set covering polyhedron {x ∈ R

m : Ax ≥ 1, x ≥
0} is guaranteed by the weaker property of A of being balanced. A (0, 1)-matrix
M is balanced if and only if it contains no square submatrix of odd order whose
row and column sums are all 2. Since the determinant of a square matrix of
odd order whose row and column sums are all 2 is ±2, it follows that every TU
matrix is balanced. This containment in general is known to be strict.

We complete the section with some graph theory definitions. Let G = (V, F )
be an undirected graph with node set V and edge set F . Graph G is said to be
weighted if it is given a real function w : F (→ R. Given two vertices v0, vk ∈ V ,
a (simple) v0vk-path in G is a sequence 〈v0, e1, v1, . . . , ek, vk〉, where vi’s are
distinct vertices in V , and each ei is an edge of F with endvertices vi−1 and
vi. A graph is connected if every pair of vertices is joined by a path. A graph
G is 2-edge-connected if the removal of any edge from G leaves G connected.
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Given a node v ∈ V , the star of v in G, denoted by δG(v), is the set of edges
{e1, e2, . . . , ek} of F having v as endnode.

If G = (V, A) is a directed graph (digraph, for short), then we denote by
δ+
G(v) (δ−G(v), respectively) the set of arcs in A leaving (entering, respectively)

a node v ∈ V . Given two vertices v0, vk ∈ V , a v0vk-path in G is a sequence
〈v0, a1, v1, . . . , ak, vk〉, where vi’s are distinct vertices in V , and each ai is either
an arc vi−1vi or an arc vivi−1 of A. A v0vk-path in G is directed if every arc ai

along the path is oriented from vi−1 to vi.

3 Formulating the Augmentation Problem

Given an undirected, 2-edge-connected, real weighted graph G = (V, F ), and
given a connected spanning subgraph H = (V, E) of G, the problem of finding
a 2-edge-connectivity augmentation of H with respect to G asks for selecting a
minimum weight set of edges in F \ E, denoted as Aug2(G, H), such that the
graph H ′ = (V, E ∪Aug2(G, H)) is 2-edge-connected.

Notice that if H is connected, then, without loss of generality, we can as-
sume that H is a tree. Indeed, each 2-edge-connected component of H can be
contracted into a single vertex. This transforms the graph G into a multigraph
G, and the graph H into a tree T , whose edges are the bridges of H . It is then
easy to see that finding Aug2(G, H) is equivalent to finding Aug2(G, T ). Based
on that, we will restrict ourselves to the problem of finding 2-edge-connectivity
augmentation of trees.

Let then be given a real weighted graph G = (V, F ) and a tree T = (V, E)
defined over the same vertex set. Let F = {f1, . . . , fm} and E = {e1, . . . , en}
with E ∩ F = ∅. The graphic matrix associated with the pair (G, T ) is the
(0, 1)-matrix M whose rows and columns are indexed by the edges in E and F ,
respectively, and whose elements are defined as follows: for any fj = uv ∈ F , we
have

mij =
{

1 if the unique uv-path in T contains ei;
0 otherwise. (2)

The 2-edge-connectivity augmentation problem can be formulated as the fol-
lowing integer program:

min
{
wT x : Mx ≥ 1, x ∈ {0, 1}m

}
. (3)

Indeed, if we let w to be the vector of weights of the edges of G, it is easy to
see that an optimal vector for (3) is the incidence vector of a minimum weight
subset F ′ ⊆ F such that T ′ = (V, E ∪ F ′) is 2-edge-connected.

The problem (3) is a set covering problem. This problem is NP-hard even
if M is a graphic matrix, but if M is totally unimodular, and hence balanced,
then all the basic feasible solutions (in the linear programming sense) of the
constrains system {Mx ≥ 1, x ≥ 0} are integer-valued and the problem becomes
polynomial time solvable.

In the following, we explore which graphic matrices are TU, and we show that
balancedness and totally unimodularity coincide in the class of graphic matrices.
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4 Network Matrices and Graphic Matrices

Let D = (V, F ) be a digraph and let T = (V, E) be a directed tree on the same
node set, with F ∩ E = ∅. The network matrix (see [14]) associated with the
pair (D, T ) is the (0,±1)-matrix N whose rows and columns are indexed by the
edges in E and F , respectively, and whose elements are defined as follows: for
any fj = uv ∈ F , we have

nij =

⎧⎨
⎩

+1 if the unique uv-path in T contains ei as a forward arc;
−1 if the unique uv-path in T contains ei as a backward arc;
0 otherwise.

(4)

The next two lemmas are known facts on TU and network matrices (see
Schrijver [14] and Nemhauser, Wolsey [13] for more details).

Lemma 1. Let A be a (0,±1)-matrix having at most one +1 and one −1 in
every column. Then A is TU. ��

Let AT be the node-arc incidence matrix of a directed tree T = (V, E) and
let AD be the node-arc incidence matrix of a directed graph D = (V, F ) on the
same node set. Finally, let N be the network matrix associated with the pair
(D, T ). Let fi = uv be an arc of D, and let Nfi be the column of N indexed
by fi. Since Nfi is the incidence vector of the uv-path in T with forward edges
having + sign and backward edges having− sign, then AT Nfi is a vector indexed
on V whose j-th component is defined as follows:

(AT Nfi)j =

⎧⎨
⎩

+1 if j = u;
−1 if j = v;
0 otherwise.

(5)

This shows that AT N = AD.
The matrices AT and AD are not full rank matrices. Let ÃT and ÃD arise

from AT and AD by deleting one row (corresponding to the same node). By
using the fact that a spanning tree always has a node of degree 1, it is easy to
prove that the columns of ÃT are independent, and therefore ÃT is a square
nonsingular matrix where rank(AT ) = rank(ÃT ). So the system AT N = AD

implies that N = Ã−1
T ÃD.

Lemma 2. Let N be a network matrix. Then N is TU. ��
It follows from the definitions of graphic and network matrices that a graphic

matrix M associated with an undirected graph G and a tree T is also a network
matrix if and only if there is an orientation G of G and T of T such that for
each arc uv of G the uv-path in T is a directed path from u to v (i.e. all the
edges are forward edges). We call these orientations good.

Note that if (G, T ) is a good orientation of G, T , then also the orientations
obtained from G, T by reversing the directions of all the arcs of G and T are
good. This shows that, in order to find a good orientation if one exists, one can
orient an edge of G or T arbitrarily. Note now that the orientation of an edge
e of T forces the orientation of all the edges of G that contain e in the subpath
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of T between their endnodes. Furthermore the orientation of an edge f of G
forces the orientations of every edge of T that is contained in the subpath of T
between the endnodes of f . It is immediate now to see that this rule provides a
fast algorithm to find a good orientation of G, T if one exists.

We now provide a characterization of the graphic matrices that are also
network matrices, i.e., we identify which pairs (G, T ) admit a good orientation.
A node v of T is a junction if |δT (v)| ≥ 3. For any junction v with δT (v) =
{e1, e2, . . . , ek}, let Gv be the graph whose node set ve1 , ve2 , . . . , vek

represents
edges e1, e2, . . . , ek, and veivej ∈ E(Gv) if and only if ei, ej belong to an xy-
subpath identified by an edge f = xy of G.

Theorem 1. A graphic matrix M associated with G and T is a network matrix
if and only if for every junction v of T , the graph Gv is bipartite.

Proof. (Necessity) Assume Gv is not bipartite for some v ∈ V : Then Gv con-
tains an odd chordless cycle ve1 , ve2 , . . . , vej . This shows that T contains distinct
edges e1, e2, . . . , ej, j odd, having v as endnodes and G contains distinct edges
f1, f2, . . . , fj such that for 1 ≤ i ≤ j − 1, ei, ei+1 are consecutive edges of the
subpath of T between the endnodes of fi and ej, e1 are consecutive edges of the
subpath of T between the endnodes of fj . Let B be the square submatrix of M
whose rows and columns are indexed by e1, e2, . . . , ej and f1, f2, . . . , fj. Now B
is a square matrix of odd order j and by the above argument, B has two 1’s
per row and column. By the cofactor expansion formula, it is easy to see that
det(B) = ±2. So M is not TU and by Lemma 2, M is not a network matrix.

(Sufficiency) Let (G, T ) be a pair satisfying the hypothesis of the theorem. The
proof is by induction on the number of junctions of T .

Assume first that T has only one junction v, and let E1, E2 be a partition of
the edges in δT (v) corresponding to the bipartition of the nodes of Gv. Orient
the edges in δT (v) so that δ−T (v) = E1, δ+

T (v) = E2. This orientation forces the
orientation of all the edges of G and all the other edges of T in some subpath
between endnodes of edges of G. Since every such subpath contains an edge of
E1 and an edge of E2, the orientation thus obtained is good.

So T contains at least two junctions. Let V1, V2 be a partition of V such that
only one edge e of T is in δT (V1) and the subtrees T1, T2, obtained from T by
contracting V2, V1 into single nodes v2, v1 and removing loops, both contain less
junctions than T . Let G1, G2, obtained from G by contracting V2, V1 into single
nodes v2, v1. Note that both pairs (G1, T1) and (G2, T2) satisfy the hypothesis of
the theorem. So, by the inductive hypothesis, both pairs (G1, T1) and (G2, T2)
admit good orientations, and we can assume without loss of generality that e
is oriented the same way in T1 and T2. This forces those edges of G that are
common to G1 and G2 to get the same orientation. It is now immediate to
combine the two orientations to obtain a good orientation of (G, T ). ��

From the proof of the necessity part of Theorem 1 and from Lemma 2 we
can deduce the following:

Corollary 1. Let M be a graphic matrix. Then M is balanced if and only if M
is a network matrix. ��
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5 Augmentation as Circulation

The immediate consequence of the results presented so far is that:

Theorem 2. For any pair (G, T ) such that Gv is bipartite for any junction
v ∈ T , Aug2(G, T ) can be found in polynomial time. ��

Notice also that it is checkable in polynomial time whether a pair (G, T )
satisfies the hypothesis of Theorem 2.

Examples of trees satisfying the conditions of Theorem 2 are the depth-first-
search (DFS) trees for which efficient polynomial time algorithms were already
found [10, 6]. Indeed, for DFS-trees each graph Gv consists of a star plus a
(possibly empty) set of singletons.

In the remaining of the section, we describe in detail an algorithm that finds
Aug2(G, T ) when (G, T ) satisfies the hypothesis of Theorem 2. In particular, we
show that the set covering problem with constraint matrices that are network
matrices can be solved by flow techniques. Consider the linear programming
relaxation

min{wT x : Mx ≥ 1, x ≥ 0} (6)

of the set covering problem, and rewrite it in standard form by adding a vector
s of slack variables:

min{wT x : Mx− Is = 1, x, s ≥ 0}. (7)

Now, suppose that M is a network matrix, associated with the pair (G, T ).
Then by Lemma 2 M is a TU matrix and by the Hoffman-Kruskal’s theorem
every basic feasible solution (x, s) of the above linear program is an integral
vector. Thus an optimal solution of the above linear program solves the set
covering problem.

Furthermore, if M is a network matrix, the pair (G, T ) admits a good ori-
entation (G, T ). Hence, M = Ã−1

T ÃG and we obtain the following equivalent
linear program:

min{wT x : ÃGx− ÃT s = ÃT 1, x, s ≥ 0}. (8)

Note that the matrix −AT is the incidence matrix of the directed tree T ′

obtained from T by reversing the orientations of all its arcs. Hence, by substi-
tuting the vector s with the vector s′ = s + 1, the linear program (8) can be
written as the min-cost circulation problem:

min{wT x : ÃGx + ÃT ′s′ = 0, x ≥ 0, s′ ≥ 1}, (9)

and an integral optimal solution can be found by flow techniques, see e.g. [13].

The equivalence between the above set covering problem and the circulation
problem can be seen directly as follows. In the sequel, for any set S and vector
p ∈ R

|S| and for any U ⊆ S, we use p(U) to abbreviate
∑

i∈U pi. The equality
constraints of the above linear system are:

x
(
δ+
G(v)

)
− x

(
δ−G(v)

)
+ s′

(
δ+
T ′(v)

)
− s′

(
δ−T ′(v)

)
= 0 ∀v ∈ V. (10)
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For any edge ej of T , let Sj ⊂ V be such that δ+
T ′(Sj) = ej, where δ+

T ′(Sj) =⋃
v∈Sj

δ+
T ′(v). If x ≥ 0, s′ ≥ 1 is a vector satisfying (10), then

x
(
δ+
G(Sj)

)
− x

(
δ−G(Sj)

)
+ s′

(
δ+
T ′(Sj)

)
− s′

(
δ−T ′(Sj)

)
= 0.

Since s′
(
δ+
T ′(Sj)

)
≥ 1 and δ−T ′(Sj) = ∅, we have that x

(
δ−G(Sj)

)
≥ 1 and the

constraint of (6) associated with ej is satisfied.
On the other hand, assume that x is a solution of (6). Let F (ei) ⊆ F denote

the set of edges containing ei on the path in T between their endnodes, and let

s′ei
=

∑
fj∈F (ei)

xfj .

Then, it is straightforward to check that if x is an augmenting set, then s′ei
≥ 1,

for each ei ∈ E, and (x, s′) is a flow vector in a good orientation of (G, T ).
It is worth noticing that the results of this section can also be generalized

in another direction. Indeed, the totally unimodularity of a graphic matrix M
implies a more general result (by the Hoffmann-Kruskal theorem [9]), namely
that the optimal solution of the following linear program

min{wT x : Mx ≥ b, c ≥ x ≥ 0} (11)

is integral for any b and c integral vectors.
Thus, depending on the values of b and c, it is possible to identify interesting

network problems that can be solved in polynomial time when M satisfies con-
ditions of Theorem 1. One of this problems is presented in the following section.

6 An Application to Many-to-One Networks

We consider a survivability problem arising in networks in which the commu-
nication occurs in a many-to-one fashion. In these networks, we have a set of
source nodes which transmit messages to a single destination node, named the
sink. Messages are routed from the sources to the sink through a set of inter-
mediate nodes, which serve as routers. As a classic example of networks using a
many-to-one communication protocol, we mention sensor networks, where data
of interest (e.g., temperature, pollution index, etc.) are gathered at different lo-
cations (sources), and are transmitted to a single destination point (sink), where
they can be stored and analyzed.

Given the inherent hierarchical structure, the typical topology of a many-
to-one communication network is a directed rooted tree, with the sink as the
root, the sources as the leaves, the routers as the internal nodes, and all the arcs
oriented towards the root. In this tree, an arc uv represents the communication
channel between nodes u and v. Hence, depending on the boundary conditions,
such a link will afford a given amount of traffic, named its load. In the simplest
situation, each link handles an amount of traffic which is proportional to the
number of source nodes using it as a bridge towards the root. Therefore, the
communication tree can be modelled as a tree T (r) = (V, E) rooted at the
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source node r, where with each e ∈ E is associated an integer b(e) representing
the link load.

Under normal working conditions, the tree links guarantee the data flow from
the sources to the sink. However, networks usually undergo link failures, and
therefore one might be interested in increasing the network reliability by creating
alternative paths from the leaves towards the root. This can be accomplished
by adding new links to the tree. Given the underlying hierarchical structure, we
can assume that these links join related nodes in T (r), i.e., nodes which belong
to a given root-leaf path (this can be motivated, for instance, by constraints
over the terrain where the network is deployed). Each of these additional links
f is characterized by two main features: (1) a weight w(f), which summarizes
the cost to route a message through that link, and (2) a link capacity, say c(f),
which denotes the maximum amount of traffic load that can be routed through
f . Let G = (V, F ) be the corresponding capacitated weighted graph.

Then, in the depicted scenario, it makes sense to define the following problem:
given the pair (G, T (r)), find a minimum-cost set of edges in G whose addition
to T guarantees that the traffic load b(e), previously carried on e, can be re-
routed on the additional edges, for every e ∈ E. Indeed, after the failure of any
e = uv of T (r), an optimal solution for this problem allows to maintain (with a
minimum set-up cost) the traffic between the leaves and the root, by means of
the following simple changes to the communication protocol: let f1, . . . , fk be the
set of additional edges associated with e; then, collect in v all the messages sent
from the leaves below v in T (r), and redistribute them among the replacement
edges (according to their capacity) by letting the messages descend T (r) to
reach the starting nodes of f1, . . . , fk, from where they will be routed above u
(see Figure 1).

From a linear programming point of view, the above augmentation problem
can be formulated as follows:

min{wT x : Mx ≥ b, c ≥ x ≥ 0, } (12)

uu

684
17

3 8 6

9

3
5

. . .

⇒

r r

vv

Fig. 1. An edge uv in T (r) is removed, and messages are redirected through replace-
ment edges (dotted). On the left, values in triangles denote the number of sources in
the subtree, the value on edge uv denotes the load, while values on replacement edges
denote capacities; on the right, values on tree edges denote the number of redirected
messages.
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where w, b and c are defined as above, and M is the graphic matrix associated
with G and T , considering this latter as undirected. Since T (r) is a tree and
edges in G joins related nodes of T (r), it is easy to see that for each non-leaf
node v ∈ V, v �= r, Gv is a forest (more precisely, it is a star plus possibly some
isolated nodes). Thus, Theorem 1 holds and the matrix M is TU. Therefore,
problem (12) is solvable in polynomial time.
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4. G.N. Frederickson and J. Jájá, Approximation algorithm for several graph aug-
mentation problems, SIAM Journal on Computing, 10(2) (1981) 270–283.

5. H.N. Gabow, Application of a poset representation to edge-connectivity and
graph rigidity, Proc. 32nd Ann. IEEE Symp. on Foundations of Computer Sci-
ence (FOCS’91), IEEE Computer Society, 812–821.

6. A. Galluccio and G. Proietti, Polynomial time algorithms for edge-connectivity
augmentation problems, Algorithmica, 36(4) (2003) 361–374.

7. D.S. Hochbaum, Approximating covering and packing problems: set cover, vertex
cover, independent set and related problems, in Approximation Algorithms for NP-
Hard Problems, Dorit S. Hochbaum Eds., PWS Publishing Company, Boston, MA,
1996.

8. D.S. Hochbaum, N. Megiddo, J.S. Naor, and A. Tamir, Tight bounds and 2-
approximation algorithms for integer programs with two variables per inequality,
Mathematical Programming, 62 (1993) 69–83.

9. A.J. Hoffman and J.B. Kruskal, Integral boundary points of convex polyhedra,
in Linear Inequalities and Related Systems, H.W. Kuhn and A.W. Tucker Eds.,
Princeton University Press, New Jersey (1956), 223-246.

10. S. Khuller and R. Thurimella, Approximation algorithms for graph augmentation,
Journal of Algorithms, 14(2) (1993) 214–225.

11. S. Khuller, Approximation algorithms for finding highly connected subgraphs, in
Approximation Algorithms for NP-Hard Problems, Dorit S. Hochbaum Eds., PWS
Publishing Company, Boston, MA, 1996.

12. H. Nagamochi, An approximation for finding a smallest 2-edge-connected subgraph
containing a specified spanning tree, Discrete Applied Mathematics, 126(1) (2003)
83–113.

13. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, J.
Wiley & Sons, (1986).

14. A. Schrijver, Theory of Linear and Integer Programming, J. Wiley & Sons, (1986).
15. T. Watanabe and A. Nakamura, Edge-connectivity augmentation problems, Jour-

nal of Computer and System Sciences, 35(1) (1987) 96–144.



Partitioning a Weighted Graph
to Connected Subgraphs of Almost Uniform Size

Takehiro Ito, Xiao Zhou, and Takao Nishizeki

Graduate School of Information Sciences, Tohoku University
Aoba-yama 05, Sendai, 980-8579, Japan

take@nishizeki.ecei.tohoku.ac.jp, {zhou,nishi}@ecei.tohoku.ac.jp

Abstract. Assume that each vertex of a graph G is assigned a nonneg-
ative integer weight and that l and u are nonnegative integers. One wish
to partition G into connected components by deleting edges from G so
that the total weight of each component is at least l and at most u. Such
an “almost uniform” partition is called an (l, u)-partition. We deal with
three problems to find an (l, u)-partition of a given graph. The minimum
partition problem is to find an (l, u)-partition with the minimum num-
ber of components. The maximum partition problem is defined similarly.
The p-partition problem is to find an (l, u)-partition with a fixed number
p of components. All these problems are NP-complete or NP-hard even
for series-parallel graphs. In this paper we show that both the minimum
partition problem and the maximum partition problem can be solved in
time O(u4n) and the p-partition problem can be solved in time O(p2u4n)
for any series-parallel graph of n vertices. The algorithms can be easily
extended for partial k-trees, that is, graphs with bounded tree-width.

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V and edge set E, and
let |V | = n. Assume that each vertex v ∈ V is assigned a nonnegative integer
ω(v), called the weight of v. Let l and u be nonnegative integers, called the lower
bound and upper bound on component size, respectively. We wish to partition G
into connected components by deleting edges from G so that the total weights
of all components are almost uniform, that is, the sum of weights of all vertices
in each component is at least l and at most u for some bounds l and u with
small u − l. We call such an almost uniform partition an (l, u)-partition of G.
Figures 1(a) and (b) illustrate two (10, 20)-partitions of the same graph, where
each vertex is drawn by a circle, the weight of each vertex is written inside
the circle, and the deleted edges are drawn by dotted lines. In this paper we
deal with three partition problems to find an (l, u)-partition of a given graph
G. The minimum partition problem is to find an (l, u)-partition of G with the
minimum number of components. The minimum number is denoted by pmin(G).
The maximum partition problem is defined similarly. The p-partition problem
is to find an (l, u)-partition of G with a fixed number p of components. The
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Fig. 1. (a) Solution for the minimum partition problem, and (b) solution for the max-
imum partition problem, where l = 10 and u = 20.

(10, 20)-partition with four components in Fig. 1(a) is a solution for the minimum
partition problem, and hence pmin(G) = 4 for the graph G in Fig. 1(a). The
(10, 20)-partition with six components in Fig. 1(b) is a solution for the maximum
partition problem.

The three partition problems often appear in many practical situations such
as the image processing [5, 7], the paging system of operation system [10], and
the political districting [3, 11]. Consider a map of a country, which is divided into
several regions. Let G be a dual graph of the map. Each vertex v of G represents
a region, and the weight ω(v) represents the number of voters in region v. Each
edge (u, v) of G represents the adjacency of the two regions u and v. For the
political districting, one wishes to divide the country into electoral zones. Each
zone must consist of connected regions, that is, the regions in each zone must
induce a connected subgraph of G. There must be an almost equal number of
voters in each zone, that is, the sum of ω(v) for all regions v in each zone is at
least l and at most u for some bounds l and u with small u − l. Such electoral
zoning corresponds to an (l, u)-partition of the plane graph G.

Two related problems have been studied for trees. One is to partition a tree
into the maximum number of subtrees so that the total weight of each subtree
is at least l [8]. The other is to partition a tree into the minimum number of
subtrees so that the total weight of each subtree is at most u [6]. Both can be
solved for trees in linear time. Our three partition problems are generalizations
of these problems. One may expect that there would exist efficient algorithms
for the three partition problems on trees, but our problems are more difficult
than the two problems in [6, 8], except for paths; all the three partition problems
can be solved for paths in linear time [7].

An NP-complete problem, called the set partition problem [4], can be easily
reduced in linear time to our problems for a complete bipartite graph K2,n−2,
and K2,n−2 is a series-parallel graph. (A definition of a series-parallel graph will
be given in Section 2.) Therefore, the p-partition problem for general p is NP-
complete and both the minimum partition problem and the maximum partition
problem for general l and u are NP-hard even for series-parallel graphs. Hence,
it is very unlikely that the three partition problems can be solved for series-
parallel graphs in polynomial time, although a number of combinatorial problems
including many NP-complete problems on general graphs can be solved for series-
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parallel graphs and partial k-trees in polynomial time or even in linear time [1, 2,
9]. One can also observe from the reduction above that, for any ε > 0, there is no
polynomial-time ε-approximation algorithm for the minimum partition problem
or the maximum partition problem on series-parallel graphs unless P = NP.

In this paper we first obtain pseudo-polynomial-time algorithms to solve the
three partition problems for series-parallel graphs. More precisely, we show that
both the minimum partition problem and the maximum partition problem can
be solved in time O(u4n) and hence in time O(n) for any bounded constant u,
and that the p-partition problem can be solved in time O(p2u4n). We then show
that our algorithms can be easily extended for partial k-trees, that is, graphs
with bounded tree-width [1, 2]. (A definition of a partial k-tree will be given in
Section 5.)

2 Terminology and Definitions

In this section we give some definitions.
A (two-terminal ) series-parallel graph is defined recursively as follows [9]:

(1) A graph G of a single edge is a series-parallel graph. The ends of the
edge are called the terminals of G and denoted by s(G) and t(G). (See
Fig. 2(a).)

(2) Let G′ be a series-parallel graph with terminals s(G′) and t(G′), and
let G′′ be a series-parallel graph with terminals s(G′′) and t(G′′).

(a) A graph G obtained from G′ and G′′ by identifying vertex t(G′)
with vertex s(G′′) is a series-parallel graph, whose terminals are
s(G) = s(G′) and t(G) = t(G′′). Such a connection is called a
series connection, and G is denoted by G = G′ • G′′. (See
Fig. 2(b).)

(b) A graph G obtained from G′ and G′′ by identifying s(G′)
with s(G′′) and identifying t(G′) with t(G′′) is a series-parallel
graph, whose terminals are s(G) = s(G′) = s(G′′) and t(G) =
t(G′) = t(G′′). Such a connection is called a parallel connection,
and G is denoted by G = G′ ‖ G′′. (See Fig. 2(c).)

The terminals s(G) and t(G) of G are often denoted simply by s and t, respec-
tively. Since we deal with the partition problems, we may assume without loss
of generality that G is a simple graph and hence G has no multiple edges.

s(G)
=s(G' )

t(G)
=t(G'' )

t(G' )

s(G'' )
G' G''

G''

G'
s(G)

=s(G' )
=s(G'')

t(G)
=t(G' )
=t(G'')

(a) (c)

s(G) t(G)

(b) 

Fig. 2. (a) A series-parallel graph of a single edge, (b) series connection, and (c) parallel
connection.
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A series-parallel graph G can be represented by a “binary decomposition
tree” [9]. Figure 3 illustrates a series-parallel graph G and its binary decom-
position tree T . Labels s and p attached to internal nodes in T indicate series
and parallel connections, respectively. Nodes labeled s and p are called s- and
p-nodes, respectively. Every leaf of T represents a subgraph of G induced by
a single edge. Each node v of T corresponds to a subgraph Gv of G induced
by all edges represented by the leaves that are descendants of v in T . Thus Gv

is a series-parallel graph for each node v of T , and G = Gr for the root r of
T . Since a binary decomposition tree of a given series-parallel graph G can be
found in linear time [9], we may assume that a series-parallel graph G and its
binary decomposition tree T are given. We solve the three partition problems
by a dynamic programming approach based on a decomposition tree T .

s(G) t (G)

p

s s

p

s

(s,v2) (v2 ,v3)

(s,v3)
(v3 , t) (s ,v1) (v1 , t)

v2 v3

v1

(a)  G (b)  T

root r

Fig. 3. (a) A series-parallel graph G, and (b) its binary decomposition tree T .

3 Minimum and Maximum Partition Problems

In this section we have the following theorem.
Theorem 1. Both the minimum partition problem and the maximum partition
problem can be solved for any series-parallel graph G in time O(u4n), where n
is the number of vertices in G and u is the upper bound on component size.

In the remainder of this section we give an algorithm to solve the minimum
partition problem as a proof of Theorem 1, because the maximum partition
problem can be similarly solved. We indeed show only how to compute the
minimum number pmin(G). It is easy to modify our algorithm so that it actually
finds an (l, u)-partition having the minimum number pmin(G) of components.

Every (l, u)-partition of a series-parallel graph G naturally induces a parti-
tion of its subgraph Gv for a node v of a decomposition tree T of G. The induced
partition is not always an (l, u)-partition of Gv but is either a “connected parti-
tion” or a “separated partition” of Gv, which are illustrated in Fig. 4 and will be
formally defined later. Roughly speaking, two functions f(Gv, x) and h(Gv, x, y),
0 ≤ x, y ≤ u, represent the minimum number of components without terminals
in connected partitions and separated partitions of Gv, respectively, and x and
y represent the total weight of non-terminal vertices in a component with a ter-
minal. Our idea is to compute f(Gv, x) and h(Gv, x, y) from leaves v to the root
r of T by means of dynamic programming.
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PstPst

s t
Ps Pt

s t

(a)                                                               (b)

Fig. 4. (a) A connected partition, and (b) a separated partition.

We now formally define the connected partition and the separated partition
of a series-parallel graph G = (V, E). Let P = {P1, P2, · · · , Pr} be a partition
of vertex set V of G into r nonempty subsets P1, P2, · · · , Pr for some integer
r ≥ 1. Thus |P| = r. The partition P of V is called a partition of G if Pi induces
a connected subgraph of G for each index i, 1 ≤ i ≤ r. For a set P ⊆ V , we
denote by ω(P ) the total weight of vertices in P , that is, ω(P ) =

∑
v∈P ω(v).

Let ωst(G) = ω(s) + ω(t). We call a partition P of G a connected partition if P
satisfies the following two conditions (see Fig. 4(a)):

(a) there exists a set Pst ∈ P such that s, t ∈ Pst and ω(Pst) ≤ u; and
(b) l ≤ ω(P ) ≤ u for each set P ∈ P − {Pst}.

Note that the equation l ≤ ω(Pst) does not necessarily hold for Pst. For a
connected partition P , we always denote by Pst the set in P containing both s
and t. A partition P of G is called a separated partition if P satisfies the following
two conditions (see Fig. 4(b)):

(a) there exist two distinct sets Ps, Pt ∈ P such that s ∈ Ps, t ∈ Pt,
ω(Ps) ≤ u, and ω(Pt) ≤ u; and

(b) l ≤ ω(P ) ≤ u for each set P ∈ P − {Ps, Pt}.

Note that the equations l ≤ ω(Ps) and l ≤ ω(Pt) do not always hold for Ps and
Pt. For a separated partition P , we always denote by Ps the set in P containing
s and by Pt the set in P containing t.

We then formally define a function f(G, x) for a series-parallel graph G and
an integer x, 0 ≤ x ≤ u, as follows:

f(G, x) = min{q ≥ 0 | G has a connected partition P such that
x = ω(Pst)− ωst(G) and q = |P| − 1}. (1)

If G has no connected partition P such that ω(Pst) − ωst(G) = x, then let
f(G, x) = +∞. We now formally define a function h(G, x, y) for a series-parallel
graph G and a pair (x, y), 0 ≤ x, y ≤ u, as follows:

h(G, x, y) = min{q ≥ 0 | G has a separated partition P such that
x = ω(Ps)− ω(s), y = ω(Pt)− ω(t) and q = |P| − 2}. (2)

If G has no separated partition P such that ω(Ps)−ω(s) = x and ω(Pt)−ω(t) =
y, then let h(G, x, y) = +∞.
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Our algorithm computes f(Gv, x) and h(Gv, x, y) for each node v of a binary
decomposition tree T of a given series-parallel graph G from leaves to the root
r of T by means of dynamic programming. Since G = Gr, one can compute the
minimum number pmin(G) of components from f(G, x) and h(G, x, y) as follows:

pmin(G) = min
{
min{f(G, x) + 1 | l ≤ x + ωst(G) ≤ u},

min{h(G, x, y) + 2 | l ≤ x + ω(s) ≤ u, l ≤ y + ω(t) ≤ u}
}
. (3)

Note that pmin(G) = +∞ if G has no (l, u)-partition.
We first compute f(Gv, x) and h(Gv, x, y) for each leaf v of T , for which the

subgraph Gv contains exactly one edge. For x = 0

f(Gv, 0) = 0, (4)

and for (x, y) = (0, 0)

h(Gv, 0, 0) = 0. (5)

For each integer x, 1 ≤ x ≤ u,

f(Gv, x) = +∞, (6)

and for each pair (x, y), 1 ≤ x, y ≤ u,

h(Gv, x, y) = +∞. (7)

By Eqs. (4)–(7) one can compute f(Gv, x) in time O(u) for each leaf v of T and
all integers x ≤ u, and compute h(Gv, x, y) in time O(u2) for each leaf v and all
pairs (x, y) with x, y ≤ u. Since G is a simple series-parallel graph, the number
of edges in G is at most 2n− 3 and hence the number of leaves in T is at most
2n − 3. Thus one can compute f(Gv, x) and h(Gv, x, y) for all leaves v of T in
time O(u2n).

We next compute f(Gv, x) and h(Gv, x, y) for each internal node v of T
from the counterparts of the two children of v in T . We first consider a parallel
connection. Let Gv = G′ ‖ G′′, and let s = s(Gv) and t = t(Gv). (See Figs. 2(c)
and 5.)

We first explain how to compute h(Gv, x, y). The definitions of a separated
partition and h(G, x, y) imply that if ω(Ps) = x + ω(s) > u or ω(Pt) = y +
ω(t) > u then h(Gv, x, y) = +∞. One may thus assume that x + ω(s) ≤ u
and y + ω(t) ≤ u. Then every separated partition P of Gv can be obtained by
combining a separated partition P ′ of G′ with a separated partition P ′′ of G′′

as illustrated in Fig. 5(a). We thus have

h(Gv, x, y) = min{h(G′, x′, y′) + h(G′′, x− x′, y − y′) | 0 ≤ x′, y′ ≤ u}. (8)

We next explain how to compute f(Gv, x). If ω(Pst) = x + ωst(Gv) > u,
then f(Gv, x) = +∞. One may thus assume that x + ωst(Gv) ≤ u. Then every
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Fig. 5. The combinations of a partition P ′ of G′ and a partition P ′′ of G′′ for a partition
P of Gv = G′ ‖ G′′.

connected partition P of Gv can be obtained by combining a partition P ′ of G′

with a partition P ′′ of G′′, as illustrated in Figs. 5(b), (c) and (d). There are the
following three Cases (a)–(c), and we define three functions fa(Gv, x), f b(Gv, x)
and f c(Gv, x) for the three cases, respectively.

Case (a): both P ′ and P ′′ are connected partitions. (See Fig. 5(b).)
Let

fa(Gv, x) = min{f(G′, x′) + f(G′′, x− x′) | 0 ≤ x′ ≤ u}. (9)

Case (b): P ′ is a separated partition, and P ′′ is a connected partition. (See
Fig. 5(c).)

Let

f b(Gv, x) = min{h(G′, x′, y′) + f(G′′, x− x′ − y′) | 0 ≤ x′, y′ ≤ u}. (10)

Case (c): P ′ is a connected partition, and P ′′ is a separated partition. (See
Fig. 5(d).)

Let

f c(Gv, x) = min{f(G′, x− x′′ − y′′) + h(G′′, x′′, y′′) | 0 ≤ x′′, y′′ ≤ u}. (11)
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From fa, f b and f c above, one can compute f(Gv, x) as follows:

f(Gv, x) = min{fa(Gv, x), f b(Gv, x), f c(Gv, x)}. (12)

By Eq. (8) one can compute the function h(Gv, x, y) for all pairs (x, y), 0 ≤
x, y ≤ u, in time O(u4), and by Eqs. (9)–(12) one can compute the function
f(Gv, x) for all integers x, 0 ≤ x ≤ u, in time O(u3). Thus one can compute the
functions f(Gv, x) and h(Gv, x, y) for each p-node v of T in time O(u4).

G

G

Ps Pt

Ps Pt

G

G G

Ps Pt

G

G

Ps Pt

G

(a)                                                                                     (b)

(c)                                                                                     (d)

s
w

t

s
w

t

s
w

t

s
w

t

Pst

Pst

Pst

Pst

''

''

'

'

''

''''

'

'

''

''

''

'

''

'' ''

'

''

Fig. 6. The combinations of a partition P ′ of G′ and a partition P ′′ of G′′ for a partition
P of Gv = G′ • G′′.

We next consider a series connection. Let Gv = G′ • G′′, and let w be the
vertex of G identified by the series connection, that is, w = t(G′) = s(G′′). (See
Figs. 2(b) and 6.)

We first explain how to compute f(Gv, x). If x+ωst(Gv) > u, then f(Gv, x) =
+∞. One may thus assume that x+ωst(Gv) ≤ u. Then every connected partition
P of Gv can be obtained by combining a connected partition P ′ of G′ with a
connected partition P ′′ of G′′ as illustrated in Fig. 6(a). We thus have

f(Gv, x) = min{f(G′, x′) + f(G′′, x′′) | 0 ≤ x′, x′′ ≤ u,

x′ + x′′ + ω(w) = x}. (13)

We next explain how to compute h(Gv, x, y). If x+ω(s) > u or y +ω(t) > u,
then h(Gv, x, y) = +∞. One may thus assume that x+ ω(s) ≤ u and y + ω(t) ≤
u. Then every separated partition P of Gv can be obtained by combining a
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partition P ′ of G′ with a partition P ′′ of G′′, as illustrated in Figs. 6(b), (c) and
(d). There are the following three Cases (a)–(c), and we define three functions
ha(Gv, x, y), hb(Gv, x, y) and hc(Gv, x, y) for the three cases, respectively.

Case (a): P ′ is a connected partition, and P ′′ is a separated partition. (See
Fig. 6(b).)

Let

ha(Gv, x, y) = min{f(G′, x′) + h(G′′, x′′, y) | 0 ≤ x′, x′′ ≤ u,

x′ + x′′ + ω(w) = x}. (14)

Case (b): P ′ is a separated partition, and P ′′ is a connected partition. (See
Fig. 6(c).)

Let

hb(Gv, x, y) = min{h(G′, x, y′) + f(G′′, x′′) | 0 ≤ y′, x′′ ≤ u,

y′ + x′′ + ω(w) = y}. (15)

Case (c): both P ′ and P ′′ are separated partitions. (See Fig. 6(c).)
Let

hc(Gv, x, y) = min{h(G′, x, y′) + h(G′′, x′′, y) + 1 | 0 ≤ y′, x′′ ≤ u,

l ≤ y′ + x′′ + ω(w) ≤ u}. (16)

From ha, hb and hc above one can compute h(Gv, x, y) as follows:

h(Gv, x, y) = min{ha(Gv, x, y), hb(Gv, x, y), hc(Gv, x, y)}. (17)

By Eq. (13) one can compute the function f(Gv, x) for all integers x, 0 ≤
x ≤ u, in time O(u2), and by Eqs. (14)–(17) one can compute the function
h(Gv, x, y) for all pairs (x, y), 0 ≤ x, y ≤ u, in time O(u4). Thus one can compute
the functions f(Gv, x) and h(Gv, x, y) for each s-node v of T in time O(u4).

In this way one can compute the functions f(Gv, x) and h(Gv, x, y) for each
internal node v of T in time O(u4). Since T is a binary tree and has at most
2n − 3 leaves, T has at most 2n − 4 internal nodes. Since G = Gr for the root
r of T , one can compute the functions f(G, x) and h(G, x, y) in time O(u4n).
By Eq. (3) one can compute the minimum number pmin(G) of components in an
(l, u)-partition of G from the functions f(G, x) and h(G, x, y) in time O(u2). Thus
the minimum partition problem can be solved in time O(u4n). This completes
a proof of Theorem 1.

4 p-Partition Problem

In this section we have the following theorem.

Theorem 2. The p-partition problem can be solved for any series-parallel graph
G in time O(p2u4n), where n is the number of vertices in G, u is the upper bound
on component size, and p is the fixed number of components.
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The algorithm for the p-partition problem is similar to the algorithm for
the minimum partition problem in the previous section. So we present only an
outline.

For a series-parallel graph G and an integer q, 0 ≤ q ≤ p− 1, we define a set
F (G, q) of nonnegative integers x as follows:

F (G, q) = {x ≥ 0 | G has a connected partition P
such that x = ω(Pst)− ωst(G) and q = |P| − 1}.

For a series-parallel graph G and an integer q, 0 ≤ q ≤ p − 2, we define a set
H(G, q) of pairs of nonnegative integers x and y as follows:

H(G, q) = {(x, y) | G has a separated partition P such that
x = ω(Ps)− ω(s), y = ω(Pt)− ω(t) and q = |P| − 2}.

Clearly |F (G, q)| ≤ u + 1 and |H(G, q)| ≤ (u + 1)2.
We compute F (Gv, q) and H(Gv, q) for each node v of a binary decomposition

tree T of a given series-parallel graph G from leaves to the root r of T by means
of dynamic programming. Since G = Gr, the following lemma clearly holds.

Lemma 1. A series-parallel graph G has an (l, u)-partition with p components
if and only if the following condition (a) or (b) holds:

(a) F (G, p−1) contains at least one integer x such that l ≤ x+ωst(G) ≤ u;
and

(b) H(G, p − 2) contains at least one pair of integers (x, y) such that l ≤
x + ω(s) ≤ u and l ≤ y + ω(t) ≤ u.

One can compute in time O(p) the sets F (Gv, q) and H(Gv, q) for each leaf v
of T and all integers q(≤ p− 1), and compute in time O(p2u4) the sets F (Gv, q)
and H(Gv, q) for each internal node v of T and all integers q(≤ p− 1) from the
counterparts of the two children of v in T . Since G = Gr for the root r of T , one
can compute the sets F (G, p−1) and H(G, p−2) in time O(p2u4n). By Lemma 1
one can know from the sets in time O(u2) whether G has an (l, u)-partition with
p components. Thus the p-partition problem can be solved in time O(p2u4n).

5 Partial k-Trees

In this section we have the following theorem.

Theorem 3. The minimum and maximum partition problems can be solved in
time O(u2(k+1)n) and the p-partition problem can be solved in time O(p2u2(k+1)n)
for any partial k-trees, where k = O(1).

The algorithm for partial k-trees is similar to those for series-parallel graphs
in the previous sections. So we present only an outline of the algorithm for the
minimum partition problem.
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A graph G is a k-tree if either it is a complete graph on k vertices or it has a
vertex v whose neighbors induce a clique of size k and G−{v} is again a k-tree.
A graph is a partial k-tree if it is a subgraph of a k-tree. A series-parallel graph
is a partial 2-tree. A partial k-tree G can be decomposed into pieces forming a
tree structure with at most k + 1 vertices per piece. The tree structure is called
a binary decomposition tree T of G [1, 2]. Each node v of T corresponds to a set
V (v) of k + 1 or fewer vertices of G, and corresponds to a subgraph Gv of G.
For a series-parallel graph, it suffices to consider only two kinds of partitions, a
connected partition and a separated partition, while for a partial k-tree we have
to consider many kinds of partitions of Gv. Let π be the number of all partitions
of set V (v) into pairwise disjoint nonempty subsets. Then π ≤ (2k+1)k+1 = O(1)
since we assume k = O(1) in the paper. For a partial k-tree G, we consider π
kinds of partitions of Gv. Let Vi, 1 ≤ i ≤ π, be the ith partition of set V (v), let
ρ(i) be the number of subsets in the partition Vi, and let Vi = {V1, V2, · · · , Vρ(i)}.
Clearly 1 ≤ ρ(i) ≤ k+1. In every partition of Gv of the ith kind, its jth connected
component, 1 ≤ j ≤ ρ(i), contains all the vertices in the jth subset Vj(⊆ V (v))
in Vi. We consider a set of functions hi(Gv, x1, x2, · · · , xρ(i)), 1 ≤ i ≤ π, defined
similarly to Eqs. (1) and (2). Variable xj , 1 ≤ j ≤ ρ(i), represents the sum of
weights of all vertices in the jth component except for the vertices in Vj . Thus
0 ≤ xj ≤ u. One can observe that the set of functions for Gv for an internal
node v can be computed from the counterparts of the two children of v in T in
time O((u + 1)2(k+1)). Thus the set of functions for G can be computed in time
O((u + 1)2(k+1)n). The hidden coefficient in the complexity is π2(≤ 22(k+1)2).

6 Conclusions

In this paper we first obtained pseudo-polynomial-time algorithms for three par-
tition problems on series-parallel graphs. Both the minimum partition problem
and the maximum partition problem can be solved in time O(u4n), and hence
they can be solved in time O(n) if u = O(1). On the other hand, the p-partition
problem can be solved in time O(p2u4n). Thus these algorithms take polynomial
time if u is bounded by a polynomial in n.

We then showed that our algorithms for series-parallel graphs can be easily
extended for partial k-trees, that is, graphs of bounded tree-width. The ex-
tended algorithm takes time O(u2(k+1)n) for the minimum and maximum par-
tition problems, and takes time O(p2u2(k+1)n) for the p-partition problem.

We finally remark that, for ordinary trees, one can solve the minimum and
maximum partition problems in time O(u2n) and the p-partition problem in
time O(p2u2n) or O(nCp−1 + n).

Acknowledgments

We thank Takeshi Tokuyama for suggesting us the partition problems.



376 Takehiro Ito, Xiao Zhou, and Takao Nishizeki

References

1. S. Arnborg and J. Lagergren. Easy problem for tree-decomposable graphs. J. Al-
gorithms, Vol. 12, No. 2, pp. 308–340, 1991.

2. H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. J. Algorithms, Vol. 11, No. 4, pp. 631–643, 1990.

3. B. Bozkaya, E. Erkut and G. Laporte. A tabu search heuristic and adaptive memory
procedure for political districting. European J. Operational Research, Vol. 144,
pp. 12–26, 2003.

4. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

5. R. C. Gonzales and P. Wintz. Digital Image Processing. Addison-Wesley, Reading,
MA, 1977.

6. S. Kundu and J. Misra. A linear tree-partitioning algorithm. SIAM J. Comput.,
Vol. 6, pp. 131–134, 1977.

7. M. Lucertini, Y. Perl and B. Simeone. Most uniform path partitioning and its use
in image processing. Discrete Applied Mathematics, Vol. 42, pp. 227–256, 1993.

8. Y. Perl and S. R. Schach. Max-min tree-partitioning. J. ACM, Vol. 28, pp. 5–15,
1981.

9. K. Takamizawa, T. Nishizeki and N. Saito. Linear-time computability of combi-
natorial problems on series-parallel graphs. J. ACM, Vol. 29, No. 3, pp. 623–641,
1982.

10. D. C. Tsichritzis and P. A. Bernstein. Operating Systems. Academic Press, New
York, 1981.

11. J. C. Williams Jr. Political redistricting: a review. Papers in Regional Science,
Vol. 74, pp. 12–40, 1995.



The Hypocoloring Problem:
Complexity and Approximability Results

when the Chromatic Number Is Small

Dominique de Werra1, Marc Demange2,
Jerome Monnot3, and Vangelis Th. Paschos3

1 Ecole Polytechnique Fédérale de Lausanne, Switzerland
dewerra.ima@epfl.ch

2 ESSEC, Dept. SID, France
demange@essec.fr
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Abstract. We consider a weighted version of the subcoloring prob-
lem that we call the hypocoloring problem: given a weighted graph
G = (V, E; w) where w(v) ≥ 0, the goal consists in finding a partition
S = (S1, . . . , Sk) of the node set of G into hypostable sets and minimizing∑k

i=1
w(Si) where an hypostable S is a subset of nodes which generates

a collection of node disjoint cliques K. The weight of S is defined as
max{

∑
v∈K

w(v)| K ∈ S}. Properties of hypocolorings are stated; com-
plexity and approximability results are presented in some graph classes.
The associated decision problem is shown to be NP-complete for bi-
partite graphs and triangle-free planar graphs with maximum degree 3.
Polynomial algorithms are given for graphs with maximum degree 2 and
for trees with maximum degree Δ.

1 Introduction

Chromatic scheduling is the domain of scheduling problems which can be formu-
lated in terms of graph coloring or more precisely of generalized graph coloring
(i.e., coloring with a few additional requirements). These generalizations appear
in [16, 11, 9, 5] and are called conditional coloring of G with respect to a graph
theoretical property P ; the conditional (or P) chromatic number χP(G) is the
minimum integer k such that there is a partition of the nodes into k sets such
that the subgraph induced by each set has the property P . Note that χ(G) corre-
sponds to the case P(V ′) = true iff the subgraph induced by V ′ does not contain
an induced P2 (i.e., chain of length 1). An important application of conditional
coloring is the circuit manufacturing problem and is defined by P(V ′) = true iff
the subgraph induced by V ′ is planar (see [18] for a survey). To our knowledge
the weighted case has not been studied specifically until now.

In particular the concept of weighted coloring has been introduced in [10] to
generalize classical coloring models and to handle situations where operations
occur with possibly different processing times in some types of batch scheduling
problems.
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Our generalized weighted coloring model can be described in terms of con-
ditional coloring where property P is defined by P(V ′) = true iff the subgraph
induced by V ′ does not contain an induced P3. This induces the so-called subcol-
oring problem that has been studied in [1, 13, 7]. An alternate definition consists
of finding a partition S = (S1, . . . , Sk) of the node set into hypostable sets mini-
mizing k. We shall say that a subset S = {Kj : j ∈ J} of nodes is a hypostable
set in G if it induces a collection of node-disjoint cliques (with no edges between
them). However, since we study a weighted model, the weight of a hypostable
set S = {Kj : j ∈ J} will be w(S) = max{w(Kj) : j ∈ J} and our problem,
called Min Hypocoloring, consists of finding a hypocoloring (S1, . . . , Sk) of
the nodes of G, i.e., a partition of the node set into hypostable sets such that:

opt =
k∑

i=1

w(Si) is minimum (1)

In terms of batch scheduling, there exist many situations where operations
have to be assigned to batches (of compatible operations) that are processed
sequentially ([6]). Examples in satellite communication and in production have
also been modelled as special cases of the above batch scheduling problem (see
[19, 6]). In current model, all operations in a batch are assigned to different
processors and processed simultaneously. The processing time of a batch S is
limited by the largest processing time of the operations in S. If the processing
times may take different values, it may be worthwhile to assign two (or more)
incompatible operations v with small processing times w(v) to the same batch;
they will be processed consecutively on the same processor. This will not increase
the processing time w(S) of the batch S as long as the sum of processing times
of these operations do not exceed the longest processing time w(v) in S. In
order to allow this possibility in our model, a natural way to define weight
w(Kj) is w(Kj) =

∑
v∈Kj

w(v). Since Kj corresponds to incompatible operations
(assigned to the same processor), the processing time of all operations in Kj will
be the sum of all processing times.

The Min Hypocoloring problem may also be used for representing some
machine scheduling problems: for instance, we are given a collection of jobs v
with processing times w(v) in a flexible manufacturing system; we link the nodes
representing two jobs, if they share a certain number of tools; thus, it will be
interesting to assign these jobs to the same machine on which the appropriate
tools will be installed. A batch will consist of an assignment of jobs to some ma-
chines; in such an assignment, we try to assign to a same machine jobs sharing
the same tools. Since there exists only a limited number of tools of each type,
we will try to assign to different machines jobs that do not need the same tools.
Hence a batch will be represented by a hypostable set in the graph of compati-
bilities (common tools) and the processing time of a batch will be the maximum
load of a machine (maximum of the sums of processing times of jobs assigned to
the same machine). We will focus on this model of weighted hypocoloring which
is motivated in a natural way by the batch scheduling context.
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In this paper, the neighborhood of node v will be denoted by N(v), the degree
of v by d(v) or dGi(v) when the particular graph Gi in which it is considered
has to be emphasized, the maximum degree by Δ(G) or Δ and the subgraph
of G induced by S by G[S]. The size of hypocoloring S = (S1, . . . , Sk) will
be denoted by |S| = k and, finally, the number of different values of weights
w by |w|. For graph-theoretical terms not defined here, the reader is referred
to [3]. Moreover, we always assume that S is sorted by non-increasing weights
(i.e., w(S1) ≥ . . . ≥ w(Sk)) and, without additional specification, we assume
that w(v) > 0, ∀v ∈ V .

2 Elementary Properties

We will derive here some properties which are based on the fact that hypocol-
orings are in some sense extensions of node colorings;

Lemma 1. Any optimal hypocoloring S satisfies |S| ≤ Δ(G) + 1.

Proof. Let S = (S1, . . . , Sk) be an optimal hypocoloring and let v ∈ Sk. If
k > Δ(G) + 1 then there exists color c ≤ Δ(G) + 1 such that N(v)∩Sc = ∅. So,
we can recolor v with color c without increasing the value of S.

This bound is not the best possible; by analogy with the theorem of Brooks [8],
we could try to get a bound of Δ(G) instead of Δ(G) + 1.

Proposition 1. There exists an optimal hypocoloring S satisfying the following:

(i) ∀i ≤ k, ∀v ∈ Si, dGi,v (v) ≥ i− 1 where Gi,v = G[S1 ∪ . . . ∪ Si−1 ∪ {v}].
(ii) ∀i ≤ k, Si contains no KΔ(G)+3−i.
(iii) |S| ≤ Δ(G).

Proof. Let S = (S1, . . . , Sk) be an optimal hypocoloring. For (i): If dGi,v(v) <
i− 1, then we can recolor node v with some color missing in {1, . . . , i− 1}. For
(ii): Assume that Si contains a KΔ(G)+3−i and let v ∈ KΔ(G)+3−i. We deduce
that dGi,v (v) ≤ i− 2 which gives a contradiction with (i). For (iii): Let v ∈ Sk.
From Lemma 1, we can assume k ≤ Δ(G)+1 and ∃u ∈ N(v)∩SΔ(G). Moreover,
using (i) with node u, we have N(u)∩SΔ(G) = ∅. So we can recolor v with color
Δ(G) (at this stage, the solution may have a greater value). By repeating this
as long as Sk �= ∅, we obtain another optimal hypocoloring.

Note that it is always possible to find in polynomial time a hypocoloring which
verifies Proposition 1. We can also obtain a bound of the number of different
colors used in any optimal coloring S∗ using a relation between |w| and the
chromatic number χ(G).

Proposition 2. Any optimal hypocoloring S satisfies: |S| ≤ 1 + |w|(χ(G) − 1).

Proof. The proof is by induction on |w|. Let S = (S1, ..., Sk) be an optimal
hypocoloring and let t = max{i : w(Si) ≥ maxv∈V w(v)}. Remark that t ≤ χ(G)
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(otherwise, an optimal coloring gives a better solution); moreover, if t = χ(G),
then t = |S| (for the same reason). So, if t = |S| then we have |S| = t ≤
χ(G) ≤ 1 + |w|(χ(G) − 1). Now, assume |S| > t (we deduce t ≤ χ(G) − 1);
then (St+1, . . . , Sk) is an optimal hypocoloring on G′ = G[St+1 ∪ . . . ∪ Sk] and
using an inductive hypothesis, we deduce |S| − t ≤ 1 + (|w| − 1)(χ(G′) − 1) ≤
1 + (|w| − 1)(χ(G)− 1) and the result follows.

3 Complexity Results

We will now show that Min Hypocoloring is close to Min Coloring in some
cases; more precisely, we prove that Min Hypocoloring is at least as hard to
approximate as Min Coloring. Let Ψ be a class of graphs.

Theorem 1. There exists a approximation preserving reduction from Min Col-
oring restricted to Ψ -graphs to Min Hypocoloring restricted to Ψ -graphs.

Thus, using results of [12], we deduce that Min Hypocoloring is not approx-
imable within nε for any ε > 0, unless ZPP=NP. It also follows that Min
Hypocoloring is NP-hard for graphs with Δ(G) ≥ 4, even if these graphs
do not contain triangles, or for planar graphs, etc. Moreover, when Δ(G) = 3
and |w| = 1, the previous proof and Brooks theorem [8] show that this case is
polynomial. On the other hand, we now prove that when G is a triangle-free
graph with Δ(G) = 3 and |w| = 2, then Min Hypocoloring becomes difficult.

Theorem 2. Min Hypocoloring is strongly NP-hard even for triangle-free
graphs with Δ(G) = 3.

Proof. We shall reduce 1-IN 3SAT, proved to be NP-complete in [20] to our
problem. This problem is defined as follows: Given a collection C = (C1, . . . , Cm)
of m clauses over the set X = {x1, . . . , xn} of n Boolean variables such that
each clause Cj has exactly three literals (i.e., Cj = x ∨ y ∨ z), is there a truth
assignment f satisfying C such that each clause in C has exactly one true literal?

From instance I = (C, X) of 1-IN 3SAT, we construct an instance I ′ =
(G, w) of Min Hypocoloring such that the answer of I is yes iff opt(I) ≤ 3.
We use gadget clauses and gadget variables. From the clause Ci = x ∨ y ∨ z, we
build the graph Fi in Figure 1 and the weights are given by w(v1(Fi)) = 2 and
∀v ∈ V (Fi) \ {v1(Fi)}, w(v) = 1.

From the variable xj , we build the graph Hj in Figure 2 where the weights of
nodes are one (i.e., w(z) = 1, ∀z ∈ V (Hj)). In addition, we link theses different
graphs in the following way: if variable xj appears positively in clause Ci, then
we add edge [xi(Hj), x(Fi)] and otherwise, we add edge [xi(Hj), x(Fi)].

This graph G satisfies Δ(G) = 3. Let f be a truth assignment of I = (C, X).
The hypostable sets S1 and S2 are given by:

S1 = ∪m
i=1[ {v1(Fi), v4(Fi), v5(Fi)} ∪ {x(Fi) : f(x) = 1} ∪ {x(Fi) : f(x) = 0} ]
∪n

j=1 ∪m
k=1 {xk(Hj), v2k(Hj) : f(x) = 0} ∪ {xk(Hj), v2k−1(Hj) : f(x) = 1}

S2 = V (G) \ S1
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v1(Fi) v2(Fi)

v3(Fi)

v4(Fi)

v5(Fi)

x(Fi)

y(Fi)

z(Fi)

x(Fi)

y(Fi)

z(Fi)

Fig. 1. Gadget clause Fi.

x1(H(x))

x1(H(x))

xm(H(x))

xm(H(x))

v1(H(x))

v2(H(x))

v2m−1(H(x))

v2m(H(x))

Fig. 2. Gadget variable Hj .

It is easy to verify that S = (S1, S2) satisfies w(S1) = 2 and w(S2) = 1; thus
opt(I) ≤ 3. Conversely, let S be a hypocoloring of I ′ such that val(S) ≤ 3. We
can observe that: (i) S = (S1, S2) with w(S1) = 2 and w(S2) = 1, (ii) S2 is a
stable set and ∀i ≤ m, |S1 ∩ {x(Fi), y(Fi), z(Fi)}| = 1, (iii) ∀j ≤ n, Hj ∩ S1

and Hj ∩ S2 are stable sets and (iv) xi(Hj) (resp. xi(Hj)) and x(Fi) have two
distinct colors if these nodes are linked.

So, we can exhibit a truth assignment f of I by taking f(x) = 1 iff x ∈ S1.

Theorem 3. Min Hypocoloring is strongly NP-hard for triangle-free pla-
nar graphs with Δ(G) = 3.

Proof. In the previous theorem, all gadgets Fi and Hj are planar and then only
edges [xl(Fi), xp(Hj)] may create some problems since they may cross each other.
In this case, we apply the crossover technique, [14] which consists of replacing
each edge crossing by a planar gadget. First, we embed the graph G′ of Theorem
2 in the plane in such a way that every edge is a straight line and the crossing
edge occurs only between two edges [xl(Fi), xp(Hj)]. Second, we replace each
crossing edge by the gadget (L, w) indicated in Figure 3. This graph contains 8
particular nodes x1, x

′
1, y1, y

′
1, x2, x

′
2, y2, y

′
2. The weight of any node is 1 except

for x′
1, y

′
1, x

′
2, y

′
2 which are weighted by 2. It is easy to see that we have the

following properties for any hypocoloring S = (S1, S2) with val(S) ≤ 3:
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x’1

x2

x1

y2y1

y ’1 x’2

y ’2

Fig. 3. Planar gadget (L, w).

(i) {x′
1, x

′
2, y

′
1, y

′
2} ⊆ S1 and S2 is a stable set, (ii) ∀x = x1, x2, y1, y2, the neigh-

bors outside of the gadget (L, w) have not the same color as x, and (iii) x1 and
x2 (resp., y1 and y2) have not the same color.

Using these properties, we deduce that there exists a hypocoloring S of
G′ with val(S) ≤ 3 if and only if there exists a hypocoloring S′ of G′′ with
val(S′) ≤ 3.

Now, we deal with bipartite graphs. Surprisingly, in some cases an optimal hypo-
coloring is just a coloring and such a coloring is difficult to compute.

Theorem 4. Min Hypocoloring is strongly NP-hard for bipartite graphs
with Δ(G) = 39.

Proof. We polynomially transform the pre-extension coloring problem 1-PrExt
(proved to be NP-complete in [4]) into the hypocoloring problem in bipartite
graphs; 1-PrExt can be described as follows: given a bipartite graph G =
(L, R; E) with |L| ≥ 3 and Δ(G) = 12 and three nodes v1, v2, v3 in L, does there
exist a 3-coloring (S1, S2, S3) such that vi ∈ Si for i = 1, 2, 3?

Let G = (L, R; E) be a bipartite graph and let {v1, v2, v3} ⊆ L be a set
of three nodes. We polynomially construct a new bipartite graph G′ such that
there exists a hypocoloring S of G′ with val(S) ≤ 7 iff there exists a coloring
(S1, S2, S3) of G with vi ∈ Si, i = 1, 2, 3. In order to do that, we use the two
following gadgets:



The Hypocoloring Problem 383

• The weighted bipartite graph H0 = (L0, R0; E0, w) on 12 nodes with li, l
′
i ∈ L0

and ri, r
′
i ∈ R0 for i = 1, 2, 3. Moreover, only edges [li, ri], [li, r′i], [l

′
i, ri] and

[l′i, r
′
i] for i = 1, 2, 3 are missing in H0. The weights are w(li) = w(l′i) = w(ri) =

w(r′i) = 23−i for i = 1, 2, 3.
• The complete weighted bipartite graph K3,2 with two specified nodes x and

y (x in the left set and y in the right set). The weights are w(x) = w(y) = 1
and w(v) = 2 otherwise.

Now, I = (G′, w) is built in the following way: starting from G, we add a copy
of H0 and we identify nodes v1, v2, v3 of G with nodes l1, l2, l3 of H0. Moreover,
for each edge e = [l, r] of G, we introduce a copy of K3,2 and we identify nodes
l, r with nodes xe, ye respectively.

Let S = (S1, S2, S3) be a 3-coloring of G with vi ∈ Si, i = 1, 2, 3; then
we extend S into a coloring S′ of G′ by the following process: we start with
S′

i = (Si \ {vi}) ∪ {li, l′i, ri, r
′
i}. For each edge e = [l, r] of G with l ∈ L and

r ∈ R, if l ∈ Sj (resp. r ∈ Sj) with j = 1, 2 then we add Le \ {xe} (resp.,
Re \ {ye}) to S′

i else (j = 3) and we add Le \ {xe} (resp., Re \ {ye}) to S′
i where

r ∈ Si (resp., l ∈ Si). S′ is a coloring of G′ (thus a hypocoloring) and satisfies
val(S′) = w(S′

1) + w(S′
2) + w(S′

3) = 7.
Conversely let S′ be a hypocoloring satisfying val(S′) ≤ 7. It is easy to prove

that: (i) ∀i = 1, 2, 3, {li, l′i, ri, r
′
i} ⊆ S′

i, (ii) S′ = (S′
1, S

′
2, S

′
3) with w(S′

1) =
4, w(S′

2) = 2, w(S′
3) = 1, and (iii) the restriction of S′ to graph G is a coloring.

Thus, using these properties the result follows.

4 Approximability of Some Cases of Hypocoloring

We shall present here approximation algorithms for hypocolorings when coloring
is easy and the chromatic number is small; formally, we denote by Ψk a class of
graphs verifying: (i) for any G′ subgraph of G, if G ∈ Ψk, then G′ ∈ Ψk, (ii)
∀G ∈ Ψk, χ(G) ≤ k and (iii) coloring on Ψk-graphs is polynomial. For instance,
the set of forests is a Ψ2-class. Assume that the nodes are ordered according to
their non-increasing weights (w(v1) ≥ . . . ≥ w(vn)) and let Gi = G[{v1, . . . , vi}].
Moreover, j0 denotes the smallest index i such that Gi contains an induced P3

(if Gn = G does not contain it, we set j0 = n + 1). Finally, Colo(V ′) denotes an
optimal coloring on G[V ′] (i.e., |colo(V ′)| = χ(G[V ′])). A trivial bound of the
approximability on Ψk-graphs is k and consists of computing an optimal coloring
in the entire graph. We now propose an algorithm achieving a better constant
approximation ratio.

1. Sort the nodes of G in non-increasing weight order;
2. Compute j0 = min{i : Gi contains an induced P3} and Vj0 = {v1, . . . , vj0};
3. For i = 1 to j0 do

3.1 Si
1 = Vj0 \ {vi, . . . , vj0};

3.2 Compute Colo(V \Si
1) and define hypocoloring Si by (Si

1, Colo(V \Si
1));

4. Compute S = argmin{val(Si) : i = 1, . . . , j0};
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Theorem 5. Min Hypocoloring is k2

2k−1 -approximable in Ψk-graphs.

Proof. let I = (G, w) with G ∈ Ψk be an instance of Min Hypocoloring and
let S∗ = (S∗

1 , . . . , S∗
l ) be an optimal hypocoloring. We can assume j0 ≤ n and

then l > 1. If v1 /∈ S∗
1 , then val(S) ≤ val(S1) ≤ k w(v1) and opt ≥ 2w(v1). Now,

set i0 = max{i : {v1, . . . , vi} ⊆ S∗
1} and examine solution Si0 .

If w(Si0
2 ) ≤ w(Si0

1 )k−1
k , then for any r ≥ 3, w(Si0

r ) ≤ k−1
2k−1w(Si0

2 )+ k
2k−1w(Si0

2 )
≤ k−1

2k−1 (w(Si0
1 ) + w(Si0

2 )). Summing these inequalities, we deduce:

val(S) ≤ k2

2k−1 (w(Si0
1 ) + w(Si0

2 )) ≤ k2

2k−1opt.
If w(Si0

2 ) ≥ w(Si0
1 )k−1

k , then opt ≥ w(Si0
1 )2k−1

k and the result follows.

Using Grotzsch theorem [15], Brooks theorem [8] (with its constructive proof
given by Lovasz), since we can assume without loss of generality that G does
not contain any copy of KΔ(G)+1, and the previous theorem, we obtain:

Corollary 1. Min Hypocoloring is 9
5 -approximable if G satisfies Δ(G) ≤ 3

or if G is triangle-free and planar; it is 4
3 -approximable if G is bipartite.

We can also establish lower bounds on the approximability of these types of
graphs by using the proofs of Theorem 3 and Theorem 4.

Proposition 3. Unless P=NP, Min Hypocoloring is not (4
3 − ε)-approx-

imable, if G is triangle free and planar, and not (8
7 − ε)-approximable, if G is

bipartite, for any ε > 0.

There is another simple approximation algorithm which works for any value of
Δ(G). This algorithm uses a decomposition of G into at most s = �Δ(G)+1

3 �
subgraphs Gi satisfying Δ(Gi) ≤ 2 by applying a result of [17]. Then, for each
i = 1, . . . , s, we compute an optimum hypocoloring S∗

i on Gi by using the algo-
rithm presented in subsection 5.2 (Proposition 6) and we color the corresponding
solution with new colors. Finally, the solution S is the juxtaposition of these
hypocolorings S∗

i .

Theorem 6. Min Hypocoloring is �Δ(G)+1
3 �-approximable.

Proof. We have val(S) =
∑s

i=1 opt(Gi) and opt ≥ opt(Gi) for any i = 1, . . . , s.
Then, val(S) ≤ s× opt.

5 Polynomial Cases

In this section, we consider two polynomial cases of Min Hypocoloring: when
the input is a tree with maximum degree at most Δ and when the input is a 2-
regular graph. For sake of convenience, we assume that w(v) ≥ 0, ∀v (so, it may
exist some nodes v with w(v) = 0); in this case, as we will show, the first case
is equivalent to Min Hypocoloring in forests with degree at most Δ whereas
the second case is equivalent to Min Hypocoloring in graphs with Δ(G) = 2.
Thus, since a tree is a particular bipartite graph, we have a boundary for the
hardness of Min Hypocoloring between trees with maximum degree at most
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39 and bipartite graphs with maximum degree at most 39. Finally, there is also
another hardness gap for general graphs between graphs with maximum degree
at least 3 and graphs with maximum degree at most 2.

Before establishing these results, we shall give some results on Min Hypo-
coloring in (t+1)-clique free graphs. For a hypostable set S, the characteristic
value will be the integer number q such that q = w(S). More generally, for a
hypocoloring S = (S1, . . . , Sk) with w(S1) ≥ . . . ≥ w(Sk) we call vector of char-
acteristic values, the vector (q1, . . . , qk) such that for any i ≤ k, qi = w(Si). The
Min Hypocoloring problem is close to the List-hypocoloringt problem.

List-hypocoloringt:
Instance: a graph G = (V, E), a set C of colors and, for every clique K with
size at most t, CK ⊆ C is a set of colors such that each one of them may occur
on some nodes of the clique K but not on all nodes at a time.
Question: does G admit a hypocoloring such that for any clique K, not all the
nodes of K have the same color i with i ∈ CK?

Clearly, we must have CK ⊆ CK′ when K ⊆ K ′ and List-hypocoloringt

polynomially reduces to List-hypocoloringt′ when t ≤ t′. Moreover, we have:

Proposition 4. In the graphs with maximum degree Δ, Min Hypocoloring
polynomially reduces to List-hypocoloringΔ+1.

Proof. A minimum hypocoloring can be computed by the following algorithm:

1. For every vector (q1, . . . , qΔ) with q1 ≥ . . . ≥ qΔ and such that qi =∑
v∈V (Ki)

w(v) for some clique Ki of G do
1.1 Solve the related List-hypocoloringΔ+1 instance;
1.2 If the answer is yes, construct such a hypocoloring;

2. Select a minimum weight hypocoloring among feasible hypocolorings com-
puted during an execution of step 1.2;

The complexity-time of this algorithm is O(nΔ2
) times the complexity-time

to solve List-hypocoloringΔ+1.

Corollary 2. If List-hypocoloringΔ+1 is polynomial on Ψ -graphs, then
Min Hypocoloring is also polynomial on Ψ -graphs.

Using Proposition 2 and a slight modification of Proposition 4, we deduce:

Corollary 3. Let us consider a class Ψ of (t + 1)-clique free graphs satisfying
χ(G) ≤ k and such that List-hypocoloringt is polynomial on Ψ . Then, Min
Hypocoloring is also polynomial on Ψ when |w| is bounded by a constant.

5.1 Trees with Maximum Degree Δ

In trees, there are at most 2n − 1 characteristic values for the different hy-
postable sets. Thus, the complexity of the algorithm of Proposition 4 is in this
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case in O(nΔ) times the complexity-time of List-hypocoloringΔ+1. We now
show how we can solve List-hypocoloringΔ+1 in trees by using dynamic
programming. Let C = {1, . . . , Δ} be the set of colors. Let us then consider
(T = (V, E); (CK)K∈V ∪E) an instance of List-hypocoloringΔ+1 where T is
a tree. Given a node v, we respectively denote by Hv(T ) and H ′

v(T ) the sets of
colors defined by:

h ∈ Hv(T ) (resp.H ′
v(T )) if and only if there is a feasible hypocoloring for

which v is colored by h and no (resp. exactly one) neighbor of v is colored by h.
We denote by v1, . . . , vd the neighbors of v. The deletion of v induces a forest

with d connected components T1, . . . , Td where Ti is the subtree containing vi.

Lemma 2. For h ∈ C, we have:

• h ∈ Hv(T )⇔ h /∈ Cv and ∀j, (Hvj (Tj)∪H ′
vj

(Tj))\[(Hvj (Tj)∪H ′
vj

(Tj))∩{h}] �=
∅.

• h ∈ H ′
v(T )⇔ h /∈ Cv and ∃j ≤ d, h ∈ Hvj (Tj) \ C[v,vj ] and

∀j′ �= j, (Hvj′ (Tj′) ∪Hvj′ (Tj′)) \ [(Hvj′ (Tj′) ∪H ′
vj′ (Tj′)) ∩ {h}] �= ∅.

Proposition 5. For any t ≥ 2, List-hypocoloringt in trees is polynomial.

Proof. Let us consider the following polynomial-time algorithm:

1. Choose a root r ∈ V and orient the tree from r to leaves (Tv denotes the
subtree induced by v and its successors);

2. Compute, for every node v and from leaves to the root, sets Hv(Tv) and
H ′

v(Tv) (by using Lemma 2);
3. For every color in Hr(T ) ∪H ′

r(T ) compute a feasible hypocoloring by using
Lemma 2 (from the root to leaves);

5.2 Graphs with Maximum Degree Two

We shall examine here the special situation where the graph G has maximum
degree Δ(G) = 2 (the case Δ(G) = 1 being trivial). From Proposition 1, there
exists an optimal hypocoloring S = (S1, S2) of G with w(S1) ≥ w(S2). The case
S2 = ∅ is trivial and can be solved in linear-time. Thus, we will suppose Si �= ∅ for
i = 1, 2. We prove by a technique similar of the one described earlier that the case
of maximum degree two is also polynomial. However, the method presented here
is slightly more involved than the previous one. First, observe that solving Min
Hypocoloring in graphs with Δ(G) = 2 or in 2-regular graphs are equivalent.
As a consequence, we may restrict our attention to graphs G = (V, E) whose
connected components are cycles; let n = |V | = |E|. We will define the weight
w(e) of an edge e = [x, y] as the sum w(x) + w(y). From (ii) of Proposition 1,
we know that S2 does not contain any K3; then, we notice that there are at
most n + t + 1 possible values for w(S1) where t is the number of triangles of G
and 2n possible values for w(S2). It is important to notice that we cannot solve
separately the problem in each connected component.
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The algorithm is the following: starting with the smallest possible value of p and
the smallest possible value of q ≤ p, we apply Properties 1 to 4 (given below) to
get the smallest q for which a solution (S1, S2) exists such that w(S1) = p and
w(S2) = q. If such a hypocoloring can be found, we store the current solution
S = (S1, S2) with val(S) = p + q if it is better than the best solution found so
far. Whenever such a solution has been found, we increase p to the next possible
value and we start again with the minimum q. An optimal hypocoloring (S1, S2)
will be given by the solution stored.

Property 1. If w(v) > q, then v ∈ S1; if x, y, z are three consecutive nodes on an
induced P3 with x, y ∈ Si then z ∈ S3−i for i = 1, 2.

Property 2. If for some edge e = [x, y], we have w(e) > p, then x, y are neither
both in S1 nor both in S2; if w(e) > q, then x, y are not both in S2. In such
situations, we shall simply say that the color i is not feasible for edge e = [x, y].

Starting from G with given values p, q we will apply the above properties as long
as possible to derive consequences on the colors to be assigned to the nodes and
to the edges of G. If we arrive to a situation where no solution exists then, we
increase the value of p. Now, each cycle Ci has at least one node with a fixed
color. We can describe Ci by the sequence (F1, D1, F2 , . . . ., Fk, Dk) where Fi

and Di are chains. Moreover, for any i, all nodes of Fi have a fixed color and
each Di has two endpoints with a fixed color and all intermediate nodes are
uncolored. Let a1, . . . , as be the nodes of the chain Di.

Property 3. If a1, as ∈ Sj with s odd or a1 ∈ Sj, as ∈ S3−j with s even for some
j = 1, 2, then we can alternate the colors 1 and 2 in Di.

Property 4. If a1, as ∈ Sj with s even or a1 ∈ Si, as ∈ S3−j with s odd for some
j = 1, 2, then [a1, a2] gets one of its feasible colors.

By applying Properties 3 and 4 for each chain Di, we color properly the remain-
ing cycles. Now, when a value of p is fixed, we observe that the consequence
of Properties 1 and 2 can be obtained in O(n2) steps and this gives a feasible
value of q (if there exists). Then again in O(n) steps, we can apply Properties
3 and 4 to determine a 2-hypocoloring. It should be observed that cases where
no solution can be found occur only when consequence of Properties 1 and 2 are
drawn.

Proposition 6. The previous algorithm solves Min Hypocoloring in graphs
with Δ(G) ≤ 2 in O(n3) time.
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Abstract. In cooperative game theory, a characterization of games with
stable cores is known as one of the most notorious open problems. We
study this problem for a special case of the minimum coloring games,
introduced by Deng, Ibaraki & Nagamochi, which arises from a cost al-
location problem when the players are involved in conflict. In this paper,
we show that the minimum coloring game on a perfect graph has a stable
core if and only if every vertex of the graph belongs to a maximum clique.
We also consider the problem on the core largeness, the extendability,
and the exactness of minimum coloring games.

1 Introduction

One of the scopes of cooperative game theory is to establish the criterion of how
to distribute a given revenue or cost among the agents in a fair manner when
they work in cooperation. Since the effect of cooperation is usually non-linear
and non-additive, the proportional division might not be considered fair. Several
criteria, called solutions, are proposed by many researchers. When game theory
was founded, von Neumann & Morgenstern [24] proposed a solution called a
stable set, which turned out to be very useful for the analysis of a lot of bargaining
situations but also turned out to be too difficult to reveal some fundamental
properties. Much easier to investigate is the core, due to Gillies [11]. So, people
are interested in when the core and the stable set coincide, namely when the
core is stable. This question is known as one of the most notorious problems.
So far, there are some necessary or sufficient conditions known (see, e.g., [23]),
but they are far from a characterization of cooperative games with stable cores.
From the computational point of view, the problem around stable sets is also
eccentric. Deng & Papadimitriou [8] pointed out that determining the existence
of a stable set for a given cooperative game is not known to be computable, and
it is still unsolved.

Since combinatorial optimization problems can be found in several real-world
situations, naturally they also raise some revenue/cost allocation problems. A
combinatorial optimization game is a cooperative game which arises from a com-
binatorial optimization problem. There are many kinds of combinatorial opti-
mization games proposed and studied, according to the underlying combinatorial
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optimization problems. However, as far as the core stability is concerned, almost
nothing is studied. The only exception is a work by Solymosi & Raghavan [22]
on assignment games.

In this paper, we study core stability of minimum coloring games introduced
by Deng, Ibaraki & Nagamochi [6], which arise from cost allocation problems
when the agents are involved in conflict [18]. The reason that we restrict to
perfect graphs is that it is NP-complete to decide whether a given graph yields
a minimum coloring game with a nonempty core [6] (meaning that there seems
no good characterization of minimum coloring games with nonempty cores) and
that a graph G is perfect if and only if the minimum coloring game on G is
totally balanced [7], where the total balancedness is a quite nice property. We
prove that the minimum coloring game on a perfect graph has a stable core if
and only if every vertex belongs to a maximum clique. We also consider the
problem on the extendability, the largeness, and the exactness of cores, which
are concepts related to core stability. We prove that they are equivalent for the
minimum coloring game on a perfect graph, and also equivalent to that every
clique is contained in a maximum clique.

Armed with our characterizations, we also study algorithmic aspects of these
properties. First we give a polynomial-time algorithm to determine whether a
given perfect graph yields a minimum coloring game with stable core or not.
On the other hand, we prove that it is hard (or coNP-complete, technically
speacking) to determine whether a given perfect graph yields a minimum coloring
game which is extendable, exact or with large core. To the best of our knowledge,
this is the first computational intractability result for extendability, exactness
and core largeness of cooperative games.

2 Preliminaries

2.1 Notation

Throughout the paper, for a vector x ∈ IRN and S ⊆ N , we write x(S) :=∑
{xi | i ∈ S}. When S = ∅, set x(S) := 0. For a subset S ⊆ N of a finite set

N , the characteristic vector of S is a vector 1lS ∈ {0, 1}N defined as (1lS)i = 1
if i ∈ S and (1lS)i = 0 otherwise. Note that for S, T ⊆ N it holds that 1lS(T ) =∑
{(1lS)i | i ∈ T } = |S ∩ T |. We use the notation A ⊂ B to mean that “A is a

proper subset of B.”

2.2 Graphs

A graph G is a pair G = (V, E) of a finite set V , called the set of vertices, and
a set E ⊆

(
V
2

)
of 2-element subsets of V , called the set of edges. For U ⊆ V ,

the subgraph of G induced by U is denoted by G[U ], where the vertices of G[U ]
are the elements of U and the edges of G[U ] are the edges of G which are also
2-element subsets of U . The complement of G = (V, E) is a graph with vertex
set V and edge set the complement of E. A clique is a vertex subset inducing a
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graph with every pair being an edge (such a graph is called complete). A clique
is maximal if none of its proper supersets is a clique. A clique is maximum if it
has a maximum size among all cliques. The size of a maximum clique of G is
denoted by ω(G). An independent set is a vertex subset inducing a graph with
no edge. A coloring of G = (V, E) is a map c : V → IN such that c(u) �= c(v) for
every {u, v} ∈ E. A minimum coloring of G is a coloring with minimum possible
|c(V )|. The chromatic number of G is |c(V )| of a minimum coloring c of G and
denoted by χ(G). Conventionally, the chromatic number of a graph with no
vertex is defined to be zero. A graph G = (V, E) is perfect if ω(G[U ]) = χ(G[U ])
for every U ⊆ V . A prominent example of non-perfect graphs is a cycle of length
five.

2.3 Cooperative Games

A cooperative game (or simply a game) is a pair (N, γ) of a nonempty finite set
N and a function γ : 2N → IR satisfying γ(∅) = 0. An element of N is called
a player of the game, and γ is called the characteristic function of the game.
Furthermore, each subset S ⊆ N is called a coalition. Literally, for S ⊆ N the
value γ(S) is interpreted as the total profit (or the total cost) for the players in
S when they work in cooperation. In particular, γ(N) represents the total profit
(or cost) for the whole players when they all agree on working together. When γ
represents a profit, we call the game a profit game. On the other hand, when γ
represents a cost, we call the game a cost game. (Thus, the terms “profit game”
and “cost game” are not mathematically determined. They are just determined
by the interpretation of a game.) In this paper, we will mainly consider a certain
class of cost games.

One of the aims of cooperative game theory is to provide a concept of “fair-
ness,” namely, how to allocate the total cost (or profit) γ(N) to each player in
a “fair” manner when we take all the γ(S)’s into account. Now, we concentrate
on cost games, and define some cost allocations which are considered fair in co-
operative game theory. Formally, a cost allocation is defined as a preimputation
in the terminology of cooperative game theory. A preimputation of a cost game
(N, γ) is a vector x ∈ IRN satisfying x(N) = γ(N). Each component xi expresses
how much the player i ∈ N should owe according to the cost allocation x.

Let (N, γ) be a cost game. A vector x ∈ IRN is called an imputation if x
satisfies the following conditions: x is a preimputation of (N, γ) and xi ≤ γ({i})
for every i ∈ N . The set of all imputations of (N, γ) is denoted by Imp(N, γ). A
vector x ∈ IRN is called a core allocation if x satisfies the following conditions:
x is an imputation of (N, γ) and x(S) ≤ γ(S) for all S ⊆ N . The set of all core
allocations of (N, γ) is called the core of (N, γ) and denote by Core(N, γ). The
core was introduced by Gillies [11].

Note that Core(N, γ) ⊆ Imp(N, γ) and both can be empty. Therefore, a cost
game with a nonempty core is especially interesting, and such a cost game is
called balanced. Moreover, we call a cost game totally balanced if each of the
subgames is balanced. (Here, a subgame of a cost game (N, γ) is a cost game
(T, γ(T )) for some nonempty T ⊆ N defined as γ(T )(S) = γ(S) for each S ⊆ T .)
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balancedness

⇓

⇓

⇒

⇒

⇓

⇒

⇒

⇓

⇑ ⇓
⇒

⇒

⇓

total balancednesslarge core ∧
total balancedness

submodularity

large core ∧
balancedness

extendability ∧
total balancedness

extendability ∧
balancedness

stable core ∧
total balancedness

stable core ∧
balancedness

exactness

Fig. 1. Implication relationship. The symbol “∧” represents “and”.

Naturally, a totally balanced game is also balanced. A special subclass of the
totally balanced games consists of submodular games (Shapley [20]), where a
cost game (N, γ) is called submodular (or concave) if it satisfies γ(S) + γ(T ) ≥
γ(S ∪T )+ γ(S ∩T ) for all S, T ⊆ N . Therefore, we have a chain of implications
“submodularity ⇒ total balancedness ⇒ balancedness,” which are fundamental
in cooperative game theory.

Let (N, γ) be a balanced cost game. The core Core(N, γ) is called stable if
for every y ∈ Imp(N, γ) \Core(N, γ) there exist a core allocation x ∈ Core(N, γ)
and a nonempty coalition S ⊂ N such that x(S) = γ(S) and xi < yi for each
i ∈ S. (The concept of stability is due to von Neumann & Morgenstern [24].) The
core Core(N, γ) is called large if for every y ∈ IRN satisfying that y(S) ≤ γ(S)
for all S ⊆ N there exists x ∈ Core(N, γ) such that y ≤ x. (The largeness was
introduced by Sharkey [21].) The game (N, γ) is extendable if for every nonempty
S ⊆ N and every y ∈ Core(S, γ(S)) there exists x ∈ Core(N, γ) such that xi = yi

for all i ∈ S. (The extendability was introduced by Kikuta & Shapley [13], and
named by van Gellekom, Potters & Reijnierse [23].) The game (N, γ) is called
exact if for every S ⊂ N there exists x ∈ Core(N, γ) such that x(S) = γ(S).
(The exactness was first defined by Schmeidler [19].) Note that an exact game
is always totally balanced.

Here, we summarize the known relationships among these classes of games.
See also Fig. 1. Sharkey [21] showed that if a game is submodular then it has a
large core. Kikuta & Shapley [13] showed that if a balanced game has a large core
then it is extendable, and if a balanced game is extendable then it has a stable
core. Sharkey [21] showed that if a totally balanced game has a large core then
it is exact. Biswas, Parthasarathy, Potters & Voorneveld [1] pointed out that he
actually proved that extendability implies exactness. The reverse directions in
Fig. 1 do not hold in general. (Some of them are explained by van Gellekom,
Potters and Reijnierse [23].)

3 Minimum Coloring Games

Let G = (V, E) be a graph. The minimum coloring game on G is a cost game
(V, χG) where χG : 2V → IR is defined as χG(S) := χ(G[S]) for all S ⊆ V .
Furthermore, we always assume that V �= ∅ when we consider the minimum
coloring game, so that the minimum coloring game meets the definition of a
cooperative game.
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Let us first make some easy observations.

Observation 1. Let G = (V, E) be a graph and (V, χG) be the minimum color-
ing game on G.

(a) For every S ⊆ T ⊆ V , it holds that χG(S) ≤ χG(T ).
(b) For every nonempty independent set I ⊆ V of G it holds that χG(I) = 1. In

particular, χG({v}) = 1 for each v ∈ V .
(c) If x ∈ Core(V, χG), then it holds that 0 ≤ xv ≤ 1 for every v ∈ V .

Proof. (a) Since S ⊆ T , we have χ(G[S]) ≤ χ(G[T ]). The claim follows from
the definition of χG.

(b) For a nonempty independent set I, we have χ(G[I]) = 1.
(c) Let x ∈ Core(V, χG). By the definition of the core and the part (b), we have

that xv ≤ χG({v}) = 1. Suppose that xv < 0 for contradiction. Then, it
holds that χG(V ) < χG(V )− xv. Furthermore, by part (a) we have χG(V \
{v}) ≤ χG(V ), and also we have x(V ) = χG(V ) since x ∈ Core(V, χG).
Therefore, we obtain χG(V \ {v}) ≤ χG(V ) < χG(V ) − xv = x(V ) − xv =
x(V \ {v}). This is a contradiction to x ∈ Core(V, χG). ��

Deng, Nagamochi & Ibaraki [6] proved that it is NP-complete to decide
whether the minimum coloring game on a given graph is balanced. Subsequently,
Deng, Ibaraki, Nagamochi & Zang [7] showed that the minimum coloring game
on a graph G is totally balanced if and only if G is perfect. So the decision
problem on the total balancedness of a minimum coloring game is as hard as
recognizing perfect graphs, which was found to be solved in polynomial time [2,
4]. Furthermore, Okamoto [17] showed that the minimum coloring game on a
graph G is submodular if and only if G is complete multipartite. So we can
decide whether a given graph yields a submodular minimum coloring game in
polynomial time. The following proposition due to Okamoto [18] characterizes
the core of the minimum coloring game on a perfect graph. This will be used
nicely in a later investigation.

Proposition 1 (Okamoto [18]). Let G = (V, E) be a perfect graph. Then, the
core of the minimum coloring game (V, χG) is the convex hull of the characteristic
vectors of maximum cliques of G.

4 Results

4.1 Core Stability

The following theorem characterizes totally balanced minimum coloring games
with stable cores.

Theorem 2. Let G = (V, E) be a perfect graph. Then, the minimum coloring
game (V, χG) has a stable core if and only if every vertex v ∈ V belongs to a
maximum clique of G.

First we prove the only-if part of the theorem. The proof uses the following
lemma.
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Lemma 1. Let G = (V, E) be a graph such that the minimum coloring game
(V, χG) is balanced. If (V, χG) has a stable core, then for every v ∈ V there exists
a core allocation x ∈ Core(V, χG) such that xv �= 0.

Proof. Assume that Core(V, χG) is stable, and suppose, for the contradiction,
there exists a vertex v ∈ V such that

xv = 0 for all x ∈ Core(V, χG). (1)

(Particularly V �= ∅.) Take such a vertex v. Let x̂ ∈ Core(V, χG) be an arbitrary
core allocation. Since V �= ∅, it holds that χG(V ) > 0. So, there exists w ∈ V
such that x̂w > 0. Now, define y ∈ IRV as

yu :=

⎧⎪⎨
⎪⎩

x̂u if u �∈ {v, w},
x̂w if u = v,

0 if u = w.

Namely, y is obtained from x̂ by interchanging the v-th component and the w-th
component. Then, y is an imputation of (V, χG). Since yv = x̂w > 0, due to (1),
we can see that y is not a core allocation. Hence, y ∈ Imp(V, χG) \ Core(V, χG).

Since Core(V, χG) is stable, there exist a nonempty set S ⊂ V and a core
allocation x ∈ Core(V, χG) such that x(S) = χG(S) and xu < yu for every u ∈ S.
Now we cliam that S \ {v} �= ∅. To show this, suppose not, i.e., S \ {v} = ∅.
Since S �= ∅, we have that S = {v}. Then, it follows that

χG({v}) = xv (since χG(S) = x(S))
< yv (since xu < yu for every u ∈ S)
≤ χG({v}) (since y ∈ Imp(V, χG)).

This is a contradiction, hence the claim follows.
Going back to the proof of Lemma 1, we obtain

χG(S) = x(S)
= x(S \ {v}) (by (1))
< y(S \ {v}) (by the choice of x and Claim above)
≤ x̂(S \ {v}) (by the construction of y)
≤ χG(S \ {v}) (since x̂ ∈ Core(V, χG))
≤ χG(S) (by Observation 1(a)).

This is a contradiction. ��

Then, let us prove the only-if part of the theorem.

Proof (of the only-if part of Theorem 2). Assume that (V, χG) has a stable core.
By Lemma 1, for every v ∈ V there exists a core allocation x ∈ Core(V, χG) such
that xv > 0. On the other hand, by Proposition 1, x is a convex combination
of the characteristic vectors of maximum cliques of G. Therefore, at least one
maximum clique of G must contain v. ��
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In order to prove the if part, we need some more lemmas.

Lemma 2. Let G = (V, E) be a graph with χ(G) = ω(G). Then, there exists a
nonempty independent set I ⊆ V such that K ∩ I �= ∅ for every maximum clique
K of G.

Proof. Consider a minimum coloring of G and take the vertices colored by an
identical color. Denote by I the set of these vertices. By the construction, I is
an independent set. On the other hand, in each maximum clique K of G all
colors used to color G can be found since χ(G) = ω(G) = |K|. Namely, every
maximum clique intersects I. Thus, I is a desired independent set. ��

Here is another lemma.

Lemma 3. Let G = (V, E) be a perfect graph, and consider the minimum col-
oring game (V, χG). Then, for every y ∈ Imp(V, χG) \Core(V, χG) there exists a
nonempty independent set I ⊆ V such that y(I) > χG(I) and yv > 0 for every
v ∈ I.

Proof. Fix y ∈ Imp(V, χG) \ Core(V, χG) arbitrary, and define S := {S ⊆ V |
y(S) > χG(S) and yv > 0 for every v ∈ S}.

First, note that S �= ∅. To see this, since y ∈ Imp(V, χG) \Core(V, χG), there
exists T ′ ⊆ V such that y(T ′) > χG(T ′). Let T := T ′ \ {v ∈ T ′ | yv ≤ 0}. Then,
it holds that y(T ) ≥ y(T ′) > χG(T ′) ≥ χG(T ). (The last inequality is due to
T ⊆ T ′ and Observation 1(a).) Since yv > 0 for each v ∈ T , it follows that
T ∈ S. This implies that S is nonempty.

Choose S ∈ S of minimum size. Since G is perfect, we have that χ(G[S]) =
ω(G[S]). By Lemma 2, there exists a nonempty independent set I ⊆ S such that
for every maximum clique K of G[S] we have K ∩ I �= ∅. Now, we claim that
I ∈ S. (This proves the lemma.) First of all, since I ⊆ S it holds that yv > 0 for
every v ∈ I. So it suffices to show that y(I) > χG(I).

Since I intersects with every maximum clique of G[S], we can see that ω(G[S\
I]) < ω(G[S]). Since G is perfect, this means that

χG(S \ I) < χG(S). (2)

Since I is nonempty, we have |S \ I| < |S|. By the minimality of S, it holds that

y(S \ I) ≤ χG(S \ I). (3)

Now, we obtain the following.

y(I) = y(S)− y(S \ I) (I ⊆ S)
> χG(S)− χG(S \ I) (S ∈ S and (3))
≥ 1 ((2) and the integrality of χG)
= χG(I) (Observation 1(b)).

This concludes the proof. ��
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Now, we are ready to prove the if part of Theorem 2.

Proof (of the if part of Theorem 2). Let y ∈ Imp(V, χG) \ Core(V, χG). Then,
by Lemma 3, there exists a nonempty independent set I ⊆ V such that y(I) >
χG(I) = 1 and yv > 0 for every v ∈ I. Denote by K the set of maximum
cliques of G. To every vertex v ∈ I, we assign a maximum clique K(v) ∈ K such
that v ∈ K(v), and fix this assignment. By our assumption, this assignment is
well-defined. Since I is an independent set, this assignment is injective.

For every K ∈ K, let

λK :=

⎧⎨
⎩

yv

y(I)
if K = K(v) for some v ∈ I

0 otherwise.

Since the assignment v (→ K(v) is injective, the value λK is well-deined. Then,
for each K ∈ K, we have that 0 ≤ λK ≤ 1 (since yv > 0 for every v ∈ I
and y(I) > 1 by the choice of I with Lemma 3, and yv ≤ 1 for every v ∈ I
by Observation 1(b) and the definition of an imputation). Furthermore, we can
check that

∑
K∈K λK = 1. Therefore, if we let x :=

∑
K∈K λK1lK , by Proposition

1, it holds that x ∈ Core(V, χG).
If v ∈ I then xv = λK(v). This is because v �∈ K(u) for u ∈ I \{v}. Therefore,

if v ∈ I, then
xv = λK(v) =

yv

y(I)
< yv,

since y(I) > 1. Furthermore, it holds that

x(I) =
∑
u∈I

xu =
∑
u∈I

λK(u) = 1 = χG(I).

Thus, x is an appropriate core allocation and hence the core is stable. ��

4.2 Exactness, Extendability, and Core Largeness

We prove that exactness, extendability and core largeness are equivalent for
minimum coloring games on perfect graphs. This is also characterized in terms
of graphs, and summarized as the following theorem.

Theorem 3. Let G = (V, E) be a perfect graph. Then, the following conditions
are equivalent.

(1) The minimum coloring game (V, χG) is exact.
(2) The minimum coloring game (V, χG) is extendable.
(3) The core Core(V, χG) is large.
(4) Every clique of G is contained in a maximum clique of G.

First remark that the implication “(3) ⇒ (2) ⇒ (1)” is true for any kinds of
games [13]. It remains to prove “(1) ⇒ (4)” and “(4) ⇒ (3).”

Let us first prove “(1) ⇒ (4).”



Core Stability of Minimum Coloring Games 397

Proof (of (1) ⇒ (4)). Let G = (V, E) be a perfect graph such that (V, χG) is
exact. Let S be a clique of G. Then, by exactness, there exists x ∈ Core(V, χG)
such that x(S) = χG(S) = |S|. Denoting by K the set of maximum cliques of G,
by Proposition 1, we can express x as

x =
∑
K∈K

λK1lK , (4)

where λK ≥ 0 for every K ∈ K and
∑

K∈K λK = 1. Then, it holds that

|S| = x(S) =
∑
K∈K

λK1lK(S) (by (4))

=
∑
K∈K

λK |S ∩K|

≤
∑
K∈K

λK |S| (since S ∩K ⊆ S)

= |S|
∑
K∈K

λK = |S| (since
∑
K∈K

λK = 1).

So, the equality holds throughout the expressions, meaning that S ∩K = S for
each K ∈ K with λK > 0. Thus, S is contained in a maximum clique of G. ��

To show “(4) ⇒ (3),” we use some more facts. The first one is due to van
Gellekom, Potters & Reijnierse [23]. For a cost game (N, γ), let

L(N, γ) := {y ∈ IRN | y(S) ≤ γ(S) for every S ⊆ N},

and call it the set of lower vectors.

Lemma 4 (van Gellekom, Potters & Reijnierse [23]). Let (N, γ) be a
balanced cost game. Then (N, γ) has a large core if and only if y(N) ≥ γ(N) for
all extreme points y of L(N, γ).

In order to apply Lemma 4 to our setting, we have to know the extreme
points of L(V, χG) for a perfect graph G. The following lemma can be shown
with a similar method to the proof of the weak perfect graph conjecture due to
Lovász [16].

Lemma 5. Let G = (V, E) be a perfect graph. Then, each extreme point of
L(V, χG) is the characteristic vector of a maximal clique of G.

Armed with Lemmas 4 and 5, we are able to show “(4) ⇒ (3).”

Proof (of (4)⇒ (3)). Let G be a perfect graph such that every clique is contained
in a maximum clique of G. Choose an extreme point of L(V, χG). By Lemma
5, this is the characteristic vector of some maximal clique K of G. Namely, this
extreme point is 1lK . By our assumption, K is a maximum clique of G. Therefore,
it holds that 1lK(V ) = |K| = ω(G) = χG(V ). Hence, by Lemma 4, the core is
large. ��

This completes the whole proof of Theorem 3.
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5 Algorithmic Aspects

In this section, using the theorems we have obtained already, we discuss the
algorithmic issues for minimum coloring games. The first problem we consider
is the following.

Problem: Core Stability for Perfect Graphs
Instance: A perfect graph G = (V, E)
Question: Does the minimum coloring game (V, χG) have a stable core?

Now, we describe an algorithm which shows the following theorem.

Theorem 4. The problem Core Stability for Perfect Graphs can be
solved in polynomial time.

Proof. Consider the algorithm in Algorithm 1.

Algorithm 1: A polynomial-time algorithm for Core Stability for Per-
fect Graphs.

Input: a perfect graph G = (V, E).
Output: “Yes” if (V, χ(G)) has a stable core; “No” otherwise.

1 ω(G) ← the weight of a maximum clique in G;
2 M ← |V |;
3 foreach vertex v ∈ V do
4 Set a weight vector w ∈ IRV as wv = M and wu = 1 (u ∈ V \ {v});
5 ω(G,w) ← the maximum weight of a clique in G with respect to w;
6 if ω(G, w) − ω(G) < M − 1 then
7 return “No”;

end
end

8 return “Yes”.

Let us prove that Algorithm 1 is correct. The first observation is that in
each “foreach” loop we compute a clique Kv of maximum size which contains v.
That is just because M is huge. Now, if |Kv| < ω(G), then we can see that a
maximum clique containing v is not a maximum clique of G. Namely, v is not
contained in any maximum clique of G. Then, by Theorem 2, the game does not
have a stable core. Therefore, we have to check that |Kv| < ω(G) if and only if
ω(G, w) − ω(G) < M − 1 (i.e., the condition in Line 6 is true). First of all, we
can see that |Kv| = ω(G, w)−M +1. So, we have that |Kv|−ω(G) = ω(G, w)−
ω(G)+M −1. Hence, |Kv| < ω(G) holds if and only if ω(G, w)−ω(G) < M −1.
This completes the proof of the correctness.

Now, we discuss the running time of Algorithm 1. Computing a maximum
weight clique in a perfect graph can be done in polynomial time [12]. So, Lines
1 and 5 can be executed in polynomial time. Line 2 is also fine. In the “foreach”
loop, Line 4 can be done swiftly. The condition check in Line 6 is easy. The
number of iterations of the foreach loop is at most |V |. Hence, the overall running
time is polynomial in the size of input. ��
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Next, we discuss the following three problems.

Problem: Extendability for Perfect Graphs
Instance: A perfect graph G = (V, E)
Question: Is the minimum coloring game (V, χG) extendable?

Problem: Exactness for Perfect Graphs
Instance: A perfect graph G = (V, E)
Question: Is the minimum coloring game (V, χG) exact?

Problem: Core Largeness for Perfect Graphs
Instance: A perfect graph G = (V, E)
Question: Does the minimum coloring game (V, χG) have a large core?

Thanks to Theorem 3, these problems are equivalent to the following problem.

Problem: Size Equality of a Maximum Clique and a Minimum Max-
imal Clique in Perfect Graphs
Instance: A perfect graph G = (V, E)
Question: Do a maximum clique and a minimum maximal clique in G have
the same size?

This problem turns out to be coNP-complete.

Theorem 5. The problem Size Equality of a Maximum Clique and a
Minimum Maximal Clique in Perfect Graphs is coNP-complete. Conse-
quently, Extendability for Perfect Graphs, Exactness for Perfect
Graphs and Core Largeness for Perfect Graphs are coNP-complete.

Proof. The membership in coNP is immediate. The coNP-hardness follows from
a result due to Zverovich [25]. ��

Theorem 5 deals with perfect graphs in general. Now, let us discuss some
special cases for which the problem can be solved in polynomial time. Observe
that, due to Theorem 3, it suffices to compute a minimum maximal clique in a
given perfect graph. If it is also a maximum clique in the graph, then all maximal
cliques are maximum cliques. Then, the condition (4) in Theorem 3 holds. If not,
then this maximal clique is not contained in a maximum clique, meaning that
the condition (4) is violated. Namely, we consider the following optimization
problem.

Problem: Minimum Maximal Clique
Instance: A graph G
Feasible solution: A maximal clique K of G
Objective: Minimize |K|.

There are some classes of perfect graphs for which we can solve Minimum
Maximal Clique in polynomial time. They include the bipartite graphs (easy),
the comparability graphs [15], the chordal graphs [10], and the complements of
chordal graphs [9]. (See also an article by Kratsch [14].) For these classes of
graphs, as we already observed, we can conclude the following.
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Theorem 6. Consider a class of perfect graphs for which Minimum Maximal
Clique can be solved in polynomial time. For this class of graphs, Extendabil-
ity for Perfect Graphs, Exactness for Perfect Graphs and Core
Largeness for Perfect Graphs can be solved in polynomial time.

6 Summary

We discussed the core stability problem for minimum coloring games, introduced
by Deng, Ibaraki & Nagamochi [6], of perfect graphs. We obtained a good char-
acterization for a minimum coloring game with stable core (Theorem 2), and this
led us to a polynomial-time algorithm for the corresponding decision problem
(Theorem 4). We also discussed the extendability, the exactness and the core
largeness for minimum coloring games of perfect graphs, and characterized them
in terms of a property of graphs (Theorem 3). With this characterization, we
showed that it is coNP-complete to determine whether a given perfect graph
yields the minimum coloring game which is extendable, exact, or with large core
(Theorem 5). For some subclasses of perfect graphs, we know that there exists
a polynomial-time algorithm for this problem (Theorem 6).

Little is known about core stability of cooperative games. This paper ex-
panded the knowledge of this problem, and also gave rise to some algorithmic
perspectives.
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